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ABSTRACT 

 

Information hiding is a cornerstone principle of modern software engineering. Interfaces, or APIs, are central to 
realizing the benefits of information hiding, but despite their widespread use, designing good interfaces is not a 
trivial activity. Particular design choices can have a significant detrimental effect on quality or development pro-
ductivity.  In this paper, we examined the impact of API complexity on the failure proneness of source code files 
using data from two large-scale systems from two distinct software companies and nine open source projects from 
the GNOME community. Our analyses showed that increases in the complexity of APIs are associated with in-
creases in the failure proneness of source code files. Interestingly, there are significant differences between corpo-
rate and open source software. Although the impact of the complexity of APIs is important in both settings, the 
magnitude of the detrimental effects on quality is significantly higher in corporate settings. We discuss the re-
search and practical implication of the results.   
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1. INTRODUCTION 
The concept of information hiding proposed by Parnas [32] is a fundamental principle that allows software archi-
tects, designers and engineers to develop modular software systems. This concept has been instantiated as data 
encapsulation, interfaces, polymorphism and other ways in modern programming languages [27]. Interfaces or 
APIs, in particular, are widely regarded as “the only scalable way to build systems from semi-independent com-
ponents” [20]. They allow software developers to work in parallel and minimize the impact of their colleagues’ 
work [12, 32]. As we witness the rapid development of new software platforms and ecosystems (e.g. mobile plat-
forms), it is almost trivial to recognize the growing importance that APIs’ have, particularly in terms of its use and 
acceptance in the industry. Many companies today such as Apple, Google, and Microsoft, just to name a few, rely 
on APIs to leverage part of their businesses. 

Despite APIs’ importance in the industry [13, 14], designing good APIs is not a trivial activity [16, 24]. While 
there are different guidelines for an API implementation [6, 14], they are solely based on experience and anecdo-
tal evidence collected by the authors of the guidelines. In addition, past work has examined how design choices in 
terms of API design impact quality attributes such as maintainability [2] and usability [16]. Although one could 
argue that elements associated with the complexity of APIs have been addressed by the research on API usability, 
limited attention has been given to systematically evaluating the impact of design attributes of APIs such as com-
plexity on traditional outcomes such as software quality and development productivity. This lack of research on 
the relationship between “good” API design and its impact on software projects is a gap that needs to be ad-
dressed because it represents a potential barrier for development organizations towards fully realizing the benefits 
of modular systems. 

Furthermore, the modularity literature (e.g. [36]) argues that APIs are the link between modules or components 
that allows for separation of concerns (a technical aspect) and development activities, therefore facilitating the 
coordination among developers (an organizational aspect). Such argument rests on the implicit assumption that 
complexity is embedded in the software entity (e.g. module or component) and not in the APIs themselves. Re-
cent research suggests a departure from that line of thought because it suggests that complexity might in fact be 
embedded in the APIs themselves  (e.g. [2, 12, 35]). As a consequence, it is critical to understand whether APIs 
have the potential to become barriers to effectively decoupling technical responsibilities and work responsibilities 
as well as hinder coordination among development teams. 

In this paper, we examine the relative impact of API complexity on the failure proneness of source code files us-
ing data from two large-scale systems from two distinct software companies as well as nine projects from the 
GNOME community. We assessed API complexity using measures proposed by Bandi and colleagues [2],.Our 
empirical analyses showed that increases in the complexity of APIs are associated with increases in the likelihood 
of source code files being part of a post-release defect while controlling for several other factors that lead to soft-
ware failures. More interestingly, the negative impact of API complexity is more acute in the context of corporate 
projects than in open source projects.  Combined, these results suggest, first, that attention should be given to the 
design of APIs given their important role in terms of software quality and, second, that further research should 
focus on understanding the underlying factors that render open source projects less vulnerable to the negative im-
pact of API complexity. 

The rest of the document is organized as follows. First, we discuss previous research that motivates the research 
questions examined in this paper. Second, we present our empirical analyses involving 11 software projects, two 
from corporate settings and 9 from the GNOME open source community. We conclude with a discussion of the 
limitations and implications for future research of our work. 

2. THE ROLE OF API COMPLEXITY ON SOFTWARE FAILURES 
Design decisions have an important impact on the ability of software systems to achieve their functional and non-
functional requirements [5, 37]. Principal decisions articulated at the architectural level serve as a general frame-
work that guide and constrain lower level and more detailed design decisions [37]. Two critical and interrelated 
attributes of a software system are impacted by design decisions: the allocation of functional responsibilities 
within specific constituent parts of a system (e.g. modules or components) and relationships among those parts. 



Those relationships are typically realized in the form of APIs, which play a very important role in the develop-
ment process of any software system from a technical point of view as well as from an organizational point of 
view. 

In the technical dimension, APIs determine a host of attributes of a system such as the efficiency of the communi-
cation between modules or components (e.g. [37]), the ease and efficiency of accessing the functionality of a 
module or a component (e.g. [25]), the usability and understanding of the APIs (e.g. [16]), as well as the evolution 
and maintainability of the system (e.g. [24]). Poorly designed APIs could represent an important technical liability 
for software systems, particularly, for those large-scale complex systems that are pervasive in today’s world. 

On the organizational side, the design of a module or a component API defines a key set of coordination needs for 
a development organization. Unsatisfied coordination needs tend to results in misunderstandings and mistakes, 
which typically manifest themselves as higher levels of defects (e.g. [10, 35]). Moreover, uncertainty about the 
attributes of an API (e.g. number and type of parameters) creates a number of coordination requirements that tend 
to be difficult to identify [20, 35]. 

Designing good APIs in technical and organizational terms is, unfortunately, not a trivial task [24]. Despite the 
fact that guidelines have been proposed for that [6, 13], they are based on the anecdotal evidence and experience 
by a subset of practitioners. Furthermore, to the best of our knowledge, there is no systematic empirical evaluation 
of the proposed guidelines. More importantly, only a limited set of studies has investigated how the design of 
APIs relates to quality attributes of a system like usability and maintainability (e.g. [16]). However, maintainabil-
ity and usability are two dimensions of a larger set of dimensions about a software system, including complexity, 
reusability, evolution, and modifiability.  

An aspect of API design that has been mostly neglected by researchers is design complexity. One traditional view 
of complexity focuses on properties of the implementation of a particular function or methods and an extensive 
literature has developed since Halstead’s and McCabe’s seminal work on code complexity [22, 28]. Another in-
fluential view of design complexity relates to structural properties of a software system and the interconnections 
among constituent parts. The concepts of coupling and cohesion are central in this line of work. The dimension of 
design complexity in the context of APIs represents a third line of work that has received limited attention: it fo-
cuses on the complexity of the interconnections themselves, instead of the number of interconnections among the 
parts. In particular, to the best o our knowledge, there is limited work focusing on the empirical analysis of API 
complexity measures and their impact on traditional software engineering outcome variables such as quality and 
development productivity. One such example is the work of Bandi and colleagues [2] who examined the impact 
of design complexity of APIs in maintenance tasks of software systems. The authors used a set of metrics (e.g. 
API size and operation argument complexity) to assess the complexity of APIs. These metrics are based on the 
types and the number of parameters a method or a function has. They are somewhat intuitive: they rely on the as-
sumption that a method or function with a large number of parameters and whose parameters are objects is said to 
be more complex than another method or function with fewer parameters based on primitive types (e.g. integers). 
Bandi and colleagues [2] found that maintenance tasks with higher levels of API complexity took longer to re-
solve than those that involved less complex APIs. In addition, Bandi’s results indicate that their metrics are re-
dundant (i.e., measuring similar properties of the system design) and therefore suggests that the usage of only one 
metric is enough. Their work provides empirical evidence that API complexity is detrimental to development pro-
ductivity during the maintenance of software systems. On the other hand, the relationship of API complexity with 
software quality has been neglected. This paper addresses this gap in the literature by examining the following 
research question: 

RQ1: What is the impact of API complexity on failure proneness of software systems? 

There has been recent work about the modularity of open source vs. proprietary systems. While some research has 
argued that open source software systems tend to be more modular than proprietary systems [27], other work has 
not found evidences supporting such argument (e.g. [33]). If open source is in fact more modular, then, open 
source development, in principle, can better realize the benefits of modularization such as reduced maintenance, 
testing and experimentation costs [36]. Since the design of APIs is an important step in the design of modular sys-



tems, we are also interested in assessing the impact of API complexity on failure proneness in the context of open 
source projects. More specifically, we address the following research question: 

RQ2:  Does the impact of API complexity on failure proneness differ in proprietary systems relative to 
open source systems? 

3. EMPIRICAL METHODOLOGY 
In this section, we describe the empirical design used in our inquiry on the impact of API complexity on software 
failures. The section is organized as follows. We first describe the characteristics of the projects from which data 
were collected. Second, we describe the various measures used in our analyses followed by a discussion of the 
statistical modeling used in the study. 

3.1 Description of the Projects 
Our dataset comprise of data from two large software development projects from two distinct companies and nine 
projects from the GNOME open source community.  

3.1.1 Corporate Projects 
One of the corporate projects was a complex distributed system produced by a company operating in the computer 
storage industry. One hundred and fourteen developers grouped into eight development teams distributed across 
three development locations, worked full time on the project during the time period covered by our data. The data 
covered a period of 11 months of development activities corresponding to the latest release of the company’s 
product. Those development activities were captured by 1125 development tasks, which involved activities from 
implementation of new features to fixing defects. The system was composed of approximately 5 million lines of 
code with most of the code written in C and a relatively small fraction in C++. The API information was collected 
using the C-REX tool.   

The second was an embedded system from a company in the automotive industry. This development organization 
used a product line approach. Our data covered 4 years of development activities in the latest version of the base 
platform software grouped in 3,840 development tasks. Three hundred and eighty developers distributed in eight 
locations across Europe and Asia participated in the development. The system was composed of approximately 7 
million lines of code organized in 530 architectural components. All source code files were written in C language. 
The API-related information was collected using a proprietary tool that the development organization used to col-
lect a wide range of metrics for each source code file.  

3.1.2 Open Source Projects 
We also collected data from nine open source projects from the GNOME community. This community has devel-
oped a graphical user interface platform for operating systems such as Linux. It was initiated in 1997 and over the 
following decade, volunteers around the world have contributed to this development effort in order to create a 
freely available desktop platform and a host of applications. GNOME is in fact a compilation of various software 
development projects [18]. Today the community has over 730 projects. There are only few, relatively easy to 
meet, requirements to create a new project in the GNOME source code repository system. Therefore, projects dif-
fer significantly in their development activity, size, and participation rate. Building on criteria used in past re-
search [11], we only considered projects that satisfied the following criteria: (a) continuity of development activ-
ity (at least one year), (b) amount of development activity (at least 200 commits), (c) attractiveness of project for 
developers (at least 10 committers), and (d) user interest (at least one community hosted mailing list). Addition-
ally, data from the mailing lists and data collected from the source code repository should overlap during the ana-
lyzed period. These criteria were met by 90 projects. These 90 projects range from large and long-standing pro-
jects such as Evolution to smaller and more recent projects such as Cheese. Unfortunately, these 90 projects rep-
resent a major amount of data to be processed in order to measure the relevant factors in our analyses. Then, we 
opted for selected a random sample consisting of 9 projects (a 10% sample). The resulting sample included the 
following 9 projects: balsa, brasero, evolution, gnome-color-manager, memprof, orbit2, planner, seahorse, and 
vala. The size of the projects in terms of non-comment non-empty lines of code ranged from 11K to 329K. These 
projects used several different programming languages including C, C++, perl, and python. Therefore, we used 
the tool Doxygen to extract the API information from the various source code files in a consistent manner. 



The dataset covered almost the last 13 years of activities in the community, from November 1997 until October 
2010. During that time period, the projects in our random sample projects had several releases. However, we fo-
cused our analyses on the latest release of each of the projects.  

3.2 Description of the Measures 
The basis of our data collection was the development activity represented by changes in the source code. In both 
corporate projects, every change to the source code was controlled by modification requests. A modification re-
quest (MR) represents a development task such as implementing a new functionality or resolving a defect. In 
short, the version control system and the MR-tracking systems of the development organizations constituted the 
main sources of data. In the open source projects, the link between modification requests (or reports in the 
GNOME Bugzilla’s database) and commits in the version control is not consistent. Then, we focused mostly on 
the version control data. In addition, we utilized the source code itself as a third important source of data to ex-
tract additional information about technical properties of the systems. Combining all three data sources, we con-
structed the measures described in the subsequent paragraphs. 

3.2.1 Measuring Software Failures 
Our measure of quality is failure proneness defined as the likelihood of a particular software entity (e.g. source 
code file, module, component, etc) to be modified as part of fixing a “field” defect. Our unit of analysis is the 
source code file. Then, the dependent variable, File Buggyness, was measured as a dichotomous variable indicat-
ing whether a source code file has been modified in the course of resolving a “field” defect.  In the case of the 
corporate project, the strong connection between modification requests tracking processing and version control 
system allowed us to relatively easily identify the defects that were associated with each particular source code 
files. In our first corporate project, field defects represent instances of problems reported by customers after the 
product has been released. In the case of second project (the embedded automotive system), we consider “field” 
defects as those encountered in the integration and system-testing phase of the development process. Field defects 
in that industry seldom occur because they would result in product recall and significant financial impact. Then, 
an important amount of effort is spent in the system-testing phase to make sure that defects are found before the 
product is released to customers. 

In the case of the open source projects, we considered field defects as those reported in the GNOME’s Bugzilla 
database against the last release of each project. One challenge in these projects is the lack of a reliable way to 
link the commits that fixed the defects with the corresponding defect report in Bugzilla. Then, we manually in-
spected the identified defects for all 9 projects. Some of the defect reports contained information about the associ-
ated commits in the form of comments or the commits messages contained references to defect report. In those 
cases (37% of the total number of identified defects), we use this information to compute our outcome measure. 
For those defects that did not contained information about the associated commits, we inspected the version con-
trol data and we looked at commits submitted around the time the defect was marked as resolved. Specifically, we 
looked at the commits that occurred within the +/-4 hours time window of resolving the defect. Two raters un-
aware of the research questions posed in this paper examined the comments in the commits and in the defect re-
ports and connected them if they found a relationship between the problem description (in the defect report) and 
the explanation of the resolution (in the commit). Then, this information was also used to compute our File Bug-
gyness measure for the open source projects. 

3.2.2 Measuring API Complexity 
As discussed before, Bandi and colleagues’ [2] results indicate that instead of using a set of metrics he proposed, a 
single metric could be use, because all metrics were measuring similar properties. Following this rationale, we 
constructed several measures of API complexity based on the metrics proposed by Bandi and colleagues. For each 
source code file, we first identified the set of APIs those files made accessible for other source code files (e.g. 
public methods and variables for C++ code and extern-ed functions and variables for the C portion of the code).  
Then for each API, we computed the interface or API size as described by Bandi and colleagues [2]. API size is 
defined as the number of parameter plus the sum of the parameters’ type sizes and both terms are multiplied by 
constants. In our computations, we set those constants to 1 (see [2] for a discussion of selecting the constant val-
ues). Bandi and colleagues [2] did not consider the case where APIs are data elements such as global variables. In 
those cases, we can define the API size measure in different ways. One possibility is to assume that it is equiva-



lent to a “parameterless” API and assign a 0 to this measure. Alternatively, we could assign to the API size meas-
ure the value corresponding to the data element type as if it were a regular API with a single parameter. We 
evaluated both approaches and the results were similar. We report the results based on the second approach. Fi-
nally, the API-level measures were aggregated at the level of the source code file. For each file, we calculated a 
total sum measure of API size and its standard deviation. Then, we have two variables: API Size, and API Size 
Dispersion. 

3.2.3 Additional Factors Impacting Software Failures 
In order to adequately examine the impact API complexity has on software failures in proprietary and open-
source systems, we need to account for the effects of potentially confounding influences, our analysis must in-
clude factors that past research has found to be associated with failures. When it comes to prediction of software 
failures, numerous measures have been evaluated in corporate as well as open source settings (e.g. [15, 19, 21, 29, 
30, 40]). As suggested by Graves and colleagues [19], such measures can be classified as either process or product 
measures. Process measures such as number of changes or deltas, and age of the code (i.e., churn metrics) have 
been shown to be very good predictors of failures [19, 29]. Accordingly, we control for the Number of Commits, 
which is the number of times the file was changed as part of some development activity prior to the project’s re-
lease. We also control for the Average Number of Lines Changed in a file as part of the development activities as 
well as for the Number of Developers that modified the file during the project. In contrast, product measures such 
as code size and complexity measures have produced somewhat contradictory results as predictors of software 
failures. Some researchers have found a positive relationship between lines of code and failures (e.g. [8]), while 
others have found a negative relationship (e.g. [4]). We measure Size of the File (LOC) as the number of non-
blank non-comment lines of code.  

We also collected measures of experience based on the approaches used by Boh and colleagues [7] which utilize 
the data in software repositories as the basis for assessing experience. We measured the experience of the devel-
opers that modified file i prior to the release of the product we studied, Average Experience of Developers, as the 
average number of commits made by the developers that worked on modification to file i. We were able to meas-
ure this particular factor because our data covered also development activities in all 11 projects prior to the work 
associated with the last release of the project. 

Recent research has shown that how software entities such as components, modules and source code files are in-
ter-related through their technical dependencies, syntactic or logical, impacts the quality of those software entities 
(e.g. [10 , 29, 40]). Syntactic dependencies were extracted from the various systems in different ways. We used 
the C-REX tool [23] to identify programming language tokens and references in each entity of each source code 
file of the distributed system (first corporate project). In the second corporate project, the embedded system, the 
syntactic dependencies of each source code file were extracted by a proprietary tool, which the development or-
ganization used to collect several metrics for each file.  Finally, the syntactic dependencies in the nine open source 
projects were collected using Doxygen’s cross-reference generation feature. Using the collected data about syn-
tactic dependencies, we merged the information into a matrix for each project that captures the relationships 
amount the system’s constituent source code files. Those relationships identified data, function and method refer-
ences that crossed the boundary of each source code file. More precisely, in a file-to-file matrix SD, the cell sdij 
represents the number of data/function/method references that exist from file i to file j. We refer to data references 
as data dependencies and function/method references as functional dependencies. We collected four syntactic de-
pendencies measures: inflow and outflow data relationships and inflow and outflow functional dependencies. 
Each of those four measures capture the number of syntactic dependencies of such type associated with each file i.  

Logical dependencies are another type of technical relationship that might exist among software entities. Logical 
dependencies relate source code files that are modified together as part of a unit of development work. When a 
development task requires changes to more than one file, we assume that decisions about the change to one file 
depend in some way on the decisions made about changes to the other files involved in the MR. This view of 
logical dependencies been empirically assessed in a number of corporate (e.g. [9, 10]) and open source projects 
(e.g. [38]). In the corporate projects, the modification requests contained information about the commits made in 
the version control system. As described earlier, such information was reliably generated as part of the submission 
procedures established in the development organizations. Such data allowed us to identify the relationship be-



tween development tasks and the changes in the source code associated with such tasks. Using this information, 
we constructed a logical dependency matrix. In the case of the open source projects, we considered each commit 
as a unit of work and, therefore, it was used to construct the logical dependency matrix for GNOME projects we 
studied. More specifically, the logical dependency matrix is a symmetric matrix of source code files where each 
cell Cij represents the number of times files i and j (i is not equal to j) were changed together as part of a develop-
ment task1. We accumulate the data across all the development activities performed as part of the release of each 
project that we studied. Cataldo and colleagues [10] found that two measures based on logical dependencies – 
Number of Logical Dependencies and Clustering of Logical Dependencies – have a major impact on software 
failures. Building on those results, we computed the corresponding measures as follows. The Number of Logical 
Dependencies measure for file i was computed as the number of non-zero cells on column i of the matrix. Since 
the logical dependencies matrix is symmetric, this measure is equivalent to the degree of a node in undirected 
graph, excluding self-loops. The Clustering of Logical Dependencies measure captures the degree to which the 
files that have logical dependencies to the focal file i have logical interdependencies among themselves. Formally, 
and in graph theoretic terms, the Clustering of Logical Dependencies measure for file i is computed as the density 
of connections among the direct neighbors of file i. This measure is equivalent to Watts’s [39] local clustering 
measure. 

The quality of the logical dependency data, and consequently the measures based on them, relies on the adherence 
of developers’ actions to the defined change submission processes. For instance, a developer could submit a 
commit containing changes to two different files but those changes are associated with different modification re-
quests and they do not related to an actual dependency among the files. A collection of analyses was performed to 
assess the quality of our MR-related data in the corporate projects and commit data in the open source projects in 
order to minimize measurement error. In the case of the corporate projects, we compared the revisions of the 
changes associated with the modification requests and we did not find evidence of such type of behavior. One of 
the authors together with a senior engineer of each organization examined a random sample of modification re-
quests to determine if developers have work patterns that could impact the quality of our data such as the example 
described above. We did not find commits in the version control systems that contained modifications to the sys-
tems’ code that was unrelated to the development task represented by the modification requests. In the case of the 
open source projects, two raters unaware of the research questions examine random samples of commits from all 
nine projects. Although they did not found strong evidence that commits contained unrelated changes to the 
source code, they did found certain change patterns that might impact the analyses. These changes involved modi-
fications of two different types: (1) changes to configuration files and (2) changes to include files that contained 
an unusual large number of definitions. We identified all these particular files and removed them from the con-
struction of the logical dependency matrix.  Since case (2) could be related to design decisions made in the pro-
ject, we ran our analyses with and without considering those files and the results were consistent, so the results 
reported in the paper are based on the analysis that did not included files in case (1) nor in case (2). 

Finally, we included a few additional controls. First, we included a binary variable, Corporate Project, that was 
set to 1 if the file I was part of one of the two corporate projects, otherwise, it was set to 0. Second, we also in-
cluded dummy variables to control for unobserved, project-specific factors. These dummy variables effectively 
control for any factors, which we could not explicitly measure such as the cultural or organization aspects of the 
projects.  

3.3 Description of the Statistical Model 
Our dependent measure, File Buggyness, is a binary variable. Then, our analyses used logistic regression models 
to assess the impact of API complexity on failure proneness. We report two goodness-of-fit measures for each 
statistical model including the log-likelihood of the model and the percentage of deviance explained by the model. 
Deviance is defined as -2 times the log-likelihood of the model. The percentage of the deviance explained is a 
ratio of the deviance of the null model (containing only the intercept), and the deviance of the final model.  

Regression coefficients are typically reported as part of the results. We opted for reporting the odds ratios associ-
ated with the logistic regressions because they simplify the interpretation of the results. Odds ratios are the expo-
                                                                    
1 The diagonal of the matrix indicates the number of times a single file was modified and can be disregarded from further analysis. 



nent of the logistic regression coefficient. An odds ratio that is larger than 1 indicates a positive relationship be-
tween the independent and dependent variables. On the other hand, an odds ratio less than 1 indicates a negative 
relationship. For example, if the binary measure Corporate Project has an odds ratio of 4.4, increasing the value 
of such factors from 0 to 1 results in an increase of the probability of a file having a reported defect by 4.4 times 
while the remaining factors in the model are kept constant. We used the logistic command in the statistical pack-
age Stata 11 for computing the regression models. 

4. RESULTS 
4.1 Preliminary Analysis 
The first step in our analyses consisted in understanding the general characteristics of the data. We calculated de-
scriptive statistics of all the measures and they showed that most of the variables were highly skewed. Therefore, 
we log-transformed them. We also performed collinearity diagnostics on the measures. A pair-wise correlation 
analysis reveal several high levels of correlation between our variables, in particular, among Number of Commits, 
Number of Developers, Size of the File and the syntactic dependency measures. In order to further examine these 
high level correlations, we compute variance inflation factors (VIF) and tolerances for all the independent and 
control variables described in section 3.2. A tolerance close to 1 indicates little multicollinearity, whereas a value 
close to 0 suggests that multicollinearity may be a significant threat. VIF is defined as the reciprocal of the toler-
ance. 

In Table 1, we report the VIFs and tolerances associated with our variables. Traditional rule of thumb suggest that 
VIF values above 10 should be avoided and values above 5 should be consider with care [26]. We observe in 
model I in table 1 that several of our variables have VIFs significantly higher than 10. Therefore, we remove those 
factors from our analyses. Model II (in table 1) shows that the remaining variables have VIFs values below 5 and 
those factors were the only one considered in our regression analyses. The pair-wise correlations among the vari-
ables included in the regression models were sufficiently low to not represent a concern in terms of multicolline-
arity.  

Table 1: Collinearity Diagnostics 

 Model I 
VIF (Tolerance) 

Model II 
VIF (Tolerance) 

API Size 16.39 (0.0617) 1.19 (0.8394) 
API Size Dispersion   5.09 (0.2007) 1.07 (0.9334) 
Number of Commits   7.75 (0.1297)     --- 
Average Change Size   6.26 (0.1595) 1.19 (0.8433) 
Number of Developers   5.34 (0.1876) 1.43 (0.6972) 
Size in LOCs   1.35 (0.7301) 1.29 (0.7780) 
Average Experience of Developers   1.09 (0.9205) 1.08 (0.9228) 
Syntactic In-Data Dependencies   5.19 (0.1899)     --- 
Syntactic Out-Data Dependencies   2.89 (0.3527) 1.28 (0.7794) 
Syntactic In-Functional Dependencies   1.37 (0.7250) 1.10 (0.9122) 
Syntactic Out-Functional Dependencies   1.12 (0.9003) 1.11 (0.9041) 
Logical Dependencies   3.27 (0.3001) 1.27 (0.7863) 
Clustering of Logical Dependencies   1.27 (0.7859) 1.25 (0.8000) 
Corporate Project   4.62 (0.2149) 4.62 (0.2163) 
Project Dummy A   1.37 (0.7359) 1.36 (0.7380) 
Project Dummy B   2.59 (0.3849) 2.59 (0.3855) 
Project Dummy C   3.08 (0.3235) 3.08 (0.3249) 
Project Dummy D   3.23 (0.3102) 3.23 (0.3097) 

 

 

 



Table 2: The Impact of API Complexity of Software Quality 

 Model I Model II Model III 
Average Change Size 1.008 1.030 1.025 
Size in LOCs 1.345** 1.358** 1.323** 
Number of Developers 6.564** 6.592** 6.563** 
Average Experience of Developers 0.648** 0.689** 0.711** 
Syntactic Out-Data Dependencies 1.050** 1.079** 1.040** 
Syntactic In-Functional Dependencies 0.997 0.953 1.001 
Syntactic Out-Functional Dependencies 1.075* 1.059* 1.109* 
Logical Dependencies 1.951** 1.939** 1.937** 
Clustering of Logical Dependencies 0.523** 0.517** 0.521** 
Project Dummy A 0.753** 0.751** 0.761** 
Project Dummy B 1.277** 1.275** 1.279** 
Project Dummy C 0.347** 0.379** 0.382** 
Project Dummy D 0.309** 0.301** 0.304** 
Corporate Project 4.426** 4.552** 4.625** 
API Size  1.512** 1.506** 
API Size Dispersion  0.931 0.933 
API Size X API Size   0.992 
API Size X Corporate Project 	
   	
   1.193** 

Log-Likelihood -11718.4 -10096.5 -9578.9 

Deviance Explained 43.97% 51.72% 54.19% 
(+ p < 0.10, * p < 0.05, ** p < 0.01)    

 

4.2 The Impact of API Complexity on Software Failures 
Table 2 reports the results of examining of the impact of API complexity on failure proneness. We report the odds 
ratios associated with three different regression models. Model I is a baseline model and includes all the control 
measures that did not exhibit multicollinearity problems. Overall, the results are consistent with past research (e.g. 
[8, 10, 40]). Factors such as size of the source code file, number of developers that modified a file, number of 
technical dependencies (syntactic and logical) have odds ratios above 1 indicating that higher levels of those 
measures increase the likelihood of failures being associated with the source code file. In addition and also consis-
tent with past research (e.g. [10]), we observe that developers’ experience and the structural properties of the logi-
cal dependencies decrease the likelihood of failures. The dummy variables that controlled for unobserved and 
unmeasured aspects of the projects are all statistically significant indicating that there are important differences 
across all 11 projects. Finally, the most important result reported in model I is the statistical significance of the 
Corporate Project variable that indicated whether the focal file was part of a corporate project (a value of 1) or 
part of an open source project (a value of 0). An odds ratio of 4.426 associated with the factor indicates that 
source code files in corporate projects are 4.4 times more likely to have failures than files in open source projects. 
It is important to reiterate that we are controlling for a number of other factors that lead to software failures. Then, 
this particular result suggests the existence of aspects inherent to the two corporate projects we studied (and ar-
guably to corporate projects in general) that makes achieving levels of software quality as high as in open source 
projects more challenging. Certainly one key difference between our corporate projects and the open source pro-
jects is the size in lines of code. The corporate projects are an order of magnitude larger than the open source pro-
ject. Although problems stemming from the shear size of the systems might be an important driver of this result, 
other factors such as the pace of the work, the role of milestones and compressed cycle times made be at play.  

Model II introduces our two independent measures, API Size and API Size Dispersion. We observe that the impact 
of API Size is statistically significant. Furthermore, the odds ratio is about 1 indicating that increases in the com-
plexity of the APIs exported by a source code file increase the likelihood of source code files of being associated 
with defect by 51.2%. While the sum of API sizes gives a general indication of the complexity associated with 



interacting with a particular file, the dispersion of the API size measure provides an indication of how such com-
plexity is distributed across the APIs exported by a particular file. Model II shows, however, that the impact of 
dispersion of API sizes is not statistically significant across all projects. It also important to highlight that the ef-
fect size of the API Size factor is quite important accounting for almost 8% of the deviance explained in the 
model. Finally, the quality of the statistical models as evidenced by the respectable levels of deviance explained is 
strengthen the ROC curve analysis depicted in figure 1 which indicates an area under the ROC curve of 0.9119.  
Combined, these values are indicative of very good fit of the models. 

The last model in table 2, model III, includes two interaction terms. These terms allow us to examine how the im-
pact of a particular factor on the outcome variable changes as a second factor varies. For example, the interaction 
term API Size X Corporate Project tests whether the impact of the API Size variable differs for corporate versus 
open source projects. The second interaction term, API Size X API Size, allows us to examine whether the impact 
of API Size is purely linear or it has a quadratic dimension to it. The results reported in model III show that only 
one of the interaction terms in statistically significant. The odds ratio above 1 associated with the term API Size X 
Corporate Project indicates that the impact of API complexity is more acute in corporate projects than in open 
source projects. In other words, above and beyond the direct effect of API Size, the interaction term tells us that 
the impact of API complexity is even greater in corporate projects. We explore these results further in the next 
section. 

Figure 1: ROC Curve for Model II from Table 2 

	
  
4.3 Additional Analyses 
We performed additional analyses to examine the robustness of our results. First, we performed regression analy-
ses equivalent to those reported in Table 2 for each project. In this way, we can assess whether the regression 
models are stable across the various projects. The results in terms of the statistically significant factors, the rela-
tive magnitude of the effects as well as the fit of the models were similar to those reported in Table 2. Since our 
analysis focused only on the last release of each project, we also performed our analyses in previous releases for 
those projects were had all the relevant data available (all projects except the embedded system corporate project). 
We ran individual project regressions as well as aggregated ones and the results were also consistent with those 
reported in Table 2. 

4.4 Summary of Results 
The relevance of the results reported in Table 2 is two-fold. First, the results show that API complexity is an im-
portant factor that impacts software failures. Second, the impact of API complexity differs across corporate and 
open source projects.  

Figure 2 depicts these two distinct and valuable results. In this figure, we observe the estimated probability of 
failure (Y axis) associated with corporate and open source projects as the API complexity increases (X axis). 
There key issues to highlight. First, corporate projects have a higher initial probability of failure. As discussed in 
the previous section, the binary variable Corporate Projects captured that effect and the results of the regression 
indicated that corporate projects were 4.4 times more likely to have failures associated with their source code files 



than open source projects. Figure 2 also shows the difference in the slopes of the estimated probability curve con-
sistent with the statistically significant effect of the interaction term API Size X Corporate Project in model III of 
Table 2. Corporate projects have a stepper slope associated with them suggesting that the impact of API complex-
ity is more severe in those settings than in the open source projects. 

5. DISCUSSION 
In this paper, we examined the role of API complexity on software failures across corporate and open source pro-
jects. Our first research question focused on the investigation of the impact of API complexity on the failure 
proneness of source code files. Our results showed that higher levels of API complexity of source code files 
(measured as sum of the size of the file’s exported APIs) are associated with increases in the “buggyness” of files 
or likelihood of source code files being associated with a defect. We studied the relationship between API com-
plexity and failure proneness in open source and proprietary systems (RQ2). Our analyses suggested that corpo-
rate projects tend to have a higher initial probability of failure and are more susceptible to increases in API com-
plexity. More specifically, the impact of API complexity in failure proneness is more severe in corporate projects 
than in the open source projects. 

Figure 2: Estimated Probability of Failure for 
Corporate and OSS Projects 

 

Our work has several important contributions to the software engineering literature. First, we extended our 
knowledge about the role of API complexity by examining Bandi and colleagues [2] measures in the context of 
software failures. Our results are complementary to those of Bandi et al since their results suggested that higher 
API complexity was positively associated with maintenance time. Second, our analyses combined multiple factors 
that impact failure proneness. In particular, we extended traditional empirical analyses which focused on churn 
and product-related metrics with complexity and relational (in the form of syntactic and logical dependencies) 
characteristics of the APIs. Third and in relation to the debate regarding modularity in open source and proprie-
tary systems (e.g. [27, 33]), our results would suggest that, in fact, open source system are more modular. If we 
consider modularity in its original conceptual form [32], our results indicating that open source projects are im-
pacted less by API complexity could be interpreted as evidence that complexity tends to be allocated mostly 
where the functionality is located rather than in the API. Certainly, this is an important area that future research 
should examine. Finally, we replicated our results across two systems from two different companies as well as 
nine different open source systems strengthening the external validity of our results.  

The remainder of this section discusses the limitations of our work as well as the implications of our results. 

5.1 Limitations 
Our work has limitations worth noticing. First, the measures proposed by Bandi and colleagues [2] do not con-
sider data elements as APIs. As discussed in the methodology section, we explored two alternative methods of 
extending the measure and the results were similar. However, we think that redefining the API size measure re-
quires further evaluation. Unfortunately, we did not have access to a third system that also made heavy use of 
global variables as APIs. Third, recent research has examined the impact of organizational factors on failure 



proneness such as organizational structure [30] and different types of work dependencies [10]. Again, we did not 
have access to such data for both systems and therefore cannot use these aspects while conducting our analysis. 
Finally and as discussed in section 4.2, there was a significant difference in size (in LOCs) between corporate and 
open source systems. Although our analyses controlled for a wide range of confounding effects, it is possible that 
the differences in the impact of API complexity are not as significant if we were able to considered larger open 
source projects. Certainly, it is an important question for future research. 

5.2 API Complexity and Software Quality 
Software complexity has been an important research topic for several decades [3] and the increasing pervasive-
ness of software systems suggests that the topic will remain relevant in the future. This line of work has tradition-
ally focused on assessing the complexity of a particular unit of software such as functions, modules or compo-
nents (e.g. [17]) and examining its impact in the context of software maintenance activities and software quality  
(e.g [3]). Although an extensive literature has developed over the years, researchers have argued that empirical 
examinations of the relationship between complexity and quality have produced disappointing results [17]. Our 
study, on the other hand, examined a dimension of complexity – API complexity - that has been relatively ne-
glected. We are addressing an important gap in the literature because APIs are a central element in modular sys-
tems. The modularity literature (e.g. [36]) argues that APIs are the link between modules or components that al-
lows for separation of concerns and development activities, therefore facilitating the coordination among devel-
opers. Such argument rests on the assumption that complexity is embedded in the software entity (e.g. module or 
component) and not in the APIs themselves. Our work and other recent research (e.g. [2, 12, 35]) suggest a depar-
ture from that line of work where complexity is in fact embedded in the APIs themselves. Consequently, the sepa-
ration of technical and work responsibilities is not as simple and pristine as suggested by the modular systems 
theoretical perspective. Then, complex APIs have the potential to become barriers to effectively decoupling tech-
nical responsibilities and work responsibilities and, as consequence, hinder coordination among development 
teams. The work presented in this paper represents a first step towards characterizing the complexity of APIs and 
empirically assessing its impact on software quality. The following paragraphs discuss several future research 
directions we consider will further our understanding of the relationship between API complexity and software 
quality. 

5.2.1 The Nature of API Complexity 
The complexity associated with an API relates to multiple dimensions. In this paper and building on prior work, 
we considered complexity as a function of the number and type of parameters of a particular API. However, there 
are additional dimensions that future research should explore. First, the set of pre- and post-invocation assump-
tions made by the API designers and implementers represent also important source of complexity and, conse-
quently, a potential factor leading to failures [31, 34]. For instance, a developer of a module’s API has some sys-
tem configurations for which he/she had developed and validated the particular piece of software. Documentation 
and communication of these configurations in such a way that it is able to capture all the relevant details is a chal-
lenge, leading to a variety of defects when those APIs are utilized. Past research in static analysis [1] has proposed 
approaches to address problems related with misalignment of assumptions between the API provider and user. 
However, such research focuses on basic issues such as verification of lock/unlock policies and conformance of 
particular code structures in device drives. Nambiar and Cataldo [31] presented a set of cases that related to a 
higher order of misalignment of assumptions that are associated with the information content exchanged through 
the APIs as well as the environmental context in which the API is expected to operate. Another, but related, di-
mension of complexity is related to the sequence of invocation of different APIs and the negative consequences 
that incorrect or unanticipated sequences can have on software quality [25]. 

Another area that deserves further examination is the implications of particular usage patterns of parameter types 
for API complexity. For instance, a function or method may take a single integer parameter. In the context of 
Bandi et al’s measures, such API has an operational argument complexity of 1 (the size of the parameter type as 
defined by [2]). However, the function or method could use such parameter as a mechanism for controlling a 
complex sequence of statements (e.g. a mask). Arguably, this example implies more complexity in the use of the 
API because it requires the function or method user to understand a lot more about the API and potentially about 
the implementation and the implications of particular choices of bits in the mask. This is similar to what Kiczales 



has termed as “open implementation”. Then, future research should explore ways to capture such differences in 
complexity into new metrics. 

5.2.2 Coordination of Geographically Distributed Development Work 
de Souza and Redmiles [12] found that dependencies associated with APIs relating two or more development 
teams might not be easily identified by those developers. Lack of awareness or disregard for particular dependen-
cies can have important consequences on the quality of a software system. Past research has shown that unsatis-
fied coordination needs can result in coordination breakdowns, particularly in a geographically distributed settings 
[9]. These coordination breakdowns tend to materialize as higher number of defects [10]. Our results about the 
detrimental impact of API complexity on software quality suggest an additional possible source of dependency 
among the users and the “supplier’ of the APIs that might be difficult to identify and manage. Then, we could 
consider the complexity of APIs as a factor to help the design of distributed teams that would be better equipped 
to handle the dependencies imposed by the technical properties of the system. For instance, teams dealing with 
more complex APIs could be located closer (physically or in terms of time zone difference) than those teams deal-
ing with simpler APIs. In other words, future research should explore the use of metrics that characterize the na-
ture of APIs (e.g. complexity) as an additional mechanism in the identification of what constitutes relevant work 
dependencies among development teams and organize these teams accordingly. It is important to highlight that 
recent work has shown that logical dependencies among software modules are a major driver of work dependen-
cies among developers [9]. Our work complements such research by also highlighting the role of the complexity 
associated with those logical dependencies. 

6. CONCLUSION 
In this paper, we examine the relative impact of API complexity on the failure proneness of source code files. We 
performed our analysis using data from two large-scale systems from two distinct software companies and nine 
different open-source projects. We used Bandi’s et al. API complexity metrics and compared our results with sev-
eral other predictors of bug failures. Our analyses showed that increases in the complexity of APIs are associated 
with increases the failure proneness of source code files, i.e., files containing more complex APIs are more likely 
to have bugs. In addition, the impact of API complexity in failure proneness is more severe in corporate projects 
than in the open source projects. 
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