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Abstract 
ORA is a network analysis tool that detects risks or vulnerabilities of an organization’s design 
structure. The design structure of an organization is the relationship among its personnel, 
knowledge, resource, and task entities. These entities and relationships are represented by the 
Meta-Matrix. Measures that take as input a Meta-Matrix are used to analyze the structural 
properties of an organization for potential risk. ORA contains over 50 measures which are 
categorized by which type of risk they detect. Measures are also organized by input requirements 
and by output. ORA generates formatted reports viewable on screen or in log files, and reads and 
writes networks in multiple data formats to be interoperable with existing network analysis 
packages. In addition, it has tools for graphically visualizing Meta-Matrix data and for 
optimizing a network’s design structure.  ORA uses a Java interface for ease of use, and a C++ 
computational backend. The current version ORA 1.2 software is available on the CASOS 
website http://www.casos.cs.cmu.edu/projects/ora/software.html. 
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1.  ORA Motivation and Description 
 

ORA is a network analysis tool that detects risks or vulnerabilities of an organization’s 
design structure.  The design structure of an organization is the relationship among its personnel, 
knowledge, resources, and tasks entities.  These entities and relationships are represented by a 
collection of networks called the Meta-Matrix.  ORA analyzes the Meta-Matrix using measures, 
and reads and writes network data in multiple formats to make it interoperable with existing 
network analysis software. 

The modeling of organizations as networks and the development of measures to examine 
their design structure is well developed.  Even a cursory analysis of the literature reveals a wide 
variety of measures for assessing organizational risk and vulnerability [1] [2] [4] [6] [9] [10].  
Such measures vary dramatically in the detail and type of data needed to determine that measure.  
They span from the assessment of critical employees, to the tendency to group think, to the 
potential for adaptability. In fact, it is possible to provide a suite of measures and metrics that 
capture both the organizational design and the possible changes in that design that are likely to 
result in group think, error cascades, and IP loss [7]. 

Given the high potential number of vulnerabilities and risks, what is needed is a framework 
for evaluating this set of metrics, assessing the value of existing metrics, locating gaps in the 
existing metrics, developing new metrics as needed, and so providing a more comprehensive 
guide to which metrics to use when.  ORA has been designed to provide this framework. 

A large number of metrics for assessing organizational vulnerability and design have been 
assessed and over 50 of them are now incorporated in ORA.  As metrics are incorporated, if they 
cannot handle binary data, then we are developing a non-binary form.  Help is provided for each 
measure that describes the measure definition and formula, input data constraints, and 
computational complexity.  Fastest known algorithms are incorporated, employing sparse and 
non-sparse matrix techniques.  Further, the number of nodes of any one type – personnel, 
knowledge, resources, tasks etc. in ORA is limited only by machine memory and processor 
speed.  All measures are based on the Meta-Matrix and take into account the relations among 
personnel, knowledge, resources and tasks.  These measures are based on work in social 
networks, operations research, organization theory, knowledge management, and task 
management.  Where possible, metrics are normalized to be within 0 and 1 to provide a 
consistent framework. 

ORA can be used to do a risk audit for the organization of its individual and organization 
risks.  Such risks include, but are not limited to, tendency to groupthink, overlook of information, 
communication barriers, and critical employees.  It evaluates potential organizational risks based 
upon underlying social, knowledge, resource, and task networks.  This tool takes the Meta-
Matrix data at a particular point in time and calculates a series of metrics assessing the team’s 
design, particularly the command and control structure, and the associated organizational risks. 
ORA has been used to assess risk in various organizational and government settings including 
NASA, nursing hospitals, and joint task force settings. 
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2.  Input 

2.1 The Organization as Meta-Matrix 
The main unit of input in ORA is the organization.  An organization can be modeled and 

characterized as a set of interlocked networks connecting entities such as people, knowledge 
resources, tasks and groups. These interlocked networks can be represented using the Meta-
Matrix conceptual framework (see [5] [7] [8]) presented in Table 1. 

 
Table 1: Meta-Matrix Showing Networks of Relations Connecting Node Entities 

 People Knowledge Resources Tasks/Projects 
People Social Network 

Who talks to, 
works with, and 
reports to whom 

Knowledge 
Network 
Who knows what, 
has what 
expertise or skills 

Resource 
Network 
Who has access 
to or can use 
which resource 

Assignment 
Network 
Who is assigned to 
which task or 
project, who does 
what 

Knowledge  Information 
Network 
Connections 
among types of 
knowledge, 
mental models 

Resource Usage 
Requirements 
What type of 
knowledge is 
needed to use that 
resource 

Knowledge 
Requirements 
What type of 
knowledge is 
needed for that task 
or project 

Resources   Inter-operability 
and Co-usage 
Requirements 
Connections 
among resources, 
substitutions 

Resource 
Requirements 
What type of 
resources are 
needed for that task 
or project 

Tasks/ 
Projects 

   Precedence and 
Dependencies 
Which tasks are 
related to which 

 

This Meta-Matrix serves as an integrating feature of a managerial toolkit. The Meta-Matrix 
serves several purposes; 1) it provides a way of conceptualizing the set of entities and relations 
among them that the research and associated tools will focus on; 2) it brings to the forefront the 
recognition that the data that is collecting will be not just the attributes of the entities (people, 
knowledge, resources, tasks and/or projects, and groups or teams) but also the set of relations or 
ties among them; 3) it provides an identification of the class of entities and relations that will be 
used in doing organizational design, analysis and risk evaluation; and 4) it provides a common 
ontology for talking about and representing organizational information. 
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2.1  Meta-Matrix Data Formats 
To make ORA interoperable with existing network analysis software, ORA reads and writes 

Meta-Matrix network data in multiple formats.  The networks that constitute a Meta-Matrix can 
be stored in separate files, with one network per file, or they can be collected into a single file. 

ORA supports the DL, Extended-DL (EDL), CSV, and RAW formats for reading and writing 
a file containing a single type of network (for example, the type Agent x Agent).  The RAW and 
DL formats are defined by the network analysis package UCINET [3].  DyNetML and EDL are 
the supported formats for representing in a single file the multiple network types of the Meta-
Matrix.   

2.1.1 DyNetML 

DyNetML is an XML specification that represents the node entities Agent, Knowledge, 
Resource, and Task and the networks defined on them.  DyNetML supports multiple Meta-
Matrices to be within the same file, and each Meta-Matrix can have different Agent, Knowledge, 
Resource, and Task node sets.  Because DyNetML is XML it is humanly readable.  DyNetML is 
described more fully in the DyNetML Technical Report. 

2.1.1 Extended-DL 

Extended-DL (EDL) is the DL format of UCINET with two extensions.  The first extension 
adds more header information to the DL file using two additional tokens.  The two tokens 
identify the type of row nodes and the type of column nodes.  The two tokens are ROW TYPE 
and COLUMN TYPE and are followed by one of the following: AGENT, KNOWLEDGE, 
RESOURCE, or TASK.  COLUMN TYPE can be shortened to COL TYPE.  Note that tokens in 
DL and EDL are case insensitive.  The tokens allow the user to specify the network type of the 
data.  For example, the following EDL file specifies a Knowledge Network (Agent x 
Knowledge): 

 
ROW TYPE = AGENT 
COLUMN TYPE = KNOWLEDGE 
DL 
NR=3, NC=6 
FORMAT = FULLMATRIX 
DATA: 
0 1 1 0 0 0 
1 0 0 0 1 0 
0 0 0 1 1 1 

 

Note that the ROW TYPE and COLUMN TYPE tokens appear before the DL token, and 
because the tokens are optional, a valid DL file is a valid EDL file.  In short, an EDL file can be 
created by adding the two new tokens to the beginning of an existing DL file. 

The second extension in EDL is the ability to have multiple network types in a single file.   
Each network type section must be a complete and valid EDL file.  The sections are separated by 
two vertical bars (‘||’).  Thus, the extension simply allows files to be concatenated into a single 
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file.  For example, the following file contains two types of networks from a Meta-Matrix, a 
Knowledge Network (Agent x Knowledge) and a Communication Network (Agent x Agent): 

 
ROW TYPE = AGENT 
COL TYPE = KNOWLEDGE 
DL 
NR=3, NC=6 
FORMAT = FULLMATRIX 
MATRIX LABELS: 
“Knowledge Network” 
DATA: 
0 1 1 0 0 0 
1 0 0 0 1 0 
0 0 0 1 1 1 
|| 
ROW TYPE = AGENT 
COL TYPE = AGENT 
DL 
N=3 
FORMAT = FULLMATRIX 
MATRIX LABELS: 
“Communication Network” 
DATA: 
0 1 1 
1 0 0 
0 0 0 

 

To summarize, when ORA creates a Meta-Matrix as output the user can choose to save each 
type of matrix in the Meta-Matrix in a separate file, or to save the entire Meta-Matrix in a single 
file.  When saving individual network types to a file, the following formats are available: EDL, 
DL, RAW, and CSV.  When saving the entire Meta-Matrix to a single file, the following are 
available: EDL and DyNetML.  These output formats make ORA interoperable with other 
network analysis packages. 

3.  Meta-Matrix Measures 
 

 An ORA measure is a function that takes a Meta-Matrix as input.  Each measure 
examines a particular aspect of the mathematical structure of the Meta-Matrix.  The metrics in 
ORA include social network, task management, and dynamic network metrics.  ORA contains 
over 50 measures, and provides three classifications of them based on risk and vulnerability, 
input requirements, and type of output produced.  The three classifications enable the user to 
quickly find a measure based on its properties. 
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3.1  Measure Risk Categories 
The first classification divides the measures into seven categories of risk and vulnerability:  

Communication Risk, Critical Employee Risk, Resource Allocation Risk, Redundancy Risk, 
Personnel Interaction Risk, Task Risk, and Performance Risk.  The measures in each category 
analyze the Meta-Matrix structure to detect the type of risk.  A single measure can be classified 
into more than one risk category. Each of the seven categories is briefly discussed below. 

3.1.1  Critical Employee Risk 

Critical Employee Risk is the risk based on employees having exclusive knowledge, 
resources, or task assignments.  Measures in this category assess in part:  would the removal of 
one employee from the organization greatly affect the ability to complete tasks?  Do employees 
tend to have exclusive access to knowledge or resources? 

3.1.2  Resource Allocation Risk 

Resource Allocation Risk is the risk based on how the organization’s resource allocation 
affects its ability to complete tasks.   Measures in this category assess: is agent workload evenly 
distributed?  Do agents have access to the resources they need to complete tasks?  Do agents 
have access to resources they do not use? 

3.1.3  Communication Risk 

Communication Risk is the based on the level of communication and the authority structure 
of the organization.  This category seeks to answer the following questions: are agents able to 
communicate when necessary to complete tasks?  Is communication too centralized or 
decentralized?  Do agents have recourse to managers to settle disputes?  

3.1.4  Redundancy Risk 

Redundancy Risk is the risk based on redundancy in task assignments, resource access, and 
knowledge access.  An organization with little redundancy is more adversely affected by an 
agent or resource no longer being available.  On the other hand, too much redundancy makes an 
organization inefficient. 

3.1.5  Task Risk 

Task Risk is the risk based on task precedence and task assignment.  Measures in this 
category are able to evaluate the following questions:  do agents have the resources to complete 
their tasks?  are tasks highly interdependent so that the inability to perform one task prevents 
many other tasks from being completed? 

3.1.6  Personnel Interaction Risk 

Personnel Interaction Risk is the risk based on agent communication, either agents 
communicating who should not be, or vice-versa.  Measures in this category examine the 
organization design structure to assess the following: are agents with similar skills interacting?  
Are agents with complementary skills interacting?  Are there groups of agents communicating in 
unexpected ways?  Is there a group of agents that has extensive reach in the organization, or 
whose removal would greatly fragment the organization. 
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3.1.7  Performance Risk 

Performance Risk is the risk based on ability to complete tasks accurately.  Measures in this 
category assess the following questions: is the organization able to complete all tasks?  How well 
does the organization build consensus?  How many tasks would be left undone if a single 
employee were selected for removal? 

3.2  Measure Input Requirements 
A second way that measures can be classified is according to input requirements.  Measures 

that take as input a single matrix (a cell of the Meta-Matrix) are called Single-Cell measures; 
measures taking more than one cell are called Multi-Cell measures.  In addition, some measures 
require only one matrix as input, but it need not correspond to a specific cell in the Meta-Matrix, 
but only a square sub-section of the Meta-Matrix; these are called Square measures.  For 
example, all of the Centrality measures are Square measures, and as such they can take as input 
the AxA (Communication) matrix from the Meta-Matrix, but they could also take the entire 
Meta-Matrix – which is square, or the TxT matrix. 

3.3  Measure Output Types 
A third classification of measures is by output.  A measure produces one of two types of 

output: graph level or node level.  A graph level measure’s output is associated with one or more 
matrices (also called graphs) from the Meta-Matrix.  Graph-Level measures are always scalar 
valued.  For example, Density is a graph level measures because it outputs a scalar value that 
describes a property of the input graph as a whole.  The output of a Node Level measure, on the 
other hand, is associated with the members of a node entity.  For example, the Cognitive Load 
measure is a Node Level measure because it produces a scalar value for each Agent node. 

To summarize the three classification schemes, Table 2 classifies some of the measures 
available in ORA.  A complete listing of measures available in ORA with descriptions, formulas, 
input requirements, and output data is in Appendix A: ORA Measures.  Measures are listed by 
risk category in Appendix B: ORA Risk Measure Categories. 
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Table 2: Illustrative metrics categorized by Input, Risk, and Output 

Metric Meaning Output 
Level 

Risk Input Data 

Degree 
Centrality 

In the social network, 
number of others the person 
is connected to. 

Node Communication Single-cell 

Task 
Exclusivity 

Detects agents who 
exclusively perform tasks. 

Node Critical 
Employee 

Performance 

Single-cell 

Cognitive 
Load 

Measures the total amount 
of effort expended by each 
agent to do its tasks. 

Node Critical 
Employee 

Multi-cell 

Resource 
Congruence 

Measures the similarity 
between what resources are 
assigned to tasks via agents, 
and what resources are 
required to do tasks.  Perfect 
congruence occurs when 
agents have access to 
resources when and only 
when it is needful to 
complete tasks. 

Graph Resource 
Allocation, 

Task 

Multi-cell 
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4.  Reports 
 
ORA generates text reports from the measure analysis.  A report is a predefined output data 

format.  ORA currently produces a single report, the Risk and Vulnerability Report.  This report 
can be saved in one of  three formats: plain text, CSV, or DyNetML. The Risk and Vulnerability 
Report is a risk audit of an organization, which groups the measures by risk category and lists the 
measure values.  The three formats are three different mediums for outputting the report data.  
The DyNetML report format contains in one file the original input Meta-Matrix together with all 
measures computed on the Meta-Matrix.  The user selects which of the reports to generate, and 
ORA creates separate output files for each.  Figure 1 below shows a portion of the text file 
format of a Risk and Vulnerability Report for a single Meta-Matrix organization. 

 
Figure 1: Risk and Vulnerability Report File 
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ORA can compare two Meta-Matrix organizations.  The user can select any two meta-
matrices and then generate a Risk and Vulnerability Report that compares the two organizations. 
Figure 2 displays a portion of one such report; it is similar to the single organization report, but it 
contains a side by side listing of the measure values for each organization followed by the 
percent by which the measure values differ. 

  
Figure 2: Comparing Two Organizations: Risk and Vulnerability Report 
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5.  User Interface Components 
 

ORA has a Java user interface for cross platform compatibility.  The interface contains three 
main components: 1) Meta-Matrix Manager, 2) Measure Manager, and 3) Output Panel.  In 
addition, it contains the following sub-components: the Visualizer, the Optimizer, and the 
Regression Tool.  Each of these will be briefly described in turn.  The descriptions will refer to 
Figure 3 below, which shows the three main components of the ORA interface. 

 
Figure 3: ORA Interface 

 
 

5.1 Meta-Matrix Manager 
The unifying concept in ORA is the Meta-Matrix.  The user needs to be able to manage 

multiple organizations, both those entered as original input and those output by the Optimizer.  
These are collected and managed in the Meta-Matrix Manager, which occupies the upper half of 
Figure 3.  From this panel, the user can add organizations to the collection, rename them, and 
specify data files for each network of the Meta-Matrix.  Most user actions in ORA require the 
selection of one or more organizations as input, and the available organizations are those entered 
into the Meta-Matrix Manager. 
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5.2 Measure Manager 
The Measure Manager is a separate panel, seen in the lower left panel of Figure 3, that gives 

the user different views of the measures, according to the categories described above: Risk 
Category, Node Level, and Graph Level.  These are all views of the same set of underlying 
measures, so selecting or unselecting a measure in one view is reflected in all other views. 

5.3 Output Panel 
The Output Panel is a text panel that gives the user immediate feedback.  The Output Panel 

displays status information from user actions, and also displays the text content of measure 
reports.  The Output Panel displaying a Risk Report can be seen in the lower right half of Figure 
3. 

5.4 Tools 
The Visualizer, Optimizer, and Regression Tool are invoked from the main menu and are 

contained within pop-up windows.  The different popup components of ORA constitute an 
integrated graphical user interface that has proven to be extensible and flexible. 

5.4.1 Visualization 

The Meta-Matrix contains multiple node entities and different  types of edges.  Most existing 
visualization packages cannot display multiple network types simultaneously, and therefore are 
not suitable for visualizing the Meta-Matrix.  ORA contains two integrated visualization 
packages for displaying an entire Meta-Matrix: NetworkViz and Jung.   

NetworkViz was developed at CASOS specifically for visually analyzing Meta-Matrix data, 
and is capable of displaying all of the networks of the Meta-Matrix simultaneously.   
NetworkViz can also display specific parts of the Meta-Matrix, for example, a single network, or 
all networks defined on one or more node entities.  In this manner, the user can isolate and 
visualize portions of the Meta-Matrix that are of interest.  If ORA has computed measures for the 
Meta-Matrix, then NetworkViz displays them.  For example, all Node Level measures computed 
for a particular Agent node are displayed in a pop-up window when the node is right clicked.  
Figure 4 contains a sample Meta-Matrix visualization using NetworkViz. 
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Figure 4: NetworkViz Visualizer 

 
Figure 5: JUNG Visualizer 
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The Jung visualization package is an open-source code project from Stanford adapted and 
integrated into ORA.  It offers three different layout algorithms, and has been customized to 
display Node Level and Graph Level measures computed on the Meta-Matrix.  With Jung the 
user can choose portions of the Meta-Matrix to display based on measure values, for example, 
Figure 5 displays the Agent nodes with sizes proportional to their Total Degree Centrality. 

5.4.2 Optimizer 

Having detected the risk and vulnerabilities of an organization’s design structure, the 
Optimizer tool in ORA allows the user to change the structure according to user specified criteria.  
The user selects a single measure or a linear combination of measures to be an objective function, 
and the Optimizer produces an organization that maximizes or minimizes the objective function 
by adding and removing relationships (i.e. edges) between node entities.  Because the output of 
the Optimizer is a Meta-Matrix, it can be input to ORA for measure analysis and visualization.  
Details of the Optimizer can be found in the Optimizer Technical Report. 

5.4.3 Regression Tool 

The Regression Tool allows the user to compare two vector valued measures, plotting the 
two vectors in coordinate space with a linear regression line.  The two vectors can be the same 
measure computed on two different organizations, two measures computed on the same 
organization, or two different measures computed on two different organizations.  The plot 
output can be saved to a file.  

6. System Requirements 
 

ORA 1.2 is the latest version of ORA and it runs on any Windows 2000 or XP machine 
running on an Intel processor.  The C++ back-end source code is written so as to be compatible 
with platforms and processors, and is being ported and tested on other platforms and processors. 

 

7. Conclusion  
 

ORA advances the state of the art in network analysis tools by being organized around the 
unifying concept of the Meta-Matrix.  Measures are organized to facilitate their coherent use.  In 
particular, they are categorized by how they measure the risk and vulnerability of an 
organization’s design structure.  ORA reads and writes in multiple data formats and is 
interoperable with existing network analysis software. Entire Meta-Matrices can be visualized 
using different layout algorithms.  The integrated Optimizer adapts an organization’s design 
structure according to user specified criteria, and the resulting organization can be input into 
ORA and analyzed and visualized.  The computational back end employs NetStatPlus, an open 
source C++ library of SNA and DNA routines.  The Java graphical user interface is designed for 
ease of use and for extensibility and flexibility as new features are added.  ORA is being actively 
developed and tested in a wide range of contexts. 
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8. Future Work 
 

Future work in ORA will address all aspects of its core functionality, including (1) managing 
Meta-Matrix organizations; (2) measure presentation and selection; (3) network visualization; (4) 
tool sub-components; and (5) generating reports.   

Currently a Meta-Matrix can contain only one matrix of each network type.  Thus a Meta-
Matrix cannot have a Communication Network and a Friendship Network, both of type Agent x 
Agent.  Similarly, time period data for a matrix type is not possible.  Future versions will extend 
the Meta-Matrix Manager to allow multiple matrices of a single type. 

 The Measures Manager currently does not allow the user to specify the input for 
measures. Certain measures have predefined input, and so specifying input matrices is 
unnecessary.  For example the Actual Knowledge Workload measure takes always takes as input 
the following matrices: Agent x Knowledge, Knowledge x Task, and Agent x Task.  Other 
measures, for example Square measures, can operate on any square input matrix.  For example, 
the Betweenness Centrality measure takes any square matrix as input. Currently, such measures 
run on a pre-determined, default matrix which is not user selectable. 

 Another tool currently being developed for ORA called the Matrix Tool, which displays 
matrix data in an editable spreadsheet window.  Individual networks can be displayed, or an 
entire Meta-Matrix.  The Matrix Tool lets the user manipulate matrices, such as performing 
matrix algebra, and computing the Intersection, Union, and Central Matrix of a collection of 
matrices.  By loading a Meta-Matrix in one format and saving in another, the user can convert 
data from one format to another.  The Matrix Tool will be included in the next release of ORA. 

 Finally, ORA will be extended to provide multiple report types.  Currently, only the Risk 
and Vulnerability Report is available.  Future report types will output alphabetical lists of 
measures, or measures categorized by node, and  graph level.  The Output Panel of the user 
interface will be extended to display multiple output files, allowing the user to quickly organize 
and view report files. 
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Appendix A – ORA Measures 
 

A network N consists of two sets of nodes, called U and V, and a set of edges E⊂UxV. An element e = (i,j) in E indicates a 
relationship or tie between nodes i∈U and j∈V.  A network where U=V and therefore E⊂VxV is called unimodal; otherwise the 
network is bimodal.  For our purposes, unimodal networks will not contain self loops, which means that (i,i)∉E for i∈V. 

An organization is a collection of networks.  A measure is a function that maps one or more networks to Rn.  Measures are often 
scalar (n=1) or vector valued with n = |V| or n=|U|. 

When defining or implementing measures, a network can be represented as (1) a graph, or as (2) an adjacency matrix.  To 
represent a unimodal network as a graph, let G=(V,E), where V is the network’s nodes, and E are the ties; bimodal networks will not 
be represented as graphs.  Both unimodal and bimodal networks are represented as adjacency matrices.   

Given a network N=((U,V),E), define a matrix M of dimension |U|x|V|, and let M(i,j) = 1 if (i,j)∈E, else let M(i,j)=0.  Then M is 
called the adjacency matrix representation of network N.  Unimodal networks are also called square networks because their adjacency 
matrix is square; the diagonal is zero diagonal because there are no self-loops. 

Define the following sets of nodes: Agents, Knowledge, Resources, and Tasks.  The following networks defined on these node sets 
are used throughout the documentation: 
 

Symbol Node Sets Name 
 U V  
A Agent Agent Communication Network 
AK Agent Knowledge Knowledge Network 
AR Agent Resource Capabilities Network 
AT Agent Task Assignment Network 
K Knowledge Knowledge Information Network 
KR Knowledge Resource Training Network 
KT Knowledge Task Knowledge Requirement Network 
R Resource Resource Resource Substitute Network 
RT Resource Task Resource Requirement Network 
T Task Task Precedence Network 
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The following matrix notation is used: 
 

|Matrix| = dimension of a square Matrix (i.e. if Matrix has dimension r x r, then |Matrix| = r) 
Matrix(i,j)  = the entry in the ith row and jth column of Matrix 
Matrix(i,:)  = ith row vector of  Matrix 
Matrix(:,j)  = jth column vector of Matrix 
sum(Matrix) = sum of the elements in Matrix (also, Matrix can be a row or column vector of Matrix) 
Matrix’ = the transpose of  Matrix 
~Matrix = for binary Matrix, ~Matrix(i,j) = 1 iff Matrix(i,j) = 0. 
Matrix@Matrix = element-wise multiplication of two matrices (e.g. C=A@B => C(i,j) = A(i,j)*B(i,j)) 
 

These mathematical terms and symbols are used: 
 

card(Set) = |Set| = the cardinality of Set 
sgn(x) = 1 if x >= 0, and -1 otherwise 
ℜ  denotes a real number 
Ζ  denotes an integer 
 

These graph theoretic terms are used: 
 

),( jid G is the length of the shortest directed path in G from node i to node j.  Note that if there is a path from i to j in G, 
then Vjid G <≤ ),(1 . Therefore, let ),( jid G = |V| if there is no path in G from i to j.  Also, let ),( iid G = 0 for each i∈V. 

 
The Reachability Graph for a square network N=(V,E) is defined as follows: let G=(V,E) be the graph representation for N.  The 
Reachability Graph for N is the graph G’=(V,E’) where E’= {(i,j)∈VxV | ∃ directed path from i to j in G}. 
 
The Underlying Network for a network N=(V,E) is defined as follows: N’=(V,E’) where E’= {(i,j) | (i,j)∈E ∨  (j,i)∈E }.  That is, 
an symmetric version of N.
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Measure  Description Reference Formula 

Access Index, 
Knowledge Based 

Boolean value which is true if an agent is 
the only agent who knows a piece of 
knowledge and who is known by exactly 
one other agent.  The one agent known also 
has its KAI set to one. 
Type Node Level 
Input AK:binary; A:binary 
Output Binary  

Ashworth, 
2003 

The Knowledge Access Index (KAI) for agent i is defined as follows: 
let 

( ) ( )}1:)),((1))(:,(),(|{ =∧=∧= iAsumsAKsumsiAKsS i �   

Then ( ) ( )( )1),(| =∧∅≠∃∨∅≠= ijASjSKAI jii  
 

Access Index, 
Resource Based 

Boolean value which is true if an agent is 
the only agent with access to a resource and 
who is known by exactly one other agent.  
The one agent known also has its RAI set to 
one. 
Type Node Level 
Input AR:binary; A:binary 
Output Binary  

Ashworth, 
2003 

The Resource Access Index (RAI) for agent i is defined identically as 
Knowledge Access Index, with the matrix AK replaced by AR. 
 

Actual Workload, 
Knowledge 

The knowledge an agent uses to perform the 
tasks to which it is assigned. 
Type Node Level 
Input  AK:binary; KT:binary; AT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Actual Workload for agent i is defined as follows: 
 

[AK*KT*AT’](i,i)/sum(KT) 
 
Note how Potential Workload is the first matrix product. 

Actual Workload, 
Resource 

The resources an agent uses to perform the 
tasks to which it is assigned. 
Type Node Level 
Input  AR:binary; RT:binary; AT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Actual Resource Workload for agent i is identical to Actual Knowledge 
Workload, replacing AK with AR and KT with RT. 

Average Distance The average shortest path length between 
nodes, excluding infinite distances.  
Type Graph Level 
Input  A:binary, square 
Output ]1,0[∈ℜ  

NetStat Let G=(V,E) represent a square network.   Define a set S of all pairs (i,j) of 
nodes such that i can reach j.  Then average the shortest paths. 

let S = {(i,j) | j is reachable in G from j } 

Then, Average Distance = 
S

jid
Sji

G∑
∈),(

),(
. 



   

CMU SCS ISRI - 19 - CASOS Report             

Centrality, 
Betweenness 

The Betweenness Centrality of node v in a 
network is defined as: across all node pairs 
that have a shortest path containing v, the 
percentage that pass through v.  This is 
defined for directed networks. 
Type Node Level 
Input N: square 
Output ]1,0[∈ℜ  

Freeman, 1979 Let G=(V,E) be the graph representation for the network.  Let n=|V|, and 
fix a node v∈V.   
For (u,w)∈VxV, let ),( wunG be the number of geodesics in G from u to 

w.  If (u,w)∈E, then set ),( wunG =1. 
Define the following: 

let )},(),(),(|),{( wvdvudwudVxVwuS GGG +=∈=  

let between = ∑
∈Swu

GGG wunwvnvun
),(

),(/)),(*),((  

Then Betweenness Centrality of node v = between / ((n-1)(n-2)/2). 
 
Note: if G is not symmetric, then between is normalized by (n-1)(n-2). 

Centrality, 
Closeness 

The average closeness of a node to the other 
nodes in a network.  Loosely, Closeness is 
the inverse of the average distance in the 
network between the node and all other 
nodes.  This is defined for directed 
networks. 
Type Node Level 
Input N:square 
Output ]1,0[∈ℜ  

Freeman, 1979 Let G=(V,E) be the graph representation of the square network.  Fix v∈V.  
 

let dist = ∑
∈Vi

G ivd ),( , if every node is reachable from v 

Then Closeness Centrality of node v = (|V|-1)/dist.  If some node is not 
reachable from v then the Closeness Centrality of v is |V|. 

Centrality, 
Eigenvector 

Calculates the eigenvector of the largest 
positive eigenvalue of the adjacency matrix 
representation of a square network. 
Type Node Level 
Input N:square, symmetric 
Output ]1,0[∈ℜ  

Bonacich P, 
1972 

Calculates the eigenvector of the largest positive eigenvalue of the 
adjacency matrix representation of a square network.  A Jacobi method is 
used to compute the eigenvalues and vectors. 
 

Centrality, In 
Degree 

The In Degree Centrality of a node in a 
unimodal network is its normalized in-
degree. 
Type Node Level 
Input N:square 
Output ]1,0[∈ℜ  

Wasserman 
and Faust, 
1994 

Let G=(V,E) be the graph representation of a square network and fix a node 
v. 

let deg = }),(|{ EvuVucard ∈∈ , this is the in-degree of node v. 
The In Degree Centrality of node v = deg / (|V|-1) 
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Centrality, 
Information 

Calculate the Stephenson and Zelen 
information centrality measure for each 
node. 
Type Node Level 
Input N:square, symmetric 
Output ]1,0[∈ℜ  

Wasserman 
and Faust, 
1994 (pg 195) 

Calculates the measure described on pg 195-6 of Wasserman and Faust.  
Nodes with 0 degree are first removed from the network, and the measure 
computed on the resulting sub-graph.  The removed nodes are given 
centrality value 0. 

Centrality, Inverse 
Closeness 

The average closeness of a node to the other 
nodes in a network.  Inverse Closeness is 
the sum of the inverse distances between a 
node and all other nodes.  This is defined 
for directed networks. 
Type Node Level 
Input N:square 
Output ]1,0[∈ℜ  

Wasserman 
and Faust, 
1994 (pg 195) 

Let G=(V,E) be the graph representation of the square network.  Fix v∈V.  
 

let dist = ∑
∈Vi G ivd ),(

1
, where

),(
1

iid G

 = 0 and 
),(

1
ivd G

= 0 if i is not 

reachable from v. 
 

Then Inverse Closeness Centrality of node v = dist/(|V|-1).  

Centrality, Out 
Degree 

The Out Degree Centrality of a node in a 
square network is its normalized out-degree. 
Type Node Level 
Input N:square 
Output ]1,0[∈ℜ  

Wasserman 
and Faust, 
1994 

Let G=(V,E) be the graph representation of a square network and fix a node 
v. 

let deg = }),(|{ EuvVucard ∈∈ , this is the out-degree of node v. 
The Out Degree Centrality of node v = deg / (|V|-1) 

Centrality, Total 
Degree 

The Total Degree Centrality of a node in a 
square network is its normalized in plus out 
degree. 
Type Node Level 
Input N:square, undirected 
Output ]1,0[∈ℜ  

Wasserman 
and Faust, 
1994 (pg 199) 

Let G=(V,E) be the graph representation of a square network and fix a node 
v. 

let deg = }),(),(|{ EvuEuvVucard ∈∨∈∈ , this is the total 
degree of node v. 

The Total Degree Centrality of node v = deg / 2*(|V|-1) 
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Clustering 
Coefficient, 
Watts-Strogatz 

Measures the degree of clustering in a 
network by averaging the clustering 
coefficient of each node i, defined as the 
ratio of the number of triangles connected to 
i to the number of triples centered at i. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Watts and 
Strogatz, 1998 

let G=(V,E) be the graph representation of a square network.  
For each node v∈V define the following: 

let }),(|{ EviViinv ∈∈=  

let }),(|{ EivViout v ∈∈=  

let },|),{( vv injiEjiinconnect ∈∈=  

let },|),{( vv outjiEjioutconnect ∈∈=  

Then compute for each node v∈V its Clustering Coefficient vcc  using  
(1) in-degree, (2) out-degree, or (3) total degree.   

 (1) let 
||||
||

2
vv

v
v inin

inconnect
cc

−
= , if 1|| >vin , else 0=vcc . 

 (2) let 
||||

||
2

vv

v
v outout

outconnect
cc

−
= , if 1|| >vout , else 0=vcc . 

 (3) let ( ))2()1(
2
1 casecaseccv +=  

Then  Clustering Coefficient for the graph  = ||/ Vcc
Vv

v ⎟
⎠

⎞
⎜
⎝

⎛∑
∈
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Cognitive Load Measures the total amount of effort 
expended by each agent to do its tasks. 
  
Note: Cognitive Load is defined if one or 
both of the following pairs of networks 
exists: {AR,RT}, {AK,KT}.   
 
Type Node Level 
Input   A:binary; AT:binary; [AR:binary; 
RT:binary]; [AK:binary; KT:binary] 
Output ]1,0[∈ℜ  

Carley, 2002 The Cognitive Load for agent i is defined as follows: 
let ATR = AT*RT’ 
let ATA = AT*AT’ 
let 1x = # of agents that agent i interacts with / total # of agents 

         = )1/(),( −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
≠

AjiA
ij

 

let 2x = # of tasks agent i is assigned to / total # of tasks 
          = sum(AT(i,:))/|T| 
let 3x = sum of # agents who do the same tasks as agent i / (total # tasks * 
total # agents) 

           = ))(1/(),( TAjiATA
ij

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
≠

 

Note that 4x , 5x , 6x  depend upon networks AR and RT; if the networks 
AK and KT exist, then three analogous terms for knowledge are computed 
and averaged.  If only AK and KT exist, then only they are used. 
let 4x = # of resources agent i manages / total # of resources 
          = sum(AR(i,:))/|R| 
let 5x = sum of # resources agent i needs to do all its tasks / (total # tasks * 
total # resources) 
          = sum(ATR(i,:))/(|T|*|R|) 
let 6x = sum of negotiation needs agent  i must do for each task / total 
possible negotiations 

           = )/()0),(0),(( TRjiATRjiAR
j

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>≠>∑  

Then Cognitive Load for agent i = ( ) 6/654321 xxxxxx +++++  
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Communication Measures the communication need of agents 
to complete their assigned tasks. 
Type Node Level 
Input A:binary; AT:binary; AR:binary; 
RT:binary, T:binary 
Output ]1,0[∈ℜ  

Carley, 2003 Communication uses the concepts from Communication Congruence:  
Handoff, Co-Assignment, and Negotiation.   

let H, C, and N be defined as in Communication Congruence. 
let M(i,j) = [A + (H+H’) + C + (N+N’)](i,j) > 0, and M(i,i) = 0 

Note that the transpose of H and N is used to make the communication 
reciprocal. 

let d = sum(M(i,:)) 
let d = d / (|A|-1), normalizing d to be in [0,1] 

Then Communication for agent i is d. 
Communicative 
Need 

Measures the percentage of reciprocal edges 
in a network. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Carley, 2002 Let G = (V,E) represent a square network:   
Then the Communicative Need = (Reciprocal Edge Count of G) / |E| 

Component 
Count, Strong 

The number of strongly connected 
components in a network.  
Type Graph Level 
Input N:square 
Output |]|,0[ V∈Ζ  

Wasserman 
and Faust, 
1994 (pg 109) 

Given a square network represented by a graph G=(V,E), the Strong 
Component Count is the number of strongly connected components in G.  
This is computed directly on G, whether or not G is directed. 

Component 
Count, Weak 

The number of weakly connected 
components in a network.  
Type Graph Level 
Input N:square, symmetric 
Output |]|,0[ V∈Ζ  

Wasserman 
and Faust, 
1994 (pg 109) 

Given a square, symmetric network represented by a graph G=(V,E), the 
Weak Component Count is the number of connected components in G.  
Such components are called “weak” because the graph G is undirected. 
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Congruence, 
Communication 

Measures to what extent the agents 
communicate when and only when it is 
needful to complete tasks.  Perfect 
congruence requires reciprocal 
communication. 
Type Graph Level 
Input A:binary; AT:binary; AR:binary; 
RT:binary, T:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Communication Congruence = 1 iff agents communicate when and only 
when it is needful to complete their tasks.   There are three task related 
reasons when agents i and j need to communicate: 

(a) Handoff: if i is assigned to a task s and j is assigned to a task t and s 
directly precedes task t 

(b) Co-Assignment: if i is assigned to a task s and j is also assigned to s 
(c) Negotiation: if i is assigned to a task s and j is not, and there is a 

resource r to which agents assigned to s have no access but j does. 
 

The three cases are computed as follows: 
(a) let H = AT*T*AT’ 
(b) let C = AT*AT’ 
(c) let N = AT*Z*AR’, where Z(t,r) = [AT’*AR - RT’](t,r)<0 
Note that C is always symmetric, but not necessarily H and N. 
   
let Q(i,j) = [ (H+H’) + C + (N+N’)](i,j) > 0.   
Communication Congruence requires reciprocal communication, 
explaining the transposes of H and N to make them symmetric. 
 
let d = hamming distance between Q and A, which measures the degree 
to which communication differs from that which is needed to do tasks.   
The maximum value for d is d_max = |A|*(|A|-1) 
 

Then Communication Congruence = 1 - (d /d_max), which is in [0,1].  
Congruence, 
Knowledge 

Measures the similarity between what 
knowledge is assigned to tasks via agents, 
and what knowledge is required to do tasks.  
Perfect congruence occurs when agents 
have knowledge when and only when it is 
needful to complete tasks. 
Type Graph Level 
Input AK:binary; AT:binary; KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Knowledge Congruence = 1 iff agents have knowledge when and only 
when it is needful to complete their tasks.  Thus, we compute the 
knowledge assigned to tasks via agents, and compare it with the knowledge 
needed for tasks.  

let KAT = (AK’*AT) 
let d = card{ (i,j) | (KAT(i,j)>0) != (KT(i,j)>0)} 
let d = d / (|K|*|T|), which normalizes d to be in [0,1] 

Then Knowledge Congruence = 1 - d 
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Congruence, 
Resource 

Measures the similarity between what 
resources are assigned to tasks via agents, 
and what resources are required to do tasks.  
Perfect congruence occurs when agents 
have access to resources when and only 
when it is needful to complete tasks. 
Type Graph Level 
Input AR:binary; AT:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Identical to Knowledge Congruence with AR replaced by AK and KT 
replaced by RT. 

Connectedness Measures the degree to which a square 
network’s underlying (undirected) network 
is connected. 
Type Graph Level 
Input N:square, symmetric 
Output ]1,0[∈ℜ  

Krackhardt, 
1994 

The Connectedness of a square, symmetric network is the Density of its 
Reachability Network. 

Constraint, Burt The degree to which each node in a square 
network is constrained from acting because 
of its existing links to other nodes. 
Type Node Level 
Input N:square 
Output ]1,0[∈ℜ  

Burt, 1992 This is the Constraint measure described by Equ. 2.4 on pg. 55 of Burt, 
1992.  Note that the matrix Z is the adjacency matrix representation of the 
network N. 

Density The ratio of the number of edges versus the 
maximum possible edges for a network. 
Type Graph Level 
Input N 
Output ]1,0[∈ℜ  

Wasserman 
and Faust, 
1994 (pg 101) 

Let M be the adjacency matrix for the network of dimension m x n. 
If the network is unimodal, then m=n and M has a zero diagonal, and 
therefore  
Density = sum(M)/(m*(m-1)).  If the network is symmetric, then Density is 
multiplied by two. 
 
For bimodal networks, Density = sum(M)/(m*n). 

Diameter The maximum shortest path length between 
any two nodes in a unimodal network 
G=(V,E).  If there exist i,j in V such that j is 
not reachable from i, then |V| is returned. 
Type Graph Level 
Input N:square 
Output |]|,0[ V∈Ζ  

Wasserman 
and Faust, 
1994 (pg 111) 

The diameter of G=(V,E) is defined as: 
},|),(max{ Vjijid G ∈  

That is, the maximum shortest directed path between any two vertices in G.  
If there exists i and j such that j is not reachable from i, then |V| is returned. 
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Distance 
Weighted Reach 

A generalization of graph theoretic distance, 
this measures the distance from a set of 
nodes in the network to all other nodes. 
Type Graph Level 
Input N:square, undirected 
Output ]1,0[∈ℜ  

Borgatti, 2003 Consider a square, undirected network represented by G=(V,E). 
let S⊆V 
For any j∉S, define ),( jSdG = min }|),({ SijidG ∈ . 

Then, Distance Weighted Reach  = 
||

),(
1

1
SV

jSdSj G

−
−
∑
∉ , 

Diversity, 
Knowledge 
 

The distribution of difference in idea 
sharing.  This is the Herfindahl-Hirshman 
index applied to column sums of AK. 
Type Graph Level 
Input AK:binary 
Output ]1,0[∈ℜ  

 This is the Herfindahl-Hirshman index (economics: sum of the squares of 
each firm’s market share) applied to the normalized column sums of AK.  
This measures the degree to which knowledge is equally known. 

let kw = ∑
=

||

1
),(

A

i

kiA , for Kk ≤≤1  

let W = ∑
=

||

1

K

k
kw  

Then Diversity  = ( )∑
=

−
||

1

2/1
K

k
k Ww  

Diversity, 
Resource 
 

The distribution of difference in resource 
sharing.  This is the Herfindahl-Hirshman 
index applied to column sums of AR. 
Type Graph Level 
Input AR:binary 
Output ]1,0[∈ℜ  

 Identical to Knowledge Diversity, with AK replaced by AR. 

Edge Count, 
Lateral 

The percentage of lateral edges in a 
unimodal network. Fixing a root node x, a 
lateral edge (i,j) is one in which the distance 
from x to i is the same as the distance from 
x to j. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Carley, 2002 Let G=(V,E) be the graph representation of a unimodal network.  And fix a 
node x∈V to be the root node. 

Let S = {(i,j)∈E | ),(),( jxdixd GG = } 
Then Lateral Edge Count = |S| / |E| 
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Edge Count, 
Pooled 

The percentage of pooled edges in a 
unimodal network. A pooled is an edge (i,j) 
such that there exists at least one other edge 
(i,k) in the network, and k≠ j. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Carley, 2002 Let M be the adjacency matrix representation of a unimodal network. 
Let S = { (i,j) | M(i,j)=1∧ sum(M(:,j))>1 } 
In other words: edge (i,j) is a pooled edge iff the in-degree of node j > 1. 

 
Then Pooled Edge Count = |S| / |E| 

Edge Count, 
Reciprocal 

The percentage of edges in a unimodal 
network that are reciprocated (also called 
Reciprocity).  An edge (i,j) in the network is 
reciprocated if edge (j,i) is also in the 
network.  
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

 Let G=(V,E) be the graph representation of a unimodal network. 
Let S = card{(i,j)∈E | i<j, (j,i)∈E } 

 
Then Reciprocal Edge Count = |S| / |E| 

Edge Count, 
Sequential 

The percentage of edges in a unimodal 
network that are neither Reciprocal Edges 
nor Pooled Edges.  Note that an edge can be 
both a Pooled and a Reciprocal edge. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Carley, 2002 Let G=(V,E) be the graph representation of a unimodal network, and  
let X = set of Pooled edges of G, and let Y = set of Reciprocal edges of G. 
 
Then Sequential Edge Count = | E-X-Y| / |E| 

Edge Count, Skip The fraction of edges in a unimodal network 
that skip levels.  An edge (i,j) is a skip edge 
if there is a path from node i to node j even 
after the edge (i,j) is removed. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Carley, 2002 A skip edge in a unimodal network represented by G=(V,E) is an edge 
(i,j)∈E such that j is reachable from i in the graph G’=(V,E\(i,j)), that is, 
the graph G with edge (i,j) removed.  Skip Count is simply the number of 
such edges in G normalized to be in [0,1] by dividing by |E|. 

Effective Network 
Size 

The effective size of a node’s ego network 
based on redundancy of ties. 
Type Node Level 
Input N:square 
Output ]1,0[∈ℜ  

Burt, 1992 This is the Effective Size of Network measure described by Equ. 2.2 on pg. 
52 of Burt, 1992.  Note that the matrix Z is the adjacency matrix 
representation of the network N. 
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Efficiency The degree to which each component in a 
network contains the minimum edges 
possible to keep it connected. 
Type Graph Level 
Input N:square, symmetric 
Output ]1,0[∈ℜ  

Krackhardt, 
1994 

Let G=(V,E) be the graph representation of a square, symmetric network. 
let n = number of components in G 
let ic = number of nodes in component i 
let penalty = |E| - |V| + C 
let maxPenalty = C - |V| + 2/)1(∑ −

i
ii cc  

Then Efficiency = 1 - penalty/maxPenalty 
 

Exclusivity, 
Knowledge 

Detects agents who have singular 
knowledge. 
Type Node Level 
Input AK:binary 
Output ]1,0[∈ℜ  

Ashworth, 
2003 

The Knowledge Exclusivity Index (KEI) for agent i is defined as follows: 

∑ =
−

||

1
)))(:,(1exp(*),(K

j
jAKsumjiAK  

Exclusivity, 
Resource  

Detects agents who have singular resource 
access. 
Type Node Level 
Input AR:binary 
Output ]1,0[∈ℜ  

Ashworth, 
2003 

The Resource Exclusivity Index (REI) for agent i is defined exactly as for 
Knowledge Based Exclusivity, but with the matrix AK replaced by AR. 

Exclusivity, Task  Detects agents who exclusively perform 
tasks. 
Type Node Level 
Input AT:binary 
Output ]1,0[∈ℜ  

Ashworth, 
2003 

The Task Exclusivity Index (TEI) for agent i is defined exactly as for 
Knowledge Based Exclusivity, but with the matrix AK replaced by AT. 

Fragmentation The proportion of nodes in a network that 
are disconnected. 
Type Graph Level 
Input N:square, undirected 
Output ]1,0[∈ℜ  

Borgatti, 2003 Consider a square, undirected network represented by G=(V,E). 
let n = |V| 
let ks  be the number of nodes in the kth component of G, 1≤ k≤ n 

Then, Fragmentation = 
)1(

)1(
1

−

−
−
∑

nn

ss
k

kk

. 

Hierarchy The degree to which a unimodal network 
exhibits a pure hierarchical structure. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Krackhardt, 
1994 

Let N be a unimodal network.  The Hierarchy of N is the Reciprocity of the 
Reachability Network for N. 
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Interdependence The percentage of edges in a unimodal 
network that are Pooled or Reciprocal. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Carley, 2002 Let G=(V,E) be the graph representation of a square network. 
Let a = Pooled Edge Count and b = Reciprocal Edge Count of the network. 
Then Interdependence = (a+b)/|E| 

Interlockers and 
Radials 

Interlocker and radial nodes in a square 
network have a high and low Triad Count, 
respectively. 
Type Node Level 
Input N:square 
Output Binary 

Carley, 2002 Let N=(V,E) be a square network. 
Let it = Triad Count for node i, Vi ≤≤1 . 

Let u = the mean of { it } 

Let d = the variance of { it } 

Then if )( dut k +≥ , then agent k is an interlocker. If )( dut k −≤ then 
agent k is a radial. 

Load, Knowledge Average number of knowledge per agent. 
Type Graph Level 
Input AK:binary 
Output ],0[ K∈ℜ  

Carley, 2002 Knowledge Load = sum(AK)/ (|A|) 

Load, Resource Average number of resources per agent. 
Type Graph Level 
Input AR:binary 
Output ],0[ R∈ℜ  

Carley, 2002 Resource Load = sum(AR)/ (|A|) 

Negotiation, 
Knowledge 

The extent to which agents need to 
negotiate with each other because they lack 
the knowledge to complete their assigned 
tasks. 
Type Graph Level 
Input AT:binary; AK:binary; KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Compute the percentage of tasks that lack at least one resource: 
let Need = (AT’*AK) - KT’ 
let S = { i  | Ti ≤≤1 , ∃  j : Need(i,j) < 0 } 

Then Need for Negotiation =  |S| / |T| 

Negotiation, 
Resource 

The extent to which agents need to 
negotiate with each other because they lack 
the resources to complete their assigned 
tasks. 
Type Graph Level 
Input AT:binary; AR:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Identical to Knowledge Negotiation, replacing AK with AR, and KT with 
RT. 
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Network 
Centralization, 
Betweenness 

Network centralization based on the 
betweenness score for each node in a square 
network.  This measure is defined for 
directed and undirected networks. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Freeman, 1979 Let G=(V,E) represent the square network, and let n = |V| 
let id = Betweenness Centrality of node i 

let }1|max{ nidd i ≤≤=  

Then Network Betweenness Cent. = )1/(
1

−⎟
⎠

⎞
⎜
⎝

⎛
−∑

≤≤

ndd
ni

i . 

Network 
Centralization, 
Closeness 

Network centralization based on the 
closeness centrality of each node in a square 
network.  This is defined only for 
connected, undirected networks. 
Type Graph Level 
Input N:square, symmetric, connected 
Output ]1,0[∈ℜ  

Freeman, 1979 Let G=(V,E) represent the square network, and let n = |V| 
let id = Closeness Centrality of node i 

let }1|max{ nidd i ≤≤=  
Then Network Closeness Cent.  

= ))32/()1)(2/((
1

−−−⎟
⎠

⎞
⎜
⎝

⎛
−∑

≤≤

nnndd
ni

i . 

Network 
Centralization, 
Column Degree 

A centralization based on the degree of the 
column nodes of a network. 
Type Graph Level 
Input N 
Output ]1,0[∈ℜ  

NetStat Let N be a network with n column nodes. 
let jd = degree of column node j, nj ≤≤1  

let }1|max{ njdd j ≤≤=  

Then Column Degree Network Centralization = )/(
1

ndd
nj

j ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

≤≤

. 

Network 
Centralization, In 
Degree 

A centralization of a square network based 
on the In-Degree Centrality of each node. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

NetStat Let N be a unimodal network with n nodes. 
let id = In Degree Centrality of node i 

let }1|max{ nidd i ≤≤=  

Then In Degree Network Centralization = Ddd
ni

i /
1

⎟
⎠

⎞
⎜
⎝

⎛
−∑

≤≤

, 

where D = (n-2) if N is undirected, and (n-1) otherwise. 
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Network 
Centralization, 
Out Degree 

A centralization of a square network based 
on the Out-Degree Centrality of each node. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

NetStat Let N be a unimodal network with n nodes. 
let id = Out Degree Centrality of node i 

let }1|max{ nidd i ≤≤=  

Then Out Degree Network Centralization = Ddd
ni

i /
1

⎟
⎠

⎞
⎜
⎝

⎛
−∑

≤≤

, 

where D = (n-2) if N is undirected, and (n-1) otherwise. 
 

Network 
Centralization, 
Row Degree 

A centralization based on the degree of the 
row nodes in a network. 
Type Graph Level 
Input N 
Output ]1,0[∈ℜ  

NetStat Let N be a network with n row nodes. 
let jd = degree of row node j, nj ≤≤1  

let }1|max{ njdd j ≤≤=  

Then Row Degree Network Centralization = )/(
1

ndd
nj

j ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

≤≤

. 

Network 
Centralization, 
Total Degree 

A centralization of a square network based 
on total degree centrality of each node. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Freeman, 1979 Let N be a unimodal network with n nodes. 
let id = Total Degree Centrality of node i 

let }1|max{ nidd i ≤≤=  

Then Total Degree Network Centralization = )2/(
1

−⎟
⎠

⎞
⎜
⎝

⎛
−∑

≤≤

ndd
ni

i . 

Network Levels The Network Level of a square network is 
the maximum Node Level of its nodes. 
Type Graph Level 
Input N:square 
Output ]1,0[ −∈Ζ V  

NetStat Let G=(V,E) be the graph representation of a square network. 
Then the Levels of G = max { ),( jid G  | i,j∈V; j reachable from i in G } 

Node Level The Node Level for a node v in a square 
network is the longest shortest path from v 
to every node v can reach.  If v cannot reach 
any node, then its level is 0. 
Type Node Level 
Input N:square 
Output ]1,0[ −∈Ζ V  

Carley, 2002 Let G=(V,E) be the graph representation of a square network and fix a  
node v. 
 
Node Level for v = max { ),( jvd G | j∈V; j reachable from v in G }; if v 
cannot reach any nodes, then its level is 0. 
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Omega, 
Knowledge 

The degree to which agents reuse 
knowledge while doing their tasks. 
Type Graph Level 
Input AT:binary; KT:binary; T:binary 
Output ]1,0[∈ℜ  

Carley, 
Dekker, and 
Krackhardt 
2000 

Let TAT = TA*TA’ 
Let N = ((T’@TAT)*KT’)@KT’ 
 
Then Knowledge Based Omega = sum(N)/sum(KT) 

Omega, Resource The degree to which agents reuse resources 
while doing their tasks. 
Type Graph Level 
Input AT:binary; RT:binary; T:binary 
Output ]1,0[∈ℜ  

Carley, 
Dekker, and 
Krackhardt 
2000 

Identical to Knowledge Based Omega, replacing KT with RT. 

Performance as 
Accuracy 

Measures how accurately agents can 
perform their assigned tasks based on their 
access to knowledge and resources. 
Type Graph Level 
Input AT:binary; AK:binary; AR:binary; 
KT:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Accuracy is computed based on the binary classification problem.  It is 
computed in one of two ways: 
(1) Knowledge based:  Let b be a binary string of length |K|, let N=KT’, 
and let S=AK.  Fix a task t. 
let answer  = ( ∑∑

≤≤≤≤ ||1||1

),(/),(
KkKk

k ktNbktN  > .5) , which is the correct 

classification of b with respect to task t.  Now, let let I={ i | AT(i,t)=1}. 
let answer(i) =  ( ∑∑

≤≤≤≤ ||1||1

),(),(/),(),(
Kk

k
Kk

kiSktNbkiSktN  > .5), i∈I. 

This is agent i’s classification of b with respect to t. 
The group of agents classify b using majority voting. That is, let  

group_answer = ( ∑
∈Ii

ianswer
I

)(
||

1
 > .5 ). 

Then, if group_answer = answer, then the group was accurate, otherwise 
not. 
This is repeated multiple times for each task, and across all tasks.  The 
percentage correct is Performance as Accuracy. 
 
(2) Resource based: let N=RT’ and S=AR in the analysis of case (1). 
 
If the network has the knowledge and resource graphs to perform both 
cases, then Performance as Accuracy is the average of the two. 
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Personnel Cost Total number of people reporting to an 
agent, plus its total knowledge, resources, 
and tasks. 
Type Node Level 
Input  A:binary; AK:binary; AR:binary; 
AT:binary 
Output ]1,0[∈ℜ  

Carley, 2003 Personnel Cost for agent i is defined as follows: 
Let d = sum(A(:,i)) + sum(AK(i,:)) + sum(AR(i,:)) + sum(AT(i,:)) 
 

The value is then normalized to be in [0,1]: 
Let d = d / ((|A|-1) + |K| + |R| + |T|) 
 

The Personnel Cost for agent i is d. 

Potential 
Workload, 
Knowledge 

Maximum knowledge an agent could use to 
do tasks if it were assigned to all tasks. 
Type Node Level 
Input  AK:binary; KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Potential Knowledge Workload for agent i = sum((AK*KT)(i,:))/sum(KT) 

Potential 
Workload, 
Resource 

Maximum resources an agent could use to 
do tasks if it were assigned to all tasks. 
Type Node Level 
Input  AR:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Potential Resource Workload for agent i is identical to Potential 
Knowledge Workload, replacing AK with AR, and KT with RT. 

Redundancy, 
Access 

Average number of redundant agents per 
resource.  An agent is redundant if there is 
already an agent that has access to the 
resource. 
Type Graph Level 
Input AR:binary 
Output ]*)1(,0[ RA −∈ℜ  

Carley, 2002 This is the Column Redundancy of matrix AR. 

Redundancy, 
Assignment 

Average number of redundant agents 
assigned to tasks.  An agent is redundant if 
there is already an agent assigned to the 
task. 
Type Graph Level 
Input AT 
Output ]*)1(,0[ TA −∈ℜ  

Carley, 2002 This is the Column Redundancy of matrix AT. 
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Redundancy, 
Column 

The mean number of column node edges in 
excess of one. 
Type Graph Level 
Input N of dimension m x n 
Output ]*)1(,0[ nm −∈ℜ  

Netstat Let M be the matrix representation for a network N of dimension m x n. 
let }1))(:,(,0{max −= jMsumd j , for nj ≤≤1 ; this is the 

number of column entries in excess of one for column j. 

Then Column Redundancy = nd
n

j
j /

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

 

Redundancy, 
Knowledge 

Average number of redundant agents per 
knowledge.  An agent is redundant if there 
is already an agent that has the knowledge. 
Type Graph Level 
Input AK 
Output ]*)1(,0[ KA −∈ℜ  

Carley, 2002 This is the Column Redundancy of matrix AK. 

Redundancy, 
Resource 

Average number of redundant resources 
assigned to tasks.  A resource is redundant 
if there is already a resource assigned to the 
task. 
Type Graph Level 
Input RT:binary 
Output ]*)1(,0[ TR −∈ℜ  

Carley, 2002 This is the Column Redundancy of matrix RT. 

Redundancy, Row The mean number of row node edges in 
excess of one. 
Type Graph Level 
Input N of dimension m x n 
Output ]*)1(,0[ mn −∈ℜ  

Netstat Let M be the matrix representation for a network N of dimension m x n. 
let }1:)),((,0{max −= jMsumd i , for mi ≤≤1 ; this is the 

number of column entries in excess of one for row i. 

Then Row Redundancy = md
m

j
j /

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

 

Relative Expertise The degree of dissimilarity between agents 
based on shared knowledge.  Each agent 
computes to what degree the other agents 
know what they do not know. 
Type Node Level 
Input AK:binary 
Output ]1,0[∈ℜ  

Carley, 2002 The Relative Expertise matrix (RE) is defined as follows: 
RE(i,i) = 0 
RE(i,j) = (~AK*AK’) = # knowledge that j knows that i does not know 

Finally, normalize RE by its row sums: 
RE(i,:) /= sum(RE(i,:)) 

The Relative Expertise for agent i = )1/(),(
1

−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∑
≠
=

AjiRE
A

ij
j

,  

that is, the average of the non-diagonal elements of row i of RE. 
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Relative 
Similarity 

The degree of similarity between two agents 
based on shared knowledge.  Each agent 
computes to what degree the other agents 
know what they know. 
Type Node Level 
Input AK: binary 
Output ]1,0[∈ℜ  

Carley, 2002 Let M = AK*AK’ 
Let w(i) = sum(M(i,:)), Ai ≤≤1  
Then Relative Similarity (RS) between agents i and j is RS(i,j) = 
M(i,j)/w(i). 

The Relative Similarity for an agent i = )1/(),(
1

−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∑
≠
=

AjiRS
A

ij
j

, 

that is, the average of the non-diagonal elements of row i of RS. 
Span of Control The average number of out edges per node 

with non-zero out degrees.  
Type Graph Level 
Input N:square 
Output ]1,0[ −∈ℜ V  

Carley, 2002 let S = set of nodes in V that have positive out-degree 

let K = ∑
∈Si

ioutDegree )(  

Then Span of Control = K / |S| 

Speed, Average The average shortest path length between 
node pairs (i,j) where there is a path in the 
network from i to j.  If there are no such 
pairs, then Average Speed is zero. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Carley, 2002 let G=(V,E) be the graph representation of a square network. 
 
let D={(i,j) | i,j∈V, j reachable from i in G } 

Then Average Speed = Djid
Dji

G /),(
),(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

∈

 

Speed, Minimum The maximum shortest path length between 
node pairs (i,j) where there is a path in the 
network from i to j.  If there are no such 
pairs, then Minimum Speed is zero. 
Type Graph Level 
Input A 
Output ]1,0[∈ℜ  

Carley, 2002 Minimum Speed = 1 / (Levels for the Communication Network) 

Task Completion, 
Knowledge Based 

The percentage of tasks that can be 
completed by the agents assigned to them, 
based solely on whether the agents have the 
requisite knowledge to do the tasks.  
Type Graph Level 
Input AK:binary; AT:binary; KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Find the tasks that cannot be completed because the agents assigned to the 
tasks lack necessary knowledge: 

let Need = [(AT’*AK) - KT’] 
let S = { i  | Ti ≤≤1 , ∃  j : Need(i,j) < 0 } 

Knowledge Based Task Completion is the percentage of tasks that could be 
completed =  (|T|-|S|) / |T| 
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Task Completion, 
Overall 

The percentage of tasks that can be 
completed by the agents assigned to them, 
based solely on whether the agents have the 
requisite knowledge and resources to do the 
tasks.  
Type Graph Level 
Input AR:binary; AT:binary; RT:binary; 
AK:binary, KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 This is the average of Knowledge Based Task Completion and Resource 
Based Task Completion.  If one of the two could not be computed, then the 
other is returned.  

Task Completion, 
Resource Based 

The percentage of tasks that can be 
completed by the agents assigned to them, 
based solely on whether the agents have the 
requisite resources to do the tasks.  
Type Graph Level 
Input AR:binary; AT:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Find the tasks that cannot be completed because the agents assigned to the 
tasks lack necessary resources.  Defined identically as Knowledge Based 
Task Completion, replacing matrix AK with AR and matrix KT with RT. 

Transitivity The percentage of edge pairs {(i,j), (j,k)} in 
the network such that (i,k) is also an edge in 
the network. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

NetStat Let G = (V,E) be the graph representation of the square network. 
let I = {(i,j,k) ∈V3 | i,j,k distinct } 
let Potential = { (i,j,k) ∈I  | (i,j)∈E, and (j,k) ∈E } 
let Complete = { (i,j,k) ∈  Potential | (i,k)∈E } 

Then Transitivity = |Complete| / |Potential| 

Triad Count The number of triads centered at each node 
in a square network. 
Type Node Level 
Input N:square of dimension |V| 
Output )]2)(1(,0[ −−∈Ζ VV  

NetStat Let G=(V,E) represent a square network.  And let Triad be a matrix of 
dimension |V|x|V|. 

Triad(i,i) = 0 
Triad(i,j) = card{ k  | k != i, k != j; A(i,j)∧A(i,k)∧A(k,j) }, i≠ j 

Then the Triad count for agent i = sum(Triad(i,:)) 

Under Supply, 
Knowledge 

The extent to which the knowledge needed 
to do tasks are unavailable in the entire 
organization. 
Type Graph Level 
Input AK:binary; AT:binary; KT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Compute the average number of needed knowledge per task: 
let Need = (AT’*AK) - KT’ 
let TaskNeed(i) = card{ j | Need(i,j)<0 }, for 1<=i<=|T| 
 

Then UnderSupply is sum(TaskNeed)/ |T| 
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Under Supply, 
Resource 

The extent to which the resources needed to 
do tasks are unavailable in the entire 
organization. 
Type Graph Level 
Input AR:binary; AT:binary; RT:binary 
Output ]1,0[∈ℜ  

Carley, 2002 Under Resource Supply is identical to Under Knowledge Supply, replacing 
AK with AR, and KT with RT. 

Upper 
Boundedness 

The degree to which pairs of agents have a 
common ancestor. 
Type Graph Level 
Input N:square 
Output ]1,0[∈ℜ  

Krackhardt, 
1994 

 

Weak Boundary 
Spanner 

A node which if removed from a network 
creates a new component. 
Type Node Level 
Input N:square, symmetric 
Output Binary 

Cormen, 
Leiserson, 
Riverest,  
Stein, 2001 
p.558 

A Weak Boundary Spanner is an articulation point of N, as defined in the 
referenced book. 

 



   

CMU SCS ISRI - 38 - CASOS Report             

Bibliography 
 
[1] Ashworth, M. and K. M. Carley, 2003, Critical Human Capital, Working Paper, CASOS, Carnegie Mellon, Pittsburgh PA. 
[2] Bonacich, Phil 1987.  Power and centrality: A family of measures. American Journal of  Sociology 92: 1170-1182. 
[3] Borgatti, S.P. 2003.  The Key Player Problem.  Dynamic Social Network Modeling and Analysis: Workshop Summary and 

Papers, R. Breiger, K. Carley, & P. Pattison (Eds.) Committee on Human Factors, National Research Council, 241-252. 
[4] Burt, Ronald. Structural Holes: The Social Structures of Competition. Cambridge, MA: Harvard University Press,  1992. 
[5] Carley, Kathleen 2002. Summary of Key Network Measures for Characterizing Organizational Architectures. Unpublished 

Document: CMU 2002 
[6] Cormen, Leiserson, Rivest, Stein 2001. Introduction to Algorithms, Second Edition.  Cambridge, MA: MIT Press, 2001. 
[7] Carley, K, Dekker, D., Krackhardt, D (2000). How Do Social Networks Affect Organizational Knowledge Utilitization? 
[8] Fienberg, S.E., Meyer, M.M., and Wasserman, S.S. (1985). ``Statistical Analysis of Multiple Sociometric Relations,''   Journal of 

the American  
[9] Freeman, L.C. (1979). Centrality in Social Networks I: Conceptual Clarification. Social Networks, 1, 215-239.  
[10] Krackhardt,  D. 1994. Graph Theoretical Dimensions of Informal Organizations.  In Computational Organization Theory, edited 

by Carley, Kathleen M.  and M.J.  Prietula.  Hillsdale, NJ:  Lawrence Erlbaum Associates, 1994. 
[11] Newman MEJ, Moore C, Watts DJ  Mean-field solution of the small-world network model PHYS REV LETT 84 (14): 3201-

3204 APR 3 2000 
[12] Newman MEJ, Watts DJ  Renormalization group analysis of the small-world network model PHYS LETT A 263 (4-6): 341-346 

DEC 6 1999 
[13] Newman MEJ, Watts DJ  Scaling and percolation in the small-world network model PHYS REV E 60 (6): 7332-7342 Part B 

DEC 1999 Statistical Association, 80, 51-67 
[14] Wasserman, Stanley and Katherine Faust. Social Network Analysis: Methods and Applications.  Cambridge: Cambridge 

University Press, 1994. 
[15] Watts DJ Networks, dynamics, and the small-world phenomenon AM J SOCIOL 105 (2): 493-527 SEP 1999 
[16] Watts DJ, Strogatz SH  Collective dynamics of 'small-world' networks NATURE 393 (6684): 440-442 JUN 4 1998 



   

CMU SCS ISRI - 39 - CASOS Report             

Appendix B – ORA Risk Category Measures 
 

Metric Meaning Level Risk Data Needs 
Access Index, Knowledge 
Based 

Boolean value which is true if an agent is the 
only agent who knows a piece of knowledge 
and who is known by exactly one other agent.  
The one agent known also has its KAI set to 
one.  

Node Critical Employee 
 

Multi-cell 

Access Index, Resource 
Based 

Boolean value which is true if an agent is the 
only agent with access to a resource and who is 
known by exactly one other agent.  The one 
agent known also has its RAI set to one.  

Node Critical Employee Multi-cell 

Actual Workload, 
Knowledge 

The knowledge an agent uses to perform the 
tasks to which it is assigned.  

Node Resource Allocation Multi-cell 

Actual Workload, Resource The resources an agent uses to perform the 
tasks to which it is assigned.  

Node Resource Allocation Multi-cell 

Average Distance The average shortest path length between 
nodes, excluding infinite distances.  

Graph Communication Single-cell 

Centrality, Betweenness The Betweenness Centrality of node v in a 
network is defined as: across all node pairs that 
have a shortest path containing v, the 
percentage that pass through v.  This is defined 
for directed networks. 

Node Communication Single-cell 

Centrality, Closeness The average closeness of a node to the other 
nodes in a network.  Loosely, Closeness is the 
inverse of the average distance in the network 
between the node and all other nodes.  This is 
defined for directed networks.  

Node Communication Single-cell 

Centrality, Eigenvector Calculates the eigenvector of the largest 
positive eigenvalue of the adjacency matrix 
representation of a square network. 

Node Communication Single-cell 

Centrality, In Degree The In Degree Centrality of a node in a 
unimodal network is its normalized in-degree. 

Node Communication Single-cell 

Centrality, Information Calculate the Stephenson and Zelen information 
centrality measure for each node. 

Node Communication Single-cell 
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Centrality, Inverse Closeness The average closeness of a node to the other 
nodes in a network.  Inverse Closeness is the 
sum of the inverse distances between a node 
and all other nodes.  This is defined for directed 
networks.  

Node Communication Single-cell 

Centrality, Out Degree The Out Degree Centrality of a node in a square 
network is its normalized out-degree. 

Node Communication Single-cell 

Centrality, Total Degree The Total Degree Centrality of a node in a 
square network is its normalized in plus out 
degree.  

Node Communication Single-cell 

Clustering Coefficient, 
Watts-Strogatz 

Measures the degree of clustering in a network 
by averaging the clustering coefficient of each 
node i, defined as the ratio of the number of 
triangles connected to i to the number of triples 
centered at i. 

Graph Communication Single-cell 

Cognitive Load Measures the total amount of effort expended 
by each agent to do its tasks.  

Node Critical Employee Multi-cell 

Communication Measures the communication need of agents to 
complete their assigned tasks. 

Node Communication Multi-cell 

Component Count, Strong The number of strongly connected components 
in a network.  

Graph Communication Single-cell 

Component Count, Weak The number of weakly connected components 
in a network.  

Graph Communication Single-cell 

Congruence, Communication Measures to what extent the agents 
communicate when and only when it is needful 
to complete tasks.  Perfect congruence requires 
reciprocal communication. 

Graph Communication Multi-cell 

Congruence, Knowledge Measures the similarity between what 
knowledge is assigned to tasks via agents, and 
what knowledge is required to do tasks.  Perfect 
congruence occurs when agents have 
knowledge when and only when it is needful to 
complete tasks. 

Graph Resource Allocation, 
Task 

Multi-cell 

Congruence, Resource Measures the similarity between what resources 
are assigned to tasks via agents, and what 
resources are required to do tasks.  Perfect 
congruence occurs when agents have access to 
resources when and only when it is needful to 
complete tasks. 

Graph Resource Allocation, 
Task 

Multi-cell 
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Connectedness Measures the degree to which a square 
network’s underlying (undirected) network is 
connected. 

Graph Communication Single-cell 

Constraint, Burt The degree to which each node in a square 
network is constrained from acting because of 
its existing links to other nodes. 

Node Critical Employee, 
Redundancy, 
Communication 

Single-cell 

Density The ratio of the number of edges versus the 
maximum possible edges for a network. 

Graph  Single-cell 

Diameter The maximum shortest path length between any 
two nodes in a unimodal network G=(V,E).  If 
there exist i,j in V such that j is not reachable 
from i, then |V| is returned. 

Graph Communication Single-cell 

Distance Weighted Reach A generalization of graph theoretic distance, 
this measures the distance from a set of nodes in 
the network to all other nodes. 

Graph Communication, 
Critical Employee 

Single-cell 

Diversity, Knowledge 
 

The distribution of difference in idea sharing.  
This is the Herfindahl-Hirshman index applied 
to column sums of AK. 

Graph Resource Allocation Single-cell 

Diversity, Resource 
 

The distribution of difference in resource 
sharing.  This is the Herfindahl-Hirshman index 
applied to column sums of AR. 

Graph Resource Allocation Single-cell 

Edge Count, Lateral The percentage of lateral edges in a unimodal 
network. Fixing a root node x, a lateral edge 
(i,j) is one in which the distance from x to i is 
the same as the distance from x to j. 

Graph Communication Single-cell 

Edge Count, Pooled The percentage of pooled edges in a unimodal 
network. A pooled is an edge (i,j) such that 
there exists at least one other edge (i,k) in the 
network, and k≠ � j. 

Graph Task Single-cell 

Edge Count, Reciprocal The percentage of edges in a unimodal network 
that are reciprocated (also called Reciprocity).  
An edge (i,j) in the network is reciprocated if 
edge (j,i) is also in the network.  

Graph Task Single-cell 

Edge Count, Sequential The percentage of edges in a unimodal network 
that are neither Reciprocal Edges nor Pooled 
Edges.  Note that an edge can be both a Pooled 
and a Reciprocal edge. 

Graph Task Single-cell 
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Edge Count, Skip The fraction of edges in a unimodal network 
that skip levels.  An edge (i,j) is a skip edge if 
there is a path from node i to node j even after 
the edge (i,j) is removed. 

Graph Communication Single-cell 

Effective Network Size The effective size of a node’s ego network 
based on redundancy of ties. 

Node Critical Employee, 
Redundancy, 
Communication 

Single-cell 

Exclusivity, Knowledge Detects agents who have singular knowledge. Node Critical Employee Single-cell 
Exclusivity, Resource  Detects agents who have singular resource 

access. 
Node Critical Employee Single-cell 

Exclusivity, Task  Detects agents who exclusively perform tasks. Node Critical Employee 
Performance 

Single-cell 

Fragmentation The proportion of nodes in a network that are 
disconnected 

Graph Critical Employee, 
Communication , 
Personnel Interaction 

Single-cell 

Hierarchy The degree to which a unimodal network 
exhibits a pure hierarchical structure. 

Graph Communication Single-cell 

Interdependence The percentage of edges in a unimodal network 
that are Pooled or Reciprocal. 

Graph Task Single-cell 

Interlockers and Radials Interlocker and radial nodes in a square network 
have a high and low Triad Count, respectively. 

Graph Critical Employee Single-cell 

Load, Knowledge Average number of knowledge per agent. Graph Resource Allocation, 
Redundancy 

Single-cell 

Load, Resource Average number of resources per agent. Graph Resource Allocation, 
Redundancy 

Single-cell 

Negotiation, Knowledge The extent to which agents need to negotiate 
with each other because they lack the 
knowledge to complete their assigned tasks. 

Graph Resource Allocation, 
Task 

Multi-cell 

Negotiation, Resource The extent to which agents need to negotiate 
with each other because they lack the resources 
to complete their assigned tasks. 

Graph Resource Allocation, 
Task 

Multi-cell 

Network Centralization, 
Betweenness 

Network centralization based on the 
betweenness score for each node in a square 
network.  This measure is defined for directed 
and undirected networks. 

Graph Communication Single-cell 

Network Centralization, 
Closeness 

Network centralization based on the closeness 
centrality of each node in a square network.  
This is defined only for connected, undirected 
networks. 

Graph Communication Single-cell 
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Network Centralization, 
Column Degree 

A centralization based on the degree of the 
column nodes of a network. 

Graph  Single-cell 

Network Centralization, In 
Degree 

A centralization of a square network based on 
the In-Degree Centrality of each node.  

Graph Communication Single-cell 

Network Centralization, Out 
Degree 

A centralization of a square network based on 
the Out-Degree Centrality of each node.  

Graph Communication Single-cell 

Network Centralization, Row 
Degree 

A centralization based on the degree of the row 
nodes in a network. 

Graph  Single-cell 

Network Centralization, 
Total Degree 

A centralization of a square network based on 
total degree centrality of each node. 

Graph Communication Single-cell 

Network Levels The Network Level of a square network is the 
maximum Node Level of its nodes. 

Graph Communication Single-cell 

Node Level The Node Level for a node v in a square 
network is the longest shortest path from v to 
every node v can reach.  If v cannot reach any 
node, then its level is 0. 

Graph Communication Single-cell 

Omega, Knowledge The degree to which agents reuse knowledge 
while doing their tasks. 

Graph Task, 
Performance 

Multi-cell 

Omega, Resource The degree to which agents reuse resources 
while doing their tasks. 

Graph Task, 
Performance 

Multi-cell 

Performance as Accuracy Measures how accurately agents can perform 
their assigned tasks based on their access to 
knowledge and resources. 

Graph Task, 
Performance 

Multi-cell 

Personnel Cost Total number of people reporting to an agent, 
plus its total knowledge, resources, and tasks. 

Node  Multi-cell 

Potential Workload, 
Knowledge 

Maximum knowledge an agent could use to do 
tasks if it were assigned to all tasks. 

Node Resource Allocation 
 

Multi-cell 

Potential Workload, 
Resource 

Maximum resources an agent could use to do 
tasks if it were assigned to all tasks. 

Node Resource Allocation 
 

Multi-cell 

Redundancy, Access Average number of redundant agents per 
resource.  An agent is redundant if there is 
already an agent that has access to the resource. 

Graph Resource Allocation, 
Redundancy 
 

Multi-cell 

Redundancy, Assignment Average number of redundant agents assigned 
to tasks.  An agent is redundant if there is 
already an agent assigned to the task.  

Graph Resource Allocation, 
Redundancy 
 

Multi-cell 

Redundancy, Column The mean number of column node edges in 
excess of one.  

Graph  Single-cell 
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Redundancy, Knowledge Average number of redundant agents per 
knowledge.  An agent is redundant if there is 
already an agent that has the knowledge.  

Graph Resource Allocation, 
Redundancy, 
Task 

Single-cell 

Redundancy, Resource Average number of redundant resources 
assigned to tasks.  A resource is redundant if 
there is already a resource assigned to the task.  

Graph Resource Allocation, 
Redundancy, 
Task 

Single-cell 

Redundancy, Row The mean number of row node edges in excess 
of one. 

Graph  Single-cell 

Relative Expertise The degree of dissimilarity between agents 
based on shared knowledge.  Each agent 
computes to what degree the other agents know 
what they do not know.  

Node Personnel Interaction Single-cell 

Relative Similarity The degree of similarity between two agents 
based on shared knowledge.  Each agent 
computes to what degree the other agents know 
what they know.  

Node Personnel Interaction Single-cell 

Span of Control The average number of out edges per node with 
non-zero out degrees.  

Graph Communication Single-cell 

Speed, Average The average shortest path length between node 
pairs (i,j) where there is a path in the network 
from i to j.  If there are no such pairs, then 
Average Speed is zero.  

Graph Communication Single-cell 

Speed, Minimum The maximum shortest path length between 
node pairs (i,j) where there is a path in the 
network from i to j.  If there are no such pairs, 
then Minimum Speed is zero.  

Graph Communication Single-cell 

Task Completion, 
Knowledge Based 

The percentage of tasks that can be completed 
by the agents assigned to them, based solely on 
whether the agents have the requisite 
knowledge to do the tasks.  

Graph Performance Multi-cell 

Task Completion, Overall The percentage of tasks that can be completed 
by the agents assigned to them, based solely on 
whether the agents have the requisite 
knowledge and resources to do the tasks.  

Graph Performance Multi-cell 

Task Completion, Resource 
Based 

The percentage of tasks that can be completed 
by the agents assigned to them, based solely on 
whether the agents have the requisite resources 
to do the tasks.  

Graph Performance Multi-cell 
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Transitivity The percentage of edge pairs {(i,j), (j,k)} in the 
network such that (i,k) is also an edge in the 
network. 

Graph Communication, 
Task 

Single-cell 

Triad Count The number of triads centered at each node in a 
square network.  

Node Communication Single-cell 

Under Supply, Knowledge The extent to which the knowledge needed to 
do tasks are unavailable in the entire 
organization.  

Graph Resource Allocation, 
Task 

Multi-cell 

Under Supply, Resource The extent to which the resources needed to do 
tasks are unavailable in the entire organization.  

Graph Resource Allocation, 
Task 

Multi-cell 

Upper Boundedness The degree to which pairs of agents have a 
common ancestor.  

Graph Communication Single-cell 

Weak Boundary Spanner A node which if removed from a network 
creates a new component. 

Node Critical Employee Single-cell 

 


