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Abstract

ORA is a network analysis tool that detects risks or vulnerabilities of an organization’s design
structure. The design structure of an organization is the relationship among its personnel,
knowledge, resource, and task entities. These entities and relationships are represented by the
Meta-Matrix. Measures that take as input a Meta-Matrix are used to analyze the structural
properties of an organization for potential risk. ORA contains over 50 measures which are
categorized by which type of risk they detect. Measures are also organized by input requirements
and by output. ORA generates formatted reports viewable on screen or in log files, and reads and
writes networks in multiple data formats to be interoperable with existing network analysis
packages. In addition, it has tools for graphically visualizing Meta-Matrix data and for
optimizing a network’s design structure. ORA uses a Java interface for ease of use, and a C++
computational backend. The current version ORA 1.2 software is available on the CASOS
website http://www.casos.cs.cmu.edu/projects/ora/software.html.
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1. ORA Motivation and Description

ORA is a network analysis tool that detects risks or vulnerabilities of an organization’s
design structure. The design structure of an organization is the relationship among its personnel,
knowledge, resources, and tasks entities. These entities and relationships are represented by a
collection of networks called the Meta-Matrix. ORA analyzes the Meta-Matrix using measures,
and reads and writes network data in multiple formats to make it interoperable with existing
network analysis software.

The modeling of organizations as networks and the development of measures to examine
their design structure is well developed. Even a cursory analysis of the literature reveals a wide
variety of measures for assessing organizational risk and vulnerability [1] [2] [4] [6] [9] [10].
Such measures vary dramatically in the detail and type of data needed to determine that measure.
They span from the assessment of critical employees, to the tendency to group think, to the
potential for adaptability. In fact, it is possible to provide a suite of measures and metrics that
capture both the organizational design and the possible changes in that design that are likely to
result in group think, error cascades, and IP loss [7].

Given the high potential number of vulnerabilities and risks, what is needed is a framework
for evaluating this set of metrics, assessing the value of existing metrics, locating gaps in the
existing metrics, developing new metrics as needed, and so providing a more comprehensive
guide to which metrics to use when. ORA has been designed to provide this framework.

A large number of metrics for assessing organizational vulnerability and design have been
assessed and over 50 of them are now incorporated in ORA. As metrics are incorporated, if they
cannot handle binary data, then we are developing a non-binary form. Help is provided for each
measure that describes the measure definition and formula, input data constraints, and
computational complexity. Fastest known algorithms are incorporated, employing sparse and
non-sparse matrix techniques. Further, the number of nodes of any one type — personnel,
knowledge, resources, tasks etc. in ORA is limited only by machine memory and processor
speed. All measures are based on the Meta-Matrix and take into account the relations among
personnel, knowledge, resources and tasks. These measures are based on work in social
networks, operations research, organization theory, knowledge management, and task
management. Where possible, metrics are normalized to be within 0 and 1 to provide a
consistent framework.

ORA can be used to do a risk audit for the organization of its individual and organization
risks. Such risks include, but are not limited to, tendency to groupthink, overlook of information,
communication barriers, and critical employees. It evaluates potential organizational risks based
upon underlying social, knowledge, resource, and task networks. This tool takes the Meta-
Matrix data at a particular point in time and calculates a series of metrics assessing the team’s
design, particularly the command and control structure, and the associated organizational risks.
ORA has been used to assess risk in various organizational and government settings including
NASA, nursing hospitals, and joint task force settings.
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2. Input

2.1 The Organization as Meta-Matrix

The main unit of input in ORA is the organization. An organization can be modeled and
characterized as a set of interlocked networks connecting entities such as people, knowledge
resources, tasks and groups. These interlocked networks can be represented using the Meta-
Matrix conceptual framework (see [5] [7] [8]) presented in Table 1.

Table 1: Meta-Matrix Showing Networks of Relations Connecting Node Entities

People Knowledge Resources Tasks/Projects
People Social Network | Knowledge Resource Assignment
Who talks to, Network Network Network
works with, and | Who knows what, | Who has access Who is assigned to
reports to whom | has what to or can use which task or
expertise or skills | which resource project, who does
what
Knowledge Information Resource Usage | Knowledge
Network Requirements Requirements
Connections What type of What type of
among types of knowledge is knowledge is
knowledge, needed to use that | needed for that task
mental models resource or project
Resources Inter-operability | Resource
and Co-usage Requirements
Requirements What type of
Connections resources are
among resources, | needed for that task
substitutions or project
Tasks/ Precedence and
Projects Dependencies
Which tasks are
related to which

This Meta-Matrix serves as an integrating feature of a managerial toolkit. The Meta-Matrix
serves several purposes; 1) it provides a way of conceptualizing the set of entities and relations
among them that the research and associated tools will focus on; 2) it brings to the forefront the
recognition that the data that is collecting will be not just the attributes of the entities (people,
knowledge, resources, tasks and/or projects, and groups or teams) but also the set of relations or
ties among them; 3) it provides an identification of the class of entities and relations that will be
used in doing organizational design, analysis and risk evaluation; and 4) it provides a common
ontology for talking about and representing organizational information.
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2.1 Meta-Matrix Data Formats

To make ORA interoperable with existing network analysis software, ORA reads and writes
Meta-Matrix network data in multiple formats. The networks that constitute a Meta-Matrix can
be stored in separate files, with one network per file, or they can be collected into a single file.

ORA supports the DL, Extended-DL (EDL), CSV, and RAW formats for reading and writing
a file containing a single type of network (for example, the type Agent x Agent). The RAW and
DL formats are defined by the network analysis package UCINET [3]. DyNetML and EDL are
the supported formats for representing in a single file the multiple network types of the Meta-
Matrix.

2.1.1 DyNetML

DyNetML is an XML specification that represents the node entities Agent, Knowledge,
Resource, and Task and the networks defined on them. DyNetML supports multiple Meta-
Matrices to be within the same file, and each Meta-Matrix can have different Agent, Knowledge,
Resource, and Task node sets. Because DyNetML is XML it is humanly readable. DyNetML is
described more fully in the DyNetML Technical Report.

2.1.1 Extended-DL

Extended-DL (EDL) is the DL format of UCINET with two extensions. The first extension
adds more header information to the DL file using two additional tokens. The two tokens
identify the type of row nodes and the type of column nodes. The two tokens are ROW TYPE
and COLUMN TYPE and are followed by one of the following: AGENT, KNOWLEDGE,
RESOURCE, or TASK. COLUMN TYPE can be shortened to COL TYPE. Note that tokens in
DL and EDL are case insensitive. The tokens allow the user to specify the network type of the
data. For example, the following EDL file specifies a Knowledge Network (Agent X
Knowledge):

ROW TYPE = AGENT
COLUMN TYPE = KNOWLEDGE

DL

NR=3, NC=6

FORMAT = FULLMATRIX
DATA:

011000
100010
000111

Note that the ROW TYPE and COLUMN TYPE tokens appear before the DL token, and
because the tokens are optional, a valid DL file is a valid EDL file. In short, an EDL file can be
created by adding the two new tokens to the beginning of an existing DL file.

The second extension in EDL is the ability to have multiple network types in a single file.
Each network type section must be a complete and valid EDL file. The sections are separated by
two vertical bars (*||’). Thus, the extension simply allows files to be concatenated into a single
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file. For example, the following file contains two types of networks from a Meta-Matrix, a
Knowledge Network (Agent x Knowledge) and a Communication Network (Agent x Agent):

ROW TYPE = AGENT
COL TYPE = KNOWLEDGE
DL

NR=3, NC=6

FORMAT = FULLMATRIX
MATRIX LABELS:
“Knowledge Network™

DATA:
011000
100010
000111

11

ROW TYPE = AGENT
COL TYPE = AGENT
DL

N=3

FORMAT = FULLMATRIX
MATRIX LABELS:
“Communication Network”
DATA:

011

100
00O

To summarize, when ORA creates a Meta-Matrix as output the user can choose to save each
type of matrix in the Meta-Matrix in a separate file, or to save the entire Meta-Matrix in a single
file. When saving individual network types to a file, the following formats are available: EDL,
DL, RAW, and CSV. When saving the entire Meta-Matrix to a single file, the following are
available: EDL and DyNetML. These output formats make ORA interoperable with other
network analysis packages.

3. Meta-Matrix Measures

An ORA measure is a function that takes a Meta-Matrix as input. Each measure
examines a particular aspect of the mathematical structure of the Meta-Matrix. The metrics in
ORA include social network, task management, and dynamic network metrics. ORA contains
over 50 measures, and provides three classifications of them based on risk and vulnerability,
input requirements, and type of output produced. The three classifications enable the user to
quickly find a measure based on its properties.
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3.1 Measure Risk Categories

The first classification divides the measures into seven categories of risk and vulnerability:
Communication Risk, Critical Employee Risk, Resource Allocation Risk, Redundancy Risk,
Personnel Interaction Risk, Task Risk, and Performance Risk. The measures in each category
analyze the Meta-Matrix structure to detect the type of risk. A single measure can be classified
into more than one risk category. Each of the seven categories is briefly discussed below.

3.1.1 Critical Employee Risk

Critical Employee Risk is the risk based on employees having exclusive knowledge,
resources, or task assignments. Measures in this category assess in part: would the removal of
one employee from the organization greatly affect the ability to complete tasks? Do employees
tend to have exclusive access to knowledge or resources?

3.1.2 Resource Allocation Risk

Resource Allocation Risk is the risk based on how the organization’s resource allocation
affects its ability to complete tasks. Measures in this category assess: is agent workload evenly
distributed? Do agents have access to the resources they need to complete tasks? Do agents
have access to resources they do not use?

3.1.3 Communication Risk

Communication Risk is the based on the level of communication and the authority structure
of the organization. This category seeks to answer the following questions: are agents able to
communicate when necessary to complete tasks? Is communication too centralized or
decentralized? Do agents have recourse to managers to settle disputes?

3.1.4 Redundancy Risk

Redundancy Risk is the risk based on redundancy in task assignments, resource access, and
knowledge access. An organization with little redundancy is more adversely affected by an
agent or resource no longer being available. On the other hand, too much redundancy makes an
organization inefficient.

3.1.5 Task Risk

Task Risk is the risk based on task precedence and task assignment. Measures in this
category are able to evaluate the following questions: do agents have the resources to complete
their tasks? are tasks highly interdependent so that the inability to perform one task prevents
many other tasks from being completed?

3.1.6 Personnel Interaction Risk

Personnel Interaction Risk is the risk based on agent communication, either agents
communicating who should not be, or vice-versa. Measures in this category examine the
organization design structure to assess the following: are agents with similar skills interacting?
Are agents with complementary skills interacting? Are there groups of agents communicating in
unexpected ways? Is there a group of agents that has extensive reach in the organization, or
whose removal would greatly fragment the organization.
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3.1.7 Performance Risk

Performance Risk is the risk based on ability to complete tasks accurately. Measures in this
category assess the following questions: is the organization able to complete all tasks? How well
does the organization build consensus? How many tasks would be left undone if a single
employee were selected for removal?

3.2 Measure Input Requirements

A second way that measures can be classified is according to input requirements. Measures
that take as input a single matrix (a cell of the Meta-Matrix) are called Single-Cell measures;
measures taking more than one cell are called Multi-Cell measures. In addition, some measures
require only one matrix as input, but it need not correspond to a specific cell in the Meta-Matrix,
but only a square sub-section of the Meta-Matrix; these are called Square measures. For
example, all of the Centrality measures are Square measures, and as such they can take as input
the AxA (Communication) matrix from the Meta-Matrix, but they could also take the entire
Meta-Matrix — which is square, or the TXT matrix.

3.3 Measure Output Types

A third classification of measures is by output. A measure produces one of two types of
output: graph level or node level. A graph level measure’s output is associated with one or more
matrices (also called graphs) from the Meta-Matrix. Graph-Level measures are always scalar
valued. For example, Density is a graph level measures because it outputs a scalar value that
describes a property of the input graph as a whole. The output of a Node Level measure, on the
other hand, is associated with the members of a node entity. For example, the Cognitive Load
measure is a Node Level measure because it produces a scalar value for each Agent node.

To summarize the three classification schemes, Table 2 classifies some of the measures
available in ORA. A complete listing of measures available in ORA with descriptions, formulas,
input requirements, and output data is in Appendix A: ORA Measures. Measures are listed by
risk category in Appendix B: ORA Risk Measure Categories.
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Table 2: llustrative metrics categorized by Input, Risk, and Output

Metric Meaning Output Risk Input Data
Level

Degree In the social network, Node | Communication | Single-cell
Centrality number of others the person

IS connected to.
Task Detects agents who Node | critical Single-cell
Exclusivity exclusively perform tasks. Employee

Performance

Coghnitive Measures the total amount Node | Critical Multi-cell
Load of effort expended by each Employee

agent to do its tasks.
Resource Measures the similarity Graph | Resource Multi-cell
Congruence between what resources are Allocation,

assigned to tasks via agents,

and what resources are Task

required to do tasks. Perfect

congruence occurs when

agents have access to

resources when and only

when it is needful to

complete tasks.
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4. Reports

ORA generates text reports from the measure analysis. A report is a predefined output data
format. ORA currently produces a single report, the Risk and Vulnerability Report. This report
can be saved in one of three formats: plain text, CSV, or DyNetML. The Risk and Vulnerability
Report is a risk audit of an organization, which groups the measures by risk category and lists the
measure values. The three formats are three different mediums for outputting the report data.
The DyNetML report format contains in one file the original input Meta-Matrix together with all
measures computed on the Meta-Matrix. The user selects which of the reports to generate, and
ORA creates separate output files for each. Figure 1 below shows a portion of the text file
format of a Risk and Vulnerability Report for a single Meta-Matrix organization.

Figure 1: Risk and Vulnerability Report File

[P ora-embassy-out.txt - Notepad o ]
File Edit Format Wiew Help
=

Graph_Level_Measure Type wvalue

Ome%a,KnDWWEdge wal 0.5000

Parformance As ACCUracy wal 0. 7980

omega, Resource wal 0.4288

Mode_Level_Measure Type value Modes_wvalue

Exclusivity, Task min 0. 0000 7 12 14 _J
max 1.0254 5
av 0.0834
st 0.2445

Graph_Level_Measure Type value
Distance weighted Reach wal 1.0000
Fragmentation wal 1.0000
Mode_Level_Measure Type wvalue Modes_w/value

Centrality, Betweenness min 0.0000 245891011 12 13 14 16
max 0.4667 5]
av 0.0923
ST 0.1608

Centrality,Inverse min 0.0625 2 910 11
max 0.1363 4 7
av 0.1265
st 0.0373

relative Expertise min 0.0667 1345651011 13 14 18
max 0. 08687 2 7 812 15
av 0.06687
st 0. 0000

relative similarity min 0.0000 4 514 16
max 0.0583 6 10 11 13
av 0.0402
st 0.0245

4] | v
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ORA can compare two Meta-Matrix organizations. The user can select any two meta-
matrices and then generate a Risk and Vulnerability Report that compares the two organizations.
Figure 2 displays a portion of one such report; it is similar to the single organization report, but it
contains a side by side listing of the measure values for each organization followed by the
percent by which the measure values differ.

Figure 2: Comparing Two Organizations: Risk and Vulnerability Report

-1
File Edit Format ‘iew Help
==fFerformance Risk== B
Graph_Level_Measure Type organizat hypob ¥-hange
Omega,Kan1edge wal 0. 0000 0. 0000
Ferformance As ACCUracy wal 0,829 0.8300 0
omega, Resource val 0. 0000 0. 0000
Mode_Leve]_Measure Type organizat hypob ¥-hange
Exclusivity, Task min 1. 0000 1. 0000 0
max 1. 0000 1. 0000 0]
av 1. 0000 1.0000 0
st 0. 0000 0. 0000
==Parsonnel Interaction Risk==
Graph_Level_Measure Type organizat hypob %Change
Distance weighted Rreach val 1.0000 1.0000 0
Fragmentation wal 1. 0000 1. 0000 1]
Mode_Leve]_Measure Type organizat hypob ¥-hange
Centrality, Betweenness min 0. 0000 0. 0000
max 0.4000 0. 0000 =100
av 0.1333 0. 0000 =100
=T 0.1491 0. 0000 =100
Centrality,Inverse min 0.1667 0.1667 0
max 0.2778 0.2000 -28
av 0.2331 0.1944 -16
st 0.03905 0.0124 -68
Relative Expertise min 0. 0000 0. 0000
max 0,2000 0. 2000 0
av 0.1667 0.1667 o]
=T 0.0745 0.0745 0
Relative similarity min 0.1000 0.1000 0
max 0.1333 0.1333 0
av 0.1175 0.1175 0
st 0.0121 0.0121 o]
4] 4
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5. User Interface Components

ORA has a Java user interface for cross platform compatibility. The interface contains three
main components: 1) Meta-Matrix Manager, 2) Measure Manager, and 3) Output Panel. In
addition, it contains the following sub-components: the Visualizer, the Optimizer, and the
Regression Tool. Each of these will be briefly described in turn. The descriptions will refer to
Figure 3 below, which shows the three main components of the ORA interface.

Fi= ure 3: ORA Interface
& 0RrA: Drganizational Risk Analyzer =l x|

Tools Run Help

|

Explorer Organization1
3 Enter Organization Parareters

ol Please select the format of the MetaMatrix DuytletML v
Qroanization

D Communication Metwark Please select the MetaMatrix :

D Knowledge Network C lemba: emhbassyxml \ Select

D Capabilities Metwark

D Agsignment Netwaork Please choose Visualization Tool: JUNG -

D Infarmation Netwark

[ Training Metwork Visualize the MetaMatrix Click

D Knowledge Requirement Netwark Click to invoke the spreadsheet editor Click
D Resource Substitute Metwark

D Resource Requirement Metwork
D Precedence Network
@ [ MeDonalds

| Measures by Risk Category || Node Level | Graph Level Results- —
Redundancy Risk v‘ =Communication Risk= (]
Nols Leval Maastres Graph_Level Measure Type value
2 sverage Distance wal z.z810
Measure Name Min Max Avy StDev Table SpeEd?AvEr‘age val 0.4384
Network Centralization,Betweenness wal 03954
Burt Constraint v v ¥l [¥l ¥l Network Centralization,Closeness wval 0.0658
Clustering Coefficient,wWatts-Strogatz wval 0.2478
Burt Effective Netwaork Size iz Iz [l ) ¥l Congruence, Communi cation wal 0. 4167
Connectedness wal 0.5500
i ameter val 16. 0000
Graph Level Measures Distance weighted Reach wal 1.0000
EFficiency val 0.9273
Fragmentation wal 1.0000
Measure Name Include Hierarchy wal 0. 1667
Network Centralization,In Degree wal 0.3022
- Edge Count,Lateral val £. 0000
issignment Redundancy e speed,Minimum val 0.2500
Network Lewels val 4. 0000
Femodscn Bpiltinney lii Network Centralizarion,0ut Degrees wal 0.3022
Edge Count,Skip val 0. 6758
V] s
e vl span OF control wal 2.3333
Knowledge Redundancy [l Component Count,strong wal €.0000
Network Centralization,Total Degree  wal 0.3238
Knowledge Load 7] Transicivity val 0.2647
Upper Eoundedness wal 1.0000 =
Resource Load ¥l ‘ nnnnnnn nun i £, Onnn En |
4 »

5.1 Meta-Matrix Manager

The unifying concept in ORA is the Meta-Matrix. The user needs to be able to manage
multiple organizations, both those entered as original input and those output by the Optimizer.
These are collected and managed in the Meta-Matrix Manager, which occupies the upper half of
Figure 3. From this panel, the user can add organizations to the collection, rename them, and
specify data files for each network of the Meta-Matrix. Most user actions in ORA require the
selection of one or more organizations as input, and the available organizations are those entered
into the Meta-Matrix Manager.
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5.2 Measure Manager

The Measure Manager is a separate panel, seen in the lower left panel of Figure 3, that gives
the user different views of the measures, according to the categories described above: Risk
Category, Node Level, and Graph Level. These are all views of the same set of underlying
measures, so selecting or unselecting a measure in one view is reflected in all other views.

5.3 Output Panel

The Output Panel is a text panel that gives the user immediate feedback. The Output Panel
displays status information from user actions, and also displays the text content of measure
reports. The Output Panel displaying a Risk Report can be seen in the lower right half of Figure
3.

5.4 Tools

The Visualizer, Optimizer, and Regression Tool are invoked from the main menu and are
contained within pop-up windows. The different popup components of ORA constitute an
integrated graphical user interface that has proven to be extensible and flexible.

5.4.1 Visualization

The Meta-Matrix contains multiple node entities and different types of edges. Most existing
visualization packages cannot display multiple network types simultaneously, and therefore are
not suitable for visualizing the Meta-Matrix. ORA contains two integrated visualization
packages for displaying an entire Meta-Matrix: NetworkViz and Jung.

NetworkViz was developed at CASOS specifically for visually analyzing Meta-Matrix data,
and is capable of displaying all of the networks of the Meta-Matrix simultaneously.
NetworkViz can also display specific parts of the Meta-Matrix, for example, a single network, or
all networks defined on one or more node entities. In this manner, the user can isolate and
visualize portions of the Meta-Matrix that are of interest. If ORA has computed measures for the
Meta-Matrix, then NetworkViz displays them. For example, all Node Level measures computed
for a particular Agent node are displayed in a pop-up window when the node is right clicked.
Figure 4 contains a sample Meta-Matrix visualization using NetworkViz.

CMU SCS ISRI -11- CASOS Report



Figure 4: NetworkViz Visualizer
& Networkyiz
File Layout Tools

N|Wajgp|» elz/ed @ |5 ——-o—|gr&| mn = [P

L-algenl13
@genlﬁ

@esuurcm

@esuurcel

Egents

@ESUUI‘CEU

@gentﬂ

anwledglﬂ

‘Name agents
Connections: agent? ; agentd ; agentf ; agent? | agent11 ; agent! 3 ; knowledged | knowledgel | resource? ;task? |

Figure 5: JUNG Visualizer

Node Size Resize ... Threshold Resize... Nodes Meas. Graph Meas. Show Nodes Seilayout Vert.Zoom Horiz.Zoom

i

H |

taskd

anent1n

Shift

ey ||| s | || o] s

]
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The Jung visualization package is an open-source code project from Stanford adapted and
integrated into ORA. It offers three different layout algorithms, and has been customized to
display Node Level and Graph Level measures computed on the Meta-Matrix. With Jung the
user can choose portions of the Meta-Matrix to display based on measure values, for example,
Figure 5 displays the Agent nodes with sizes proportional to their Total Degree Centrality.

5.4.2 Optimizer

Having detected the risk and vulnerabilities of an organization’s design structure, the
Optimizer tool in ORA allows the user to change the structure according to user specified criteria.
The user selects a single measure or a linear combination of measures to be an objective function,
and the Optimizer produces an organization that maximizes or minimizes the objective function
by adding and removing relationships (i.e. edges) between node entities. Because the output of
the Optimizer is a Meta-Matrix, it can be input to ORA for measure analysis and visualization.
Details of the Optimizer can be found in the Optimizer Technical Report.

5.4.3 Regression Tool

The Regression Tool allows the user to compare two vector valued measures, plotting the
two vectors in coordinate space with a linear regression line. The two vectors can be the same
measure computed on two different organizations, two measures computed on the same
organization, or two different measures computed on two different organizations. The plot
output can be saved to a file.

6. System Requirements

ORA 1.2 is the latest version of ORA and it runs on any Windows 2000 or XP machine
running on an Intel processor. The C++ back-end source code is written so as to be compatible
with platforms and processors, and is being ported and tested on other platforms and processors.

7. Conclusion

ORA advances the state of the art in network analysis tools by being organized around the
unifying concept of the Meta-Matrix. Measures are organized to facilitate their coherent use. In
particular, they are categorized by how they measure the risk and vulnerability of an
organization’s design structure. ORA reads and writes in multiple data formats and is
interoperable with existing network analysis software. Entire Meta-Matrices can be visualized
using different layout algorithms. The integrated Optimizer adapts an organization’s design
structure according to user specified criteria, and the resulting organization can be input into
ORA and analyzed and visualized. The computational back end employs NetStatPlus, an open
source C++ library of SNA and DNA routines. The Java graphical user interface is designed for
ease of use and for extensibility and flexibility as new features are added. ORA is being actively
developed and tested in a wide range of contexts.
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8. Future Work

Future work in ORA will address all aspects of its core functionality, including (1) managing
Meta-Matrix organizations; (2) measure presentation and selection; (3) network visualization; (4)
tool sub-components; and (5) generating reports.

Currently a Meta-Matrix can contain only one matrix of each network type. Thus a Meta-
Matrix cannot have a Communication Network and a Friendship Network, both of type Agent x
Agent. Similarly, time period data for a matrix type is not possible. Future versions will extend
the Meta-Matrix Manager to allow multiple matrices of a single type.

The Measures Manager currently does not allow the user to specify the input for
measures. Certain measures have predefined input, and so specifying input matrices is
unnecessary. For example the Actual Knowledge Workload measure takes always takes as input
the following matrices: Agent x Knowledge, Knowledge x Task, and Agent x Task. Other
measures, for example Square measures, can operate on any square input matrix. For example,
the Betweenness Centrality measure takes any square matrix as input. Currently, such measures
run on a pre-determined, default matrix which is not user selectable.

Another tool currently being developed for ORA called the Matrix Tool, which displays
matrix data in an editable spreadsheet window. Individual networks can be displayed, or an
entire Meta-Matrix. The Matrix Tool lets the user manipulate matrices, such as performing
matrix algebra, and computing the Intersection, Union, and Central Matrix of a collection of
matrices. By loading a Meta-Matrix in one format and saving in another, the user can convert
data from one format to another. The Matrix Tool will be included in the next release of ORA.

Finally, ORA will be extended to provide multiple report types. Currently, only the Risk
and Vulnerability Report is available. Future report types will output alphabetical lists of
measures, or measures categorized by node, and graph level. The Output Panel of the user
interface will be extended to display multiple output files, allowing the user to quickly organize
and view report files.
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Appendix A — ORA Measures

A network N consists of two sets of nodes, called U and V, and a set of edges Ec UxV. An element e = (i,j) in E indicates a
relationship or tie between nodes ieU and jeV. A network where U=V and therefore Ec VxV is called unimodal; otherwise the
network is bimodal. For our purposes, unimodal networks will not contain self loops, which means that (i,i) ¢ E for ie V.

An organization is a collection of networks. A measure is a function that maps one or more networks to R". Measures are often
scalar (n=1) or vector valued with n =|V| or n=|U|.

When defining or implementing measures, a network can be represented as (1) a graph, or as (2) an adjacency matrix. To
represent a unimodal network as a graph, let G=(V,E), where V is the network’s nodes, and E are the ties; bimodal networks will not
be represented as graphs. Both unimodal and bimodal networks are represented as adjacency matrices.

Given a network N=((U,V),E), define a matrix M of dimension |U|x|V|, and let M(i,j) = 1 if (i,j) € E, else let M(i,j)=0. Then M is
called the adjacency matrix representation of network N. Unimodal networks are also called square networks because their adjacency
matrix is square; the diagonal is zero diagonal because there are no self-loops.

Define the following sets of nodes: Agents, Knowledge, Resources, and Tasks. The following networks defined on these node sets
are used throughout the documentation:

Symbol Node Sets Name
U \
A Agent Agent Communication Network
AK Agent Knowledge | Knowledge Network
AR Agent Resource Capabilities Network
AT Agent Task Assignment Network
K Knowledge | Knowledge | Information Network
KR Knowledge | Resource Training Network
KT Knowledge | Task Knowledge Requirement Network
R Resource Resource Resource Substitute Network
RT Resource Task Resource Requirement Network
T Task Task Precedence Network
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The following matrix notation is used:

|Matrix| = dimension of a square Matrix (i.e. if Matrix has dimension r x r, then |Matrix| =)
Matrix(i,j) = the entry in the i"" row and j™ column of Matrix

Matrix(i,)) = i" row vector of Matrix

Matrix(:,j) = j™ column vector of Matrix

sum(Matrix) = sum of the elements in Matrix (also, Matrix can be a row or column vector of Matrix)
Matrix’ = the transpose of Matrix

~Matrix = for binary Matrix, ~Matrix(i,j) = 1 iff Matrix(i,j) = 0.

Matrix@Matrix = element-wise multiplication of two matrices (e.g. C=A@B => C(i,j) = A(i,j)*B(i,}))

These mathematical terms and symbols are used:
card(Set) = |Set| = the cardinality of Set
sgn(x) = 1 if x >=0, and -1 otherwise
‘R denotes a real number
Z denotes an integer

These graph theoretic terms are used:

d (i, j) is the length of the shortest directed path in G from node i to node j. Note that if there is a path fromitojin G,
thenl<d (i, ) < [\/| . Therefore, let d ;(i, j) = |V| if there is no path in G from i to j. Also, let d(i,i)=0 for each ie V.

The Reachability Graph for a square network N=(V,E) is defined as follows: let G=(V,E) be the graph representation for N. The
Reachability Graph for N is the graph G’=(V,E’) where E’= {(i,j) € VxV | 3 directed path fromito j in G}.

The Underlying Network for a network N=(V,E) is defined as follows: N’=(V,E’) where E’= {(i,j) | (i,j))eE v (J,i))eE }. That s,
an symmetric version of N.
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Measure

Description

Reference

Formula

Access Index, Boolean value which is true if an agent is Ashworth, The Knowledge Access Index (KAL) for agent i is defined as follows:
Knowledge Based | the only agent who knows a piece of 2003 let
knowledge and who is known by exactly S,={s| AK(i,s) A (sum(AK(:, s)) = 1)/\ (sum(A(i, ) =10
one other agent. The one agent known also . -
has its KAI set to one. Then KAl = ((Si¢ @)V (EU IS =D AA(),i) = 1»
Type Node Level
Input AK:binary; A:binary
Output Binary
Access Index, Boolean value which is true if an agent is Ashworth, The Resource Access Index (RAI) for agent i is defined identically as
Resource Based the only agent with access to a resource and | 2003 Knowledge Access Index, with the matrix AK replaced by AR.
who is known by exactly one other agent.
The one agent known also has its RAI set to
one.
Type Node Level
Input AR:binary; A:binary
Output Binary
Actual Workload, | The knowledge an agent uses to perform the | Carley, 2002 Actual Workload for agent i is defined as follows:
Knowledge tasks to which it is assigned.
Type Node Level [AK*KT*AT’](i,i)/sum(KT)
Input AK:binary; KT:binary; AT:binary
Output R €[0,]] Note how Potential Workload is the first matrix product.
Actual Workload, | The resources an agent uses to performthe | Carley, 2002 Actual Resource Workload for agent i is identical to Actual Knowledge
Resource tasks to which it is assigned. Workload, replacing AK with AR and KT with RT.
Type Node Level
Input AR:binary; RT:binary; AT:binary
Output R €[0,1]
Average Distance | The average shortest path length between NetStat Let G=(V,E) represent a square network. Define a set S of all pairs (i,j) of

nodes, excluding infinite distances.
Type Graph Level

Input A:binary, square

Output R €[0,1]

nodes such that i can reach j. Then average the shortest paths.
let S ={(i,j) | j is reachable in G from j }
> da (i J)
(i,j)eS

Then, Average Distance = |S|
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Centrality, The Betweenness Centrality of node v in a Freeman, 1979 | Let G=(V,E) be the graph representation for the network. Let n=|V|, and
Betweenness network is defined as: across all node pairs fixanodeveV.

that have a shortest path containing v, the For (u,w) € VxV, let N (U, W) be the number of geodesics in G from u to

percentage that pass through v. This is

defined for directed networks. w. If (uw)€E, then set N (U, w) =1.

Type Node Level Define the following:

Input N: square let S ={(u,w) eVxV [dg(u,w) =d(u,v)+d s(v,w)}

Output R €[0,1]

let between = >~ (Ng (U, V) *Ng (v, W)) /ng (U, W)
(u,w)es
Then Betweenness Centrality of node v = between / ((n-1)(n-2)/2).
Note: if G is not symmetric, then between is normalized by (n-1)(n-2).

Centrality, The average closeness of a node to the other | Freeman, 1979 | Let G=(V,E) be the graph representation of the square network. Fix ve V.
Closeness nodes in a network. Loosely, Closeness is

the inverse of the average distance in the let dist = Z d s (v,i), if every node is reachable from v

network between the node and all other oy

nodes. This is defined for directed Then Closeness Centrality of node v = (|V|-1)/dist. If some node is not

networks. reachable from v then the Closeness Centrality of v is V.

Type Node Level

Input N:square

Output R €[0,1]
Centrality, Calculates the eigenvector of the largest Bonacich P, Calculates the eigenvector of the largest positive eigenvalue of the
Eigenvector positive eigenvalue of the adjacency matrix | 1972 adjacency matrix representation of a square network. A Jacobi method is

representation of a square network. used to compute the eigenvalues and vectors.

Type Node Level

Input N:square, symmetric

Output R €[0,1]
Centrality, In The In Degree Centrality of a node in a Wasserman Let G=(V,E) be the graph representation of a square network and fix a node
Degree unimodal network is its normalized in- and Faust, V.

degree. . I 1994 let deg = card{u €V | (u,v) € E}, this is the in-degree of node v.

Type Node Leve The In Degree Centrality of node v = deg / (|V|-1

Input N:square g y 9/ (Vi)

Output R €[0,]]
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Centrality,
Information

Calculate the Stephenson and Zelen
information centrality measure for each
node.

Type Node Level

Input N:square, symmetric

Output R €[0,1]

Wasserman
and Faust,
1994 (pg 195)

Calculates the measure described on pg 195-6 of Wasserman and Faust.
Nodes with 0 degree are first removed from the network, and the measure
computed on the resulting sub-graph. The removed nodes are given
centrality value 0.

Centrality, Inverse
Closeness

The average closeness of a node to the other
nodes in a network. Inverse Closeness is
the sum of the inverse distances between a
node and all other nodes. This is defined
for directed networks.

Type Node Level

Input N:square

Output R €[0,1]

Wasserman
and Faust,
1994 (pg 195)

Let G=(V,E) be the graph representation of the square network. FixveV.

=0ifiisnot

. 1 1 1
let dist = Z— where———— =0and ——
do(v.i)’ dg(i.i) d(v.i)

ieV
reachable from v.

Then Inverse Closeness Centrality of node v = dist/(|V|-1).

Centrality, Out The Out Degree Centrality of a node in a Wasserman Let G=(V,E) be the graph representation of a square network and fix a node
Degree square network is its normalized out-degree. | and Faust, V.
Type Node Level 1994 let deg = card{u €V | (v,u) € E}, this is the out-degree of node v.
Input N:square The Out Degree Centrality of node v =deg / (|V|-1)
Output R € [0,1]
Centrality, Total The Total Degree Centrality of a node in a Wasserman Let G=(V,E) be the graph representation of a square network and fix a node
Degree square network is its normalized in plus out | and Faust, V.

degree.
Type Node Level
Input N:square, undirected

Output R €[0,1]

1994 (pg 199)

let deg = card{u eV | (v,u) € E v (u,Vv) € E}, this is the total

degree of node v.
The Total Degree Centrality of node v = deg / 2*(|V|-1)
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Clustering Measures the degree of clustering in a Watts and let G=(V,E) be the graph representation of a square network.

Coefficient, network by averaging the clustering Strogatz, 1998 | For each node v e V define the following:
Watts-Strogatz coefficient of each node i, defined as the let in ={ieV |(i,v) € E}
ratio of the number of triangles connected to . .
i to the number of triples centered at i. let out,={i eV [(v,i) € E}
Type Graph Level ; _I(i i P
Input N:square let inconnect, {(I,.j).e E| I,.j e in,}
Output R €[0,1] let outconnect ={(i, j) € E|i, j e out }

Then compute for each node ve V its Clustering Coefficient CC, using
(1) in-degree, (2) out-degree, or (3) total degree.

inconnect .
(1) let ccvzl_z—_V|, if [in,[>1,else cc,=0.
| Invl - | Invl
outconnect
(2) let cc, = | . 1 ,if [out |>1,else cc,=0.
|OUtv| _|OUtv|

(3) let cc,= %(case(l) +case(2))

Then Clustering Coefficient for the graph = [z CCV]/ V|

veV
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Cognitive Load

Measures the total amount of effort
expended by each agent to do its tasks.

Note: Cognitive Load is defined if one or
both of the following pairs of networks
exists: {AR,RT}, {AKKT}.

Type Node Level

Input A:binary; AT:binary; [AR:binary;
RT:binary]; [AK:binary; KT:binary]
Output R € [0,1]

Carley, 2002

The Cognitive Load for agent i is defined as follows:
let ATR = AT*RT’
let ATA = AT*AT’

let X, = # of agents that agent i interacts with / total # of agents

_ (z AG n]/<|A|—1>

J#1
let X, = # of tasks agent i is assigned to / total # of tasks
= sum(AT(i,:))/|T|
let X, =sum of # agents who do the same tasks as agent i / (total # tasks *
total # agents)
= [Z ATA(, j)j/(| A-1)(T))
j#i
Note that X,, X5, X4 depend upon networks AR and RT; if the networks

AK and KT exist, then three analogous terms for knowledge are computed
and averaged. If only AK and KT exist, then only they are used.

let X, = # of resources agent i manages / total # of resources
=sum(AR(i,)))/|R|

let X = sum of # resources agent i needs to do all its tasks / (total # tasks *

total # resources)

= sum(ATR(i,))/(ITI*|RI)
let X =sum of negotiation needs agent i must do for each task / total
possible negotiations

= (Z(AR(i, j) > 0= ATR(, j) > 0)]/(|R||T|)

i
Then Cognitive Load for agent i = (X1+X2+X3+X4+X5+X6 )/ 6
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Communication Measures the communication need of agents | Carley, 2003 Communication uses the concepts from Communication Congruence:
to complete their assigned tasks. Handoff, Co-Assignment, and Negotiation.
Type Node Level let H, C, and N be defined as in Communication Congruence.
Input A:binary; AT:binary; AR:binary; let M(i,j) = [A + (H+H*) + C + (N+N”)](i,j) > 0, and M(i,i) =0
RT:binary, T:binary Note that the transpose of H and N is used to make the communication
Output R €[0,]] reciprocal.
let d = sum(M(i,:))
letd =d/(JA]-1), normalizing d to be in [0,1]
Then Communication for agent i is d.
Communicative Measures the percentage of reciprocal edges | Carley, 2002 Let G = (V,E) represent a square network:
Need in a network. Then the Communicative Need = (Reciprocal Edge Count of G) / |E|
Type Graph Level
Input N:square
Output R €[0,1]
Component The number of strongly connected Wasserman Given a square network represented by a graph G=(V,E), the Strong
Count, Strong components in a network. and Faust, Component Count is the number of strongly connected components in G.

Type Graph Level
Input N:square

Output Z €[0,|V []

1994 (pg 109)

This is computed directly on G, whether or not G is directed.

Component The number of weakly connected Wasserman Given a square, symmetric network represented by a graph G=(V,E), the

Count, Weak components in a network. and Faust, Weak Component Count is the number of connected components in G.
Type Graph Level 1994 (pg 109) | Such components are called “weak” because the graph G is undirected.
Input N:square, symmetric
Output Z €[0,|V (]
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Congruence, Measures to what extent the agents Carley, 2002 Communication Congruence = 1 iff agents communicate when and only
Communication communicate when and only when it is when it is needful to complete their tasks. There are three task related
needful to complete tasks. Perfect reasons when agents i and j need to communicate:
congruence requires reciprocal (a) Handoff: if i is assigned to a task s and j is assigned to a task t and s
communication. directly precedes task t
Type Graph Level (b) Co-Assignment: if i is assigned to a task s and j is also assigned to s
Input A:binary; AT:binary; AR:binary; (c) Negotiation: if i is assigned to a task s and j is not, and there is a
RT:binary, T:binary resource r to which agents assigned to s have no access but j does.
Output R €[0,1]
The three cases are computed as follows:
(@) letH = AT*T*AT’
(b) let C = AT*AT’
(c) let N = AT*Z*AR’, where Z(t,r) = [AT"*AR - RT’](t,r)<0
Note that C is always symmetric, but not necessarily H and N.
let Q(i,j) = [ (H+H") + C + (N+N")](i,j) > 0.
Communication Congruence requires reciprocal communication,
explaining the transposes of H and N to make them symmetric.
let d = hamming distance between Q and A, which measures the degree
to which communication differs from that which is needed to do tasks.
The maximum value for d is d_max = |A[*(JA|-1)
Then Communication Congruence =1 - (d /d_max), which is in [0,1].
Congruence, Measures the similarity between what Carley, 2002 Knowledge Congruence = 1 iff agents have knowledge when and only
Knowledge knowledge is assigned to tasks via agents, when it is needful to complete their tasks. Thus, we compute the
and what knowledge is required to do tasks. knowledge assigned to tasks via agents, and compare it with the knowledge
Perfect congruence occurs when agents needed for tasks.
have knowledge when and only when it is let KAT = (AK’*AT)
needful to complete tasks. let d = card{ (i,j) | (KAT(i,j)>0) != (KT(i,j)>0)}
Type Graph Level let d =d/ ([K[*|T|), which normalizes d to be in [0,1]
Input AK:binary; AT:binary; KT:binary Then Knowledge Congruence=1-d
Output R €[0,1]
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Congruence, Measures the similarity between what Carley, 2002 Identical to Knowledge Congruence with AR replaced by AK and KT
Resource resources are assigned to tasks via agents, replaced by RT.
and what resources are required to do tasks.
Perfect congruence occurs when agents
have access to resources when and only
when it is needful to complete tasks.
Type Graph Level
Input AR:binary; AT:binary; RT:binary
Output R €[0,1]
Connectedness Measures the degree to which a square Krackhardt, The Connectedness of a square, symmetric network is the Density of its
network’s underlying (undirected) network | 1994 Reachability Network.
is connected.
Type Graph Level
Input N:square, symmetric
Output R €[0,1]
Constraint, Burt The degree to which each node in a square Burt, 1992 This is the Constraint measure described by Equ. 2.4 on pg. 55 of Burt,
network is constrained from acting because 1992. Note that the matrix Z is the adjacency matrix representation of the
of its existing links to other nodes. network N.
Type Node Level
Input N:square
Output R €[0,1]
Density The ratio of the number of edges versus the | Wasserman Let M be the adjacency matrix for the network of dimension m x n.
maximum possible edges for a network. and Faust, If the network is unimodal, then m=n and M has a zero diagonal, and
Type Graph Level 1994 (pg 101) | therefore
Input N Density = sum(M)/(m*(m-1)). If the network is symmetric, then Density is
Output R €[0,1] multiplied by two.
For bimodal networks, Density = sum(M)/(m*n).
Diameter The maximum shortest path length between | Wasserman The diameter of G=(V,E) is defined as:
any two nodes in a unimodal network and Faust, max{d ;(i, j) |i, j eV}
nGo_t(r\ééEI)w.at;]I: Qi}gfneix Itst: elnj |I\r}|\i/55ri$3r;headtj Is | 1994 (pg 111) That is, the maximum shortest directed path between any two vertices in G.
’ ' If there exists i and j such that j is not reachable from i, then |V/| is returned.
Type Graph Level
Input N:square
Output Z €[0,|V []
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Distance
Weighted Reach

A generalization of graph theoretic distance,
this measures the distance from a set of
nodes in the network to all other nodes.
Type Graph Level

Input N:square, undirected

Borgatti, 2003

Consider a square, undirected network represented by G=(V,E).
letScV

Forany j¢ S, define d; (S, j)=min{d; (i, J) | i € S}.

z 1

Output R €[0,1 _ i
4] Then, Distance Weighted Reach = 1—M,
V-S|

Diversity, The distribution of difference in idea This is the Herfindahl-Hirshman index (economics: sum of the squares of
Knowledge sharing. This is the Herfindahl-Hirshman each firm’s market share) applied to the normalized column sums of AK.

index applied to column sums of AK. This measures the degree to which knowledge is equally known.

Type Graph Level |Al

Input AK:binary let W, = Z A(i, k), forl<k < |K|

Output R €[0,1] |Ki|=1

letw= > w,
k=1
K| )
Then Diversity = 1— z (w, /W)
k=1

Diversity, The distribution of difference in resource Identical to Knowledge Diversity, with AK replaced by AR.
Resource sharing. This is the Herfindahl-Hirshman

index applied to column sums of AR.

Type Graph Level

Input AR:binary

Output R €[0,1]
Edge Count, The percentage of lateral edges in a Carley, 2002 Let G=(V,E) be the graph representation of a unimodal network. And fix a
Lateral unimodal network. Fixing a root node x, a node x € V to be the root node.

lateral edge (i,j) is one in which the distance LetS={Gij)eE| dg(x,i)=ds(X, j)3}

from x to i is the same as the distance from _

X10]. Then Lateral Edge Count = |S]|/ |E|

Type Graph Level

Input N:square

Output R €[0,1]
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Edge Count, The percentage of pooled edges in a Carley, 2002 Let M be the adjacency matrix representation of a unimodal network.

Pooled unimodal network. A pooled is an edge (i) Let S={(i,j) | M(i,j)=1 Asum(M(:,j))>1}
such that there exists at least one other edge In other words: edge (i,j) is a pooled edge iff the in-degree of node j > 1.
(i,k) in the network, and k # j.

Type Graph Level Then Pooled Edge Count = |S| / |E|
Input N:square
Output R €[0,1]

Edge Count, The percentage of edges in a unimodal Let G=(V,E) be the graph representation of a unimodal network.

Reciprocal network that are reciprocated (also called Let S=card{(i,j)€E|i<j, (j,)€E}
Reciprocity). An edge (i,j) in the network is
reciprocated if edge (j,i) is also in the Then Reciprocal Edge Count = ||/ |E|
network.

Type Graph Level
Input N:square
Output R €[0,1]

Edge Count, The percentage of edges in a unimodal Carley, 2002 Let G=(V,E) be the graph representation of a unimodal network, and

Sequential network that are neither Reciprocal Edges let X = set of Pooled edges of G, and let Y = set of Reciprocal edges of G.
nor Pooled Edges. Note that an edge can be
both a Pooled and a Reciprocal edge. Then Sequential Edge Count = | E-X-Y|/ |E]

Type Graph Level
Input N:square
Output R €[0,1]

Edge Count, Skip | The fraction of edges in a unimodal network | Carley, 2002 A skip edge in a unimodal network represented by G=(V,E) is an edge
that skip levels. An edge (i,j) is a skip edge (i,j) € E such that j is reachable from i in the graph G’=(V,E\(i,})), that is,
if there is a path from node i to node j even the graph G with edge (i,j) removed. Skip Count is simply the number of
after the edge (i,j) is removed. such edges in G normalized to be in [0,1] by dividing by |E|.

Type Graph Level
Input N:square
Output R € [0,1]
Effective Network | The effective size of a node’s ego network Burt, 1992 This is the Effective Size of Network measure described by Equ. 2.2 on pg.

Size

based on redundancy of ties.
Type Node Level
Input N:square

Output R €[0,1]

52 of Burt, 1992. Note that the matrix Z is the adjacency matrix
representation of the network N.
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Efficiency The degree to which each component in a Krackhardt, Let G=(V,E) be the graph representation of a square, symmetric network.

network contains the minimum edges 1994 let n = number of components in G

Pross'mec;[o kﬁeﬁ it CIO””EC'EEd- let C, = number of nodes in component i

ype Graph Leve _
Input N:square, symmetric let penalty = [E| - [V + C
output R e [0,1] let maxPenalty = C - |V| + ZCi (c,-1/2
i
Then Efficiency = 1 - penalty/maxPenalty

Exclusivity, Detects agents who have singular Ashworth, The Knowledge Exclusivity Index (KEI) for agent i is defined as follows:
Knowledge knowledge. 2003 IK] S % _ -

Type Node Level 2. AK (G, ) *exp(t - sum(AK(:, )))

Input AK:binary

Output R €[0,]]
Exclusivity, Detects agents who have singular resource Ashworth, The Resource Exclusivity Index (REI) for agent i is defined exactly as for
Resource access. 2003 Knowledge Based Exclusivity, but with the matrix AK replaced by AR.

Type Node Level

Input AR:binary

Output R €[0,]]
Exclusivity, Task | Detects agents who exclusively perform Ashworth, The Task Exclusivity Index (TEI) for agent i is defined exactly as for

tasks. 2003 Knowledge Based Exclusivity, but with the matrix AK replaced by AT.

Type Node Level
Input AT:binary

Output R €[0,1]

Fragmentation

The proportion of nodes in a network that
are disconnected.

Type Graph Level

Input N:square, undirected

Output R € [0,]]

Borgatti, 2003

Consider a square, undirected network represented by G=(V,E).
letn=|V|
let S, be the number of nodes in the k™ component of G, 1<k<n

Zsk(sk_l)

Then, Fragmentation = 1— —&

n(n-1)
Hierarchy The degree to which a unimodal network Krackhardt, Let N be a unimodal network. The Hierarchy of N is the Reciprocity of the
exhibits a pure hierarchical structure. 1994 Reachability Network for N.
Type Graph Level
Input N:square
Output R €[0,]]
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Interdependence The percentage of edges in a unimodal Carley, 2002 Let G=(V,E) be the graph representation of a square network.
network that are Pooled or Reciprocal. Let a = Pooled Edge Count and b = Reciprocal Edge Count of the network.
Type Graph Level Then Interdependence = (a+b)/|E|
Input N:square
Output R €[0,1]
Interlockers and Interlocker and radial nodes in a square Carley, 2002 Let N=(V,E) be a square network.
Radials network have a high and low Triad Count, Let t. = Triad Count for nodei. 1<i < M _
respectively. ' ’
Type Node Level Let U = the mean of {t; }
Input N:square _ .
Output Binary Let d = the variance of {t; }
Then if t,> (u+d), then agent k is an interlocker. If t, < (U —d) then
agent k is a radial.
Load, Knowledge | Average number of knowledge per agent. Carley, 2002 Knowledge Load = sum(AK)/ (JA])
Type Graph Level
Input AK:binary
Output R € [O,|K|]
Load, Resource Average number of resources per agent. Carley, 2002 Resource Load = sum(AR)/ (JA])
Type Graph Level
Input AR:binary
Output R €0, |R|]
Negotiation, The extent to which agents need to Carley, 2002 Compute the percentage of tasks that lack at least one resource:
Knowledge negotiate with each other because they lack let Need = (AT’ *AK) - KT’
the knowledge to complete their assigned letS={i|1<i< |-|-| 3 j: Need(ij) <0}
tasks. oo ' '
Type Graph Level Then Need for Negotiation = [S|/ |T|
Input AT:binary; AK:binary; KT:binary
Output R €[0,1]
Negotiation, The extent to which agents need to Carley, 2002 Identical to Knowledge Negotiation, replacing AK with AR, and KT with
Resource negotiate with each other because they lack RT.
the resources to complete their assigned
tasks.
Type Graph Level
Input AT:binary; AR:binary; RT:binary
Output R €[0,1]
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Network Network centralization based on the Freeman, 1979 | Let G=(V,E) represent the square network, and let n = |V|
Centralization, betweenness score for each node in a square let d . = Betweenness Centrality of node i
Betweenness network. This measure is defined for _ .

directed and undirected networks. let d =max{d |1<i<n}

Type Graph Level B

Input N:square Then Network Betweenness Cent. =( z d-d, j/(n -1).

Output R €[0,1] 1<i<n
Network Network centralization based on the Freeman, 1979 | Let G=(V,E) represent the square network, and let n = |V/|
Centralization, closeness centrality of each node in a square let d. = Closeness Centrality of node i
Closeness network. This is defined only for _ )

connected, undirected networks. let d =max{d |1<i<n}

Type Graph Level _ Then Network Closeness Cent.

Input N:square, symmetric, connected B

Output R €[0,]] :(Zd —dij/((n—Z)(n—l) /(2n-23)).

I<i<n

Network A centralization based on the degree of the | NetStat Let N be a network with n column nodes.
Centralization, column nodes of a network. let d ; = degree of column node j, 1< j<n
Column Degree Type Graph Level _ ]

Input N let d =max{d;|1< j<n}

Output R €[0,1]

Then Column Degree Network Centralization = Zd —d; [/(n).
1<j<n

Network A centralization of a square network based NetStat Let N be a unimodal network with n nodes.

Centralization, In
Degree

on the In-Degree Centrality of each node.
Type Graph Level
Input N:square

Output R €[0,]]

let d; = In Degree Centrality of node i
let d = max{d,|1<i<n}
Then In Degree Network Centralization = (ZJ —d, )/ D,

I<i<n
where D = (n-2) if N is undirected, and (n-1) otherwise.
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Network A centralization of a square network based NetStat Let N be a unimodal network with n nodes.
Centralization, on the Out-Degree Centrality of each node. let d. = Out Degree Centrality of node i
Out Degree Type Graph Level _ )
Input N:square let d =max{d |1<i<n}
Output R €[0,1] _
Then Out Degree Network Centralization = ( Zd —d, j/ D,
1<i<n
where D = (n-2) if N is undirected, and (n-1) otherwise.
Network A centralization based on the degree of the | NetStat Let N be a network with n row nodes.
Centralization, row nodes in a network. let d . = degree of rownodej, 1< j<n
Row Degree Type Graph Level !
Input N let d =max{d;|1< j<n}
Output R €[0,1]
Then Row Degree Network Centralization = ( Z d—d j]/(n) .
1<j<n
Network A centralization of a square network based Freeman, 1979 | Let N be a unimodal network with n nodes.

Centralization,
Total Degree

on total degree centrality of each node.
Type Graph Level
Input N:square

Output R €[0,1]

let d . = Total Degree Centrality of node i
let d = max{d,|1<i<n}

Then Total Degree Network Centralization = ( Z d—d, j/(n -2).

I<i<n

Network Levels The Network Level of a square network is NetStat Let G=(V,E) be the graph representation of a square network.
the maximum Node Level of its nodes. Then the Levels of G = max {d 4(i, j) |ij€V; j reachable fromiin G }
Type Graph Level
Input N:square
Output Z € [O,[\/| -1]
Node Level The Node Level for a node v in a square Carley, 2002 Let G=(V,E) be the graph representation of a square network and fix a
network is the longest shortest path from v node v.
to every node v can reach. If v cannot reach
any node, then its level is 0. Node Level for v=max {d ;(v, j) | j€ V; j reachable from v in G }; if v
Type Node Level i h des. then its level is 0
Input N:square cannot reach any nodes, then its level is 0.
Output Z € [O,[\/| -1]
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Omega, The degree to which agents reuse Carley, Let TAT = TA*TA’
Knowledge knowledge while doing their tasks. Dekker, and LetN = (T@TAT)*KT")@KT’
Type Graph Level Krackhardt
Input AT:binary; KT:binary; T:binary 2000 Then Knowledge Based Omega = sum(N)/sum(KT)
Output R €[0,1]
Omega, Resource | The degree to which agents reuse resources | Carley, Identical to Knowledge Based Omega, replacing KT with RT.
while doing their tasks. Dekker, and
Type Graph Level Krackhardt
Input AT:binary; RT:binary; T:binary 2000
Output R €[0,]
Performance as Measures how accurately agents can Carley, 2002 Accuracy is computed based on the binary classification problem. Itis

Accuracy

perform their assigned tasks based on their
access to knowledge and resources.

Type Graph Level

Input AT:binary; AK:binary; AR:binary;
KT:binary; RT:binary

Output R €[0,1]

computed in one of two ways:
(1) Knowledge based: Let b be a binary string of length |K|, let N=KT”,
and let S=AK. Fix atask t.

let answer = ( z N(t, k)b, / z N (t,k) >.5), which is the correct
1<k<|K| 1<k<|K|
classification of b with respect to task t. Now, let let I={ i | AT(i,t)=1}.
let answer(i) = ( Z N (t, k)S(, k)b, / Z N(t,k)S(i,k) >.5)iel.
1<k<|K| 1<k<|K|
This is agent i’s classification of b with respect to t.
The group of agents classify b using majority voting. That is, let

1 .
group_answer = (— z answer(i) > .5).
iel
Then, if group_answer = answer, then the group was accurate, otherwise
not.
This is repeated multiple times for each task, and across all tasks. The
percentage correct is Performance as Accuracy.

(2) Resource based: let N=RT’ and S=AR in the analysis of case (1).

If the network has the knowledge and resource graphs to perform both
cases, then Performance as Accuracy is the average of the two.
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Personnel Cost

Total number of people reporting to an
agent, plus its total knowledge, resources,
and tasks.

Type Node Level

Input A:binary; AK:binary; AR:binary;
AT:binary

Output R €[0,1]

Carley, 2003

Personnel Cost for agent i is defined as follows:
Let d = sum(A(:,i)) + sum(AK(i,:)) + sSum(AR(,:)) + sum(AT(i,:))

The value is then normalized to be in [0,1]:
Letd=d/ ((A]-1) + K| + |R| + [T])

The Personnel Cost for agent i is d.

Potential
Workload,
Knowledge

Maximum knowledge an agent could use to
do tasks if it were assigned to all tasks.
Type Node Level

Input AK:binary; KT:binary

Output R €[0,]]

Carley, 2002

Potential Knowledge Workload for agent i = sum((AK*KT)(i,:))/sum(KT)

Potential
Workload,
Resource

Maximum resources an agent could use to
do tasks if it were assigned to all tasks.
Type Node Level

Input AR:binary; RT:binary

Output R €[0,1]

Carley, 2002

Potential Resource Workload for agent i is identical to Potential
Knowledge Workload, replacing AK with AR, and KT with RT.

Redundancy,
Access

Average number of redundant agents per
resource. An agent is redundant if there is
already an agent that has access to the
resource.

Type Graph Level

Input AR:binary

Output R €0, (|A| -1) *|R|]

Carley, 2002

This is the Column Redundancy of matrix AR.

Redundancy,
Assignment

Average number of redundant agents
assigned to tasks. An agent is redundant if
there is already an agent assigned to the
task.

Type Graph Level

Input AT

Output R € [0, (|A| -1)*T]

Carley, 2002

This is the Column Redundancy of matrix AT.
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Redundancy, The mean number of column node edges in | Netstat Let M be the matrix representation for a network N of dimension m x n.
Column excess of one. let d ;= max{0, sum(M (;, j)) =1}, for 1< j < n; this is the
Type Graph Level
Input N of dimension m x n number of column entries in excess of one for column j.
Output R €[0,(m—1)*n] n
Then Column Redundancy = Zd i |/n
j=1
Redundancy, Average number of redundant agents per Carley, 2002 This is the Column Redundancy of matrix AK.
Knowledge knowledge. An agent is redundant if there
is already an agent that has the knowledge.
Type Graph Level
Input AK
output R [0, (A —1)*|K(]
Redundancy, Average number of redundant resources Carley, 2002 This is the Column Redundancy of matrix RT.
Resource assigned to tasks. A resource is redundant
if there is already a resource assigned to the
task.
Type Graph Level
Input RT:binary
output R &[0, (R —1)*[T|]
Redundancy, Row | The mean number of row node edges in Netstat Let M be the matrix representation for a network N of dimension m x n.
excess of one. let d,= max{0,sum(M (j,:)) =1}, for 1< i < m; this is the
Type Graph Level
Input N of dimension m x n number of column entries in excess of one for row i.
Output R € [0, (N —1) *m] m
Then Row Redundancy = Zd i |[/m
j=1
Relative Expertise | The degree of dissimilarity between agents | Carley, 2002 The Relative Expertise matrix (RE) is defined as follows:

based on shared knowledge. Each agent
computes to what degree the other agents
know what they do not know.

Type Node Level

Input AK:binary

Output R €[0,1]

RE(i,i)=0

RE(i,j) = (~AK*AK”) = # knowledge that j knows that i does not know
Finally, normalize RE by its row sums:

RE(i,:) /= sum(RE(i,:))

A

The Relative Expertise for agent i = z RE(, j) /(|A| -1,

=t
j#i

that is, the average of the non-diagonal elements of row i of RE.
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Relative The degree of similarity between two agents | Carley, 2002 Let M = AK*AK’
Similarity based on shared knowledge. Each agent Let w(i) = sum(M(i,2)), 1<i < |A|
computes to what degree the other agents R o N
know what they know. Then Relative Similarity (RS) between agents i and j is RS(i.j) =
Type Node Level M(i,j)w(i).
Input AK: binary A
Output R € [0,1] The Relative Similarity for an agenti=| > RS(i, j) |/(|Al-1),
B
that is, the average of the non-diagonal elements of row i of RS.
Span of Control The average number of out edges per node Carley, 2002 let S = set of nodes in V that have positive out-degree
with non-zero out degrees. )
Type Graph Level let K = outDegree(i)
Input N:square ieS
Output R € [0, M ~1] Then Span of Control = K/ |S|
Speed, Average The average shortest path length between Carley, 2002 let G=(V,E) be the graph representation of a square network.
node pairs (i,j) where there is a path in the
network fromitoj. If there are no such let D={(i,j) | i,j€ V, j reachable from i in G }
pairs, then Average Speed is zero.
Type Graph Level Then Average Speed = d.(i,j) |/|ID
Input N:square gesp (i%;‘D o (1)) | |
Output R €[0,1]
Speed, Minimum | The maximum shortest path length between | Carley, 2002 Minimum Speed = 1/ (Levels for the Communication Network)
node pairs (i,j) where there is a path in the
network fromitoj. If there are no such
pairs, then Minimum Speed is zero.
Type Graph Level
Input A
Output R €[0,]]
Task Completion, | The percentage of tasks that can be Carley, 2002 Find the tasks that cannot be completed because the agents assigned to the

Knowledge Based

completed by the agents assigned to them,
based solely on whether the agents have the
requisite knowledge to do the tasks.

Type Graph Level

Input AK:binary; AT:binary; KT:binary
Output R € [0,1]

tasks lack necessary knowledge:
let Need = [(AT’*AK) - KT’]

letS={i |1<i<|[T|, 3 j:Need(ij)<0}

Knowledge Based Task Completion is the percentage of tasks that could be
completed = (|T|-|S|) / |T|
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Task Completion, | The percentage of tasks that can be Carley, 2002 This is the average of Knowledge Based Task Completion and Resource
Overall completed by the agents assigned to them, Based Task Completion. If one of the two could not be computed, then the
based solely on whether the agents have the other is returned.
requisite knowledge and resources to do the
tasks.
Type Graph Level
Input AR:binary; AT:binary; RT:binary;
AK:binary, KT:binary
Output R €[0,1]
Task Completion, | The percentage of tasks that can be Carley, 2002 Find the tasks that cannot be completed because the agents assigned to the
Resource Based completed by the agents assigned to them, tasks lack necessary resources. Defined identically as Knowledge Based
based solely on whether the agents have the Task Completion, replacing matrix AK with AR and matrix KT with RT.
requisite resources to do the tasks.
Type Graph Level
Input AR:binary; AT:binary; RT:binary
Output R €[0,1]
Transitivity The percentage of edge pairs {(i,j), (j,k)} in | NetStat Let G = (V,E) be the graph representation of the square network.
the network such that (i k) is also an edge in let I = {(i,j,k) €V°|i,jk distinct }
the network. let Potential = { (i,j,k) €1 | (i,j)€E, and (j,k) €E }
Type Graph Level let Complete = { (i,j,k) € Potential | (i,k)eE }
Input N:square Then Transitivity = |[Complete| / |Potentiall
Output R €[0,]]
Triad Count The number of triads centered at each node | NetStat Let G=(V,E) represent a square network. And let Triad be a matrix of
in a square network. dimension |V[x|V|.
Type Node Level Triad(i,i)=0
Input N:square of dimension |V/| Triad(i,j) = card{ k | k!'=i, k!=j; Ai,) AAGK AAK) }i#]
output Z €0, (M _1)(M -2)] Then the Triad count for agent i = sum(Triad(i,:))
Under Supply, The extent to which the knowledge needed | Carley, 2002 Compute the average number of needed knowledge per task:
Knowledge to do tasks are unavailable in the entire let Need = (AT'*AK) - KT’
organization. let TaskNeed(i) = card{ j | Need(i,j)<0 }, for 1<=i<=|T|
Type Graph Level
Input AK:binary; AT:binary; KT:binary Then UnderSupply is sum(TaskNeed)/ |T|
Output R €[0,1]
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Under Supply, The extent to which the resources needed to | Carley, 2002 Under Resource Supply is identical to Under Knowledge Supply, replacing
Resource do tasks are unavailable in the entire AK with AR, and KT with RT.
organization.
Type Graph Level
Input AR:binary; AT:binary; RT:binary
Output R €[0,1]
Upper The degree to which pairs of agents have a | Krackhardt,
Boundedness common ancestor. 1994
Type Graph Level
Input N:square
Output R € [0,]]
Weak Boundary A node which if removed from a network Cormen, A Weak Boundary Spanner is an articulation point of N, as defined in the
Spanner creates a new component. Leiserson, referenced book.
Type Node Level Riverest,
Input N:square, symmetric Stein, 2001
Output Binary p.558
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Appendix B — ORA Risk Category Measures

Metric

Meaning

Level

Risk

Data Needs

Access Index, Knowledge
Based

Boolean value which is true if an agent is the
only agent who knows a piece of knowledge
and who is known by exactly one other agent.
The one agent known also has its KAI set to
one.

Node

Critical Employee

Multi-cell

Access Index, Resource
Based

Boolean value which is true if an agent is the
only agent with access to a resource and who is
known by exactly one other agent. The one
agent known also has its RAI set to one.

Node

Critical Employee

Multi-cell

Actual Workload,
Knowledge

The knowledge an agent uses to perform the
tasks to which it is assigned.

Node

Resource Allocation

Multi-cell

Actual Workload, Resource

The resources an agent uses to perform the
tasks to which it is assigned.

Node

Resource Allocation

Multi-cell

Average Distance

The average shortest path length between
nodes, excluding infinite distances.

Graph

Communication

Single-cell

Centrality, Betweenness

The Betweenness Centrality of node v in a
network is defined as: across all node pairs that
have a shortest path containing v, the
percentage that pass through v. This is defined
for directed networks.

Node

Communication

Single-cell

Centrality, Closeness

The average closeness of a node to the other
nodes in a network. Loosely, Closeness is the
inverse of the average distance in the network
between the node and all other nodes. This is
defined for directed networks.

Node

Communication

Single-cell

Centrality, Eigenvector

Calculates the eigenvector of the largest
positive eigenvalue of the adjacency matrix
representation of a square network.

Node

Communication

Single-cell

Centrality, In Degree

The In Degree Centrality of a node in a
unimodal network is its normalized in-degree.

Node

Communication

Single-cell

Centrality, Information

Calculate the Stephenson and Zelen information
centrality measure for each node.

Node

Communication

Single-cell

CMU SCS ISRI

-39 -

CASOS Report




Centrality, Inverse Closeness

The average closeness of a node to the other
nodes in a network. Inverse Closeness is the
sum of the inverse distances between a node
and all other nodes. This is defined for directed
networks.

Node

Communication

Single-cell

Centrality, Out Degree

The Out Degree Centrality of a node in a square
network is its normalized out-degree.

Node

Communication

Single-cell

Centrality, Total Degree

The Total Degree Centrality of a node in a
square network is its normalized in plus out
degree.

Node

Communication

Single-cell

Clustering Coefficient,
Watts-Strogatz

Measures the degree of clustering in a network
by averaging the clustering coefficient of each
node i, defined as the ratio of the number of
triangles connected to i to the number of triples
centered at .

Graph

Communication

Single-cell

Cognitive Load

Measures the total amount of effort expended
by each agent to do its tasks.

Node

Critical Employee

Multi-cell

Communication

Measures the communication need of agents to
complete their assigned tasks.

Node

Communication

Multi-cell

Component Count, Strong

The number of strongly connected components
in a network.

Graph

Communication

Single-cell

Component Count, Weak

The number of weakly connected components
in a network.

Graph

Communication

Single-cell

Congruence, Communication

Measures to what extent the agents
communicate when and only when it is needful
to complete tasks. Perfect congruence requires
reciprocal communication.

Graph

Communication

Multi-cell

Congruence, Knowledge

Measures the similarity between what
knowledge is assigned to tasks via agents, and
what knowledge is required to do tasks. Perfect
congruence occurs when agents have
knowledge when and only when it is needful to
complete tasks.

Graph

Resource Allocation,
Task

Multi-cell

Congruence, Resource

Measures the similarity between what resources
are assigned to tasks via agents, and what
resources are required to do tasks. Perfect
congruence occurs when agents have access to
resources when and only when it is needful to
complete tasks.

Graph

Resource Allocation,
Task

Multi-cell
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Connectedness

Measures the degree to which a square
network’s underlying (undirected) network is
connected.

Graph

Communication

Single-cell

Constraint, Burt

The degree to which each node in a square
network is constrained from acting because of
its existing links to other nodes.

Node

Critical Employee,
Redundancy,
Communication

Single-cell

Density

The ratio of the number of edges versus the
maximum possible edges for a network.

Graph

Single-cell

Diameter

The maximum shortest path length between any
two nodes in a unimodal network G=(V,E). If
there exist i,j in V such that j is not reachable
from i, then |V| is returned.

Graph

Communication

Single-cell

Distance Weighted Reach

A generalization of graph theoretic distance,
this measures the distance from a set of nodes in
the network to all other nodes.

Graph

Communication,
Critical Employee

Single-cell

Diversity, Knowledge

The distribution of difference in idea sharing.
This is the Herfindahl-Hirshman index applied
to column sums of AK.

Graph

Resource Allocation

Single-cell

Diversity, Resource

The distribution of difference in resource
sharing. This is the Herfindahl-Hirshman index
applied to column sums of AR.

Graph

Resource Allocation

Single-cell

Edge Count, Lateral

The percentage of lateral edges in a unimodal
network. Fixing a root node X, a lateral edge
(i,)) is one in which the distance from x to i is
the same as the distance from x to j.

Graph

Communication

Single-cell

Edge Count, Pooled

The percentage of pooled edges in a unimodal
network. A pooled is an edge (i,j) such that
there exists at least one other edge (i,k) in the
network, and k=10 j.

Graph

Task

Single-cell

Edge Count, Reciprocal

The percentage of edges in a unimodal network
that are reciprocated (also called Reciprocity).
An edge (i,j) in the network is reciprocated if
edge (j,i) is also in the network.

Graph

Task

Single-cell

Edge Count, Sequential

The percentage of edges in a unimodal network
that are neither Reciprocal Edges nor Pooled
Edges. Note that an edge can be both a Pooled
and a Reciprocal edge.

Graph

Task

Single-cell
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Edge Count, Skip The fraction of edges in a unimodal network Graph Communication Single-cell
that skip levels. An edge (i) is a skip edge if
there is a path from node i to node j even after
the edge (i,j) is removed.
Effective Network Size The effective size of a node’s ego network Node Critical Employee, Single-cell
based on redundancy of ties. Redundancy,
Communication
Exclusivity, Knowledge Detects agents who have singular knowledge. Node Critical Employee Single-cell
Exclusivity, Resource Detects agents who have singular resource Node Critical Employee Single-cell
access.
Exclusivity, Task Detects agents who exclusively perform tasks. Node Critical Employee Single-cell
Performance
Fragmentation The proportion of nodes in a network that are Graph Critical Employee, Single-cell
disconnected Communication ,
Personnel Interaction
Hierarchy The degree to which a unimodal network Graph Communication Single-cell
exhibits a pure hierarchical structure.
Interdependence The percentage of edges in a unimodal network Graph Task Single-cell
that are Pooled or Reciprocal.
Interlockers and Radials Interlocker and radial nodes in a square network Graph Critical Employee Single-cell
have a high and low Triad Count, respectively.
Load, Knowledge Average number of knowledge per agent. Graph Resource Allocation, Single-cell
Redundancy
Load, Resource Average number of resources per agent. Graph Resource Allocation, Single-cell
Redundancy
Negotiation, Knowledge The extent to which agents need to negotiate Graph Resource Allocation, Multi-cell
with each other because they lack the Task
knowledge to complete their assigned tasks.
Negotiation, Resource The extent to which agents need to negotiate Graph Resource Allocation, Multi-cell
with each other because they lack the resources Task
to complete their assigned tasks.
Network Centralization, Network centralization based on the Graph Communication Single-cell
Betweenness betweenness score for each node in a square
network. This measure is defined for directed
and undirected networks.
Network Centralization, Network centralization based on the closeness Graph Communication Single-cell

Closeness

centrality of each node in a square network.
This is defined only for connected, undirected
networks.
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excess of one.

Network Centralization, A centralization based on the degree of the Graph Single-cell

Column Degree column nodes of a network.

Network Centralization, In A centralization of a square network based on Graph Communication Single-cell

Degree the In-Degree Centrality of each node.

Network Centralization, Out | A centralization of a square network based on Graph Communication Single-cell

Degree the Out-Degree Centrality of each node.

Network Centralization, Row | A centralization based on the degree of the row Graph Single-cell

Degree nodes in a network.

Network Centralization, A centralization of a square network based on Graph Communication Single-cell

Total Degree total degree centrality of each node.

Network Levels The Network Level of a square network is the Graph Communication Single-cell
maximum Node Level of its nodes.

Node Level The Node Level for a node v in a square Graph Communication Single-cell
network is the longest shortest path from v to
every node v can reach. If v cannot reach any
node, then its level is 0.

Omega, Knowledge The degree to which agents reuse knowledge Graph Task, Multi-cell
while doing their tasks. Performance

Omega, Resource The degree to which agents reuse resources Graph Task, Multi-cell
while doing their tasks. Performance

Performance as Accuracy Measures how accurately agents can perform Graph Task, Multi-cell
their assigned tasks based on their access to Performance
knowledge and resources.

Personnel Cost Total number of people reporting to an agent, Node Multi-cell
plus its total knowledge, resources, and tasks.

Potential Workload, Maximum knowledge an agent could use to do Node Resource Allocation Multi-cell

Knowledge tasks if it were assigned to all tasks.

Potential Workload, Maximum resources an agent could use to do Node Resource Allocation Multi-cell

Resource tasks if it were assigned to all tasks.

Redundancy, Access Average number of redundant agents per Graph Resource Allocation, Multi-cell
resource. An agent is redundant if there is Redundancy
already an agent that has access to the resource.

Redundancy, Assignment Average number of redundant agents assigned Graph Resource Allocation, Multi-cell
to tasks. An agent is redundant if there is Redundancy
already an agent assigned to the task.

Redundancy, Column The mean number of column node edges in Graph Single-cell
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Redundancy, Knowledge

Average number of redundant agents per
knowledge. An agent is redundant if there is
already an agent that has the knowledge.

Graph

Resource Allocation,
Redundancy,
Task

Single-cell

Redundancy, Resource

Average number of redundant resources
assigned to tasks. A resource is redundant if
there is already a resource assigned to the task.

Graph

Resource Allocation,
Redundancy,
Task

Single-cell

Redundancy, Row

The mean number of row node edges in excess
of one.

Graph

Single-cell

Relative Expertise

The degree of dissimilarity between agents
based on shared knowledge. Each agent
computes to what degree the other agents know
what they do not know.

Node

Personnel Interaction

Single-cell

Relative Similarity

The degree of similarity between two agents
based on shared knowledge. Each agent
computes to what degree the other agents know
what they know.

Node

Personnel Interaction

Single-cell

Span of Control

The average number of out edges per node with
non-zero out degrees.

Graph

Communication

Single-cell

Speed, Average

The average shortest path length between node
pairs (i,j) where there is a path in the network
fromitoj. If there are no such pairs, then
Average Speed is zero.

Graph

Communication

Single-cell

Speed, Minimum

The maximum shortest path length between
node pairs (i,j) where there is a path in the
network from i to j. If there are no such pairs,
then Minimum Speed is zero.

Graph

Communication

Single-cell

Task Completion,
Knowledge Based

The percentage of tasks that can be completed
by the agents assigned to them, based solely on
whether the agents have the requisite
knowledge to do the tasks.

Graph

Performance

Multi-cell

Task Completion, Overall

The percentage of tasks that can be completed
by the agents assigned to them, based solely on
whether the agents have the requisite
knowledge and resources to do the tasks.

Graph

Performance

Multi-cell

Task Completion, Resource
Based

The percentage of tasks that can be completed
by the agents assigned to them, based solely on
whether the agents have the requisite resources
to do the tasks.

Graph

Performance

Multi-cell
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creates a new component.

Transitivity The percentage of edge pairs {(i,j), (j,k)} in the Graph Communication, Single-cell
network such that (i,k) is also an edge in the Task
network.

Triad Count The number of triads centered at each node in a Node Communication Single-cell
square network.

Under Supply, Knowledge The extent to which the knowledge needed to Graph Resource Allocation, Multi-cell
do tasks are unavailable in the entire Task
organization.

Under Supply, Resource The extent to which the resources needed to do Graph Resource Allocation, Multi-cell
tasks are unavailable in the entire organization. Task

Upper Boundedness The degree to which pairs of agents have a Graph Communication Single-cell
common ancestor.

Weak Boundary Spanner A node which if removed from a network Node Critical Employee Single-cell
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