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Abstract

This paper addresses three questions. Is it useful to attempt to learn a Bayesian network
structure with hundreds of thousands of nodes? How should such structure search proceed
practically? The third question arises out of our approach to the second: how can Frequent
Sets (Agrawal et al., 1993), which are extremely popular in the area of descriptive data min-
ing, be turned into a probabilistic model? Large sparse datasets with hundreds of thousands
of records and attributes appear in social networks, warehousing, supermarket transactions
and web logs. The complexity of structural search made learning of factored probabilistic
models on such datasets unfeasible. We propose to use Frequent Sets to significantly speed
up the structural search. Unlike previous approaches, we not only cache n-way sufficient
statistics, but also exploit their local structure. We also present an empirical evaluation of
our algorithm applied to several massive datasets.
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1 Introduction

Bayesian Networks have been successfully applied in many areas such as pharmaceutical,
decision making by doctors, air control, marketing, etc Structural learning of Bayesian Net-
works is usually a desirable but costly operation. In some domains it is possible to collect
expert knowledge to manually create a structure for a Bayes Net. However, social networks,
warehousing data, or supermarket purchasing records may contain hundreds of thousands
of attributes. Providing expert Bayes Net structure in such cases is cumbersome if not im-
possible, even if as in the case with many of those domains the events are choices of very
small subsets of the large pool of available entities. The complexity of existing algorithms
for structural search prevents Bayes Net learning on datasets of that size.

This paper provides an algorithm for tractable structural learning in Bayes Nets by
exploring structures on the local level. We exploit the computational efficiency of Frequent
Sets for gathering statistics that are most likely to be useful for structure search given
the assumption of sparse data. We then give an efficient search algorithm to exploit these
statistics for creating the global Bayes Net.

Usage of Bayesian Networks to represent expression of genes based on the activity of
their regulators (in practice approximated by protein activity levels) is well motivated by
Friedman (2004). He suggests that the structure of the network is of its own importance,
since it may provide information about gene’s regulators.

Another field that has received increasing attention in the last few years is recommender
systems. A lot of online systems such as Amazon provide suggestions of what might appeal
to the user based on user’s other preferences. The use of Bayesian models in this domain
has been demonstrated by (Breese et al., 1998). Often the goal of recommender systems is
to predict which are the most likely items that the user would buy next. An example of
answering analogous query using Bayes Nets built by our algorithm is presented in Section
6.2.

The idea of representing social networks as people connected by directed arrows has
been explored in social science domain for almost 70 years (Moreno & Jennings, 1938).
Initially analyzed networks were on the order of 10s of nodes. However, improvements in
data collection and especially the birth of online communities made it necessary to look at
much larger networks. For example, livejournal (an online blog community) contains over
50,000 users (Shklovsky, personal communication). Usage of graphical models in this domain
has become increasingly popular, due to their robustness to noise.

Note that even though in every domain described above, there are potentially tens or
hundreds of thousands variables, each variable interacts only with a chosen few, resulting
in very sparse datasets. For example, it has been long known that connectivity in social
networks follows power law distribution (Barabasi, 2002), i.e. there are very few people who
are connected to many people, most of them are only interacting with a very small group
relative to the number of people available in the net.

In fact, studies in the gene expression data and social networks in particular suggest that
correlations of entities on the local level are very important and in fact they are what makes
up the global network (Friedman, 2004; Breiger, 2003). So, along with being computation-
ally practical Bayesian Networks created by our algorithm have a very natural motivation



stemming from those important domains.

Also, we claim that for the descriptive data mining community, this algorithm may help
to answer an old question: “what should you do with Frequent Sets once you’ve found
them?”.

We provide results on sparse massive datasets showing practical training times, and
in many cases superior ability to model the joint distribution in comparison with direct
extensions of traditional structure search algorithms on large data. We also qualitatively and
empirically show that sparse data particularly with social net characteristics are modelled
better by going beyond information derived from pairwise co-occurrences.

2 Frequent Sets

Assume our training data is a collection of N records with M binary categorical attributes
per record. Write z;; as the value of the jth attribute of the i¢th record where 1 <: < N
and 1 < 7 < M. We assume sparse data in which the vast majority of values in any dataset
row or column are zero. Note we assume no missing values: all z;; are observed.

Let the M attributes be represented by integers {1,2,...M}. Let the co-occurrence
frequency of a set of attributes S C {1,2,... M} be the number of records in which all the
attributes in S are simultaneously set to 1.

freq(S) =[{i:Vj € S, zi; = 1} (1)

Given s > 1 we say S is a Frequent Set of m attributes if S contains exactly m attributes
and freq(S) > s. Threshold s is called support in the data mining literature. Given sparse
data and a support s greater than about 3, it is surprisingly easy to compute all Frequent
Sets (Agrawal & Srikant, 1994). There is an abundance of literature on Frequent Sets as
their collection is an essential part of the association rules algorithms (Agrawal et al., 1993;
Agrawal & Srikant, 1994; Han & Kamber, 2000) widely used in commercial data mining.

There are multiple references to Frequent Sets in the area of modelling sparse datasets as
well (Mannila & Toivonen, 1996; Chickering & Heckerman, 1999; Pavlov et al., 2003; Hollmen
et al., 2003). This is not surprising, since sparseness implies very few co-occurrences between
items. In fact, most items do not co-occur with each other, hence we expect the majority
of the counts in the pairwise marginals to be 0. Therefore, it is natural to assume that the
Frequent Sets contain most of the essential information about the whole dataset.

(Chickering & Heckerman, 1999) propose and show how to use an efficient sparse repre-
sentation for several classes of machine learning algorithms including structure initialization
for Bayes Nets. We will therefore not focus on representational aspects of Frequent Sets.

This paper exploits previous research on the utilization of Frequent Sets for modelling of
sparse datasets but takes a new perspective. Assuming that Frequent Sets comprise essential
information about our data we propose to exploit them to find Bayes Net structures on the
local level. To our knowledge, structures contained within Frequent Sets have not been
previously used in order to improve the global model of data.



3 Algorithm Description

The simplest idea for exploiting Frequent Set information is to use frequent pairs. The only
edges which we would consider including in the Bayes Net are those for which the source and
destination attributes co-occur more than some support s. There are thus far fewer edges to
consider than the full M (M — 1) possibilities (M is the number of attributes).

There are three problems with this idea.

e Problem 1. This method will not find edges that have negative correlations. For
example, if attribute A is never positive when attribute B is positive then (A,B) will
not, be a frequent pair and so will not be considered.

Solution. Problem 1 is mitigated in two ways. First, under the assumption of sparse
data there must necessarily be less evidence for a strong negative correlation as is
shown in the Appendix. In fact, the structure scoring metric (e.g. BDeu) will be
much higher for positively correlated entities. Secondly, attributes with high marginal
positive values (where a negative correlation might be significant), will be accounted
for at a later stage described in Section 4.

e Problem 2. Some items that do co-occur might be independent. This is especially
likely with promiscuous attributes that occur frequently by themselves and thus could
co-occur just by chance.

Solution. The solution to problem 2 is to screen all frequent pairs before allowing
links between them into the pool of edges considered for the network. Only significantly
correlated pairs become candidate edges. This greatly reduces the number of candidate
edges.

e Problem 3. Restricting the search to frequent pairs can miss significant higher-order
interactions. The appendix gives one example, but it is easy to imagine many cases in
which co-occurence of A and B is predictive of the occurence of X and yet one or both
of the A — X and B — X dependencies are not statistically significant.

Solution. This is solved by using higher-order Frequent Sets, as described in the
following paragraphs.

3.1 Screening the Frequent Sets.

We call the set of edges that will eventually be considered for addition into the Bayesian
Network the Edgedump. Suppose we have a collection of Frequent Sets {X : |X| =m,m >
2}. First, we screen the pairs to find positive pairwise correlations. We add an edge between
two variables to the Edgedump if and only if a significant correlation was found between the
2 variables in the pair. We then in turn screen for dependencies in Frequent Sets of size 3,
4, etc.

When does a Frequent Set X of size m > 2 provide new information valuable for building
a Bayes Net? It is possible that the dependencies of X are already well-explained by interac-
tions of order less than m. For example, suppose attributes A, B and C co-occur frequently,



but their co-occurence is well explained by the local Bayesian Network DAG structure of
A+ B — C. In that case the two-way interactions will already explain all dependencies of
X. In this case, X should not be added to the edgedump. In fact, only DAGs that contain
a node with m — 1 parents could be missed by considering only lower order interactions, as
is shown in the Appendix for the case of triplets.

We implement a Screening test by searching over all possible DAG structures for X
and finding whether the best BDeu-scoring structure has an m — 1-parent node (we call
it an m-way interaction). We thus allow X to pass the screening test if and only if X is
best explained by a local DAG structure containing an m-way interaction. If X passes the
Screening test, all edges of the highest scoring DAG are added to the Edgedump.

Once the Edgedump is created, we prioritize the edges according to their strength, mea-
sured by the number of the m-way interactions in which they participate. We then create
an empty (edgeless) global Bayesian network and iterate through the Edgedump contents,
allowing each edge in turn to be added if and only if it improves BDeu and avoids cycles.

Table 1 contains the full description of the algorithm.

4 Addition of High Mutual Information Links

In the previous section we pointed out that Frequent Sets bias the algorithm in favor of
interactions that cause co-occurrence (and thus positive correlation). Appendix 1 shows why,
in the case of sparse data, positive correlations must be stronger than negative correlations,
so in general we are not omitting the strongest correlations. There is, however, still a danger
that if a few attributes are promiscuous (relatively high univariate marginal probability,
though still very sparse), they could cause significant negative correlations that we could miss.
Fortunately, such negative pairwise correlations can be detected cheaply using a technique
from (Meila, 1999).

Let I, be the mutual information between two attributes. Meila showed that the
mutual information can be calculated in a very efficient manner, particularly when dealing
with discrete binary data. In fact, if the two variables have not co-occurred in the dataset,

the formula simplifies even further: I4p is directly proportional to the magnitude of A (N4)
and B (Ng) as shown in Equation (2). The full derivation is available in (Meila, 1999).

Ipnp=Hs+ Hp — Hup
1
N[_ (N — Ny)log(N — Np) — (N — Np)

xlog(N — Ng) + (N — Ny — Np)
xlog(N — N4 — Np) + NlogN] (2)

Hence, to add high mutual information edges, we have to check entities that occur with
high frequency. We reduce the total number of entities significantly by only considering ones
that occurred more than s times in the dataset. This step is statistically justified because
fewer occurrences mean lower possible mutual information. Table 2 describes the algorithm
that augments a given Bayes Net with high mutual information (MI) edges.
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Table 1: Screen-based Bayes Net Structure search (SBNS) algorithm

algorithmSBNS

input K - max Frequent Set size
S - support

output BN - Bayes Net

Also:

Ed Edgedump - a collection of directed edges
represented as (source,dest,count)

DS DAG storage

1.fork=2. K
obtain counts for all Frequent Sets of size k
foreach Frequent Set
find best scoring DAG
if DAG contains a node that has £ — 1 parents
store DAG in DS
end foreach
end for
foreach DAG in DS
store all edges {source, dest, count++}in Ed

© 0N oW

—_ =
— O

. order Fd in decreasing order of edge counts

—_
[N

. foreach edge e € Ed

—_
b

if e doesn’t form a cycle in BN

—_
=~

and e improves BDeu
add e to BN

. end foreach

. return BN

—= =
=N o ot

We do not search the space of all edges to find edges with the highest mutual information.
First of all, we sort entities in descending order of frequency. For each entity A;,7 =1... N5,
where N, is the number of entities with support > s, we only consider {B;;,j = i +
1...Ns,}, i.e. those entities that have occurred less frequently than A;. If an edge eq;s;;
has been rejected, then we move along the A list. . This step is justified, because entities
are sorted in descending order of frequencies, hence the mutual information between A; and
Bij;1 is lower than between A; and B;;. Thus, the edge ey, Bij41 18 even less likely to be added
than e4,p,;. Empirical evidence shows that on average only 10% of N pairs are considered.
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Table 2: Algorithm that augments Bayes Net BN with high MI edges

algorithm AugmentWithMutualEdges
input BN - a Bayes Net
L - list of attributes with frequencies

1. Sort L in decreasing order of frequencies
2. foru=1...|L| -1

3. v =u+1; added_flag = TRUFE

4.  while v < |L| & added_flag

5. if net with e,, score > old net score
6. add ey, to BN

7. else try to add e,, to BN

8. v=v+1

9. if (edge not added) added_flag = FALSE
10. end while
11. end for

12. return BN




5 Additional possible postprocessing

5.1 Second Degree Separation Links

It is cheap to do an extra pass of edge-additions in which we iterate over all nodes in the
network produced by the previous steps and attempt adding edges directly from the current
node to its grandchildren.

5.2 Hillclimbing

One of the standard techniques to improve the score is hillclimbing as described in (Cooper
& Herskovits, 1991). This technique improves the score by adding/removing/reversing arcs
in a Bayes Net. The set of operations and edge selection procedure may differ between
algorithms. Usually hillclimbing is performed in a beamsearch way: at each step the existing
model undergoes a modification/addition of a single edge. In order to pick the best edge we
must look at O(N?) possibilities. Since the number of nodes N prohibits us to perform even
a linear search at each step, we use random hillclimbing in which at each step we choose
edges randomly. Specifically, we roll a “3-sided” die with probabilities .8 for addition and .1
for deletion and arc-reversal, and then pick an edge at random to see whether performing
the chosen operation improves the global score.

6 Evaluation

The evaluation uses BDeu score described in (Heckerman et al., 1995) and also presented
here in equation 3 to compare results between different configurations of our algorithm and
to the randomized hillclimbing as described in Section 5.2.

- F( Z+NZ]]C)

S(G = log( HH +Nw) kl;[l F(ﬁ) ) (3)

11*1

where i is the ith variable, g; - states of the jth parent of z;, r - true/false (in our case
of binary variables) states of x;.

The datasets are listed in Table 3. Holdout testsets were used to evaluate overfitting as
discussed in Section 6.2.3.

6.1 Datasets

The algorithm has been tested on several real life datasets® (sizes shown in Table 3).

1. The Institute Data is a set of records of collaborations between professors and stu-
dents collected from publicly available web pages listed on Carnegie Mellon University
Robotic Institute’s web site.

'We will make the non-proprietory datasets available on the web upon publication



Table 3: Data sets and their sizes

Datasets Entities Records

Institute 456 1488
Drinks 136 4744
IMDB 100717 49298

Citeseer 104801 180395

2. The Drinks Data Set consists of a set of records where each entity is an ingredient in
a popular bartending recipe found on the Internet.

3. The IMDB Data Set is a collection of casts of actors that participated in movies
between the years of 1900 and 1960 extracted from the Internet Movie Database

4. The Citeseer Data is a set of co-publication records from the Citeseer online library
and index of computer science publications. Since the entities are represented by first
initial and last name, a single name might correspond to several people.

6.2 Empirical Results

We tested our algorithm in a variety of configurations on the datasets listed in Table 3. The
results in Table 4 are reported in terms of the average BDeu score, i.e. the final BDeu score
obtained by the network averaged over the number of records in the dataset. The number
of edges in the resulting Bayes Nets is reported in Table 5. It is interesting to note that
the BDeu scores corresponding to the Bayes Nets obtained by running SBN as described in
Table 1 are very close to the ones obtained by random hillclimbing, but have significantly
lower number of edges. This supports our claim that the frequent itemsets indeed contain
information most relevant to the construction of the highest scoring Bayes Net. It is evident
from the results that each of the proposed augmenting algorithms increase the score. We
note however that after augmenting the network with highest-mutual-information edges the
total number of arcs almost doubled with the highest relative improvement in score when
compared to other proposed augmenting techniques. The hillclimbing seems to improve the
score even further though the number of edges is almost quadrupled compared to SBNS.

The final score of the DAG produced by SBNS depends on user-defined support and
maximum Frequent Set size. We have noticed that for Citeseer, IMDB and Institute datasets
lowering support and increasing maximum Frequent Set size results in higher BDeu scores.
Figure 1 shows score fluctuations when varying maximum Frequent Set size given fixed
support for the Citeseer dataset.

6.2.1 Maximum Frequent Set Size

In our experiments we tried different maximum Frequent Set sizes: (mfss = 2...5). The
lower bound mfss = 2 means that we consider only pairs of items and thus the structure
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Figure 1: BDeu scores for Citeseer dataset for different parameterizations of the SBNS

algorithm

Table 4: Average BDeu

scores. (s = 4, mfss = 4; 250,000 random edges considered for

hillclimbing)
dataset | rand hlclmb || SBNS | SBNS+Mle | SBNS+MIe+2"? | S§BN S+MIe+2"¢+hlclmb
citeseer -33.26 -27.466 -27.375 -27.273 -26.962
imdb -121.00 -113.15 -112.45 -112.18 -111.28
institute -11.87 -13.28 -13.18 -13.13 -12.08
drinks -6.72 -7.21 -7.02 -7.01 -6.705

Table 5: Number of links in the resulting nets. (s = 4, mfss = 4; 100,000 random edges
considered for hillclimbing)

dataset | rand hlclmb || SBNS | SBNS+Mle | SBNS+Mle+2"% | SBN S+Mle+2"%+hlclmb
citeseer 88,259 29,004 48,724 53,790 116,558
imdb 112,773 33,434 52,376 57,236 111,281
institute 1,672 346 398 457 1,159
drinks 723 51 123 133 709

learned is based solely on two-way marginal counts. Figure 1 shows that there is an obvious
loss in accuracy when high order interactions are not taken into account. Beyond a maximum
Frequent Set size of 4 the number of Frequent Sets does not increase substantially in these
datasets and hence the behavior of SBNS changes little.

We have to note here, that there is a natural upper bound on the maximum tuple size due
to the sparsity of the datasets. For example, there are 94,016 publications in the Citeseer
database that have 2 authors and only 3,022 that have exactly 6 authors. The potential




number of publications that have 6 authors, given the total number of authors in the database
is 1.8399¢ + 27, so the empirical number is only 1.6626e — 22% of the total. The exponential
drop in the number of occurrences as the size of the tuples increases is shown on Figure 6.2.1.
Hence, we cannot expect a great improvement in the score of the Bayes Net when increasing
the maximum tuple size, since there is not enough support for larger tuples.

12
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Figure 2: Exponential drop in the number of publications as the number of co-authors
increases in the Citeseer Dataset

6.2.2 Support

Lowering support greatly increases the number of Frequent Sets to be considered during
screening. However, it also introduces quite a few interactions between variables that have
low marginal counts. Model fitting in contingency tables in general is sensitive to very low
marginal counts even if they are not zero Here we use BDeu, which is less sensitive to low
counts. Despite this, it seems to be a good idea to keep support relatively large. In our case,
we have tested a few support sizes on smaller datasets and found s = 3,4 to be reasonable
support choices. The overall score of the model seems to be better with s = 3, however it
seems to overfit more as is shown in Table 6.

6.2.3 Overfitting

We used holdout sets to study overfitting. We withheld roughly a third of the dataset in each
case and compared average likelihood per node between the training and testing datasets.
The results are summarized in Table 6. The networks learned using SBNS always score
higher (better) than those learned by hillclimbing on the testing dataset. This indicates that
SBNS algorithm learns better fitting models. As can be seen from Table 6, the difference in
average loglikelihood score for training and testing is in general smaller for hillclimbing. Also,
the average loglikelihood of the testing set is worse than the training sets, indicating some
degree of overfitting. We believe that some overfitting occurs due to the multiple hypothesis
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testing of hundreds of thousands of possible parents. Correction for multiple hypothesis
testing problem (similar to corrections used in other learning algorithms such as (Oates &
Jensen, 1998)) will be incorporated into SBNS in the future.

Table 6: Overfitting testing

dataset train test
citeseer hillclimb | -30.6738 | -31.0127
citeseer s = 3 -23.9227 | -26.3253
citeseer s = 4 -24.1959 | -25.0119
imdb hillclimb | -112.81 | -114.851
imdb s =3 -98.1607 | -110.499
imdb s =14 -100.203 | -107.035

6.2.4 TUnderlying Frequency Distribution

We also note that the algorithm has not performed as well on the Drinks dataset. The dataset
seems to correspond to our sparseness requirements, but there is a major difference in the
frequency distribution between Drinks and other datasets. A plot of frequency distributions
is shown on figure 6.2.4.
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Figure 3: log(Frequency) distributions for all datasets, where count is the number of times
an entity had appeared in the dataset and frequency is number of entities that have appeared
count number of times

It can be observed from the plot that Citeseer, IMDB and Institute datasets that come
from social network type sources exhibit close to power law distributions, whereas Drinks
has a roughly linear dependency between the number of connections per entity and the
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Table 7: Total times for random hillclimbing, SBNS and SBNS+Mle to create a Bayes

Net (in mins). (s =4 mfss = 4)

dataset | rand hillclmb | SBNS | SBNS+Mle

citeseer 171 59.8 87
imdb 193 225.6 252.8

institute .53 .016 017
drinks 37 .016 .017

number of entities with the same number of connections (frequency). It is thus far only
a hypothesis, that our algorithm will show better performance if the dataset were close to
power law distribution.

6.2.5 Time performance

All experiments were conducted on unloaded 2GHz Pentium IV machines with 2GB of RAM.
The total times required to run the algorithm and the time it took random hillclimbing to
create a Bayes Net by adding/removing/reversing 250,000 edges are reported in Table 7.
We also break the total time into segments corresponding to major steps of the algorithm
as reported in Table 8.

Table 8: Time (min) per task for SBNS. (s =4, mfss = 4)

dataset /task | freq sets | Icl strct search | Edump & DAG | MI augment | 2"? degree augment
citeseer 65.49 4.11 2 17.2 97.5
imdb 196.22 15.43 13.93 27.23 22.33
institute .00 .02 .00 .00 .02
drinks .00 .00 .01 .00 .00

The biggest cost is to obtain the frequencies; the time it takes to perform the remaining
operations depends on the number of Frequent Sets that occur more frequently than pre-
defined support. Our experiments have shown that number to be only a small fraction of
the total number of entities (nodes). It is also interesting to note that random hillclimbing is
very fast while the network consists of many small subgraphs, but as soon as the subgraphs
are joined together by new edges, the time increases tremendously due to the complexity
of cycle detection. For example, it takes random hillclimbing on the order of 10 minutes to
add/remove/reverse 250,000 edges, but it takes over 6 hours to perform those operations
given the same number of nodes for 300, 000 edges with relatively small increase in the score.
In that sense, the random graphs might not be exactly random as discussed in (Callaway
et al., 2001).

6.3 Application

One of the important and growing application fields of large Bayes Nets is recommender
systems. The purpose of the service is to provide user with suggestion of products that
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he/she is likely to buy based on their historical preferences. One of the well known and
very successful recommender systems is Amazon. We did not have Amazon data available
to us, but we simulated the query based on the Citeseer dataset. The mapping is as follows:
suppose that the set of co-authors of a paper represents user’s preferences of particular
products. We then learn a Bayes Net based on the available co-authorship information and
query the network with incomplete subsets of authors to predict the most likely selection of
entities (or authors in our case) that completes the given set.

To answer the query we simply calculated the loglikelihoods of the most likely completions
and reported the top n with the highest scores. The set of most likely completions are formed
from ”similar” and ”popular” entities. Entities are considered similar if they are in close
proximity to the query items in the network and the popular items are the ones with high
marginal counts. It is particularly reasonable to make those assumptions in the recommender
system case, as people are more likely to choose something that is close to what they like or
something popular than any randomly picked item.

Here is an example of a query and its completion. The query is a subset of former or
present members of Daphne Koller’s group (DAG): {d koller, | getoor, a pfeffer, b taskar}.
Results are presented in Tables 9 and 10.

Table 9: 3 most likely completions of size 1 for 4 members of the DAG group

completion score

koller friedman pfeffer getoor taskar | -22.523647
koller pfeffer getoor tong taskar -22.694517
koller boyen pfeffer getoor taskar -23.079099

Table 10: 3 most likely completions of size 1 for 4 members of the DAG group
completion score

koller grove halpern pfeffer getoor taskar | -24.065985
koller malik weber pfeffer getoor taskar | -24.335174
koller russell parr pfeffer getoor taskar -24.688802

The suggested completions are in fact people that are either part of or close collaborators
of Daphne Koller’s group, thus by analogy we might expect a set of relevant items to be
predicted by the recommender system using this algorithm. It is interesting to note that in
the example above the one most likely person to complete the given subset is different (Table
9) than the suggestions provided by the algorithm under the assumption of 2 missing people
(Table 10). This observation suggests that there are more complex interactions that could
not be found by systems built on pairwise statistics. The inference took less than a second.
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7 Related Work

An increase in the amounts of collected data has facilitated an interest in modelling massive
datasets. There are several approaches to dealing with large data collections. The most
relevant to our work is the direction of fast learning from sparse data.

Some of the earlier work in this area has concentrated on efficient representation of sparse
data and caching of n-way counts (Moore & Lee, 1998). (Chickering & Heckerman, 1999)
and (Meila, 1999) have noted that computations requiring one-way and pairwise counts
can be sped up significantly when dealing with sparse data using caching and such data
structures as ADTrees (Moore & Lee, 1998). We believe that this body of work has great
potential and thus we build on the ideas introduced in these papers by utilizing the sparse
data representation and low overhead efficient calculation of the marginals.

Using frequent sets when learning Bayes Nets on the local scale was also explored in
(Pavlov et al., 2003). The goal of this work was to answer probabilistic queries on a subset of
variables, thus there was no need to combine local information to obtain the joint distribution
once the query size was estimated. The performance of Bayes Nets learned from a selection
of variables was reported to be worse though close in accuracy to the inferences drawn from
a Bayes Net learned on a full dataset. In (Hollmen et al., 2003) it has been proposed to
integrate Frequent Sets as a local methodology when modelling joint distributions. This
work has shown that mixture models obtained from Frequent Sets using maximum entropy
are more accurate, thus supporting our claim that frequent sets contain important local
information when modelling joint distributions.

One approach to speed up structural search in Bayes Nets for massive datasets has been
to restrict the possible number of parents. The full Sparse Candidate Algorithm is presented
in (Friedman et al., 1999). In its original form it is a method to speed up hillclimbing at the
cost of lower performance, though in practice the performance loss was shown to be not so
great. This work is yet another motivation for us, since structural search on the local scale
inadvertently restricts the number of parents. However, since on the global scale the number
of parents in our Bayesian Network is not limited we perceive it as an improvement on the
original Sparse Candidate algorithm.

Sampling was proposed as one of the techniques to speed up modelling in massive datasets
in (Kaebling, 1990; Maron & Moore, 1997; Hulten & Domingos, 2002; Pelleg & Moore, 2002).
Though an interesting direction it seems to be orthogonal to our approach.

The idea of augmenting Bayes Nets with high mutual information edges between entities
is based on the fact that such dependencies could not be accounted for in frequent sets. The
fast computation used in this work is based on (Meila, 1999).

Since the proposed algorithm does not obtain an optimal network, it could be used as
a structure initialization for other Bayesian Network learning algorithms as described in
(Cooper & Herskovits, 1991; Buntine, 1991; Spiegelhalter et al., 1993; Heckerman et al.,
1995; Moore & Wong, 2003) and other algorithms.
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8 Conclusion

We have presented a tractable solution to the Bayes Net structure search problem in sparse
datasets. Like other researchers, we use Frequent Sets to take advantage of sparseness. Our
main new contribution is to perform structural search on the local level in order to produce
the global model. We propose several techniques to improve the score of the created net.
One of the key improvements is augmentation by edges with high mutual information for
entities that have not co-occurred in the dataset.

We have performed an empirical study of SBNS using two small and two large (over
10° attributes) datasets. We show tractable times while maintaining accuracy better than
hillclimbing, which is the only tractable alternative for learning structure in networks of this
size. Empirical evidence also shows that higher accuracies are achieved without requiring
more complex structures. It seems likely that when it comes to using the Bayes Net for
inference as suggested in Section 1, the relatively small number of edges in such networks
will be advantageous in comparison with networks obtained from hillclimbing.

We believe that SBNS serves two primary purposes. First, it opens new horizons for
modelling joint distributions of massive transactional datasets. Second, it can be viewed as
a novel way to postprocess Frequent Sets in commercial data mining.

Third, we raise the question of structural search that takes into consideration charac-
teristics of the dataset being modelled. Model selection is greatly effected by properties
such as frequency distribution. We believe, that there is immense potential in exploiting
those properties to obtain high accuracy models in a fraction of time required for generic
techniques.

9 Appendix

Here we provide two illustrations to support our claim that the Frequent Sets contain essential
information needed to build a Bayes Net from sparse data. First, we show that in sparse
large datasets positive correlation between two variables is much stronger than negative.
The second shows the advantage of considering Frequent Sets of order higher than 2.

9.1 Frequent Sets are useful

Suppose we have 2 binary variables z and y. Assume our dataset is sparse and has R records,
where R is very large.

Let us look at the correlation coefficient p of the two variables. Under the multinomial
sampling model the observed correlation coefficient

NagNgy — NayNog
r =

v/ Neit Noy NigNoy,
is the maximum likelihood estimate of p (Bishop et al., 1977).

(4)
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Case 1: Two entities have co-occurred with each other v times and kv times separately
elsewhere in the dataset, where £ — 0. Then

v(R — 2kv — v) — (kv)?

V(v + kv)2(R — kv — v)?
1 kv

1+k R—kv—v

~1, as k—0 (5)

In fact, only as k& — \/j — 1 (which is clearly a violation of the sparsness assumption),

the correlation between x and y becomes significant.

Case 2: Two entities have occurred with frequency Kv but never with each other. K
in this case could be rather large, but still conforming to the sparseness assumption, i.e.
Kv < R, then r = — Rl_l ~ 0. Note that when K = k + 1, we have the same frequency of

Kv
occurrence as in Case 1, yet only if K — % the correlation would become significant.

This means that assuming sparseness, positive correlations are much stronger than neg-
ative ones. We have obtained the same results comparing BDeu scores for x — y models for
the above 2 cases. Thus, when learning a Bayes Net we are much more likely to increase the
score by screening Frequent Sets first.

9.2 Benefit of higher order Frequent Sets

Suppose we have 3 variables A, B and C. Let their counts be Ny = 971, Ng = 936, Nc =
156, Nap = 96, Nac = 97, Ngc = 51, Nagc = 25. Then, if we only consider pairs of items,
we will find that A and B as well as A and C are independent and model B — (' is the
best DAG for the pair BC' according to the BDeu score. This results in DAG on Figure
4(a). However, when we look at the triplet, we find that the model on Figure 4(b) is the one
that fits the data best. This shows that a model that considers only two-way counts may be
inaccurate. Similar analysis can be done for higher order interactions.

@Q

<

Figure 4: Best fitting models when considering (a) only pairs of items, and (b) triples.
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