

The Impact of API Complexity on Failures:
An Empirical Analysis of Proprietary and

Open Source Software Systems

Marcelo Cataldo1, Cleidson R.B. de Souza2

June 2011
CMU-ISR-11-106

Institute for Software Research
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

1 Institute for Software Research, School of Computer Science, Carnegie Mellon University
2 IBM Research, Brazil

ABSTRACT

Information hiding is a cornerstone principle of modern software engineering. Interfaces, or APIs, are central to
realizing the benefits of information hiding, but despite their widespread use, designing good interfaces is not a
trivial activity. Particular design choices can have a significant detrimental effect on quality or development pro-
ductivity. In this paper, we examined the impact of API complexity on the failure proneness of source code files
using data from two large-scale systems from two distinct software companies and nine open source projects from
the GNOME community. Our analyses showed that increases in the complexity of APIs are associated with in-
creases in the failure proneness of source code files. Interestingly, there are significant differences between corpo-
rate and open source software. Although the impact of the complexity of APIs is important in both settings, the
magnitude of the detrimental effects on quality is significantly higher in corporate settings. We discuss the re-
search and practical implication of the results.

Keywords: API complexity, corporate versus open source, software failures.

1. INTRODUCTION
The concept of information hiding proposed by Parnas [32] is a fundamental principle that allows software archi-
tects, designers and engineers to develop modular software systems. This concept has been instantiated as data
encapsulation, interfaces, polymorphism and other ways in modern programming languages [27]. Interfaces or
APIs, in particular, are widely regarded as “the only scalable way to build systems from semi-independent com-
ponents” [20]. They allow software developers to work in parallel and minimize the impact of their colleagues’
work [12, 32]. As we witness the rapid development of new software platforms and ecosystems (e.g. mobile plat-
forms), it is almost trivial to recognize the growing importance that APIs’ have, particularly in terms of its use and
acceptance in the industry. Many companies today such as Apple, Google, and Microsoft, just to name a few, rely
on APIs to leverage part of their businesses.

Despite APIs’ importance in the industry [13, 14], designing good APIs is not a trivial activity [16, 24]. While
there are different guidelines for an API implementation [6, 14], they are solely based on experience and anecdo-
tal evidence collected by the authors of the guidelines. In addition, past work has examined how design choices in
terms of API design impact quality attributes such as maintainability [2] and usability [16]. Although one could
argue that elements associated with the complexity of APIs have been addressed by the research on API usability,
limited attention has been given to systematically evaluating the impact of design attributes of APIs such as com-
plexity on traditional outcomes such as software quality and development productivity. This lack of research on
the relationship between “good” API design and its impact on software projects is a gap that needs to be ad-
dressed because it represents a potential barrier for development organizations towards fully realizing the benefits
of modular systems.

Furthermore, the modularity literature (e.g. [36]) argues that APIs are the link between modules or components
that allows for separation of concerns (a technical aspect) and development activities, therefore facilitating the
coordination among developers (an organizational aspect). Such argument rests on the implicit assumption that
complexity is embedded in the software entity (e.g. module or component) and not in the APIs themselves. Re-
cent research suggests a departure from that line of thought because it suggests that complexity might in fact be
embedded in the APIs themselves (e.g. [2, 12, 35]). As a consequence, it is critical to understand whether APIs
have the potential to become barriers to effectively decoupling technical responsibilities and work responsibilities
as well as hinder coordination among development teams.

In this paper, we examine the relative impact of API complexity on the failure proneness of source code files us-
ing data from two large-scale systems from two distinct software companies as well as nine projects from the
GNOME community. We assessed API complexity using measures proposed by Bandi and colleagues [2],.Our
empirical analyses showed that increases in the complexity of APIs are associated with increases in the likelihood
of source code files being part of a post-release defect while controlling for several other factors that lead to soft-
ware failures. More interestingly, the negative impact of API complexity is more acute in the context of corporate
projects than in open source projects. Combined, these results suggest, first, that attention should be given to the
design of APIs given their important role in terms of software quality and, second, that further research should
focus on understanding the underlying factors that render open source projects less vulnerable to the negative im-
pact of API complexity.

The rest of the document is organized as follows. First, we discuss previous research that motivates the research
questions examined in this paper. Second, we present our empirical analyses involving 11 software projects, two
from corporate settings and 9 from the GNOME open source community. We conclude with a discussion of the
limitations and implications for future research of our work.

2. THE ROLE OF API COMPLEXITY ON SOFTWARE FAILURES
Design decisions have an important impact on the ability of software systems to achieve their functional and non-
functional requirements [5, 37]. Principal decisions articulated at the architectural level serve as a general frame-
work that guide and constrain lower level and more detailed design decisions [37]. Two critical and interrelated
attributes of a software system are impacted by design decisions: the allocation of functional responsibilities
within specific constituent parts of a system (e.g. modules or components) and relationships among those parts.

Those relationships are typically realized in the form of APIs, which play a very important role in the develop-
ment process of any software system from a technical point of view as well as from an organizational point of
view.

In the technical dimension, APIs determine a host of attributes of a system such as the efficiency of the communi-
cation between modules or components (e.g. [37]), the ease and efficiency of accessing the functionality of a
module or a component (e.g. [25]), the usability and understanding of the APIs (e.g. [16]), as well as the evolution
and maintainability of the system (e.g. [24]). Poorly designed APIs could represent an important technical liability
for software systems, particularly, for those large-scale complex systems that are pervasive in today’s world.

On the organizational side, the design of a module or a component API defines a key set of coordination needs for
a development organization. Unsatisfied coordination needs tend to results in misunderstandings and mistakes,
which typically manifest themselves as higher levels of defects (e.g. [10, 35]). Moreover, uncertainty about the
attributes of an API (e.g. number and type of parameters) creates a number of coordination requirements that tend
to be difficult to identify [20, 35].

Designing good APIs in technical and organizational terms is, unfortunately, not a trivial task [24]. Despite the
fact that guidelines have been proposed for that [6, 13], they are based on the anecdotal evidence and experience
by a subset of practitioners. Furthermore, to the best of our knowledge, there is no systematic empirical evaluation
of the proposed guidelines. More importantly, only a limited set of studies has investigated how the design of
APIs relates to quality attributes of a system like usability and maintainability (e.g. [16]). However, maintainabil-
ity and usability are two dimensions of a larger set of dimensions about a software system, including complexity,
reusability, evolution, and modifiability.

An aspect of API design that has been mostly neglected by researchers is design complexity. One traditional view
of complexity focuses on properties of the implementation of a particular function or methods and an extensive
literature has developed since Halstead’s and McCabe’s seminal work on code complexity [22, 28]. Another in-
fluential view of design complexity relates to structural properties of a software system and the interconnections
among constituent parts. The concepts of coupling and cohesion are central in this line of work. The dimension of
design complexity in the context of APIs represents a third line of work that has received limited attention: it fo-
cuses on the complexity of the interconnections themselves, instead of the number of interconnections among the
parts. In particular, to the best o our knowledge, there is limited work focusing on the empirical analysis of API
complexity measures and their impact on traditional software engineering outcome variables such as quality and
development productivity. One such example is the work of Bandi and colleagues [2] who examined the impact
of design complexity of APIs in maintenance tasks of software systems. The authors used a set of metrics (e.g.
API size and operation argument complexity) to assess the complexity of APIs. These metrics are based on the
types and the number of parameters a method or a function has. They are somewhat intuitive: they rely on the as-
sumption that a method or function with a large number of parameters and whose parameters are objects is said to
be more complex than another method or function with fewer parameters based on primitive types (e.g. integers).
Bandi and colleagues [2] found that maintenance tasks with higher levels of API complexity took longer to re-
solve than those that involved less complex APIs. In addition, Bandi’s results indicate that their metrics are re-
dundant (i.e., measuring similar properties of the system design) and therefore suggests that the usage of only one
metric is enough. Their work provides empirical evidence that API complexity is detrimental to development pro-
ductivity during the maintenance of software systems. On the other hand, the relationship of API complexity with
software quality has been neglected. This paper addresses this gap in the literature by examining the following
research question:

RQ1: What is the impact of API complexity on failure proneness of software systems?

There has been recent work about the modularity of open source vs. proprietary systems. While some research has
argued that open source software systems tend to be more modular than proprietary systems [27], other work has
not found evidences supporting such argument (e.g. [33]). If open source is in fact more modular, then, open
source development, in principle, can better realize the benefits of modularization such as reduced maintenance,
testing and experimentation costs [36]. Since the design of APIs is an important step in the design of modular sys-

tems, we are also interested in assessing the impact of API complexity on failure proneness in the context of open
source projects. More specifically, we address the following research question:

RQ2: Does the impact of API complexity on failure proneness differ in proprietary systems relative to
open source systems?

3. EMPIRICAL METHODOLOGY
In this section, we describe the empirical design used in our inquiry on the impact of API complexity on software
failures. The section is organized as follows. We first describe the characteristics of the projects from which data
were collected. Second, we describe the various measures used in our analyses followed by a discussion of the
statistical modeling used in the study.

3.1 Description of the Projects
Our dataset comprise of data from two large software development projects from two distinct companies and nine
projects from the GNOME open source community.

3.1.1 Corporate Projects
One of the corporate projects was a complex distributed system produced by a company operating in the computer
storage industry. One hundred and fourteen developers grouped into eight development teams distributed across
three development locations, worked full time on the project during the time period covered by our data. The data
covered a period of 11 months of development activities corresponding to the latest release of the company’s
product. Those development activities were captured by 1125 development tasks, which involved activities from
implementation of new features to fixing defects. The system was composed of approximately 5 million lines of
code with most of the code written in C and a relatively small fraction in C++. The API information was collected
using the C-REX tool.

The second was an embedded system from a company in the automotive industry. This development organization
used a product line approach. Our data covered 4 years of development activities in the latest version of the base
platform software grouped in 3,840 development tasks. Three hundred and eighty developers distributed in eight
locations across Europe and Asia participated in the development. The system was composed of approximately 7
million lines of code organized in 530 architectural components. All source code files were written in C language.
The API-related information was collected using a proprietary tool that the development organization used to col-
lect a wide range of metrics for each source code file.

3.1.2 Open Source Projects
We also collected data from nine open source projects from the GNOME community. This community has devel-
oped a graphical user interface platform for operating systems such as Linux. It was initiated in 1997 and over the
following decade, volunteers around the world have contributed to this development effort in order to create a
freely available desktop platform and a host of applications. GNOME is in fact a compilation of various software
development projects [18]. Today the community has over 730 projects. There are only few, relatively easy to
meet, requirements to create a new project in the GNOME source code repository system. Therefore, projects dif-
fer significantly in their development activity, size, and participation rate. Building on criteria used in past re-
search [11], we only considered projects that satisfied the following criteria: (a) continuity of development activ-
ity (at least one year), (b) amount of development activity (at least 200 commits), (c) attractiveness of project for
developers (at least 10 committers), and (d) user interest (at least one community hosted mailing list). Addition-
ally, data from the mailing lists and data collected from the source code repository should overlap during the ana-
lyzed period. These criteria were met by 90 projects. These 90 projects range from large and long-standing pro-
jects such as Evolution to smaller and more recent projects such as Cheese. Unfortunately, these 90 projects rep-
resent a major amount of data to be processed in order to measure the relevant factors in our analyses. Then, we
opted for selected a random sample consisting of 9 projects (a 10% sample). The resulting sample included the
following 9 projects: balsa, brasero, evolution, gnome-color-manager, memprof, orbit2, planner, seahorse, and
vala. The size of the projects in terms of non-comment non-empty lines of code ranged from 11K to 329K. These
projects used several different programming languages including C, C++, perl, and python. Therefore, we used
the tool Doxygen to extract the API information from the various source code files in a consistent manner.

The dataset covered almost the last 13 years of activities in the community, from November 1997 until October
2010. During that time period, the projects in our random sample projects had several releases. However, we fo-
cused our analyses on the latest release of each of the projects.

3.2 Description of the Measures
The basis of our data collection was the development activity represented by changes in the source code. In both
corporate projects, every change to the source code was controlled by modification requests. A modification re-
quest (MR) represents a development task such as implementing a new functionality or resolving a defect. In
short, the version control system and the MR-tracking systems of the development organizations constituted the
main sources of data. In the open source projects, the link between modification requests (or reports in the
GNOME Bugzilla’s database) and commits in the version control is not consistent. Then, we focused mostly on
the version control data. In addition, we utilized the source code itself as a third important source of data to ex-
tract additional information about technical properties of the systems. Combining all three data sources, we con-
structed the measures described in the subsequent paragraphs.

3.2.1 Measuring Software Failures
Our measure of quality is failure proneness defined as the likelihood of a particular software entity (e.g. source
code file, module, component, etc) to be modified as part of fixing a “field” defect. Our unit of analysis is the
source code file. Then, the dependent variable, File Buggyness, was measured as a dichotomous variable indicat-
ing whether a source code file has been modified in the course of resolving a “field” defect. In the case of the
corporate project, the strong connection between modification requests tracking processing and version control
system allowed us to relatively easily identify the defects that were associated with each particular source code
files. In our first corporate project, field defects represent instances of problems reported by customers after the
product has been released. In the case of second project (the embedded automotive system), we consider “field”
defects as those encountered in the integration and system-testing phase of the development process. Field defects
in that industry seldom occur because they would result in product recall and significant financial impact. Then,
an important amount of effort is spent in the system-testing phase to make sure that defects are found before the
product is released to customers.

In the case of the open source projects, we considered field defects as those reported in the GNOME’s Bugzilla
database against the last release of each project. One challenge in these projects is the lack of a reliable way to
link the commits that fixed the defects with the corresponding defect report in Bugzilla. Then, we manually in-
spected the identified defects for all 9 projects. Some of the defect reports contained information about the associ-
ated commits in the form of comments or the commits messages contained references to defect report. In those
cases (37% of the total number of identified defects), we use this information to compute our outcome measure.
For those defects that did not contained information about the associated commits, we inspected the version con-
trol data and we looked at commits submitted around the time the defect was marked as resolved. Specifically, we
looked at the commits that occurred within the +/-4 hours time window of resolving the defect. Two raters un-
aware of the research questions posed in this paper examined the comments in the commits and in the defect re-
ports and connected them if they found a relationship between the problem description (in the defect report) and
the explanation of the resolution (in the commit). Then, this information was also used to compute our File Bug-
gyness measure for the open source projects.

3.2.2 Measuring API Complexity
As discussed before, Bandi and colleagues’ [2] results indicate that instead of using a set of metrics he proposed, a
single metric could be use, because all metrics were measuring similar properties. Following this rationale, we
constructed several measures of API complexity based on the metrics proposed by Bandi and colleagues. For each
source code file, we first identified the set of APIs those files made accessible for other source code files (e.g.
public methods and variables for C++ code and extern-ed functions and variables for the C portion of the code).
Then for each API, we computed the interface or API size as described by Bandi and colleagues [2]. API size is
defined as the number of parameter plus the sum of the parameters’ type sizes and both terms are multiplied by
constants. In our computations, we set those constants to 1 (see [2] for a discussion of selecting the constant val-
ues). Bandi and colleagues [2] did not consider the case where APIs are data elements such as global variables. In
those cases, we can define the API size measure in different ways. One possibility is to assume that it is equiva-

lent to a “parameterless” API and assign a 0 to this measure. Alternatively, we could assign to the API size meas-
ure the value corresponding to the data element type as if it were a regular API with a single parameter. We
evaluated both approaches and the results were similar. We report the results based on the second approach. Fi-
nally, the API-level measures were aggregated at the level of the source code file. For each file, we calculated a
total sum measure of API size and its standard deviation. Then, we have two variables: API Size, and API Size
Dispersion.

3.2.3 Additional Factors Impacting Software Failures
In order to adequately examine the impact API complexity has on software failures in proprietary and open-
source systems, we need to account for the effects of potentially confounding influences, our analysis must in-
clude factors that past research has found to be associated with failures. When it comes to prediction of software
failures, numerous measures have been evaluated in corporate as well as open source settings (e.g. [15, 19, 21, 29,
30, 40]). As suggested by Graves and colleagues [19], such measures can be classified as either process or product
measures. Process measures such as number of changes or deltas, and age of the code (i.e., churn metrics) have
been shown to be very good predictors of failures [19, 29]. Accordingly, we control for the Number of Commits,
which is the number of times the file was changed as part of some development activity prior to the project’s re-
lease. We also control for the Average Number of Lines Changed in a file as part of the development activities as
well as for the Number of Developers that modified the file during the project. In contrast, product measures such
as code size and complexity measures have produced somewhat contradictory results as predictors of software
failures. Some researchers have found a positive relationship between lines of code and failures (e.g. [8]), while
others have found a negative relationship (e.g. [4]). We measure Size of the File (LOC) as the number of non-
blank non-comment lines of code.

We also collected measures of experience based on the approaches used by Boh and colleagues [7] which utilize
the data in software repositories as the basis for assessing experience. We measured the experience of the devel-
opers that modified file i prior to the release of the product we studied, Average Experience of Developers, as the
average number of commits made by the developers that worked on modification to file i. We were able to meas-
ure this particular factor because our data covered also development activities in all 11 projects prior to the work
associated with the last release of the project.

Recent research has shown that how software entities such as components, modules and source code files are in-
ter-related through their technical dependencies, syntactic or logical, impacts the quality of those software entities
(e.g. [10 , 29, 40]). Syntactic dependencies were extracted from the various systems in different ways. We used
the C-REX tool [23] to identify programming language tokens and references in each entity of each source code
file of the distributed system (first corporate project). In the second corporate project, the embedded system, the
syntactic dependencies of each source code file were extracted by a proprietary tool, which the development or-
ganization used to collect several metrics for each file. Finally, the syntactic dependencies in the nine open source
projects were collected using Doxygen’s cross-reference generation feature. Using the collected data about syn-
tactic dependencies, we merged the information into a matrix for each project that captures the relationships
amount the system’s constituent source code files. Those relationships identified data, function and method refer-
ences that crossed the boundary of each source code file. More precisely, in a file-to-file matrix SD, the cell sdij
represents the number of data/function/method references that exist from file i to file j. We refer to data references
as data dependencies and function/method references as functional dependencies. We collected four syntactic de-
pendencies measures: inflow and outflow data relationships and inflow and outflow functional dependencies.
Each of those four measures capture the number of syntactic dependencies of such type associated with each file i.

Logical dependencies are another type of technical relationship that might exist among software entities. Logical
dependencies relate source code files that are modified together as part of a unit of development work. When a
development task requires changes to more than one file, we assume that decisions about the change to one file
depend in some way on the decisions made about changes to the other files involved in the MR. This view of
logical dependencies been empirically assessed in a number of corporate (e.g. [9, 10]) and open source projects
(e.g. [38]). In the corporate projects, the modification requests contained information about the commits made in
the version control system. As described earlier, such information was reliably generated as part of the submission
procedures established in the development organizations. Such data allowed us to identify the relationship be-

tween development tasks and the changes in the source code associated with such tasks. Using this information,
we constructed a logical dependency matrix. In the case of the open source projects, we considered each commit
as a unit of work and, therefore, it was used to construct the logical dependency matrix for GNOME projects we
studied. More specifically, the logical dependency matrix is a symmetric matrix of source code files where each
cell Cij represents the number of times files i and j (i is not equal to j) were changed together as part of a develop-
ment task1. We accumulate the data across all the development activities performed as part of the release of each
project that we studied. Cataldo and colleagues [10] found that two measures based on logical dependencies –
Number of Logical Dependencies and Clustering of Logical Dependencies – have a major impact on software
failures. Building on those results, we computed the corresponding measures as follows. The Number of Logical
Dependencies measure for file i was computed as the number of non-zero cells on column i of the matrix. Since
the logical dependencies matrix is symmetric, this measure is equivalent to the degree of a node in undirected
graph, excluding self-loops. The Clustering of Logical Dependencies measure captures the degree to which the
files that have logical dependencies to the focal file i have logical interdependencies among themselves. Formally,
and in graph theoretic terms, the Clustering of Logical Dependencies measure for file i is computed as the density
of connections among the direct neighbors of file i. This measure is equivalent to Watts’s [39] local clustering
measure.

The quality of the logical dependency data, and consequently the measures based on them, relies on the adherence
of developers’ actions to the defined change submission processes. For instance, a developer could submit a
commit containing changes to two different files but those changes are associated with different modification re-
quests and they do not related to an actual dependency among the files. A collection of analyses was performed to
assess the quality of our MR-related data in the corporate projects and commit data in the open source projects in
order to minimize measurement error. In the case of the corporate projects, we compared the revisions of the
changes associated with the modification requests and we did not find evidence of such type of behavior. One of
the authors together with a senior engineer of each organization examined a random sample of modification re-
quests to determine if developers have work patterns that could impact the quality of our data such as the example
described above. We did not find commits in the version control systems that contained modifications to the sys-
tems’ code that was unrelated to the development task represented by the modification requests. In the case of the
open source projects, two raters unaware of the research questions examine random samples of commits from all
nine projects. Although they did not found strong evidence that commits contained unrelated changes to the
source code, they did found certain change patterns that might impact the analyses. These changes involved modi-
fications of two different types: (1) changes to configuration files and (2) changes to include files that contained
an unusual large number of definitions. We identified all these particular files and removed them from the con-
struction of the logical dependency matrix. Since case (2) could be related to design decisions made in the pro-
ject, we ran our analyses with and without considering those files and the results were consistent, so the results
reported in the paper are based on the analysis that did not included files in case (1) nor in case (2).

Finally, we included a few additional controls. First, we included a binary variable, Corporate Project, that was
set to 1 if the file I was part of one of the two corporate projects, otherwise, it was set to 0. Second, we also in-
cluded dummy variables to control for unobserved, project-specific factors. These dummy variables effectively
control for any factors, which we could not explicitly measure such as the cultural or organization aspects of the
projects.

3.3 Description of the Statistical Model
Our dependent measure, File Buggyness, is a binary variable. Then, our analyses used logistic regression models
to assess the impact of API complexity on failure proneness. We report two goodness-of-fit measures for each
statistical model including the log-likelihood of the model and the percentage of deviance explained by the model.
Deviance is defined as -2 times the log-likelihood of the model. The percentage of the deviance explained is a
ratio of the deviance of the null model (containing only the intercept), and the deviance of the final model.

Regression coefficients are typically reported as part of the results. We opted for reporting the odds ratios associ-
ated with the logistic regressions because they simplify the interpretation of the results. Odds ratios are the expo-

1 The diagonal of the matrix indicates the number of times a single file was modified and can be disregarded from further analysis.

nent of the logistic regression coefficient. An odds ratio that is larger than 1 indicates a positive relationship be-
tween the independent and dependent variables. On the other hand, an odds ratio less than 1 indicates a negative
relationship. For example, if the binary measure Corporate Project has an odds ratio of 4.4, increasing the value
of such factors from 0 to 1 results in an increase of the probability of a file having a reported defect by 4.4 times
while the remaining factors in the model are kept constant. We used the logistic command in the statistical pack-
age Stata 11 for computing the regression models.

4. RESULTS
4.1 Preliminary Analysis
The first step in our analyses consisted in understanding the general characteristics of the data. We calculated de-
scriptive statistics of all the measures and they showed that most of the variables were highly skewed. Therefore,
we log-transformed them. We also performed collinearity diagnostics on the measures. A pair-wise correlation
analysis reveal several high levels of correlation between our variables, in particular, among Number of Commits,
Number of Developers, Size of the File and the syntactic dependency measures. In order to further examine these
high level correlations, we compute variance inflation factors (VIF) and tolerances for all the independent and
control variables described in section 3.2. A tolerance close to 1 indicates little multicollinearity, whereas a value
close to 0 suggests that multicollinearity may be a significant threat. VIF is defined as the reciprocal of the toler-
ance.

In Table 1, we report the VIFs and tolerances associated with our variables. Traditional rule of thumb suggest that
VIF values above 10 should be avoided and values above 5 should be consider with care [26]. We observe in
model I in table 1 that several of our variables have VIFs significantly higher than 10. Therefore, we remove those
factors from our analyses. Model II (in table 1) shows that the remaining variables have VIFs values below 5 and
those factors were the only one considered in our regression analyses. The pair-wise correlations among the vari-
ables included in the regression models were sufficiently low to not represent a concern in terms of multicolline-
arity.

Table 1: Collinearity Diagnostics

 Model I
VIF (Tolerance)

Model II
VIF (Tolerance)

API Size 16.39 (0.0617) 1.19 (0.8394)
API Size Dispersion 5.09 (0.2007) 1.07 (0.9334)
Number of Commits 7.75 (0.1297) ---
Average Change Size 6.26 (0.1595) 1.19 (0.8433)
Number of Developers 5.34 (0.1876) 1.43 (0.6972)
Size in LOCs 1.35 (0.7301) 1.29 (0.7780)
Average Experience of Developers 1.09 (0.9205) 1.08 (0.9228)
Syntactic In-Data Dependencies 5.19 (0.1899) ---
Syntactic Out-Data Dependencies 2.89 (0.3527) 1.28 (0.7794)
Syntactic In-Functional Dependencies 1.37 (0.7250) 1.10 (0.9122)
Syntactic Out-Functional Dependencies 1.12 (0.9003) 1.11 (0.9041)
Logical Dependencies 3.27 (0.3001) 1.27 (0.7863)
Clustering of Logical Dependencies 1.27 (0.7859) 1.25 (0.8000)
Corporate Project 4.62 (0.2149) 4.62 (0.2163)
Project Dummy A 1.37 (0.7359) 1.36 (0.7380)
Project Dummy B 2.59 (0.3849) 2.59 (0.3855)
Project Dummy C 3.08 (0.3235) 3.08 (0.3249)
Project Dummy D 3.23 (0.3102) 3.23 (0.3097)

Table 2: The Impact of API Complexity of Software Quality

 Model I Model II Model III
Average Change Size 1.008 1.030 1.025
Size in LOCs 1.345** 1.358** 1.323**
Number of Developers 6.564** 6.592** 6.563**
Average Experience of Developers 0.648** 0.689** 0.711**
Syntactic Out-Data Dependencies 1.050** 1.079** 1.040**
Syntactic In-Functional Dependencies 0.997 0.953 1.001
Syntactic Out-Functional Dependencies 1.075* 1.059* 1.109*
Logical Dependencies 1.951** 1.939** 1.937**
Clustering of Logical Dependencies 0.523** 0.517** 0.521**
Project Dummy A 0.753** 0.751** 0.761**
Project Dummy B 1.277** 1.275** 1.279**
Project Dummy C 0.347** 0.379** 0.382**
Project Dummy D 0.309** 0.301** 0.304**
Corporate Project 4.426** 4.552** 4.625**
API Size 1.512** 1.506**
API Size Dispersion 0.931 0.933
API Size X API Size 0.992
API Size X Corporate Project 	
 	
 1.193**

Log-Likelihood -11718.4 -10096.5 -9578.9

Deviance Explained 43.97% 51.72% 54.19%
(+ p < 0.10, * p < 0.05, ** p < 0.01)

4.2 The Impact of API Complexity on Software Failures
Table 2 reports the results of examining of the impact of API complexity on failure proneness. We report the odds
ratios associated with three different regression models. Model I is a baseline model and includes all the control
measures that did not exhibit multicollinearity problems. Overall, the results are consistent with past research (e.g.
[8, 10, 40]). Factors such as size of the source code file, number of developers that modified a file, number of
technical dependencies (syntactic and logical) have odds ratios above 1 indicating that higher levels of those
measures increase the likelihood of failures being associated with the source code file. In addition and also consis-
tent with past research (e.g. [10]), we observe that developers’ experience and the structural properties of the logi-
cal dependencies decrease the likelihood of failures. The dummy variables that controlled for unobserved and
unmeasured aspects of the projects are all statistically significant indicating that there are important differences
across all 11 projects. Finally, the most important result reported in model I is the statistical significance of the
Corporate Project variable that indicated whether the focal file was part of a corporate project (a value of 1) or
part of an open source project (a value of 0). An odds ratio of 4.426 associated with the factor indicates that
source code files in corporate projects are 4.4 times more likely to have failures than files in open source projects.
It is important to reiterate that we are controlling for a number of other factors that lead to software failures. Then,
this particular result suggests the existence of aspects inherent to the two corporate projects we studied (and ar-
guably to corporate projects in general) that makes achieving levels of software quality as high as in open source
projects more challenging. Certainly one key difference between our corporate projects and the open source pro-
jects is the size in lines of code. The corporate projects are an order of magnitude larger than the open source pro-
ject. Although problems stemming from the shear size of the systems might be an important driver of this result,
other factors such as the pace of the work, the role of milestones and compressed cycle times made be at play.

Model II introduces our two independent measures, API Size and API Size Dispersion. We observe that the impact
of API Size is statistically significant. Furthermore, the odds ratio is about 1 indicating that increases in the com-
plexity of the APIs exported by a source code file increase the likelihood of source code files of being associated
with defect by 51.2%. While the sum of API sizes gives a general indication of the complexity associated with

interacting with a particular file, the dispersion of the API size measure provides an indication of how such com-
plexity is distributed across the APIs exported by a particular file. Model II shows, however, that the impact of
dispersion of API sizes is not statistically significant across all projects. It also important to highlight that the ef-
fect size of the API Size factor is quite important accounting for almost 8% of the deviance explained in the
model. Finally, the quality of the statistical models as evidenced by the respectable levels of deviance explained is
strengthen the ROC curve analysis depicted in figure 1 which indicates an area under the ROC curve of 0.9119.
Combined, these values are indicative of very good fit of the models.

The last model in table 2, model III, includes two interaction terms. These terms allow us to examine how the im-
pact of a particular factor on the outcome variable changes as a second factor varies. For example, the interaction
term API Size X Corporate Project tests whether the impact of the API Size variable differs for corporate versus
open source projects. The second interaction term, API Size X API Size, allows us to examine whether the impact
of API Size is purely linear or it has a quadratic dimension to it. The results reported in model III show that only
one of the interaction terms in statistically significant. The odds ratio above 1 associated with the term API Size X
Corporate Project indicates that the impact of API complexity is more acute in corporate projects than in open
source projects. In other words, above and beyond the direct effect of API Size, the interaction term tells us that
the impact of API complexity is even greater in corporate projects. We explore these results further in the next
section.

Figure 1: ROC Curve for Model II from Table 2

	

4.3 Additional Analyses
We performed additional analyses to examine the robustness of our results. First, we performed regression analy-
ses equivalent to those reported in Table 2 for each project. In this way, we can assess whether the regression
models are stable across the various projects. The results in terms of the statistically significant factors, the rela-
tive magnitude of the effects as well as the fit of the models were similar to those reported in Table 2. Since our
analysis focused only on the last release of each project, we also performed our analyses in previous releases for
those projects were had all the relevant data available (all projects except the embedded system corporate project).
We ran individual project regressions as well as aggregated ones and the results were also consistent with those
reported in Table 2.

4.4 Summary of Results
The relevance of the results reported in Table 2 is two-fold. First, the results show that API complexity is an im-
portant factor that impacts software failures. Second, the impact of API complexity differs across corporate and
open source projects.

Figure 2 depicts these two distinct and valuable results. In this figure, we observe the estimated probability of
failure (Y axis) associated with corporate and open source projects as the API complexity increases (X axis).
There key issues to highlight. First, corporate projects have a higher initial probability of failure. As discussed in
the previous section, the binary variable Corporate Projects captured that effect and the results of the regression
indicated that corporate projects were 4.4 times more likely to have failures associated with their source code files

than open source projects. Figure 2 also shows the difference in the slopes of the estimated probability curve con-
sistent with the statistically significant effect of the interaction term API Size X Corporate Project in model III of
Table 2. Corporate projects have a stepper slope associated with them suggesting that the impact of API complex-
ity is more severe in those settings than in the open source projects.

5. DISCUSSION
In this paper, we examined the role of API complexity on software failures across corporate and open source pro-
jects. Our first research question focused on the investigation of the impact of API complexity on the failure
proneness of source code files. Our results showed that higher levels of API complexity of source code files
(measured as sum of the size of the file’s exported APIs) are associated with increases in the “buggyness” of files
or likelihood of source code files being associated with a defect. We studied the relationship between API com-
plexity and failure proneness in open source and proprietary systems (RQ2). Our analyses suggested that corpo-
rate projects tend to have a higher initial probability of failure and are more susceptible to increases in API com-
plexity. More specifically, the impact of API complexity in failure proneness is more severe in corporate projects
than in the open source projects.

Figure 2: Estimated Probability of Failure for
Corporate and OSS Projects

Our work has several important contributions to the software engineering literature. First, we extended our
knowledge about the role of API complexity by examining Bandi and colleagues [2] measures in the context of
software failures. Our results are complementary to those of Bandi et al since their results suggested that higher
API complexity was positively associated with maintenance time. Second, our analyses combined multiple factors
that impact failure proneness. In particular, we extended traditional empirical analyses which focused on churn
and product-related metrics with complexity and relational (in the form of syntactic and logical dependencies)
characteristics of the APIs. Third and in relation to the debate regarding modularity in open source and proprie-
tary systems (e.g. [27, 33]), our results would suggest that, in fact, open source system are more modular. If we
consider modularity in its original conceptual form [32], our results indicating that open source projects are im-
pacted less by API complexity could be interpreted as evidence that complexity tends to be allocated mostly
where the functionality is located rather than in the API. Certainly, this is an important area that future research
should examine. Finally, we replicated our results across two systems from two different companies as well as
nine different open source systems strengthening the external validity of our results.

The remainder of this section discusses the limitations of our work as well as the implications of our results.

5.1 Limitations
Our work has limitations worth noticing. First, the measures proposed by Bandi and colleagues [2] do not con-
sider data elements as APIs. As discussed in the methodology section, we explored two alternative methods of
extending the measure and the results were similar. However, we think that redefining the API size measure re-
quires further evaluation. Unfortunately, we did not have access to a third system that also made heavy use of
global variables as APIs. Third, recent research has examined the impact of organizational factors on failure

proneness such as organizational structure [30] and different types of work dependencies [10]. Again, we did not
have access to such data for both systems and therefore cannot use these aspects while conducting our analysis.
Finally and as discussed in section 4.2, there was a significant difference in size (in LOCs) between corporate and
open source systems. Although our analyses controlled for a wide range of confounding effects, it is possible that
the differences in the impact of API complexity are not as significant if we were able to considered larger open
source projects. Certainly, it is an important question for future research.

5.2 API Complexity and Software Quality
Software complexity has been an important research topic for several decades [3] and the increasing pervasive-
ness of software systems suggests that the topic will remain relevant in the future. This line of work has tradition-
ally focused on assessing the complexity of a particular unit of software such as functions, modules or compo-
nents (e.g. [17]) and examining its impact in the context of software maintenance activities and software quality
(e.g [3]). Although an extensive literature has developed over the years, researchers have argued that empirical
examinations of the relationship between complexity and quality have produced disappointing results [17]. Our
study, on the other hand, examined a dimension of complexity – API complexity - that has been relatively ne-
glected. We are addressing an important gap in the literature because APIs are a central element in modular sys-
tems. The modularity literature (e.g. [36]) argues that APIs are the link between modules or components that al-
lows for separation of concerns and development activities, therefore facilitating the coordination among devel-
opers. Such argument rests on the assumption that complexity is embedded in the software entity (e.g. module or
component) and not in the APIs themselves. Our work and other recent research (e.g. [2, 12, 35]) suggest a depar-
ture from that line of work where complexity is in fact embedded in the APIs themselves. Consequently, the sepa-
ration of technical and work responsibilities is not as simple and pristine as suggested by the modular systems
theoretical perspective. Then, complex APIs have the potential to become barriers to effectively decoupling tech-
nical responsibilities and work responsibilities and, as consequence, hinder coordination among development
teams. The work presented in this paper represents a first step towards characterizing the complexity of APIs and
empirically assessing its impact on software quality. The following paragraphs discuss several future research
directions we consider will further our understanding of the relationship between API complexity and software
quality.

5.2.1 The Nature of API Complexity
The complexity associated with an API relates to multiple dimensions. In this paper and building on prior work,
we considered complexity as a function of the number and type of parameters of a particular API. However, there
are additional dimensions that future research should explore. First, the set of pre- and post-invocation assump-
tions made by the API designers and implementers represent also important source of complexity and, conse-
quently, a potential factor leading to failures [31, 34]. For instance, a developer of a module’s API has some sys-
tem configurations for which he/she had developed and validated the particular piece of software. Documentation
and communication of these configurations in such a way that it is able to capture all the relevant details is a chal-
lenge, leading to a variety of defects when those APIs are utilized. Past research in static analysis [1] has proposed
approaches to address problems related with misalignment of assumptions between the API provider and user.
However, such research focuses on basic issues such as verification of lock/unlock policies and conformance of
particular code structures in device drives. Nambiar and Cataldo [31] presented a set of cases that related to a
higher order of misalignment of assumptions that are associated with the information content exchanged through
the APIs as well as the environmental context in which the API is expected to operate. Another, but related, di-
mension of complexity is related to the sequence of invocation of different APIs and the negative consequences
that incorrect or unanticipated sequences can have on software quality [25].

Another area that deserves further examination is the implications of particular usage patterns of parameter types
for API complexity. For instance, a function or method may take a single integer parameter. In the context of
Bandi et al’s measures, such API has an operational argument complexity of 1 (the size of the parameter type as
defined by [2]). However, the function or method could use such parameter as a mechanism for controlling a
complex sequence of statements (e.g. a mask). Arguably, this example implies more complexity in the use of the
API because it requires the function or method user to understand a lot more about the API and potentially about
the implementation and the implications of particular choices of bits in the mask. This is similar to what Kiczales

has termed as “open implementation”. Then, future research should explore ways to capture such differences in
complexity into new metrics.

5.2.2 Coordination of Geographically Distributed Development Work
de Souza and Redmiles [12] found that dependencies associated with APIs relating two or more development
teams might not be easily identified by those developers. Lack of awareness or disregard for particular dependen-
cies can have important consequences on the quality of a software system. Past research has shown that unsatis-
fied coordination needs can result in coordination breakdowns, particularly in a geographically distributed settings
[9]. These coordination breakdowns tend to materialize as higher number of defects [10]. Our results about the
detrimental impact of API complexity on software quality suggest an additional possible source of dependency
among the users and the “supplier’ of the APIs that might be difficult to identify and manage. Then, we could
consider the complexity of APIs as a factor to help the design of distributed teams that would be better equipped
to handle the dependencies imposed by the technical properties of the system. For instance, teams dealing with
more complex APIs could be located closer (physically or in terms of time zone difference) than those teams deal-
ing with simpler APIs. In other words, future research should explore the use of metrics that characterize the na-
ture of APIs (e.g. complexity) as an additional mechanism in the identification of what constitutes relevant work
dependencies among development teams and organize these teams accordingly. It is important to highlight that
recent work has shown that logical dependencies among software modules are a major driver of work dependen-
cies among developers [9]. Our work complements such research by also highlighting the role of the complexity
associated with those logical dependencies.

6. CONCLUSION
In this paper, we examine the relative impact of API complexity on the failure proneness of source code files. We
performed our analysis using data from two large-scale systems from two distinct software companies and nine
different open-source projects. We used Bandi’s et al. API complexity metrics and compared our results with sev-
eral other predictors of bug failures. Our analyses showed that increases in the complexity of APIs are associated
with increases the failure proneness of source code files, i.e., files containing more complex APIs are more likely
to have bugs. In addition, the impact of API complexity in failure proneness is more severe in corporate projects
than in the open source projects.

7. REFERENCES

[1] T. Ball and S. Rajamani, "Automatically validating temporal safety properties of interfaces," Model

Checking Software, pp. 102-122, 2001.
[2] R. Bandi, et al., "Predicting maintenance performance using object-oriented design complexity metrics,"

Ieee Transactions on Software Engineering, pp. 77-87, 2003.
[3] R. D. Banker, et al., "Software development practices, software complexity, and software maintenance

performance: A field study," Management Science, vol. 44, pp. 433-450, 1998.
[4] V. Basili and B. T. Perricone, "Software errors and complexity: an empirical investigation," in Software

engineering metrics I: measures and validations: McGraw-Hill, Inc., 1993, pp. 168-183.
[5] L. Bass, et al., Software architecture in practice, 2nd ed. Boston, MA: Addison-Wesley, 2003.
[6] J. Bloch, "How to design a good API and why it matters," 2006, pp. 506-507.
[7] W. F. Boh, et al., "Learning from Experience in Software Development: A Multilevel Analysis,"

Management Science, vol. 53, pp. 1315-1331, 2007.
[8] L. C. Briand, et al., "Exploring the relationship between design measures and software quality in object-

oriented systems," J. Syst. Softw., vol. 51, pp. 245-273, 2000.
[9] M. Cataldo, et al., "Socio-technical congruence: a framework for assessing the impact of technical and

work dependencies on software development productivity," presented at the Proceedings of the Second
ACM-IEEE international symposium on Empirical software engineering and measurement,
Kaiserslautern, Germany, 2008.

[10] M. Cataldo, et al., "Software Dependencies, Work Dependencies, and Their Impact on Failures," IEEE
Trans. Softw. Eng., vol. 35, pp. 864-878, 2009.

[11] K. Crowston, et al., "Defining open source software project success," 2003, p. 327ñ340.

[12] C. R. B. de Souza and D. F. Redmiles, "On The Roles of APIs in the Coordination of Collaborative
Software Development," Computer Supported Cooperative Work (CSCW), vol. 18, pp. 445-475, 2009.

[13] J. des Rivieres, "Eclipse APIs: Lines in the sand," EclipseCon Retrieved March, vol. 18, p. 2004, 2004.
[14] J. des RiviËres, "How to use the Eclipse API," Retrieved March, vol. 9, p. 2004, 2001.
[15] M. Eaddy, et al., "Do Crosscutting Concerns Cause Defects?," IEEE Trans. Softw. Eng., vol. 34, pp. 497-

515, 2008.
[16] B. Ellis, et al., "The factory pattern in api design: A usability evaluation," 2007, pp. 302-312.
[17] N. E. Fenton and N. Ohlsson, "Quantitative analysis of faults and failures in a complex software system,"

Software Engineering, IEEE Transactions on, vol. 26, pp. 797-814, 2002.
[18] D. German, "The GNOME project: a case study of open source, global software development," Software

Process Improvement and Practice, vol. 8, pp. 201-215, 2003.
[19] T. L. Graves, et al., "Predicting fault incidence using software change history," Software Engineering,

IEEE Transactions on, vol. 26, pp. 653-661, 2000.
[20] R. E. Grinter, et al., "The geography of coordination: dealing with distance in R\&D work,"

presented at the Proceedings of the international ACM SIGGROUP conference on Supporting group
work, Phoenix, Arizona, United States, 1999.

[21] T. Gyimothy, et al., "Empirical validation of object-oriented metrics on open source software for fault
prediction," Software Engineering, IEEE Transactions on, vol. 31, pp. 897-910, 2005.

[22] M. H. Halstead, Elements of software science: Elsevier New York, 1977.
[23] A. E. Hassan and R. C. Holt, "C-REX: an evolutionary code extractor for C," Submitted for Publication,

2004.
[24] M. Henning, "API design matters," Communications of the ACM, vol. 52, p. 46, 2009.
[25] D. Kawrykow and M. P. Robillard, "Detecting inefficient API usage," 2009, pp. 183-186.
[26] M. H. Kutner, et al., Applied linear statistical models vol. 1396: McGraw-Hill Irwin Boston, 2005.
[27] A. MacCormack, et al., "Exploring the Structure of Complex Software Designs: An Empirical Study of

Open Source and Proprietary Code," Management Science, vol. 52, pp. 1015-1030, 2006.
[28] T. McCabe, "A software complexity measure," IEEE Trans. Software Engineering, vol. 2, pp. 308-320,

1976.
[29] N. Nagappan and T. Ball, "Using Software Dependencies and Churn Metrics to Predict Field Failures: An

Empirical Case Study," presented at the Proceedings of the First International Symposium on Empirical
Software Engineering and Measurement, 2007.

[30] N. Nagappan, et al., "The influence of organizational structure on software quality: an empirical case
study," presented at the Proceedings of the 30th international conference on Software engineering,
Leipzig, Germany, 2008.

[31] S. Nambiar and M. Cataldo, "Coordination Requirements and Software Architectures: Understanding the
Critical Sources of Technical Dependencies," presented at the 2nd International Workshop on Socio-
Technical Congruence, Vancouver, Canada, 2009.

[32] D. L. Parnas, "On the criteria to be used in decomposing systems into modules," Commun. ACM, vol. 15,
pp. 1053-1058, 1972.

[33] J. W. Paulson, et al., "An empirical study of open-source and closed-source software products," Ieee
Transactions on Software Engineering, pp. 246-256, 2004.

[34] D. E. Perry and W. M. Evangelist, "An Empirical Study of Software API Faults," presented at the
International Symposium on New Directions in Computing, Trondheim, Norway, 1985.

[35] C. R. B. d. Souza, et al., "How a good software practice thwarts collaboration: the multiple roles of APIs
in software development," presented at the Proceedings of the 12th ACM SIGSOFT twelfth international
symposium on Foundations of software engineering, Newport Beach, CA, USA, 2004.

[36] K. J. Sullivan, et al., "The structure and value of modularity in software design," presented at the
Proceedings of the 8th European software engineering conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software engineering, Vienna, Austria, 2001.

[37] R. N. Taylor, et al., "Software Architecture: Foundations, Theory, and Practice," 2009.

[38] P. Wagstrom, et al., "Communication, Team Perforance and the Individual: Bridging Technical
Dependencies," presented at the Academy of Management Annual Meeting, Montreal, Canada, 2010.

[39] D. J. Watts, Small worlds : the dynamics of networks between order and randomness. Princeton, N.J.:
Princeton University Press, 1999.

[40] T. Zimmermann and N. Nagappan, "Predicting defects with program dependencies," presented at the
Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and
Measurement, 2009.

