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Abstract 
 

When modeling longitudinal data using a set of hidden processes such as state-space models, a common 
assumption is that the number of hidden processes is fixed, and all hidden processes have the same life span 
(i.e., all start at the onset of the data stream and terminate at the end of the data stream). In this report I 
outline a framework of modeling complex longitudinal data using a birth-death process, in which hidden 
processes and emerge, evolve, and extinct over time. The model is built on top of a temporally evolving 
Dirichlet process, and thus allow the total number of hidden processes to be unbounded. I also derive a 
Gibbs sampling algorithm for inference on this model. 
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1 Introduction

Our goal is to design a temporal mixture model, in which the number of mixture components is unbounded,
the component can retain, die out or emerge over time, and (the actual configuration or parameterization of)
each component can also evolve over time in a Markovian fashion. This means that for multiple consecutive
time points, the data observed over these time points can come from a set of commons themes living through
this period (which correspond to the mixture components being retained over this period) or themes that
partially whose life span overlap partially with this period (i.e., mixture components that die out or emerge
during this period). We also assume that the conditional distribution of observed data under the same
(lasting) component at different time would be a little different, i.e., the parameterization of the retained
components will evolve over time. This scenario is not uncommon for real world sequential data. For example,
consider modeling the temporal stream of news articles on a, say, weekly basis. Moving from week to week,
some old topics could fade out (e.g., the election is now over in US), while new topics could appear over time
(e.g., the Pope is being hospitalized). The specific content of the lasting topics could also (slowly) change
over time (i.e., war in Iraq is developing with some slight shift of focus ...). Note that given the (number and
parameterization of) components of the mixture model at each time point, we are free to design appropriate
likelihood models for the data, e.g., the mixture membership model (i.e., the LDA model), the exponential
harmonium model, or other extended models.
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Figure 1: (a) HMM. (b) DNBM.

It is important to distinguish the temporal mixture model concerned here from an HMM, which is
sometimes also (confusingly) understood as a temporal sequence of mixture models. In a typical HMM one
assumes the presence of a stable (time invariant) finite mixture model, and the stochastic sequence of hidden
states are used to model choices of different mixture components over time for sequences of observed data
(typically a single data point at a time) emitted from the chosen component at each time point. Generally,
multiple observed sequences are assumed to be iid samples from the same HMM (Fig 1a). The infinite
HMM model allows the number of mixture components in such a mixture to be unbounded, but it is still
a time invariant mixture, and the hidden states sequences choose one component at a time in the space
of all components. In the model to be described in the following, we concern ourselves not only with the
(dynamic) choices of mixture components at each time for each data point in a corpus, but also the evolution
of the mixture model itself (e.g., its cardinality, centroids, birth and death events, etc.) over time, which
defines time-specific mixture models for data in a sequence of corpora. Specifically, the output our model
are temporal collections of data sets (e.g., weekly collections of corpora), and at each time point, all the
elements in the corpus of that time are (marginally) iid samples of the entire mixture model of that time
(Fig 1b).

Here is the plan for the rest of the paper. In section 2, I will present the general probabilistic structure
of a dynamic nonparametric Bayesian model (DNBM) with Dirichlet process mixing and Bernoulli sieving,
using three different generative schemes. I will first use a sequential Chinese restaurant process (CRP) to
illustrate a constructive definition of DNBM. Then I will give another construction based on the infinite limit
of a finite dimensional, dynamically evolving mixture model, which connects DNBM to the more familiar
state-space model for (finite) topic evolution. Then I will give a stick-breaking construction of DNBM which
can be used to device more efficient sampling algorithms or variational methods for inference. In section 3,
I will give detailed description of a nonparametric state space model instantiated from DNBM, which can
be used to model the aforementioned temporally evolving mixtures. Finally I will develop a Gibbs sampling
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algorithm for approximate inference on such models.

2 The Model

2.1 A sequential CRP construction

A Chinese restaurant process can be described by the following metaphor. We have a Chinese restaurant
with infinite number of tables. The first customer comes in and deterministically sit at the first table and
orders a dish θ1 from distribution G0 for this table. After having i− 1 customers, suppose we have Ki non-
empty tables, each table, e.g., table k, is occupied by nk customers and serves a shared dish θk randomly
sampled from a distribution G0. When an i-th customer comes in, he will either choose an occupied table,
say, table k, with probability nk

i−1+τ and share the dish θk on that table; or he can sit at a new table Ki + 1,
with probability τ

i−1+τ , and order a new dish θKi+1 for this table. The set of θk’s generated from this
process are discrete random measures following a Dirichlet process DP (τ,G0). A DP can be used as a prior
distribution for a infinite mixture model, with the θk on each table serving as the parameter of a mixture
component, and the customers sitting at that table corresponding to the data points in the corresponding
mixture components admitting p(·|θk).
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Figure 2: CRP. (Just for illustration, not all the dependencies are depicted.)

2.1.1 The temporally dependent CRP

Now we construct a series of temporally dependent CRP using the following metaphor. Consider at time
t, we have a Chinese restaurant with K nonempty tables (there are infinite number of unoccupied tables
available for more customers if necessary, but we do not explicitly represent them unless then are taken), each
table (i.e., each component in a mixture), for example, table k, serves a distinctive dish θk (the parameters
of this component), and is occupied by nk customers denoted by xi,t’s. Now suppose we are moving to the
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next time point t+ 1. We assume that the same restaurant carries on, and all the non-empty tables are to
be retained. For each of the retained tables, we inherit the dishes on these tables. In a document clustering
scenario, the dishes may correspond to topic-specific multinomial parameter vector of word frequencies ~θ.
To introduce evolution of the topic contents over time, we further assume that, for the retained tables, we
have ~θk,t+1 ∼ p(·|~θk,t). One handy conditional model for this purpose is the state-space model for stochastic
dynamic evolutions of multivariate Gaussian variables, of which the inference can be solved in close-form via
a Kalman filter or stochastically using particle filtering. As described in section 3, each contiguous sequences
of dishes corresponding to one table over time (i.e., ~θk,1, . . . , ~θk,Tk

) can be modeled by a single SSM. topic-
specific dynamics can be easily introduced if desired. Unfortunately, the multinomial vector ~θk,t for a topic
is not multivariate Gaussian (e.g., they are subject to the normalization constrain). A heuristic surrogate is
to treat ln~θk,t as multivariate Gaussian and subject it to the state-space model. At the next time point, we
recover ~θk,t+1 from the (linear Gaussian) transformed ln~θk,t+1 (for simplicity, in the sequel we use θ, i.e.,
a generic “dish” for the table, instead of ~θ, to denote the parameter of a mixture component). Dave Blei
has shown that this trick induces well-behaving transitions within a simplex. It is possible to define a more
direct random walk model on multinomial simplexes. Now, although the dish of a retained table is defined
by the aforementioned state-space model, to return to the non-parametric nature of the overall model, for
tables that are newly instantiated at time t+ 1, we still sample the dishes from the base measure G0.

Putting everything together, to receive new customers at time t + 1, each customer use the usual CRP
strategy, pick an occupied table according to the present plus the immediate previous occupancy of this table,
and have the dish on that table, or with probability τP

k nk,t+1+
P

k′ nk′,t+τ , pick a new table and sample a
new dish from G0.

The above-described model can be understood as a sequence of conditional CRPs for each time point,
given the CRPs in the immediate previous time points. If we assume that the distribution of customer-
sittings at time t is governed by a Dirichlet process, then without the death process (i.e., all tables are
retained over time) and the topic evolution process (i.e., all dishes are non-evolving over time), then the
distribution of customer-sittings at time t + 1 is essentially the posterior distribution of Dirichlet process
DP (τ,G0) given the customer-sittings at time t:

θi,t+1|θ1,t+1, . . . , θi−1,t+1, {nk,t, θ
∗
k,t}

Kt

k=1, G0, τ

∼
Ki∑
k=1

nk,t+1 +
∑Kt

k′ nk′,tPre(·, θ∗k′,t)
i− 1 +Nt + τ

δθ∗k,t+1
(·) +

α0

i− 1 +Nt + τ
G0, (1)

where θ∗k,t+1 (resp. θ∗k,t) denotes the k-th unique value of θ at time point t + 1 (resp. time t), and Nt =∑Kt

k=1 nk,t is the total number of customers at time t, and Pre(a, b) denotes an indicator function that equals
to 1 when b is the predecessor of a under a state-space model and 0 otherwise. According to Ferguson, the
posterior of a Dirichlet process is also a Dirichlet process.

2.1.2 The Bernoulli sieve

To model the phenomena that topics usually last a finite amount of time, now we assume that when transi-
tioning from time t to t+1, the same restaurant carries on, but the fate of each table from time t (identifiable
because of its associated distinct dish) depends on its popularity at time t (Fig 2). Specifically, each table
is associated with a “extinction probability” 1 − αk, and a Bernoulli trial is to be performed based on this
probability for each table. To related the table’s retention probability with the occupancy of the table, we
let:

αk =
1

1 + exp{−η(nk/
∑

k nk − 1/K)}
(2)

Essentially, if the occupancy rate (i.e., nk/
∑

k nk) of a table k is much larger than the average occupancy
rate (i.e., 1/K), the table has a high probability to be retained; o/w, it is more likely to disappear in
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the following time point. To further impose reasonable regularization of such a Bernoulli process, e.g.,
encouraging retention of most of the reasonably occupied tables and proposing removal of only extremely
unpopular tables, we control the shape of the logistic function by determining η using the following three-
point logistic regression scheme.

We assume that the table with the biggest occupancy (or if desirable, the kh-th most occupied table)
has a retention probability αmax (say 0.99), the table with the smallest occupancy (or if desirable, the
kl-th lest occupied table) has a retention probability αmin (say 0.01). Finally, we assume that the most
populous table in the lowest quartile of all table has a retention probability of α1/4 = 0.5. Thus, letting
y = [αmin, α1/4, αmax]T , and x = [nl, nm,mh]T (the occupancies of the reference tables), we have the following
linear regression problem:

ηx = 1− log(1/y − 1) = y′

⇒ η = (xTx)−1xT y′ (3)

If desirable, we can perform a further transformation of α = {α1, . . . , αK} by letting β = Aα, which
introduces coupling of the extinction rates between tables. Note that for each time point t, we will recompute
the α’s based on the occupancy at time t. Thus we have a non-stationary, conditional birth-death process
for each (non-empty) table, parameterized by {αk,t : t = 1, . . . , T ; k|t = 1, . . . ,Kt}.

Now, for every table k at time t, we define a Bernoulli indicator zk,t with parameter αk,t (or βk,t if a
coupling of transformation is used). Given zt = {zk,t}Kt

k=1, a subset of tables occupied at time t will be
eliminated and the rest are inherited to time t+ 1, together with the dishes {θk,t : zk,t = 1, k = 1, . . . ,Kt}
served on the tables (with some modifications described bellow). This means that when these inherited
tables are picked for the first time at t + 1, we do not need to go to the base measure to sample the
dish. Furthermore, to reflect the popularities of dishes inherited from t, we associate these retained tables
with a pseudo count of the customers equal to the occupancy number of the corresponding tables at time
t. This is analogous to the scenario that the restaurant actually keep these tables as “seed” tables already
instantiated before seeing any customer and the incoming customers will see both the present and immediate
previous popularities of the tables, according to which they pick their seats. To briefly summarize, now we
have a dynamic model for birth-death of mixture components, and the evolution of the popularities of the
components.

With the Bernoulli process and the linear-Gaussian state space model for dish evolution, the conditional
distribution of the dish for the i-th costumer at time t + 1, given configuration of the restaurant at time t,
and customer-sittings at time t + 1 up to the (i − 1)-th costumer (we record both the dish each customer
had, θi,t+1, and an auxiliary indicator ck,t+1 ∈ {1, . . . ,Kt} indicating from which dish at time t a distinct
θ∗k,t+1 is evolved):

θi,t+1|θ1,t+1, . . . , θi−1,t+1, c1,t+1, . . . , cKi,t+1, {nk,t, θ
∗
k,t, zk,t}Kt

k=1, G0, τ

∼
Ki∑
k=1

nk,t+1 +
∑Kt

k′=1 zk′,tnk′,tδk′(ck,t+1)
i− 1 +

∑
k zk,tnk,t + τ

δθ∗k,t+1
(·) +

Kt∑
k′=1

zk′,tnk′,tI(k′ /∈ CKi,t+1)
i− 1 +

∑
k zk,tnk,t + τ

p(·|θ∗k′,t)

+
τ

i− 1 +
∑

k zk,tnk,t + τ
G0, (4)

where CKi,t+1 denotes the set of values been taken by c1,t+1, . . . , cKi,t+1 (i.e., inherited dishes from time t
that has been ordered up to the (i− 1)-th customer), and I(k′ /∈ CKi,t+1) is an indicator function indicating
that the k′-th dish from time t is not yet ordered at time t + 1. I believe this is still a Dirichlet measure.
The stick-breaking construction makes this more explicit.

Given θi,t+1, which is a random measure, the probability of a data item xi,t+1 is given by the likelihood
function F (xi,t+1|θi,t+1).
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2.2 Infinite limit of conditional finite mixture models

We introduce auxiliary index variable Yi,t+1 to denote the index of distinctive value taken by θi,t+1 (i.e.,
θ∗yi,t+1,t+1, yi,t+1 ∈ {1, 2, . . . , L}), and we assume that the indexes of the inherited mixture components are
the same as their original indexes in the previous time point. Define Yi,t+1 as a multinomial variable with
parameter πt+1.

πt+1|τ, {nk,t, zk,t}Kt

k=1 ∼ Dir(
τ

L
+ z1,tn1,t, . . . ,

τ

L
+ zKt,tnKt,t,

τ

L
, . . . ,

τ

L
)

yi,t+1|πt+1 ∼ Multinomial(πt+1)

θk,t+1|G0, θk,t, zk,t ∼ G
1−zk,t

0 (·)× p(·|θk,t)zk,t

xi,t+1|yi,t+1, {θk,t+1}L
k=1 ∼ F (·|θyi,t+1,t+1). (5)

Integrating out πt+1 and let L go to infinity, we find that the conditional probability defining the prior
for yi,t+1 reach the following limit:

yi,t+1|y1,t+1, . . . , yi−1,t+1, {nk,t, zk,t}Kt

k=1, G0, τ

∼
Ki∑
k=1

nk,t+1 +
∑Kt

k′=1 zk′,tnk′,tδk′(·)
i− 1 +

∑
k zk,tnk,t + τ

δk(·) +
τ

i− 1 +
∑

k zk,tnk,t + τ
, (6)

which leads to the same prior for θ’s as the one defined by the afore-described dynamic CRP.

2.3 Stick-breaking construction

Under a stick-breaking construction, a Dirichlet process can be expressed by the following formula:

p(·) =
∞∑

i=1

πiδθi(·)

where θi ∼ G0(·) denotes a discrete random measure, πi = γi

∏i−1
i′=1(1−γi′) denote the weight of the measure

and γi′ = Beta(1, τ). For each sample ψn from p(·), let yn ∈ {1, 2, . . .} denote the index of the atom that
ψn equals to, i.e., ψn = θyn . It is easily seen that yn admits a infinite dimensional multinomial distribution
represented by the aforementioned stick-breaking construction:

p(y) =
∞∑

i=1

πiδi(y). (7)

Suppose that we have sampled N instances of ψn, which contains K unique θk, each with occupancy
number nk. Now we suppose that our subsequent samples are generated from a posterior probability distri-
bution of the yN+1, given the stick-breaking prior and the previous samples of yn’s. In the following we derive
a stick-breaking construction of this posterior. First let’s consider the posterior probability of yN+1 = k,

5



τ

πt

G0

θk,t

Z t

πt+1

Z t+1

Y i,t
Y i,t+1

Nt Nt+1

Xi,t
Xi,t+1

θk,t+1

Inf Inf

Figure 3: The graphical model of the stick-breaking representation.

where 1 ≤ k ≤ K:

p(yN+1 = k|π1, . . . , πK ; y1, . . . , yN )
∝ p(yN+1 = k|π1(γ), . . . , πK(γ);n1, . . . , nK)p(γ)
∝ p(yN+1 = k, n1, . . . , nk−1, nk, nk+1, . . . , nK |π(γ))p(γ)

=
k−1∏
i=1

πni
i × πnk+1

k ×
K∏

i=k+1

πni
i ×

∏
i

θ0i (1− θi)τ−1

= (1− γ1)τ−1
k−1∏
i=1

γni
i (1− γi)

PK
j=i+1 nj+τ × γnk+1

k (1− γk)
PK

j=k+1 nj+τ−1
K∏

i=k+1

γni
i (1− γi)

PK
j=i+1 nj+τ−1

= γk(1− γk−1) . . . (1− γ1)× (1− γ1)τ−1
K∏

i=1

(γi)ni(1− γi)
PK

j=i+1 nj+τ−1

= πi(γ1, . . . , γk)
∏

i

Beta(γi|1 + ni,
K∑

j=i+1

nj + τ) (8)

It is easy to show that when k > K,

p(yN+1 = k|π1, . . . , πK ; y1, . . . , yN ) ∝ πi(γ1, . . . , γk)
K∏

i=1

Beta(γi|1 + ni,
K∑

j=i+1

nj + τ)
k∏

i=K+1

Beta(γi|1, τ).

Thus, given π1, . . . , πK and y1, . . . , yN , the posterior distribution of y has the following stick-breaking con-
struction:

p(y) =
∞∑

i=1

πiδi(y). (9)

where πi = γi

∏i−1
i′=1(1−γi′) denote the weight of the random measure thetai, γi≤K = Beta(1+ni,

∑K
j=i+1 nj+
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τ), and γi>K = Beta(1, τ). Assuming no transformation of the discrete random measure θi, we will still have
θi ∼ G0(·). Thus we complete the stick-breaking representation of the posterior of a standard DP.

Using this construction to the DNBM, given extinction indicator z1, . . . , zK for π1, . . . , πK , we have sieved
occupancy counts {n′k = zknk : k = 1, . . . ,K}. Thus the stick-breaking construction for the distribution of
πi remains the formally the same, except that in the Beta prior the ni’s are replaced by n′i’s. The process for
topic evolution over time translates to make the original base measure G0 into a conditional base measure.

θk,t+1|G0, θk,t, zk,t ∼ G
1−zk,t

0 (·)× p(·|θk,t)zk,t . (10)

Note that to simplify the definition, we introduced zk = 0 for all k > K, so that the above formula apply
to all k’s.

It is easy to show that by taking the infinite limit of the condition finite mixture model, we can also get
the stick-breaking construction described above.

3 A nonparametric Bayesian state-space model for sequence of
Gaussian mixtures

Given different choices of the likelihood model F (·|θ) for data, the base measure G0(·) for the initial prior
distribution of the mixture components, and the transition model T (θt|θt−1) for the evolution of mixture
components, the dynamic nonparametric Bayesian model described above readily applies to a wide range of
dynamic systems involving non-trivial temporal/spatial behaviors, such as multiple birth-death processes of
subpopulations of samples in the system, temporal/spatial evolution of different subpopulations, etc..

Now we demonstrate such an application in the context of Bayesian density estimation of times series
data from a dynamically evolving mixture. Specifically, we assume that F (·|θ(k)

t ) is a multivariate normal
distribution for data from mixture component k at time t, T (θ(k)

t |θ(k)
t−1) is a linear dynamic model defined on

the contiguous series of evolving parameters of a particular components k in the dynamic system. At each
time t, data x = {xi} are sampled from an infinite mixture of {θ(k)

t } whose components are either inherited
from t− 1 or newly emerged at time t. The reason that we are interested in this dynamic Gaussian mixture
model is not only because of its popularity and algebraic manipulability, but more because of its direct
relevance to a number of real world application of our interest. For example, it readily defines a dynamic
log-normal model for topic-specific word frequencies which, together with the dynamic DP model from topic
popularities, leads to a dynamic extensions of the LDA model for time series of document corporas. It can
also be used to define dynamic mixtures models for image pixels for tracking and detecting objects from
video streams.

To proceed, we need to specify the prior G0 for θ = {µ,W} (to simplify notation, here and in the sequel
we omit the superscript ”(k)” that indexes the relevant mixture component when we describe properties or
formulas applied to all components), the mean and precision matrix of the multivariate Gaussian random
variables. A convenient form is the normal-Wishart conjugate to the normal sampling model. Thus, under
G0(·), we assume that µ ∼ N (ν, (αµW )−1) is a multivariate-normal with mean ν and precision matrix αµW ;
and we assume that W = Σ−1 ∼ Wishart(T, αw):

p(W |T, αw) = c(n, αw)|T |αw/2|W |(αw−d−1)/2 exp{1
2
tr{TW}}

≡ Wishart(W |αw, T ), (11)

where T is a positive definite scale matrix, αw is the degree of freedom of the normal-Wishart, d is the
dimensionality of the precision matrix, and c(d, αw) is a normalization constant given by

c(d, αw) =
[
2

αwd
2 π

d(d−1)
4

d∏
i=1

Γ
(αw + 1− i

2
)]−1

. (12)

For now, we assume that the prior parameters αw, αµ, T, ν are specified.
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Let FG0(·) =
∫
p(·|θ)G0(θ)dθ represent the (marginal) likelihood of a single sample from a normal distri-

bution under the normal-Wishart prior and given no other samples, it can be shown that the likelihood of
a single data point xi is a d-dimensional multivariate Student-t distribution with γ = αw − d + 1 degree of
freedom, and having mode ν and precision matrix Υ = αµ(αw−d+1)

αµ+1 T−1:

FG0(xi) =
Γ((αw + 1)/2)

(αw − d+ 1)/2((αw − d+ 1)π)d/2
|Υ|1/2

(
1 +

1
αw − d+ 1

(xi − ν)T Υ(xi − ν)
)(αw+1)/2

(13)

Computing this quantity can be difficult and one can approximate it by a multivariate-normal distri-
bution having the same mean and covariance as the multivariate t-distribution (i.e., a moment matching
approximation):

FG0(xi) ∼= N (xi|µ0,W
−1
0 ), (14)

where µ0 = ν and the covariance matrix W−1
0 = γ−2

γ Υ−1 = αµ+1
αµ(αw−d−1)T .

Due to conjugacy, the posterior distribution of {µ,W} under normal-Wishart prior and given observations
x\i (say, containing M data points) is still a normal-Wishart. Specifically, let x̄ denote the sample mean
and S denote the sample covariance of data x\i, we have µ ∼ N (ν′, (α′µW )−1) with updated mean vector
ν′ = αµν+Mx̄

αµ+M and scale parameter α′µ = αµ +M , and W ∼ Wishart(α′w, T
′) with updated degree of freedom

α′w = αw +M and scale matrix T ′ = T +MS+ αµM
αµ+M (ν− x̄)(ν− x̄)T . We denote this posterior distribution

by HG0(·|x\i) for later reference. Following Eqs. (13) and (14), the posterior likelihood of a single data
(given x\i) is also a multivariate t-distribution and again can be approximated by a multivariate-normal

distribution having the mean µ0 = ν′ and covariance W−1
0 = α′µ+1

α′µ(α′w−d−1)T
′.

HG0(xi|x−i) ∼= N (xi|µ0,W
−1
0 ). (15)

Note that the normal-Wishart distribution only defines the prior for {µ,W} of a component when it is
first instantiated. Now we briefly describe the stochastic dynamic model for a contiguous series of normal
parameters, {(µt1 ,Σ

−1
t1 ), . . . , (µtL

,Σ−1
tL

)}, of a normal component which is instantiated at time t1 from the
normal-Wishart base measure, and contiguously inherited until time tL. We define the following state space
model for data {xi,t}:

µt+1 = Aµt +Gwt (16)
xi,t = Cµt + vt,∀i, (17)

where wt ∼ N (0, Q) represents normal transition noise with zero mean and covariance matrix Q; and
vt ∼ N (0,Σ−1

t ) represents normal observation noise. Essentially, this is a Bayesian SMM in which the
backbone mean vector µt’s follow a linear dynamic model with initial distribution N (ν, αµW ) and transition
dynamic Eq. (16) (where, for simplicity, we let A = I so that the transition is a random walk), and the
emission precision metrics Σ−1

t ∼ Wishart(αw, T ) (It is possible to construct a time-specific Wishart, e.g.,
defined by the posterior resulted from samples in the previous time point, but for simplicity, we deffer such
elaborations). Overall, for t > 0, the prior distribution of {(µt,Σ−1

t )} is NOT a canonical normal-Wishart,
but a product of a Gaussian defined by the LDS and a plain Wishart, and is therefore not conjugate prior.
Note that in our setting, the output of our SSM at each time is not a single data point xi,t, but a set of data
points xt. It is well known that under an SSM, the posterior distribution of the centroid µt given the entire
observed sequence and fixed precision metrics {Σ−1

t } is still a normal distribution, of which the mean and
covariance matrix can be readily estimated using the Kalman filtering (KF) and Rauch-Tung-Striebel (RTS)
smoothing algorithms. Here we give the modified Kalman filter “measurement-update” equations that take
into account multiple rather than single output data points 1. The RTS equations and the “time-update”

1This can be derived using the factor that the posterior mean and covariance matrix of the mean of a normal distribution
N (µ, Σ) given data x and prior of the mean N (µ0, Σ0) is:

Σp = (nΣ−1 + Σ−1
0 )−1, µp = (nΣ−1 + Σ−1

0 )−1(nΣ−1x̄ + Σ−1
0 µ0) (18)
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equations of KF is the identical to the standard case for single output and hence omitted:

µ̂t+1|t+1 = µ̂t+1|t + Pt+1|tC
T (CPt+1|tC

T + Σt/n)−1(x̄t+1 − Cµ̂t+1|t)

Pt+1|t+1 = Pt+1|t − Pt+1|tC
T (CPt+1|tC

T + Σt/n)−1CPt+1|t, (19)

where µ̂t+1|t+1 denotes the mean of µt+1 conditioned on the partial sequence x1, . . . , xt+1; µ̂t+1|t denotes the
mean of µt+1 conditioned on the partial sequence x1, . . . , xt; Pt+1|t+1 and Pt+1|t are the covariance matrices
of µt+1 conditioned of partial sequences x1, . . . , xt+1 and x1, . . . , xt, respectively; and x̄t+1 denote the sample
mean of observations at time t+ 1 (from this SSM).

Now let νt = µ̂t|T denote the mean vector and Φt = Pt|T denote the covariance matrix of µt resulted
from the SSM, i.e., µt ∼ N (νt,Φt). We also know that Σ−1

t ∼ Wishart(αw, T ). Thus the marginal likelihood
of a datum xi,t is:

FSSM(xi,t) =
∫
p(xi,t|µt,Σ−1

t )dp(µt|νt,Φt)dp(Σ−1
t |αw, T ). (20)

Note that due to non-conjugacy of the prior, this term can not be computed in close form. In stead, we can
approximate it using MCMC:

FSSM(xi,t) ∼=
∫

1
M

M∑
m=1

p(xi,t|µt,Σ−1
t,m)dp(µt|νt,Φt)

=
1
M

M∑
m=1

p(xi,t|νt, (Σt,m + Φt)−1) (21)

where Σ−1
t,m ∼ Wishart(αw, T ).

Similarly

HSSM(xi,t|x(k)
−i,t) ∼=

∫
1
M

M∑
m=1

p(xi,t|µt,Σ−1
t,m)dp(µt|νt,Φt,x

(k)
−i,t)

=
1
M

M∑
m=1

p(xi,t|ν′t, (Σt,m + Φ′
t)
−1) (22)

where Σ−1
t,m ∼ Wishart(αw, T,x

(k)
−i,t, µt) = Wishart(αw +nt,k, T +

∑nt,k

j=1(x(k)
j,t −µ

(k)
t )(x(k)

j,t −µ
(k)
t )T ). Note that

the posterior of the Wishart is still a Wishart, which is dependent not only on x(k)
−i,t, but also on a sample of

µ(k)
t . Posterior mean and variance of the Gaussian ν′t and Φ′

m can be estimated from the footnote. Typically,
for efficiency, we set M = 1, i.e., one sample of Σt,m. So essentially, given Σ−1

t , we can compute the posterior
of µ(k)

t under the LDS; given a sample of µ(k)
t , we can also sample a Σ−1

t from its posterior— a Gibbs-like
procedure.

Note the Σ−1
t,m at every time point is conditionally independent given the Wishart prior. So when drawing

Σ−1
t,m for a time point we do not need to consider other samples of x in other time points. Thus the

likelihood of data of an inherited class k under an SSM for the mean and Wishart prior for the covariance
is: FSSM(x(k)

t ) =
∏

i FSSM(x(k)
i,t ), whereas the likelihood of data of an new-born class under a standard normal-

Wishart prior is: FG0(x
(k)
t ) =

∏
i FG0(x

(k)
i,t ).

4 A Gibbs sampling algorithm

Now we precede to describe a Gibbs sampling scheme for this model.
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To encourage efficient mixing, it is useful to associate each data point xi,t (i.e., a random customer) with
a auxiliary indicator RV yi,t, denoting the index of the unique value of the random measure θi,t used to
define the likelihood of xi,t (i.e., the index of the table sit by customer i at time t). With this auxiliary RV,
every time the unique value of θ∗k,t is resampled, all samples of θi,t pertaining to this value will have their
value changed. In our dynamic CRP construction the value of yi,t depends on y[−i],t, the value of mixture
component indicators of all other samples at time t; y·,t−1, all such indicators at time at time t − 1; z·,t,
the survival indicators at time t of all components from the previous time. It also directly influence the
distribution of xi,t, the sample whose distribution is defined by the draw of θi,t, and z·,t+1 the distribution
of the survival indicators of time t components at time t+ 1. Our sampling scheme is as follows:

• For each t, sample the inheritance indicators zt; and also the index of descendants of each inherited
component. For each t, let ct denote the vector bookkeeping the indices of the ancestors of components
at t− 1, if component k at time time has no ancestor, let ck,t = 0.

• Given z, sample class indicator y.

• Given class mean µ (from previous round) and class labels y, sample the precision matrix W for each
class at each time.

• Given the precision matrix W and and class labels, run Kalman filter to compute posterior for the
class means at each time, sample class means µ accordingly.

Now we proceed to sample the survival RV zk,t. RV zk,t is related to the occupancy pattern at time t by
a regression function p(·|nt). It also directly influence (together with nt) the distribution of all yi,t+1; and
the distribution of all θk,t+1. The Gibbs predictive distribution of yi,t can be written as follows:

p(zk,t|nt,θt, z−k,t,θt+1,nt+1, ct+1) ∝ p(zk,t|nt)p(nt+1,θt+1|zk,t, z−k,t,nt,θt, ct+1)
= p(zk,t|nt)p(nt+1|zk,t, z−k,t,nt)p(θt+1|zk,t, z−k,t,θt, ct+1) (23)

The conditional probability of nt+1 and θt+1 can be computed as follows:

p(nt+1,θt+1|zt,nt,θt)

=
∫

π

Dir(π| τ
Lt

+ zt • nt)
Lt+1∏

l

π
nl,t+1
l dπ ×

Lt+1∏
l

G0(θl,t+1)1(cl,t+1=0)HSSM(θl,t+1|θcl,t+1,t)1(cl,t+1 6=0)

=
Γ(τ +Nt(zt))

Γ(τ +Nt(zt) +Nt+1)

Lt+1∏
l=1

Γ(τ/Lt+1 + zl,tnl,t + nl,t+1)
Γ(τ/Lt+1 + zl,tnl,t)

G0(θl,t+1)1(cl,t+1=0)HSSM(θl,t+1|θcl,t+1,t)1(cl,t+1 6=0)

(24)

where 1(·) represents an indicator function of the true/false outcome of its argument, “•” denote the
Hadamard (i.e., elementwise) product of two vectors, Lt denote the total number of non-empty clusters
at time t, and Nt(zt) =

∑Lt

l′=1 zl′,tnl′,t, which can understood as the “zt-sieved” total occupancy at time
t. For convenience, we also define N (k)

t (zt) =
∑Lt

l′=1 zl′,tnl′,t − zk,tnk,t to be the “zt-sieved” total occupancy
except for table k at time t.

Now back to the predictive distribution to zk,t. Instead of sampling zk,t directly, we sample an auxiliary
variable d which represents an indicator of the descendant of component k at time t. If dk,t = 0, then
components k has no descendant at time t+ 1 and therefore zk,t = 0; if dk,t = l, then component l at time
t + 1 is the descendant of component k at time t, and we can set zk,t = 1 and cl,t+1 = k. The proposal
distribution of dk,t can be written as follows:

p(dk,t = l, l 6= 0|nt,θt, z−k,t,θt+1,nt+1, ct+1)
= C × p(zk,t = 1|nt)p(nt+1,θt+1|zt,nt,θt, c−l,t+1, cl,t+1 = k, )

= C × αk
Γ(τ +N (k)

t (zt) + nk,t)
Γ(τ +N (k)

t (zt) + nk,t +Nt+1)
Γ(τ/Lt+1 + nk,t + nl,t+1)

Γ(τ/Lt+1 + nk,t)
HSSM(θl,t+1|θk,t), (25)
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where the normalization constant can be obtained by summing the unnormalized term above over all l ∈ Dk,
where Dk represents the set of all possible values l can take, including 0, the index of the current descendant
of component k of time t, and the indices of those components at time t+ 1 currently having no ancestor:

C =
∑

l′∈Dk

αk
Γ(τ +N (k)

t (zt) + nk,t)
Γ(τ +N (k)

t (zt) + nk,t +Nt+1)
Γ(τ/Lt+1 + nk,t + nl′,t+1)

Γ(τ/Lt+1 + nk,t)
HSSM(θl′,t+1|θk,t)

+(1− αk)
Γ(τ +N (k)

t (zt))
Γ(τ +N (k)

t (zt) +Nt+1)
Γ(τ/Lt+1 + nl,t+1)

Γ(τ/Lt+1)
G0(θl,t+1)

(26)

Note that θk,t and θl,t+1 can be integrated out under both the base measure and the SMM.

p(dk,t = l|z−k,t,nt,y,x, c)
= C × p(zk,t = 1|nt)p(nt+1|nt, zk,t = 1, c−l,t+1, cl,k+1 = k)p(x(k)

t+1|y,x \ x(k)
t+1, c−l,t+1, cl,k+1 = k, c−(t+1))

=
FSSM(x(l)

t+1|θ̂t+1|T , Pt+1|T )∑
l′∈Dk

FSSM(x(l′)
t+1|θ̂t+1|T , Pt+1|T ) + 1−αk(nt)

αk(nt)
r(nt,nt+1, zt)FG0(x

(l)
t+1)

(27)

where x(k)
t+1 denotes the subset of xt+1 belonging to component k; FSSM(x(k)

t+1|θ̂t+1|T , Pt+1|T ) denotes the
likelihood of data of class k under a Gaussian prior of the parameters of the likelihood model, which is
estimated from the SMM model on component k; FG0(·) denote the marginal likelihood of data using the
base measure as the prior of the likelihood model (both derived in the previous section); and r(nt,nt+1, zt)
is a function determined by the occupancy pattern under possible values of zk,t and dk,t:

r(nt,nt+1, zt) =
Γ(τ +N

(k)
t (zt) + nk,t +Nt+1)Γ(τ/Lt+1 + nk,t)Γ(τ +N

(k)
t (zt))Γ(τ/Lt+1 + nl,t+1)

Γ(τ +N
(k)
t (zt) + nk,t)Γ(τ/Lt+1 + nk,t + nl,t+1)Γ(τ +N

(k)
t (zt) +Nt+1)Γ(τ/Lt+1)

=
Φτ+N

(k)
t +Nt+1+nk,t−1

τ+N
(k)
t +Nt+1

Φτ+N
(k)
t +nk,t−1

τ+N
(k)
t

×
Φτ/Lt+1+nl,t+1−1

τ/Lt+1

Φτ/Lt+1+nk,t+nl,t+1−1

τ/Lt+1+nk,t

, (28)

where Φa
b , a > b represents a partial factorial a× (a− 1)×, . . . ,×(b+ 1)× b.

The Gibbs predictive distribution of yi,t can be written as follows:

p(yi,t|y[\i],t,yt−1, zt−1, xi,t,θt,θt−1, ct)
∝ p(yi,t|y[\i],t,yt−1, zt−1)p(xi,t|yi,t,θt−1,θt, ct, G0)

=


n[\i],k,t+nl,t−1

Nt−1+i−1+τ p(xi,t|θk,t) if k = yi′ for some i′ 6= i, and ck,t = l.
nl,t−1

Nt−1+i−1+τ

∫
p(xi,t|θk,t)dHSSM(θk,t|θl,t−1) if k 6= yi′ for all i′ 6= i, and ck,t = l.

n[\i],k,t

Nt−1+i−1+τ p(xi,t|θk,t) if k 6= yi′ for some i′ 6= i, and ck,t = 0.
τ

Nt−1+i−1+τ

∫
p(xi,t|θt)dG0(θ) if k 6= yi′ for all i′ 6= i, and ck,t = 0.

(29)

In a context of using a conjugate G0 prior for newly instantiated and an SSM for surviving θt, we could
in some cases integrate the θ to speed up mixing.

p(yi,t|y[\i],t,yt−1, zt−1, xi,t)

=


b

n[\i],k,t+nl,t−1

Nt−1+Nt−1+τ FSSM(xi|x(k)
−i,t) if k = yi′ for some i′ 6= i, and ck,t = 1.

b
nk,t−1

Nt−1+Nt−1+τ FSSM(xi) if k 6= yi′ for all i′ 6= i, and ck,t = 1.

b
n[\i],k,t(−i)

Nt−1+Nt−1+τ (1− αk)FG0(xi|x(k)
−i,t) if k 6= yi′ for some i′ 6= i, and ck,t = 0.

b τ
Nt−1+Nt−1+τ (1− αk)FG0(xi) if k 6= yi′ for all i′ 6= i, and ck,t = 0.

(30)
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where b is a normalization constant, and HSSM(θk|·) and HSSM(θk|·,x\i,t) are the posterior distribution of θk

in an SMM of topic k over time given observations from times other than time t and all observations except
xi,t, respectively.

When Gibbs sampling for yi,t choose a value not equal to any other yj,t at time t, a value for θ(yi,t) is
chosen from HG0(·|xi,t), which is the posterior distribution of θ based on the prior G0 and the single obser-
vation xi,t. It will be used also as the initial hidden state of the SSM that govern temporal evolution of topic k.

Now given class mean µ (from previous round) and class labels y, we can sample the precision matrix
W for each class at each time from its posterior: Wishart(αw + nt,k, T +

∑nt,k

j=1(x(k)
j,t − µ(k)

t )(x(k)
j,t − µ(k)

t )T ).

Finally, given instantiations of y and z, and the emission matrix Σ(k)
t = W (k), inference over the mean

parameter over time µ is equivalent to working with several independent state-space models, which can be
solved in close-form using the Kalman filter and RTS algorithm on each chain of retained components, as
discussed in the previous section.

Note that the Kalman filter and RTS algorithm is performed under a given covariance matrix for the
emission. After this step, we re-sample µ(k)

t for the next round.
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