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Abstract

Linear type systems guarantee that no copies are made of certain program values. The EGO language is a foundational
calculus which adds linearity to object oriented languages. EGO allows changes to be made to the interface of an
object, such as the addition or removal of methods, as long as such an object is linear, i.e., there exists only one
reference to it. However, this linearity constraint is often unwieldy and hard to program with. We extend EGO with
a linguistic primitive for temporarily relaxing the linearity guarantee. EGO allows objects to be linear and enforces
that only one reference exists such an object. We allow multiple references to linear objects in certain expressions by
borrowing references to these objects. Borrowing annotates the type of the reference with a region, which is a unique
token indicating where the reference was borrowed. We disallow references with types containing regions that are not
currently borrowed. We use this to temporarily make multiple references to an object in a given expression but enforce
that outside this expression only one reference exists.
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1 Introduction

Linear type systems allow restrictions to be made on how program values may be copied. Linearity has been studied
extensively in functional languages. For example, Wadler, in [25], presents a simple functional calculus with linear
types. However, linear types have been less well investigated in other settings.

One area where linear types could be effectively used is that of object oriented languages. Several uses of linearity
in such a setting immediately present themselves. The first of these is memory management. Because a linear reference
to an object in memory is guaranteed to be the only pointer to the object, when the pointer is no longer in scope, we
know that the memory where the object resides can be safely reclaimed with no fear of creating a dangling pointer
elsewhere in the program. Cyclone [15, 16] has unique pointers which are tracked in this way.

Another, particularly compelling use of linearity is in statically checking that an object’s methods are called ac-
cording to a specific protocol. Objects often require the methods they provide to be called in a given order or according
to some pattern. Linear references to objects allow us to change the type of an object to reflect its current state without
worrying about the type of pointers elsewhere in the code. Encoding the state of the object into its type enables en-
forcing that only certain methods be called in certain states. For instance, [7] presents Fugue, a tool that tracks pointer
aliasing for checking protocols in this way.

Unlike linearity in functional languages, work done so far on linearity for objects has been restricted to studying
higher level object oriented languages such as Java or Eiffel [2, 18]. We are not aware of any work in linear type
systems for a foundational, imperative object calculus. We consider such a calculus to be a useful tool for the study
of linear objects in general, both for the insight it itself offers and in that it can be used to model more complex object
systems.

Previous work in [5, 6] introduced EGO, a typed, imperative object calculus for studying linearity in object ori-
ented languages. In this paper, we propose a more foundational version of EGO based on the calculus of Abadi and
Cardelli [1]. This new calculus removes redundancy in the original version by eliminating first class functions, leav-
ing only objects. We then extend this version of EGOwith a mechanism for temporarily relaxing linearity based on
Wadler’slet! [25].

EGO also explores enforcing protocols through several mechanisms based on those found in Self [24]. Self in-
troduceddynamic inheritance. Objects in Self have delegee objects, where methods are looked up if method lookup
failed on the original object. Dynamic inheritance allows objects to dynamically change this delegee and thus the
methods available to them. This can be used to ensure that methods are called in the order the object expects. Self also
allows methods to be changed or added to objects at runtime, which can also be used to enforce such protocols in a
similar way.

EGO also includes dynamic inheritance and method addition. Unlike Self, however, EGO has a static type system
that prevents runtime errors. This type system assigns objects types which reflect the current methods that can be
called on them. Since the types of objects can change, the type system relies on object linearity to check programs
with delegee changing and method addition and update without having to find all other references to the same object.

1.1 Contributions

The contribution of this paper is twofold. We present an object calculus based on previous work in [6]. We have
simplified the original calculus by eliminating first class functions. The original work had both objects and functions.
We have reworked the language to contain only objects. If needed, first class functions can be modeled with objects.

The calculus has the following properties:

• The calculus is anobject calculus. It models a language in which objects are the primary focus. It does not have
classes; instead, objects are built from primitives for creating empty objects and adding methods to them.

• The calculus istyped. In addition to a description of the runtime behavior, we present a type system. This type
system staticly checks the type safety of programs to guarantee the absence of runtime errors.

• This calculus provides mechanisms for bothlinear methodsand linear objects. Linear objects are those with
only one pointer to them. Linear methods may only be called once.

• The calculus provides ways to modify objects at runtime. We allow methods to be added to objects and delega-
tion to be changed during program execution in a well-typed manner.
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The other contribution is the addition of a mechanism for temporarily relaxing linearity. Since we use linearity to
allow type changes, we can allow objects whose type are not being changed to be temporarily aliased, orborrowed.
We use regions to track in which expressions in a program a given object is borrowed and guarantee no aliases to a
borrowed object escape these expressions.

1.2 Paper Layout

The rest of the paper is arranged as followed.

• We start in section 2 by presenting a simplified version of EGO with no mechanism for relaxing linearity. We
discuss the intuition behind the language and then discuss some examples in detail.

• In section 3, we present the formalization of this language. We conclude this section by sketching a proof of
type safety for the the language.

• Section 4 describes how to add borrowing to the language to relax linearity. We again discuss the intuition
behind this and several examples.

• In section 5 we show how the previous formalization needs to be changed to reflect the addition of the borrowing
mechanism. We also discuss the proof of type safety.

• Section 6 discusses related work, and

• section 7 concludes.

2 Simplified EGO

This section introduces a simplified version of EGO, which is based on previous work on EGO in [6]. This simplified
EGO lacks a construct for relaxing linearity. We briefly discuss the intuition behind the language. We then discuss
several examples to demonstrate the language.

2.1 Intuition

Intuitively, programs in EGO proceed by manipulating objects. An object consists of a record of methods and possibly
a delegation pointer to another object. Methods can be added to this record or the delegation pointer changed, or
methods can be invoked on an object.

A program in EGO consists of a mutable store and an expression. The store is a partial map from abstract locations
to objects. Expressions are built of primitives for modifying objects, which can contain other expressions. Our
primitives are based on those of Fisher et al. [12, 13]. They follow.

• 〈〉 creates a new object on the heap and returns a reference to it.

• e ←+ m = σ adds the methodσ with the namem to the object on the heap referred to bye, or changes the
method namedm to beσ if it already exists in the object to whiche refers.

• e1 ← e2 changes the delegee of the object on the heap referred to bye2 to be that referred to bye1.

• e.m invokes the method namedm in the object referred to bye.

• !e changes the linearity of an object, as discussed below. This only affects the type of the object; it has no
dynamic effect.

For simplicity we often write〈〉 ←+m1 = σ1 · · · ←+mn = σn as〈m1 = σ1, · · · ,mn = σn〉.
All of the primitives return a reference to an object on the heap. The first three return a reference to the object

they create or modify. The fourth executes a method body and returns the value the method evaluates to; since method
bodies will be composed of these five primitives, they will return a location as well. The fifth primitive returns the
object to which it is applied.
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EGO allows both methods and objects to be eitherlinear or nonlinear. A linear object is one to which only one
reference is allowed; conversely, nonlinear objects can have multiple references. To make static typing possible, only
linear objects are allowed to have their interfaces changed by method addition or delegation change. Since such
changes modify the type of an object, we need to change the type of any reference to this object used in an expression.
However, finding these references statically is not always possible. Therefore, we only allow these changes to linear
objects to guarantee we can find all references to the object.

In EGO, all new objects are linear. When all of the necessary interface changes have been made, the type of such
an object can be changed irreversibly to be nonlinear, and it can then be freely aliased. This is similar to the “seal”
operation of Fisher and Mitchell [13], but our in our calculus objects can change to be aliasable, while Fisher and
Mitchell allow objects to become subtypable.

A linear method is one which can be called only once, while nonlinear methods can be called multiple times.
Calling a linear method consumes it, and it is removed from the object that contains it. This also counts as an interface
change and so is only allowed on linear objects. We do not allow nonlinear methods to contain references to linear
objects; multiple invocations of such a method would constitute multiple references to any objects mentioned within
its body.

Methods in EGO are based on those of Abadi and Cardelli [1]. A method is of the formς(x:τ).e or ¡ς(x:τ).e,
which are nonlinear and linear methods, respectively. A method is invoked on an object, the method’sreceiver, which
need not be the object that contains the method. When invoked on an object, a method is looked up by searching
the object’s record of methods for the invoked method. If the method exists, it is invoked; otherwise, the object’s
delegee is is searched and lookup recurses up a series of delegees. Once a method is found, invocation substitutes all
occurrences ofx, the variable it binds, ine, its body, with a reference to the object on which it was invoked. This our
only way of abstracting expressions. Lambda abstraction, if needed, can be defined in terms of objects and methods,
as we describe below.

2.2 Examples

We show some simple examples to demonstrate the use of EGO.
The following example illustrates object creation and method addition and update. First,〈〉 creates a new object on

the heap, to which is added a method,m, whose body is the identity method, which simply returns the receiver object.
This method is then replaced by another of the same name which returns a new object when invoked.

〈〉←+m = ς(this:¡obj t.〈〉 ← m:¡objt→ ¡objt).this
←+m = ς(this:¡obj t.〈〉 ← m:¡objt→ ¡obj t′.〈〉 ← ·).〈〉

The next example shows how delegation can be changed. It creates a new object, adds the identity method to it, creates
another object and changes the delegee of this second object to be the first object,

〈〉 ←+m = ς(this:¡obj t.〈〉 ← id:¡objt→ ¡objt).this← 〈〉

In the next example, we create a new object, add a linear method to it that returns the receiver, and invoke the method.
This removes the method from the object, so this code fragment produces a reference to an empty object. Since the
invocation removes the method from the receiving object, the type of the object the method expects does not contain
the method.

〈〉 ←+m = ¡ς(x:¡obj t.〈〉 ← ·).x.m

It is not immediately obvious from the examples so far that the EGO system is flexible enough to be useful as a
model for a programming language. The remaining examples demonstrate EGO’s flexibility.

We first exhibit an embedding of the simply typed lambda calculus. We can define a lambda term of typeτ → τ ′ as
follows. This is based on a similar embedding shown by [1]. Subterms in double square brackets represent recursively
translated terms.

Jλx:τ.eK def= !〈gen = ς( :Jτ → τ ′K).〈body = ς(this:bodytype(τ, τ ′)).[this.arg/x]JeK〉〉
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where

Jτ → τ ′K def= obj t.〈〉 ← gen:(objt→ ¡obj t′.〈〉 ← body : (bodytype(τ, τ ′)
·→ Jτ ′K))

This works by creating a new object and adding a single method,gen. After adding this method to the object, it is
made nonlinear so that it can be aliased. As this is the translation of a function, the translation of the type of a function,
Jτ → τ ′K is the type of this object.gen is defined to return a new object containing a method whose body represents
that of the lambda term with the lambda bound variable replaced by the invocation of a method calledarg on the
method’s receiver.

Both the expected type of the receiver of thebody method, bodytype(τ, τ ′), and the way in which application is
done, depend on the linearity of the type the translated function expects. If the function expects something with linear
type, thearg method added to the generated object must be linear, and so be consumed when called.arg is therefore
not in the receiver type for itself, as seen below.

Jbodytype(τ, τ ′)K def= ¡obj t′′.〈〉 ←arg:(¡obj t′′′.〈〉 ← body:(¡objt′′′ ·→ Jτ ′K)
·
( JτK),

body:(¡objt′′ ·→ Jτ ′K)

Whene1 is λx:τ.e : τ ′ as defined above, ande2:τ , then, then

J(e1 : τ → τ ′)e2K
def= ((Je1K.gen)←+arg = ¡ς( :¡obj t′′.〈〉 ←

body:(bodytype(τ, τ ′)
·→ Jτ ′K)).Je2K).body

This callsgen on an object,e1, which models a function, to create a new, linear object containing the function’s body.
To this linear object it adds a new linear method calledarg which returns the argument of the application,e2. Calling
body is called on the new object then simulates aβ-reduction, as the function’s bound variable has been replaced with
a call toarg, which returns the argument. Since the function’s argument is linear,arg is linear and so is consumed.

On the other hand, if the function expects something with linear type, thearg method added to the generated object
must be nonlinear. In this case, sincearg is not consumed, it appears in the receiver type for itself, as seen below.

bodytype(τ, τ ′)
def= obj t′′.〈〉 ← arg:(objt′′ ·→ JτK), body:(objt′′ ·→ Jτ ′K)

J(e1 : τ → τ ′)e2K
def= (!((Je1K).gen←+ arg = ς( :bodytype(τ, τ ′)).Je2K)).body

Here, application is the same as above, but no the argument is no longer linear, so it is not removed on application.
Since we can calculate the return type, we elide it in later lambda expressions.
We can then use this to define a let binding, where we bind an expressione1 of typeτ .

let x = e1 in e2
def= (λx:τ.e2)e1

and a sequence operator

e1; e2
def= let = e1 in e2

Once again, we elide types because we can calculate them from the terms.
In a similar manner to lambda abstractions, we can also define linear lambda abstractions that are consumed when

applied, as in [25].

J¡λx:τ.eK def= 〈body = ¡ς(this:bodytype(τ )).[this.arg/x]JeK〉

where

bodytype(τ )
def= ¡obj t.〈〉 ← arg : ¡obj t′.〈〉 ← ·

·
( JτK

and

Jτ ( τ ′K def= ¡obj t′′.〈〉 ← body:(bodytype(τ )
·
( Jτ ′K)
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Finally, we translate application as follows.

J(e1:τ ( τ ′)e2K
def= (Je1K←+ arg = ¡ς( :¡obj t′.〈〉 ← ·).Je2K).body

This example is slightly different than the one above. We simulate function consumption by havingbody be a linear
method that is consumed on invocation. Since this example invokes a linear method on an object, the object is linear,
and so on invocation we can add the argument directly to it, rather than calling agen method to generate a new linear
object.

This translation only allows linear arguments to linear functions, as we cannot call a linear method on a nonlinear
object, so we cannot access the object carryingarg at multiple places in the function body. Later, we will show a way
to avoid this restriction with borrowing.

Finally, for completeness, we translate any base types and variables to themselves.

JxK def= x

JτbaseK
def= τbase

A more complex and realistic example is that of a a network socket object, given in Figure 1. In this example, we
use atypedef construct to simplify presentation; however, this construct is not part of the calculus. The example also
used let and the sequence operator as defined above.

This example creates an object calledSocket to model a network socket. The socket starts closed with a single
method calledopen. Callingopen opens the socket and provides the socket object with two methods, one calledread
and one calledclose. Callingread reads some data from the socket. Callingclose closes the socket and removes all
methods from the object.

The methods in this example make other methods available and unavailable by changing delegation onSocket,
which remains linear throughout the example. There are secondary objects corresponding to the three states a socket
can be in (able to be opened, open and closed). Each of these is delegated to at a different point in the object’s lifetime.
Socket starts as an empty object which is delegated toOpenSocket, an object containing theopen method. Calling
this method changes the delegation ofSocket to ReadSocket, which containsread and close methods. Finally,
calling close changes delegation toClosedSocket, which is empty.

The pattern used here is of note. In this code fragment, objects are created that correspond to states in the lifecycle
of an object. Each object representing a state the object might be in has a series of methods added to it that are
appropriate to that state. We then create an empty object and transition from state to state by changing delegation
of this object to the object corresponding to the state we are entering. This pattern allows us to create and enforce
protocols on method use. We can therefore guarantee that only methods appropriate to the current object state exist on
that object at a given time.

3 Formalism for Simplified EGO

In this section we discuss the formalism we use to describe this fragment of EGO. We first present the syntax of the
language. Then we present the dynamic semantics and the type system. Finally, we sketch a proof of type safety.

3.1 Syntax

A program in the fragment of EGO we present here consists of a pair,µ, e of store and an expression.
A store is a partial map of the form(` 7→ s)∗, where` is an abstract location ands is an object descriptor. An

object descriptor is of the formloc ← 〈m1 = σ1, · · · ,mn = σn〉. Hereloc is either a reference,̀, to an object’s
delegee ornull , which indicates the object has no delegee, and〈m1 = σ1, · · · ,mn = σn〉 is a record of the methods
the object has.

A method,σ, is eitherς(x:τ).e or ¡ς(x:τ).e. Both of these abstract the variablex out of the method bodye. The
first is a nonlinear method and the second a linear method.
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typedef closedType = ¡obj t1.(¡obj t2.(〈〉 ← ·)← ·)
typedef readType = ¡obj t1.(¡obj t2.(〈〉 ← read:¡objt1 → ¡objt1, close:¡objt1 → closedType)← ·)
typedef openType = ¡obj t1.(¡obj t2.(〈〉 ← open:¡objt1 → readType)← ·)

let ClosedSocket = 〈〉 in
let ReadSocket = 〈

read = ς(this:readType)./*read from a socket*/
close = ς(this:readType)./*close a socket*/;

ClosedSocket← this〉
in let OpenSocket = 〈

open = ς(this:openType)./*open a socket*/;
ReadSocket← this〉

in let Socket = 〈OpenSocket← 〈〉〉
in /*More code*/

Figure 1: A series of objects for a network socket

Expressions e ::= x, y | 〈〉 | e.m | e←+m = σ
| e1 ← e2 | !e | v

Values v ::= loc | σ
Locations loc ::= null | `

Stores µ ::= · | µ, ` 7→ s
Object Descriptors s ::= loc← 〈m1 = σ1, · · · ,mn = σn〉
Methods σ ::= ς(x:τ).e | ¡ς(x:τ).e

Types τ ::= τ → τ ′ | τ ( τ ′ | O
Object Types O ::= Lt | 〈〉 | Lt.O ← R
Linearities L ::= obj | ¡obj
Rows R ::= · | R,m:τ

Figure 2: Syntax of Simplified EGO

An expression is either a variable,x or y, a new object creation,〈〉, a method call,e.m, a method add or update,
e ←+ m = σ, a delegation changee1 ← e2 or a linearity change!e. We consider methods as expressions to simplify
the typing rules; however no other expression evaluates to a method. We also count locations,loc, which are either
null or `, as expressions but they are intermediate forms which do not occur in user code.loc and methods are the
only values; all programs evaluate to a one of these expressions or diverge.

The types,τ , of expressions are based on those used in [13]. These are either the types of methods or object types,
O. The types of methods are of the formτ → τ ′ or τ ( τ ′. Hereτ represents the type of the the object the method
will be called on andτ ′ represents the type of the object to which it evaluates.

Object types,O, are either type variablesLt or of the form〈〉 or the recursive typeLt.O ← R. 〈〉 is the type of
null andLt.O ← R the type of̀ . L is either ¡obj or obj which indicate whether the object is linear or nonlinear
respectively. InLt.O ← R,R is a row of the formm1:σ1, · · · ,mn:σn, which specify the method types of the methods
in the original object, andO is the type of the object’s delegee. As a method in an object may mention the object in the
form of the variable bound by the method, it may be necessary for the type of an object to recursively mention itself;
in the object typet is a recursive type variable bound to the whole type. This may be referred to in the rest of the type
by the formLt, which annotates the recursive variable with a linearity.
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Figure 3: Dynamic Semantics of Simplified EGO

` 6∈ Dom(µ) µ′ = [` 7→ null ← 〈〉]µ
µ, 〈〉 −→ µ′, `

E-NEW

µ, e −→ µ′, e′

µ, e←+m = σ −→ µ′, e′ ←+m = σ
C-UPD

µ(`) = loc← 〈m1 = σ1, · · · 〉 ∀i.m 6= mi

µ′ = [` 7→ loc← 〈m1 = σ1, · · · ,m = σ〉]µ
µ, `←+m = σ −→ µ′, `

E-ADD

µ(`) = loc← 〈· · · ,m = σ, · · · 〉
µ′ = [` 7→ loc← 〈· · · ,m = σ′, · · · 〉]µ

µ, `←+m = σ′ −→ µ′, `
E-UPD

µ, e1 −→ µ′, e′1

µ, e1 ← e2 −→ µ′, e′1 ← e2

C-DEL1

µ, e −→ µ′, e′

µ, `← e −→ µ′, `← e′
C-DEL2

µ(`) = loc← 〈· · · 〉 µ′ = [` 7→ loc′ ← 〈· · · 〉]µ
µ, loc′ ← ` −→ µ′, `

E-DEL

µ, e −→ µ′, e′

µ, e.m −→ µ′, e′.m
C-INV

mbody(µ, `,m) = ςx:τ.e

µ, `.m −→ µ, [`/x]e
E-NLIN INV

µ(`) = 〈· · · ,m = ¡ςx:τ.e, · · · 〉
µ′ = [` 7→ 〈· · · 〉]µ

µ, `.m −→ µ′, [`/x]e
E-LIN INV

µ, e −→ µ′, e′

µ, !e −→ µ′, !e′
C-CHL IN

µ, !v −→ µ, v
E-CHL IN

µ(`) = loc← 〈m1 = σ1, · · · ,m = σ, · · · 〉
mbody(µ, `,m) = σ

MBODY1

µ(`) = loc← 〈m1 = σ1, · · · 〉
m = σ 6∈ 〈m1 = σ1, · · · 〉 mbody(µ, loc,m) = σ

mbody(µ, `,m) = σ
MBODY2
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3.2 Dynamic Semantics

This section discusses how the expressions of EGO are evaluated and the effect this evaluation has on the heap and the
objects it contains. The rules defining how these expressions are evaluated are in Figure 3.

The simplest primitive is〈〉, whose semantics are defined by E-NEW. 〈〉 extends the heap with a new mapping,
from some fresh̀ to null ← 〈〉, that is, an object descriptor with no methods and no delegee.〈〉 evaluates tò : it
returns a pointer to the new location.

e ←+ m = σ is defined by E-ADD and E-UPD and the rule C-UPD, which reducese to a value. The first allows
the addition of methods to an existing object that does not already contain a method with that name. It modifies the
store such that the location pointed to by the value ofe hasm = σ added to its record of methods. E-UPD, on the
other hand, replaces an existingm = σ′ with m = σ in a similar way.

e1 ← e2 is defined by E-DEL. C-DEL1 and C-DEL2 reducee1 ande2, respectively, to values. E-DEL reduces
`1 ← `2 to `2 and modifies the store. It changes the delegation link on the object descriptor in the store to which`2
points to`1. That is, if`2 maps to someloc← 〈· · · 〉, this expression changes this to`1 ← 〈· · · 〉.

e.m invokes a method. Its semantics are defined by E-NLIN INV and E-LIN INV. C-INV reducese to a value. The
two invocation rules takes something of the form`.m and find the called method as follows. They look up the object
descriptor that̀ refers to in the heap. In the case of invocation of linear methods, the method body is found in the
record of methods in the object descriptor. In the case of invocation of nonlinear methods, method lookup is slightly
more complicated: if it is found in the record of methods in the object descriptor pointed to by`, this method body is
returned. Otherwise, the method body is searched for recursively in that object descriptor’s delegee. Then, in either
case,̀ , the method receiver, is substituted for the variable bound by the method in the method body. In the case of
linear method invocation, the store is modified by removing the method from the object that contains it, as invocation
of a linear method consumes the method.

!e is defined by E-CHL IN. C-CHL IN reducese to a value.!e has no dynamic effect. It only effects the typing of
objects.

3.3 Type System

EGO’s type system prevents a program from getting into a state from which the dynamic semantics do not define an
reduction. One specific stuck state we wish to avoid is that in which a method is called which does not exist on the
method’s receiver or the receiver’s delegees. To prevent this and other stuck states, we give a type to an expression
only if the dynamic semantics define a reduction for it.

One important function of the type system is that it maintains the distinction between linear and nonlinear objects.
Object types are annotated with linearities. We allow aliases only to be made of nonlinear references.

The type system allows changes to the interface of an object such as method add or update and delegation change
only to linear objects. This is because changes to objects are imperative: they affect the object descriptor on the heap.
Since an object’s type reflects its interface, a local change to the interface of an object has global changes on the type
of the object. If we allow pointers to be aliased, it becomes impossible to keep track of the global changes of their
types. Thus, we allow changes to an object’s interface only on linear objects.

Interface changes are also allowed only to the object on which they are performed, not its delegees, for similar
reasons. Specifically, a method on an object cannot be changed through a reference to an object that delegates to
the object containing the method. Instead, a direct reference to the containing object is needed. This is because
we can delegate to nonlinear objects, so we have no guarantee that this object is not aliased elsewhere. Thus, the
same problems exist with changing the interface of a delegee as do with changing the interface of a nonlinear object.
Pragmatically, the effect this has is disallowing method update unless we have a linear pointer to the object descriptor
containing the method.

Our method types,τ → τ ′ andτ ( τ ′ have receiver types as part of them. This contrasts with many other object
calculi [1, 13] where the receiver type is left out, as it is known to be the type of the object or a subtype. However,
since we allow changes to the type of objects, the receive type may be different when the method is called, so we must
include it.

Since objects may contain methods whose types contain the type of the object, the EGO type system uses gives
recursive types of the formLt.O ← R to objects. Here,t is bound recursively to the whole type. Any time we
change the type of the object, this whole type will change so we must unfold the type by substituting the type in for
the recursive variable in itself. We then make the necessary changes to the type and refold this type by abstracting out
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Σ(`) = obj t.O ← R

Σ;A ` `:obj t.O ← R =⇒ {} T-NL INLOC
Σ(`) = ¡obj t.O ← R

Σ;A ` `:¡obj t.O ← R =⇒ {`} T-L INLOC

Σ;A ` null :〈〉 =⇒ {} T-NULL
Σ;A ` e:¡obj t.R← O =⇒ l

Σ;A `!e:obj t.R← O =⇒ l
T-CHL IN

Σ;A ` e:Lt.O ← R =⇒ l

τu = Lt.[tO ← R/t](O ← R)

mtype (τu,m) = Lt′.O′ ← R′ → τ

Lt.O ← R = Lt′.O′ ← R′

Σ;A ` e.m:τ =⇒ l
T-NL IN INV

Σ;A ` e:¡obj t.O ← R =⇒ l

τu = ¡obj t.[tO ← R/t](O ← R)

lmtype (τu,m) = ¡obj t′.O′ ← R′( τ

¡obj t.O′′ ← R′′ = τu

τf = ¡obj t.[t/τf ](O′′ ← [/m:τ ′′]R′′)

τf = ¡obj t′.O′ ← R′

Σ;A ` e.m:τ =⇒ l
T-L IN INV

Σ;A ` σ:τ =⇒ l

Σ;A ` e:¡obj t.O ← R =⇒ l′

lmtype (¡obj t.O′ ← R′,m) = τ ′

¡obj t.O′ ← R′ = ¡obj t.[tO ← R/t](O ← R)

τ ′′ = ¡obj t.[t/τ ′′](O′ ← [m:τ/m:τ ′]R′)

Σ;A,A′ ` e←+m = σ : τ ′′ =⇒ l, l′
T-UPD

Σ;A ` σ:τ =⇒ l

Σ;A ` e:¡obj t.O ← R =⇒ l′

lmtype (¡obj t.O′ ← R′,m) 6=
¡obj t.O′ ← R′ = ¡obj t.[tO ← R/t](O ← R)

τ ′ = ¡obj t.[t/τ ′](O′ ← R′,m:τ)

Σ;A,A′ ` e←+m = σ : τ ′ =⇒ l, l′
T-ADD

Σ;A, x:τ ` e:τ ′ =⇒ {} x 6∈ Dom(A)
A nonlinear

Σ;A ` ςx:τ.e:τ → τ ′ =⇒ {}
T-NL INMETH

Σ;A, x : τ ` e:τ ′ =⇒ l x 6∈ Dom(A)

Σ;A ` ¡ςx:τ.e : τ(τ ′ =⇒ l
T-L INMETH

Σ;A ` e2:¡obj t.O ← R =⇒ l

Σ;A′ ` e1:O′′ =⇒ l′

¡obj t.O′ ← R′ = ¡obj t.[tO ← R/t]O ← R

τ = ¡obj t.[t/τ ]O′′ ← R′

Σ;A,A′ ` e1 ← e2:τ =⇒ l, l′
T-DEL

Σ;A ` 〈〉:¡obj t.〈〉 ← · =⇒ {} T-NEW
Σ;x:τ ` x:τ =⇒ {} T-VAR

Σ;A ` e:τ =⇒ l

Σ;A, x:τ ′ ` e:τ =⇒ l
T-K ILL

Σ;A, x:τ ′, x:τ ′ ` e:τ =⇒ l τ ′ nonlinear

Σ;A, x:τ ′ ` e:τ =⇒ l
T-COPY

Figure 4: Static Semantics of Simplified EGO

m:τ ∈ R
lmtype (Lt.O ← R,m) = τ

T-LM ETHT

lmtype (Lt.O ← R,m) = τ

mtype (Lt.O ← R,m) = τ
T-METHT1

lmtype (Lt.O ← R,m) 6= mtype (O,m) = τ

mtype (Lt.O ← R,m) = τ
T-METHT2

Figure 5: Method Type Lookup in Simplified and Full EGO
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occurrences of the new type the object will have. This ensures that the recursive type variable will always refer to the
current type of the object. Now, we discuss our typing rules, shown in Figure 4, in more detail. Our typing judgment
looks like

Σ;A ` e:τ =⇒ l

.
Here,Σ is the store typing. For an expression to be well-typed, every use of a location in the expression must use

it with the same type.Σ consists of a mapping,(` 7→ τ)∗ from locations to types. This mapping is used to look up
the types of locations, which guarantee that all uses of a location in an expression have the same type.A is the type
context, which gives the type of all free variables in the expression.e is the expression to be typechecked andτ is the
type given to it.l is a list of linear locations ine. This is a technical device used in the type safety proof for proving
that linear locations are never aliased.

Locations are typed by looking them up in the store, as shown in T-LINLOC and T-NLINLOC. T-L INLOC also
puts the location it types into the list of linear locations,l, as this is a linear location used in the expression.

null is typed using the rule T-NULL , which gives it the type〈〉.
We can turn a linear location as a nonlinear location with!e, as described by T-CHL IN. All new objects are linear

so that methods can be added and other interface changes can be made. We get a nonlinear object by turning a linear
object into a nonlinear. This is safe as it can only go one way: we cannot turn a linear location into a nonlinear one.

The typing of method invocation is by the rules T-LIN INV and T-NLinInv. The receiver object is typed with a
type of the formLt.O ← R, which is the folded type of the object. This type is unfolded by substituting it into its
recursively bound variable and the type of the method is looked up in this new type. Since the invocation of a linear
method changes the type of the receiver object as described below, and we cannot change the interface of delegees,
we only look up linear method types in the row of the unfolded object type, which describes the types of the methods
contained in the original object. These lookup rules are defined in Figure 5. However, invocation of nonlinear methods
on an object does not change the interface of the object, so we can look such a method up recursively in the delegee
type section of the unfold object type if the method type is not found in the row. For nonlinear methods, we then
check that the type the method expects is the type the of the receiver. The invocation is then given the return type of
the method. For linear methods, we must do a little more. Since invocation of linear methods removes them from the
object containing them, the interface of the object is changed by such invocations. Therefore, an object invoking a
linear method must be linear. Also, rather than checking equality of the type the method expects with the receiver type
as we do with nonlinear types, we check equality of the type the method expects type with that of the receiver type
refolded with the invoked method removed, as this is what will be substituted into the method body. We once again
give the whole expression the return type of the method.

Method addition and update are checked with T-UPD and T-ADD. These rules check the type of the object as
some ¡obj t.O ← R. They unfold this type by substituting this type intot in O ← R. Then they give this expression
the type found by adding or updating the appropriate method and folding the object type back up. This maintains the
recursive type, as the type of the object is folded at the new type after the method is added or changed.

Methods themselves are typed like functions. The abstracted variable is placed in the context with type it is bound
with and the method body is typed. However, nonlinear methods are not allowed to mention linear objects; otherwise,
multiple calls to the method would result in multiple occurrences of the linear object.

Delegation is typed similarly to addition and update. The type of the expression whose delegation is being changed
is unfolded. The expression is given this type with the type of the delegee changed and the object type folded back up.
This keeps the object type folded at itself.
〈〉 is given the type of an empty linear object with no delegee. This is the type ¡obj t.〈〉 ← ·.
Finally, we type variables by looking them up in the type context,A, according to T-VAR. This rule expects the

context to contain only one binding. However, we can use T-KILL to eliminate extra bindings. This is a difference
between our system and Wadler’s: we allow linear objects to leave scope. This makes our type system more similar to
affine logic than linear logic.

We enforce linearity by splitting the context when we type subexpressions. This is the approach taken by Wadler
in [25], modeled on the same technique from Girard’s linear logic [14]. Since, for a given expression, we can only
use a variable in one subexpression, the variable can only be used once, and so anything substituted in for the variable
can only be used once. We allow aliases to nonlinear objects through T-COPY, which makes copies of a nonlinear
variable’s binding in the context.
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∀` ∈ Dom(µ).Σ; · ` µ(`):Σ(`) =⇒ l`
Dom(µ) = Dom(Σ)

Σ ` µ ok =⇒ concatl`
T-STORE

∀i ∈ 1..n.(Σ;A ` σi:τi =⇒ li)
R = m1:τ1, · · · ,mn:τn
Σ;A ` loc:O =⇒ lloc
l = lloc, l1, · · · , ln
τ = Lt.O ← R

Σ;A ` loc← 〈m1 = σ1, · · · ,mn = σn〉:τ =⇒ l
T-ODESCR

Figure 6: Store and Object Typing for Simplified EGO

We also have a store typing judgment, defined in T-STORE. This checks that each object stored in the heap has the
type the store type,Σ, gives it by checking that all the methods in each object have the type the object type gives them
and that the delegees have the correct type with. The object type has been folded but the types calculated for a method
types are not, so before comparing them, we must unfold the object type. The store typing judgment also produces a
list of all linear locations mentioned in the store. This is used to prove that no linear objects are mentioned more than
once in the heap and currently executing instruction. These rules are shown in Figure 6.

3.4 Safety Proof

We have no formal proof of safety for the fragment of EGO presented so far. Rather we have a proof of the safety of
the entire system. However, we sketch a hypothetical proof of safety for this fragment below.

Type safety consists of two lemmas. The first is progress. Progress states that a program that consists of the pair of
a well typed store and a well typed expression can always be reduced to a new program if the expression is not already
a value.

Theorem 1 (Progress)If Σ; · ` e:τ =⇒ l andΣ ` µ ok =⇒ l thenµ, e −→ µ′, e′ or e is a value.

The proof of this is by induction on the derivation ofΣ;A ` e:τ =⇒ l. For each case, we show that if the
expression is correctly typed, it has a form which either is a value or can be reduced. To do this, we need a canonical
forms lemma.

Lemma 1 (Canonical Forms) 1. If a value has the typeτ1 → τ2, it has the formσx:τ.e.

2. If a value has the typeτ1 ( τ2, it has the form ¡σx:τ.e.

3. If a value has the typeLt.O ← R, it has the form̀ .

4. If a value has the type〈〉, it has the formnull .

The proof of this is by case analysis on the typing rules.
Preservation states in general that if a pair of store and expression have certain properties we wish to maintain

invariant, and this program reduces to another, the new program will also maintain these invariants. Specifically, we
wish to maintain three invariants.

1. The expression has some typeτ .

2. The heap is well typed.

3. All linear locations are used at most once in the expression and store.
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Σ ≥l Σ
S-REFL

Dom(Σ′) = Dom(Σ) ∪ {`} ∀`′ ∈ Dom(Σ).Σ(`′) = Σ′(`′)

Σ′ ≥l Σ
S-GROW

Dom(Σ′) = Dom(Σ) ∀`′L′ ∈ Dom(Σ)− {`}.Σ(`′) = Σ′(`′) Σ(`) = ¡obj t.O ← R← Σ′(`) = obj t.O ← R←
Σ′ ≥l Σ

S-CHL IN

Dom(Σ′) = Dom(Σ) Σ(`) = ¡obj t.O ← R← ∀`′ ∈ Dom(Σ)− {`}.Σ(`′) = Σ′(`′)

Σ′ ≥l Σ
S-LOBJ

Figure 7: Syntax of EGO

To do this, we define a relation on store types,Σ ≥` Σ′, which says that a new store type is related to an old store
type in one of three ways. The first is that the store type is extended with a new location,`. The second is that the
linearity of location` has been changed from linear to nonlinear. The third is that the type of the linear location` has
been arbitrarily changed. By limiting the store change to these three changes, we can more easily prove that a changed
store is still well typed, as it changes in a limited number of known ways. This is defined in Figure 7.

Theorem 2 (Preservation) If

i. Σ; · ` e:τ =⇒ le

ii. Σ ` µ ok =⇒ ls

iii. there are no duplicates inle, ls, and

iv. µ, e −→ µ′, e′

then for someΣ′ ≥` Σ

i. Σ′; · ` e′:τ =⇒ l′e

ii. Σ′ ` µ′ ok =⇒ l′s, and

iii. there are no duplicates inl′e, l
′
s.

The proof of this is by induction on the derivation ofµ, e −→ µ′, e′. For each of possible way to derive this, we
show that if the program on the left maintains our invariants, so does the program on the right.

To prove this, two important lemmas are needed. Since methods do substitution, we need to show that the substi-
tution of well typed expressions into well typed expressions maintains well typedness.

Lemma 2 (Substitution) If Σ;A, x:τ ′ ` e:τ =⇒ l and Σ; · ` e′:τ ′ =⇒ l′, thenΣ;A ` [e′/x]e:τ =⇒ l′′ and
l′′ ⊆ l, l′.

The proof of this is by induction on the typing rules.
We also need to show that if we have a well typed store, if we replace a linear object type in the store typing with

a new type and the object at that location in the store with an object of that type, the store remains well typed.

Lemma 3 (Store Change)If

i. Σ ` µ ok =⇒ ls
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ii. Σ;A ` `L:¡obj t.O ← R =⇒ le

iii. there are no duplicates inls, le

iv. µ(`) = s

v. Σ; · ` s:τ =⇒ lo, and

vi. Σ; · ` s′:τ ′ =⇒ l′o

then[` 7→ τ ′]Σ ` [` 7→ s′]µ ok =⇒ ls − lo, l′o

4 Relaxing Linearity

The fragment of the EGO language presented so far is powerful but has a significant drawback. The restrictions on
linear objects are often counterintuitive and sometimes overrestrictive. Linearity guarantees that we can make changes
to the interface of an object while retaining the ability to statically check its type. However, often it is useful to be
able to make temporary aliases on an object and then to regain the ability to change its interface once all of these
aliases are no longer available. One example of this is the use of the network socket example above. A socket here
is a linear object which contains anopen method. Calling this method opens a socket and changes the interface, as
the open method is removed andread andclose methods are added. At this point, assuming theread method is
reentrant, there would be no reason to prevent aliasing the object to allow several sections of the program to read from
it simultaneously. After all of these reads are done, if no aliases of the object exist, aclose call could close the socket
and remove theread method.

The hitherto presented fragment of EGO does not allow this. Methods can be added and later removed by changing
delegation, but we cannot allow temporary aliases. We now introduce a construct based onlet ! as presented in [25].
This construct allows us to make temporary aliases of linear objects.

4.1 Additions to the Calculus

Intuitively, our new construct allows us to evaluate three expressions in sequence. The first two each bind a new
variable to be used in the successive expressions. The first expression evaluates to a possibly linear object which is
bound to a variable. In the seconds expression, this variable is bound with a borrowed object type. This borrowed
type can be freely aliased but no changes can be made to its interface. This borrowed object is similar to a linear
object acting temporarily as a nonlinear object. This second expression is evaluated to a value and bound to a second
variable. In the third expression, both variables are bound with the first being bound with to its original type, as it is
no longer borrowed.

To prevent aliases of the borrowed expression escaping the expression in which they are borrowed, we annotate the
types of borrowed expressions withregions. A region is a unique tag generated every time an object is borrowed which
indicates where the object is borrowed. We keep track of which regions are currently annotating borrowed objects. We
do not allow typing of an object with a region not in scope.

Our region system differs from previous systems such as [23]. Such work has been in using regions for memory
management. There, the region is an actual block of memory where data resides, allowing information about when
memory can be freed can be statically inferred. We do not have blocks of memory; instead our system instead uses
similar techniques to track aliases. Ourlet! looks like this:

let ! (ρ)x1 = e1 x2 = e2 in e3 end

.
Here,ρ is a region variable bound to the region generated when a location is borrowed with this expression. The

value ofe1 is bound tox1 in e2 ande3 and the value ofe2 is bound tox2 in e3.
Our let! differs from Wadler in that Wadler does not use regions to contain aliases. Instead, he places restrictions

on the type of the expression in which a linear value is borrowed to prevent values containing the type of the borrowed
value from escaping. We allow these expressions to have any type as long as it does not contain the region under which
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the location is borrowed. Since we are not relying on the type of the value of this expression to restrict aliases, our
system also works in an imperative setting where values may be stored on the heap.

The following example demonstrates a very simple use oflet! . In this example,x is bound to a reference to an
object containing only a new method that returns a new object. This object to is borrowed in the second subexpression
but not used, as we have not yet introduced the necessary mechanisms to do so. The second expression evaluates to
an object containing a singleid method that returns the receiver. This new object is bound toy. Finally, outside the
scope of the borrowing, both methods are called. The whole expression evaluates to an empty object, as this is what
x’s new method returns.

let ! (ρ)
x = 〈〉 ←+ new =

ς(this:¡obj t.〈〉 ← new:¡objt1
·→ ¡obj t2.〈〉 ← ·).〈〉

y = 〈〉 ←+ id =
ς(this′:¡obj t.〈〉 ← id:¡objt ·→ ¡objt).this′

in
y.id;x.new

end

Several other modifications to the existing calculus need to be made to accomodate regions.
The first modification is the addition of region polymorphism. Methods can only be added to linear objects.

However, we may wish to call methods on borrowed objects. We therefore need to add methods to objects before
they are borrowed which expect receivers that are borrowed under regions not yet in scope. We do this by region
abstraction. Methods may be abstracted over a number of regions, which are instantiated when the method is called.
To accomplish this,let! also binds a region variable which is in scope where the object is borrowed and which refers
to the region at which the object is borrowed. This allows regions to be referred to in code and to be instantiated.

The following example uses region polymorphism. It binds tox an object containing a single method that returns a
new object. The method is polymorphic in the region of its receiver. In the type the method expects its receiver to have,
the method itself has a polymorphic type to reflect this. In the second subexpression, where this object is borrowed,
the method is invoked. When this happens, the polymorphic variable is instantiated with the region in which the object
is borrowed to allow the method to be called. The value of this method call is bound toy, which is, in the the third
subexpression, returned as the value of the entire expression.

let ! (ρ1)
x = 〈〉 ←+ new = Λρ2.ς(this:ρ2t1.〈〉 ← new:(∀ρ3.ρ3t1

·→ ¡obj t2.(〈〉 ← ·))).〈〉
y = x.new[ρ1]

in
y

end

Another modification is that we now annotate method types with a list of regions used by the method. This is
because it will not always be apparent otherwise from the arrow type what regions are used in a given method. We
only allow invoking methods with regions that are in scope.

The next example uses this type. It is similar to the above example, but the added method uses the receiver in its
body before returning an empty object. Since it uses a region in its body, the type of this method in the receiver type
on the method must mention the region. Note that the annotation on the arrow is polymorphic. It, as well as the region
of the receiver, is instantiated when the method is invoked.

let ! (ρ1)
x = 〈〉 ←+ new = Λρ2.ς(this:ρ2t1.〈〉 ← new:∀ρ3.ρ3t1

ρ3→ ¡obj t2.(〈〉 ← ·)).(this; 〈〉)
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y = x.new[ρ1]
in
y

end

The final modification arises from a similar problem to that which gave rise to region polymorphism. We may add
methods to objects that refer to regions which are later no longer in scope. We cannot call these methods, but we allow
other methods to be invoked on such an object. This means that any type annotations we write on methods must be
able to be the type of objects with methods that mention regions that are not in scope. Since the region variable we
bound to the region is no longer in scope, we cannot write such a type. We solve this problem by having a type,>,
which is the type of uncallable methods. This type is a supertype of a normal method type, so can be used on method
type annotations which accept objects whose types contain unknown regions.

This example shows the use of this type. We create an object,x with one method which returns a new object.
Then we borrow a new object and bind it to the variabley. We then add a new method tox, which is still linear, that
mentionsy while y is stil borrowed. After we leave the subexpression wherey is borrowed, we call the first method
onx. x now contains a method that mentions a region no longer in scope. To allow this, on the expected type of the
receiver on the method we call, we give this method the type>. This means we never can call the method, but, as it
mentions regions no longer in scope, we would not be able to in any case.

typedef receivertype = obj t.〈〉 ← (meth1:objt ·→ ¡obj t.〈〉 ← ·,obj t.〈〉 ← meth2:>)

let x = 〈〉 ←+meth1 = ς(this:receivertype).〈〉 in
let ! (ρ)

y = 〈〉
z = x←+meth2 = ς(this:receivertype).(y; 〈〉)

in
z.meth1[]

end

typedef receivertype = obj t.〈〉← (meth1:objt ·→ ¡obj t.〈〉 ← ·,obj t.〈〉 ← meth2:>)

let x = 〈〉 ←+meth1 = ς(this:receivertype).〈〉 in
let ! (ρ) y = 〈〉

z = x←+meth2 = ς(this:receivertype).(y; 〈〉)
in z.meth1 end

We now have the necessary linguistic mechanisms to model linear lambda abstractions which take nonlinear argu-
ments. As with those taking linear arguments, we do this by creating an object with a linearbody method which
expects to be called on an object with anarg method representing the argument to the function. Since the method will
be consumed, it must be called on a linear object. Now, however, we can duplicate the object within the body of the
expression to accessarg mutltiple times. We do this by borrowing the object within thebody method, so it s borrowed
in the function’s body. Thearg method must therefore be abstracted over the region it expects to be called in. This is
shown in Figure 8.

We can also now implement the socket example described at the begining of this section. In fact, this example is
fairly simple; it is given in Figure 9. It is based on the previous socket example in Figure 1. The main differences
are that theread method is now parameterized over a region. After defining the objects, we open the socket and then
borrow it asSocket′. Now we can freely aliasSocket′. We can use the borrowed socket by callingread with any
reference to the object as long as such calls toread instantiate the polymorphic variableρ1 with the bound region
variableρ2. After leaving the expression, we no longer have access to any aliases ofSocket′, so we can close the
socket.
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J¡λx:τ.eK def= 〈body =¡ς(this:bodytype(τ )).
let ! (ρ) thisbor = this
result = [thisbor.arg[ρ]/x]JeK
in result
end 〉

bodytype(τ )
def= ¡obj t.〈〉 ← arg : ∀ρ′.ρ′t ·→ JτK

J(e1:τ ( τ ′)e2K
def= (Je1K←+ arg = Λρ′.ς( :argtype(τ, ρ′)).Je2K).body

argtype(τ, ρ′)
def= ρ′t′.〈〉 ← arg : ∀ρ′′.ρ′′t′ ·→ JτK

Jτ ( τ ′K def= ¡obj t′′.〈〉 ← body:(bodytype(τ )
·
( Jτ ′K)

Figure 8: Linear functions with nonlinear arguments

typedef closedType = ¡obj t1.(¡obj t2.(〈〉 ← ·)← ·)
typedef readType(L) = Lt1.(¡obj t2.(〈〉 ← read:∀ρ2.ρ2t1

·→ ρ2t1, close:¡objt1
·→ closedType)← ·)

typedef openType = ¡obj t1.(¡obj t2.(〈〉 ← open:¡objt1
·→ readType)← ·)

let ClosedSocket = 〈〉 in
let ReadSocket = 〈

read = Λρ1.ς(this:readType(ρ1))./*read from a socket*/;
this

close = ς(this:readType(¡obj))./*close a socket*/;
ClosedSocket← this〉

in let OpenSocket = 〈
open = ς(this:openType)./*open a socket*/;

ReadSocket← this〉
in let Socket = 〈OpenSocket← 〈〉〉
in /*More code*/
Socket.open;
let ! (ρ2)Socket′ = Socket

SomeData = /*Code that aliases Socket’*/
in /*More Code*/

Socket′.close
end

Figure 9: A socket usinglet!
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Expressions e ::= x, y | 〈〉 | e.m [%1, · · · , %n] | e←+m = σ

| let ! (%)x1 = e1 x2 = e2 in e3 end

Values v ::= loc | σ
Locations loc ::= null | `

L

Stores µ ::= · | µ, ` 7→ s
Object Descriptors s ::= loc← 〈m1 = σ1, · · · ,mn = σn〉
Methods σ ::= Λρ1. · · ·Λρn. ς(x:τ).e | Λρ1. · · ·Λρn. ¡ς(x:τ).e

Types τ ::= O | ∀ρ1. · · · ∀ρn. τ
P
→ τ ′ | ∀ρ1. · · · ∀ρn. τ

P
( τ ′ | >

Linearities L ::= o | %
Object Linearities o ::= obj | ¡obj
Regions % ::= ρ | r

Figure 10: Syntax of EGO

5 Formalism

In this section we present extensions to the previous formalism that implementlet! and regions as we have described
them.

5.1 Additions to the Syntax

The changes to the calculus involved in addinglet! cause some changes to the syntax. The first such change is the
addition of thelet! construct itself to the expressions of the language. This is of the formlet ! (%)x1 = e1 x2 =
e2 in e3 end . Here,% is eitherρ, a region variable, orr, a region.% is added to the linearities,L. However, we do
not allow users to write down regions,r, so let ! (r)x1 = e1 x2 = e2 in e3 end is an intermediate form generated
during program execution.

We also make changes to methods. Methods are now of the formΛρ1. · · ·Λρn.ς(x:τ).e, orΛρ1. · · ·Λρn.¡ς(x:τ).e.
These are nonlinear and linear methods, respectively, which are parameterized over some number of regions.

Method types are changed to reflect the fact that they are now polymorphic. We also add annotations to method

types indicating the regions mentioned by the methods they type. Our method types now look like∀ρ1. · · · ∀ρn.τ
P→ τ ′

or ∀ρ1. · · · ∀ρn.τ
P
( τ ′. We use> a seperate type for methods which mention regions no longer in scope.

We also add region instantiation to method invocations.e.m[%1, · · · , %n] invokes a method and instantiates its
region arguments. We often writee.m[] ase.m.

Finally, our locations are now annotated with linearities. They are now of the form`L. This allows us to give types
to objects in settings where their linearities may change, as discussed below.

The syntax of EGOappear in Figure 10, with differences from the previous system highlighted.

5.2 Dynamic Semantics

The addition of new expressions to the language and the alteration of existing expressions necessitates the addition to
and alteration of the dynamic semantics of the calculus. The dynamic semantics of EGOare shown in Figure 11, with
additions highlighted.

The first change is the addition of several rules forlet! : C-LET1, E-LET1, C-LET2 and E-LET2. Given an
expression of the formlet ! (%)x1 = e1 x2 = e2 in e3 end , these proceed by first evaluatinge1 to a value, of the
form `L. Then a new region,r, is generated for this borrowing, andr and`r are substituted intoe2 for ρ andx1. Note
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that the linearity annotation on the location is changed to reflect that the location is borrowed. Next,e2 is evaluated
to a value. Finally,̀ L andv2 are substituted intoe3 for x1 andx2, and the entire expression steps toe3 after these
substitutions.

Another change to the dynamic semantics is that method invocation now instantites any regions over which the
invoked method is abstracted. This is reflected in the new C-INV, E-NLIN INV and E-LINL INV rules. Methods
now can be prefixed by a series of abstractions of the formΛρ1. · · ·Λρn. which abstract these region variables. An
invocation of the forme.m[%1, · · · , %n] looks up this method in the original object in the case of a linear object or
recursively up the object hierarchy in the case of nonlinear objects. Upon finding the method, each region or region
variable in the series%1, · · · , %n is substituted for the appropriate region variable ine, as well as a reference to the
receiver being substitued for the method’s bound variable.

Finally, as locations are now annotated with linearities,!e now must change this annotation from a linear object to
a nonlinear object.

5.3 Type System

The most significant additions to the calculus are in the type system. The type system is expanded with several
mechanisms forlet! and regions. This is shown in Figures 12 and 13, with additions highlighted.

The first of these is the change made to object types. We add two new linearities in addition toobj and ¡obj .
These are region variables,ρ, and regions,r. Both of these indicate that an object whose type is annotated with this
linearity has been borrowed. We allow the same operations to be performed on borrowed objects as on nonlinear
objects. They may be aliased freely but no change may be made to their interface. This is in line with the motivating
intuition that borrowed objects model linear objects that have been made temporarily nonlinear.

The typing judgement is now

Σ;A;P ;S ` e:τ =⇒ l

.
Here,Σ, A, e, τ andl remain the same as before. However, we add two new contexts. The first,P , is a list of

regions and region variables which are currently in scope. The second,S, is a partial map from regions to locations.
This indicates what locations are borrowed at what regions in the whole expression currently being typechecked, and
is used for checking the well-typedness of the store, as discussed below. All our typing rules are updated to use the
new typing judgement. Most simply passP andS up the derivation. The exceptions to this are discussed here.

We add rules for the typing oflet! , T-LET1 and T-LET2. For some expression,let ! (%)x1 = e1 x2 =
e2 in e3 end , these rules typelet! by first finding the type ofe1. The type ofe1 is required to be object type
of the formLt.O ← R.

The variablex1 is now bound with the type of%t.O ← R in e2, and% is added to the region context,P to check
the type ofe2. This means that the object is borrowed ine2 and can be freely aliased but no changes can be made
to its interface. If we are typechecking alet! that is currently being evaluated and so locations annotated with this
borrowing’s region,̀ %, have already been substituted intoe2, the presence of the region in the region context will
allow this location to be typechecked. Under these contexts, we check the type fore2. We check that the type ofe2

does not contain%, as this would allow aliased locations to be returned as part of the value to whiche2 reduces.
Finally, we bindx1 to its original type,Lt.O ← R, andx2 to the type ofe2, and we check the type ofe3 under

these assumptions to find the type of the whole expression.
In the case where% is some regionr, we also check to make surer = ` is in the map of borrowings,S. These

checks buildS up over alllet! typings in a given derivation to give us a map of all borrowings in a given program
state which we use in checking the heap.

We have also added region annotations to method types. These annotations indicate the regions that a method body
uses. This is because a method’s type does not always contain the types of every expression used in the method body.
This allows us to tell during typechecking the regions invoking a method would use. We can therefore determine what
methods it is safe to invoke.

In a related vein is the addition of region polymorphism to methods. As mentioned above, this affects the method
types by prefixing them with a series of region variable bindings of the form∀ρ.

These two changes are reflected in new method typing rules, T-NLINMETH and T-LINMETH. For a method
Λρ1. · · ·Λρn.ς(x:τ).e or Λρ1. · · ·Λρn.¡ς(x:τ).e the appropriate rule adds a binding of the method’s bound variable
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` 6∈ Dom(µ) µ′ = [` 7→ null ← 〈〉]µ
µ, 〈〉 −→ µ′, `

L

E-NEW
µ, e −→ µ′, e′

µ, e←+m = σ −→ µ′, e′ ←+m = σ
C-UPD

µ(`) = loc← 〈m1 = σ1, · · · 〉 ∀i.m 6= mi

µ′ = [` 7→ loc← 〈m1 = σ1, · · · ,m = σ〉]µ
µ, `

L
←+m = σ −→ µ′, `

L

E-ADD

µ(`) = loc← 〈· · · ,m = σ, · · · 〉
µ′ = [` 7→ loc← 〈· · · ,m = σ′, · · · 〉]µ
µ, `

L
←+m = σ′ −→ µ′, `

L

E-UPD

µ, e1 −→ µ′, e′1

µ, e1 ← e2 −→ µ′, e′1 ← e2

C-DEL1
µ, e −→ µ′, e′

µ, `
L
← e −→ µ′, `

L
← e′

C-DEL2

µ(`
L

) = loc← 〈· · · 〉 µ′ = [`
L
7→ loc′ ← 〈· · · 〉]µ

µ, loc′ ← `
L
−→ µ′, `

L

E-DEL

µ, e −→ µ′, e′

µ, e.m [%1, · · · , %n] −→ µ′, e′.m [%1, · · · , %n]
C-INV

mbody(µ, `L,m) = Λρ1. · · ·Λρn. ςx:τ.e

µ, `
L
.m [%1, · · · , %n] −→

µ, [`
L

, %1, · · · , %n /x , ρ1, · · · , ρn ]e

E-NLIN INV

µ(`) = 〈· · · ,m = Λρ1. · · ·Λρn. ¡ςx:τ.e, · · · 〉
µ′ = [` 7 → 〈· · · 〉]µ

µ, `
L
.m%1, · · · , %n −→

µ′, [`
L

, %1, · · · , %n /x , ρ1, · · · , ρn ]e

E-LIN INV

µ, e1 −→ µ′, e′1

µ, let ! (ρ)x1 = e1 x2 = e2 in e3 end −→
µ′, let ! (ρ)x1 = e′1 x2 = e2 in e3 end

C-LET1
r fresh

µ, let ! (ρ)x1 = `L x2 = e2 in e3 end −→
µ, let ! (r)x1 = `L x2 = [r, `r/ρ, x1]e2 in e3 end

E-LET1

µ, e2 −→ µ′, e′2

µ, let ! (r)x1 = v1 x2 = e2 in e3 end −→
µ′, let ! (r)x1 = v1 x2 = e′2 in e3 end

C-LET2
µ, let ! (r)x1 = v1 x2 = v2 in e3 end −→

µ, [v1, v2/x1, x2]e3

E-LET2

µ, e −→ µ′, e′

µ, !e −→ µ′, !e′
C-CHL IN

µ, !`
¡obj

−→ µ, `
obj

E-CHL IN

µ(`) = loc← 〈m1 = σ1, · · · ,m = σ, · · · 〉
mbody(µ, `,m) = σ

MBODY1

µ(`) = loc← 〈m1 = σ1, · · · 〉
m = σ 6∈ 〈m1 = σ1, · · · 〉 mbody(µ, loc,m) = σ

mbody(µ, `,m) = σ
MBODY2

Figure 11: Dynamic Semantics of EGO
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with the type the method expects its receiver to have to the typing context and checks the method body under some
region context. This region context is checked to be a subset of the region context the method is checked under with
the bound type variables appended. This shows that the method can be checked with region variables in scope. The

method is then given the type∀ρ1. · · · ∀ρn.τ
P→ τ ′ or ∀ρ1. · · · ∀ρn.τ

P
( τ ′, whereP is the region context under which

the method’s body was typechecked. This type then shows the region variables which are abstract in the type and the
regions which are used by the method’s body.

As discussed above, we may want the receiver of a method to contain methods that use regions no longer in scope,
as long as these methods are never called. We cannot write down these types, but since these methods can never be
called, we can simply give them the type>. This type is supertypes of arrow and lolly method types. We have a series
of standard subtyping rules in Figure 14 which show how types which differ only by method type annotations are
subtyped. For simplicity, we do not have a subsumption rule. Instead, where it is necessary we be able to type some
expression at a supertype, we explicitly allow subtyping. This is needed in method invocation and location typing.

With the above changes, invocation has new rules, T-LIN INV and T-NLIN INV, to type an expression of the form
e.m[%1, · · · , %n]. As before, these type the receiver object and unfold its type before looking up method types either
in the original object’s row of method types or recursively, as appropriate. Now, however, the method type will
possibily be polymorphic. In this case, we substitute the regions or region variables with which the invocation is
instantiated,%1, · · · , %2, for the abstracted region variables in the method type annotation before comparing it with the
actual receiver type. We no longer check that the types match exactly, but instead that the receiver is a subtype of the
expected type, as we can use a subtype where we expect a supertype. We also check to make sure that the regions the
method call uses are in scope after a similar substitution is done on the method type’s region list. This guarantees that
any region which is used by the method is in scope after instantiation. Finally, we give the invocation expression the
return type of the method after appropriate substitutions of regions and region variables for abstracted region variables.

One advantage of thelet! we have is that it allows borrowed locations to be referenced by methods added to
objects on the heap. Since we only check that the regions in the currently executing expression are in scope, we can
leave these methods on an object even after the region is out of scope if we do not call these methods. To prevent these
methods from being called, we do not allow objects in the executing expression to have methods whose type contains
regions out of scope. Instead, any such method types are replaced with> by typing locations by looking up them up
in the store typing and giving them a supertype of this type such that no arrows in it are annotated with regions not
in scope. Any method types on the object type given the location by the store type that have arrow annotations with
regions out of scope are thus replaced by>.

Since the linearity of a borrowed location can be different in different places in an expression, typing locations is
slightly more involved. We now find the linearity of a location from the subscript on it, rather than from the type it
has in the heap. This is apparent in T-NLINLOC and T-LINLOC. This also arises in typing borrowed locations, as
shown in T-BORLOC. To do so, we first type it as either a linear or nonlinear object and then replace the linearity with
the region subscripted on the location. This gives it the same type as the location had before it was borrowed with the
linearity replaced to indicate that it has been borrowed. In this rule, we also discard the list of linear locations we get
from typechecking the region as an unborrowed pointer because this pointer does not count towards the count of linear
locations because it is borrowed.

The additions of regions makes it necessary to make a change to the typing of variables. Now we check to make
sure that the regions in a variable’s type are all in scope. This ensures that an expression requires the same regions to
be in scope to type both before and after substitution.

The final alteration made to the calculus is in typing the heap. We still check to make sure every object on the
heap has the type the store typing gives it, but typing each individual object is more complex. Methods on objects in
the heap may now contain regions that are not in scope anywhere in the current expression. However, we know that if
these regions are not in scope anywhere, these methods cannot ever be called. Because of this, we do not actually care
about their type. When checking an entire program state, we haveS which contains all regions at which objects are
borrowed in the program. We use this to typecheck objects. If a method can be typechecked under the region context
which is the regions contained inS, it could be possibly used in the future and so we check that the method has the
type expected by the object’s type. Otherwise, we ignore the method while typechecking the object. This lets methods
in the heap mention any region, even if the region is not in scope anywhere in the current program.
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Σ(`) = obj t.O ← R

obj t.O ← R ≤ τ eregions (τ) ⊆ P

Σ;A ;P ;S ` `
obj

: τ =⇒ {}
T-NL INLOC

Σ(`) = ¡obj t.O ← R

¡obj t.O ← R ≤ τ eregions (τ) ⊆ P

Σ;A ;P ;S ` `
¡obj

: τ =⇒ {`}
T-L INLOC

Σ;A ;P ;S ` e:¡obj t.R← O =⇒ l

Σ;A ;P ;S `!e:obj t.R← O =⇒ l
T-CHL IN

Σ;A ;P ;S ` null :〈〉 =⇒ {}
T-NULL

Σ;A;P ;S ` `o:ot.O ← R =⇒ l
ot.O ← R ≤ ot.O′ ← R′

eregions (%t.O′ ← R′) ⊆ P
Σ;A;P ;S ` `%:%t.O′ ← R′ =⇒ {}

T-BORLOC

Σ;A ;P ;S ` e:Lt.O ← R =⇒ l

τu = Lt.[tO ← R/t]O ← R

mtype (τu,m) = ∀ρ1. · · ·Lt′.O′ ← R′
P ′→ τ

Lt.O ← R ≤ [%1, · · · /ρ1, · · · ]Lt′.O′ ← R′

[%1, · · · /ρ1, · · · ]P ′ ⊆ P

Σ;A ;P ;S `
e.m [%1, · · · ] : [%1, · · · /ρ1, · · · ] τ =⇒ l

T-NL IN INV

Σ;A ;P ;S ` e:¡obj t.O ← R =⇒ l

τu = ¡obj t.[tO ← R/t](O ← R)

lmtype (τu,m) = ∀ρ1. · · · ¡obj t′.O′ ← R′
P ′

( τ

¡obj t.O′′ ← R′′ = τu
τf = ¡obj t.[t/τf ](O′′ ← [/m:τ ′′]R′′)

τf ≤ [%1, · · · /ρ1, · · · ](¡obj t′.O′ ← R′)

[%1, · · · /ρ1, · · · ]P ′ ⊆ P

Σ;A ;P ;S `
e.m [%1, · · · ] : [%1, · · · /ρ1, · · · ] τ =⇒ l

T-L IN INV

Σ;A ;P ;S ` σ:τ =⇒ l

Σ;A ;P ;S ` e:¡obj t.O ← R =⇒ l′

lmtype (¡obj t.O′ ← R′,m) = τ ′

¡obj t.O′ ← R′ = ¡obj t.[tO ← R/t](O ← R)

τ ′′ = ¡obj t.[t/τ ′′](O′ ← [m:τ/m:τ ′]R′)

Σ;A,A′ ;P ;S ` e←+m = σ : τ ′′ =⇒ l, l′
T-UPD

Σ;A ;P ;S ` σ:τ =⇒ l

Σ;A ;P ;S ` e:¡obj t.O ← R =⇒ l′

lmtype (¡obj t.O′ ← R′,m) 6=
¡obj t.O′ ← R′ = ¡obj t.[tO ← R/t](O ← R)

τ ′ = ¡obj t.[t/τ ′](O′ ← R′,m:τ)

Σ;A,A′ ;P ;S ` e←+m = σ : τ ′ =⇒ l, l′
T-ADD

Figure 12: Static Semantics of EGO
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Σ;A, x:τ ;P ′;S ` e:τ ′ =⇒ {} x 6∈ Dom(A)

A nonlinear P ′ ⊆ P, ρ1, · · ·
ρ1, · · · 6∈ P

Σ;A ;P ;S `

Λρ1. · · · ςx:τ.e: ∀ρ1. · · · ∀ρn.τ
P ′→ τ ′ =⇒ {}

T-NL INMETH

Σ;A, x:τ ;P ′;S ` e:τ ′ =⇒ l x 6∈ Dom(A)

P ′ ⊆ P, ρ1, · · · ρ1, · · · 6∈ P

Σ;A ;P ;S `

Λρ1. · · ·Λ ¡ςx:τ.e: ∀ρ1. · · · ∀τ
P ′

( τ ′ =⇒ l

T-L INMETH

Σ;A ;P ;S ` e2:¡obj t.O ← R =⇒ l

Σ;A′ ;P ;S ` e1:O′′ =⇒ l′

¡obj t.O′ ← R′ = ¡obj t.[tO ← R/t]O ← R

τ = ¡obj t.[t/τ ]O′′ ← R′

Σ;A,A′ ;P ;S ` e1 ← e2:τ =⇒ l, l′
T-DEL

Σ;A ;P ;S ` 〈〉:¡obj t.〈〉 ← · =⇒ {}
T-NEW

tregions (τ) ⊆ P

Σ;x:τ ;P ;S ` x:τ =⇒ {}
T-VAR

Σ;A ;P ;S ` e:τ =⇒ l

Σ;A, x:τ ′ ;P ;S ` e:τ =⇒ l
T-K ILL

Σ;A, x:τ ′, x:τ ′ ;P ;S ` e:τ =⇒ l τ ′ nonlinear

Σ;A, x:τ ′ ;P ;S ` e:τ =⇒ l
T-COPY

Σ;A1;P ;S ` e1:Lt.O ← R =⇒ l1
Σ;A2, x1:ρt.O ← R;P, ρ;S ` e2:τ2 =⇒ l2

Σ;A3, x1:Lt.O ← R, x2:τ2;P ;S ` e3:τ3 =⇒ l3
ρ 6∈ tregions (τ2) ρ 6∈ P

x1 6∈ Dom(A) x2 6∈ Dom(A) x1 6= x2

Σ;A1, A2, A3;P ;S `
let ! (ρ)x1 = e1 x2 = e2 in x3 end :τ3 =⇒ l1, l2, l3

T-LET!1

Σ;A1;P ;S ` e1:Lt.O ← R =⇒ l1
Σ;A2, x1:rt.O ← R;P, r;S ` e2:τ2 =⇒ l2

Σ;A3, x1:Lt.O ← R, x2:τ2;P ;S ` e3:τ3 =⇒ l3
r 6∈ tregions (τ2) r 6∈ P x1 6∈ Dom(A)
x2 6∈ Dom(A) x1 6= x2 r = ` ∈ S

Σ;A1, A2, A3;P ;S `
let ! (r)x1 = e1 x2 = e2 in x3 end :τ3 =⇒ l1, l2, l3

T-LET!2

Figure 13: Static Semantics of EGO
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τ ≤ τ S-REFL

τ1 ≤ τ2 τ2 ≤ τ3
τ1 ≤ τ3 S-TRANS

O1 ≤ O2 R1 ≤ R2

Lt1.O1 ← R1 ←≤ Lt2.O2 ← R2 ←
S-LOC

· ≤ ·
S-ROW1

τ1 ≤ τ2 R1 ≤ R2

R1,m:τ1 ≤ R2,m:τ2
S-ROW2

τ ′1 ≤ τ1 τ2 ≤ τ ′2
∀ρ1. · · · ∀ρn.τ1

P→ τ2 ≤ ∀ρ1. · · · ∀ρn.τ ′1
P→ τ ′2

S-NLINMETH

τ ′1 ≤ τ1 τ2 ≤ τ ′2

∀ρ1. · · · ∀ρn.τ1
P
( τ2 ≤ ∀ρ1. · · · ∀ρn.τ ′1

P
( τ ′2

S-LINMETH

∀ρ1. · · · ∀ρn.τ
P→ τ ′ ≤ ∀ρ1. · · · ∀ρn.>

S-ARROW

∀ρ1. · · · ∀ρn.τ
P
( τ ′ ≤ ∀ρ1. · · · ∀ρn.>

S-LOLLY

Figure 14: Subtyping Rules

T-STORE

∀` ∈ Dom(µ).Σ; ·; Dom(S);S ` µ(`):Σ(`) =⇒ l`
Dom(µ) = Dom(Σ)

Σ;S ` µ ok =⇒ concatl`

T-ODESCR

∀i ∈ 1..n.Σ;A;P ′;S ` σi:τi =⇒ li if P ′ ⊆ P

[t.O ← R/t]R = m1:τ1
P ′→ /

P ′

( τ ′1, · · ·
σi = Λρ1., · · ·Λρm.[¡]ς(x:τ1).e

τ1 =,∀ρ1. · · · ∀ρn.τ ′i
P ′,ρ1,··· ,ρn→ /

P ′,ρ1,··· ,ρn
( τ ′′i

Σ;A;P ;S ` loc:L′t′.O′ ← R′ =⇒ lloc
O = [L′t′.O′ ← R′/t′]L′t′.O′ ← R′

τ = Lt.([t/τ ]O)← R

Σ;A;P ;S `
loc← 〈m1 = σ1, · · · ,mn = σn〉:τ =⇒

lloc, l1, · · · , ln

Figure 15: Store and Object Typing
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5.4 Safety Proof

We have a proof of type safety for the full version of EGO presented here. The proof is similar to the proof we sketch
for the earlier EGO fragment. The full proof is included as an appendix; we describe it here. As is standard, type safety
consists of two theorems, progress and preservation.

The statement of progress for the full EGO language is only slightly different from that presented earlier. It states
states that a program that consists of the pair of a well typed store and a well typed expression can always be reduced
to a new program if the expression is not already a value. The only difference from the earlier theorem is the typing
judgement we use to type stores and expressions. We add a region context,P , to the expression typing judgement,
and we add a map,S, of regions to the locations which are borrowed at them to the expression typing judgement. We
use the sameS in both judgements, as we need to know which regions are borrowed in the current whole expression
to type the store. This gives us the following statement of progress.

Theorem 3 (Progress)If Σ; ·;P ;S ` e:τ =⇒ le andΣ;S ` µ ok =⇒ ls then eitherµ, e −→ µ′, e′ for someµ′

and somee′, or e is a value.

As before, this is proven by induction on the typing judgements. For each case, we show that if the expression
is correctly typed, it is of a form which is either a value, or some subexpression of which can reduce, or which itself
reduces. To do this, we need a canonical forms lemma similar to the previous one.

Lemma 4 (Canonical Forms) 1. If a value has the type∀ρ1. · · · ∀ρn.τ1
P→ τ2, it has the formΛρ1. · · ·Λρn.σx:τ.e.

2. If a value has the type∀ρ1. · · · ∀ρn.τ1
P
( τ2, it has the formΛρ1. · · ·Λρn.¡σx:τ.e.

3. If a value has the typeLt.O ← R, it has the form̀ L.

4. More specifically, if a value has the type ¡obj t.O ← R←, it has the form̀ ¡obj.

5. If a value has the type〈〉, it has the formnull .

This is once again proven by case analysis on the typing rules.
Preservation is somewhat more complex. It still shows that those properties we want to maintain invariant remain

true when a program state steps. The invariants we wish to enforce have changed, however. We now wish to mainain
four invariants.

1. The expression has some typeτ or a subtype ofτ . Unlike the earlier EGO fragment, we have subtyping. This
means that an expression may evaluate to a new expression whose type is a more specific than the type of the
original expression.

2. The heap is well typed.

3. All linear locations are used at most once in the expression, store and the list of locations aliased in the whole
current expression. This proves that linear locations can be used only once in the expression and heap, or not at
all if currently borrowed.

4. All regions in the expression appear in the current region context or are bound by region abstraction or alet! .
This proves that no aliased locations can escape the expression in which they are borrowed, as the region at
which they are borrowed appears on the location in the expression.

We formalize the idea of all regions free in a given expression by defining a function,eregions (e), which
recursively examines an expression. This is defined in the appendix. Thus we get the following theorem.

Theorem 4 (Preservation) If

i. Σ;S ` µ ok =⇒ ls

ii. Σ; ·;P ;S ` e:τ =⇒ le
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iii. eregions (e) ⊆ P

iv. there are are no duplicates inle, ls,Range(S), and

v. µ, e −→ µ′, e′

then for someΣ′ ≥` Σ

i. Σ′;S′ ` µ′ ok =⇒ l′s

ii. Σ′; ·;P ;S ` e′:τ ′ =⇒ l′e

iii. eregions (e′) ⊆ P

iv. τ ′ ≤ τ , and

v. there are no duplicates inl′s, l
′
e,Range(S).

HereΣ′ ≥` Σ is the same as above: either a new location` was added or the type or linearity mapped to by` has
changed.

The proof is similar to the one sketeched above for progress on simplified EGO. It is by induction on the derivation
of µ, e −→ µ′, e′. For each way of reducing the program on the left to the program on the right we show that the
invariants are maintained on the right if they were true on the left.

To prove this, we need two substitution lemmas. The first is similar to the one above which showed that substitution
is type preserving. Now, however, we need to show that the type produced is a subtype of the expression substituted
into if the substituted expression is a subtype of that expected. This gives us following the lemma.

Lemma 5 (Substitution) If Σ;A, x:τ1;P ;S ` e:τ ′1 =⇒ le, Σ; ·;P ;S ` e′:τ2 =⇒ lx andτ2 ≤ τ1 thenΣ;A;P ;S `
[e′/x]e:τ ′2 =⇒ l, τ ′2 ≤ τ ′1 andl ⊆ le, lx.

We also need a similar lemma for region substitution, as both polymorphic instantiation and evaluatinglet! do
region substitution. As regions appear in types, the lemma states that substituting a region in for a region variable in
an expression substitutes the region in for the region variable in the expressio’s type. The lemma follows.

Lemma 6 (Region Substitution) If Σ;A;P ;S `e:τ=⇒ l thenΣ;A;[r/ρ]P ;S ` [r/ρ]e:[r/ρ]τ=⇒ l.

The proof of both of these lemmas is by induction on the typing rules.
We also need a Store Change Lemma similar to the one we saw earlier, which says that if have a well typed store,

and we change the type of a linear location in the store typing and replace the object at that location in the store with
an object of this type, the store remains well typed.

Lemma 7 (Store Change)If

i. Σ;S ` µ ok =⇒ ls

ii. Σ;A;P ;S ` `L:¡obj t.O ← R =⇒ le

iii. there are no duplicates inls, le,Range(S)

iv. µ(`) = s

v. Σ; ·; Dom(S);S ` s:τ =⇒ lo, and

vi. Σ; ·; Dom(S);S ` s′:τ ′ =⇒ l′o

then[` 7→ τ ′]Σ;S ` [` 7→ s′]µ ok =⇒ ls − lo, l′o
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6 Related Work

This section gives an overview of previous work in object calculi, linearity, protocol checking and regions.
An earlier version of EGO was presented in [5, 6]. This version differed from ours in its lack of a mechanism for

relaxing linearity and in its inclusion of first class functions in addition to objects. Our removal of first class functions
simplified this system while retaining expressive power, and our addition oflet! adds to its usability.

Our calculus is derived from features of the calculi of Abadi and Cardelli [1] and Fisher, Honsell and Mitchell [12,
13]. Like other object calculi [17, 19, 20], these are focused on modeling issues of inheritance and subtyping. Most
of the work studying method addition and delegation is in a functional context, unlike our imperative calculus. Abadi
and Cardelli discuss an imperative variant of their calculus, but when a method is imperatively updated it must match
the type of the original method, whereas we allow changes to the type of the object as a result of method update.

Our imperative method addition and update, and delegation change are inspired by the prototype-based Self lan-
guage [24]. Self is dynamically typed, meaning that programs may experience runtime type errors, which our static
type system prohibits.

The most closely related work is Anderson et al.’s application of Alias Types to the problem of statically checking
imperative method and delegation updates [3]. Compared to EGO, their design achieves precision through singleton
types and effects, at a cost of great complexity: the type of a method includes not just the type of the arguments and
body, but also the effects of the method and the environment where it was typed. EGO’s goal, in contrast, is to support
many useful cases of method and delegation update in a comparatively simple and practical type system based on
linearity.

Re-classification in Fickle [11] can change an object’s class at runtime in class-based OO languages. In this manner
class-based OO languages can achieve the same effect as changing delegation at runtime. Fickle is more limited than
our system because it restricts re-classification to a fixed set of state classes rather than supporting arbitrary changes
to the methods and inheritance hierarchy of an object. Furthermore, because it does not track aliasing of fields, Fickle
cannot track the state of an object in a field as EGO does.

Wadler introduced linear type systems in a functional setting in [25]. This work was based on Girard’s linear logic
[14]. Unique pointers were proposed for Eiffel and C++ in [18], and for Java in [7]. The concept of borrowing was
present in Wadler’s originallet! construct, but Wadler used a restrictive typing discipline to ensure that the borrowed
reference did not leak; in contrast, we allow the reference to leak but ensure it cannot be used after the region goes out
of scope. Unlike Boyland’s borrowing proposal [7], regions allow us to store borrowed pointers in the heap.

Several papers describe research into ways to model objects in linear logic [4, 8, 10]. In [8] methods are character-
ized as resources that reside within objects, and are consumed after being invoked. We apply this intuition in a more
concrete setting (i.e., operational semantics instead of an encoding in logic) for our linear methods.

Typestates were introduced in [21]. DeLine and Fähndrich discuss typestates for objects, especially in the presence
of subtyping, in [9]. Their system allows an object to specify which state it is in before and after method calls, and so
enforce an ordering on method calls. We model this by modifying delegation to change what methods are available,
or by adding and removing methods.

Regions have been proposed for memory management, either using type inference to infer the scopes of re-
gions [23] or with explicit types as in Cyclone [22]. Compared to Cyclone, our regions are more flexible in that
objects may refer to out-of-scope regions as long as these regions are not used; but Cyclone gains flexibility from
region subtyping which our system does not support.

7 Conclusion

We have presented EGO, an object calculus for studying linearity in objects. Our calculus contains powerful mecha-
nisms for creating and using linear objects, including linear methods and changing the objects a method has available at
runtime. We have demonstrated the expressiveness of our calculus showing how the lambda calculus can be embedded
in it.

We have shown how linearity allows us to manipulate objects so as to enforce protocols in a well typed way. We
can add methods to objects, remove linear methods by invoking them and change delegation at run time and still
staticly check that out programs are safe. We have shown that such abilities can be used to guarantee that methods are
called on objects in a correct manner.
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We have also shown a way of temporarily relaxing linearity to create short lived aliases. We have shown how to
maintain type safety while doing so.
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A Safety Proof

Progress

The first part of type safety is the progress theorem, which states that a well typed store and expression step to a new
store and expression, or the original expression is a value.

Theorem (Progress)
If Σ; ·;P ;S ` e:τ =⇒ le andΣ;S ` µ ok =⇒ ls then either

(i) µ, e −→ µ′, e′ for someµ′ and somee′, or

(ii) e is a value.

To prove this, we need several lemmas. The first of these is the Canonical Forms Lemma which states that values
of a given type have a spcific form.

Lemma (Canonical Forms)

1. If a value has the type∀ρ1. · · · ∀ρn.τ1
P→ τ2, it has the formΛρ1. · · ·Λρn.σx:τ.e.

2. If a value has the type∀ρ1. · · · ∀ρn.τ1
P
( τ2, it has the formΛρ1. · · ·Λρn.¡σx:τ.e.

3. If a value has the typeLt.O ← R, it has the form̀ L.

4. More specifically, if a value has the type ¡objt.O ← R, it has the form̀ ¡obj.

5. If a value has the type〈〉, it has the formnull .

Proof of Canonical Forms
By case analysis on the typing rules. The forms a value can have areΛρ1. · · ·Λρn.σx:τ.e, Λρ1. · · ·Λρn.¡σx:τ.e,

`L andnull .

1. The only rule which gives a value a type of∀ρ1. · · · ∀ρn.τ1
P→ τ2 is T-NLINMETHwhich gives this type to a

value of the formΛρ1. · · ·Λρn.σx:τ.e.

2. The only rule which gives a value a type of∀ρ1. · · · ∀ρn.τ1
P
( τ2 is T-LINMETH which gives this type to a

value of the formΛρ1. · · ·Λρn.¡σx:τ.e.

3. The rules which give a value a type ofLt.O ← R are T-NLINLOC, T-L INLOC, T-BORLOC and T-CHL IN.
These rules give these types to values of the form`L.

4. The rule which gives a value a type of ¡objt.O ← R is T-NLINLOC. This rule gives this type to values of the
form `¡obj.

5. The only rule which gives a value a type of〈〉 are T-NULL which gives this value tonull .

We also need themetht Subterm Lemma which says that if we look up the type of a method in the type of an
object, the returned type is a subterm of the object type.

Lemma (metht Subterm)
If mtype (τ,m) = τ ′, thenτ ′ ∈ τ .

Proof of metht Subterm
The proof is by induction on the derivation ofmtype (τ,m) = τ ′.

Proof of Progress
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The proof is by induction on the typing derivations.
Case:T-VAR

Impossible as terms are closed.
Case:T-NL INMETH

Λρ1. · · ·Λρn.ςx:τ.e is a value.
Case:T-L INMETH

Λρ1. · · ·Λρn.¡ςx:τ.e is a value.
Case:T-NL INLOC, T-L INLOC, T-BORLOC

`L is a value.
Case:T-NULL

null is a value.
Case:T-K ILL

Impossible as terms are closed.
Case:T-COPY

Impossible as terms are closed.
Case:T-UPD

By the premise of the typing rule,e has type ¡objt.O ← R. If e is not a value,µ, e steps to someµ′, e′ by IH, so
µ, e←+m = σ steps toµ′, e′ ←+m = σ by C-UPD. If e is a value, it is of the form̀L by canonical forms on its type
which is of the formLt.O ← R. By case analysis on the typing rules andlmtype rules,Σ(`) = ¡obj t.O′ ← R′

with m ∈ R. By inversion on T-STORE, Σ; ·;S; Dom(S) ` µ(`):Σ(`) =⇒ lo. By inversion on T-STORE, µ(`) exists
and so is of the formloc← 〈m1 = σ1, · · · ,mn = σn〉 with m ∈ Dom(〈m1 = σ1, · · · ,mn = σn〉). Therefore, there
existsµ′ such thatµ, `L ←+m = σ steps toµ′, `L by E-UPD.

Case:T-ADD

By the premise of the typing rule,e has type ¡objt.O ← R. If e is not a value,µ, e steps to someµ′, e′ by IH, so
µ, e←+m = σ steps toµ′, e′ ←+m = σ by C-UPD. If e is a value, it is of the form̀L by canonical forms on its type
which is of the formLt.O ← R. By case analysis on the typing rules andlmtype rules,Σ(`) = ¡obj t.O′ ← R′

with m 6∈ R. By inversion on T-STORE, Σ; ·;S; Dom(S) ` µ(`):Σ(`) =⇒ lo. By inversion on T-STORE, µ(`) exists
and so is of the formloc← 〈m1 = σ1, · · · ,mn = σn〉 with m 6∈ Dom(〈m1 = σ1, · · · ,mn = σn〉). Therefore, there
existsµ′ such thatµ, `L ←+m = σ steps toµ′, `L by E-UPD.

Case:T-NL IN INV

By the premise of the typing rule,e has type objt.O ← R. If e is not a value,µ, e steps to someµ′, e′ by
IH, so µ, e.m[%1, · · · , %n] steps toµ′, e′.m[%1, · · · , %n] by C-NLIN INV. If e is a value, it is of the form̀ L by
Canonical Forms on its type,Lt.O ← R. By case analysis on the typing rule,mtype (Lt.O ← R,m) = τ . By case
analysis on the typing rules and themetht Subterm Lemma,Σ(`) = ¡obj t.O′ ← R′ with m ∈ R. By inversion
on T-STORE, Σ; ·;S; Dom(S) ` µ(`):Σ(`) =⇒ lo. By inversion on T-STORE, µ(`) exists and so is of the form
loc ← 〈m1 = σ1, · · · ,mn = σn〉 with m ∈ Dom(〈m1 = σ1, · · · ,mn = σn〉). Therefore, there existsµ′ such that
this expression steps by E-NLIN INV.

Case:T-L IN INV

By the premise of the typing rule,e has type ¡objt.O ← R. If e is not a value,µ, e steps to someµ′, e′ by IH, so
µ, e.m[%1, · · · , %n] steps toµ′, e′.m[%1, · · · , %n] by C-LIN INV. If e is a value, it is of the form̀L by Canonical Forms
on its type,Lt.O ← R. By case analysis on the typing rule,lmtype (Lt.O ← R,m) = τ . By case analysis on the
typing rules andlmtype rules,Σ(`) = ¡obj t.O′ ← R′ with m ∈ R. By inversion on T-STORE, Σ; ·;S; Dom(S) `
µ(`):Σ(`) =⇒ lo. By inversion on T-STORE, µ(`) exists and so is of the formloc← 〈m1 = σ1, · · · ,mn = σn〉 with
m ∈ Dom(〈m1 = σ1, · · · ,mn = σn〉). Therefore, there existsµ′ such that this expression steps by E-LIN INV.

Case:T-CHL IN

By the premise of the typing rule,e has type of the form ¡objt.O ← R. If e is not a value,µ, e steps to some
µ′, e′ by IH, soµ, !e steps toµ′!e′ by C-CHL IN. If e is a value, it is of the form̀¡obj by Canonical Forms on its type,
¡obj t.O ← R, so it steps by C-CHL IN.

Case:T-NEW

µ, 〈〉 steps to someµ′, `L by E-NEW

Case:T-DEL

By the premise of the typing rule,e1 ande2 have types of the formLt.O ← R. If either is a value, it has the form
`L by Canonical Forms. Ife1 is not a value,µ, e1 steps to someµ′, e′1 by IH, soµ, e1 ← e2 steps toµ′, e′1 ← e2
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by C-DEL1. If e2 is not a value ande1 is, µ, e2 steps to someµ′, e′2 by IH, soµ, e1 ← e2 steps toµ′, e1 ← e′2 by
C-DEL2. If both are values, by Canonical Forms both are of the form`L. By the premise of the typing rule,̀L2

has type ¡objt.O ← R By case analysis on the typing rules,Σ(`) = ¡obj t.O ← R. By inversion on T-STORE,
Σ; ·;S; Dom(S) ` µ(`):Σ(`) =⇒ lo. By inversion on T-STORE, µ(`) exists and so is of the formloc ← 〈· · · 〉.
Therefore,µ, v1 ← v2 steps to someµ′, v2 by E-DEL.

Case:T-LET!1

By the premise of the typing rule,e1 has typeLt.O ← R. If e1 is not a value,µ, e1 steps to someµ′, e′1 by IH,
soµ, let ! (ρ)x1 = e1 x2 = e2 in e3 end steps toµ, let ! (ρ)x1 = e′1 x2 = e2 in e3 end by C-LET!1. If e1 is a
value, this expression steps by E-LET!1.

Case:T-LET!2

By the premise of the typing rule,e2 has type of the formLt.O ← R. If e2 is not a value,µ, e2 steps to someµ′, e′2
by IH, soµ, let ! (ρ)x1 = v1 x2 = e2 in e3 end steps toµ, let ! (ρ)x1 = v1 x2 = e′2 in e3 end by C-LET!2. If
e1 is a value, this expression steps by E-LET!2.

Preservation

Preservation says that if a closed expression and heap are well typed, the regions of the expression are a subset of the
region context used to type the expression and there are no duplicates in the list of linear locations on the heap, the
expression and the map of currently borrowed locations, and the expression and heap step to a new expression and
heap, then there exists a new store typing and map of borrowed expressions under which all these properties.

For the proof, we need to define two functions that tell what regions are free in a type and in an expression. We
free regions in types as follows.

tregions (ot) = {}
tregions (%t) = {%}
tregions (〈〉) = {}

tregions (∀ρ1. · · · ∀ρn.τ1
P→ τ2) = P ∪ tregions (τ1) ∪ tregions (τ2)− {ρ1, · · · , ρn}

tregions (∀ρ1. · · · ∀ρn.τ1
P
( τ2) = P ∪ tregions (τ1) ∪ tregions (τ2)− {ρ1, · · · , ρn}

tregions (>) = {}

We define free regions in expressions as follows.

eregions (x) = {}
eregions (null ) = {}

eregions (`o) = {}
eregions (`%) = {%}
eregions (〈〉) = {}

eregions (Λρ1. · · ·Λρn.ς(x:τ).e) = eregions (e)− {ρ1, · · · , ρn}
eregions (Λρ1. · · ·Λρn.¡ς(x:τ).e) = eregions (e)− {ρ1, · · · , ρn}

eregions (e.m[%1, · · · , %n]) = eregions (e) ∪ {%1, · · · , %n}
eregions (e←+m = σ) = eregions (e) ∪ eregions (σ)

eregions (e1 ← e2) = eregions (e1) ∪ eregions (e2)
eregions (let ! (%)x1 = e1 x2 = e2 in e3 end ) = eregions (e1) ∪ eregions (e2) ∪ eregions (e3)− {%}

eregions (!e) = eregions (e)

Theorem (Preservation)
If Σ;S ` µ ok =⇒ ls, Σ; ·;P ;S ` e:τ =⇒ le, eregions (e) ∈ P , there are are no duplicates inle, ls,Range(S),

andµ, e −→ µ′, e′, then for someΣ′ ≥` Σ, Σ′;S′ ` µ′ ok =⇒ l′s, Σ′; ·;P ;S′ ` e′:τ ′ =⇒ l′e, eregions (e′) ⊆ P ,
τ ′ ≤ τ and that there are no duplicates inl′s, l

′
e,Range(S).

For the proof of Preservation, we need several lemmas. The first of these is the Substitution Lemma. This says
that if we substitute an expression with a type which is a subtype of a bound variable in for that variable in a second
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expression, the resulting expression has a type which is a subtype of the original second expression.

Lemma (Substitution)
If Σ;A, x:τ1;P ;S ` e:τ ′1 =⇒ le, Σ; ·;P ;S ` v:τ2 =⇒ lx andτ2 ≤ τ1 thenΣ;A;P ;S ` [v/x]e:τ ′2 =⇒ l, τ ′2 ≤ τ ′1

andl ⊆ le, lx.
The proof of Substitution requires several lemmas.
The first of these is the Region Weakening Lemma, which says that if an expression can be typed under a given

region context, it can be typed under an expanded region context.

Lemma (Region Weakening)
If Σ;A;P ;S ` e:τ =⇒ lo thenΣ;A;P, %;S ` e:τ =⇒ lo.

Proof of Region Weakening
By induction on the derivation ofΣ;A;P ;S ` e:τ =⇒ lo.

Finally, we have the Weakening Lemma, which states that if an expression can be typed under a given type context,
it can be typed under the same context expanded with a nonlinear binding.

Lemma (Weakening)
If Σ;A;P ;S ` e:τ =⇒ l andτ is nonlinear thenΣ;A, x:τ ;P ;S ` e:τ =⇒ l.

Proof of Weakening
This is a direct consequence of T-KILL

Lemma (Linear Substitution)
If Σ;A, x:τ1;P ;S ` e:τ ′1 =⇒ le, Σ; ·;P ′;S ` v:τl =⇒ lx andO ← R ≤ τ1, whereτl is linear, then

Σ;A;P, P ′;S ` e:τ ′1 =⇒ l wherel ⊆ le, lx.
Proof of Linear Substitution

This is by induction on the typing rules.

Proof of Substitution
The lemma follows directly from the following stronger statement.
If Σ;A, x:τ1, · · · , x:τ1;P ;S ` e:τ ′1 =⇒ le where there is at most onex if τ is linear,Σ; ·;P ′;S ` v:τ2 =⇒ lx

andτ2 ≤ τ1 thenΣ;A;P, P ′;S ` [v/x]e:τ ′2 =⇒ l, τ ′2 ≤ τ ′1 andl ⊆ le, lx.
This is proven by case analysis on the derivation ofΣ;A;P ;S ` e:τ =⇒ l.
Case:T-NL INMETH

Σ;A, x:τ, · · · , x:τ ;P ;S ` Λρ1. · · ·Λρn.ςy:τ1.e:∀ρ1. · · · ∀ρn.τ1
P ′′→ τ2 =⇒ {} Assumption

x 6= y α-varying
Σ; ·;P ′;S ` v:τs =⇒ lx Assumption
τs ≤ τ Assumption
Σ;A, x:τ, · · · , x:τ, y:τ1;P ′′;S ` e:τ2 =⇒ {} Case Premise
tregions (τ2) ⊆ P ′′ Region Type
y 6∈ Dom(A, x:τ, · · · , x:τ) Case Premise
A, x:τ, · · · , x:τ nonlinear Case Premise
P ′′ ⊆ P, ρ1, · · · , ρn Case Premise
Σ;A, y:τ1;P ′, P ′′;S ` [v/x]e:τ2s =⇒ l′ IH
Σ;A, y:τ1;P ′′;S ` [v/x]e:τ2s =⇒ l′ Region Type
τ2s ≤ τ2 IH
l′ ⊆ lx IH
y 6∈ Dom(A) y 6∈ Dom(A, x:τ, · · · , x:τ)
A nonlinear A, x:τ, · · · , x:τ nonlinear

Σ;A;P ;S ` Λρ1. · · ·Λρn.ςy:τ1.[v/x]e:∀ρ1. · · · ∀ρn.τ1
P ′′→ τ2s =⇒ l′ T-NL INMETH

Σ;A;P ;S ` [v/x]Λρ1. · · ·Λρn.ςy:τ1.e:∀ρ1. · · · ∀ρn.τ1
P ′′→ τ2s =⇒ l′ Definition of Substitution
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Σ;A;P, P ′;S ` [v/x]Λρ1. · · ·Λρn.ςy:τ1.e:∀ρ1. · · · ∀ρn.τ1
P ′′→ τ2s =⇒ l′ Region Weakening

∀ρ1. · · · ∀ρn.τ1
P ′′→ τ2s ≤ τ1

P ′′→ τ2 Subtyping Rules

Case:T-L INMETH

Σ;A, x:τ, · · · , x:τ ;P ;S ` Λρ1. · · ·Λρn.¡ςy:τ1.e:∀ρ1. · · · ∀ρn.τ1
P ′′

( τ2 =⇒ le Assumption
x 6= y α-varying
Σ; ·;P ′;S ` v:τs =⇒ lx Assumption
τs ≤ τ Assumption
Σ;A, x:τ, · · · , x:τ, y:τ1;P ′′;S ` e:τ2 =⇒ le Case Premise
y 6∈ Dom(A, x:τ, · · · , x:τ) Case Premise
P ′ ⊆ P, ρ1, · · · , ρn Case Premise
tregions (τ2) ⊆ P ′′ Region Type
Σ;A, y:τ1;P ′, P ′′;S ` [v/x]e:τ2s =⇒ l′ IH
Σ;A, y:τ1;P ′′;S ` [v/x]e:τ2s =⇒ l′ Region Type
τ2s ≤ τ2 IH
l′ ⊆ le, lx IH
y 6∈ Dom(A) y 6∈ Dom(A, x:τ, · · · , x:τ)

Σ;A;P ;S ` Λρ1. · · ·Λρn.ςy:τ1.[v/x]e:∀ρ1. · · · ∀ρn.τ1
P ′′

( τ2s =⇒ l′ T-NL INMETH

Σ;A;P ;S ` [v/x]Λρ1. · · ·Λρn.ςy:τ1.e:∀ρ1. · · · ∀ρn.τ1
P ′′

( τ2s =⇒ l′ Definition of Substitution

Σ;A;P, P ′;S ` [v/x]Λρ1. · · ·Λρn.ςy:τ1.e:∀ρ1. · · · ∀ρn.τ1
P ′′

( τ2s =⇒ l′ Region Weakening

∀ρ1. · · · ∀ρn.τ1
P ′′

( τ2s ≤ τ1
P ′′

( τ2 Subtyping Rules

Case:1 of T-VAR

Σ;A, x:τ, · · · , x:τ ;P ;S ` x:τ =⇒ {} Assumption
Σ; ·;P ′;S ` v:τs =⇒ lx Assumption
Σ; ·;P ′;S ` [v/x]x:τs =⇒ lx Definition of Substitution
Σ;A;P ′;S ` [v/x]x:τs =⇒ lx Weakening
Σ;A;P, P ′;S ` [v/x]x:τs =⇒ lx Region Weakening
τs ≤ τ Assumption
lx ⊆ lx Set Theory

Case:2 of T-VAR

Σ;A, x:τ, · · · , x:τ ;P ;S ` y:τ =⇒ {} Assumption
x 6= y Assumption
Σ;A, x:τ ;P ′;S ` [v/x]y:τ =⇒ {} Definition of Substitution
Σ;A, x:τ ;P, P ′;S ` [v/x]y:τ =⇒ {} Region Weakening
τ ≤ τ T-REFL

{} ⊆ lx Set Theory

Case:T-LET!1

Σ;A, x:τ ;P ;S ` let ! (ρ)x1 = e1 x2 = e2 in e3 end :τ3 =⇒ le Assumption
Σ; ·;P ′;S ` v:τs =⇒ lx Assumption
τs ≤ τ Assumption
x1 6∈ Dom(A) Case Premise
x2 6∈ Dom(A) Case Premise
ρ 6∈ τ2 Case Premise
ρ 6∈ P ′ Case Premise
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x1 6= x2 Case Premise
Σ;A1, x : τ ;P ′;S ` e1:Lt.O ← R =⇒ l1 Case Premise
Σ;A1;P ;S ` [v/x]e1:Lt.Os ← Rs =⇒ l′ IH
Lt.Os ← Rs ≤ Lt.O ← R IH
l′ ⊆ l1, lx Σ;A2, x1:ρt.O ← R;P, ρ;S ` e2:τ2 =⇒ l2 Case Premise
Σ;A2, x1:ρt.O ← R;P, ρ, P ′;S ` [v/x]e2:τ ′2 =⇒ l′2 IH
τ ′2 ≤ τ2 IH
Σ;A2, x1:ρt.O ← R;P, ρ, P ′;S ` [v/x]e2:τ ′′2 =⇒ l′2 Variable Subtyping
τ ′′2 ≤ τ ′2 Variable Subtyping
τ ′′2 ≤ τ2 T-SUBTRANS

l′2 ⊆ lx, l2 IH
Σ;A3, x1:Lρ.tO ← R, x2:τ2;P ;S ` e3:τ3 =⇒ l3 Case Premise
Σ;A3, x1:Lρ.tO ← R, x2:τ2;P, P ′;S ` [v/x]e3:τ ′3 =⇒ l′3 IH
τ ′3 ≤ τ3 IH
Σ;A3, x1:Lρ.tOs ← Rs, x2:τ ′′2 ;P, P ′;S ` [v/x]e3:τ ′′3 =⇒ l′3 Variable Subtyping
τ ′′3 ≤ τ ′3 Variable Subtyping
τ ′′3 ≤ τ3 T-SUBTRANS

l′3 ⊆ lx, l2 IH
Σ;A;P, P ′;S ` let ! (ρ)x1 = e1 x2 = e2 in [v/x]e3 end :τ3′′ =⇒ l′1, l

′
2, l
′
3 T-LET!1

Subcase:v is `¡obj or ¡ς(x:τ).e
τs = ¡obj t.Ols ← Rls Case Analysis
τ = ¡obj t.Ol ← Rl Subtyping rules
At most onex in A, x:τ, · · · , x:τ Premise
No duplicates inl′1, l

′
2, l
′
3 Linear Substitution

Subcase:v is τv
P
( τ ′v

τs = τvs
P
( τ ′vs Case Analysis

τ = τv
P
( τ ′v Subtyping rules

At most onex in A, x:τ, · · · , x:τ Premise
No duplicates inl′1, l

′
2, l
′
3 Linear Substitution

Subcase:Otherwise
Σ; ·;P ′;S ` v:τs =⇒ {} Case Analysis
l′1, l
′
2, l
′
3 ⊆ l1, l2, l3 Set Theory

The case for T-LET!2 is similar.

We also have the Region Substitution Lemma, which states that if a region is substituted in for a region variable
in an epxression, the resulting expression then has the type of the original expression with the same substitution
performed on the type.

Lemma (Region Substitution)
If Σ;A;P ;S ` e:τ =⇒ l, thenΣ; [%/ρ]A; [%/ρ]P ;S ` [%/ρ]e:[%/ρ]τ =⇒ l.
For this we need the Region Subtyping Lemma which says that subtyping relations are preserved under the same

region substitution on both types.

Lemma (Region Subtyping)
τ ≤ τ ′ if and only if [%/ρ]τ ≤ [%/ρ]τ ′.

Proof of Region Substitution
The proof is by induction on the typing judgement. The difficult case, that of borrowed location typing, follows.

Σ;A;P ;S ` `%′ :%′t.O′ ← R′ =⇒ {} Assumption
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Σ;A;P ;S ` `o:ot.O ← R =⇒ l Premise
ot.O ← R ≤ ot.O′ ← R′ Premise
eregions (%′t.O′ ← R′) ⊆ P Premise
Σ; [%/ρ]A; [%/ρ]P ;S ` [%/ρ]`o:[%/ρ]ot.O ← R =⇒ l IH
[%/ρ]ot.O ← R ≤ [%/ρ]ot.O′ ← R′ Region Subtyping
[%/ρ]eregions (%′t.O′ ← R′) ⊆ [%/ρ]P Set Theory
Σ; [%/ρ]A; [%/ρ]P ;S ` [%/ρ]`%′ :[%/ρ]%′t.O′ ← R′ =⇒ {} T-BORLOC

We also have the Store Weakening Lemma, which says if we change a store typingΣ to Σ′ such thatΣ′ ≥` Σ, any
expressions typed under the first expression can still be typed under the second.

Lemma (Store Weakening)
If Σ;A;P ;S ` e:τ =⇒ le, Σ;S ` µ ok =⇒ ls, Σ′ ≥` Σ no duplicates inle, ls,Range(S) and` 6∈ le, then

Σ′;A;P ;S ` e:τ =⇒ l
To prove this, we need several lemmmas.
The Store Contraction Lemma says that if an expression is well typed and does not mention a given location, that

location can be removed from the store typing and the expression will remain well typed.

Lemma (Store Contraction)
If Σ;A;P ;S ` e:τ =⇒ l and`L 6∈ e, then[/` 7→ s]Σ;A;P ;S ` e:τ =⇒ l.

Proof of Store Contraction
The proof is by induction on the typing judgement.

The Linear Location Store Lemma says that if a heap is well typed and the heap typing judgement does not return
a given location in the list of linear locations in the heap, a reference to that location is not on the heap.

Lemma (Linear Location Store)
If Σ;A;P ;S ` `L:τ =⇒ le, Σ;S ` µ ok =⇒ ls and` 6∈ ls then`L 6∈ Range(Σ)

Proof of Linear Location Store
The proof is by case analysis on T-STORE and T-ODESCRand induction on the typing rules.

The Borrowed Location Store Lemma says that if a region is not in the set of currently borrowed regions, no
reference to it is in any typable method in the heap.

Lemma (Borrowed Location Store)
If Σ;S ` µ ok =⇒ ls andr 6∈ Dom(S), then for allσ in all s in Dom(µ) such thatΣ;A;P ′;S ` σi:τi =⇒ li if

P ′ ⊆ Dom(S), `r 6∈ Range(Σ).
Proof of Borrowed Location Store

The proof is by inversion on T-STORE and induction on the typing rules.

Proof of Store Weakening
The proof is by case analysis on the derivation ofPs′ ≥` Σ. In each case, it proceeds by straighforward induction

on the derivation ofΣ;A;P ;S ` e:τ =⇒ le.
Case: S-Grow
By induction on the typing rules.
Case: S-LObj
By induction on the typing rules.
Case: S-ChLin
By induction on the typing rules.
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There is also thembody Type Lemma, which states that if an object is well typed and its type contains the type of
a method, that method can be typed with a subtype of this type.

Lemma (mbody Type)

If mbody(µ, `L,m) = Λρ1. · · ·Λρn.σ, mtype (Lt.[t.O′ ← R′/t]O ← R,m) = ∀ρ1. · · · ∀ρn.τ1
P ′→ /

P ′

( τ2,
Σ;S ` µ ok =⇒ ls andΣ; ·;P ;S ` `L:Lt.[t/t.O ← R][t.O′ ← R′/t]O ← R =⇒ ll, thenΣ; ·;P ;S ` σ:τ =⇒ le

andτ ≤ ∀ρ1. · · · ∀ρn.τ1
P ′→ /

P ′

( τ2
Proof of mbody Type

By induction on the derivation ofmtype (τ,m) = τ ′.
Case: T-MethT1

Σ;S ` µ ok =⇒ ls Assumption
∀`′ ∈ Dom(µ).Σ; ·; Dom(S);S ` µ(`′):Σ(`′) =⇒ l`′ Inversion
Dom(µ) = Dom(Σ) Inversion

mtype (Lt.[t.O′ ← R′/t]O ← R,m) = ∀ρ1. · · · ∀ρn.τ1
P ′→ /

P ′

( τ2 Assumption

lmtype (Lt.[t.O′ ← R′/t]O ← R,m) = ∀ρ1. · · · ∀ρn.τ1
P ′→ /

P ′

( τ2 Premise

m:∀ρ1. · · · ∀ρn.τ1
P ′→ /

P ′

( τ2 ∈ [t.O′ ← R′/t]R Inversion
mbody(µ, `L,m) = σ Assumption
If m ∈ Dom(µ(`)) thenm = σ ∈ µ(`) Case Analysis
Subcase: T-LinLoc
Σ; ·;P ;S ` `L:¡obj t.[t/t.O ← R][t.O′ ← R′/t]O ← R =⇒ le Assumption
Σ(`) = ¡obj t.Os ← Rs Subcase Premise
¡obj t.Os ← Rs ≤ ¡obj t.[t/t.O ← R][t.O′ ← R′/t]O ← R Subcase Premise

m:∀ρ1. · · · ∀ρn.τ1s
P ′→ /

P ′

( τ2s ∈ [t.Os ← Rs/t]Rs Subtyping Rules
tregions (¡obj t.[t/t.O ← R][t.O′ ← R′/t]O ← R) ⊆ P Inversion
P ′ ⊆ P Definition of Substitution,tregions (τ)

∀ρ1. · · · ∀ρn.τ1s
P ′→ /

P ′

( τ2s ≤ ∀ρ1. · · · ∀ρn.τ1
P ′→ /

P ′

( τ2 Subtyping Rules
Σ; ·; Dom(S);S ` loc← 〈m1 = σ1, · · · ,mn = σn〉:

¡obj t.[t/t.O ← R][t.O′ ← R′/t]Os ← Rs =⇒ lloc, l1, · · · , ln Inversion on T-STORE

m = σ ∈ 〈m1 = σ1, · · · ,mn = σn〉 Modus Ponens
∀i ∈ 1..n|P ′′ ⊆ Dom(S).Σ; ·;P ′′;S

` σi:∀ρ1. · · · ∀ρni .τi
P ′′,ρ1,··· ,ρn→ /

P ′′,ρ1,··· ,ρn
( τ ′i =⇒ li Inversion on T-ODESCR

P ⊆ Dom(S) Region Contexts
P ′ ⊆ Dom(S) Set Theory

Σ; ·; Dom(S);S ` σ:∀ρ1. · · · ∀ρn.τ1s
P ′→ /

P ′

( τ2s =⇒ li Instantiation
[¡]ς(x:τ1s).e = σ Definition
Subsubcase: T-LinMeth
Σ;x:τ1s ;P

′;S ` e:τ2s =⇒ li Inversion
P ′ ⊆ Dom(S), ρ1, · · · , ρn Inversion
ρ1, · · · , ρn 6∈ Dom(S) Inversion
x 6∈ · Inversion
P ′ ⊆ P, ρ1, · · · , ρn Set Theory
ρ1, · · · , ρn 6∈ P Set Theory

Σ; ·;P ;S ` σ:∀ρ1. · · · ∀ρn.τ1s
P ′→ /

P ′

( τ2s =⇒ li T-L INMETH

Subsubcase: T-NLinMeth
Σ;x:τ1s ;P

′;S ` e:τ2s =⇒ li Inversion
P ′ ⊆ Dom(S), ρ1, · · · , ρn Inversion
ρ1, · · · , ρn 6∈ Dom(S) Inversion
x 6∈ · Inversion
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· nonlinear Inversion
P ′ ⊆ P, ρ1, · · · , ρn Set Theory
ρ1, · · · , ρn 6∈ P Set Theory

Σ; ·;P ;S ` σ:∀ρ1. · · · ∀ρn.τ1s
P ′→ /

P ′

( τ2s =⇒ li T-NL INMETH

Subcase: T-NLinLoc
Symmetric.

Subcase: T-BorLoc
Either,o = obj oro = ¡obj, in which case, symmetric to the respective case above.

Case: T-MethT2

mtype (Lt.[t.O′ ← R′/t]O ← R,m) = ∀ρ1. · · · ∀ρn.τ1
P ′→ /

P ′

( τ2 Assumption
lmtype (Lt.[t.O′ ← R′/t]O ← R,m) 6= Premise

m:∀ρ1. · · · ∀ρn.τ1
P ′→ /

P ′

( τ2 6∈ R Inversion

mtype ([t.O′ ← R′/t]O,m) = ∀ρ1. · · · ∀ρn.τ1
P ′→ /

P ′

( τ2 Inversion
Σ;S ` µ ok =⇒ `s Assumption
Σ; ·; Dom(S);S ` µ(`):Σ(`) =⇒ lo Inversion
m:τ 6∈ [t.O′ ← R′/t]R Inversion
SubCase: T-LinLoc or T-NLinLoc
Σ; ·;P ;S ` `L:Lt.[t/t.O ← R][t.O′ ← R′/t]O ← R =⇒ le Assumption
Σ(`) = Lt.Loto.Oo ← Ro ← Rs Subcase Premise
Lt.Loto.Oo ← Ro ← Rs ≤ Lt.[t/t.O ← R][t.O′ ← R′/t]O ← R Subcase Premise
tregions (Lt.[t/t.O ← R][t.O′ ← R′/t]O ← R) ⊆ P Subcase Premise
Rs ≤ [t/t.O ← R][t.O′ ← R′/tR Subtyping Rules
m:τ ′ 6∈ Rs Subtyping Rules
m = σ 6∈ Range(µ(`)) Inversion on T-ODESCR

Loto.Oo ← Ro ≤ [t/t.O ← R][t.O′ ← R′/t]O Subtyping rules
Σ; ·; Dom(S);S ` loc:[to/to.Oo ← Ro][t.O′ ← R′/t]Loto.Oo ← Ro =⇒ l′o Inversion on T-ODESCR

mtype ([Lt.t.O′ ← R′/t]Loto.Oo ← Ro,m) = ∀ρ1. · · · ∀ρn.τ ′1
P ′→ /

P ′

( τ ′2 mtype Subtyping

∀ρ1. · · · ∀ρn.τ ′1
P ′→ /

P ′

( τ ′2 ≤ ∀ρ1. · · · ∀ρn.τ1
P ′→ /

P ′

( τ2 mtype Subtyping
µ(`) = loc← 〈m1 = σ1, · · · , · · · ,mn = σn〉 Case Analysis
mbody(µ, loc,m) = σ Case Analysis

Σ; ·; Dom(S);S ` σ:∀ρ1. · · · ∀ρn.τ ′1
P ′→ /

P ′

( τ ′′2 =⇒ lo IH

∀ρ1. · · · ∀ρn.τ ′′1
P ′→ /

P ′

( τ ′′2s ≤ ∀ρ1. · · · ∀ρn.τ ′1
P ′→ /

P ′

( τ ′2 IH

∀ρ1. · · · ∀ρn.τ ′′1
P ′→ /

P ′

( τ ′′2s ≤ ∀ρ1. · · · ∀ρn.τ1
P ′→ /

P ′

( τ2 T-SUBTRANS

The Store Change Lemma says that if we change a linear object on the heap and update its type in the store typing,
the store remains well typed.

Lemma (Store Change)
If Σ;S ` µ ok =⇒ ls, Σ;A;P ;S ` `L:¡obj t.O ← R =⇒ le, no duplicates inls, le,Range(S), µ(`) = s,

Σ; ·; Dom(S);S ` s:τ =⇒ lo andΣ; ·; Dom(S);S ` s′:τ ′ =⇒ l′o, then[` 7→ τ ′]Σ;S ` [` 7→ s′]µ ok =⇒ ls − lo, l′o
Proof of Store Change

Σ;S ` µ ok =⇒ ls Assumption
Σ;A;P ;S ` `L:¡obj t.O ← R =⇒ le Assumption
No duplicates inls, le,Range(S) Assumption
Σ; ·;P ;S ` s:τ =⇒ lo Assumption
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Σ; ·;P ;S ` s′:τ ′ =⇒ l′o Assumption
Σ;A;P ;S ` `L:¡obj t.O ← R =⇒ {`} Case Analysis
` 6∈ ls No duplicates inls, le,Range(S)
` 6∈ Range(S) No duplicates inls, le,Range(S)
∀`′ ∈ Dom(µ).Σ; ·; Dom(S);S ` µ(`′):Σ(`′) =⇒ l`′ Inversion
Dom(Σ) = Dom(µ) Inversion
∀loc← 〈m1 = σ1, · · · ,mn = σn〉 ∈ Range(µ).∀i ∈ 1..n|P ⊆ Dom(S).

Σ;A;P ;S ` σi:∀ρ1. · · · ∀ρn.τi
P→ /

P
( τ ′i =⇒ li Inversion

`¡obj 6∈ Range(Σ) Linear Location Store
∀loc← 〈m1 = σ1, · · · ,mn = σn〉 ∈ Range(µ).∀i ∈ 1..n|P ⊆ Dom(S).`¡obj 6∈ σi Set Theory
∀loc← 〈m1 = σ1, · · · ,mn = σn〉 ∈ Range(µ).∀i ∈ 1..n|Pτi ⊆ Dom(S).`% 6∈ σi Borrowed Location Store
∀`′ ∈ Dom([/` 7→ s]µ).Σ; ·; Dom(S);S ` [/` 7→ s]µ(`′):[/` 7→ τ ]Σ(`′) =⇒ l`′ Store Contraction
Dom([/` 7→ τ ′]Σ) = Dom([/` 7→ s′]µ) Definition of Substitution
[/` 7→ τ ′]Σ;S ` [/` 7→ s′]µ ok =⇒ ls − lo, l′o T-STORE

We also have the Subterm Location Lemma. This states that if a subexpression containing a set of linear locations
disjoint from those in the rest of the program is evaluated, the linear locations in it are still disjoint from those of the
rest of the program.

Lemma (Subterm Location)
If no duplicates inle, ls,Range(S), l ⊆ le, Σ;A;P ;S ` e:τ =⇒ le, Σ;A;P ;S ` es:τs =⇒ l, Σ;S `

µ ok =⇒ ls, µ, es −→ µ′, e′s, Σ′;A;P ;S′ ` e′s:τs =⇒ l′, andΣ′;S′ ` µ′ ok =⇒ l′s then no duplicates in
(le − l), l′, ls,Range(S′).
Proof of Subterm Location

The proof is by induction onµ, e −→ µ′, e′.

The Region Type Lemma and the Region Expression Lemma state that the regions found in a well typed expression
and its type are a subset of those in scope.

Lemma (Region Type)
Σ;A;P ;S ` e:τ =⇒ l iff tregions (τ) ⊆ P

Proof of Region Type
By induction on the typing rules.

Lemma (Region Expression)
Σ;A;P ;S ` e:τ =⇒ l iff eregions (e) ⊆ P

Proof of Region Expression
By induction on the typing rules.

The List Equality Lemma says that if an expression is typed with two different types, the list of linear locations
produced by both judgements is the same.

Lemma (List Equality)
If Σ;A;P ;S ` e:τ =⇒ l andΣ′;A′;P ′;S′ ` e:τ ′ =⇒ l′, thenl = l′.

Proof of List Equality
By induction on the typing rules.

The Region Contexts Lemma says that if we can type an expression under a given region context and a given map
from regions to locations that are borrowed at them, the context is a subset of the domain of the map.
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Lemma (Region Contexts)
If Σ;A;P ;S ` `L:τ =⇒ le thenP ⊆ Dom(S)

Proof of Region Contexts
By induction on the typing rules.

The Variable Subtyping Lemma says that if an expression is typed at a type with a given variable bound in it, the
expression is typed at a subtype of its original type if the variable is bound at a subtype of its original type.

Lemma (Variable Subtyping)
If Σ;A, xτ1;P ;S ` e:τ2 =⇒ l andτ ′1 ≤ τ1, thenΣ;A, xτ ′1;P ;S ` e:τ ′2 =⇒ l andτ ′2 ≤ τ2.

Proof of Variable Subtyping
The proof is by induction on the typing judgements.

The lmtype Subtyping Lemma and themtype Subtyping Lemma say that if an object type contains a method
type, a subtype of the object type contains a subtype of the method type.

Lemma (lmtype Subtyping)
If lmtype (τ1,m) = τ2 andτ ′1 ≤ τ1, thenlmtype (τ ′1,m) = τ ′2 andτ ′2 ≤ τ2.

Proof of Proof of lmtype Subtyping
By case analysis on derivation oflmtype (τ1,m) = τ2.

Lemma (mtype Subtyping)
If mtype (τ1,m) = τ2 andτ ′1 ≤ τ1, thenmtype (τ ′1,m) = τ ′2 andτ ′2 ≤ τ2.

Proof of mtype Subtyping
By induction on the derivation ofmtype (τ1,m) = τ2.

The Linear Location Change Lemma says that if typing an expression does not yield a given linear location in the
list of contained linear locations, changing the type of this location will not change the type of the expression.

Lemma (Linear Location Change)
If Σ;A;P ;S ` `L:¡obj t.O ← R =⇒ l, Σ;A′;P ;S ` e:τ =⇒ l′ and` 6∈ l′, then[` 7→ τ ′]Σ;A′;P ;S ` e:τ =⇒

l′

Proof of Linear Location Change
By induction on the typing rules.

The Region Contraction Lemma says that if the type of an expression does not contain a given region, the region
is not needed in the region context to type the expression.

Lemma (Region Contraction)
If Σ;A;P, r;S ` v:τ =⇒ l andr 6∈ tregions (τ) theneregions (e) ⊆ P .

Proof of Region Contraction
By induction on the typing rules.

The Region and Substitution Lemma says that substituting one expression typed under a given region context into
another typed under the same region context produces an expression which can be typed under the same context.

Lemma (Region and Substitution)
If eregions (e) ⊆ P anderegions (e′) ⊆ P theneregions ([e′/x][%/ρ]e) ⊆ [%/ρ]P .

Proof of Region and Substitution
This follows from the definiton oferegions (e).
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The Folding Subtyping Lemma says that subtyping relations are preserved under folding or unfolding both sides.

Lemma (Folding Subtyping)
If Lt.O1 ← R1 ≤ Lt.O2 ← R2, τ1 = Lt.[t/τ1]O1 ← R1 andτ2 = Lt.[t/τ]O2 ← R2, thenτ1 ≤ τ2.

Proof of Folding Subtyping
By induction on the typing rules.

Finally, the Folding Subtyping Lemma says that the same region context can be used to type an expression after
folding or unfolding.

Lemma (Folding Region)
tregions (Lt.O ← R) ⊆ P if and only if tregions (Lt.[t.O ← R/t]O ← R) ⊆ P .

Proof of Folding Region
The proof is by induction on the typing rules.

Proof of Preservation
The proof is by induction on the derivation ofµ, e −→ µ′, e′.
Case:C-INV

µ, e −→ µ′, e′ Case Premise
Σ;S ` µ ok =⇒ ls Assumption
eregions (e.m[%1, · · · , %n]) ⊆ P Assumption
subcaseT-NL IN INV

Σ; ·;P ;S ` e.m[%1, · · · , %n]:τ ′ =⇒ le Assumption
No duplicates inle,ls,Range(S) Assumption
Σ; ·;P ;S ` e:Lt.O ← R =⇒ l Subcase Premise

mtype ([tO ← R/t]Lt.O ← R,m) = ∀ρ1. · · · ∀ρn.Lt′.O′ ← R′
P ′→ τ ′ Subcase Premise

Lt.O ← R ≤ [%1, · · · , %n, t′.O′ ← R′/ρ1, · · · , ρn, t′]Lt′.O′ ← R′ Subcase Premise
[%1, · · · , %n/ρ1, · · · , ρn]P ′ ⊆ P Subcase Premise
Σ′; ·;P ;S′ ` e′:Lt.Os ← Rs =⇒ l′e IH
Lt.Os ← Rs ≤ Lt.O ← R IH

mtype ([tOs ← Rs/t]Lt.Os ← Rs,m) = ∀ρ1. · · · ∀ρn.Lt′.O′s ← R′s
P ′→ τ ′s mtype Subtyping

∀ρ1. · · · ∀ρn.Lt′.O′s ← R′s
P ′→ τ ′s ≤ ∀ρ1. · · · ∀ρn.Lt′.O′ ← R′

P ′→ τ ′ mtype Subtyping
τ ′s ≤ τ ′ T-SUBNL INMETH

Lt′.O′ ← R′ ≤ Lt′.O′s ← R′s T-SUBNL INMETH

[%1, · · · , %n, t′.O′ ← R′/ρ1, · · · , ρn, t′]Lt′.O′ ← R′ ≤
[%1, · · · , %n, t′.O′s ← R′s/ρ1, · · · , ρn, t′]Lt′.O′s ← R′s Region Subtypingand Folding Subtyping

Lt.O ← R ≤ [%1, · · · , %n, t′.O′s ← R′s/ρ1, · · · , ρn, t′]Lt′.O′s ← R′s Region Subtypingand Folding Subtyping
Σ′ ≥` Σ IH
Σ′;S′ ` µ′ ok =⇒ l′s IH
No duplicates inl′e,l

′
sRange(S′) IH

eregions (e′.m[%1, · · · , %n]) ⊆ P IH
Σ′; ·;P ;S′ ` e′.m[%1, · · · , %n]:τ ′s =⇒ le T-NL IN INV

subcaseT-L IN INV

Σ; ·;P ;S ` e.m[%1, · · · , %n]:τ ′ =⇒ le Assumption
No duplicates inle,ls,Range(S) Assumption
Σ; ·;P ;S ` e:¡obj t.O ← R =⇒ le Subcase Premise

lmtype ([tO ← R/t]¡obj t.O ← R,m) = ∀ρ1. · · · ∀ρn.¡obj t′.O′ ← R′
P ′

( τ2 Subcase Premise
¡obj t.O′′ ← R′′ = [tO ← R/t]¡obj t.O ← R Subcase Premise
τf = [t/τf ]¡obj t.O′′ ← [/m:τ ]R′′ Subcase Premise
τf ≤ [%1, · · · , %n, t′.O′ ← R′/ρ1, · · · , ρn, t′]¡obj t′.O′ ← R′ Subcase Premise
[%1, · · · , %n/ρn, · · · ρn]P ′ ⊆ P Subcase Premise
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Σ′ ≥` Σ IH
Σ′; ·;P ;S′ ` e′:¡obj t.Os ← Rs =⇒ l′e IH
¡obj t.Os ← Rs ≤ ¡obj t.O ← R IH
lmtype ([tOs ← Rs/t]¡obj t.Os ← Rs,m) =

∀ρ1. · · · ∀ρn.¡obj t′.O′s ← R′s
P ′

( τ ′s lmtype Subtyping

∀ρ1. · · · ∀ρn.¡obj t′.O′s ← R′s
P ′→ τ ′s ≤ ∀ρ1. · · · ∀ρn.¡obj t′.O′ ← R′

P ′

( τ ′ lmtype Subtyping
τ ′s ≤ τ ′ T-SubLinMeth
¡obj t′.Os ← Rs ≤ ¡obj t′.O′s ← R′s T-SubLinMeth
[%1, · · · , %n, t′.O′ ← R′/ρ1, · · · , ρn, t′]¡obj t′.O′ ← R′ ≤

[%1, · · · , %n, t′.O′s ← R′s/ρ1, · · · , ρn, t′]¡obj t′.O′s ← R′s Region Subtypingand Folding Subtyping
τf ≤ [%1, · · · , %n, t′.O′s ← R′s/ρ1, · · · , ρn, t′]¡obj t′.O′s ← R′s Region Subtypingand Folding Subtyping
Σ′;S′ ` µ′ ok =⇒ l′s IH
No duplicates inl′e,l

′
s,Range(S′) IH

eregions (e′.m[%1, · · · , %n]) ⊆ P IH
Σ′; ·;P ;S ` e′.m[%1, · · · , %n]:τ ′s =⇒ l′e T-L IN INV

Case:E-NLIN INV

mbody(µ, `L,m) = Λρ1. · · ·Λρn.ςx:τ ′.e Case Premise
Σ;S ` µ ok =⇒ ls Assumption
eregions (`L.m[%1, · · · , %n]) ⊆ P Assumption
eregions (`L) ⊆ P Definition oferegions (e)
subcaseT-NL IN INV

Σ; ·;P ;S ` `L.m[%1, · · · , %n]:[%1, · · · , %n/ρ1, · · · , ρn]τ =⇒ le Assumption
No duplicates inle,ls,Range(S) Assumption
Σ; ·;P ;S ` `L:Lt.O ← R =⇒ l Subcase Premise

mtype ([t.O ← R/t]Lt.O ← R,m) = ∀ρ1. · · · ∀ρnLt′.O′ ← R′
P ′→ τ Subcase Premise

Lt.O ← R ≤ [%1, · · · , %n/ρ1, · · · , ρn]Lt′.O′ ← R′ Subcase Premise
[%1, · · · , %n/ρ1, · · · , ρn]P ′ ⊆ P Subcase Premise
[%1, · · · , %n/ρ1, · · · , ρn]Lt.O ← R ≤

[%1, · · · , %n/ρ1, · · · , ρn][%1, · · · , %n/ρ1, · · · , ρn]Lt′.O′ ← R′ Region Subtyping
[%1, · · · , %n/ρ1, · · · , ρn]Lt.O ← R ≤ [%1, · · · , %n/ρ1, · · · , ρn]Lt′.O′ ← R′ Definition of Substitution
Σ ≥` Σ S-REFL

Σ; ·;P ;S ` `L:Lt.[t/t.O ← R][t.O ← R/t]O ← R =⇒ l Definition of Substitution

Σ; ·;P ;S ` Λρ1. · · ·Λρn.ςx:τ0.e:∀ρ1. · · · ∀ρnLt′.O′′ ← R′′
P ′→ τ ′ =⇒ le mbody Type

∀ρ1. · · · ∀ρnLt′.O′′ ← R′′
P ′→ τ ′ ≤ ∀ρ1. · · · ∀ρnLt′.O′ ← R′

P ′→ τ mbody Type

Σ; ·;P ;S ` Λρ1. · · ·Λρn.ςx:τ0.e:∀ρ1. · · · ∀ρnLt′.O′′ ← R′′
P ′→ τ ′ =⇒ {} Case Analysis on Typing Rules

τ ′ ≤ τ Subtyping rules
Lt′.O′ ← R′ ≤ Lt′.O′′ ← R′′ Subtyping Rules
[%1, · · · , %n/ρ1, · · · , ρn]Lt′.O′ ← R′ ≤ [%1, · · · , %n/ρ1, · · · , ρn]Lt′.O′′ ← R′′ Region Subtyping
[%1, · · · , %n/ρ1, · · · , ρn]Lt.O ← R ≤ [%1, · · · , %n/ρ1, · · · , ρn]Lt′.O′′ ← R′′ Subtyping Rules
Lt.O ← R ≤ Lt′.O′′ ← R′′ Region Subtyping
Σ;x:Lt′.O′′ ← R′′;P ′;S ` e:τ ′ =⇒ {} Inversion
eregions (e) ⊆ P ′ Region Expression
eregions ([%1, · · · , %n/ρ1, · · · , ρn][`L/x]e) ⊆ [%1, · · · , %n/ρ1, · · · , ρn]P ′ Region and Substitution
eregions ([%1, · · · , %n/ρ1, · · · , ρn][`L/x]e) ⊆ P Set Theory
Σ;x:[%1, · · · , %n/ρ1, · · · , ρn]Lt′.O′′ ← R′′; [%1, · · · , %n/ρ1, · · · , ρn]P ′;S `

[%1, · · · , %n/ρ1, · · · , ρn]e:[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ =⇒ {} Region Substitution
ρ1, · · · , ρn 6∈ P Inversion
ρ1, · · · , ρn 6∈ Lt′.O′′ ← R′′ Region Type
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Σ;x:Lt′.O′′ ← R′′; [%1, · · · , %n/ρ1, · · · , ρn]P ′;S `
[%1, · · · , %n/ρ1, · · · , ρn]e:[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ =⇒ {} Definition of Substitution

Σ; ·;P ;S ` [%1, · · · , %n/ρ1, · · · , ρn]e:[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ =⇒ {} Region Weakening
Σ; ·;P ;S ` [%1, · · · , %n/ρ1, · · · , ρn][`L/x]e:[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ =⇒ l′ Substitution
[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ ≤ [%1, · · · , %n/ρ1, · · · , ρn]τ ′ Substitution
l′ ⊆ le Substitution
No duplicates inl′ Set Theory
No duplicates inl′, ls,Range(S) Set Theory
[%1, · · · , %n/ρ1, · · · , ρn]τ ′ ≤ [%1, · · · , %n/ρ1, · · · , ρn]τ Region Subtyping
[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ ≤ [%1, · · · , %n/ρ1, · · · , ρn]τ Subtyping Rules

Case:E-LIN INV

µ(`) = loc← 〈· · · ,m = Λρ1. · · ·Λρn.¡ςx:τ0.e, · · · 〉 Case Premise
µ′ = [` 7→ 〈· · · 〉]µ Case Premise
Σ;S ` µ ok =⇒ ls Assumption
eregions (`L.m[%1, · · · , %n]) ⊆ P Assumption
eregions (`L) ⊆ P Definition oferegions (e)
subcaseT-L IN INV

Σ; ·;P ;S ` `L.m[%1, · · · , %n]:[%1, · · · , %n/ρ1, · · · , ρn]τ =⇒ le Assumption
No duplicates inle,ls,Range(S) Assumption
Σ; ·;P ;S ` `L:¡obj t.O ← R =⇒ le Subcase Premise
Σ; ·; ·;S ` `L:¡obj t.O ← R =⇒ {`} Case Analysis on Typing Rules

lmtype (¡obj t.[t.O ← R/t].O ← R,m) = ∀ρ1. · · · ∀ρn.¡obj t′.O′ ← R′
P ′

( τ Subcase Premise
[¡]obj t.Ou ← Ru = [¡]obj t.[t.O ← R/τ ]O ← R Subcase Premise
τf = [¡]obj t.[t/τf ]Ou ← [/m:τ1]Ru Subcase Premise
τf ≤ [%1, · · · , %n/ρ1, · · · , ρn]¡obj t′.O′ ← R′ Subcase Premise
[%1, · · · , %n/ρ1, · · · , ρn]P ′ ⊆ P Subcase Premise
[%1, · · · , %n/ρ1, · · · , ρn]τf ≤

[%1, · · · , %n/ρ1, · · · , ρn][%1, · · · , %n/ρ1, · · · , ρn]¡obj t′.O′ ← R′ Region Subtyping
[%1, · · · , %n/ρ1, · · · , ρn]τf ≤ [%1, · · · , %n/ρ1, · · · , ρn]¡obj t′.O′ ← R′ Definition of Substitution
Σ(`) = ¡obj t.Os ← Rs Inversion
¡obj t.Os ← Rs ≤ ¡obj t.O ← R Inversion
tregions (¡obj t.O ← R) ⊆ P Inversion
τs = [¡]obj t.[t/τs]([t.Os ← Rs/t]Os)← [/m:τ1][t.Os ← Rs/t]Rs Definition
τs ≤ τf Folding Subtyping
[` 7→ τs]Σ ≥` Σ S-LOBJ

mtype (¡obj t.[t.O ← R/t].O ← R,m) = ∀ρ1. · · · ∀ρn.¡obj t′.O′ ← R′
P ′

( τ T-METHT1

Σ; ·; ·;S ` `L:¡obj t.[t/t.O ← R][t.O ← R/t]O ← R =⇒ {`} Definition of Substitution

Σ; ·;P ;S ` Λρ1. · · ·Λρn.¡ςx:τ0.e:∀ρ1. · · · ∀ρn¡obj t′.O′′ ← R′′
P ′

( τ ′ =⇒ l mbody Type

∀ρ1. · · · ∀ρn¡obj t′.O′′ ← R′′
P ′

( τ ′ ≤ ∀ρ1. · · · ∀ρn¡obj t′.O′ ← R′
P ′

( τ mbody Type
τ ′ ≤ τ Subtyping rules
¡obj t′.O′ ← R′ ≤ ¡obj t′.O′′ ← R′′ Subtyping Rules
[%1, · · · , %n/ρ1, · · · , ρn]¡obj t′.O′ ← R′ ≤ [%1, · · · , %n/ρ1, · · · , ρn]¡obj t′.O′′ ← R′′ Region Subtyping
[%1, · · · , %n/ρ1, · · · , ρn]τf ≤ [%1, · · · , %n/ρ1, · · · , ρn]¡obj t′.O′′ ← R′′ Subtyping Rules
τf ≤ ¡obj t′.O′′ ← R′′ Region Subtyping
Σ;x:¡obj t′.O′′ ← R′′;P ′;S ` e:τ ′ =⇒ l Inversion
eregions (e) ⊆ P ′ Region Expression
eregions ([%1, · · · , %n/ρ1, · · · , ρn][`L/x]e) ⊆ [%1, · · · , %n/ρ1, · · · , ρn]P ′ Region and Substitution
eregions ([%1, · · · , %n/ρ1, · · · , ρn][`L/x]e) ⊆ P Set Theory
tregions ([¡]obj t.Ou ← Ru) ⊆ P Folding Region
tregions ([¡]obj t.Ou ← [/m : τ1]Ru) ⊆ P Definition of tregions (τ)

42



tregions (τf ) ⊆ P Folding Region
Σ; ·; Dom(S);S ` loc← 〈· · · ,m = Λρ1. · · ·Λρn¡ςx:τ0.e, · · · 〉:

¡obj t.Os ← Rs =⇒ lloc, l1, · · · , l, · · · , ln Inversion on T-STORE

∀i ∈ 1..n|P ′ ∈ Dom(S).Σ; ·; Dom(S);S ` σi:∀ρ1. · · · ∀ρnτoi
P ′→ /

P ′

( τ ′oi =⇒ li Inversion on T-ODESCR

P ⊆ Dom(S) Region Contexts

Σ; ·; Dom(S);S ` Λρ1. · · ·Λρn¡ςx:τ0.e:∀ρ1. · · · ∀ρnτoi
P ′→ /

P ′

( τ ′oi =⇒ li Instantion
li = l List Equality
[` 7→ τs]Σ; ·;P ;S ` `L:τf =⇒ ` T-L INLOC

Σ;x:[%1, · · · , %n/ρ1, · · · , ρn]¡obj t′.O′′ ← R′′; [%1, · · · , %n/ρ1, · · · , ρn]P ′;S `
[%1, · · · , %n/ρ1, · · · , ρn]e:[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ =⇒ l Region Substitution

[` 7→ τs]Σ;x:[%1, · · · , %n/ρ1, · · · , ρn]¡obj t′.O′′ ← R′′; [%1, · · · , %n/ρ1, · · · , ρn]P ′;S `
[%1, · · · , %n/ρ1, · · · , ρn]e:[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ =⇒ l Linear Location Change

ρ1, · · · , ρn 6∈ P Inversion
ρ1, · · · , ρn 6∈ ¡obj t′.O′′ ← R′′ Region Type
[` 7→ τs]Σ;x:¡obj t′.O′′ ← R′′; [%1, · · · , %n/ρ1, · · · , ρn]P ′;S `

[%1, · · · , %n/ρ1, · · · , ρn]e:[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ =⇒ l Definition of Substitution
[` 7→ τs]Σ; ·;P ;S ` [%1, · · · , %n/ρ1, · · · , ρn]e:[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ =⇒ le Region Weakening
[` 7→ τs]Σ; ·;P ;S ` [%1, · · · , %n/ρ1, · · · , ρn][`L/x]e:[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ =⇒ l′ Substitution
[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ ≤ [%1, · · · , %n/ρ1, · · · , ρn]τ ′ Substitution
l′ ⊆ le, l Substitution
[%1, · · · , %n/ρ1, · · · , ρn]τ ′ ≤ [%1, · · · , %n/ρ1, · · · , ρn]τ Region Subtyping
[%1, · · · , %n/ρ1, · · · , ρn]τ ′′ ≤ [%1, · · · , %n/ρ1, · · · , ρn]τ Subtyping Rules

Σ; ·; Dom(S);S ` Λρ1. · · ·Λρn¡ςx:τ0.e:∀ρ1. · · · ∀ρnτoi
P ′→ /

P ′

( τ ′oi =⇒ l Equality
[t.Os ← Rs/t]Rs = m1:τo1, · · · ,m:τo, · · · ,mn:τon Inversion on T-ODESCR

Σ; ·; Dom(S);S ` loc:O =⇒ lloc Inversion on T-ODESCR

Σ; ·; Dom(S);S ` loc← [m = σ/]〈· · · 〉:τs =⇒ lloc, l1, · · · , ln T-ODESCR

` 6∈ ls No Duplicates inls, le,Range(S)
[` 7→ τs]Σ;S ` 〈· · · 〉 ok =⇒ ls − l Store Change
No duplicates inl′, ls − l,Range(S) Set Theory

Case:C-UPD

µ, e −→ , µ′e′ Case Premise
Σ;S ` µ ok =⇒ ls Assumption
eregions (e←+m = σ) ⊆ P Assumption
eregions (e) ⊆ P Definition oferegions (e)
subcaseT-UPD

Σ; ·;P ;S ` e←+m = σ:τ ′′ =⇒ le, l
′
e Assumption

No duplicates inle, l′e, ls,Range(S) Assumption
Σ; ·;P ;S ` σ:τ =⇒ le Subcase Premise
Σ; ·;P ;S ` e:¡obj t.O ← R =⇒ l′e Subcase Premise
lmtype (¡obj t.O ← R,m) = τ ′ Subcase Premise
¡obj t.R′ ← O′ = [t.O ← R/t]¡obj t.R′ ← O′ Subcase Premise
τ ′′ = [t/tau′′]¡obj t.R′ ← O′ Subcase Premise
Σ′ ≥` Σ IH
Σ′;S′ ` µ′ ok =⇒ l′s IH
Σ′; ·;P ;S′ ` e′:¡obj t.Os ← Rs =⇒ l′′e IH
Lt.Os ← Rs ≤ Lt.O ← R IH
eregions (e′) ⊆ P IH
eregions (e←+m = σ) ⊆ P Definition oferegions (e)
mtype (Os ← Rs,m) = τ ′s lmtype Subtyping
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τ ′s ≤ τ ′ lmtype Subtyping
R′ ≤ [m:τ ′s/m:τ ]Rs T-SUBROW2

Lt.O ← R′ ≤ Lt.Os ← [m:τ ′s/m:τ ]Rs T-SUBLOC

No duplicates inle, l′′e , l
′
s,Range(S′) Subterm Location

¡obj t.R′s ← O′s = [t.Os ← Rs/t]¡obj t.R′s ← O′s Definition
¡obj t.R′s ← O′s ≤ ¡obj t.R′ ← O′ Folding Subtyping
τ ′′s = [t/tau′′]¡obj t.R′ ← O′ Definition
τ ′′s ≤ τ ′′ Folding Subtypingand Subtyping Rules
Σ′; ·;P ;S ` e′ ←+m = σ:τ ′′s =⇒ le, l

′′
e T-UPD

subcaseT-ADD

Σ; ·;P ;S ` e←+m = σ:τ ′ =⇒ le, l
′
e Assumption

No duplicates inle, l′e, ls,Range(S) Assumption
Σ; ·;P ;S ` σ:τ =⇒ le Subcase Premise
Σ; ·;P ;S ` e:¡obj t.O ← R =⇒ l′e Subcase Premise
lmtype (¡obj t.O ← R,m) 6= Subcase Premise
¡obj t.O′ ← R′ = ¡obj t.[t.O ← R/t](O ← R) Subcase Premise
τ ′ = ¡obj t.[t/τ ′](O′ ← R′,m:τ) Subcase Premise
Σ′ ≥` Σ IH
Σ′;S′ ` µ′ ok =⇒ l′s IH
Σ′; ·;P ;S′ ` e′:¡obj t.Os ← Rs =⇒ l′′e IH
Σ′; ·;P ;S ` σ:τ =⇒ le Store Weakening
eregions (e′) ⊆ P IH
eregions (e←+m = σ) ⊆ P Definition oferegions (e)
mtype (Os ← Rs,m) 6= lmtype Subtyping
Rs,m:τ ≤ R,m:τ T-SUBROW2

Lt.O ← R,m:τ ≤ Lt.Os ← Rs,m:τ T-SUBLOC

No duplicates inle, l′′e , l
′
sRange(S′) Subterm Location

¡obj t.O′s ← R′s = ¡obj t.[t.Os ← Rs/t](Os ← Rs) Definition
¡obj t.O′s ← R′s ≤ ¡obj t.O′ ← R′ Folding Subtyping
τ ′s = ¡obj t.[t/τ ′s](O

′
s ← R′s,m:τ) Subcase Premise

τ ′s ≤ τ ′ Folding Subtypingand Subtyping Rules
Σ′; ·;P ;S ` e′ ←+m = σ:¡obj t.O ← R,m:τ ′s =⇒ le, l

′
e T-ADD

Case:E-UPD

Σ;S ` µ ok =⇒ ls Assumption
eregions (`L ←+m = σ) ⊆ P Assumption
eregions (`L) ⊆ P Definition oferegions ()
µ(`) = loc← 〈m1 = σ1, · · · ,m = σa, · · · ,mn = σn〉 Case Premise
µ′ = [` 7→ loc← 〈m1 = σ1, · · · ,m = σb, · · · ,mn = σn〉]µ Case Premise
subcaseT-UPD

Σ; ·;P ;S ` `L ←+m = σb:τ =⇒ le, l
′
e Assumption

No duplicates inle, l′e, ls,Range(S) Assumption
Σ; ·;P ;S ` σb:τb =⇒ le Subcase Premise
Σ; ·;P ;S ` `L:¡obj t.O ← R,m:τa =⇒ l′e Subcase Premise
¡obj t.Ou ← Ru,m:τau = ¡obj t.[t.O ← R,m:τa/t]O ← R,m:τa Subcase Premise
τ = ¡obj t.[t/τ ]Ou ← Ru,m:τb Subcase Premise
Σ; ·;P ;S ` `L:¡obj t.O ← R,m:τa =⇒ {`} Case Analysis on Typing Rules
tregions (¡obj t.O ← R,m:τa) ⊆ P Inversion
Σ(`) = ¡obj t.O′ ← R′,m:τ ′a Inversion
O′ ← R′,m:τ ′a ≤ O ← R,m:τa Inversion
R′,m:τ ′a ≤ R,m:τa Inversion on T-SUBROW

O′ ≤ O Inversion on T-SUBROW
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tregions (O ← R,m : τa) ⊆ P Inversion
Σ; ·; Dom(S);S ` loc← 〈m1 = σ′1, · · · ,m = σa, · · · ,mn = σn〉:

¡obj t.O′ ← R′ =⇒ l,loc l1, · · · , la, · · · , ln Inversion on T-STORE

[t.O′ ← R′,m:τa/t]R′ = m1:τ1, · · · ,mn:τn Inversion on T-ODESCR

∀i ∈ 1..n|P ⊆ Dom(S).Σ;A;P ;S ` σi:∀ρ1. · · · ∀ρn.τi
P→ /

P
( τ ′i =⇒ li Inversion on T-ODESCR

P ⊆ Dom(S) Region Contexts
Σ; ·; Dom(S);S ` σb:τb =⇒ le Region Weakening
Σ; ·; Dom(S);S ` loc:O′ =⇒ lloc Inversion on T-ODESCR

τs = ¡obj t.[t/τs]O′ ← [t.O′ ← Rs,m:τb/t]Rs,m : τb Definition
[`o 7→ τ ′]Σ ≥` Σ S-LOBJ

Σ; ·; Dom(S);S ` loc← 〈m1 = σ1, · · · ,m = σb, · · · ,mn = σn〉:
τs =⇒ lloc, l1, · · · , lb, · · · , ln, le T-ODESCR

[` 7→ τs]Σ;S ` [` 7→ loc← 〈m1 = σ1, · · · ,m = σb, · · · ,mn = σn,m = σ〉]µ ok =⇒
ls, le − la, lb Store Change

tregions (τb) ⊆ P Region Type
tregions (¡obj t.O ← R) ⊆ P Definition of tregions (τ)
tregions (¡obj t.O ← R,m:τb) ⊆ P Definition of tregions (τ)
tregions (τ) ⊆ P Definition of tregions (τ)
τb ≤ τb T-SUBREFL

R,m: τb ≤ R′,m:τb T-SubRow2

¡obj t.O′ ← R′,m:τb ≤ ¡obj t.O ← R,m:τb T-SUBLOC

τs ≤ τ Folding Subtyping
[` 7→ ¡obj t.O′ ← R′,m:τb]Σ; ·;P ;S ` `L:¡obj t.O ← R,m:τb =⇒ l′e T-LinLoc
No duplicates inl′e, ls, le − la, lb,Range(S) Lists
τ ≤ τ T-SUBREFL

Case:E-ADD

µ(`) = loc← 〈m1 = σ1, · · · ,mn = σn〉 Case Premise
∀i.m 6= mi Case Premise
µ′ = [` 7→ loc← 〈m1 = σ1, · · · ,mn = σn,m = σ〉]µ Case Premise
Σ;S ` µ ok =⇒ ls Assumption
eregions (`L ←+m = σ) ⊆ P Assumption
eregions (`L) ⊆ P Definition oferegions ()
subcaseT-ADD

Σ; ·;P ;S ` `L ←+m = σ:¡obj t.O ← R,m:τm =⇒ le, l
′
e Assumption

No duplicates inle, l′e, ls,Range(S) Assumption
P ⊂ Dom(S) Region Contexts
Σ; ·;P ;S ` σ:τm =⇒ le Subcase Premise
Σ; ·;P ;S ` `L:¡obj t.O ← R =⇒ l′e Subcase Premise
¡obj t.Ou ← Ru = ¡obj t.[t.O ← R/t]O ← R Subcase Premise
τ = ¡obj t.[t/τ ]Ou ← Ru Subcase Premise
Σ; ·;P ;S ` `L:¡obj t.O ← R =⇒ ` Case Analysis on Typing Rules
lmtype (¡obj t.O ← R,m) 6= Subcase Premise
tregions (¡obj t.O ← R) ⊆ P Inversion
Σ(`) = ¡obj t.O′ ← R′ Inversion
O′ ← R′ ≤ O ← R Inversion
R′ ≤ R Inversion on T-SUBROW

O′ ≤ O Inversion on T-SUBROW

tregions (O ← R) ⊆ P Inversion
Σ; ·; Dom(S);S ` loc← 〈m1 = σ1, · · ·mn = σn〉:¡obj t.O′ ← R′ =⇒ l,loc l1, · · · , ln Inversion on T-STORE

[t.O′ ← R′/t]R′ = m1:τ1, · · · ,mn:τn Inversion on T-ODESCR
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∀i ∈ 1..n|P ′ ⊆ Dom(S).Σ;A;P ;S ` σi:∀ρ1. · · · ∀ρn.τi
P ′→ /

P ′

( τ ′i =⇒ li Inversion on T-ODESCR

Σ; ·; Dom(S);S ` loc:O′ =⇒ lloc Inversion on T-ODESCR

P ⊆ Dom(S) Region Contexts
Σ; ·; Dom(S);S ` σ:τm =⇒ le Region Weakening
τs = ¡obj t.[t/τs]O′ ← [t.O′ ← R′,m:τm/t]R′,m : τm Definition
[` 7→ τ ′]Σ ≥` Σ S-LOBJ

Σ; ·; Dom(S);S ` loc← 〈m1 = σ1, · · ·mn = σn,m = σ〉:τs =⇒ lloc, l1, · · · , ln, le T-ODESCR

` 6∈ ls No duplicates inle, l′e, ls,Range(S)
[` 7→ τs]Σ;S ` [` 7→ loc← 〈m1 = σ1, · · ·mn = σn,m = σ〉]µ ok =⇒ ls, le Store Change
tregions (τ) ⊆ P Region Type
tregions (¡obj t.O ← R,m:τ) ⊆ P Definition of tregions (τ)
tregions (τ) ⊆ P Definition of tregions (τ)
τ ≤ τ T-SUBREFL

R,m: τm ≤ R′,m:τm T-SubRow2

¡obj t.O′ ← R′,m:τ ≤ ¡obj t.O ← R,m:τ T-SUBLOC

τs ≤ τ Folding Subtyping
[` 7→ ¡obj t.O′ ← R′,m:τm]Σ; ·;P ;S ` `L:¡obj t.O ← R,m:τm =⇒ l′e T-LinLoc
No duplicates inl′e, ls, le,Range(S) Lists
τ ≤ τ T-SUBREFL

Case:C-LET!1

µ, e1 −→ , µ′e′1 Case Premise
Σ;S ` µ ok =⇒ ls Assumption
eregions (let ! (ρ)x1 = e1 x2 = e2 in e3 end ) ⊆ P Assumption
eregions (e1) ⊆ P Definition oferegions (e)
eregions (e2) ⊆ P Definition oferegions (e)
eregions (e3) ⊆ P Definition oferegions (e)
subcaseT-LET!
Σ; ·;P ; let ! (ρ)x1 = e1 x2 = e2 in S ende3 ` τ3:l1, l2, l3 =⇒ Assumption
No duplicates inl1, l2, l3, ls,Range(S) Assumption
Σ; ·;P ;S ` e1:Lt.O ← R =⇒ l1 Subcase Premise
Σ;x1:P, ρt.O ← R; ρ;S ` e2:τ2 =⇒ l2 Subcase Premise
Σ;x1:Lρ.tO ← R, x2:τ2;P, ρ;S ` e3:τ3 =⇒ l3 Subcase Premise
ρ 6∈ τ2 Subcase Premise
ρ 6∈ P Subcase Premise
x1 6∈ Dom(·) Subcase Premise
x2 6∈ Dom(·) Subcase Premise
x1 6= x2 Subcase Premise
Σ′ ≥` Σ IH
Σ′;S′ ` µ′ ok =⇒ l′s IH
eregions (e′1) ⊆ P IH
Σ′;x1:P, ρt.O ← R; ρ;S ` e2:τ2 =⇒ l2 Store Weakening
Σ′;x1:Lρ.tO ← R, x2:τ2;P, ρ;S ` e3:τ3 =⇒ l3 Store Weakening
eregions (let ! (ρ)x1 = e′1 x2 = e2 in e3 end ) ⊆ P Definition oferegions (e)
No duplicates inl′1, l2, l3, l

′
s,Range(S′) Subterm Location

Σ′; ·;P ;S′ ` e′1:Lt.Os ← Rs =⇒ l′1 IH
Lt.Os ← Rs ≤ Lt.O ← R IH
Σ;x1:Lρ.StOs ← Rs, x2:τ2;P, ρ; · ` e3:τ3s =⇒ l3 Variable Subtyping
τ3s ≤ τ3 Variable Subtyping
Σ; ·;P ;S ` let ! (ρ)x1 = e′1 x2 = e2 in e3 end :τ3 =⇒ l′1, l2, l3 T-LET!
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Case:E-LET!1

r fresh Case Premise
Σ;S ` µ ok =⇒ ls Assumption
eregions (let ! (ρ)x1 = `L x2 = e2 in e3 end ) ⊆ P Assumption
eregions (v1) ⊆ P Definition oferegions (e)
eregions (e2) ⊆ P Definition oferegions (e)
eregions (e3) ⊆ P Definition oferegions (e)
subcaseT-LET!
Σ; ·;P ;S ` let ! (ρ)x1 = `L x2 = e2 in e3 end :τ3 =⇒ l1, l2, l3 Assumption
No duplicates inl1, l2, l3, ls,Range(S) Assumption
Σ; ·;P ;S ` `L:Lt.O ← R =⇒ l1 Subcase Premise
Σ;x1:ρt.O ← R;P, ρ;S ` e2:τ2 =⇒ l2 Subcase Premise
Σ;x1:Lt.O ← R, x2:τ2; ·;S ` e3:τ3 =⇒ l3 Subcase Premise
x1 6∈ Dom(·) Subcase Premise
x2 6∈ Dom(·) Subcase Premise
x1 6= x2 Subcase Premise
r 6∈ τ2 r fresh
ρ 6∈ · r fresh
ρ ⊆ ρ Definition of⊆
Lt.O ← R ≤ Lt.O ← R T-SUBREFL

Σ; ·;P ;S ` `L:Lt.O ← R =⇒ l1 Region Weakening
Σ; ·;P ;S ` `ρ:ρt.O ← R =⇒ {} T-BORLOC

ρt.O ← R ≤ ρt.O ← R T-SUBREFL

Σ ≥` Σ S-REFL

Σ; ·;P, [r/ρ]r;S ` [r/ρ][`ρ/x]e2:τ ′2 =⇒ l′ Region Substitution and Substitution
τ ′2 ≤ τ2 Substitution
l′ ⊆ l2 Substitution
eregions ([r/ρ][`r/x]e2) ⊆ P Definition oferegions (e)
eregions (let ! (ρ)x1 = `L x2 = [r/ρ][`ρ/x]e2 in e3 end ) ⊆ P Definition oferegions (e)
Σ;x1:Lt.O ← R, x2:τ ′2; ·;S ` e3:τ3 =⇒ l3 Variable Subtyping
τ3 ≤ τ ′3 Variable Subtyping
Σ; ·;P ;S ` let ! (ρ)x1 = `L x2 = [r/ρ][`ρ/x]e2 in e3 end :τ3 =⇒ l1, l

′, l3 T-LET!1

No duplicates inl1, l′, l3 Set Theory

Case:C-LET!2

µ, e2 −→ , µ′e′2 Case Premise
Σ;S ` µ ok =⇒ ls Assumption
eregions (let ! (r)x1 = v1 x2 = e2 in e3 end ) ⊆ P Assumption
eregions (v1) ⊆ P Definition oferegions (e)
eregions (e2) ⊆ P, r Definition oferegions (e)
eregions (e3) ⊆ P Definition oferegions (e)
subcaseT-LET!
Σ; ·;P ;S ` let ! (r)x1 = v1 x2 = e2 in e3 end :τ3 =⇒ l1, l2, l3 Assumption
No duplicates inl1, l2, l3, ls,Range(S) Assumption
Σ; ·;P ;S ` v1:Lt.O ← R =⇒ l1 Subcase Premise
Σ;x1:rt.O ← R;P, r;S ` e2:τ2 =⇒ l2 Subcase Premise
Σ;x1:Lr.tO ← R, x2:τ2;P ;S ` e3:τ3 =⇒ l3 Subcase Premise
r 6∈ τ2 Subcase Premise
r 6∈ P Subcase Premise
x1 6∈ Dom(·) Subcase Premise
x2 6∈ Dom(·) Subcase Premise
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x1 6= x2 Subcase Premise
Σ′ ≥` Σ IH
Σ′;S′ ` µ′ ok =⇒ l′s IH
eregions (e′2) ⊆ P, r IH
r 6∈ eregions (e′2) Definiton oferegions (e)
eregions (e′2) ⊆ P IH
eregions (let ! (r)x1 = v1 x2 = e′2 in e3 end ) ⊆ P Definition oferegions (e)
No duplicates inl1, l′2, l3, l

′
s,Range(S′) Subterm Location

Σ;x1:rt.O ← R;P, r;S ` e′2:τ2s =⇒ l′2 IH
τ2s ≤ τ2 IH
Σ;x1:Lρ.tO ← R, x2:τ2s ;P ;S′ ` e3:τ3s =⇒ l3 Variable Subtyping
τ3s ≤ τ3 Variable Subtyping
Σ′; ·;P ;S ` v1:Lt.O ← R =⇒ l1 Store Weakening
Σ′;x1:Lr.tO ← R, x2:τ2;P ;S ` e3:τ3 =⇒ l3 Store Weakening
Σ; ·;P ;S ` let ! (r)x1 = v1 x2 = e′2 in e3 end :τ3 =⇒ l1, l

′
2, l3 T-LET!

Case:E-LET!2

Σ;S ` µ ok =⇒ ls Assumption
eregions (let ! (r)x1 = v1 x2 = v2 in e3 end ) ⊆ P Assumption
eregions (v1) ⊆ P Definition oferegions (e)
eregions (v2) ⊆ P, r Definition oferegions (e)
eregions (e3) ⊆ P Definition oferegions (e)
subcaseT-LET!
Σ; ·;P ;S ` let ! (r)x1 = v1 x2 = v2 in e3 end :τ3 =⇒ l1, l2, l3 Assumption
No duplicates inl1, l2, l3, ls,Range(S) Assumption
Σ; ·;P ;S ` v1:Lt.O ← R =⇒ l1 Subcase Premise
Σ;x1:rt.O ← R;P, r;S ` v2:τ2 =⇒ l2 Subcase Premise
Σ;x1:Lr.tO ← R, x2:τ2;P ;S ` e3:τ3 =⇒ l3 Subcase Premise
r 6∈ tregions (τ2) Subcase Premise
eregions (v2) ⊆ P Region Contraction
Lt.O ← R ≤ Lt.O ← R T-SUBREFL

τs ≤ τs T-SUBREFL

eregions ([v1, v2/x1, x2]e3) ⊆ P Region and Substitution
Σ; ·;P ;S ` [v1, v2/x1, x2]e3:τ ′3 =⇒ l′ Substitution
τ ′3 ≤ τ3 Substitution
l′ ⊆ l1, l2, l3 Substitution
No duplicates inl′ Set Theory

Case:C-DEL1

µ, e1 −→ , µ′e′1 Case Premise
Σ;S ` µ ok =⇒ ls Assumption
eregions (e1 ← e2) ⊆ P Assumption
eregions (e1) ⊆ P Definition oferegions (e)
eregions (e2) ⊆ P Definition oferegions (e)
subcaseT-DEL

Σ; ·;P ;S ` e1 ← e2:τ =⇒ le, l
′
e Assumption

No duplicates inle, l′e, ls,Range(S) Assumption
No duplicates inl′e, ls,Range(S) No duplicates inle, l′e, ls,Range(S)
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Σ;S; ·; · ` e2:obj t.O ← R =⇒ le Subcase Premise
Σ; ·;P ;S ` e1:O′′ =⇒ l′e Subcase Premise
¡obj t.O′ ← R′ = ¡obj t.[t.O ← R/t]O ← R Subcase Premise
τ = ¡obj t.[t/τ ]O′′ ← R Subcase Premise
Σ′ ≥` Σ IH
Σ′;S′ ` µ′ ok =⇒ l′s IH
No duplicates inle, l′′e , l

′
s,Range(S′) Subterm Location

Σ; ·;P ;S′ ` e′1:O′s =⇒ l′e IH
O′′s ≤ O′′ IH
eregions (e′1) ⊆ P IH
τ = ¡obj t.[t/τ ]O′′s ← R Subcase Premise
τs ≤ τ Folding Subtyping
eregions (e′1 ← e2) ⊆ P Definition oferegions (e)
Lt.O′s ← R ≤ Lt.O′′ ← R T-SUBLOC

Σ′;S; ·; · ` e2:obj t.O ← R =⇒ le Store Weakening
Σ; ·;P ;S ` e′1 ← e2:τs =⇒ le, l

′′
e T-DEL

Case:C-DEL2

µ, e2 −→ , µ′e′2 Case Premise
Σ;S ` µ ok =⇒ ls Assumption
eregions (v1 ← e2) ⊆ P Assumption
eregions (v1) ⊆ P Definition oferegions (e)
eregions (e2) ⊆ P Definition oferegions (e)
subcaseT-DEL

Σ; ·;P ;S ` v1 ← e2:τ =⇒ le, l
′
e Assumption

No duplicates inle, l′e, ls,Range(S) Assumption
Σ; ·;P ;S ` e2:obj t.O ← R =⇒ le Subcase Premise
Σ; ·;P ;S ` v1:O′′ =⇒ l′e Subcase Premise
¡obj t.O′ ← R′ = ¡obj t.[t.O ← R/t]O ← R Subcase Premise
τ = ¡obj t.[t/τ ]O′′ ← R Subcase Premise
Σ′ ≥` Σ IH
Σ′;S′ ` µ′ ok =⇒ l′s IH
No duplicates inl′′e , l

′
e, l
′
s,Range(S′) IH

Σ; ·;P ;S′ ` e′2:obj t.Os ← Rs =⇒ l′′e IH
obj t.Os ← Rs ≤ obj t.O ← R IH
eregions (e′2) ⊆ P IH
¡obj t.O′s ← R′s = ¡obj t.[t.Os ← Rs/t]Os ← Rs Subcase Premise
¡obj t.O′s ← R′s ≤ ¡obj t.O′ ← R′ Folding Subtyping
τs = ¡obj t.[t/τ ]O′′s ← Rs Subcase Premise
τs ≤ τ Folding Subtypingand Subtyping Rules
eregions (v1 ← e′2) ⊆ P Definition oferegions (e)
Σ′; ·;P ;S ` v1:O′′ =⇒ l′e Store Weakening
Σ; ·;P ;S ` v1 ← e′2:τs =⇒ l′′e , l

′
e T-DEL

Case:E-DEL

µ(`) = loc← 〈m1 = σ1, · · ·mn = σn〉 Case Premise
µ′ = [` 7→ loc′ ← 〈m1 = σ1, · · ·mn = σn〉]µ Case Premise
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Σ;S ` µ ok =⇒ ls Assumption
eregions (loc′ ← `L) ⊆ P Assumption
eregions (`L) ⊆ P Definition oferegions (e)
subcaseT-DEL

Σ; ·;P ;S ` loc′ ← `L:Lt.O′′ ← R =⇒ le, l
′
e Assumption

No duplicates inle, l′e, ls,Range(S) Assumption
Σ;S; ·;P ` `L:¡obj t.O ← R =⇒ le Subcase Premise
Σ;S; ·;P ` `L:¡obj t.O ← R =⇒ ` Case Analysis on Typing Rules
Σ; ·;P ;S ` loc′:O′′ =⇒ l′e Subcase Premise
¡obj t.O′ ← R′ = ¡obj t.[t.O ← R/t]O ← R Subcase Premise
τ = ¡obj t.[t/τ ]O′′ ← R′ Subcase Premise
tregions (O′′) ⊆ P Inversion
[` 7→ τs]Σ ≥` Σ S-LOBJ

Σ(`) = ¡obj t.Os ← Rs Inversion
¡obj t.Os ← Rs ≤ ¡obj t.O′′ ← R Inversion
Rs ≤ R Subtyping rules
tregions (R) ⊆ P Inversion
Σ; ·; Dom(S);S ` loc← 〈m1 = σ1, · · ·mn = σn〉:¡obj t.Os ← Rs =⇒ l,loc l1, · · · , ln Inversion on T-STORE

∀i ∈ 1..n|P ⊆ Dom(S).Σ; ·; Dom(S);S ` σn:∀ρ1. · · · ∀ρn.τn
P ′→ /

P ′

( τ ′n =⇒ ln Inversion on T-ODESCR

[t.Rs ← Os/t]Rs = m1:τ1, · · · ,mn:τn Inversion on T-ODESCR

Σ; ·; Dom(S);S ` loc:Os =⇒ lloc Inversion on T-ODESCR

Σ; ·; Dom(S);S ` loc′:O′′ =⇒ l′e Region Weakening
τs = ¡obj t.[t/t.O′′ ← Rs]O′′ ← Rs Definition
Σ; ·; Dom(S);S ` loc′ ← 〈m1 = σ1, · · ·mn = σn〉:τs =⇒ l′e, l1, · · · , ln T-ODESCR

` 6∈ ls No duplicates inle, l′e, ls,Range(S)
[` 7→ τs]Σ;S ` [` 7→ τs]µ ok =⇒ ls − lloc, l′e Store Change
tregions (τ) ⊆ P Definition of tregions (τ)
τs ≤ τ Folding Subtyping
[` 7→ ¡obj t.O′′ ← Rs]Σ; ·;P ;S ` `L:τ =⇒ le T-LinLoc
No duplicates inle, ls − lloc, l′e,Range(S) Lists
τ ≤ τ T-SUBREFL

Case:E-NEW

` fresh Case Premise
Σ;S ` µ ok =⇒ ls Assumption
eregions (〈〉) ⊆ P Assumption
subcaseT-NEW

Σ; ·;P ;S ` 〈〉:¡obj t.〈〉 ← · =⇒ le Assumption
No duplicates inls,Range(S) Assumption
[` 7→ ¡obj t.〈〉 ← ·]Σ;S ` [` 7→ 〈〉 ← 〈〉]µ ok =⇒ ls T-STORE

tregions (¡obj t.〈〉 ← ·) ⊆ P Definition oferegions (τ)
¡obj t.〈〉 ← · ≤ ¡obj t.〈〉 ← · T-SUBREFL

[` 7→ ¡obj t.〈〉 ← ·/]Σ; ·;P ;S ` `:¡obj t.〈〉 ← · =⇒ le T-L INLOC

No duplicates inls,Range(S), ` ` fresh

Case:C-CHL IN

µ, e −→ , µ′e′ Case Premise

50



Σ;S ` µ ok =⇒ ls Assumption
eregions (!e) ⊆ P Assumption
subcaseT-CHL IN

Σ; ·;P ;S `!e:obj t.O ← R =⇒ le Assumption
No duplicates inls,Range(S) Assumption
Σ; ·;P ;S ` e:¡obj t.O ← R =⇒ le Subcase Premise
Σ′ ≥` Σ IH
Σ′;S′ ` µ′ ok =⇒ l′s IH
No duplicates inl′e, l

′
s,Range(S′) IH

Σ; ·;P ;S′ ` e′:¡obj t.Os ← Rs =⇒ l′e IH
¡obj t.Os ← Rs ≤ ¡obj t.O ← R IH
eregions (e′) ⊆ P IH
Os ≤ O Subtyping Rules
Rs ≤ R Subtyping Rules
Σ; ·;P ;S′ `!e′:obj t.Os ← Rs =⇒ l′e T-CHL IN

obj t.Os ← Rs ≤ obj t.O ← R Subtyping Rules
eregions (!e′) ⊆ P Definition oferegions (e)

Case:E-CHL IN

Σ;S ` µ ok =⇒ ls Assumption
subcaseT-CHL IN

Σ; ·;P ;S `!`¡obj:obj t.O ← R =⇒ le Assumption
No duplicates inle, ls,Range(S) Assumption
Σ; ·;P ;S ` `¡obj:¡obj t.O ← R =⇒ le Subcase Premise
Σ(`) = ¡obj t.Os ← Rs Inversion
¡obj t.Os ← Rs ≤ ¡obj t.O ← R Inversion
tregions (¡obj t.O ← R) ⊆ P Inversion
Os ≤ O Subtyping Rules
Rs ≤ R Subtyping Rules
obj t.Os ← Rs ≤ obj t.O ← R Subtyping Rules
[` 7→ obj t.Os ← Rs]Σ(`) = obj t.Os ← Rs Definition of Substution
tregions (obj t.O ← R) ⊆ P Definition of tregions (τ)
[` 7→ obj t.Os ← Rs]Σ ≥` Σ S-CHL IN

[` 7→ obj t.Os ← Rs]Σ; ·;P ;S ` `obj:obj t.O ← R =⇒ {} T-NL INLOC

obj t.O ← R ≤ obj t.O ← R T-SUBREFL

No duplicates inls,Range(S) Set Theory
eregions (`obj) ⊂ P Definition oferegions (e)
∀` ∈ Dom(µ).Σ; ·; Dom(S);S ` µ(`):Σ(`) =⇒ l` Inversion on T-STORE

Dom(µ) = Dom(Σ) Inversion on T-STORE

Σ; ·; Dom(S);S ` µ(`):Σ(`) =⇒ l` Instantiation
µ(`) = loc← 〈m1 = σ1, · · · ,mn = σn〉 Dom(µ) = Dom(Σ)

∀i ∈ 1..n.Σ;A; Dom(S);S ` σi:τi
P→ /

P
( τ ′i =⇒ li if Dom(S) ⊆ Dom(S) Inversion

[t.Os ← Rs/t]Rs = m1:τ1, · · · ,mn:τn Inversion
Σ;A;P ;S ` loc:Os =⇒ lloc Inversion
[` 7→ obj t.Os ← Rs]Σ; ·; Dom(S);S ` µ(`):[` 7→ obj t.Os ← Rs]Σ(`) =⇒ l` T-ODESCR

Σ;S ` µ ok =⇒ ls Store Change
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