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Abstract

Graphs show up in a surprisingly diverse set of disciplines, ranging from com-
puter networks to sociology, biology, ecology and many more. How do such “nor-
mal” graphs look like? How can we spot abnormal subgraphs within them? Which
nodes/edges are “suspicious?” How does a virus spread over a graph? Answering
these questions is vital for outlier detection (such as terrorist cells, money launder-
ing rings), forecasting, simulations (how well will a new protocol work on a realistic
computer network?), immunization campaigns and many other applications.

We attempt to answer these questions in two parts. First, we answer questions
targeted atapplications: what patterns/properties of a graph are important for solving
specific problems? Here, we investigate the propagation behavior of a computer virus
over a network, and find a simple formula for theepidemic threshold(beyond which
any viral outbreak might become an epidemic). We find an “information survival
threshold” which determines whether, in a sensor or P2P network with failing nodes
and links, a piece of information will survive or not. We also develop a scalable,
parameter-free method for findinggroupsof “similar” nodes in a graph, corresponding
to homogeneous regions (orCrossAssociations) in the binary adjacency matrix of the
graph. This can help navigate the structure of the graph, and find un-obvious patterns.

In the second part of our work, we investigate recurring patterns in real-world
graphs, to gain a deeper understanding of their structure. This leads to the development
of the R-MAT model of graph generation for creating synthetic but “realistic” graphs,
which match many of the patterns found in real-world graphs, including power-law
and lognormal degree distributions, small diameter and “community” effects.
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Chapter 1

Introduction

Informally, a graph is a set of nodes, and a set of edges connecting some node pairs. In database
terminology, the nodes represent individual entities, while the edges represent relationships be-
tween these entities. This formulation is very general and intuitive, which accounts for the wide
variety of real-world datasets which can be easily expressed as graphs. Some examples include:

• Computer Networks:The Internet topology (at both the Router and the Autonomous System
(AS) levels) is a graph, with edges connecting pairs of routers/AS. This is a self-graph, which
can be both weighted or unweighted.

• Ecology: Food webs are self-graphs with each node representing a species, and the species
at one endpoint of an edge eats the species at the other endpoint.

• Biology: Protein interaction networks link two proteins if both are necessary for some bio-
logical process to occur.

• Sociology:Individuals are the nodes in a social network representing ties (withlabelssuch
as friendship, business relationship, trust, etc.) between people.

• User Psychology:Clickstream graphs are bipartite graphs connecting Internet users to the
websites they visit, thus encoding some information about the psyche of the web user.

• Information Retrieval:We can have bipartite graphs connecting “document” nodes to the
“word” nodes that are present in that document. This link could beweightedby the num-
ber of occurrences of the word in the document. We also haveco-authorshipself-graphs,
connecting authors who were co-authors of some document.

In fact, any information relating different entities (anM : N relationship in database terminology)
can be thought of as a graph. This accounts for the abundance of graphs in so many diverse topics
of interest, most of them large and sparse. Figure1.1 shows some such graphs. In our work, we
focus on unweighted, unlabeled graphs, of both the self- and bipartite- graph types.

Given the widespread presence of such “graph” datasets, one obvious question becomes very
important:

1



(a) Food web (b) Internet map (c) Protein interactions

(d) Friendship (e) Needle-sharing (f) Hijackers
network network network

Figure 1.1: Examples of graphs:(a) Food web [Martinez, 1991] (b) Internet topology map
(lumeta.com ) (c) Protein interaction network (genomebiology.com ) (d) Friendship net-
work among students in one American school [Moody, 2001] (e) “Needle-sharing” network of
drug users [Weeks et al., 2002] (f) Network of the September-11 hijackers [Krebs, 2001].
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How can we efficiently and accurately analyze large graph datasets, and
mine them for interesting information?

Thanks to the generality of the graph representation of data, any new graph mining algorithm can
be applied to a variety of datasets, perhaps obtained from completely different fields. Mining this
information can provide significant benefits.

• Security: The “COPLINK Connect” system [Chen et al., 2003] has been used to combine
and share data regarding criminals among many police departments. The criminal graph
links suspects, crimes, locations, previous case histories, etc. These linkages provide the
necessary information for effective law enforcement. Graph mining algorithms can also be
used for finding abnormal subgraphs, say a money-laundering ring, in a large social network
of financial transactions.

• The World-wide Web:To provide good results, a search engine must detect and counteract
the “outliers” on the Web: spam sites,“googlebombers”[Google Bomb] and the like. Graph
mining techniques are needed to automatically find such webpages out of the billions on the
WWW.

• Drug discovery:Graph mining techniques can be used to search forfrequent subgraphsin
large chemical databases. For example, Dehaspe et al. [Dehaspe and Toivonen, 1999] look
for patterns that regularly in carcinogenic compounds, and Milo et al. [Milo et al., 2002]
detect “motifs” in genetic and other networks. Any information gleaned from such studies
can be very useful in understanding diseases and developing drugs to counter them.

• Immunizations:Starting from one infected individual, a contagious disease can spread across
a population (or computer network, for a computer virus) by infecting healthy individuals
who are linked to infected ones. Thus, the structure of the “social network” plays a crit-
ical role in the spread of the disease, and in choosing the nodes whose immunization can
“maximally disrupt” the contagion [Pastor-Satorras and Vespignani, 2002b].

• Viral marketing: This is exactly the opposite of immunizations: the aim is to target indi-
viduals who are best positioned in the social network to generate “word-of-mouth” public-
ity [Richardson and Domingos, 2002].

• Biology: Understanding the networks of regulatory genes and interacting proteins can give
insights into the biological functions of these genes and proteins [Barab́asi, 2002].

Thus, there are many real-world applications where, given a specific graph, we want to find some
properties or answer a particular query about it.

As against this, we can ask questions about real-world graphs in general, and not about any one
graph in particular. We could ask:

What patterns occur regularly in real-world graphs? How do these graphs
evolve over time? How fast do they grow?

3



The answers to these questions would be the “marks of realism” in real-world graphs, and we could
use them to detect “fake” graphs or “abnormal” subgraphs. Knowledge of these patterns is also
essential for another problem:

How can we build “realistic” yet efficient graph generators?

The criterion for judging the quality of a graph generator is the “realism” of the generated graphs:
they are realistic exactly if they match the common graph patterns. Graph generators can in turn
be used for a variety of purposes— graph sampling, graph compression, and graph extrapolation
for simulation studies, to name a few.

Thus, we observe a dichotomy in graph mining applications: we can answer specific queries
on a particular graph, or we can ask questions pertaining to real-world graphs in general. The
separation between the two is, however, not strict, and there are applications requiring tools from
both sides. For example, in order to answer“how quickly will viruses spread on the Internet
five years in the future,”we must have models for how the Internet will grow, how to generate
a synthetic yet realistic graph of that size, and how to estimate the spread of viral infections on
graphs.

In my thesis, I explore issues from both sides of this dichotomy. Since graphs are so general,
these problems have been studied in several different communities, including computer science,
physics, mathematics, physics and sociology. Often, this has led to independent rediscovery of the
same concepts in different communities. In my work, I have attempted to combine these viewpoints
and then improve upon them.

The specific problems I investigated in my research are as follows. Chapter2 contains basic
background material. Key symbols and terms used throughout the document are defined here. Any
extra background material specific to each topic will be presented in the corresponding chapter.
The next three chapters investigate applications of graph mining onspecificgraphs. In chapter3,
we analyze the problem of viral propagation in networks:“Will a viral outbreak on a computer
network spread to epidemic proportions, or will it quickly die out?”We investigate the dependence
of viral propagation on the network topology, and derive a simple and accurateepidemic threshold
that determines if a viral outbreak will die out quickly, or survive for long in the network. In
chapter4, we study information survival in sensor networks: Consider a piece of information being
spread within a sensor or P2P network with failing links and nodes.What conditions on network
properties determine if the information will survive in the network for long, or die out quickly?In
chapter5, we answer the question:How can we automatically find natural node groups in a large
graph?Our emphasis here is on a completely automatic and scalable system: the user only needs
to feed in the graph dataset, and our Cross-associations algorithm determines both the number of
clusters and their memberships. In addition, we present automatic methods for detecting outlier
edges and for computing “inter-cluster distances.”

Next, in chapter6, we discuss issues regarding real-world graphs in general:How can we
quickly generate a synthetic yet realistic graph? How can we spot fake graphs and outliers?We
discuss several common graph patterns, and then present our R-MAT graph generator, which can
match almost all these patterns using a very simple3-parameter model. Finally, chapter7 presents
the conclusions of this thesis, followed by a discussion of future work in chapter8.
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Chapter 2

Basic Background Material

Before we discuss our graph mining tools, we must develop some basic terminology. We will start
with the definition of a graph, and of the different types of graphs. We will then define the degree
distribution of a graph, and briefly discuss “power laws.” We will see the simple random graph
model, which we will discuss in detail later in Chapter6. Finally, we will define singular values
and eigenvalues, which are extremely useful in the analysis of matrices and graphs, and will show
up in later chapters.

2.1 Graph Types

The informal definition of a graph is a set of nodes with edges connecting some of them. However,
there can be several variations on this theme, each of which has a special name. The graph can be
directed (when edges point from one node to another) or undirected (edges point both ways). A
graph can be a self-graph or a bipartite graph depending on whether the set of nodes pointed to by
edges is the same as the set of nodes pointed from, or not. In addition, edges can have different
weights, or not, which differentiates weighted graphs from unweighted graphs. All of these terms
are formally defined below; figure2.1shows examples of these.

Definition 1 (Graph or Self-graph). A graphG = (V , E) is a setV of N nodes, and a setE of E
edges between them. The number of nodes is denoted byN = ‖V‖, and the number of edges by
E = ‖E‖.

Definition 2 (Bipartite graph). In a bipartite graph, the set of nodesV consists of two disjoint
sets of nodesV1 andV2: V = V1 ∪ V2. Any edge connects a node inV1 to a node inV2, that is,
(i, j) ∈ E ⇒ i ∈ V1 andj ∈ V2. The number of nodes in the two node set areN1 = ‖V1‖ and
N2 = ‖V2‖. The number of edges is stillE = ‖E‖.

Definition 3 (Directed and undirected graph). In a directed graphG = (V , E), each edge(i, j) ∈
E points from nodei to nodej. An undirected graph is a directed graph where edges point both
ways, that is,(i, j) ∈ E ⇒ (j, i) ∈ E .

Definition 4 (Weighted and unweighted graphs).A weighted graphG = (V , E ,W) has a set
of nodesV, and a set of edgesE ; andW represents the correspondingweightsof those edges.

5



Symbol Description
G The graph.G = (V , E) for a weighted graph,

andG = (V , E ,W) for an unweighted graph
V The set of nodes in G.V = V1 ∪ V2 for a bipartite graph
E The set of edges
W Edge weights: zero when no edge exists, and positive when it does.

Edges weights are1 for an unweighted graph.
A The adjacency matrix of the graph
N Number of nodes in G

N1, N2 Number of nodes in the partitionsV1 andV2 of a bipartite graph G
E Number of edges in G

Table 2.1:Table of basic symbols.

1250

(a) Directed (b) Undirected (c) Bipartite (d) Weighted
self-graph self-graph graph self-graph

Figure 2.1:Examples of different graph types:(a) Edges in a directed graph point one way, such as
a graph of papers where edges imply references from one paper to another. (b) Undirected graphs
have edges pointing both ways, such as a social graph of kinship between individuals. Both of
these represent self-graphs. (c) A bipartite graph has edges connecting two different sets of nodes,
such as movies and the actors who acted in them. (d) A weighted graph has weights for each edge,
such as the bandwidth of a link connecting two routers.

Weighted graphs can be both self-graphs or bipartite graphs. Unweighted graphs are a special
case of weighted graphs, with all weights set to1.

Definition 5 (Adjacency matrix of a self-graph). The adjacency matrixA of a weighted self-
graphG = (V , E ,W) is anN ×N matrix such that

Ai,j =

{
wi,j if (i, j) ∈ E
0 otherwise

for i, j ∈ 1 . . . N

The adjacency for an unweighted self-graph merely replaceswi,j by1.

Definition 6 (Adjacency matrix of a bipartite-graph). The adjacency matrixA of a weighted
bipartite-graphG = (V , E ,W) with V = V1 ∪ V2 is anN1 ×N2 matrix such that

Ai,j =

{
wi,j if (i, j) ∈ E
0 otherwise

for
i ∈ 1 . . . N1

j ∈ 1 . . . N2
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The adjacency for an unweighted bipartite-graph merely replaceswi,j by1.

In addition, graph nodes and edges can have attached labels (i.e., categorical values); such
graphs are calledlabeled graphs. However, our work has focused on unlabeled and unweighted
graphs, both self- and bipartite, and both directed and undirected. Table2.1 lists these symbols.

2.2 Degree Distributions and Power Laws

One basic property of nodes in the graph is their degree. We will define this, and the corresponding
degree distributionof a graph. Many degree distributions in the real-world followpower laws,
which we will touch upon next.

Definition 7 (Node Degree).The outdegree of nodei in graphG = (V , E) is the number of nodes
it points to:

Out-degreedout(i) = ‖j | (i, j) ∈ E‖
Similarly, the indegree is the number of nodes pointing to nodei:

In-degreedin(i) = ‖j | (j, i) ∈ E‖
For an undirected graph,dout(i) = din(i) for all nodesi.

Definition 8 (Degree Distribution). The degree distribution of an undirected graph is a plot of
the countck of nodes with degreek, versus the degreek, typically on a log-log scale.

Occasionally, the fractionck

N
is used instead ofck; however, this merely translates the log-log

plot downwards. For directed graphs, outdegree and indegree distributions are defined similarly.

Definition 9 (Power Law Degree Distributions). A graphG has a power-law degree distribution
if the number of nodesck with degreek is related tok by the equation:

ck = c · k−γ (2.1)

wherec and γ are positive constants. In other words, the degree distribution looks linear when
plotted on the log-log scale. The constantγ is often called the power law exponent.

2.3 The Random Graph Model

The random graph model [Erdős and Ŕenyi, 1960] is a famous and influential model of graph
generation. We will discuss many other models in Chapter6; however, this model will be needed
earlier, and so we briefly mention it below.

Starting with a (user-provided) number of nodesN , the random graph generator [Erdős and
Rényi, 1960] adds an edge between every pair of distinct nodes with a (user-provided) probability
p. This simple model leads to a surprising list of properties, including phase transitions in the size
of the largest component, and diameter logarithmic in graph size. Its ease of analysis has proven to
be very useful in the early development of the field. Hence, many early graph-mining algorithms
were focused on random graphs, and a basic idea of random graphs is useful when comparing our
algorithms against previous methods.
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2.4 Singular Value Decomposition

The technique of Singular Value Decomposition (SVD) is extremely useful in dealing with matri-
ces. We will just present the basic concept here [Press et al., 1992]: “Any M ×N matrixA whose
number of rowsM is greater than or equal to its number of columnsN , can be written as the
product of anM × N column-orthogonal matrixU, anN × N diagonal matrixW with positive
or zero elements (thesingular values), and the transpose of anN ×N orthogonal matrixV.”

A


=


U




w1

w2

.. .
wN


 Vt

 (2.2)

This decomposition can always be done; it provides an orthonormalbasisfor the rows and columns
of the matrixA; it is useful for obtaining least-squares fits to some matrix equations, for approxi-
mating matrices with just a few singular values, and for many other problems.

2.5 Eigenvalues

An N × N matrix A is said to have aneigenvector~x and a correspondingeigenvalueλ if [ Press
et al., 1992]

A~x = λ~x (2.3)

These again provide an orthonormal basis for the matrix (indeed, eigenvalues and singular
values are closely related), and they often show up in the analysis of matrices, as we shall see in
later chapters.
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Chapter 3

Epidemic thresholds in viral propagation

“Will a viral outbreak on a computer network spread to epidemic
proportions, or will it quickly die out?”

The relevance of this question to the design of computer networks is obvious. Starting from some
small corner of the Internet, modern viruses can quickly spread across the network. This network
can be a physical, such as the network of routers, or it could be an “overlay” network, such the “ad-
dressbook” network (for viruses which spread via email). However, modern anti-virus techniques
are typically “local”: computers are disinfected one at a time, without considering the survival
of the virus in the network. What is needed is method of combating viruses “globally,” and that
requires an understanding of the network-propagation behavior of viral outbreaks.

In addition to computer networks, the same questions appear in several other fields as well.
Rumors, trends and the latest fads spread across asocial network, and some fashion can gain
prominence through “word of mouth” publicity. Dependable systems must be designed to pre-
vent cascading failures. Immunization programs need to target individuals who are at a high risk,
possibly due to their position in the social network. Similarly, the effectiveness of information
dissemination or viral marketing campaigns depends on reaching “influential” individuals in the
network. In all of these and many other cases, a good understanding of the propagation behavior
over arbitrary network topologies is important.

Our contributions, as detailed in [Wang et al., 2003], are in answering the following questions:

• How does a virus spread?Specifically, we want an analytical model of viral propagation,
that is applicable foranynetwork topology.

• When does the virus die out, and when does it become endemic?Conceptually, a tightly
connected graph offers more possibilities for the virus to spread and survive in the network
than a sparser graph. Thus, the same virus might be expected to die out in one graph and
become an epidemic in another. What features of the graph control this behavior? We find a
simple closed-form expression for the “epidemic threshold” below which the virus dies out,
but above which it can become an epidemic.

• Below the threshold, how quickly will the virus die out?A logarithmic decay of the virus
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might still be too slow to have practical impact.

We will first present some background material relevant to this topic in Section3.1. We then
present our mathematical model of viral propagation in Section3.2, and our derivation of the
epidemic threshold condition in Section3.3. Finally, we experimentally demonstrate the accuracy
of our model in Section3.4. Details of proofs are presented in Section3.5, followed by a summary
in Section3.6.

3.1 Related Work

The process of viral propagation has been studied is several communities, including epidemiolo-
gists, computer scientists, physicists and probability theorists. The broad focus of all this work
has been on two orthogonal aspects: the behavior of a single node in the graph, and the effect of
network topology.

3.1.1 Behavior of a single node

How do individual nodes behave during a viral infection? The epidemiological community has
studied this problem for a long time, and several models have been proposed [Bailey, 1975]. We
will look at the most important ones below:

• Susceptible-Infective-Susceptible (SIS) Model:In this model, each node can be in one of
two states: healthy but susceptible (S) to infection, or infected (I). An infected node can be
cured locally (say, by anti-virus software), and it immediately becomes susceptible again.
An infected node can also spread the virus along network links to neighboring susceptible
nodes.

• Susceptible-Infective-Removed (SIR) Model:Here, once an infected node is cured, it is im-
mune to further infections and is removed (R) from the network.

• Extensions:Several extensions to these basic models have been proposed. Two common
ideas are “infection delay” and “user vigilance” [Wang and Wang, 2003]. Infection delay
represents a delay in spreading the virus from an infected node. User vigilance is some
time period after a disinfection when the user is vigilant against new infections, reducing the
susceptibility of that node.

While each model is suitable for different applications, we focus on the plain SIS model, and
all our future discussions will be based on it. The virus is modeled by two parameters: the virus
“birth rate” β, with which it tries to spread across a network link to a susceptible node; and the
virus “death rate”δ with which each infected node disinfects itself. If death rate is very low, the
infection should survive for a long time, but if the birth rate is very low, it should die off quickly.
Is there some condition/threshold that determines the fate of a viral outbreak?

This is called the “epidemic threshold” of the network, and has been the focus of a lot of
research activity. Informally, the epidemic threshold is a valueτ such that
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If β
δ

< τ , the viral outbreak dies out quickly, but

if β
δ
≥ τ , the virus may become endemic. (3.1)

We shall provide a formal definition later in the text.

3.1.2 Interactions between nodes

While the previous paragraphs described the spread of a virus in the neighborhood of an infected
node, the epidemic threshold is a global value depending on the topology of the entire network.
This question has been approached from several viewpoints, of which the major ones we discuss
below.

The KW model:Kephart and White [Kephart and White, 1991, 1993] modeled the network as
directed graph, but with a constrained topology (either an Erdős-Ŕenyi random graph, or a tree, or
a 2D lattice). For this model (which we will call KW), they derived steady-state solutions for the
number of infected nodesηKW ; for example, for the random graph, it is:

ηKW = N

(
1− δ

β〈k〉

)
(3.2)

whereN is the total number of nodes, and〈k〉 the average degree. They also derived the epidemic
threshold:

τKW =
1

〈k〉
(3.3)

While this is a good model for networks where contact among nodes is sufficiently homoge-
neous, there is overwhelming evidence that real networks (including social networks [Domingos
and Richardson, 2001], router and AS networks [Faloutsos et al., 1999], and Gnutella overlay
graphs [Ripeanu et al., 2002]) deviate from such homogeneity—they follow a power law structure
instead. In such graphs, there exist a few nodes with very high connectivity, but the majority of
the nodes have low connectivity. The high-connectivity nodes are expected to often get infected
and then propagate the virus, making the infection harder to eradicate. We shall show that the KW
model is a special case of our model, and we match its predictions for homogeneous graphs.

The MFA model (Mean Field Assumption model):Pastor-Satorras and Vespignani [Pastor-Satorras
and Vespignani, 2001, Pastor-Satorras et al., 2001, Pastor-Satorras and Vespignani, 2002a,b] al-
lowed the network topology to be a power-law. To derive analytic results, they used the mean-field
assumption (MFA), where all nodes with the same degree are treated equally. We call this the
“MFA” model. For the special case of the Barabási-Albert power-law topology [Barab́asi and
Albert, 1999], their steady-state infected population size is:

ηMFA = 2Ne−δ/mβ

wherem is the minimum degree in the network. However, this has not been extended to all power-
law graphs in general. They also derive an epidemic threshold:

τMFA =
〈k〉
〈k2〉

(3.4)
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where〈k〉 is the average degree, and〈k2〉 the average of the squared degree.

While the mean-field assumption lets us compute a general epidemic threshold, there is no
reason for any two nodes with the same degree to be equally affected by the virus. One node could
be in the core of a network, and another in the periphery; the one in the core will presumably
be infected more often. Indeed, we observe experimentally that our model yields more accurate
predictions than the MFA model.

Correlated networks:Bogũná and Satorras [Bogũná and Pastor-Satorras, 2002] studied networks
where the connectivity of a node is related to the connectivity of its neighbors. Thesecorrelated
networksinclude Markovian networks where, in addition to the degree distributionP (k), a func-
tion P (k|k′) determines the probability that a node of degreek is connected to a node of degree
k′.

While some degree of correlations may exist in real networks, it is often difficult to character-
ize connectivity correlations with a simpleP (k|k′) function. Computing these values in real-world
graphs with strong confidence guarantees is also hard. In addition, our results indicate that knowl-
edge ofP (k|k′) is not needed to compute the epidemic threshold for arbitrary graphs.

Interacting particle systems:This is a branch of probability theory where “particles” are allowed
to propagate over a simple network according to different processes; the one that is closest to our
work is the “contact process” [Harris, 1974, Liggett, 1985]. This area has seen some excellent and
rigorous theoretical work. However, the networks that are studied are (a) infinite, which changes
the questions being asked, and (b) simple, typically only line graphs and grids [Durrett and Liu,
1988, Durrett and Schonmann, 1988, Durrett et al., 1989]. Instead, the (possibly arbitrary) network
topology is a central part of our work. Asavathiratham [Asavathiratham, 2000] studies similar
processes, but does not investigate epidemic thresholds.

Thus, all current methods either constrain the network topology or use strong assumptions.
Next, we propose a general method of modeling viral propagation onany finite graph, without
having to resort to the mean-field approximation.

3.2 Model of Viral Propagation

We develop a mathematical model for the SIS method of viral infection, which is applicable to any
undirected graph G. Our model assumes very small discrete timesteps of size∆t, where∆t → 0.
Our results apply equally well to continuous systems, though we focus on discrete systems for
ease of exposition. Within a∆t time interval, an infected nodei tries to infect its neighbors with
probabilityβ. At the same time,i may be cured with probabilityδ. Table3.1 defines these and
other symbols.

3.2.1 Viral propagation as a Markov chain

The spread of the virus is governed by a Markov chain with2N states. Each state in the Markov
chain corresponds to one particular system configuration ofN nodes, each of which can be in
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one of two states (Susceptible or Infective), which leads to2N possible configurations. Also, the
configuration at time-stept + 1 depends only on that at time-stept; thus, it is a Markov chain.

This Markov chain also has an “absorbing” state, when all nodes are uninfected (i.e., Suscep-
tible). This absorbing state can be reached from any starting state of the Markov chain, implying
that this state will be reached with probability1 over a long period of time. However, this state
could be reached very quickly, or it could take time equivalent to the age of the universe (in which
case, the viral epidemic practically never dies).

3.2.2 Main Idea

The obvious approach of solving the Markov chain becomes infeasible for largeN , due to the ex-
ponential growth in the size of the chain. To get around this limitation, we use the “independence”
assumption, that is, the states of the neighbors of any given node are independent. Thus, we replace
the problem with Equation3.6(our “non-linear dynamical system” discussed below), with onlyN
variables instead of2N for the full Markov chain. This makes the problem tractable, and we can
find closed-form solutions.

Note that the independence assumption places no constraints on network topology; our method
works with anyarbitrary finite graph. Also, this assumption is far less constraining than the mean-
field assumption. In fact, as we will show experimentally, the number of infected nodes over time
under the “independence assumption” is very close to the that without any assumptions, for a wide
range of datasets.

3.2.3 Mathematical formulation

Let the probability that a nodei is infected at timet by pi(t). Let ζi(t) be the probability that a
nodei will not receive infections from its neighbors in the next time-step. This happens if each
neighbor is either uninfected, or is infected but fails to spread the virus with probability(1− β):

ζi(t) =
∏

j:neighbor of i

(pj(t− 1)(1− β) + (1− pj(t− 1)))

=
∏

j:neighbor of i

(1− β ∗ pj(t− 1)) (3.5)

This is theindependence assumption:we assume that probabilitiespj(t− 1) are independent of
each other.

A nodei is healthy at timet if it did not receive infections from its neighbors att and i was
uninfected at time-stept−1, or was infected but was cured att. Denoting the probability of a node
i being infected at timet by pi(t):

1− pi(t) = (1− pi(t− 1)) · ζi(t) + δ · pi(t− 1) · ζi(t) i = 1 . . . N (3.6)

This equation represents ourNLDS (Non-Linear Dynamical System). Figure3.1shows the tran-
sition diagram.
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Infective
1−ζ i,t

i,tζ

Susceptible

δ

Infected by neighbor

Cured

Resisted infection
Not cured

1−δ

Figure 3.1:The SIS model, as seen from a single node:Each node, in each time stept, is either
Susceptible (S) or Infective (I). A susceptible nodei is currently healthy, but can be infected (with
probability1 − ζi,t) on receiving the virus from a neighbor. An infective node can be cured with
probabilityδ; it then goes back to being susceptible. Note thatζi,t depends on the both the virus
birth rateβ and the network topology around nodei.

Symbol Description
G An undirected connected graph
N Number of nodes inG
E Number of edges inG
A Adjacency matrix ofG
A′ The transpose of matrixA
β Virus birth rate on a link connected to an in-

fected node
δ Virus death rate on an infected node
t Time stamp
pi(t) Probability that nodei is infected att
~p(t) ~p(t) = (p1(t), p2(t), . . . , pN(t))

′

ζi(t) Probability that nodei does not receive infec-
tions from its neighbors att

λi,A Thei-th largest eigenvalue ofA
~ui,A Eigenvector ofA corresponding toλi,A

~ui,A
′ Transpose of~ui,A

S The ‘system’ matrix describing the equations of
infection

λi,S Thei-th largest eigenvalue ofS
ηt Number of infected nodes at timet
〈k〉 Average degree of nodes in a network
〈k2〉 Connectivity divergence (average of squared de-

grees)

Table 3.1: Table of Symbols
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We have thus turned the Markov chain into a non-linear dynamical system (Equation3.6), and
we will focus on its behavior. Specifically, we will find the epidemic threshold for this system. An
informal definition of the epidemic threshold was presented in Equation3.1; we will now present
a formal definition for theNLDS case.

Definition 10 (Epidemic threshold underNLDS). The epidemic thresholdτNLDS for NLDS is
a value such that

β/δ < τNLDS ⇒ infection dies out over time,pi(t) → 0 ast →∞ ∀i
β/δ > τNLDS ⇒ infection survives and becomes an epidemic

3.3 The Epidemic Threshold

In this section, we shall discuss our simple closed-form formula forτNLDS. Surprisingly, it depends
only on one number: the largest eigenvalue of the graph. Then, we will prove that below the
threshold (i.e., when the viral outbreak dies), the decay is exponential. Finally, we will present
some corollaries and special cases, which demonstrate the intuitiveness of the result.

Theorem 1 (Epidemic Threshold). In NLDS, the epidemic thresholdτNLDS for an undirected
graph is

τNLDS = 1
λ1,A

(3.7)

whereλ1,A is the largest eigenvalue of the adjacency matrixA of the network.

Proof. We will prove this in two parts: the necessity of this condition in eliminating an infection,
and the sufficiency of this condition for wiping outany initial infection. The corresponding the-
orem statements are shown below; the proofs are described in Section3.5. Following this, we
will see how quickly an infection dies out if the epidemic threshold condition is satisfied. Recent
follow-up work on this problem by Ganesh et al. [Ganesh et al., 2005] has confirmed our results,
and added more results about system behaviorabovethe epidemic threshold.

Theorem 2 (Part A: Necessity of Epidemic Threshold).In order to ensure that over time, the
infection probability of each node in the graph goes to zero (that is, the epidemic dies out), we
must haveβ

δ
< τNLDS = 1

λ1,A
.

Proof. Proved in Section3.5.

Theorem 3 (Part B: Sufficiency of Epidemic Threshold). If β
δ

< τNLDS = 1

λ1,A
, then the

epidemic will die out over time (the infection probabilities will go to zero), irrespective of the size
of the initial outbreak of infection.

Proof. Proved in Section3.5.

Definition 11 (Score).Scores = β
δ
· λ1,A.
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Theorem1 provides the conditions under which an infection dies out (s < 1) or survives (s ≥ 1)
in our dynamical system. To visualize this, consider the spread of infection as a random walk on
the graph. The virus spreads across one hop according toβA, and thus it spreads acrossh hops
according to(βA)h, which grows as(βλ1,A) every hop. On the other hand, the virus dies off at a
rateδ. Thus, the “effective” rate of spread is approximatelyβλ1,A/δ, which is exactly the “score”
s. Thus, to have any possibility of an epidemic, the scores must be greater than1. This is exactly
the epidemic threshold condition that we find.

We can ask another question: if the system is below the epidemic threshold, howquicklywill an
infection die out?

Theorem 4 (Exponential Decay).When an epidemic is diminishing(thereforeβ/δ < 1

λ1,A
and

s < 1), the probability of infection decays at least exponentially over time.

Proof. Proved in Section3.5.

We can use Theorem1 to compute epidemic thresholds for many special cases, as detailed below.
All of these are proved in Section3.5.

Corollary 1. NLDS subsumes the KW model for homogeneous or random Erdős-Ŕenyi graphs.

Corollary 2. The epidemic thresholdτNLDS for a star topology, is exactly1√
d
, where

√
d is the

square root of the degree of the central node.

Corollary 3. The epidemic threshold for an infinite power-law network is zero.

Corollary 4. Below the epidemic threshold (scores < 1), the expected number of infected nodes
ηt at timet decays exponentially over time.

“Optimistic” versus “Pessimistic” scenarios: The SIS model is a “pessimistic” model of viral
infection: no node is ever immunized, and a cured node is immediately susceptible, making it
very hard for us to stop the viral spread. As against this, we can think of the SIR model as the
“optimistic” model. Thus, if we design a network topology to be resistant to viral epidemics at
some epidemic threshold (given by Theorem1) for the SIS model, it should be resistant even
under the SIR model.

Again, irrespective of the model, we can have different starting conditions for the viral infec-
tion: one node infected at timet = 0, all nodes infected, or somewhere in between. Theorem1
holds even in the pessimistic case where all nodes start off infected: if we are below the threshold
(scores < 1), then the epidemic dies out quickly regardless of the starting state.

Thus, since we work under a pessimistic scenario, our results will hold for many other models
and conditions. The price for this generality is that our results may be too conservative; perhaps
less stringent conditions would suffice to drive the virus extinct in optimistic scenarios. There
may also be other applications where the optimistic scenario makes more sense. These are all
interesting questions, and we intend to study them in the future.
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Dataset Nodes Edges Largest
Eigenvalue

RANDOM 256 982 8.691
POWER-LAW 3, 000 5, 980 11.543
STAR-10K 10, 001 10, 000 100
OREGON 11, 461 32, 730 75.241

Table 3.2: Dataset characteristics.

3.4 Experiments

We want to answer the following questions:

(Q1) How closely does our dynamical system model the spread of a viral infection?

(Q2) How accurate is our epidemic threshold condition?

(Q3) How does our epidemic threshold compare to those suggested in [Pastor-Satorras and Vespig-
nani, 2002a]?

(Q4) Below the threshold, does the epidemic die out exponentially quickly?

The datasets we used were:

• RANDOM: An Erdős-Ŕenyi random graph of256 nodes and982 edges.

• POWER-LAW: A graph of3, 000 nodes and5, 980 edges, generated by the popular Barabási-
Albert process [Barab́asi and Albert, 1999]. This generates a graph with a power-law degree
distribution of exponent3.

• STAR-10K: A “star” graph with one central hub connected to10, 000 “satellites.”

• OREGON: A real-world graph of network connections between Autonomous Systems (AS),
obtained fromhttp://topology.eecs.umich.edu/data.html . It has11, 461
nodes and32, 730 edges.

For each dataset, all nodes were initially infected with the virus, and then its propagation was
studied in a simulator. All simulations were run for10, 000 timesteps, and were repeated100 times
with different seeds. Table3.2provides more details.

3.4.1 (Q1) Accuracy of dynamical system

In figure3.2, we plot the number of infected nodes over time, and compare it against the evolution
of NLDS(Equation3.6). Several values of the scores were used (below, at and above the thresh-
old). In all cases, the simulation results are extremely close to those fromNLDS. Thus,NLDS is
a good approximation of the true system.
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Figure 3.2:Simulation versus dynamical system:The number of infected nodes is plotted versus
time, for both simulations (lines) andNLDS(points). Observe the close fit between the two.

Thus,the dynamical system of equation3.6 is a very good representation of viral propagation
in arbitrary networks.

3.4.2 (Q2) Accuracy of epidemic threshold

Figure3.3shows the number of infected nodes over time for various values of the scores, in log-
log scales. We observe a clear trend: below the threshold (s < 1), the infection dies off, while it
survives above the threshold (s > 1). This is exactly as predicted by Theorem1, and justifies our
formula for the threshold.

Thus,our epidemic threshold condition is accurate: infections become extinct below the thresh-
old, and survive above it.

3.4.3 (Q3) Comparison with previous work

In figure 3.4, we compare the predicted threshold of our model against that of the MFA model.
For several values of the scores, we plot the number of infected nodes left after a “long” time
(specifically500, 1000 and2000 timesteps). Below the threshold, the infection should have died
out, while it could have survived above the threshold. In all cases, we observe that this change in
behavior (extinction to epidemic) occurs at our predicted epidemic threshold.

Note that theNLDS threshold is more accurate than that of the MFA model for theSTAR-
10K and the real-worldOREGONgraphs, while we subsume their predictions forRANDOM and
POWER-LAW, which are the topologies the MFA model was primarily developed for.

Recalling also that our model subsumes the KW model on homogeneous networks (Corol-
lary 1), we arrive at the following conclusion:our epidemic threshold forNLDS subsumes or
performs better than those for other models.

3.4.4 (Q4) Exponential decay of infection under threshold

Figure3.5demonstrates the rate of decay of the infection when the system is below the threshold
(s < 1). The number of infected nodes is plotted against time on a log-linear scale We see that
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Figure 3.3:Accuracy of our epidemic threshold:The number of infected nodes is plotted versus
time for various values of the scores (log-log scales). The case when scores = 1 is shown with
the dotted line. There is a clear distinction between the cases wheres < 1 ands > 1: below1,
the infection dies out quickly, while above1, it survives in the graph. This is exactly our proposed
epidemic threshold condition.

0

50

100

150

200

250

0.1 1 10

N
um

be
r 

of
 in

fe
ct

ed
 n

od
es

Score s

NLDS
and MFA

After 500 timesteps
After 1000 timesteps
After 2000 timesteps

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0.1 1 10

N
um

be
r 

of
 in

fe
ct

ed
 n

od
es

Score s

NLDS and MFA

After 500 timesteps
After 1000 timesteps
After 2000 timesteps

(a)RANDOM (b) POWER-LAW

0
100
200
300
400
500
600
700
800
900

1000

0.01 0.1 1 10

N
um

be
r 

of
 in

fe
ct

ed
 n

od
es

Score s

NLDSMFA

After 500 timesteps
After 1000 timesteps
After 2000 timesteps

0

500

1000

1500

2000

2500

0.1 1 10

N
um

be
r 

of
 in

fe
ct

ed
 n

od
es

Score s

NLDSMFA

After 500 timesteps
After 1000 timesteps
After 2000 timesteps

(c) STAR-10K (d) OREGON

Figure 3.4:Comparison with the MFA model:We plot number of infected nodes after a “long”
time for various values of the scores, versuss. For each dataset, we show results after500, 1000
and2000 timesteps. In each case, we observe a sharp jump in the size of the infected population at
our epidemic threshold ofs = 1. Note that our results are far more accurate than those of the MFA
model.
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Figure 3.5:Exponential decay below the threshold:The number of infected nodes is plotted versus
time for various values of the scores < 1 (log-linear scales). Clearly, the decay is exponentially
quick (because it is linear on a log-linear plot). This matches the predictions of Theorem4.

in all cases, the decay is exponential (because the plot looks linear on a log-linear scale). This is
exactly as predicted by Theorem4.

Thus,the infection dies out exponentially quickly below the threshold (s < 1).

3.5 Details of Proofs

Theorem 1 (Epidemic Threshold). In NLDS, the epidemic thresholdτNLDS for an undirected
graph is

τNLDS = 1
λ1,A

(3.8)

whereλ1,A is the largest eigenvalue of the adjacency matrixA of the network.

Proof. The proof follows from the proofs of Theorems2 and3 below.

Theorem 2 (Part A: Necessity of Epidemic Threshold).In order to ensure that over time, the
infection probability of each node in the graph goes to zero (that is, the epidemic dies out), we
must haveβ

δ
< τNLDS = 1

λ1,A
.

Proof. We have modeled viral propagation as adiscrete dynamical system, with the following
non-linear dynamical equation:

1− pi(t) = (1− pi(t− 1)) · ζi(t) + δ · pi(t− 1) · ζi(t) (from Eq3.6)
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or, ~p(t) = g (~p(t− 1))

where, gi (~p(t− 1)) = 1− (1− pi(t− 1)) · ζi(t)− δ · pi(t− 1) · ζi(t) (3.9)

whereg : [0, 1]N → [0, 1]N is a function on the probability vector, andgi(.) is its i-th element.

The infection dies out whenpi = 0 for all i. We can easily check that the~p = ~0 vector is afixed
point of the system; whenpi(t− 1) = 0 for all i (all nodes healthy), the equation above results in
pi(t) = 0 for all i, and so all nodes remain healthy forever.

The question we need to answer is: If the infection probabilities of all nodes in the graph
come close to zero, will the dynamical system push them even closer to zero? If yes, the infection
probabilities will go to zero and the infection will die out, but if not, the infection could survive and
become an epidemic. This concept is known asasymptotic stability, and conditions for achieving
asymptotic stability are well-known.

Definition 12 (Asymptotic Stability of a Fixed Point). A fixed pointPf is “asymptotically stable”
if, on a slight perturbation fromPf , the system returns toPf (as against moving away, or staying
in the neighborhood ofPf but not approaching it) [Hirsch and Smale, 1974].

Lemma 1 (Condition for Asymptotic stability). The system is asymptotically stable at~p = ~0

if the eigenvalues of∇g(~0) are less than1 in absolute value. Recall that∇g (~x) =
[

∂gi

∂xj

]
for

i, j = 1 . . . N , and thus,
[
∇g(~0)

]
i,j

= ∂gi

∂pj

∣∣∣
~p=~0

. Proved in [Hirsch and Smale, 1974].

From Eq3.9, we can calculate∇g(~0):[
∇g(~0)

]
i,j

=

{
βAj,i for j 6= i
1− δ for j = i

Thus, ∇g(~0) = βA′ + (1− δ)I

= βA + (1− δ)I (3.10)

where the last step follows becauseA = A′ (since the graph is undirected).

This matrix describes the behavior of the virus when it is very close to dying out; we call it the
system matrixS:

S = ∇g(~0) = βA + (1− δ)I (3.11)

As shown in Lemma2 following this proof, the matricesA andS have the same eigenvectors~ui,S,
and their eigenvalues,λi,A andλi,S, are closely related:

λi,S = 1− δ + βλi,A ∀i (3.12)

Hence, using the stability condition above, the system is asymptotically stable when

|λi,S| < 1 ∀i (3.13)

that is, all eigenvalues ofS have absolute value less than one.

Now, sinceA is a real symmetric matrix (because the graph is undirected), its eigenvaluesλi,A

are real. Thus, the eigenvalues ofS are real too. Also, since the graphG is a connected undirected
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graph, the matrixA is a real, nonnegative, irreducible, square matrix. Under these conditions,
the Perron-Frobenius Theorem [MacCluer, 2000] says that the largest eigenvalue is a positive real
number and also has the largest magnitude among all eigenvalues. Thus,

λ1,S = |λ1,S| ≥ |λi,S| ∀i
(3.14)

Using this in Equation3.13:

λ1,S < 1

that is, 1− δ + βλ1,A < 1

which means that an epidemic is prevented ifβ/δ < 1/λ1,A. Also, if β/δ > 1/λ1,A, the probabili-
ties of infection may diverge from zero, and an epidemic could occur. Thus, the epidemic threshold

is τNLDS = 1

λ1,A

Lemma 2 (Eigenvalues of the system matrix).Thei − th eigenvalue ofS is of the formλi,S =
1− δ + βλi,A, and the eigenvectors ofS are the same as those ofA.

Proof. Let ui,A be the eigenvector ofA corresponding to eigenvalueλi,A. Then, by definition,
A~ui,A = λi,A · ~ui,A Now,

S~ui,A = (1− δ)ui,A + βA~ui,A

= (1− δ)~ui,A + βλi,A~ui,A

= (1− δ + βλi,A)~ui,A (3.15)

Thus,~ui,A is also an eigenvector ofS, and the corresponding eigenvalue is(1− δ + βλi,A).

Conversely, supposeλi,S is an eigenvalue ofS andui,S is the corresponding eigenvector. Then,

λi,S~ui,S = S~ui,S

= (1− δ)~ui,S + βA~ui,S

⇒
(

λi,S + δ − 1

β

)
~ui,S = A~ui,S

Thus,~ui,S is also an eigenvector ofA, and the corresponding eigenvalue ofA is λi,A = (λi,S +
δ − 1)/β.

Theorem 3 (Part B: Sufficiency of Epidemic Threshold). If β
δ

< τNLDS = 1

λ1,A
, then the

epidemic will die out over time (the infection probabilities will go to zero), irrespective of the size
of the initial outbreak of infection.

Proof.

ζi(t) =
∏

j:neighbor of i

(1− β · pj(t− 1)) (from Eq.3.5)

≥ 1− β ·
∑

j:neighbor of i

pj(t− 1) (3.16)
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where the last step follows because all terms are positive.

Now, for i = 1 . . . N ,

1− pi(t) = (1− pi(t− 1)) · ζi(t) + δ · pi(t− 1) · ζi(t)

= (1− (1− δ) · pi(t− 1)) · ζi(t)

≥ (1− (1− δ) · pi(t− 1)) ·

(
1− β

∑
j:neighbor of i

pj(t− 1)

)
(using Eq.3.16)

≥ (1− (1− δ) · pi(t− 1)) ·

(
1− β

N∑
j=1

Aj,i · pj(t− 1)

)
(becauseAj,i = 1 for neighbors only)

≥ 1− (1− δ) · pi(t− 1)

−β
∑

j

Aj,i · pj(t− 1) + β · (1− δ) · pi(t− 1)
∑

j

Aj,i · pj(t− 1)

≥ 1− (1− δ) · pi(t− 1)− β
∑

j

Aj,i · pj(t− 1) (3.17)

No assumptions were required in this.

Thus,

pi(t) ≤ (1− δ) · pi(t− 1) + β
∑

j

Aj,i · pj(t− 1) (3.18)

Writing this in vector form, we observe that this uses the same system matrixS from Equation3.11:

~p(t) ≤ S~p(t− 1) (using the definition ofS from Eq.3.11)

≤ S2~p(t− 2) ≤ . . .

≤ St~p(0)

≤
∑

i

λi,S
t ~ui,S ~ui,S

′ ~p(0) (3.19)

where the last step is the spectral decomposition ofSt. Using Eq.3.12,

λi,S = 1− δ + βλi,A

< 1− δ + β
δ

β
(the sufficiency condition)

< 1

and so, λi,S
t ≈ 0 for all i and larget

Thus, the right-hand side of Eq.3.19goes to zero, implying that

~p(t) 0 ast increases

implying that the infection dies out over time.
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Theorem 4 (Exponential Decay).When an epidemic is diminishing(thereforeβ/δ < 1

λ1,A
), the

probability of infection decays at least exponentially over time.

Proof. We have:

~p(t) ≤
∑

i

λi,S
t ~ui,S ~ui,S

′ ~p(0) (from Eq3.19)

≤ λ1,S
t ∗C (3.20)

whereC is a constant vector which depends on the entire spectrum of eigenvalues and eigenvectors.
Since the value ofλ1,S is less than1 (because the epidemic is diminishing), the values ofpi(t) are
decreasing exponentially over time. The exact rate, however, depends on the entire spectrum of
eigenvalues.

Corollary 1. NLDS subsumes the KW model for homogeneous or random Erdős-Ŕenyi graphs.

Proof. According to the KW model3.1, the epidemic threshold in a random Erdős-Ŕenyi graph is
τKW = 1/〈k〉, where〈k〉 is the average degree [Kephart and White, 1991]. It is easily shown that,
in a homogeneous or random network, the largest eigenvalue of the adjacency matrix is〈k〉. There-
fore, our model yields the same threshold condition for random graphs, and thus, ourNLDS model
subsumes the KW model.

Corollary 2. The epidemic thresholdτNLDS for a star topology, is exactly1√
d
, where

√
d is the

square root of the degree of the central node.

Proof. The eigenvalue of the adjacency matrix,λ1, is simply
√

d. Thus, the epidemic threshold is
τNLDS = 1√

d
.

Corollary 3. The epidemic threshold for an infinite power-law network is zero. This matches
results

Proof. In a power-law network, the first eigenvalue of the adjacency matrix isλ1,A =
√

dmax,
wheredmax is the maximum node degree in the graph [Mihail and Papadimitriou, 2002]. Since
dmax ∝ ln(N) andN is infinite, λ1,A is infinite. Our epidemic threshold condition states that
τNLDS = 1/λ1,A. Therefore, the epidemic threshold is effectively zero for infinite power-law
networks. This result concurs with previous work, which found that infinite power-law networks
lack epidemic thresholds [Pastor-Satorras and Vespignani, 2001].

Corollary 4. Below the epidemic threshold (scores < 1), the expected number of infected nodes
ηt at timet decays exponentially over time.

Proof.

ηt =
N∑

i=1

pi(t)

=
∑

i

λ1,S
t ∗ Ci (from Theorem4)

= λ1,S
t ∗
∑

i

Ci
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whereCi are the individual elements of the matrixC in Equation3.20. Since
∑

i Ci is a constant
andλ1,S < 1 (from Theorem1), we see thatnt decays exponentially with time.

3.6 Summary

Our work on viral propagation has two main contributions:

1. Given a graph, we found an epidemic threshold condition below which an infection dies out,
but above which it may survive in the graph for a long time. Surprisingly, this epidemic
threshold is found to depend on onlyoneproperty of the graph: its largest eigenvalueλ1.
Specifically, the infection dies out whenβ/δ < 1/λ1. Thus, higher the value ofλ1, higher the
susceptibility of the graph to viral outbreaks. This result is an important design consideration
not only in the development of virus-resistant computer networks, but also in understanding
the spread of rumors, or fads, or the effectiveness of information dissemination programs.

2. In addition, we proposed a very general dynamical-systems framework, which can now be
used in other similar cases where propagation depends on network topology. In fact, in
Chapter4, we will demonstrate the applicability of this methodology in calculating the “sur-
vivability” of information in sensor networks.

An important avenue of future work is using this threshold condition in developing good im-
munization schemes, to maximally disrupt the spread of a virus.
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Chapter 4

Information survival in sensor and P2P
networks

“Consider a piece of information being spread within a sensor or
P2P network with failing links and nodes. What conditions on net-
work properties determine if the information will survive in the net-
work for long, or die out quickly?

Sensor and Peer-to-peer (P2P) networks have recently been employed in a wide range of applica-
tions:

• Oceanography:Video sensors have been used to generate panoramic views of the near-shore
ocean surface [Holman et al., 2003].

• Infrastructure monitoring:Software sensors have been used to monitor and collect statistics
on various bottleneck points in computers, such as CPU load, network bandwidth, and so on.

• Parking Space tracking:This, and several similar applications, have been developed and
deployed under the IrisNet framework [Gibbons et al., 2003].

A lot of work has also been done recently on collating information from many different sensors and
answering user queries efficiently [Madden et al., 2003, Garofalakis and Kumar, 2004, Considine
et al., 2004, Nath et al., 2004].

We look at the problem of survivability of information in a sensor or P2P network under node
and link failures. For example, consider a sensor network where the communication between
nodes is subject to loss (link failures), and sensors may fail (node failures). In such networks,
we may want to maintain some static piece of information, or “datum”, which, for the sake of
exposition, we refer to as “Smith’s salary”. If only one sensor node keeps Smith’s salary, that node
will probably fail sometime and the information will be lost. To counter this, nodes that have the
datum can broadcast it to other nodes, spreading it through the network and increasing its chances
of survival in the event of node or link failures.

Informally, the problem we solve is:
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PROBLEM : Under what conditions can we expect Smith’s salary to survive in the
sensor network?

This question is similar to the one we asked for viral propagation, and in order to answer it, we
must surmount the same issues. Although the problem definition is deceptively simple, there is no
known practical, exact solution. The obvious one, discussed later in Section4.2, requires Markov
Chains, and is prohibitively expensive: its cost is proportional to3N , whereN is the number of
nodes. For a network ofN ≈ 200 nodes, the effort is comparable to the number of electrons in the
universe.

As in the analysis of viral propagation, we will use the dynamical systems framework to solve
the current problem. We will find a threshold below which the information is expected to die out
quickly, but above which the information may survive. This threshold, once again, depends only
on the largest eigenvalue of a appropriately constructed square matrix.

The layout of this chapter is as follows: Section4.1discusses some background work related to
the problem. In Section4.2gives a precise problem definition, and our results on the information
survival threshold are described in Section4.3. Section4.4details experiments showing the accu-
racy of our predictions. We provide details of the proofs in Section4.5, followed by a summary in
Section4.6.

4.1 Related Work

Much of the applicable related work has already been described in Section3.1. Here, after a brief
recap of those ideas, we will focus on prior work in sensor networking.

4.1.1 Recap: Propagation over a network

The key concepts were:

• The SIS and SIR models:These describe the behavior of a single node during viral prop-
agation. A susceptible (S) node can be attacked and infected by an infected neighbor. An
infected (I) node can be cured locally, in which case it can either become susceptible again
(in the SIS model), or can be removed (R) and achieve immunity (in the SIR model). The
spread of information in a sensor network is similar to the SIS model: a node can get the
information from a neighbor, but it can fail and lose information. When it is replaced, it
becomes “susceptible” again.

• The epidemic threshold:For the SIS model, we found a closed-form formula for the epi-
demic threshold, below which a viral outbreak is expected to die out exponentially quickly,
but above which it may survive for a long time (see Chapter3). This formula is surpris-
ingly simple: it depends only on the “birth” and “death” rates of the virus, and thelargest
eigenvalue of the network topology.
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4.1.2 Sensor Networks and Gossip-based Protocols

Graphs and sensor networks have attracted a lot of interest lately, for quick and efficient aggre-
gation of information [Garofalakis and Kumar, 2004, Considine et al., 2004], for understanding
“trust” and “distrust” in online social networks [Guha et al., 2004], and in several other areas.

Large sensor and P2P networks typically have dynamic node populations with a high rate of
node turnover (called highchurn [Rhea et al., 2004]), and “gossip” protocols have recently been
used to handle such situations. These protocols spread information using a (possibly random) net-
work of connections between nodes, as in our case, and have proved useful in reliable multicast and
broadcast [Levis et al., 2004, Gupta et al., 2002, Luo et al., 2003, Birman et al., 1999], resource lo-
cation [Kempe et al., 2001, Renesse, 2000], failure detection [Wang and Kuo, 2003, Renesse et al.,
1998, Sistla et al., 2001, Burns et al., 1999, Zhuang et al., 2005], database aggregation [Kempe
et al., 2003], database and peer-to-peer replication [Demers et al., 1987], and ensuring the stability
of dynamic hash table-based peer-to-peer systems [Gupta et al., 2003, Rhea et al., 2004]. Several
empirical and theoretical studies of the rates of propagation and convergence of gossip protocols
have also been made [Boyd et al., Ganesan et al., 2002, Levis et al., 2004, Kempe et al., 2001,
Kempe and Kleinberg, 2002].

However, they all assume that the initial infection or rebroadcast rate is high enough that dying
out is not a concern. With the rise of sensor and peer to peer networks characterized by high churn,
theory that describes the survivability of data in such networks is increasingly important, and that
is the central problem we address.

4.2 Model for Information Propagation

As in Chapter3, we have a sensor/P2P/social network ofN nodes (sensors or computers or people)
andE directed links between them. Our analysis assumes very small discrete timesteps of size∆t,
where∆t → 0. Within a∆t time interval, each nodei has a probabilityri of trying to broadcast
its information every timestep, and each linki → j has a probabilityβij of being “up”, and thus
correctly propagating the information to nodej. Each nodei also has a node failure probability
δi > 0 (e.g., due to battery failure in sensors). Every dead nodej has a rateγj of returning to
the “up” state, but without any information in its memory (e.g., due to the periodic replacement of
dead batteries). These and other symbols are listed in Table4.1.

The system is a Markov chain with3N states; each state corresponds to one possible network
configuration, with each of theN nodes being in one of three states: “Has Info,” “No Info,” or
“Dead.” There is a set of “absorbing” states (where no node “Has Info”), which can be reached
from any starting state. Thus, the information will die out with probability1. However, from a
practical point of view, in some parameter combinations this extinction happens quickly, while in
others it is expected to be longer than the age of the universe (for large graphs) - in the latter cases,
the datum practically ‘survives’.

Definition 13 (Fast Extinction). “Fast extinction” is the setting where the numberC̄(t) of “car-
riers” (i.e., nodes in “Has Info” state) decays exponentially over time (C̄(t) ∝ c−t, c > 1).

Now, we formally state our problem:
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Symbol Description
N Number of nodes in the network
βij Link quality: Probability that linki → j is up
δi Death rate:Probability that nodei dies
γi Resurrection rate:Probability that nodei comes back up
ri Retransmission rate:Probability that nodei broadcasts
pi(t) Probability that nodei is alive at timet and has info
qi(t) Probability that nodei is alive at timet but without info
1− pi(t)− qi(t) Probability that nodei is dead
ζi(t) Probability that nodei doesnot receive info fromany

of its neighbors at timet
~p(t), ~q(t) Probability column vectors:

~p(t) = (p1(t), p2(t), . . . , pN(t))
′
,

~q(t) = (q1(t), q2(t), . . . , qN(t))
′

f: R2N → R2N Function representing a dynamical system
∇(f) The Jacobian matrix of f(.)
S TheN ×N “system” matrix
λS An eigenvalue of theS matrix
λ

1,S The largest eigenvalue (in magnitude) ofS

s = |λ
1,S| “Survivability score” = Magnitude ofλ

1,S

Table 4.1:Table of symbols

PROBLEM :

• Given: the network topology (link “up” probabilities)βij, the retransmission
rates ri, the resurrection ratesγi and the death ratesδi (i = 1 . . . N , j =
1 . . . N )

• Find the condition under which a datum will suffer “fast extinction.”

To simplify the problem and to avoid dependencies on starting conditions, we consider the case
where all nodes are initially in the “Has Info” state.

As in analysis of viral propagation (Chapter3), we will convert this into a dynamical system,
and answer questions in that system. Let the probability of nodei being in the “Has Info” and “No
Info” states at time-stept bepi(t) andqi(t) respectively. Thus, the probability of its being dead
is (1 − pi(t) − qi(t)). Starting from state “No Info” at time-stept − 1, nodei can acquire this
information (and move to state “Has Info”) if it receives a communication from some other nodej.
Let ζi(t) be the probability that nodei doesnot receive the information fromanyof its neighbors.
Then, assuming the neighbors’ states are independent:

ζi(t) = ΠN
j=1 (1− rjβjipj(t− 1)) (4.1)

For each nodei, we can use the transition matrix in Figure4.1 to write down the probabilities
of being in each state at timet, giventhe probabilities at timet − 1 (recall that we use very small
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1−ζi (t)
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i

γ i

1 − δ i i i(t)ζ    − δReceives Info

Dies

Dies

Dead
Prob 1 − p (t) − q (t)

ii1 − γ i

Resurrected

Figure 4.1:Transitions for each node:This shows the three states for each node, and the probabil-
ities of transitions between states.

timesteps∆t, and so we can neglect second-order terms). Thus:

pi(t) = pi(t− 1) (1− δi)

+qi(t− 1) (1− ζi(t)) (4.2)

qi(t) = qi(t− 1) (ζi(t)− δi)

+ (1− pi(t− 1)− qi(t− 1)) γi (4.3)

From now on, we will only work on this dynamical system. Specifically, we want to find the
condition for fast extinction under this system.

4.3 Information Survival Threshold

DefineS to be theN ×N system matrix:

Sij =

{
1− δi if i = j

rjβji
γi

γi+δi
otherwise (4.4)

Let |λ
1,S| be the magnitude of the largest eigenvalue (in magnitude). LetĈ(t) to be the expected

number of carriers at timet according to this dynamical system;Ĉ(t) =
∑N

i=1 pi(t).

Theorem 5 (Condition for fast extinction). Defines = |λ
1,S| to be the “survivability score” for

the system. If

s = |λ
1,S| < 1

then we have fast extinction in the dynamical system, that is,Ĉ(t) decays exponentially quickly
over time.

Proof. The theorem is proved later in Section4.5.

Definition 14 (Threshold). We will use the term “below threshold” whens < 1, “above thresh-
old” whens > 1, and “at the threshold” fors = 1.
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Corollary 5 (Homogeneous case).If δi = δ, ri = r, γi = γ for all i, andB = [βij] is a symmetric
binary matrix (links are undirected, and are always up or always down), then the condition for fast
extinction is:

γr
δ(γ+δ)

λ
1,B < 1

One way to visualize this is to think of the spread of information as a random walk on the sensor
network. The information “traverses one hop” according to the probabilities from theB matrix,
and thus “traversesn hops” according toBn. ButBn grows asλn

1,B (indeed, this is the basis of the
“power-method” for finding the largest eigenvalue of a matrix). This growth is increased by higher
retransmission rater, but the information can die out with probabilityδ, which reduces the spread.
Also, a “target” node is not “Dead” onlyγ

γ+δ
fraction of the time, so the information can spread

only so fast. Thus, the survivability scoreγr
δ(γ+δ)

λ
1,B represents the rate of spread, taking all these

effects into account. If this is less than one, the information is not spreading quickly enough, and
becomes extinct quickly.

Theorem5 has several corollaries and special cases, which are of considerable interest. For
clarity, we only consider homogeneous undirected graphs here (as in Corollary5), and proofs can
be obtained by application of the Theorem.

Corollary 6. Consider two scenarios on the same network with all parameters the same except
for varying ratesγ1 andγ2 for dead nodes coming “up” again. Supposeγ1 > γ2. Then, the first
system has higher survivability score.

Proof. s1 =
γ1r

δ(γ1+δ)
λ

1,B = r
δ

(
1+ δ

γ1

)λ
1,B > r

δ
(

1+ δ
γ2

)λ
1,B =

γ2r
δ(γ2+δ)

λ
1,B = s2.

Corollary 7. Our model subsumes the SIS model of viral infection as a special case.

Proof. The SIS model consists has only two states per node: “Has Infection” and “No Infection.”
In our model, we can increaseγ so that a “dead” node comes back “up” very quickly, giving the
appearance of onlytwo states: “Has Info” and “No Info”. In this situation,γ is large (γ ≈ 1)
but δi is small (due to small timesteps). From Corollary5, the fast-extinction condition becomes
δλ

1,B < 1 (recall that the matrixB = [βij]). This is exactly the epidemic threshold condition for
the SIS model [Wang et al., 2003, Ganesh et al., 2005].

Corollary 8. If the “dead” nodes are never replaced (γ = 0), or if the nodes do not transmit at all
(r = 0), wealwayshave fast extinction.

Proof. s = |λ
1,S| =

γr
δ(γ+δ)

λ
1,B = 0 for γ = 0 or r = 0. Hence, we always have fast extinction.

Corollary 9. Consider two networks with link “up” probabilities given by matricesB1 andB2. If
|λ

1,B1
| > |λ

1,B2
|, then the first network has higher survivability score.

Proof. s1 =
γr

δ(γ+δ)
λ

1,B1
>

γr
δ(γ+δ)

λ
1,B2

= s2.
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Corollary 10 (P2P resilience).A “star” network has higher survivability score than a “ring”
network with the same number of nodes.

Proof. |λ
1,B|star =

√
N − 1 > 2 = |λ

1,B|ring. From Corollary9, the “star” network has higher
survivability score.

4.4 Experiments

We want to answer the following questions:

(Q1) How close is our approximation technique to the “truth”, for both real and synthetic graphs?

(Q2) How accurate is our threshold condition (Theorem5)?

The datasets used were:

• GRID: This is a large synthetic 2D grid. Link “up” probabilities (βij) are fixed at0.1 between
all neighbors on the grid.

• GNUTELLA: This is a snapshot of the Gnutella peer-to-peer file sharing network, collected
in March2001 [Ripeanu et al., 2002]. Link “up” probabilitiesβij are set to0.1 for existing
edges.

• INTEL: This is a54-node sensor network observed over a period of33 days [Intel]. Link
probabilities were derived from the collected data. The nodes were deployed in a lab with
a rectangular shape and “soft” walls which can be penetrated by radio signals (see Fig-
ure4.3(a)), leading to high average node degree (≈ 46) in the network. The link qualities
βij are smeared-out over the entire range, as shown in Figure4.2(a). The average link quality
(considering only the links with non-zero link quality) is very low (0.14).

• MIT: This is a40-node sensor network at MIT (see [Hull et al., 2004] for an earlier version of
the network). Figure4.3(b) shows the placement of sensors. The central region blocks radio
signals, creating an elongated “corridor” of sensor communications around it. This implies
low average node degree (≈ 18); however, the link quality distribution is very peaked, as
shown in Figure4.2(b). This leads to a high value of0.92 for the average link quality
(again only considering the non-zero quality links). Note that these conditions are the exact
opposite of what we see for theINTEL dataset.

4.4.1 (Q1) Accuracy of the dynamical system

For each of the datasets, the parameters were set so that the system was below, above and at the
threshold (that is, the survivability scores was less then, equal to or greater than1) according to
Theorem5. Table4.2shows these parameter values. All nodes initially carry the information. The
simulation is then run according to the state diagram shown in Figure4.1 for 10, 000 steps, and
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(a) INTEL link qualities (a)MIT link qualities

Figure 4.2: Link quality distributions: Plots (a) and (b) plots the number of links versus link
quality. Pairs of sensors which cannot communicate with each other have a link quality of0.
While the INTEL distribution shows a broad range of link qualities, theMIT distribution is very
highly peaked.

(a) INTEL sensor map (b)MIT sensor map

Figure 4.3:Sensor placement maps:Black numbered dots forINTEL, and black dots forMIT.

the number of carriers (nodes with information) over the epochs of simulation was recorded. Each
simulation was repeated100 times.

Figure4.4shows the number of carriers over time (only200 simulation epochs are shown for
ease of visualization; the results are similar over10, 000 timesteps). Each dataset is investigated
under three scenarios: above, at and below our threshold condition. For each scenario, we show the
simulation result in solid lines, along with its confidence interval (one standard deviation). While
the confidence intervals are very small forGRID andGNUTELLA, theINTEL andMIT datasets
show wider confidence intervals: this is due to their small sizes. In addition to the simulations, we
ran our dynamical system (Equations4.2-4.3) using exactly the same parameters; the number of
carriers in this case is shown in dotted lines. We make the following observations:

• The dynamical system is very accurate:The dotted lines of our dynamical system are almost
indistinguishable from the solid lines of the simulation (relative error is just around1%).
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Figure 4.4:Number of carriers versus time (simulation epochs):Each plot shows the evolution
of the dynamical system (dotted lines) and the simulation (solid lines). Confidence intervals are
shown for the simulation results. Three cases are shown for each dataset: below threshold, at the
threshold, and above the threshold, with parameter settings as shown in Table4.2. There are two
observations: (1) The dynamical system (dotted lines) is very close to the simulations (solid lines),
demonstrating the accuracy of Equations4.2-4.3. (2) Also, the number of carriers dies out very
quickly below the threshold, while the information “survives” above the threshold.
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w.r.t. Survivability
Dataset threshold δ γ r s

below 0.1 0.01 0.1 0.90
GRID at 0.01 0.004 0.1 1.001

above 0.01 0.1 0.1 1.02
below 0.1 0.01 0.1 0.91

GNUTELLA at 0.07 0.004 0.1 1.003
above 0.01 0.01 0.1 1.05
below 0.1 0.01 0.1 0.96

INTEL at 0.02 0.0006 0.1 1.0003
above 0.01 0.01 0.1 1.33
below 0.15 0.01 0.1 0.96

MIT at 0.05 0.0006 0.1 1.01
above 0.01 0.01 0.1 1.88

Table 4.2:Parameter settings for the datasets.
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Figure 4.5:Number of carriers after a “long” time, versus the retransmission probability:The
dashed vertical line shows our threshold (s = 1). The information dies out below our threshold,
but survives above it.

Thus, equations4.2-4.3are highly accurate for a wide variety of real-world scenarios.

• The information dies out below our threshold:For all the datasets, the number of carriers
goes to zero very quickly below the threshold. Thus, the information does not survive.

• Above our threshold, the number of carriers practically stabilizes:In other words, the infor-
mation survives for a “long” time.

4.4.2 (Q2) Accuracy of the threshold condition

In this set of experiments, we modify one parameter while keeping all the others fixed. The link
qualitiesβij depend on the environment, while the death rateδ is intrinsic to the sensor and
its battery; thus, we only perform experiments that modify the retransmission rater and the
resurrection rateγ. For each dataset, we run simulations for many values ofr andγ, and count
the number of carriers left after a “long” time (1, 000 simulation epochs). For each setting,100
simulation runs are performed to provide confidence intervals.
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Figure 4.6: Number of carriers after a “long” time, versus the resurrection probability:The
dashed vertical line shows our threshold. Again, our threshold is very accurate.

Varying retransmission rate r

For the purpose of this experiment, the death rateδ and the resurrection rateγ were set to0.01.
Figure 4.5 shows the number of carriers left after a “long” time, versus different values of the
retransmission rater, on all four datasets. The dashed vertical line marks the value ofr which
leads to a survivability score ofs = 1 according to Theorem5, that is, the “at-the-threshold”
scenario.INTEL andMIT have higher variance (and hence wider confidence intervals) due to
their small sizes. We observe the following:

• Below our threshold, the information has died out:The number of carriers is either zero or
very close to zero for all the datasets. This is exactly in accordance with Theorem5.

• Above the threshold, the information survives:Even after a “long” time, there is a significant
population of carriers in the network.

• Thus, the threshold condition is very accurate.

Varying resurrection rate γ

Now, the resurrection rateγ is varied, while keeping the retransmission rater fixed at0.1 and the
death rateδ at 0.01. Figure4.6 shows the results. The dashed vertical line shows our threshold
value. Once again, we can see that for all the datasets, the information dies out below the threshold,
but survives above the threshold. Thus, our threshold is accurate.

4.5 Details of proofs

Theorem 2 (Condition for fast extinction). Define
s = |λ

1,S| to be the “survivability score” for the system. If

s = |λ
1,S| < 1

then we have fast extinction in the dynamical system, that is,Ĉ(t) decays exponentially quickly
over time.
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Proof. The theorem follows from Lemma3 and Theorems3 and4 below. We will first show that
the scenario with no information survival (pi(t) = 0) forms a fixed point of the dynamical system.
Then, we show that whens < 1, this fixed point isasymptotically stableunder small perturbations
(this is how we derived the condition in this theorem). Finally, we show that our threshold is
insensitive to the starting state: whens < 1, pi(t) → 0 and thusĈ(t) → 0 exponentially quickly.

Definition 15 (Asymptotic Stability of a Fixed Point). A fixed pointPf is “asymptotically stable”
if, on a slight perturbation fromPf , the system returns toPf (as against moving away, or staying
in the neighborhood ofPf but not approaching it) [Hirsch and Smale, 1974].

Lemma 3 (Fixed Point). The values
(
pi(t) = 0, qi(t) =

γi

γi+δi

)
for all nodesi, are a fixed point

of Equations4.2-4.3. Proved by a simple application of the Equations.

Theorem 3 (Stability of the fixed point). The fixed point of Lemma3 is asymptotically stableif
the system is below the threshold, that is,s = |λ

1,S| < 1.

Proof. First, we define the column vector~p(t) =
(p1(t), p2(t), . . . , pN(t))

′
. Define~q(t) similarly. Let ~v(t) = (~p(t), ~q(t)) be the concatenation of

these two vectors, and~vf be the vector~v(t) at the fixed point defined in Lemma3. Then, the
entire system can be described as:

~v(t) = f (~v(t− 1)) where

fi (~v(t− 1)) =


pi(t− 1) (1− δi)
+qi(t− 1) (1− ζi(t))

if i ≤ N

qi(t− 1) (ζi(t)− δi)
+ (1− pi(t− 1)− qi(t− 1)) γi

if i > N

(4.5)

wherepi(t− 1) andqi(t− 1) are the corresponding entries in~v(t− 1).

To check for the asymptotic stability of a fixed point, we can use the following condition.

Lemma 4. (From [Hirsch and Smale, 1974]) Define∇(f) (also called the Jacobian matrix) to be
a 2N × 2N matrix such that

[∇(f)]ij =
∂fi (~v(t− 1))

∂~vj(t− 1)
(4.6)

Then, if the largest eigenvalue (in magnitude) of∇(f) at ~vf (written∇(f)|~vf
) is less than1 in

magnitude, the system is asymptotically stable at~vf . Also, iff is linear and the condition holds,
then the dynamical system will exponentially tend to the fixed point irrespective of initial state.

Applying this to our dynamical system (Equation4.5), we get a block-matrix form for∇(f)|~vf
:

∇(f)|~vf
=

[
S 0
S1 S2

]
(4.7)
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Here, all ofS, S1 andS2 areN ×N matrices, defined as:

Sij =

{
1− δi if i = j

rjβji
γi

γi+δi
otherwise as in Eqn.4.4

S1ij =

{
−γi if i = j

−rjβji
γi

γi+δi
otherwise (4.8)

S2ij =

{
1− γi − δi if i = j
0 otherwise

(4.9)

In order to check for asymptotic stability (Lemma4), we must find the largest eigenvalues (in
magnitude) of∇(f)|~vf

. Let ~x be an eigenvector (of2N elements) of∇(f)|~vf
, with the form

~x =

[
~x1

~x2

]
where both~x1 and~x2 are vectors of lengthN . Thus,

∇(f)|~vf
~x =

[
S 0
S1 S2

] [
~x1

~x2

]
= λ∇(f)|~vf

[
~x1

~x2

]
which implies,S~x1 = λ∇(f)|~vf

~x1 (4.10)

and,S1~x1 + S2~x2 = λ∇(f)|~vf

~x2 (4.11)

The only possible solutions are:

• Case1: λ∇(f)|~vf

is an eigenvalue ofS: This is implied by Equation4.10.

• Case2: (1 − γi − δi) is an eigenvalue ofS, for all i: This happens if~x1 = ~0, and follows
from Equation4.11.

The largest eigenvalue from Case2 is always less than1 in magnitude (sinceδi > 0). The largest
eigenvalue (in magnitude) from Case1 is exactlyλ

1,S. Thus, if |λ
1,S| < 1, then from Lemma4,

the system is asymptotically stable.

Theorem 4 (Insensitivity to the starting state). If |λ
1,S| < 1, then pi(t) → 0 exponentially

quickly for all nodesi, irrespective of the starting state.

Proof. We will prove this in three parts:

1. pi(t) + qi(t) → γi

γi+δi
exponentially quickly for alli. Since bothpi(t) andqi(t) are non-

negative (they are probabilities), this implies that either (1)qi(t) → γi

γi+δi
and thuspi(t) →

0, OR (2)qi(t) <
γi

γi+δi
. One of these two situations occurs exponentially quickly.
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2. If qi(T ) <
γi

γi+δi
at any timet = T , thenqi(t) <

γi

γi+δi
for all t > T .

3. Under the condition thatqi(t) <
γi

γi+δi
and |λ

1,S| < 1, the dynamical system of Equa-

tions4.2-4.3tends to the fixed point
(
pi(t) = 0, qi(t) =

γi

γi+δi

)
exponentially quickly.

Thus, when|λ
1,S| < 1, we always end up withpi(t) → 0 for all i, and this happens exponentially

quickly. So, the expected number of nodes with informationĈ(t) =
∑N

i=1 pi(t) → 0 exponentially
quickly. All these three parts are proven below.

Lemma 5. pi(t) + qi(t) → γi

γi+δi
exponentially quickly for alli.

Proof. From Equations4.2and4.3, we can get:

1− pi(t)− qi(t) = pi(t− 1)δi + qi(t− 1)δi

+ (1− pi(t− 1)− qi(t− 1)) (1− γi) (4.12)

Let xi(t) = pi(t) + qi(t). Then, from Equation4.12,

1− xi(t) = xi(t− 1)δi

+(1− xi(t− 1))(1− γi)

and so,xi(t) = γi + xi(t− 1)(1− γi − δi) (4.13)

Equation4.13is a linear dynamical system. A simple application of Lemma4 shows that the
system converges to the only fixed point of

xi(t) =
γi

γi + δi

that is,pi(t) + qi(t) =
γi

γi + δi

(4.14)

Again, by Lemma4, this convergence is exponentially quick.

Lemma 6. If qi(T ) <
γi

γi+δi
at any timet = T , thenqi(t) <

γi

γi+δi
for all t > T .

Proof. We prove this by induction.
Base Case:qi(T ) <

γi

γi+δi

Assumption:Supposeqi(t− 1) <
γi

γi+δi
at some time instantt− 1.
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Induction:Applying Equation4.3,

qi(t) = qi(t− 1) (ζi(t)− δi)

+ (1− pi(t− 1)− qi(t− 1)) γi

≤ qi(t− 1)(1− δi) + (1− qi(t− 1)) γi

(sinceζi(t) ≤ 1 andpi(t− 1) ≥ 0)

≤ γi + qi(t− 1) (1− γi − δi)

< γi +
γi

γi + δi

(1− γi − δi)

(from the Assumption)

<
γi

γi + δi

Thus,qi(t) <
γi

γi+δi
for all time t > T .

Lemma 7. Under the condition thatqi(t) <
γi

γi+δi
and|λ

1,S| < 1, the dynamical system of Equa-

tions4.2-4.3tends to the fixed point
(
pi(t) = 0, qi(t) =

γi

γi+δi

)
exponentially quickly.

Proof. We can useqi(t) <
γi

γi+δi
in Equation4.2to get:

pi(t) < pi(t− 1) (1− δi) +
γi

γi + δi

(1− ζi(t)) (4.15)

Now, we have the following inequality regardingζi(t):

ζi(t) = ΠN
j=1 (1− rjβjipj(t− 1))

≥ 1− ΣN
j=1rjβjipj(t− 1)

and thus,(1− ζi(t)) ≤ ΣN
j=1rjβjipj(t− 1) (4.16)

Using Equation4.16in 4.15:

0 ≤ pi(t) < pi(t− 1) (1− δi) +
γi

γi + δi

ΣN
j=1rjβjipj(t− 1)

Converting to the matrix form, we see

~0 ≤ ~p(t) < S~p(t− 1) (from Equation4.4)

< S2~p(t− 2) < . . .

< St~p0 (4.17)

What isSt~p0? Suppose we had equalities instead of “less than” signs in the previous equations.
Then, we would have alinear dynamical system:~p(t) = S~p(t− 1) = S2~p(t− 2) = . . . = St~p0.
We could apply Lemma4 to this system:|λ

1,S| < 1 (from the statement of this Lemma) so the

system would be stable and would converge to the fixed point~p(t) = ~0 exponentially quickly.
Thus,St~p0 → ~0 exponentially quickly.
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Combining this with Equation4.17, ~0 ≤ ~p(t) < St~p0 → ~0, and thus,~p(t) → 0. So,pi(t) → 0
exponentially quickly, and from Lemma5, this implies thatqi(t) → γi

γi+δi
. Thus, we reach the

fixed point
(
pi(t) = 0, qi(t) =

γi

γi+δi

)
exponentially quickly, irrespective of the starting state.

4.6 Summary

Under what conditions does information survive in a sensor or P2P network with node and link
failures? As with the study of viral propagation, we could formulate the problem as a dynami-
cal system, showing the generality of this framework. The dynamical system equations lead to a
threshold condition below which a “datum” is expected to disappear from the network exponen-
tially quickly, but above which it may survive for a long time. Several corollaries and special cases
were used to demonstrate the intuitiveness of this result; in particular, we showed that the epidemic
threshold for the SIS model of viral propagation is a special case of our information threshold re-
sult. Experiments on a variety of synthetic and real-world datasets, both sensor and P2P networks,
show the accuracy of our results.
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Chapter 5

Automatically grouping correlated nodes
using Cross-Associations

“How can we automatically find natural node groups in a large
graph?”

Clustering is one of the most common methods of data analysis, and it has many applications in
graph mining. For example, given a list of customers and the products they buy, we might want to
find customer “groups,” and the product “groups” they are most interested in. This “segmenting”
of the customer base can bring out the major customer “behaviors,” and is useful in visualizing the
data at a glance.

Clustering has applicability in a wide range of datasets. Apart from the customer-product
example above, we can clusters data on:

• Users versus their preferences:With the growing importance of user-personalization on the
Web, finding user groups and preference groups can be very useful.

• Bank accounts versus transactions:Individual bank accounts can be tagged according to the
“transaction types” that they engage in. Deviation from this behavior can be used to trigger
fraud detection systems.

• Documents versus the words in them:Here, we could find clusters of document groups (say,
science fiction novels and thrillers), based on the word groups that occur most frequently in
them. A user who prefers one document can then be recommended another document in that
group.

• Social networks:A social network can describe relationships between individuals: who
trusts whom, who meets whom, who has financial transactions with whom, and so on.
Grouping people based on such information could be useful in, say, detection of money
laundering rings in financial transaction networks.

Apart from the examples above, we can imagine many other instances where graph clustering
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would be useful: in graph partitioning and community detection on the Web, in collaborative
filtering applications, in microarray data analysis and so on.

Note that these examples include both bipartite graphs (such as users-vs-preferences) and self-
graphs (such as social networks). In fact, any setting that has amany-to-manyrelationship in
database terminology can be represented as a graph, so a graph clustering algorithm would be
applicable on a wide variety of datasets. We focus only onunweightedgraphs, which can be
represented as adjacency matrices with 0/1 entries (see Chapter2). Hence, from now on, we use
the terms “graph” (with nodes) and “matrix” (with rows and columns) interchangeably.

A good graph clustering algorithm should have the following properties:

• (P1) It should automatically figure out the number of clusters.

• (P2) It should cluster the rows and columns simultaneously.

• (P3) It should be scalable.

• (P4) It should allow incremental updates.

• (P5) It should apply to both self-graphs and bipartite graphs. For bipartite graphs, we have
row and column clusters, representing node groups in the “from” and “to” parts of the bipar-
tite graph. For self-graphs, we might have an additional condition that the row and column
clusters be identical (i.e., only “node” groups, instead of “from” and “to” groups).

In this Chapter, we will describe an algorithm which has all of these properties. In addition,
the same clustering algorithm can be easily extended to mine the data even further. Specifically,
the goals of our algorithm are:

• (G1) Find clusters.

• (G2) Find outliers.

• (G3) Compute inter-cluster distances.

Intuitively, we seek to group rows and edges (i.e., nodes) so that the adjacency matrix is divided
into rectangular/square regions as “similar” or “homogeneous” as possible. The homogeneity
would imply that the graph nodes in that (row or column) group are all “close” to each other, and the
density of each region would represent the strength of connections between groups. These regions
of varying density, which we callcross-associations, would succinctly summarize the underlying
structure of associations between nodes.

In short, our method will take as input a matrix like in Figure5.1(a), and it will quickly and
automatically (i) determine a good number of row groupsk and column groups̀ and (ii) re-order
the rows and columns, to reveal the hidden structure of the matrix, like in Figure5.1(e). Then, it
will use the structure found in the previous step to automatically find abnormal (“outlier”) edges,
and also to compute the “distances” between pairs of groups.

We will first discuss related work in Section5.1. Then, in Section5.2, we formulate our data
description model, and a correspondingcost functionfor each possible clustering. Based on this,
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(a) Original matrix (b) Iteration 1 (c) Iteration 2 (d) Iteration 3 (e) Iteration 4

Figure 5.1:Snapshots of algorithm execution:Starting with the matrix in plot (a), the clustering
is successively refined and the number of clusters increased till we reach the correct clustering in
plot (e).

we describe ourautomatic, parameter-freealgorithm for finding good clusters in Section5.3. We
then use these clusters to find outliers and compute inter-cluster distances in Section5.4. Ex-
perimental results are provided in Section5.5. Section5.6 gives detailed proofs, followed by a
summary in Section5.7.

5.1 Related Work

There are numerous settings where we want to find patterns, correlations and rules, and time-tested
tools exist for most of these tasks. However, with a few exceptions, all require tuning and human
intervention, thus failing on property(P1). We will discuss several of these approaches below.

Clustering:Traditional clustering approaches group along one dimension only: given a collection
of n points inm dimensions, they find “groupings” of then points. This setting makes sense in
several domains (for example, if them dimensions have an inherent ordering), but it is different
from our problem setting.

Also, most of the algorithms require a user-given parameter, such as the number of clustersk in
the populark-means approach. The problem of findingk is a difficult one and has attracted atten-
tion recently; examples include X-means [Pelleg and Moore, 2000], which uses the BIC heuristic,
and G-means [Hamerly and Elkan, 2003], which assumes a mixture of Gaussians (an often reason-
able assumption, but which may not hold for binary matrices).

There are many other recent clustering algorithms too, including CURE [Guha et al., 1998],
BIRCH [Zhang et al., 1996], Chameleon [Karypis et al., 1999], [Hinneburg and Keim, 1998],
and somek-means variants such ask-harmonic means [Zhang et al., 2000] and sphericalk-
means [Dhillon and Modha, 2001]; see also [Han and Kamber, 2000].

However, they often needk as user input, or focus on clustering along one dimension only,
or suffer from the dimensionality curse (like the ones that require a co-variance matrix); others
may not scale up for large datasets. Also, in our case, the points and their corresponding vectors
are semantically related (each node occurs as a pointand as a component of each vector); most
clustering methods do not consider this.
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Thus, while these methods are applicable in many settings, they do not match our required
properties.

Co-clustering:Recent work on Information-theoretic Co-clustering [Dhillon et al., 2003] (called
ITCC from now on) is more closely related to ours; however, the differences are significant.

• ITCC focuses on contingency tables, not binary matrices.

• The main idea is based on lossy compression, whereas we employ a lossless compression
scheme.

• ITCC seeks matrix approximations that minimize the KL-divergence to the original matrix,
while we employ an MDL-based approach and a model that describes the data exactly.

• Finally, ITCC assumes knowledge of the number of clusters.

As of this writing, it is not clear how to apply MDL philosophy to the frameworks in [Dhillon
et al., 2003, Friedman et al., 2001, Hofmann, 1999]; in contrast, our formulation is designed from
grounds-up to be amenable to a parameter-free formulation.

More remotely related are matrix decompositions based on aspect models (one of the most
prominent being PLSA [Hofmann, 1999], which again minimizes KL-divergence). These also
assume that the number of “aspects” is given.

Graph partitioning:The prevailing methods are METIS [Karypis and Kumar, 1998b], and spectral
partitioning [Andrew Y.Ñg, 2001]. Both approaches have attracted a lot of interest and attention;
however, both need the user to specifyk, that is, how many pieces should the graph be broken into.
Some methods have recently been suggested to findk [Ben-Hur and Guyon, 2003, Tibshirani et al.,
2001], but they need to sample from the data many times and then process/cluster those samples,
which can become very slow and infeasible for large datasets. In addition, these graph partitioning
techniques typically require a measure of imbalance between the two pieces of each split.

Several other partitioning techniques have also been suggested. TheMarkov Clustering[van
Dongen, 2000] method uses random walks, but is slow. Girvan and Newman [Girvan and Newman,
2002] iteratively remove edges with the highest “stress” to eventually find disjoint communities,
but the algorithm is again slow; Clauset et al. [Clauset et al., 2004] suggest a faster algorithm but
the number of clusters must still be specified by the user. Flake et al. [Flake et al., 2000] use the
max-flow min-cut formulation to find communities around a seed node; however, the selection of
seed nodes is not fully automatic.

Market-basket analysis / frequent itemsets:These have been very important data mining areas, and
have attracted a lot of research [Agrawal and Srikant, 1994, Han et al., 2004, Han and Kamber,
2000]. However, the user needs to specify the “support” parameter. The related work on “interest-
ingness” [Tuzhilin and Adomavicius, 2002] still does not answer the question of “support.”

Information retrieval and LSI:The pioneering method of LSI [Deerwester et al., 1990] used SVD
on the term-document matrix. Again, the numberk of eigenvectors/concepts to keep is up to
the user ([Deerwester et al., 1990] empirically suggest about 200 concepts). Additional matrix
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decompositions include the Semi-Discrete Decomposition, (SDD) [Kolda and O’Leary, 1998],
PLSA [Hofmann, 1999], the clever use of random projections to accelerate SVD [Papadimitriou
et al., 1998], and many more. However, they all fail on property(P1).

Other domains:Also related to graphs in several settings is the work on conjunctive cluster-
ing [Mishra et al., 2003] requires density (i.e., “homogeneity”) and overlap parameters, as well
as community detection [Reddy and Kitsuregawa, 2001], among many others. Finally, there are
several approaches to cluster micro-array data (e.g., [Tang and Zhang, 2003]).

In conclusion, the above methods miss one or more of our prerequisites, typically(P1). Next,
we present our solution.

5.2 Data Description Model

First, we will define some terminology (see Table5.1). Let the graph to be clustered be G, with
A being its adjacency matrix of sizeM ×N (M = N if G is a self-graph). Let us index the rows
as1, 2, . . . ,M and columns as1, 2, . . . , N .

A cross-association(Φ, Ψ) of k row clusters and̀ column clusters is defined by:

Φ : {1, 2, . . . ,M} → {1, 2, . . . , k} (5.1)

Ψ : {1, 2, . . . , N} → {1, 2, . . . , `}

whereΦ andΨ are the mappings of rows to row clusters and columns to column clusters. For a
self-graph, where rows and columns represent identical nodes, we might want a single set of node
clusters instead of separate row and column clusters (we will call this the IDENTICAL case); then,
Φ = Ψ andk = `.

Given (Φ, Ψ), we can re-orderA so that rows/columns from the same cluster are grouped
together, creatingk · ` rectangular/square blocks (called cross-associates), which we denote by
Ai,j, with i = 1 . . . M andj = 1 . . . N . Each blockAi,j has sizen(Ai,j) = ai · bj, and contains
n0(Ai,j) “zeros” andn1(Ai,j) “ones.” From this, we can calculate the densityP1(Ai,j) of “ones”
in the block. High(low) densities imply that certain groups have stronger(weaker) connections
with other groups.

Given an initial matrixA (as in Figure5.1(a)), we want to automatically find clusters (as in
Figure5.1(e)). How can we estimate the “correct” number of row and column clusters, and the
memberships of these clusters?

5.2.1 Main Idea

To compress the matrix, we would prefer to have only a few blocks, each of them being very
homogeneous. However, having more clusters lets us create more homogeneous blocks (at the
extreme, having1 cluster per node givesM ·N perfectly homogeneous blocks of size1×1). Thus,
the best compression scheme must achieve a tradeoff between these two factors, and this tradeoff
point indicates the best values fork and`.
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Symbol Description
G Unweighted graph
A Binary adjacency matrix corresponding to G

(square for self-graphs, possibly rectangular for
bipartite graphs)

M, N Number of rows and columns inA
(M = N for a self-graph)

k, ` Number of row and column groups
E Number of edges in G
k∗, `∗ Optimal number of groups
(Φ, Ψ) Cross-association
Ai,j Cross-associate (submatrix)
ai, bj Dimensions ofAi,j

n(Ai,j) Number of elementsn(Ai,j) := aibj

n0(Ai,j), n1(Ai,j) Number of 0, 1 elements inAi,j

n1(A) Number of 1 elements inA; n1(A) = E
P0(Ai,j), P1(Ai,j) Densities of 0, 1 inAi,j

Pi,j(t) Pi,j(t) = P1(Ai,j, t) is the density at time t
H(p) Binary Shannon entropy function
C(Ai,j) Code cost forAi,j

T (A; k, `, Φ, Ψ) Total cost forA

Table 5.1: Table of symbols

We accomplish this by a novel application of the overall MDL philosophy, where the com-
pression costs are based on the number of bits required to transmit both the “summary” of the
row/column groups, as well as each block given the groups. Thus,the user does not need to set
any parameters; our algorithm chooses them so as to minimize these costs. We discuss the exact
cost function below.

5.2.2 The Cost Function

In conformance with the MDL philosophy, we design a lossless code for the data, and use the
number of encoding bits as the cost function. This cost has two parts: (1) thedescription cost
of describing the cross-association(Φ, Ψ) and the blocks formed by it, and (2) thecode costof
describing the entire matrixgiventhe cross-association.

Description cost:When we have separate row and column clusters, the description of the cross-
association consists of the following parts:

1. Send the matrix dimensionsm andn usinglog?(m) + log?(n), wherelog? is the universal
code for integers [Rissanen, 1983] defined by

log?(x) = log2(x) + log2 log2(x) + . . . (5.2)
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where only the positive terms are retained. This term is independent of the cross-association,
and, hence, while useful for actual transmission of the data, will not figure in our cost func-
tion.

2. Send the row and column permutations usingMdlog Me andNdlog Ne bits, respectively.
Again, this term is also independent of cross-association.

3. Send the number of groups:(k, `) in log? k + log? ` bits.

4. Send the number of rows in each row group and also number of columns in each column
group. Let us suppose thata1 ≥ a2 ≥ . . . ≥ ak ≥ 1 andb1 ≥ b2 ≥ . . . ≥ b` ≥ 1. Compute

āi :=

(
k∑

t=i

at

)
− k + i, i = 1, . . . , k − 1

b̄j :=

(∑̀
t=j

bt

)
− ` + j, j = 1, . . . , `− 1

Now, the desired quantities can be sent using the following number of bits:

k−1∑
i=1

dlog āie+
`−1∑
j=1

dlog b̄je

5. For each cross-associateAi,j, i = 1, . . . , k andj = 1, . . . , `, send the number of “ones”
n1(Ai,j) in it usingdlog(aibj + 1)e bits.

Summing all of these:

Description Cost = log? k + log? `

+
k−1∑
i=1

dlog āie+
`−1∑
j=1

dlog b̄je

+
k∑

i=1

∑̀
j=1

dlog(aibj + 1)e

In the IDENTICAL case, we must transmit only node clusters instead of row and column clus-
ters, and the equation is modified to reflect this:

Description Cost when(Φ = Ψ) = log? k

+
k−1∑
i=1

dlog āie

+
k∑

i=1

k∑
j=1

dlog(aiaj + 1)e

49



Code cost:Suppose that the entire preamble specified above (containing information about the
square and rectangular blocks) has been sent. We now transmit the actual matrix given this infor-
mation. The number of bitsC(Ai,j) to encode each block depends only on its densityP1(Ai,j):

C(Ai,j) = n(Ai,j) ·H (P1 (Ai,j))

= n1 (Ai,j) · log
1

P1 (Ai,j)
+ n0 (Ai,j) · log

(
1− 1

P1 (Ai,j)

)
(5.3)

Summing over all blocks,

Code cost =
k∑

i=1

∑̀
j=1

C(Ai,j) (5.4)

For the IDENTICAL case, the equation is modified slightly:

Code cost when(Φ = Ψ) =
k∑

i=1

k∑
j=1

C(Ai,j) (5.5)

Final cost function:Summing the description cost and the code cost gives us the total cost of
encoding the matrixA using the cross-association(Φ, Ψ):

Total costT (A; k, `, Φ, Ψ) = log? k + log? `

+
k−1∑
i=1

dlog āie+
`−1∑
j=1

dlog b̄je

+
k∑

i=1

∑̀
j=1

dlog(aibj + 1)e

+
k∑

i=1

∑̀
j=1

C(Ai,j) (5.6)

For the IDENTICAL case:

Total cost when(Φ = Ψ) T (A; k, Φ) = log? k

+
k−1∑
i=1

dlog āie

+
k∑

i=1

k∑
j=1

dlog(aiaj + 1)e

+
k∑

i=1

k∑
j=1

C(Ai,j) (5.7)
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Figure 5.2: Iterations of theSHUFFLE algorithm: Holding k and` fixed (k = ` = 3), we re-
peatedly apply Steps 2 and 4 of the SHUFFLE algorithm until no improvements are possible (Step
6). Iteration 3 (Step 2) is omitted, since it performs no swapping. To potentially decrease the cost
further, we must increasek or ` or both, which is what the SPLIT algorithm does.

5.3 (G1) Graph Clustering Algorithm

The equations mentioned above assign a cost to each possible clustering; given two distinct clus-
terings, we can use the cost function to choose between the two. How can we use this tofind a
good clustering? In other words, how do we pick the best numbers of clustersk∗ and`∗, and the
memberships of these clusters?

We propose an iterative two-step scheme to answer this question:

1. SHUFFLE (inner loop): For a givenk and`, find a good arrangement (i.e., cross-association).

2. SPLIT (outer loop): Efficiently search for the bestk and` (k, ` = 1, 2, . . .).

We present each in the following sections.

5.3.1 SHUFFLE (Inner Loop)

SHUFFLE (Figure5.3) is a simple and efficient alternating minimization algorithm that yields a
local minimum for the code cost (Equation5.4, or 5.5 for the IDENTICAL case). In the regions
where SHUFFLE is performed, the code cost typically dominates the description cost; thus, lower-
ing the code cost also lowers the total cost. Figure5.2shows snapshots of SHUFFLE iterations on
an example dataset.

Theorem 5. After each iteration ofSHUFFLE, the code cost either decreases or remains the same:∑k
i=1

∑`
j=1 C(Ai,j(t)) ≥

∑k
i=1

∑`
j=1 C(Ai,j(t + 1)) ≥

∑k
i=1

∑`
j=1 C(Ai,j(t + 2)).

Proof. The proof is provided in Section5.6.

The algorithm is analogous for the IDENTICAL case: instead of considering row splicesxj and
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column splicesyi separately, we must consider them together:

Φt+1(x) = arg min
1≤i≤k

k∑
j=1

[
n1(x

j) log
1

Pi,j(t)
+ n0(x

j) log

(
1− 1

Pi,j(t)

)
+ n1(y

j) log
1

Pj,i(t + 1)
+ n0(y

j) log

(
1− 1

Pj,i(t + 1)

)]
+Ax,x

[
log P

i,Φt(x)(t) + log PΦt(x),i
(t)− log Pi,i(t)

]
+(1−Ax,x)

[
log
(
1− P

i,Φt(x)(t)
)

+ log
(
1− PΦt(x),i

(t)
)
− log (1− Pi,i(t))

]
whereAx,x is one if the node has a link to itself (aself-loop), and zero otherwise. Thus, the first
two terms are the same as in Figure5.3, and the last two terms take care of “double-counting” of
the self-loop.

5.3.2 SPLIT (Outer Loop)

Every time SHUFFLE converges to a local minimum of the code cost, we can search for better
values ofk and`. This search should attempt to lower the total cost (Equation5.6or 5.7), and we
can employ any integer or even continuous optimization algorithm (gradient descent, Nelder-Mead,
simulated annealing). We experimented with several alternatives, and obtained the best results with
the SPLIT algorithm, shown in Figure5.4. The IDENTICAL case is analogous. Figure5.1 gives
example snapshots from the execution of the full algorithm, with each plot showing the results
after one iteration of SPLIT, followed by SHUFFLE iterations.

Theorem 6. On each iteration ofSPLIT, the code cost either decreases or remains the same: If
A = [A1A2], thenC(A1) + C(A2) ≤ C(A).

Proof. The proof is provided in Section5.6.

5.3.3 Matching the desired properties

To summarize, our algorithm finds clusters in a graph by repeatedly searching for better values for
k and` (the numbers of groups), and then rearranging the adjacency matrix to decrease the cost,
while keeping the numbers of groups fixed. We have thus matched goal(G1), while matching all
of our desired properties:

• (P1) By Theorems5 and6, each of these steps maintains or decreases the code cost. How-
ever, the description complexity evidently increases withk and `. The total cost metric
(Equation5.6 or 5.7 depending on the problem setting) biases the algorithm towards fewer
clusters, and provides an automatic stopping criterion. Thus, the algorithm requires no hu-
man intervention, and iscompletely automatic.

• (P2)By construction, the algorithmtreats rows and columns equally and simultaneously.
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Algorithm SHUFFLE (Finding better(Φ, Ψ) givenk, `):

1. Let t denote the iteration index. Initially, sett = 0. If no (Φ0, Ψ0) is provided, start with an
arbitrary(Φ0, Ψ0) mapping nodes intok node groups. For this initial partition, compute the
submatricesAi,j(t), and the corresponding distributionsP1(Ai,j, t) ≡ Pi,j(t).

2. We will now hold column assignments, namely,Ψt, fixed. For every rowx, splice it into`
parts each corresponding to one of the column groups. Denote them asx1, . . . , x`. For each
of these parts, computen0(x

j) andn1(x
j), wherej = 1, . . . , `. Now, shuffle rowx to row

groupΦt+1(x) such that:

Φt+1(x) = arg min
1≤i≤k

∑̀
j=1

[
n1(x

j) log
1

Pi,j(t)
+ n0(x

j) log

(
1− 1

Pi,j(t)

)]
(5.8)

3. With respect to cross-association(Φt+1, Ψt), recompute the matricesAi,j(t + 1), and corre-
sponding distributionsP1(Ai,j, t + 1)) ≡ Pi,j(t + 1).

4. For this step, we will hold row assignments, namely,Φt+1, fixed. For every columny, splice
it into k parts each corresponding to one of the column groups. Denote them asy1, . . . , yk.
For each of these parts, computen0(y

i) andn1(y
i), wherei = 1, . . . , k. Now, assigny to

column groupΨt+2(y) such that:

Ψt+2(y) = arg min
1≤j≤`

k∑
i=1

[
n1(y

i) log
1

Pi,j(t + 1)
+ n0(y

i) log

(
1− 1

Pi,j(t + 1)

)]
(5.9)

5. For the new cross-association(Φt+1, Ψt+2), recompute the matricesAi,j(t + 2), and corre-
sponding distributionsP1(Ai,j, t + 2)) ≡ Pi,j(t + 2).

6. If there is no decrease in total cost, stop; otherwise, sett = t + 2, go to step 2, and iterate.

Figure 5.3: Algorithm SHUFFLE (inner loop)

• (P3) The overall complexity isO (E · (k∗ + `∗)2), if we ignore the number of SHUFFLE

iterationsI (in practice,I ≤ 20 is always sufficient). Thus, it is linear in the number of
edges, and hencescalable.

• (P4) When new nodes are obtained (such as from new crawls for a Web graph), we can put
them into the clusters which minimize the increase in total encoding cost. Similarly, when
new edges are found, the corresponding nodes can be reassigned to new clusters. The algo-
rithm can then be run again with this initialization till it converges. Similar methods apply
for node/edge deletions. Thus,new additions or deletions can be handled incrementally.

• (P5)The algorithm is applicable to both self-graphs and bipartite graphs. When we require
a single set of node clusters instead of separate row and column clusters, the extra constraint
can be handled easily, as we demonstrated for the IDENTICAL case.
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Algorithm SPLIT (Choosing betterk and`):

1. Let T denote the search iteration index. Start withT = 0 andk0 = `0 = 1.

2. At iterationT , increase the number of row groups:k(T +1) = k(T )+1. Split the row group
r with maximum entropy, i.e.,

r := arg max
1≤i≤k

∑
1≤j≤`

n1 (Ai,j) ·H (Pi,j)

Construct an initial label mapΦT+1 as follows: For every rowx that belongs to row groupr
(i.e.,ΦT (x) = r), place it into the new groupk(T + 1) (i.e., setΦT+1(x) = k(T + 1)) if and
only if it decreases the per-row entropy of the groupr, i.e., if and only if

∑
1≤j≤`

n1

(
A′

i,j

)
·H
(
P ′

r,j

)
ar − 1

<
∑

1≤j≤`

n1 (Ai,j) ·H (Pr,j)

ar

whereA′
r,j is Ar,j without rowx. Otherwise letΦT+1(x) = r = ΦT (x). If we move the row

to the new group, we also updateDr,j (for all 1 ≤ j ≤ `).

3. Run SHUFFLE (the inner loop) with initial configuration(ΦT+1, ΨT ) to find a new cross-
association and the corresponding total cost.

4. If there is no decrease in total cost, stop and return(k∗, `∗) = (kT , `T )—with corresponding
cross-associations(ΦT , ΨT ). Otherwise, setT = T + 1 and continue.

5–7. Similar to steps 2–4, but with columns instead.

Figure 5.4: Algorithm SPLIT (outer loop)

5.3.4 Relationship with hierarchical clustering

Our algorithm finds one flat set of node groups. Even though each new group is formed by a split
of a pre-existing group, the SHUFFLE iterations mix up the group memberships, and any hierarchy
is destroyed. However, we could obtain a hierarchical clustering by (1) running the full algorithm
to obtain a flat clustering, (2) separately applying the entire algorithm on each of these clusters,
and (3) repeating. This is an avenue for future work.

5.4 Finding outlier edges and inter-cluster distances

Having found the underlying structure of a graph in the form of node groups (goal(G1)), we
can utilize this information to further mine the data. Specifically, we want to detect outlier edges
(goal (G2)) and compute inter-group “distances” (goal(G3)). Again, we use our information-
theoretic approach to solve all these problems efficiently.
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5.4.1 (G2) Outlier edges

Which edges between nodes are abnormal/suspicious? Intuitively, an outlier shows some deviation
from normality, and so it should hurt attempts to compress data. Thus, an edge whose removal
significantly reduces the total encoding cost is an outlier. Our algorithm is: find the block where
removal of an edge leads to the maximum immediate reduction in cost (that is, no iterations of
SHUFFLE and SPLIT are performed). All edges within that block contribute equally to the cost,
and so all of them are considered outliers.

“Outlierness” of edge(u, v) := T (A′; k, `, Φ, Ψ)− T (A; k, `, Φ, Ψ) (5.10)

whereA′ is A without the edge(u, v). This can be used torank the edges in terms of their
“outlierness”.

5.4.2 (G3) Computing inter-group “distances”

How “close” are two node groups to each other? Following our information theory footing, we
propose the following criterion: If two groups are “close”, then combining the two into one group
should not lead to a big increase in encoding cost. Based on this, we define “distance” between
two groups as the relative increase in encoding cost if the two were merged into one:

Dist(i, j) :=
Cost(merged)− Cost(i)− Cost(j)

Cost(i) + Cost(j)
(5.11)

where only the nodes in groupsi andj are used in computing costs. We experimented with other
measures (such as the absolute increase in cost) but Equation5.11gave the best results.

To computing outliers and distances between groups, only the statistics of the final clustering
need to be used (i.e., the block sizesni,j and their densitiesPi,j). Thus, both can be performed
efficiently for large graphs.

5.5 Experiments

We did experiments to answer two key questions:

(Q1) How good is the quality of the clusters?

(Q2) How well do our algorithms find outlier edges?

(Q3) How well do our measures of inter-cluster “distances” work?

(Q4) Is our method scalable?
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We carried out experiments on a variety of datasets, both synthetic and real-world (Table5.2). The
synthetic datasets were:

• CAVE: This represents a social network of “cavemen” [Watts, 1999], that is, a block-diagonal
matrix of variable-size blocks (or “caves”).

• CUSTPROD: This represents groups of customers and their buying preferences1

• CAVE-NOISY: A CAVE dataset with “salt-and-pepper” noise (10% of the number of edges).

• NOISE: This contains pure white noise.

All of these datasets were scrambled before being fed into the cross-associations program as input.

The real-world datasets were:

• CLASSIC: A bipartite graph of Usenet documents from Cornell’s SMART collection, and the
words present in them (see [Dhillon et al., 2003]). The documents belong to three distinct
groups: MEDLINE (medicine), CISI (information retrieval), and CRANFIELD (aerody-
namics).

• GRANTS: A set of NSF proposal documents from several disciplines (physics, bio-informatics,
etc.), versus the words in their abstracts.

• EPINIONS: A “who-trusts-whom” social graph ofwww.epinions.com users [Domingos
and Richardson, 2001].

• CLICKSTREAM: A graph of users and the URLs they clicked on [Montgomery and Falout-
sos, 2001].

• OREGON: A graph of network connections between Autonomous Systems (AS), obtained
from
http://topology.eecs.umich.edu/data.html .

• DBLP: A co-citation and co-authorship graph extracted from
www.informatik.uni-trier.de/ ∼ley/db . The nodes are authors in theSIG-
MOD, ICDE, VLDB, PODSor ICDT (database conferences); two nodes are linked by an
edge if the two authors have co-authored a paper or one has cited a paper by the other (thus,
this graph is undirected).

Our implementation was done in MATLAB (version 6.5 on Linux) using sparse matrices. The
experiments were performed on an Intel Xeon 2.8GHz machine with 1GB RAM.

5.5.1 (Q1) Quality of clustering

Synthetic Datasets:Figure5.5 shows the resulting cross-associations on the synthetic datasets.
We can make the following observations:

1We try to capture market segments with heavily overlapping product preferences, like, say, “single persons,”
buying beer and chips, “couples,” buying the above, plus frozen dinners, “families,” buying all the above plus milk,
and so on.

56



Dataset Dimensions Edges Graph type
(directed)

CAVE 810×900 162, 000 Bipartite
CAVE-NOISY 810×900 171, 741 Bipartite
CUSTPROD 295×30 5, 820 Bipartite
NOISE 100×100 952 Self
CLASSIC 3,893×4,303 176, 347 Bipartite
GRANTS 13,297×5,298 805, 063 Bipartite
EPINIONS 75,888×75,888 508, 960 Self
CLICKSTREAM 23,396×199,308 952, 580 Bipartite
OREGON 11,461×11,461 65, 460 Self
DBLP 6,090×6,090 175, 494 Self

Table 5.2: Dataset characteristics.
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Figure 5.5: Cross-associations on synthetic datasets: Our method gives the intuitively correct
cross-associations for (a)CAVE and (b)CUSTPROD. Some extra groups are found for (c)CAVE-
NOISY, which are explained by the patterns emerging due to randomness, such as the “almost-
empty” and “more-dense” cross-associations forNOISE(d).

• Exact results on noise-free datasets:For CAVE andCUSTPROD, we get exactly the intu-
itively correct groups. This serves as a sanity check.

• Robust performance on noisy datasets:ForCAVE-NOISY, we find some extra groups which,
on closer examination, are picking up patterns in the noise. This is expected: it is well
known that spurious patterns emerge, even when we have pure noise. Figure5.5(d) confirms
it: even in theNOISE matrix, our algorithm finds blocks of clearly lower or higher density.
However, even with such significant noise, very few “spurious” groups are found.

CLASSIC: Figure5.6(a) shows the clusters found in theCLASSICdataset.

• The results match the known groupings:We see that the cross-associates are in agreement
with the known document classes (left axis annotations). We also annotated some of the
column groups with their most frequent words. Cross-associates belonging to the same doc-
ument (row) group clearly follow similar patterns with respect to the word (column) groups.

57



500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

3000

3500

R
ow

 C
lu

st
er

s

Column Clusters

death, prognosis, intravenous
insipidus, alveolar, aortic,

cell, tissue, patient
blood, disease, clinical,

CRANFIELD

MEDLINE

CISI

shape, nasa, leading,
assumed, thin

paint, examination, fall,
raise, leave, basedabstract, notation, works

construct, bibliographies

providing, studying, records,
developments, students,
rules, community

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2000

4000

6000

8000

10000

12000

R
ow

 C
lu

st
er

s

Column Clusters

encoding, characters,
bind, nucleus,
recombination plasma, separation, beam

coupling, deposition,

manifolds, operators,
harmonic, operator, topological

meetings, organizations,
session, participating

undergraduate, education,
national, projects

(a)CLASSIC(k∗ = 15, `∗ = 19) (b) GRANTS(k∗ = 41, `∗ = 28)

Figure 5.6:Cross-associations for CLASSIC and GRANTS: Due to the dataset sizes, we show the
Cross-associations via shading; darker shades correspond denser blocks (more ones). We also
show the most frequently occurring words for several of the word (column) groups; these clearly
belong to different categories of words.

For example, the MEDLINE row groups are most strongly related to the first and second
column groups, both of which are related to medicine. (“insipidus,” “alveolar,” “prognosis”
in the first column group; “blood,” “disease,” “cell,” etc, in the second).

• Previously unknown structure is revealed:Besides being in agreement with the known doc-
ument classes, the cross-associatesreveal further structure. For example, the first word
group consists of more “technical” medical terms, while second group consists of “every-
day” terms, or terms that are used in medicine often, but not exclusively2. Thus, the second
word group is more likely to show up in other document groups (and indeed it does, although
not immediately apparent in the figure), which is why our algorithm separates the two.

GRANTS: Again, the results mirror those for theCLASSICdataset:

• Meaningful clusters are extracted:Figure5.6(b) shows the most common terms in several
of the column clusters. They show that the groups found make intuitive sense: we detect
clusters related to biology (“encoding,” “recombination,” etc), to physics (“coupling,” “de-
position”, “plasma,” etc), to material sciences, and to several other well-known topics.

EPINIONS, CLICKSTREAM, OREGON andDBLP: Figure5.7shows our results on all the other
datasets.EPINIONS andDBLP are clustered under the IDENTICAL setting, so that the row and
column clusters are the same. The results make intuitive sense:

2This observation is also true for nearly all of the (approximately) 600 and 100 words belonging to each group, not
only the most frequent ones shown here.
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Figure 5.7:Cross-associations for other real-world datasets: CLICKSTREAMandOREGONare
clustered normally, whileEPINIONSandDBLPwere clustered under the IDENTICAL setting (i.e.,
identical row and column clusters). All the graphs get separated into two kinds of groups: large
but very sparse, and small but very dense. The small dense clusters are often worthy of further
analysis; for example, most well-known database researchers show up in the dense regions of plot
(d).

• For example, for theDBLPdataset, the smallest group consists only of Michael Stonebraker,
David DeWitt and Michael Carey; these are well-known people who have a lot of papers and
citations. The other groups show decreasing number of connections but increasing sizes.

• Similarly, for theEPINIONS graph, we find a small dense “core” group which has very high
connectivity, and then larger and less heavily-connected groupings.

5.5.2 (Q2) Outlier edges

To test our algorithm for picking outliers, we use a synthetic dataset as in Figure5.8(a). The
node groups found are shown in5.8(b). Our algorithm tags all edges whose removal would best
compress the graph as outliers. Thus, all edges “across” the two groups are chosen as outliers
under this principle (since all edges in a block contribute equally to the encoding cost), as shown
in Figure5.8(b). Thus, the intuitively correct outliers are found.

5.5.3 (Q3) Inter-cluster “distances”

To test for node-group distances, we use the graph in5.8(c) with 5.8(d) showing the structure
found. The three caves have equal sizes but the number of “bridge” edges between groups varies.
This is correctly picked up by our algorithm, which ranks groups with more “bridges” as being
closer to each other. Thus, groups2 and3 are tagged as the “closest” groups, while groups1 and2
are “farthest”.

Figure5.8(e) shows the inter-group distances between the clusters found forDBLP. The dis-
tances were computed using our algorithm and plotted usingGraphviz3: longer lines imply larger

3http://www.research.att.com/sw/tools/graphviz/
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Figure 5.8: Outliers and group distances:Plot (b) shows the node groups found for graph (a).
Edges in the top-right block are correctly tagged as outliers. Plot (d) shows the node groups and
group distances for graph (c). Groups2 and3 (having the most “bridges”) are tagged as the closest
groups. Similarly, groups1 and2 are the farthest, because they have no “bridges”. Plot (e) is a
visualization of the distances between groups for theDBLPdataset.

distances. The smallest group (Stonebraker, DeWitt and Carey) is “Grp8,” and we that it occupies
a central position exactly because it has many “bridges” with people from other groups. Similarly,
“Grp1” is seen to be far from all other groups: this is because authors in “Grp1” have very few
papers in the conferences included in this dataset, and thus their connections to the rest of the graph
are very sparse.

5.5.4 (Q4) Scalability

We have seen that our algorithms give accurate and intuitive results on a variety of synthetic and
real-world datasets. Here, we will verify their scalability.

Figure5.9 shows results on a “caveman” graph with three caves. We see that the wall-clock
time scales linearly with the number of edgesE. Thus, our algorithms are scalable to large graph
datasets.
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Figure 5.9: Scalability: We show timing results on a “caveman” graph with 3 caves. The plot
shows wall-clock time vs. the number of edgesE in the graph, for both SPLIT (dashed), as well as
SHUFFLE for a particular(k, `) (solid). We see that both are linear inE.

5.6 Details of Proofs

Theorem 2. After each iteration ofSHUFFLE, the code cost either decreases or remains the same:∑k
i=1

∑`
j=1 C(Ai,j(t)) ≥

∑k
i=1

∑`
j=1 C(Ai,j(t + 1)) ≥

∑k
i=1

∑`
j=1 C(Ai,j(t + 2)).

Proof. We shall only prove the first inequality, the second inequality will follow by symmetry
between rows and columns. We will need some notation:

Pi,j(u, t) =

{
Pi,j(t) if u = 1
1− Pi,j(t) if u = 0

nu(.) =

{
n1(.) if u = 1
n0(.) if u = 0

Now, we have:

k∑
i=1

∑̀
j=1

C(Ai,j(t)) =
k∑

i=1

∑̀
j=1

[
n1 (Ai,j(t)) · log

1

P1 (Ai,j(t))

+n0 (Ai,j(t)) · log

(
1− 1

P1 (Ai,j(t))

)]
(using Eq5.3)

=
k∑

i=1

∑̀
j=1

1∑
u=0

nu(Ai,j(t)) log
1

Pi,j(u, t)

=
k∑

i=1

∑̀
j=1

1∑
u=0

 ∑
x:Φt(x)=i

nu(x
j)

 log
1

Pi,j(u, t)

=
k∑

i=1

∑
x:Φt(x)=i

[∑̀
j=1

1∑
u=0

nu(x
j) log

1

Pi,j(u, t)

]
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(a)

≥
k∑

i=1

∑
x:Φt(x)=i

[∑̀
j=1

1∑
u=0

nu(x
j) log

1

PΦt+1(x),j
(u, t)

]

(b)
=

k∑
i=1

∑
x:Φt+1(x)=i

[∑̀
j=1

1∑
u=0

nu(x
j) log

1

PΦt+1(x),j
(u, t)

]

=
k∑

i=1

∑̀
j=1

1∑
u=0

 ∑
x:Φt+1(x)=i

nu(x
j)

 log
1

Pi,j(u, t)

=
k∑

i=1

∑̀
j=1

1∑
u=0

nu(Ai,j(t + 1)) log
1

Pi,j(u, t)

(c)

≥
k∑

i=1

∑̀
j=1

1∑
u=0

nu(Ai,j(t + 1)) log
1

Pi,j(u, t + 1)

=
k∑

i=1

∑̀
j=1

C(Ai,j(t + 1))

where (a) follows from Step 2 of the Cross-association Algorithm; (b) follows by re-writing the
outer two sums–sincei is not used anywhere inside the[· · ·] terms; and (c) follows from the non-
negativity of the Kullback-Leibler distance.

Theorem 3. On each iteration ofSPLIT, the code cost either decreases or remains the same: If
A = [A1A2], thenC(A1) + C(A2) ≤ C(A).

Proof. We have

C(A) = n(A)H
(
PA
)

= n(A)H

(
n1(A)

n(A)

)
= H

(
PA1

n(A1) + PA2
n(A2)

n(A)

)
≥ n(A)

(
n(A1)

n(A)
H
(
PA1

)
+

n(A2)

n(A)
H
(
PA2

))
= n(A1)H

(
PA1

)
+ n(A2)H

(
PA1

)
= C(A1) + C(A2)

where the inequality follows from the concavity ofH(·) and the fact thatn(A1) + n(A2) = n(A)
or n(A1)/n(A) + n(A2)/n(A) = 1.

5.7 Summary

Our aims were very broad: we wanted to find underlying structure in a graph. To this end, we
introduced a novel approach and proposed a general, intuitive model founded on lossless compres-
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sion and information-theoretic principles. Based on this model, we provided algorithms for mining
large graph datasets in a variety of ways. Specifically:

• We proposed one of the few methods for clustering nodes in a graph, that needsno “magic”
numbers. Our algorithms figure out both thenumberof clusters in the data, and theirmem-
berships.

• Besides being fully automatic, our approach satisfies all of the desired properties(P1)-(P5).
This includesscalability to large datasets, ability to functiononline (with incremental data
input), and applicability toboth self-graphs and bipartite graphs.

• In addition to clustering, we also proposed efficient methods todetect outlier edgesand
to compute inter-cluster “distances.”Both of these are important standalone data-mining
problems in their own right.

Thus, we were able to achieve all our goals(G1)-(G3). Experiments on a large set of synthetic and
real-world datasets show the accuracy and efficiency of our methods; not only were we able to find
known patterns in the data, but we could also detectunknownstructure, as in theCLASSICdataset.
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Chapter 6

The R-MAT graph generator

“How can we quickly generate a synthetic yet realistic graph? How
can we spot fake graphs and outliers?”

While we answered application-specific questions in the previous chapters, the focus of this
chapter is on real-world graphs in general. What do real graphs look like? What patterns or “laws”
do they obey? This is intimately linked to the problem of designing a good graph generator: a
realistic generator is one which matches exactly these graph “laws.” These patterns and generators
are important for many applications:

• Detection of abnormal subgraphs/edges/nodes:Abnormalities should deviate from the “nor-
mal” patterns, so understanding the patterns of naturally occurring graphs is a prerequisite
for detection of such outliers.

• Simulation studies:Algorithms meant for large real-world graphs can be tested on synthetic
graphs which “look like” the original graphs. This is particularly useful if collecting the real
data is hard or costly.

• Realism of samples:Most graph algorithms are super-linear on the node count, and thus
prohibitive for large graphs. We might want to build a small sample graph that is “similar”
to a given large graph. In other words, this smaller graph needs to match the “patterns” of
the large graph to be realistic.

• Extrapolation of data:Given a real, evolving graph, we expect it to havex% more nodes
next year; how will it then look like, assuming that our “laws” are still obeyed? For example,
in order to test the next-generation Internet protocol, we would like to simulate it on a graph
that is “similar” to what the Internet will look like a few years into the future.

• Graph compression:Graph patterns represent regularities in the data. Such regularities can
be used to better compress the data.

Thus, we need to detect patterns in graphs, and then generate synthetic graphs matching such
patterns automatically.

There are several desiderata from a graph generator:
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(P1) Realism: It should only generate graphs that obey all (or at least several) of the above “laws”,
and it would match the properties of real graphs (degree exponents, diameters etc., that we
shall discuss later) with the appropriate values of its parameters.

(P2) Procedural generation: Instead of creating graphs to specifically match some patterns, the
generator should offer someprocessof graph generation, which automatically leads to the
said patterns. This is necessary to gain insight into the process of graph generation in the
real world: if a process cannot not generate synthetic graphs with the required patterns, it is
probably not the underlying process (or at least the sole process) for graph creation in the
real world.

(P3) Parsimony: It should have a few only parameters.

(P4) Fast parameter-fitting: Given any real-world graph, the model parameters should easily tun-
able by some published algorithms to generate graph similar to the input graph.

(P5) Generation speed: It should generate the graphs quickly, ideally, linearly on the number of
nodes and edges.

(P6) Extensibility: The same method should be able to generate directed, undirected, and bipartite
graphs, both weighted or unweighted.

This is exactly the main part of this work. We propose theRecursive Matrix(R-MAT) model,
which naturally generates power-law (or “DGX” [Bi et al., 2001] ) degree distributions. We show
that it naturally leads to small-world graphs and also matches several other common graph patterns;
it is recursive (=self-similar), and it has only a small number of parameters.

The rest of this chapter is organized as follows: Section6.1surveys the existing graph laws and
generators. Section6.2 presents the idea behind our R-MAT method. We discuss the properties
of R-MAT graphs, and algorithms for graph generation and parameter-fitting under R-MAT. Sec-
tion 6.3gives the experimental results, where we show that R-MAT successfully mimics large real
graphs. Section6.4provides details of proofs. A summary is provided in Section6.5.

6.1 Related Work

The twin problems of finding graph patterns and building graph generators have attracted a lot of
recent interest, and a large body of work has been done on both, not only by computer scientists,
but also physicists, mathematicians, sociologists, and others. However, there is little interaction
among these fields, with the result that they often use different terminology and do not benefit from
each other’s advances. In this section, we attempt to give a brief overview of the main ideas, with
a focus on combining sources from all the different fields, to gain a coherent picture of the current
state-of-the-art. The interested reader is also referred to some excellent and entertaining books on
the topic [Barab́asi, 2002, Watts, 2003].
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6.1.1 Graph Patterns and “Laws”

While there are many differences between graphs, some patterns show up regularly. Work has
focused on finding several such patterns, whichtogethercharacterize naturally occurring graphs.
The main ones appear to be:

• Power laws (already seen in Chapter2),

• Small diameters, and

• Community effects.

Power laws:

While the Gaussian distribution is common in nature, there are many cases where the probability
of events far to the right of the mean is significantly higher than in Gaussians. In the Internet,
for example, most routers have a very low degree (perhaps “home” routers), while a few routers
have extremely high degree (perhaps the “core” routers of the Internet backbone) [Faloutsos et al.,
1999]. Power-law distributions attempt to model this. Some of the following were defined in
Chapter2; we repeat the definitions here for completeness.

Definition 16 (Power Law). Two variablesx andy are related by a power law when their scatter
plot is linear on a log-log scale:

y(x) = c · x−γ (6.1)

wherec andγ are positive constants. The constantγ is often called the power law exponent.

Definition 17 (Degree Distribution). The degree distribution of an undirected graph is a plot of
the countck of nodes with degreek, versus the degreek, typically on a log-log scale. Occasionally,
the fraction ck

N
is used instead ofck; however, this merely translates the log-log plot downwards.

For directed graphs, outdegree and indegree distributions are defined similarly.

Definition 18 (Scree Plot).This is a plot of the eigenvalues (or singular values) of the adjacency
matrix of the graph, versus their rank, using a log-log scale.

Both degree distributions and scree plots of many real-world graphs have been found to obey
power laws. Examples include the Internet AS and router graphs [Faloutsos et al., 1999, Govin-
dan and Tangmunarunkit, 2000], the World-wide Web [Barab́asi and Albert, 1999, Kumar et al.,
1999, Broder et al., 2000, Kleinberg et al., 1999], citation graphs [Redner, 1998], online social net-
works [Chakrabarti et al., 2004], and many others. Power laws also show up in the distribution of
“bipartite cores” (≈ communities) and the distribution of PageRank values [Brin and Page, 1998,
Pandurangan et al., 2002]. Indeed, power laws appear to be a defining characteristic of almost all
large real-world graphs.

Significance of power laws:The significance of power law distributions lies in the fact that they
areheavy-tailed, meaning that they decay more slowly than exponential or Gaussian distributions.
Thus, a power law degree distribution would be much more likely to have nodes with a very high
degree (much larger than the mean) than the other two distributions.

67



Deviations from power laws:Pennock et al. [Pennock et al., 2002] and others have observed devi-
ations from a pure power law distribution in several datasets. Two of the more common deviations
are exponential cutoffs and lognormals. The exponential cutoff models distributions which look
like power laws over the lower range of values on thex-axis, but decay exponentially quickly for
higher values; examples include the network of airports [Amaral et al., 2000]. Lognormal distri-
butions look like truncated parabolas on log-log scales, and model situations where the plot “dips”
downwards in the lower range of values on thex-axis; examples include degree distributions of
subsets of the WWW, and many others [Pennock et al., 2002, Bi et al., 2001].

Small diameters:

Several definitions of the term “graph diameter” exist: the definition we use is called the “effective
diameter” or “eccentricity,” and is closely related to the “hop-plot” of a graph; both of these are
defined below. The advantages are twofold: (a) the “hop-plot” and “effective diameter” can be
computed in linear time and space using a randomized algorithm [Palmer et al., 2002], and (b) this
particular definition is robust in the presence of outliers.

Definition 19 (Hop-plot). Starting from a nodeu in the graph, we find the number of nodesNh(u)
in a neighborhood ofh hops. We repeat this starting from each node in the graph, and sum the
results to find the total neighborhood sizeNh for h hops (Nh =

∑
u Nh(u)). The hop-plot is just

the plot ofNh versush.

Definition 20 (Effective diameter). This is the minimum number of hops in which some fraction
(say,90%) of all connected pairs of nodes can reach each other [Tauro et al., 2001].

Significance of graph diameter:The diameters of many real-world graphs are very small compared
to the graph size [Albert and Barab́asi, 2002]: only around4 for the Internet AS-level graph,12
for the Internet Router-level graph,16 for the WWW, and the famous “six degrees of separation”
in the social network. Any realistic graph generator needs to match this criterion.

Community Effects:

Informally, a community is a set of nodes where each node is “closer” to the other nodes within
the community than to nodes outside it. This effect has been found (or is believed to exist) in many
real-world graphs, especially social networks [Moody, 2001, Schwartz and Wood, 1993].

Community effects have typically been studied in two contexts: (a) local one-hop neighbor-
hoods, as characterized by theclustering coefficient, and (b) node groups with possibly longer
paths between members, such asgraph partitionsandbipartite cores. All of these are discussed
below.

Definition 21 (Clustering Coefficient). For a nodev with edges(u, v) and(v, w), the clustering
coefficient ofv measures the probability of existence of the third edge(u, w) (Figure 6.1(a)). The
clustering coefficient of the entire graph is found by averaging over all nodes in the graph1.

1We note here that there is at least one other definition based on counting triangles in the graph; both definitions
make sense, but we use this one.
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(a) Clustering coefficient (b) Bipartite core

Figure 6.1: Indicators of community structure:(a) NodeX has6 neighbors. These neighbors
could have been connected by

(
6
2

)
= 15 edges, but only5 such edges exist. So, the local clustering

coefficient of nodeX is 5/15 = 1/3. (b) A 4 × 3 bipartite core, with each node in SetL being
connected to each node in SetR.

Definition 22 (Graph Partitioning). Graph partitioning techniques typically break the graph into
two disjoint partitions (or communities) while optimizing some measure; these two communities
may then be repartitioned separately.

The popularMETIS software tries to find the best separator, minimizing the number of edges cut
in order to form two disconnected components of relatively similar sizes [Karypis and Kumar,
1998a]. Many other measures and techniques exist [Brandes et al., 2003, Alon, 1998]. Our Cross-
associations method also finds such partitions, while optimizing the cost of encoding the adjacency
matrix of the graph, as we have seen in Chapter5.

Definition 23 (Bipartite Core). A bipartite core in a graph consists of two (not necessarily dis-
joint) sets of nodesL andR such that every node inL links to every node inR; links fromR to L
are optional (Figure6.1(b)).

Significance of graph communities:Most real-world graphs exhibit strong community effects. Moody [Moody,
2001] found groupings based on race and age in a network of friendships in one American school,
Schwartz and Wood [Schwartz and Wood, 1993] group people with shared interests from email
logs, Borgs et al. [Borgs et al., 2004] find communities from “cross-posts” on Usenet, and Flake et al. [Flake
et al., 2000] discover communities of webpages in the WWW. This is also reflected in the cluster-
ing coefficients of real-world graphs: they are almost always much larger than in random graphs
of the same size [Watts and Strogatz, 1998].

Other Patterns:

Many other graph patterns have also been studied in the literature. We mention two of these that
we will use later: (a) Edge-betweenness or Stress, (b) “Singular vector value” versus rank plots,
and Resilience under attack.

Definition 24 (Edge betweenness or Stress).Consider all shortest paths between all pairs of
nodes in a graph. The edge-betweenness or stress of an edge is the number of these shortest paths
that the edge belongs to, and is thus a measure of the “load” on that edge.
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Definition 25 (Stress Plot).This is a plot of the number of nodessk with stressk, versusk.

Definition 26 (“Singular vector value” versus rank plots). The “singular vector value” of a
node is the absolute value of the corresponding component of the first singular vector of the graph.
It can be considered to be a measure of the “importance” of the node, and as we will see later,
is closely related to the widely-used concept of “Bonacich centrality” in social network analy-
sis [Bonacich, 1987].

Definition 27 (Resilience).A resilient graph is one whose diameter does not increase when its
nodes or edges are removed according to some “attack” process [Palmer et al., 2002, Albert
et al., 2000]. Most real-world graphs are very resilient against random failures, but susceptible to
targeted attacks (such as removal of nodes of the highest degree) [Tangmunarunkit et al., 2001].

6.1.2 Graph Generators

Graph generators allow us to create synthetic graphs, which can then be used for, say, simulation
studies. However, to be realistic, the generated graph must match all (or at least several) of the
patterns mentioned above. By telling us which processes can (or cannot) lead to the development
of these patterns, graph generators can provide insight into the creation of real-world graphs.

Graph models and generators can be broadly classified into four categories:

1. Random graph models:The graphs are generated by a random process. The basic random
graph model has attracted a lot of research interest due to its phase transition properties.

2. Preferential attachment models:In these models, the “rich” get “richer” as the network
grows, leading to power law effects. Some of today’s most popular models belong to this
class.

3. Optimization-based models:Here, power laws are shown to evolve when risks are mini-
mized using limited resources. Together with the preferential attachment models, they try to
provide mechanisms that automatically lead to power laws.

4. Geographical models:These models consider the effects of geography (i.e., thepositions
of the nodes) on the growth and topology of the network. This is especially important for
modeling router or power-grid networks, which involve laying wires between points on the
globe.

We will briefly touch upon some of these generators below. Tables6.1 and 6.2 provide a
taxonomy of generators.

Random graph models:

In the earliest random graph model [Erdős and Ŕenyi, 1960], we start withN nodes, and for every
pair of nodes, an edge is added between them with probabilityp. This simple model leads to a
surprising list of properties, including phase transitions in the size of the largest component, and
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Graph type Degree distributions
Power law Exponen-

Generator Undir. Dir. Bip. Self Mult. Geog. Plain Exp. Devia- tial
loops edges info cutoff tion

Erdős–Ŕenyi [Erdős and Ŕenyi, 1960]
√ √ √ √

PLRG [Aiello et al., 2000],
√ √ √ √

PLOD [Palmer and Steffan, 2000]
Exponential cutoff

√ √ √ √ √

[Newman et al., 2001]
BA [Barab́asi and Albert, 1999]

√ √

(γ = 3)
AB [Albert and Barab́asi, 2000]

√ √ √ √ √

Edge Copying [Kleinberg et al., 1999],
√ √ √ √

[Kumar et al., 1999]
GLP [Bu and Towsley, 2002]

√ √ √ √

Accelerated growth
√ √ √

Power-law mixture of
[Barab́asi et al., 2002] γ = 2 andγ = 3

Fitness model
√ √

[Bianconi and Barab́asi, 2001] (modified)
Aiello et al. [Aiello et al., 2001]

√ √

Pandurangan et al. [Pandurangan et al., 2002]
√ √ √ √

Inet [Winick and Jamin, 2002]
√ √ √

Pennock et al. [Pennock et al., 2002]
√ √ √ √ √

Small-world
√ √ √

[Watts and Strogatz, 1998]
Waxman [Waxman, 1988]

√ √ √

BRITE [Medina et al., 2000]
√ √ √

Yook et al. [Yook et al., 2002]
√ √ √ √

Fabrikant et al. [Fabrikant et al., 2002]
√ √ √

R-MAT [Chakrabarti et al., 2004]
√ √ √ √ √ √ √

(DGX)

Table 6.1: Taxonomy of graph generators: This table shows the graph types and degree distri-
butions that different graph generators can create. The graph type can be undirected, directed,
bipartite, allowing self-loops or multi-graph (multiple edges possible between nodes). The degree
distributions can be power-law (with possible exponential cutoffs, or other deviations such as log-
normal/DGX) or exponential decay. Empty cells indicate that the corresponding property does not
occur in the corresponding model.
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Diameter or Community Clustering Remarks
Generator Avg path len. Bip. core C(k) vsk coefficient

vs size

Erdős–Ŕenyi [Erdős and Ŕenyi, 1960] O(log N) Indep. Low, CC ∝ N−1

PLRG [Aiello et al., 2000], O(log N) Indep. CC → 0
PLOD [Palmer and Steffan, 2000] for largeN

Exponential cutoff O(log N) CC → 0
[Newman et al., 2001] for largeN

BA [Barab́asi and Albert, 1999] O(log N) or CC ∝ N−0.75

O( log N
log log N )

AB [Albert and Barab́asi, 2000]
Edge copying [Kleinberg et al., 1999], Power-law

[Kumar et al., 1999]
GLP [Bu and Towsley, 2002] Higher than Internet

AB, BA, PLRG only
Accelerated growth Non-monotonic

[Barab́asi et al., 2002] with N
Fitness model

[Bianconi and Barab́asi, 2001]
Aiello et al. [Aiello et al., 2001]

Pandurangan et al. [Pandurangan et al., 2002]
Inet [Winick and Jamin, 2002] Specific to

the AS graph
Pennock et al. [Pennock et al., 2002]

Small-world O(N) for smallN , CC(p) ∝ N=num nodes
[Watts and Strogatz, 1998] O(lnN) for largeN , (1− p)3, p=rewiring prob

depends onp Indep ofN
Waxman [Waxman, 1988]

BRITE [Medina et al., 2000] Low (like in BA) like in BA BA + Waxman
with additions

Yook et al. [Yook et al., 2002]
Fabrikant et al. [Fabrikant et al., 2002] Tree, density1

R-MAT [Chakrabarti et al., 2004] Low (empirically)

Table 6.2:Taxonomy of graph generators (Contd.): The comparisons are made for graph diameter,
existence of community structure (number of bipartite cores versus core size, or Clustering coef-
ficient CC(k) of all nodes with degreek versusk), and clustering coefficient.N is the number
of nodes in the graph. The empty cells represent information unknown to the authors, and require
further research.
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diameter logarithmic in graph size. Its ease of analysis has proven to be very useful in the early
development of the field. However, its degree distribution is Poisson, whereas most real-world
graphs seem to exhibit power law distributions. Also, the graphs lack community effects: the
clustering coefficient is usually far smaller than that in comparable real-world graphs.

The basic Erd̋os-Ŕenyi model has been extended in several ways, typically to match the power
law degree distribution pattern [Aiello et al., 2000, Palmer and Steffan, 2000, Newman et al.,
2001]. These methods retain the simplicity and ease of analysis of the original model, while
removing one of its weaknesses: the unrealistic degree distribution. However, these models do not
describe anyprocessby which power laws may arise automatically, which makes them less useful
in understanding the internal processes behind graph formation in the real world (property(P2)).
Also, most models make no attempt to match any other patterns (property(P1)), and further work
is needed to incorporate community effects into the model.

Preferential attachment models:

First developed in the mid-1950s [Simon, 1955], the idea of preferential attachment has been re-
discovered recently due to their ability to generate skewed distributions such as power laws [Price,
1976, Barab́asi and Albert, 1999]. Informally, they use the concept of the “rich getting richer” over
time: new nodes join the graph each timestep, and preferentially connect to existing nodes with
high degree. This basic idea has been very influential, and has formed the basis of a large body of
further work [Albert and Barab́asi, 2000, Bu and Towsley, 2002, Barab́asi et al., 2002, Bianconi
and Barab́asi, 2001, Aiello et al., 2001, Bollobás et al., 2003, Pandurangan et al., 2002, Winick and
Jamin, 2002, Pennock et al., 2002, Albert and Barab́asi, 2002].

The preferential attachment models have several interesting properties:

• Power law degree distributions:These models lead to power laws as aby-productof the
graph generation method, and not as a specific designed-in feature.

• Low diameter:The generated graphs haveO (log N) diameter. Thus, the increase in diame-
ter is slower than the growth in graph size.

• Resilience: The generated graphs are resilient against random node/edge removals, but
quickly become disconnected when nodes are removed in descending order of degree [Albert
et al., 2000, Palmer et al., 2002]. This matches the behavior of the Internet.

• A procedural method:Perhaps most importantly, these models describe aprocessthat can
lead to realistic graphs and power laws (matching property(P2)). The two main ideas are
those of (a) growth, and (b) preferential attachment; variants to the basic model add other
ideas such as node “fitness.” The ability of these models to match many real-world graphs
implies that graphs in the real-world might indeed have been generated by similar processes.

Preferential attachment models are probably the most popular models currently, due to their
ability to match power law degree distributions by such a simple set of steps. However, they
typically do not exhibit community effects, and, apart from the paper of Pennock et al. [Pennock
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et al., 2002], little effort has gone into finding reasons for deviations from power laws in real-world
graphs (property(P1)).

One set of related models has shown promise recently: these are the “edge copying” mod-
els [Kleinberg et al., 1999, Kumar et al., 1999], where a node (such as a website) acquires edges by
copying linksfrom other nodes (websites). This is similar to preferential attachment because pages
with high-degree will be linked to by many other pages, and so have a greater chance of getting
copied. However, such graphs can be expected to have a large number of bipartite cores (which
leads to the community effect). This makes the edge-copying technique a promising research di-
rection.

Geographical models:

Several models introduce the constraints of geography into network formation. For example, it is
easier (cheaper) to link two routers which are physically close to each other; most of our social
contacts are people we meet often, and who consequently probably live close to us (say, in the same
town or city), and so on. In this area, there are two important models: theSmall-Worldmodel, and
theWaxmanmodel.

TheSmall-Worldmodel [Watts and Strogatz, 1998] starts with a regular lattice and adds/rewires
some edges randomly. The original lattice represents ties between close friends, while the random
edges link “acquaintances,” and serve to connect different social circles. Thus, the resulting graph
has low diameter but a high clustering coefficient — two patterns common to real-world graphs.
However, the degree distribution is not a power law, and the basic model needs extensions to match
this (property(P1)).

TheWaxmanmodel [Waxman, 1988] probabilistically links two nodes in the graph, based on
their geographical distance (in fact, the probability decreases exponentially with distance). The
model is simple yet attractive, and has been incorporated into the popular BRITE [Medina et al.,
2000] generator used for graph generation in the networking community. However, it does not yield
a power law degree distribution, and further work is needed to analyze the other graph patterns for
this generator (property(P1)).

Optimization-based models:

Optimization-based models provide another process leading to power laws. Carlson and Doyle [Carl-
son and Doyle, 1999, Doyle and Carlson, 2000] propose in theirHighly Optimized Tolerance
(HOT) model that power laws may arise in systems due totradeoffsbetween yield (or profit),
resources (to prevent a risk from causing damage) and tolerance to risks. Apart from power laws,
HOT also matches the resilience pattern of many real-world graphs (see Definition27): it is robust
against “designed-for” uncertainties, but very sensitive to design flaws and unanticipated perturba-
tions.

Several variations of the basic model have also been proposed: COLD [Newman et al., 2002]
truncates the power law tails, while theHeuristically Optimized Tradeoffsmodel [Fabrikant et al.,
2002] needs only locally-optimal decisions instead of global optimality.
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Figure 6.2:The R-MAT model:The adjacency matrix is broken into four equal-sized partitions,
and one of those four is chosen according to a (possibly non-uniform) probability distribution. This
partition is then split recursively till we reach a single cell, where an edge is placed. Multiple such
edge placements are used to generate the full synthetic graph.

Optimization-based models provide a very intuitive process which leads to both power laws and
resilience (matching property(P2)). However, further research needs to be conducted on other pat-
terns for such graphs (property(P1)). One step in this direction is the work of Berger et al. [Berger
et al., 2005], who generalize theHeuristically Optimized Tradeoffsmodel, and show that it is
equivalent to a form of preferential attachment; thus, competition between opposing forces can
give rise to preferential attachment, and we already know that preferential attachment can, in turn,
lead to power laws and exponential cutoffs.

Summary of graph generators

Thus, we see that these are four general categories of graph generators, along with several “cross-
category” generators too. Most of the generators do well with properties(P3)-(P6), but need
further research to determine their realism (property(P1), that is, which patterns they match, and
which they don’t). Next, we will discuss our R-MAT graph generator, which attempts to match
all of these properties, including the degree distribution (with both power laws and deviations),
community structure, singular vector value versus rank patterns and so on.

6.2 The R-MAT methodology

We have seen that most of the current graph generators focus on only one graph pattern – typically
the degree distribution – and give low importance to all the others. There is also the question of
how to fit model parameters to match a given graph. What we would like is a tradeoff between
parsimony (property(P3)), realism (property(P1)), and efficiency (properties(P4) and(P5)). In
this section, we present the R-MAT generator, which attempts to address all of these concerns.

Description and properties:

R-MAT is based on the well-known “80 − 20 rule” in one dimension (80% of the data falls
on 20% of the data range), which is known to result in self-similarity and power laws; R-MAT
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extends this rule to a two-dimensional graph adjacency matrix. The R-MAT generator creates
directed graphs with2n nodes andE edges, where both values are provided by the user. We start
with an empty adjacency matrix, and divide it into four equal-sized partitions. One of the four
partitions is chosen with probabilitiesa, b, c, d respectively (a + b + c + d = 1), as in Figure6.2.
The chosen partition is again subdivided into four smaller partitions, and the procedure is repeated
until we reach a simple cell (=1× 1 partition). The nodes (that is, row and column) corresponding
to this cell are linked by an edge in the graph. This process is repeatedE times to generate the full
graph. There is a subtle point here: we may haveduplicateedges (i.e., edges which fall into the
same cell in the adjacency matrix), but we only keep one of them when generating an unweighted
graph. To smooth out fluctuations in the degree distributions, some noise is added to the(a, b, c, d)
values at each stage of the recursion, followed by renormalization (so thata + b + c + d = 1).
Typically, a ≥ b, a ≥ c, a ≥ d.

Parsimony:The algorithm needs only three parameters: the partition probabilitiesa, b, and c;
d = 1− a− b− c. Thus, the models is parsimonious.

Degree distribution:The following theorem gives the expected degree distribution of an R-MAT
generated graph.

Theorem 4 (Count-vs-degree).For a pure R-MAT generated graph (ie., without any smoothing
factors), the expected number of nodesck with outdegreek is given by

ck =

(
E

k

) n∑
i=0

(
n

i

)[
pn−i(1− p)i

]k ∗ [1− pn−i(1− p)i
]E−k

(6.2)

where2n is the number of nodes in the R-MAT graph (typicallyn = dlog2 Ne andp = a + b.

Proof. Proved in Section6.4.

This is well modeled by adiscrete lognormal[Bi et al., 2001], which looks like a truncated
parabola on the log-log scale. By setting the parameters properly, this can successfully match both
power-law and “unimodal” distributions [Pennock et al., 2002].

Communities:Intuitively, R-MAT is generating “communities” in the graph:

• The partitionsa andd represent separate groups of nodes which correspond to communities
(say, “Linux” and “Windows” users).

• The partitionsb andc are thecross-linksbetween these two groups; edges there would denote
friends with separate preferences.

• The recursive nature of the partitions means that we automatically get sub-communities
within existing communities (say, “RedHat” and “Mandrake” enthusiasts within the “Linux”
group).

Diameter, singular values and other properties:We show experimentally that graphs generated by
R-MAT have small diameter and match several other criteria as well.
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Extensions to undirected, bipartite and weighted graphs:The basic model generates directed graphs;
all the other types of graphs can be easily generated by minor modifications of the model. For undi-
rected graphs, a directed graph is generated and then made symmetric. For bipartite graphs, the
same approach is used; the only difference is that the adjacency matrix is now rectangular instead
of square. For weighted graphs, the number ofduplicateedges in each cell of the adjacency matrix
is taken to be the weight of that edge. More details may be found in [Chakrabarti et al., 2004].

Parameter fitting algorithm:We are given some input graph, and need to fit the R-MAT model
parameters so that the generated graph matches the input graph in terms of graph patterns. Using
Theorem4 we can fit the indegree and outdegree distributions; this gives us two equations (specif-
ically, we get the values ofp = a + b andq = a + c). We need one more equation to fit the three
model parameters.

We tried several experiments where we fit thescree plot(see Definition18). However, we
obtained comparable (and much faster) results by conjecturing that thea : b anda : c ratios are
approximately75 : 25 (as seen in many real world scenarios), and using these to fit the parameters.
Hence, this is our current parameter-fitting method for R-MAT.

Relationship with Cross-Associations:In Chapter5, we described our Cross-Associations algo-
rithm to extract “natural” communities in graphs, and R-MAT specifically generates graphs with a
recursive community structure. The similarity between these two, however, is not very deep. While
R-MAT creates a community “hierarchy,” Cross-Associations finds only a flat set of communities,
which need not strictly correspond to the R-MAT communities at any level of the hierarchy. The
real linkage is in thesizesof the communities found: when the R-MAT parameters are very skewed
(say,a � d), the communities found by Cross-Associations have very skewed sizes, with several
very large sparse communities and a few extremely small densely-connected communities. Con-
versely, when the R-MAT parameters are more equal, the community sizes are more similar to
each other.

Relationship with tree-based generators:The process of placing edges during R-MAT graph gen-
eration can be thought of as a tree traversal from root to leaf: each internal node of this tree has
four children (one for each “quadrant” in R-MAT), the leaves of the tree are the individual cells of
the adjacency matrix, and each “choosing of a quadrant” in R-MAT corresponds to a descent of
one level in this tree. This is similar in spirit to other tree-based graph generators [Kleinberg, 2001,
Watts et al., 2002] which use hierarchies in forming links between nodes; however, the differences
are significant. The R-MAT tree has all possibleedgesas its leaves, while the hierarchy-based
generators havenodesas leaves. The latter use a tree-distance metric to compute the probability
of an edge, but the usefulness of tree-distance in the R-MAT tree is not clear. (What does the tree-
distance between two edges mean?) The R-MAT tree automatically generates the realistic degree
distribution described above, while for the other tree-based methods, the degree distribution also
depends on how many edges we attach to each node; hence, a large number of free parameters
need to be set. Thus, while R-MAT is conceptually related to these tree-based methods, it is also
significantly different.
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6.3 Experiments

We show experiments on the following graphs:

• TheEPINIONSdirected graph: A graph of who-trusts-whom from epinions.com [Richard-
son and Domingos, 2002]: N = 75, 879; E = 508, 960.

• TheOREGONdirected graph: A graph of connections between Internet Autonomous Sys-
tems, obtained fromhttp://topology.eecs.umich.edu/data.html : N = 11, 461; E =
32, 730.

• TheCITATIONSdirected graph: A graph of paper connections, obtained from the KDD Cup (2003)
website:http://www.cs.cornell.edu/projects/kddcup/datasets.html :
N = 25, 059; E = 352, 807.

• TheCLICKSTREAMbipartite graph: A graph of the browsing behavior of Internet users [Mont-
gomery and Faloutsos, 2001]. An edge(u, p) denotes that useru accessed pagep. It has
23, 396 users,199, 308 pages and952, 580 edges.

• TheEPINIONS-Uundirected graph: This is an undirected version of theEPINIONSgraph:
N = 75, 879; E = 811, 602.

The questions we want to answer are:

• (Q1) How well does R-MAT match directed graphs, suchEPINIONS, OREGONandCITA-
TIONS?

• (Q2) How well does R-MAT match bipartite graphs, such asCLICKSTREAM?

• (Q3) How well does R-MAT match undirected graphs, such asEPINIONS-U?

For each of the datasets, we fit the R-MAT parameters, and compare the true graph with one
generated by R-MAT. We also compare R-MAT with three existing generators chosen for their
popularity or recency:

• The AB model [Albert and Barab́asi, 2000]: This is a preferential attachment model with
an additional process to rewire edges and add links between existing nodes (instead of only
adding links to new nodes).

• TheGeneralized Linear Preference (GLP)model [Bu and Towsley, 2002]: This modifies the
original preferential attachment equation with an extra parameter, and is highly regarded in
the networking community.

• ThePGmodel [Pennock et al., 2002]: This model has a parameter to traverse the continuum
from pure preferential attachment to pure random attachment.

There are two important points to note:
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Dataset Graph type Dimensions Edges R-MAT parameters
a b c d

EPINIONS Directed 75, 879×75, 879 508, 960 0.56 0.19 0.18 0.07
OREGON Directed 11, 461×11, 461 32, 730 0.597 0.165 0.233 0.005
CITATIONS Directed 25, 059×25, 059 352, 807 0.538 0.111 0.248 0.103
CLICKSTREAM Bipartite 23, 396×199, 308 952, 580 0.50 0.15 0.19 0.16
EPINIONS-U Undirected 75, 879×75, 879 811, 602 0.55 0.18 0.18 0.09

Table 6.3:R-MAT parameters for the datasets

• All of the above models are used to generate undirected graphs, and thus, we can compare
them to R-MAT only onEPINIONS-U.

• We were unaware of any method to fit the parameters of these models, so we fit them using
a brute-force method. We useAB+, PG+ andGLP+ for the original algorithms augmented
by our parameter fitting.

The graph patterns we look at are:

1. Both indegree and outdegree distributions (Definition17).

2. “Hop-plot” and “effective diameter” (Definitions19and20).

3. Singular value vs. rank plot (also known as thescree plot; see Definition18).

4. “Singular vector value” versus rank plots (Definition26).

5. “Stress” distribution (Definition25).

6.3.1 (Q1) R-MAT on Directed Graphs

Figures6.3, 6.4 and 6.5 show results on theEPINIONS, OREGONand CITATIONSdirected
graphs. The R-MAT fit is very good; the other models considered are not applicable. The cor-
responding R-MAT parameters are shown in Table6.3.

6.3.2 (Q2) R-MAT on Bipartite Graphs

Figure 6.6 shows results on theCLICKSTREAMbipartite graph. As before, the R-MAT fit is
very good. In particular, note that the indegree distribution is a power law while the outdegree
distribution deviates significantly from a power law; R-MAT matchesboth of these very well.
Again, the other models are not applicable.
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Figure 6.3:Results on theEPINIONS directed graph:TheAB+, PG+ andGLP+ methodsdo not
apply. The crosses and dashed lines represent the R-MAT generated graphs, while the pluses and
strong lines represent the real graph.
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Figure 6.5:Results on theCITATIONS directed graph:TheAB+, PG+ andGLP+ methodsdo
not apply. The crosses and dashed lines represent the R-MAT generated graphs, while the pluses
and strong lines represent the real graph.
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Figure 6.6:Results on theCLICKSTREAM bipartite graph:TheAB+, PG+ andGLP+ methods
do not apply. The crosses and dashed lines represent the R-MAT generated graphs, while the
pluses and strong lines represent the real graph.
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Figure 6.7:Results on theEPINIONS-U undirected graph:We show (a) degree, (b) hop-plot,
(c) singular value, (d) “singular vector value,” and (e) stress distributions for theEPINIONS-
U dataset. R-MAT gives the best matches to theEPINIONS-Ugraph, among all the generators. In
fact, for the stress distribution, the R-MAT andEPINIONS-U plots are almost indistinguishable.

6.3.3 (Q3) R-MAT on Undirected Graphs

Figure6.7 shows the comparison plots on theEPINIONS-Uundirected graph. R-MAT gives the
closest fits. Also, note that all the y-scales are logarithmic, so small differences in the plots actually
represent significant deviations.

6.4 Details of Proofs

Theorem 1 (Count-vs-degree).For a pure R-MAT generated graph (ie., without any smoothing
factors), the expected number of nodesck with outdegreek is given by

ck =

(
E

k

) n∑
i=0

(
n

i

)[
pn−i(1− p)i

]k ∗ [1− pn−i(1− p)i
]E−k

(6.3)

where2n is the number of nodes in the R-MAT graph andp = a + b.

Proof. In the following discussion, we neglect the elimination of duplicate edges. This is a rea-
sonable assumption: in most of our experiments, we found that the number of duplicate edges is
far less than the total number of edges. Each edge that is “dropped” on to the adjacency matrix
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takes a specific path: at each stage of the recursion, the edge chooses eitherUp (corresponding to
partitions a or b) orDown (corresponding to partitions c or d). There aren such stages, where2n

is the number of nodes. Row X can be reached only if the edge follows auniqueordered sequence
of Up andDownchoices. Since the probability of choosingUp is p = a + b and the probability of
choosingDown is 1− p = c + d, the probability of the edge falling to row X is

P (X) = pnum(Up).(1− p)num(Down)

= pnum(Up).(1− p)n−num(Up) (6.4)

This equation means that any other row which requires the same number ofUp choices will
have the same probability as row X. The number of such rows can be easily seen to be

(
n

num(Up)
)
.

Thus, we can think of differentclassesof rows:

Class Probability of getting an edge Num(rows)
0 pn

(
n
0

)
1 pn−1(1− p)1

(
n
1

)
...

...
...

i-1 pn−i(1− p)i
(

n
i

)
...

...
...

n (1− p)n
(

n
n

)
Now, we can calculate the count-degree plot. Let

NRk = number of rows with outdegreek

= NR0,k + NR1,k + . . . + NRn,k (6.5)

whereNRi,k = number of rowsof Classi with outdegreek. Thus, the expected number of rows
with outdegreek is:

E[NRk] =
n∑

i=0

E[NRi,k] (6.6)

Now, for a row in Classi, each of theE edges can either drop into it (with probabilitypn−i(1−p)i)
or not (with probability1 − pn−i(1 − p)i). Thus, the number of edges falling into this row is a
binomially distributed random variable:Bin(E, pn−i(1 − p)i). Thus, the probability that it has
exactlyk edges is given by

Pi,k =

(
E

k

)[
pn−i(1− p)i

]k [
1− pn−i(1− p)i

]E−k

Thus, the expected number of such rows from Classi is

E[NRi,k] = number of rows in Classi ∗ Pi,k

=

(
n

i

)
∗ Pi,k

=

(
n

i

)(
E

k

)[
pn−i(1− p)i

]k
(6.7)

∗
[
1− pn−i(1− p)i

]E−k
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Using this in Equation6.5gives us:

E[NRk] =

(
E

k

) n∑
i=0

(
n

i

)[
pn−i(1− p)i

]k
∗
[
1− pn−i(1− p)i

]E−k
(6.8)

Equation6.8gives us the count of nodes with outdegreek; thus we can plot the count-vs-outdegree
plot using this equation.

6.5 Summary

We presented the R-MAT graph generator, a simple parsimonious model for efficiently generating
realistic graphs. Instead of focusing on just one pattern like the degree distributions (as most
current generators do), R-MAT attempts to match several patterns, including diameter and hop-
plot, the scree plot of singular values versus rank, “stress” plots and others. We experimentally
demonstrate our parameter-fitting algorithm, and the ability of R-MAT to successfully mimic the
patterns found in several real-world graphs. This opens up the possibility of using R-MAT for
many applications: generating small samples “similar” to a large given graph, or for simulation
studies when a “true” real-world graph may not exist yet, or may be too costly to obtain, or for use
in graph compression algorithms.

86



Chapter 7

Conclusions

Graphs are ubiquitous; they show up in fields as diverse as ecological studies, sociology, computer
networking and many others. In fact, any information relating different entities (anM : N re-
lationship in database terminology) can be thought of as a graph. Mining the hidden patterns in
graphs helps define what is “normal” for real-world graphs, and deviations from such patterns can
imply abnormal graphs/subgraphs.

There is a dichotomy in graph mining applications: we can answer specific queries on a par-
ticular graph, or we can ask questions pertaining to real-world graphs in general. In my thesis, I
explored issues from both sides of this dichotomy.

• Problems for specific graphs:

– How does a virus propagate over the given graph? When does a viral outbreak die out?

– Under what conditions does a piece of information survive in a given sensor network
with failing nodes and links?

– How can we automatically cluster nodes in a given graph? How can we quickly and
automatically estimate thenumberof clusters in the data?

• Real-world graphs in general:

– What patterns and “laws” hold for most real-world graphs? How can wegenerate
synthetic yet “realistic” graphs?

Viral propagation:A quantitative and analytic understanding of the propagation behavior of viruses
is critically important for many problems, including:

• the design of new anti-virus measures that combat the virusglobally, that is, over the entire
network,

• the determination of “susceptibility” of a computer (or social) network to viral infections,

• the design of new “virus-resistant” networks, and
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• the “optimal” immunization strategies to best prevent the spread of a virus, and avoid an
epidemic.

In addition, this work is not limited to viruses: the same principles also apply to the spread of
rumors and fashions, to viral marketing, to information dissemination campaigns, and the like.

We formulated the virus propagation problem as a non-linear dynamical system (calledNLDS),
which requires is linear in the size of the network, and is tractable using analytic techniques. Our
main contributions, apart from the design ofNLDS, are:

• Accuracy ofNLDS: We show that the number of infected nodes in the graph forNLDS is
very close to that for the full Markov chain, for a variety of synthetic and real-world graphs.
Thus, our approximation is very accurate.

• The Epidemic Threshold:We derived the epidemic threshold below which a viral outbreak
is expected to die out, but above which it might survive for long. Surprisingly, this condition
depends only on one property of the graph: its largest eigenvalue.

Information survival threshold:The problem of information survival in sensor networks is similar,
but the occasional failure of nodes in the network adds more complexity. Our contributions are:

• Problem formulation methodology:We again demonstrated the formulation of the problem
as a non-linear dynamical system, thus proving the generality of this approach.

• The Information Survival Threshold:Solving the non-linear dynamical system allows us to
find the information survival threshold for any given sensor or P2P network. This is found
to depend on the largest value of a properly constructed matrix, which links together the link
qualities and failure rates in the sensor network.

As sensor networks become more and more commonplace, this result will be important in deter-
mining the “informational load” we can place on the network.

Automatic clustering of nodes:

Clustering the nodes in a graph is a powerful way to mine the data in a graph. It tells us the
major “classes” of nodes, and their behaviors (which other “classes” do they link to strongly). The
clusters can be used in visualization tools to quickly provide a summary of a large graph dataset.
Clustering has applications in personalization services, consumer segmentation, fraud detection,
collaborative filtering; the list goes on.

We developed an efficient and accurate method of finding clusters in large graphs, with many
useful properties:

• Completely automatic:Our clustering method is one of the few that needsno “magic”
numbers. It automatically figures out both thenumberof clusters in the data, and their
memberships.

• Scalable:The method is linear in the number of edges in the graph, and is thus scalable to
large graphs.
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• Incremental:New data can easily be incorporated into the current clustering solution, thus
avoiding the costs of full recomputation.

• Applicability to both self- and bipartite-graphs:The algorithm can be used for, say, both
customer-product data as well as social-network data.

• Outlier detection: In addition to clustering, we also proposed efficient methods todetect
outlier edgesin the data, andrank them in decreasing order of “outlierness.”

• Inter-cluster “distances:”An intuitive metric was proposed as a “distance” between clusters,
and an efficient algorithm to compute it was developed.

The R-MAT graph generator:

A good graph generator is an essential part of a graph miner’s toolbox. The generator must be
able to match the common graph patterns and “laws,” besides being efficient, parsimonious, and
having a simple parameter-fitting algorithm. The uses are many:

• Simulation studies:Algorithms can be tested on synthetic yet realistic graphs, where obtain-
ing real-world graphs might be costly or even impossible.

• Outlier detection:Deviations from the common patterns can signify outliers, which need to
be investigated further.

• Realism of samples:Samples of graphs can be tested for the graph patterns to verify their
realism.

• Extrapolation of data:The generator can be used in “what-if” scenarios, to visualize what
current graphs would look like when they grow byx%.

Our R-MAT graph generator is exactly is a step in this direction: it matches many of the graph
patterns, while requiring only three parameters; the generation process is efficient and scalable;
and, the same basic method can be used to generate weighted or unweighted, directed or undi-
rected, self- and bipartite graphs. Indeed, we experimentally demonstrated the ability of R-MAT
to fit several large real-world datasets of different types.

To conclude, we developed tools for mining graph datasets under a variety of circumstances,
from the propagation characteristics of real-world graphs, to the clusters hidden within them, and
finally on to the patterns and laws that govern them, and a generator to mimic these. Each of these
is an important tool in its own right; combined together, their usefulness is increased even more.
“How susceptible will the Internet be to viral infections if its grows byx% nodes andy% edges?”
Our work can shed some light.
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Chapter 8

Future Work

Graph mining is still a very young discipline. Even though parts of it have been studied in several
communities for a while, many important questions are unanswered as yet. There are many avenues
for future work, some of which will be discussed below.

Mining network traffic matrices. Traffic matrices provide information about the flow of packets
through routers over time, and we would like to detect outlier traffic (which may represent Denial-
of-Service attacks). While nominally similar to the study of time evolution of graphs, there are
several special constraints in this dataset.

The primary constraint is speed and scalability: a router under heavy load cannot spend much
time to process each packet it handles. Any mining algorithm must operate very quickly on each
packet. However, the processing power of a router is also constrained: thus, the computations per
packet must be quite basic. We can operate on only a sample of the data, but the realism of this
sample also depends on the semantics of the domain: for example, if we want to count the number
of open connections, the sample might need to be biased towardsTCP SYNpackets. All of these
issues create an extremely interesting problem, and this has attracted a lot of recent interest due to
its importance in industry.

Clustering on weighted graphs. Our Cross-associations algorithm operates on unweighted
graphs (or equivalently, binary matrices). How can this be extended to weighted graphs?

The main issue is that defining a “homogeneous block” is hard in the weighted context. Again,
perhaps we should not be looking for homogeneous blocks at all, but for a “realistic” block such
as one generated by, say, R-MAT. This changes the cost function that we optimize using the MDL
criterion, and the heuristics for finding a good clustering might also need modifications.
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P. Erd̋os and A. Ŕenyi. On the evolution of random graphs.Publication of the Mathematical
Institute of the Hungarian Acadamy of Science, 5:17–61, 1960.2.3, 6.1.2, 6.1.2, 6.1.2

95



Alex Fabrikant, Elias Koutsoupias, and Christos H. Papadimitriou. Heuristically Optimized Trade-
offs: A new paradigm for power laws in the Internet (extended abstract), 2002.6.1.2, 6.1.2,
6.1.2

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the
Internet topology. InSIGCOMM, pages 251–262, 1999.3.1.2, 6.1.1, 6.1.1

Gary William Flake, Steve Lawrence, and C. Lee Giles. Efficient identification of Web communi-
ties. InKDD, 2000. 5.1, 6.1.1

Nir Friedman, Ori Mosenzon, Noam Slonim, and Naftali Tishby. Multivariate information bottle-
neck. InProc. 17th UAI, pages 152–161, 2001.5.1

D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. An empirical study
of epidemic algorithms in large scale multihop wireless networks. Technical Report IRB-TR-
02-003, Intel Research, 2002.4.1.2
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