
CMieux 2005: Design and Analysis of

Carnegie Mellon University’s entry in

the Supply Chain Trading Agent

Competition
Michael Benisch, Alberto Sardinha,
James Andrews and Norman Sadeh

April 2006
CMU-ISRI-06-104

Institute for Software Research International
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

The research that lead to the development of the software described in this document has been funded
by the National Science Foundation under ITR Grant 0205435 and under IGERT grant 9972762.

Keywords: Multi-Agent Systems, Supply Chain Management, Trading Agent Design

Abstract

Supply chains are a central element of today’s global economy. Existing management prac-
tices consist primarily of static interactions between established partners. Global competi-
tion, shorter product life cycles and the emergence of Internet-mediated business solutions
create an incentive for exploring more dynamic supply chain practices. The Supply Chain
Trading Agent Competition (TAC SCM) was designed to explore approaches to dynamic sup-
ply chain trading. TAC SCM pits against one another trading agents developed by teams
from around the world. Each agent is responsible for running the procurement, planning
and bidding operations of a PC assembly company, while competing with others for both
customer orders and supplies under varying market conditions. This paper presents Carnegie
Mellon University’s 2005 TAC SCM entry, the CMieux supply chain trading agent. CMieux
implements a novel approach to coordinating supply chain bidding, procurement and plan-
ning, with an emphasis on the ability to rapidly adapt to changing market conditions. We
present empirical results based on 200 games involving agents entered by 25 different teams
during what can be seen as the most competitive phase of the 2005 tournament. Not only
did CMieux perform among the top five agents, it significantly outperformed these agents in
procurement while matching their bidding performance.

1 Introduction

Existing supply chain management practices consist primarily of static interactions between
established partners [4]. As the Internet helps mediate an increasing number of supply
chain transactions, there is a growing interest in investigating the potential for exploring the
potential benefits of more dynamic supply chain practices [1, 12]. The Supply Chain Trading
Agent Competition (TAC SCM) was designed to explore approaches to dynamic supply chain
trading. TAC SCM pits against one another trading agents developed by teams from around
the world. Each agent is responsible for running the procurement, planning and bidding
operations of a PC assembly company, while competing with others for both customer orders
and supplies under varying market conditions. Specifically, the game features a number
of different types of computers, each requiring different sets of components that can be
procured from multiple suppliers. Agents make money by selling and delivering finished
PCs to customers. Supplier and customer market conditions stochastically change over time
and from one game to another to ensure that agents are tested across a broad range of
representative situations.

This paper presents Carnegie Mellon University’s 2005 TAC SCM entry, the CMieux
supply chain trading agent. CMieux’s architecture departs markedly from traditional Enter-
prise Resource Planning architectures and commercially-available supply chain management
solutions through its emphasis on tight coordination between supply chain bidding, procure-
ment and planning. Through this coordination, our trading agent is capable of adapting
rapdily to changing market conditions and outperform its competitors. In particular, we
present empirical results based on 200 games involving agents entered by 25 different teams
during what can be seen as the most competitive phase of the 2005 tournament. Not only
did CMieux perform among the top five agents, it significantly outperformed these agents in
procurement while matching their bidding performance.

The remainder of this paper is organized as follows. Section 2 summarizes the TAC SCM
environment, and highlights the features and challenges from a planning and scheduling
perspective. Section 3 presents an overview of CMieux and a detailed description of its
underlying modules. Sections 4 and 5 present empirical results and concluding remarks.

2 TAC Supply Chain Management

This section provides a summary of the TAC Supply Chain Management game. The full
description can be found in the official specification document [5].

The TAC SCM game is a simulation of a supply chain where six computer manufacturer
agents compete with each other for both customer orders and components from suppliers.
A server simulates the customers and suppliers, and provides banking, production, and
warehousing services to the individual agents. Every game has 220 simulated days, and each

1

day lasts 15 seconds of real time. The agents receive messages from the server on a daily
basis informing the state of the game, such as the current inventory of components, and must
send responses to the same server until the end of the day indicating their actions, such as
requests for quotes to the suppliers. At the end of the game, the agent with the highest sum
of money is declared the winner.

Normally, each manufacturer agent tackles separately important sub-problems of a supply
chain: procurement of components, production and delivery of computers, and computer
sales. Figure 1 summarizes the high level interactions between the various entities in the
game.

Figure 1: Summary of the TAC SCM Scenario

2.1 Procurement of Components

Each agent is able to produce and store 16 different computer configurations in their own
production facility, by using different combinations of components. These computers are
made from four basic components: CPUs, motherboards, memories, and hard drives. There
are a total of 10 different components: two brands and speeds of CPUs, two brands of moth-
erboards, and two sizes of hard disks and memories. The game includes 8 distinct suppliers,
and each component has a base price that is used as reference for suppliers making offers.
Each PC type also has a base price equal to the sum of the base prices of its components.

Every day, agents can send requests for quotes (RFQs) to suppliers with a given reserve
price, quantity, type and delivery date. A supplier receives all RFQs on a given day, and
processes them together at the end of the day to find a combination of offers that approxi-
mately maximizes its revenue. On the following day, the suppliers send back to each agent
an offer for each RFQ with a price, a possibly adjusted quantity, and a due date. Due to

2

capacity restrictions, the supplier may not be able to supply the entire quantity requested
in the RFQ by the due date. Thus, it responds by issuing up to two modified offers, each of
which relaxes one of the two constraints:

• Quantity, in which case offers are referred to as partial offers.

• Due date, in which case offers are referred to as earliest offers.

The suppliers have a limited capacity for producing a component, and this limit varies
throughout the game according to a mean reverting random walk. Moreover, suppliers also
limit their long-term commitments by reserving some capacity for future business. The
pricing of components is based on the ratio of demand to supply, and higher ratios result in
higher prices. Each day the suppliers estimate their free capacity by scheduling production
of components ordered in the past and components requested that day as late as possible.
The price offered in response to an RFQ is equal to the requested components base price
discounted by a function proportionate to the supplier’s free capacity before the RFQ due
date. The manufacturer agents normally face an important trade-off in the procurement
process: pre-order components for the future where customer demand is difficult to predict,
or wait to purchase components and risk being unsuccessful due to high prices or availability.

A reputation rating is also used by the suppliers to discourage agents from driving up
prices by sending RFQs with no intention of buying. Each supplier keeps track of its interac-
tion with each agent, and calculates the reputation rating based on the ratio of the quantity
purchased to quantity offered. If the reputation falls bellow a minimum value, then the
prices and availability of components are affected for that specific agent. Therefore, agents
must carefully plan the RFQs sent to suppliers.

2.2 Computer Sales

The server simulates customer demand by sending customer requests for quotes (RFQ) to the
manufacturer agents. Each customer RFQ contains a product type, a quantity, a due date, a
reserve price, and a daily late penalty. Moreover, these customer requests are classified into
three market segments: high range, mid range, and low range. Every day, the server sends a
number of RFQs for each segment according to a Poisson distribution, with an average that
is updated on a daily basis by a random walk. The total number of RFQs per day ranges
between 80 and 320, and demand levels can change rapidly throughout the game. Thus,
agents are limited in their ability to plan sales, production and procurement.

The manufacturer agents respond to the customer RFQs by bidding in a first price sealed
bid reverse auction: agent’s cannot see competitors bids, and the lowest offer price wins the
order. Agents do receive market reports each day that inform the highest and lowest winning
bid prices on the previous day.

3

2.3 Production and Delivery

Each manufacturer agent manages an identical factory, where it can produce any type of
computer. The factory is simulated by the game server, and also includes a warehouse
for storing components and finished computers. Each computer type requires a specified
number of processing cycles, and the factory is also limited to produce 2000 cycles (approx.
360 units) per day.

Each day the agent sends a production schedule to the game server, and the simulated
factory produces computers in the schedule for which the required components are available.
A delivery schedule is also sent to the server on a daily basis, and it must specify the products
and quantities of computers to be shipped to each customer order on the following day. Only
computers available in inventory can be shipped to customers.

2.4 Related Work

Development teams of TAC SCM agents have proposed several different approaches for tack-
ling important sub-problems in dynamic supply chains. Deep Maize [6] uses game theoretic
analysis to factor out the strategic aspects of the environment, and to define an expected
profitable zone of operation. The agent uses market feedback [8] to dynamically coordinate
sales, procurement and production strategies in an attempt to stay in the profitable zone.
SouthamptonSCM [7] presents a strategy for using fuzzy reasoning to compute bid prices on
RFQs. RedAgent [11] presents an internal market architecture with simple heuristic-based
agents that individually handle different aspects of the supply chain process. TacTex [9]
presents machine learning techniques that were extended to form the customer bid price
probability distributions in CMieux. The TacTex-05 team also offers considerable insight
into the overall strategy behind their first-place agent in [10]. The Botticelli team [3] shows
how the problems faced by TAC SCM agents can be modeled as mathematical programming
problems, and offers heuristic algorithms for bidding on RFQs and scheduling orders.

3 CMieux

A typical supply chain [4] may involve a variety of participants, such as: customers, retail-
ers, wholesalers/distributors, manufacturers, and component/raw material suppliers. The
objective of a supply chain is to maximize the overall value it generates, which is typically
measured through profitability.

In a direct sales model [4], such as the one used by Dell Inc., a leading PC distributor,
manufacturers fill customer orders directly. Retailers, wholesalers and distributors are by-
passed, leaving only three participants - customers, manufacturers and suppliers. This is
the most dynamic supply chain framework presently in use, which is the main reason that
TAC is built around this SCM model. However, TAC SCM goes beyond the limits of present

4

(a) B2C Interaction Overview

(b) B2B Interaction Overview

Figure 2: Primary interactions between modules for B2C and B2B operations in CMieux.

practices by providing manufacturers with the opportunity to simultaneously search daily for
the best supply prices, while concurrently adjusting asking prices based on changing market
conditions.

Competitiveness in dynamic supply chain scenarios, such as those considered in TAC
SCM, require significantly tighter integration of procurement, bidding and planning func-
tionality than implemented in today’s systems [1]. CMieux is dynamic supply chain trading
agent that implements novel adaptive strategies to support this type of integration. In con-
trast to many other TAC SCM entries, CMieux continuously re-evaluates both low-level
strategies, such as its current procurement plan, and high-level strategies, such as its current
target market share.

5

3.1 Overview

Figure 2 shows the architecture of our CMieux supply chain trading agent, highlighting key
interactions between its five main modules. The bidding module is responsible for responding
to customer requests with price quotes. The procurement module sends RFQs to suppliers and
decides which offers to accept. The scheduling module produces a tentative assembly schedule
for several days based on available and incoming resources (i.e. capacity and components).
The strategy module makes all high-level strategic decisions, such as what fraction of the
assembly schedule should be promised to new customers and what part of the demand to
focus on. The forecasting module is responsible for predicting the prices of components and
the future demand.

Figure 3 gives a general overview of CMieux’s main daily execution path. The agent
begins by collecting any new information from the server, such as the new set of supplier
offers, and customer requests. This information is fed to the forecast module, which updates
its predictions of future demand and pricing trends accordingly. The forecast demand is
given to the strategy module to determine what part of it our agent should target. From
the set of forecast future RFQs the strategy module chooses a subset as the target demand.
The procurement module then determines whether or not to accept each newly acquired
supplier offer. All offers from suppliers are accepted unless they are too late to be useful,
or too expensive to remain profitable. The scheduling module builds a tentative tardiness
minimizing production schedule for up to twenty days in the future. The schedule includes
the agent’s actual orders, and the future orders composing the target demand. The target
demand orders are used to determine how many finished PCs the agent has Available to
Promise (ATP).

On the Business to Consumer (B2C) side, the strategy module uses the tentative ATP
and the forecast selling conditions from the forecasting module to determine what the agent
Desires to Promise (DTP). The DTP is used by the bidding module, along with learned
probabilistic models of competitor pricing. The bidding module chooses prices to maximize
the agent’s expected profit, while offering the amount of products specified by the DTP in
expectation.

The procurement module determines how many components are needed to reach the level
of inventory specified by the strategy module. It compares the desired levels to the projected
levels, and determines what additional components are needed. Each day the procurement
module attempts to procure a fraction of the needed components based on the prices and
availability predicted by the forecasting module.

3.2 Forecast Module

The forecast module is an important part of the pro-active planning strategies employed
by CMieux. It helps inform a number of key decisions, such as the planning of RFQs sent

6

1. Update daily data structures with server information.

2. Forecast Module → update forecasts.

• Predict future orders and prices using regressions

• Predict component arrivals based on observed delays

3. Strategy Module → compute target demand.

4. Procurement Module → accept supplier offers.

• Accepts offers that are reasonably priced.

• Accepts partial offers that are sufficiently large.

• Accepts earliest offers that are not excessively late.

5. Scheduling Module → make production schedule.

• Uses dispatch scheduling and minimizes tardiness.

• Available to Promise (ATP) products come from scheduled forecast orders.

6. Strategy Module → compute target sales.

7a. Bidding Module → compute customer offers.

– Probability models of competitor pricing are used to maximize expected profit and sell
DTP in expectation.

7b. Procurement Module → send supplier requests.

– Target demand is broken into requests to minimize expected offer cost.

Figure 3: Overview of CMieux’s daily main loop.

to suppliers and the setting of target market shares for different end products, about the
current and future market landscape. A formal description of the main inputs and outputs
of the forecast module are provided in Figure 4, the following outlines the module’s two
primary functions.

7

Forecast Inputs and Constants:

• R, the set of observed customer RFQs.

• OC, the set of customer orders received by the agent.

• OS, the set of supplier orders received by the agent.

• DF, the number of days to forecast into the future.

Forecast Outputs:

• R̂, a set of RFQs representative of those the agent will see up to DF days in the future.

• fC : j, d → R, a function predicting the selling price of SKU j on day d.

• fS : k, d → R, a function predicting the purchase price of component k on day d.

Figure 4: Forecast module inputs and outputs.

3.2.1 Customer Demand Forecasting

The first responsibility of the forecast module is to predict a set of RFQs representative of
those our agent expects to see in the future. These RFQs are used by the strategy module
to determine the agent’s target demand. The forecast module generates a representative set
of RFQs by predicting the mean and trend of the customer demand from past observations.
Each of the different product grades (high, medium and low) in TAC SCM is governed by
its own mean and trend. The actual number of RFQs of each type received each day is
drawn from a Poisson distribution with the mean of that type. The mean for each product
type changes geometrically each day based on the trend (the trend is multiplied by the
mean and the result is added to the subsequent day’s mean), and the trend is changed by
a small amount each day according to a random walk. The forecast module attempts to
predict each of the changing mean and trend of the Poisson distribution governing demand
separately, using a linear least squares fit of observations from the past several game days.
The predicted trends along with parameters given in the game specification are used to
generate an appropriate set of RFQs.

3.2.2 Price Forecasting

The second responsibility of the forecast module is predicting the selling price of each prod-
uct, and the purchasing price of each component up to DF days into the future. This

8

information is useful to several of the other modules in the agent, such as the procurement
module, that base decisions on current market conditions. The product selling prices are
predicted in the same fashion as the demand trends. A linear least squares (LLSQ) fit is
computed for the selling prices of each product over the past several game days (addition-
ally, we enforce lower and upper bounds on the predictions to ensure they remain relatively
conservative).

The purchasing prices from a particular supplier are predicted using a nearest-neighbor
(NN) technique based on historical prices quoted from that supplier. The forecast module
predicts supplier prices on a particular day in the future by averaging observed quotes with
nearby due-dates. Figure 5 shows examples of these two prediction techniques. On any
given day in TAC SCM the agent is limited to a maximum of 5 requests per supplier and
component type. Any of the requests that are unused by the procurement module are used
as probes to aide the NN prediction of the forecast module. The probe dates are chosen to
provide the most information, by picking days that are farthest from existing observations.

 30

 40

 50

 60

 70

 80

 90

-10 -5 0 5 10

C
us

to
m

er
 D

em
an

d
M

ea
n

Day, d

Forecasting Customer Demand Example

Observed Demand
Demand Lower Bound
LLSQ Mean Prediction

(a) Customer Demand Forecasting

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20 25

P
ur

ch
as

e
P

ric
e

(f
ra

ct
io

n
of

 b
as

e)

Day, d

Forecasting Supplier Price Prediction Example

Observed Prices
Nearest Neighbor Predictions

(b) Supplier Price Forecasting

Figure 5: Examples of the techniques used by the forecast module to predict prices.

An additional responsibility of the forecast module is predicting the delays that the agent
can expect on outstanding supplier orders. Suppliers delay the shipment of orders when their
capacity stochastically descends below the level they had previously promised. The forecast
module predicts the delays on outstanding orders based on the delays observed previously
for each supplier and component type. For each product line it determines the delay on the
most recent order and propagates it as the expected delay on all other outstanding orders.
This relatively simple technique helps the planning aspects of the agent react early to a
potential back-log in supplies.

9

3.3 Strategy Module

The strategy module continuously re-evaluates and coordinates strategic decisions, including
setting market share targets and selling quotas. These targets are continously tweaked to
reflect both present and forecast market conditions.

More specifically, the strategy module determines what subset of the forecast customer
RFQs the agent should aim to win (the “target demand”) and what fraction of the its
finished products the agent should plan on selling on any given day (the “desired to promise”
products, or DTP). In other words, the strategy module modulates how the output of the
forecast module impacts the procurement, scheduling and bidding modules (as illustrated in
Figure 2). The primary inputs and outputs of the strategy module are summarized formally
in Figure 6.

Strategy Inputs and Constants:

• O, the set of pending orders.

• R̂, future customer RFQs from forecast module.

• fC, customer price function from forecast module.

• fS, supplier price function from forecast module.

• SATP, the component of the production schedule from the scheduling module allocated to
future orders.

Strategy Outputs:

• Ô, the set of orders representing a target demand, generated from actual orders and forecast
future RFQs.

• Ŝ, quantities of PC that the agent currently desires to promise each day (DTP).

Figure 6: Strategy module inputs and outputs.

3.3.1 Computing Target Demand

On any particular day in the game, the strategy module must first determine the agent’s
target demand from the forecast demand. The goal of the strategy module is to target a
fraction of the forecast demand that will lead to the highest overall profit (this is the agent’s
ultimate goal). In TAC SCM each agent competes with only five other agents. The agents

10

can significantly impact their own profit margins by flooding or starving a market. Thus,
targeting a larger percentage of the forecast will push profit margins down. On the other
hand, agents have a limited factory capacity each day. If products are selling for a profit
and factory capacity goes un-utilized, the un-used capacity is lost earning potential. This
creates the need for a balance between decreasing target demand to increase profit margins,
and still targeting enough demand to maintain high factory utilization.

The strategy module uses a heuristic to address this problem. When products are selling
for a profit, it always targets exactly enough demand to stay at full utilization. The relative
percentage of each product, or the product mixture, used to fill the target to full capacity is
slightly adjusted each day based on the profit margin change of each product type. When
the profit margin of a product increases (decreases), its relative percentage in the product
mixture increases (decreases) slightly. Figure 7 summarizes this adjustment process for a
single product.

Forecast
Demand

for
Product 1

Target
Demand %

+ Profit∆

− Profit∆

Figure 7: The strategy module adjusts the percentage of forecast for each product that enters
target demand based on change in profit margin.

When a product is no longer being sold for a profit, the strategy module calculates
the product mixture in the same way. However, the mixture is post-processed so that the
contribution of the unprofitable product is significantly decreased1. This may cause the total
target demand to fall below full factory utilization2.

1In practice we found that completely removing unprofitable products from the product mixture provided
too much of an advantage to competing agents. This motivated our decision to allow the agent to occasionally
sell a small percentage of products at a loss.

2During the tail of a game the agent revises this heuristic to ensure it completes the game with as little
inventory as possible

11

3.3.2 Computing Desired to Promise (DTP)

After the target demand is computed by the strategy module, it is used by the scheduling
module to develop a tentative production schedule for several days into the future (the
scheduling window). The scheduling module uses information about incoming and available
components, as well as previously committed orders. Using this information it determines
when, if at all, each of the target orders will be produced (this process is described in
Section 3.4). The part of this schedule assigned to filling target demand orders (as opposed
to actual orders) indicates production that is not yet allocated to filling existing customer
orders, or the available to promise (ATP) production.

As we have already explained, even at times when selling is profitable, an agent does not
desire to sell more than it has to in order to maintain full factory utilization. Doing so can
result in a flooded market and diminished profit margins. To avoid this, the strategy module
uses the ATP schedule to determine what the agent actually desires to promise each day
(the DTP). In an effort to sell as little as possible and still maintain full factory utilization,
the DTP consists of PCs appearing only in the first two day of the ATP schedule. The first
two days of the ATP include un-promised finished products and un-promised products being
produced that day (see Figure 8). This technique for computing the DTP ensures that the

Product 16

10 1815 222

... ...
13 150

1912 16

22 19

5 15

Product 1

Product 2

DTP

0 1 3 42 ...Day

ATP

Figure 8: The strategy module instructs the agent to promise the first two days of available
PCs.

agent never sells more than its available capacity and left over inventory for a single day.
It also guarantees that the products being sold are as flexible as possible with respect to
satisfying customer requests. Since all of the DTP is available to ship on the very next day,
it allows the bidding module to safely bid on any customer request without worrying about
late penalties.

3.4 Scheduling Module

The scheduling module continuously maintains a production schedule over a horizon of sev-
eral days. This schedule reflects current contracts, forecast contracts and projected com-

12

ponent inventory levels. It helps drive other planning decisions including which customer
RFQs to bid on and which RFQs to send to suppliers.

More specifically, the scheduling module makes a tentative production schedule for DS

days into the future. The primary inputs and outputs of the module are summarized formally
in Figure 9. The inputs include a set of orders, Ô, from the strategy module and the projected
component inventory, I, for the remainder of the game. The orders in Ô represent the target
demand of the agent and include both actual and forecast future orders.

Scheduling Inputs and Constants:

• Ô, a set of orders representing target demand from strategy module, each order i includes the
following information:

– di, the due date of the i’th order.

– pi, the daily late penalty associated with the i’th order (the contractual penalty for
actual orders and a small constant for forecast orders).

– si, the SKU for the product type associated with the i’th order.

– qi, the quantity of products associated with the i’th order.

– bi ∈ {0, 1}, a flag indicating whether or not the i’th order is an actual order or a
forecast order.

• I, the projected component inventory for all remaining days. Idk is the projected inventory
level of component k on day d.

• DS, number of days in the schedule (scheduling window)

• α, the slack weighting parameter for ATC priorities.

Scheduling Outputs:

• S, a production schedule for DS days, Sd is the set of orders scheduled for production on
day d.

Figure 9: Scheduling module inputs and outputs.

3.4.1 Production Scheduling

The scheduling module uses a heuristic to sort orders according to “slack” (time before due
date) and penalty, and a greedy dispatch technique to fill the production schedule. The

13

dispatch technique (presented in pseudo-code in Figure 11) proceeds as follows. It iterates
through each day in the scheduling window and computes the priority of each unscheduled
order during each iteration. The priorities are computed according to the Vepsalainen’s
apparent tardiness cost (ATC) dispatch rule [13]. The ATC priority favors orders with large
penalties and little time to complete, since these are likely to be orders that require the
most immediate attention. The slack weighting parameter, α, dictates the exact trade off in
priority between slack and tardiness. An example of the ATC priorities for different orders
with α = 1 (the value used in our agent) is graphed in Figure 10 as the scheduling day
increases.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14

A
T

C
 O

rd
er

 P
rio

rit
y,

 π
i

Scheduling Day, d

Example ATC Order Priorities

Due Date = 5, Penalty = 1
Due Date = 10, Penalty = 2
Due Date = 10, Penalty = 1

Figure 10: Example of ATC priorities for different orders on different scheduling days (α = 1).
Notice that ATC prioritizes by penalty once an order’s due date is reached, and by slack for
orders with the same penalty.

While building a particular day’s segment of the production schedule, the dispatch sched-
uler attempts to add each order to the production schedule according to its priority (orders
with larger priorities are considered first). When an order is considered, the scheduler deter-
mines whether or not there are enough available resources (i.e. capacity and components)
on the current day of the iteration through the scheduling window. If there are enough
unclaimed resources, the order is scheduled for production and the necessary components
and production cycles are allocated. If there are not enough resources available on the day
in question, the order is removed from the queue and is considered again the next day. The
scheduler proceeds to the following day when all orders have been considered and either
scheduled or delayed. This entire process repeats until the scheduling window is exceeded.

3.5 Bidding Module

The bidding module is responsible for responding to a subset of the current customer RFQs.
Its goal is to sell the resources specified in the DTP at the highest prices possible. The
inputs and outputs of the bidding module are formally summarized in Figure 12.

14

procedure dispatch(O, I, DS, α)

O′ ← O
for d = 0 to DS do

Sd ← ∅
sort O′ according to apparent tardiness priority. Priority of the i’th order, πi, is calculated as:

πi = pi

[

exp

(

−
1

α
max(0, di − d)

)]

while O′ 6= ∅ do
pop the highest priority order oi from O′

if has inventory(oi, Id) and has capacity(oi, Sd) then
schedule production(oi, Id, Sd)

end if
end while
O′ ← O \ S

end for

Figure 11: A summary of the Apparent Tardiness Cost (ATC) dispatch scheduling technique
used by the scheduling module.

3.5.1 Bidding for Customer Orders

The bidding module maintains a probability distribution, G, for each product type that
specifies the likelihood of winning a particular RFQ for that product type at any price.
The distributions are learned off line using RFQs from previously played games to build a
modified regression tree called a distribution tree. The tree provides a Normal distribution
over winning bid prices for each RFQ based on its features (such as due date, penalty, and
reserve price) and the features of the market at the time it was sent (such as the previous
day’s high and low winning bid prices). The distributions are used to select offers that
maximize expected revenue, subject to the restriction that the expected amount of products
sold is less than or equal to the DTP.

The bidding module addresses the bidding problem separately for each product type, and
reduces its task to a continuous knapsack problem (CKP) instance. The CKP is a variant
of the knapsack problem classically studied in operations research. The CKP asks: given
a knapsack with a weight limit and a set of weighted items – each with its value defined
as a function of the fraction possessed – fill the knapsack with fractions of those items to
maximize its value. In the CKP instance reduced from the bidding problem for a specific
product type, the items are RFQs for that product with weights equal to their quantities.

15

Bidding Inputs and Constants:

• R, the set of current RFQs.

• G : r, p → (0, 1), a cumulative density function that takes an RFQ, r, and a unit price, p,
and provides the probability that the winning price for r will be greater than p.

• G−1 : r, (0, 1) → p, the inverse of G, takes an RFQ and a probability and returns the
corresponding price.

• Ŝ, the DTP from strategy module.

Bidding Outputs:

• F C, a set of offers for customers. Each offer corresponds to an RFQ in R, and includes a
unit price.

Figure 12: Bidding module inputs and outputs (G and G−1 are maintained internally).

The weight limit in the CKP is the quantity of the product appearing in the DTP. The value
of a fraction, x, of an RFQ, r, is the expected unit revenue that yields a winning probability
of x. The expected unit revenue is defined as the probability with which the customer is
expected to accept the offer (as specified by the bidding module’s probability distribution)
times the offer price, G−1(r, x)× x.

CMieux uses a binary search algorithm to solve the CKP instance for each product
that is guaranteed to provide a solution within ǫ of optimal expected revenue. The search
algorithm operates on the derivatives of the expected unit revenue functions. It finds the
largest derivative value corresponding to a solution that does not violate the weight limit of
the knapsack. Since the distributions are Normal the expected unit revenue functions are
strictly concave, and the solution corresponding to the largest feasible derivative value is
optimal. For full descriptions of the reduction to a CKP, the ǫ-optimal algorithm, and the
probability distributions used in CMieux the reader is directed to [2]3.

3.6 Procurement Module

The procurement module handles all aspects of requesting and purchasing components. It
is designed to rapidly adapt to changing market conditions. Each day, it considers sending
requests with widely varying quantities and lead times in an effort to exploit gaps in current
supplier contracts. By finding such gaps, or slow days for the suppliers, the agent ensures

3A sister paper based on this technical report has also been submitted to ICEC’06.

16

that its procurement prices tend to fall below its competitors. The flexibility gained by
considering so many different procurement strategies in this way sets CMieux apart from
most existing supply chain practices, as well as those of other agents designed for TAC SCM.

Each day, the procurement module performs two tasks: i.) it attempts to identify a
particularly promising subset of current supplier offers, and ii.) it constructs a combination
of RFQs to be sent to suppliers that balances the agent’s component needs with identified
gaps in current supplier contracts.

The procurement module takes as input the set of recent supplier offers, the projected
inventory, the target demand and the forecast pricing functions (see Figure 13).

Procurement Inputs and Constants:

• F S, the set of offers from suppliers.

• I, the projected component inventory for all remaining days. Ikd is the projected inventory
level of component k on day d.

• Ô, target demand from strategy module.

• fC, customer price function from forecast module.

• fS, supplier price function from forecast module.

• 〈D−, D+, DG〉, the earliest, and latest days to consider requesting for, and the granularity
to discretize search.

• KS, the number of requests allowed per supplier.

Procurement Outputs:

• F̂ , the set of supplier offers to accept.

• Z, the procurement requests for each supplier. Zlk = {z1, . . . , zKS} is the set of requests
for supplier l and component k. Each request includes the following information:

– qi, the quantity of the request.

– di, the due date of the request.

– ri, the reserve price of the request.

Figure 13: Procurement module inputs and outputs.

17

3.6.1 Accepting Supplier Offers

The module accepts supplier offers using a rule-based decision process. The agent begins by
selecting offers that are satisfactory based on price, quantity and due date using historical
data. In an effort to keep the agent’s reputation as high as possible4, the agent first accepts
offers that satisfy the quantity and due date requirements of the corresponding RFQ (“full
offers”). Next, if still needed, satisfactory offers with relatively large quantities (“partial
offers”), or early due dates (“earliest complete offers”) are also accepted.

3.6.2 Sending Supplier Requests

Since offer prices, due dates and quantities are dictated by the specific requests they are
offers for, the primary responsibility of the procurement module is requisitioning. The req-
uisitioning procedure used in CMieux attempts to request some of the components it needs
(that it has not already purchased) to maintain its target production levels, each day. Its
main goal is to ensure that the prices offered in response to the requests are as low as possi-
ble. The requisitioning procedure chooses between many different lead times and quantities,
based on the forecast supplier market landscape.

In order to determine what requests to send to suppliers, the procurement module com-
putes, Î, the difference between the inventory required to maintain production levels specified
by the target demand, and the projected inventory for the remainder of the game (i.e. the
components that it needs but has not yet purchased). However, our agent does not need to
procure this entire difference each day. The components are not needed immediately, thus it
can divide the purchasing of components in Î across several days. To that end, the quantities
specified in Î beyond DS days in the future (the scheduling window) are linearly depleted.
This enables the agent to aggressively procure components within its scheduling window, so
that late penalties are not incurred on existing contracts. In addition, it allows the agent to
buy some of the components it needs well in advance, when they are likely to be cheapest.

The process of computing what specific requests to send to suppliers is then decomposed
by component type. For each component type, the procurement module generates several
sets of KS(the limit on RFQs sent each day) lead times and searches for the best set.

More specifically, the module uses brute force to enumerate all ways to choose a tuple
of KS + 1 dates between D− and D+, discretized by DG. The first KS dates in the tuple
specify the RFQ lead times. Each of the RFQs requests the components needed by the agent
between its lead time, and the next date in the tuple (this is why there must be one more
than KS dates in the tuple).

For example, if D− = 5, D+ = 20, DG = 5, and KS = 2, then the procurement module
would consider the following tuples of dates 〈5, 10, 15〉, 〈5, 10, 20〉, 〈5, 15, 20〉 and 〈10, 15, 20〉.
Each RFQ is used to procure the parts specified in Î between its due date and the subsequent

4Maintaining a perfect reputation was identified as an important strategic goal for the 2005 competition.

18

procedure request(I, Ô, f C, f S, 〈D−, D+, DG〉, KS)

let Î be a fraction of the difference between in-
ventory maintaining production levels of Ô, and
inventory available in I.
for each component, k do

d∗ ← {}

u∗ ← 0KS−1

for each set of KS + 1 dates, {d1, . . . , dKS+1},
between D− and D+, discretized by DG do

u← approx utility({d1, . . . , dKS+1}, Î, k, fC, f S)
if sum(u) > sum(u∗) then

d∗ ← {d1, . . . , dKS+1}
u∗ ← u

end if
end for
for i = 1 to KS do

let l be the supplier of k with the lowest price
on day di

qi ←
∑di+1

d=di
Îkd

zi ← 〈di, qi, u
∗
i /qi〉

Zlk ← Zlk ∪ {zi}
end for

end for
return Z

procedure approx utility({d1, . . . , dKS+1}, Î, k, fC, f S)

u← 0KS

let J be the products containing component k
for j ∈ J do

let βj and βk be base prices of product j and
component k from the game specification
for i = 2 to KS + 1 do

d← di−1

while d < di do

û←
(

βk

βj
f C(j, d)

)

− f S(k, d)

ui−1 ← ui−1 + Îkd
û
|J|

d← d + 1
end while

end for
end for
return u

Figure 14: Pseudo-code for the requisitioning procedure used by the procurement module.

due date in the tuple. Consider the tuple 〈5, 10, 15〉, which involves two RFQs. The first has
a lead time of 5 and a quantity equal to the sum of the parts specified in Î between 5 and
10 days in the future. The second RFQ has a lead time of 10 and a quantity equal to the
sum of the parts specified in Î between 10 and 15 days in the future.

The utility of the RFQs generated by each tuple is computed by approximating the sum
of the utility of the components they request and subtracting their forecast prices. In order
to approximate the utility of a component, k, we compute the ratio between its base price,
βk, and the base price of each product, j, it is included in, βj. The base price ratio, βk

βj
,

provides an approximation of the fraction of product j’s revenue attributable to component
k. Thus, the utility of a component is approximated as the average selling price, weighted
by the base price ratio, of each of the products it is included in. The cost of each RFQ is
given by the supplier pricing forecast function, f S.

19

The RFQs with the greatest utility for each component are sent to the appropriate
suppliers. The reserve price of each RFQ is set to be the average utility of the components
it includes. Figure 14 provides pseudo-code outlining this requisitioning process.

In addition, we augmented this flexible and dynamic requisitioning procedure with the
following improvements.

Increased bottleneck component utility: The utility of a component can be further
refined by taking into account situations where the agent has all but one of the components
required to assemble a particular type of PC (making it a bottleneck component). This sit-
uation can become more severe toward the end of the game as the agent faces the prospect
of being stuck with mis-matched components. For example, our agent can have hundreds of
motherboards, memory, and CPUs to make a specific product, and be missing only the hard
drives. To address this issue, the procurement module artificially inflates the base price ratio
of bottleneck components (such as the hard drives in the example), and decreases the base
price ratio of all other components5. The inflation factor is increased as the agent nears the
end of the game.

Dynamically refined search granularity: An additional observation was that, for short
lead times, supplier pricing was often drastically different even between lead times as little
as 1 day apart. In practice, our agent used a search granularity of about DG = 5 days, which
caused it to frequently miss promising early lead times. To address this issue, after finding
the most promising lead time tuple at a particular granularity our agent generated new sets
of tuples using finer and finer granularity around previously identified promising tuples. This
helped the agent more effectively cover the space without drastically effecting its runtime.

Parallelization across components: The requisitioning technique described above de-
composes its search through lead time tuples by component type. In order to give our agent
the ability to perform a finer search we parallelized the requisitioning process across mul-
tiple CPUs, each of which was responsible for considering a subset of components. Due to
the natural decomposition of our problem formulation, the parallel processes had no need
to interact (other than to aggregate their final solutions) making this a relatively simple
refinement to implement.

4 Empirical Evaluation

To validate the adaptive and dynamic techniques utilized in our agent we present two sets of
empirical results. The first, and more important set of results are taken from the 2005 TAC

5This can be thought of as a coarse approximation of a component’s marginal utility

20

SCM seeding rounds6, and summarize CMieux’s bidding and procurement performance over
200 games involving agents entered by 25 different teams. A second set of results is also
presented that examines the accuracy of our forecast module when it comes to predicting
supplier prices and customer demand. This includes looking at how well a top performing
agent such as CMieux is able to predict supplier prices using the limited number of RFQs
allowed by the game specifications as well as how accuracy is affected by the forecast horizon
in different game phases.

4.1 Procurement and Bidding Performance

Evaluating the performance of a supply chain trading agent is challenging even in the context
of TAC SCM. The competition effectively consists of two different tournaments:

1. a seeding round tournament featuring a large number of agents competing over a period
of 2 weeks in about 400 games

2. a set of final rounds, where small sets of agents are pitted against one another in a
relatively limited number of games (ranging from 8 to 16 per round).

Not only do they feature a small number of games but, because they repeatedly pit the same
agents against one another, final rounds also potentially reward destructive strategies that
may not be representative of real world competition (e.g. an agent disrupting competitors
at the expense of its own bottom line). In 2005, CMieux finished 4th in the seeding rounds
and reached the tournament’s semi-finals. While encouraging, these results only provide a
partial picture of CMieux’s performance. In this section, we provide a more in-depth analysis
of our agent during what can be viewed as the most competitive phase of the competition,
namely the 200 games played by the 25 agents participating in the second week of the seeding
rounds. All agents at that stage have already been fine tuned over the course of about 600
games (two weeks of qualifying rounds, and one week of seeding).

Specifically, our results provide a statistical comparison between the performance of the
agents with the top 5 mean overall scores during the second week of the seeding rounds,
namely CMieux (abbreviated CM), FreeAgent (FA), GoBlueOval (GBO), MinnieTAC (MT)
and TacTex-05 (TT).

Performance was measured so as to identify those agents that were able to extract the
highest sale price and lowest purchasing price in each game they played. Specifically, for
each of the top 5 agents in each game it played in we computed how far it was from paying
the least for its components and obtaining the most for its end products among the agents
playing in that particular game. This was measured as the relative difference from the best
average procurement price7 and the best average selling price. For each of the top 5 agents

6Competition data is available at sics.se/tac/scmserver
7All prices are considered as fractions of the corresponding product or component’s base price.

21

we report the mean (with 95% confidence intervals) of these values across all of the games
they each played in (see Figure 15).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

TTMTGBOFACM

D
iff

er
en

ce
 (

F
ra

c.
 o

f B
as

e
P

ric
e) Bidding

(a) Bidding Analysis

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

TTMTGBOFACM

D
iff

er
en

ce
 (

F
ra

c.
 o

f B
as

e
P

ric
e) Procurement

(b) Procurement Analysis

Figure 15: The mean (with 95% confidence intervals) difference between each of the top 5
agents’ average game unit price and the best unit price in the game, during the second week
of the 2005 TAC SCM seeding rounds.

The bidding results for all 5 agents are relatively similar. As can be seen, each of the
top 5 agents is on average within about 3% of the base price from being the best in its
games. However, while MinnieTAC (MT) was the closest to the best agent in its games,
with an average difference of about 2% of the base price, there is no statistically significant
difference between any of the top 5 agents (as evidenced by their overlapping confidence
intervals). On the other hand, the procurement results show that our agent, CMieux (CM),
is significantly closer to being the best than all 4 of the other top 5 agents. These results seem
to validate CMieux’s approach to tightly coordinating its bidding, planning and procurement
operations. They also suggest that the agent’s approach to optimizing the RFQs it sends to
suppliers (requisition process) was significantly more effective than the procurement strategies
implemented by its competitors.

4.2 Forecast Accuracy

In this section, we report additional results investigating how well a top performing agent
such as CMieux can predict supplier prices and customer demand, given the high degree
of stochasticity associated with these markets. This includes looking at how well the agent
is able to predict supplier prices, given the limited number of RFQs allowed by the game
specifications as well as how accuracy is affected by the forecast horizon in different game
phases.

22

Results reported below were obtained by pitting CMieux against 5 publicly available
agents8, namely TacTex-05, Phantagent, Mertacor, CrocodileSCM, GoBlueOval. All 5 of
these agents were among those qualifying for the final rounds of the 2005 competition.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 5 10 15 20 25 30 35 40

E
rr

or
 (

F
ra

c.
 o

f B
as

e
P

ric
e)

Lead Time (d)

Error in Forecast

Early Game
Mid Game
End Game

(a) Error in component price forecast as a function
of lead time in different game segments.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 5 10 15 20 25 30 35 40

E
rr

or
 (

F
ra

c.
 o

f B
as

e
P

ric
e)

Lead Time (d)

Error in Forecast

Early Game
Baseline

(b) Error of early segment component price predic-
tion with baseline that used unlimited probes.

 0

 50

 100

 150

 200

 0 100 200 300 400 500

C
us

to
m

er
 D

em
an

d
M

ea
n

Time Step

Forecast and Actual Demand Mean

Actual Demand
LR Forecast

(c) Example: forecast and actual customer demand
mean.

Figure 16: Empirical evaluation of the forecast module.

Figure 16(a) plots CMieux’s error in predicting supplier prices during the early, mid, and
late segments of the games as a function of lead time. For comparison purposes, the results
in Figure 16(b) show the error of the early segment predictions of both CMieux’s forecasting
technique and a baseline variant that relaxes the game’s restriction on the number of probes
that can be sent by an agent - results for the mid and end game phases are similar. The
plots provide the mean error (with 95% confidence intervals) as a fraction of component

8Agents are available at sics.se/tac/showagents.php

23

base price of all component price forecasts made during those segments. The prediction
error is measured for each possible lead time between 5 and 40 days at 5 day intervals. The
results show that the early segment of the game is the most difficult segment for CMieux’s
forecast module to accurately predict supplier pricing, for all lead times. Even the baseline
variant with unlimited number of probes is unable to achieve high accuracy during this
segment. This is not surprising considering that agents are not likely to have settled into an
equilibrium yet and are reacting to start up effects (effects introduced by the fact that all
agents begin the game with no components). Additionally, we can see that both our technique
and the baseline variant have more error when predicting prices on orders with shorter lead
times during all game segments. The difficulty of predicting prices with short lead times is
exaggerated during the early segment due to the previously mentioned instability. Despite
the instability we see that the greatest error in the supplier price forecasting is only about
10% of the base price, resulting from the prediction of short lead time prices during the early
segment of the game. Forecasting of orders with longer lead times, and short lead times later
in the game, is generally accurate within 95% of the base price.

Figure 16(c) shows an example of a changing customer demand mean, and the predictions
of the forecast module based on observations of draws from a Poisson distribution with that
mean. The results on this particular example show that the forecast module is relatively
effective at predicting the mean and following its trend. To gain a better understanding of
the effectiveness of our forecast module for predicting customer demand, we compared it to a
naive technique that assumed the current mean was the most recently observed sample from
the Poisson distribution. A more detailed analysis of our technique and the naive technique
across multiple games revealed that on average our forecast module was within 7% (plus
or minus 1% with 95% confidence) and the naive technique was within 12% (plus or minus
1% with 95% confidence) of properly predicting the mean of each product type’s demand
distribution. While this result does not show a largely significant difference between our
forecast module and the naive technique, our forecast module was much better at predicting
the trends of the means. Our technique was within 2% (plus or minus less than 1% with 95%
confidence) of predicting the trends on average, whereas the naive technique had an average
of about 18% (plus or minus 2% with 95% confidence) error when predicting the trends.

5 Conclusions

This paper presented a high level view of the interactions between the different modules
composing CMieux, Carnegie Mellon University’s 2005 TAC SCM entry, as well as detailed
descriptions of its decision making processes. CMieux’s architecture departs markedly from
traditional Enterprise Resource Planning architectures and commercially-available supply
chain management solutions through its emphasis on tight coordination between supply
chain bidding, procurement and planning.

24

CMieux finished 4th in the 2005 seeding rounds of the TAC SCM tournament and reached
the competition’s semifinals. In this paper, we presented a more in-depth analysis of the
agent’s performance based on 200 games involving agents entered by 25 different teams dur-
ing what can be seen as the most competitive phase of the 2005 tournament. The results
show that our agent performed on par with the best in its bidding while significantly out-
performing these agents in terms of procurement. These results seem to validate CMieux’s
approach to tightly coordinating its bidding, planning and procurement operations. They
also suggest that the agent’s approach to optimizing the RFQs it sends to suppliers (requi-
sition process) was significantly more effective than the procurement strategies implemented
by its competitors.

References

[1] R. Arunachalam and N. Sadeh. The supply chain trading agent competition. Electronic

Commerce Research Applications, 4(1), 2005.

[2] M. Benisch, J. Andrews, and N. Sadeh. Pricing for customers with probabilistic valu-
ations as a continuous knapsack problem. Technical Report CMU-ISRI-05-137, School
of Computer Science, Carnegie Mellon University, December 2005.

[3] M. Benisch, A. Greenwald, I. Grypari, R. Lederman, V. Naroditsky, and M. Tschantz.
Botticelli: A supply chain management agent. In Third International Joint Conference

on Autonomous Agents and Multi-Agent Systems, 2004.

[4] S. Chopra and P. Meindl. Supply Chain Management. Pearson Prentice Hall, New
Jersey, 2004.

[5] J. Collins, R. Arunachalam, N. Sadeh, J. Eriksson, N. Finne, and S. Janson. The supply
chain management game for 2005 trading agent competition, 2005.

[6] J. Estelle, Y. Vorobeychik, M. P. W. S. Singh, C. Kiekintveld, and V. Soni. Strategic
interactions in a supply chain game, 2003.

[7] M. He, A. Rogers, X. Luo, and N. R. Jennings. Designing a successful trading agent for
supply chain management. In Proceedings of AAMAS’06, 2006.

[8] C. Kiekintveld, M. P. Wellman, S. Singh, J. Estelle, Y. Vorobeychik, V. Soni, and
M. Rudary. Distributed feedback control for decision making on supply chains. In
Fourteenth International Conference on Automated Planning and Scheduling, 2004.

[9] D. Pardoe and P. Stone. Bidding for customer orders in tac scm. In AAMAS-04

Workshop on Agent-Mediated Electronic Commerce, 2004.

25

[10] D. Pardoe and P. Stone. Predictive planning for supply chain management. In Proceed-

ings of Automated Planning and Scheduling’06, 2006.

[11] D. P. Philipp W. Keller, Felix-Olivier Duguay. Redagent-2003: An autonomous, market-
based supply-chain management agent. In Third International Joint Conference on

Autonomous Agents and Multi-Agent Systems, 2004.

[12] N. Sadeh, D. Hildum, D. Kjenstad, and A. Tseng. Mascot: an agent-based architecture
for coordinated mixed-initiative supply chain planning and scheduling. In Proceedings of

Workshop on Agent-Based Decision Support in Managing the Internet-Enabled Supply-

Chain at Agents’99, 1999.

[13] A. Vepsalainen and T. Morton. Priority rules for job shops with weighted tardiness
costs. Management Science, 33(8):1035–1047, 1987.

26

