An Empirical Comparison of
Field Defect Modeling Methods

Paul Luo Li, Mary Shaw, Jim Herbsleb,
P. Santhanam*, Bonnie Ray*
May 2005
CMU-ISRI-06-102

Institute for Software Research International
School of Computer Science
Carnegie Mellon University

Pittsburgh PA, 15213

*Center for Software Engineering
IBM T.J. Watson Research Center
Hawthorne, NY 10532

This research was supported by the National Science FoundationGraaés ITR-0086003 and
CCF-0438929, by the Carnegie Mellon Sloan Software Center, and WyigheDependability
Computing Program from NASA Ames cooperative agreement N@298-: This research is
possible through an IBM joint study agreement.

Keywords: Empirical Studies, Metrics, Reliability EnginegriManagement, Measurement,
Reliability, Experimentation, Defect modeling, empirical reseaCOTS, maintenance resource
planning, software insurance

ABSTRACT

In this study, we report empirical results from forecastielflfdefect rates and predicting the
number of field defects for a large commercial softwastesn. We find that we are not able to
accurately forecast field defect rates using a combinedhiased and metrics-based approach, as
judged by the Theil forecasting statistic. We suggest plessionditions that may have
contributed to the poor results. Next, we use metrics-based apmdagheedict the number of
field defects within the six months after deployment. We find tha simple ratios method
produce more accurate predictions than more complex metrics-basieodseOur results are
steps toward quantitatively managing the risks associated withaseftield defects.

1 INTRODUCTION

The US Department of Commerce estimates that softigldedefects cost the U.S. economy an
estimated $59.6 billion dollars annually and that over half ofcthets are borne by software
consumers and the rest by software producers [24].

Field defect modeling may enable methods that mitigate theassksiated with field defects for
software producers and software consumers. Field defect modaingelp manage the risks by
guiding testing [9], improving maintenance resource allocation @Adsting deployment to
meet the quality expectations of customers [22], planningawggnent efforts [2], and enabling a
software insurance system [19].

In this paper, we report empirical results from modelingd fikefects for twelve releases of a
commercial operating system. The specific questions addressed byptriapa

1.Can a combined metrics-based and time-based forecasting approasiechéo accurately
forecast field defect rates?

2.Which metrics-based modeling method produces the most accuedietipns of the number
of field defects in the first six months after deployment?

Li et al. [15] has shown that it is possible to accurdfeigcast field defect rates before release
using a combined metrics-based and time-based method for an open source opetrating bgs
authors predict the parameters of Software Reliability Gravibdels (SRGMs) using metrics-
based modeling methods. In this paper, we attempt to predict fiedt dates for a commercial
operating system. However, we find that the same approach dogeldaccurate forecast for a
commercial operating system as judged by the Theil forecasttitigtic (explained in section 4).
We conjecture about the conditions under which accurate field tdefiec forecasts using the
combined time-based and metrics-based approach is not possible.

Next, we predict the number of field defects in the first sonths after deployment using
metrics-based methods from prior work. The predicted number of defleCts in the first six
months after deployment may allow assessment of the initialtyjodlthe software system and
may enable initial maintenance resource planning. We conagatgacy of predictions and find
that the simple ratios method produces more accurate predid¢tian other methods based on
absolute relative error (explained in section 4). We conjethatethe maturity of the software
development organization may have contributed to the superiority of the ratiosdn

Section 2 provides related work and motivation for our work. Se&ipnovides background
information on the commercial operating system. Section 4 provigdé&ghoand on the SRGMs,
metrics-based methods, and techniques for evaluating our re&dedtson 5 presents the results
and discussions.

2 MOTIVATION AND RELATED WORK

In this section we will discuss how previous work motivatesstudy. Discussion of the SRGMs
and metrics-based modeling methods are deferred to section 4.

2.1 Types of prediction

Predictions regarding field defects in prior work generally belongembfour categories:

¢ Relationships: These studies establish relationships eetyeedictors and the field defects.
For example, Harter et al. [6] establish a relationship between anzatjamis CMM level and
the number of field defects in projects completed by the organization.

¢ Classifications: These studies predict if the number of fieli@écts is above a threshold for a
given observation. For example, Khoshgoftaar et al. [9] classifjuies as risky (will contain
at least one field defect) or not risky (no field defects) for changed modules

¢ Quantities: These studies predict the number of field defEotsexample, Khoshgoftaar et al.
[13] predict the number of defects for modules of two software systems.

¢ Rates of occurrences over time: These studies predict ilel&gect rate. For example, Kenny
[8] predicts the field defect rates captured by the Weibull madéivo IBM systems.

In this paper, we first attempt to predict the rate of field defects. Fieddtdate forecasts answer
how many field defects will occur and how the field defects balldistributed over time. This
type of prediction is preferred for methods that mitigate iles rassociated with field defects as
discussed by Li et al. in [18].

Since we are unable to predict the rate of field defedatarately, we attempt to predict the
number of field defects in the first six months after deploymehis Pprediction may allow
decision makers to make initial plans.

2.2 Prediction approaches
Field defect predictions generally belong to one of two clasises-based approach and metrics-
based approach. Schneidewind [27] distinguish between these two approaches:

1.Time-based approach: This approach uses defect occurremsedirthe number of defects in
time intervals during testing to fit a software relidgilmodel. The rate of field defects is
estimated using the fitted software reliability model. Lyu [20] desstibis approach in detail.

2.Metrics-based approach: This approach uses historicahmaf@mn on metrics available before
release (predictors) and historical information on field dsféx fit a predictive model. The
fitted model and predictors’ values for a new observation aeel i3 make predictions.
Examples of this approach are in Mockus et al. [22] and Khoshgoftal{ @}t

In order for the defect occurrence pattern to continue fronmgeistto the field, the software has
to be operated in a similar manner as that in which reliabilégliptions are made. The similarity
of testing and deployment environments assumption is one of thesgemptions for the time-
based approach cited by Farr in [20]. However, we areeistted in widely-used systems such as
COTS and open source software systems. The similaritytoigesnd deployment environments
assumption does not necessarily hold or these systems. Theiiefmay not be appropriate to
forecast field defect rates using a software reliability méttetl using testing information.

Unlike the time-based approach, the metrics-based approachhissmscal information on
predictors and actual field defect information to construct aigirégl model. Since there is no
assumption about the similarity between testing and deploymeirbements, metrics-based
models are more robust against differences between how thasofs tested and how it is used
in the field.

Prior work has used the metrics-based approach to prediéomeladps (e.g. Harter et al. [6]),
classifications (e.g. Khoshgoftaar et al. [13]), and quantitegs Mockus et al. [22]); however,
only no previous study forecasted the rate of field defects.

Li et al. [15] forecast field defect rates using a novethoe that combines metrics-based and
time-based approaches. The authors use metrics-based modetimgdsnéo predict model
parameters of SRGMs, which captures the rate of field wef@®esults show that accurate
predictions are possible. In this paper, we first use the coohbiime-based and metrics-based
approach to predict the rate of field defects, and then we usiesrsased modeling methods to
predict the number of field defects in the first six months after mleas

Khoshgoftaar and Seliya have compared the prediction accurasevefral metrics-based
methods in [15]. We differ from Khoshgoftaar and Seliya inghnays. First, we predict for
entire software releases, where as Khoshgoftaar and Selpghctpfor software modules.
Secondly, we use a real-time evaluation technique (explainedtiorsd) to compare methods.
Finally, we consider three additional methods: the moving gesranethod, the exponential
smoothing method, and the ratios method.

2.3 Categories of metrics
Metrics-based prediction methods require metrics. Metiiedable before release greedictors,
which can be used by metrics-based modeling methods.

We categorize predictors used in prior work using an augmentsibiveof the categorization
schemes used by Fenton and Pfleeger in [5] and Khoshgoftaar and Allen [9]:

¢ Product metrics: metrics that measure the attributesmyfintermediate or final product of the
software development process. Product metrics have been showmtpdotant predictors by
studies such as Khoshgoftaar et al. [9].

e Development metrics: metrics that measure attributes of dbeelopment process.
Development metrics have been shown to be important predictorsdigsssuch as Mockus et
al. [21].

¢ Deployment and usage metrics (DU): metrics that measuibusts of deployment of the
software system and usage in the field. DU metrics have slemvn to be important predictors
by studies such as Jones et al. [7].

o Software and hardware configurations metrics (SH): mettie¢ measure attributes of the
software and hardware systems that interact with the seftsyetem in the field. SH metrics
have been shown to be important predictors by Mockus et al.[22].

Li et al. [15] uses predictors in each category (145 prediatoadl)i to predict the rate of field
defects; however, the authors suggest that predictions may be possigléewer metrics. In this
study, we attempt to make predictions using only four development metrics.

3 DATA AND SYSTEM DESCRIPTION

The operating system we examine is developed by IBM and isumar@oduct with many years
of presence in the marketplace.

The defect-occurrence data collected are code-related prolmecsvered and reported by
customers after deployment. The defect-occurrence data for thatingesystem contain unique
field defects that led to code changes by the development organization.

The defect-occurrence data provided to us are pre-processed ardadem, so we use the
interval in the data set. The time interval for the operating syistanquarter (i.e. 3 months).

In addition to field defect occurrence data, we also have gajge change information and
development defect information. For each release, we Havdotal lines of code changed
relative to the previous release and the number of in-process (i.eoleeelt) defects.

Using the field defect occurrence data and lines of code-changedvea also compute two
derived metrics. We compute the number of field defects in #hequs release observed during
the development period. This metrics is used by Khoshgoftaar et [dl1]i We computed the
ratio of the amount of code changed in the current release nbunt of code changed in the
previous two releases. This is similar to the relative adden metric used by Nagappan and
Ball in [23]. The metrics used are summarized in table 1.

Tablel. Predictors

Metric Description
Changed lines Lines of code changed relative to the previous release
Dev defects Number of in-process (i.e. development) defects
Prev defects Number of field defects in the previous release observedttiering
development period of the current release
Ratio changed Ratio of the amount of code changed in the current teldasamount
of code changed in the previous two releases

4 PREDICTION AND ANALYSIS METHOD

In this section, we describe the SRGMs used to model thedet&tt rates, the metrics-based
modeling methods, and the techniques for evaluating forecasts andipnadict

In this paper, we simulate a real world situation by makimgcasts and predictions in the first
six months after release using only information availablehattime of release for multiple
releases.

Prior work either inadequately addresses multiple releasgses not account for multiple active

releases. Some studies (e.g. Khoshgoftaar et al. [13]dapditfrom the same release into fitting
and testing sets. This approach ignores possible differenceedvetleases that are not

accounted for in the model. Some studies (e.g. Ostrand et aluggsh model fitted using data

from a historical release to predict for future releaseswvd¥er, this approach assumes that
complete field defect information is available for histdricgdeases; yet, complete field defect
information is often not available for historical releases treastit active in the field.

When predicting the rate of field defects, we estimate mpdedmeters for active historical
releases using only information available at the timeelgfase. This is the same approach taken
in Li et al. [15]. When predicting the number of field defects infitse six months after release,
we use information from historical releases that have comgéfet information (i.e. have been
in the field for more than six months) at the time of release.

4.1 Software reliability growth models

Li et al. [18] have compared the ability of SRGMs to midtle rate of field defects of the
commercial operating system. Based on post-facto fits thergutonclude that the Weibull
model is superior to other models.

However, the results in Li et al. [18] are based on post-fatdo lfi et al. [15] suggest that
Weibull model parameters may be harder to predict comparedneitlel parameters of simpler
models (e.g. the exponential model). Therefore, we also consideratinen& model and the
Exponential model, which have been shown to be the next most effentidels at modeling
field defect rates. The models forms are in table 2. The model parafireteokl) dictate the rate
of field defects. To forecast field defect rates, we ustios-based modeling methods to predict
these model parameters.

Table2. Software reliability models

Modéd type Modd form

Exponential M) =Nae
Weibull A(t) =NaBt“'1 e~ Bt*
Gamma AM)=N g t“te P!

4.2 Metrics-based modeling methods

Prior work (e.g. Jones et al. [7], Ostrand et al. [25], Khoshgoftaial. [11], Khoshgoftaar and
Seliya [14]) has explored using various metrics-based modeliigon® to predict quantities
(e.g. the total number of field defects). Given our data constisme of the methods used in

previous studies may not be appropriate (e.g. there is not enougihgrdata); however, for
completeness we attempt each method. We discuss the methods and our roodificat

4.2.1 Principle component analysis, clustering, and linear regression
We roughly replicated (explained below) the principle component sisdCA), clustering, and
linear regression method in Khoshgoftaar et al. [12] .

Khoshgoftaar et al. [12] first constructed principle components amddlstered observations

based on the principle components. Finally, linear models wezd fititthe observations in each
cluster. To predict for a new observation, the observation veaeglinto one of the clusters

based on its predictors’ values. The fitted linear model forltister was then used to predict the
value of the new observation.

Khoshgoftaar et al. [12] predicted field defects for modules usingddupt metrics. The authors
used 260 observations to fit the model and used four clusters. ®mdead at most 11
observations, we modified the process to use two clusters ditdataull linear model (i.e. an
average of the observations) for each cluster. In additioljdvweot have enough observations to
perform a PCA for most of the releases; therefore, wendidperform a PCA. We used the
popular K-means clustering method, since the referenced work didlenitfy the clustering
method used.

4.2.2 Linear regression with model selection

We replicated the linear regression with model selection methgtoshgoftaar et al. [13]. The
idea behind linear regression is that changes in a ppedietilue changes the predicted quantity
by a fixed amount. Model selection balances the bias-variande-af& by including only
predictors that have the most amount of benefit or by droppingcpoegiithat have the least
amount of benefit as judged by a model selection criterion (e.g. AIC).

Khoshgoftaar et al. [13] used backwards and stepwise modeliaeléathniques to select a
subset of predictors. A linear regression model was fiisdg the selected predictors and the
least squares method. To predict for a new observation, #uicfars’ values and the fitted
model were used to estimate the value.

Khoshgoftaar et al. [13] predicted field defects for moduleswaf $ystems using 8 product
metrics for one system and 11 product metrics for the othernsy3the authors work used 188
and 226 observations to fit models for the two systems. Due to @aaaints, we modified our
model selection method to select only one predictor to prevemtfittveg. Since no model
selection criterion was identified in the paper, we used the populamatel selection criterion.

4.2.3 Non-linear regression

We replicated the non-linear regression method used in Khoshgeftal. [10]. The idea behind
non-linear regression is that changes in predictor's value chdregeredicted value by a
parameterized amount.

Khoshgoftaar et al. [10] constructed a non-linear model using nearlieast squares regression
of the form:

y =ho+ by * (LOC) ™
y = number of faults, H b, , b, were modeling parameters, LOC was lines of code

For a new observation, the value of the lines of code metmssinserted into the model to
produce a prediction.

The authors used 15 observations to train the model. We found e ot possible to fit a
model with three parameters; so, we simplified the model by drgppiparameter. Our model
was:

y = b * (LOC) *

4.2.4 Trees

We replicated the Classification and Regressions TreARTE method in Khoshgoftaar and
Seliya [14]. The idea behind trees is that predictors batieal values that distinguish between
similar observations and that all similar observations have siprigglicted values.

Khoshgoftaar and Seliya [14] first built a regression tre@gusiaining observations and a
minimum node size before further splitting of 10. To prediat donew observation, the

observation traversed the tree according to its predioctalgés until it reached a leaf. The mean
of the predicted value of the training observations in the nodeheapredicted value of the new
observation.

Khoshgoftaar and Seliya [14] predicted field defects in modusesyw® product metrics. The
model was fitted using 4648 observations. Since we had at most dihgrabservations, we
built trees with varying minimum node sizes of between 2 to 7.

4.2.5 Neural networks

We replicated the feed-forward neural networks method used inhigbftaar et al. [13]. The
idea behind neural networks is that predictors’ values aradikeal inputs, which can be used by
a neural network to arrive at a conclusion about a new observation.

A neural networks model is a multi-layer perceptron model thatymes a value between 0 and
1. The predictors are in one layer, with each predict@nasneuron, and the output is in one
layer. There is at least one intermediate hidden laydreiween with different number of
neurons. Each neuron in one layer is connected to each neuron intttey@e The connection
strength between the neurons can vary. A non-linear function istaig®ainbine values coming
into the neuron to produce the output from the neuron. For a new obmenthg predictors’
values are placed on the outer layer and the predicted valuedoe@vand 1 is produced at the
output neuron.

Khoshgoftaar et al. [13] scaled all values (predictors angrérdicted value) to be between 0 and
1 by dividing by the value of the maximum element in each set.data were then used to fit a
neural network trained using backward error propagation. To prediet iew observation, the
predictors’ values were used to produce a value between 0 am@ Yallle was then scaled up
according to the range of the predicted value in the training set.

Khoshgoftaar et al. [13] predicted field defects for theesmo systems as the linear regression
with model selection method. The authors used 16 and 18 hidden layensdor the two
systems. We modified the process by fitting separate neurabrkstfor each predictor (i.e. one
input neuron) using one hidden layer neuron. For each release, wteddhe preferred model
by evaluating predictions for the fitting set using eackditihodel. The most accurate model was
used to fit the make predictions for the next release.

4.2.6 Exponential smoothing and moving averages
We replicated the moving averages and exponential smoothing methods usedain [1i&3t The
idea is that past releases are similar to the current release

To predict for the next release, a weighted average o¥dhees from historical releases was
used. For the moving averages method, each historical releasgece equal weight. For
exponential smoothing method, releases closer in time receiossl weight. The idea was that
recent releases were more similar to the currentselda et al. [18] considered averaging 2-7
releases. We made no modifications to the method; however, dua shdaiages we considered
averaging 2-6 releases.

We also added a reverse smoothing method in which releases tleatuntber away in time
receive more weight. The logic behind this method was that dietdcavailability, releases that

were further away in time had more stable and accuratatetli model parameters; therefore,
those releases should receive more weight.

4.2.7 Ratios

We extended prior research in Biyani and Santhanam [3]atithers found that information on
the most recent release was sufficient to predict defaglcime in the subsequent release for
software modules. In addition, the authors determined that the ohtifbeld defects to
development defects could be used as an accurate indicatmlioy épr individual modules. We
used ratios to predict the number of field defects.

To predict for the next release, we first found the ratio betwhe number of field defects and
the number of development defects in the most recent reMées¢hen used this ratio and the
number of development defects in the current release to predict the numbét défects for the
current release.

4.3 Methods of evaluation
In this section, we will first discuss how we evaluate fostmhrate of field defects then we will
discuss how we evaluate predicted number of field defects.

All analysis was preformed using the open source analysis pack26¢ R [

4.3.1 Evaluating predicted field defect rates

In this study, model parameters of SRGMs were predicted umiegof the metrics-based
modeling methods (the same method for all model parameterd). fei@rast was evaluated
using the Theil forecasting statistic.

The Theil statistic compares the forecast for each timerviakti against a no-change forecast
based on the previous time interval's value [28].

T (P—-A)
A’
The Theil statistidJ is greater or equal to zero. The tdPis the projected change aAds the
actual change in interval A Theil statistic of zero indicates perfect forecasihw;, = A.. A
Theil statistic of one indicates that forecasts are n&b#tan no-change forecasts with= 0.
Values greater than 1 indicate forecasts are worse thamamge forecasts. We consider
forecasts accurate if the resulting Theil statistic istleas 1.

4.3.2 Evaluating predicted number of field defects in a specific time

interval

Each prediction was evaluated using the Absolute Relatiker BARE). The absolute average
error (AAE) and the ARE are the most commonly used meastirascaracy for predicted
number of field defects. The AAE measures the average erqredictions (i.e. how much a
typical prediction is off by). The ARE measures the averageeptage of error in the predictions
(i.e. relative to the actual number of field defects, how mutipiaal prediction is off by). We
use ARE for two reasons. First, the AAE can be misleading wies predicted number of field
problems differs significantly between observations. Second, we AIRRE to preserve
confidentiality.

Absolute relative error is defined by Khosghgoftaar et. al. 1i8] [as the sum over all
observations, the absolute value of the difference betweepréicted value and the actual
value divided by the actual value.

1 n
ARE = =%
ni=

Y/i - Y
Yi

5 RESULTS AND DISCUSSION

In this section we present results of our experiments. W dikcuss the conditions that may
have contributed to the results.

5.1 Field defect rate forecasts

Table 3 contains the top ten most accurate forecasts based on dvaihgtatistics. Column one
contains a description of the metrics-based modeling method and Si®@ination used,
column two contains the average Theil statistic achievedhbycombination, column three
contains the range of the Theil statistics (i.e. the differbet@een the worst and the best Theil
statistic), and column four contains the number of releas¢shtacombination predicted for.
Figures 1-3 present sample predictions. All predicted defect oncerpatterns are plotted for
each release. The lines in the figures are forecaatsatlk closest to actual defect occurrence
patterns.

Table 3. Theil statistics

Average Releases
HlEiEe The! | Range predicted
Weibull, reverse smoothing 6 releases 1.0 0.pb 2
Weibull, exponential smoothing 6 releases 1.4 0.p 2
Gamma, moving average 4 releases 1p 3i3 3
Weibull, moving average 4 releases 1.9 3.5 3
Gamma, exponential smoothing 4 releases 19 38 3
Gamma, exponential smoothing 5 releases 19 38 3
Exponential, linear regression 1.9 2.7 5
Weibull, exponential smoothing 4 releases 2.0 4.0 3
Weibull, exponential smoothing 5 releases 2.0 4.0 3
Gamma, clustering 2.1 3.5 7

Commercial OS R5

predicted
defect
occurrence
patterns

Field defects

Quarters after release

Figurel1. Actual and predicted field defectsfor OS Release 5

Commercial OS R7

Field defects
o

Quarters after release

Figure 2. Actual and predicted field defectsfor OSRelease 7

Commercial OS R9

Field defects

e °

T T T T
1 2 3 4 5 6 7 8
Quarters after release

Figure 3. Actual and predicted field defectsfor OSRelease 9

Since average Theil statistics are greater than or émdafor all combinations, we conclude that
is not possible to accurately forecast the field defect T&is.is also evident in the plots (figures
1-3). The predicted field defect occurrence patterns do nathméhe actual field defect
occurrence patterns.

There are three contributing factors the may have cotédbio the poor results: varying field
defect occurrence patterns, lack of metrics, and long time intervalsoNj&cture that these three
factors are conditions under which the combined time-based anidsyietsed approach will not
yield accurate field defect rate forecasts.

5.1.1 Varying field defect occurrence patterns
The field defect occurrence patterns vary greatly betwidfarenht releases. Figures 4-7 provides
a sample of four releases and their best post-facto fits.

There are two implications. First, the diverse patterns rtedtrthe Weibull model is best suited
to model the field defect occurrence patterns since thdwés flexible enough to describe a
wide range of patterns. This conjecture is supported by thehictop two prediction methods

use the Weibull model. However, the model parameters of the Waileutlarder to predict. The
errors in predictions are exaggerated by the Weibull modeh fon section 4.1 table 2);
therefore, forecasts are not accurate. This is the same conaleached by Li et al. in [15].
Secondly, since the field defect patterns vary greathwdwt releases, more data are needed to
distinguish between releases; however, we have limited dataqst 6 training data points) in
our study.

Commercial OS R3

Field defects
1

Quarters after release

Figure4. Actual field defectsand fitted modelsfor OS Release 3

Commercial OS R4

Field defects

Quarters after release

Figure5. Actual field defects and fitted modelsfor OS Release 4

Commercial OS RS

Field defects

Quarters after release

Figure 6. Actual field defectsand fitted modelsfor OS Release 5

Commercial OS R6

o

Field defects

°

Quarters after release

Figure7. Actual field defectsand fitted modelsfor OS Release 6

——————————— Logarithmic model
= o i e s o b Power model
........................ Gmma model
———————————— Weibull model

Exponential model

Figure8. Legend for Figures4-7

5.1.2 Lack of different categories of metrics

Li et al. [15] identifies each category of metrics (disegsin section 2.1) as important. The
authors find that product, development, deployment and usage, am@rsofind hardware
configurations metrics are used for forecasts. However, irstihily we only have 4 development
metrics. In comparison, the referenced work had 22 development metrics andt(ids im all.

The differences in defect occurrence patterns may be duerymgaleployment and usage
characteristics as suggested by Li et al. in [15]; howeverare not able to collect deployment

and usage information for this study.

The lack of metrics in different categories may have predetite various modeling methods
from building accurate models.

5.1.3 Long time intervals
The time interval between releases for operating systggregated data is quarters (i.e. 3
months); however, in previous studies (e.g. Li et al. [15]) the timevaiter months.

Since data is aggregated by quarters, for each additielealse, only two additional data points
become available for modeling. Models fitted with fewer poames more prone to be influenced
by outliers and tend not to be stable (i.e. the fitted valueskafg tb change with additional data
points). Since our forecasts are based on data available beisaee, the metrics-based models
may have been trained with flawed data (i.e. poorly-fitted modelnpeters), which result in
poor predictions.

5.2 The number of field defects predictions
Having determined that we are not able to accurately fardeasate of field defects, we attempt
to predict the number of field defects in the first six montheradeployment. The top ten
predictions ranked in terms of ARE are in table 4. The ratios methdténbmvest ARE.

Table4. Absoluterelative error for field defectsin thefirst 6 months

Method ARE | Std Error
Ratios 0.9 1.2
Nonlinear Regression 1.0 0.7
Linear Regression 1.0 0.6
Neural Networks 1.1 0.8
Clustering 1.1 1.1
Reverse Smoothing 2 Releases 1)2 1.2
Moving Average 2 Releases 1.3 1.4
Exponential Smoothing 2 Releases 138 1.6
Trees Split with 2 Releases 14 1.2
Tree Split with 4 Releases 1.4 1.3

We conjecture that the stability of the development organizamiay have contributed to the
results. Since the operating system is a mature product, ¥eodment process/effort is stable;
therefore the software development organization may havedige to consistently remove the
same percentage of problems for each release. Simildisrasi{hoshgoftaar et al. [16] suggest
that simple approaches can produce accurate predictions dremsoftware development
organizations. We feel the ratios method may allow other simifganizations to use the same
approach to make initial predictions.

The only problem with using the ratios method is that the nundidisld defects found in the
first six months are low. We find that on average the numbefieldf defects in the first six
months represent only 21% of the field defects found in the first two years.

6 CONCLUSION

In this paper, we report experiences from attempting to moelel flefects for an operating
systems from a large software producing organization. We atangethat it may not be possible
to accurately forecast the rate of field defects if tbkel fdefect occurrence pattern varies greatly
between releases, if predictors on product, development, deployment aadamshgoftware and
hardware configurations are not available, and if the estimated fiigldt @ecurrence patterns are
not stable due to insufficient data. We have also shown Hhieasitnple ratios method using
development information can be used to predict the number of initial fieddtdef

ACKNOWLEDGMENTS

This research was supported by the National Science FoundationGnaa¢s ITR-0086003 and
CCF-0438929, by the Carnegie Mellon Sloan Software Center, and WyigheDependability
Computing Program from NASA Ames cooperative agreement N@298: This research is
possible through an IBM joint study agreement.

REFERENCES

[1] Anderson, R.E. Social impacts of computing: Codes of professional ethics. Soeiate
Computing Review, 2 (Winter 1992), 453-469.

[2] Kathyrn Bassin and P. Santhanam. Use of software triggers to evaluai@sgftocess
effectiveness and capture customer usage profilé&olceedings of ISSRE997.

[38] Shriram Biyani and P. Santhanam. Exploring Defect Data from Development aoth€us
Usage on Software Modules over Multiple ReleaseBréeedings of ISSRE998.

[4] Michael Buckly and Ram Chillarege. Discovering Relationships betwesic&and
Customer Satisfaction. Broceedings of the International Conference on Software
Maintenancel995.

5] Norman Fenton and Martin Neil. Software metrics: road maPrdeeedings of ICSE2000.

6] Donald E. Harter and Mayuram S. Krishnan and Sandra A. SlaugfitectsEof Process
Maturity on Quality, Cycle Time, and Effort in Software oBuct Development. In
Management Scienc200o0.

[71 Wendell Jones, John Hudepohl, Taghi Khoshgoftaar, and Edward Allen. Appliaaiti@ans
Usage Profile in Software Quality Models.3f European Conference on Software
Maintenance and Reengineeririg99.

[8] Garrison Kenny. Estimating Defects in Commercial Softwdweng Operational Use. In
IEEE Tr. on Reliability1993.

@] Taghi M. Khoshgoftaar and Edward B. Allen. Predicting fault-prone softmackiles in

embedded systems with classification treesEEBE Symposium on High-Assurance Systems

Engineering 1999.

[10] Taghi Khoshgoftaar, Bibhuti Bhattacharyya, and Gary Richardson. Predscifivwjare
Errors, During Development, Using Nonlinear Regression Models: A Comma&ttidy. In
IEEE Tr. On Reliability,1992.

[11] Taghi M. Khoshgoftaar and Edward B. Allen and Kalai S. Kalaichelvan artiNiSoel.
Early Quality Prediction: A Case Study in TelecommunicationlEEHEE Software1996.

[12] Taghi Khoshgoftaar, John Munson, and David Lanning. A Comparative StudydadtRee
Models for Program Changes during System Testing and Maintenareckedings of
ICSM, 1993.

[13] Taghi Khoshgoftaar, Abhijit Pandya, and David Lanning. Application of Neuraldtks for
Predicting Program Fault. kinnals of Software Engineering995.

[14] Taghi Khoshgoftaar and Naeem Seliya. Tree-based Software Quailihafsh Models for
Fault Prediction. IiProceedings of METRIC3002.

[15] Taghi Khoshgoftaar and Naeem Seliya. Fault Prediction Modeling fov&aftQuality
Estimation: Comparing Commonly Used Technique&rmpirical Software Engineeringpl
8, Sep 2003, p255-283.

[16] Taghi Khoshgoftaar and Naeem Seliya. Comparative Assessment of®oftw Quality
Classification Technigues: An Empirical Case StudyEnmpirical Software Engineering
Journal,vol 9, Sep 2004, p229-257.

[17] Paul Luo Li and Jim Herbsleb and Mary Shaw. Forecasting Field Defect Bsitesa
Combined Time-based and Metrics-based Approach: a Case Study of OpenBSD e8ubmitt
to ISSRE 2005.

[18] Paul Luo Li and Mary Shaw and Jim Herbsleb and Bonnie Ray and P.Santhanam. Empirical
Evaluation of Defect Projection Models for Widely-deployed Productiom@odt Systems.
In Proceedings of FSER2004.

[19] Paul Luo Li, Mary Shaw, Kevin Stolarick, and Kurt Wallnau. The Potefdiadynergy
between certification and insurance Special edition of ACM SIGSOFT Int'l| Workshop on
Reuse Economics (in conjunction with ICSR2002.

[20] Michael Lyu.Handbook of Software Reliability EngineerifdcGraw-Hill, 1996.

[21] Audris Mockus, David Weiss, and Ping Zhang. Understanding and Predictingiiffort
Software Projects. IRroceedings of ICSE2003.

[22] Audris Mockus and Ping Zhang and Paul Luo Li. Drivers for Customer PerceuaityQIn
Proceedings of ICSR005.

[23] Nachiappan Nagappan and Thomas Ball. Use of Relative Code Churn Measurdgto Pre
System Defect Density. IRroceedings of ICSE005.

[24] National Institute of Standards and Technoldgye economic impacts of inadequate
infrastructure for software testingflanning Report 02-3, 2002

[25] Thomas Ostrand, Elaine Weyuker, and Thomas Bell. Where the Bugs Rrecéedings of
ISSTA2004.

[26] The R project for statistical computing. www.r-project.org

[27]1 Norman F. Schneidewind. Body of Knowledge for Software Quality MeasureméBEH
Computey 2002

[28] Henri Theil. Applied Economic Forecastindlorth-Holland Publishing Company
Netherlands, 1966.

