Linearity For Objects

Matthew Kehrt * Andi Bejleri f Jonathan Aldrich?

July 2006
CMU-ISRI-06-115

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

*School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

TComputer Science Department, Univexddi Pisa, Lungarno Pacinotti, 43, 56126 Pisa, Italy

Institute for Software Research, International, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, USA

Abstract

Linear type systems guarantee that no copies are made of certain program valuesoTaedtiage is a foundational
calculus which adds linearity to object oriented languageso Bllows changes to be made to the interface of an
object, such as the addition or removal of methods, as long as such an object is linear, i.e., there exists only one
reference to it. However, this linearity constraint is often unwieldy and hard to program with. We extendith

a linguistic primitive for temporarily relaxing the linearity guaranteesdgallows objects to be linear and enforces

that only one reference exists such an object. We allow multiple references to linear objects in certain expressions by
borrowing references to these objects. Borrowing annotates the type of the reference with a region, which is a unique
token indicating where the reference was borrowed. We disallow references with types containing regions that are not
currently borrowed. We use this to temporarily make multiple references to an object in a given expression but enforce
that outside this expression only one reference exists.

This work was supported in part by NASA cooperative agreements NCC-2-1298 and NNAO5CS30A and NSF grants CCR-
0204047 and CCF-0546550.

Keywords: linear types, object calculi, prototyped-based languages, static type checker, type safety

1 Introduction

Linear type systems allow restrictions to be made on how program values may be copied. Linearity has been studied
extensively in functional languages. For example, Wadler, in [25], presents a simple functional calculus with linear
types. However, linear types have been less well investigated in other settings.

One area where linear types could be effectively used is that of object oriented languages. Several uses of linearity
in such a setting immediately present themselves. The first of these is memory management. Because a linear reference
to an object in memory is guaranteed to be the only pointer to the object, when the pointer is no longer in scope, we
know that the memory where the object resides can be safely reclaimed with no fear of creating a dangling pointer
elsewhere in the program. Cyclone [15, 16] has unique pointers which are tracked in this way.

Another, particularly compelling use of linearity is in statically checking that an object’s methods are called ac-
cording to a specific protocol. Objects often require the methods they provide to be called in a given order or according
to some pattern. Linear references to objects allow us to change the type of an object to reflect its current state without
worrying about the type of pointers elsewhere in the code. Encoding the state of the object into its type enables en-
forcing that only certain methods be called in certain states. For instance, [7] presents Fugue, a tool that tracks pointer
aliasing for checking protocols in this way.

Unlike linearity in functional languages, work done so far on linearity for objects has been restricted to studying
higher level object oriented languages such as Java or Eiffel [2, 18]. We are not aware of any work in linear type
systems for a foundational, imperative object calculus. We consider such a calculus to be a useful tool for the study
of linear objects in general, both for the insight it itself offers and in that it can be used to model more complex object
systems.

Previous work in [5, 6] introduced &0, a typed, imperative object calculus for studying linearity in object ori-
ented languages. In this paper, we propose a more foundational versi@odidsed on the calculus of Abadi and
Cardelli [1]. This new calculus removes redundancy in the original version by eliminating first class functions, leav-
ing only objects. We then extend this version af@vith a mechanism for temporarily relaxing linearity based on
Wadler'slet! [25].

EGo also explores enforcing protocols through several mechanisms based on those found in Self [24]. Self in-
troduceddynamic inheritanceObjects in Self have delegee objects, where methods are looked up if method lookup
failed on the original object. Dynamic inheritance allows objects to dynamically change this delegee and thus the
methods available to them. This can be used to ensure that methods are called in the order the object expects. Self also
allows methods to be changed or added to objects at runtime, which can also be used to enforce such protocols in a
similar way.

Eco also includes dynamic inheritance and method addition. Unlike Self, howeserhis a static type system
that prevents runtime errors. This type system assigns objects types which reflect the current methods that can be
called on them. Since the types of objects can change, the type system relies on object linearity to check programs
with delegee changing and method addition and update without having to find all other references to the same object.

1.1 Contributions

The contribution of this paper is twofold. We present an object calculus based on previous work in [6]. We have

simplified the original calculus by eliminating first class functions. The original work had both objects and functions.

We have reworked the language to contain only objects. If needed, first class functions can be modeled with objects.
The calculus has the following properties:

e The calculus is anbject calculusIt models a language in which objects are the primary focus. It does not have
classes; instead, objects are built from primitives for creating empty objects and adding methods to them.

e The calculus igyped In addition to a description of the runtime behavior, we present a type system. This type
system staticly checks the type safety of programs to guarantee the absence of runtime errors.

e This calculus provides mechanisms for bétiear methodsandlinear objects Linear objects are those with
only one pointer to them. Linear methods may only be called once.

e The calculus provides ways to modify objects at runtime. We allow methods to be added to objects and delega-
tion to be changed during program execution in a well-typed manner.

The other contribution is the addition of a mechanism for temporarily relaxing linearity. Since we use linearity to
allow type changes, we can allow objects whose type are not being changed to be temporarily aliasedyved
We use regions to track in which expressions in a program a given object is borrowed and guarantee no aliases to a
borrowed object escape these expressions.

1.2 Paper Layout

The rest of the paper is arranged as followed.

e We start in section 2 by presenting a simplified version abBvith no mechanism for relaxing linearity. We
discuss the intuition behind the language and then discuss some examples in detail.

e In section 3, we present the formalization of this language. We conclude this section by sketching a proof of
type safety for the the language.

e Section 4 describes how to add borrowing to the language to relax linearity. We again discuss the intuition
behind this and several examples.

¢ In section 5 we show how the previous formalization needs to be changed to reflect the addition of the borrowing
mechanism. We also discuss the proof of type safety.

e Section 6 discusses related work, and

e section 7 concludes.

2 Simplified EGO

This section introduces a simplified version at & which is based on previous work oreB in [6]. This simplified
EGo lacks a construct for relaxing linearity. We briefly discuss the intuition behind the language. We then discuss
several examples to demonstrate the language.

2.1 Intuition

Intuitively, programs in B0 proceed by manipulating objects. An object consists of a record of methods and possibly
a delegation pointer to another object. Methods can be added to this record or the delegation pointer changed, or
methods can be invoked on an object.

A program in Es0 consists of a mutable store and an expression. The store is a partial map from abstract locations
to objects. Expressions are built of primitives for modifying objects, which can contain other expressions. Our
primitives are based on those of Fisher et al. [12, 13]. They follow.

e () creates a new object on the heap and returns a reference to it.

e ¢ —+ m = o adds the method with the namem to the object on the heap referred to &yor changes the
method namedh to beo if it already exists in the object to whichrefers.

e1 < eg changes the delegee of the object on the heap referreddptoybe that referred to by, .

e.m invokes the method named in the object referred to by.

le changes the linearity of an object, as discussed below. This only affects the type of the object; it has no
dynamic effect.

For simplicity we often writ€)) «+mj; =01+ «+m,, = 0, as{my = o1, ,my, = o).

All of the primitives return a reference to an object on the heap. The first three return a reference to the object
they create or modify. The fourth executes a method body and returns the value the method evaluates to; since method
bodies will be composed of these five primitives, they will return a location as well. The fifth primitive returns the
object to which it is applied.

Eco allows both methods and objects to be eitlieear or nonlinear. A linear object is one to which only one
reference is allowed; conversely, nonlinear objects can have multiple references. To make static typing possible, only
linear objects are allowed to have their interfaces changed by method addition or delegation change. Since such
changes modify the type of an object, we need to change the type of any reference to this object used in an expression.
However, finding these references statically is not always possible. Therefore, we only allow these changes to linear
objects to guarantee we can find all references to the object.

In EGO, all new objects are linear. When all of the necessary interface changes have been made, the type of such
an object can be changed irreversibly to be nonlinear, and it can then be freely aliased. This is similar to the “seal”
operation of Fisher and Mitchell [13], but our in our calculus objects can change to be aliasable, while Fisher and
Mitchell allow objects to become subtypable.

A linear method is one which can be called only once, while nonlinear methods can be called multiple times.
Calling a linear method consumes it, and it is removed from the object that contains it. This also counts as an interface
change and so is only allowed on linear objects. We do not allow nonlinear methods to contain references to linear
objects; multiple invocations of such a method would constitute multiple references to any objects mentioned within
its body.

Methods in Es0 are based on those of Abadi and Cardelli [1]. A method is of the farmr).e or jc(z:7).e,
which are nonlinear and linear methods, respectively. A method is invoked on an object, the nrettedéx which
need not be the object that contains the method. When invoked on an object, a method is looked up by searching
the object’s record of methods for the invoked method. If the method exists, it is invoked; otherwise, the object’s
delegee is is searched and lookup recurses up a series of delegees. Once a method is found, invocation substitutes all
occurrences of, the variable it binds, ir, its body, with a reference to the object on which it was invoked. This our
only way of abstracting expressions. Lambda abstraction, if needed, can be defined in terms of objects and methods,
as we describe below.

2.2 Examples

We show some simple examples to demonstrate the useof E

The following example illustrates object creation and method addition and update({)Firsiates a new object on
the heap, to which is added a methed,whose body is the identity method, which simply returns the receiver object.
This method is then replaced by another of the same name which returns a new object when invoked.

()«+ m = ¢(this:jobj t.() < m:jobjt — jobjt).this
— m = ¢(this:jobj t.() «— m:jobjt — jobj t'.{) — -).()

The next example shows how delegation can be changed. It creates a new object, adds the identity method to it, creates
another object and changes the delegee of this second object to be the first object,

() — m = ¢(this:jobj t.() < id:jobjt — jobjt).this « ()

In the next example, we create a new object, add a linear method to it that returns the receiver, and invoke the method.
This removes the method from the object, so this code fragment produces a reference to an empty object. Since the
invocation removes the method from the receiving object, the type of the object the method expects does not contain
the method.

() «+m = jc(x:jobj t.() «— -).x.m

It is not immediately obvious from the examples so far that tke®Eystem is flexible enough to be useful as a
model for a programming language. The remaining examples demonstate fiexibility.

We first exhibit an embedding of the simply typed lambda calculus. We can define a lambda termroftygeas
follows. This is based on a similar embedding shown by [1]. Subterms in double square brackets represent recursively
translated terms.

[Aa:T.€] d:eﬂ (gen = ¢(:[[r — 7']).(body = ¢(this:bodytype(, 7')).[this.arg/x][e]))

where

[+ — 77 %" obj £.() — gen:(objt— jobj t.() — body : (bodytypet, ') = [']))
This works by creating a new object and adding a single methed, After adding this method to the object, it is
made nonlinear so that it can be aliased. As this is the translation of a function, the translation of the type of a function,
[r — 7'] is the type of this objectyen is defined to return a new object containing a method whose body represents
that of the lambda term with the lambda bound variable replaced by the invocation of a method:caltad the
method’s receiver.

Both the expected type of the receiver of thiely method, bodytype{(7’'), and the way in which application is
done, depend on the linearity of the type the translated function expects. If the function expects something with linear
type, thearg method added to the generated object must be linear, and so be consumed whensgaltetherefore
not in the receiver type for itself, as seen below.

[bodytype, ~)] % iobj £7.0) —arg:(iobj t”.0) — body:(iob3t” = [']) = [7]),
body:(jobjt” — [7'])
Whene; is \xz:7.e : 7' as defined above, ard:7, then, then
def .
[(e1 : 7 — 7")es] 1€ (([e1]-gen) <+arg = is(=:jobj t".() «—
body:(bodytype(, ') — [7']))-[ez])-body

This callsgen on an objecte;, which models a function, to create a new, linear object containing the function’s body.
To this linear object it adds a new linear method calleg which returns the argument of the applicaties, Calling
body is called on the new object then simulate8-eeduction, as the function’s bound variable has been replaced with
a call toarg, which returns the argument. Since the function’s argument is linegiis linear and so is consumed.

On the other hand, if the function expects something with linear typeythemethod added to the generated object
must be nonlinear. In this case, sinoegy is not consumed, it appears in the receiver type for itself, as seen below.

bodytypet,) %7 obj +7.() — arg:(objt” = [7]), body:(obit" < ['])

I(er : 7 —)ea] T0(([ea]).gen —+ arg = <(bodytypet, 7)).[e]))-body

Here, application is the same as above, but no the argument is no longer linear, so it is not removed on application.
Since we can calculate the return type, we elide it in later lambda expressions.
We can then use this to define a let binding, where we bind an expressiditype 7.

let z=-¢e; in e d:(af(/\x:T.eg)el

and a sequence operator

def .
er1;ea = let _=e; in es

Once again, we elide types because we can calculate them from the terms.
In a similar manner to lambda abstractions, we can also define linear lambda abstractions that are consumed when
applied, asin [25].

[iAz:T.€] def (body = is(this:bodytypef)).[this.arg/z|[e])
where

def . L, .
bodytype) = iobj t.() < arg:jobj t'.() « - —o [7]
and

[+ —] %Fiobj t7.() — body:(bodytypef) —o [+'])

Finally, we translate application as follows.

l(erir —o)ea] %M (fer] + arg = is(i0bi ¢/.() — -).[ea]) body

This example is slightly different than the one above. We simulate function consumption by hawinige a linear
method that is consumed on invocation. Since this example invokes a linear method on an object, the object is linear,
and so on invocation we can add the argument directly to it, rather than caljingrmethod to generate a new linear
object.

This translation only allows linear arguments to linear functions, as we cannot call a linear method on a nonlinear
object, so we cannot access the object carryingat multiple places in the function body. Later, we will show a way
to avoid this restriction with borrowing.

Finally, for completeness, we translate any base types and variables to themselves.

fa] €'

def
[[Tbase]] = Tbase

A more complex and realistic example is that of a a network socket object, given in Figure 1. In this example, we
use atypedef construct to simplify presentation; however, this construct is not part of the calculus. The example also
used let and the sequence operator as defined above.

This example creates an object callgacket to model a network socket. The socket starts closed with a single
method calledpen. Callingopen opens the socket and provides the socket object with two methods, onerealied
and one calledlose. Callingread reads some data from the socket. Calligse closes the socket and removes alll
methods from the object.

The methods in this example make other methods available and unavailable by changing delegsitiatetn
which remains linear throughout the example. There are secondary objects corresponding to the three states a socket
can be in (able to be opened, open and closed). Each of these is delegated to at a different point in the object’s lifetime.
Socket starts as an empty object which is delegate@tenSocket, an object containing thepen method. Calling
this method changes the delegationSaicket to ReadSocket, which containsread and close methods. Finally,
calling close changes delegation tGlosedSocket, which is empty.

The pattern used here is of note. In this code fragment, objects are created that correspond to states in the lifecycle
of an object. Each object representing a state the object might be in has a series of methods added to it that are
appropriate to that state. We then create an empty object and transition from state to state by changing delegation
of this object to the object corresponding to the state we are entering. This pattern allows us to create and enforce
protocols on method use. We can therefore guarantee that only methods appropriate to the current object state exist on
that object at a given time.

3 Formalism for Simplified EGO

In this section we discuss the formalism we use to describe this fragmerg@f We first present the syntax of the
language. Then we present the dynamic semantics and the type system. Finally, we sketch a proof of type safety.

3.1 Syntax

A program in the fragment of & we present here consists of a paire of store and an expression.

A store is a partial map of the forrft — s)*, where/ is an abstract location andis an object descriptor. An
object descriptor is of the forftoc — (m; = o1, -+ ,m,, = 0,). Hereloc is either a reference, to an object’s
delegee onull , which indicates the object has no delegee, @nd = o4, - - - ,m,, = 0,,) is a record of the methods
the object has.

A method,o, is eitherg(z:7).e or js(z:7).e. Both of these abstract the variableut of the method body. The
first is a nonlinear method and the second a linear method.

typedef closedType = jobj tq.(job] ta.(() «—) «)
typede f readType = jobj t1.(job] ta2.(() < read:jobjty — jobjty,close:jobjty — closedType) «— -)
typede f openType = jobj t1.(jobj t2.(() < open:jobjty — readType) — -)

let ClosedSocket = () in
let ReadSocket = (
read = ¢(this:readType).*read from a socket*/
close = ¢(this:readType)./*close a socket*/;
ClosedSocket — this)
in let OpenSocket = {
open = ¢(this:openType)./*open a socket*/
ReadSocket < this)
in let Socket = (OpenSocket — ())
in /*More code*/

Figure 1: A series of objects for a network socket

Expressions e = z,y|(lem|e—~+m=c
| e1<—ea]le|wv

Values v = loc|o

Locations loc == null |¢

Stores I = - |ul—s

Object Descriptors s = loc— (m1 =01, " ,Mn =0n)

Methods o = g(z7).e|is(x:iT).e

Types T = 7717 |1—7 |0

Object Types O == Lt|()|Lt.O—R

Linearities L := obj |iobj

Rows R == -|Rm7T

Figure 2: Syntax of Simplified &0

An expression is either a variable,or y, a new object creatior(), a method calle.m, a method add or update,
e «—F+ m = o, a delegation changg « e, or a linearity changée. We consider methods as expressions to simplify
the typing rules; however no other expression evaluates to a method. We also count lotatjomiich are either
null or /¢, as expressions but they are intermediate forms which do not occur in userlcoded methods are the
only values; all programs evaluate to a one of these expressions or diverge.

The typesy, of expressions are based on those used in [13]. These are either the types of methods or object types,
O. The types of methods are of the form— 7/ or 7 —o 7’. Herer represents the type of the the object the method
will be called on and-’ represents the type of the object to which it evaluates.

Object types(, are either type variablest or of the form() or the recursive typét.O — R. () is the type of
null andLt.O < R the type of¢. L is either pbj orobj which indicate whether the object is linear or nonlinear
respectively. INLt.O < R, Ris arow of the formmn:oq, - - - , m,:0,, Which specify the method types of the methods
in the original object, and is the type of the object’s delegee. As a method in an object may mention the object in the
form of the variable bound by the method, it may be necessary for the type of an object to recursively mention itself;
in the object typd is a recursive type variable bound to the whole type. This may be referred to in the rest of the type
by the formLt, which annotates the recursive variable with a linearity.

Figure 3: Dynamic Semantics of SimplifiedsB

¢ ¢ Donfu)

"=~ null
po= : Olu E-New
M7<> —>/’[’3€
/Lge):lOCH<m1:(71,'“> Vi.m # m;
e e =[l—loc— (mi =01, ,m=o0)u
f HH/ 7 — C-UpPD il <_1 7) E-ADD
me—m=0 — p,e —Fm=oc wl—+m=0 — pu' ¢
wl) =loc— (- ,m=a,)
"= [l — loc — "'7m:U/7"' , € ,76,
s - M e e me T G C-DELy
/,L,Z<—+m20' ‘)/"’76 My, €1 < €2 — W, €1 < €2
v 0 =1 "0 lod e (- -
e — ¢ cope, u() = loc « (> o= loc — () E DL
b —e — p' l—e wyloc — 4 — ' L
e e mbody(u, £, m) = sz:T.€
= HM/ 7 C-INV yu) E-NLININV
wem — u'e'.m w,bem — p, [/ xle
wll) = (-, m=isz:Te,)
’_ O (v e — /761
w=1 ¢ Ju E-Lininy 25— o cnLin
sy bm — ' [0/ x]e pyle —) le
E-CHLIN ull) =loc— (mi=o01,--- ,m=o0,---) MBODY,
H, lw — v mbOdY(M& m) =0

p(l) =loc— (m1=o1,--)
m=oc ¢ (mi=o1, --) mbody(u,loc,m)=o0c

mbody(u, £,m) = o

MBODY o

3.2 Dynamic Semantics

This section discusses how the expressionsabd Bre evaluated and the effect this evaluation has on the heap and the
objects it contains. The rules defining how these expressions are evaluated are in Figure 3.

The simplest primitive ig), whose semantics are defined by EwW () extends the heap with a new mapping,
from some fresif to null — (), that is, an object descriptor with no methods and no delefeevaluates td: it
returns a pointer to the new location.

e «+—+ m = o is defined by E-AD and E-WD and the rule C-BDb, which reduceg to a value. The first allows
the addition of methods to an existing object that does not already contain a method with that name. It modifies the
store such that the location pointed to by the value basm = o added to its record of methods. ErPD, on the
other hand, replaces an existing= ¢’ with m = o in a similar way.

e1 «— ey is defined by E-[BL. C-DEL; and C-DEL, reducee; andes, respectively, to values. E#2 reduces
{1 «— L5 to ¢5 and modifies the store. It changes the delegation link on the object descriptor in the store tdwhich
points to¢;. That is, if /> maps to soméoc < (- - -), this expression changes thisfto— (- - -).

e.m invokes a method. Its semantics are defined by BNl and E-LININV. C-INV reduces to a value. The
two invocation rules takes something of the fofrm and find the called method as follows. They look up the object
descriptor that refers to in the heap. In the case of invocation of linear methods, the method body is found in the
record of methods in the object descriptor. In the case of invocation of nonlinear methods, method lookup is slightly
more complicated: if it is found in the record of methods in the object descriptor pointed¢tdhig method body is
returned. Otherwise, the method body is searched for recursively in that object descriptor's delegee. Then, in either
case//, the method receiver, is substituted for the variable bound by the method in the method body. In the case of
linear method invocation, the store is modified by removing the method from the object that contains it, as invocation
of a linear method consumes the method.

le is defined by E-@GLIN. C-CHLIN reduces: to a value.le has no dynamic effect. It only effects the typing of
objects.

3.3 Type System

EGO's type system prevents a program from getting into a state from which the dynamic semantics do not define an
reduction. One specific stuck state we wish to avoid is that in which a method is called which does not exist on the
method’s receiver or the receiver’s delegees. To prevent this and other stuck states, we give a type to an expression
only if the dynamic semantics define a reduction for it.

One important function of the type system is that it maintains the distinction between linear and nonlinear objects.
Object types are annotated with linearities. We allow aliases only to be made of nonlinear references.

The type system allows changes to the interface of an object such as method add or update and delegation change
only to linear objects. This is because changes to objects are imperative: they affect the object descriptor on the heap.
Since an object’s type reflects its interface, a local change to the interface of an object has global changes on the type
of the object. If we allow pointers to be aliased, it becomes impossible to keep track of the global changes of their
types. Thus, we allow changes to an object’s interface only on linear objects.

Interface changes are also allowed only to the object on which they are performed, not its delegees, for similar
reasons. Specifically, a method on an object cannot be changed through a reference to an object that delegates to
the object containing the method. Instead, a direct reference to the containing object is needed. This is because
we can delegate to nonlinear objects, so we have no guarantee that this object is not aliased elsewhere. Thus, the
same problems exist with changing the interface of a delegee as do with changing the interface of a nonlinear object.
Pragmatically, the effect this has is disallowing method update unless we have a linear pointer to the object descriptor
containing the method.

Our method types; — 7/ andr — 7/ have receiver types as part of them. This contrasts with many other object
calculi [1, 13] where the receiver type is left out, as it is known to be the type of the object or a subtype. However,
since we allow changes to the type of objects, the receive type may be different when the method is called, so we must
include it.

Since objects may contain methods whose types contain the type of the objecgatgde system uses gives
recursive types of the fornit.O <« R to objects. Heret is bound recursively to the whole type. Any time we
change the type of the object, this whole type will change so we must unfold the type by substituting the type in for
the recursive variable in itself. We then make the necessary changes to the type and refold this type by abstracting out

Y(¢) =obj t.O0—R
Y, AFL0bj t.O0— R= {}

T-NLINLOC

3(¢) =jobj t.0 — R
¥, AF £ijobj t.0 — R = {{}

T-LINLOC

¥, Ak ejobj t.R+— O =1

SAFnl) — {3 Ut
;A elt.O— R=1
Tu = Lt.[tO — R/t](O « R)
mtype (r,,m) = Lt'".O' —« R' — 7
Lt.O — R=Lt'.0' — R
T-NLININV

s Ak emit =1

S Ak o =1
S, Ak eijobj .0 — R=1
Imtype (jobj t.O' «+— R',m) =1
jobj t.0’ — R’ = jobj t.[tO «— R/t](O «— R)
7" =jobj t.[t/7"](O" + [m:T/m:T'|R)

T-CHLIN

3;AFle:obj t.R+— O =1

3;AFeob) t.O— R=1
Tu = j0b] t.[tO — R/t](O «— R)
Imtype (1., m) =jobj t'.0' — R —or
iobj t.0” —« R" =1,
75 =iobj t.[t/77](O" « [/m:T"IR")
7; =jobj t'.0' — R’
T-LININV

YA emir =1

;Ao =1
YAk ejobj .0 — R=1
Imtype (jobj t.O’ «— R',m) #
jobj t.0' — R’ = jobj t.[tO «— R/t](O < R)
7' =jobj t.[t/7'|(O" — R',m:T)

T-UpPD T-ADD
S AA et m=0:7" =1, MAA et m=o:7 =1l
S A vtk er = {} =z ¢DonA)
A nonlinear ;A x:Ther =1 x ¢Don(A)
T-NLINMETH T-LINMETH

S Ak qmrer —» 17 = {}

S AF jsriTe:T—or =1

¥; Al ea:jobj t.0 — R—1
A Fe: 0 =1
iobj t.0' — R’ = jobj t.[tO «— R/t]O «— R
T =jobj t.[t/7]0" — R

YA A e — exit = 1,1

T-NEw

;AR ():iobj t.() — - = {}

iAot o et =1

Sy ko = {}

T-DEL
TV YAk erT =1 TK
- -KILL
AR 1Az e =1
7’ nonlinear
T-CopPY

SiA T et =1

Figure 4: Static Semantics of SimplifiedsB

m:T € R

T-LMETHT

Imtype (Lt.O — R,m) =171

Imtype (Lt.O — R,m) =

mtype (Lt.O «— R,m) =171

Imtype (Lt.O «— R,m) # mtype (O,m) =

T T-METHTl

L T-MEeTHT,

mtype (Lt.O «— R,m) =71

Figure 5: Method Type Lookup in Simplified and Fulsé

occurrences of the new type the object will have. This ensures that the recursive type variable will always refer to the
current type of the object. Now, we discuss our typing rules, shown in Figure 4, in more detail. Our typing judgment
looks like

s Ak erT =1

Here,X is the store typing. For an expression to be well-typed, every use of a location in the expression must use
it with the same typeX consists of a mappind/ — 7)* from locations to types. This mapping is used to look up
the types of locations, which guarantee that all uses of a location in an expression have the samésype.type
context, which gives the type of all free variables in the expressidgthe expression to be typechecked arid the
type given to it.l is a list of linear locations ir. This is a technical device used in the type safety proof for proving
that linear locations are never aliased.

Locations are typed by looking them up in the store, as shown inNI-©c and T-NUNLoc. T-LINLOC also
puts the location it types into the list of linear locatiohss this is a linear location used in the expression.

null s typed using the rule T-NLL, which gives it the typd).

We can turn a linear location as a nonlinear location Wiftas described by T-@LIN. All new objects are linear
so that methods can be added and other interface changes can be made. We get a nonlinear object by turning a linear
object into a nonlinear. This is safe as it can only go one way: we cannot turn a linear location into a nonlinear one.

The typing of method invocation is by the rules ThNILNV and T-NLinlnv. The receiver object is typed with a
type of the formLt.O «— R, which is the folded type of the object. This type is unfolded by substituting it into its
recursively bound variable and the type of the method is looked up in this new type. Since the invocation of a linear
method changes the type of the receiver object as described below, and we cannot change the interface of delegees,
we only look up linear method types in the row of the unfolded object type, which describes the types of the methods
contained in the original object. These lookup rules are defined in Figure 5. However, invocation of nonlinear methods
on an object does not change the interface of the object, so we can look such a method up recursively in the delegee
type section of the unfold object type if the method type is not found in the row. For nonlinear methods, we then
check that the type the method expects is the type the of the receiver. The invocation is then given the return type of
the method. For linear methods, we must do a little more. Since invocation of linear methods removes them from the
object containing them, the interface of the object is changed by such invocations. Therefore, an object invoking a
linear method must be linear. Also, rather than checking equality of the type the method expects with the receiver type
as we do with nonlinear types, we check equality of the type the method expects type with that of the receiver type
refolded with the invoked method removed, as this is what will be substituted into the method body. We once again
give the whole expression the return type of the method.

Method addition and update are checked with #eland T-ADD. These rules check the type of the object as
some pbj t.0 < R. They unfold this type by substituting this type intin O < R. Then they give this expression
the type found by adding or updating the appropriate method and folding the object type back up. This maintains the
recursive type, as the type of the object is folded at the new type after the method is added or changed.

Methods themselves are typed like functions. The abstracted variable is placed in the context with type it is bound
with and the method body is typed. However, nonlinear methods are not allowed to mention linear objects; otherwise,
multiple calls to the method would result in multiple occurrences of the linear object.

Delegation is typed similarly to addition and update. The type of the expression whose delegation is being changed
is unfolded. The expression is given this type with the type of the delegee changed and the object type folded back up.
This keeps the object type folded at itself.

() is given the type of an empty linear object with no delegee. This is the tlge §.{) — -.

Finally, we type variables by looking them up in the type conteixtaccording to T-¥R. This rule expects the
context to contain only one binding. However, we can useliltKo eliminate extra bindings. This is a difference
between our system and Wadler’s: we allow linear objects to leave scope. This makes our type system more similar to
affine logic than linear logic.

We enforce linearity by splitting the context when we type subexpressions. This is the approach taken by Wadler
in [25], modeled on the same technique from Girard’s linear logic [14]. Since, for a given expression, we can only
use a variable in one subexpression, the variable can only be used once, and so anything substituted in for the variable
can only be used once. We allow aliases to nonlinear objects throughPkQ@vhich makes copies of a nonlinear
variable’s binding in the context.

10

Ve € Domp).Z; - F p(f):X(0) = 1,
Dony:) = Doni(z)
3+ p ok = concatly

T-STORE

Vi € 1..77,.(2;14 Foprn = ll)
R=mqym, - ,Mp:Th
YA loc:O = e
l:llocalla"’ ;ln
T=Lt.O— R

S;Abloc— (my =01, ,my =0p):7 =1

T-ODESCR

Figure 6: Store and Object Typing for SimplifiedsB

We also have a store typing judgment, defined inTBSE. This checks that each object stored in the heap has the
type the store type;, gives it by checking that all the methods in each object have the type the object type gives them
and that the delegees have the correct type with. The object type has been folded but the types calculated for a method
types are not, so before comparing them, we must unfold the object type. The store typing judgment also produces a
list of all linear locations mentioned in the store. This is used to prove that no linear objects are mentioned more than
once in the heap and currently executing instruction. These rules are shown in Figure 6.

3.4 Safety Proof

We have no formal proof of safety for the fragment af&presented so far. Rather we have a proof of the safety of
the entire system. However, we sketch a hypothetical proof of safety for this fragment below.

Type safety consists of two lemmas. The first is progress. Progress states that a program that consists of the pair of
a well typed store and a well typed expression can always be reduced to a new program if the expression is not already
avalue.

Theorem 1 (Progress)If ;- + e:r = landX F u ok = [thenuy,e — p/, €’ or e is a value.

The proof of this is by induction on the derivation Bf A + e:r = [. For each case, we show that if the
expression is correctly typed, it has a form which either is a value or can be reduced. To do this, we need a canonical
forms lemma.

Lemma 1 (Canonical Forms) 1. If avalue has the type, — 7, it has the fornvz:T.e.
2. If avalue has the type, —o 73, it has the form gz:7.e.
3. If avalue has the typét.O — R, it has the fornY.

4. If a value has the typ@), it has the forrmull

The proof of this is by case analysis on the typing rules.

Preservation states in general that if a pair of store and expression have certain properties we wish to maintain
invariant, and this program reduces to another, the new program will also maintain these invariants. Specifically, we
wish to maintain three invariants.

1. The expression has some type
2. The heap is well typed.

3. All linear locations are used at most once in the expression and store.

11

SRS > S-REFL

Dom(X’) = Dom(Z) U {¢} V¢ € Dom(X).3(¢') = X' ()
Y > 5

S-GRow

Dom(X’') = Dom(X) V¢, € Dom(Z) — {£}.2(¢') =X'(¢') Z(f) =iobj t.0 — R« X'({)=o0bj t.O0— R«
Y > 5

S-CHLIN

Dom(¥’) = Dom(X) X(¢) =iobj t.0 «— R« V¢ € Dom(X) — {£}.3(¢') =X'(¢)
> 8

S-LOBJ

Figure 7: Syntax of EO

To do this, we define a relation on store typEsy, X', which says that a new store type is related to an old store
type in one of three ways. The first is that the store type is extended with a new locatibime second is that the
linearity of location? has been changed from linear to nonlinear. The third is that the type of the linear lothten
been arbitrarily changed. By limiting the store change to these three changes, we can more easily prove that a changed
store is still well typed, as it changes in a limited number of known ways. This is defined in Figure 7.

Theorem 2 (Preservation) If
i XFer=lI
i. XFp ok =1
ii. there are no duplicates ih, [, and
iv. uoe — e
then for som&’ >, ¥
i Xk eir =1,
i. ¥Fy ok =1,,and
iii. there are no duplicates itf, l’,.

The proof of this is by induction on the derivation @fe — 1/, ¢’. For each of possible way to derive this, we
show that if the program on the left maintains our invariants, so does the program on the right.

To prove this, two important lemmas are needed. Since methods do substitution, we need to show that the substi-
tution of well typed expressions into well typed expressions maintains well typedness.

Lemma 2 (Substitution) If ;A ,z:7' F et = land%;- F e':7/ = I/, thenX; A + [¢//z]e:r = 1" and
"cil.

The proof of this is by induction on the typing rules.
We also need to show that if we have a well typed store, if we replace a linear object type in the store typing with
a new type and the object at that location in the store with an object of that type, the store remains well typed.

Lemma 3 (Store Change)If
i. XFup ok =i

12

i. 25AF£p:0b) .0 — R=1,
iii. there are no duplicates if, [,
iv. u(l)=s
V. X F sit = [,, and
vi. 3 ksl = 1)

then[{ — 7| F [(— '|p ok =1, —1,,1],

4 Relaxing Linearity

The fragment of the o language presented so far is powerful but has a significant drawback. The restrictions on
linear objects are often counterintuitive and sometimes overrestrictive. Linearity guarantees that we can make changes
to the interface of an object while retaining the ability to statically check its type. However, often it is useful to be
able to make temporary aliases on an object and then to regain the ability to change its interface once all of these
aliases are no longer available. One example of this is the use of the network socket example above. A socket here
is a linear object which contains apen method. Calling this method opens a socket and changes the interface, as
the open method is removed ancead andclose methods are added. At this point, assumingtbed method is
reentrant, there would be no reason to prevent aliasing the object to allow several sections of the program to read from
it simultaneously. After all of these reads are done, if no aliases of the object existeaall could close the socket
and remove theead method.

The hitherto presented fragment o6& does not allow this. Methods can be added and later removed by changing
delegation, but we cannot allow temporary aliases. We now introduce a construct bdsed @s presented in [25].
This construct allows us to make temporary aliases of linear objects.

4.1 Additions to the Calculus

Intuitively, our new construct allows us to evaluate three expressions in sequence. The first two each bind a new
variable to be used in the successive expressions. The first expression evaluates to a possibly linear object which is
bound to a variable. In the seconds expression, this variable is bound with a borrowed object type. This borrowed
type can be freely aliased but no changes can be made to its interface. This borrowed object is similar to a linear
object acting temporarily as a nonlinear object. This second expression is evaluated to a value and bound to a second
variable. In the third expression, both variables are bound with the first being bound with to its original type, as it is
no longer borrowed.

To prevent aliases of the borrowed expression escaping the expression in which they are borrowed, we annotate the
types of borrowed expressions witlgions A region is a unique tag generated every time an object is borrowed which
indicates where the object is borrowed. We keep track of which regions are currently annotating borrowed objects. We
do not allow typing of an object with a region not in scope.

Our region system differs from previous systems such as [23]. Such work has been in using regions for memory
management. There, the region is an actual block of memory where data resides, allowing information about when
memory can be freed can be statically inferred. We do not have blocks of memory; instead our system instead uses
similar techniques to track aliases. Qet! looks like this:

let ! (p) T1 = €12Ty = €9 in es3 end

Here,p is a region variable bound to the region generated when a location is borrowed with this expression. The
value ofe; is bound tar; in e; andes and the value oé; is bound taz; in es.

Ourlet! differs from Wadler in that Wadler does not use regions to contain aliases. Instead, he places restrictions
on the type of the expression in which a linear value is borrowed to prevent values containing the type of the borrowed
value from escaping. We allow these expressions to have any type as long as it does not contain the region under which

13

the location is borrowed. Since we are not relying on the type of the value of this expression to restrict aliases, our
system also works in an imperative setting where values may be stored on the heap.

The following example demonstrates a very simple udetbf . In this exampleg is bound to a reference to an
object containing only a new method that returns a new object. This object to is borrowed in the second subexpression
but not used, as we have not yet introduced the necessary mechanisms to do so. The second expression evaluates to
an object containing a singi@ method that returns the receiver. This new object is bound tinally, outside the
scope of the borrowing, both methods are called. The whole expression evaluates to an empty object, as this is what

z's new method returns.

let ! (p)
x = () «+new =
¢(this:jobj t.() < new:jobjty — jobj t2.{) «).{)
y=() —+id=
¢(this':jobj t.{) < id:jobjt — jobjt).this’
In
y.1id; x.new
end

Several other modifications to the existing calculus need to be made to accomodate regions.

The first modification is the addition of region polymorphism. Methods can only be added to linear objects.
However, we may wish to call methods on borrowed objects. We therefore need to add methods to objects before
they are borrowed which expect receivers that are borrowed under regions not yet in scope. We do this by region
abstraction. Methods may be abstracted over a number of regions, which are instantiated when the method is called.
To accomplish thidet! also binds a region variable which is in scope where the object is borrowed and which refers
to the region at which the object is borrowed. This allows regions to be referred to in code and to be instantiated.

The following example uses region polymorphism. It binds #n object containing a single method that returns a
new object. The method is polymorphic in the region of its receiver. In the type the method expects its receiver to have,
the method itself has a polymorphic type to reflect this. In the second subexpression, where this object is borrowed,
the method is invoked. When this happens, the polymorphic variable is instantiated with the region in which the object
is borrowed to allow the method to be called. The value of this method call is boupdntbich is, in the the third
subexpression, returned as the value of the entire expression.

let ! (p1)
x = () «+ new = Apy.s(this:paty.{) « new:(Vp3.pst1 — jobj ta2.({) < -))).{)
Y= x.new(p)
n
Y
end

Another modification is that we now annotate method types with a list of regions used by the method. This is
because it will not always be apparent otherwise from the arrow type what regions are used in a given method. We

only allow invoking methods with regions that are in scope.

The next example uses this type. It is similar to the above example, but the added method uses the receiver in its
body before returning an empty object. Since it uses a region in its body, the type of this method in the receiver type
on the method must mention the region. Note that the annotation on the arrow is polymorphic. It, as well as the region
of the receiver, is instantiated when the method is invoked.

)

let ! (pl
= () —F new = Apa.(this:paty.() — new:Vps.pste 22 jobj ta.(() « -)).(this; ()

x

14

y = z.new|p]
in

)
end

The final modification arises from a similar problem to that which gave rise to region polymorphism. We may add
methods to objects that refer to regions which are later no longer in scope. We cannot call these methods, but we allow
other methods to be invoked on such an object. This means that any type annotations we write on methods must be
able to be the type of objects with methods that mention regions that are not in scope. Since the region variable we
bound to the region is no longer in scope, we cannot write such a type. We solve this problem by havingra type,
which is the type of uncallable methods. This type is a supertype of a normal method type, so can be used on method
type annotations which accept objects whose types contain unknown regions.

This example shows the use of this type. We create an objegtth one method which returns a new object.

Then we borrow a new object and bind it to the variahl&\Ve then add a new method 49 which is still linear, that
mentionsy while y is stil borrowed. After we leave the subexpression wheigborrowed, we call the first method

onz. x how contains a method that mentions a region no longer in scope. To allow this, on the expected type of the
receiver on the method we call, we give this method the fyp&his means we never can call the method, but, as it
mentions regions no longer in scope, we would not be able to in any case.

typede f receivertype = obj t.{) < (methy:objt — jobj t.() < -, 0bj t.() « meths:T)

let x= () «+ meth; = ¢(this:receivertype).() in
let ! (p)

y=

z = & «—+ methy = ¢(this:receivertype).(y; ()
in

z.methy|]
end

typede f receivertype = obj t.()« (methy:objt — jobj t.{) « -,0bj t.{) < methy:T)

let x= () «+ meth; = ¢(this:receivertype).() in
et 1 (p)y=0)

z = x «+ methy = ¢(this:receivertype).(y; ()
in z.meth; end

We now have the necessary linguistic mechanisms to model linear lambda abstractions which take nonlinear argu-
ments. As with those taking linear arguments, we do this by creating an object with adinkamethod which

expects to be called on an object with@ary method representing the argument to the function. Since the method will

be consumed, it must be called on a linear object. Now, however, we can duplicate the object within the body of the
expression to acceasg mutltiple times. We do this by borrowing the object within thely method, so it s borrowed

in the function’s body. Therg method must therefore be abstracted over the region it expects to be called in. This is
shown in Figure 8.

We can also now implement the socket example described at the begining of this section. In fact, this example is
fairly simple; it is given in Figure 9. It is based on the previous socket example in Figure 1. The main differences
are that the-ead method is now parameterized over a region. After defining the objects, we open the socket and then
borrow it asSocket’. Now we can freely alia$ocket’. We can use the borrowed socket by callirgd with any
reference to the object as long as such callset@al instantiate the polymorphic variabjg with the bound region
variablep,. After leaving the expression, we no longer have access to any aliases/aft’, so we can close the
socket.

15

[iha:re] € body i (this:bodytypeg)).
let ! (p) thisper = this
result = [thisper.arg[p]/z][€]
in result
end)

bodytype() def jobj t.() «— arg:Vp'.p't = [7]

[(eri7 — 7)es] B ([er] —+ arg = Ap's(argtypet, o). [ea]) body

argtypet. o) T 0t/ () — arg : vp g < 7]

[—o '] %0bj £7.() — body: (bodytypeg) —o [+'])

Figure 8: Linear functions with nonlinear arguments

typedef closedType = jobj tq.(job] ta.(() «—) «)
typede f readType(L) = Lt1.(jobj ta2.({) « read:Vpa.pat1 — pat1,close:jobjty — closedType) « -)
typedef openType = jobj t1.(jobj t2.(() « open:jobjt; — readType) « -)

let ClosedSocket = () in
let ReadSocket = (
read = Apy.s(this:readType(p;))./*read from a socket*/
this
close = ¢(this:readType(jobj))./*close a socket*/;
ClosedSocket — this)
in let OpenSocket = (
open = ¢(this:openType)./*open a socket/
ReadSocket «— this)
in let Socket = (OpenSocket — ())
in /*More code*/
Socket.open;
let ! (p2) Socket’ = Socket
SomeData = [*Code that aliases Socket™/
in /*More Code*/
Socket'.close
end

Figure 9: A socket usintgt!

16

Expressions e = zyl()|emo, - ,00)||le+m=0c

‘Iet I'(0)x1 = e1xa =ezin egend‘

Values v u= loc|o

Locations loc null | E
L

Stores T N
Object Descriptors s loc «+ <m1 = 01, e My = Og)

Methods o u= §(13T e|m|g x:T)
P P
[o] I[e]

Linearities L =
Object Linearities o ::= obj | jobj
Regions 0o u= @ |

Figure 10: Syntax of EO

5 Formalism

In this section we present extensions to the previous formalism that implégtientand regions as we have described
them.

5.1 Additions to the Syntax

The changes to the calculus involved in addieiy cause some changes to the syntax. The first such change is the
addition of thelet! construct itself to the expressions of the language. This is of thelrnt (o) 1 = e; 22 =
es in ez end. Here,p is eitherp, a region variable, or, a region.p is added to the linearitied;,. However, we do
not allow users to write down regions,solet ! (r)z; = e;j 22 = e3 in e end is an intermediate form generated
during program execution.
We also make changes to methods. Methods are now of thepim - - Ap,,.c(z:7).¢, Or Apy. - - - App.is(x:7).e.
These are nonlinear and linear methods, respectively, which are parameterized over some number of regions.
Method types are changed to reflect the fact that they are now polymorphic. We also add annotations to method

types indicating the regions mentioned by the methods they type. Our method types now lak like Vp,, .7 K,

orvpy.---Von.7 5 7/. We us€eT a seperate type for methods which mention regions no longer in scope.

We also add region instantiation to method invocatioasnu[os, - - - , 0] invokes a method and instantiates its
region arguments. We often writem/[] ase.m.

Finally, our locations are now annotated with linearities. They are now of thedprrhis allows us to give types
to objects in settings where their linearities may change, as discussed below.

The syntax of Eoappear in Figure 10, with differences from the previous system highlighted.

5.2 Dynamic Semantics

The addition of new expressions to the language and the alteration of existing expressions necessitates the addition to
and alteration of the dynamic semantics of the calculus. The dynamic semanticeafeEshown in Figure 11, with
additions highlighted.

The first change is the addition of several rulesl&dt : C-LET;, E-LET;, C-LET; and E-LET,. Given an
expression of the forfet ! (p) z1 = e; 22 = e3in e3 end, these proceed by first evaluatingto a value, of the
form ¢;. Then a new regiom;, is generated for this borrowing, ancind/,. are substituted inte, for p andx;. Note

17

that the linearity annotation on the location is changed to reflect that the location is borrowedeNexyaluated
to a value. Finally/;, andv, are substituted intes for 2; andz,, and the entire expression stepstoafter these
substitutions.

Another change to the dynamic semantics is that method invocation now instantites any regions over which the
invoked method is abstracted. This is reflected in the newwC-E-NLININV and E-LNLINV rules. Methods
now can be prefixed by a series of abstractions of the fagm - - - Ap,,. which abstract these region variables. An
invocation of the forme.m[p1, - - - , 0,] l0ooks up this method in the original object in the case of a linear object or
recursively up the object hierarchy in the case of nonlinear objects. Upon finding the method, each region or region
variable in the seriegy, - - - , 0, IS substituted for the appropriate region variable jras well as a reference to the
receiver being substitued for the method’s bound variable.

Finally, as locations are now annotated with linearitlesyow must change this annotation from a linear object to
a nonlinear object.

5.3 Type System

The most significant additions to the calculus are in the type system. The type system is expanded with several
mechanisms folet! and regions. This is shown in Figures 12 and 13, with additions highlighted.

The first of these is the change made to object types. We add two new linearities in addalgn &md pbj .
These are region variables, and regionsy. Both of these indicate that an object whose type is annotated with this
linearity has been borrowed. We allow the same operations to be performed on borrowed objects as on nonlinear
objects. They may be aliased freely but no change may be made to their interface. This is in line with the motivating
intuition that borrowed objects model linear objects that have been made temporarily nonlinear.

The typing judgement is now

;AP Sker =1

Here,X, A, e, 7 andl remain the same as before. However, we add two new contexts. Thefilista list of
regions and region variables which are currently in scope. The seSoigla partial map from regions to locations.

This indicates what locations are borrowed at what regions in the whole expression currently being typechecked, and
is used for checking the well-typedness of the store, as discussed below. All our typing rules are updated to use the
new typing judgement. Most simply pagsand.S up the derivation. The exceptions to this are discussed here.

We add rules for the typing det! , T-LET; and T-LET,. For some expressiofet ! (p)xz; = ejzs =
e in ez end, these rules typéet! by first finding the type ok,. The type ofe; is required to be object type
of the formLt.O — R.

The variabler; is now bound with the type aft.O — R in e;, andp is added to the region contex?, to check
the type ofe,. This means that the object is borrowedeinand can be freely aliased but no changes can be made
to its interface. If we are typecheckindet! that is currently being evaluated and so locations annotated with this
borrowing’s region/,, have already been substituted irtg the presence of the region in the region context will
allow this location to be typechecked. Under these contexts, we check the typge e check that the type ef,
does not contain, as this would allow aliased locations to be returned as part of the value to whieHuces.

Finally, we bindx; to its original type,Lt.O «— R, andx, to the type ofe;, and we check the type ef under
these assumptions to find the type of the whole expression.

In the case where is some regionr, we also check to make sure= ¢ is in the map of borrowings$. These
checks buildS up over alllet! typings in a given derivation to give us a map of all borrowings in a given program
state which we use in checking the heap.

We have also added region annotations to method types. These annotations indicate the regions that a method body
uses. This is because a method’s type does not always contain the types of every expression used in the method body.
This allows us to tell during typechecking the regions invoking a method would use. We can therefore determine what
methods it is safe to invoke.

In a related vein is the addition of region polymorphism to methods. As mentioned above, this affects the method
types by prefixing them with a series of region variable bindings of the fgrm

These two changes are reflected in new method typing rules, iIMMETH and T-LUNMETH. For a method
Ap1.-- - App.s(x:T).e Or Apy.- - Apy.is(x:7).e the appropriate rule adds a binding of the method’s bound variable

18

e — /6/
= M,’, C-UpD
me«—t+m=o0c — pu,e «~t+tm=o

¢ Donfu) p'=[l—null — ()l ENEw

B () — u’,f

p(0) =loc — (- m=0,---)

ugé)zloc<—<m1=<71,---) Vi.m # m;
1% :[él—)lOC<—<m1:O'17~~~”[TLIO'>]/1, E-A M/:[EHZOC<_<"'7m:(7/7"'>}.u“ E-UPD
M?Z <_‘_m:o-_)p‘/7€ ;U"E <_|—m:O-/ _>M,7€
/ / ! !/
i C-DELq . #e H“/’Z C-DEL,
poe1 ey — ' e] — e u,<—6—>u,<—e
p(l=) =loc () p' = [l loc’ —(--)]u I
e — ire y
E-DEL T, NV
M, €.1TY [Qh"'?Qn] — K, € .My [Qly"'agn}

u, loc’ <—€ — //,é

0= = [R Jsrc)
mbody(u, £, m) =| Ap1.- - Apn. sx:T.€ pw=T10— (g
E-NLININV E-LININV

N‘7€'m917" t,0n T

M?Z -my [Qla"' ,Qn} -
: o]
N'vV@7917"'7971/‘737917"'7[771 e Na[ZE791ﬂ"'79n/m7p17"'7pn €

pen — pi's € C-LET, r fresh E-LET;
wlet ! (p)xz1 =erz2=ezin esend — wlet 1 (p)x1 =Llrxz2=e2in esend —
wlet | (p)x1 =ejz2 =ea2in esend wlet 1 (r)yzy =Lz = [r, 4, /p,x1]e2in es end
! !
o2 77 B, C-LET, _ E-LETy
ulet 1 (r)zi =viaza =ezin esend — u.let 1 (r)zi =vixze =v2in esend —
wilet ! (r)z =viz2 =e5in esend Wy [v1,v2/T1, T2]eE3

o
He — [,e
e C-CHLIN E-CHLIN

i(l) = loc — (my = o1,)
=o ¢ (mi=o01,---) mbody(y,loc,m)=0c MBODY 5
mbody(u, £,m) = o

My le — /le le

plO =loc —(m =01, m =0, oo
mbody(u, £,m) = o

Figure 11: Dynamic Semantics ofd®

19

with the type the method expects its receiver to have to the typing context and checks the method body under some
region context. This region context is checked to be a subset of the region context the method is checked under with
the bound type variables appended. This shows that the method can be checked with region variables in scope. The

method is then given the typ;. - - - Vp,,. 7 K orvpi. - -Vp,.7 5 7/, whereP is the region context under which
the method’s body was typechecked. This type then shows the region variables which are abstract in the type and the
regions which are used by the method’s body.

As discussed above, we may want the receiver of a method to contain methods that use regions no longer in scope,
as long as these methods are never called. We cannot write down these types, but since these methods can never be
called, we can simply give them the type This type is supertypes of arrow and lolly method types. We have a series
of standard subtyping rules in Figure 14 which show how types which differ only by method type annotations are
subtyped. For simplicity, we do not have a subsumption rule. Instead, where it is necessary we be able to type some
expression at a supertype, we explicitly allow subtyping. This is needed in method invocation and location typing.

With the above changes, invocation has new rulesjNHuwy and T-NLININV, to type an expression of the form
e.m[p1,- -+, 0n)- As before, these type the receiver object and unfold its type before looking up method types either
in the original object’'s row of method types or recursively, as appropriate. Now, however, the method type will
possibily be polymorphic. In this case, we substitute the regions or region variables with which the invocation is
instantiatedyp,, - - - , 02, for the abstracted region variables in the method type annotation before comparing it with the
actual receiver type. We no longer check that the types match exactly, but instead that the receiver is a subtype of the
expected type, as we can use a subtype where we expect a supertype. We also check to make sure that the regions the
method call uses are in scope after a similar substitution is done on the method type’s region list. This guarantees that
any region which is used by the method is in scope after instantiation. Finally, we give the invocation expression the
return type of the method after appropriate substitutions of regions and region variables for abstracted region variables.

One advantage of thet! we have is that it allows borrowed locations to be referenced by methods added to
objects on the heap. Since we only check that the regions in the currently executing expression are in scope, we can
leave these methods on an object even after the region is out of scope if we do not call these methods. To prevent these
methods from being called, we do not allow objects in the executing expression to have methods whose type contains
regions out of scope. Instead, any such method types are replaced Wttyping locations by looking up them up
in the store typing and giving them a supertype of this type such that no arrows in it are annotated with regions not
in scope. Any method types on the object type given the location by the store type that have arrow annotations with
regions out of scope are thus replacedihy

Since the linearity of a borrowed location can be different in different places in an expression, typing locations is
slightly more involved. We now find the linearity of a location from the subscript on it, rather than from the type it
has in the heap. This is apparent in T-NLoc and T-LUNLoc. This also arises in typing borrowed locations, as
shown in T-BoRLOC. To do so, we first type it as either a linear or nonlinear object and then replace the linearity with
the region subscripted on the location. This gives it the same type as the location had before it was borrowed with the
linearity replaced to indicate that it has been borrowed. In this rule, we also discard the list of linear locations we get
from typechecking the region as an unborrowed pointer because this pointer does not count towards the count of linear
locations because it is borrowed.

The additions of regions makes it necessary to make a change to the typing of variables. Now we check to make
sure that the regions in a variable’s type are all in scope. This ensures that an expression requires the same regions to
be in scope to type both before and after substitution.

The final alteration made to the calculus is in typing the heap. We still check to make sure every object on the
heap has the type the store typing gives it, but typing each individual object is more complex. Methods on objects in
the heap may now contain regions that are not in scope anywhere in the current expression. However, we know that if
these regions are not in scope anywhere, these methods cannot ever be called. Because of this, we do not actually care
about their type. When checking an entire program state, we $iavieich contains all regions at which objects are
borrowed in the program. We use this to typecheck objects. If a method can be typechecked under the region context
which is the regions contained #), it could be possibly used in the future and so we check that the method has the
type expected by the object’s type. Otherwise, we ignore the method while typechecking the object. This lets methods
in the heap mention any region, even if the region is not in scope anywhere in the current program.

20

S(¢) =obj t.0 — R S(0) = jobj t.0 — R
obj t.O — R < T‘ ‘eregions (r) C P‘ ‘ jobj t.0 — R < T‘ ‘eregions (1) C P‘

T-NLINLOC T-LINLoOC

S5 A5 P S |- e: = {} %5 A5 P S |- z: = {0}

E;A Fe:jobj t.R+— O =1
T-CHLIN T-NuLL
% Al P; S| Flesobj R — O = I S AP S| nul () = {3

¥, AP S| Felt.O«+— R=1
Tu = Lt.[tO «— R/t]O — R

mtype (7., m) =|Vp1.- - Lt'.0" — R’ B
‘Lt.O — R<lo1, - /p1, - |Lt'.O' — R'

3 A; P S Ly:0t.0 — R=1

0t.0 — R<ot.0' — R ‘[917.../p17...]P’gp‘
eregions (ot.0' — R')C P T-NLININV
T-BoRLOC AP S | H

S A; P S £yi0t.0" — R = {}

e,m‘ [Ql""]H [Q1,~~~/p1,~~-}‘T:>l

E;Am Fe:jobj t.0 — R =1
T = jObj t.[tO — R/t}(O — R)

Imtype (ru,m) = |Vp1.---jobj +.0" — R Zor
jobj t.0" — R" =7,
75 = jobj t.[t/7¢](O" «— [/m:T"|R")

‘Tf <lo1, -+ /p1,---](iobj t'.0" — R') ‘ Imtype (jobj t.0" — R',m)=1"
‘ lo1,-+ /p1,-+ P’ C p‘ jobj “t.O’ - R = iC/)/b] tl.[tO — R/t](/O " R)
T-LININV 7" =jobj t.[t/7"](O" — [m:T/m:T'|R’)

Y AP S | T-UPD
e lon 1 lor,Jor I Jr =1 BA AP |Fetm=oir! = L

Imtype (jobj t.0" «— R',m) #
jobj t.0' — R’ =jobj t.[tO — R/t](O < R)
7' =jobj t.[t/7'](O" — R',m:T)

T-ADD
Z;A,A'Fe&km:acr'il,l’

Figure 12: Static Semantics ofd®

21

E;A,x:'r Fer = {} x ¢ Dom(A)

A nonlinear P CPp,---

p1,"-¢P

S, AP S|

T-NLINMETH

Ap1.--- gx:Te|Vp1. V. T 5rl= {}

3; A P; S |Featiob) t.O— R=1
z & DonfA) S5 A Py S |Fe0 =1
iobj t.0' — R =jobj t.[tO — R/t]O — R

T-LINMETH T =iobj t.[t/7]0" — R’
E;A,A’ Few— ey =11

T-DEL

P/
Ap1. - AlisziTe|Vpr.- - V7 — 7' | =1

tregions (1) C P
T-NEW T-VAR

E;A F ():iobj t.() — = {} Z;x:T Faor = {}

PIX A Fer=1 Az, .’EIT/ Fer =1 7 nonlinear
T-KiLL T-CopPY

3 A,x:r' Fer =1 3 A, a::T' Fer =1

¥, A1 P;SEe:Lt.O — R— 11
3, Ao, 21:pt.0 «— R; P, p; S eaimo = 1o
¥ Ag,x1:Lt.0 «— R, x2:12; P; S+ e3:13 = I3
p € tregions (72) p& P
1 € DOTT(A) T2 g DOTT(A) T ;é)
E;Al,AQ,Ag;P;SF
let ! (p) Tr1 = €12 = ey in T3 end T3 — ll,lz,l3

T-LET!,

Y, A1 P;S e Lt.O — R—11
¥ Ag,x1:r6.0 — R; Pyr; S E eaime = 2
Y, Az, x1:Lt.0 — R, 12:72; P; S F es:m3 = I3
r ¢ tregions (r2) r¢P xz1 ¢ DomA)
z2 & Don(A) T1 # X2 r=¢eS

E;A1,A27A3;P;SF
let !(T)J,’1:€1$2:€2 in T3 end:73:>l1,l2,lg

T-LET!,

Figure 13: Static Semantics ofd®

22

S-REFL

T<T
T1<72 T2<T
=2 2=05 g Trans
71 <73
01 <02 Ri <Ry
S-Loc
Ltl.Ol — Rl HS Lt2.02 — RQ —
—— S-Row
= 1
< Ri<R S-Rows
Ri,m:11 < Ra,m:To
< m<71
1P_ LN - S-NLINMETH
Vp1.+ - Vpn.11 — T2 <Vp1. - Von.1{ — 75
< T <74
11; L 2=n S-LINMETH
Vp1.- - Vpn.1 —o T2 < Vp1.---Vpn.1{ —o 75
B S-ARROW
Vpo1. - Von. T — 7 <Vp1.---Vpn.T
S-LOLLY

IS
Vp1.Vpn.m —o 7 <Vp1.---Vp,. T

Figure 14: Subtyping Rules

T-STORE

VL € Don(u).X; s Dom(S); S+ p(€):2(¢) = 1,
Donf) = Don(x.)
;S Fp ok = concatl,

T-ODESCR
Viel.nS; AP Skopm = L;if P CP

[t.0 — R/t]R = mi:1 5 / % IR
oi =Api., - Apm.Jils(z:m1).e

’
Pp1, o0 7
—o

’ P/vpla"' sPn

T =,Yp1. - Vpu.T;
S A;P; S loc: L't .0" — R = ljoe
O=[L't.0' — R/{|L't.0 — R
T =Lt.([t/7]0) — R
¥, A;P; S+

loc— (mi1 =01, "+ ,Mp = 0n):T =

ll0c>ll7 e 7ln

Figure 15: Store and Object Typing

23

5.4 Safety Proof

We have a proof of type safety for the full version aE& presented here. The proof is similar to the proof we sketch
for the earlier Es0 fragment. The full proof is included as an appendix; we describe it here. As is standard, type safety
consists of two theorems, progress and preservation.

The statement of progress for the fulsB language is only slightly different from that presented earlier. It states
states that a program that consists of the pair of a well typed store and a well typed expression can always be reduced
to a new program if the expression is not already a value. The only difference from the earlier theorem is the typing
judgement we use to type stores and expressions. We add a region céhtexthe expression typing judgement,
and we add a mays, of regions to the locations which are borrowed at them to the expression typing judgement. We
use the sam# in both judgements, as we need to know which regions are borrowed in the current whole expression
to type the store. This gives us the following statement of progress.

Theorem 3 (Progress)If X;; P; S + e:1 = I, andX; S + u ok = I, then eitheru,e — i/, e’ for somey’
and some’, or ¢ is a value.

As before, this is proven by induction on the typing judgements. For each case, we show that if the expression
is correctly typed, it is of a form which is either a value, or some subexpression of which can reduce, or which itself
reduces. To do this, we need a canonical forms lemma similar to the previous one.

Lemma 4 (Canonical Forms) 1. Ifavalue hasthe typ€p;.---Vp,.71 it 79, ithasthe form\p;.--- Ap,.cx:T.c.

P
2. If avalue has the typ€p;. - - - Vp,.71 —o 79, it has the formAp;.--- Ap,.jox:T.e.
3. Ifavalue has the typét.O «— R, it has the forn?.
4. More specifically, if a value has the typehj t.0 «— R <, it has the formﬁiobj.

5. If a value has the typé), it has the forrmull

This is once again proven by case analysis on the typing rules.

Preservation is somewhat more complex. It still shows that those properties we want to maintain invariant remain
true when a program state steps. The invariants we wish to enforce have changed, however. We now wish to mainain
four invariants.

1. The expression has some typ@r a subtype of-. Unlike the earlier Eo fragment, we have subtyping. This
means that an expression may evaluate to a new expression whose type is a more specific than the type of the
original expression.

2. The heap is well typed.

3. All linear locations are used at most once in the expression, store and the list of locations aliased in the whole
current expression. This proves that linear locations can be used only once in the expression and heap, or not at
all if currently borrowed.

4. All regions in the expression appear in the current region context or are bound by region abstractath or a
This proves that no aliased locations can escape the expression in which they are borrowed, as the region at
which they are borrowed appears on the location in the expression.

We formalize the idea of all regions free in a given expression by defining a funetiegions (e), which
recursively examines an expression. This is defined in the appendix. Thus we get the following theorem.

Theorem 4 (Preservation) If
i. 2,5 pu ok =1,
i. %P SkerT=1,

24

ii. eregions (e) C P
iv. there are are no duplicates i, [, Range(S), and
V. e — e
then for som&’ >, ¥
i. X558 ok =1,
i. ;P Sker =1,
ii. eregions (e/)C P
iv. 7 <r,and
v. there are no duplicates i, [/, Range(S).

HereX’ >, ¥ is the same as above: either a new locatiovas added or the type or linearity mapped to/thas
changed.

The proof is similar to the one sketeched above for progress on simplified [Eis by induction on the derivation
of u,e — p/,¢e’. For each way of reducing the program on the left to the program on the right we show that the
invariants are maintained on the right if they were true on the left.

To prove this, we need two substitution lemmas. The firstis similar to the one above which showed that substitution
is type preserving. Now, however, we need to show that the type produced is a subtype of the expression substituted
into if the substituted expression is a subtype of that expected. This gives us following the lemma.

Lemma 5 (Substitution) If 3; A, x:m; P; S Ferrf = 1., %;+; P; S Fe'imy = I, andry < 7y thenX; A; P; S +
[€/xle:my =1, 75 < 71{ andl C I, 1.

We also need a similar lemma for region substitution, as both polymorphic instantiation and evdetatinglo
region substitution. As regions appear in types, the lemma states that substituting a region in for a region variable in
an expression substitutes the region in for the region variable in the expressio’s type. The lemma follows.

Lemma 6 (Region Substitution) If 3; A; P;S Fe:r =1 thenX; A;[r/p| P;S & [r/ple:[r/ p]T =1.

The proof of both of these lemmas is by induction on the typing rules.

We also need a Store Change Lemma similar to the one we saw earlier, which says that if have a well typed store,
and we change the type of a linear location in the store typing and replace the object at that location in the store with
an object of this type, the store remains well typed.

Lemma 7 (Store Change)lf
i ;5 u ok = I
i. 2;A; P;SH{p:job) t.0 — R—=— I,
iii. there are no duplicates if, [, Range(.5)
iv. u(f)=s
v. ¥;;Dom(S); S F sit = [,, and
vi. 3;;DomS); S F s =1
1

05 %0

then[¢ — 7/135; S+ [l — s'|p ok = 15—

25

6 Related Work

This section gives an overview of previous work in object calculi, linearity, protocol checking and regions.

An earlier version of E0 was presented in [5, 6]. This version differed from ours in its lack of a mechanism for
relaxing linearity and in its inclusion of first class functions in addition to objects. Our removal of first class functions
simplified this system while retaining expressive power, and our addititetlof adds to its usability.

Our calculus is derived from features of the calculi of Abadi and Cardelli [1] and Fisher, Honsell and Mitchell [12,
13]. Like other object calculi [17, 19, 20], these are focused on modeling issues of inheritance and subtyping. Most
of the work studying method addition and delegation is in a functional context, unlike our imperative calculus. Abadi
and Cardelli discuss an imperative variant of their calculus, but when a method is imperatively updated it must match
the type of the original method, whereas we allow changes to the type of the object as a result of method update.

Our imperative method addition and update, and delegation change are inspired by the prototype-based Self lan-
guage [24]. Self is dynamically typed, meaning that programs may experience runtime type errors, which our static
type system prohibits.

The most closely related work is Anderson et al.’s application of Alias Types to the problem of statically checking
imperative method and delegation updates [3]. Comparedsto, Eheir design achieves precision through singleton
types and effects, at a cost of great complexity: the type of a method includes not just the type of the arguments and
body, but also the effects of the method and the environment where it was typel goal, in contrast, is to support
many useful cases of method and delegation update in a comparatively simple and practical type system based on
linearity.

Re-classification in Fickle [11] can change an object’s class at runtime in class-based OO languages. In this manner
class-based OO languages can achieve the same effect as changing delegation at runtime. Fickle is more limited than
our system because it restricts re-classification to a fixed set of state classes rather than supporting arbitrary changes
to the methods and inheritance hierarchy of an object. Furthermore, because it does not track aliasing of fields, Fickle
cannot track the state of an object in a field asoEloes.

Wadler introduced linear type systems in a functional setting in [25]. This work was based on Girard’s linear logic
[14]. Unique pointers were proposed for Eiffel and C++ in [18], and for Java in [7]. The concept of borrowing was
presentin Wadler’s origindét! construct, but Wadler used a restrictive typing discipline to ensure that the borrowed
reference did not leak; in contrast, we allow the reference to leak but ensure it cannot be used after the region goes out
of scope. Unlike Boyland’s borrowing proposal [7], regions allow us to store borrowed pointers in the heap.

Several papers describe research into ways to model objects in linear logic [4, 8, 10]. In [8] methods are character-
ized as resources that reside within objects, and are consumed after being invoked. We apply this intuition in a more
concrete setting (i.e., operational semantics instead of an encoding in logic) for our linear methods.

Typestates were introduced in [21]. DeLine aridhRdrich discuss typestates for objects, especially in the presence
of subtyping, in [9]. Their system allows an object to specify which state it is in before and after method calls, and so
enforce an ordering on method calls. We model this by modifying delegation to change what methods are available,
or by adding and removing methods.

Regions have been proposed for memory management, either using type inference to infer the scopes of re-
gions [23] or with explicit types as in Cyclone [22]. Compared to Cyclone, our regions are more flexible in that
objects may refer to out-of-scope regions as long as these regions are not used; but Cyclone gains flexibility from
region subtyping which our system does not support.

7 Conclusion

We have presentedd®, an object calculus for studying linearity in objects. Our calculus contains powerful mecha-
nisms for creating and using linear objects, including linear methods and changing the objects a method has available at
runtime. We have demonstrated the expressiveness of our calculus showing how the lambda calculus can be embedded
in it.

We have shown how linearity allows us to manipulate objects so as to enforce protocols in a well typed way. We
can add methods to objects, remove linear methods by invoking them and change delegation at run time and still
staticly check that out programs are safe. We have shown that such abilities can be used to guarantee that methods are
called on objects in a correct manner.

26

We have also shown a way of temporarily relaxing linearity to create short lived aliases. We have shown how to
maintain type safety while doing so.

Acknowledgements

This work was supported in part by NASA cooperative agreements NCC-2-1298 and NNAO5CS30A and NSF grants
CCR-0204047 and CCF-0546550. Thanks to Jason Reed for pointing out a flaw in an earlier version of the calculus
and to Karl Crary for suggesting the use ©f Thanks also to the CMU POP group for helpful comments on the
calculus and to Timothy Wismer for proofreading.

References

[1] Martin Abadi and Luca CardelliA Theory of ObjectsSpringer, 1996.

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias Annotations for Program Understanding. In
Object-Oriented Programming Systems, Languages, and Applicablmvember 2002.

[3] C. Anderson, F. Barbanera, and M. Dezani-Ciancaglini. Alias and Union Types for Delegatom.Math.,
Comput. & Teleinformatigsl(1), 2003.

[4] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritanBgodn7th Inter-
national Conference on Logic Programming, Jerusalé&fay 1990.

[5] A. Bejleri. A type checked prototype-based model with linearity. Draft senior thesis, published as a Carnegie
Mellon Technical Report CMU-ISRI-04-142, December 2004.

[6] AndiBejleri, Jonathan Aldrich, and Kevin Bierhoff. Ego: Controlling the power of simplicityPioceedings of
the Workshop on Foundations of Object Oriented Languages (FOOL/WOODJ@&&)ary 2006.

[7] John Boyland. Alias Burying: Unique Variables Without Destructive Re&aétware Practice and Experience
6(31):533-553, May 2001.

[8] Michele Bugliesi, Giorgio Delzanno, Luigi Liquori, and Maurizio Martelli. Object calculi in linear logournal
of Logic and Computatigrii0(1):75-104, 2000.

[9] Robert DeLine and Manueldhndrich. Typestates for objects. Huropean Conference on Object-Oriented
Programming Springer-Verlag, 2004.

[10] Giorgio Delzanno and Maurizio Martelli. Objects in forum. limernational Logic Programming Symposium
pages 115-129, 1995.

[11] Sophia Drossopoulou, Ferruccio Damiani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Fickle : Dy-
namic object re-classification. Buropean Conference on Object-Oriented Programmpages 130-149, 2001.

[12] K. Fisher, F. Honsell, and J. C. Mitchell. A lambda calculus of objects and method specializisitodic J.
Computing 1:3-37, 1994.

[13] K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus with Subtypinguhdamentals of Compu-
tation Theory 1995.

[14] J.-Y. Girard. Linear logicTheoretical Computer Sciengeages 50:1-102, 1987.

[15] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience with safe manual memory-
management in cyclone. IRroceedings of the 4th internation symposium on Memory managgepegs
73-84, 2004.

[16] T.Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A safe dialect of ¢, 2002.

27

[17] Luigi Liquori. An extended theory of primitive objects: First order systemElmopean Conference on Object-
Oriented Programmingpages 146—??, 1997.

[18] Naftaly Minsky. Towards alias-free pointers. Buropean Conference on Object-Oriented Programmpages
189-209. Springer, 1996.

[19] D. R’emy. From classes to objects via subtyping, 1998.
[20] Jon G. Riecke and Christopher A. Stone. Privacy via subsumpftoeory and Practice of Object Systerhg99.

[21] Robert E. Strom and S. Yemini. Typestate: A programming language concept for enhancing software reliability.
IEEE Transactions on Software Engineerid@:157-171, 1986.

[22] Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Safe Manual Memory Manage-
ment in Cyclone Science of Computer Programmir@ctober 2006.

[23] Tofte and J.-P. Talpin. Region-based memory managenteftrmation and Computatigrpages 132(2):109—
176, 1997.

[24] David Ungar and Randall B. Smith. Self: The Power of Simplicity Object-Oriented Programming Systems,
Languages, and Applicationpages 227-242. ACM Press, 1987.

[25] Phillip Wadler. Linear types can change the world! Mn Broy and C. Jones, editors, Programming Concepts
and MethodsNorth Holland, 1990.

28

A Safety Proof

Progress

The first part of type safety is the progress theorem, which states that a well typed store and expression step to a new
store and expression, or the original expression is a value.

Theorem (Progress)
If ;- P; S+ er = l.and¥; S - u ok = [, then either
(i) p,e — p’, € for somey’ and some’, or
(i) eisavalue.

To prove this, we need several lemmas. The first of these is the Canonical Forms Lemma which states that values
of a given type have a spcific form.

Lemma (Canonical Forms)
1. If avalue has the typ€p;.---Vp,.71 LA T, it has the formAp;. - - - Ap,.ox:T.e.

P
2. Ifavalue has the typ€p;. - - - Vp,,.71 —o 72, it has the formAp;.--- Ap,.jox:T.e.
3. If avalue has the typét.O — R, it has the forn?y.

4. More specifically, if a value has the type jab{) < R, it has the formﬁiobj.

5. If a value has the typé), it has the forrmull

Proof of Canonical Forms
By case analysis on the typing rules. The forms a value can havkgare- - Ap,,.cx:7.e, Api.--- Ap,.jox:T.€,
£r, andnull

1. The only rule which gives a value a type \6f. - - - Vp,,.71 LN 79 IS T-NLINMETHwhich gives this type to a
value of the formAp;.--- Ap,.ocx:T.e.

P
2. The only rule which gives a value a type ;.- - - Vp,.71 — 72 is T-LINMETH which gives this type to a
value of the formAp;. - - - Ap,.jcx:T.e.

3. The rules which give a value a type 6t.0 — R are T-NUNLoOC, T-LINLOC, T-BoORLOC and T-CHLIN.
These rules give these types to values of the férm

4. The rule which gives a value a type of jab{) < R is T-NLINLocC. This rule gives this type to values of the
form £, 5pi.
iobj

5. The only rule which gives a value a type @fare T-NuLL which gives this value taull

We also need thenetht Subterm Lemma which says that if we look up the type of a method in the type of an
object, the returned type is a subterm of the object type.

Lemma (metht Subterm)
If mtype (r,m) =7/, thent’ € 7.
Proof of metht Subterm
The proof is by induction on the derivation witype (7,m) = 7'.

Proof of Progress

29

The proof is by induction on the typing derivations.

Case: T-VAR

Impossible as terms are closed.

Case: T-NLINMETH

Apy. - Apy.cx:T.eis avalue.

Case: T-LINMETH

Ap1.--+ Apy.isx:T.e is avalue.

Case:T-NLINLoOC, T-LINLOC, T-BORLOC

£y is a value.

Case: T-NuLL

null is avalue.

Case: T-KILL

Impossible as terms are closed.

Case: T-Copry

Impossible as terms are closed.

Case: T-UpPD

By the premise of the typing rule,has type job}.O < R. If ¢ is not a valuey, e steps to somg’, ¢’ by IH, so
i, e «+m = o stepstqy/, e’ <+ m = o by C-UpD. If e is a value, it is of the fornd by canonical forms on its type
which is of the formLt.O — R. By case analysis on the typing rules dndype rules,X(¢) = jobjt.0’ — R’
with m € R. By inversion on T-S$ORE, ¥; -; .S; Dom(S) F u(¢):X(¢) = ,. By inversion on T-SORE, u(¢) exists

and so is of the fornfoc < (m1 = o1, ,m,, = 0,,) withm € Dom{(my = o1,--- ,m,, = 0,)). Therefore, there
existsy’ such thai, £, <+ m = o steps tqu’, 1, by E-UpPD.
Case: T-ADD

By the premise of the typing rule,has type job}.O < R. If e is not a valuey, e steps to some’, ¢’ by IH, so
1, e —+m = o stepstq, e’ <+ m = o by C-UpPD. If ¢ is a value, it is of the fornd;, by canonical forms on its type
which is of the formLt.O — R. By case analysis on the typing rules dndype rules,X(¢) = jobjt.0’ «— R’
with m ¢ R. By inversion on T-$ORE, ¥; -; S; Donm(S) F u(¢):X(¢) = ,. By inversion on T-SORE, u(¢) exists
and so is of the fornfoc «— (m1 = o1,--- ,m,, = 0,) wWith m & Don{(my = o1,--- ,m,, = 0,,)). Therefore, there
existsy’ such thai, £ <+ m = o steps tqu’, 1, by E-UPD.

Case:T-NLININV

By the premise of the typing rule; has type ob}t.O «— R. If e is not a valuey, e steps to some/, ¢’ by
IH, so u,e.m[o1,- -+, 0n] Steps toy’,e’.mfo1, -+, 0,] by C-NLININV. If e is a value, it is of the forn?;, by
Canonical Forms on its typét.O <— R. By case analysis on the typing ruhatype (Lt.O — R, m) = 7. By case
analysis on the typing rules and theetht Subterm Lemma¥(¢) = jobjt.0’ — R’ with m € R. By inversion
on T-STORE, ¥;-; 5;Dom(S) + u(¢):X(¢) = 1,. By inversion on T-SORE, u(¢) exists and so is of the form
loc — (my = o1, ,my, = o) With m € Dom{({m; = o1,--- ,m, = o,)). Therefore, there exisjg such that
this expression steps by E-MLNV.

Case: T-LININV

By the premise of the typing rule,has type job}.O < R. If e is not a valuey, e steps to some@’, ¢’ by IH, so
wye.mfor, -+, 0n) Stepstqy’, e’ .mfo1, - -+, 0n] by C-LININV. If e is a value, it is of the fornd;, by Canonical Forms
on its type,Lt.O <+ R. By case analysis on the typing rulmtype (Lt.O <« R,m) = 7. By case analysis on the
typing rules andmtype rules,X(¢) = jobjt.0’ «— R’ with m € R. By inversion on T-SORE, X%; -; .S; Don(S) +

w(£):X(¢) = 1,. By inversion on T-SORE, u(¢) exists and so is of the fordac < (m; = o1, -+ ,m,, = 0,,) With
m € Don{(my = o1,--- ,m,, = o,)). Therefore, there exisfg such that this expression steps by B¢LNV.
Case: T-CHLIN

By the premise of the typing rule, has type of the form jolj.O — R. If e is not a valuey, e steps to some
', €' by IH, sou, le steps tqu'le’ by C-CHLIN. If e is a value, it is of the formfl.obj by Canonical Forms on its type,
jobjt.0 < R, so it steps by C-@LIN.

Case: T-NEwW

w, () steps to some’, ¢;, by E-New

Case: T-DEL

By the premise of the typing rule; ande, have types of the formi.t.O «— R. If either is a value, it has the form
{1, by Canonical Forms. I, is not a valuey, e; steps to some/, e} by IH, sou,e; «— es steps tou', e} — eq

30

by C-DEL;. If ey is not a value and, is, u, e, steps to some’, e, by IH, sou,e; «— ey steps tou’,e; — e by
C-DEL,. If both are values, by Canonical Forms both are of the féym By the premise of the typing rulé,,,
has type job}.O — R By case analysis on the typing rulés(¢) = jobjt.0O «— R. By inversion on T-SORE,
3 S;DomS) F p(f):X(¢) = l,. By inversion on T-SORE, u(¢) exists and so is of the forfoc «— (---).
Thereforeu, vy < vy steps to someg’, vo by E-DEL.

Case: T-LETY

By the premise of the typing rule; has typeLt.O — R. If e; is not a valuey, e; steps to some/’, ¢} by IH,
sou,let ! (p)x; =e;xo = ezin ez end stepstou,let ! (p)zy =€)z = exin esend by C-LET!;. If e; isa
value, this expression steps by E=1!;.

Case: T-LET!,

By the premise of the typing rule; has type of the fornkt.O < R. If e; is not a valuey, e, steps to somg’, e
by IH, sou,let ! (p)zy = vixe = exin ez end steps tau,let ! (p)x1 = vy 22 = €5 in ez end by C-LET!,. If
e1 is a value, this expression steps by EqlL,.

Preservation

Preservation says that if a closed expression and heap are well typed, the regions of the expression are a subset of the
region context used to type the expression and there are no duplicates in the list of linear locations on the heap, the
expression and the map of currently borrowed locations, and the expression and heap step to a new expression and
heap, then there exists a new store typing and map of borrowed expressions under which all these properties.

For the proof, we need to define two functions that tell what regions are free in a type and in an expression. We
free regions in types as follows.

tregions (ot) =
tregions (ot) ={o}
tregions () ={}
tregions (Vp1.---Vpu. 71—>7-2) PuUtregions () Utregions (72) — {p1, -, pn}
)=
)=

{

PuUtregions () Utregions (72) —{p1, - ,pn}

{

tregions (Vp1.---Vp,. 71—072
tregions (T

We define free regions in expressions as follows.

eregions (z)=A{}
eregions (null) ={}
eregions (4,) ={}
eregions (¢,) ={o}
eregions (()) = {}
eregions (Apy.---App.s(z:7).e) =eregions (e) —{p1, -, pn}
eregions (Apy.--- Apn.i§($ T).e) =eregions (e) —{p1, - ,pn}
eregions (e.m[o1, - ,0n]) =e€regions (e)U{o1, - ,0n}
eregions (e <+ m = o) =eregions (e)Ueregions (o)
eregions (e; < ey) =eregions (e) U eregions (ez)
eregions (let ! (9)z1 =ejz2 =e2in ezend) =eregions (e;)Ueregions (ez)Ueregions (es)— {o}
eregions (le) =eregions (e)

Theorem (Preservation)

If2;SFp ok =1,,%;; P; S+ et = [, eregions (e) € P, there are are no duplicatedinl;, Range(S),
andu,e — p, €, then forsome&’ >, 3,3 8" F) ok =-1.,%';; P; S'+e':7/ = I/, eregions (¢’) C P,
7/ < 7 and that there are no duplicategni’, Range(.S).

For the proof of Preservation, we need several lemmas. The first of these is the Substitution Lemma. This says
that if we substitute an expression with a type which is a subtype of a bound variable in for that variable in a second

31

expression, the resulting expression has a type which is a subtype of the original second expression.

Lemma (Substitution)

If 3, A, zm; P; S Eer] = 1,5 P; S uimg = I andr < 1 thenX; A; Py S F [v/zlers = 1,75 < 7
andl C [, 1.

The proof of Substitution requires several lemmas.

The first of these is the Region Weakening Lemma, which says that if an expression can be typed under a given
region context, it can be typed under an expanded region context.

Lemma (Region Weakening)

If X, A; P; St et = I, thenX; A; P o; S F e:rr = [,.
Proof of Region Weakening

By induction on the derivation of; A; P; S + exr = [,,.

Finally, we have the Weakening Lemma, which states that if an expression can be typed under a given type context,
it can be typed under the same context expanded with a nonlinear binding.

Lemma (Weakening)

If ; A; P; S+ e:r = L andr is nonlinear thert; A, x:7; P; S F e:r = [.
Proof of Weakening

This is a direct consequence of T

Lemma (Linear Substitution)

If %A, z:m; P;S F ety = I, ;PSS F v = [, andO «— R < 71, wherer; is linear, then
¥, A; PP, St e:r{ = I wherel C I.,1,.
Proof of Linear Substitution

This is by induction on the typing rules.

Proof of Substitution

The lemma follows directly from the following stronger statement.

If 3; A, 21, -+ ,2:m1; P; S b erty = . where there is at most oneif 7 is linear,X;; P'; S F virty = 1,
andr, < 7 thenX; A; P, P'; S+ [v/zlerrs =1, 75 < m{ andl C I, ..

This is proven by case analysis on the derivatiokofi; P; S - e:7 = [.

Case: T-NLINMETH

i A xery o Ty Py S E Apr. - AppsyimieNpr. - - Vopom i T = {} Assumption
Ty a-varying
X P Skur, =1, Assumption
T < T Assumption
S A ey oy P S E e = {} Case Premise
tregions (m2) C P” Region Type
y & DomA, z:1, -+, 2:7) Case Premise
A, x:7,-+- ,z:7 nonlinear Case Premise
P'"CPp1, -, pn Case Premise
S, Ay PP S E [u/alers, =1 IH
S Ay P S E w/xlers, = U Region Type
T, < To IH
el IH

y & DomA) y € DomA, x:7,- -+ ,x:7)
A nonlinear A, x:T,--- ,2:7 nonlinear

S, A, Py S E Apy.-o- App sy v/zleNpy. Vo1 i To, =1/ T-NLINMETH
S A; Py S F [v/z]Apy. - App.cyi.eNpr. - Mppmy 2o 1y, = U Definition of Substitution

32

;A PP S E [v/x|Apr. - App.sy:Ti.eNpr.- - Vpn. 1 i To, =1l

P
Vp1.o Vo1 — Ta, <T1 — T2

Case: T-LINMETH

"

XA T, iy P S Apr.-- - Appisy:m.eNpy. Vo —o o = [,

T#y

P SEury =1,

Ts < T

A T, oyt P S E ey = U,

y & DomA, 7, - -+, 2:7)

24 gp’ph... , Pn

tregions (72) C P”

S A yim PP S E [u/xlery, =1
S, Ay P S E [v/xlerry, =1
To, < T2

ICle,l,

y ¢ DontA)
S, A, Py SE Apy.- - Appsyim.v/x]eNpy. - Vppm —o 1o, = U

S, A, P S [v/x]Apr. - App.sy:mieNpr. - Vpp.m —o T, =1

Y A; PP S [w/zlApr. - App.sy:mieNpy. - Vpp.m —o o, =/
P[/ P,/

Vp1. - Vpn. T —oTa, < T4 —0 Ty

Case:1 of T-VAR

y ¢ Do

Region Weakening
Subtyping Rules

Assumption
a-varying
Assumption
Assumption
Case Premise
Case Premise
Case Premise

Region Type
IH
Region Type
IH
IH
mMA, x:7, -+, x:7)
T-NLINMETH

Definition of Substitution

S, AT, o Py S E o = {} Assumption
i P SEury =1, Assumption
P SE v/xler, =1, Definition of Substitution
S5, A P S E v/rlem, = Uy Weakening
S, A, PP SE v/zlars = 1, Region Weakening
T < T Assumption
l. Clg Set Theory
Case:2 of T-VAR

S AT o Py Sy = {} Assumption

x#y Assumption

S A v P S E v/alyr = {} Definition of Substitution
S, A v PP S u/xlyr = {} Region Weakening
T<T T-REFL

{} Sl Set Theory

Case:T-LET!4

S Ao Py Shlet | (p)axy =ejza =egin egend:ms = I,
S P Skur, =1,

Ts ST

X1 g DOTT(A)

Zo Q/ DOI’T(A)

pET

p &P

33

Region Weakening

Subtyping Rules

Assumption

Assumption

Assumption
Case Premise
Case Premise
Case Premise
Case Premise

X1 # T2

;A x T P Ske:Lt.O— R=—1[

¥, A1, Py SE [v/x)er:Lt.Os — Ry = I

L[t.0, — R, < Lt.0 — R

U'Clyle X5 Ag, 21:0t.0 «— R; P, p; S F eximo = o

Y Ao, 21:0t.0 — R; P,p, P'; S F [v/z]eq:my = 1}

Ty < To

3, Ao, x1:08.0 — R; Pp, P'; S F [v/z]eairy) =1}

<

T <19

l/2 g la:a 12

35 Az, x1:Lp.tO «— R, x9:19; P; S - e3im3 = I3

3 A3, x1:Lp.tO — R, xo:m9; P, P'; S+ [v/x]es:mh = 1}

75 < T3

Y, Az, x1:Lp.tOg — Ry, x0:7y; P, P; S+ [v/x]es: T = 1

<

T4 <13

I C 1yl

S, AP P SElet | (p)xy =ejx =exin [v/z]eg end:rs = 14,15,14
Subcasew is ¢;qpj OF is(:7).¢

Ts = iObjt-Ols — Ry
T =iobjt.0; «— R,
Atmostoner in A, z:7, - - -
No duplicates iri}, 15,15
Subcasew is 7, fo 7}
Ts = Tys fo 7—1,;5

P !
T="Ty —°T,

At mostonez in A, z:7, - - -
No duplicates i}, 15, 15
Subcase:Otherwise

¥ P Skurs = {}
l/17 1/27 lé g llv l23 l3

The case for T-ET!5 is similar.

We also have the Region Substitution Lemma, which states that if a region is substituted in for a region variable
in an epxression, the resulting expression then has the type of the original expression with the same substitution

performed on the type.

Lemma (Region Substitution)
If $; A; Py S+ e:rr = 1, thenX; [0/ p] A; [0/ p] P; S+ [o/ ple:[o/ p]m = L.

For this we need the Region Subtyping Lemma which says that subtyping relations are preserved under the same

region substitution on both types.

Lemma (Region Subtyping)
T <7'ifand only if [o/p]T < [o/p]T’.

Proof of Region Substitution

The proof is by induction on the typing judgement. The difficult case, that of borrowed location typing, follows.

5 A4P;SHly: 0t 0 — R = {}

34

Case Premise
Case Premise
IH
IH
Case Premise
IH
IH
Variable Subtyping
Variable Subtyping
T-SUBTRANS
IH
Case Premise
IH
IH
Variable Subtyping
Variable Subtyping
T-SUBTRANS
IH
T-LET!,

Case Analysis
Subtyping rules
Premise

Linear Substitution

Case Analysis

Subtyping rules
Premise
Linear Substitution

Case Analysis
Set Theory

Assumption

XA P;SE,:0t.0 — R— 1 Premise

0t.0 — R < ot.0' — R’ Premise
eregions (¢'t.0' — R')C P Premise
X [o/plA; [0/ pIP; S F [0/ plloi[0/ plot.O «— R =1 IH
[o/plot.O — R < [o/plot.O" — R’ Region Subtyping
[o/pleregions (¢'t.0" — R') C [o/p]P Set Theory
5[0/ plA: [0/ pIP; S+ [of)ty lo/pld't.0" — R = {} T-BorLoC

We also have the Store Weakening Lemma, which says if we change a storeXyjoidj such that>’ >, ¥, any
expressions typed under the first expression can still be typed under the second.

Lemma (Store Weakening)

If 3;A; P; S+ er = I, %;S F p ok = I, ¥ >, ¥ no duplicates in,, s, Range(S) and/ ¢ [., then
YA P;Sker =1

To prove this, we need several lemmmas.

The Store Contraction Lemma says that if an expression is well typed and does not mention a given location, that
location can be removed from the store typing and the expression will remain well typed.

Lemma (Store Contraction)

If 3;A4; P;SFer=land{; e, then[/¢ — s|3; A; P; S+ err = L.
Proof of Store Contraction

The proof is by induction on the typing judgement.

The Linear Location Store Lemma says that if a heap is well typed and the heap typing judgement does not return
a given location in the list of linear locations in the heap, a reference to that location is not on the heap.

Lemma (Linear Location Store)
If 2, A, P;SHlpr = 1.,%;SFpu ok = [, and{ & [then?;, ¢ Range (X))
Proof of Linear Location Store
The proof is by case analysis on T=8RE and T-ODescRrand induction on the typing rules.

The Borrowed Location Store Lemma says that if a region is not in the set of currently borrowed regions, no
reference to it is in any typable method in the heap.

Lemma (Borrowed Location Store)

If ;S F u ok = I, andr ¢ Don(S), then for allo in all s in Dom{x) such that; A; P'; S + o;:m; = 1 if
P’ C DomS), ¢, ¢ Range(X).
Proof of Borrowed Location Store

The proof is by inversion on T-®RE and induction on the typing rules.

Proof of Store Weakening

The proof is by case analysis on the derivatiodPef >, Y. In each case, it proceeds by straighforward induction
on the derivation oE; A; P; S + e:m = [..

Case: S-Grow

By induction on the typing rules.

Case: S-LObj

By induction on the typing rules.

Case: S-ChLin

By induction on the typing rules.

35

There is also thenbody Type Lemma, which states that if an object is well typed and its type contains the type of
a method, that method can be typed with a subtype of this type.

Lemma (mbody Type)

If mbody(u,£r,m) = Ap1.---Ap,.o, mtype (Lt.[t.O" — R'/t]O — R,m) = Vpy.---Vp,. 71 Ll / ki T2,
%8k p ok = lgandX;; P; S {p:Lt.[t/t.0 — R][t.0’ — R'/t]O — R = [;, thenX; s P; S+ 0.1 = |,

andr < \V/pl e '\V/pn.Tl 5/) / —o Ty
Proof of mbody Type
By induction on the derivation afitype (7, m) = 7’.
Case: T-MethT;

Y8k pu ok =, Assumption
V¢ € Domu).X; s Dom(S); S+ p(l):X() = lp Inversion
Don{u) = Dom(Y) Inversion
mtype (Lt.[t.0" — R'/t]O — R,m) =Vpy. - Vp,.71 L / —o T2 Assumption
Imtype (Lt.[t.0" — R'/t]|O «— R,m) =Vpy.---Vp,.7 P / —o Ty Premise
m:Vpi. - Vp,.11 Ll / Z T2 € [t.0" — R'/t]R Inversion
mbody(u, lr,m) =0o Assumption
If m € Dom{u(¢)) thenm = o € pu(f) Case Analysis
Subcase: T-LinLoc
¥, Py S Lpjobjt.[t/t.0 — R|[t.0' — R'/t]O — R =, Assumption
¥(¢) = jobjt.04 — Ry Subcase Premise
jobjt.0, — R; < jobjt.[t/t.0 — R][t.0’ — R'/t]O — R Subcase Premise
/ P’
m:Vpi.---Vpp. 1, it / —o T, € [t.05 — Ry/t|R; Subtyping Rules
tregions (jobjt.[t/t.O < R|[t.0’ — R'/t]O — R) C P Inversion
P CP Definition of Substitutiontregions (1)
4 P’ ’ P’
Vpl. e Vpn.ﬁs i / —0 To, < Vpl e Vpn.ﬁ i / —0 Ty Subtyplng Rules
;s Dom(S); S+ loc — (my =01, ,my, = 0op):
jobjt.[t/t.0 — R|[t.0" — R'/t]Os — Rs = lipc, 11, ,In Inversion on T-SORE
m=oc € (my =01, -, My = 0p) Modus Ponens

Vi € 1.n|P" C DomS).%; s P"; S

P 1 pn PUp1i o0 -

FoiVpr. o Von,.7 N / —o T =1; Inversion on T-OESCR
P C Dom(S) Region Contexts
P’ C Dom(S) Set Theory
% DomMS); Sk o:¥py. - Vo7, i / L To, = ; Instantiation
lils(x:m,)e=0 Definition
Subsubcase: T-LinMeth
Sixm P SEen, = 1; Inversion
P CDomMS), p1,- s pn Inversion
1, s pn € DOMS) Inversion
T - Inversion
P CPopi,- ,pn Set Theory
P, pn &P Set Theory
X Py StEoNpy. -V, Ll / Eo To, = 1; T-LINMETH
Subsubcase: T-NLinMeth
Sixm P SEen, = 1; Inversion
P’ CDomMS), p1,- »pn Inversion
p1,- , pn & DON(S) Inversion
T - Inversion

36

- nonlinear
P/gp7p1a"' s Pn

P

s pn &P

’ P’
S5 P St oNpy.- VT, ilt [—o T, = 1;

Subcase: T-NLinLoc
Symmetric.

Subcase: T-BorLoc
Either,o = obj oro = jobj, in which case, symmetric to the respective case above.
Case: T-MethT,

mtype (Lt.[t.0" — R'/t]O — R,m) =Vpy.---Npnrs 5) Lo 7
Imtype (Lt.[t.0' — R'/t]O «— R,m) #

/ P
m:Vp1.~-~Vpn.ﬁ i / —0 Ty ¢ R
’ P’

mtype ([t.O’ «— R'/t]O,m) =Vp1.---Vpp.71 Cil / —o T2

;S u ok =4

Y; - DomS); S+ u(6):2(0) =1,

m:T & [t.0" — R'/t]R

SubCase: T-LinLoc or T-NLinLoc

Y Py S Lt [t/t.0 «— R|[t.0" — R'/t]O — R =,

3(0) = Lt.L,to.0, — R, «— Ry

Lt.L,t,.0, — R, < R; < Lt.[t/t.0 < R][t.0' — R'/t]O — R
tregions (Lt.[t/t.O — R][t.0’ — R'/t]O — R) C P

R, < [t/t.0 — R|[t.0' — R'/tR

m:7" & R,

m = o ¢ Range(u (1))

Loto.0, +— R, < [t/t.0 <« R][t.0’ — R'/t]O

Y DomS); S F loc:[to/to.Op — Ro][t.0" — R'/t]Loto.0p — Ry = 1),

’ P’
mtype ([Lt.t.0’ «— R'/t]Lyto.0, +— Ry,m) =Vpy. - -Vp,.1| Ll / —o 74
’ P’ / P’
Vpi1. - 'vpn,-T{ i / - 7'2/ <Vpy.---Vpn.11 i / —o Ty
pll) =loc— (my =01, -+, , My = 0p)
mbody(u,loc,m) = o

’ P’
, P’ ’ P’
Vp1.- Vo1 il [—o 1y <Vp1.-Vpn. " / — T3

, ’

’ P’
Vpl. VpnT{/ i / —o 7'2”S < Vp1Vpn7—1 i / —o Ty

Inversion
Set Theory
Set Theory

T-NLINMETH

Assumption
Premise

Inversion

Inversion
Assumption
Inversion
Inversion

Assumption
Subcase Premise
Subcase Premise
Subcase Premise
Subtyping Rules
Subtyping Rules
Inversion on T-O[ESCR
Subtyping rules
Inversion on T-O[ESCR

mtype Subtyping

mtype Subtyping
Case Analysis
Case Analysis

IH
IH

T-SUBTRANS

The Store Change Lemma says that if we change a linear object on the heap and update its type in the store typing,
the store remains well typed.

Lemma (Store Change)

If ;S F p ok = I, 35 4; P; S F £1:j0bjt.0 — R = ., no duplicates if, [.,Range(S), u(f) = s,
% DomS); S F s:it = I, andX; ;s Dom(S); S F i7" = I/, then[l — 7'|E; S F [{ — §'lu ok =I5 — 1,1
Proof of Store Change

8k ok =, Assumption
3, A; P; S E Ap:jobjt.O «— R= I, Assumption
No duplicates iflg, I., Range(S) Assumption
P SkEst =1, Assumption

37

S P SE s =1 Assumption

¥, A; P; S {p:iobjt.0 — R = {{} Case Analysis
Ll No duplicates ifi;, I, Range (.5)
¢ ¢ Range(S) No duplicates ifg, I, Range(S)
V¢ € Domu).X; s Dom(S); S p(f):X(') = lp Inversion
DomX) = Don{u) Inversion
Vioc — (my =01, - ,m, = 0,) € Range(u).Vi € 1..n|P C Don{(S).

S5 A;P;SEoiVpr. s Vo T £ / & T =1 Inversion
liop; & Range(X) Linear Location Store
Vioc «— (my =01, -+ ,my, = 0,,) € Range(p).Vi € 1..n|P C Dom(S).4jop; & 0 Set Theory
Vioc — (my =01, - ,m, = 0,) € Range(u).Vi € 1..n|P7; C Dom(S).¢, & o; Borrowed Location Store
V¢ € Dom([/€ — s)p).X; -, Dom(S); S+ [/€ — s]u(l):][/t — T]5(l) = Ly Store Contraction
Don{[/¢ — 7'|%) = Don{[/{ — s'|i) Definition of Substitution
[/0— TNE;SE[/6— &'lu ok =15 —1,,1] T-STORE

We also have the Subterm Location Lemma. This states that if a subexpression containing a set of linear locations
disjoint from those in the rest of the program is evaluated, the linear locations in it are still disjoint from those of the
rest of the program.

Lemma (Subterm Location)

If no duplicates inl.,l;,Range(S), I C l., 3 A, P;S F eer = I, 5, A4, P;S F eqry = I, ;5
uw ok = I, pes — piel, XA, P;S ety = U, andY; S' - i/ ok = I/, then no duplicates in
(le = 1),U',15,Range(S’).

Proof of Subterm Location
The proof is by induction op,e — 1/, ¢€’.

The Region Type Lemma and the Region Expression Lemma state that the regions found in a well typed expression
and its type are a subset of those in scope.

Lemma (Region Type)

¥, A; P; St er = [iff tregions (7) C P
Proof of Region Type

By induction on the typing rules.

Lemma (Region Expression)

Y, A; P; S F et = [iff eregions (e) C P
Proof of Region Expression

By induction on the typing rules.

The List Equality Lemma says that if an expression is typed with two different types, the list of linear locations
produced by both judgements is the same.

Lemma (List Equality)

If ¥;A; P;Sker=landX; A"; P'; S' - e:¥’ = I, thenl = I'.
Proof of List Equality

By induction on the typing rules.

The Region Contexts Lemma says that if we can type an expression under a given region context and a given map
from regions to locations that are borrowed at them, the context is a subset of the domain of the map.

38

Lemma (Region Contexts)

If ¥, A; P; S+ .1 = I, thenP C Don(S)
Proof of Region Contexts

By induction on the typing rules.

The Variable Subtyping Lemma says that if an expression is typed at a type with a given variable bound in it, the
expression is typed at a subtype of its original type if the variable is bound at a subtype of its original type.

Lemma (Variable Subtyping)

If ;A 2m; P; S F ers = landr] < 7, thenX; A a7(; P; S+ erry = land7) < 7.
Proof of Variable Subtyping

The proof is by induction on the typing judgements.

Thelmtype Subtyping Lemma and thmtype Subtyping Lemma say that if an object type contains a method
type, a subtype of the object type contains a subtype of the method type.

Lemma (Imtype Subtyping)

If Imtype (71, m) = 7 andr{ < 71, thenimtype (7{,m) = 74 and7j < 7s.
Proof of Proof of Imtype Subtyping

By case analysis on derivation lofitype (71, m) = 7.

Lemma (mtype Subtyping)

If mtype (71, m) = 72 andr] < 7y, thenmtype (7{,m) = 75 and7} < 75.
Proof of mtype Subtyping

By induction on the derivation aftype (1, m) = 7.

The Linear Location Change Lemma says that if typing an expression does not yield a given linear location in the
list of contained linear locations, changing the type of this location will not change the type of the expression.

Lemma (Linear Location Change)

If 2;4; P; S+ £p:j0bjt.0 — R=1,%;A; P;Ster=U"andl{ ¢ ', then[l — 7']3; A'; P; S I e:1 =
l/
Proof of Linear Location Change

By induction on the typing rules.

The Region Contraction Lemma says that if the type of an expression does not contain a given region, the region
is not needed in the region context to type the expression.

Lemma (Region Contraction)

If ¥; A; P,r; S Fvir = landr ¢ tregions (1) theneregions (e) C P.
Proof of Region Contraction

By induction on the typing rules.

The Region and Substitution Lemma says that substituting one expression typed under a given region context into
another typed under the same region context produces an expression which can be typed under the same context.

Lemma (Region and Substitution)

If eregions (e) C P anderegions (e’') C P theneregions ([e’/z][o/ple) C [o/p]P.
Proof of Region and Substitution

This follows from the definiton oéregions (e).

39

The Folding Subtyping Lemma says that subtyping relations are preserved under folding or unfolding both sides.

Lemma (Folding Subtyping)

If Lt.O1 +— R < Lt.Og +— Ry, 11 = Lt.[t/Tl]Ol — Ry andrg = Lt.[t/T]Oz — Ry, thenﬁ < To.

Proof of Folding Subtyping
By induction on the typing rules.

Finally, the Folding Subtyping Lemma says that the same region context can be used to type an expression after

folding or unfolding.

Lemma (Folding Region)

tregions (Lt.O — R) C P ifand only if tregions
Proof of Folding Region

The proof is by induction on the typing rules.

Proof of Preservation
The proof is by induction on the derivation pfe — ', ¢’.
Case:C-INV

e — ,LL/,B'
S8k pu ok = I,

eregions (e.m[o1, - ,0n]) C P
subcaseT-NLININV

Y P StEemlor, -, on) T = e
No duplicates if. /s, Range(S)
;P Skelt.O— R=1

mtype ([tO — R/t]Lt.0 — R,m) =Vpy. - Vp,.Lt'.0' — R’ & 7/
Lt.O— R <01, ,0n,t". O — R'/p1, -, pn,t'|Lt'.O" — R’
[Qla"' 7Qn/p17"' 7pn}Pl gP

Py S"Fe:Lt.Oy — Ry = I,

Lt.Os — R, < Lt.O — R

mtype ([tO, — R,/t|[t.0, — Ry, m) =Vpy.--Yp,.It'.O" — R. 2 7/

Vp1. - VpnLt'.0. — R, 270 <Vpy. o Wpn Lt'.O" — R 2 r
7L <7’
Lt'.O' — R < Lt'.O. — R,
[917 e >Qn7t/'0/ — R,/Ph e 7p’n7t/]Lt/'O/ — R/ S
[Qla e 7Qnat/'0/s — R./s/pla T ap’rwt/]Lt/'O; — R/s
Lt.O— R<|[o1, - ,0n,t.O, — R./p1, -+ , pn,t'|Lt'. O, — R/,
>3
S8y ok =l
No duplicates ifl’,l;Range(S’)

eregions (¢.m[o1,---,0n]) C P

i Py S' e mlor, o0 = e
subcaseT-LININYV

Py SEemlor, -, o) = e

No duplicates ifl. /s, Range(S)
¥ P;SFejobjt.O«— R=1I,

Imtype ([tO — R/t]iobj .0 — R,m) = Yp1.---Vpp.iobjt".0" — R Zo
jobjt.0” «— R"” = [tO « R/t]jobjt.0 — R

T = [t/7¢]iobj t.0” — [/m:T]|R"
Tf < [le T 7Qnat/-0/ A Rl/ﬂh e
(01, s 0n/Pny - pn]P" C P

, pns t]iODj 0" — R

40

(Lt.[t.0 — R/t]O «— R) C P.

Case Premise
Assumption
Assumption

Assumption
Assumption
Subcase Premise

Subcase Premise

Subcase Premise

Subcase Premise
IH
IH

mtype Subtyping

mtype Subtyping
T-SUBNLINMETH
T-SUBNLINMETH

Region Subtypingand Folding Subtyping
Region Subtypingand Folding Subtyping
IH
IH
IH
IH
T-NLININV

Assumption
Assumption
Subcase Premise

Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise

>, 3

Y5 P;S'Fejobjt.0s — Ry = I,
jobjt.05 «— Ry, < jobjt.O «— R

Imtype ([tO; < Rs/t]iobjt.0s «— Ry, m) =

P
Vp1.---Vp,.iobjt". O, «— R, — 7!

1.+ ¥pn.iObj .0} — R 2wl < Vpy. - ¥p,.iobjt!.0" — R o 7
<7
jobjt’.0; — Ry < jobjt’.O, — R,
[01,- ", 0n,t.O" — R'/p1,--+ , pn, t']iobjt’.0" — R’ <
o1, 1 00 8.0, = RL/pr,-++ , pu, t/]i0bj /.0, — R,
Tf < [‘917 e ,Qn,t/~0/5 — Rls/pla o 7pn7t/]10bj t/Ofe — R/s
S8 ok =1
No duplicates iri’,i’., Range (.5”)
eregions (e¢’.mlo1, -+ ,0n]) C P
Y Py SEe mlo, 00T, =1,

Case:E-NLININV

mbody(u, £r,m) = Ap1.- - App.sa:’.e

39 Fp ok = I

eregions (¢{;.m[o1, - ,0n]) C P

eregions ({;) C P

subcaseT-NLININV

Y Py S Lpmlor, -+ onli[on, s 0n/p1, e palT = e
No duplicates if. /s, Range(S)

¥ P SHUL:Lt.O — R=1

mtype ([t.0 — R/t|Lt.0 — R,m) =Vpy.- - VpoLt'.0' — R' T 7
Lt.O— R <01, ,0n/p1, " ,pn)Lt'.O" — R’
[o1,+ 0n/p1s »pu)P' C P
[@17 o 7Qn/p17 e 7pn]Lt-O —R <
[01,- s 0n/p1, s pallors - son/prs- - s pul .0 — R
[0, son/p1, - s pulL6.0 — R < o1, -+ ,0n/p1, -+, pu] Lt'.O" — R
Y>>0
%, Py S Lp:Lt.[t/t.0 «— R][t.0 — R/t]O — R =1

i Py S Apy.- - Appsximg.eNpy. -V, Lt'.O" «— R L =1,
Vp1. - Vpu Lt 0" — R" 7/ <Vpy. - Vp,Lt'.O0' — R' &+

5 PiSE Apy. - Apnsairo.epr -V, Lt'.0" — R" B — [}

T <r

Lt'.O' — R < Lt'.0" « R"

[Qla te 7Qn/p17 te 7pn}Lt/'O/ — R S [Qla T 7Q7l/p13 e 7p”]Lt/'OH —R"

[«Qly"' aQn/plv"' vpn}Lt'O —R< [Qlﬂ'" 7Qn/p1"“ 7p”]Lt/'O” — R

It.O — R<ILt'.0" «— R"

Siw: Lt/ 0" «— R"; P; S+ e’ = {}

eregions (e) C P’

eregions ([Qla"' 7Qn/p1a"' ,PnWL/ﬂﬂ]e) - [le"' 7Qn/p1,"' 7pn]Pl

eregions ([o1, -+, 0n/p1, -+, pnlllr/xle) C P

Siaifor, - on/p1, s pal Lt 0" — R o1, on/p1, -, o] P S E
[o1,- - son/p1, - s pnlelor, -+ Lon/prs - pn) T = {}

Py pn &P

p1y e pn @ LE.O" — R"

41

H
H
IH

Imtype Subtyping

Imtype Subtyping
T-SubLinMeth
T-SubLinMeth

Region Subtypingand Folding Subtyping
Region Subtypingand Folding Subtyping
IH
IH
IH
T-LININV

Case Premise

Assumption

Assumption
Definition oferegions (e)

Assumption
Assumption
Subcase Premise

Subcase Premise
Subcase Premise
Subcase Premise

Region Subtyping

Definition of Substitution
S-REFL

Definition of Substitution

mbody Type
mbody Type

Case Analysis on Typing Rules
Subtyping rules
Subtyping Rules
Region Subtyping
Subtyping Rules
Region Subtyping
Inversion
Region Expression
Region and Substitution
Set Theory

Region Substitution
Inversion
Region Type

Y;x:Lt'.O" — R"; (01, ,0n/p1, -+ ,pn) P S F
[Qla"' >Qn/p17"' 7Pn}61[917"' agn/pla"' 7pn]7—// - {}
5Py SE o, s 0n/p1, s pnlelon, s on/p1, o palT! = {}
Y P;SE o,y on/p1, s pallln/xleon, - on/p1s o palT! =T
[01,-++ son/p1, s)T <ors -+ son/p1y- s pulT’
I'Cl,
No duplicates in’
No duplicates iri’, I, Range(S)
[le"' 7Qn/p17"' 7pn]7—/ S [Qla"' MQn/pla"' 7pn]7—
[917... 7Q7l/p17"' 7pn]7-// S [Q17... 79”/,017”' 7pn}7-

Case:E-LININV

w() =loc— (- ,m=~Apy.- - Apn.isz:19.€,)

W= ()

SiSHp ok =1,

eregions ((r.m[o1, -, 0n]) € P

eregions ({;)C P

subcaser-LININV

S Py SELpmlor, - onlilo, s 0n/p1s s pulT = L
No duplicates ifl. /s, Range(S)

3 Py SELp:jobjt.0 «— R =,

3555 S Lr:jobjt.0 — R = {/¢}

Imtype (j0bj t.[6.0 — R/t].0 — R,m) =Vp1.---Vpn.iobjt'.0' — R Zor
[ilobjt.0, — R, = [ilobjt.[t.0 — R/7]O — R
7 = [iJobj t.[t/7¢]Oy — [/m:T1] Ry
75 < o1, 0n/p1, - s puliobjt’.O" — R’
[01,--+ ,0n/p1, -+, pu]P' C P
[o1, =, 0n/p1, -, pulTy <

[01,-- ,0n/p1, - s pnllors - son/p1s - s puliObjt’.O" — R’
lo1,-- ,0n/p1,- -+, pulTy < o1, s0n/p1,- -, puliobjt’.O" — R’
X(¢) = jobjt.05 — Ry
jobjt.05 «— R, < jobjt.O — R
tregions (jobjt.0 «— R) C P
Ts = [iJobj t.[t/75]([t.0s < Rs/t]0s) « [/m:m][t.05 «— Rs/t|Rs
Ts < Tf
[l T2 > 2

/

mtype (iobjt.[t.0 — R/t].0 — R,m) = Vpi.---Vpn.iobjt'.0' — R ‘o
55 S F Lpsjobj t.[t/t.0 — R|[t.0 — R/t]O — R = {/}

P/
3 Py S Apr.o- - Appliseimg.eVpr. - - Vppiobjt'.O” «— R —o 7/ =1
P’ P’
Vp1. - Vpniobjt'.0” «— R" —o 7/ < Vpy.---Vpujobjt'’.O' — R —o 1
<7

jobjt.0" — R’ < jobjt'.0" — R"

[Qla e 7Qn/p17 e 7pn]|0bjt/0/ — R/ S [917 e agn/pla e 7pn]10b] tl'O” — RN

[917 e 7Qn/p1a e 7Pn}7f S [Qla T aQn/pla T apn]IObJ t/'OH — RN
77 < jobjt’.0"” — R”

3;x:jobjt’. 0" «— R"; P, S+ e’ = 1

eregions (e) C P’

eregions ([o1, - ,0n/p1, -, pulllr/xle) C lo1, - s 0n/p1, - pul P’
eregions (o1, -~ ,0n/p1, -, pnlllr/x]e) C P

tregions ([jJobjt.0, «— R,) C P

tregions ([jJobjt.0, — [/m : 7]R,) C P

42

Definition of Substitution
Region Weakening
Substitution
Substitution
Substitution

Set Theory

Set Theory

Region Subtyping
Subtyping Rules

Case Premise
Case Premise
Assumption
Assumption
Definition of eregions (e)

Assumption
Assumption
Subcase Premise
Case Analysis on Typing Rules

Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise

Region Subtyping
Definition of Substitution
Inversion
Inversion
Inversion
Definition
Folding Subtyping
S-LOBJ

T-METHT;
Definition of Substitution

mbody Type

mbody Type
Subtyping rules
Subtyping Rules
Region Subtyping
Subtyping Rules
Region Subtyping

Inversion
Region Expression
Region and Substitution
Set Theory

Folding Region

Definition oftregions (1)

tregions (17) C P
Z7 B DOrT(S),S = lOC — < e, = Apl .. ~Apnig$(;;7‘0_e7. . >
i0bjt.05 — Ry = lipe, 11, -+ o1, 41y

’ p’
Vi € 1.n|P’ € DOm(S).5; s DOM(S); S b 03:Vpy. - - VpuTo, > | —o 7 =1,
P C Don(S)

;s Dom(S); S Apr. - Apnisximg.eVpy. - - VpuTo, L / fo 7, = 1

;=1

[0 7535 Py S ELpmp = ¢

Sixifor, v, 0n/p1, s paliObjt 0" — R (o1, -+, 0n/p1, - pu] P S F
[Qla"' 7Qn/p17"' 7Pn}e:[915"' 7Qn/P1a"' 7pn]7—// =1

(0= 7|55 2:for, -, 0n/p1s -, paliOBj 0" — R [o1, -+ on/p1, -, pa] P's S T
(01, s0un/p1, s palelor, s 0n/p1s - pal T =1

pl) e ?p’ﬂ g P

Py, pn € 100707 — R”

[0 — 75)5; z:jobjt".O0" — R";[o1, -+ ,0n/p1, s pn)P; S+
[le"’ aQn/plv"' apn}e:[gla”' 7Qn/p1a"' 7pn]7—// ==

[0 7555 Py S [o1, -+ s 0n/p1, - s paleilon, - s on/p1y o pal ™" = Le

[0 7555 Py S o1, -+ s 0n/p1y s pulll/@lefor, -+ s on/p1y - s pulT” = U

[o1, -+, on/p1,- - pulT" < o1, s on/p1,- - palT’

rci,,i

[Qla"’ 7Qn/p17"' 7pn}7_/ S [Qla'"' 7Q7L/pla"' 7/771]7'

lov, -+ son/pr, - ol < or, - s on/pr, - pulT ,

3, DomS); S F Apy. - Appisximo.eVpy. - VpuTo, L / —Po 7o, =1

[t.05 «— Rs/t]Rs = m1:To1, -+ , T,y , MpiTon

;s DomS); S F loc:O = 15

5 DomS); S Floc— [m=c/]{-)iTs = lioes 11, In

Ll

[0— 728 F () ok =15 —1

No duplicates ir’, [— I, Range ()

Folding Region

Inversion on T-SORE

Inversion on T-@ESCR
Region Contexts

Instantion
List Equality
T-LINLOC

Region Substitution

Linear Location Change
Inversion
Region Type

Definition of Substitution
Region Weakening
Substitution
Substitution
Substitution

Region Subtyping
Subtyping Rules

Equality
Inversion on T-WESCR
Inversion on T-MESCR
T-ODESCR
No Duplicates ir, I, Range(S)
Store Change
Set Theory

Case:C-UprD
we — p'e Case Premise
39 Fp ok =1 Assumption
eregions (e«+m=o0)CP Assumption
eregions (e)C P Definition oferegions (e)
subcaseT-UpPD
S uP;Ste—~m=o01" =11, Assumption
No duplicates ifi., [, I, Range(S) Assumption

X Py SkEor =1,

;. P; St eijobjt.O — R=1.

Imtype (jobjt.O — R,m) =71’

jobjt.R' — O’ = [t.0 < R/t]jobjt.R' — O’
7" = [t/tav”]iobjt.R' — O’

Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise

¥ > X IH
58 ok =1 IH
Y5 P;S'Fejohjt.0s — Ry = IV IH
Lt.O, — R, < Lt.O — R IH
eregions (¢') C P IH
eregions (e«+m=o0)CP Definition oferegions (e)
mtype (Os «+ Rgs,m) = 7. Imtype Subtyping

43

<7

R < [m:rl/m:7| Ry

Lt.O — R < Lt.O5 < [m:T}/m:T|R;
No duplicates if., 7, 1., Range(S’)

€rler sy

iobjt.R. — O, = [t.0, +— R,/t]iobjt.R, — O,

iobj t.R, «— O, < jobjt.R' — O’

1 = [t/tau”]jobjt.R' — O’
Tél S 7_//
Yo P Ske —m=or1! =11/
subcaseT-ADD
P Ste—tm=o01 =1,
No duplicates if., ., 15, Range(S)
P Skor =1,
%, P; St eijobjt.O — R=1,
Imtype (jobjt.O «— R,m) #

i0bjt.0’ — R’ = jobjt.[t.0 — R/t](O — R)

7/ =jobjt.[t/7'](O" — R',m:T)
>,y

S8y ok =1

¥ Py S'Fejobjt.0y — Ry = 1!
i P SEor =1

eregions (¢/) C P

eregions (e«+m=0)CP
mtype (Os — Rs,m) #

Rs,m:t < Rom:T

Lt.O — R,m:t < Lt.Os — Ry, m:T
No duplicates if., !/, l.Range(S’)

€rPer’s

i0bj t.0" « R’ = jobj t.[t.0, < R, /t](Os — R,)

jobjt.0, — R. < iobjt.0’ — R’
7, =jobj t.[t/7.](O, — RL,m:T)
T <7

¥ Py SEe —+m=o:jobjt.0 — R,m:r. = 1.,

Case:E-UPD

8k pu ok =,
eregions ({p «+m=0)CP
eregions () C P

M(E):loc<—<m1:o—17...7m:ga7...7mn:0n>
M/:[g’—)lOC<—<m1:a‘17---7m:0'b7...7mn

subcaseT-UPD

5P SHLL —+m=opT = 1,1,
No duplicates i, ., s, Range(S)

Xy Py Sk oy, =1,

¥ P; SHLp:jobjt.0 — R,mit, = I,

on)lp

jobjt.0,, — Ry, m:7,, = j0bjt.[t.0 — R, m:7,/t]O — R, m:7,

T =jobjt.[t/7]0, — Ry, m:7p

¥ Py S F £p:j0bjt.0 «— R, m:T, = {{}
tregions (jobjt.O «— R,m:7,) C P
X(¢) = jobjt.0" — R',m:7),

O — R ,m:7, <O «— R,m:7,

R m:7), < R,m:7,

0'<0

44

Imtype Subtyping
T-SuBROW,
T-SusLoc

Subterm Location
Definition

Folding Subtyping
Definition

Folding Subtypingand Subtyping Rules

T-UPD

Assumption
Assumption
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
IH
IH
IH
Store Weakening
IH
Definition oferegions (e)
Imtype Subtyping
T-SuBROW,
T-SuBLoC
Subterm Location
Definition
Folding Subtyping
Subcase Premise

Folding Subtypingand Subtyping Rules

T-ADD

Assumption

Assumption

Definition of eregions ()
Case Premise
Case Premise

Assumption
Assumption
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Case Analysis on Typing Rules
Inversion
Inversion
Inversion
Inversion on T-&BRow
Inversion on T-S¥BROwW

tregions (O — R,m:7,) C P Inversion
Y DomS); S Floc— (my =0, - ,m =04, ,Myp = 0p):

iobjt.0" «— R = L 1oc 1, ylay- 4 ln Inversion on T-3ORE
[t.0" — R mur, Jt|R = mym, -+, mp:Tn Inversion on T-OESCR
Vi € 1.n|P C DomS).X; A; P; S+ o;:Vp1. - - Vpp.1i Lt / & I =1; Inversion on T-O[ESCR
P C Dom(S) Region Contexts
;- DomS); S opimy, = e Region Weakening
35 DomS); S F loc:O' = e Inversion on T-OESCR
7s = i0bj t.[t/75]O" — [t.0’ — Rs,m:7p/t]|Rs,m : Tp Definition
[lo— T8>, 2 S-LOBJ
;s DomS); Sk loc— (my =01, ,m=0p, -+ , My, = Oy):

Ts = lioe, 11y 5y o0y, le T-ODESCR
[0 — 75|58 F [0 — loc— (m1 =01, ,m=0p, -+ ,My = 0p,m = 0)|pt 0K =>

lo,le — 1o, 1y Store Change
tregions (7,) C Region Type
tregions (jobjt. O —R)CP Definition oftregions ()
tregions (jobjt. O — R,m:y) C P Definition oftregions (7)
tregions (1) C Definition oftregions (1)
T < TP T-SuBREFL
Rm:m <R mm T-SubRowy
jobjt.0" — R',m:7, < jobjt.0 «— R, m:m, T-SuBLoc
Te < T Folding Subtyping
[£ — jobjt.O0" — R/ m:1p|%;+; P; S+ £p:j0bjt.0 — R mim, = I, T-LinLoc
No duplicates in’, I, 1. — 14, 15, Range(S) Lists

7 < 7 T-SUBREFL

Case:E-ADD
w(l) =loc— (my =01, ,my = 0y) Case Premise
Vi.m # m; Case Premise
w=[{—loc— (m =01, ,my=0,m=o0)|u Case Premise
8k ok =, Assumption
eregions ({p «+m=0)CP Assumption
eregions () C P Definition of eregions ()
subcaseT-ADD
¥ P;SH L —+m=o:jobjt.0 — R i, = I, 1. Assumption
No duplicates ifi., ., s, Range(S) Assumption
P c Don(S) Region Contexts
X Py SEoir, =1, Subcase Premise
3 Py S £r:jobjt.0 — R=1, Subcase Premise
jobjt.0, — R, = jobjt.[t.0 — R/t]O — R Subcase Premise
T =jobjt.[t/7]O, — R, Subcase Premise
3 Py S FL4pjobjt.0 — R=¢ Case Analysis on Typing Rules
Imtype (jobjt.O «— R, m) # Subcase Premise
tregions (jobjt.O «— R) C P Inversion
%(¢) = jobjt.0" — R’ Inversion
O+« R <O+R Inversion
R <R Inversion on T-¥BRow
0'<0 Inversion on T-&BRow
tregions (O — R)CP Inversion
3 DomS); S Floc — (my = o1, My = 0p):i00j 6.0" — R = 110c 11, -, 1y Inversion on T-SORE
[t.0" — R'/t|R' = my:Ty, - ,mpiTy Inversion on T-OESCR

45

’ P’
Vi€ 1.n|P' C DOoM(S).X; A; P; S+ oy¥pr. - Vppmi D | —o 7l = 1

3 DomS); S+ loc:O' = 14

P C Dom(S)

Y, DomS); S F oy, = 1o

Ts = jobj t.[t/75]O" — [t.0" — R',m:1p, /t|R',m : T,
T8> %

35 DomS); S Floc — (my =01, My = 0pym = 0):Ts = lioe, 1,7+

0l

[0 — 15)5; 8 F [6 — loc— (my =01, -y =0n,m=0)]u Ok =, 1,
tregions (1) C P

tregions (jobjt.O «— R,m:7) C P

tregions (1) C P

T<T

R om: 7, <R, m:,

jobjt.0" — R',m:t < jobjt.0 «— R,m:T

Ts < T

[(— jobjt.O" — R',m:t,)%;; P; S F £r:jobjt.0 «— R, m:r,, = I,
No duplicates iri’, I, l., Range(S)

7 < 7 T-SUBREFL

Case:C-LET!

pyer —, p'e

;S p ok = I

eregions (let ! (p)zy =ejxa =esin ezend) C P
eregions (e;) C P

eregions (e3) C P

eregions (e3) C P

subcaseT-LET!

i Py let ! (p) Tl = €1 Ty = €3 in Send63 F sy, o, l3 =
No duplicates ifly, I3, 3,15, Range(.S)

¥ P;SFe:lt.O— R=1

3x1:P,pt.O — R;p; S ea:mo = g

3 x1:LptO — R, x9:19; P, p; S+ e3:m3 = I3

pET

p&Pp

zy ¢ Dont:)

z ¢ Dont:)

X1 7é X9

>3

8y ok =l

eregions (ej) C P

Yix1:P,pt.O «— R;p; S Foegimg = o

Yix1:LptO «— R, x0:10; P, p; S F e3:m3 = I3
eregions (let ! (p)zy =€ xs =esin ezend) C P
No duplicates int, l2, I3,1., Range(S’)

¥ Py S'FeliLt.0Os — Ry = 1}

[t.05 — R, < Lt.0 — R

3 21:Lp.StOs «— Rg,x9:m0; P, p; - - e3im3, = I3

T3, S T3

E;';P;S Flet ! (p)acl = e’lxg = €9 in es3 endITg — le,lg,lg

46

Inversion on T-O[ESCR
Inversion on T-OESCR
Region Contexts
Region Weakening
Definition
S-LOBJ
T-ODESCR
No duplicates if., I, s, Range(.S)
Store Change
Region Type
Definition oftregions (7)
Definition oftregions (1)
T-SUBREFL
T-SubRow
T-SuBLocC
Folding Subtyping
T-LinLoc
Lists

7l’l’Lvle

Case Premise

Assumption

Assumption
Definition oferegions (e)
Definition oferegions (e)
Definition oferegions (e)

Assumption
Assumption
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
IH
IH
IH
Store Weakening
Store Weakening
Definition oferegions (e)
Subterm Location
IH
IH
Variable Subtyping
Variable Subtyping
T-LET!

Case:E-LET!

r fresh Case Premise
Y8k pu ok =, Assumption
eregions (let ! (p)xy =Lz =ein ezend) C P Assumption

eregions (v;) C P
eregions (ez) C P
eregions (e3) C P
subcaseT-LET!

Definition of eregions (e)
Definition of eregions (e)
Definition of eregions (e)

Z;-;P;S Flet ! (p)Il =Vl 19 = €9 in es end:7-3 - ll,lg,l:;
No duplicates ifly, l5, 13,15, Range(S)

P SHAL:Lt.O — R=— 1

321:p8.0 — R; Pop; S F egimo = g

Yix1:Lt.0 «— R, x9:70; ;S Fe3im3 = I3

Assumption

Assumption
Subcase Premise
Subcase Premise
Subcase Premise

x1 & Dont-) Subcase Premise
xo ¢ Dont+) Subcase Premise
T, # To Subcase Premise
r €Ty r fresh
pée- r fresh
pCop Definition of C
It.O— R<LtO+«— R T-SUBREFL
P SHAL:Lt.O — R= 1 Region Weakening
5P SELypt.0 — R={} T-BoRLOC
pt.0 — R<pt.O — R T-SUBREFL
Y>3 S-REFL
X P r/plr; S [r/pll,/x]eamy = U Region Substitution and Substitution
Th <1y Substitution
' Cls Substitution

eregions ([r/p][¢,/x]e2) C P
eregions (let ! (p)xy =Llrxo = [r/p][l,/x]ezin esend) C P

Definition of eregions (e)
Definition of eregions (e)

S 21:L6.0 — R, xo:7h; S Fegims = I3 Variable Subtyping
T3 < 74 Variable Subtyping
P Sklet V(p)xy =Ll xe = [r/p|[l,/x]eain ez end:ms = 11,013 T-LET!
No duplicates iy, ', I3 Set Theory
Case:C-LET!;

w,es — u'el Case Premise

Sk p ok =1, Assumption

eregions (let ! (r)x; =viax3 =eoin egend) C P Assumption

eregions (v1) C P
eregions (ez) C P,r
eregions (e3) C P
subcaseT-LET!

Definition of eregions (e)
Definition oferegions (e)
Definition of eregions (e)

;o P;SElet ! (T’)(El =wvix2 =egin ezgend:ry = ly,lo,13
No duplicates ify, l2, 3,15, Range(S)

¥ P;SEv:Lt.O — R—=— 1[4

w160 — R; Pors S egimy = o

Y x1:LrtO «— R, xo:mo; P; S egim3 = 3

r & Ty

r¢ P

z ¢ Dont:)

x2 ¢ Dont:)

47

Assumption

Assumption
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise

Ty # X2

>, 5

X8k ok =1,

eregions (e,) C P,r

r ¢ eregions (e})

eregions (e,) C P

eregions (let ! (r)z; =vizo =€hin esend) C P
No duplicates iriy, 15, 13, 1%, Range (S”)

Y21:76.0 — R; Py Sk elyira, = 1),

To, < T

Y 21:Lpt0O — R, x9:mo; P; S' Fe3its, = I3

T3, < T3

i P;SEviLt.O — R=— [

Yix1:LrtO «— R, x9:m0; P; S+ e3:13 = I3
S;uP;SElet I (r)xy =vize =e5in egend:ms = 1y,15,13

Case:E-LET!,

Y8k pu ok = I,

eregions (let ! (r)x; =vi 29 =vyin ezend) C P
eregions (v;) C P

eregions (ve) C P,r

eregions (e3) C P

subcaseT-LET!

Z;-;P;S Flet ! (7“)131 = V1 To = Vg in es end:7'3 - ll,lg,lg
No duplicates ifly, l5, 13,15, Range(.S)

¥ Py SFv:Lt.O— R=—1

Yix1:m6.0 — R; Pyr; S Ewgimg = o

Yox1:LrtO «— R,x9:19; P; St e3im3 = I3

r ¢ tregions (72)

eregions (ve) C P

Lt O+— R<ItO+<—R

Ts < Ts

eregions ([v1,va/21,x2)e3) C P

¥ Py SE [vg,ve/x, a0]esith = I

T4 < 73

U'Cli,la,ls

No duplicates in’

Case:C-DEL;

per —,p'el

LSk ok =1,

eregions (e; «—e2) C P
eregions (e;) C P

eregions (e3) C P
subcaseT-DEL

5P Shep — egim =1, 1L
No duplicates ifi., 1., s, Range(S)
No duplicates iri’, [, Range(.5)

48

Subcase Premise
H
IH
IH
Definiton oferegions (e)
H
Definition of eregions (e)
Subterm Location
IH
H
Variable Subtyping
Variable Subtyping
Store Weakening
Store Weakening
T-LET!

Assumption

Assumption
Definition oferegions (e)
Definition oferegions (e)
Definition oferegions (e)

Assumption
Assumption
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
Region Contraction
T-SUBREFL
T-SUBREFL
Region and Substitution
Substitution
Substitution
Substitution
Set Theory

Case Premise
Assumption
Assumption

Definition oferegions (e)
Definition oferegions (e)

Assumption
Assumption

No duplicates ifi., ., [, Range(S)

3585+ Feq:0bjt.0 — R =1,

S P;Ste:0 =1

jobjt.0’ — R’ = jobjt.[t.O0 — R/t]O — R
T =jobjt.[t/7]0"” — R

> %

XSk ok =1,

No duplicates ifi,, 17, 1., Range(S’)

% P S Fel0) =1

O;/ < o

eregions (e}) C P

T = jobjt.[t/T]0) — R

Ts < T

eregions (ej «<—e3) C P

Lt.0O, —« R< Lt.0" — R

S Fegobjt.O — R=1,

;P S kel — eqimy = e, 1!

e

Case:C-DEL,

My €2 —, /1/6/2

;9 u ok = I

eregions (vy < e2) C P

eregions (v1) C P

eregions (e3) C P

subcaseT-DEL

5P S v — e = e, I

No duplicates if., ., 15, Range(S)
;5 P;SEex:0bjt.O — R=— 1,
Y P Sku:0" =1L

jobjt.0" — R’ = jobj t.[t.O — R/t]O «— R
T =jobjt.[t/7]0"” — R

>, 8

S8 ok =1

No duplicates iri”/, 1., 1., Range(S’)
¥ P;S'Feh:objt.0y — Ry = 1!
0bjt.0, — R, <0bjt.O — R
eregions (eb) C P

jobjt.0. — R. = jobjt.[t.O5 — R;/t]Os «— R;
jobjt.0, — R. < jobjt.0’ — R’

7s = jobj t.[t/7]OY — R,

Ts < T

eregions (v; «— e5) C P

i Py SEu:0" =1

Y P; Sk —ehirg =101

er’e

Case:E-DEL

=loc«— (my =01, - -my = 0yp)
[0 — lod — (my =01, -mp = o)

49

Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
IH
IH
Subterm Location
IH
IH
IH
Subcase Premise
Folding Subtyping
Definition oferegions (e)
T-SuBLoc
Store Weakening
T-DEL

Case Premise

Assumption

Assumption
Definition of eregions (e)
Definition of eregions (e)

Assumption
Assumption
Subcase Premise
Subcase Premise
Subcase Premise
Subcase Premise
IH
IH
IH
IH
IH
IH
Subcase Premise
Folding Subtyping
Subcase Premise
Folding Subtypingand Subtyping Rules
Definition oferegions (e)
Store Weakening
T-DEL

Case Premise
Case Premise

S8k p ok = I,

eregions (lod/ — {;) C P

eregions (¢;) C P

subcaseT-DEL

3 Py SElod «— €p:0t.0" — R=>1l,,l
No duplicates ifi., ., s, Range(S)

;85 PHLp:jobjt.0 «— R = [,

;8 PFLp:jobjt.O «— R=—/(

¥ Py Stlod:0" =,

jobjt.0’ — R’ = jobjt.[t.O — R/t]O — R
T = jobjt.[t/T]0" — R’

tregions (O")C P

[1|8 > 2

3(¢) = jobjt.04 +— Ry

jobjt.0, «— R, < jobjt.0” — R

R; <R
tregions

/
e

(R)C P

3 DomS); S F loc — (my =01, My = 05):i00j .05 — Ry = Ljoc 11, -

Vi € 1..n|P C DONS).; -; DOMS); S b V.- - Vprn Do | Lo 7! = 1,
[t.Rs — Og/t]Rs = mq:Ty, -+, Mp:iTy

% DomS); S F loc:Os = e

% DomS); S F lod:0" =1,

7s = jobj t.[t/t.0” «— R,]O" «— R,

)

¥ DomS); Sk lod — (my =01,y = 0n):ms = UL, 1, L1,
0l

[0 —)5, S F [€— 7s)pp Ok = 15 — lioe, I

tregions (7)C P

Ts < T

[0 — jobjt.0" — RJ%; s P; SHLpm = 1,
No duplicates ifi., ls — ljoc, I, Range(.S)

T<T

Case:E-NEw

¢ fresh
X5 Fp ok =1
eregions (()) C P

subcaseT-NEw

Y Py SE ()iobjt.() — - =1,

No duplicates ifis, Range(.5)

[0 —jobjt.() «]5; S [0 — () «— ()]p ok =
tregions (jobjt.() —-)C P

jobjt.{) «— - < jobjt.{) « -

[0 — jobjt.() — -/]%;; P; S+ £:jobjt.() — - =,
No duplicates ifis, Range(5), ¢

Case:C-CHLIN

pe —,p'e

50

Assumption
Assumption
Definition oferegions (e)

Assumption
Assumption
Subcase Premise
Case Analysis on Typing Rules
Subcase Premise
Subcase Premise
Subcase Premise
Inversion
S-LOBJ
Inversion
Inversion
Subtyping rules
Inversion
An Inversion on T-SORE

Inversion on T-O[ESCR

Inversion on T-O[ESCR

Inversion on T-O[ESCR
Region Weakening

Definition

T-ODESsCR

No duplicates ifi., ., s, Range(S)
Store Change

Definition oftregions (1)
Folding Subtyping

T-LinLoc

Lists

T-SUBREFL

Case Premise
Assumption
Assumption

Assumption
Assumption
T-STORE

Definition oferegions (7)

T-SUBREFL
T-LINLOC
{ fresh

Case Premise

S5k ok = I,

eregions (le)C P
subcaseT-CHLIN

3 P; S He:objt.O — R =1,
No duplicates iri;, Range(.S)

3 Py SEejobjt.O — R=1,
>0

8 ok =1
No duplicates iri’, I’, Range(S’)

2 Py S'Fejobjt.0s — Ry = 1,
iobjt.0s «— Rs < jobjt.O — R
eregions (¢/)C P

0, <0

R; <R

;- Py S Fle'objt.0;, — Ry =1,
0bjt.0; — Rs; <0bjt.O — R
eregions (l¢) C P

Case:E-CHLIN

9k u ok = I
subcaseT-CHLIN

;P S I—!Ziobjzobj t.O— R=—1,
No duplicates iri,, I, Range (.S)

¥ P;SH fiobj:iobj t.O— R=—1,
¥(¢) = jobjt.05 — Ry

jobjt.0, «+— R, < jobjt.0 «— R
tregions (jobjt.0 — R)C P

0, <0

R, <R

o0bjt.0, — R, < 0bjt.O — R

[¢ — 0bjt.05 — R]X(¢) = 0objt.05 — R,
tregions (objt.O — R)C P

[0 — 0bjt.0s — RX >y ¥

[l — 0bjt.0s «— R(|%;+ P; S+ fobjzobj t.0 — R={}

0bjt.0 «— R <o0bjt.O — R

No duplicates ifi;, Range(.S)

eregions (gobj) CcP

V¢ € Domip).E; s Don(S); S F u(€):X(0) =1,
Dony) = DonX)

Y DomS); S F u(0):X(8) = 1,

w(l) =loc— (my =01, -+ ,my = 0y)

Vi € 1.n.5; A;Don(S): S - oyem B / Lo 7/ —s 1, if Don{S) C Don{S)

[tOg — Rg/t]Rq =MmyiTy, -
S5 A; Py S Eloc:Os = e

) mn:Tn

[¢ — objt.0s — R,]3;-; Dom(S); S F w(€):[¢ — objt.0s «— Rs|3(0) = 1,

Sk ok = I,

51

Assumption
Assumption

Assumption
Assumption
Subcase Premise
IH
IH
IH
IH
IH
IH
Subtyping Rules
Subtyping Rules
T-CHLIN
Subtyping Rules
Definition of eregions (e)

Assumption

Assumption

Assumption
Subcase Premise
Inversion
Inversion
Inversion
Subtyping Rules
Subtyping Rules
Subtyping Rules
Definition of Substution
Definition oftregions (1)
S-CHLIN
T-NLINLOC

T-SUBREFL
Set Theory
Definition oferegions (e)
Inversion on T-SORE
Inversion on T-SORE
Instantiation
Donix) = Doni(x)
Inversion
Inversion
Inversion
T-ODESCR
Store Change

