
Parallel Batch-Dynamic Algorithms
Dynamic Trees, Graphs, and Self-Adjusting Computation

Daniel Anderson

CMU-CS-23-120

June 2023

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
Guy Blelloch, Chair

Phillip Gibbons
Daniel Sleator

Julian Shun (MIT)
Valerie King (University of Victoria)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2023 Daniel Anderson

This research was sponsored by the National Science Foundation under award numbers 1408940, 1910030,
1901381, and 2119352. The views and conclusions contained in this document are those of the author and

should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.



Keywords: Dynamic algorithms, Parallel algorithms, Graph algorithms



Abstract
The defining feature of many modern large-scale computer systems is the sheer
amount of data that they generate and process. Google’s MapReduce clusters
process over twenty petabytes of data per day, and Facebook has reported pro-
cessing over 4 petabytes of data per day and running over one million map reduce
computations over this data. Modern systems for processing this kind of data
make extensive use of parallel and distributed computation to achieve the neces-
sary level of throughput. An important property of the datasets involved in such
computations, however, is that they are not static. Rather, they are frequently
evolving. Large social networks, for example, undergo rapid changes; users are
added, and links between uses are created and deleted rapidly, but each such
update affects a relatively tiny portion of the data.

This thesis explores a relatively under-explored area of algorithm design in-
tended to tackle these kinds of problems: parallel batch-dynamic algorithms.
Classic algorithms for handling dynamic data support a single update at a time,
but this model is insufficient for handling the scale of modern rapidly changing
datasets, and furthermore yields little room to exploit parallelism within the up-
dates. A batch-dynamic algorithm consumes multiple updates at a time, which
allows for increased throughput and more opportunities for parallelism.

In the first part of the thesis, we will design algorithms for parallel batch-
dynamic trees based on sequential Rake-Compress Trees (RC Trees). In the second
part of this thesis, we will design algorithms for batch-dynamic graph connec-
tivity and batch-incremental minimum spanning trees. Then, in Part Three, we
show that batch-dynamic algorithms can be used as ingredients in designing
highly-efficient parallel static algorithms. Using our parallel Rake-Compress Tree
data structure as an ingredient, we obtain the first ever work-efficient parallel
algorithm for minimum cuts.

The final part of this thesis will explore the implementation of systems for
processing batch-dynamic data. One factor that hampers the adoption of ef-
ficient dynamic algorithms in practice is that they are often extremely compli-
cated and difficult to implement. To address this issue in the sequential setting,
self-adjusting computation is a technique for automatically dynamizing static
algorithms to create dynamic ones. This lowers the implementation burden on
programmers. In this thesis, we show that self-adjusting computation can be gen-
eralized to automatically dynamize parallel algorithms, allowing programmers
to reap the benefits of parallel batch-dynamic algorithms without the burden of
implementing them from scratch.



iv



Acknowledgments
First and foremost, this thesis would not have been possible without the excellent
advising of Professor Guy Blelloch. I came to CMU in 2018 not knowing a single
thing about parallel algorithms, so the fact that I made it this far is a testament
to his patience, knowledge, and encouragement. Guy was truly the ideal Ph.D.
advisor; he was always available and willing to help with anything, has an ency-
clopedic knowledge of parallel algorithms, and allowed me to pursue whatever I
was interested in. In particular, he was very supportive of my desire to seek out
extra teaching responsibilities in preparation for a teaching-focused career.

Throughout my candidature, I have also been lucky enough to work with many
other wonderful collaborators. Thanks to Pierre Le Bodic, Gregor Hendel, Merlin
Viernickel, Umut Acar, Laxman Dhulipala, Sam Westrick, Kanat Tangwongsan,
Marc Pfetsch, Ticha Sethapakdi, Stefanie Mueller, Hao Wei, Mike Rainey, Yihan
Sun, and Magdalen Dobson. Many extra thanks are owed to Jérôme Droniou
and Pierre Le Bodic at Monash University who mentored me in research before I
applied to graduate school. Without their mentorship, support, and the opportu-
nities they provided me, I would not have started a Ph.D. let alone completed one.
The members of my thesis committee also deserve a great deal of gratitude for
being willing to read this thesis and for providing useful feedback on improving
it. Julian, Valerie, Phil, and Danny, thank you for your advice and contributions.

To Danny Sleator, David Woodruff, Elaine Shi, and all of the many TAs that
I worked with over the years, thank you for allowing me to help teach 15-451
and for helping me achieve my dream of becoming a teaching professor. It was
a dream come true to be able to work on such a great course and I am beyond
excited that I will get to continue doing so.

To my friends that I have lived with over the past five years, thank you for
finding us a place to call home and helping me navigate this strange new country.
Siva, David, Arjun, Jalani, Victor, and Sam, you made Pittsburgh feel like home.
Thanks to David Wajc for inviting me to share an office with you and for valiantly
defending it against attempts to add another desk to it. Thanks to Goran Zuzic
for being my gym buddy and making me wake up at 7 am for it, which would not
have happened otherwise. An especially big thank you to everyone involved in
the SCS Graduate Student Musicals over the years. They were some of the most
fun experiences of my time at CMU. To all of my friends back home in Australia,
thank you for welcoming me back with open arms every time I came to visit, even
if it wasn’t as often as I hoped.

To my mother and aunt, Diane and Jill, thank you for being willing to travel
ten thousand miles to visit me. Last but not least, thank you to my wonderful
girlfriend Qianou. You helped to turn what should have been the most stressful
year of my life, in which I taught a class while applying for faculty jobs while
writing this thesis, into the most exciting and happy year of my life.



vi



Contents

1 Introduction and Overview 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Parallel Rake-Compress Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Parallel Batch-Dynamic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Parallel Minimum Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.4 Parallel Self-Adjusting Computation . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Publications and Attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Broader Outlook and Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Preliminaries 15
2.1 Models of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Models of Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Parallel Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

I Parallel Rake-Compress Trees

3 Parallel Rake-Compress Trees 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Rake-Compress Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Parallel Tree Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 From Tree Contraction to RC-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Representing RC-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Balanced RC-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.5 Rooted RC-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Parallel Batch-Dynamic RC-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Performing Structural Updates to RC-Trees . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Handling Trees of Arbitrary Degree . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Maintaining Augmented Values in RC-Trees . . . . . . . . . . . . . . . . . . . 38

3.4 Decomposition Properties and Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 The Cluster Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 The Common Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.3 Path Decompositions and Queries . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



3.4.4 Subtree Decompositions and Queries . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Batch Queries on RC-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Batch Connectivity Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 Batch Subtree Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.3 Batch LCA Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.4 Batch Path Queries with Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.5 Batch Path-Minimum/Maximum Queries . . . . . . . . . . . . . . . . . . . . . 57
3.5.6 Batch Nearest Marked Vertex Queries . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Randomized Batch-Dynamic Parallel Tree Contraction 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Round-Synchronous Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Algorithmic Dynamization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.2 Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Dynamizing Tree Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1 Analysis of Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.2 Analysis of Dynamic Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Deterministic Batch-Dynamic Parallel Tree Contraction 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 A Deterministic Contraction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 A Deterministic Dynamic Update Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Round and Tree-Size Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Analysis of the Static Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4.3 Analysis of the Update Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.1 A Lower Span Static Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.2 Eliminating Concurrent Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.3 A Lower Span Dynamic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.4 A Lower Span Randomized Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

II Parallel Batch-Dynamic Graph Algorithms

6 Parallel Batch-Dynamic Graph Connectivity 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 The Sequential Algorithm and Data Structure . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Parallel Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



6.3.1 Adjacency Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.2 Augmented Euler-Tour Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 A Simple Parallel Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4.1 Connectivity Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4.2 Inserting Batches of Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.4.3 Deleting Batches of Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.4 Cost Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5 A Faster Parallel Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.5.1 The Interleaved Deletion Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.5.2 Cost Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 Analysis of Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Parallel Batch-Incremental Minimum Spanning Trees 127
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 The Compressed Path Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2.1 A Parallel Algorithm for Compressed Path Trees . . . . . . . . . . . . . . . . . 130
7.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3 Batch-Incremental Minimum Spanning Forest . . . . . . . . . . . . . . . . . . . . . . . 134
7.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.4 Applications to the Sliding Window Model . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.4.1 Graph Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.4.2 Bipartiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.4.3 Approximate MSF Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.4.4 k -Certificate and Graph k -Connectivity . . . . . . . . . . . . . . . . . . . . . . 140
7.4.5 Cycle-Freeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.4.6 Graph Sparsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.4.7 Connection to Batch-Incremental Algorithms . . . . . . . . . . . . . . . . . . 143

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

III Parallel Minimum Cuts

8 Batch-Dynamic Trees with Mixed Queries and Updates 147
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 RC-Simple Operation Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.3 Batched Mixed Operations Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.4 Path Updates and Path/Subtree Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9 Parallel Minimum Cuts 159
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.2 Producing the Tree Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.3 Parallel log n-Approximate Minimum Cut . . . . . . . . . . . . . . . . . . . . . . . . . . 163

ix



9.3.1 Mixed Connectivity and Component Weight . . . . . . . . . . . . . . . . . . . 163
9.3.2 Parallel k -Approximate Minimum Cut . . . . . . . . . . . . . . . . . . . . . . . . 165

9.4 Sampling, Certificates, and Low-Weight Cuts . . . . . . . . . . . . . . . . . . . . . . . . 166
9.4.1 Transformation to Bounded Edge Weights . . . . . . . . . . . . . . . . . . . . . 166
9.4.2 Sampling Binomial Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 167
9.4.3 Subsampling p -Skeletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.4.4 Parallel Weighted Sparse Certificates . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.4.5 Parallelizing Matula’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.5 Parallel O (1)-Approximate Minimum Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.6 Finding Minimum 2-respecting Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.6.1 Descendant Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
9.6.2 Independent Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

IV Parallel Self-Adjusting Computation

10 Parallel Self-Adjusting Computation 181
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.1.1 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
10.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
10.3 Change Propagation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10.4.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.4.2 Analyzing the Computation Distance of Algorithms . . . . . . . . . . . . . . 193

10.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
10.5.1 Reader Set Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
10.5.2 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
10.5.3 Supporting Dynamically-Sized Inputs . . . . . . . . . . . . . . . . . . . . . . . . 195

10.6 Benchmarks and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
10.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
10.6.2 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

11 Conclusion 205

Bibliography 207

x



Chapter 1
Introduction and Overview

1.1 Introduction
The defining feature of many modern large-scale computer systems is the sheer amount
of data that they generate and process. In 2008, it was reported that Google’s MapReduce
clusters process over twenty petabytes of data per day. Facebook has reported processing
over 4 petabytes of data per day and running over one million map reduce computations
over this data. The dawning of the era of “big data” led to countless systems being developed
that attempt to make processing information of this scale feasible. Such examples include
MapReduce [49], Dryad [105], Pregel [128], and Dremel [131], among many more. These
systems make extensive use of parallel and distributed computing to achieve high throughput.
A branch of theory has also emerged that attempts to study algorithms suitable for the
MapReduce paradigm, called the Massively Parallel Computation (MPC) model [119].

These systems are primarily designed for processing static, i.e., unchanging data; any
update to the dataset will require desired queries and analyses to be re-ran from scratch.
However, most of today’s largest datasets are not static, but are frequently evolving. Large
social networks and the web hyperlink graph are two ubiquitous examples of massive data sets
that undergo rapid changes. Motivated by the dynamic nature of large data sets, researchers
and practitioners have worked on extending these systems with support for handling dynamic
updates to the data. Examples include MapReduce Online [43], Incoop [23], Nectar [85], and
Naiad [136]. Although these systems exhibit strong empirical performance, the theoretical
properties of such systems and the algorithms behind them remain underexplored.

In this thesis, we will apply modern theoretical techniques for parallel computing to the
design, analysis, and implementation of parallel systems for processing large-scale dynamic
datasets, with strong guarantees on their performance. The key idea that will underpin
our efforts is that of batch-dynamic algorithms, which, unlike classic dynamic algorithms,
process updates to a dataset in batches, which both has the potential to reduce the work and
to create opportunities for parallelism. While early work in the literature has studied parallel
batch-dynamic algorithms (e.g., [61, 62, 109, 141, 142, 159]), these algorithms all perform
work that is polynomial in the size of the total dataset, regardless of the size of the updates.
In our work, we focus on designing work-efficient parallel batch-dynamic algorithms, which
perform work that is polynomial in the update size and just polylogarithmic in the total size
of the data. We will also see how batch-dynamic algorithms can be used as a tool to design
efficient algorithms for static problems.

At a high level, this thesis will explore four main areas. First, we will design parallel
batch-dynamic algorithms for dynamic trees (Chapter 3), with both randomized (Chapter 4)

1



and deterministic (Chapter 5) updates. Then, we will apply dynamic trees to solve two
fundamental graph problems in the batch-dynamic setting, fully dynamic graph connectivity
(Chapter 6) and incremental minimum spanning trees (Chapter 7). Thirdly, we will apply
our data structure for batch-dynamic trees to the classic minimum cut problem, obtaining
the first ever work-efficient parallel algorithm for the problem (Chapters 8–9). Lastly, we will
implement a system for processing dynamic data sets in parallel, where we design the first
theoretically efficient system for parallel self-adjusting computation (Chapter 10).

1.2 Overview of Results
This thesis presents several results on parallel batch-dynamic algorithms, with applications
to the minimum cut problem, streaming algorithms, and self-adjusting computation. Here,
we give an overview of the problems we solve and a summary of our primary results.

1.2.1 Parallel Rake-Compress Trees
The dynamic trees problem, first posed by Sleator and Tarjan [163] is to maintain a forest
of trees subject to the insertion and deletion of edges, also known as links and cuts. Dy-
namic trees are used as a building block in a multitude of applications, including maximum
flows [171], dynamic connectivity and minimum spanning trees [63], and minimum cuts [114],
making them a fruitful line of work with a rich history.

There are many efficient (O (log n ) time per operation) dynamic tree algorithms, including
Sleator and Tarjan’s link/cut tree [163, 164], Henzinger and King’s Euler-Tour Trees [96], Fred-
erickson’s topology trees [63, 64, 65], Holm and de Lichtenberg’s top trees [16, 98, 167], and
Acar et al.’s Rake-Compress Trees (RC-Trees) [4, 5]. Most of these algorithms are sequential
and handle single edge updates at a time.

In addition to handling updates, a dynamic tree algorithm should support some kinds of
queries. Examples of queries include asking whether two vertices are connected (is there a
path between them in the forest), asking for the sum of the edge weights in a given subtree,
asking for the minimum weight edge on a given path, or asking for the lowest common
ancestor (LCA) of two vertices.

Since they already perform such little work, there is often little to gain by processing single
updates in parallel, hence parallel applications often process batches of updates. We are
therefore concerned with the design of parallel batch-dynamic algorithms. Tseng et al. [174]
develop Batch-parallel Euler-tour trees, which can maintain an Euler-tour tree subject to
batch updates. A comparison of existing dynamic tree algorithms is given in Table 1.1.

Previous implementations of RC-Trees are all based on applying self-adjusting compu-
tation to randomized parallel tree contraction [4, 5], i.e., a static tree contraction algorithm
is implemented in a framework that automatically tracks changes to the input values, and
selectively recomputes procedures that depend on changed data. This results in the RC-Tree
that would have been obtained if running the static algorithm from scratch on the updated
data. Our work makes two contributions to bring RC-Trees into the parallel setting.

2



Parallel Operations Queries Supported

Updates Queries Path Subtree Nonlocal

Link/cut trees ✓
(Parallel) Euler-tour trees ✓✓ ✓✓ ✓✓
Top trees ✓ ✓ ✓ ✓
Rake-Compress trees ✓ ✓ ✓ ✓
Parallel Rake-Compress trees (our work) ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

Table 1.1: The known capabilities of various dynamic tree algorithms. Nonlocal queries are opera-
tions such as computing LCAs and diameters. Single ticks indicate that the operation is supported
and takes O (log n ) time. Double ticks indicate that the data structure supports a batch of k opera-
tions in O
�

k log
�

1+ n
k

��

work and O (log n ) span.

Randomized Parallel RC-Trees

We propose a framework for parallel self-adjusting computation that algorithmically dy-
namizes a certain class of static parallel algorithms to obtain efficient parallel batch-dynamic
algorithms. We start by defining the notion of a round-synchronous algorithm. A round-
synchronous algorithm consists of a sequence of rounds, where a round executes in parallel
across a set of processes, and each process runs a sequential round computation reading and
writing from shared memory and doing local computation.

Dynamization works by running the round-synchronous algorithm while tracking all
write-read dependencies—i.e., a dependence from a write in one round to a read in a later
round. Then, whenever a batch of changes are made to the input, change propagation propa-
gates the changes through the original computation, only rerunning round computations
if the values they read have changed. Depending on the algorithm, changes to the input
could drastically change the underlying computation, introducing new dependencies, or
invalidating old ones. To capture the cost of running the change propagation algorithm
for a particular parallel algorithm and class of updates we define a computational distance
between two computations, which corresponds to the total work of the round computations
that differ in the two computations.

Our dynamic trees algorithm is a parallel version of the sequential RC-Tree data structure
obtained by applying our change propagation algorithm to the parallel tree contraction
algorithm of Miller and Reif [132]. This approach generalizes the sequential RC-Tree algorithm
to allow for batches of edge insertions or deletions, work efficiently in parallel. A challenge,
and one of our main contributions, is in analyzing the computation distance incurred by
batch updates in the parallel batch-dynamic setting.

Prior state of the art One can maintain a batch-dynamic Euler-tour tree of a dynamic
tree on n vertices subject to k edge insertions or k edge deletions in O

�

k log
�

1+ n
k

��

work in
expectation and O (log n ) span w.h.p. [174].

3



Theorem 1 (Randomized RC-Trees). There is a randomized parallel batch-dynamic
algorithm that maintains a balanced RC-Tree of a bounded-degree forest subject to
batches of k edge updates (insertions, deletions, or both) in O

�

k log
�

1+ n
k

��

work in
expectation and O (log n ) span w.h.p.

The update bounds of our data structure match those of Euler-tour trees, but we will see
below that RC-Trees can support substantially more queries in the same work and span.

Deterministic Parallel RC-Trees
We describe a deterministic direct update algorithm for parallel RC-Trees that is not based
on self-adjusting computation. To do so, we describe a variant of tree contraction that
deterministically contracts a maximal independent set of degree one and two vertices each
round. When an update is made to the forest, we identify the set of affected vertices (this part
is similar to change propagation) and then greedily update the tree contraction by computing
a maximal independent set of affect vertices and updating the contraction accordingly. The
key insight is in carefully establishing the criteria for vertices being affected such that the
update is correct, and bounding the number of such vertices so that it is efficient. This results
in the first deterministic implementation of RC-Trees, either sequential or parallel. This result
is parallelisable and achieves the same work-efficient update bounds as the randomized
algorithm, at the cost of a slightly higher span.

Prior state of the art All efficient parallel algorithms for the dynamic trees problem were
randomized, and all implementations of RC-Trees were randomized. Sequentially, one can
support dynamic trees deterministically using Sleator and Tarjan’s link/cut tree [163, 164],
Henzinger and King’s Euler-tour trees [96], Frederickson’s topology trees [63, 64, 65], and Holm
and de Lichtenberg’s top trees [16, 98, 167] in O (log n ) time per operation.

Theorem 2 (Deterministic RC-Trees). There is a deterministic parallel batch-dynamic
algorithm that maintains a balanced RC-Tree of a bounded-degree forest subject to
batches of k edge updates (insertions, deletions, or both) in O

�

k log
�

1+ n
k

��

work and

O
�

log(n ) log(c )k
�

span for any constant c .

Batch queries on RC-Trees
RC-Trees have been shown to support a large range of queries including connectivity, path
queries, subtree queries, lowest common ancestors (LCAs), tree diameter, tree center, and
nearest marked vertex, all in O (log n ) time [5]. A subtree query sums the weights of every
vertex/edge in a given subtree with respect to some associative and commutative operation.
Similarly, a path query sums the weights of every vertex/edge on a given path with respect to
some associative and commutative operation.

With batch-dynamic RC-Trees comes the opportunity to also support batch queries which
solve a batch of queries in parallel in less work than solving each one individually.

4



Prior state of the art Batch-parallel Euler-tour trees [174] support batches of k connectivity
queries or k subtree queries in O

�

k log
�

1+ n
k

��

work in expectation and O (log n ) span w.h.p.
Sequentially, RC-Trees can evaluate single connectivity queries, subtree queries, path queries,
diameters, centers, medians, LCAs, and nearest marked vertices in O (log n ) time [5].

Theorem 3 (Batch queries). A balanced RC-Tree can be augmented to support the follow-
ing operations in O

�

k +k log
�

1+ n
k

��

work (in expectation if the RC-Tree is randomized)
and O (log n ) span (w.h.p. if the RC-Tree is randomized) for a batch of k queries
• Batch connectivity queries
• Batch subtree queries over vertex/edge weights from any commutative semigroup
• Batch path queries over vertex/edge weights from any commutative group
• Batch path queries for the lightest or heaviest edge on a path
• Batch LCA queries with respect to any possible root of the underlying tree
• Batch nearest marked vertex queries

Note that we do not prove results for batch diameters, centers, or medians, because those
queries do not benefit from batching in any way since they are properties of their entire tree,
and hence there is only one possible query and answer for any tree. Our results therefore
provide batched versions of all known RC-Tree applications that are amenable to batching.

1.2.2 Parallel Batch-Dynamic Graphs
Countless papers have been written on dynamic algorithms, i.e. algorithms that can efficiently
update their output when given an update to their input. Far less explored is the intersection
between dynamic algorithms and parallel algorithms. In principle, the two should be highly
compatible; algorithms suitable for parallelization tend to be those that can be broken into
composable independent pieces, as this facilitates parallelism. Similarly, algorithms that can
be decomposed into many independent pieces are often prime candidates for dynamization,
since, if a small change is made to the input, it is likely that only a small number of the
indpendent pieces are affected, removing the need to re-run the entire computation. There
remains, however, one problem: if a small change is made to the input to an efficient dynamic
algorithm, there is unlikely to be enough work to distribute among multiple processors to
take full advantage of parallelism.

An elegant and highly practical approach to overcome this limitation is to consider up-
dates in batches. Instead of responding to individual updates one at a time like classical
dynamic algorithms, batch-dynamic algorithms respond to a batch of updates all at once. The
concept of parallel batch-dynamic algorithms itself is not quite new, and a few works exist,
particularly on graph problems such as minimum spanning trees [61]. These algorithms,
however, typically targeted the classic PRAM model of computation, with the goal of mini-
mizing the parallel time of the computation, paying no attention to the work, or equivalently,
the number of processors required to perform the work. Such algorithms tend to be less
practical than those that consider both the work and span of the algorithm [25].

Work-efficient parallel algorithms are those that asymptotically perform no more work
than their sequential counterparts, and serve as a good design guideline for algorithms that

5



should perform well in practice [25] and use less energy. The focus of this part of the thesis
is thus on developing work-efficient parallel batch-dynamic algorithms. That is, given a
sequential dynamic algorithm on a problem of size n that processes a single update in time
O ( f (n )), we aim to show that a parallel batch-dynamic algorithm can process a batch of
updates in at most O (k f (n ))work and O (polylog n ) span. We show several elegant results
in which the total work of a batch-dynamic algorithm can even be asymptotically less than
O (k f (n )) by eliminating redundancies that would be present if simply performing the single-
update algorithm k times.

In this thesis, we will design parallel batch-dynamic algorithms for two of the most
fundamental and well studied graph problems: connectivity and minimum spanning trees.

Parallel batch-dynamic connectivity
Computing the connected components of a graph is a fundamental problem that has been
studied in many different models of computation [14, 17, 100, 155, 160, 168]. The connectivity
problem takes as input an undirected graph G and requires an assignment of labels to vertices
such that two vertices have the same label if and only if they are in the same connected
component. The dynamic version of the problem requires maintaining a data structure over
an n vertex undirected graph that supports insertions and deletions of edges, and queries of
whether two vertices are in the same connected component. Despite the large body of work
on the dynamic connectivity problem over the past two decades [55, 95, 96, 100, 103, 111,
120, 139, 172, 173, 185, 186], little is known about batch-dynamic connectivity algorithms
that process batches of queries and updates, either sequentially or in parallel.

The starting point of our algorithm is the classic Holm, de Lichtenberg and Thorup
(HDT) dynamic connectivity algorithm [100]. Like nearly all existing dynamic connectivity
algorithms, the HDT algorithm maintains a spanning forest certifying the connectivity of the
graph. The algorithm maintains a set of log n nested forests under two carefully designed
invariants. The forests are represented an Euler tour (ET) tree [96, 135].

The main challenge in a dynamic connectivity algorithm is to efficiently find a replacement
edge, or a non-tree edge going between the two disconnected components after deleting a tree
edge. The key idea of the HDT algorithm is to organize the spanning-forest of the graph into
log n levels of trees. The top-most level of the structure stores a spanning forest of the entire
graph, and each level contains all tree-edges stored in levels below it. The algorithm ensures
that the largest size of a component at level i is 2i . Using these invariants, the algorithm is
able to cleverly search the tree edges so that each non-tree edge is examined at most log n
times as a candidate replacement edge. The main idea is to store each non-tree edge at a
single level (initially the top-most level), and push the edge to a lower level each time it is
unsuccessfully considered as a replacement edge. Since there are log n levels, and the cost of
discovering, processing, and removing an edge from each level using ET-trees is O (log n ), the
amortized cost of the HDT algorithm is O (log2 n ) per edge operation.

A challenge, and sequential bottleneck in the HDT algorithm is the fact that it processes
each non-tree edge one at a time—a property which is crucial for achieving good amortized
bounds. Aside from hindering parallelism, processing the edges one at a time eliminates
any potential for improved batch bounds, since finding the representative of the endpoints

6



of an edge costs O (log n ) time per query. Therefore, to obtain an efficient batch or parallel
algorithm we must examine batches of multiple non-tree edges at a time, while also ensuring
that we do not perform extra work that cannot be charged to level-decreases on an edge.
Our approach is to use a doubling technique, where we examine sets of non-tree edges with
geometrically increasing sizes.

Another challenge is that processing a batch of deletions can shatter a component into
multiple disconnected pieces. Since the HDT algorithm deletes at most a single tree edge per
deletion operation, it handles exactly two disconnected pieces per level. In contrast, since we
delete batches of edges in our batch-dynamic algorithm, we may have many disconnected
pieces at a given level, and must search for replacement edges reconnecting these pieces.
Our algorithm searches for a replacement edge from each piece that is small enough to be
pushed down to the next lower level.

Prior state of the art One can maintain the connected components of a dynamic graph on
n vertices subject to k edge insertions in O (n log(m/n ))work and O (log n log(3)n log(2)(m/n ))
span, and k edge updates in O (n log(m/n )min{k , f }) work and O (log n log(3)n log(m/n ))
span [61]. Sequentially, single edge updates can be processed in O (log n (log log n )2) expected
amortized time [103], O (log2 n/ log log n ) deterministic amortized time [185], determinis-
tically in O
�p

n (log log n )2/log n
�

worst-case time [120], or O (log4 n ) time for worst-case
randomized updates with Monte-Carlo queries (queries correct w.h.p.) [75, 182].

Theorem 4 (Parallel batch-dynamic connectivity). There is a connectivity algorithm
which processes batches of k edge insertions and deletions in O

�

k log n log
�

1+ n
∆

��

ex-
pected amortized work where∆ is the average batch size of all deletion operations. The
cost of connectivity queries is O

�

k +k log
�

1+ n
k

��

expected work and O (log n ) span w.h.p.
for a batch of k queries. The span to process a batch of edge insertions and deletions is
O (log n ) and O (log3 n )w.h.p. respectively.

Parallel batch-incremental minimum spanning trees
Computing the minimum spanning tree (MST) of a weighted undirected graph is a classic
and fundamental problem that has been studied for nearly a century, going back to early
algorithms of Borůvka [31], and Jarník [108] (later rediscovered by Prim [148] and Dijkstra
[54]), and later, the perhaps more well-known algorithm of Kruskal [125]. The MST problem
is, given a connected weighted undirected graph, to find a set of edges of minimum total
weight that connect every vertex in the graph. More generally, the minimum spanning forest
(MSF) problem is to compute an MST for every connected component of the graph. The
dynamic MSF problem is to do so while responding to edges being inserted into and deleted
from the graph. The incremental MSF problem is a special case of the dynamic problem in
which edges are only inserted.

The key ingredient in our batch-incremental MSF data structure is a data structure for
dynamically producing a compressed path tree. Given a weighted tree with some marked

7



vertices, the compressed path tree with respect to the marked vertices is a minimal tree on
the marked vertices and some additional “Steiner vertices” such that for every pair of marked
vertices, the heaviest edge on the path between them is the same in the compressed tree as
in the original tree. That is, the compressed path tree represents a summary of all possible
pairwise heaviest edge queries on the marked vertices. An example of a compressed path
tree is shown in Figure 1.1. More formally, consider the subgraph consisting of the union
of the paths between every pair of marked vertices. The compressed path tree is precisely
this subgraph but with all of the non-marked vertices of degree at most two spliced out. To
produce the compressed path tree, we leverage our parallel RC-Trees from Chapter 3.

10

2

5 8

6

3

9

4
2

7

1

12

5

4

3

A

B

C

D

E

(a) A weighted tree, with some important vertices
marked (in gray). The paths between the marked
vertices are highlighted.

A

B

C

D

E

6

10

9 7

12

3

(b) The corresponding compressed path tree.
The edges are weighted to represent the heavi-
est edge on the corresponding path.

Figure 1.1: A weighted tree and its corresponding compressed path tree with respect to some
marked vertices.

Given a compressed path tree for each component of the graph, our algorithm follows
from a generalization of the classic “cycle rule” (or “red rule”) for MSTs, which states that
given a heaviest edge on a cycle in a graph, there exists an MST that doesn’t contain it. This
fact is used to produce the efficient O (log(n )) time solution to the sequential incremental MSF
problem [171]. To handle a batch of edge insertions, our algorithm computes the compressed
path tree with respect to their endpoints which, in a sense, generalizes the red rule, because it
represents the heaviest edges on all pairwise paths, and hence all possible cycles between the
newly inserted edges. More specifically, our algorithm takes the compressed path trees and
inserts the new batch of edges into them, and computes the MSF of the resulting graph. For
the MSF, we can use the algorithm of Cole et al. [42], which is linear work in expectation and
logarithmic span w.h.p., which in turn is based on the linear time sequential algorithm [117].
Since the compressed path tree has size O (k ), this can be done efficiently. We then show that
the edges selected by this MSF can be added to the MSF of the main graph, and those that
were not selected can be removed, correctly updating the MSF.

Prior state of the art One can maintain a dynamic minimum spanning forest on n vertices
subject to k edge insertions in O (n 2/3(k+log(m/n )))work and O (k+log(m/n ) log(n )) span [45].
Sequentially, single edge insertions can be processed in O (log n ) time [171].

8



Theorem 5 (Batch-incremental MSF). There exists a data structure that maintains the
MSF of a weighted undirected graph that can insert a batch of k edges into a graph with
n vertices in O

�

k log
�

1+ n
k

��

work in expectation and O (log2 n ) span w.h.p.

1.2.3 Parallel Minimum Cut
The minimum cut problem is one of the most classic problems in graph theory and algorithms.
The problem is to find, given an undirected weighted graph G = (V , E ), a nonempty subset of
vertices S ⊂V such that the total weight of the edges crossing from S to V \S is minimized.
Early approaches to the problem were based on reductions to maximum s -t flows [82, 92].
Several algorithms followed which were based on edge contraction [113, 116, 137, 138]. Karger
was the first to observe that tree packings [140] can be used to find minimum cuts [114]. In
particular, for a graph with n vertices and m edges, Karger showed how to use random
sampling and a tree packing algorithm of Gabow [67] to generate a set of O (log n ) spanning
trees such that, w.h.p., the minimum cut crosses at most two edges of one of them. A cut that
crosses at most k edges of a given tree is called a k -respecting cut. To complete the algorithm,
Karger gives an O (m log2 n )-time algorithm for finding minimum 2-respecting cuts, yielding
an O (m log3 n )-time algorithm for minimum cut. Karger also gives a parallel algorithm for
minimum 2-respecting cuts in O (n 2)work and O (log3 n ) depth.

Until very recently, these were the state-of-the-art sequential and parallel algorithms for
the weighted minimum cut problem. A new wave of interest in the problem has recently
pushed these frontiers. Geissmann and Gianinazzi [71] design a parallel algorithm for mini-
mum 2-respecting cuts that performs O (m log3 n )work in O (log2 n ) depth. Their algorithm
is based on parallelizing Karger’s algorithm by replacing a sequential data structure for the
so-called minimum path problem, based on dynamic trees, with a data structure that can
evaluate a batch of updates and queries in parallel. Their algorithm performs just a factor of
O (log n )more work than Karger’s sequential algorithm, but substantially improves on the
work of Karger’s parallel algorithm.

Soon after, a breakthrough from Gawrychowski, Mozes, and Weimann [68] gave a random-
ized O (m log2 n ) algorithm for minimum cut. Their algorithm achieves the O (log n ) speedup
by designing an O (m log n ) algorithm for finding the minimum 2-respecting cuts, which was
the bottleneck of Karger’s algorithm. This is the first result to beat Karger’s seminal algorithm
in over 20 years.

In this work, we will combine ideas from Gawrychowski et al. and Geissmann and Gi-
aninazzi with several new techniques to close the gap between the parallel and sequential
algorithms. We achieve this using a combination of results that may be of independent
interest. Firstly, we design a framework for evaluating mixed batches of interleaved updates
and queries on trees work efficiently in low depth. This algorithm is based on our parallel
RC-Trees (Chapter 3). Roughly, we say that a set of update and query operations implemented
on an RC-Tree is simple if the updates maintain values at the leaves that are modified by an
associative operation and combined at the internal nodes, and the queries read only the
nodes on a root-to-leaf path and their children. Simple operation sets include updates and

9



queries on path and subtree weights. This result improves on Geissmann and Gianinazzi [71]
who give an algorithm for evaluating k path-weight updates and queries in Ω(k log2 n )work.

Next, we design a faster parallel algorithm for approximating minimum cuts, which is
used as an ingredient in producing the tree packing used in Karger’s approach. To achieve this,
we design a faster sampling scheme for producing graph skeletons, leveraging recent results
on sampling binomial random variables, and a transformation that reduces the maximum
edge weight of the graph to O (m log n )while approximately preserving cuts.

Lastly, we show how to solve the minimum 2-respecting cut problem in parallel, using a
combination of our new mixed batch tree operations algorithm and the use of RC-Trees to
efficiently perform a divide-and-conquer search over the edges of the 2-constraining trees.

Prior state of the art The minimum cut of a graph can be computed w.h.p. in parallel with
O (m log4 n )work and O (log3 n ) span [71], or sequentially in O (m log2 n )work [68].

Theorem 6. The minimum cut of a weighted undirected graph can be computed w.h.p.
in O (m log2 n )work and O (log3 n ) span.

1.2.4 Parallel Self-Adjusting Computation
Self-adjusting computation is an approach to automatically, or semi automatically, convert
a (suitable) static algorithm to a dynamic one [1, 2, 3, 4, 36, 50, 90, 150]. Most often, self-
adjusting computation is implemented in the form of a change propagation algorithm. The
idea, roughly, is to run a static algorithm while keeping track of data dependencies. Then when
an input changes (e.g. adding an edge to a graph), the change can be propagated through the
computation, updating intermediate values, creating new dependencies, and updating the
final output. Not all algorithms are suitable for the approach—for some, updating a single
input value could propagate changes through most of the computation. To account for how
much computation needs to be rerun, researchers have studied the notion of “stability” [1,
4] over classes of changes. The goal is to bound the “distance” between executions of a
program on different inputs based on the distance between the inputs. For example, for an
appropriate sorting algorithm adding an element to the unsorted input list ideally would
cause at most O (log n ) recomputation, and that recomputation could be propagated with
constant overhead. This would lead to the performance of a binary search tree.

Our result on parallelising RC-Trees was achieved by designing a framework for parallel
self-adjusting computation for a limited class of so-called round-synchronous algorithms.
This was applied to generate efficient algorithms for batch-dynamic trees, supporting batches
of links and cuts among other operations. However, the round-synchronous nature limits
the applicability to algorithms that fit the model.

In this work, we develop a more general framework for supporting self-adjusting com-
putation for arbitrary nested-parallel algorithms. We prove bounds on the cost of change
propagation in the framework based on an appropriately defined distance metric. We have
also implemented the framework and run experiments on a variety of benchmarks. A nested

10



parallel program is one that is built from arbitrary sequential and parallel composition. A
computation is defined recursively as either two computations that are composed in parallel
(a fork), two that are composed sequentially, or the base case which is a sequential strand.

The crux of our technique is to represent a computation by a dependency graph that
is anchored on a Series-Parallel tree [58], or SP tree for short. An SP tree corresponds to
the sequential and parallel composition of binary nested parallel programs—i.e., parallel
composition consists of a P node with two children (the left-right order does not matter), and
sequential composition consists of an S node with two children (here the order does matter).
The leaves are sequential strands of computation, and can just be modeled as leaf S nodes.
The SP tree represents the control dependencies in the program—i.e., that a particular strand
needs to executed before another strand. We introduce R nodes to indicate data reads, which
are used to track data dependencies between writes and reads—i.e., that a particular read
depends on the value of a particular write. Together we refer to the trees as RSP trees. The RSP
tree of a computation allows propagating a change in a way that respects sequential control
dependencies while allowing parallelism where there is no dependence. We prove that a
parallel change propagation algorithm can propagate changes through the computation in a
manner that is both efficient and scalable.

Programs written in our framework write their inputs and any nonlocal values that de-
pend on them into “modifiable references”, or modifiables for short, which track all reads to
them and facilitate change propagation. Like previous work on sequential change propaga-
tion [4], we achieve our efficiency by restricting input programs to those which write to each
modifiable exactly once. All race-free functional programs satisfy this restriction. Since local
variables do not need to be tracked, they are not bound by this restriction, so the scope of
programs amenable to our framework is not just those which are purely functional.

Roughly speaking, given two executions of the same algorithm on different inputs, we
define the computation distance to be the work that is performed by one but not the other
(see Chapter 10 for the full definition). We then show Theorem 7 which bounds the runtime
of the change propagation algorithm as a function of computation distance.

Prior state of the art Burckhartd et al. [32]develop a general-purpose system for parallel self-
adjusting computation. Their work is evaluated on a set of five benchmark problems, where
it is demonstrated experimentally that the combination of parallelism and self-adjusting
computation can produce both work savings and parallel time speedups. This work is purely
experiential and does not provide theoretical guarantees on the runtime of updates. Hammer
et al. [88] present Parallel Adaptive Language (PAL), a proposed (though not fully imple-
mented) language for parallel self-adjusting computation. They do not provide a complete
implementation of their system, or theoretical guarantees on the runtime.

Theorem 7. Consider an algorithm A, two input states I and I ′, and their corresponding
RSP trees T and T ′. Let W∆ =δ(T , T ′) denote the computation distance, R∆ denote the
number of affected reads, s denote the span of A, and h denote the maximum heights
of T and T ′. Then, change propagation on T with the dynamic update (I , I ′) runs in
O (W∆+R∆ ·h )work in expectation and O (s ·h ) span w.h.p.

11



We have implemented the proposed techniques in a library for C++, which we call PSAC++1

(Parallel Self-Adjusting Computation in C++). The library allows writing self-adjusting pro-
grams by using several small annotations in a style similar to writing conventional parallel
programs. Self-adjusting programs can respond to changes to their data by updating their
output via the built-in change propagation. Our experiments with several applications show
that parallel change propagation can handle a broad variety of batch changes to input data
efficiently and in a scalable fashion. For small changes, parallel change propagation can
yield very significant savings in work; such savings can amount to orders of magnitude of
improvement. For larger changes, parallel change propagation may save some work, and still
exploit parallelism, yielding improvements due to both reduction in work and an increase in
scalability.

1.3 Publications and Attributions
The work presented in this thesis are the fruits of much collaborative work with several
collaborators. The joint publications arising from this work are listed below:

• Parallel Batch-Dynamic Graph Connectivity (Chapter 6)
Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala
The 31st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 19), 2019

• Work-efficient Batch-incremental Minimum Spanning Trees with Applications to the
Sliding Window Model (Chapter 7)
Daniel Anderson, Guy E. Blelloch, Kanat Tangwongsan
The 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 20), 2020

• Parallel Batch-dynamic Trees via Change Propagation (Chapter 3–4)
Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, Sam Westrick
The 28th Annual European Symposium on Algorithms (ESA 2020), 2020

• Parallel Minimum Cuts in O (m log2 n )Work and Low Depth (Chapter 8–9)
Daniel Anderson, Guy E. Blelloch
The 33rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 21), 2021

• Efficient Parallel Self-Adjusting Computation (Chapter 10)
Daniel Anderson, Guy E. Blelloch, Anubhav Baweja, Umut A. Acar
The 33rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 21), 2021

Lastly, our results on parallel batch-dynamic graph connectivity are joint work with Laxman
Dhulipala, and also appear in his PhD thesis:

• Provably Efficient and Scalable Shared-Memory Graph Processing
Laxman Dhulipala
PhD Thesis, Carnegie Mellon University, 2020

1Our code is publicly available at https://github.com/cmuparlay/psac

12

https://github.com/cmuparlay/psac


1.4 Broader Outlook and Thesis Statement
Today, you would have a hard time finding a computer that is not parallel. Consumer-grade
phones, desktops, laptops, and even your new smart fridge come equipped with multi-core
CPUs. Even more importantly, large-scale computer systems, such as those that run your
favorite social network or search engine could not exist without parallel computing due to
the unfathomable amount of data that they process each day.

Parallel algorithms and dynamic algorithms have been studied for decades, but classic
algorithms are ill-equipped to the kind of modern data sets that we see today which are both
massive in scale and frequently changing. The study of parallel batch-dynamic algorithms is a
relatively under-explored area, and the few results that existed prior to the last few years were
highly work inefficient, making them completely impractical for real-world implementation.
By focusing on the study of work-efficient parallel batch-dynamic algorithms, we aim to
equip researchers with the theoretical tools that they need to design and analyse parallel
systems suitable for processing the datasets of today and beyond.

Many of today’s large datasets are graphs, collections of vertices connected by edges.
The Microsoft Academic Graph, for example, consists of 179 million vertices and 2 billion
edges. The hyperlink web graph, the largest known publicly available graph at the time
of writing has over 3.5 billion vertices and 128 billion edges. Proprietary graph datasets,
such as the Facebook graph, possibly the largest known graph dataset, have over one billion
vertices and one trillion edges. Our goal was therefore to contribute tools in the space of
work-efficient parallel batch-dynamic graph algorithms that would be broadly applicable to
future researchers and practitioners, and to inspire additional work in this emerging field.

Since the appearance of the results of Chapters 3, 6, and 7, researchers have contributed
additional independent results on parallel batch-dynamic graphs including k -Clique count-
ing [52], and k -core decomposition [126]. Results on parallel batch-dynamic algorithms have
also begun to appear in other models of computation such as the MPC model [51]. Further-
more, our results have been utilized by researchers as ingredients in new algorithms. Tseng
et al. [175] extend our parallel batch-dynamic connectivity algorithm to obtain a parallel
batch-dynamic algorithm for MSF, Ghaffari et al. [74] use Parallel RC-Trees as an ingredient to
implement a nearly work-efficient highly parallel DFS, and of course we use our own results
on Parallel RC-Trees to implement the first work-efficient parallel algorithm for minimum
cuts (Chapters 8–9).

Based on these results, we conclude with the following as our thesis statement:

Thesis Statement:
Work-efficient parallel batch-dynamic algorithms can serve as a foundation for designing
algorithms and systems that are well suited for processing today’s large scale and rapidly
evolving datasets, particularly for fundamental areas such as graph processing.

13



14



Chapter 2
Preliminaries

2.1 Models of Computation

2.1.1 Models of Parallelism

Nested parallel programs
Our model for designing and analyzing parallel algorithms will be the shared-memory nested-
parallelism model. We endow the model with the features of the standard word random-
access machine (word RAM) model, i.e., it executes a program that has random-access to a
set of registers, each of which stores a Θ(log n )-bit sized word, where n is the problem size.
The model assumes that bitwise and arithmetic operations on Θ(log n )-bit words takes O (1)
time. To express parallelism, the model provides a fork instruction. A fork spawns a set of
child procedures that are eligible to run in parallel while the forking procedure suspends
and waits until all of the child procedures are complete to resume. There is no restriction
on the number of children that can be forked simultaneously by a fork instruction. The
model supports nested parallelism in which a child procedure is allowed to fork its own
additional child procedures. This model is an abstract model with no concept of “processors”
or “threads”. This means that algorithms are designed agnostic to the amount of available
parallelism that may be used to execute them, and indicate opportunities for parallelism by
using forks to spawn procedures that are eligible to be run in parallel. A scheduling algorithm
is used to map a nested parallel program onto a concrete parallel machine model.

Work and span The efficiency of a nested parallel algorithm is described by a pair of mea-
surements: its work and its span (also commonly called depth, critical path length, or parallel
time). The work of the algorithm is the total number of instructions performed, and the
span is the length of the longest chain of sequentially dependent instructions. The work can
be viewed as the traditional running time of the algorithm in the sequential setting where
no parallelism is available and all forked procedures are executed synchronously. The span
can be viewed as the running time of the algorithm on a hypothetical machine with infinite
available parallelism that is capable of executing all of the child procedures concurrently.

The parallel for loop When specifying nested-parallel algorithms, we will often use the
higher-level parallel for loop abstraction. A parallel for loop specifies a set of elements for
the loop variable and a loop body which is a function of the loop variable such that each
iteration of the loop is eligible to be run in parallel.

15



Related models
The fork-join model Nested parallel programs can also be endowed with a join operation.
When a program spawns a set of child procedures, instead of immediately suspending and
awaiting the completion of its children, the program continues executing and explicitly
specifies when it wants to suspend and wait on the completion of a spawned procedure with
the join instruction. In a fully-strict computation, child procedures can only be joined by the
parent that spawned it. Some models allow joins of arbitrary procedures but this complicates
scheduling so many scheduling algorithms do not permit it [30]. Our algorithms will not
make use of the join operation.

The binary-forking model A variant of the nested parallel model is the binary-forking
model [29], where a procedure may only fork two procedures per fork operation. The binary-
forking model can simulate the general arbitrary-way model by having the fork instruction
create a divide-and-conquer tree of binary forks, which incurs only a constant-factor work
overhead but costs Θ(log p ) span to fork p child procedures. Our algorithms are specified in
the arbitrary-way model.

The PRAM model An classic model which we will reference frequently is the Parallel
Random-Access Machine (PRAM) model, which consists of p word RAM processors that
execute in lock step with access to a shared memory. A specification of an algorithm in the
PRAM model usually specifies p , the number of processors, as a function of the problem
size n . We will describe all of our new algorithms as nested parallel programs, but we will
use many classic PRAM algorithms as subroutines. To translate runtime bounds for classic
PRAM algorithms into the nested parallel model, we use the fact that a PRAM algorithm that
runs in t time on p processors performs at most p t work with t span.

2.1.2 Concurrency
A parallel computation may be endowed with the ability to read/write the shared memory
concurrently. The classic PRAM model defines three kinds of concurrent machines, the EREW,
CREW, and CRCW PRAMs.

EREW (Exclusive-Read Exclusive-Write) In the EREW model, no concurrency is allowed
for either reads or writes. This is the most restrictive model.

CREW (Concurrent-Read Exclusive-Write) In the CREW model, concurrent reads are
allowed but concurrent writes are prohibited. Writes may not be concurrent with reads or
other writes, but reads may freely execute concurrently with each other.

CRCW (Concurrent-Read Concurrent-Write) The CRCW model permits concurrent reads
and concurrent writes. The CRCW model may be further subdivided by the behaviour of
concurrent writes.

16



• In the Tolerant CRCW PRAM, if multiple processors attempt to write to the same memory
location concurrently, the memory location keeps its original value (the concurrent writes
“fail”, but do not invalidate the computation).

• The Common CRCW PRAM permits concurrent writes but requires that all concurrent
writes to the same location write the same value, else the computation is invalid.

• The Arbitrary CRCW PRAM permits concurrent writes of different values and specifies that
an arbitrary processor’s write succeeds, but the algorithm may make no assumption about
which processor succeeds.

• The Priority CRCW PRAM assigns fixed unique priorities to each processor, and specifies
that the highest priority processor’s write succeeds.

• The Maximum CRCW PRAM permits concurrent writes and assumes that processor at-
tempting to write the largest value always succeeds.

Atomic operations
Computations that rely on concurrent writes may require the model to be further endowed
with additional more powerful primitives. Atomic read-modify-write primitives are a family
of operations that allow a computation to simultaneously read a memory location and write
a new value into it, which may even depend on the value that was read. A (non-exhaustive)
list of common read-modify-write operations include the following.
• TESTANDSET(): An atomic test-and-set writes the value 1 (or true) to the boolean variable

and returns the original value.

• EXCHANGE(desired): An atomic exchange simultaneously writes the value desired to the
variable and returns the original value.

• FETCHANDADD(x ): An atomic fetch-and-add increments the value of the variable by the
given amount x and returns the original value.

• COMPAREANDSWAP(expected, desired): An atomic compare-and-swap operation compares
the value of a variable to the value of expected, and if they are equal, writes the new value
desired to the variable, returning true. Otherwise it returns false.

2.2 Parallel Primitives
We make use of the following operations which are fundamental for many parallel algorithms.

Reduce A reduce operation over a range of elements takes an associative operator (+, ×, or
any custom associative function ⊕) and returns the sum of the elements with respect to the
operator. Assuming that the operator takes O (1) time to evaluate, a reduce takes O (n )work
and O (log n ) span.

Scan The scan operation generalizes the reduce operation. It takes a range of elements
and an associative operator over those elements and returns a range consisting of the partial

17



sums with respect to the operator and the total sum. Scan can be implemented in O (n )work
and O (log n ) span assuming that the operator takes O (1) time to evaluate.

Filtering A filter over a range takes a predicate f and returns a new range consisting of the
elements of the input for which f returns true, in the same relative order. Filtering can be
performed in O (n )work and O (log n ) span, provided that f can be evaluated in O (1) time.

Approximate compaction Approximate compaction takes the same input as a filter, a range
of elements and a predicate f . The output is a range of elements from the input such that if
there are m elements that satisfy the predicate, the output is an array of size O (m ) containing
the elements that satisfy the predicate (not necessarily in their original relative order), and
some blank elements. Approximate compaction takes O (n )work and O (log∗n ) span w.h.p.
in the Arbitrary CRCW model. Alternatively, it can be solved deterministically in O (n )work
and O (log log n ) span in the Common CRCW model [81].

Pack The pack operation takes a range of elements A and a corresponding boolean range
B of the same length. The output is a sequence of all the elements a ∈ A such that the
corresponding entry in B is true. The elements appear in the same relative order that they
appeared in the input. Packing can be implemented in O (n )work and O (log n ) span.

Comparison-based sorting A comparison-based sorting algorithm takes as input a range
of elements with associated keys from some totally ordered set and outputs a copy of that
range such that the keys appear in sorted order. A range of n elements can be sorted in
O (n log n )work and O (log n ) span [38].

Integer sorting An integer sorting algorithm takes as input a range of n elements with
associated integers keys in the range [1, n ] and and outputs a copy of that range such that
the keys appear in sorted order. Integer sorting can be performed in O (n )work and O (log n )
span w.h.p. [153].

Semisorting The semisort operation takes as input a range of elements with associated
keys, and outputs a copy of that range such that elements with equal keys are contiguous, but
the keys do not necessarily appear in sorted order. A range of n elements can be semisorted in
O (n ) expected work and O (log n ) span w.h.p. provided that the keys can be hashed uniformly
into the range
�

1, n O (1)
�

[84].

Parallel dictionaries A parallel dictionary data structure supports batch insertion, batch
deletion, and batch lookups of elements from some universe with hashing. A batch of k
operations can be performed in O (k )work and O (log∗k ) span w.h.p. in the Arbitrary CRCW
model [76].

18



2.3 Randomness
We say that a statement happens with high probability (w.h.p.) in n if for any constant c , the
constants in the statement can be set such that the probability that the event fails to hold is
O (n−c ). In line with existing algorithms research that uses random sampling [112], we assume
that we can generate O (1) random bits in O (1) time. Sometimes we may invoke subroutines
from other work that requires random Θ(log n )-bit words (such as [57]) and assumes that
these can be generated in O (1) time, so we will have to adjust bounds accordingly by adding
an extra O (log n ) factor to the work of generating the random bits.

An algorithm is called Monte Carlo if it is correct w.h.p. but runs in a deterministic amount
of time. Similarly, an algorithm is called Las Vegas if it is fast w.h.p. but always correct. When
designing Monte Carlo algorithms, we can use Las Vegas algorithms as subroutines because
any Las Vegas algorithm can be converted into a Monte Carlo algorithm by halting and
returning an arbitrary answer after the desired time bound. It is however not always possible
to convert a Monte Carlo algorithm into a Las Vegas one unless a fast algorithm for verifying
a solution is available.

19



20



Part I

Parallel Rake-Compress Trees

21





Chapter 3
Parallel Rake-Compress Trees

3.1 Introduction
Dynamic trees are a fundamental building block of a number of graph algorithms. The end
goal of a dynamic tree data structure is to map a possibly imbalanced tree onto an efficient
data structure that allows for altering the structure of the tree (such as inserting or removing
edges, or changing the weights of edges) and querying for its properties (such as the total
weight in a subtree, the heaviest edge on a path, or the lowest common ancestor of a pair of
vertices) efficiently. Formally, the goal is support at least the following interface:

• LINK(u , v, w ): Add an edge (u , v ) to the forest, with (optional) weight w

• CUT(e ): Remove the edge e from the forest

• CONNECTED(u , v ): Returns true if u and v are connected, i.e., in the same tree

Many additional operations may be supported, depending on the data structure. An illustra-
tive but non-exhaustive list of possible operations include:

• SUBTREEWEIGHT(u , p ): Return the minimum/maximum/total weight of the vertices in the
subtree rooted at u relative to its parent p ,

• PATHWEIGHT(u , v ): Return the minimum/maximum/total weight of all edges on the path
between u and v ,

• LCA(u , v, r ): Returns the lowest common ancestor of u and v , assuming that the tree
containing u and v is rooted at r ,

• DIAMETER(u ): Returns the diameter of the tree containing the vertex u . The diameter is
the length of the longest simple path between any pair of vertices in the tree,

• CENTER(u ): Returns the center vertex of the tree containing u . The center is the vertex that
minimizes the maximum distance to any other vertex in the same tree,

• NEARESTMARKED(u ): Return the nearest marked vertex to the vertex u .

Variations of these operations also exist. For example, SUBTREEWEIGHT could operate on
edge weights and PATHWEIGHT could operate on vertex weights, or both at the same time.
The Dynamic Median problem is similar to the Center problem, except that the median
vertex m is defined as the vertex that minimizes the weighted distance

∑

weight(v )dist(m , v )
to all other vertices in the tree.

23



3.1.1 Related Work
Many dynamic tree data structures have been designed, with various trade-offs and abilities
to support different subsets of the above operations. The most prominent are Euler-tour
trees [94], link/cut trees [163, 164], topology trees [63, 64, 65], top trees [16, 98, 167], and Rake-
Compress Trees (RC-Trees) [4, 5]. In this thesis, we extend RC-Trees, which were previously
designed for sequential operations, to handle parallel batch-dynamic operations.

Euler-tour trees
Arguably the simplest dynamic tree data structure are the Euler-tour trees of Henzinger
and King [94], which encode an arbitrary tree by an Eulerian traversal of its edges, which is
then stored inside an efficient ordered data structure, usually a balanced binary search tree,
but alternatives such as a skip list can be used too. The insight that makes this powerful is
that every subtree of the input tree corresponds to some contiguous interval of the Eulerian
traversal. This means that (1) cutting a subtree from its parent corresponds to simply splicing
out a contiguous subsequence of the Eulerian traversal, (2) to link a tree into another tree by
making it the child of a vertex corresponds to splicing the Eulerian traversal of the first tree
into the middle of the Eulerian traversal of the second, and (3) to query for a property of a
subtree, such as its maximum or total edge weight, we just need to compute the maximum
or total edge weight in the corresponding contiguous subsequence of the tour, which is a
standard operation on binary search trees and skip lists. The downside of Euler-tour trees is
that they are only capable of supporting subtree-based queries, and not capable of supporting
path queries, such as determining the heaviest or lightest edge on a path.

Earlier work has shown how to implement parallel batch-dynamic Euler-tour trees by
using parallel batch-dynamic skip lists to store the traversals [174]. This batch-dynamic data
structure can handle batches of links and batches of cut operations, as well as batch queries
for the total weight in a subtree.

(a) A tree (b) An Eulerian traversal of the tree.

Figure 3.1: An Euler-tour tree computes an Eulerian traversal of the tree and stores the resulting
edge sequence in an efficient data structure such as a binary search tree.

24



Link/cut trees
Link/cut trees are the earliest efficient solution to the dynamic trees problem, proposed by
Sleator and Tarjan [163]. Unlike Euler-tour trees which are based on subtrees, they represent
the underlying tree by breaking it up into vertex-disjoint paths, which are then stored inside
a dynamic search tree. The key idea is to designate each edge of the forest as either solid
or broken, such that each vertex has a solid edge to at most one of its children. The vertex-
disjoint paths are then induced by the solid edges (some paths may consist of an isolated
vertex). These paths are kept structured in such a way that m dynamic tree operations
translates into O (m log n ) path operations. Using standard balanced binary search trees,
this would lead to a runtime of O (log2 n ) per operation, so Sleator and Tarjan show that one
can instead used biased search trees [163] or Splay Trees [164] to obtain just O (log n ) time
(amortized if using Splay Trees).

Being based on path decomposition, link/cut trees are, unsurprisingly, ideal for handling
path-based operations. They can implement the PATHWEIGHT query, in addition to support-
ing more powerful path update operations. For example, a link/cut tree can support adding
a given amount x to the weight of every edge on the path between two given vertices u and
v . Goldberg, Grigoriadis, and Tarjan [80] show how to extend link/cut trees to also support
subtree queries, though it complicates the internal implementation of the data structure,
and only supports bounded-degree input trees.

Figure 3.2: A link/cut tree [163]. Dashed edges are broken and solid edges are solid. The resulting
path decomposition is depicted by the colored background.

25



Topology trees
Topology trees [63, 64, 65] introduce a different kind of decomposition strategy compared to
Euler-tour trees and link/cut trees. Instead of representing the underlying tree by decompos-
ing it into subtrees or paths, they represent the tree using a hierarchical clustering.

Topology trees use a clustering on the vertices of the tree, which they call a restricted
multi-level partition. At the bottom level, each vertex is a singleton cluster, then at each
subsequent level, a maximal set of adjacent clusters are paired together subject to some
constraints on the structure and maximum degree. The maximum degree requirement limits
the data structure to bounded-degree trees only. The topology tree represents the clustering
such that each topology tree node represents one of the clusters in the multi-level partition,
where an internal node represents the cluster formed by the union of the clusters represented
by its children. By maintaining aggregate information on the clusters, such as weight totals or
maximums, various kinds of queries can be answered while the tree is updated dynamically.

Frederickson [65] shows how to implement all of the operations of a link/cut tree, such
as querying for the maximum weight edge on a path, using topology trees, and also uses
them to implement dynamic expression trees. Topology trees were originally invented to
help solve the dynamic MST problem by finding replacement edges for the MST if a tree edge
had its cost increased.

Figure 3.3: A restricted multi-level partition that is represented by a topology tree [63]. Darker
backgrounds represents clusters formed at lower levels.

Top trees
Top trees [16, 98, 167] are similar to topology trees in that they represent a hierarchical
clustering of the underlying tree. The key difference is that instead of using a clustering of the

26



vertices, they represent a clustering of the edges of the forest. This allows them to elegantly
overcome the bounded-degree restriction of topology trees. Top trees are the most general of
the sequential dynamic tree data structures. They are able to implement all of the styles of
queries, from both path and subtree queries, to complex queries such as lowest common
ancestors, nearest marked nodes, centers, medians, and diameters, all in O (log n )work.

There are several different implementations of top trees. They were originally designed as
an interface on top of top trees or link/cut trees [16, 98], which support either a worst-case or
amortized runtime. They have also been implemented directly using techniques similar to
Splay Trees to yield self-adjusting top trees [167] and splay top trees [102], which both exhibit
amortized running times.

3.2 Rake-Compress Trees
In this section we will introduce and define Rake-Compress Trees (RC-Trees). RC-Trees were
initially proposed by Acar et al. [5], but our definitions will differ slightly from theirs to clarify
some corner cases that we believe theirs do not cover. We will begin by describing parallel
tree contraction, the underlying process that RC-Trees are based on. We will describe how to
build an RC-Tree, how to maintain one subject to dynamic updates, and how to solve various
common queries using the data structure. Our main contribution is then to describe how
each of these processes can be generalized to handle parallel batch-dynamic operations.

3.2.1 Parallel Tree Contraction
Tree contraction is a procedure for computing functions over trees in parallel in low span [132].
It involves repeatedly applying rake and compress operations to the tree while aggregating
data specific to the problem. The rake operation removes a leaf (a vertex of degree one) from
the tree and aggregates its data with its neighbor. If the leaf is vertex u and its neighbor is
vertex v , we say that u rakes onto v . The compress operation replaces a vertex of degree
two and its two adjacent edges with a single edge joining its neighbors, aggregating any data
associated with the vertex and its two adjacent edges.

Rake and compress operations can be applied in parallel as long as they are applied to an
independent set of vertices. Miller and Reif [132] describe a linear work and O (log n ) span
randomized algorithm that performs a set of rounds, each round raking every leaf (unless
there are two adjacent leaves, then one of them rakes onto the other) and an independent set
of degree two vertices by flipping coins. They show that it takes O (log n ) rounds to contract
any tree to a singleton w.h.p. They also describe a deterministic algorithm but it is not work
efficient. Later, Gazit, Miller, and Teng [70] improve it to obtain a work-efficient deterministic
algorithm with O (log n ) span.

Parallel tree contraction is defined for constant-degree trees, so non-constant-degree trees
are handled by converting them into bounded-degree equivalents, e.g., by ternerization [63].
An example of parallel tree contraction applied to a tree is depicted in Figure 3.4.

27



𝒇

Round 1 Round 2

Round 3 Round 4

Figure 3.4: Parallel tree contraction. Each round, an independent set of vertices is selected to
contract, until the final round in which there is only a single remaining vertex.

3.2.2 From Tree Contraction to RC-Trees
Like topology trees and top trees, RC-Trees are based on a hierarchical clustering of the
underlying tree. The key idea is to view the process of parallel tree contraction as inducing
a clustering. Each rake and each compress operation induces a cluster, hence the name
Rake-Compress Tree. For RC-Trees, a cluster is a connected subset of edges and vertices of
the tree. The clusters that arise have the following properties:

1. The subgraph induced by the vertex subset is connected

2. The edge subset contains all of the edges in the subgraph induced by the vertex subset

3. Every edge in the edge subset has at least one endpoint in the vertex subset

This makes them somewhat of a hybrid of topology trees and top trees, which cluster just
the vertices or just the edges respectively. Importantly but somewhat unintuitively, a RC
cluster may contain an edge without containing the endpoints of that edge. A vertex that
is an endpoint of an edge, but is not contained in the same cluster as that edge is called a
boundary vertex of the cluster containing the edge. Every cluster has at most two boundary
vertices. Figure 3.5 shows an example of a cluster and its boundary vertices

Definition 1 (Boundary Vertex). A boundary vertex of an RC Cluster is a vertex that is
not in the cluster, but is an endpoint of an edge that is in the cluster.

The base clusters are singletons containing the individual edges and vertices of the tree,
so there are n +m base clusters. An internal cluster contains the union of the contents
of its children. To form a recursive clustering from a tree contraction, we begin with the
base clusters and the uncontracted tree. On each round, for each vertex v that contracts
via rake or compress (which remember, form an independent set), we identify the set of
clusters that are adjacent to v (equivalently, all clusters that have v as a boundary vertex).

28



Figure 3.5: An example of a hypothetical cluster containing the vertices g and h , and the edges
(g , h ), (e , h ), (h , i ). Since vertices e and i are not contained in the cluster but are endpoints of edges
inside the cluster, they are the cluster’s boundary vertices.

These clusters are merged into a single cluster consisting of the union of their contents. We
call v the representative vertex of the resulting cluster. Since each vertex contracts exactly
once, there is a one-to-one mapping between representative vertices of the original tree and
internal clusters. The boundary vertices of the resulting cluster will always be the union of
the boundary vertices of the constituents, minus v .

The clusters of the RC-Tree always have at most two boundary vertices, and hence can be
classified as unary clusters, binary clusters, or nullary clusters. Unary clusters arise from rake
operations and have one boundary vertex. Binary clusters arise from compress operations
and have two boundary vertices. A binary cluster with boundary vertices u and v always
corresponds to an edge (u , v ) in the corresponding round of tree contraction. Binary clusters
can therefore be thought of as “generalized edges” (this notion is also used by top trees [16]).

Unary clusters
Clusters that arise from rake operations always have exactly one boundary vertex, and are
hence called unary clusters. A rake operation that deletes a leaf v and its adjacent edge (u , v )
will create a unary cluster containing:
1. A single binary cluster with boundaries u and v corresponding to the edge that was deleted

2. A base cluster corresponding to the representative vertex v that was raked

3. Zero or more unary clusters corresponding to vertices that raked onto v in earlier rounds

Binary clusters
Clusters that arise from compress operations always have exactly two boundary vertices, so
we call them binary clusters. A compress operation deletes some vertex v with degree two,
whose neighbor’s we will call u and w , and replaces the edges (u , v ) and (v, w )with a single
edge (u , w ). This creates an internal cluster that contains:
1. A pair of binary clusters corresponding to the edges (u , v ) and (v, w ) that were deleted

2. A base cluster corresponding to the representative vertex v that was compressed

3. Zero or more unary clusters corresponding to vertices that raked onto v in earlier rounds

29



RAKE

Figure 3.6: A unary cluster arising from a rake operation. The left pair of images is the contracted
tree, where the vertex c rakes onto the vertex e . The right pair of images is the corresponding
induced clustering. The rake causes all of the RC clusters that share c as a boundary vertex to
merge into a single cluster represented by c . This consists of the unary clusters represented by a
and b , which must have raked onto c in an earlier round, and the binary cluster represented by d ,
which must have compressed in an earlier round. Since e is the only boundary vertex not shared
by all of the clusters, it remains as the resulting cluster’s single boundary vertex.

Figure 3.7: A binary cluster arising from a compress operation. On the left, the vertex b compresses
in between a and c . This causes all of the RC clusters that share c as a boundary vertex to merge
into a single cluster represented by c . This consists of the unary cluster represented by f , which
must have raked onto b in an earlier round, and the two binary clusters represented by d and e ,
which must have compressed in an earlier round. a and c are the surviving vertices and end up as
the boundary vertices of the resulting cluster.

30



Nullary clusters and root clusters
A cluster with no boundary vertices is called a nullary cluster. There are two ways in which
nullary clusters arise. First, the base vertex clusters do not contain any boundary vertices
since they contain no edges, so they are naturally nullary clusters. The second kind of nullary
cluster is a root cluster, i.e., a cluster containing an entire tree. This arises from contracting
the singleton vertex that remains once tree contraction has reduced a tree down to a single
vertex. Contracting a singleton vertex is often referred to as a finalize operation. Note that a
finalize cluster only has unary children and can not have binary children.

3.2.3 Representing RC-Trees
An RC-Tree is a tree of nodes1 each representing an RC Cluster. The leaves of the tree are the
base clusters representing singleton vertices and edges, and each internal node is a cluster
arising from a rake, compress, or a root cluster. If the input forest is not connected, the
RC-Tree will actually be a forest of RC-Trees, one for each connected component in the input.

Since there is a one-to-one correspondence between vertices of the input tree and internal
nodes of the RC-Tree (their representative vertex), and every cluster corresponding to an
internal node necessarily has the base cluster corresponding to its representative vertex as a
child, we can optionally omit the base vertex clusters from the representation for simplicity,
since we can always identify where they would be. Therefore, an internal binary (compress)
cluster always has two binary children and zero or more unary children, an internal unary
(rake) cluster always has one binary child and zero or more unary children, and the root
(finalize) cluster has no binary children and zero or more unary children. A complete example
of a clustering into RC Clusters and the corresponding RC-Tree is depicted in Figure 3.8.

3.2.4 Balanced RC-Trees
Given an input tree, there is no guarantee that there is a unique RC-Tree that encodes it.
Indeed there are likely to be many. For example, one can always construct the “rake tree”
of an input tree by performing only rake operations. The resulting RC-Tree unfortunately
will be just as imbalanced as the input tree, so this is not very useful. To make sure that our
RC-Trees are useful, we define the notion of a “balanced RC-Tree”.

Definition 2 (Balanced RC-Tree). An RC-Tree is β-balanced if it corresponds to a tree
contraction such that in each round, at least a fraction of 1−β of the vertices contract. If
the contraction processed is randomized, it is β-balanced in expectation if at least an
expected fraction of 1−β of the vertices contract. We call an RC-Tree balanced (resp. in
expectation) if it is β-balanced (resp. in expectation) for some constant 0<β < 1 that is
independent of n .

The randomized tree contraction algorithm that we analyze in Chapter 4 has β = 7/8, and
our deterministic algorithm in Chapter 5 has β = 5/6.

1For clarity, we will refer to the vertices of the RC-Tree as “nodes”, and the vertices of the input as “vertices”.

31



a

c

b d e h i

f

g j

k l

(a) An unrooted tree

a

c

b d e h i

f

g j

k l

(b) A recursive clustering of the tree produced by tree
contraction. Clusters produced in earlier rounds are
depicted in a darker color.

J

(c) The RC-Tree. Clusters produced from rakes (and the root cluster) are shown as circles, and
clusters produced from compress as rectangles. The base clusters (edges) are labeled in lowercase,
and the composite clusters are labeled with the uppercase of their representative vertex. The shade
of a composite cluster corresponds to its height in the clustering. Lower heights (i.e., contracted
earlier) are darker. The order of the children of a cluster is not important.

Figure 3.8: A tree, a clustering, and the corresponding RC-Tree.

It is easy to show that a balanced RC-Tree will have height O (log n ), but we note that
simply having O (log n ) height alone is not sufficient for us to consider the tree balanced.
Although this would result in single queries being efficient, our goal is to ensure that batch
queries executed on an RC-Tree will be efficient. It will be typical of batch RC-Tree queries
to start at a set of nodes related to the queries, then aggregate some information along all
of the paths to the root from those nodes (see Figure 3.9). The total work of such queries
is typically proportional to the total number of unique nodes in this set of paths. On any
balanced RC-Tree, the number of such nodes is O

�

k log
�

1+ n
k

��

as shown by the following.

Theorem 8 (Balanced RC-Trees). Given any k nodes in a balanced (resp. in expectation)
RC-Tree, the total number of nodes in the union of the paths from those nodes to the
root is at most O

�

k log
�

1+ n
k

��

(resp. in expectation).

32



Proof. We consider separately the nodes at height at least h = log1/β

�

1+ n
k

�

and those lower.
First consider the nodes with height less than h . In the worst case, the root paths of the k
nodes have no intersection at these heights, and given any starting node, it can contribute at
most h nodes to the paths before those nodes have height at least h . Therefore, there are at
most k h total nodes at height less than h .

Now consider the nodes of the RC-Tree at height at least h . If a node is at height at least
h , then it has at least h descendants in the RC-Tree, which means that it must correspond to
a contraction that occurs after at least h rounds have already occurred. Since the RC-Tree
is balanced, there exists a β such that at least a 1−β fraction of the vertices contract each
round (in expectation if randomized). So after log1/β

�

1+ n
k

�

rounds, there are at most

nβ log1/β (1+ n
k ) =

n

1+ n
k

=
nk

n +k
= k
� n

n +k

�

≤ k

remaining vertices (in expectation if randomized). Therefore there are at most k nodes in
the RC-Tree that can correspond to contractions that occur after h rounds. Therefore, the
total number of nodes in the union of the k paths is at most

k h +k = k log1/β

�

1+
n

k

�

+k =O
�

k log
�

1+
n

k

��

,

(in expectation if randomized).

To see why the RC-Tree being height O (log n ) is insufficient, consider a hypothetical RC-Tree
that consists of a perfect binary tree with n/ log n leaves, with chains of length log n attached
to each of those leaves, as per Figure 3.10. From here onward, even when not explicitly
specified, we will always assume that we are working with balanced RC-Trees.

3.2.5 Rooted RC-Trees
The RC-Tree framework is defined for undirected/unrooted trees. Typically, queries that
involve rooted trees are supported by passing the would-be root of the tree, or the parent
vertex of a query parameter as an additional argument to clarify how the tree is oriented.
For example, the SUBTREEWEIGHT(v, p ) operation typically takes two arguments: the root of
the subtree v , and the parent vertex p . In some applications however, it may be desirable
or convenient for the RC-Tree to permanently consider the underlying tree as rooted with a
fixed, unchanging root vertex. This can be achieved simply by requiring that the underlying
tree-contraction algorithm always contracts the root vertex last (indeed, tree contraction was
originally defined exactly this way for rooted trees). The tree contraction algorithms that we
consider in Chapters 4 and 5 can easily handle this requirement. The result is an RC-Tree
with some additional useful properties for processing rooted trees:

1. The representative of the root cluster will always be the root vertex of the underlying tree,

2. (Non-base) binary clusters can distinguish their two binary children as the “top” and
“bottom” child, since one will always be the ancestor of the other in the underlying tree.

Unless otherwise specified, we will always assume by default that we are working with undi-
rected/unrooted trees, and will specifically mention if we require rooted RC-Trees.

33



Figure 3.9: A typical batch query on an RC-Tree will select a set of RC nodes then aggregate some
information along the paths from those nodes to the root. The work performed by such a query is
usually proportional to the number of unique nodes on these paths.

Figure 3.10: A hypothetical “imbalanced” tree despite it having height O (log n ). If we select k nodes
at the bottom of the chains, then the union of their root-to-leaf paths contains Θ(k log n ) nodes,
but we want to guarantee that there are only O

�

k log
�

1+ n
k

��

.

34



3.3 Parallel Batch-Dynamic RC-Trees
Acar et al. [5] describe sequential RC-Trees based on applying self-adjusting computation
to parallel tree contraction. The application of self-adjusting computation to parallel tree
contraction yielded a sequential algorithm for efficiently updating a tree contraction. When
the tree contraction is updated by change propagation, the corresponding parts of the RC-Tree
are rebuilt. Our goal is to generalize this to the parallel batch-dynamic setting. Specifically,
our goal is to support at least the following interface for a dynamic forest F .

• BATCHLINK({(u1, v1), . . . , (uk , vk )}) takes a batch of edges and adds them to F . The edges
must not create a cycle.

• BATCHCUT({(u1, v1), . . . , (uk , vk )}) takes a batch of edges and removes them from F .

• BATCHCONNECTED({{u1, v1} , . . . ,{uk , vk}}) takes an array of tuples representing queries.
The output is an array where the i -th entry returns whether vertices ui and vi are connected
by a path in F .

Additional batch queries may be supported, such as

• BATCHSUBTREEWEIGHT({(u1, p1), . . . , (uk , pk )}) takes an array of tuples representing queries.
The output is array where the i th entry contains the minimum/maximum/total weight of
the contents of the subtree rooted at ui relative to the parent pi .

• BATCHPATHWEIGHT({(u1, v1), . . . , (uk , vk )}) takes an array of tuples representing queries.
The output is array where the i th entry contains the minimum/maximum/total of the
weights on the path between ui and vi .

• BATCHLCA({(u1, v1, r1), . . . , (uk , vk , rk )}) takes an array of tuples representing queries. The
output is array where the i th entry is the LCA of ui and vi with respect to the root ri .

• BATCHNEARESTMARKED({v1, . . . , vk}) takes an array of vertices representing queries. The
output is an array where the i th entry is the nearest marked vertex to vi .

Note that there is no reason to consider batched versions of DIAMETER, CENTER, etc, since
those queries return a single value for an entire tree. A batch of such queries would either
consist of duplicates of the same query, or queries on disjoint trees which can not benefit
from batching. Since these queries can already be solved sequentially in O (log n ) time, by
convexity, solving a set of k such queries on disjoint trees would take just

O
�∑

log(ni )
�

=O
�

k log
�

1+
n

k

��

work anyway, where the ni are the sizes of the trees, and
∑

ni = n , the total number of vertices
in the forest. Therefore for such queries, efficient batch bounds are obtained trivially by
simply running the existing sequential algorithm concurrently for each tree.

In Section 3.5, we will show how to solve all of the above batch queries efficiently in
O
�

k log
�

1+ n
k

��

work and O (log n ) span for batches of size k .

35



3.3.1 Performing Structural Updates to RC-Trees
Like sequential RC-Trees, we will implement Parallel RC-Trees by building them on top of
dynamic parallel tree contraction. In Chapters 4 and 5, we will derive two algorithms for
maintaining a parallel tree contraction under batch updates, one randomized and one de-
terministic. To maintain the Parallel RC-Tree, when the user executes an update operation
(BATCHLINK or BATCHCUT), we will execute the corresponding operation on the tree contrac-
tion. Updates to the tree contraction performed by the dynamic tree contraction algorithm
are then reflected in the RC-Tree by rebuilding any cluster whose representative vertex was
affected during the update.

Since there is a one-to-one correspondence between clusters of the RC-Tree and repre-
sentative vertices, a straightforward and convenient way to maintain the RC-Tree is to store
an array of clusters of length n +m , where the first n clusters correspond to the non-base
clusters with the corresponding representative vertex, and the final m clusters are the base
edge clusters (including their weights if applicable). When the tree contraction algorithm
performs a rake, compress, or finalize of a vertex v , it creates or updates the cluster stored
at the position of v . Optionally, another n slots could be used to store a weight or value for
each vertex, depending the application.

Creating or updating a cluster for vertex v consists in recording the children of the cluster,
which are the unary clusters corresponding to vertices that raked onto v , and the one or two
binary clusters that form the contraction; and computing any required augmented values,
which are additional information required by the desired query algorithms.

3.3.2 Handling Trees of Arbitrary Degree
Since RC-Trees are based on parallel tree contraction, which works only on trees of bounded
degree, we must take additional care to handle trees of arbitrary degree. The most com-
mon technique is called ternerization [109]: we can split a vertex u of degree d into a path
consisting of u and d “fake vertices” u1, . . . , ud of degree at most three, connected by “fake
edges”. Each of the fake vertices is adjacent to one of the original neighbors of u via a “real
edge”. See Figure 3.11 for an example. Given a static tree, performing this transformation to
every high-degree vertex results in a tree with maximum degree three with at most O (n +m )
vertices and O (m ) edges for an initial tree of n vertices and m edges. Since any forest has
m < n , the total size of the forest is increased by no more than a constant factor.

Linking new edges Handling dynamic trees is straightforward if we allow adding new ver-
tices to the underlying forest. Although most dynamic tree data structures do not explicitly
mention handling vertex additions in their API, supporting them is usually trivial. For in-
stance, adding an isolated vertex to an RC-Tree consists in adding the vertex to the underlying
forest and then creating a single RC-node with no children represented by that vertex. The
addition of a new edge (u , v ) to the underlying forest then consists in adding two new fake
vertices to the ternarized forest, one for u and one for v , then adding the real edge between
them. The modifications are depicted in Figure 3.12.

36



Figure 3.11: Ternarization of a vertex in a tree. The original vertex u of degree d is connected to a
path u 1, ..., u d of “fake” vertices. The resulting vertices have degree at most three.

Figure 3.12: Adding an edge to a ternarized forest. Only the modification to the path representing
u is depicted. The path representing e would be modified symmetrically.

Cutting an edge Cutting an edge from the underlying forest removes the corresponding
edge and its neighboring fake vertices from the ternarized forest. If a fake vertex adjacent
to the edge has degree three, then the two neighboring fake vertices must be linked to keep
the path connected. Figure 3.13 depicts the process of cutting an edge and the resulting
modifications to the path representing the vertex u .

Batch updates To support batch-dynamic algorithms over high-degree trees we may need
to perform ternarization during batch links and batch cuts as well. To perform a batch link,
the endpoints of the edges can be collected using a semisort [84] so that each real vertex
gets a list of new edges to add. Each real vertex then adds the corresponding number of fake
vertices to their path. The position of each endpoint in the result of the semisort can be

Figure 3.13: Cutting an edge from a ternarized forest. Only the modification to the path representing
u is depicted. The path representing c would be modified symmetrically.

37



used to uniquely assign each real edge to a fake vertex. A batch link can then be performed
on the ternarized forest to join all of the new fake vertices by fake edges, and to add the
corresponding real edges for each edge in the input. This transforms a batch of k links into
2k new fake vertices and 3k links in the ternarized forest.

Batch cuts are similar but slightly more involved. For each edge in the input batch, the
corresponding real edge in the ternarized forest is removed in addition to their neighboring
fake vertices. Note that multiple adjacent fake vertices on a path might be removed. This
means that the algorithm needs to batch cut all of the fake edges along each contiguous run of
removed fake vertices and then reconnect each such run with a single fake edge. To determine
these replacement edges, the algorithm can take the batch of removed fake edges and run
list contraction [39], keeping track of the endpoints of each component. Each component
with two endpoints generates a replacement fake edge between those endpoints, which are
inserted with a batch link into the ternarized forest. This transforms a batch of k cuts into 2k
removed vertices and O (k ) links and cuts in the ternarized forest.

Handling queries on the ternarized forest When ternarizing the input forest, additional
care might be necessary depending on the problem being solved. In general, there is no
single transformation that works for every problem so these transformations need to be
designed specifically for the problem at hand. For simple problems such as connectivity, no
additional modifications are necessary, as the result of a connectivity query in the underlying
forest is the same as in the ternarized forest. For weighted problems such as computing the
sum of the edge weights in a particular subtree or the maximum weight edge in a subtree,
suitable identity weights must be used for the fake edges in the ternarized forest.

For example, if computing the sum of the weights, the fake edges would have a weight
of zero to preserve the answers to the queries. If computing the maximum weight edge in
a subtree, the fake edges should have a weight of −∞. Lastly, if solving the minimum cut
problem, giving the fake edges a weight of∞would preserve the value of all minimum cuts.
If an algorithm uses vertex weights, similar strategies should be used to provide an identity
weight that preserves the answers to queries.

3.3.3 Maintaining Augmented Values in RC-Trees
To support non-trivial queries, RC-Trees maintain augmented values on the clusters, which
are functions of the child clusters and their augmented values. Each kind of query that we
wish to support will therefore need to specify what augmented values it maintains, and how
they are aggregated when clusters are created. The type of data stored may be different
depending on the type of the cluster (unary, binary, finalize). The weights of the edges, if
present, can act as “base cases” for the augmented values.

For example, to support queries for the maximum edge weight in a subtree, we may wish
to maintain, for each cluster, the maximum edge weight inside that cluster as the augmented
value. This would be computed by taking the maximum of the augmented values of the child
clusters, including any base-edge clusters if present.

It is also straightforward to support weight updates. If one wishes to modify the weight of

38



an edge, it suffices to recompute the augmented values for all of the ancestor clusters of that
edge. No modification to the tree contraction needs to be made, and hence no structural
updates to the RC-Tree are necessary when only updating a weight.

It is similarly possible to maintain weights or additional augmented data on vertices if
desired. Augmented values on clusters could then depend on the weight of the representative
vertex and take it into account when creating or updating a cluster. Updating the weight of a
vertex would similarly just require updating the augmented values of the ancestors of the
cluster that it represents.

3.4 Decomposition Properties and Queries
One factor that contrasts RC-Trees and top trees against the more classic dynamic tree data
structure such as link/cut trees and Euler-tour trees is that they represent the underlying tree
by hierarchically decomposing it into clusters. link/cut trees decompose the tree into paths
and Euler-tour trees decompose it into rooted subtrees, which can be viewed as very restricted
kinds of clusters that are suitable for specific purposes (i.e., path queries and subtree queries).
The more general and hierarchical clustering used by RC-Trees and top trees is what makes
them so powerful and able to solve a much wider range of queries.

One way to see this is as follows. We have two main kinds of clusters: unary clusters, which
have one boundary vertex; and binary clusters, which have two boundary vertices. Unary
clusters represent rooted subtrees that are rooted at the boundary vertex, while binary clusters
represent the path between its two boundary vertices, as well as any branches that hang off
that path. The unary/binary clustering therefore simultaneously represents information
about both paths and subtrees.

3.4.1 The Cluster Path
Binary clusters are particularly useful because they can simultaneously be used to represent
information about the entire subtree that they contain, or to represent information purely
about the path between the two boundary vertices. The later is used quite extensively so it
gets a name, the cluster path.

Definition 3 (Cluster path). Given an RC-Tree for an input forest F and a binary cluster
of the RC-Tree with boundary vertices u and v , we define the cluster path of the binary
cluster as the path connecting u and v in F .

Since the cluster path of a composite binary cluster is just the union of the cluster paths of its
binary children, it is easy to aggregate and store information about the cluster paths.

3.4.2 The Common Boundary
When describing the algorithms and properties for path and subtree queries, we will often
encounter a special vertex, so we also give it a name. Given any two vertices u and v that are

39



connected (in the same tree) in F , we define the common boundary of u and v .

Definition 4 (Common boundary). Given an RC-Tree for an input forest F and a pair of
vertices u and v that are connected in F , the common boundary is the representative
vertex of the lowest common ancestor of the clusters U and V , where U and V are the
clusters represented by u and v respectively.

What does this vertex look like? Imagine two distinct connected vertices u and v and the
clusters that contain them. Initially, u and v are in different clusters (their respective base
clusters), and at some point in the contraction process they must be contained in the same
cluster since they are connected. Imagine with the help of Figure 3.14 the last point in time
before u and v are contained in the same cluster (i.e., the largest clusters that contain u and
v , but not both). By construction at this point, u and v are contained within a pair of clusters
that share a single common boundary vertex. This common boundary vertex is the vertex
that contracts to become the representative of the common cluster. Another way to define
the common boundary would therefore be as the representative vertex of the smallest cluster
containing both u and v .

Figure 3.14: The common boundary of two vertices u and v , the representative vertex of the smallest
cluster that contains both u and v .

The common boundary c can be found by simply walking up the tree from u and v until
they meet at their lowest common ancestor. Note that an edge case is possible where the
lowest common ancestor of U and V is one of U or V . This means that u or v is a boundary
vertex of one of the clusters containing the other one.

3.4.3 Path Decompositions and Queries
One of the first applications of dynamic trees was solving path queries as a subroutine for
maximum network flow algorithms [163]. Path queries involve endowing the data structure

40



with an associative and commutative binary operation (e.g., sum, minimum, maximum,
or anything more complicated) and labeling the vertices and/or edges of the graph with a
weight. A path query then asks for the sum with respect to the binary operation of all of the
edge weights on the path in F between a given pair of vertices u and v .

The key fact that allows RC-Trees to handle path operations is the following path decom-
position property. Every path in the underlying forest F can be represented by a small set of
cluster paths that are all located adjacent to a corresponding path in the RC-Tree.

Theorem 9 (Path decomposition property). Given an RC-Tree for an input forest F on
n vertices and a pair of vertices u and v that are connected in F . Let U be the cluster
represented by u and V be the cluster represented by v , and let P be the path connecting
u and v in F . There exists a set of disjoint binary RC Clusters such that:
1. the union of their cluster paths is exactly P ,
2. each cluster is a direct child of the path in the RC-Tree between U and V .

Corollary 1 (Path queries). Consider an RC-Tree for a weighted input forest F on n
vertices and an associative and commutative operator f over the weights. Then, we
can maintain augmented values on the clusters of the RC-Tree such that given any pair
of connected vertices u and v , we can compute the sum of the weights along the path
between u and v with respect to f in time proportional to the height of the RC-Tree.

An example of a path decomposition in the RC-Tree is shown in Figure 3.15.

Proofs. We prove Theorem 9 constructively by describing how to find such a set of clusters.
The algorithm for path queries (Corollary 1) follows similarly. To simplify, we start by consid-
ering the common boundary c of u and v . Let U , V , C be the clusters represented by u , v, c
respectively. We aim to build a path decomposition of the path from u to c and v to c , then
take their union to obtain a path decomposition of u to v . A path decomposition of u to c
must consist of binary clusters that are children of the RC-Tree path from U to C .

We can show inductively that for any vertex u and any cluster B containing u with bound-
ary vertex b , there is a set of binary clusters that are children of U to B in the RC-Tree whose
cluster paths form the path u to b in F . Figure 3.16 shows an example of the resulting paths.

Consider the first cluster to contain u . If u contracts via rake then it forms some unary
cluster B with boundary vertex b . This rake operation must rake the edge (u , b ) which is
represented by a binary cluster with boundary vertices u and b and whose cluster path is
therefore the path between u and b in F . This cluster is a child of B and hence this is a valid
path decomposition as described. If instead u contracts via compression and is contained in
a binary cluster B , we consider either of its boundary vertices b . One of the two edges that
compressed is (u , b ), which is represented by a binary cluster with boundaries u and b , and
hence a cluster path that covers u to b in F .

Now suppose for the purpose of induction that for a cluster B containing u we know a
path decomposition from u to the boundary vertices of B . We want to show that for the
parent cluster B ′ and any of its boundary vertices b ′ that there is a path decomposition from u
to b ′. We will show that the new path decomposition consists of the old path decomposition

41



(a) The path from a to l in the forest can be decomposed into the cluster paths of the
RC clusters (a ,b ), D , H , (i .k ), (k , l ).

J

(b) The clusters in the decomposition are children of the path between A and L . The path in the
RC-Tree is highlighted in red and the chosen clusters have a bold red outline.

Figure 3.15: An example of a path decomposition in an RC-Tree.

42



Figure 3.16: A path decomposition obtained by finding a set of binary clusters connecting u and v
to their ancestors’ boundary vertices until they meet at the common boundary c

with at most one additional cluster path added. Consider four cases depending on whether
B and B ′ are unary or binary clusters (or a combination of both).

1. Unary and unary: b contracts and rakes onto b ′ via an edge (b , b ′)which corresponds
to a binary cluster with boundaries b and b ′, and hence there is a path decomposition
consisting of the previous path decomposition plus this cluster, which is a child of B ′.

2. Unary and binary: b contracts and compresses the two edges (b ′1, b ) and (b ′2, b ), cor-
responding to binary clusters with boundaries b and b ′1, and b and b ′2. The resulting
boundaries of B ′ are b ′1 and b ′2, for which there are path decompositions consisting of
the previous path decompositions plus the cluster corresponding to (b ′1, b ) and (b ′2, b )
respectively, each of which are children of B ′.

3. Binary and unary: If B has boundaries b1 and b2, then one of them contracts and rakes the
edge (b1, b2) onto the other one, leaving it as the sole boundary vertex of B ′. We therefore
already know the path decomposition for this boundary.

4. Binary and binary: If B has boundaries b1 and b2, assume without loss of generality that
b1 contracts and compresses the two edges (b1, b2) and (b ′1, b1) resulting in an edge (b ′1, b2),
which corresponds to a binary cluster with boundaries b ′1 and b2. A path decomposition
for b ′1 consists of the previous path decomposition and the cluster corresponding to (b ′1, b2).
We already know a path decomposition of b2 since it did not change.

The cases are illustrated in Figure 3.17. By induction, we can find a path decomposition from
u to any of its ancestors’ boundaries, and hence there is a path decomposition for u to c , the
common boundary, and similarly for v to c .

Corollary 1 follows by storing the sums of the weights on the cluster paths on each binary
cluster. The algorithm then walks up the RC-Tree from U to C and maintains the sum from
u to the current boundary vertices by summing the augmented values of the clusters in the
path decomposition. Combining the sums from u to c and v to c gives the answer.

43



(a) Case 1: A unary cluster with a unary parent. (b) Case 2: A unary cluster with a binary parent.

(c) Case 3: A binary cluster with a unary parent. (d) Case 4: A binary cluster with a binary parent.

Figure 3.17: Building a path decomposition inductively.

3.4.4 Subtree Decompositions and Queries
Subtree queries supported by dynamic tree data structures typically come in one of two
flavors. Either the underlying tree has a particular fixed root (which can sometimes be
changed by an explicit re-root operation), or it is a free/unrooted tree. In the rooted case,
subtree queries take a single vertex u and ask for the sum of the weights on the vertices or
edges in the subtree rooted at u . For unrooted trees, a single vertex is not enough information
to define a subtree, so a query will typically take two arguments: a root vertex for the subtree
u , and the parent vertex p . This kind of query is more general but consequently more tricky
to implement since the orientation of a subtree could change between queries without being
able to pre-process the tree for a particular root in advance.

Similar to the path decomposition property, RC-Trees are robust enough to handle arbi-
trarily rooted subtree queries because of a powerful subtree decomposition property that says
any rooted subtree in F can be represented by a small set of clusters that are all adjacent to a
corresponding path in the RC-Tree.

Theorem 10 (Subtree decomposition property). Consider an RC-Tree for an input forest
F on n vertices and a rooted subtree S of F defined by a pair of vertices u and p , such
that S is the subtree rooted at u if F were rooted at r . Let U be the RC Node represented
by u . There exists a set of RC Clusters such that
1. the union of their contents is exactly S ,
2. each cluster is a direct child of the path in the RC-Tree from U to its root cluster.

44



Corollary 2 (Subtree queries). Consider an RC-Tree for a weighted input forest F on n
vertices and an associative and commutative operator f over the weights. Then, we can
maintain augmented values on the clusters of the RC-Tree such that given any rooted
subtree S of F , we can compute the sum of the weights of the contents in S with respect
to f in time proportional to the height of the RC-Tree.

Acar et al [5] sketch an algorithm for subtree queries, though it appears to be incomplete
and does not cover all possible cases. An example of a subtree decomposition and the
corresponding clusters in the RC-Tree is shown in Figure 3.18. We now prove a lemma that
will come in handy during the proof. Consider some cluster U represented by u and one of
its boundary vertices b . We define the “subtree growing out of b ” with respect to u to be the
subtree rooted at b oriented such that the tree was rooted at u .

Lemma 1. Consider a cluster U represented by u , and a boundary vertex b . The subtree
growing out of b with respect to u as the tree root can be decomposed into a set of
disjoint RC clusters which are all direct children of the path from U to the root cluster.

Proof. The situation is depicted in Figure 3.19. The goal is to collect a set of disjoint clusters
that covers the subtree rooted at b , all of which are on the RC-Tree path from U to the root
cluster. To do so, observe that when b contracts, it forms a larger cluster B . This cluster either
contains U as a direct child, or possible as a descendent further down the tree if the other
boundary vertex of U contracted earlier. B is therefore an ancestor of U , and furthermore,
all of the other children of B must be contained inside the subtree of interest.

We now consider the boundary vertices of B . If B shares a boundary vertex with its child
that contains u , we ignore that, since it is on the opposite side of u to b on the left side of u in
Figure 3.19) and hence is not contained in the subtree of interest. If B has no other boundary
vertex, then B therefore contains the entirety of the subtree of interest and we are done.
Otherwise, if B has any other boundary vertex b ′ (it may have up to two if B is a binary cluster
and the child containing U is a unary cluster), it is on the opposite side of b to u (on the
right side of b in Figure 3.19), and hence is contained in the subtree of interest. We therefore
simply recursively repeat this process with b ′ (possibly two of them), identifying the ancestor
B ′ of B where b ′ contracts, and collecting all of its children except the one containing b .
Once we run out of boundary vertices on the side of b , we have completed the subtree, and
since every cluster collected was a child of an ancestor of U , it is a valid decomposition.

Proofs of Theorem 10 and Corollary 2. We prove Theorem 10 constructively, similar to The-
orem 9. The key idea is depicted in Figure 3.20. Consider the vertex u and the cluster U
that it represents. U consists of a constant number of child clusters, with at least one and at
most two binary children, and some number of unary children. The subtree rooted at u with
respect to p essentially consists of the entire tree except for anything in the direction of p .
Furthermore, since p is adjacent to u , we know that p is either contained within one of the
child clusters, or it is one of the boundary vertices. The second case happens if a binary child
of U is a single-edge base cluster with p as the other endpoint.

45



(a) The subtree rooted at h oriented with respect to its parent e can be decomposed
into the clusters {h},G , (h , i ), J , K ,{i }. The base clusters {h}, {i }would be children of
H and I if represented explicitly.

J

(b) The clusters in the decomposition are children of the path from H to its root cluster. The path
in the RC-Tree is highlighted in red and the chosen clusters have a bold red outline.

Figure 3.18: An example of a subtree decomposition in an RC-Tree.

46



Figure 3.19: Constructing a decomposition of the subtree growing out of b with respect to u as the
tree root. The process essentially walks along the boundary vertices to the right by following their
contractions in the RC-Tree and collecting all of the adjacent clusters along the way.

So, to construct a subtree decomposition, we start by taking all of the children of U , except
for the one that contains/is adjacent to p . Then, for each binary child with boundary b ,
unless it is the one that contains/is adjacent to p , we add to the decomposition the contents of
the subtree growing out of b . By Lemma 1, the subtree growing out of b is decomposable into
children of the path from U to the root cluster, so this results in a valid subtree decomposition.

Lastly, to support subtree queries and conclude Corollary 2, we augment each cluster with
its total weight. The algorithm then walks up the RC-Tree from U and aggregates the total
weight of the clusters in the decomposition. This consists in taking the total weight on all of
the children of U except the one containing/adjacent to p , then summing the weights on
clusters that make up the subtrees growing out of the boundary vertices as per Lemma 1.

3.5 Batch Queries on RC-Trees
Sequential/single queries on RC-Trees typically consist in aggregating some information
along a path or set of paths within the RC-Tree. Most commonly, a query will begin with a set
of RC nodes and then sweep upwards towards either their common boundary, or all the way
to the root cluster, then sometimes propagate some information back down the tree along
the same paths. Parallel batch-dynamic RC-Trees afford us the opportunity to implement
batch-queries that answer multiple queries in work that is at most or better than the work of
answering each query individually, and in low span.

47



Figure 3.20: Constructing a subtree decomposition of the subtree rooted at u with respect to p as
the parent. The subtree consists of (1) the adjacent clusters except the one containing/adjacent
to p and (2) the subtrees growing out of the boundary vertices unless adjacent to the cluster
containing/adjacent to p .

The simplest way to implement a batch-query would be to simulate the sequential query
concurrently for each one in the batch, provided that queries are read-only and do not modify
the RC-Tree. This however doesn’t take advantage of batching to reduce work, which is a key
desired feature of batch-dynamic algorithms. To save work, when multiple starting nodes in
a traversal share some common ancestor, it is important to save work by not processing that
ancestor separately for each of them. The key ingredient in obtaining efficient batch queries
will be eliminating this potential redundant work. Figure 3.9 shows the kind of traversals that
are typical of batch queries on an RC-Tree. When several node-to-root paths intersect, those
ancestors should be processed at most once each. If this can be successfully achieved, then
Theorem 8 implies that the work of k queries will be bounded by O

�

k +k log
�

1+ n
k

��

, and by
parallelizing by levels, the span will be O (log n ). Note that the extra additive k term comes
from the fact that some queries might have k =Ω(n 2).

Acar et al. [5] sketch how to perform single-query versions of path queries, subtree queries,
diameters, LCAs, centers and medians, and nearest marked vertices on sequential RC-Trees.
Alstrup et al. [16] categorize these operations as local and nonlocal. A local property of a tree
is one such that if an edge or vertex has a property in a tree, then it has that property in all
subtrees that it appears in. For instance, being the heaviest edge is a local property.

Fundamental techniques: Bottom-up and top-down computations

In this section, we will demonstrate the fundamental techniques for implementing batch
queries by describing a simple algorithm for batch connectivity queries, followed by more
complex examples of batch subtree queries, batch LCA queries, and invertible batch path
queries. A batch query typically consists of two kinds of computations, which we will distin-
guish as bottom-up and top-down computations. Some queries use only one or the other,
while others perform both, typically a bottom-up followed by a top-down.

A bottom-up computation is one in which every cluster wants to compute some data
which is a function of its children. For example, computing the sum of the edge weights on the

48



cluster path of a binary cluster is a bottom-up computation, because it can be implemented
by summing the edge weights of the cluster paths of its two binary children (unless it is a
leaf cluster, in which the weight is simply the weight of the edge). Bottom-up computations
are not performed at query time, but rather they are stored as augmented values on the
clusters. This means that they are computed at build time and then maintained during
update operations. They will then be available precomputed for queries to utilize.

A top-down computation is one in which every cluster wants to compute some data which
is a function of its ancestors, most commonly its boundary vertices. Note that the boundary
vertices of a cluster always represent ancestors of that cluster, and furthermore that one
of them is guaranteed to represent the parent cluster. Top-down computations can not be
efficiently stored as augmented values since updating a cluster high in the tree could require
updating all the descendants of that cluster which would cost linear work. Instead, top-down
computations are always performed at query time. The query algorithm is responsible for
identifying the set of clusters for which the data is needed, which for k queries typically
consists of some O (k ) clusters and all of their ancestors, and hence by Theorem 8 is at most
O
�

k log
�

1+ n
k

��

clusters in total. The algorithm then traverses the RC-Tree from the root
cluster (or multiple root clusters in parallel in the case of a disconnected forest), visits those
relevant clusters, and computes the desired data from the data on the ancestors.

For algorithms that utilize both, the bottom-up and top-down computations are typically
not independent. Our batch-query algorithms will often maintain a bottom-up computation
using augmented values and then proceed at query time by performing a top-down compu-
tation that makes use of these values. This combination strategy is what allows us to derive
some of the more complicated batch-query algorithms.

3.5.1 Batch Connectivity Queries
A batch-connectivity query over a forest F takes as input a sequence of pairs of vertices
u , v and must answer for each of them whether they are connected, i.e., whether they are
contained in the same tree. That is, we want to support the following.

• BATCHCONNECTED({{u1, v1} , . . . ,{uk , vk}}) takes an array of tuples representing queries.
The output is an array where the i th entry is a boolean denoting whether vertices ui and vi

are connected by a path in F .

Connectivity queries are arguably the simplest kind of query since they require no augmented
data to be stored on the clusters and no additional auxiliary data structures; only the structure
of the RC-Tree is needed to determine the answer. The main ideas however are valuable and
will be re-used in the later more complicated algorithms

In the sequential setting, the query is quite simple due to the fact that a pair of vertices u
and v are connected if and only if they are in the same RC-Tree component. To determine
which component vertex v is in, it suffices to simply walk up the RC-Tree starting at the
cluster represented by v until reaching the root cluster and noting its representative. u and
v are in the same component if and only if they have the same representative root cluster.

To generalize this for the batch setting we will use the same technique. We reduce the
problem of solving a batch of connectivity queries to given a batch of vertices, find the

49



Figure 3.21: An example execution of the batch find-representative operation for one connected
component. The initial query nodes (shown as circles with thicker outlines) traverse to the root
(red arrows), but only the first to arrive at each ancestor proceeds. After arriving at the root node,
the winning node propagates the answer back down the tree in parallel.

representatives of their root clusters. This information can then solve the batch connectivity
problem by checking for each pair whether they have the same representative.

The simplest solution would be for each query vertex to concurrently start at the cor-
responding node and walk up the RC-Tree until we find the root representative. However,
this would perform Θ(k log n )work since it makes no attempt to reduce redundant work. To
optimize this, we want paths in the RC-Tree that intersect to only be evaluated once.

Algorithm: Batch find-representative

Our approach to performing the representative finding algorithm is to utilize concurrency.
We assume that each node of the RC-Tree is augmented with two additional fields: a boolean
flag and a field that will store the answer to the query for that component. Initially, in parallel
for each starting node of the query, the algorithm walks up the RC-Tree setting the boolean
flag with an atomic TESTANDSET. If a task fails the test-and-set because it was beaten by
another node, it stops walking up the tree.

After every node has completed its walk and marked the relevant ancestors, the algorithm
performs a top-down computation on all of the flagged nodes, copying the identity of the
root node (the answer to the query) into the answer field on each node and unsetting the flag
for the next query. The query nodes can then each read the answer out of their respective
fields. An illustration of this algorithm is depicted in Figure 3.21.

Theorem 11 (Batch connectivity queries). Given a balanced (resp. in expectation) RC-
Tree representing a forest on n vertices, a batch of k connectivity queries can be answered
in O
�

k +k log
�

1+ n
k

��

work (resp. in expectation) and O (log n ) span (resp. w.h.p.).

50



Proof. The batch find-representative algorithm performs work proportional to the number
of unique nodes visited, which by Theorem 8 is O

�

k log
�

1+ n
k

��

(in expectation if the RC-Tree
is randomized) for k queries. The span is the height of the RC-Tree, which is O (log n ) for a
balanced RC-Tree (w.h.p. if the RC-Tree is randomized). The algorithm answers a batch of
find-representative queries, which is sufficient to answer a batch of connectivity queries by
checking whether the representatives of each pair are the same. Therefore the final work to
answer the connectivity queries is O

�

k +k log
�

1+ n
k

��

.

3.5.2 Batch Subtree Queries
In a weighted unrooted tree, a subtree query takes a subtree root u and a parent p and asks
for the sum of the weights of the vertices/edges in the subtree rooted at u , assuming the tree
is rooted such that p is the parent of u . The weights can be aggregated using any predefined
associative and commutative operator (i.e., the weights are from a commutative semigroup),
such as minimum, maximum, or sum. Weights can be present on vertices or edges or both.

• BATCHSUBTREEWEIGHT({(u1, p1), . . . , (uk , pk )}) takes an array of tuples representing queries.
The output is array where the i th entry contains the sum over the commutative semigroup
operation of the contents of the subtree rooted at ui relative to the parent pi .

Like connectivity, our algorithm for batch subtree queries is similar to the sequential single-
query algorithm but with the added care to avoid performing redundant work and redundant
computations. Naively running k subtree queries in parallel would result in a lot of redundant
work since many subtrees have substantial overlap, so our goal is to avoid that redundancy.
Unlike connectivity, it is much less obvious how to do so, since different subtree queries,
although they may traverse the same root-to-leaf path in the RC-Tree, may accumulate
different chunks of information along the way. Batch connectivity queries on the other hand
were simpler since the answer for every RC node on the same path was guaranteed to be the
same. Figuring out precisely how to break up the computation to avoid redundancy will be
the key insight of this algorithm.

Recall the sequential single-query algorithm of Section 3.4.4. The key idea was that a
subtree rooted at u can be decomposed into (1) all but one of the clusters adjacent to u when
u contracts (i.e., all but one of the children of the cluster U represented by u), and (2) one or
two subtrees growing out of the boundary vertices of U . Refer to Figure 3.20 for a reminder.
The contributions of Part (1) can be computed in constant time since those clusters are
children of U in the RC-Tree. The complexity therefore lies in batching the computation of
Part (2), the contributions of the subtrees growing out of the boundary vertices.

Algorithm: Batch subtrees
The algorithm begins with a bottom-up computation that stores on each cluster the total
aggregate weight of the contents of that cluster. This is stored as an augmented value and
hence already available at query time. The key step of the batched algorithm is the subsequent
top-down computation. Specifically, our algorithm computes for every relevant cluster, the
contributions of the subtrees growing out of its boundary vertices. The first step is the same

51



as the batch find-representative algorithm. Starting from every query vertex ui , it walks up
the tree concurrently and marks every ancestor of every ui . This marks out a subtree of the
RC-Tree consisting of O

�

k log
�

1+ n
k

��

relevant clusters, specifically, every boundary vertex of
every ancestor of every query vertex ui .

The algorithm computes these values starting at the top of the RC-Tree with a top-down
computation. Given a node U with representative u , we want to compute for each of its
boundary vertices b , the total weight in the subtree growing out of b . Consider the node B
represented by b . B is an ancestor of U in the RC-Tree and hence the total contributions of
the subtrees growing out of its boundaries have already been computed. B has one child U ′

which is either U itself or an ancestor of U . The algorithm collects the contributions of every
other child of B , since these are contained in the subtree growing out of b . Then, it considers
each boundary of B , and for each boundary b ′ of B not shared with U ′, it recursively adds
the contribution of the subtree growing out of b ′. Since the value of the subtree growing out
of b ′ was computed earlier, looking this up takes constant time. Therefore, the contribution
of the subtree growing out of b with respect to u can be computed in constant time.

After completing this top-down computation, the algorithm can then answer every query
(u , p ) in parallel by summing the contributions of the children of U except the one contain-
ing/adjacent to p and then adding the contributions from the top-down computation of the
subtrees growing out of the boundary vertices of U except for at most one that is adjacent to
the cluster containing/adjacent to p . Thus we have the following theorem.

Theorem 12 (Batch subtree queries). A balanced (resp. in expectation) RC-Tree for a
forest on n vertices with weights from a commutative semigroup can be augmented to
solve a batch of k subtree sum queries in O

�

k log
�

1+ n
k

��

work (resp. in expectation) and
O (log n ) span (resp. w.h.p.).

Proof. The preprocessing step visits every ancestor of every query root u , of which there are at
most O
�

k log
�

1+ n
k

��

(in expectation if randomized) according to Theorem 8. The top-down
computation then examines the children of each node, of which there are a constant number,
and looks up the contributions of at most four previously computed subtrees (there are at
most two boundary vertices of the current node, and for each they consider the at most two
boundary vertices of the corresponding ancestor node). Therefore a constant amount of
work is required per node, resulting in O

�

k log
�

1+ n
k

��

preprocessing work (in expectation
if randomized), and by parallelising the top-down traversal, a span of O (log n ) (w.h.p. if
randomized). After preprocessing, each query (u , p ) is then answered in constant time by
examining the constant number of children of U and looking up at most two precomputed
contributions for the boundary vertices. Since there are at most O (n ) possible subtrees, the
final work bound is O

�

k +k log
�

1+ n
k

��

=O
�

k log
�

1+ n
k

��

.

3.5.3 Batch LCA Queries
Lowest common ancestors (LCAs) are a useful subroutine for several tree and graph al-
gorithms, and there exists a wide variety of algorithms for the problem including parallel

52



algorithms [157] and algorithms that work on dynamic trees [163]. Link/cut trees [163, 164],
Euler-tour trees [96], and sequential RC-Trees [5] are all able to solve LCA queries. How-
ever, we know of no existing algorithm that can efficiently solve batches of LCA queries on a
dynamic tree. We will describe how to do just this using parallel RC-Trees.

• BATCHLCA({(u1, v1, r1), . . . , (uk , vk , rk )}) takes an array of tuples representing queries. The
output is array where the i th entry is the LCA of ui and vi with respect to the root ri .

The following well known fact will be useful.

Lemma 2. Given an algorithm that can compute LCA(u , v )with respect to an arbitrary
fixed root vertex, the value of LCA(u , v, r ) for any given root r can be computed in constant
time from LCA(u , v ), LCA(u , r ), and LCA(v, r ).

Given this fact, we can simplify our batch algorithm by describing an algorithm that computes
LCA(u , v )with respect to the root vertex of the RC-Tree (the representative vertex of the root
cluster). A batch of general LCA queries with arbitrary roots can then be reduced to a batch
of LCA queries with respect to the RC-Tree root with constant overhead. We will also use the
following two tools.

Lemma 3 (Parallel LCA [157]). Given a rooted tree T on n vertices, with O (n )work and
O (log n ) span preprocessing, LCA queries can be answered in O (1) time.

We will also make use of level ancestors. In the level ancestor problem we are given a static
rooted tree T and wish to preprocess it such that we can answer the following question: given
a vertex u and an integer i , what is the i th vertex on the path from u to the root? The following
result will be very useful.

Lemma 4 (Level Ancestors [21]). Given a rooted tree T on n vertices, with O (n )work and
O (log n ) span preprocessing, level ancestor queries can be answered in O (1) time.

We will begin by describing a useful property that helps us find the LCA of a pair of vertices u
and v . Let r be the root of the RC-Tree, and let U and V be the clusters represented by them
respectively. Let c be their common boundary, which represents the cluster C . There will be
a few cases depending on c and the location of r . Assume that c is equal to one of u and v .
Without loss of generality, say that c = v . Then v is a boundary vertex of one of the ancestors
of c . If C is a unary cluster, then since v is a boundary vertex and u is contained inside the
cluster, v must be the LCA of u and v . Note that this is true because r can not also be inside
the cluster, since as the root of the RC-Tree, it contracted last. If C is a binary cluster, then
there are two possibilities. Either r is on the opposite side of v (or is equal to v ) in which
case v is the LCA, or r is on the opposite side of the other boundary vertex.

In the second case, observe that there is a path from r to v that goes along the cluster path
of C . Therefore the LCA must be the vertex on the cluster path of C that is closest to u . This
means that there is a unary cluster containing u that rakes onto the cluster path. Specifically,
the target of that rake operation must be the LCA. To locate this vertex, observe that after the
cluster containing u rakes onto the cluster path, all subsequent ancestor clusters until C must
be binary clusters since they lie on the cluster path. The LCA can therefore be determined

53



by identifying the first (highest) unary cluster on the path in the RC-Tree from C to U . The
boundary vertex of this cluster, i.e., the representative of its parent, is the LCA.

Now suppose that c is neither of u or v , so there are two clusters containing u and v
respectively which merge with the vertex c . If c = r , then c is the LCA. Otherwise, r must be
on the opposite side of one of the boundary vertex of C . The location of the LCA depends on
which boundary vertex this is. If this boundary vertex belonged to a child of C that does not
contain either u or v , then c must be the LCA. Otherwise, assume without loss of generality
that r is on the other side of the boundary vertex belonging to the cluster that contains u .
Call this cluster U ′. This implies once again that there is a path from r to v that goes through
the entire cluster path of U ′, which contains u . Therefore the LCA is again the vertex on the
cluster path closest to u , which can be identified by locating the first (highest) unary cluster
on the path in the RC-Tree from U ′ to U and returning its boundary vertex.

Algorithm: Batch LCA
Our algorithm for batch LCA does not require any augmented data to be stored on the clusters,
so it is entirely a top-down computation. The idea is to determine for every binary cluster,
which boundary vertex is closer to the root r , i.e., in which direction the root exists. Then, the
case analysis above can be used to determine whether the LCA is c , the common boundary,
or a vertex on the cluster path on some binary cluster. In the later case, we utilize bit tricks
and the parallel level ancestor data structure (Lemma 4) to find the first unary cluster on the
path in the RC-Tree in constant time. Implementing this step in constant time is important
to eliminate the redundancy that would occur if each query had to search for that cluster
separately, which would lead to a runtime of O (k log n ).

The first step of the algorithm is the same as every other. It begins by marking all of the
clusters that contain any of the vertices in the input, i.e., all of the ancestors in the RC-Tree of
every cluster represented by any ui or vi . This marks out a subset of the RC-Tree consisting
of O
�

k log
�

1+ n
k

��

nodes (Theorem 8). The algorithm takes this subset of the RC-Tree and
computes a static LCA and level ancestor data structure on it using Lemmas 3 and 4 [21, 157].

Next, the algorithm computes two properties via a top-down computation. First, it
computes for each binary cluster in the marked subset, which boundary vertex is closest to
the root vertex. This is a simple top down computation to perform by considering the parent
of the current cluster. If the parent of the current cluster is a unary cluster, then the closest
boundary vertex is the one shared with the parent. If the parent is a binary cluster and the
boundary shared with the current cluster is closest to the root, then the shared boundary is
the answer, otherwise the other boundary is.

The second top-down property that the algorithm needs to know is for each marked
cluster, which of its ancestors are binary and which are unary. Of course, each cluster has up
to O (log n ) ancestors, so we can not store an explicit set or list since this would take more than
constant space per cluster and therefore violate our desired work bound of O

�

k log
�

1+ n
k

��

.
Instead, we can store this information using a bitset. That is, each cluster will store a bit
sequence denoting the type of each of its ancestors in level order. For each unary cluster,
write 1, otherwise write 0. Since there are at most O (log n ) ancestors (w.h.p. if randomized),
this can be stored inside a constant number of words (w.h.p. if randomized). Computing the

54



bitset top-down can be implemented by simply reading the bitset of the parent then adding
one additional bit corresponding to the type of the parent. This takes constant time and
space and hence this can be implemented as an efficient top-down computation.

Finally we have all of the data needed to answer the queries. For each query (u , v ), the
algorithm computes the common boundary c using the static LCA data structure. If c = r
then c is the LCA of u and v . Otherwise, let C be the cluster representing c . If c is one of u
or v , without loss of generality suppose that c = v . If C is a unary cluster, then the answer is
v . If C is a binary cluster and the boundary closest to the root is v , then v is the LCA. If C
is a binary cluster and v is not the boundary closest to r , then the LCA is the vertex on the
cluster path of C that is closest to u .

Otherwise, c is neither of u or v . Consider the boundary vertex of C that is closest to the
root (there may just be one if C is a unary cluster), and consider the binary child B of C that
shares this boundary vertex. If B does not contain u or v , then c is the LCA. In the final case,
the closest boundary to r is adjacent to a binary cluster B containing either u or v . Without
loss of generality say that this cluster contains u . The LCA is the vertex on the cluster path of
B that is closest to u .

In the non-trivial cases where the LCA is not equal to c , all that remains is to compute the
closest vertex on the cluster path of a binary cluster to the vertex u . Call the binary cluster
B . The answer is the boundary vertex of the first (highest) unary cluster on the path in the
RC-Tree from B to U . To locate this, the algorithm looks at the ancestor bitset of U . It masks
out (set to zero) all of the ancestors that are higher than B , then locates the most significant
bit (first 1 bit) in the resulting bitset. This identifies the level of the first unary cluster on the
path. Finally, the identity of this cluster can be found by looking up the corresponding level
ancestor using the level ancestor data structure. The boundary vertex of it is the LCA.

Theorem 13 (Batch LCA queries). Given a balanced (resp. in expectation) RC-Tree for
a forest on n vertices, a batch of k LCA queries can be answered in O

�

k +k log
�

1+ n
k

��

work (resp. in expectation) and O (log n ) span (resp. w.h.p.).

Proof. The preprocessing of the marked nodes in the RC-Tree visits every ancestor of every
query node, of which there are O

�

k log
�

1+ n
k

��

(in expectation if randomized) according to
Theorem 8. By Lemmas 3 and 4, it takes linear work and O (log n ) span to build the LCA and
level ancestor data structures. Since the input tree to these algorithms is just the marked
nodes, this takes O

�

k log
�

1+ n
k

��

work (in expectation if randomized).
The top-down computations both only need to examine the parent of each marked

node, so it takes constant time per node, for a total of O
�

k log
�

1+ n
k

��

work (in expectation
if randomized) and O (log n ) span (w.h.p. if randomized). Following the preprocessing and
top-down computations, each query is answered in constant time since it takes constant
time to query the LCA and level ancestor data structures, and constant time to perform
the required bit operations on the ancestor bitsets. Therefore the algorithm answers k LCA
queries in O
�

k +k log
�

1+ n
k

��

work (in expectation if randomized) and O (log n ) span (w.h.p. if
randomized). By Lemma 2, LCA queries with respect to arbitrary root vertices can be reduced
to at most three times as many LCA queries with respect to the RC-Tree root, which at most
adds a constant factor overhead.

55



3.5.4 Batch Path Queries with Inverses
In the sequential single-query setting, path queries on RC-Trees were defined to operate
on weighted vertices or edges where the weights are combined by any specified associative
and commutative operation (formally, the weights form a commutative semigroup). This
meant that a single algorithm could handle queries for the sum of the edge weights, the max-
imum/minimum edge weight, or the total weight with respect to any arbitrarily complicated
associative and commutative operation. Unfortunately, this turns out to be impossible to do
efficiently in the batch setting (we can not hope to achieve O

�

k log
�

1+ n
k

��

work.)
Tarjan [169] shows that the problem of verifying the edges of an MST with edge weights

from a semigroup requires Ω((m + n )α(m + n , n )) time, where α is the inverse ackerman
function. MST verification consists in querying for the minimum weight edge in a given
spanning tree between the endpoints of the Θ(m ) non-tree edges of the graph, and checking
that the non-tree edge is no lighter than the MST edge. This can be reduced to a batch path
query, and hence this implies a superlinear lower bound on batch path queries.

Fortunately, not all hope is lost. The MST verification problem, or more generally, the
offline path query problem admits several efficient solutions both sequentially and parallel
when additional assumptions are made about the weights. For example, if the weights have
an inverse (i.e., we can perform subtraction), linear-work algorithms are plentiful. In this
section, we will give an algorithm for batch path queries on RC-Trees when the weights admit
an inverse (formally, the weights form a commutative group). This covers the case where the
weights are real-valued numbers and the goal is to compute the sum of the weights along a
path. It does not work for computing the minimum- or maximum-weight edge on a path
since there is no inverse operation for the minimum or maximum operation.

• BATCHPATHSUM({(u1, v1), . . . , (uk , vk )}) takes an array of tuples representing queries. The
output is array where the i th entry contains the sum over the commutative group operation
of the weights on the path between ui and vi .

The main idea is a simple and classic technique involving the use of LCAs. Suppose we are
able to compute the total weight of the path from the RC-Tree root to any other vertex in the
tree. Then the total weight on the path between two arbitrary vertices u and v is the sum of
the paths from the root to u , plus the root to v , less twice the weight of the path from root to
LCA of u and v . Using our batch LCA algorithm from Section 3.5.3, all that remains is to be
able to compute the total weight from the root to any other vertex.

Algorithm: Batch path queries over a commutative group

We will reduce a batch of path queries over a commutative group to an invocation of our
batch-LCA algorithm from Section 3.5.3 and a simpler batch query. For each path query
(u , v ), we compute the LCA of u and v with respect to the RC-Tree root r . Then, we solve
a batch of path queries of the form PATHSUM(r, x ). The solution to the query (u , v ) is then
calculated as PATHSUM(r, u ) +PATHSUM(r, v )−2PATHSUM(r, LCA(u , v )).

The algorithm maintains augmented values on each binary cluster corresponding to the
sum of the weights on the cluster path. Since this can be computed by summing the weights

56



of the binary children, this is a simple bottom-up computation that uses constant time and
space per cluster. No augmented values are stored on the unary clusters. At query time, the
algorithm begins with the usual process of marking all of the ancestor clusters of every vertex
u and v considered in the query. This marks out a set of O

�

k log
�

1+ n
k

��

nodes in the RC-Tree
(Theorem 8). It then performs a top-down computation on those nodes which computes the
total weight on the path from r to the representative vertex of the cluster.

This top-down computation can be computed in constant time per cluster by considering
the values of the boundary vertices. If the current cluster is a unary cluster, then the total
weight from the root is just the total weight to the boundary vertex plus the total weight of
the cluster path of the binary child. If the current cluster is a binary cluster, then the total
weight to the root is the total weight to the boundary vertex that is closer to the root, plus the
weight of the cluster path of the adjacent binary child. Determining which boundary vertex
is closer to the root can be done using the same top-down computation as the batch-LCA
algorithm. Once each marked cluster has the total weight from the root to its representative,
the input queries can be solved.

Theorem 14 (Batch path queries over a commutative group). A balanced (resp. in expec-
tation) RC-Tree for a forest on n vertices with weights from a commutative group can be
augmented to solve a batch of k path sum queries in O

�

k +k log
�

1+ n
k

��

work (resp. in
expectation) and O (log n ) span (resp. w.h.p.).

Proof. The augmented values need only examine the values of child clusters, so they take
constant time. The computation of the batch-LCAs takes O

�

k +k log
�

1+ n
k

��

work (in expec-
tation if randomized) and O (log n ) span (w.h.p. if randomized) by Theorem 13. Marking all
the ancestors of the input vertices also takes O

�

k log
�

1+ n
k

��

work and O (log n ) span. The
top-down computation looks at the at most two boundary vertices of the cluster and one
of the children of the cluster and hence a constant amount of work is required per node.
This results in O

�

k +k log
�

1+ n
k

��

preprocessing work (in expectation if randomized), and
by parallelising the top-down traversal, a span of O (log n ) (w.h.p. if randomized). After pre-
processing, each query (u , v ) is answered in constant time by looking up the values on the
clusters represented by u , v , and LCA(u , v ), which takes constant time.

3.5.5 Batch Path-Minimum/Maximum Queries
In Section 3.5.4, we discussed the impossibility of a general batch path query algorithm
that works for any commutative semigroup (i.e., any desired associative and commutative
operation over the weights with no additional assumptions), and gave an algorithm that
works for any commutative group, i.e., the case where the weights admit an inverse, such
as computing the sum of the weights on a path. Notably, this doesn’t cover perhaps the
most well studied kinds of path queries, which are path minima and maxima queries. These
are often referred to as bottleneck queries, and are important because they form the basis
of many algorithms for MSTs and MST verification [117, 121, 170], as well as network flow
algorithms [171]. In this section we show that the special case of path minima (and maxima
by trivial modifications) queries also circumvents the lower bound and is efficiently solvable.

57



• BATCHPATHMIN({(u1, v1), . . . , (uk , vk )}) takes an array of tuples representing queries. The
output is array where the i th entry is the lightest edge on the path between ui and vi .

Unlike our previous batch-query algorithms, the algorithm for path minima will make less
use of the RC-Tree and instead defer much of the heavy lifting to existing algorithms. A classic
technique for solving bottleneck problems on weighted trees is to first shrink the tree to a
smaller tree such that the minimum weight edge on the paths between the query vertices is
unaffected. In Chapter 7, we give a parallel algorithm that achieves this. Specifically, given an
RC-Tree over a weighted input tree and k query vertices, our algorithm produces a so-called
compressed path tree containing the query vertices and at most O (k ) additional vertices such
that the path maxima2 between every pair of query vertices is preserved. Using this tool, the
idea is then to reduce the problem to a small static offline path minima problem and then
use the existing algorithm of King et al. [122] to solve it.

Algorithm: Batch path minima

In Chapter 7, Section 7.2 we show that given an RC-Tree for an edge-weighted tree on n
vertices and a set of k marked vertices, we can produce a compressed path tree with respect
to the k marked vertices in O

�

k log
�

1+ n
k

��

work and O (log n ) span. Our algorithm for batch
path minimas first produces the compressed path tree with respect to the union of the
endpoints of the query vertices ui and vi . By design of the compressed path tree, the answers
to the path queries are the same if they are evaluated on the compressed path tree as if they
were evaluated on the original tree. At this point, since the compressed path tree has just
O (k ) vertices, we can run a static offline algorithm that evaluates the queries and no longer
need the RC-Tree. Our algorithm uses the subroutine of King et al.’s parallel MST verification
algorithm [122] which evaluates a static offline batch of path minima queries in O (n + k )
work and O (log n ) span, where n is the size of the tree and k is the number of query edges.
The results of these queries is the solution. Given the algorithm for path minima queries, the
algorithm can handle path maxima queries by reversing the result of each comparison, or
equivalently, negating the cost of each edge.

Theorem 15 (Batch path minima/maxima queries). A balanced (resp. in expectation)
RC-Tree for a forest on n vertices with comparable edge weights can be augmented to
solve a batch of k path minima/maxima queries in O

�

k +k log
�

1+ n
k

��

work (resp. in
expectation) and O (log n ) span (resp. w.h.p.).

Proof. Building the compressed path tree takes O
�

k log
�

1+ n
k

��

work (in expectation if ran-
domized) and O (log n ) span (w.h.p. if randomized) by Theorem 31. The static offline algo-
rithm of King et al. [122] runs in linear work and logarithmic span in the size of the tree and
number of queries. Since the compressed path tree has O (k ) vertices and we evaluate k
queries, it takes O (k )work and O (log k ) span. Therefore the total work is O

�

k +k log
�

1+ n
k

��

(in expectation if randomized) with O (log n ) span (w.h.p. if randomized).

2The algorithm is described for maximums, but can trivially be made to preserve minimums instead

58



3.5.6 Batch Nearest Marked Vertex Queries
In the sequential setting, RC-Trees have been used to solve the nearest marked vertex problem
in a non-negative edge-weighted tree [5]. Vertices may be marked or unmarked by update op-
erations, and a query must then return the nearest marked vertex to a given vertex. Optionally,
edge weight updates can also be supported.
• BATCHNEARESTMARKED({v1, . . . , vk}) takes an array of vertices representing queries. The

output is an array where the i th entry is the nearest marked vertex to vi .

The algorithm consists in maintaining augmented values via a bottom-up computation
which locate the nearest marked vertices to the representatives inside each cluster, then
using a top-down computation to find the global nearest marked vertices by considering
those both inside and outside each cluster of interest.

Algorithm: Batch nearest marked
Our algorithm maintains several augmented values via a bottom-up computation, similarly
to the sequential single-query algorithm [5]. For each cluster, it maintains (1) the nearest
marked vertex in the cluster to the representative, (2) the nearest marked vertex in the cluster
to each boundary vertex, and (3), if a binary cluster, the length (total weight) of the cluster
path. If a cluster contains no marked vertices, it stores a value of null/∞ for (1) and (2). Each
of these can be maintained in constant time given the values of the children.

(1) If the representative vertex is marked, then it is the nearest marked vertex to itself. Other-
wise, since the representative is the boundary vertex shared by the children, the nearest
marked vertex to the representative in the cluster is just the nearest out of all the nearest
marked vertices to that boundary vertex in the children.

(2) Each boundary vertex is shared with one of the children. The nearest marked vertex
to it in the cluster is either the nearest marked vertex to it in that child cluster or it is
in one of the other children and hence is the same as the nearest marked vertex to the
representative. The nearest of the two can be compared by adding the weight of the
cluster path to the distance to the nearest to the representative.

(3) The total weight on the cluster path is just the sum of the weights of the two binary
children’s cluster paths, or the edge weight if the cluster is a base cluster.

To perform updates such as BATCHMARK and BATCHUNMARK, the algorithm just sets the
marks on the corresponding vertices and then propagates the augmented values up the
RC-Tree to every ancestor cluster containing those vertices. This takes O

�

k log
�

1+ n
k

��

work
and O (log n ) span. The time to propagate an edge-weight update would be the same.

The augmented values store what we will call the locally nearest marked vertices, i.e., the
nearest marked vertices inside the same cluster. At query time, the algorithm performs a top-
down computation to compute the globally nearest marked vertices, i.e., the actual nearest
marked vertices in the entire tree. Specifically, after performing the standard preprocessing
step of marking every ancestor cluster of the input vertices, it will perform a top-down
computation that will compute for each marked cluster, the (globally) nearest marked vertex
to the representative vertex.

59



For a root cluster, since it contains its entire subtree, the (globally) nearest marked vertex
to the representative is the same as the augmented value. Otherwise, given a non-root cluster
there are two cases. Either the nearest marked vertex is inside the cluster or it is outside the
cluster. The nearest marked vertex inside the cluster is read from the augmented value. If
the nearest marked vertex is outside the cluster, then the path from the representative to
the nearest marked vertex must pass through one of the boundary vertices, and hence the
nearest marked vertex is just the closer of the nearest marked vertex to each of the boundary
vertices, which have already been computed earlier in the top-down computation. The
algorithm therefore computes the distances from the representative vertex to the nearest
marked vertices of the boundaries by adding the weights of the cluster paths that connect
them, then takes the closest of the options.

After the top-down computation, the answers can be read off the values of the represented
clusters of the query vertices in constant time. We therefore have the following result.

Theorem 16 (Batch nearest marked vertex queries). A balanced (resp. in expectation)
RC-Tree for a forest on n vertices with non-negative edge weights can be augmented
to solve a batch of k nearest marked vertex queries in O

�

k +k log
�

1+ n
k

��

work (resp. in
expectation) and O (log n ) span (resp. w.h.p.).

Proof. The augmented values need only examine the values of child clusters, so they take
constant time. Marking all the ancestors of the input vertices also takes O

�

k log
�

1+ n
k

��

work
and O (log n ) span (Theorem 8). The top-down computation looks at the augmented values
and at the augmented values of the at most two boundary vertices of the cluster and hence a
constant amount of work is required per node. This results in O

�

k log
�

1+ n
k

��

preprocessing
work (in expectation if randomized), and by parallelising the top-down traversal, a span of
O (log n ) (w.h.p. if randomized). After preprocessing, each query vi is answered in constant
time by looking up the value on the cluster represented by vi .

3.6 Discussion
RC-Trees are a powerful tool for implementing dynamic algorithms on trees. Their ability to
represent both path and subtree decompositions and solve nonlocal queries makes them
more generally applicable than classic link/cut trees and Euler-tour trees. Top trees also
support these more general queries but appear more difficult to parallelize, and to the best
of our knowledge, batch operations on top trees have not been considered. RC-Trees are
parallelizable, amenable to batching, and general, making them the perfect framework for
implementing parallel batch-dynamic algorithms on trees. To implement parallel batch-
dynamic RC-Trees, we need an efficient parallel batch-dynamic tree contraction algorithm.
We will give two algorithms in Chapters 4 and 5, one randomized and one deterministic.

We will then see a range of applications of batch-dynamic trees in the subsequent chap-
ters. In Chapter 7 we will use parallel RC-Trees to implement a parallel batch-incremental
minimum spanning tree algorithm. In Chapter 8 we will extend parallel RC-Trees to be able
to solve batches of mixed queries and weight updates on static trees. This is then used as an

60



ingredient in the first ever work-efficient parallel minimum cut algorithm in Chapter 9. Lastly,
in Chapter 10 we will implement our batch-dynamic tree contraction algorithm using parallel
self-adjusting computation and experimentally evaluate its performance, demonstrating
that parallel RC-Trees could possibly be efficient in practice too.

Since the publication of our work, parallel RC-Trees have also been in used as key ingre-
dients in algorithms by other researchers. Recently, Ghaffari et al. [74] gave the first nearly
work-efficient parallel depth-first search algorithm using RC-Trees.

In this chapter, we gave efficient batch query algorithms for all known operations sup-
ported by RC-Trees that are amenable to batching. Our algorithms are the first to implement
batch queries other than subtree queries on a parallel dynamic tree data structure. They
support batch subtree queries in the same work and span bound as batch-parallel Euler-tour
trees in addition to supporting batch path queries. To the best of our knowledge, this is the
first data structure to support parallel batch path queries. Additionally, our data structure
is also the first to consider batch algorithms for nonlocal properties. Lastly, although batch
subtree queries were applicable to weights with any associative and commutative operation,
we showed that path queries are inhibited by a lower bound that makes a similarly general
algorithm unattainable. Instead, we showed that batch path queries can be solved efficiently
for sums with invertible operations and path minimum/maximum queries, which covers
most typical applications.

61



62



Chapter 4
Randomized Batch-Dynamic

Parallel Tree Contraction

4.1 Introduction
Tree contraction is the process of shrinking a tree down to a single vertex by repeatedly per-
forming local contractions. Each local contraction deletes a vertex of degree at most two and
merges its adjacent edges if it had degree two. Tree contraction has a number of useful appli-
cations, studied extensively in [5, 133, 134]. It can be used to perform various computations
by associating data with edges and vertices and defining how data is accumulated during
local contractions.

We are interested in the problem of maintaining a tree contraction dynamically as the
underlying tree undergoes batches of links and cuts, i.e., insertions and deletions of edges.
Reif and Tate [154]were the first to study batch-dynamic tree contraction and gave an algo-
rithm that can insert or delete a batch of k leaves in Θ(k log n ) work. The algorithm is not
fully general since it only supports modifications at the leaves.

Acar et al. [5] show that dynamic parallel tree contraction is an important tool since it
can be used as the basis of an extremely general and powerful dynamic trees framework,
RC-Trees, which we discussed extensively in Chapter 3. Our goal is to bring RC-Trees from
the sequential, single-update world into the realm of parallel batch-dynamic algorithms. In
Chapter 3, we discussed how RC-Trees arise as a byproduct of parallel tree contraction, and
therefore, to obtain a parallel batch-dynamic algorithm for maintaining an RC-Tree, we must
design an efficient parallel batch-dynamic algorithm for tree contraction.

The existing parallel batch-dynamic Euler-tour trees of Tseng et al. [174] perform batches
of k links, cuts, or queries in O

�

k log
�

1+ n
k

��

work. In Chapter 3, we showed that RC-Trees

can support batches of k queries in O
�

k log
�

1+ n
k

��

work, so we naturally wish to aim for a

matching bound of O
�

k log
�

1+ n
k

��

work for links and cuts in a dynamic parallel tree contrac-
tion algorithm. This makes the algorithm of Reif and Tate insufficient for our goals, since it
performs Θ(k log n )work.

Instead, we will follow the strategy of Acar et al. [4, 5], who designed a change-propagation
algorithm for static functional computations and used it to automatically dynamize the
static tree contraction algorithm of Miller and Reif [133]. In their work, they say that an
algorithm is O ( f (n ))-stable under a class of input changes if the number of differences in
operations executed by the static algorithm on the old and new input after a change is at most
O ( f (n )). That is, the algorithm would perform roughly O ( f (n )) different operations on the

63



newly updated input compared to the original input. Then, they give a change propagation
algorithm that maintains a trace of the algorithm as it runs on the original input, and can then
take a change to the input and propagate it through the computation to obtain the updated
output, in just O ( f (n )) time, as long as the algorithm satisfies certain restrictions. They
then obtain their result on dynamic trees by proving that Miller and Reif’s tree contraction
algorithm satisfies these restrictions and is O (log n )-stable under single edge insertions or
deletions, hence showing that their change propagation algorithm can efficiently update the
contraction in O (log n ) time.

Our goal henceforth is to replicate this result in the parallel setting. We will do so by
defining a restricted class of algorithms to which our change propagation framework will
apply, which we call round synchronous algorithms. A round-synchronous algorithm is
essentially one that performs sequential rounds, in each of which a set of parallel processes is
allowed to read from shared memory, perform some computation, then write back to shared
memory. Parallel tree contraction neatly falls into this class of algorithms and hence can be
dynamized by our framework.

4.2 Round-Synchronous Algorithms
In this framework, we consider dynamizing algorithms that are round synchronous. The
round synchronous framework encompasses a range of classic BSP [177] and PRAM algo-
rithms. A round-synchronous algorithm consists of M processes, with process IDs bounded
by O (M ). The algorithm performs sequential rounds in which each active process executes,
in parallel, a round computation. At the end of a round, any processes can decide to retire,
in which case they will no longer execute in any future round. The algorithm terminates
once there are no remaining active processes—i.e., they have all retired. Given a fixed input,
round-synchronous algorithms must perform deterministically. Note that this does not pre-
clude us from implementing randomized algorithms (indeed, our dynamic trees algorithm
is randomized), it just requires that we provide the source of randomness as an input to
the algorithm, so that its behavior is identical if re-executed. An algorithm in the round
synchronous framework is defined in terms of a procedure COMPUTEROUND(r, p ), which
performs the computation of process p in round r . The initial run of a round-synchronous
algorithm must specify the set P of initial process IDs.

Memory model
Processes in a round-synchronous algorithm may read and write to local memory that is not
persisted across rounds. They also have access to a shared memory. The input to a round-
synchronous algorithm is the initial contents of the shared memory. Round computations
can read and write to shared memory with the condition that writes do not become visible
until the end of the round. Reads can only access shared locations that have been written to,
and shared locations can only be written to once, hence concurrent writes are not permitted.
The contents of the shared memory at termination is considered to be the algorithm’s output.
Change propagation is driven by tracking all reads and writes to shared memory.

64



Pseudocode

We describe round-synchronous algorithms using the following primitives:

1. The read instruction reads the given shared memory locations and returns their values,

2. The write instruction writes the given value to the given shared memory location.

3. Processes may retire by invoking the retire process instruction.

Measures

The following measures will help us to analyse the efficiency of round-synchronous algo-
rithms. For convenience, we define the input configuration of a round-synchronous algorithm
as the pair (I , P ), where I is the input to the algorithm (i.e. the initial state of shared memory)
and P is the set of initial process IDs.

Definition 5 (Initial work, Round complexity, and Span). The initial work of a round-
synchronous algorithm on some input configuration (I , P ) is the sum of the work per-
formed by all of the computations of each processes over all rounds when given that
input. Its round complexity is the number of rounds that it performs, and its span is the
sum of the maximum costs per round of the computations performed by each process.

4.3 Algorithmic Dynamization
Given a round-synchronous algorithm, a dynamic update consists of a change to the in-
put configuration, i.e. changing the contents of shared memory, and/or adding or deleting
processes. The initial run and change propagation algorithms maintain the following data:

1. Rr,p , the memory locations read by process p in round r

2. Wr,p , the memory locations written by process p in round r

3. Sm , the set of round, process pairs that read memory location m

4. X r,p , which is true if process p retired in round r

Algorithm 1 depicts the procedure for executing the initial run of a round-synchronous
algorithm before making any dynamic updates. To help formalize change propagation, we
define the notion of an affected computation. The task of change propagation is to identify
the affected computations and rerun them.

Definition 6 (Affected computation). Given a round-synchronous algorithm A and two
input configurations (I , P ) and (I ′, P ′), the affected computations are the round and
process pairs (r, p ) such that either:
1. process p runs in round r on one input configuration but not the other
2. process p runs in round r on both input configurations, but reads a variable from

shared memory that has a different value in one configuration than the other

65



Algorithm 1 Initial run

1: procedure RUN(P )
2: local r ← 0
3: while P ̸= ; do
4: for each process p ∈ P do in parallel
5: COMPUTEROUND(r, p )
6: Rr,p ← {memory locations read by p in round r }
7: Wr,p ← {memory locations written to by p in round r }
8: X r,p ← (true if p retired in round r else false)

9: for each m ∈∪p∈P Rr,p do in parallel
10: Sm ← Sm ∪{(r, p ) |m ∈Rr,p ∧ p ∈ P }
11: P ← P \ {p ∈ P : X r,p = true}
12: r ← r +1

The change propagation algorithm is depicted in Algorithm 2. It works by maintaining the
affected computations as three disjoint sets, P , the set of processes that read a memory
location that was rewritten, L , processes that outlived their previous self, i.e. that retired
the last time they ran, but did not retire when re-executed, and D , processes that retired
earlier than their previous self. First, at each round, the algorithm determines the set of
computations that should become affected because of shared memory locations that were
rewritten in the previous round (Lines 12–14). These are used to determine P , the set of
affected computations to rerun this round (Line 15). To ensure correctness, the algorithm
must then reset the reads that were performed by the computations that are no longer
alive, or that will be reran, since the set of locations that they read may differ from last time
(Lines 18–19). Lines 22–26 perform the re-execution of all processes that read a changed
memory location, or that lived longer (did not retire) than in the previous configuration. The
algorithm then subscribes the reads of these computations to the memory locations that
they read (Lines 28–29). Finally, on Lines 32–36, the algorithm updates the set of changed
memory locations (U ), the set of computations that lived longer than their previous self (L)
and the set of computations that retired earlier then their previous self (D ).

4.3.1 Correctness
In this section, we sketch a proof of correctness of the change propagation algorithm (Algo-
rithm 2). Intuitively, correctness is assured because of the write-once condition on global
shared memory, which ensures that computations can not have their output overwritten,
and hence do not need to be re-executed unless data that they depend on is modified.

Lemma 5. Given a dynamic update, re-executing only the affected computations for
each round will result in the same output as re-executing all computations on the new
input.

Proof. Since by definition they read the same values, computations that are not affected,

66



Algorithm 2 Change propagation

1: //U = sequence of memory locations that have been modified
2: // P + = sequence of new process IDs to create
3: // P − = sequence of process IDs to remove
4: procedure PROPAGATE(U , P +, P −)
5: local D ← P − // Processes that died earlier than before
6: local L← P + // Processes that lived longer than before
7: local A← ; // Affected computations at each round
8: local r ← 0
9: while U ̸= ;∨D ̸= ;∨ L ̸= ;∨∃r ′ ≥ r : (Ar ′ ̸= ;) do

10: //Determine the computations that become affected
11: // due to the newly updated memory locations U
12: local A′← ∪m∈U Sm

13: for each r ′ ∈∪(r ′,p )∈A′{r ′} do in parallel
14: Ar ′← Ar ′ ∪{p | (r ′, p ) ∈ A′}
15: local P ← Ar \D // Processes to rerun
16: // Forget the prior reads of all processes that are
17: // now dead or will be rerun on this round
18: for each m ∈∪p∈P∪D Rr,p do in parallel
19: Sm ← Sm \ {(r, p ) |m ∈Rr,p ∧ p ∈ P ∪D }
20: local X prev = {p 7→ X r,p | p ∈ P }
21: // (Re)run all changed or newly live processes
22: for each process p in P ∪ L do in parallel
23: COMPUTEROUND(r, p )
24: Rr,p ← {memory locations read by p in round r }
25: Wr,p ← {memory locations written to by p in round r }
26: X r,p ← (true if p retired in round r else false)

27: // Remember the reads performed by processes on this round
28: for each m ∈∪p∈P∪L Rr,p do in parallel
29: Sm ← Sm ∪{(r, p ) |m ∈Rr,p ∧ p ∈ P ∪ L}
30: //Update the sets of changed memory locations,
31: // newly live processes, and newly dead processes
32: U ←∪p∈(P∪L )Wr,p

33: L ′←{p ∈ P | X prev
p = true∧X r,p = false}

34: L← L ∪ L ′ \ {p ∈ L | X r,p = true}
35: D ′←{p ∈ P | X prev

p = false∧X r,p = true}
36: D ←D ∪D ′ \ {p ∈D | X prev

p = true}
37: r ← r +1

67



if re-executed, would produce the same output as they did the first time. Since all shared
memory locations can only be written to once, values written by processes that are not re-
executed can not have been overwritten, and hence it is safe to not re-execute them, as their
output is preserved. Therefore re-executing only the affected computations will produce the
same output as re-executing all computations.

Theorem 17 (Consistency). Given a dynamic update, change propagation correctly
updates the output of the algorithm.

Proof. Follows from Lemma 5 and the fact that all reads and writes to global shared memory
are tracked in Algorithm 2, and since global shared memory is the only method by which
processes communicate, all affected computations are identified.

4.3.2 Cost Analysis
To analyze the work of change propagation, we need to formalize a notion of computation
distance. Intuitively, the computation distance between two computations is the work per-
formed by one and not the other. We then show that change propagation can efficiently
re-execute the affected computations in work proportional to the computation distance.

Definition 7 (Computation distance). Given a round-synchronous algorithm A and two
input configurations, the computation distance W∆ between them is the sum of the work
performed by all of the affected computations with respect to both input configurations.

Theorem 18. Given a round-synchronous algorithm A with input configuration (I , P )
that does W work in R rounds and S span, then
1. the initial run of the algorithm with tracking takes O (W ) work in expectation and

O (S +R · log(W )) span w.h.p.,
2. change propagation on a dynamic update to the input configuration (I ′, P ′) takes

expected O (W∆+R ′)work and O (S ′+R ′ log(W ′)) span w.h.p., where S ′, R ′, W ′ are the
maximum span, rounds, and work of the algorithm on the two input configurations.

Proof. We begin by analyzing the initial run. By definition, all executions of the round
computations, COMPUTEROUND, take O (W ) work and O (S ) span in total, with at most an
additional O (log(M )) =O (log(W )) span to perform the parallel for loop. We will show that all
additional work can be charged to the round computations, and that at most an additional
O (log(W )) span overhead is incurred.

We observe that Rr,p , Wr,p and X r,p are at most the size of the work performed by the
corresponding computations, hence the cost of Lines 6 – 8 can be charged to the computation.
The reader sets Sm can be implemented as dynamic arrays with lazy deletion (this will be
discussed during change propagation). To append new elements to Sm (Line 10), we can
use a semisort performing linear work in expectation to first bucket the shared memory

68



locations in ∪p∈P Rr,p , whose work can be charged to the corresponding computations that
performed the reads. This adds an additional O (log(W )) span w.h.p. since the number of
reads is no more than W in total. Finally, removing retired computations from P (Line 11)
requires a compaction operation. Since compaction takes linear work, it can be charged to
the execution of the corresponding processes. The span of compaction is at most O (log(W )).

Summing up, we showed that all additional work can be charged to the round computa-
tions, and the algorithm incurs at most O (log(W )) additional span per round w.h.p. Hence
the cost of the initial run is O (W )work in expectation and O (S +R · log(W )) span w.h.p.

We now analyze the change propagation procedure (Algorithm 2). The core of the work is
the re-execution of the affected readers on Line 23, which, by definition takes O (W∆)work,
and O (S ′) span, with at most O (log(W ′)) additional span to perform the parallel for loop.
Since some rounds may have no affected computations, the algorithm could perform up to
O (R ′) additional work to process these rounds. We will show that all additional work can be
charged to the affected computations, incurring at most an additional O (log(W ′)) span.

Lines 12 – 14 bucket the newly affected computations by round. This can be achieved
with an expected linear work semisort and by maintaining the Ar sets as dynamic arrays. The
work is chargeable to the affected computations and the span is at most O (log(W ′))w.h.p.
Computing the current set of affected computations (Line 15) requires a filter/compaction
operation, whose work is charged to the affected computations and span is O (log(W ′)).

Updating the reader sets Sm (Line 19) can be done as follows. We maintain Sm as dynamic
arrays with lazy deletion, meaning that we delete by marking the corresponding slot as empty.
When more than half of the slots have been marked empty, we perform compaction, whose
work is charged to the updates and whose span is at most O (log(W ′)). In order to perform
deletions in constant time, we augment the set Rr,p so that it remembers, for each entry
m , the location of (r, p ) in Sm . Therefore these updates take constant amortized work each
(using a dynamic array), charged to the corresponding affected computations, and at most
O (log(W ′)) span if a resize/compaction is triggered.

X prev can be implemented as an array of size |P |, with work charged to the affected
computations in P . As in the initial run, the cost of updating Rr,p , Wr,p and X r,p can also be
charged to the work performed by the affected computations.

Updating the reader sets Sm (Line 29) is a matter of appending to dynamic arrays, and, as
mentioned earlier, remembering for each m ∈Rr,p , the location of (r, p ) in Sm . The work can
be charged to the affected computations, and the span is at most O (log(W ′)).

Collecting the updated locations U (Line 32) can similarly be charged to the affected
computations, and incurs no more than O (log(W ′)) span. On Lines 33 – 36, the sets L ′ and D ′

are computed by a compaction over P , whose work is charged to the affected computations
in P . Updating L and D correspondingly requires a compaction operation, whose work is
charged to the affected computations in L and D respectively. Each of these compactions
costs O (log(W ′)) span.

We can finally conclude that all additional work performed by change propagation can
be charged to the affected computations, and hence to the computation distance W∆, while
incurring at most O (log(W ′)) additional span per round w.h.p. Therefore the total work of
change propagation is O (W∆+R ′) in expectation and the span is O (S ′+R ′ · log(W ′))w.h.p.

69



We now show that for a special class of round-synchronous algorithms, the span overhead
can be reduced. Our dynamic trees algorithm falls into this special case.

Definition 8. A restricted round-synchronous algorithm is a round-synchronous algo-
rithm such that each round computation performs only a constant number of reads
and writes, and each shared memory location is read only by a constant number of
computations, and only in the round directly after it was written.

Theorem 19. Given a restricted round-synchronous algorithm A with input configuration
(I , P ) that does W work in R rounds and S span, then
1. the initial run of the algorithm takes O (W )work and O (S +R log∗(W )) span w.h.p.
2. change propagation on a dynamic update to the input configuration (I ′, P ′) takes

expected O (W∆) work, and O (S ′ +R ′ log∗(W ′)) span w.h.p., where S ′, R ′, W ′ are the
maximum span, rounds, and work of the algorithm on the two input configurations.

Proof sketch. Rather than recreate the entirety of the proof of Theorem 18, we simply sketch
the differences. In essence, we obtain the result by removing the uses of scans, and semisorts,
which were the main cause of the O (log(W ′)) span overhead and the randomized work.
Instead, we rely only on (possibly approximate) compaction, which requires randomization
to achieve the lowest possible span. We also lose the R ′ term in the work since computations
can only read from locations written in the previous round, and hence the set of rounds on
which there exists an affected computation must be contiguous.

The main technique that we will make use of is the sparse array plus compaction technique.
In situations where we wish to collect a set of items from each executed process, we would,
in the unrestricted model, require a scan, which costs O (log(W ′)) span. If each executed
process, however, only produces a constant number of these items, we can allocate an array
that is a constant size larger than the number of processes, and each process can write its set
of items to a designated offset. We can then perform (possibly approximate) compaction on
this array to obtain the desired set, with at most a constant factor additional blank entries.
This takes O (log∗(W ′)) span w.h.p.

Maintaining Sm in the initial run and during change propagation is the first bottleneck,
originally requiring a semisort. Since each computation performs a constant number of
writes, we can collect the writes using the sparse array plus compaction technique. Since, in
the restricted model, each modifiable will only be read by a constant number of readers, we
can update Sm in constant time.

To compute the affected computations Ar also required a semisort, but in the restricted
model, since all reads happen on the round directly after the write, no semisort is needed,
since they will all have the same value of r . Collecting the affected computations from the
written modifiables can also be achieved using the sparse array and compaction technique,
using the fact that each computation wrote to a constant number of modifiables, and each
modifiable is subsequently read by a constant number of computations. Additionally, Ar will
be empty at the beginning of round r , so computing P requires only a compaction.

70



Lastly, collecting the updated locations U can also be performed using the sparse array
and compaction technique. In summary, we can replace all originally O (log(W ′)) span
operations with (approximate) compaction in the restricted setting, and hence we obtain the
given span bounds since this takes O (log∗(W ′)) span w.h.p.

Remark 1 (Space usage). We do not formally specify an implementation of the memory
model, but one simple way to achieve good space bounds is to use hashtables to imple-
ment global shared memory. Each write to a particular global shared memory location
maps to an entry in the hashtable. When a round computation is invalidated during a
dynamic update, its writes can be purged from the hashtable to free up space, preventing
unbounded space blow up. Since the algorithm must also track the reads of each global
shared memory location, using this implementation, the space usage is proportional to
the number of shared memory reads and writes. In the restricted round-synchronous
model, the number of reads must be proportional to the number of writes, and hence
the space usage is proportional to the number of writes.

4.4 Dynamizing Tree Contraction
In this section, we show how to obtain a dynamic tree contraction algorithm by applying our
dynamization technique to the static tree contraction algorithm of Miller and Reif [132].

Input forests
The algorithms described here operate on undirected forests F = (V , E ), where V is a set of
vertices, and E is a set of undirected edges. If (u , v ) ∈ E , we say that u and v are adjacent, or
that they are neighbors. A vertex with no neighbors is said to be isolated, and a vertex with
one neighbour is called a leaf.

We assume that the forests given as input have bounded degree. That is, there exists some
constant t such that each vertex has at most t neighbors. Arbitrary-degree trees should be
handled by ternarization, i.e., by converting high-degree vertices into paths of vertices with
degree at most three, as described in Chapter 3.

The static algorithm
The static tree contraction algorithm (Algorithm 4) works in rounds, each of which takes a
forest from the previous round as input and produces a new forest for the next round. On
each round, some vertices may be deleted, in which case they are removed from the forest
and are not present in all remaining rounds. Let F i = (V i , E i ) be the forest after i rounds of
contraction, and thus F 0 = F is the input forest. We say that a vertex v is alive at round i if
v ∈V i , and is dead at round i if v ̸∈V i . If v ∈V i but v ̸∈V i+1 then v was deleted in round i .
There are three ways for a vertex to be deleted: it either finalizes (Line 32), rakes (Line 21), or
compresses (Line 26). Finalization removes isolated vertices. Rake removes all leaves from

71



the tree, with one special exception. If two leaves are adjacent, then to break symmetry and
ensure that only one of them rakes, the one with the lower identifier rakes into the other
(Line 8). Finally, compression removes an independent set of degree two vertices that are not
adjacent to any degree one vertices, as in Miller and Reif’s algorithm. The choice of which
vertices are deleted in each round is made locally for each vertex based upon its own degree,
the degrees of its neighbors, and coin flips for itself and its neighbors (Line 13). For coin flips,
we assume a function HEADS(i , v ) which indicates whether or not vertex v flipped heaps
on round i . It is important that HEADS(i , v ) is a function of both the vertex and the round
number, as coin flips must be repeatable for change propagation to be correct.

The algorithm produces a contraction data structure which serves as a record of the con-
traction process. The contraction data structure is a tuple, (A, D ), where A[i ][u ] is a list of
pairs containing the vertices adjacent to u in round i , and the positions of u in the adjacency
lists of the adjacent vertices. D [u ] stores the round on which vertex u contracted. The algo-
rithm also records leaf[i ][u ], which is true if vertex u is a leaf at round i . An implementation
of the tree contraction algorithm in our framework is shown in Algorithm 4.

Updates
We consider update operations that implement the interface of a batch-dynamic tree data
structure. This requires supporting batches of links and cuts. A link (insertion) connects two
trees in the forest by a newly inserted edge. A cut (deletion) deletes an edge from the forest,
separating a single tree into two trees. Recall the interface that we wish to support:

• BATCHLINK({(u1, v1), . . . , (uk , vk )}) takes a batch of edges and adds them to F . The edges
must not create a cycle.

• BATCHCUT({(u1, v1), . . . , (uk , vk )}) takes a batch of edges and removes them from the forest.

An implementation of the high-level interface for updates in terms of the contraction data
structure is depicted in Algorithm 3.

4.5 Stability Analysis
We now analyse the initial work, round, complexity, span, and computation distance of the
tree contraction algorithm. This section is dedicated to proving the following theorem.

Theorem 20. Given a forest of n vertices, the initial work of tree contraction is O (n ) in
expectation, the round complexity and the span is O (log(n )) w.h.p. and the computation
distance induced by updating k edges is O

�

k log
�

1+ n
k

��

in expectation.

Let F = (V , E ) be the set of initial vertices and edges of the input tree, and denote by F i =
(V i , E i ), the set of remaining (alive) vertices and edges at round i . We use the term at round
i to denote the beginning of round i , and in round i to denote an event that occurs during
round i . For some vertex v at round i , we denote the set of its adjacent vertices by Ai (v ),
and its degree with δi (v ) =

�

�Ai (v )
�

�. A vertex is isolated at round i if δi (v ) = 0. When multiple

72



Algorithm 3 Link and cut operations for round-synchronous tree contraction

1: procedure BUILD(V , E )
2: for each vertex v ∈V do in parallel
3: write(A[0][v ], {u : (u , v ) ∈ E })
4: write(leaf[0][v ], (|A[0][v ]|= 1))

5: RUN(|V |)
6:

7: procedure BATCHLINK(E + = {(u1, v1), ...(uk , vk )})
8: local U ←∪(u ,v )∈E +{u , v }
9: for each vertex u ∈U do in parallel

10: write(A[0][u ], A[0][u ]∪{v : (u , v ) ∈ E +})
11: write(leaf[0][u ], (|A[0][u ]|= 1))

12: local M =∪u∈U A[0][u ]∪{leaf[0][u ] such that leaf[0][u ] changed}
13: PROPAGATE(M ,;,;)
14:

15: procedure BATCHCUT(E − = {(u1, v1), ...(uk , vk )})
16: local U ←∪(u ,v )∈E −{u , v }
17: for each vertex u ∈U do in parallel
18: write(A[0][v ], A[0][v ] \ {u : (u , v ) ∈ E −})
19: write(leaf[0][u ], (|A[0][u ]|= 1))

20: local M =∪u∈U A[0][u ]∪{leaf[0][u ] such that leaf[0][u ] changed}
21: PROPAGATE(M ,;,;)

forests are in play, it will be necessary to disambiguate which is in focus. For this, we will use
subscripts: for example, δi

F (v ) is the degree of v in the forest F i , and E i
F is the set of edges in

the forest F i .

4.5.1 Analysis of Construction
We first show that the static tree contraction algorithm is efficient. This argument is similar
to Miller and Reif’s argument in Theorem 2.1 of [133].

Lemma 6. For any forest (V , E ), there exists β ∈ (0,1) such that E
��

�V i
�

�

�

≤ β i |V |, where
V i is the set of vertices remaining after i rounds of contraction.

Proof. We begin by considering trees, and then extend the argument to forests. Given a tree
(V , E ), consider the set V ′ of vertices after one round of contraction. We would like to show
there exists β ∈ (0,1) such that E [|V ′|]≤ β |V |. If |V |= 1, then this is trivial since the vertex
finalizes (it is deleted with probability 1). For |V | ≥ 2, Consider the following sets, which
partition the vertex set:

1. H = {v :δ(v )≥ 3}
2. L = {v :δ(v ) = 1}

73



Algorithm 4 Tree contraction algorithm

1: procedure COMPUTEROUND(i , u)
2: local ((v1, p1), ..., (vt , pt )), ℓ← read(A[i ][u ], leaf[i ][u ])
3: if vi =⊥∀i then // A vertex with no neighbors finalizes
4: DOFINALIZE(i , u)
5: else if ℓ then // A leaf vertex rakes if its neighbor is
6: local (v, p )← (vi , pi ) such that vi ̸=⊥ // not a leaf, or if it has the lower ID
7: local ℓ′← read(leaf[i ][v ])
8: if ¬ℓ′ ∨ u < v then DORAKE(i , u , (v, p ))
9: else DOALIVE(i , u , ((v1, p1), ..., (vt , pt )))

10: else
11: if ∃(v, p ), (v ′, p ′) : {v1, ..., vt } \ {⊥}= {v, v ′} then // If the vertex has exactly two neighbors,
12: local ℓ′,ℓ′′← read(leaf[i ][v ], leaf[i ][v ′]) // it will compress if neither of them are
13: local c ←HEADS(i , u ) ∧ ¬HEADS(i , v ) ∧ ¬HEADS(i , v ′) // leaves and it flips heads and they both
14: if (¬ℓ′ ∧ ¬ℓ′′ ∧ c ) then // flip tails
15: DOCOMPRESS(i , u , (v, p ), (v ′, p ′))
16: else
17: DOALIVE(i , u , ((v1, p1), ..., (vt , pt )))
18: else
19: DOALIVE(i , u , ((v1, p1), ..., (vt , pt )))
20:
21: procedure DORAKE(i , u , (v, p )) //When a vertex rakes, it replaces itself with
22: write(A[i +1][v ][p ], ⊥) // null (⊥) in its neighbor’s adjacency list in
23: write(D [u ], i ) // in the next round
24: retire process

25:
26: procedure DOCOMPRESS(i , u , (v, p ), (v ′, p ′)) //When a vertex compresses, it replaces itself
27: write(A[i +1][v ][p ], (v ′, p ′)) //with its opposite neighbors in each neighbor’s
28: write(A[i +1][v ′][p ′], (v, p )) // adjacency list in the next round
29: write(D [u ], i )
30: retire process

31:
32: procedure DOFINALIZE(i , u)
33: write(D [u ], i )
34: retire process

35:
36: procedure DOALIVE(i , u , ((v1, p1), ..., (vt , pt ))) // If a vertex remains alive, it writes itself into
37: local nonleaves← 0 // its neighbors’ adjacency lists in the next
38: for j ← 1 to t do // round. It must also determine whether it
39: if v j ̸=⊥ then // it will be a leaf in the next round
40: write(A[i +1][v j ][pj ], (u , j ))
41: nonleaves += 1 - read(leaf[i ][v j ])
42: else
43: write(A[i +1][u ][ j ], ⊥)

44: write(leaf[i +1][u ], nonleaves = 1)

74



3. C = {v :δ(v ) = 2∧∀u ∈ A(v ), u /∈ L}
4. C ′ = {v :δ(v ) = 2} \C

At least half of the vertices in L must be deleted, since all leaves are deleted, except those that
are adjacent to another leaf, in which case exactly one of the two is deleted. In expectation,
1/8 of the vertices in C are deleted. Vertices in H and C ′ necessarily do not get deleted. Now,
observe that |C ′| ≤ |L |, since each vertex in C ′ is adjacent to a distinct leaf. Finally, we also
have |H |< |L |, which follows from standard arguments about compact trees. Therefore in
expectation,

1

2
|L |+

1

8
|C | ≥

1

4
|L |+

1

8
|H |+

1

8
|C ′|+

1

8
|C | ≥

1

8
|V |

vertices are deleted, and hence

E
��

�V ′
�

�

�

≤
7

8
|V | .

Equivalently, for β = 7
8 , for every i , we have E

��

�V i+1
�

�

�

� Vi

�

≤ β
�

�V i
�

�, where V i is the set of

vertices after i rounds of contraction. Therefore E
��

�V i+1
�

�

�

≤β E
��

�V i
�

�

�

. Expanding this recur-

rence, we have E
��

�V i
�

�

�

≤β i |V |. To extend the proof to forests, simply partition the forest into
its constituent trees and apply the same argument to each tree individually. Due to linearity
of expectation, summing over all trees yields the desired bounds.

Lemma 7. On a forest of n vertices, after O (log n ) rounds of contraction, there are no
vertices remaining w.h.p.

Proof. For any c > 0, consider round r = (c +1) · log1/β (n ). By Lemma 6 and Markov’s in-
equality, we have

P [|V r | ≥ 1]≤β r n = n−c .

Proof of initial work, rounds, and span in Theorem 20. At each round, the construction al-
gorithm performs O

��

�V i
�

�

�

work, and so the total work is O
�∑

i E
��

�V i
�

�

��

in expectation. By
Lemma 6, this is O (|V |) =O (n ). The round complexity and the span follow from Lemma 7.

4.5.2 Analysis of Dynamic Updates
Intuitively, tree contraction is efficiently dynamizable due to the observation that, when a
vertex locally makes a choice about whether or not to delete, it only needs to know who its
neighbors are, and whether or not its neighbors are leaves. This motivates the definition of
the configuration of a vertex v at round i , denoted κi

F (v ), defined as

κi
F (v ) =

¨

({(u ,ℓi
F (u )) : u ∈ Ai

F (v )}), if v ∈V i
F

dead, if v ̸∈V i
F ,

75



where ℓi
F (u ) indicates whether δi

F (u ) = 1 (the leaf status of u). Consider some input forest
F = (V , E ), and let F ′ = (V , (E \ E −)∪ E +) be the newly desired input after a batch cut with
edges E − and/or a batch-link with edges E +. We say that a vertex v is affected at round i if
κi

F (v ) ̸= κ
i
F ′(v ).

Lemma 8. The execution in the tree contraction algorithm of process p at round r is an
affected computation if and only if p is an affected vertex at round r .

Proof. The code for COMPUTEROUND for tree contraction reads only the neighbours, and
corresponding leaf statuses, which are precisely the values encoded by the configuration.
Hence if vertex p is alive in both forests the computation p is affected if and only if vertex
p is affected. If instead p is dead in one forest but not the other, vertex p is affected, and
the process p will have retired in one computation but not the other, and hence it will be an
affected computation. Otherwise, if vertex p is dead in both forests, then the process p will
have retired in both computations, and hence be unaffected.

This means that we can bound the computation distance by bounding the number of affected
vertices. First, we show that vertices that are not affected at round i have nice properties.

Lemma 9. If v is unaffected at round i , then either v is dead at round i in both F and
F ′, or v is adjacent to the same set of vertices in both.

Proof. Follows directly from κi
F (v ) = κ

i
F ′(v ).

Lemma 10. If v is unaffected at round i , then v is deleted in round i of F if and only if v
is also deleted in round i of F ′, and in the same manner (finalize, rake, or compress).

Proof. Suppose that v is unaffected at round i . Then by definition it has the same neighbours
at round i in both F and F ′. The contraction process depends only on the neighbours of the
vertex, and hence proceeds identically in both cases.

If a vertex v is not affected at round i but is affected at round i +1, then we say that v becomes
affected in round i . A vertex can become affected in many ways.

Lemma 11. If v becomes affected in round i , then at least one of the following holds:
1. v has an affected neighbor u at round i which was deleted in either F i or (F ′)i .
2. v has an affected neighbour u at round i +1 where ℓi+1

F (u ) ̸= ℓ
i+1
F ′ (u ).

Proof. First, note that since v becomes affected, we know v does not get deleted, and fur-
thermore that v has at least one neighbor at round i . If v were to be deleted, then by Lemma
10 it would do so in both forests, leading it to being dead in both forests at the next round
and therefore unaffected. If v were to have no neighbors, then v would finalize, but we just
argued that v cannot be deleted.

76



Suppose that the only neighbors of v which are deleted in round i are unaffected at round
i . Then v ’s set of neighbors in round i + 1 is the same in both forests. If all of these are
unaffected at round i +1, then their leaf statuses are also the same in both forests at round
i +1, and hence v is unaffected, which is a contradiction. Thus case 2 of the lemma must
hold. In any other scenario, case 1 of the lemma holds.

Lemma 12. If v is not deleted in either forest in round i and ℓi+1
F (v ) ̸= ℓ

i+1
F ′ (v ), then v is

affected at round i .

Proof. Suppose v is not affected at round i . If none of v ’s neighbors are deleted in this round
in either forest, then ℓi+1

F (v ) = ℓ
i+1
F ′ (v ), a contradiction. Otherwise, if the only neighbors that

are deleted do so via a compression, since compression preserves the degree of its endpoints,
we will also have ℓi+1

F (v ) = ℓ
i+1
F ′ (v ) and thus a contradiction. So, we consider the case of one

of v ’s neighbors raking. However, since v is unaffected, we know ℓi
F (u ) = ℓ

i
F ′(u ) for each

neighbor u of v . Thus if one of them rakes in round i in one forest, it will also do so in the
other, and we will have ℓi+1

F (v ) = ℓ
i+1
F ′ (v ). Therefore v must be affected at round i .

Lemmas 11 and 12 give us tools to bound the number of affected vertices for a consecutive
round of contraction: each affected vertex that is deleted affects its neighbors, and each
affected vertex whose leaf status is different in the two forests at the next round affects its
neighbor. This strategy actually overestimates which vertices are affected, since case 1 of
Lemma 11 does not necessarily imply that v is affected at the next round. We wish to show
that the number of affected vertices at each round is not large. Intuitively, we will show that
the number of affected vertices grows only arithmetically in each round, while shrinking
geometrically, which implies that their total number can never grow too large. Let Ai denote
the set of affected vertices at round i . We begin by bounding the size of |A0|.

Lemma 13. For a batch update of size k , we have |A0| ≤ 4k .

Proof. The computation for a given vertex u at most reads its neighbors, and if it has a single
neighbor, its neighbor’s leaf status. Therefore, the addition/deletion of a single edge affects
its endpoints and at most one other vertex per endpoint, for at most 4 vertices at round 0.
Hence |A0| ≤ 4k .

We say that an affected vertex u spreads to v in round i , if v was unaffected at round i and v
becomes affected in round i in either of the following ways:

1. v is a neighbor of u at round i and u is deleted in round i in either F or F ′, or

2. v is a neighbor of u at round i +1 and the leaf status of u changes in round i , i.e., ℓi+1
F (v ) ̸=

ℓi+1
F ′ (v ).

Let s = |A0|. For each of F and F ′, we now inductively construct s disjoint sets for each round
i , labeled Ai

1, Ai
2, . . . Ai

s . These sets will form a partition of Ai . First, arbitrarily partition A0

into s singleton sets, and let A0
1, . . . , A0

s be these singleton sets. In other words, each affected
vertex in A0 is assigned a unique number 1≤ j ≤ s , and is then placed in A0

j .

77



Given sets Ai
1, . . . , Ai

s , we construct sets Ai+1
1 , . . . , Ai+1

s as follows. Consider some v ∈ Ai+1\Ai .
By Lemmas 11 and 12, there must exist at least one u ∈ Ai such that u spreads to v . Since
there could be many of these, let S i (v ) be the set of vertices which spread to v in round i .
Define:

j i (v ) =

¨

j , if v ∈ Ai
j

minu∈S i (v )

�

j where u ∈ Ai
j

�

, otherwise

In other words, j i (v ) is v ’s set identifier if v is affected at round i , or otherwise the minimum
set identifier j such that a vertex from Ai

j spread to v in round i . We can then produce the
following for each 1≤ j ≤ k , the affected components:

Ai+1
j = {v ∈ Ai+1 | j i (v ) = j }

Informally, each affected vertex from round i which stays affected also stays in the same
place, and each newly affected vertex picks a set to join based on which vertices spread to it.

We say that a vertex v is a frontier at round i if v is affected at round i and at least one of
its neighbors in either F or F ′ is unaffected at round i . It is easy to show that any frontier
at any round is alive in both forests and has the same set of unaffected neighbors in both
at that round, and thus, the set of frontier vertices at any round is the same in both forests.
It is also easy to show that if a vertex v spreads to some other vertex in round i , then v is a
frontier at round i . We describe next the structure of the affected components and show that
the number of frontier vertices within each is bounded.

Lemma 14. For any i , j , the subforests induced by Ai
j in each of F i and (F ′)i are trees.

Proof. This follows from rake and compress preserving connectedness, and the fact that if u
spreads to v then u and v are neighbors in both forests either at round i or round i +1.

Lemma 15. For any i , j , each of the following statements hold:
1. Ai

j contains at most 2 frontier vertices.

2. |Ai+1
j \Ai

j | ≤ 2.

Proof. We prove statement 1 by induction on i , and conclude statement 2 in the process. At
round 0, each A0

j contains at most 1 frontier. We now consider some Ai
j . Suppose there is a

single frontier vertex v in Ai
j . If v compresses in one of the forests, then v will not be a frontier

in Ai+1
j , but it will spread to at most two newly affected vertices which may be frontiers at

round i +1. Thus the number of frontiers in Ai+1
j is at most 2, and |Ai+1

j \Ai
j | ≤ 2.

If v rakes in one of the forests, then v must also rake in the other forest (if not, then v
could not be a frontier, since its neighbor would be affected). It spreads to one newly affected
vertex (its neighbor) which may be a frontier at round i +1. Thus the number of frontiers in
Ai+1

j will be at most 1, and |Ai+1
j \Ai

j | ≤ 1.

Now suppose there are two frontiers u and v in Ai
j . Due to statement 1 of the Lemma,

each of these must have at least one affected neighbor at round i . Thus if either is deleted, it

78



will cease to be a frontier and may add at most one newly affected vertex to Ai+1
j , and this

newly affected vertex might be a frontier at round i +1. The same can be said if either u or v
spreads to a neighbor due to a leaf status change. Thus the number of frontiers either remains
the same or decreases, and there are at most 2 newly affected vertices. Hence statements 1
and 2 of the Lemma hold.

Now define Ai
F, j = Ai

j ∩V i
F , that is, the set of vertices from Ai

j which are alive in F at round i .

We define Ai
F ′, j similarly for forest F ′.

Lemma 16. For every i , j , we have

E
h
�

�

�Ai
F, j

�

�

�

i

≤
6

1−β
,

and similarly for Ai
F ′, j .

Proof. Let F i
A, j denote the subforest induced by Ai

F, j in F i . By Lemma 15, this subforest is a
tree, and has at most 2 frontier vertices. By Lemma 6, if we applied one round of contraction
to F i

A, j , the expected number of vertices remaining would be at most β ·E[|Ai
F, j |]. However,

some of the vertices that are deleted in F i
A, j may not be deleted in F i . Specifically, any vertex

in Ai
F, j which is a frontier or is the neighbor that spread to a frontier might not be deleted.

There are at most two frontier vertices and two associated neighbors. By Lemma 15, two
newly affected vertices might also be added. We also have |A0

F, j |= 1. Therefore we conclude
the following, which similarly holds for forest F ′:

E
h
�

�

�Ai+1
F, j

�

�

�

i

≤β E
h
�

�

�Ai
F, j

�

�

�

i

+6≤ 6
∞
∑

r=0

β r =
6

1−β
.

Lemma 17. For a batch update of size k , we have for every i ,

E
��

�Ai
�

�

�

≤
48

1−β
k .

Proof. Follows from Lemmas 13 and 16, and the fact that

�

�Ai
�

�≤
s
∑

j=1

�
�

�

�Ai
F, j

�

�

�+
�

�

�Ai
F ′, j

�

�

�

�

.

79



Proof of computation distance in Theorem 20. Let F be the given forest and F ′ be the desired
forest. Since each process of tree contraction does constant work each round, Lemma 8
implies that the algorithm does O

��

�Ai
�

�

�

work at each round i , so W∆ =
∑

i

�

�Ai
�

�.
Since at least one vertex is either raked or finalized each round, we know that there are

at most n rounds. Consider round r = log1/β

�

1+ n
k

�

, using the β given in Lemma 6. We now
split the rounds into two groups: those that come before r and those that come after.

For i < r , we bound E
��

�Ai
�

�

�

according to Lemma 17, yielding
∑

i<r

E
��

�Ai
�

�

�

=O (r k ) =O
�

k log
�

1+
n

k

��

work. Now consider r ≤ i < n . For any i we know
�

�Ai
�

�≤
�

�V i
F

�

�+
�

�V i
F ′

�

�, because each affected
vertex must be alive in at least one of the two forests at that round. We can then apply the
bound given in Lemma 6, and so

∑

r≤i<n

E
��

�Ai
�

�

�

≤
∑

r≤i<n

�

E
��

�V i
F

�

�

�

+E
��

�V i
F ′

�

�

��

≤
∑

r≤i<n

�

β i n +β i n
�

=O (nβ r )

=O
�

nk

n +k

�

=O (k ),

and thus
E [W∆] =O
�

k log
�

1+
n

k

��

+O (k ) =O
�

k log
�

1+
n

k

��

.

4.6 Discussion
In Chapter 3, we discussed the RC-Tree framework, which produces a dynamic tree data
structure on top of any algorithm for dynamic tree contraction. In this chapter, we have
derived an algorithm for parallel batch-dynamic tree contraction that can handle batches
of k links or cuts in O

�

k log
�

1+ n
k

��

work in expectation and O (log n log∗n ) span w.h.p. This
improves on the results of Reif and Tate [154]who gave an algorithm that runs in O (k log n )
work and could only perform modifications to the leaves of the tree. This new result directly
implies the existence of randomized parallel batch-dynamic RC-Trees with the same bounds
for batch links and cuts. We showed in Lemma 6 that the tree contraction algorithm shrinks
the forest geometrically, and hence we obtain a balanced RC-Tree. Formally, we have shown
the following slightly weaker version of Theorem 1:

There is a randomized parallel batch-dynamic algorithm that maintains a bal-
anced RC-Tree of a bounded-degree forest subject to batches of k edge updates (inser-
tions, deletions, or both) in O

�

k log
�

1+ n
k

��

work in expectation and O (log log∗nn )
span w.h.p.

80



Theorem 1 asserts the existence of a balanced RC-Tree with the same bounds except O (log n )
span. We will discuss how to optimize and improve the span from O (log n log∗n ) to just
O (log n ) in Chapter 5. Our algorithm, like all existing parallel dynamic tree algorithms is
randomized. In Chapter 5, we will also design the first work-efficient deterministic algorithm
for batch-dynamic tree contraction, which results in a deterministic algorithm for RC-Trees.

Combined with the results of Chapter 3, in this chapter we have provided the first proof
of the existence of balanced parallel batch-dynamic RC-Trees. These are the second parallel
batch-dynamic tree algorithm, following the results of Tseng et al. [174] on parallel batch-
dynamic Euler-tour trees. Compared to Euler-tour trees, RC-Trees permit a much wider range
of queries, being capable of solving both path and subtree queries as well as nonlocal queries
such as centers, diameters, and medians. On the other hand, one downside of RC-Trees is
that they are restricted to bounded-degree trees, while Euler-tour trees are not.

81



82



Chapter 5
Deterministic Batch-Dynamic

Parallel Tree Contraction

5.1 Introduction
Work-efficient parallel batch-dynamic graph algorithms are a relatively recent idea, many
of the first appearing in this thesis such as our earlier results on parallel batch-dynamic
tree contraction and RC-Trees (Chapters 3 and 4), and work appearing in later chapters on
connectivity (Chapter 6) and incremental MSTs (Chapter 7). Other results have recently
been discovered by other researchers including for k -clique counting [52], k -core decompo-
sition [126], as well as results that build on our own published work, such as fully dynamic
MSTs [175], which extend our work on connectivity (Chapter 6). These are all parallel batch-
dynamic algorithms for graphs, but they have something else in common: every one of them
uses randomization. Randomization is a very powerful tool for parallel graph problems and
more broadly because it allows for easy symmetry-breaking when faced with local decisions.

Perhaps for some problems, randomization is employed only as a convenience, but for
others it appears necessary to obtain the most efficient algorithms. Indeed, avoiding ran-
domization seems difficult even for some classic static problems. Finding a spanning forest,
for instance, has a simple O (m )-time sequential algorithm, and an O (m )work, O (log n ) span
randomized parallel algorithm has been known for twenty years [144], but no deterministic
equivalent has been discovered. The best deterministic algorithm requires an additional
α(n , m ) factor of work [41].

In this chapter, we break the randomization barrier for work-efficient parallel batch-
dynamic graph algorithms by designing the first efficient deterministic algorithm for parallel
batch-dynamic tree contraction. We design a work-efficient algorithm for the batch-dynamic
trees problem that is deterministic and runs in polylog n span. As a byproduct, we obtain
a deterministic algorithm for maintaining an RC-Tree under batch links and cuts. To the
best of our knowledge, this is the first deterministic work-efficient parallel batch-dynamic
algorithm for any graph problem.

Unlike the randomized algorithm, our deterministic algorithm is not based on change-
propagation. Rather, we describe an update algorithm that takes batches of links and cuts
and updates the tree contraction directly. We start by developing a simpler algorithm that is
work efficient but O (log n log log k ) span. We then discuss several improvements that show
how to optimize the span. As a byproduct of our span optimization, we also optimize the
span of the randomized variant of the problem from Chapter 4 and obtain our improved
result (Theorem 1) which brings the span down from O (log n log∗n ) to O (log n ).

83



The workings of the deterministic algorithm will be reminiscent the analysis of the ran-
domized algorithm in Chapter 4. Many of the notations that were key to its analysis (affected
vertices, spreading, affected components, etc.) are employed to build the deterministic
direct-update update algorithm.

Preliminary: Colorings and maximal independent sets

Parallel algorithms for graph coloring and maximal independent sets are well studied [39,
78, 79, 110, 127]. Our algorithm uses a subroutine that finds a maximal independent set of a
collection of chains, i.e., a set of vertices of degree one or two. Goldberg and Plotkin [79] give
an algorithm that finds an O (log(c )(n ))-coloring of a constant-degree graph in O (c ·n )work
and O (c ) span in the EREW model. This gives a constant coloring in O (n log∗n )work and
O (log∗n ) span.

Given a c -coloring, one can easily obtain a maximal independent set as follows. Sequen-
tially, for each color, look at each vertex of in parallel. If a vertex is the current color and is
not adjacent to a vertex already selected for the independent set, then select it. This takes
O (c ·n ) work and O (c ) span, hence a constant coloring yields an O (n ) work and constant
span algorithm.

For any choice of coloring, the above algorithms do not yield a work-efficient algorithm
for maximal independent set since it is not work efficient to find a constant coloring, and not
work efficient to convert a non-constant coloring into an independent set. To make it work
efficient, we can borrow a trick from Cole and Vishkin. We first produce a log(c )n coloring
in O (1) time, then bucket sort the vertices by color, allowing us to perform the coloring-to-
independent-set conversion work efficiently. Cole and Vishkin [40] show that the bucket
sorting can be done efficiently in the EREW model. This results in an O (n )work, O (log(c )n )
span algorithm for maximal independent set in a constant-degree graph.

Lemma 18 ([40, 79]). There exists a deterministic algorithm that finds an MIS in a
constant-degree graph in O (n )work and O (log(c )n ) span for any constant c .

5.2 A Deterministic Contraction Algorithm
Like our randomized algorithm in Chapter 4, our deterministic algorithm maintains a con-
traction data structure which serves to record the process of tree contraction beginning from
the input forest F as it contracts to a forest of singletons. The contraction data structure also
contains the RC-Tree as a byproduct. For each round in which a vertex is live, the contrac-
tion data structure stores an adjacency list for that vertex. We assume that the forests have
bounded degree t , so each adjacency list is exactly t slots large. Each entry in a vertex v ’s
adjacency list is one of four possible kinds of value:

1. Empty, representing no edge

2. A pointer to an edge of F adjacent to v

84



3. A pointer to a binary cluster for which v is one of the boundary vertices. This represents
an edge between v and the other boundary vertex in the contracted tree.

4. A pointer to a unary cluster for which v is the boundary vertex. This does not represent
any edge in the contracted tree, but is used to propagate augmented data from the child
to the parent.

At round 0 (before any contraction), the adjacency list simply stores pointers to the edges
adjacent to each vertex. At later rounds, in a partially contracted tree, some of the edges are
not original edges of F , but are the result of a compress operation and represent a binary
cluster of F (Case 3), which may contain augmented data (e.g., the sum of the weights in the
cluster, the maximum weight edge on the cluster path, etc, depending on the application).
Additionally, vertices that rake accumulate augmented data inside their resulting unary
cluster that needs to be aggregated when their parent cluster is created (Case 4).

Clusters contain pointers to their child clusters alongside any augmented data. Each
composite cluster corresponds uniquely to the vertex that contracted to form it, so counting
them plus the base edge clusters, the RC-Tree contains exactly n +m clusters. If the user
wishes to store augmented data on the vertices, this can be stored on the unique composite
cluster for which that vertex is the representative. Alternatively, explicit base vertex clusters
may be used if desired.

The static algorithm
We build a tree contraction, and as a byproduct an RC-Tree, deterministically using a variant of
Miller and Reif’s tree contraction algorithm. Recall that Miller and Reif’s algorithm contracts
all degree-one vertices (leaves) and a random independent set of degree-two vertices chosen
by flipping coins to break symmetry. In our deterministic algorithm, instead of contracting
all degree-one vertices and an independent set of degree two vertices, we instead contract
any maximal independent set of degree one and two vertices, i.e., leaves are not all required to
contract. The reason for this will become clear during the analysis of the update algorithm,
but essentially, not forcing leaves to contract reduces the number of vertices that need to
be reconsidered during an update, since a vertex that was previously not a leaf becoming
a leaf would force it to contract, which may cause a chain reaction by forcing its neighbor
to not contract (otherwise it would violate being an independent set), which may force the
neighbor’s neighbor to contract to maintain maximality and so on. Such a chain reaction is
undesirable, and our variant avoids it.

Definition 9. We say that a tree contraction is maximal at some round if the set of vertices
that contract form a maximal independent set of degree one and two vertices. A tree
contraction is maximal if it is maximal at every round.

Let us denote by F0, the initial forest, then by Fi for i ≥ 1, the forest obtained by applying
one round of maximal tree contraction to Fi−1. To obtain a maximal tree contraction of Fi ,
consider in parallel every vertex of degree one and two. These are the eligible vertices. We
find a maximal independent set of eligible vertices by finding an O (log log n ) coloring of the
vertices using the algorithm of Goldberg and Plotkin [79], then bucket sorting the vertices

85



by colors and selecting a maximal independent set similar to the algorithm of Cole and
Vishkin [40]. This takes O (|Fi |) work and O (log log n ) span. To write down the vertices of
Fi+1, we can apply approximate compaction to the vertex set of Fi , filtering those which were
selected to contract. This also takes O (|Fi |)work and O (log log n ) span [81].

As is standard for parallel tree contraction implementations, each vertex writes into its
neighbors’ adjacency list for the next round. For vertices that do not contract, they can simply
copy their corresponding entry in their neighbors’ adjacency list to the next round. For
vertices that do contract, they write the corresponding cluster pointers into their neighbors’
adjacency lists. For example, if a vertex v with neighbors u and w compresses, it writes a
pointer to the binary cluster formed by v (whose boundary vertices are u and w ) into the
adjacency list slots of u and w that currently store the edge to v . The tree has constant degree,
so identifying the slot takes constant time and suffers no issues of concurrency.

To build the RC-Tree clusters, it suffices to observe that when a vertex v contracts, the
contents of its adjacency list are precisely the child clusters of the resulting cluster. Hence in
constant time we can build the cluster by aggregating the augmented values of the children
and creating a corresponding cluster. If at a round, a vertex is isolated (has no neighbors), it
finalizes (creates a root cluster).

5.3 A Deterministic Dynamic Update Algorithm

Algorithm 5 Batch update

1: procedure BATCHUPDATEFOREST(E +, E −)
2: Update F0, adding edges in E + and removing edges in E −

3: Determine affected vertices from the endpoints of E + ∪E −

4: for each level i from 1 to log6/5 n do
5: Determine the new affected vertices from the previous set of affected vertices
6: Find a maximal set of eligible affected vertices without an unaffected neighbor that contracts in Fi

7: Obtain F ′i from Fi by uncontracting the affected vertices, then contracting the new MIS

A dynamic update consists of a set of k edges to be added or deleted (a combination of both
is valid). The update begins by modifying the adjacency lists of the 2k endpoints of the
modified edges. Call this resulting forest F ′0 , to denote the forest after the update. The goal
of the update algorithm is now to produce F ′i , an updated tree contraction for each level i ,
using Fi , Fi−1 and F ′i−1.

Affected vertices To perform the update efficiently, we define the notion of an affected
vertex, which is very similar to the same notion that was defined for the randomized algorithm
in Chapter 4. Note that in the randomized algorithm, the notion of an affected vertex was used
only for analysis, since the change-propagation algorithm determined them automatically
(via affected computations), whereas now, they are a key part of the algorithm itself.

86



Figure 5.1: A vertex v is affected because its neighbor u is affected by a newly inserted edge (red),
and v depends on u contracting in order for the contraction to be maximal.

Definition 10 (Affected vertex). A vertex is affected at level i if any of:
1. it is alive in one of Fi and F ′i but not the other (which means it either contracted in an

earlier round originally, but survived later after the update, or vice versa).
2. it is alive in both Fi and F ′i but has a different adjacency list
3. it is alive in both Fi and F ′i , does not contract in Fi , but all of its neighbors u in Fi that

contracted are affected.

The first two cases of affected vertices are intuitive. If a vertex used to exist at round i but
no longer does, or vice versa, it definitely needs to be updated in round i . If a vertex has a
different adjacency list than it used to, then it definitely needs to be processed because it can
not possibly contract in the same manner, or may change from being eligible to ineligible to
contract or vice versa.

The third case of affection is more subtle, and is important for the correctness and effi-
ciency of the algorithm. Suppose an eligible vertex v doesn’t contract in round i . Since the
contraction forms a maximal independent set, at least one of v ’s neighbors must contract.
If all such neighbors are affected, they may no longer contract after in the updated forest,
which would leave v uncontracted and without a contracting neighbor, violating maximality.
Therefore v should also be considered in the update. Figure 5.1 shows an example scenario
where this is important.

Note that by the definition, vertices only become affected because they have an affected
neighbor either in the previous round or the same round. Similar to the randomized algorithm
of Chapter 4, we call this spreading affection.

The algorithm

With the definition of affected vertices, the update algorithm can be summarized as stated
in Algorithm 5. Each level is processed sequentially, while the subroutines that run on each
level are parallel. Line 5 is implemented by looking at each affected vertex of the previous
round and any vertex within distance two of those in parallel, then filtering those which do
not satisfy the definition of affected. Note that by the definition of affected, looking at vertices
within distance two is sufficient since at worst, affection can only spread to neighbors and
possibly those neighbors’ uncontracted neighbors. Using Goldberg and Zwick’s approximate
compaction algorithm [81], this step takes linear work in the number of affected vertices and

87



O (log log n ) span. In Section 4.3.2, we show that the number of affected vertices at each level
is O (k ), so this is efficient.

Line 6 is accomplished using Lemma 18. This finds a maximal independent set of eligible
affected vertices in linear work and O (log(c )n ) span, so we can choose c = 2 and use the fact
that there are O (k ) affected vertices to find the new maximal independent set in O (k )work
and O (log log k ) span.

Line 7 is implemented by looking at each affected vertex in parallel and updating it to
reflect its new behaviour in F ′i . This entails writing the corresponding adjacent edges into the
adjacency lists of its neighbors in round i +1 if it did not contract, or writing the appropriate
cluster values if it did. At the same time, for each contracted vertex, the algorithm computes
the augmented value on the resulting RC cluster from the values of the children.

Correctness
We now argue that the algorithm is correct.

Lemma 19. After running the update algorithm, the contraction is still maximal, i.e., the
contracted vertices at each level form a maximal independent set of degree one and two
vertices.

Proof. The goal is to show that every vertex satisfies the necessary invariant, i.e. that every
vertex either contracts or is adjacent to a vertex that contracts but not both. Call a vertex
update-eligible if it has degree one or two in F ′i (is eligible in F ′i ) and is not adjacent to an
unaffected vertex that contracts in Fi . The affected and update-eligible vertices are the ones
that the update algorithm computes a new MIS on.

Consider any update-eligible unaffected vertex v ∈ F ′i . Since it is unaffected it exists in Fi .
Suppose v contracts in Fi , then it still contracts in F ′i . We need to argue that no neighbor of
v contracts in F ′i . For any unaffected neighbor u , it didn’t contract in Fi and hence doesn’t
contract in F ′i . If u is an affected neighbor, it is not update-eligible and hence does not
contract since v is unaffected and contracted. Therefore none of v ’s neighbors contract in
F ′i , so the invariant is satisfied when v contracts in F ′i .

Now suppose v doesn’t contract in F ′i . Since it is unaffected it exists and doesn’t contract
in Fi . Therefore it has a neighbor u ∈ Fi that contracts. If u is unaffected, then u ∈ F ′i
and contracts. If u were affected, then v would be affected by dependence, so u must be
unaffected. Therefore all update-eligible unaffected vertices v ∈ F ′i satisfy the invariant.

Now consider any update-eligible affected vertex v ∈ F ′i . Since it is affected and update-
eligible, v participates in the MIS, and has no contracted neighbor in Fi . Since the algorithm
finds an MIS on the candidates, v either contracts and has no contracted neighbor, or doesn’t
contract and has a contracted candidate neighbor. Therefore v satisfies the invariant.

Together, we can conclude that every update-eligible vertex satisfies the invariant. Lastly,
if a vertex is not update-eligible, then it satisfies the invariant by definition since it either has
degree greater than two and hence can not contract, or it is adjacent to an unaffected vertex
that contracts in Fi , which must also contract in F ′i by virtue of being unaffected.

It remains to show that the algorithm is efficient.

88



5.4 Performance Analysis
We start by proving some general and useful lemmas about the contraction process, from
which the efficiency of the static algorithm immediately follows, and which will later be used
in the analysis of the update algorithm.

5.4.1 Round and Tree-Size Bounds

Lemma 20. Consider a tree T and suppose a maximal indpendent set of degree one and
two vertices is contracted via rake and compress contractions to obtain T ′. Then

|T ′| ≤
5

6
|T |

Proof. More than half of the vertices in any tree have degree one or two [183]. A maximal
independent set among them is at least one third of them since every adjacent run of three
vertices must have at least one selected, so at least one sixth of the vertices contract. Therefore
the new tree has at most 5

6 as many vertices.

The lemma also applies to forests since it can simply be applied independently to each
component. Three important corollaries follow that allow us to bound the cost of various
parts of the algorithm. Corollary 3 gives the number of rounds required to fully contract a
forest, and Corollary 4 gives a bound on the number of rounds required to shrink a forest to
size n/ log n . Lastly, Corollary 5 gives a bound on the number of rounds required to shrink
a tree to size k , which is useful in bounding the work of the batched update and query
algorithms.

Corollary 3. Given a forest on n vertices, maximal tree contraction completely contracts
a forest of n vertices in log6/5 n rounds.

Corollary 4. Given a forest on n vertices, after performing at least log6/5 log n rounds
of maximal tree contraction, the number of vertices in the resulting forest is at most
n/ log n .

Corollary 5. Given a forest on n vertices and any integer k ≥ 1, after performing at least
log6/5

�

1+ n
k

�

rounds of maximal tree contraction, the number of vertices in the resulting
forest is at most k .

Proof of Corollary 3,4,5. By Lemma 20, the number of vertices in each round is at most 5/6ths
of the previous round, so the number remaining after round r is at most n (5/6)r . The three
corollaries follow.

89



5.4.2 Analysis of the Static Algorithm
With the lemmas and corollaries of Section 5.4.1, we can now analyze the static algorithm.

Theorem 21. The basic maximal tree contraction algorithm can be implemented in O (n )
work and O (log n log log n ) span for a forest of n vertices.

Proof. The work performed at each round is O (|Fi |), i.e., the number of live vertices in the
forest at that round. By Lemma 20, the total work is therefore at most

∞
∑

i=0

n
�

5

6

�i

= n
∞
∑

i=0

�

5

6

�i

= 6n .

The span of the algorithm is O (log log n ) per round to perform the maximal independent set
and approximate compaction operations by Lemma 18. By Corollary 3 there are O (log n )
rounds, hence the total span is O (log n log log n ).

Section 5.5 explains how to improve the span to O (log n log(c )n ) for any constant c .

5.4.3 Analysis of the Update Algorithm
The analysis of the update algorithm follows a similar pattern to the analysis of the random-
ized change propagation algorithm of Chapter 4. We sketch a summarised version below,
which should be reminiscent of the randomized version, then present the full analysis.

We begin by establishing the criteria for vertices becoming affected. Initially, the end-
points of the updated edges and a small neighborhood around them are affected. We call
these the origin vertices. For each of these vertices, it may spread its affection to nearby
vertices in the next round. Those vertices may subsequently spread to other nearby vertices
in the following round and so on. As affection spreads, the affected vertices form an affected
component, a connected set of affected vertices whose affection originated from a common
origin vertex. An affected vertex that is adjacent to an unaffected vertex is called a frontier
vertex. Frontier vertices are those which are capable of spreading affection. Note that it
is possible that in a given round, a vertex that becomes affected was adjacent to multiple
frontier vertices of different affected components, and is subsequently counted by both
of them, and might therefore be double counted in the analysis. This is okay since it only
overestimates the number of affected vertices in the end.

With these definitions established, our results show that each affected component consists
of at most two frontier vertices, and that at most four new vertices can be added to each
affected component in each round. Given these facts, since a constant fraction of the vertices
in any forest must contract in each round, we show that the size of each affected component
shrinks by a constant fraction, while only growing by a small additive factor. This leads to
the conclusion that each affected component never grows beyond a constant size, and since
there are initially O (k ) origin vertices, that there are never more than O (k ) affected vertices
in any round. This allows us to establish that the algorithm is efficient.

90



The proofs

We now prove the afformentioned facts.

Lemma 21. If v is unaffected at round i , then v contracts in round i in F if and only if v
contracts in round i in F ′.

Proof. Unaffected vertices are ignored by the update algorithm, and hence remain the same
before and after an update.

If a vertex is not affected during round i but is affected during round i + 1, we say that v
becomes affected in round i . A vertex can become affected in two ways.

Lemma 22. If v becomes affected in round i , then one of the following is true:
1. v has an affected neighbor u at round i which contracted in either Fi or F ′i
2. v does not contract by round i +1, and has an affected neighbor u at round i +1 that

contracts in Fi+1.

Proof. First, since v becomes affected in round i , it is not already affected at round i . There-
fore, due to Lemma 21, v does not contract, otherwise it would do so in both F and F ′ and
hence be unaffected at round i +1. Since v does not contract, v has at least one neighbor,
otherwise it would finalize.

Suppose that (1) is not true, i.e., that v has no affected neighbors that contract in Fi or F ′i
in round i . Then either none of v ’s neighbors contract in Fi , or only unaffected neighbors
of v contract in Fi . By Lemma 21, in either case, v has the same set of neighbors in Fi+1 and
F ′i+1. Therefore, since v is affected in round i +1, does not contract in either Fi or F ′i , and has
the same neighbors in both, it must be in Case (3) in the definition of affected. Therefore, v
has an affected neighbor that contracts in Fi+1. Since ¬(1)⇒ (2), we must have (1)∨ (2).

Definition 11 (Spreading). An affected vertex u spreads to v if v was unaffected at the
beginning of round i and became affected in round i (is affected in round i +1) because
1. v is a neighbor of u at round i , and u contracts in round i in either Fi or F ′i , or
2. v does not contract in round i +1 and is a neighbor of u which does.

We call Case (1), spreading directly and Case (2) spreading by dependence. Figure 5.2 shows
two examples of directly spreading affection. Figure 5.3 shows an example of spreading
affection by dependence. Our end goal is to bound the number of affected vertices at each
level, since this corresponds to the amount of work required to update the contraction after
an edge update. Let Ai denote the set of affected vertices in round i .

Lemma 23. For a batch update of k edges, we have |A0| ≤ 6k .

91



Figure 5.2: Direct affection (two possibilities): A vertex u directly affects its neighbor v . u is affected
at round 0 since its adjacency list was changed. Since u contracts in F0 and changes the adjacency
list of v at round 1, v becomes affected. Note that this can happen whether or not u contracts in F ′0
as shown in the second possibility.

Figure 5.3: Affection by dependence: A vertex u affects its neighbor v by dependence. Even though
v ’s adjacency list is the same in both forests, it is affected because it depended on u to contract in
F1 for maximality to be satisfied. Since u can no longer contract in F ′1 , it is important that v is able
to.

92



Proof. A single edge changes the adjacency list of its two endpoints. These two endpoints
might contract in the first round, which affects their uncontracted neighbors by dependence.
However, vertices that contract have degree at most two, so this is at most two additional
vertices per endpoint. Therefore there are up to 6 affected vertices per edge modification,
and hence up to 6k affected vertices in total.

Each edge modified at round 0 affects some set of vertices, which spread to some set of
vertices at round 1, which spread to some set of vertices at round 2 and so on. We will
therefore partition the set of affected vertices into s = |A0| affected components, indicting
the “origin” of the affection. When u spreads to v , it will add v to its component for the next
round.

More formally, we will construct Ai
1, Ai

2, . . . , Ai
s , which form a partition of Ai . We start by

arbitrarily partitioning A0 into s singleton sets A0
1, A0

2, . . . , A0
s . Given Ai

1, Ai
2, . . . , Ai

s , we construct
Ai+1

1 , Ai+1
2 , . . . , Ai+1

s such that Ai+1
j contains the affected vertices v ∈ Ai+1 that were either

already affected in Ai
j or were spread to by a vertex u ∈ Ai

j . Note that it is possible, under
the given definition, for multiple vertices to spread to another, so this may overcount by
duplicating vertices. Vertices can be de-duplicated by only adding them to the affected
component that they spread from via the lowest ID vertex as a tiebreaker.

Definition 12 (Frontier). A vertex v is a frontier at round i if v is affected at round i and
one of its neighbors in Fi is unaffected at round i .

Lemma 24. If v is a frontier vertex at round i , then it is alive in both Fi and F ′i at round i ,
and is adjacent to the same set of unaffected vertices in both.

Proof. If v were dead in both forests it would not be affected and hence not a frontier vertex.
If v were alive in one forest but dead in the other, then all of its neighbors would have a
different set of neighbors in Fi and F ′i (they must be missing v ) and hence all of them would
be affected, so v would have no unaffected neighbors and hence not be a frontier.

Similarly, consider an unaffected neighbor u of v in either forest. If u was not adjacent to
v in the other forest, it would have a different set of neighbors and hence be affected.

If a v spreads to a vertex in round i , then v must be a frontier. Our next goal is to analyze the
structure of the affected sets and then show that the number of frontier vertices is small.

Lemma 25. For all i , j , the subforest induced by Ai
j in Fi is a tree

Proof. The rake and compress operations both preserve the connectedness of the underlying
tree, and Lemma 22 shows that affection only spreads to neighboring vertices.

Lemma 26. Ai
j has at most two frontiers and |Ai+1

j \Ai
j | ≤ 4.

93



Proof. We proceed by induction on i . At round 0, each component contains one vertex, so
it definitely contains at most 2 frontier vertices. Consider some Ai

j and suppose it contains
one frontier vertex u , which may spread directly by contracting (Definition 11). If u spreads
directly, then it either compresses or rakes in Fi or F ′i . This means it has degree at most two
in Fi or F ′i , and by Lemma 24, it is therefore adjacent to at most two unaffected vertices, and
hence may spread to at most these two vertices. Since u contracts, it is no longer a frontier by
Lemma 24, but its newly affected neighbors may become frontiers, so the number of frontiers
is at most two.

Suppose u spreads via dependency in round i (Case 2 in Definition 11) in Ai+1
j and

contracts in Fi+1. Since u contracts in Fi+1, it has at most two neighbors, and by Lemma 24,
it is also adjacent to at most two unaffected vertices, and may spread to at most these two
vertices. If it spreads to one of them, it may become a frontier and hence there are at most
two frontiers. If it spreads to both of them, u is no longer adjacent to any unaffected vertices
and hence is no longer a frontier, so there are still at most two frontiers, and |Ai+1

j \Ai
j | ≤ 3.

Now consider some Ai
j that contains two frontier vertices u1, u2. By Lemma 25, u1 and u2

each have at least one affected neighbor. If either contract, it would no longer be a frontier,
and would have at most one unaffected neighbor which might become affected and a frontier.
Therefore the number of frontiers is preserved when affection is spread directly.

Lastly, suppose u1 or u2 spreads via dependency in round i . Since it would contract in
Fi+1, it has at most one unaffected neighbor which might become affected and become a
frontier. It would subsequently have no unaffected neighbor and therefore no longer be a
frontier. Therefore the number of frontiers remains at most two and |Ai+1

j \Ai
j | ≤ 4.

Now define Ai
F, j = Ai

j ∩V i
F , the set of affected vertices from Ai

j that are live in F at round i ,

and similarly define Ai
F ′, j for F ′.

Lemma 27. For every i , j we have

|Ai
F, j | ≤ 26.

Proof. Consider the subforest induced by the set of affected vertices Ai
F, j . By Lemmas 25

and 26, this is a tree with two frontier vertices. The update algorithm finds and contracts a
maximal independent set of affected degree one and two vertices that are not adjacent to
an unaffected vertex that contracts in Fi . There can be at most two vertices (the frontiers)
that are adjacent to an unaffected vertex, and at most four new affected vertices appear by
Lemma 25, so by Lemma 20, the size of the new affected set is

|Ai+1
F, j | ≤ 4+

5

6

�

|Ai
F, j | −2
�

+2

=
26

6
+

5

6
|Ai

F, j |

Since |A0
F, j |= 1, we obtain

|Ai+1
F, j | ≤

26

6

∞
∑

r=0

�

5

6

�r

=
26
6

1− 5
6

=
26
6
1
6

= 26

94



Lemma 28. Given a batch update of k edges, for every i

|Ai | ≤ 312k

Proof. By Lemma 23, there are at most 6k affected components. At any level, every affected
vertex must be live in either F or F ′, so Ai

j = Ai
F, j ∪Ai

F ′, j , and hence

|Ai | ≤
6k
∑

j=1

�

|Ai
F, j |+ |A

i
F ′, j |
�

≤ 6k ×26×2= 312k

We can conclude that given an update of k edges, the number of affected vertices at each
level of the algorithm is O (k ).

Putting it all together
Given the series of lemmas above, we now have the power to analyze the performance of the
update algorithm.

Theorem 22 (Update performance). A batch update consisting of k edge insertions or
deletions takes O

�

k log
�

1+ n
k

��

work and O (log n log log k ) span.

Proof. The update algorithm performs work proportional to the number of affected vertices at
each level. Consider separately the work performed processing the levels up to and including
round r = log6/5

�

1+ n
k

�

. By Lemma 28, there are O (k ) affected vertices per level, so the work
performed on levels up to including r is

O (k r ) =O
�

k log
�

1+ n
k

��

.

By Corollary 5, after r rounds of contraction, there are at most k live vertices remaining in Fr

or F ′r . The number of affected vertices is at most the number of live vertices in either forest,
and hence at most 2k . The amount of affected vertices in all subsequent rounds is therefore
at most

∞
∑

i=0

�

5

6

�i

2k =
2k

1− 5
6

= 12k ,

and hence the remaining work is O (k ). Therefore the total work across all rounds is at most

O
�

k log
�

1+ n
k

��

+O (k ) =O
�

k log
�

1+ n
k

��

.

It takes O (log(c )k ) span to find a maximal independent set of the affected vertices for any
constant c , so we can choose c = 2 to match the span of approximate compaction required
to filter out the vertices that are no longer affected in the next round. Each round takes
O (log log k ) span, so over O (log n ) rounds, this results in O (log n log k log k ) span.

95



5.5 Optimizations
Our static tree contraction algorithm and our basic result on dynamically updating it are
work-efficient (O (n ) and O

�

k log
�

1+ n
k

��

work respectively) and run in O (log n log log n ) and
O (log n log log k ) span respectively. In both cases, there are two bottlenecks to the span:
computing a maximal independent set, and performing approximate compaction to remove
vertices that have contracted or are no longer affected. Improving the span of the maximal
indpendent set is easy since it runs in O (log(c )n ) span for any c , and we can just choose a
smaller c (the basic algorithm chose c = 2 to match the span of approximate compaction).

Therefore, the only remaining bottleneck is the approximate compaction, which we will
improve in this section. We first describe a faster static algorithm, which introduces the
techniques we will use to improve the update algorithm. We also describe an improvement
that eliminates the need for concurrent writes since approximate compaction requires the
Common CRCW model, which is more powerful than necessary.

Lastly, we will also show that our span optimization technique can be used to speed up
the randomized variant of the algorithm.

5.5.1 A Lower Span Static Algorithm
The basic static algorithm uses approximate compaction after each round to filter out the
vertices that have contracted. This is important, since without this step, every round would
take Θ(n ) work, for a total of Θ(n log n ) work, which is not work efficient. This leads to an
O (n ) work and O (log n log log n ) span algorithm in the Common CRCW model using the
O (log log n )-span approximate compaction algorithm of Goldberg and Zwick [81]. We can
improve the span easily as follows by splitting the algorithm into two phases.

Phase One Note that the purpose of compaction is to avoid performing wasteful work on
dead vertices each round. However, if the forest being contracted has just O (n/ log n ) vertices,
then a “wasteful” algorithm which avoids performing compaction takes at most O (n )work
anyway. So, the strategy for phase one is to contract the forest to size O (n/ log n ), which, by
Corollary 4 takes at most O (log log n ) rounds. This is essentially the same strategy used by
Gazit, Miller, and Teng [70]. The work of the first phase is therefore O (n ) and the span, using
approximate compaction, is

O
�

�

log log n
�2
�

+O
�

log log n log(c )n
�

=O
�

(log log n )2
�

.

Phase Two In the second phase, we run the “wasteful” algorithm, which is simply the
same algorithm but not performing any compaction. Since the forest begins with O (n/ log n )
vertices in this phase, this takes O (n )work and completes in O (log n ) rounds. Since the span
bottleneck is finding the maximal indepedent set in each round, the span is O (log n log(c )n )
for any constant c . Putting these together, the total work is O (n ), and the span is

O
�

(log log n )2
�

+O
�

log n log(c )n
�

=O
�

log n log(c )n
�

.

96



5.5.2 Eliminating Concurrent Writes
The above algorithm still uses approximate compaction which requires the power of the
Common CRCW model. We now describe a variant without this requirement. Phase Two is
the same since it performs no compaction, so we just have to improve Phase One. We do
so by arbitrarily partitioning the vertices into n/ log n buckets of size O (log n ). Each round,
the algorithm considers each bucket and each vertex within each bucket in parallel. After
performing each round of contraction, each bucket independently filters the vertices that
contracted using an exact filter algorithm instead of approximate compaction. Since each
bucket has size O (log n ), the span is still O (log log n )without requiring concurrent writes.

Since there are n/ log n buckets, each round takes an additional O (n/ log n ) work, but
over log log n rounds, this amounts to less than O (n ) additional work, so the algorithm is still
work efficient. At the end of the phase, collect the vertices back into a single bucket in O (n )
work and O (log n ) span, then proceed with Phase Two.

5.5.3 A Lower Span Dynamic Algorithm
The span of the dynamic algorithm is also bottlenecked by the span of approximate com-
paction, which is used on the affected vertices each round to remove vertices that are no
longer affected. We optimize the dynamic algorithm similarly to the static algorithm, by
splitting it into three phases this time. Each phase will maintain a set of buckets of affected
vertices. Each round processes each bucket and each vertex within each bucket in parallel,
placing newly affected vertices into one of the buckets from which affection spread to it.
Since it is possible for multiple neighbors of a vertex to spread to it at the same time, to
tiebreak and ensure that only one copy of an affected vertex exists, if multiple vertices spread
to the same vertex, only the one with the lowest identifier adds the newly affected vertex to
its bucket. Since the forest has constant degree this can be checked in constant time. At the
end of each round, no-longer-affected vertices are filtered from each bucket.

The key is varying the size of the buckets in each phase. Having too many buckets results
in performing extra work and not being work efficient, while having too few buckets increases
the span. By varying the number of buckets and hence the size of each bucket in each phase,
we can obtain a tradeoff that leads to work efficiency and minimal span.

Phase One The algorithm will run Phase One for log6/5

�

1+ n
k

�

rounds. Note importantly
that this depends on the batch size k , so the number of rounds per phase is not always the
same for each update operation.

Phase one starts by creating a singleton bucket for each affected vertex. There are therefore
O (k ) buckets in Phase One. In each round, the algorithm processes each bucket and each
affected vertex within each bucket in parallel. This process is efficient because according to
Lemma 27, each bucket will have constant size (the buckets contain the affected components
from the analysis in Section 5.4), so filtering the no-longer-affected vertices from the buckets
takes constant time per bucket.

Having to maintain this set of k buckets adds an additional O (k ) work to each round

97



since the algorithm may encounter empty buckets while looping over all of the vertices, but
since we run Phase One for only O

�

log
�

1+ n
k

��

rounds, the algorithm is still work efficient.
Furthermore, each round takes just an additional constant amount of span.

Phase Two Phase Two will redistribute the affected vertices into k/ log k buckets of size
O (log k ). First, it collects the contents of each of the O (k ) buckets of Phase One back into
a single array of O (k ) affected vertices. This takes O (k ) work and O (log k ) span. Then, it
partitions them into k/ log k buckets of size O (log k ).

We then run the update algorithm for log log k more rounds. Again, in each round, the
algorithm processes each bucket and each affected vertex within each bucket in parallel.
Due to Lemma 27, the size of each bucket can not grow beyond a constant-factor larger, so
every bucket remains at most O (log k ) large across all rounds. The additional work due to
maintaining the buckets over all rounds is O ((k/ log k ) log log k ) =O (k ), and each round takes
an additional O (log log k ) span due to the filtering.

Phase Three After completing Phase Two, by Corollaries 4 and 5, there can be at most
O (k/ log k ) vertices alive in the forest, and hence at most twice that many affected vertices
(affected vertices may be alive in either the new or old forest). Phase Three continues to
use O (k/ log k ) buckets, but begins by collecting the remaining affected vertices from the
buckets of Phase Two and load balancing them into constant-size buckets. As usual, in each
round, the algorithm processes each bucket and each vertex within each bucket in parallel.
Each bucket remains constant size by Lemma 27 and the work performed in each round is
at most O (k/ log k ) for O (log k ) rounds, a total of O (k )work. Since each bucket is constant
size, filtering them takes constant time and hence adds just a constant amount of span. After
O (log k ) rounds of Phase three, the forest is fully contracted and the update is complete.

Putting it together In total, at most O
�

k log
�

1+ n
k

��

additional work is added by the bucket
maintenance, so the algorithm is still work efficient. The algorithm performs a total of
O (log n ) rounds, in each of which the span is dominated by computing the MIS, which costs
O (log(c )n ) for any constant c . Adding the additional span of each round, which was constant
in Phase One for O

�

log
�

1+ n
k

��

rounds, O (log log k ) in Phase Two for O (log log k ) rounds, and
constant in Phase Three for O (log k ) rounds, the final span is

O
�

log(n ) log(c )k + log
�

1+
n

k

�

+
�

log log k
�2
+ log(k )
�

,

= O
�

log n log(c )k
�

.

Since this is equal to the span of computing the MIS in each round, any further span improve-
ment would require a more efficient algorithm for MIS, or a completely different algorithm
for tree contraction all together, so we essentially have an optimal implementation of this
particular algorithm.

98



5.5.4 A Lower Span Randomized Algorithm
With the span optimization above, the remaining bottleneck is entirely due to the subroutine
for finding the MIS. Our optimization was designed to remove the span caused by approximate
compaction. In the randomized variant of the algorithm from Chapter 4, the total span is
O (log n log∗n ), where the log∗n factor also comes from performing approximate compaction
in each round (which is O (log∗n )when randomization is allowed). In the randomized variant,
however, finding the independent set takes constant span rather rather than O (log(c )k ) since
it relies only on local coin flips. Our span optimization can therefore be applied to the
randomized algorithm as well in exactly the same way.

Recall that a constant fraction of the vertices contract on each round, and that the con-
traction process takes O (log n ) rounds w.h.p. We can therefore substitute our deterministic
MIS with the randomized independent set based on coin flips and use the definition of af-
fected vertices from Chapter 4 to obtain a more efficient randomized direct-update algorithm
which no longer uses self-adjusting computation. The analysis of Chapter 4 showed that the
randomized variant has all of the same necessary properties and implies that the resulting
algorithm is work efficient, running in O

�

k log
�

1+ n
k

��

expected work for a batch of k updates,
and in just O (log n ) span.

5.6 Discussion
In this chapter we broke the curse of randomization that haunted work-efficient parallel batch-
dynamic graph algorithms by designing the first such algorithm for parallel tree contraction,
and to the best of our knowledge, the first for any graph problem. This immediately gives as a
consequence, a corresponding deterministic parallel batch-dynamic algorithm for RC-Trees.
Our algorithm performs O

�

k log
�

1+ n
k

��

work for a batch of k links and cuts and runs in

O (log n log(c )k ) span for any constant c . We also applied our techniques to improve the span
of the randomized variant from O (log n log∗n ) to just O (log n ).

Several interesting questions still remain open. Our deterministic algorithm requires
O (log n log(c )k ) span, while our randomized variant requires just O (log n ). Can we obtain
a deterministic algorithm with O (log n ) span? It seems unlikely that the exact algorithm
that we present here could be optimized to that point, since that would imply finding a
maximal independent set in O (1) span work efficiently, and the fastest known algorithms run
in O (log∗n ) span but are not even work efficient. This doesn’t rule out using other techniques
instead of a maximal independent set, however. The tree contraction needs only to have the
property that it contracts a constant fraction of the vertices in any subtree in order to obtain
our bounds, so any constant ruling set would suffice if one could compute it in O (1) span.

Prior algorithms for deterministic tree contraction are based on Cole and Vishkin’s deter-
ministic coin tossing technique [40] (which happens to be a subroutine used by our maximal
independent set algorithm). It would be interesting to investigate whether this could be
used directly to obtain a more efficient dynamic algorithm. Lastly, it would be interesting to
explore which other parallel batch-dynamic graph problems can be derandomized, perhaps
using our deterministic RC-Trees as an ingredient, or independently.

99



100



Part II

Parallel Batch-Dynamic Graph Algorithms

101





Chapter 6
Parallel Batch-Dynamic

Graph Connectivity

6.1 Introduction
Understanding the connectivity structure of graphs is of significant practical interest, for
example, due to its use as a primitive for clustering the vertices of a graph [156]. Due to the
importance of connectivity there are several implementations of parallel batch-dynamic
connectivity algorithms [106, 107, 130, 158, 181, 184]. In the worst case, however, these
algorithms may recompute the connected components of the entire graph even for very
small batches. Since this requires O (m + n ) work, it makes the worst-case performance
of the algorithms no better than running a static parallel algorithm. On the theoretical
side, existing batch-dynamic efficient connectivity algorithms have only been designed for
restricted settings, e.g., in the incremental setting when all updates are edge insertions [162]
(usually referred to as the union-find problem), or when the underlying graph is a forest, such
as batch-dynamic Euler-tour trees [174], and our batch-dynamic RC-Trees (Chapters 3–5).

In the sequential setting, dynamic connectivity has received tremendous amounts of
attention for decades. Frederickson gave the first efficient algorithm for fully dynamic con-
nectivity which can process updates in O (

p
m ) time, and queries in O (1) time using his

topology tree data structure [63]. Eppstein et al. [55] developed the sparisification technique
which improves the running time of Frederickson’s algorithm to O (

p
n ) per update.

Henzinger and King were then the first to break the polylogarithmic barrier by giving an
algorithm for fully dynamic connectivity that runs in O (log3 n ) amortized expected update
time and O (log n/ log log n ) time per query. Unlike previous results, they utilized amortization
and randomization. The update time was then improved to O (log2 n ) expected amortized
time by Henzinger and Thorup. Soon after, Holm, De Lichtenberg, and Thorup gave a
deterministic version of the algorithm with O (log2 n ) amortized update times.

As the landscape of dynamic connectivity evolved, it became clear that there would not
be one single “best” algorithm, since algorithms with incomparable runtimes were being
developed; some deterministic, some randomized, some amortized, some worst case. Tho-
rup [173] quickly developed a faster randomized-amortized algorithm, processing updates
in O (log n (log log n )3) expected amortized time and queries in O (log n/ log log log n ), while
Wulff [185] took the deterministic crown with an O (log2 n/ log log n ) amortized update.

The landscape was about to evolve even further by adding another category of algorithms.
Kapron, King, and Mountjoy [111] escaped the prison of amortization and developed the
first polylogarithmic worst-case algorithm that runs updates in O (log5 n ) time. Queries are

103



Monte Carlo (only correct w.h.p.), and run in O (log n/ log log n ) time. The update time was
improved to O (log4 n ) by Gibb et al. [75] and Wang [182] independently.

After seeing no attention for decades, a breakthrough was then achieved in the determinis-
tic worst-case category, with an O

�p

n (log log(n ))2/log(n )
�

-time update algorithm with O (1)
queries by Kejlberg-Rasmussen et al. [120]. Wulff-Nilsen then gave an O (n 0.5−c )w.h.p. (Las
Vegas) update algorithm.

Most recently, the fastest amortized result is O (log n (log log n )2) expected amortized time
per update by Huang et al. [103]who improve Thorup’s earlier result [173]. Lastly, Nanongkai
and Saranurak give a Monte Carlo algorithm with O (n 0.4+o (1)) worst-case update time and
a Las Vegas algorithm with O (n 0.49306) worst-case update time w.h.p., both of which work
against an adaptive adversary, meaning that the adversary may request updates that depend
on the previous outputs of the algorithms.

Lower bounds Pătras, cu and Demaine [149] give an Ω(log n ) lower bound for the dynamic
connectivity problem. More precicely, they show that for any t (n ) =Ω(1), an algorithm with
update time O (t (n ) log n ) requires a corresponding query time of Ω(log n/ log t (n )). Though
existing algorithms are coming close, it remains an open problem whether there exists an
algorithm with update and query times of O (log n ) in any setting (amortized or randomized
or otherwise).

Our approach Parallel algorithms for connectivity have a long history [18, 41, 97, 118, 145,
160, 180], and there are many existing algorithms that solve the problem work-efficiently and
in low-span [42, 69, 86, 87, 144, 147, 161]. However, there is no obvious way to adapt existing
parallel connectivity algorithms to the dynamic setting, particularly for batch updates.

Our strategy will be to start with the sequential dynamic algorithm of Holm, De Lichten-
berg, and Thorup [100], which we refer to as the HDT algorithm, and adapt it for the parallel
batch-dynamic setting. The algorithm maintains a set of O (log n ) spanning forests, each of
which is represented by an Euler-tour tree. Since we have existing parallel batch-dynamic
algorithms for Euler-tour trees, this seems like a promising direction in which to search
for a batch-dynamic algorithm for connectivity. We will describe two algorithms. First, a
simplified algorithm that illustrates some of the key ideas for obtaining efficient batching,
then a more optimized algorithm with better work efficiency and better span.

6.2 The Sequential Algorithm and Data Structure
We will first give an overview of the sequential HDT algorithm. The HDT algorithm assigns to
each edge in the graph, an integer level from 1 to log n . The levels correspond to sequence of
subgraphs G1 ⊂G2 ⊂ ...⊂Glog n =G , such that Gi contains all edges with level at most i . The
algorithm also maintains a spanning forest Fi of each Gi such that F1 ⊂ F2 ⊂ ...⊂ Flog n . Each
forest is maintained using a set of augmented Euler-tour trees. Throughout the algorithm,
the following invariants are maintained.

104



Invariant 1. ∀i = 1... log n , the connected components of Gi have size at most 2i .

Invariant 2. Flog n is a minimum spanning forest where an edge is weighted by its level.

Connectivity Queries To perform a connectivity query in G , it suffices to query Flog n , which
takes O (log n ) time by querying for the root of each Euler-tour tree and returning whether
the roots are equal. We note that in [100], a query time of O

�

log n/ log log n
�

is achieved by
storing the Euler tour of Flog n in a B-tree with branching factor log n .

Inserting an Edge An edge insertion is handled by assigning the edge to level log n . If the
edge connects two currently disconnected components, then it is added to Flog n .

Deleting an Edge Deletion is the most interesting part of the algorithm. If the deleted edge
is not in the spanning forest Flog n , the algorithm removes the edge and does nothing to Flog n as
the connectivity structure of the graph is unchanged. Otherwise, the component containing
the edge is split into two. The goal is to find a replacement edge, that is, an edge crossing the
split component.

If the deleted edge had level i , then the smaller of the two resulting disconnected compo-
nents is searched starting at level i in order to locate a replacement edge. Before searching
this component, all tree edges whose level is equal to i have their level decremented by one.
As the smaller of the split components at level i has size≤ 2i−1, pushing the entire component
to level i −1 does not violate Invariant 1. Next, the non-tree edges at level i are considered
one at a time as possible replacement edges. Each time the algorithm examines an edge
that is not a replacement edge, it decreases the level of the edge by one. If no replacement is
found, it moves up to the next level and repeats. Note that because the algorithm first pushes
all tree edges to level i −1, any subsequent non-tree edges that may be pushed from level i
to level i −1 will not violate Invariant 2.

Implementation and Cost
To efficiently search for replacement edges, the Euler-tour trees are augmented with two
additional pieces of information. The first augmentation is to maintain the number of non-
tree edges whose level equals the level of the tree. The second augmentation maintains the
number of tree-edges whose level is equal to the level of the tree.

Using these augmentations, each successive non-tree edge (or tree edge) whose level is
equal to the level of the tree can be found in O (log n ) time. Furthermore, checking whether
the edge is a replacement edge can be done in O (log n ) time. Lastly, the cost of pushing an
edge that is not a replacement edge to the lower level is O (log n ), since it corresponds to
inserting the edge into an adjacency structure and updating the augmented values. Since
each edge can be processed at most once per level, paying a cost of O (log n ), and there are
log n levels, the overall amortized cost per edge is O (log2 n ).

105



6.3 Parallel Data Structures
The sequential algorithm represents the spanning forest using Euler-tour trees. In our parallel
batch-dynamic algorithm, each spanning forest, Fi , will be represented using a parallel batch-
dynamic Euler-tour tree [174]. We could alternatively use our own parallel batch-dynamic
RC-Trees from Chapter 3, but the augmentations required by the algorithm are simpler with
Euler-tour trees since the original algorithm used them. Using RC-Trees would also require
ternarizing the graph, while Euler-tour trees avoid this. In this section we will describe the
parallel data structures used by our algorithm, including our data structure for storing the
edges of the graph and the necessary augmentations to the batch-dynamic Euler-tour tree
data structure.

6.3.1 Adjacency Arrays
We represent the edges of the graph in a parallel dictionary ED for convenience. We also store
an adjacency array, Ai [u ], at each level i , and for each vertex u to store the tree and non-tree
edges incident on u with level i . Note that tree and non-tree edges are stored separately
so that they can be accessed separately. The adjacency arrays support batch insertion and
deletion of edges, as well as the ability to fetch a batch of edges of a desired size.

• INSERTEDGES({e1, . . . , el }): Insert a batch of edges adjacent to this vertex.

• DELETEEDGES({e1, . . . , el }): Delete a batch of edges adjacent to this vertex.

• FETCHEDGES(l ): Return a set of l arbitrary edges adjacent to this vertex.

Lemma 29. INSERTEDGES, DELETEEDGES, and FETCHEDGES can be implemented in O (1)
amortized work per edge and in O (log n ) span.

Proof. For a given vertex, the data structure stores a list of pointers to each adjacent edge in
a resizable array. Each edge correspondingly stores its positions in the adjacency arrays of its
two endpoints. Since each vertex can have at most O (n ) edges adjacent to it, the adjacency
arrays are of size at most O (n ).

Insertions are handled by inserting the batch onto the end of the array, and resizing if
necessary. This costs O (1) amortized work per edge and O (log n ) span. To fetch l elements,
we return the first l elements of the array, which takes O (1)work per edge and O (log n ) span.

Finally, to delete a batch of l edges, the algorithm first determines which of the edges to
be deleted are contained within the final l elements of the array. It then compacts the final l
elements of the array, removing those edges. Compaction costs O (l ) work and O (log n ) span.
The algorithm then considers the remaining l ′ edges to be deleted, and in parallel, swaps
these elements with the final l ′ elements of the array. The final l ′ elements in the array can
then be safely removed. Note that any operation that moves an element in the array also
updates the corresponding position value stored in the edge. Swapping and deleting can be
implemented in O (l ′)work and (log n ) span, and hence all operations cost O (1) amortized
work per edge and O (log n ) span.

106



6.3.2 Augmented Euler-Tour Trees
The parallel batch-dynamic Euler-tour trees used in our algorithm augment each node in the
tree with two values indicating the number of tree and non-tree edges whose level is equal
to the level of the forest currently stored in that subtree. The augmentation is necessary for
efficiently fetching the tree edges that need to be pushed down before searching the data
structure, and for fetching a subset of non-tree edges in a tree. We extend the data structure
with operations which enable efficiently retrieving, removing and pushing down batches of
tree or non-tree edges.

These primitives are all similar and can be implemented as follows. We first describe
the primitives which fetch and remove a set of l tree (or non-tree) edges. The algorithm
starts by finding a set of vertices containing l edges. To do this we perform a binary search
on the skip-list in order to find the first node that has augmented value greater than l . The
idea is to sequentially walk at the highest level, summing the augmented values of nodes we
encounter and marking them, until the first node that we hit whose augmented value makes
the counter larger than l , or we return to v . In the former case, we descend a level using this
node’s downwards pointer, and repeat, until we reach a level 0 node. We also keep a counter,
c , indicating the number of tree (non-tree) edges to take from the rightmost marked node
at level 0. Otherwise, all nodes at the topmost level are marked. The last step is to find all
descendants of marked nodes that have a non-zero number of tree (non-tree) edges, and
return all tree (non-tree) edges incident on them. The only exception is the rightmost marked
node, from which we only take c many tree (non-tree) edges

Insertions are handled by first inserting the edges into the adjacency list data structure.
We then update the augmented values in the Euler-tour tree using the primitive from Tseng
et al. [174]. We now argue that these implementations achieves good work and span bounds.

Lemma 30. Given some vertex, v in a parallel batch-dynamic Euler-tour tree, we can
fetch the first l tree (or non-tree) edges referenced by the augmented values in the tree
in O
�

l log
�

1+ nc
l

��

work and O (log n ) span w.h.p. where nc is the number of vertices in
the Euler-tour tree at the current level. Furthermore, removing the edges can be done in
the same bounds.

Proof. Standard proofs about skip-lists shows that the number of nodes traversed in the
binary search is O (log n ) w.h.p. [151, 174]. We can fetch l edges from each vertex’s adjacency
list data structure in O (l ) amortized work and O (log n ) span by Lemma 29. The total work is
therefore O
�

l log
�

1+ nc
l

��

in expectation, and the span is O (log n )w.h.p. since the span of the
adjacency list access is an additive increase of O (log n ). Observe that removing the edges can
be done in the same bounds since updating the augmented values after deleting the edges
costs O
�

l log
�

1+ nc
l

��

expected work.

Lemma 31. Decreasing the level of l tree (or non-tree) edges in a parallel batch-dynamic
Euler-tour tree can be performed in O

�

l log
�

1+ nc
l

��

expected work and O (log n ) span
w.h.p. where nc is the number of nodes in the Euler-tour tree at the current level.

107



Proof. The proof is identical to the proof of Lemma 30. The only difference is that the
augmented values of the nodes that receive an edge must be updated after insertion which
costs at most O

�

l log
�

1+ nc
l

��

in expectation. Note that since the forest on the lower level is a
subgraph of the tree at the current level, it has size at most nc , proving the bounds.

6.4 A Simple Parallel Algorithm
In this section, we give a simple parallel batch-dynamic connectivity algorithm based on the
HDT algorithm. The underlying invariants maintained by our parallel algorithm are identical
to the sequential HDT algorithm: we maintain log n levels of spanning forests subject to
Invariants 1 and 2. The main challenge, and where our algorithm departs from the HDT
algorithm is in how we search for replacement edges in parallel, and how we search multiple
components in parallel. We show by a charging argument that this parallel algorithm is
work-efficient with respect to the HDT algorithm—it performs O (log2 n ) amortized work per
edge insertion or deletion. Furthermore, we show that the span of this algorithm is O (log4 n ).
Although these bounds are subsumed by the improved parallel algorithm we describe in
Section 6.5, the parallel algorithm in this section is useful to illustrate the main ideas.

6.4.1 Connectivity Queries
As in the sequential algorithm, a connectivity query can be answered by simply performing
a query on Flog n . Algorithm 6 gives pseudocode for the batch connectivity algorithm. The
bound we achieve follows from the batch bounds on batch-dynamic Euler-tour trees [174].

Algorithm 6 The batch query algorithm

1: procedure BATCHQUERY({(u1, v1), (u2, v2), ..., (uk , vk )})
2: return Flog n .BATCHQUERY({(u1, v1), (u2, v2), ..., (uk , vk )})

Theorem 23. A batch of k connectivity queries can be processed in O
�

k +k log
�

1+ n
k

��

expected work and O (log n ) span w.h.p.

Proof. A batch of k connectivity queries reduces to a batch of at most k distinct BATCHFIND-
REP queries on the Euler-tour tree, which costs O

�

k log
�

1+ n
k

��

expected work and O (log n )
span w.h.p. [174]. The connectivity queries can then be answered by comparing the repre-
sentatives for each query.

6.4.2 Inserting Batches of Edges
To perform a batch insertion, we first determine a set of edges in the batch that increase the
connectivity of the graph. To do so, we treat each current connected component of the graph

108



as a vertex, and build a spanning forest of the edges being inserted over this contracted graph.
The edges in the resulting spanning forest are then inserted into the topmost level.

Algorithm 7 The batch insertion algorithm

1: procedure BATCHINSERT( U = {(u1, v1), . . . , (uk , vk )} )
2: For all ei ∈U , set l (ei )← log n in parallel
3: Update Alog n [u ] for edges incident on u
4: R ←{(Flog n .FINDREPR(u ), Flog n .FINDREPR(u )) | (u , v ) ∈U }
5: T ′← SPANNINGFOREST(R )
6: T ← edges in U corresponding to T ′

7: Promote edges in T to tree edges
8: Flog n .BATCHINSERT(T)

Algorithm 7 gives pseudocode for the batch insertion algorithm. We assume that the edges
given as input in U are not present in the graph. Each vertex u that receives an updated
edge inserts its edges into Alog n [u ] (Line 3). This step can be implemented by first running a
semisort to collect all edges incident on u .

The last step is to insert edges that increase the connectivity of the graph as tree edges
(Lines 4–8). The algorithm starts by computing the representatives for each edge (Line 4).
The output is an array of edges, R , which maps each original (u , v ) edge in U to the pair
(FINDREPR(u ), FINDREPR(v )) (note that these calls can be batched using BATCHFINDREPR).
Next, it computes a spanning forest over the tree edges (Line 5). Finally, the algorithm pro-
motes the corresponding edges in U to tree edges. This is done by updating the appropriate
adjacency lists and inserting them into Flog n (Lines 7–8).

Theorem 24. A batch of k edge insertions can be processed in O
�

k log
�

1+ n
k

��

expected
work and O (log n ) span w.h.p.

Proof. Lines 2–3 cost O (k ) work and O (log k ) span w.h.p. using our bounds for updating
A (see Lemma 29). The find representative queries (Line 4) can be implemented using
a BATCHFINDREPR call on the Euler-tour tree, which costs O

�

k log
�

1+ n
k

��

expected work
and O (log n ) span w.h.p [174]. Computing a spanning forest (Line 5) can be done in O (k )
expected work and O (log k ) span w.h.p. using Gazit’s connectivity algorithm [69]. Finally,
updating the adjacency lists and inserting the spanning forest edges into Flog n (Lines 7–8)
costs O
�

k log
�

1+ n
k

��

expected work and O (log n ) span w.h.p.

6.4.3 Deleting Batches of Edges
As in the sequential HDT algorithm, searching for replacement edges after deleting a batch of
tree edges is the most interesting part of our parallel algorithm. A natural idea for paralleliz-
ing the HDT algorithm is to simply scan all non-tree edges incident on each disconnected
component in parallel. Although this approach has low span per level, it may examine a huge
number of candidate edges, but only push down a few non-replacement edges. In general,

109



it is unable to amortize the work performed checking all candidate edges at a level to the
edges that experience level decreases. To amortize the work properly while also searching
the edges in parallel we must perform a more careful exploration of the non-tree edges. Our
approach is to use a doubling technique, in which we geometrically increase the number of
non-tree edges explored as long as we have not yet found a replacement edge. We show that
using the doubling technique, the work performed (and number of non-tree edges explored)
is dominated by the work of the last phase, when we either find a replacement edge, or run
out of non-tree edges. Our amortized work-bounds follow by a per-edge charging argument,
as in the analysis of the HDT algorithm.

The Deletion Algorithm
Algorithm 8 shows the pseudocode for our parallel batch deletion algorithm. As with the
batch insertion algorithm, we assume that each edge is present in U in both directions. Given
a batch of k edge deletions, the algorithm first deletes the given edges from their respective
adjacency lists in parallel (Line 2). It then filters out the tree edges (Line 3) and deletes each
tree edge e from Fi . . . , Flog n , where i is the level of e (Line 4). Next, it computes C , a set of
components (representatives) from the deleted tree edges (Line 5). For each deleted tree edge,
e , the algorithm includes the representatives of both endpoints in the forest at l (e ), which
must be in different components as e is a deleted tree edge. Finally, the algorithm loops
over the levels, starting at the lowest level where a tree edge was deleted (Line 7), and calls
PARALLELLEVELSEARCH at each level. Each PARALLELLEVELSEARCH takes i , the level to search,
C , the current set of disconnected components, and S , an initially empty set of replacement
edges that the algorithm discovers (Line 8).

Algorithm 8 The batch deletion algorithm

1: procedure BATCHDELETION(U = {e1, . . . , ek })
2: Delete e ∈U from A0, . . . , Alog n

3: T ←{e ∈U | e ∈ Flog n} // Tree edges to delete
4: Delete e ∈ T from F0, . . . , Flog n

5: C ←∪e=(u ,v )∈T (Fl (e ).FINDREPR(u ), Fl (e ).FINDREPR(v ))
6: S ←;
7: for i ∈ [mi nl ←mine∈T , log n ] do
8: (C ,S )← PARALLELLEVELSEARCH(i , C ,S )

Searching a Level in Parallel
The bulk of the work done by the deletion algorithm is performed by Algorithm 9, which
implements a subroutine that searches the disconnected components at a given level of
the data structure in parallel. The input to PARALLELLEVELSEARCH is an integer i , the level
to search, a set of representatives of the disconnected components, L , and the set of re-
placement spanning forest edges that were found in levels lower than i , S . The output of
PARALLELLEVELSEARCH is the set of components that are still disconnected after considering

110



Algorithm 9 The parallel level search algorithm

1: procedure COMPONENTSEARCH(i , c )
2: w ← 1, wmax← c .NUMNONTREEEDGES

3: while w ≤wmax do
4: w ←min(w , wmax)
5: Ec ← First w non-tree edges in c
6: Push all non-replacement edges in Ec to level i −1
7: if Ec contains a replacement edge then
8: return {r }, where r is any replacement edge in Ec

9: w ← 2w
10: return ;
11: procedure PARALLELLEVELSEARCH(i , L = {c1, c2, . . .}, S )
12: Fi .BATCHINSERT(S )
13: C ← c ∈ L with size ≤ 2i−1

14: D ← c ∈ L with size > 2i−1

15: while |C |> 0 do
16: Push level i tree edges of components in C to level i −1
17: R ←∪c∈C COMPONENTSEARCH(i , c ) // In parallel
18: R ′←{(Fi .FINDREPR(u ), Fi .FINDREPR(v )) | (u , v ) ∈R }
19: T ′← SPANNINGFOREST(R ′)
20: T ← Edges in R corresponding to edges in T ′

21: Promote edges in T to tree edges
22: Fi .BATCHINSERT(T)
23: S ← S ∪T
24: C ←{Fi .REPR(c ) | c ∈C }
25: Q ← {c ∈C with no non-tree edges, or size > 2i−1}
26: D ←D ∪Q
27: C ←C \Q

28: return (D ,S )

111



the non-tree edges at this level, and the set of replacement spanning forest edges found so
far.

PARALLELLEVELSEARCH starts by inserting the new spanning forest edges in S into Fi

(Line 12). Next, it computes C and D , which are the components that are active and inactive
at this level, respectively (Lines 13–14). The main loop of the algorithm (Lines 15–27) operates
in a number of rounds.

Each round first pushes down all tree edges at level i of every active component. It then
finds a single replacement edge incident to each active component, searching the active
components in parallel, pushing any non-replacement edge to level i −1. It then promotes
a maximal acyclic subset of the replacement edges found in this round to tree edges, and
proceeds to the next round. The rounds terminate once all components at this level are
deactivated by either becoming too large to search at this level, or because the algorithm
finished examining all non-tree edges incident to the component at this level.

The main loop (Lines 15–27) works as follows. The algorithm first pushes any level i tree
edges in an active component down to level i − 1. The active components in C have size
at most 2i−1, meaning that any tree edges they have at level i can be pushed to level i − 1
(Line 16) without violating Invariant 1. Next, the algorithm searches each active component
for a replacement edge in parallel by calling the COMPONENTSEARCH procedure in parallel
over all components (Line 17). This procedure either returns an empty set if there are no
replacement edges incident to the component, or a set containing a single replacement edge.
Next, the algorithm maps the replacement edge endpoints to their current component’s
representatives by calling FINDREPR on each endpoint (Line 18). It then computes a spanning
forest over these replacement edges (Line 19) and maps the edges included in the spanning
forest back to their original endpoints ids (Line 20). Observe that the edges in T constitute a
maximal acyclic subset of replacement edges of R in Fi . The algorithm therefore promotes
the edges in T to tree edges (Lines 21– 22). Note that the new tree edges are not immediately
inserted into all higher level spanning trees. Instead, the edges are buffered by adding them
to S (Line 23) so that they will be inserted when the higher level is reached in the search.
Finally, the algorithm updates the set of components by computing their representatives
on the updated Fi (Line 24), and filtering out any components which have no remaining
non-tree edges, or become larger than 2i−1 (i.e., become unsearchable) into D (Lines 25–27).

We now describe the COMPONENTSEARCH procedure (Lines 1–10). The search consists of
a number of phases, where the i ’th phase searches the first 2i non-tree edges, or all of the non-
tree edges if 2i is larger than the number of non-tree edges in c . The search terminates either
once a replacement edge incident to c is found (Line 7), or once the algorithm unsuccessfuly
examines all non-tree edges incident to c (Line 3). Initially w , the search size, is set to
1 (Line 4). On each phase, the algorithm retrieves the first w many non-tree edges, Ec

(Line 5). It pushes all non-tree edges that are not replacements to level i −1 (Line 6). It then
checks whether any of the edges in Ec are a replacement edge, and if so, returns one of the
replacement edges in Ec (Line 8). Note that checking whether an edge is a replacement edge
is done using BATCHFINDREPR. Otherwise, if no replacement edge was found it doubles w
(Line 9) and continues.

112



6.4.4 Cost Bounds
The following lemmas are useful for analyzing the work bounds of our parallel algorithms.

Lemma 32. Let n1, n2, ..., nc and k1, k2, ..., kc be sequences of non-negative integers such
that
∑

ki = k , and
∑

ni = n . Then

c
∑

i=1

ki log
�

1+
ni

ki

�

≤ k log
�

1+
n

k

�

.

Proof. We proceed by induction on c . When c = 1, the quantities are equal. For c > 1, we
can write

c
∑

i=1

ki log
�

1+
ni

ki

�

=
c−1
∑

i=1

ki log
�

1+
ni

ki

�

+kc log
�

1+
nc

kc

�

,

≤ (k −kc ) log
�

1+
n −nc

k −kc

�

+kc log
�

1+
nc

kc

�

.

Then, using the concavity of the logarithm function, we have

c
∑

i=1

ki log
�

1+
ni

ki

�

≤ k log
�

k −kc

k

�

1+
n −nc

k −kc

�

+
kc

k

�

1+
nc

kc

��

,

= k log
�

k −kc

k
+

n −nc

k
+

kc

k
+

nc

k

�

,

= k log
�

1+
n

k

�

,

which concludes the proof.

Lemma 33. For any non-negative integers n and r ,

r
∑

w=0

2w log
�

1+
n

2w

�

=O
�

2r log
�

1+
n

2r

��

.

Proof. First, write

log
�

1+
n

2w

�

= log
�

1+2r−w n

2r

�

,

≤ log
�

2r−w
�

1+
n

2r

��

,

= log(2r−w ) + log
�

1+
n

2r

�

,

= (r −w ) + log
�

1+
n

2r

�

.

113



Now substitute this into the sum to obtain

r
∑

w=0

2w log
�

1+
n

2w

�

≤
r
∑

w=0

(r −w )2w + log
�

1+
n

2r

�
r
∑

w=0

2w ,

=
r
∑

w=0

(r −w )2w +O
�

2r log
�

1+
n

2r

��

,

We evaluate the remaining sum by writing

r
∑

w=0

(r −w )2w =
r
∑

w=0

r −w

2r−w
2r ,

and then use the fact that
r
∑

w=0

r −w

2r−w
=O (1)

to conclude that

r
∑

w=0

2w log
�

1+
n

2w

�

=O (2r ) +O
�

2r log
�

1+
n

2r

��

,

=O
�

2r log
�

1+
n

2r

��

,

as desired.

Lemma 34. For any n ≥ 1, the function x log
�

1+ n
x

�

is strictly increasing with respect to
x for x ≥ 1.

Proof. The derivative of the function with respect to x is

log
�

1+
n

x

�

−
n

n + x
.

We must show that this quantity is strictly positive for all x ≥ 1. First, we use a well-known
inequality that states

a y ≤ 1+ (a −1)y ,

for a ≥ 1 and y ∈ [0, 1]. Using a = 2 and y = n/(n + x ), we obtain

2
n

n+x ≤ 1+
n

n + x
.

Since n ≥ 1 and x ≥ 1, we have

1+
n

n + x
< 1+

n

x
,

and hence by transitivity,

2
n

n+x < 1+
n

x
.

114



Taking logarithms on both sides yields

n

n + x
< log
�

1+
n

x

�

,

which implies the desired result.

We can now prove that our parallel algorithm has low span, and is work-efficient with respect
to the sequential HDT algorithm. For simplicity, we assume that we start with no edges in a
graph on n vertices.

Theorem 25. A batch of k edge deletions can be processed in O (log4 n ) span w.h.p.

Proof. The algorithm doubles the number of edges searched in each phase. Therefore, after
log m =O (log n ) phases, all non-tree edges incident on the component will be searched.

In every round, each active component is either deactivated, or has a replacement edge
found. In the worst case, the edges found for each active component pair the components
off, leaving us with half as many active components in the subsequent round. As we lose a
constant fraction of the active components per round, the algorithm takes O (log n ) rounds.

A given level can therefore perform at most O (log2 n ) phases. Each phase consists of
fetching, examining, and pushing down non-tree edges, and hence can be implemented in
O (log n ) span w.h.p. by Lemma 30 and Lemma 31. Therefore, the overall span for a given
level is O (log3 n )w.h.p. As all log n levels will be processed in the worst case, the overall span
of the algorithm is O (log4 n )w.h.p.

We now analyze the work performed by the algorithm.

Lemma 35. The work performed by the BATCHDELETION algorithm excluding the calls
to PARALLELLEVELSEARCH is

O
�

k log n log
�

1+
n

k

��

,

in expectation.

Proof. The edge deletions performed by Line 2 cost O (k )work by Lemma 29. Filtering the
tree edges (Line 3) can be done in O (k )work. Deleting the tree edges costs O

�

k log (1+n/k )
�

work by Lemma 34 (Line 4).
Line 5 perform a FINDREPR call for each endpoint of each deleted tree edge. These calls

can be implemented as a single BATCHFINDREPR call which costs O
�

k log (1+n/k )
�

work in
expectation [174]. Since in the worst case each tree edge must be deleted from log n levels,
the overall cost of this step is O

�

k log n log (1+n/k )
�

in expectation. Summing up the costs
for each level proves the lemma.

115



Theorem 26. The expected amortized cost per edge insertion or deletion is O (log2 n ).

Proof. Algorithm 8 takes as input a batch of k edge deletions. By Lemma 35, the expected
work performed by BATCHDELETION excluding the calls to PARALLELLEVELSEARCH is

O
�

k log n log
�

1+
n

k

��

,

which is at most O (k log2 n ) in expectation. We now consider the cost of the calls to PARAL-
LELLEVELSEARCH. Specifically, we show that the work performed during the calls to PARAL-
LELLEVELSEARCH can either be charged to level decreases on edges, or is at most O (k log n )
per call in expectation. Since the total number of calls to PARALLELLEVELSEARCH is at most
log n , the bounds follow.

First, observe that the number of spanning forest edges we discover, |S |, is at most k , since
at most k tree edges were deleted initially. Therefore, the batch insertion on Line 12 costs
O (k log n ) in expectation [174]. Similarly, L , the number of components that are supplied
to PARALLELLEVELSEARCH, is at most k . Therefore, the cost of filtering the components in L
based on their size, and checking whether their representative exists in Fi is at most O (k log n )
in expectation (Lines 13–14).

To fetch, examine, and push down l tree or non-tree edges costs

O
�

l log
�

1+
n

l

��

,

work in expectation, by Lemma 30, and Lemma 31. Note that this is at most O (log n ) per
edge. In particular, the cost of retrieving and pushing the tree edges of active components to
level i −1 (Line 6) is therefore at most O (log n ) per edge in expectation, which we charge to
the corresponding level decreases.

We now show that all work done while searching for replacement edges (Lines 15–27) can
be charged to level decreases. Consider an active component, c in some round. Suppose
the algorithm performs q > 0 phases before either the component is exhausted (all incident
non-tree edges have been checked), or a replacement edge is found. First consider the case
where it finds a replacement edge. If q = 1, only a single edge was inspected, so then we
charge the log n work for the round to the edge, which will become a tree edge. Otherwise, it
performs q −1 phases which do not produce any replacement edge.

Since phase w inspects 2w edges, it costs O (2w log n ) work. The total work over all q
phases is therefore

q
∑

w=0

2w log n =O (2q log n )

in expectation. However, since no replacement was found during the first q −1 phases, there
are at least 2q−1 =O (2q ) edges that will be pushed down, so we can charge O (log n )work to
each such edge to pay for this. In the other case, q phases run without finding a replacement
edge. In this case, all edges inspected are pushed down, and hence each assumes a cost of
O (log n ) in expectation.

116



Now, we argue that the work done while processing the replacement edges is O (k log n )
in expectation over all rounds. Since k edges were deleted, the algorithm discovers at most k
replacement edges. We charge the work in these steps to the replacement edges that we find.
Let k ′ be the number of replacement edges that we find. Filtering the edges, and computing
a spanning forest all costs O (k ′)work. Promoting the edges to tree edges (inserting them into
Fi and updating the adjacency lists) costs O (k ′ log n )work in expectation. Finally, updating
the components costs O (k ′ log n ) work in expectation, which we can charge to either the
component, if it is removed from C in this round, or to the replacement edge that it finds,
which is promoted to a tree edge. Since the algorithm can find at most k replacement edges,
the cost per level is O (k log n ) in expectation for these steps as necessary.

In total, on each level the algorithm performs O (k log n ) expected work that is not charged
to a level decrease. Summing over log n levels, this yields an amortized cost of O (log2 n )
expected work per edge deletion. Finally, since the level of an edge can decrease at most
log n times, and an edge is charged O (log n ) expected work each time its level is decreased,
the expected amortized cost per edge insertion is O (log2 n ).

6.5 A Faster Parallel Algorithm
In this section we design an improved version of the parallel algorithm that performs less
work than the algorithm from Section 6.4. Furthermore, the improved algorithm runs in
O (log3 n ) span w.h.p., improving on Algorithm 9 which runs in O (log4 n ) span w.h.p.

The key ideas in the improved algorithm involve interleaving the replacement edge search
phases with the spanning forest computation, and adding replacement edges to the spanning
forest more lazily to obtain better batch sizes for Euler-tour tree operations.

6.5.1 The Interleaved Deletion Algorithm
Algorithm 10 is based on interleaving the phases of doubling that search for replacement
edges with the spanning forest computation performed on the replacement edges. Recall
that in Algorithm 9, the number of edges examined in each round is reset, and the doubling
algorithm must therefore start with an initial search size of 1 on the next round. Because the
doubling resets from round to round, the number of phases per round can be O (log n ) in the
worst case, making the total number of phases per level O (log2 n ). Instead, the interleaved
algorithm avoids resetting the search size by maintaining a single, geometrically increasing
search size over all rounds of the search.

The second important difference in Algorithm 10 compared with Algorithm 9 is that
it defers inserting tree edges found on this level until the end of the search. Instead, it
continues to search for replacement edges from the initial components until the component
is deactivated. This property is important to show that the work done for a component across
all rounds is dominated by the cost of the last round, since the number of vertices in the
component is fixed, but the number of non-tree edges examined doubles in each round. For

117



Algorithm 10 The interleaved level search algorithm

1: procedure COMPONENTSEARCH(i , c , s )
2: wmax← c .NUMNONTREEEDGES

3: w ←min(s , wmax)
4: Ec ← First w non-tree edges in c
5: return {All replacement edges in Ec }

6: procedure PUSHEDGES(i , c , s , M )
7: wmax← c .NUMNONTREEEDGES

8: w ←min(s , wmax)
9: Ec ←{First w non-tree edges in c }

10: if M [c ].SIZE ≤ 2i−1 and w <wmax then
11: Remove edges in Ec from level i
12: return Ec

13: return ;
14: procedure INTERLEAVEDLEVELSEARCH(i , L = {c1, c2, . . .}, S )
15: Fi .BATCHINSERT(S )
16: C ← c ∈ L with size ≤ 2i−1

17: D ← c ∈ L with size > 2i−1

18: Push level i tree edges of all components in C to level i −1
19: r ← 0, T ←;, EP ←;
20: M ←{c → c | c ∈C }
21: while |C |> 0 do
22: w ← 2r

23: R ←∪c∈C COMPONENTSEARCH(i , c , w ) // In parallel
24: R ′←{(Fi .FINDREPR(u ), Fi .FINDREPR(v )) | (u , v ) ∈R }
25: T ′r ← SPANNINGFOREST(R ′)
26: Tr ← Edges in R corresponding to edges in T ′r
27: T ← T ∪Tr

28: Update M , the map of supercomponents and their sizes
29: EP ← EP ∪c∈C PUSHEDGES(i , c , w , M ) // In parallel
30: Dr ← {c ∈C with no non-tree edges, or size > 2i−1}
31: D ←D ∪Dr

32: C ←C \Dr

33: r ← r +1
34: Promote edges in T not in Ep to tree edges at level i
35: Fi .BATCHINSERT(T )
36: Insert non-tree and tree edges in EP to level i −1
37: return (D ,S ∪T )

118



the same reason, it also defers inserting the pushed edges onto level i −1. We crucially use
this property to obtain improved batch work bounds in Section 6.6.

Another difference in the modified algorithm is that if a component is still active after
adding the replacement edges found in this round (i.e., the component on level i still has size
at most 2i−1), then all of the edges found in this round can be pushed to level i −1 without
violating Invariant 1. Notice now that when pushing down edges, both the tree and non-tree
edges that are found in this round are pushed. Pushing down all edges ensures that the
algorithm performs enough level decreases to which to charge the work performed during
the next round. The component deactivates either once it runs out of incident non-tree
edges, or when it becomes too large. Since the algorithm defers adding the new tree edges
found until the end of the level, it also maintains an auxiliary data structure that dynamically
tracks the size of the resulting components as new edges are found.

The Deletion Algorithm
We briefly describe the main differences between INTERLEAVEDLEVELSEARCH, the new level
search procedure, and PARALLELLEVELSEARCH. The algorithm consists of a number of rounds
(Lines 21–33). We use r to track the round numbers, and we use EP to store the set of both
tree and non-tree edges that will be pushed to level i −1 at the end of the search at this level
(Line 19). T stores the set of tree edges that have been selected, which will be added to the
spanning forest at the end of the level. Lastly, we use M to maintain a dynamic mapping from
all the components in L to a unique representative for their contracted supercomponent
(initially itself), and the size of the contracted supercomponent.

In round r , the algorithm first retrieves the first 2r (or fewer) edges of each the active
components in parallel, and finds replacement edges. All replacement edges are added to
the set R (Line 23).

The algorithm then computes a spanning forest over the edges in R , and computes Tr ,
which are the original replacement edges in R that were selected as spanning forest edges
(Lines 25–27). The spanning forest computation returns, in addition to the tree edges, a
mapping from the vertices in R ′ to their connectivity label (Line 25), which can be used on
Line 28 to efficiently update the representatives of all affected components and the sizes of
the supercomponents.

The next step maps over the components in parallel again, calling PUSHEDGES on each
active component, and checks whether the edges searched in this round can be (lazily)
pushed to level i −1 (Line 29).1 If a component is still active (its new size is small enough to
still be searched, and the component still has some non-tree edges remaining) (Line 10), all
of the searched edges are removed from the adjacency lists at level i (Line 11) and are added
to the set of edges that will be pushed to level i −1 at the end of the level (Lines 12 and 29).
Note that this set of edges contains both replacement tree edges we discovered, and non-tree
edges. The tree-edges can be pushed down to level i −1 because the component with the
tree edges added has size ≤ 2i−1.

1Note that the set of edges retrieved by PUSHEDGES in Line 9 is assumed to be the same as the one in Line 4.
This assumption is satisfied by using our FETCHEDGES primitive on a parallel batch-dynamic Euler-tour tree, and
can be satisfied in general by associating the edges retrieved in COMPONENTSEARCH to be used in PUSHEDGES.

119



The end of the round (Lines 30–33) handles updating the set of components and incre-
menting the round number, as in Algorithm 9.

Finally, once all components are inactive, the tree edges found at this level that are not
contained in Ep are promoted (the tree edges added to Ep have their level decreased to i −1)
and inserted into Fi (Lines 34–35), and all edges added to EP in Line 29 are pushed down to
level i −1 (Line 36). Note that any tree-edges found in this set are promoted in level i −1 and
added to Fi−1. The procedure returns the set of components and all replacement edges found
at this level and levels below it (Line 37).

6.5.2 Cost Bounds
We start by showing that the span of Algorithm 10 is O (log3 n ).

Lemma 36. The number of rounds performed by Algorithm 10 is O (log n ) and the span
of each round is O (log n )w.h.p.. The span of the INTERLEAVEDLEVELSEARCH is therefore
O (log2 n )w.h.p..

Proof. Each round of the algorithm increases the search size of a component by a factor of
2. Therefore, after O (log n ) rounds, every non-tree edge incident on a component will be
considered and the algorithm will terminate.

To argue the span bound, we consider the main steps performed during a round. Fetching,
examining and removing the edges from level i takes O (log n ) span w.h.p. by Lemma 30b
and Lemma 31. Computing a spanning forest on the replacement edges and filtering the
components (at most k replacement edges, or components) can be done in O (log k ) span.
The span per round is therefore O (log n ) w.h.p. and the span of INTERLEAVEDLEVELSEARCH is
O (log2 n )w.h.p.

Combining Lemma 36 with the fact that there are log n levels gives the following theorem.

Theorem 27. A batch of k edge deletions can be processed in O (log3 n ) span w.h.p.

We now consider the work performed by the algorithm. We start with a lemma showing
that the search-size for a component increases geometrically until the round where the
component is deactivated.

Lemma 37. Consider a component, c , that is active at the end of round r −1. If c is not
removed from C , then it examines ≥ 2r−1 edges that are pushed down to level i −1 at the
end of the search.

Proof. We prove the contrapositive. Suppose that < 2r−1 edges are pushed down in total by
c in the last round. Then, we will show that c cannot be active in the next round (i.e., it is
removed from C in round r −1).

Notice that c must be active at the start of round r −1. Consider the check on Line 10,
which checks whether w ≤ 2r−1 and w < wmax on this round. Suppose for the same of

120



contradiction that both conditions are true. Then, by the fact that w <wmax, it must be the
case that w = 2r−1 by Line 8. If the condition is true, then on Line 11 the algorithm adds 2r−1

edges to be pushed to level i −1, contradicting our assumption that < 2r−1 edges are pushed.
Therefore the check on Line 10 must be false, giving that either w > 2i−1, or w = wmax.

This means that c will be marked as inactive on Line 30, and then become deactivated on
Line 32. Therefore, if < 2r−1 edges are pushed down by c in round r −1, c is deactivated at
the end of the round, concluding the proof.

Lemma 38. Consider the work done by some component c over the course of INTER-
LEAVEDLEVELSEARCH at a given level. Let R be the total number rounds that c is active.
Then, c pushes down pc = 2R −1 edges in total. Furthermore, the total cost of searching
for and pushing down replacement edges performed by c is

O
�

pc log
�

1+
nc

pc

��

in expectation, where nc is the number of vertices in c .

Proof. By Lemma 37, for each round r <R , c adds 2r edges to be pushed down. Summing
over all rounds shows that the total number of edges added to be pushed down is 2R −1. The
cost of pushing down these edges at the end of the search at this level is exactly

O
�

pc log
�

1+
nc

pc

��

.

by Lemma 31, since the size of the tree that is affected is nc . We now consider the cost of
fetching and examining the edges over all rounds. The cost of fetching and examining 2r

edges is

O
�

2r log
�

1+
nc

2r

��

,

in expectation by Lemma 30. Summing over all rounds r <R , the work is

R−1
∑

r=1

O
�

2r log
�

1+
nc

2r

��

in expectation to fetch and examine edges in the first R −1 rounds, which is equal to

O
�

2R log
�

1+
nc

2R

��

,

by Lemma 33. Since on round R , the algorithm searches at most 2R edges, the total cost of
searching for replacement edges over all rounds is at most

O
�

2R log
�

1+
nc

2R

��

=O
�

pc log
�

1+
nc

pc

��

.

121



Lemma 39. The cost of INTERLEAVEDLEVELSEARCH is at most

O
�

k log
�

1+
n

k

�

+p log
�

1+
n

p

��

in expectation where p is the total number of edges pushed down.

Proof. First consider Lines 2–5. Since we are deleting a batch of k edges, we can find at most
k replacement edges to reconnect these components, so Line 2 performs O

�

k log
�

1+ n
k

��

expected work [174]. Pushing t spanning tree edges to the next level (Line 5) can be done in
O
�

t log
�

n
t +1
��

) expected work by Lemmas 30, 31, and 32. Hence in total, Lines 2–5 perform

at most O
�

k log
�

1+ n
k

�

+ t log
�

1+ n
t

��

work in expectation.
Now, consider the cost of the steps which scan or update the components that are active in

each round. On the first round, this cost is O (k ). In every subsequent round, r , by Lemma 37
each currently active component must have added 2r−1 edges to be pushed down on the
previous round. Therefore, we can charge the O (1)work per component performed in this
round to these edge pushes.

Next, we analyze the work done while searching for and pushing replacement edges.
Consider some component c ∈ C that is searched on this level. By Lemma 38, the cost of
searching for and pushing down the replacement edges incident on this component is

O
�

pc log
�

1+
nc

pc

��

in expectation, where nc is the number of vertices in c and pc is the total number of edges
pushed down by c . The total work done over all components to search for replacement edges
and push down both the original tree edges, and the edges in each round is therefore

O

�

t log
�

1+
n

t

�

+
∑

c∈C

pc log
�

1+
nc

pc

�

�

.

in expectation. Since
∑

nc = n , by Lemma 32 this costs

O
�

p log
�

1+
2n

p

��

=O
�

p log
�

1+
n

p

��

work in expectation, where p = t +
∑

pc is the total number of edges pushed, including tree
and non-tree edges. Therefore, the total cost is

O
�

k log
�

1+
n

k

�

+p log
�

1+
n

p

��

in expectation.

122



Theorem 28. The expected amortized cost per edge insertion or deletion is O (log2 n ).

Proof. The proof follows from the same argument as Theorem 26, by using Lemma 39.

6.6 Analysis of Batching
We now show that by a more careful analysis, we can obtain a tighter bound on the amount
of work performed by the interleaved algorithm. In particular, we show in this section that
the algorithm performs

O
�

log n log
�

1+
n

∆

��

amortized work per edge in expectation, where∆ is the average batch size of all batches of
deletions. Therefore, if we process batches of deletions of size O (n/polylog(n )) on average,
our algorithm performs O (log n log log n ) expected amortized work per edge, rather than
O (log2 n ). Furthermore, if we have batches of size O (n ), the cost is just O (log n ) per edge.

At a high level, our proof formalizes the intuition that in the worst case, all edges are
pushed down at every level, and that performing fewer deletion operations results in larger
batches of pushes which take advantage of work bounds of the Euler-tour tree. Our proof
crucially relies on the fact that although the deletion algorithm at a level can perform O (log n )
Euler-tour tree operations per component, since the batch sizes are geometrically increasing,
these operations have the cost of a single Euler-tour tree operation per component. Further-
more, Lemma 39 shows that the costs per component can be combined so that the total cost
is equivalent to the cost of a single Euler-tour tree operation on all the vertices. Therefore, the
number of deletion operations can be exactly related to the effective number of Euler-tour
tree operations at a level. We relate the number of deletions to the average batch size, which
lets us obtain a single unified bound for both insertions and deletions.

Theorem 29. Using the interleaved deletion algorithm, the amortized work performed
by BATCHDELETION and BATCHINSERTION on a batch of k edges is

O
�

k log n log
�

1+
n

∆

��

,

in expectation where∆ is the average batch size of all batch deletions.

Proof. Batch insertions perform only O
�

k log
�

1+ n
k

��

work by Theorem 24, so we focus on
the cost of deletion since it dominates. Consider the total amount of work performed by all
batch deletion operations at any given point in the lifetime of the data structure. We will
denote by kb , the size of batch b , and by pb ,i , the number of edges pushed down on level i
during batch b . Combining Lemmas 35, and 39, the total work is bounded above by

O

�

∑

batch b

∑

level i

kb log
�

1+
n

kb

�

+pb ,i log

�

1+
n

pb ,i

�

�

.

123



We begin by analyzing the first term, which is paid for by the deletion algorithm. Let

K =
∑

batch b

kb

denote the total number of deleted edges. Applying Lemma 32, and using the fact that there
are log n levels, we have

O

�

∑

batch b

∑

level i

kb log
�

1+
n

kb

�

�

=O
�

K log n log
�

1+
n ·d

K

��

,

where d is the number of batches of deletions. Since K /d =∆, this is equal to

O
�

K log n log
�

1+
n

∆

��

,

work in expectation. Each batch can therefore be charged a cost of log n log (1+n/∆) per
edge, and hence the amortized cost of batch deletion is

O
�

k log n log
�

1+
n

∆

��

in expectation. The remainder of the cost, which comes entirely from searching for replace-
ment edges, is charged to the insertions. Consider this cost and let

P =
∑

batch b

∑

level i

pb ,i

denote the total such number of edge pushes. Since the total number of terms in the double
sum is d log n , Lemma 32 allows us to bound the total work of all pushes by

∑

batch b

∑

level i

pb ,i log

�

1+
n

pb ,i

�

=O
�

P log
�

1+
nd log n

P

��

.

in expectation. Since every edge can only be pushed down once per level, we have

P ≤m log n ,

where m is the total number of edges ever inserted. Therefore by Lemma 34, the total work is
at most

O
�

m log n log
�

1+
nd log n

m log n

��

=O
�

m log n log
�

1+
nd

m

��

in expectation. Since d = K /∆, this is equal to

O
�

m log n log
�

1+
n K

m∆

��

in expectation. Since each edge can be deleted only once, we have K ≤m , and hence we
obtain that the total work to push all tree edges down is at most

O
�

m log n log
�

1+
n

∆

��

.

124



in expectation. We can therefore charge O
�

log n log(1+n/∆)
�

per edge to each batch inser-
tion. Since this dominates the cost of the insertion algorithm itself, the amortized cost of
batch insertion is therefore

O
�

k log n log
�

1+
n

∆

��

,

in expectation as desired, concluding the proof.

6.7 Discussion
In this chapter, we presented a novel batch-dynamic algorithm for the connectivity problem.
Our algorithm is always work-efficient with respect to the Holm, de Lichtenberg and Thorup
dynamic connectivity algorithm, and is asymptotically faster than their algorithm when the
average batch size is sufficiently large. A parallel implementation of our algorithm achieves
O (log3 n ) span w.h.p., and is, to the best of our knowledge, the first parallel algorithm for the
dynamic connectivity problem performing O (T polylog(n )) total expected work, where T is
the total number of edge operations.

There are several natural questions to address in future work. For example, can the span
of our algorithm be improved to O (log2 n )without increasing the work, or can the work be
improved to match the best sequential running time of O (log n (log log n )2) per edge [103]?
Similarly, can our ideas be extended to obtain worst-case bounds? It seems possible that
ideas from our work could be used to give a parallel batch-dynamic Monte-Carlo connectivity
algorithm based on the Kapron-King-Mountjoy algorithm [111].

In the sequential setting, dynamic connectivity is also used as a building block for efficient
algorithms for dynamic 2-edge connectivity and biconnectivity. It could therefore also be
interesting to consider whether our batch-dynamic algorithm could be used as an ingredient
in efficient parallel batch-dynamic algorithms for those problems. Existing sequential 2-edge
connectivity and biconnectivity algorithms require a dynamic tree data structure supporting
path queries which are not supported by Euler-tour trees, however, our RC-trees could be
used instead, which makes them a possible candidate for this line of work.

Since the publication of this work, our algorithm has been extended by Tseng et al. [175]
who use it to implement a parallel batch-dynamic algorithm for MST. Their algorithm pro-
cesses batches of k updates in O (k log6 n ) amortized work and O (log4 n ) span w.h.p. It is the
first ever parallel batch-dynamic algorithm for MST with polylogarithmic work per edge and
polylogarithmic span. It is however, not as efficient as the best sequential algorithm for the
problem, so it remains to see whether this bound could be improved.

125



126



Chapter 7
Parallel Batch-Incremental

Minimum Spanning Trees

7.1 Introduction
MSTs have a long and interesting history. The problem of dynamically maintaining the MST
under modifications to the underlying graph has been well studied. Spira and Pan [165]were
the first to tackle the dynamic problem, and give an O (n ) sequential algorithm for vertex
insertion that is based on Boruvka’s algorithm. The first sublinear time algorithm for edge
updates was given by Frederickson [63], who gave an O (

p
m ) algorithm. A well-celebrated

improvement to Frederickson’s algorithm was given by Eppstein et. al [55], who introduced
the sparsification technique to reduce the cost to O (

p
n ). A great number of subsequent

dynamic algorithms, including parallel ones, take advantage of Eppstein’s sparsification.
The sequential incremental MST problem, i.e., maintaining the MST subject to new edge
insertions but no deletions, requires O (log(n )) time per update using dynamic trees [15, 171]
to find the heaviest weight edge on the cycle induced by the new edge and remove it. Holm
et al. gave the first polylogarithmic time algorithm for fully dynamic MST [99], supporting
updates in O (log4(n )) amortized time per operation, later improved by a log log n factor [101]
in expectation. No worst-case polylogarithmic time algorithm is known for the fully dynamic
case. The dynamic MST problem has also been studied quite extensively in parallel, even in
the batch-dynamic setting.

Parallel single-update algorithms Work by Pawagi and Ramakrishnan [143] gives a parallel
algorithm for vertex insertion (with an arbitrary number of adjacent edges) and edge-weight
updates in O (log(n )) span but O (n 2 log(n ))work. Varman and Doshi [178, 179] improve this to
O (n log(n ))work. Jung and Mehlhorn [110] give an algorithm for vertex insertion in O (log(n ))
span, and O (n )work. While this bound is optimal for dense insertions, i.e. inserting a vertex
adjacent to Θ(n ) edges, it is inefficient for sparse graphs.

Tsin [176] extended the work of Pawagi and Ramakrishnan [143] to handle vertex deletions
in the same time bounds, thus giving a fully vertex-dynamic parallel algorithm that runs in
O (n 2 log(n ))work and O (log(n )) span. Das and Ferragina [45] give algorithms for inserting and
deleting edges in O (log(mn ) log(n )) span and O (n 2/3 log(mn ))work. Subsequent improvements
by Ferragina [59, 60], and Das and Ferragina [47] improve the span bound to O (log(n ))with
the same work bound. A recent result by Kopelowitz et al. [124] gives an algorithm that takes
O (
p

n log(n ))work and O (log(n )) span.

127



Parallel batch-dynamic algorithms The above are all algorithms for single vertex or edge
updates. To take better advantage of parallelism, some algorithms that process batch updates
have been developed. Pawagi [141] gives an algorithm for batch vertex insertion that inserts
k vertices in O (log(n ) log(k )) span and O (nk log(n ) log(k ))work. Johnson and Metaxas [109]
give an algorithm for the same problem with O (log(n ) log(k )) span and O (nk )work.

Pawagi and Kaser [142]were the first to give parallel batch-dynamic algorithms for fully-
dynamic MSTs. For inserting k independent vertices, inserting k edges, or decreasing the
cost of k edges, their algorithms takes O (log(n ) log(k )) span and O (nk ) work. Their algo-
rithms for increasing the cost of or deleting k edges, or deleting a set of vertices with total

degree k take O (log(n ) + log2(k )) span and O
�

n 2
�

1+ log2(k )
log(n )

��

work. Shen and Liang [159]
give an algorithm that can insert k edges, modify k edges, or delete a vertex of degree k in
O (log(n ) log(k )) span and O (n 2)work. Ferragina and Luccio [61, 62] give algorithms for han-
dling k =O (n ) edge insertions in O (log(n )) span and O (n log log log(n ) log(m/n ))work, and k
edge updates in O (log(n ) log(m/n )) span and O (k n log log log(n ) log(m/n ))work. Lastly, Das
and Ferragina’s algorithm [45] can be extended to the batch case to handle k edge insertions
in O (k + log(m/n ) log(n )) span and O (n 2/3(k + log(m/n )))work.

For a thorough and well written survey on the techniques used in many of the above
algorithms, see Das and Ferragina [46].

Sliding window dynamic graphs Dynamic graphs in the sliding window model were stud-
ied by Crouch et. al [44]. In the sliding window model, there is an infinite stream of edges
〈e1, e2, ...〉, and the goal of queries is to compute some property of the graph over the edges
〈et−L+1, et−L+2, . . . , et 〉, where t is the current time and L is the fixed length of the window.
Crouch et. al showed that several problems, including k -connectivity, bipartiteness, spar-
sifiers, spanners, MSFs, and matchings, can be efficiently computed in this model. Several
of these results used a data structure for incremental MSF as a key ingredient. All of these
results assumed a sequential model of computation.

Our contributions

In this chapter, we start by presenting a parallel data structure for the batch-incremental
MSF problem. It is the first such data structure that achieves polylogarithmic work per edge
insertion. The data structure is work efficient with respect to the fastest sequential single-
update data structure, and even more efficient for large batch sizes, achieving optimal linear
expected work [117]when inserting all edges as a batch.

We then use our batch-incremental MSF data structure to develop various data structures
for graph problems in a batch variant of the sliding-window model. In the sliding-window
model [48], one keeps a fixed-size window that supports adding new updates to the new
side of the window and dropping them from the old side. Each insertion on the new side
does a deletion of the oldest element on the old side. In general, this can be more difficult
than pure incremental algorithms, but not as difficult as supporting arbitrary deletion in
fully dynamic algorithms. This setup has become popular in modeling an infinite stream of
data when there is only bounded memory, and a desire to “forget” old updates in favor of

128



Incremental (This work) Sliding window (This work) Fully dynamic
Connectivity O (kα(n ))∗ O (k log(1+n/k ))∗ O (k log(n ) log(1+n/k ))∗,†

k ′-certificate O (k ′kα(n ))∗ O (k ′k log(1+n/k ))∗ -
Bipartiteness O (kα(n ))∗ O (k log(1+n/k ))∗ -
Cycle-freeness O (kα(n ))∗ O (k log(1+n/k ))∗ -
MSF O (k log(1+n/k ))∗ O (ϵ−1k log(n ) log(1+n/k ))∗,‡ O (k n log(3)(n ) log(m/n ))
ϵ-sparsifier O (ϵ−2k log4(n )α(n ))∗ O (ϵ−2k log4(n ) log(1+n/k ))∗ -

Table 7.1: Work bounds for new and known parallel batch-dynamic graph algorithms in the
incremental (insert-only), sliding window, and fully dynamic settings. All algorithms run in
O (polylog(n )) span and use O (n polylog(n )) space. k denotes the batch size of updates. Note
that the algorithms in the sliding window model are also applicable to the incremental setting, by
simply never moving the left endpoint of the window. For large batch sizes k , these algorithms
sometimes achieve better bounds. Some bounds given are randomized (∗), amortized (†), or give
(1+ϵ)-approximate solutions (‡)

newer ones. There have been many dozens, perhaps hundreds, of papers using the model in
general. Crouch et. al. [44] have derived several algorithms for graph problems in this model.
For graph algorithms, the goal is typically to use only Õ (n )memory.

Here we extend the model to allow for rounds of batch (edge) insertions on the new side
of the window, and batch (edge) deletions from the old side. Our results allow for arbitrary
interleavings of batch insertions or deletions, and each of arbitrary size. Matching up equal
sized inserts and deletes gives a fixed sized window, but we do not require this. Based on our
batch-incremental MSF data structure, we are able to efficiently solve a variety of problems in
the batch sliding-window model, including connectivity, k -certificate, bipartiteness, (1+ε)-
MSF, cycle-freeness, and sparsification. This uses an approach similar to the one of Crouch
et. al. [44], which is based on sequential incremental MSF. In this work, other than using
the batch-incremental MSF data structures, more work is required to augment their data
structures in several ways.

Finally, we note that we can also apply these techniques to the incremental setting, and,
using existing results on batch-incremental graph connectivity [162], obtain fast algorithms
there as well. Table 7.1 gives specifics on the individual results and compares them to the
existing bounds for parallel dynamic graphs in the incremental and fully dynamic settings.

7.2 The Compressed Path Tree
The key ingredient in our batch-incremental MSF data structure is a data structure for dynam-
ically producing a compressed path tree. Given a weighted tree with some marked vertices,
the compressed path tree with respect to the marked vertices is a minimal tree on the marked
vertices and some additional “Steiner vertices” such that for every pair of marked vertices,
the heaviest edge on the path between them is the same in the compressed tree as in the
original tree. That is, the compressed path tree represents a summary of all possible pairwise
heaviest edge queries on the marked vertices. An example of a compressed path tree is shown
in Figure 7.1. More formally, consider the subgraph consisting of the union of the paths

129



between every pair of marked vertices. The compressed path tree is precisely this subgraph
but with all of the non-marked vertices of degree at most two spliced out.

This idea of compressing the input tree to one with no paths of degree two has been
used before in various works under many different names. Komlós [123] and King [121] refer
to such a tree as a “full branching tree”, and recently Gawrychowski et al. [68] called it a
“topologically induced subtree”. Our main contribution is the efficient parallel construction
of such a tree from a dynamic tree. To produce the compressed path tree, we leverage our
parallel RC-Tree data structure from Chapter 3.

10

2

5 8

6

3

9

4
2

7

1

12

5

4

3

A

B

C

D

E

(a) A weighted tree, with some important vertices
marked (in gray). The paths between the marked
vertices are highlighted.

A

B

C

D

E

6

10

9 7

12

3

(b) The corresponding compressed path tree.
The edges are weighted to represent the heavi-
est edge on the corresponding path.

Figure 7.1: A weighted tree and its corresponding compressed path tree with respect to some
marked vertices.

7.2.1 A Parallel Algorithm for Compressed Path Trees
Given a balanced RC-Tree and a set of k marked vertices, our algorithm produces the com-
pressed path tree in O

�

k log
�

1+ n
k

��

work and O (log(n )) span (in expectation and w.h.p. re-
spectively if the RC-Tree is randomized).

Broadly, our algorithm for producing the compressed path tree works as follows. The
algorithm begins by marking the clusters in the RC-Tree that contain a marked vertex, which
is achieved by a simple bottom-up traversal of the tree. It then traverses the clusters of
the RC-Tree in a recursive top-down manner. When the algorithm encounters a cluster
that contains no marked vertices, instead of recursing further, it can simply generate a
compressed representation of the contents immediately. The algorithm uses the following
recursive subroutine, which, when called on the root cluster produces the answer.

• EXPANDCLUSTER(C : Cluster) : Graph

Return the compressed path tree of the subgraph C ∪BOUNDARY(C ), assuming that the
boundary vertices of C are marked in addition to the actual marked vertices.

We use the following primitives to interact with the RC-Tree. As the RC-Tree has bounded
degree, each of them takes constant time.

130



• BOUNDARY(C : Cluster) : vertex list

Given a cluster in the RC-Tree, return its boundary vertices.

• CHILDREN(C : Cluster) : Cluster list

Given a cluster in the RC-Tree, return its child clusters.

• REPRESENTATIVE(C : Cluster) : vertex

Given a non-leaf cluster in the RC-Tree, return its representative.

• WEIGHT(B : BinaryCluster) : number

Given a binary cluster in the RC-Tree, return the weight of the heaviest edge on the path
between its two boundary vertices.

Lastly, we use the following primitives for constructing the resulting compressed path tree.

• SPLICEOUT(G : Graph, v : vertex) : Graph

If v has degree two in G and is not marked, splice v out by replacing its two incident edges
with a contracted edge. The weight of the new edge is the heaviest of the two removed
edges.

• PRUNE(G : Graph, v : vertex) : Graph

If v has degree two in G , return SPLICEOUT(G ). Otherwise, if v has degree one in G , with
neighbor u , and is not marked, remove v and the edge (u , v ), and return SPLICEOUT(G ′, u),
where G ′ is the graph remaining after removing v and (u , v ).

The intuition behind the PRUNE primitive is that without it, our algorithm could add redun-
dant vertices to the compressed path tree. The proof of Lemma 40 illuminates the reason for
the precise behavior of PRUNE. We give pseudocode for EXPANDCLUSTER in Algorithm 11.
The compressed path tree of a marked tree is obtained by calling EXPANDCLUSTER(root),
where root is the root cluster of the correspondingly marked RC-Tree. For a disconnected
forest, simply call EXPANDCLUSTER on the root cluster of each component.

7.2.2 Analysis

Correctness
We first argue that our algorithm for producing the compressed path tree is correct.

Lemma 40. Given a marked tree T and its RC-Tree, for any cluster C , EXPANDCLUSTER(C )
returns the compressed path tree of the graph C ∪BOUNDARY(C ), assuming the boundary
vertices of C are marked.

Proof. We proceed by structural induction on the clusters, with the inductive hypothesis that
EXPANDCLUSTER(C ) returns the compressed path tree for the subgraph C ∪BOUNDARY(C ),
assuming that, in addition to the marked vertices of T , the boundary vertices of C are marked.
First, consider an unmarked cluster C .

131



Algorithm 11 Compressed path tree algorithm

1: // Returns a graph G , which is represented by a pair of sets (V , E ), where V is the vertex set and
E is a set of weighted edges. Edges are represented as pairs, the first element of which is the set of
endpoints of the edge, and the second of which is the weight

2: procedure EXPANDCLUSTER(C : Cluster): Graph
3: if not MARKED(C ) then
4: local V ← BOUNDARY(C )
5: if C is a BinaryCluster then
6: local e ← (V , WEIGHT(C ))
7: return (V ,{e })
8: else
9: return (V ,{})

10: else if C is a vertex v then
11: return ({v },{})
12: else
13: local G ←

⋃

c∈CHILDREN(C )EXPANDCLUSTER(c )
14: return PRUNE(G , REPRESENTATIVE(C ))

1. If C is a NullaryCluster, then it has no boundary vertices, and since no vertices are marked,
the compressed path tree should be empty. Line 9 therefore returns the correct result.

2. If C is a UnaryCluster, then it has as single marked boundary vertex and no other marked
vertices. Therefore the compressed path tree consists of the just the boundary vertex, so
Line 9 returns the correct result.

3. If C is a BinaryCluster, the compressed path tree contains its endpoints, and an edge
between them annotated with the weight of the corresponding heaviest edge in the original
tree. Line 7 returns this.

Suppose C is a leaf cluster. Since edges cannot be marked, it must be a base vertex cluster v .
Since v is marked, the compressed path tree just contains v (returned by Line 11).

We now consider the inductive case, where C is a marked cluster that is not a leaf of the
RC-Tree. Recall the important facts that the boundary vertices of the children of C consist
precisely of the boundary vertices of C and the representative of C , and that the disjoint
union of the children of C is C . Using these two facts and the inductive hypothesis, the graph
G (Line 13) is the compressed path tree of the graph C ∪BOUNDARY(C ), assuming that the
boundary vertices of C and the representative of C are marked.

It remains to prove that the PRUNE procedure (Line 14) gives the correct result, i.e., it
should produce the compressed path tree without the assumption that REPRESENTATIVE(C )
is necessarily marked. Recall that the compressed path tree is characterized by having
no unmarked vertices of degree less than three. If REPRESENTATIVE(C ) is marked, or if
REPRESENTATIVE(C ) has degree at least three, then PRUNE does nothing, which is correct.
Suppose REPRESENTATIVE(C ) has degree two and is unmarked. PRUNE will splice out this
vertex and combine its adjacent edges. Observe that splicing out a vertex does not change
the degree of any other vertex in the tree. By the inductive hypothesis, no other vertex of G
(Line 13) was unmarked and had degree less than three, hence the result of Line 14 is the

132



correct compressed path tree. Lastly, consider the case where REPRESENTATIVE(C ) has degree
one and is not marked. PRUNE will correctly remove it from the tree, but this will change the
degree of its neighboring vertex by one. If the neighbor was marked or had degree at least four,
then it correctly remains in the tree. If the neighbor had degree three and was not marked,
then it will now have degree two, and hence should be spliced out. As before, this does not
change the degree of any other vertex in the tree, and hence is correct. By the inductive
hypothesis, the neighbor cannot have had degree less than three and been unmarked before
calling PRUNE. Therefore, in all cases, Line 14 returns the correct compressed path tree.

By induction on the clusters, the algorithm returns the compressed path tree of the graph
C ∪BOUNDARY(C ), assuming that the boundary vertices of C are marked.

Theorem 30. Given a marked tree T and its RC-Tree, EXPANDCLUSTER(root), where root
is the root of the RC-Tree, produces the compressed path tree of T with respect to the
marked vertices.

Proof. This follows from Lemma 40 and the fact that the root cluster is a nullary cluster and
hence has no boundary vertices.

Efficiency
We now show that the compressed path tree can be computed efficiently.

Lemma 41. A compressed path tree for k marked vertices has at most O (k ) vertices.

Proof. Since a compressed path tree has no non-marked leaves, it has at most k leaves.
Similarly, by definition, the compressed path tree has at most k internal nodes of degree
at most two. The result then follows from the fact that a tree with k leaves and no internal
nodes of degree less than two has O (k ) vertices.

Theorem 31. Given a balanced (resp. in expectation) RC-Tree of a tree on n vertices,
producing the compressed path tree for k marked vertices takes O

�

k log
�

1+ n
k

��

work
(resp. in expectation) and O (log(n )) span (resp. w.h.p.).

Proof. The algorithm for producing the compressed path tree consists of two bottom-up
traversals of the RC tree from the k marked vertices to mark and unmark the clusters, and a
top-down traversal of the same paths in the tree. Non-marked paths in the RC-Tree are only
visited if their parent is marked, and since the RC tree has constant degree, work performed
here can be charged to the parent. Also due to the constant degree of the RC-Tree, at each
node during the traversal, the algorithm performs a constant number of recursive calls.
Assuming that Lines 13 and 14 can be performed in constant time (to be shown), Theorem 8
implies the work bound of O

�

k log
�

1+ n
k

��

(in expectation if randomized).
To perform Line 13 in constant time, our algorithm can perform the set union of the vertex

set lazily. That is, first run the algorithm to determine the sets of vertices generated by all

133



of the base cases, and then flatten these into a single set by making another traversal of the
tree. Duplicates can be avoided by noticing that the only duplicate in a union of clusters is
the representative of their parent cluster. Line 14 can be performed by maintaining the edge
set as an adjacency list. Since the underlying tree is always converted to a bounded-degree
equivalent by the RC-Tree, the adjacency list can be modified in constant time.

The span bound follows from the fact that the RC-Tree has height O (log(n )) (w.h.p. if
randomized) and that each recursive call takes constant time.

Lastly, note that this argument also holds for disconnected graphs by simply traversing
each component (i.e. each root cluster) in parallel after the marking phase.

Remark 2 (Building compressed path trees concurrently). As described, since the algo-
rithm for producing a compressed path tree marks the underlying RC-Tree, this method
can not be used to construct multiple compressed path trees concurrently. Although our
algorithm does not need this feature, we remark on it here since other applications may
wish to take advantage, and indeed we will use this feature in Chapter 9. To support the
ability to build multiple compressed path trees concurrently, we can instead use a local
hashtable to remember the marked nodes. Since hashtable operations can be supported
in O (1) expected work and O (log(n )) span w.h.p., this leaves the work of the algorithm
unaffected, but increases the span to O (log2(n ))w.h.p.

7.3 Batch-Incremental Minimum Spanning Forest
Armed with the compressed path tree, our algorithm for batch-incremental MSF is a natural
generalization of the standard sequential algorithm: Use a dynamic tree data structure [171]
to find the heaviest edge on the cycle created by the newly inserted edge. By the classic “red
rule,” delete this edge to obtain the new MSF.

In the batch setting, when multiple new edges are added, many cycles may be formed,
but the same idea still applies. Broadly, our algorithm takes the batch of edges and produces
the compressed path trees with respect to all of their endpoints. The key observation here is
that the compressed path trees will represent all of the possible paths between the new edge
endpoints, and hence, all possible cycles that could be formed by their inclusion. Taking
the compressed path tree and adding the newly inserted edges therefore results in a small
graph that represents all possible cycles made by the new edges. To determine which edges
should be added to the MSF, it is then a matter of computing the MSF of this representative
graph, and taking the newly inserted edges that were selected. Conversely, the edges to be
removed from the MSF are those corresponding to the compressed path tree edges that were
not selected for the MSF of the representative graph.

We express the algorithm in pseudocode in Algorithm 12. It takes as input, an RC-Tree of
the current MSF, and the new batch of edges to insert, and modifies the RC-Tree to represent
the new MSF. The subroutine COMPRESSEDPATHTREES computes the compressed path trees
for all components containing a marked vertex (in K ) using Algorithm 11. We simplify the
pseudocode by referring to edges in the compressed path trees and the corresponding edges

134



in the MSF interchangably. That is, when we say to insert edges from the compressed path
tree into the MSF, we really mean to insert the edges from E + whose heaviest weight that they
correspond to, and similarly for deletion.

Algorithm 12 Batch-incremental MSF

1: procedure BATCHINSERT(T : RCTree, E + : edge list)
2: local K ←

⋃

({u ,v },w )∈E +{u , v }
3: local C ← COMPRESSEDPATHTREES(RC, K )
4: local M ← MSF(C ∪ E +)
5: T.BATCHDELETE(E (C ) \E (M ))
6: T.BATCHINSERT(E (M )∩E +)

7.3.1 Analysis

Correctness
We first argue that our algorithm for updating the MSF is correct. We will invoke a classic
staple of MST algorithms and their analysis, the “cycle rule” (called the “red rule” by Tarjan).

Lemma 42 (Red rule [171]). For any cycle C in a graph, and a heaviest edge e on that
cycle, there exists a minimum spanning forest of G not containing e .

Theorem 32. Let G be a connected graph. Given a set of edges E +, let C be the com-
pressed path tree of G with respect to the endpoints of E +, and let M be the MST of
C ∪E +. Then a valid MST of G ∪E + is

M ′ =MST(G )∪ (E (M )∩E +) \ (E (C ) \E (M )),

where the edges of C are identified with their corresponding heaviest edges in G whose
weight they are labeled with.

Proof. First, we use the fact that A∪ (B \C ) = (A∪B )\C as long as A and C are disjoint. Then,
by some simple Boolean algebra, since E (M )∩E + = E + \ (E + \E (M )), we have

M ′ = (MST(G )∪E +) \ (E (C ) \E (M )) \ (E + \E (M )).

We will prove the result using the following strategy. We will begin with the graph MST(G )∪E +,
and then show, using the red rule, that we can remove all of the edges in E (C ) \ E (M ) and
E + \E (M ), such that the resulting graph is still a superset of an MST. We will then show that
M ′ has the same number of edges as an MST, and hence is in fact an MST.

Let e = (u , v ) be an edge in E (C ) \ E (M ). We want to show that e is a heaviest edge on
a cycle in C ∪E +. To do so, consider the cycle formed by inserting e into M . If e was not a
heaviest edge on the cycle, then we could replace the heavier edge with e in M and reduce its

135



weight, which would contradict M being an MST. Therefore, e is a heaviest edge on a cycle in
C ∪ E +. Since every edge in C represents a corresponding heaviest edge on a path in G , e
must also correspond to a heaviest edge on the corresponding cycle in G ∪E +. Since e is a
heaviest edge on some cycle of G ∪E +, the red rule says that it can be safely removed. Since
we never remove an edge in M , the graph remains connected, and hence we can continue to
apply this argument to remove every edge in E (C ) \E (M ), as desired.

The exact same argument also shows that we can remove all of the edges in E + \E (M ),
and hence, we can conclude that M ′ is a superset of an MST. It remains to show, lastly, that
M ′ is an MST, i.e. contains no cycles. To do so, we will show that the algorithm removes the
same number of edges that it inserts. First, since we assume that G is connected, |E (M )|=
|E (C )| = |V (C )| − 1. Then, since E (C ) and E + are disjoint, and E (M ) ⊂ E (C )∪ E +, simple
Boolean algebra yields |E (M )∩E +|= |E (C ) \E (M )|, which shows that the algorithm inserts
and removes the same number of edges. Therefore, since M ′ is a superset of an MST and has
the same number of edges as an MST, it must be an MST.

Corollary 6. Algorithm 12 correctly updates the MSF.

Proof. Theorem 32 shows that the algorithm is correct for connected graphs. For discon-
nected graphs, apply the same argument for each component, and observe that the previously
disconnected components that become connected are connected by an MSF.

Efficiency
We now show that the batch-incremental MSF algorithm achieves low work and span.

Theorem 33. Batch insertion of k edges using Algorithm 12 takes O
�

k log
�

1+ n
k

��

work
in expectation and O (log2(n )) span w.h.p.

Proof. Collecting the endpoints of the edges (Line 2) takes O (k ) work in expectation and
O (log(k )) span w.h.p. using a semisort [84]. By Theorem 31, Line 3 takes O

�

k log
�

1+ n
k

��

work in expectation and O (log(n )) span w.h.p. By Lemma 41, the graph C ∪ E + is of size
O (k ), and hence by using the MSF algorithm of Cole et. al. [42], which runs in linear work in
expectation and logarithmic span w.h.p., Line 4 takes O (k )work in expectation and O (log(k ))
span w.h.p. Then, since C ∪E + is of size O (k ), the batch updates to the RC-Tree (Lines 5 and 6)
take O
�

k log
�

1+ n
k

��

work in expectation and O (log2(n )) span w.h.p. Lastly, since O (log(k )) =
O (log(n )), summing these up, we can conclude that Algorithm 12 takes O

�

k log
�

1+ n
k

��

work
in expectation and O (log2(n )) span w.h.p.

7.4 Applications to the Sliding Window Model
We apply our batch-incremental MSF algorithm to efficiently solve a number of graph prob-
lems on a sliding window. For each problem, we present a data structure that implements

136



the following operations to handle the arrival and departure of edges:

• BATCHINSERT(B : edge list): Insert the set of edges B into the underlying graph.

• BATCHEXPIRE(∆: int): Delete the oldest∆ edges from the underlying graph.

Additionally, the data structure provides query operations specific to the problem. For
example, the graph connectivity data structure offers an CONNECTED query operation.

This formulation is a natural extension of the sequential sliding-window model. Tradi-
tionally, the sliding-window model [48] entails maintaining the most recent W items, where
W is a fixed size. Hence, an explicit expiration operation is not necessary. More recently,
there has been interest in maintaining variable-sized sliding windows. The interface used in
this work allows for rounds of batch inserts (to accept new items) and batch expirations (to
evict items from the old side). Notice that BATCHEXPIRE differs from a delete operation in
dynamic algorithms in that it only expects a count, so the user does not need to know the
actual items being expired to call this operation. Our results allow for arbitrary interleavings
of batch insertions or expirations, and each of arbitrary size.

Small space is a hallmark of streaming algorithms. For insert-only streams, Sun and
Woodruff [166] show a space lower-bound of Ω(n )words for connectivity, bipartiteness, MSF,
and cycle-freeness, and Ω(k n )words for k -certificate assuming a word of size O (log n ) bits.
All our results below, which support not only edge insertions but also expirations, match
these lower bounds except for MSF, which is within a logarithmic factor.

7.4.1 Graph Connectivity
We begin with the problem of sliding-window graph connectivity: to maintain a data structure
so the users can quickly test whether a given pair of vertices can reach each other in the graph
defined by the edges in the sliding window. We prove the following theorem:

Theorem 34 (Connectivity). For an n-vertex graph, there is a data structure, SW-Conn,
that requires O (n )words of space and supports the following:
• BATCHINSERT(B ) handles k = |B | new edges in O (1+k log(n/k )) expected work and

O (log2 k ) span w.h.p.
• BATCHEXPIRE(∆) expires the∆ oldest edges in O (1)worst-case work and span.
• CONNECTED(u , v ) returns whether u , v are connected in O (log n )work and span w.h.p.

Following Crouch et al. [44], we will prove this by reducing it to the problem of incremental
minimum spanning tree. Let τ(e ) be the index that edge e appears in the whole stream. (The
i th edge has index i .) Then, implicit in their paper is the following lemma:

Lemma 43 (Recent Edge [44]). If F is a minimum spanning forest (MSF) of the edges in
the stream so far, where each edge e carries a weight of −τ(e ), then any pair of vertices u
and v are connected if and only if (1) there is a path between u and v in F and (2) the
heaviest edge e ∗ (i.e., the oldest edge) on this path satisfies τ(e ∗)≥ TW , where TW is the
τ(·) of the oldest edge in the window.

137



Proof of Theorem 34. We maintain (i) an incremental MSF data structure from Theorem 5
and (ii) a variable TW , which tracks the arrival time τ(·) of the oldest edge in the window. The
operation BATCHINSERT(B ) is handled by performing a batch insert of k = |B | edges, where
an edge e ∈ B is assigned a weight of −τ(e ). The operation BATCHEXPIRE(∆) is handled by
advancing TW by∆. The cost of these operations is clearly as claimed.

The query CONNECTED(u , v ) is answered by finding the heaviest edge on the path between
u and v in the RC-Tree maintained and applying the conditions in the recent edge lemma
(Lemma 43). The claimed cost bound follows because the MSF is maintained as an RC-Tree,
which supports path queries in O (log n ) time (Corollary 1).

Often, applications depend on an operation NUMCOMPONENTS() that returns the number
of connected components in the graph. It is unclear how to efficiently support this query
using the above algorithm, which uses lazy deletion. Below is a variant, known as SW-Conn-
Eager, which supports NUMCOMPONENTS() in O (1)work.

The number of connected components can be computed from the number of edges in
the minimum spanning forest (MSF) that uses only unexpired edges as # of components=
n −# of MSF edges.

To this end, we modify SW-Conn to additionally keep a parallel ordered-set data structure
D, which stores all unexpired MSF edges ordered by τ(·). This is maintained as follows:
The BATCHINSERT operation causes some sets of edges to be added to and removed from
the MSF (Algorithm 12, Lines 5-6). We can then adjust D using cost at most O (n log(n/t ))
work and O (log2 n ) span (e.g., [26, 27]). The BATCHEXPIRE operation applies SPLIT to find
expired edges (costing O (log n )work and span) and explicitly deletes these edges from the
MSF (costing expected O (∆ log(n/∆))work and O (log2 n ) span w.h.p.). With these changes,
NUMCOMPONENTS() is answered by returning n − |D| and SW-Conn-Eager has the following
cost bounds:

Theorem 35 (Connectivity With Component Counting). For an n-vertex graph, there is
a data structure, SW-Conn-Eager, that requires O (n ) space and supports the following:
• BATCHINSERT(B ) handles k = |B | new edges in O (1+k log(n/k )) expected work and

O (log2 n ) span w.h.p.
• BATCHEXPIRE(∆) expires the∆ oldest edges in O (∆ log(1+n/∆)+ log n ) expected work

and O (log2 n ) span w.h.p.
• CONNECTED(u , v ) returns whether u , v are connected in O (log n )work and span w.h.p.
• NUMCOMPONENTS() returns the number of connected components in O (1) worst-case

work and span.

7.4.2 Bipartiteness
To check bipartiteness, we apply a known reduction [14, 44]: a graph G is bipartite if and only
if its cycle double cover D (G ) has exactly twice as many connected components as G . A cycle
double cover is a graph in which each vertex v is replaced by two vertices v1 and v2, and each
edge (u , v ), by two edges (u1, v2) and (u2, v1). Hence, D (G ) has twice as many vertices as G .

138



We can track the number of connected components of both the graph in the sliding
window and its double cover by running two parallel instances of SW-Conn-Eager. Notice
the edges of the cycle double cover D (G ) can be managed on the fly during BATCHINSERT

and BATCHEXPIRE. Hence, we have the following:

Theorem 36 (Bipartite Testing). For an n-vertex graph, there is a data structure, SW-
Bipartiteness, that requires O (n ) space and supports the following:
• BATCHINSERT(B ) handles k = |B | new edges in O (k log(1+n/k )) expected work and

O (log2 n ) span w.h.p.
• BATCHEXPIRE(∆) expires the∆ oldest edges in O (∆ log(1+n/∆)+ log n ) expected work

and O (log2 n ) span w.h.p.
• ISBIPARTITE() returns a Boolean indicating whether the graph is bipartite in O (1)worst-

case work and span.

7.4.3 Approximate MSF Weight
For this problem, assume that the edge weights are between 1 and n O (1). Using known
reductions [14, 33, 44], the weight of the MSF of G can be approximated up to 1+ϵ by tracking
the number of connected components in graphs G0,G1, . . . , where Gi is a subgraph of G
containing all edges with weight at most (1+ ϵ)i . Specifically, the MSF weight is given by

(n − cc(G0))+
∑

i≥1

(cc(Gi−1)− cc(Gi ))(1+ ϵ)
i , (7.1)

where cc(G ) is the number of connected components in graph G .
Let R =O (ϵ−1 log n ). We maintain R instances of SW-Conn-Eager F1, . . . , FR−1 correspond-

ing to the connectivity of G0,G1, . . . ,GR−1. The arrival of k new edges involves batch-inserting
into R SW-Conn-Eager instances in parallel. Symmetrically, edge expiration is handled by
batch-expiring edges in R instances in parallel. Additionally, at the end of each update oper-
ation, we recompute equation (7.1), which involves R terms and calls to NUMCOMPONENTS().
This recomputation step requires O (R )work and O (log R ) =O (log2 n ) span. Overall, we have
the following:

Theorem 37 (Approximate MSF). Fix ϵ > 0. For an n-vertex graph, there is a data structure
for approximate MSF weight that uses O (ϵ−1n log n ) space and supports:
• BATCHINSERT(B )handles k = |B |new edges in O (ϵ−1k log n log(1+n/k )) expected work

and O (log2 n ) span w.h.p.
• BATCHEXPIRE(∆) expires the ∆ oldest edges in O (ϵ−1∆ log n log(1+ n/∆)) expected

work and O (log2 n ) span w.h.p.
• WEIGHT() returns an (1+ϵ)-approximation to the weight of the MSF in O (1)worst-case

work and span.

139



7.4.4 k -Certificate and Graph k -Connectivity
For a graph G , a pair of vertices u and v are k -connected if there are k edge-disjoint paths
connecting u and v . Extending this, a graph G is k -connected if all pairs of vertices are k -
connected. This generalizes the notion of connectivity, which is 1-connectivity. To maintain
a “witness” for k -connectivity, we rely on a maximal spanning forest decomposition of order
k , also known as a k -jungle, which decomposes G into k edge-disjoint spanning forests
F1, F2, . . . , Fk such that Fi is a maximal spanning forest of G \ (F1 ∪ F2 ∪ · · · ∪ Fi−1). This yields a
number of useful properties, notably:

(P1) if u and v are connected in Fi , then they are at least i -connected;

(P2) u and v are k -connected in F1 ∪ F2 ∪ · · · ∪ Fk iff. they are at least k -connected in G ; and

(P3) F1 ∪ F2 ∪ · · · ∪ Fk is k -connected iff. G is at least k -connected.

Crouch et al. [44] show how to maintain such decomposition on a sliding window. When
extended to the batch setting, the steps are depicted in Algorithm 13.

Algorithm 13

Let O0 be the new batch of edges B
for i = 1, . . . , k do

insert Oi−1 into Fi

capture the edges being replaced as F −i and the edges from Oi−1 that become part of Fi as F +i
set Oi = F −i ∪ (Oi−1 \ F +i )

Via known reductions [14, 44], we have that the Fi ’s are maximal spanning forests and the
unexpired edges of F1 ∪ F2 ∪ · · · ∪ Fk form a k -certificate in the sense of properties (P1)–(P3)
above. Additionally, this preserves all cuts of size at most k . In the following results, note that
we momentarily use b for batch size rather than k since we are talking about the k -certificate
and k -connectivity problems.

Theorem 38 (k -Certificate). There is a data structure for k -certificate for an n-vertex
graph that requires O (k n ) space and supports the following:
• BATCHINSERT(B ) handles b = |B | new edges in O (k b log(1+n/b )) expected work and

O (k log2 n ) span w.h.p.
• BATCHEXPIRE(∆) expires the∆ oldest edges in O (k∆ log(1+n/∆)) expected work and

O (log2 n ) span w.h.p.
• MAKECERT() returns a k -certificate involving at most k (n −1) edges in O (k n )work and

O (log n ) span.

Proof. We maintain each Fi using a batch incremental MSF data structure from Theorem 5.
To allow eager eviction of expired edges, we keep for each Fi a parallel ordered-set data
structure (e.g., [26, 27])Di , which stores all unexpired edges of Fi . The operation BATCHINSERT

is handled by sequentially working on i = 1, 2, . . . , k , where for each i , edges are bulk-inserted
into the MSF data structure for Fi , propagating replaced edges to Fi+1. The ordered-set data

140



structureDi can be updated accordingly. Note that the size of the changes toDi never exceeds
O (b ). The operation BATCHEXPIRE involves expiring edges in allDi ’s. Finally, the operation
MAKECERT is supported by copying and returning ∪k

i=1Di . Because each Fi is a forest, it has
at most n −1 edges, for a total of at most k (n −1) edges across k spanning forests.

Testing whether a graph is k -connected appears to be difficult in the fully-dynamic setting.
Sequentially, an algorithm with O (n log n ) time per update is known [55]. By contrast, for
the incremental setting, there is a recent algorithm with eO (1) time per update [83]. In the
sliding window model, as a corollary of Theorem 38, the k -certificate can be used to test
k -connectivity via a parallel global min-cut algorithm (e.g., [71, 73]). Because there are O (k n )
edges, this takes O (k n log n +n log4 n )work and O (log3 n ) span [73].

7.4.5 Cycle-Freeness
To monitor whether a graph contains a cycle, we observe that a graph that has no cycles is
a spanning forest. Hence, if F1 is a maximal spanning forest of a graph G , then G \ F1 must
not have any edges provided that G has no cycles. To this end, we use the data structure
from Theorem 38 with k = 2, though we are not interested in making a certificate. To answer
whether the graph has a cycle, we check to see if F2 is empty, which can be done in O (1) work
and span. Hence, we have the following:

Theorem 39 (Cycle-freeness). For an n-vertex graph, there is a data structure for cycle-
freeness that requires O (n ) space and supports the following:
• BATCHINSERT(B ) inserts k = |B | new edges in O (k log(1+n/k )) expected work and

O (log2 n ) span w.h.p.
• BATCHEXPIRE(∆) expires the∆ oldest edges in O (∆ log(1+n/∆)) expected work and

O (log2 n ) span w.h.p.
• HASCYCLE() returns whether the graph has a cycle in O (1)work and span.

7.4.6 Graph Sparsification
The graph sparsification problem is to maintain a small, space-bounded subgraph so as to,
when queried, produce a sparsifier of the graph defined by the edges of the sliding window.
An ϵ-sparsifier of a graph G is a weighted graph on the same set of vertices that preserves
all cuts of G up to 1± ϵ but has only about O (n ·polylog(n )) edges. Existing sparsification
algorithms commonly rely on sampling each edge with probability inversely proportional to
that edge’s connectivity parameter. We use the following result:

Theorem 40 (Fung et al. [66]). Given an undirected, unweighted graph G , let ce denote the
edge connectivity of the edge e . If each edge e is sampled independently with probability
pe ≥min
�

1, 253
ce ϵ2 log2 n
�

and assigned a weight of 1/pe , then w.h.p., the resulting graph is
an ϵ-sparsifier of G .

141



In the context of streaming algorithms, implementing this has an important challenge: the
algorithm has to decide whether to sample/keep an edge before that edge’s connectivity is
known. Our aim is to show that the techniques developed in this chapter enable maintaining
an ϵ-sparsifier with O (n ·polylog(n )) edges in the batch-parallel sliding-window setting. To
keep things simple, the bounds, as stated, are not optimized for polylog factors.

We support graph sparsification by combining and adapting existing techniques for fast
streaming connectivity estimation [77] and sampling sufficiently many edges at geometric
probability scales (e.g., [14, 44]).

The key result is as follows: For i = 1,2, . . . , L =O (log n ) and j = 1,2, . . . , K =O (log n ), let
G ( j )

i denote a subgraph of G , where each edge of G is sampled independently with probability

1/2i and G ( j )
0 =G . Then, the level L (u , v ), defined to be the largest i such that u and v are

connected in G ( j )
i for all 0≤ j ≤ K , gives an estimate of u v connectivity:

Lemma 44 ( [77]). W.h.p., for every edge e of G ,Θ(se / log n )≤ 2L (e ) ≤ 2ce , where se denotes
strong connectivity and ce denotes edge connectivity.

The same argument also gives ce ≤Θ(2L (e ) log n )w.h.p. While we cannot explicitly store all
these G ( j )

i ’s, it suffices to store each G ( j )
i as a SW-Conn data structure (Theorem 34), requiring

a total of O (K · L ·n ) =O (n log2 n ) space.
When an edge e is inserted, if the algorithm were able to determine that edge’s connectivity,

it would sample that edge with the right probability (pe ) and maintain exactly the edges in the
sparsifier. The problem, however, is that connectivity can change until the query time. Hence,
the algorithm has to decide how to sample/keep an edge without knowing its connectivity. To
this end, we resort to a technique adapted from Ahn et al. [14]: Let H0 be the graph defined by
the edges of the sliding window and for i = 1, 2, . . . , L , let Hi ⊆H0 be obtained by independently
sampling each edge of H0 with probability 1/2i . Intuitively, every edge is sampled at many
probability scales upon arrival.

Storing all these Hi ’s would require too much space. Instead, we argue that keeping each
Hi asQi , whereQi is a k -SW-Certificate data structure (Theorem 38) with k =O ( 1

ϵ2 log3 n ) is
sufficient1. Maintaining these requires a total of O (k n L ) =O (ϵ−2n log4 n ) space.

Ultimately, our algorithm simulates sampling an edge e with probability 2−⌊log2 ep e ⌋, where

ep e =min
�

1, O (2−L (e )ϵ−2 log2 n )
�

,

which uses an estimate of 2L (e ) in place of ce . It answers a SPARSIFY query as follows:

Algorithm 14

for e ∈
⋃L

i=1Qi do
output e in the sparsifier with weight 1/ep e if e appears inQβ (e ), where β (e ) = ⌊log2 ep e ⌋

We now show that theQi ’s retain sufficient edges.

1We remark that theQi instances themselves contain enough information to estimate ce for all edges, but
we do not know how to do so efficiently.

142



Lemma 45. W.h.p., an edge e that is sampled into Hβ (e ) is retained inQβ (e ).

Proof. Consider an edge e = {u , v }. There are ce disjoint paths between u and v . W.h.p.,
due to the fact that ce ≤ Θ(2L (e ) log n ), the expected number of paths that stay connected
in Hβ (e ) is at most 2ep e · ce ≤O (ϵ−2 log3 n ). By Chernoff bounds, it follows that w.h.p., e has
edge connectivity in Hβ (e ) at most k =O (ϵ−2 log3 n ) for sufficiently large constant. Hence, e is
retained inQβ (e ) w.h.p.

This means that at query time, w.h.p., every edge e is sampled into the sparsifier with proba-
bility 2−⌊log2 ep e ⌋ ≥ pe , so the resulting graph is an ϵ-sparsifier w.h.p. (Theorem 40). Moreover,
the number of edges in the sparsifier is, in expectation, at most

∑

e∈E (G )

2ep e =O (ϵ−2 log3 n )
∑

e∈E (G )

1
se
=O (ϵ−2n log3 n ),

where we used Lemma 44 and the fact that
∑

e 1/se ≤ n −1 [20, 66].
All the ingredients developed so far are combined as follows: The algorithm maintains a

SW-Conn data structure for each G ( j )
i and a k -SW-CertificateQi for each Hi . The BATCHIN-

SERT operation involves inserting the edges into K L+L data structures and the same number
of independent coin flips. The cost is dominated by the cost of inserting into theQi ’s, each of
which takes O (k k log(1+n/k )) expected work and O (k log2 n ) span w.h.p. The BATCHEXPIRE

operation involves invoking BATCHEXPIRE on all the data structures maintained; the domi-
nant cost here is expiring edges in theQi ’s. Finally, the query operation SPARSIFY involves con-
sidering the edges of

⋃L
i=1Qi in parallel, each requiring a call to L (e ), which can be answered

in O (L K log n ) =O (log3 n )work and span. In total, this costs O (nk L log3 n ) =O (n polylog(n ))
work and O (polylog(n )) span. The following theorem summarizes our result for sparsification:

Theorem 41 (Graph Sparsification). For an n-vertex graph, there is a data structure for
graph (cut) sparsification that requires O (ϵ−2n log4 n ) space and supports the following:
• BATCHINSERT(B ) handles k = |B | new edges in O ( 1

ϵ2 k log(1+ n
k ) log4 n ) expected work

and O (ϵ−2 log5 n ) span w.h.p.
• BATCHEXPIRE(∆) expires the∆ oldest edges in O ( 1

ϵ2∆ log(1+ n
∆ ) log4 n ) expected work

and O (log2 n ) span w.h.p.
• SPARSIFY() returns an ϵ-sparsifier w.h.p. The sparsifier has O (ϵ−2n log3 n ) edges and is

produced in O (n polylog(n ))work and O (polylog(n )) span w.h.p.

7.4.7 Connection to Batch-Incremental Algorithms
All applications studied here were built on top of the connectivity data structures (Theo-
rem 34). In the related batch incremental setting, an analog of Theorem 34 was given by
Simsiri et al. [162], where BATCHINSERT takes O (kα(n )) expected work and O (polylog(n ))
span, and CONNECTED takes O (α(n ))work and span.

143



With this result, we can derive an analog of Theorem 35 using the following ideas: (i)
maintain a component count variable, which is decremented every time a union successfully
joins two previously disconnected components; and (ii) maintain a list of inserted edges that
make up the spanning forest. This can be implemented as follows: Simsiri et al. maintains a
union-find data structure and handles batch insertion by first running a find on the endpoints
of each inserted edge and determining the connected components using a spanning forest
algorithm due to Gazit [69]. Notice that the edges that Gazit’s algorithm returns are exactly the
new edges for the spanning forest we seek to maintain and can simply be appended to the list.
This yields an analog of Theorem 35, where BATCHINSERT still takes O (kα(n )) expected work
and O (polylog(n )) span, CONNECTED takes O (α(n ))work and span, and NUMCOMPONENTS

takes O (1)work and span. Ultimately, this means that replacing Theorems 34 and 35 with
their analogs in each application effectively replaces the log(1+n/k ) factor in the work term
with an α(n ) term, leading to the cost bounds presented in Table 7.1.

7.5 Discussion
This chapter presented the first work-efficient parallel algorithm for batch-incremental MSF.
The algorithm is even asymptotically faster than the sequential algorithm for sufficiently
large batch sizes. A key ingredient was the construction of a compressed path tree—a tree
that summarizes the heaviest edges on all pairwise paths between a set of marked vertices.
We demonstrated the usefulness of our algorithm by applying it to a range of problems in a
generalization of the sliding-window model.

It would be interesting to explore other applications of our batch-incremental MST algo-
rithm, or possibly even the compressed path tree by itself. In fact, in Chapter 9, we will do
exactly that. The compressed path tree will turn out to be useful again when we study the
minimum cut problem.

We are, to the best of our knowledge, the first to tackle sliding window dynamic graph
problems in the parallel setting. Investigating other algorithms in this setting could lead to a
variety of new problems, tools, and solutions.

144



Part III

Parallel Minimum Cuts

145





Chapter 8
Batch-Dynamic Trees with

Mixed Queries and Updates

8.1 Introduction
The batched mixed operation problem is to take an off-line sequence of mixed operations
on a data structure, usually a mix of queries and updates, and process them as a batch. The
primary reason for batch processing is to allow for parallelism on what would otherwise be
a sequential execution of the operations. Note that there is a key difference here between
a mixed batch of operations and the standard batch-dynamic algorithms that we studied
all throughout Chapters 3–7. A mixed batch can consist of both updates and queries that
are interleaved with each other, and each query must be answered exactly as if every update
preceding it has been evaluated, but none of the updates after it have. In other words, the
queries must all be answered as if the entire set of operations was executed sequentially in
the exact order given. Our regular batch-dynamic algorithms only handle batches of entirely
updates or batches of entirely read-only queries, so they can not handle this type of problem.

With this in mind, the applications of an algorithm that could execute such a mixed batch
of operations should be clear. It would allow us to convert an entirely sequential algorithm
that is not obviously parallelisable, because each of the operations depends on those before,
automatically into a parallel algorithm. We are not the first to make this observation. This
technique was employed by Geissmann and Gianinazzi [71] in the first near-linear work
parallel algorithm for minimum cuts. They observed that Karger’s near-linear time sequential
algorithm [114] consists of a large number of operations performed on a sequential dynamic
tree data structure, and realized that if this set of operations could be pre-computed and then
evaluated all in parallel, that the algorithm would be highly parallel. Indeed, Karger himself
may have almost realized this, since he at least conjectured that the runtime of the algorithm
could be improved since “We are not using the full power of dynamic trees (in particular, the
tree on which we operate is static, and the sequence of operations is known in advance)” [114],
though he does not explicitly mention this as an avenue for parallelism.

Geissmann and Gianinazzi’s algorithm is specifically designed to evaluate a batch of k
path-weight updates and queries on a static weighted rooted tree in Ω(k log2 n )work. This
makes it work-inefficient compared to a sequential evaluation of the operations, so their
algorithm incurs an O (log n ) penalty in the work compared to Karger’s sequential algorithm.
Their algorithm works by computing a heavy-light decomposition [163], i.e., a decomposition
of a tree into vertex disjoint paths such that each root-to-leaf path in the tree intersects at most
O (log n ) of the paths in the decomposition. These paths are then stored inside binary trees,

147



which leads to the work of O (log2 n ) per operation since there are up to O (log n ) intersecting
paths and an O (log n )-work tree operation must be performed for each of them in the worst
case.

Our contributions In this chapter, we are interested in designing an algorithm that is
both more efficient and more general than that of Geissmann and Gianinazzi’s. Our goal
is to support evaluating a batch of mixed tree operations not limited to just path-weight
updates and path queries, but also subtree-based operations and potentially other kinds of
tree operations. We are also aiming for work efficiency, so we’d like to evaluate a batch of k
operations in or close to O (k log n )work and low polylog n span since sequential operations
take O (log n ) time. Our result in this chapter will achieve O (k log(k n ))work and O (log n log k )
span. Since k =O (poly n ), we have O (log(k n )) =O (log n ) so this is good.

To do so, we are going to make use of our Parallel RC-Trees from Chapter 3. Unlike Geiss-
mann and Gianinazzi’s algorithm which requires two layers (a set of path decompositions
stored inside balanced trees), our algorithm for evaluating mixed batches operates directly
on the RC-Tree representing the underlying tree, making it more efficient by a Θ(log n ) factor.
Additionally, by exploiting the cluster-based decomposition of RC-Trees rather than a path-
based decomposition, our algorithm is not limited to path-based operations but can handle
a much more diverse range of updates and queries including subtree operations and more.
Specifically, our framework can handle any operations sets that we call RC-simple operation
sets, defined in the next section.

8.2 RC-Simple Operation Sets
We use the term operation-set to refer to the set of operations that can be applied. We
are interested in operations on trees, and our results apply to operation-sets that can be
implemented on an RC-Tree in a particular way, defined as follows.

Definition 13. An implementation of an operation-set on trees is a simple RC implemen-
tation if it uses an RC-Tree and satisfies the following conditions.
1. The implementation maintains a value at every RC cluster that can be calculated in

constant time from the values of the children of the cluster,
2. every query operation is implemented by traversing from a leaf to the root examining

values at the visited clusters and their children taking contant time per value examined,
and using constant space, and

3. every update operation involves updating the value of a leaf using an associative
constant-time operation, and then reevaluating the values on each cluster on the path
from the leaf to the root.

Note that every operation has an associated leaf (either an edge or vertex). Also note that
setting (i.e., overwriting) a value is an associative operation (just return the second of the
arguments). For simple RC implementations, all operations take time (work) proportional to
the height of the RC-Tree since they only follow a path to the root taking constant time at

148



each cluster. Although the simple RC restriction may seem contrived, most operations on
trees studied in previous work [5, 16, 163] can be implemented in this form, including most
path and subtree operations. To see why, recall the decomposition properties of RC-Trees,
Theorems 9 and 10, which say that any path and any subtree in the underlying tree can
be decomposed into a set of disjoint clusters that are all children of a common path in the
RC-Tree. Path- and subtree-based operations therefore typically need just update or collect a
contribution from each such cluster. We described the sequential algorithms for path and
subtree queries that did just this.

In this chapter we will only be concerned with rooted trees, so we will employ rooted
RC-Trees (see Section 3.2.5). In our pseudocode, we will use the following notation. For
a cluster x : x .v is the representative vertex, x .t is the top subcluster, x .b is the bottom
subcluster, x .U is a list of unary subclusters, and x .p is the parent cluster. We will also refer
to the binary subcluster of a unary cluster as its top cluster as its cluster path is technically
above the representative vertex.

Example: Subtree sums with weight updates
As an example, consider the following two operations on a rooted tree (the first an update,
and the second a query):
• ADDWEIGHT(v, w ) : add weight w to a vertex v

• SUBTREESUM(v ) : return the sum of the weights of all of vertices in the subtree rooted at v
We described the technique for implementing such a query in Section 3.4.4. In this section
we will provide a more detailed implementation and show that it satisfies the property of
being a simple RC implementation.

Algorithm 15 The SUBTREESUM query.
1: procedure SUBTREESUM(v : vertex)
2: w ← 0
3: x ← v ; p ← x .p
4: while p is a binary cluster do
5: if (x = p .t ) or (x = p .v ) then
6: w ←w +p .b .w +p .v.w +

∑

u∈p .U u .w

7: x ← p ; p ← x .p

8: return w +p .v.w +
∑

u∈p .U u .w

These operations can use a simple RC implementation by keeping as the value of each cluster
the sum of values of all its children. This satisfies the first condition since the sums take
constant time. Single-edge clusters in the RC-Tree start with the initial weight of the edge,
while single-vertex clusters start with zero weight. An ADDWEIGHT(v, w ) adds weight w to
the vertex v (which is a leaf in the RC-Tree) and updates the sums up to the root cluster. This
satisfies the third condition since addition is associative and takes constant time. The query
can be implemented as in Algorithm 15, where x .w is the weight stored on the cluster x . It
starts at the leaf for v and goes up the RC-Tree keeping track of the total weight underneath v .

149



operation list

sorted input operations. . . . . . . . . . . .

. . .

t 0 t 1 t 5 t 12

t 0 t 1 t 5 t12

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7

t 0 t 2 t 3 t 7
t 0 t 4 t 6 t 15

V: 0 V: 2 Q: 0 V: 5

0 +2 Q +3

V: 6 V: 8 V: 10

t t

V: 10 Q: 8Q: 8 V: 11 Q: 10 V: 15 V: 18

V: 1 V: 3 Q: 1 V: 6 V: 5 V: 8 V: 10 Q: 6

t 12 t 15

V: 21

t t

V: 10 Q: 8 Q: 6

p vp bp t

p

Figure 8.1: Merging the operation lists for a binary cluster consisting of ADDWEIGHT and SUB-
TREESUM operations. Values in the operation sequence, denoted V : v , are computed by aggregating
the latest values of the children at the given timestamp. For example, at t 6 in p , the algorithm adds
3 from p .t at t 2, 10 from p .b at t 6, and 2 from p .v at t 1. Queries, denoted Q : q , are updated at each
level by using the latest values of the children. For example, to update the query at t 3, it takes the
current value of 1 from p .t at t 3, then adds the weight of 5 from p .b at t 0, and the weight of 2 from
p .v at t 1, as per Algorithm 15 since the conditional on Line 5 is true. Similarly, to update the query
at t 5, the conditional is also true, and the most recent timestamps in p .b and p .v are t 4 and t 1, so
it accumulates those values.

Note that x will never be a unary cluster, so if not the representative or top subcluster of p , it
is the bottom subcluster with nothing below it in this cluster. Observe that SUBTREESUM only
examines values on a path from the start vertex to the root and the children along that path.
Each step takes constant time and requires constant space, satisfying the second condition.
The operation-set therefore has a simple RC implementation.

8.3 Batched Mixed Operations Algorithm
We are interested in evaluating batches of operations from an operation-set on trees with a
simple RC implementation. In particular, we prove the following theorem.

Theorem 42 (Batched mixed operations). Given a bounded-degree tree of size n and a
simple operation set, after O (n )work and O (log n ) span preprocessing, batches of k op-
erations from the operation-set can be evaluated in O (k log(k n )) work and O (log n log k )
span. The total space required is O (n +kma x ), where kma x is the maximum batch size.

Proof. The preprocessing just builds an RC-Tree on the input tree, and sets the values for each
cluster based on the initial values on the leaves. Note that our algorithm does not perform
any structural modifications (links or cuts) to the RC-Tree, only augmented value updates,
and hence the batch-dynamic algorithms of Chapters 4–5 are unnecessary. One could simply
build a static RC-Tree as a byproduct of a static tree contraction, though the fully dynamic
algorithms can of course still be used despite being overkill. Our algorithm for each batch is
then implemented as follows:

1. Timestamp the operations by their order in the sequence.

150



2. Collect all operations by their associated leaf, and sort within each leaf by timestamp. This
can be implemented with a single sort on the leaf identifier and timestamp.

3. For each leaf use a prefix sum on the update values to calculate the value of the leaf after
each operation, starting from the initial value on the leaf.

4. Initialize each query using the value it received from the prefix sum. We now have a list of
operations on each leaf sorted by timestamp. For each update we have its value, and for
each query we also have its partial evaluation based on the value. We prepend the initial
value to the list, and call this the operation list. An operation list is non-trivial if it has
more than just the initial value.

5. For each level of the RC-Tree starting one above the deepest, and in parallel for every
cluster on the level for which at least one child has a non-trivial operation list:

(a) Merge the operation lists from each child into a single list sorted by timestamp.

(b) Calculate for each element in the merged operations list, the latest value of each child
at or before the timestamp. This can be implemented by prefix sums.

(c) For each list element, calculate the value at that timestamp from the child values
collected in the previous step.

(d) For queries, use the values and/or child values to update the query.

This algorithm needs to have children with non-trivial operation lists identify parents that
need to be processed. This can be implemented by keeping a list of all the clusters at a
level with non-trivial operation lists left-to-right in level order. When moving up a level,
clusters that share the same parent can be combined. An illustration of the merging process
is depicted in Figure 8.1 using the operations from Algorithm 15.

We first consider why the algorithm is correct. We assume by structural induction (over
subtrees) that the operation lists contain the correct values for each timestamped operation in
the list. This is true at the leaves since we apply a prefix sum across the associative operation
to calculate the value at each update. For internal clusters, assuming the child clusters have
correct operation lists (values for each timestamp valid until the next timestamp, and partial
result of queries), we properly determine the operation lists for the cluster. In particular
for all timestamps that appear in children we promote them to the parent, and for each we
calculate the value based on the current value, by timestamp, for each child.

We now consider the costs. The cost of the batch before processing the levels is dominated
by the sort which takes O (k log k )work and O (log k ) span. The cost at each level is then dom-
inated by the merging and prefix sums which take O (k )work and O (log k ) span accumulated
across all clusters that have a child with a non-trivial operation list. If the RC-Tree has height
O (log n ) then across all levels the cost is bounded by O (k log n )work and O (log n log k ) span.
The total work and span is therefore as stated. The space for each batch of size k is bounded
by the size of the RC-Tree which is O (n ) and the total space of the operation lists at any two
adjacent levels, which is O (k ).

151



root

wb=+2

wu=+3

l t =3

l b=10

wv=+1
l = 3+1+3+2

= 9

Figure 8.2: When a binary cluster joins its children, all ADDPATHs’ that originated in the vertex,
bottom, or unary subclusters will affect all of the edges in the top cluster path. Here, w ′ =wv +wb +
wu = 6 weight is added to edges on the top cluster path due to ADDPATH operations from below. The
minimum weight edge on the cluster path is therefore min(l t +w ′, l b ) =min(3+6, 10) = 9, which is
the edge from the top cluster path, highlighted in red.

8.4 Path Updates and Path/Subtree Queries
We now consider implementing mixed operations consisting of updating paths, and querying
both paths and subtrees. We will use these in Chapter 9 to implement an efficient algorithm
for minimum cuts. In particular we wish to maintain, given a weighted rooted tree T = (V , E ),
a data structure that supports the following operations.

• ADDPATH(u , v, w ): For u , v ∈V adds w to the weight of all edges on the u to v path.

• QUERYSUBTREE(v ): Returns the lightest weight of an edge in the subtree rooted at v ∈V ,

• QUERYPATH(u , v ): For u , v ∈V , returns the lightest weight of an edge on the u to v path.

• QUERYEDGE(e ): Returns w (e )

We saw the primary techniques needed to implement these in Sections 3.4.3 and 3.4.4. Here
we will provide more detailed implementations and prove that they satisfy the necessary
properties of being a simple RC implementation. To implement them, we first implement the
simpler operations ADDPATH’(v, w ), which adds weight w to the path from v to the root; and
QUERYPATH’(u , v ), which requires that v be the representative vertex of an ancestor of u in
the RC-Tree. The more general forms can be implemented in terms of these with a constant
number of calls given the lowest common ancestor (LCA) in the original tree for ADDPATH

and in the RC-Tree for QUERYPATH.

Lemma 46. The ADDPATH’, QUERYSUBTREE, QUERYPATH’, and QUERYEDGE operations
on bounded degree trees can be supported with a simple RC implementation.

152



Algorithm 16 A simple RC implementation of ADDPATH’.
1: using VertexV = int
2: using UnaryV = struct {m : edge, w : int }
3: using BinaryV = struct {m : edge, l : edge, w : int }

4: procedure fUNARY(wv : VertexV, (mt , lt , wt ) : BinaryV, U : UnaryV list)
5: w ′←wv +

∑

u∈U u .w
6: mu ←minu∈U u .m
7: return {min(mt , lt +w ′, mu ), wt +w ′ }
8: procedure fBINARY(wv : VertexV, (mt , lt , wt ) : BinaryV, (mb , lb , wb ) : BinaryV, U : UnaryV list)
9: w ′←wv +wb +

∑

u∈U u .w
10: mu ←minu∈U u .m
11: return {min(mt , mb , mu ), min(lt +w ′, lb ), wt +w ′ }
12: procedure ADDPATH’(v : vertex, w : int)
13: v.value← v.value + w
14: Reevaluate the f (·) on path to root.

Proof. Our simple RC implementation for combining values and ADDPATH’ is given in Al-
gorithm 16. The queries are given in Algorithm 17. The value of each vertex (leaf) in the
cluster is the total weight added to that vertex by ADDPATH’. The value for each unary cluster
consists of: m , the minimum weight edge in the cluster; and w , the total weight of ADDPATHs’
originating in the cluster. For each binary cluster we separate the minimum weights on
and off the cluster path. In particular, the value of each binary cluster consists of: m , the
minimum weight edge not on the cluster path; l , the minimum edge on the cluster path due
to all ADDPATH’ originating in the cluster; and w , the total weight of ADDPATHs’ originating
in the cluster. The fbinary and funary calculate the values for unary and binary clusters
from the values of their children. We initialize each vertex with zero, and each edge e with
(m = 0, l =w (e ), w = 0).

It is a simple RC implementation since (1) the f (·) can be computed in constant time,
(2) the queries just traverse from a leaf on a path to the root (possibly ending early) only
examining child values, taking constant time per level and constant space, and (3) the update
just sets a leaf using an associative addition, and reevaluates the values to the root.

We argue the implementation is correct. Firstly we argue by structural induction on the
RC-Tree that the values as described in the previous paragraph are maintained correctly
by fbinary and funary. In particular assuming the children are correct we show the parent
is correct. The values are correct for leaves since we increment the value on vertices with
ADDPATH’, and initialize the edges appropriately. To calculate the minimum edge weight
of a unary cluster funary takes the minimum of three quantities: the minimum off-path
edge of the child binary cluster, the overall minimum edge of any of the child unary clusters,
and, importantly, the minimum edge on the cluster path of the child binary cluster plus
the ADDPATH’ weight contributed by the unary clusters and the representative vertex (i.e.,
min(mt , lt +w ′, mu )). This is correct since all paths from those clusters to the root go through
the cluster path, so it needs to be adjusted. The off-path edges and child unary clusters do
not need to be adjusted since no path from the representative vertex goes through them. The
minimum weight is therefore correct. The total ADDPATH’ weight is correct since it just adds
the contributions.

153



Algorithm 17 An implementation of QUERYEDGE, QUERYPATH’, and QUERYSUBTREE.
1: procedure QUERYSUBTREE(v : vertex) // Returns the lightest weight of an edge in the subtree rooted at v
2: m←∞; l ←∞ //m: min edge not on the cluster path, l : min edge on the cluster path so far
3: x ← v ; p ← x .p
4: while p is a binary cluster do // Accumulate weights until we reach a unary cluster
5: if (x = p .t ) or (x = p .v ) then // If x is in the top half of the cluster, then all
6: w ′← p .b .w +p .v.w +

∑

u∈p .U u .w // AddPaths originating below it will add to
7: l ←min(l +w ′, p .b .l ) // the weight of all edges on the cluster path
8: m←min(m , p .b .m , minu∈p .U u .m )

9: x ← p ; p ← x .p

10: w ′← p .v.w +
∑

u∈p .U u .w
11: return min(l +w ′, m , minu∈p .U u .m ) // The lightest weight edge is either on the cluster path or not

12: procedure QUERYEDGE(e : edge) // Returns the weight of the edge e
13: w ←w (e )
14: x ← e ; p ← x .p
15: while p is a binary cluster do
16: if x = p .t then // if e is on the cluster path of the top half of the
17: w ←w +p .b .w +p .v.w +

∑

u∈p .U u .w // current cluster, then all AddPaths originating

18: x ← p ; p ← x .p // below the top cluster will add to the weight of e

19: return w +p .v.w +
∑

u∈p .U u .w

20: procedure QUERYPATH’(u : vertex, v : vertex) // Returns the lightest edge on the path from u to v
21: m←∞; t ←∞; b ←∞ // such that v is the representative of an ancestor of u in the RC-Tree
22: x ← u ; p ← x .p
23: while not p .v = v do
24: w ′← p .v.w +

∑

u∈p .U u .w
25: if p is a unary cluster then //When p is a unary cluster, and u originated in the
26: if x = p .t then m←min(t +w ′, m ) // top subcluster, the weight of all AddPaths below
27: else m←min(p .t .l +w ′, m ) // is added to the edges between u and the boundary,

28: t ←∞; b ←∞ // otherwise it is added to all edges on the top cluster path
29: else
30: w ′←w ′+p .b .w // The weight of all AddPaths below is added to the top cluster path.
31: if x = p .t then t ← t +w ′; b ←min(b +w ′, p .b .l ) // If u originated in the top subcluster, this
32: else if x = p .b then t ←min(p .t .l +w ′, t ) // affects both t and b . If u originated in the
33: else t ← p .t .l +w ′; b ← p .b .l // bottom subcluster, it affects only t . Otherwise, u

34: x ← p ; p ← x .p // originated in a unary subcluster so x is not in the cluster path.

35: if x = p .t then l ← b
36: else if x = p .b then l ← t // u either connects to v in the direction of the top boundary of p (a
37: else return m // weight of t ), the bottom boundary of p (a weight of b ) or neither (m)

38: while p is a binary cluster do
39: w ′← p .v.w +p .b .w +

∑

u∈p .U u .w // There might still be more AddPath operations below, so we
40: if (x = p .t ) then l ← l +w ′ // continue up the RC-Tree to accumulate any that remain.

41: return min(m , l )

154



For binary clusters we need to separately consider the minimum off- and on-path edges.
For the off-path edges the parts that are off the cluster path are the off-path edges from the
two binary children, plus all edges from the unary children (i.e., min(mt , mb , mu )). For the
on-path edges both the top and bottom binary clusters contribute their on-path edges. The
on-path edges from the bottom binary cluster do not need to be adjusted because no vertices
in the cluster are below them. The on-path edges from the top binary cluster need to be
adjusted by the ADDPATH’ weights from all vertices in the bottom cluster, all vertices in unary
child clusters, and the representative vertex since they are all below the path (this sum is given
by w ′). See Figure 8.2. The minimum of the resulted adjusted top edge and bottom edge is
then returned, which is indeed the minimum edge on the path accounting for ADDPATHs’ on
vertices in the cluster.

QUERYSUBTREE(v ) accumulates the appropriate minimum weights within a subtree as it
goes up the RC-Tree. It starts at the node for which v is its representative vertex. As with the
calculation of values it needs to separate the on-path and off-path minimum weight. When-
ever coming as the upper binary cluster to the parent, QUERYSUBTREE needs to add all the
contributing ADDPATH’ weights from vertices below it in the parent cluster (the representative
vertex, the lower binary cluster and the unary clusters, see Figure 8.2) to the current minimum
on-path weight. A minimum is then taken with the lower on-path minimum edge to calculate
the new minimum on-path edge weight (Line 7). The off-path minimum is the minimum of
the current off-path minimum, the minimum off-path edge of the bottom cluster and the
minimums of the unary clusters (Line 8). Once we reach a unary cluster we are done since
for a unary cluster all subtrees of vertices within the cluster are fully contained within the
cluster. The final line therefore just determines the overal minimum for the subtree rooted at
v by considering the on-path edges adjusted by ADDPATH’ contributions, the off-path edges,
and all edges in child unary clusters.

QUERYEDGE(e ) simply adds the total weight of all ADDPATH’ operations that occurred
beneath e to the weight of e . Specifically, at each iteration of the loop, w contains the w (e )
plus the total weight of all ADDPATH’ operations originating at any vertex below e that is
contained in the current cluster x . As the query moves up the RC-Tree, if the parent cluster is
a binary cluster and x is its top subcluster, then the vertices not yet accounted for are those
in the bottom subcluster, the representative vertex, and the unary subclusters. If x is the
bottom subcluster of its binary parent, or one of its unary subclusters, then no vertices in p
but not x are below e . When the while loop terminates, p is a unary cluster and x is its binary
subcluster. At this point, the representative of p , and all unary subclusters of p are below
e , and hence their weight is added to the total. Since p is a unary cluster, there exists no
additional vertices below e in the tree, and hence the final weight contains the contributions
of all ADDPATH’ operations originating below e .

Lastly, QUERYPATH’ works by maintaining three values, m , t , b . To make defining them
easier, consider, at each iteration of the main loop (Lines 23–34) in which the current cluster
x is a binary cluster, the vertex c which is the closest vertex to u on the cluster path of x (if
u is on the cluster path of x , say c = u). Then, we can define m as the minimum weight
edge on the path from u to c (which will be∞ if u is on the cluster path of x ), t as the
minimum weight edge above c on the cluster path of x , and b as the minimum weight edge
below c on the cluster path of x . If x is a unary cluster, then t and b are∞ (undefined), and

155



m is simply the minimum weight edge on the path from u to the boundary of x . Observe
that it is important for the algorithm to maintain both t and b because it does not know in
advance whether v is above or below the current cluster path. It remains to argue that the
implementation correctly maintains these values, and that the postprocessing is correct.

Each time the algorithm moves up to the next highest cluster, it first computes w ′, the
total weight of all ADDPATH’ operations originating below the representative vertex. If the
cluster is a unary cluster, and u originated from the top (binary) subcluster, then the path
from u to the boundary of p consists of the previous path from u to c (the lightest edge on
which is m), and the path from c to the boundary of p (the lightest edge on which is t ). Since
w ′ weight has been added to all edges on the path from c to the boundary of p , the lightest
such edge is now t +w ′ and hence the lightest edge on the path from u to the boundary of p is
min(t +w ′, m ). If u did not originate in the top subcluster of p , it came from one of the unary
subclusters. In this case, the path from u to the boundary of p consists of the path from u to
the boundary of x , and the cluster path of the top subcluster (which begins at the boundary
of x and ends at the boundary of p ), and hence the lightest edge is min(p .t .l +w ′, m ). Since
the current cluster is a unary cluster, t and b are undefined (Line 28).

If the next cluster is a binary cluster, we reason as follows. If u originated in the top
subcluster, then the path from c to the top boundary remains the same, but w ′ weight
is added to every edge (including t ). The cluster path below c now consists of the edges
previously below c to the bottom boundary of x , and additionally those on the cluster path
of the bottom subcluster (the edges from the bottom boundary of x to the bottom boundary
of p ). The edges below c on the cluster path of the top subcluster (including b ) have had
their weight increased by w ′, and hence the lightest edge on the path from c to the bottom
boundary of p is now min(b +w ′, p .b .l ). Similarly, if u originated in the bottom subcluster,
then the path from c to the bottom boundary hasn’t changed, so b is unchanged, and no
weight is added to the edge t . However, since the path from c to the top boundary of p now
includes the cluster path of the top subcluster, the lightest edge from c to the top boundary
is now min(p .t .l +w ′, t ). Otherwise, u must have originated from a unary subcluster of p ,
and hence the cluster path of p contains no edges from x , so t is simply the lightest edge in
the top subcluster, and b is the lightest edge in the bottom subcluster.

Once the main loop terminates (Lines 23–34), by the loop condition, it must be because
the current cluster x has v as a boundary. If u originated in the top subcluster of the latest p ,
then v must be the bottom boundary of p , and hence the path from u to v consists of the
path from u to c and the path from c to v which goes towards the bottom boundary of p
and hence contains b . Conversely, if u originated in the bottom subcluster of p , then the
path from u to v goes towards the top boundary of p and hence contains t . If u originated
in a unary subcluster, then the path from u to v just joins u to the boundary of x , hence the
lightest edge is m . If not, the lightest edge is either m , or b or t respectively. The weight of b
or t might still be affected by ADDPATH’ operations from below, so the total weight of such
operations is accumulated by continuing up the RC-Tree and added to the final weight.

156



Corollary 7. Given a bounded-degree tree of size n , any sequence of k ADDPATH, QUERY-
SUBTREE, QUERYPATH, and QUERYEDGE operations can be evaluated in O (n +k log(nk ))
work, O (log n log k ) span and O (n +k ) space.

Proof. The LCAs required to convert ADDPATH to ADDPATH’ and QUERYPATH to QUERYPATH’
can be computed in O (n +m ) work, O (log n ) span, and O (n ) space [157]. The rest follows
from Theorem 42 and Lemma 46.

8.5 Discussion
In this chapter, we designed a fast and general algorithm for evaluating mixed batches of
updates and queries on rooted trees. It is more work efficient and more general than a
previous algorithm of Geissmann and Gianinazzi which evaluates batches of path weight
updates and queries. The motivation for solving this problem is to implement efficient parallel
algorithms for the minimum cut problem. In Chapter 9, we will see several algorithms where
this framework is a critical ingredient. We will use this framework to implement an algorithm
for simulating Karger’s random edge contraction algorithm [113] which results in a new
faster parallel approximation algorithm for minimum cuts. Then we will use it to solve the
2-respecting cut problem, which, combined with the rest of Chapter 9 solves the minimum
cut problem work efficiently in parallel.

Given the generality of our framework, it would be interesting to explore whether there
are other sequential algorithms that it might be used to parallelize.

157



158



Chapter 9
Parallel Minimum Cuts

9.1 Introduction
The minimum cut problem has been studied by computer scientists and mathematicians for
decades and is one of the core problems in the study of graph theory. Karger gave a number
of algorithms for the problem based on the technique of random edge contractions [113, 116],
including approximate algorithms, exact algorithms, sequential algorithms, and parallel
algorithms. To contract an edge in this context means to merge the two adjacent vertices
together to create a “supervertex” with the union of their neighbors. Karger observed that by
randomly contracting edges of the graph until only two supervertices remain, you obtain a
random cut of the graph, and by repeating this process sufficiently many times, you are likely
to find the minimum cut.

The big breakthrough in minimum cuts however was Karger’s near-linear time algorithm
based on random sampling, tree packings, and 2-respecting cuts [114]. Given a weighted,
undirected graph G and a spanning tree T , a cut of G k -respects T if at most k edges of T
cross the cut. Karger’s near-linear time algorithm runs in O (m log3 n ) time and consists in:
(1) Find O (log n ) spanning trees of G such that w.h.p., the minimum cut 2-respects at least
one of them, then (2) find, for each of the aforementioned spanning trees, the minimum
2-respecting cut in G .

Karger solves the first step using a combination of random sampling and tree packing.
Given a weighted graph G , a tree packing of G is a set of weighted spanning trees of G such
that for each edge in G , its total weight in all of the spanning trees is no more than its weight
in G . The underlying tree packing algorithms used by Karger have running time proportional
to the size of the minimum cut, so random sampling is first used to produce a sparsified
graph, or skeleton, where the minimum cut has size Θ(log n )w.h.p. The sampling process is
crafted such that the tree packing still has the desired 2-respecting property w.h.p.

To sample a skeleton graph such that its minimum cut is precisely size Θ(log n ), one must
randomly sample edges with probability Θ(log n/c ), where c is the size of the minimum cut.
Of course, paradoxically, c is precisely what we are trying to compute in the first place! Karger
circumvents this issue by using an approximation algorithm to obtain an O (1)-approximation
to c , which suffices for the desired skeleton. One can use Matula’s algorithm [129]which runs
in linear time on unweighted graphs, and can be extended to run in O (m log n log W ) time on
weighted graphs, where W is the total weight in the graph. By employing a transformation
that removes high-weight edges from the graph without affecting the minimum cut too much,
one can reduce W to polynomially large in n to obtain a runtime of O (m log2 n ) for this step.

Given the skeleton graph, Karger gives two algorithms for producing tree packings such

159



that sampling Θ(log n ) trees from them guarantees that, w.h.p., the minimum cut 2-respects
one of them. The first approach uses a tree packing algorithm of Gabow [67]. The second
is based on the packing algorithm of Plotkin et al. [146], and is much more amenable to
parallelism. It works by performing O (log2 n )minimum spanning tree computations. In
total, Step 1 of the algorithm takes O (m +n log3 n ) time.

For the second step, Karger develops an algorithm to find, given a graph G and a spanning
tree T , the minimum cut of G that 2-respects T . The algorithm works by arbitrarily rooting
the tree, and considering two cases: when the two cut edges are on the same root-to-leaf
path, and when they are not. Both cases use a similar technique; They consider each edge
e in the tree and try to find the best matching e ′ to minimize the weight of the cut induced
by the edges {e , e ′}. This is achieved by using a dynamic tree data structure to maintain, for
each candidate e ′, the value that the cut would have if e ′ were selected as the second cutting
edge, while iterating over the possibilities of e and updating the dynamic tree. Karger shows
that this step can be implemented sequentially in O (m log2 n ) time, which results in a total
runtime of O (m log3 n )when applied to the O (log n ) spanning trees.

Geissmann and Gianinazzi [71] parallelize Karger’s algorithm by implementing an al-
gorithm for batched mixed path updates and path queries (see Chapter 8 and using it to
evaluate the sequence of dynamic tree operations in parallel. Their resulting algorithms runs
in O (m log4 n )work and O (log3 n ) span, just a factor of Θ(log n ) slower than Karger’s sequen-
tial algorithm while being highly parallel. Gawrychowski, Mozes, and Weimann [68] soon after
give a breakthrough algorithm that is the first sequential improvement to Karger’s algorithm
in over 20 years by speeding up the algorithm for computing minimum 2-respecting cuts to
just O (m log n ), resulting in an overall runtime of O (m log2 n ).

Our contribution Our goal is to obtain the best of both worlds and design a parallel al-
gorithm that is work efficient, i.e., matches the O (m log2 n )work bound of Gawrychowski,
Mozes, and Weimann, while also being highly parallel and running in polylogarithmic span.
Our results are built upon numerous components that are novel, pre-existing, or combina-
tions thereof. The core component is RC-Trees (Chapter 3), and the framework of simple
RC operation sets and batched-mixed operations on trees (Chapter 8). Since we are going
to use RC-Trees, we require that G have bounded degree. Note that any arbitrary degree
graph can easily be ternarized by replacing high-degree vertices with cycles of infinite weight
edges, resulting in a graph of maximum degree three with the same minimum cut, and only
a constant-factor larger size in terms of edges, which our bounds depend on.

The first order of business is to determine an approximate minimum cut work-efficiently
in parallel. Our first tool is a (log n )-approximate minimum cut which we develop by taking
a sequential approximation algorithm of Karger [113] based on random contractions and
parallelizing it by turning it into a sequence of mixed operations on trees and applying
our algorithm from Chapter 8. We generalize the parallel sparse certificate algorithm of
Cheriyan, Kao, and Thurimella for unweighted graphs to work on weighted graphs, and then
use it to generalize Matula’s O (1)-approximate algorithm for unweighted minimum cuts to
graphs with low total weight. We then show how to sample a low-weight skeleton graph
efficiently in parallel by taking advantage of the (log n )-approximate minimum cut and find

160



Component Work Comments

Simple RC Operation Sets (Chapter 8) O (k log(k n )) A framework for evaluating queries on weighted trees

Minimum 2-respecting Cuts

Descendant edges case (Section 9.6.1) O (m log n ) Improves on O (m log3 n )

Independent edges case (Section 9.6.2) O (m log n ) Improves on O (m log3 n )

Generating the 2-constraining spanning trees

(log n )-approximate min cut (Section 9.3) O (m log2 n ) Parallelizes Karger’s random contraction algorithm using simple RC ops

Bounded edge weights (Section 9.4) O (m ) Bounds weights by O (m log n ) preserving an O (1)-min-cut

Subsampling the skeleton (Section 9.4) O (m log2 n ) Samples log n skeleton graphs faster than O (m log3 n )

Parallel k -certificate (Section 9.4) O (k m ) Extends the algorithm of Cheriyan et al. for weighted graphs

Parallel Matula’s algorithm (Section 9.4) O (d m log(W /m )) Extends the algorithm of Karger and Motwani for weighted graphs

Table 9.1: A summary of the work bounds of the various components of the algorithm and comments
comparing to existing work. All components have O (polylog n ) span.

an O (1)-approximate minimum cut using our generalized parallel Matula’s algorithm. This
approximate cut is finally used to produce the tree packing.

Second, we describe an algorithm for solving the 2-respecting cut problem. Like Karger’s
algorithm, we separately solve the so-called descendant edges case (when the two cut edges
are on the same root-to-leaf path) and the independent edges case (when they are not). To
solve the descendant edges case, we compute an offline sequence of dynamic tree operations
that search for the best pair of descendant edges and parallelize it using our algorithm for
batched-mixed operations from Chapter 8. Lastly, we solve the independent edges case by
using RC-Trees to perform a parallel divine-and-conquer search of the 2-constraining trees,
and using compressed path trees from Chapter 7 to make the search space of relevant edges
small and efficient.

Table 9.1 shows the work bound for each of these components of our algorithm and
compares them to existing work where relevant.

9.2 Producing the Tree Packing
We follow the general approach used by Karger to produce a set of O (log n ) spanning trees
such that w.h.p., the minimum cut 2 respects at least one of them. We have to make sev-
eral improvements to achieve our desired work and span bounds. At a high level, Karger’s
algorithm works as follows.

1. Compute an O (1)-approximate minimum cut c

2. Sample edges from the unweighted multigraph corresponding to the weighted graph
G , where an edge with weight w is represented as w parallel edges, with probability
Θ(log n/c )

3. Use the tree packing algorithm of Plotkin [146] to generate a packing of O (log n ) trees

In this section, we describe the tools required to parallelise this algorithm. Step 2 is trivial to
parallelize, as the sampling can be done independently in parallel. The sampling procedure

161



produces an unweighted multigraph with O (m log n ) edges, and takes O (m log2 n )work and
O (log n ) span.

In Step 3, Plotkin’s algorithm consists of O (log2 n )minimum spanning tree (MST) com-
putations on a weighting of the sampled graph, which has O (m log n ) edges. Naively this
would require O (m log3 n )work, but we can use a trick of Gawrychowski et al. [68]. Since the
sampled graph is a multigraph sampled from m edges, each invocation of the MST algorithm
only cares about the current lightest of each parallel edge, which can be maintained in O (1)
time since the weights of the selected edges change by a constant each iteration. Using Cole,
Klein, and Tarjan’s linear-work MST algorithm [42] results in a total of O (m log2 n )work in
O (log3 n ) span w.h.p.

The only nontrivial part of parallelizing the tree production is actually Step 1, computing
an O (1)-approximate minimum cut. In the sequential setting, Matula’s algorithm [129] can be
used, which runs in linear time on unweighted graphs, and on weighted graphs in O (m log2 n )
time. Karger and Motwani [115] give a parallel version of Matula’s algorithm, but it takes
O (m 2/n )work. Ghaffari and Kuhn [72] present a distributed version of Matula’s algorithm
in the CONGEST model that runs in Õ ((D +

p
n )/ε5) rounds. We show how to compute an

approximate minimum cut in O (m log2 n )work and O (log3 n ) span, which allows us to prove
the following.

Theorem 43. Given a weighted graph, in O (m log2 n )work and O (log3 n ) span, a set of
O (log n ) spanning trees can be produced such that the minimum cut 2-respects at least
one of them w.h.p.

We achieve our bounds by improving Karger’s algorithms and speeding up several of the
components. We use the following combination of ideas, new and old.

1. We extend a k -approximation algorithm of Karger [113] to work in parallel, allowing us to
produce a log n-approximate minimum cut in low work and span.

2. We use a faster sampling technique for producing Karger’s skeletons for weighted graphs.
This is done by transforming the graph into a graph that maintains an approximate min-
imum cut but has edge weights each bounded by O (m log n ), and then using binomial
random variables to sample all of the multiedges of a particular edge at the same time,
instead of separately. Subsampling is then used to sample the same graph with decreasing
probabilities.

3. We show that Cheriyan, Kao, and Thurimella’s parallel sparse k -certificate algorithm for
unweighted graphs [37] can be modified to run on weighted graphs.

4. We show that Karger and Motwani’s parallelization of Matula’s algorithm can be generalized
to weighted graphs.

5. We use the log n-approximate minimum cut to allow the algorithm to make O (log log n )
guesses of the minimum cut such that at least one of them is an O (1) approximation.

162



9.3 Parallel log n -Approximate Minimum Cut
If only computing an O (1)-approximate minimum cut was simple. As this section will show,
it’s not so simple, but we will however make use of simple RC operation-sets to compute
one. To compute the O (1)-approximate minimum cut, we will begin by computing a (log n )-
approximate minimum cut. We do so by parallelizing an algorithm of Karger for computing
k -approximate minimum cuts that is efficient when k =Ω(log n ) [113].

9.3.1 Mixed Connectivity and Component Weight
The following ingredient is useful in parallelizing Karger’s k -approximate minimum cut
algorithm. We show that that the following operations have a simple RC implementation,
and hence can be efficiently solved in mixed batches. Given a vertex-weighted, undirected
graph with given initial vertex weights, we wish to support:
• SUBTRACTWEIGHT(v , w ): Subtract weight w from vertex v

• JOINEDGE(e ): Mark the edge e as “joined”

• QUERYWEIGHT(v ): Return the weight of the connected component containing the vertex
v , where the components are induced by the joined edges

Lemma 47. The SUBTRACTWEIGHT, JOINEDGE, and QUERYWEIGHT operations can be
supported with a simple RC implementation.

Proof. The values stored in the RC clusters are as follows. Vertices store their weight, and
unary clusters store the weight of the component reachable via joined edges from the bound-
ary vertex. A binary cluster is either joined, meaning that its boundary vertices are connected
by joined edges, in which case it stores a single value, the weight of the component reachable
via joined edges from the boundaries, otherwise it is split, in which case it stores a pair:
the weight of the component reachable via joined edges from the top boundary, and the
weight of the component reachable via joined edges from the bottom boundary. We provide
pseudocode for the update operations for Illustration in Algorithm 18.
The initial value of a vertex is its starting weight. The initial value of an edge is (0, 0), indicating
that it is split at the beginning. Note that funary and fbinary can be evaluated in constant
time, and the structure of the updates involves setting the value at a leaf using an associative
operation and re-evaluating the values of the ancestor clusters.

We argue that the values are correctly maintained by structural induction. First consider
unary clusters. If the top subcluster is split, then the representative vertex and unary sub-
clusters are not reachable via joined edges, and hence the only reachable component is the
component reachable inside the top subcluster from its top boundary, whose weight is tv . If
the top subcluster is joined, then the representative vertex is reachable, which is by definition
the boundary vertex of the unary subclusters, and hence the reachable component is the
union of the reachable components of all of the subclusters, whose weight is as given.

For binary clusters, there are four possible cases, depending on whether the top and
bottom subclusters are joined or not. If both are joined, then the representative and hence the

163



Algorithm 18 A simple RC implementation of SUBTRACTWEIGHT and JOINEDGE.
1: procedure fUNARY(vv , t ,U )
2: if t = (tv , bv ) then return tv

3: else return vv + t +
∑

uv∈U uv

4: procedure fBINARY(vv , t , b ,U )
5: if t = tv and b = bv then
6: return tv + bv + vv +

∑

uv∈U uv

7: else if t = (ttv
, tbv
) and b = bv then

8: return (ttv
, tbv
+ vv + bv +
∑

uv∈U uv )
9: else if t = tv and b = (btv

, bbv
) then

10: return (tv + vv + btv
+
∑

uv∈U uv )
11: else if t = (ttv

, tbv
) and b = (btv

, bbv
) then

12: return (ttv
, bbv
)

13: procedure SUBTRACTWEIGHT(v, w )
14: v.value← v.value - w
15: Reevaluate the f (·) on path to root.

16: procedure JOINEDGE(e )
17: e .value← 0
18: Reevaluate the f (·) on path to root.

boundary of all subclusters is reachable from both boundaries, and hence the cluster is joined
and the reachable component is the union of the reachable components of the subclusters.
If either subcluster is split, then the reachable component at the corresponding boundary is
just the reachable component of the subcluster, whose weight is as given. Lastly, if one of the
subclusters is not split, then the corresponding boundary can reach the representative vertex,
and hence the reachable components of the unary subclusters, whose weights are as given.

It remains to argue that QUERYWEIGHT has a simple RC implementation. Consider a
vertex v whose component weight is desired and consider the parent cluster P of v , i.e., the
cluster of which v is the representative. If P has no binary subclusters that are joined, observe
that P must contain the entire component of v induced by joined edges, since the only way
for a component to exit a cluster is via a boundary which would have to be joined. Answering
the query in this situation is therefore easy; the result is the sum of the weights of v , the unary
subclusters of P , the bottom boundary weight of the top subcluster (if it exists), and the top
bounary weight of the bottom subcluster (if it exists). Suppose instead that P contains a
binary subcluster that is joined to some boundary vertex u ̸= v . Since the subcluster is joined,
u is in the same induced component as v , and hence QUERYWEIGHT(v ) has the same answer
as QUERYWEIGHT(u). Since u is a boundary of P , we also know that the leaf cluster u is the
child of some ancestor of P . Since the root cluster has no binary subclusters, this process
of jumping to joined boundaries must eventually discover a vertex that falls into the easy
case, and since such a vertex u is always the child of some ancestor is P , the algorithm only
examines clusters that are on or are children of the root-to-v path in the RC-Tree, and hence
the algorithm is a simple RC implementation.

Invoking Theorem 42, we obtain the following useful corollary.

164



Corollary 8. Given a vertex-weighted undirected graph, a batch of k SUBTRACTWEIGHT,
JOINEDGE, and QUERYWEIGHT operations can be evaluated in O (k log(k n )) work and
O (log n log k ) span.

9.3.2 Parallel k -Approximate Minimum Cut
Karger describes an O (mn 2/k log n ) time sequential algorithm for finding a cut in a weighted
graph within a factor of k of the optimal cut [113]. It works by randomly selecting edges
to contract with probability proportional to their weight until a single vertex remains, and
keeping track of the component with smallest incident weight (not including internal edges)
during the contraction.

His analysis shows that in a weighted graph with minimum cut c , with probability n−2/k ,
the component with minimum incident weight encountered during a single trial of the
contraction algorithm corresponds to a cut of weight at most k c , and therefore by running
O (n 2/k log n ) trials, we find a cut of size at most k c w.h.p.

Although Karger’s contraction algorithm is easy to parallelize using a parallel minimum
spanning tree algorithm, keeping track of the incident component weights is trickier. To
overcome this problem, we show that we can use our batch component weight algorithm to
simulate the sequential contraction process efficiently. With this tool, we can determine the
minimum incident weight of a component as follows:
1. Compute an MST with respect to the weighted random edge ordering, where a heavier

weight indicates that an edge contracts later

2. For each edge (u , v ) ∈G , determine the heaviest edge in the MST on the (u , v ) path

3. Construct a vertex-weighted tree from the MST, where the weights are the total incident
weight on each vertex in G . For each edge (u , v ) in the MST in contraction order:

• Determine the set of edges in G such that (u , v ) is the heaviest edge on its MST path. For
each such edge identified, SUBTRACTWEIGHT from each of its endpoints by the weight
of the edge

• Perform JOINEDGE on the edge (u , v )
• Perform QUERYWEIGHT on the vertex u

Observe that the weight of a component at the point in time when it is queried is precisely
the total weight of incident edges (again, not including internal edges). Taking the minimum
over the initial degrees and all query results therefore yields the desired answer.

Karger shows how to parallelize picking the (weighted) random permutation of the edges
with O (m log2 n )work. It can easily slightly modified to improve the bounds by a logarithmic
factor as follows. The algorithm selects the edges by running a prefix sum over the edge
weights. Assuming a total weight of W , it then picks m random integers up to W , and for
each uses binary search on the result of the prefix sum to pick an edge. This process, however,
might end up picking only the heaviest edges. Karger shows that by removing those edges
the total weight W decreases by a constant factor, w.h.p. To make this efficient, we must first
preprocess the edge weights to make them polynomial in n . Gawrychowski et al. [68] describe

165



a transformation that affects the value of the minimum cut by no more than a constant factor
and bounds all edge weights by O (n 5). Therefore, repeating for log n rounds the algorithm
will select all edges in the appropriate weighted random order. Each round takes O (m log n )
work for a total of O (m log2 n )work.

Replacing the binary search in Karger’s algorithm with a sort of the random integers and
merge into the the result of the prefix sum yields an O (m log n )work randomized algorithm.
In particular m random numbers uniformly distributed over a range can be sorted in O (m )
work and O (log n ) span by first determining for each number which of m evenly distributed
buckets within the range it is in, then sorting by bucket using an integer sort [152] and finally
sorting within buckets.

Step 1 therefore takes O (m log n )work and O (log2 n ) span to compute the random edge
permutation, and O (m )work and O (log n ) span to run a parallel MST algorithm [117]. Step 2
takes O (m log n )work and O (log n ) span using RC-Trees, and Step 3 takes O (m log n )work
and O (log2 n ) span by Corollary 8 and the fact that the algorithm performs a batch of O (n )
operations. By Karger’s analysis, trying O (n 2/k log n ) random contractions yields the following
lemma, and setting k = log n gives our desired corollary.

Lemma 48. For a weighted graph, a cut within a factor of k of the minimum cut can be
found w.h.p. in O (mn 2/k log2 n )work and O (log2 n ) span.

Corollary 9. For a weighted graph, a cut within a factor of log n of the minimum cut can
be found w.h.p. in O (m log2 n )work and O (log2 n ) span.

9.4 Sampling, Certificates, and Low-Weight Cuts

9.4.1 Transformation to Bounded Edge Weights
For our algorithm to be efficient, we require that the input graph has small integer weights.
Gawrychowski et al. [68] give a transformation that ensures all edge weights of a graph are
bounded by O (n 5)without affecting the minimum cut by more than a a constant factor. For
our algorithm O (n 5)would be too big, so we design a different transformation that guarantees
all edge weights are bounded by O (m log n ), and only affects the weight of the minimum cut
by a constant factor.

Lemma 49. There exists a transformation that, given an integer-weighted graph G ,
produces an integer-weighted graph G ′ no larger than G , such that G ′ has edge weights
bounded by O (m log n ), and the minimum cut of G ′ corresponds to an O (1)-approximate
minimum cut in G .

Proof. Let G be the input graph and suppose that the true value of the minimum cut is c .
First, we use Corollary 9 to obtain a O (log n )-approximate minimum cut, whose value we
denote by c̃ (c ≤ c̃ ≤ c log n). We can contract all edges of the graph with weight greater

166



than c̃ since they can not appear in the minimum cut. Let s = c̃ /(2m log n ). We delete (not
contract) all edges with weight less than s . Since there are at most m edges in any cut, this at
most affects the value of a cut by s m = c̃ /(2 log n )≤ c /2. Therefore the minimum cut in this
graph is still a constant factor approximation to the minimum cut in G .

Next, scale all remaining edge weights down by the factor s , rounding down. All edge
weights are now integers in the range [1,2m log n ]. This is the transformed graph G ′. It
remains to argue that the value of the minimum cut is a constant-factor approximation. First,
note that the scaling process preserves the order of cut values, and hence the true minimum
cut in G has the same value in G ′ as the minimum cut in G ′. Consider any cut in G ′, and scale
the weights of the edges back up by a factor s . This introduces a rounding error of at most s
per edge. Since any cut has at most m edges, the total rounding error is at most s m ≤ c /2.
Therefore the value of the minimum cut in G ′ is a constant factor approximation to the value
of the minimum cut in G .

Lastly, observe that this transformation can easily be performed in parallel by using a work-
efficient connected components algorithm to perform the edge contractions, as is standard
(see e.g. [116]).

9.4.2 Sampling Binomial Random Variables
It will be helpful in the next step to be able to efficiently sample binomial random variables.
We will use the following results due to Farach-Colton et al. [57].

Lemma 50 (Farach-Colton et al. [57], Theorem 1). Given a positive integer n , one can
sample a random variate from the binomial distribution B (n , 1/2) in O (1) time with prob-
ability 1−1/nΩ(1) and in expectation after O (n 1/2+ϵ)-time preprocessing for any constant
ϵ > 0, assuming that O (log n ) bits can be operated on in O (1) time. The preprocessing
can be reused for any n ′ =O (n )

We can also use the following reduction to sample B (n , p ) for arbitrary 0≤ p ≤ 1.

Lemma 51 (Farach-Colton et al. [57], Theorem 2). Given an algorithm that can draw a
sample from B (n ′, 1/2) in O ( f (n )) time with probability 1−1/nΩ(1) and in expectation for
any n ′ ≤ n , then drawing a sample from B (n ′, p ) for any real p can be done in O ( f (n ) log n )
time with probability 1 − 1/nΩ(n ) and in expectation, assuming each bit of p can be
obtained in O (1) time

We note, importantly, that the model used by Farach-Colton et al. assumes that random
Θ(log n )-size words can be generated in constant time. Since we only assume that we can
generate random bits in constant time, we will have to account for this with an extra O (log n )
factor in the work where appropriate. Note that this does not negatively affect the span
since we can pre-generate as many random words as we anticipate needing, all in parallel at
the beginning of our algorithm. Also, although it might not be clear in their definition, the
constants in the algorithm can be configured to control the constant in the Ω(1) term in the
probability, and therefore their algorithms take O (1) time and O (log n ) time w.h.p.

167



To make use of these results, we need to show that the preprocessing of Lemma 52 can
be parallelized. Thankfully, it is easy. The preprocessing phase consists of generating n ϵ

alias tables of size O (
p

n log n ). Hübschle-Schneider and Sanders [104] give a linear work,
O (log n ) span parallel algorithm for building alias tables. Building all of them in parallel
means we can perform the alias table preprocessing in O (n 1/2+ϵ) work and O (log n ) span.
The last piece of preprocessing information that needs to be generated is a lookup table for
decomposing any integer n ′ = O (n ) into a sum of a constant number of square numbers.
This table construction is trivial to parallelize, and hence all preprocessing runs in O (n 1/2+ϵ)
work and O (log n ) span.

Lemma 52. Given a positive integer n , after O (n 1/2+ϵ) work and O (log n ) span prepro-
cessing, one can sample random variables from B (n ,1/2) in O (log n )work w.h.p., and
from B (n , p ) in O (log2 n )work w.h.p. The preprocessing can be reused for any n ′ =O (n ).

9.4.3 Subsampling p -Skeletons
Karger defines the p -skeleton G (p ) of an unweighted graph G as a copy of G where each edge
appears with probability p . A p -skeleton therefore has O (p m ) edges in expectation. For a
weighted graph, the p -skeleton is defined as the p -skeleton of the corresponding unweighted
multigraph in which an edge of weight w is replaced by w parallel multiedges. The p -
skeleton of a weighted graph therefore has O (p W ) edges in expectation, where W is the total
weight in the graph. Karger gives an algorithm for generating a p -skeleton in O (p W log(m ))
work, which relies on performing O (p W ) independent random samples with probabilities
proportional to the weight of each edge, each of which takes O (log(m )) amortized time. In
Karger’s algorithm, given a guess of the minimum cut c , he computes p -skeletons for p =
Θ(log n/c ). Since no edge of weight greater than c can be contained in the minimum cut, all
such edges can be contracted, leaving us with W ≤m c , so the skeleton has O (m log n ) edges
and takes O (m log2 n )work to compute. Since our algorithm does not know the minimum
cut c yet, it uses guessing and doubling on p , and hence has to compute several p -skeletons,
so O (m log2 n )work is too slow. We overcome this problem using binomial random variables
and subsampling.

Lemma 53. Given a weighted graph G with edge weights bounded by m 2−ϵ, an initial
sampling probability p and an integer k , there exists an algorithm that can produce
the skeleton graphs G (p ),G (p/2), ...,G (p/2k ) in O (m log2 n +k m log n )work w.h.p. and
O (k log n ) span.

Proof. Begin by using Lemma 52 and performing the required preprocessing for sampling
binomial random variables from B (m 2−ϵ,1/2), which takes O (m ) work and O (log n ) span.
To construct G (p ), for each edge e in the graph, sample a binomial random variable x ∼
B (w (e ), p ). The skeleton then contains the edge e with weight x (conceptually, x unweighted
copies of the multiedge e ). This results in the same distribution of graphs as if sampled using
Karger’s technique, and takes O (m log2 n )work w.h.p. and O (log n ) span. For each additional

168



skeleton G (p ′) requested, subsample from the previous skeleton by drawing binomial random
variables from B (wG (2p ′)(e ),1/2), which takes O (m log n ) work w.h.p. and O (log n ) span. In
total, to perform k rounds of sampling, this takes O (m log2 n + k m log n ) work w.h.p. and
O (k log n ) span.

Using subsampling here is important, since otherwise it would cost O (k m log2 n ) work to
sample all of the desired skeleton graphs. Additionally, note that Lemma 49 makes it easy to
satisfy the requirement that all edge weights be bounded by m 2−ϵ.

9.4.4 Parallel Weighted Sparse Certificates
A sparse k -connectivity certificate of an unweighted graph G = (V , E ) is a graph G ′ = (V , E ′ ⊂ E )
with at most O (k n ) edges, such that every cut in G of weight at most k has the same weight
in G ′. Cheriyan, Kao, and Thurimella [37] introduce a parallel graph search called scan-first
search, which they show can be used to generate k -connectivity certificates of unweighted
graphs. Here, we briefly note that the algorithm can easily be extended to handle weighted
graphs. The scan-first search algorithm is implemented as follows.

Algorithm 19 Scan-first search [37]
1: procedure SFS(G = (V , E ) : Graph, r : Vertex)
2: Find a spanning tree T ′ rooted at r
3: Find a preorder numbering to the vertices in T ′

4: For each vertex v ∈ T ′ with v ̸= r , let b (v ) denote the least neighbor of v in preorder
5: Let T be the tree formed by {v, b (v )} for all v ̸= r

Note that the scan-first search tree of a connected graph is always a tree. If the graph is
disconnected, the result is a scan-first search tree of each component. Using a linear work,
low span spanning tree algorithm, scan-first search can easily be implemented in O (m )work
and O (log n ) span. Cheriyan, Kao, and Thurimella show that if Ei are the edges in a scan-first
search forest of the graph Gi−1 = (V , E \ (E1∪ ...Ei−1)), then E1∪ ...Ek is a sparse k -connectivity
certificate. A sparse k -connectivity certificate can therefore be found in O (k m ) work and
O (k log n ) span by running scan-first search k times.

In the weighted setting, we treat an edge of weight w as w parallel unweighted multiedges.
As always, this is only conceptual, the multigraph is never actually generated. To compute
certificates in weighted graphs, we therefore use the following simple modification. After
computing each scan-first search tree, instead of removing the edges present from G , simply
lower their weight by one, and remove them only if their weight becomes zero. It is easy to
see that this is equivalent to running the ordinary algorithm on the unweighted multigraph.
We therefore have the following.

Lemma 54. A sparse k -connectivity certificate for a weighted, undirected graph can be
found in O (k m )work and O (k log n ) span.

169



9.4.5 Parallelizing Matula’s Algorithm
Matula [129] gave a linear time sequential algorithm for (2+ ϵ)-approximate edge connec-
tivity (unweighted minimum cut). It is easy to extend to weighted graphs so that it runs in
O (m log n log W ) time, where W is the total weight of the graph. Using standard transfor-
mations to obtain polynomially bounded edge weights, this gives an O (m log2 n ) algorithm.
Karger and Motwani [115] gave a parallel version of Matula’s unweighted algorithm that runs
in O (m 2/n )work. Essentially, their version of Matula’s algorithm does the following steps as
indicated in Algorithm 20.

Algorithm 20 Approximate minimum cut

1: procedure MATULA(G = (V , E ) : Graph )
2: if |V |= 1 then return∞
3: local d ← minimum degree in G
4: local k ← d /(2+ ϵ)
5: local C ← Compute a sparse k -certificate of G
6: local G ′← Contract all non-certificate edges of E
7: return min(d , MATULA(G ′))

It can be shown that at each iteration, the size of the graph is reduced by a constant factor,
and hence there are at most O (log n ) iterations. Furthermore, the work performed at each
step is geometrically decreasing, so the total work, using the sparse certificate algorithm
of Cheriyan, Kao, and Thurimella [37] is O (d m ) and the span is O (d log2 n ), where d is the
minimum degree of G .

Here, we give a slight modification to this algorithm that makes it work on weighted graphs
in O (d m log(W /m ))work and O (d log n log W ) span, where d is the minimum weighted de-
gree of the graph. To extend the algorithm to weighted graphs, we can replace the sparse
certificate routine with our modified version for weighted graphs, and replace the computa-
tion of d with the equivalent weighted degree. By interpreting an edge-weighted graph as
a multigraph where each edge of weight w corresponds to w parallel multiedges, we can
see that the algorithm is equivalent. To argue the cost bounds, note that like in the original
algorithm where the size of the graph decreases by a constant factor each iteration, the
total weight of the graph must decrease by a constant factor in each iteration. Because of
this, it is no longer true that the work of each iteration is geometrically decreasing. Naively,
this gives a work bound of O (d m log(W )), but we can tighten this slightly as follows. Ob-
serve that after performing log(W /m ) iterations, the total weight of the graph will have
been reduced to O (m ), and hence, like in the sequential algorithm, the work must subse-
quently begin to decrease geometrically. Hence the total work can actually be bounded by
O (d m log(W /m ) +d m ) =O (d m log(W /m )). We therefore have the following.

Lemma 55. Given a weighted graph with minimum weighted-degree d and total weight
W , an O (1)-approximate minimum cut can be found in O (d m log(W /m )) work and
O (d log n log W ) span.

170



9.5 Parallel O (1)-Approximate Minimum Cut
We have finally amassed the ingredients needed to produce a parallel O (1)-approximate
minimum cut algorithm. Well, we need one more trick, unsurprisingly due to Karger. To
produce the sampled skeleton graph, Karger’s algorithm chooses the sampling probability
inversely proportional to the weight of the minimum cut, which paradoxically is what we
are trying to compute. This issue is solved by using guessing and doubling. The algorithm
guesses the minimum cut and computes the resulting approximation. It can then use Karger’s
sampling theorem (Theorem 6.3.1 and Lemma 6.3.2 of [112]) to verify whether the guess was
too high.

Lemma 56 (Karger [112]). Let G be a graph with minimum cut c and let p =Θ((log n )/ϵ2c ).
Then w.h.p. the minimum cut in G (p ) has value in (1± ϵ)p c .

Lemma 57 (Karger [112]). W.h.p., if G (p ) has minimum cut ĉ =Θ((log n )ϵ2) for ϵ ≤ 1, then
the minimum cut c in G has value in (1± ϵ)ĉ /p .

If the true minimum cut is c , then the correct sampling probability for Karger’s algorithm
is p = Θ((log n )ϵ2c ), which produces a skeleton cut of size ĉ = Θ((log n )/ϵ2) w.h.p. If the
algorithm makes a guess C > 2c with corresponding probability P = Θ((log n )/ϵ2C ), then
Lemma 57 says that the minimum cut in the skeleton graph is less than ĉ w.h.p. The algorithm
can therefore double the guess for P and try again, until the minimum cut in the skeleton is
larger than ĉ , at which point we know that the P -skeleton approximates the minimum cut
within a factor ϵ. To perform these steps efficiently, our algorithm does the following:
1. Use Corollary 9 to compute a log n-approximate minimum cut value C in O (m log2 n )

work and O (log2 n ) span.

2. Transform the graph using Lemma 49 to ensure the weights are bounded by O (m log n )
and retaining an O (1)-approximate minimum cut in O (m log2 n )work and O (log2 n ) span.

3. Sample the skeleton graphs G (log2 n/C ),G (log2 n/(2C )), ...,G (log n/C ) using Lemma 53.
This is log log n skeletons, and hence takes O (m log2 n )work w.h.p. and O (log2 n ) span.

4. For each skeleton graph:

• Compute a sparse Θ(log n ) certificate of the skeleton graph. This takes O (m log n )work
and O (log2 n ) span by Lemma 54.

• Compute an O (1)-approximate minimum cut in the Θ(log n ) certificate using Matula’s
algorithm (Lemma 55). Since the certificate guarantees that the total weight is at most
O (n log n ) and hence that the minimum weighted degree is at most O (log n ), this takes
O (m log n log log n )work and O (log2 n log log n ) span.

Since there are O (log log n ) skeleton graphs, the total work done by the final step is at most
O (m log n (log log n )2), which is at most O (m log2 n ), and the span is O (log3 n ). The correctness
of the algorithm follows from the sampling theorem (Lemma 57) and Karger’s discussion [112].
Finally, we can conclude the following result.

171



Lemma 58. Given a weighted, undirected graph, the weight of an O (1)-approximate
minimum cut can be computed w.h.p. in O (m log2 n )work and O (log3 n ) span

9.6 Finding Minimum 2-respecting Cuts
We are given a connected, weighted, undirected graph G = (V , E ) and a spanning tree T . In
this section, we will give an algorithm that finds the minimum 2-respecting cut of G with
respect to T in O (m log n )work and O (log3 n ) span.

Our algorithm, like those that came before it, finds the minimum 2-respecting cut by
considering two cases. We assume that the tree T is rooted arbitrarily. In the first case, we
assume that the two tree edges of the cut occur along the same root-to-leaf path, i.e. one
is a descendant of the other. This is called the descendant edges case. In the second case,
we assume that the two edges do not occur along the same root-to-leaf path. This is the
independent edges case.

9.6.1 Descendant Edges
We present our minimum 2-respecting cut algorithm for the descendant edges case. Let T
be a spanning tree of a connected graph G = (V , E ) of degree at most three, and root T at an
arbitrary vertex of degree at most two. The rooted tree is therefore a binary tree.

We use the following fact. For any tree edge e ∈ T , let Fe denote the set of edges (u , v ) ∈ E
(tree and non-tree) such that the u to v path in T contains the edge e . Then the weight of
the cut induced by a pair of edges {e , e ′} in T is given by

w (Fe∆Fe ′) =w (Fe ) +w (Fe ′)−2w (Fe ∩ Fe ′),

where ∆ denotes the symmetric difference between two sets. For each tree edge e , our
algorithm seeks the tree edge e ′ that minimizes w (Fe∆Fe ′), which is equivalent to minimizing

w (Fe ′)−2w (Fe ∩ Fe ′).

To do so, it traverses T from the root while maintaining weights on a tree data structure that
satisfies the following invariant:

Invariant 3 (Current subtree invariant). When visiting e = (u , v ), for every edge e ′ ∈
Subtree(v ), the weight of e ′ in the dynamic tree is w (Fe ′)−2w (Fe ∩ Fe ′)

The initial weight of each edge e is therefore w (Fe ). Maintaining this invariant as the algorithm
traverses the tree can then be achieved with the following observation. When the traversal
descends from an edge p = (w , u ) to a neighboring child edge e = (u , v ), the following hold
for all e ′ ∈ Subtree(v ):
1. (Fe ∩ Fe ′)⊇ (Fp ∩ Fe ′), since any path that goes through p and e ′ must pass through e .

172



. . . . . .
. . . . . .

T1 T2

1

2 9

4 3

5 6

7 8

12 13 14

1110

1

94

6

7 8 12

10

13

14

4

6

7 8

9

12

10

13

14

1 1

v

v v

v v

v v

v v

v v v

vv

v

vv

v

v v v

v

v

v

v

v

v v

v

v

v

v

v

v v

Figure 9.1: The bipartite problems are generated by compressing the tree with respect to the
endpoints of the edges whose endpoints share an LCA, then splitting the tree into left and right
halves.

2. (Fe ∩Fe ′)\ (Fp ∩Fe ′) are the edges (x , y ) ∈ Fe ′ such that e is a top edge of the path x − y in T
(i.e., e is on the path from x to y in T , but the parent edge of e is not).

Therefore, to maintain the current subtree invariant, when the algorithm visits the edge e ,
it need only subtract twice the weight of all x − y paths that contain e as a top edge. This
can be done efficiently by precomputing the sets of top edges. There are at most two top
edges for each path x − y , and they can be found from the LCA of x and y in T . We need not
consider tree edges since they will never appear in Fe ′ . By maintaining the aforementioned
invariant, the solution follows by taking the minimum value of w (Fe )+QUERYSUBTREE(v ) for
all edges e = (u , v ) during the traversal. This algorithm sounds entirely sequential, but it can
be parallelized using our batched mixed operations algorithm (Corollary 7 from Chapter 8).

The operation sequence can be generated as follows. First, the weights w (Fe ) for each
edge can be computed using the batched mixed operations algorithm (Corollary 7) where
each edge (u , v ) of weight w creates an ADDPATH(u , v, w ), followed by QUERYEDGE(e ) for
every edge e ∈ T . This takes O (m log n ) work and O (log2 n ) span. The LCAs required to
compute the sets of top edges can be computed using the parallel LCA algorithm of Schieber
and Vishkin [157] in O (m ) work and O (log n ) span in total. By computing an Euler tour of
the tree T (an ordered sequence of visited edges) beginning at the root, the order in which
to perform the tree operations can be deduced in O (n )work and O (log n ) span. Each edge
in the Euler tour generates an ADDPATH operation for each of its top edges, followed by a
QUERYSUBTREE operation. Note that each edge is visited twice during the Euler tour. The
second visit corresponds to negating the ADDPATH operations from the first visit. The solution
is then the minimum result of all of the QUERYSUBTREE operations. Since there are a constant
number of top edges per path, and O (m ) paths in total, the operation sequence has length
O (m ). Using Corollary 7, we arrive at the following.

Theorem 44. Given a weighted, undirected graph G and a rooted spanning tree T , the
minimum 2-respecting cut of G with respect to T such that one of the cut edges is a
descendant of the other can be computed in in O (m log n )work and O (log2 n ) span w.h.p.

173



9.6.2 Independent Edges
The independent edge case is where the two cutting edges do not fall on the same root-to-leaf
path. To solve the independent edges problem, we use the framework of Gawrychowski
et al. [68], which is to decompose the problem into a set of subproblems, which they call
bipartite problems. The key challenge in parallelizing the solution to the bipartite problem
is dealing with the fact that the resulting trees might not be balanced. The algorithm of
Gawrychowski et al. relies on performing a biased divide-and-conquer search guided by a
heavy-light decomposition [93], and then propagating results up the trees bottom up. Since
the trees may be unbalanced, this can not be easily parallelized. Our solution is to use
the recursive clustering of RC-Trees to guide a divide and conquer search in which we can
maintain all of the needed information on the clusters.

Definition 14 (The bipartite problem). Given two weighted rooted trees T1 and T2 and
a set of weighted edges that cross from one to the other, L = {(u , v ) : u ∈ T1, v ∈ T2}, the
bipartite problem is to select e1 ∈ T1 and e2 ∈ T2 with the goal of minimizing the sum
of the weight of e1 and e2 plus the weights of all edges (v1, v2) ∈ L such that v1 is in the
subtree rooted at the bottom endpoint of e1 and v2 is in the subtree rooted at the bottom
endpoint of e2. The size of a bipartite problem is the size of L plus the size of T1 and T2.

Gawrychowski et al. observe that if T1 and T2 are edge-disjoint subtrees of T , then, assigning
weights of w (Fe ) to each tree edge and weights of −2w (e ) to each edge non-tree, the solution
to the bipartite problem is the minimum 2-respecting cut such that e1 ∈ T1 and e2 ∈ T2. The
independent edges problem is then solved by reducing it to several instances of the bipartite
problem, and taking the minimum answer among all of them. We will show how to generate
the bipartite problems efficiently, and how to solve them efficiently, both in parallel.

Generating the bipartite problems

The following parallel algorithm generates O (n ) instances of the bipartite problem with total
size at most O (m ). For each edge e in T , the algorithm first assigns them a weight equal to
w (Fe ). Now consider all non-tree edges, i.e. all edges e ∈ E , e /∈ T , group them by the LCA of
their endpoints in T , and assign them a weight of −2w (e ). This forms a partition of the O (m )
edges of G , each group identified by a vertex. Each vertex in T conversely has an associated
(possibly empty) list of non-tree edges.

For each vertex v in T with a non-empty associated list of edges, create a compressed
path tree (Chapter 7) of T with respect to the endpoints of the associated edges and v . Finally,
for each such compressed path tree, root it at v (the common LCA of the edge endpoints).
The bipartite problems are generated as follows. For each vertex v with a non-empty list
of non-tree edges, and the corresponding compressed path tree Tv , consider the children
x , y of v in Tv . The bipartite problem consists of T1, which contains the edge (v, x ) and the
subtree of Tv rooted at x , and likewise, T2, which contains the edge (v, y ) and the subtree of
Tv rooted at y , and L , the list of non-tree edges. See Figure 9.1 for an illustration.

174



Lemma 59. Given a tree and a set of non-tree edges, the corresponding bipartite problems
can be generated in O (m log n )work and O (log2 n ) span w.h.p.

Proof. The edge weight values can be computed in the same way as before using our batched
mixed operations on trees algorithm in O (m log n ) work and O (log2 n ) span. LCAs can be
computed using the parallel LCA algorithm of Schieber and Vishkin [157] in O (m ) work
and O (log n ) span. Grouping the edges by LCA can be achieved using a parallel sorting
algorithm in O (m log n )work and O (log n ) span. Together, these steps take O (m log n )work
and O (log2 n ) span. For each group, computing the compressed path tree takes O (mi log(1+
n/mi ))≤O (mi log n ) work and O (log2 n ) span w.h.p., where mi is the number of edges in the
group. Performing all compressed path tree computations in parallel and observing that the
edge lists of each vertex are a disjoint partition of the edges of G , this takes at most O (m log n )
work and O (log2 n ) span in total w.h.p.

It remains only for us to show that the bipartite problems can be efficiently solved in parallel.

Solving the bipartite problems
Our solution is a recursive algorithm that utilizes the recursive cluster structure of RC-Trees.
Recall that RC-Trees consist of unary and binary clusters (and the nullary cluster at the root,
but this is not needed by our algorithm).

Since the bipartite problems are constructed such that trees T1 and T2 always have a root
with a single child, the root cluster of their RC-Trees consists of exactly one unary cluster.

High-level idea Recall that the goal is to select an edge e1 ∈ T1 and an edge e2 ∈ T2 that
minimizes their costs plus the cost of all edges (u , v ) ∈ L such that u is a descendant of e1

and v is a descendant of e2. Our algorithm first constructs an RC-Tree of T1, and weights
the edges in T1 and T2 by their cost. At a high level, the algorithm then works as follows.
Given a binary cluster c1 of T1, the algorithm maintains weights on T2 such that for each
edge e2 ∈ T2, its weight is the weight of e2 in the original tree plus the sum of the weights of
all edges (u , v ) ∈ L such that u is a descendant of the bottom boundary vertex of c1, and v
is a descendant of e2. This implies that for a binary cluster of T1 consisting of an isolated
edge e1 ∈ T1, the weights of each e2 ∈ T2 are precisely such that w (e1) +w (e2) is the value of
selecting {e1, e2} as the solution. This idea leads to a very natural recursive algorithm. We
start with the topmost unary cluster of T1 and proceed recursively down the clusters of T1,
maintaining T2 with weights as described. When the algorithm recurses into the top binary
child of a cluster, it must add the weights of all (u , v ) ∈ L that are descendants of that cluster
to the corresponding paths in T2. If recursing on the bottom binary subcluster of a binary
cluster, the weights on T2 are unchanged. When recursing on a unary cluster, since it has no
descendants, the algorithm uses the original weights of T2. Once the recursion hits a binary
cluster that consists of a single edge e1, it can return the solution w (e1)+w (e2), where e2 is
the lightest edge with respect to the current weights on T2. Lastly, to perform this process
efficiently, the algorithm compresses, using the compressed path tree algorithm (Chapter 7),

175



the tree T2 every time it recurses, keeping only the vertices that are endpoints of the crossing
edges that touch the current cluster of T1.

Implementation We provide pseudocode for our algorithm in Algorithm 21. Given a bi-
partite problem (T1, T2, L ), we use the notation L (C ) to denote the edges of L limited to those
that are incident on some vertex in the cluster C . Furthermore, we use VT2

(L (C )) to denote
the set of vertices given by the endpoints of the edges in L (C ) that are in T2. The pseudocode
does not make the parallelism explicit, but all that is required is to run the recursive calls in
parallel. The procedure takes as input a cluster C of T1, a compressed version of T2 with its
original weights, and T ′2 , the compressed version of T2 with updated weights. At the top level,
it takes the cluster representing all of T1 for the first argument, and the cluster for all of T2

for the second and third argument. The COMPRESS function compresses the given tree with
respect to the given vertex set and its root, and returns the compressed tree still rooted at
the same root. ADDPATHS(S ) takes a set S ⊂ L of edges and for each one, adds w (u , v ) to the
root-to-v path, where v ∈ T2, returning a new tree.

Algorithm 21 Parallel bipartite problem algorithm

1: procedure BIPARTITE(C , T2, T ′2 , L)
2: if C = {e } then
3: return w (e ) +LIGHTESTEDGE(T ′2 )
4: else
5: Tcmp← T2.COMPRESS(VT2

(L (C .t )))
6: T ′′2 ← T ′2 .ADDPATHS(L (C ) \ L (C .t ))
7: T ′′cmp← T ′′2 .COMPRESS(VT2

(L (C .t )))
8: ans← BIPARTITE(C .t , Tcmp, T ′′cmp, L (C .t ))
9: for each cluster C ′ in C .U do

10: Tcmp← T2.COMPRESS(VT2
(L (C ′)))

11: ans← min(ans, BIPARTITE(C ′, Tcmp, Tcmp, L (C ′)))

12: if C is a binary cluster then
13: Tcmp← T2.COMPRESS(VT2

(L (C .b )))
14: T ′cmp← T ′2 .COMPRESS(VT2

(L (C .b )))
15: ans← min(ans, BIPARTITE(Tcmp, T ′cmp, L (C .b )))

16: return ans

Since this algorithm creates copies of T2, we must ensure that we can still identify a desired
vertex given its label. One simple way to achieve this is to build a static hashtable alongside
each copy of T2 that maps vertex labels to the instance of that vertex in that copy.

An ingredient that we need to achieve low span is an efficient way to update the weights
in T2 when adding weights to a collection of paths. This is easy to achieve in linear work
and O (log n ) span by propagating the total weight of all updates up the clusters, and then
propagating back down the tree, the weight of all updates that are descendants of the current
cluster. It remains to analyze the cost of the BIPARTITE procedure.

176



Lemma 60. Solving a bipartite problem of size m takes O (m log m )work and O (log3 m )
span w.h.p.

Proof. First, since all recursive calls are made in parallel and the recursion is on the clusters
of T1, the number of levels of recursion is O (log m ) w.h.p. We will show that the algorithm
performs O (m ) work in total at each level, in O (log2 m ) span w.h.p. Observe first that at
each level of recursion, the edges L for each call are a disjoint partition of the non-tree
edges, since each recursive call takes a disjoint subset. We will now argue that each call does
work proportional to |L |. Since T2 and T ′2 are both compressed with respect to L , their size is
proportional to |L |. ADDPATHS takes linear work in the size of T2 and O (log m ) span, and hence
takes O (|L |)work and O (log m ) span. COMPRESS(K ) takes O (|K | log(1+|T2|/|K |))≤O (|K |+|T2|)
work and O (log2 m ) span w.h.p.. Since compression is with respect to some subset of L , all of
the compress operations take O (|L |) work and O (log2 m ) span w.h.p. In total, this is O (|L |)
work in O (log2 m ) span w.h.p. at each level for each call. Since the Ls at each level are a
disjoint partition of the non-tree edges, the total work per level is O (m )w.h.p., and hence the
desired bounds follow.

Since there are O (n ) bipartite problems of total size O (m ), solving them all in parallel yields
the following.

Theorem 45. Given a weighted, undirected graph G and a rooted spanning tree T , the
minimum 2-respecting cut of G with respect to T such that the cut edges are independent
can be computed in O (m log n )work and O (log3 n ) span w.h.p.

Combining Theorems 43, 44, and 45 on each of the O (log n ) trees proves our main result.

9.7 Discussion
We presented the first work-efficient algorithm for minimum cuts that runs in low span. That
is, the first highly parallel algorithm that performs no more work than the best sequential
algorithm. Since our algorithm is work efficient, finding a faster parallel algorithm would
entail finding a faster sequential algorithm. Our algorithm is Monte Carlo and it runs in
O (m log2 n ) work and O (log3 n ) span. It remains an open problem to find a deterministic
algorithm, even a sequential one, that runs in O (m polylog n ) time.

Our algorithm is a strong example application of dynamic data structures, such as RC-
Trees, to solving non-dynamic (i.e. static) problems. A similar result was recently obtained
by Ghaffari et al. [74]who also used our RC-Tree data structure to implement a nearly work-
efficient parallel depth-first search. It would be interesting to explore further what results we
can obtain by using RC-Trees to speed up and parallelise existing static algorithms, possibly
using our batched mixed operations framework.

177



178



Part IV

Parallel Self-Adjusting Computation

179





Chapter 10
Parallel Self-Adjusting Computation

10.1 Introduction
Self-adjusting computation is an approach to automatically, or semi automatically, convert
a (suitable) static algorithm to a dynamic one [1, 2, 3, 4, 36, 50, 90, 150]. Most often, self-
adjusting computation is implemented in the form of a change propagation algorithm. The
idea, roughly, is to run a static algorithm while keeping track of data dependencies. Then when
an input changes (e.g. adding an edge to a graph), the change can be propagated through the
computation, updating intermediate values, creating new dependencies, and updating the
final output. Not all algorithms are suitable for the approach—for some, updating a single
input value could propagate changes through most of the computation. To account for how
much computation needs to be rerun, researchers have studied the notion of “stability” [1, 4]
over classes of changes. The goal is to bound the “distance” between executions of a program
on different inputs based on the distance between the inputs. For example, for an appropriate
sorting algorithm adding an element to the unsorted input list ideally would cause at most
O (log n ) recomputation, and that recomputation could be propagated with a constant factor
overhead. Achieving this would lead to the performance of a dynamic binary search tree. On
the other hand, an unstable sorting algorithm might result in Ω(n ) recomputation for a single
update, which would be inefficient to try to propagate.

In the sequential setting this approach has been applied to a wide variety of algorithms,
with various bounds on the stability, and also cost of change propagation as a function of the
computational distance. Applications includes dynamic trees [4], kinetic data structures [6,
8, 13], computational geometry [9, 11], Huffman coding [10], and Bayesian inference [7].
Self-adjusting computation has also been extended in several directions. Notable works
include work on “on-demand” updates with Adapton [91], the CEAL language [89, 90], and
automatic derivation of self-adjusting programs via information-flow type systems [34, 35].

More recent work [12, 22, 24, 32, 88] has studied applying change propagation in parallel,
allowing for batch dynamic updates—e.g., adding a set of edges to an existing graph and
then propagating those changes in parallel. Batch updates are particularly important in
practice due to the rapid rate of modifications to very large data sets such as the web graph or
social networks. Furthermore, in principle, parallelism and change propagation should work
well together since algorithms with shallow dependence chains tend both to be good for
parallelism (since fewer dependencies means more task can run in parallel) and for dynamic
updates (since changes will not have to propagate as deeply). Indeed, several researchers
have studied the approach and developed systems in the applied setting, which show good
performance improvements [22, 24, 32] on tasks such as map-reduce.

181



In Chapter 4, we studied bounds on the cost of change propagation for the class of so-
called “round-synchronous” computations. We used this to generate efficient algorithms for
batch-dynamic tree contraction and batch-dynamic trees supporting batches of links and
cuts among other operations. However, the round-synchronous model limits the applicability
to a small set of algorithms that fit the definition.

In this chapter we develop a more general framework for supporting self-adjusting com-
putation for arbitrary nested-parallel algorithms. We prove bounds on the cost of change
propagation in the framework based on an appropriately defined distance metric. We have
also implemented the framework and run experiments on a variety of benchmarks. A nested
parallel program is one that is built from arbitrary sequential and parallel composition. A
computation is defined recursively as either two computations that are composed in parallel
(a fork), two that are composed sequentially, or the base case which is a sequential strand.
Multiway forking can easily be implemented by nesting parallel compositions.

Our technique is to represent a computation by a dependency graph that is based on
a Series-Parallel tree [58], (SP tree). An SP tree corresponds to the sequential and parallel
composition of binary nested parallel programs—i.e., parallel composition consists of a P
node with two children (the left-right order does not matter), and sequential composition
consists of an S node with two children (here the order does matter). The leaves are sequential
computations, and can just be modeled as leaf S nodes. The SP tree represents the control
dependencies in the program—i.e., that a particular strand needs to executed before another
strand. We introduce R nodes to indicate data reads, which are used to track data depen-
dencies between writes and reads—i.e., that a particular read depends on a particular write.
Together we refer to the trees as RSP trees. The RSP tree of a computation allows propagating
a change in a way that respects sequential control dependencies while allowing parallelism
where there is no dependence. We prove that a parallel change propagation algorithm can
propagate changes through the computation in a manner that is both efficient and scalable.

Programs written in our framework write their inputs and any nonlocal values that de-
pend on them into “modifiable references”, or modifiables for short, which track all reads to
them and facilitate change propagation. Like previous work on sequential change propaga-
tion [4], we achieve our efficiency by restricting input programs to those which write to each
modifiable exactly once. All race-free functional programs satisfy this restriction, but since
local variables do not need to be tracked they are not bound by this restriction so the scope
of programs amenable to our framework is wider than those which are purely functional.

Roughly speaking, given two executions of the same algorithm on different inputs, we
define the computation distance to be the work that is performed by one but not the other
(see Definition 16 for the full definition). We then show the following theorem that bounds
the runtime of the change propagation algorithm as a function of computation distance.

Theorem 46 (Efficiency). Consider an algorithm A, two input states I and I ′, and their
corresponding RSP trees T and T ′. Let W∆ =δ(T , T ′) denote the computation distance,
R∆ denote the number of affected reads, s denote the span of A, and h denote the
maximum heights of T and T ′. Then, change propagation on T with the dynamic update
(I , I ′) runs in O (W∆+R∆ ·h )work in expectation and O (s ·h ) span w.h.p.

182



We have implemented our techniques in a library for C++, which we call PSAC++1 (Parallel
Self-Adjusting Computation in C++). The library allows writing parallel self-adjusting pro-
grams by using several small annotations in a style similar to writing conventional parallel
programs. Self-adjusting programs can respond to changes to their data by updating their
output via the built-in change propagation. Our experiments with several applications show
that parallel change propagation can handle a broad variety of batch changes to input data
efficiently and in a scalable fashion. For small changes, parallel change propagation can
yield very significant savings in work; such savings can amount to orders of magnitude of
improvement. For larger changes, parallel change propagation may save some work, and still
exploit parallelism, yielding improvements due to both reduction in work and an increase in
scalability. We summarize the contributions of this chapter as follows:

• A general approach for parallel change propagation based on using RSP trees to safely
propagate changes in the correct order while allowing parallelism in the propagation.

• Theoretical bounds on the work (sequential time) and span (parallel time) of our algorithms.

• An implementation as C++ library, with six example applications to study as benchmarks.

• Experimental results that confirm what is backed up by our theoretical analysis, that parallel
change propagation is efficient for a range of applications.

10.1.1 Technical Overview
The idea of the change propagation algorithm is first to run an algorithm on some initial
input while keeping a trace of reads and writes to “nonlocal” locations. This trace can be
thought of as a write-read dependence graph, indicating what reads depend on what writes
(also called a data dependence graph). Along with each read the trace also stores the code
that was run on the value, and maintains some form of control ordering of the execution.
When an input is updated at particular locations, the change propagation algorithm knows
what read those locations and reruns them. This can cause new reads and writes that both
update the trace, and create changes that have to propagated to their readers. Importantly,
and one of the biggest challenges in change propagation, is that the reads that rerun have to
do so in control order, otherwise they could use stale information. For example, if a read A,
and a later a read B in program control order both need to be rerun, running B first might
miss updates by A. Since A could do something different when rerun, the trace might not even
know there will be a data dependence between them (A is now going to write to something
B reads). This means that the topological order on the trace’s data dependence graph in
insufficient for safety, and that control dependencies also need to be considered.

In the sequential setting, the total order of all instructions is typically maintained using
a dynamic list-maintenance data structure [53] keeping all reads in time order. The struc-
ture needs to be dynamic since during propagation new computation can be added, and
old deleted, at arbitrary points in the ordering. During change-propagation, all reads that
are affected by a write are placed in a priority queue prioritized by this order, and always
processing the earliest first.

1Our code is publicly available at https://github.com/cmuparlay/psac

183

https://github.com/cmuparlay/psac


For our work on parallel change propagation, the broad idea is to organize the control
dependencies of the program around the RSP tree. Unlike the sequential case, instead of
having a total order of execution time, the RSP tree effectively keeps track of the parallel
partial order of control dependencies among the strands. As with the sequential case, we
also keep track of all write-read data dependencies. Unlike the sequential algorithm which
uses a priority queue of time order, our algorithm instead uses the RSP tree itself to maintain
the partial order among strands—and this allows running multiple tasks in parallel during
the propagation.

The initial run builds the RSP tree. It stores on each read (R) node a closure to rerun if
the value it read changes2. When the input is modified, the change-propagation algorithm
identifies all readers of the changed values. We refer to these as the affected readers. Now,
instead of adding them to a priority queue by sequential time order, the algorithm makes
some markings in the RSP tree. In particular it starts at each affected reader and marks all
ancestors in the RSP tree. It then traverses the RSP tree and using the marks finds readers that
require and are safe to rerun, i.e., only descending if a node is marked. Whenever it gets to a
P node, the algorithm traverses down whichever children are marked (either left, right, or
both in parallel), and whenever it gets to an internal S node, it traverses down the left branch
if it is marked, and then the right branch if it is marked. At an S node the algorithm never
goes down both branches simultaneously since that would be unsafe

When the traversal meets an affected reader, change propagation runs the closure associ-
ated with the reader and updates the resulting computation and its corresponding subtree
of the RSP tree, possibly cascading new reads and writes and marking additional regions of
the RSP tree for additional propagation. Once the marked regions of the tree have all been
traversed, change propagation is complete and the computation will be fully up to date.

10.2 Framework
Our framework for parallel self-adjusting computation is built around a set of core primitives
that are easy to integrate into existing algorithms. In this section, we describe these primitives
and give an example algorithm for illustration.

write(dest: αmod, value : α)
alloc_mod(T: type) : T mod
read(m : (α1 mod, ...,αk mod), r : α1× ...×αk 7→ ())
par(left_f : () 7→ () , right_f : () 7→ ())
run( f : () 7→ ()) : S
propagate(root : S )

Figure 10.1: Interface for Parallel Self-Adjusting Computation

2A closure is a code pointer along with needed local variables.

184



Modifiables
The primary mechanism by which computations are dynamised is through the use of modifi-
able variables. A modifiable variable, or modifiable for short, is either a value that is part of the
input to the algorithm, or a nonlocal variable whose value depends on the value of another
modifiable variable. Algorithms are dynamised by placing their inputs in modifiables, and
ensuring that all nonlocal variables whose values depend on a modifiable are also placed
in modifiables. When a modifiable is updated, our framework determines which values are
affected by the resulting changes and propagates the appropriate updates.

Modifiables can be allocated either statically, i.e. before the computation is run, or dy-
namically, in which case their lifetime will be tied to the scope of the computation that
allocated them. Writing to modifiables is achieved using the write operation. We require
that each modifiable is written to at most once during each run of the computation, and
that modifiables are not read before they are written. We also require that modifiables are
only read from and written to by computations that are in the dynamic (nested) scope of the
computation that allocated it.

Read operations
To ensure that dependencies are tracked, modifiables must be read using the read operation.
read reads the values of the given modifiables and invokes the given reader function with
their current values as arguments.

Parallelism
We support fork-join parallelism through a binary fork operation par, which takes two thunks
(functions that take no arguments and return nothing) and executes them in parallel.

Control
Computations are initiated with the run operation, which returns a handle to the computation
(represented by the root of the RSP tree). After making changes to the input, changes are
propagated using the propagate operation.

Additional primitives
For performance, our practical implementation also supports an alloc_array operation and
a corresponding read_array operation for allocating and reading arrays of modifiables. We
also support a parallel_for primitive, which executes a given function over a range of values
in parallel. We omit the details of these primitives.

A note on randomness
We require that all algorithms implemented in our framework be deterministic. That is, given
some input, if re-executed they must produce exactly the same output. It is still possible, and

185



indeed we have several in our application examples, to implement randomized algorithms.
To do so, the randomness must simply be pre-generated before executing the computation
to ensure that, when re-executed, the same results will be obtained.

Example
To illustrate our framework, we give an implementation of a parallel divide-and-conquer
sum function. See Algorithm 22. Note that in our pseudocode, for readability, we denote
reads using the syntax:

with read(mods...) as args... do
f (args...)

As typical with self-adjusting computation, the code uses “destination passing”, where SUM

takes the modifiable in which the result should be written as an argument.

Algorithm 22 Parallel self-adjusting sum

1: procedure SUM(A[lo...hi] : int mod array, res : int mod)
2: if lo = hi - 1 then
3: with read(A[lo]) as x do
4: write(res, x)

5: else
6: local mid← lo + (hi - lo) / 2
7: local left_res← alloc_mod(int)
8: local right_res← alloc_mod(int)
9: par(function⇒ SUM(A[lo...mid], left_res),

function⇒ SUM(A[mid...hi], right_res))
10: with read(left_res, right_res) as x, y do
11: write(res, x + y)

10.3 Change Propagation Algorithm
We use a variant of SP trees (see introduction) extended with read (R) nodes, which we call
RSP trees. A read is tracked in the RSP tree by creating an R node as the left child of the
current S node whenever a reader is executed. The reader code then executes in the subtree
of the R node and the continuation (the code that executes directly after the read completes)
proceeds in the sibling node. The full semantics for RSP trees is defined by the algorithms in
this section.

Figure 10.2 shows an example RSP tree for the divide-and-conquer sum computation of
Algorithm 22 on an input of size four. The four R nodes lowest in the tree correspond to the
reads of the input, which occur at the base case of the algorithm. The R nodes higher in the
tree are the reads of the results of the recursive calls. Although not depicted in this simple
algorithm, reads may be nested, in which case read nodes may appear as descendants of
other read nodes.

186



S

P

S S

S

R

P S

R

P S

RS S S S

R R R R

m1 m2 m3 m4 res

Figure 10.2: The RSP tree of Algorithm 22 on an input of size four. Dynamically allocated modifi-
ables are shown underneath the S node that allocated them. Writes and reads to/from modifiables
are shown as red (long-dashed) and green (short-dashed) arrows respectively.

Our framework facilitates self-adjusting computation by first building the RSP tree during
the initial run of the static algorithm. To execute dynamic updates, when a modifiable is
written to, all of the read nodes that read from it, and all of their ancestors in the RSP tree
are marked as pending re-execution. Change propagation then simply consists in traversing
the RSP tree, ignoring subtrees that are not marked, since no changes are present, and re-
executing the marked readers. Note that this re-execution destroys the old portion of the
RSP tree corresponding to the read and generates a new one, meaning that the old and new
computations can be entirely structurally different. Additionally, such re-execution may also
write to subsequent modifiables that were also read during the computation, so this process
may mark additional nodes in the tree as pending re-execution, which will cause further
propagation. The remainder of this section discusses the high-level implementation of these
operations and the framework’s primitives.

Pseudocode for the key components of our algorithm is shown in Algorithms 23–26. In
the code, current_scope is a thread-local variable pointing to the current S node of the RSP
tree that the code is running in.

Maintaining this notion of scope is important for two reasons. Most obviously, it ensures
that the RSP tree can be constructed while the algorithm is ran. Less obviously, it also allows
us to more efficiently allocate and collect dynamically allocated modifiables.

Writing to modifiables
Pseudocode for writing to modifiables is given in Algorithm 23. If the new value differs from
the old, all of the readers of that modifiable must be marked to trigger change propagation.

187



Algorithm 23 Writing modifiables

1: procedure WRITE(dest : αmod, value: α)
2: if dest is unwritten or value ̸= dest.val then
3: dest.val← value
4: for each reader in dest.readers do in parallel
5: reader.affected← true
6: reader.mark() // defined in Algorithm 26

Reading modifiables
Pseudocode for the read operation and for handling R nodes is shown in Algorithm 24. R
nodes consist of two specific fields, the list of modifiables that were read (mods), and the
reader function that executes on the values of the modifiables (reader_f). When an R node is
created or destroyed, it adds or removes itself from the corresponding lists of readers. When
an R node executes its reader, the R node is used as the scope of the computation. This means
that R nodes count as S nodes for the purpose of determining sequential dependencies.

Algorithm 24 Reading modifiables

1: procedure READ(m : (α1 mod, ...,αk mod), r : α1× ...×αk 7→ ())
2: local cur← current_scope
3: cur.left← new R node (m, r) // Calls R ::create
4: current_scope← cur.left
5: cur.left.DO_READ()
6: cur.right← new S node
7: current_scope← cur.right

8: procedure R ::CREATE(m, r) // Called on creating a new node
9: this.mods← m

10: this.reader_f← r
11: for each mod v in mods do in parallel
12: v.readers← v.readers ∪{this} //must be atomic!

13: procedure R ::DO_READ

14: local m1, ..., mk ← this.mods
15: local v1, ..., vk ← m1.val, ..., mk .val
16: this.reader_f(v1, ..., vk )

17: procedure R ::DESTROY

18: for each mod m in this.mods do
19: m.readers←m.readers \ {this} //must be atomic!

Parallelism
The par function creates a P node as the left child of the current scope. The P node has two
S nodes as children, which will correspond to the scope of the two computations that run in
parallel. After completing the parallel computation, an S node is created as the right child of

188



the current node to be the scope of any subsequent computation. The algorithm is shown in
Algorithm 25.

Algorithm 25 Parallelism

1: procedure PAR(left_f: () 7→ () , right_f: () 7→ ())
2: local cur← current_scope
3: cur.left← new P node
4: cur.left.left← new S node
5: cur.left.right← new S node
6: in parallel do:
7: { current_scope← cur.left.left; left_f() }
8: { current_scope← cur.left.right; right_f() }
9: cur.right← new S node

10: current_scope← cur.right

Control operations
These are depicted in Algorithm 26. Run creates the root S node of the RSP tree and runs the
computation from scratch. The propagate functions perform change propagation for each of
the kind of RSP tree nodes. Note that the P version propagates in parallel, and the S version
sequentially. When reaching a read node, the algorithm reruns the associated reader.

10.4 Analysis
In this section, we provide an analysis of our model to establish its correctness and prove
bounds on the runtimes of our algorithms. Bounds in our analysis will depend on the work
and span of the underlying algorithm, as well as the height of the generated RSP tree, which
we note is at most the span of the algorithm, but can be much less. For all of our examples, it
is at most O (log(n )), even when the span of the algorithm is larger.

10.4.1 Setting
For our analysis, we will consider algorithms A in our parallel self-adjusting framework, which
can be thought of as functions which act on given inputs I = {(mi , vi )}i , a set of modifiable-
value pairs consisting of modifiables that A will read, and their values. Executing A(I ) results
in an output (τ, T ), where τ is a set of modifiable-value pairs consisting of every modifiable
written to by the execution of the algorithm, and the corresponding value. T is the RSP tree of
the computation, where each read node is annotated with the reader function and the values
that were read. We define the domain of a set of pairs X by d o m (X ) = {m : (m , v ) ∈ X }. Due to
the write-once restriction, note that in a valid execution, we must have d o m (I )∩d o m (τ) = ;.

We can then define a dynamic update ∆= (I , I ′) to be a pair of input states with I ̸= I ′,
denoting that the input is changed from I to I ′, which may involve changing the values of

189



Algorithm 26 Control operations

1: procedure RUN( f : () 7→ ()) : S
2: local root← new S node
3: current_scope← root
4: f ()
5: return root
6: procedure PROPAGATE(root : S )
7: if root.marked then root.propagate()

8: procedure NODE::MARK

9: this.marked← true
10: if this.parent ̸= ⊥ ∧ ¬ this.parent.marked then
11: this.parent.mark()

12: procedure S ::PROPAGATE

13: if this.left ̸= ⊥ ∧ this.left.marked then
14: this.left.propagate()

15: if this.right ̸= ⊥ ∧ this.right.marked then
16: this.right.propagate()

17: this.marked← false
18: procedure P ::PROPAGATE

19: if this.left.marked ∧ this.right.marked then
20: in parallel do:
21: this.left.propagate()
22: this.right.propagate()
23: else if this.left.marked then this.left.propagate()
24: else this.right.propagate()

25: this.marked← false
26: procedure R ::PROPAGATE

27: if this.affected then
28: this.left← ⊥
29: this.right← ⊥
30: this.DO_READ()
31: this.affected← false
32: else
33: if this.left ̸= ⊥ ∧ this.left.marked then
34: this.left.propagate()

35: if this.right ̸= ⊥ ∧ this.right.marked then
36: this.right.propagate()

37: this.marked← false

190



modifiables in I , adding new modifiables that were not read the first time, and removing
modifiables that are no longer read. We can then think of change propagation as taking an
RSP tree T and a dynamic update (I , I ′), and outputting a set of writes τ and an updated RSP
tree T ′. We can now define the notion of affected readers, which, intuitively, when applying an
algorithm to two different inputs, are readers that exist in both versions of the computation
but read different values, i.e. they are the frontiers at which the computations diverge.

Definition 15 (Affected readers). Consider an algorithm A, two input states I and I ′, and
their corresponding RSP trees T and T ′, i.e., A(I ) = (τ, T ) and A(I ′) = (τ′, T ′) for some τ
and τ′. We say that a read node is subsumed by another read node in the same tree if the
first one is a descendant of the second one, i.e., the first one was created while executing
the second one’s computation. Given two read nodes v ∈ T and v ′ ∈ T ′, we say that they
are cognates if the paths in T and T ′ to v and v ′ are the same, that is, the path branches
left or right at the same time and have the same labels. We call a pair of cognate read
nodes affected if they read different values, and are not subsumed by another such node.

Note that this definition of affected node makes sense because of the fact that computations
in our framework are deterministic, and hence, the only place at which a computation can
begin to differ is at a read node that reads different values than last time. We now introduce
the notion of computation distance. The computation distance models the amount of work
required to re-execute the affected readers. In essence, it is the minimum amount of work
required to update the computation assuming absolutely no overhead.

Definition 16. Consider an algorithm A, two input states I and I ′, and their correspond-
ing RSP trees T and T ′. Define the cost of a read node to be the work performed by its
reader functiona. The computation distance between the executions of A on the inputs
I and I ′ is defined as the sum of the costs of the affected read nodes in T and T ′. More
formally, if we denote by l (T ), v (T ), w (T ), the RSP label of the root node of T , the values
read by the read node at the root of T , and the work performed by the reader function
of the read node at the root of T , we can define the computation distance recursively
starting at the root of the trees as follows.

δ(T , T ′) =

¨

w (T ) +w (T ′) if l (T ) =R ∧ v (T ) ̸= v (T ′),
∑k

i=1δ(Ti , T ′i ) otherwise,

where Ti denotes the i th subtree of T .

aThe work performed by the reader function is considered to be the work that it would perform when
executed without self-adjusting computation, i.e., assuming that reads and writes take constant time.

Observe that due to determinism, the definition of computation distance will only consider
cognate nodes T , T ′ which must have the same number of children/subtrees. We are now
ready to state the correctness theorem of our framework.

191



Theorem 47 (Correctness). Consider an algorithm A and an input state I where A(I ) =
(τ, T ). Let∆= (I , I ′), where A(I ′) = (τ′, T ′), denote a dynamic update to the input. Then,
applying change propagation to the RSP tree T with dynamic update∆ yields
1. writes τ′′ such that τ′ ⊆τ′′ ∪{(m , v ) ∈τ |m ̸∈ d o m (τ′′)},
2. the RSP tree T ′.

Proof. Proving the correctness of change propagation essentially relies on establishing two
facts: that it visits and re-executes all affected read nodes, and that re-executing just the
affected read nodes is sufficient.

The fact that all affected read nodes are re-executed can be established inductively on
the sequential dependencies of the affected readers. The earliest affected reader must read
a modifiable that exists in I and I ′ but has a different value, and hence will be marked in
the RSP tree and will be re-executed. An affected reader that has had all of its sequential
dependencies re-executed must be marked since it either reads a modifiable that exists
in I and I ′ but has a different value, or it reads a modifiable that is written earlier in the
computation. In the second case, since computations are deterministic, the modifiable must
be written by a reader whose input has changed, and hence is an affected reader which has
been re-executed.

Establishing that re-executing all affected readers writes to all modifiables whose val-
ues in τ′ are different than in τ follows from determinism and the write-once restriction.
Determinism implies that all differing writes must occur inside an affected reader, and the
write-once restriction ensures that these writes exist in τ′. Lastly, the fact that the RSP tree is
updated to T ′ follows from determinism.

We now prove our efficiency theorem that bounds the cost of change propagation in terms of
the computation distance.

Proof of Theorem 46. Since there are O (R∆) affected readers, it costs at most O (R∆ ·h )work
to traverse the RSP tree to reach each of them. The work required to re-execute all affected
readers and destroy their old RSP subtrees is O (W∆) by definition, plus any overhead encoun-
tered from maintaining modifiables’ reader sets and marking ancestors when performing the
write primitive. We can argue that these overheads can be reduced to constant or amortized.
To reduce the maintenance of reader sets to constant overhead, the algorithm can maintain
each modifiable’s reader set as a hashtable. To avoid issues of concurrency and resizing,
insertions and deletions (Lines 12 and 19 in Algorithm 24) can be deferred and performed
in batch after change propagation is complete. The overhead of write can be amortized by
noticing that for all marked nodes, they will either be traversed by change propagation, or
destroyed by a re-execution.

Lastly, we consider how these overheads affect the span of the algorithm. Each write
operation takes up to h time, and each read may require a hashtable operation that takes up
to log(r ) time w.h.p., where r is the size of the reader set. However, h ≥ log(r ) and hence the
overhead is at most h per operation w.h.p., leading to a total span of O (s ·h )w.h.p.

192



It is worth noting that the randomness in our bounds comes purely from the use of hashtables
to store the reader sets. For algorithms in which each modifiable has only a constant number
of readers, which is very often the case, the bounds can be made deterministic.

10.4.2 Analyzing the Computation Distance of Algorithms
To obtain bounds for dynamic updates on particular algorithms implemented in our frame-
work, it suffices to analyze the number of affected reads and the computation distance for
the desired class of updates (and the span of the algorithm which is usually already known).
Here, we will sketch an analysis of the sum algorithm from Algorithm 22.

Theorem 48. Consider Algorithm 22 on an input A of n modifiables, and a dynamic
update in which the values of k modifiables are changed. The number of affected reads
and the computation distance induced by such an update is O

�

k log
�

1+ n
k

��

.

Proof. Note that the algorithm performs log(n ) levels of recursion. We count separately the
number of affected reads that occur during the first log(k ) levels and those that occur after.
During the first log(k ) levels, since the algorithm performs binary recursion, there can be no
more than O (2log(k )) = O (k ) reads in total, affected or not. The k updated modifiables will
affect k of the base-case reads on Line 3. The corresponding writes on Line 4 then affect up to
k reads on Line 10 from the calling functions. The writes on Line 11 then affect up to k reads
from their callers, and so on. The final log

�

n
k

�

levels of recursion therefore account for at

most k log
�

n
k

�

affected readers. Therefore, in total, there can be at most O
�

k +k log
�

1+ n
k

��

=
O
�

k log
�

1+ n
k

��

affected readers, each of which performs O (1)work.

In Chapter 4, we analyzed the computation distance of tree contraction, which also appears
in our benchmarks, in the round-synchronous model. The round-synchronous model can
be implemented in the framework of this chapter, and hence the bounds also apply to the
computation distance here.

Overhead of self-adjusting computation
In addition to the cost of dynamic updates, we can also discuss the overhead of the initial
computation. Note that each node in the RSP tree corresponds to at least one primitive
operation, and hence the cost of the building the tree and later destroying it can be charged
to the computation. Then, just as in change propagation, the overhead of the read and write
primitives are either constant, or can be amortized (see the Proof of Theorem 46), leading to
constant amortized overhead.

Lastly, we remark on the memory usage. The two sources of memory overhead come from
the RSP tree and modifiables. In the worst case, the size of the RSP tree is proportional to the
work of the algorithm. However, for any sensible algorithm, both strands of any parallel fork
will contain at least one read (if they do not, the parallel fork was unnecessary). Therefore,
under this assumption, the size of the SP tree is proportional to the number of reads in the

193



algorithm. Since the memory overhead of modifiables (their reader sets) is also proportional
to the number of reads, the additional memory overhead is just proportional to the number
of reads.

Work-efficiency of change propagation
By definition, re-executing a set of affected readers of computation distance W∆ must take
O (W∆) work. Based on Theorem 46, we therefore consider the work overhead of change
propagation to be R∆ ·h . This means that if W∆ ≥R∆ ·h , i.e, each affected reader performs
at least h work on average, then change propagation essentially has just constant-time
overhead. In practice, this suggests that good granularity control is important for writing
efficient self-adjusting algorithms.

Comparison to sequential self-adjusting computation
The best sequential algorithms for self-adjusting computation [4] can propagate an update
of computation distance W∆ in O (W∆ log(W∆)) work. Compared to our bounds, which are
at most O (W∆ ·h ), the difference is a log(W∆) versus h . Given a parallel algorithm on input
size n with polylog(n ) span, we have h ≤ polylog(n ). However, often, and for every example
we studied, h is just log(n ), even for algorithms with larger span. Therefore at worst, our
algorithm is O (polylog(n )) slower than the best sequential algorithm, but in the common
case, just O (log(n )/ log(W∆)) slower.

10.5 Implementation
To study its practical performance, we implemented our framework as a library for C++. For
parallelism, we use the work-stealing scheduler from the Parlay library [28]. For memory
allocation, we use jemalloc [56] in addition to Parlay’s pool-based memory allocator. In this
section, we discuss some of the interesting aspects of the implementation of the system, and
note some useful optimizations.

10.5.1 Reader Set Implementation
One interesting part of the system is handling the reader sets of modifiables. Since mul-
tiple concurrently executing threads may read the same modifiable, it is important that
modifications to this set are thread-safe. To obtain our theoretical bounds, we describe the
algorithm using a hashtable. In practice, however, we observe that the majority of modifiables
in self-adjusting algorithms have just a small constant number of readers, often just one. We
therefore implement the reader sets with a hybrid data structure that stores a single reader
inline with no heap allocation when there is only one reader. When the number of readers
becomes more than one, the reader set atomically converts itself into a linked data structure.
We used a linked list for algorithms with small reader sets, and a randomized binary search
tree for algorithms with larger reader sets.

194



Our binary search tree uses the hashes of the addresses of the reader nodes as the random
keys. To insert a new reader into the tree, our algorithms attempts to insert it into the
appropriate leaf of the tree using an atomic compare-and-swap (CAS) operation. If the CAS
succeeds, the insertion is successful. Otherwise, note that the correct location for the key
must be a child of the node that instead won the CAS, so our algorithm proceeds down and
tries again. To simplify deletions, rather than deleting from the tree eagerly, nodes that need
to be removed are simply marked as dead, and removed during the next traversal.

To ensure thread safety, we have to make sure that operations on the reader sets that
might race are safe. Note that insertions correspond to reads, traversals correspond to writes,
and deletions correspond to the cleanup of destroyed subtrees after a computation is re-
executed. Insertions will therefore never race with traversals since reads and writes to the
same modifiable can not race in a valid self-adjusting program. Deletions may however
race with traversals or insertions since the cleanup of an RSP subtree may take place while
another re-computation is occurring. One way to mitigate any potential problems is to defer
all destructions of RSP subtrees until a later garbage-collection phase, rather than performing
them during change propagation. Lastly, multiple traversals can not race due to the write-
once condition, but multiple insertions or deletions can. Our algorithm is safe with respect
to concurrent insertions, and our lazy deletion strategy makes concurrent deletions safe.

10.5.2 Garbage Collection
Rather than eagerly deleting subtrees of the RSP tree when a reader is re-executed, we instead
move such subtrees off to a garbage pile which we collect after performing change propaga-
tion. This simplifies the destruction of subtrees since doing so naively can very easily lead
to race conditions, such as those discussed in the reader set implementation. Performing
delayed garbage collection also has the benefit of improving the responsiveness of change
propagation, as the result of the update can be made visible to the user before the garbage
collector is run.

10.5.3 Supporting Dynamically-Sized Inputs
Modifiables give us the ability to easily write algorithms that support updating the values
in the input and propagating the results. In many situations, we also want to support the
ability to add/remove elements to/from the input. In sequential self-adjusting computation,
this is achieved by using linked lists to represent the input. In the parallel setting, we can
achieve similar results by representing the input as a balanced binary tree. The trick is to use
modifiables to represent the parent/children relationships in the tree so that if a new element
is inserted, this will cause an update of a child modifiable and allow change propagation to
update the computation with the new element.

195



10.6 Benchmarks and Evaluation
In this section, we evaluate the practical performance of our system. We implemented six
benchmarks, exhibiting a range of different characteristics and providing different insights
into the quality of the proposed algorithms.

Experimental setup

We ran our experiments on a 4-socket AMD machine with 32 physical cores in total, each
running at 2.4 GHz, with 2-way hyperthreading, a 6MB L3 cache per socket, and 200 GB of
main memory. All of our code was compiled using Clang 9 with optimization level -O3. Each
experiment was run using 1 – 64 worker threads in increasing powers of two. We used the
Google Benchmark C++ library to measure the speed (in real/wall time) of each benchmark.
We run each benchmark ten times and take the average running time.

Benchmark setup

Each benchmark consists of four parts. First, we run a static sequential program and a static
parallel program that implement the same algorithm to the self-adjusting one but without any
overhead from self-adjusting computation. We then benchmark the parallel self-adjusting
program, both on its initial computation, and on performing dynamic updates with change
propagation. For each of the examples, we use varying batch update sizes to measure the
effect that batch sizes have on the amount of parallelism exhibited by the update, and the
amount of work required to propagate it. We do not include the time taken to perform
garbage collection in the measurements.

Reporting of results

For each benchmark, we provide numerical results in Tables 10.1–10.6, which show the
running times of the static sequential algorithm (Seq), parallel static algorithm (Parallel
Static), the initial computation of the self-adjusting algorithm (PSAC Compute), and the
dynamic updates (PSAC Update), for 1 processor (1), 32 processors (32), and 32 processors
with hyperthreading (32ht). For each of the parallel algorithms, we compute the self-speedup
(SU), which is the relative improvement of the 32 or 32ht performance (whichever is better)
compared to the 1 processor performance. For each example, we measure the performance
for some fixed input size n and varying batch update sizes k .

For the dynamic updates, we measure work savings (WS), which is the relative improve-
ment of their 1 processor performance compared to the static sequential algorithm. Finally,
we report the total speedup, which is the relative performance of the dynamic updates with
32 or 32ht processors compared to the static sequential algorithm (equivalently, the product
of the speedup and the work savings). This allows us to measure separately, the benefits due
to parallelism (the SU), the benefits due to dynamism (the WS), and their total combined
benefit (Total).

196



Static Algorithm
n 1t 32t 32ht SU Seq Baseline

106 36.21s 1.19s 908ms 39.84 36.72s
PSAC Initial Run

n 1t 32t 32ht SU
106 36.89s 1.20s 750ms 49.16

PSAC Dynamic Update
k 1t 32t 32ht SU WS T

100 44us 45us 47us 0.98 819.6k 800.4k
101 445us 90us 112us 4.93 82.42k 406.7k
102 4.36ms 265us 208us 20.92 8.41k 176.0k
103 44ms 2.03ms 1.20ms 36.97 827.9 30.61k
104 436ms 19ms 11ms 37.46 84.18 3.15k
105 4.04s 167ms 118ms 34.08 9.10 310.2
106 37.67s 1.81s 1.21s 31.04 0.97 30.26

Table 10.1: Benchmark results for Spellcheck.

Applications
We implemented the following benchmarks.

• Spellcheck: Computes the minimum edit distance of a set of a million strings to a target.

• Raytracer: Renders a 2000× 2000 pixel scene consisting of three reflective balls using a
simple ray tracing method.

• String Hash: Computes the Rabin-Karp fingerprint (hash) of a one-hundred-million char-
acter string.

• Dynamic Sequence: Computes a list contraction of a linked list of length one million.

• Dynamic Trees: Computes a tree contraction of a tree on one million nodes.

• Filter: Filters the elements of a BST with respect to a given predicate, returning a new BST.

10.6.1 Results
The results of our main experiments are depicted in Tables 10.1–10.6, and some further
experiments are shown in Tables 10.7–10.8.

The initial run
We are interested in the overhead of the initial run. This is the ratio of the runtime of the
self-adjusting algorithm compared to the sequential baseline. Prior work on sequential
self-adjusting computation [9] observed overheads ranging from 1.9 to 29.

The overhead of the initial run varies with the problem and the granularity of the work
performed by the readers. For the spellcheck benchmark, the overhead is negligible since
each of the readers performs a relatively expensive edit distance computation, completely
hiding the overhead of the framework. For algorithms with smaller granularity, such as the

197



Static Algorithm
n 1t 32t 32ht SU Seq Baseline
- 2.46s 80ms 49ms 49.32 2.54s

PSAC Initial Run
n 1t 32t 32ht SU
- 13.65s 520ms 323ms 42.24

PSAC Dynamic Update
k 1t 32t 32ht SU WS T
- 112ms 8.66ms 7.47ms 15.08 26.44 398.8

Table 10.2: Benchmark results for Raytracer.

Static Algorithm
n 1t 32t 32ht SU Seq Baseline

108 1.86s 58ms 31ms 58.34 1.72s
PSAC Initial Run

n 1t 32t 32ht SU
108 3.05s 96ms 61ms 49.81

PSAC Dynamic Update
k 1t 32t 32ht SU WS T

100 14us 16us 16us 0.90 118.8k 107.1k
101 134us 66us 74us 2.02 12.81k 25.86k
102 1.26ms 162us 122us 10.35 1.36k 14.10k
103 12ms 717us 512us 25.17 133.3 3.36k
104 103ms 4.63ms 3.11ms 33.16 16.68 553.0
105 621ms 26ms 18ms 34.20 2.77 94.76
106 2.49s 108ms 66ms 37.27 0.69 25.73
107 5.21s 213ms 132ms 39.30 0.33 12.99
108 19.47s 709ms 472ms 41.24 0.09 3.65

Table 10.3: Benchmark results for String Hash.

Static Algorithm
n 1t 32t 32ht SU Seq Baseline

106 647ms 70ms 73ms 8.77 586ms
PSAC Initial Run

n 1t 32t 32ht SU
106 4.32s 219ms 464ms 19.66

PSAC Dynamic Update
k 1t 32t 32ht SU WS T

100 761us 629us 736us 1.21 770.2 931.0
101 5.58ms 1.65ms 1.97ms 3.38 105.2 355.2
102 31ms 3.31ms 2.95ms 10.69 18.62 199.0
103 201ms 14ms 10ms 18.53 2.91 53.94
104 1.26s 74ms 53ms 23.33 0.47 10.89
105 5.11s 263ms 195ms 26.15 0.11 3.00
106 8.45s 624ms 492ms 17.14 0.07 1.19

Table 10.4: Benchmark results for Dynamic Sequence.

198



Static Algorithm
n 1t 32t 32ht SU Seq Baseline

106 915ms 85ms 66ms 13.85 824ms
PSAC Initial Run

n 1t 32t 32ht SU
106 4.85s 242ms 689ms 20.02

PSAC Dynamic Update
k 1t 32t 32ht SU WS T

100 698us 584us 672us 1.19 1.18k 1.41k
101 3.28ms 1.04ms 1.23ms 3.14 251.7 789.4
102 24ms 2.29ms 2.18ms 11.03 34.23 377.7
103 210ms 12ms 10ms 20.46 3.93 80.33
104 1.47s 79ms 60ms 24.33 0.56 13.68
105 5.19s 254ms 173ms 29.85 0.16 4.74
106 8.59s 428ms 306ms 28.00 0.10 2.69

Table 10.5: Benchmark results for Dynamic Trees.

Static Algorithm
n 1t 32t 32ht SU Seq Baseline

107 361ms 17ms 15ms 23.09 262ms
PSAC Initial Run

n 1t 32t 32ht SU
107 630ms 35ms 31ms 20.27

PSAC Dynamic Update
k 1t 32t 32ht SU WS T

100 36us 109us 128us 0.33 13.20k 4.36k
101 275us 242us 298us 1.14 1.73k 1.96k
102 2.74ms 1.39ms 1.25ms 2.19 173.6 380.9
103 25ms 3.73ms 3.69ms 6.95 18.56 129.1
104 143ms 9.96ms 8.18ms 17.50 3.32 58.19
105 543ms 31ms 23ms 22.97 0.88 20.13
106 1.04s 80ms 55ms 18.76 0.46 8.61
107 2.12s 198ms 159ms 13.28 0.22 2.98

Table 10.6: Benchmark results for Filter.

199



Rabin-Karp benchmark, we observe work overheads of around 1.7. The filter algorithm also
uses a similar granularity, and hence experiences similarly low overhead.

On the other hand, the raytracing algorithm involves modifiables with a large number of
readers, so the work overhead is higher, at around a factor of 4.6. The list contraction and tree
contraction benchmarks both perform O (log(n )) rounds of computation, with dependency
chains spanning across them, and hence have larger overheads of 5.8 and 7.3.

Work savings
Work savings measure the relative improvement in runtime from using self-adjusting com-
putation to perform an update compared to running the algorithm from scratch. As was
the case for the work overhead, the work savings are dependent on the granularity of the
work performed by the readers. Of course, the work savings are also heavily dependent on
the size of the update relative to the size of the entire input. For small updates, the work
savings range from 770 when updating one element of one million elements (list contraction)
to 819k when updating one of one million strings (edit distance). The work savings for the
raytracer benchmark are also very encouraging. For the given dynamic update, a total of
6.25% of the image needed to be updated, but the change propagation algorithm performed
approximately 4% of the work required to recompute from scratch. For benchmarks with
varying update sizes, the work savings gradually decrease as the update size increases.

It is interesting to look at the crossover point where from-scratch execution becomes more
efficient than change propagation. For benchmarks like spellcheck, which perform heavy
work at the reads, from-scratch execution does not outperform change propagation until
updating the entire input. For modest-granularity benchmarks like hashing, from-scratch
execution wins when the update size reaches k = 106 for sequential execution, or k = 105 for
parallel execution, on an initial input of size n = 108. For tree contraction and list contraction,
the crossover points occur at k = 104 out of n = 106 elements for both sequential and parallel
execution. For filter, the crossover point occurs at roughly k = 105 out of n = 107 elements. In
general, crossovers tend to occur a couple of orders of magnitude before the input size.

Speedup
The initial runs of our algorithms all benefit, often substantially, from parallelism. On 32
hyperthreaded cores (64 threads), spellcheck and hashing experience parallel speedups of
49-50x. Raytracing achieves 42x, and list contraction, tree contraction, and filter 19-20x.

In addition to the initial run, updates also benefit from parallelism, particularly as the
update sizes increases. Although there is little potential for parallelism for k = 1 updates,
each benchmark exhibits speedups ranging from 22-39x for larger update sizes. At the
crossover points, where change propagation is still competitive with from-scratch execution,
speedups range from 22-34x. This further supports the notion that parallelism and self-
adjusting computation are highly complementary methods. Self-adjusting computation
leads to substantial savings for small update sizes, and parallelism provides strong speedups
for larger update sizes. For moderate update sizes, both are effective and their benefits
combine to yield good total performance improvements.

200



Benchmark Problem size Input memory Tree size Memory
Spellcheck 106 strings 80MB 6M 312MB
Raytracer 8M pixels 192MB 24M 1.3GB
String Hash 108 chars 100MB 9.4M 462.5MB
Sequence 106 elems 20MB 33M 1.96GB
Tree 106 nodes 20MB 18.8M 1.3GB
Filter 107 elems 200MB 2.48M 193MB

Table 10.7: RSP tree sizes and the amount of memory consumed by the RSP tree for each benchmark
problem.

Tree size and memory usage

The RSP tree size, and hence the memory overhead of a self-adjusting algorithm depends
heavily on the granularity at which the data is stored and processed. Table 10.7 shows the
RSP tree sizes and memory usage of each of our benchmarks at their default granularity.
For most algorithms, the memory overhead ranges between 1-7x the input size, which is
consistent with prior work on sequential self-adjusting computation [9]. The outliers are our
list contraction and tree contraction benchmarks, which use substantially more memory
because they perform O (n log(n ))work over O (log(n )) rounds of computation, all of which is
represented in the RSP tree, essentially leading to the tree size being an additional factor of
log(n ) larger than the input. A more sophisticated implementation of these algorithms could
achieve O (n )work by using compaction on the set of live nodes at each round. This could
reduce their memory footprint, and would be interesting to explore in future work.

The cost of garbage collection

When a self-adjusting computation is discarded, the resulting RSP tree must be destroyed,
which also entails removing its read nodes from the reader sets of any modifiables that they
read. Table 10.8 shows the runtime of garbage collection for each of the RSP trees for our six
benchmark problems compared to the performance of the initial run. Note that for all of the
problems other than Raytracer, garbage collection time is at least a factor of 500 less than
the actual computation. For Raytracer, garbage collection is slightly more costly since it has
many readers per modifiable and hence has to pay the cost of deletion from the reader sets.
Even then, garbage collection takes less than 1% of the time of the initial run.

10.6.2 Additional Experiments
Finally, we perform two small experiments that measure the effect that data granularity and
the sizes of reader sets have on the overall performance of self-adjusting computation.

201



Benchmark Initial Run Garbage Collection (32ht)
Spellcheck 750ms 158us
Raytracer 323ms 1.99ms
String Hash 61ms 101us
Sequence 464ms 437us
Tree 242ms 493us
Filter 31ms 31us

Table 10.8: The cost of garbage collection for each benchmark problem. The initial run is the
performance on 32 threads or 32 hyperthreads, whichever is better.

Granularity Memory
Run Update Run Update
p = 1 k = 1 p = 32ht k = 104

16 1.85GB 6.8s 17us 158ms 4ms
32 925MB 4.11s 15us 95ms 3.64ms
64 462.5MB 3.03s 14us 62ms 3.12ms
128 231.25MB 2.5s 14us 44ms 3.04ms
256 115.63MB 2.3s 15us 34ms 2.88ms
512 57.81MB 2.1s 18us 31ms 2.83ms
1024 28.79MB 2.0s 24us 29ms 3.68ms
2048 14.45MB 2.0s 39us 28ms 5.79ms

Table 10.9: Memory usage, initial run speed and update speed for various granularities in the
hashing benchmark with size n = 108. Memory denotes memory used by the RSP tree.

Granularity tradeoffs

An important consideration when implementing parallel algorithms is careful control of
granularity. This is perhaps even more true when implementing self-adjusting algorithms,
since the granularity of the data and the functions executed by readers will directly influence
the size of the RSP tree and the overhead of modifiables. A larger granularity will lead to
lower work and memory overheads. The tradeoff, however, is that if the granularity is too
large, updates will slow down, since more irrelevant information will be recomputed when a
small piece of the input is updated. Here, we will explore the performance implications and
tradeoffs that come from tuning the granularity of our string hashing benchmark. Results are
shown in Table 10.9.

As expected, the memory usage and work overhead decreases monotonically as the
granularity is increased. The more interesting aspect to look at is the update performance.
Note that it is not necessarily the case that the smallest granularity will lead to the fastest
updates. Although a smaller granularity means less redundant data is read and recomputed,
it also leads to larger RSP trees, which might negate the benefit. The optimal granularity
for update speed will therefore be one that balances the tradeoff between reading data and
reducing the RSP tree size. For our string hashing benchmark, we observe that the optimal
tradeoff occurs at a granularity of 128 characters for single character (k = 1) updates, and
at 512 characters for larger (k = 104) updates. This phenomena is explainable by cache line

202



# Mods Readers/Mod Run Update
1 106 55.1ms 191ms

10 105 48.9ms 183ms
102 104 47.2ms 163ms
103 103 46.5ms 130ms
104 102 45.1ms 57.5ms
105 10 38.4ms 57.0ms
106 1 27.8ms 44.3ms

Table 10.10: Runtime of the reader-set size microbenchmark for varying numbers of input modifi-
ables. Run denotes the runtime of the initial run, and Update denotes the runtime of a making a
dynamic update to every modifiable.

reads. Using a granularity of 512 will reduce the depth of recursion, and hence the number
of cache misses by about 9, while reading a chunk of 512 characters corresponds to 8 cache
lines, which balance out.

Impact of reader-set size

Most self-adjusting computations, including all but one of our benchmarks, only have a
constant number of readers (often just one) per modifiable. The raytracer benchmark il-
lustrates the effect of having a large number of readers per modifiable, exhibiting a lesser
speedup compared to most of the others. Here, we present a small microbenchmark that
examines the performance impact of varying the number of readers of a modifiable. In
Table 10.10, we depict the results of experiment in which 106 workers in parallel each read
from a random modifiable and write its value to a unique output destination. We vary the
number of modifiables to observe the effect on performance.

We observe that for the initial run (the Run column), the performance is only marginally
impacted as the number of readers per mod varies from 10 to 106. The exception is when
there is only one expected reader per mod, in which case the performance is up to twice
as fast as the 106 reader case. This is because of the optimization we perform in which
modifiables with a single reader store that reader inline instead of allocating a linked data
structure. We measure the effect on updates (the Update column) by changing the value of
all of the modifiables and propagating the result. We observe that when varying from 10 to
106 reads per modifiable, performance is at most a factor of four slower, or a factor of five
slower compared to the one reader case.

10.7 Discussion
In this work, we designed, analyzed, and implemented a system for parallel self-adjusting
computation. We showed that a small set of primitives is sufficient to express self-adjusting
programs that can exploit arbitrary nested parallelism. Compared to previous work, this is
the first such system with theoretical bounds on the runtime of the updates. Our experiments

203



show that the system is capable of producing dynamic algorithms that both vastly outperform
their static counterparts when performing small to moderately sized updates, and scale well
on multiprocessor machines. There are several interesting avenues down which future work
could lead.

Our implementation of self-adjusting computation comes as a library for C++, which
boasts the advantage that it is very portable and can be compiled with many compilers
on many different systems. We believe that implementing direct compiler support for our
primitives could, however, decrease the overhead introduced by dependency tracking and
SP tree construction, yielding more efficient algorithms. Direct compiler support for our
primitives would also make it easier to develop static analysis tools for detecting programmer
bugs in self-adjusting applications.

Sequential self-adjusting computation has been extended to support imperative compu-
tations, i.e. computations in which a variable can be written to multiple times sequentially.
Although our algorithms only support write-once computations, we believe that they can be
extended to efficiently support multi-write computations, as the SP tree structure should
contain sufficient information to correctly order successive writes. This direction has begun
being explored in Baweja’s masters thesis [19].

204



Chapter 11
Conclusion

Conclusion
With the scale and dynamism of today’s massive datasets and the fast-accelerating develop-
ment of parallel hardware, the study of algorithms that can process these datasets effectively
has seen a huge increase in investment from both the theoreticians and practitioners of
parallel algorithms in recent years. In this thesis, we argued that work-efficient parallel batch-
dynamic algorithms are a powerful tool for designing algorithms and systems for processing
the datasets of today and beyond. We have contributed to the foundation of work-efficient
parallel batch-dynamic algorithms by designing algorithms for key graph problems, such
as dynamic trees (Chapters 3—5), connectivity (Chapter 6), and minimum spanning trees
(Chapter 7). These algorithms have already proved to be useful and applicable, both by us
and by other researchers. Our work on parallel RC-Trees was shown to be a useful ingredient
in our incremental MST algorithm (Chapter 7), and in obtaining the first ever work-efficient
parallel algorithm for minimum cuts (Chapter 9). They have also been applied by other
researchers as an ingredient to implement the first near-linear work parallel algorithm for
depth-first search [74]. Our batch-dynamic connectivity algorithm similarly was the starting
point for the first polylogarithmic-work batch-dynamic MST algorithm of Tseng et al. [175].

Although not a batch-dynamic algorithm itself, our work-efficient parallel minimum cut
algorithm (Chapter 9) demonstrates how parallel batch-dynamic algorithms can be broadly
applied as subroutines in other non-dynamic algorithms with great success. Obtaining a
work-efficient algorithm for minimum cut was an open problem for decades, with all known
parallel algorithms incurring some work overhead in their processing of the 2-respecting
cut problem. It was parallel batch-dynamic algorithms that broke this barrier and allowed
a parallel algorithm to catch up to the efficiency of the best sequential algorithm. The key
ingredient was our framework for parallel evaluation of batched mixed operations on trees,
which is itself a general enough tool that it might find other applications too.

Finally, we have shown that there is hope for non-theoreticians to reap the benefits of
parallel batch-dynamic algorithms by designing the first theoretically efficient system for
parallel self-adjusting computation (Chapter 10). In this system, programmers implement
simple static parallel algorithms which are automatically converted into dynamic algorithms
which automatically support batching if updates are made in batches. We show experimen-
tally that our system enables static algorithms to produce updated results over large datasets
significantly faster than from-scratch execution, saving both work and parallel time.

205



206



Bibliography

[1] Umut A. Acar. Self-Adjusting Computation. PhD thesis, Department of Computer Science, Carnegie
Mellon University, May 2005. 1.2.4, 10.1

[2] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming. In ACM Symposium
on Principles of Programming Languages (POPL), 2002. 1.2.4, 10.1

[3] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective memoization. In ACM Symposium on
Principles of Programming Languages (POPL), 2003. 1.2.4, 10.1

[4] Umut A Acar, Guy E Blelloch, Robert Harper, Jorge L Vittes, and Shan Leung Maverick Woo. Dynamizing
static algorithms, with applications to dynamic trees and history independence. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2004. 1.2.1, 1.2.4, 3.1.1, 4.1, 10.1, 10.4.2

[5] Umut A Acar, Guy E Blelloch, and Jorge L Vittes. An experimental analysis of change propagation in
dynamic trees. In Algorithm Engineering and Experiments (ALENEX), 2005. 1.2.1, 1.2.1, 3.1.1, 3.2, 3.3,
3.4.4, 3.5, 3.5.3, 3.5.6, 4.1, 8.2

[6] Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Jorge L. Vittes. Kinetic algorithms via self-
adjusting computation. In European Symposium on Algorithms (ESA), 2006. 10.1

[7] Umut A. Acar, Alexander Ihler, Ramgopal Mettu, and Özgür Sümer. Adaptive Bayesian inference. In
Neural Information Processing Systems (NIPS), 2007. 10.1

[8] Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Duru Türkoğlu. Robust kinetic convex hulls in
3D. In European Symposium on Algorithms (ESA), 2008. 10.1

[9] Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat Tangwongsan. An experimental
analysis of self-adjusting computation. ACM Trans. Program. Lang. Syst., 32(1):1–53, 2009. 10.1, 10.6.1

[10] Umut A. Acar, Guy E. Blelloch, Ruy Ley-Wild, Kanat Tangwongsan, and Duru Türkoğlu. Traceable data
types for self-adjusting computation. In Programming Language Design and Implementation (PLDI),
2010. 10.1

[11] Umut A. Acar, Andrew Cotter, Benoît Hudson, and Duru Türkoğlu. Dynamic well-spaced point sets. In
Symposium on Computational Geometry (SoCG), 2010. 10.1

[12] Umut A. Acar, Andrew Cotter, Benoît Hudson, and Duru Türkoğlu. Parallelism in dynamic well-spaced
point sets. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2011. 10.1

[13] Umut A. Acar, Benoît Hudson, and Duru Türkoğlu. Kinetic mesh-refinement in 2D. In Symposium on
Computational Geometry (SoCG), 2011. 10.1

[14] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear measurements.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2012. 1.2.2, 7.4.2, 7.4.3, 7.4.4, 7.4.6, 7.4.6

[15] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining information in
fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264, 2005. 7.1

[16] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining information in
fully dynamic trees with top trees. ACM Trans. Algorithms (TALG), 1(2):243–264, 2005. 1.2.1, 1.2.1, 3.1.1,
3.1.1, 3.2.2, 3.5, 8.2

[17] Alexandr Andoni, Clifford Stein, Zhao Song, Zhengyu Wang, and Peilin Zhong. Parallel graph connectivity
in log diameter rounds. In IEEE Symposium on Foundations of Computer Science (FOCS), 2018. 1.2.2

[18] Baruch Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for Ultracomputer and PRAM.
In International Conference on Parallel Processing (ICPP), 1983. 6.1

207



[19] Anubhav Baweja. Applications and Extensions of Parallel Self-adjusting Computation. PhD thesis,
Carnegie Mellon University, 2021. 10.7

[20] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In ACM
Symposium on Theory of Computing (STOC), 1996. 7.4.6

[21] Omer Berkman and Uzi Vishkin. Finding level-ancestors in trees. J. Comput. Syst. Sci., 48(2):214–230,
1994. 4, 3.5.3

[22] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar, and Rafael Pasquin. Incoop:
MapReduce for incremental computations. In ACM Symposium on Cloud Computing (SoCC), 2011. 10.1

[23] Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A Acar, and Rafael Pasquin. Incoop:
Mapreduce for incremental computations. In ACM Symposium on Cloud Computing, 2011. 1.1

[24] Pramod Bhatotia, Pedro Fonseca, Umut A. Acar, Björn B Brandenburg, and Rodrigo Rodrigues. iThreads:
A threading library for parallel incremental computation. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2015. 10.1

[25] Guy E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3), March 1996. 1.2.2

[26] Guy E. Blelloch and Margaret Reid-Miller. Fast set operations using treaps. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 1998. 7.4.1, 7.4.4

[27] Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. Just join for parallel ordered sets. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 2016. 7.4.1, 7.4.4

[28] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. ParlayLib-a toolkit for parallel algorithms on
shared-memory multicore machines. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2020. 10.5

[29] Guy E. Blelloch, Jeremy T Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in the binary-
forking model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2020. 2.1.1

[30] Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations by work stealing. J.
ACM, 46(5):720–748, 1999. 2.1.1

[31] Otakar Boruvka. O jistém problému minimálním. Práce Mor. Prırodved. Spol. v Brne (Acta Societ. Scienc.
Natur. Moravicae), 3(3):37–58, 1926. 1.2.2

[32] Sebastian Burckhardt, Daan Leijen, Caitlin Sadowski, Jaeheon Yi, and Thomas Ball. Two for the price of
one: A model for parallel and incremental computation. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2011. 1.2.4, 10.1

[33] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum spanning tree
weight in sublinear time. SIAM J. Comput., 34(6):1370–1379, 2005. 7.4.3

[34] Yan Chen, Joshua Dunfield, Matthew A. Hammer, and Umut A. Acar. Implicit self-adjusting computation
for purely functional programs. In International Conference on Functional Programming (ICFP), 2011.
10.1

[35] Yan Chen, Joshua Dunfield, and Umut A. Acar. Type-directed automatic incrementalization. In Program-
ming Language Design and Implementation (PLDI), 2012. 10.1

[36] Yan Chen, Umut A. Acar, and Kanat Tangwongsan. Functional programming for dynamic and large data
with self-adjusting computation. In International Conference on Functional Programming (ICFP), Sep
2014. 1.2.4, 10.1

[37] Joseph Cheriyan, Ming-Yang Kao, and Ramakrishna Thurimella. Scan-first search and sparse certificates:
an improved parallel algorithm for k -vertex connectivity. SIAM J. Comput., 22(1):157–174, 1993. 3, 9.4.4,
19, 9.4.5

[38] Richard Cole. Parallel merge sort. SIAM J. on Computing, 17(4):770–785, 1988. 2.2

[39] Richard Cole and Uzi Vishkin. Approximate and exact parallel scheduling with applications to list, tree
and graph problems. In IEEE Symposium on Foundations of Computer Science (FOCS), 1986. 3.3.2, 5.1

208



[40] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel list ranking.
Information and Control, 70(1):32–53, 1986. 5.1, 18, 5.2, 5.6

[41] Richard Cole and Uzi Vishkin. Approximate parallel scheduling. II. Applications to logarithmic-time
optimal parallel graph algorithms. Information and computation, 92(1):1–47, 1991. 5.1, 6.1

[42] Richard Cole, Philip N Klein, and Robert E Tarjan. Finding minimum spanning forests in logarithmic
time and linear work using random sampling. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 1996. 1.2.2, 6.1, 7.3.1, 9.2

[43] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellerstein, Khaled Elmeleegy, and Russell Sears.
Mapreduce online. In Nsdi, volume 10, page 20, 2010. 1.1

[44] Michael S Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-window model.
In European Symposium on Algorithms (ESA), 2013. 7.1, 7.4.1, 43, 7.4.2, 7.4.3, 7.4.4, 7.4.4, 7.4.6

[45] Sajal K Das and Paolo Ferragina. An o (n )work EREW parallel algorithm for updating MST. In European
Symposium on Algorithms (ESA), 1994. 1.2.2, 7.1

[46] Sajal K Das and Paolo Ferragina. Parallel Dynamic Algorithms for Minimum Spanning Trees. Citeseer,
1995. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.136&rep=rep1&type=pdf. 7.1

[47] Sajal K Das and Paolo Ferragina. An EREW PRAM algorithm for updating minimum spanning trees.
Parallel Process. Lett., 9(01):111–122, 1999. 7.1

[48] Mayur. Datar, Aristides. Gionis, Piotr. Indyk, and Rajeev. Motwani. Maintaining stream statistics over
sliding windows. SIAM J. on Computing, 31(6):1794–1813, 2002. 7.1, 7.4

[49] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi: 10.1145/1327452.1327492. URL https://doi.
org/10.1145/1327452.1327492. 1.1

[50] Alan Demers, Thomas Reps, and Tim Teitelbaum. Incremental evaluation of attribute grammars with
application to syntax directed editors. In ACM Symposium on Principles of Programming Languages
(POPL), 1981. 1.2.4, 10.1

[51] Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh Sawlani, and Xiaorui Sun.
Parallel batch-dynamic graphs: Algorithms and lower bounds. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2020. 1.4

[52] Laxman Dhulipala, Quanquan C Liu, Julian Shun, and Shangdi Yu. Parallel batch-dynamic k-clique
counting. In Symposium on Algorithmic Principles of Computer Systems (APOCS), 2021. 1.4, 5.1

[53] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In ACM Symposium on Theory
of Computing (STOC), 1987. 10.1.1

[54] Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):
269–271, 1959. 1.2.2

[55] David Eppstein, Zvi Galil, Giuseppe F Italiano, and Amnon Nissenzweig. Sparsification–a technique for
speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997. 1.2.2, 6.1, 7.1, 7.4.4

[56] Jason Evans. A scalable concurrent malloc (3) implementation for FreeBSD. In Proceedings of the BSDCan
conference, Ottawa, Canada, 2006. 10.5

[57] Martín Farach-Colton and Meng-Tsung Tsai. Exact sublinear binomial sampling. Algorithmica, 73(4):
637–651, 2015. 2.3, 9.4.2, 50, 51

[58] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races in Cilk programs.
Theory of Computing Systems, 32(3):301–326, 1999. 1.2.4, 10.1

[59] Paolo Ferragina. An EREW PRAM fully-dynamic algorithm for MST. In International Parallel Processing
Symposium (IPPS), 1995. 7.1

[60] Paolo Ferragina. A technique to speed up parallel fully dynamic algorithms for MST. J. Parallel Distrib.
Comput., 31(2):181–189, 1995. 7.1

209

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.136&rep=rep1&type=pdf
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492


[61] Paolo Ferragina and Fabrizio Luccio. Batch dynamic algorithms for two graph problems. In International
Conference on Parallel Architectures and Languages Europe, 1994. 1.1, 1.2.2, 7.1

[62] Paolo Ferragina and Fabrizio Luccio. Three techniques for parallel maintenance of a minimum spanning
tree under batch of updates. Parallel Process. Lett., 6(02):213–222, 1996. 1.1, 7.1

[63] Greg N Frederickson. Data structures for on-line updating of minimum spanning trees, with applications.
SIAM J. on Computing, 14(4):781–798, 1985. 1.2.1, 1.2.1, 3.1.1, 3.1.1, 3.3, 3.2.1, 6.1, 7.1

[64] Greg N Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest
spanning trees. SIAM J. on Computing, 26(2):484–538, 1997. 1.2.1, 1.2.1, 3.1.1, 3.1.1

[65] Greg N Frederickson. A data structure for dynamically maintaining rooted trees. J. Algorithms, 24(1):
37–65, 1997. 1.2.1, 1.2.1, 3.1.1, 3.1.1

[66] Wai Shing Fung, Ramesh Hariharan, Nicholas J. A. Harvey, and Debmalya Panigrahi. A general framework
for graph sparsification. SIAM J. Comput., 48(4):1196–1223, 2019. 40, 7.4.6

[67] Harold N Gabow. A matroid approach to finding edge connectivity and packing arborescences. J. Comput.
Syst. Sci., 50(2):259–273, 1995. 1.2.3, 9.1

[68] Paweł Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in O (m log2 n ) time. In International
Colloquium on Automata, Languages and Programming (ICALP), 2020. 1.2.3, 7.2, 9.1, 9.2, 9.3.2, 9.4.1,
9.6.2

[69] Hillel Gazit. An optimal randomized parallel algorithm for finding connected components in a graph.
SIAM J. on Computing, 20(6):1046–1067, 1991. 6.1, 6.4.2, 7.4.7

[70] Hillel Gazit, Gary L Miller, and Shang-Hua Teng. Optimal tree contraction in the EREW model. In
Concurrent Computations, pages 139–156. Springer, 1988. 3.2.1, 5.5.1

[71] Barbara Geissmann and Lukas Gianinazzi. Parallel minimum cuts in near-linear work and low depth. In
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2018. 1.2.3, 7.4.4, 8.1, 9.1

[72] Mohsen Ghaffari and Fabian Kuhn. Distributed minimum cut approximation. In International Symposium
on Distributed Computing (DISC), 2013. 9.2

[73] Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge connectivity via
random 2-out contractions. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2020. 7.4.4

[74] Mohsen Ghaffari, Christoph Grunau, and Jiahao Qu. Nearly work-efficient parallel DFS in undirected
graphs. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2023. 1.4, 3.6, 9.7, 11

[75] David Gibb, Bruce Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity with improved
worst case update time and sublinear space. arXiv preprint arXiv:1509.06464 [cs.DS], 2015. 1.2.2, 6.1

[76] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel algorithms. In IEEE
Symposium on Foundations of Computer Science (FOCS), 1991. 2.2

[77] Ashish Goel, Michael Kapralov, and Ian Post. Single pass sparsification in the streaming model with edge
deletions. arXiv preprint, arXiv:1203.4900 [cs.DS], 2012. 7.4.6, 44

[78] Andrew Goldberg, Serge Plotkin, and Gregory Shannon. Parallel symmetry-breaking in sparse graphs. In
ACM Symposium on Theory of Computing (STOC), 1987. 5.1

[79] Andrew V Goldberg and Serge A Plotkin. Parallel (δ+ 1)-coloring of constant-degree graphs. Inf. Process.
Lett., 25(4):241–245, 1987. 5.1, 18, 5.2

[80] Andrew V Goldberg, Michael D Grigoriadis, and Robert E Tarjan. Use of dynamic trees in a network
simplex algorithm for the maximum flow problem. Mathematical Programming, 50(1-3):277–290, 1991.
3.1.1

[81] Tal Goldberg and Uri Zwick. Optimal deterministic approximate parallel prefix sums and their applications.
In Israel Symposium on the Theory of Computing and Systems, 1995. 2.2, 5.2, 5.3, 5.5.1

[82] Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society for Industrial

210



and Applied Mathematics, 9(4):551–570, 1961. 1.2.3

[83] Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. Incremental exact min-cut in polylogarithmic
amortized update time. ACM Trans. Algorithms, 14(2):17:1–17:21, 2018. 7.4.4

[84] Yan Gu, Julian Shun, Yihan Sun, and Guy E Blelloch. A top-down parallel semisort. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 2015. 2.2, 3.3.2, 7.3.1

[85] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A Thekkath, Yuan Yu, and Li Zhuang. Nectar:
Automatic management of data and computation in datacenters. In USENIX Symposium on Operating
Systems Design and Implementation, 2010. 1.1

[86] Shay Halperin and Uri Zwick. An optimal randomized logarithmic time connectivity algorithm for the
EREW PRAM (extended abstract). In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 1994. 6.1

[87] Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM algorithms for finding spanning forests.
In J. Algorithms, 2000. 6.1

[88] Matthew Hammer, Umut A. Acar, Mohan Rajagopalan, and Anwar Ghuloum. A proposal for parallel
self-adjusting computation. In ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming
(DAMP). ACM, 2007. 1.2.4, 10.1

[89] Matthew Hammer, Georg Neis, Yan Chen, and Umut A. Acar. Self-adjusting stack machines. In ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
2011. 10.1

[90] Matthew A. Hammer, Umut A. Acar, and Yan Chen. CEAL: a C-based language for self-adjusting compu-
tation. In Programming Language Design and Implementation (PLDI), 2009. 1.2.4, 10.1

[91] Matthew A. Hammer, Khoo Yit Phang, Michael Hicks, and Jeffrey S. Foster. Adapton: Composable,
demand-driven incremental computation. In Programming Language Design and Implementation
(PLDI), 2014. 10.1

[92] JX Hao and James B Orlin. A faster algorithm for finding the minimum cut in a directed graph. J. Algorithms,
17(3):424–446, 1994. 1.2.3

[93] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J. on
Computing, 13(2):338–355, 1984. 9.6.2

[94] Monika R. Henzinger and Valerie King. Randomized fully dynamic graph algorithms with polylogarithmic
time per operation. J. ACM, 46(4):502–516, 1999. 3.1.1

[95] Monika R Henzinger and Valerie King. Maintaining minimum spanning forests in dynamic graphs. SIAM
J. on Computing, 31(2):364–374, 2001. 1.2.2

[96] Monika Rauch Henzinger and Valerie King. Randomized dynamic graph algorithms with polylogarithmic
time per operation. In ACM Symposium on Theory of Computing (STOC). ACM, 1995. 1.2.1, 1.2.1, 1.2.2,
3.5.3

[97] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. Computing connected components on parallel
computers. Commun. ACM, 22(8):461–464, August 1979. 6.1

[98] Jacob Holm and Kristian de Lichtenberg. Top-trees and dynamic graph algorithms. Master’s thesis,
University of Copenhagen, 1998. 1.2.1, 1.2.1, 3.1.1, 3.1.1

[99] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM, 48(4):723–760,
2001. 7.1

[100] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM, 48(4):723–760,
2001. 1.2.2, 6.1, 6.2

[101] Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic minimum spanning forest.

211



In European Symposium on Algorithms (ESA), 2015. 7.1

[102] Jacob Holm, Eva Rotenberg, and Alice Ryhl. Splay top trees. In SIAM Symposium on Simplicity in
Algorithms (SOSA), 2023. 3.1.1

[103] Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic connectivity in
O (log n (log log n )2) amortized expected time. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 510–520, 2017. 1.2.2, 6.1, 6.7

[104] Lorenz Hübschle-Schneider and Peter Sanders. Parallel weighted random sampling. ACM Transactions
on Mathematical Software (TOMS), 48(3):1–40, 2022. 9.4.2

[105] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. SIGOPS Oper. Syst. Rev., 41(3):59–72, March 2007. 1.1

[106] Anand Iyer, Li Erran Li, and Ion Stoica. CellIQ : Real-time cellular network analytics at scale. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2015. 6.1

[107] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. Time-evolving graph processing at
scale. In International Workshop on Graph Data Management Experiences and Systems (GRADES), 2016.
6.1

[108] Vojtěch Jarník. O jistém problému minimálním. Práca Moravské Prírodovedecké Spolecnosti, 6:57–63,
1930. 1.2.2

[109] Donald B Johnson and Panagiotis Metaxas. Optimal algorithms for the vertex updating problem of a
minimum spanning tree. In International Parallel Processing Symposium (IPPS), 1992. 1.1, 3.3.2, 7.1

[110] Hermann Jung and Kurt Mehlhorn. Parallel algorithms for computing maximal independent sets in trees
and for updating minimum spanning trees. Inf. Process. Lett., 27(5):227–236, 1988. 5.1, 7.1

[111] Bruce M Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogarithmic worst
case time. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2013. 1.2.2, 6.1, 6.7

[112] David Karger. Random sampling in graph optimization problems. PhD thesis, Stanford University, 1995.
2.3, 9.5, 56, 57, 9.5

[113] David R Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 1993. 1.2.3, 8.5, 9.1, 1, 9.3, 9.3.2

[114] David R Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000. 1.2.1, 1.2.3, 8.1, 9.1

[115] David R Karger and Rajeev Motwani. Derandomization through approximation: An NC algorithm for
minimum cuts. In ACM Symposium on Theory of Computing (STOC), 1994. 9.2, 9.4.5

[116] David R Karger and Clifford Stein. A new approach to the minimum cut problem. J. ACM, 43(4):601–640,
1996. 1.2.3, 9.1, 9.4.1

[117] David R Karger, Philip N Klein, and Robert E Tarjan. A randomized linear-time algorithm to find minimum
spanning trees. J. ACM, 42(2):321–328, 1995. 1.2.2, 3.5.5, 7.1, 9.3.2

[118] David R. Karger, Noam Nisan, and Michal Parnas. Fast connected components algorithms for the EREW
PRAM. SIAM J. on Computing, 28(3):1021–1034, February 1999. 6.1

[119] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for MapReduce. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010. 1.1

[120] Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Faster worst case deter-
ministic dynamic connectivity. In European Symposium on Algorithms (ESA), 2016. 1.2.2, 6.1

[121] Valerie King. A simpler minimum spanning tree verification algorithm. Algorithmica, 18:263–270, 1997.
3.5.5, 7.2

[122] Valerie King, Chung Keung Poon, Vijaya Ramachandran, and Santanu Sinha. An optimal EREW PRAM
algorithm for minimum spanning tree verification. Inf. Process. Letters, 62(3):153–159, 1997. 3.5.5, 3.5.5

[123] János Komlós. Linear verification for spanning trees. Combinatorica, 5(1):57–65, 1985. 7.2

212



[124] Tsvi Kopelowitz, Ely Porat, and Yair Rosenmutter. Improved worst-case deterministic parallel dynamic
minimum spanning forest. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
2018. 7.1

[125] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical society, 7(1):48–50, 1956. 1.2.2

[126] Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian Shun. Parallel batch-dynamic
algorithms for k-core decomposition and related graph problems. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2022. 1.4, 5.1

[127] Michael Luby. A simple parallel algorithm for the maximal independent set problem. In ACM Symposium
on Theory of Computing (STOC), 1985. 5.1

[128] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In ACM SIGMOD International
Conference on Management of Data, 2010. 1.1

[129] David W Matula. A linear time 2+ ϵ approximation algorithm for edge connectivity. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), 1993. 9.1, 9.2, 9.4.5

[130] Robert McColl, Oded Green, and David A Bader. A new parallel algorithm for connected components in
dynamic graphs. In IEEE International Conference on High Performance Computing (HiPC), 2013. 6.1

[131] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, and Theo
Vassilakis. Dremel: interactive analysis of web-scale datasets. Commun. ACM, 54(6):114–123, June 2011.
1.1

[132] Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In IEEE Symposium on
Foundations of Computer Science (FOCS). IEEE, October 1985. 1.2.1, 3.2.1, 4.4

[133] Gary L. Miller and John H. Reif. Parallel tree contraction part 1: Fundamentals. In Randomness and
Computation, pages 47–72. JAI Press, Greenwich, Connecticut, 1989. Vol. 5. 4.1, 4.5.1

[134] Gary L. Miller and John H. Reif. Parallel tree contraction part 2: Further applications. SIAM J. on
Computing, 20(6):1128–1147, 1991. 4.1

[135] Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto Tamassia. Complexity models
for incremental computation. Theoretical Computer Science (TCS), 130(1), 1994. 1.2.2

[136] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. Naiad:
a timely dataflow system. In ACM Symposium on Operating Systems Principles, 2013. 1.1

[137] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs and capacitated
graphs. SIAM J. Discrete Math., 5(1):54–66, 1992. 1.2.3

[138] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k -connected
spanning subgraph of a k -connected graph. Algorithmica, 7(1-6):583–596, 1992. 1.2.3

[139] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-case update
time: adaptive, las vegas, and O (n 1/2−ϵ)-time. In ACM Symposium on Theory of Computing (STOC). ACM,
2017. 1.2.2

[140] C St JA Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., 1(1):445–450,
1961. 1.2.3

[141] Shaunak Pawagi. A parallel algorithm for multiple updates of minimum spanning trees. In International
Conference on Parallel Processing (ICPP), 1989. 1.1, 7.1

[142] Shaunak Pawagi and Owen Kaser. Optimal parallel algorithms for multiple updates of minimum spanning
trees. Algorithmica, 9(4):357–381, 1993. 1.1, 7.1

[143] Shaunak Pawagi and IV Ramakrishnan. An O (log n ) algorithm for parallel update of minimum spanning
trees. Information Processing Letters, 22(5):223–229, 1986. 7.1

[144] Seth Pettie and Vijaya Ramachandran. A randomized time-work optimal parallel algorithm for finding a

213



minimum spanning forest. SIAM J. on Computing, 31(6):1879–1895, 2002. 5.1, 6.1

[145] C. A. Phillips. Parallel graph contraction. In ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), 1989. 6.1

[146] Serge A Plotkin, David B Shmoys, and Éva Tardos. Fast approximation algorithms for fractional packing
and covering problems. Math. Oper. Res., 20(2):257–301, 1995. 9.1, 3

[147] Chung Keung Poon and Vijaya Ramachandran. A randomized linear work EREW PRAM algorithm to find
a minimum spanning forest. In International Symposium on Algorithms and Computation (ISAAC), 1997.
6.1

[148] Robert Clay Prim. Shortest connection networks and some generalizations. The Bell System Technical
Journal, 36(6):1389–1401, 1957. 1.2.2

[149] Mihai Pătras, cu and Erik D Demaine. Logarithmic lower bounds in the cell-probe model. SIAM J. on
Computing, 35(4):932–963, 2006. 6.1

[150] W. Pugh and T. Teitelbaum. Incremental computation via function caching. In ACM Symposium on
Principles of Programming Languages (POPL), 1989. 1.2.4, 10.1

[151] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM, 33(6), 1990. 6.3.2

[152] Sanguthevar Rajasekaran and John H. Reif. Optimal and sublogarithmic time randomized parallel sorting
algorithms. SIAM J. on Computing, 18(3), 1989. 9.3.2

[153] John H. Reif and Sandeep Sen. Parallel computational geometry: An approach using randomization. In
Handbook of Computational Geometry, chapter 18, pages 765–828. Elsevier Science, 1999. 2.2

[154] John H Reif and Stephen R Tate. Dynamic parallel tree contraction. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 1994. 4.1, 4.6

[155] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, September 2008. ISSN
0004-5411. doi: 10.1145/1391289.1391291. URL http://doi.acm.org/10.1145/1391289.1391291. 1.2.2

[156] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer Özsu. The ubiquity of large
graphs and surprising challenges of graph processing. Proceedings of the VLDB Endowment (PVLDB), 11
(4):420–431, 2017. 6.1

[157] Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplification and parallelization.
SIAM J. Comput., 17(6):1253–1262, 1988. 3.5.3, 3, 3.5.3, 8.4, 9.6.1, 9.6.2

[158] Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. Accelerating dynamic graph analytics on GPUs.
Proceedings of the VLDB Endowment (PVLDB), 11(1):107–120, September 2017. 6.1

[159] Xiaojun Shen and Weifa Liang. A parallel algorithm for multiple edge updates of minimum spanning
trees. In International Parallel Processing Symposium (IPPS), 1993. 1.1, 7.1

[160] Yossi Shiloach and Uzi Vishkin. An O (log n ) parallel connectivity algorithm. J. Algorithms, 3(1):57–67,
1982. 1.2.2, 6.1

[161] Julian Shun, Laxman Dhulipala, and Guy Blelloch. A simple and practical linear-work parallel algorithm
for connectivity. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2014. 6.1

[162] Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Work-efficient parallel
union-find with applications to incremental graph connectivity. In European Conference on Parallel
Processing (Euro-Par), 2016. 6.1, 7.1, 7.4.7

[163] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci., 26(3):
362–391, 1983. 1.2.1, 1.2.1, 3.1.1, 3.1.1, 3.2, 3.4.3, 3.5.3, 8.1, 8.2

[164] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM, 32(3):
652–686, 1985. 1.2.1, 1.2.1, 3.1.1, 3.1.1, 3.5.3

[165] Philip M. Spira and A Pan. On finding and updating spanning trees and shortest paths. SIAM J. on
Computing, 4(3):375–380, 1975. 7.1

214

http://doi.acm.org/10.1145/1391289.1391291


[166] Xiaoming Sun and David P. Woodruff. Tight bounds for graph problems in insertion streams. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM), 2015. 7.4

[167] Robert E. Tarjan and Renato F. Werneck. Self-adjusting top trees. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2005. 1.2.1, 1.2.1, 3.1.1, 3.1.1

[168] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215–225, 1975.
1.2.2

[169] Robert Endre Tarjan. Complexity of monotone networks for computing conjunctions. In Annals of
Discrete Mathematics, volume 2, pages 121–133. Elsevier, 1978. 3.5.4

[170] Robert Endre Tarjan. Applications of path compression on balanced trees. J. ACM, 26(4):690–715, 1979.
3.5.5

[171] Robert Endre Tarjan. Data structures and network algorithms. SIAM, 1983. 1.2.1, 1.2.2, 3.5.5, 7.1, 7.3, 42

[172] Mikkel Thorup. Decremental dynamic connectivity. J. Algorithms, 33(2):229–243, 1999. 1.2.2

[173] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In ACM Symposium on Theory of
Computing (STOC). ACM, 2000. 1.2.2, 6.1

[174] Thomas Tseng, Laxman Dhulipala, and Guy Blelloch. Batch-parallel euler tour trees. In Algorithm
Engineering and Experiments (ALENEX), 2019. 1.2.1, 1.2.1, 1.2.1, 3.1.1, 4.1, 4.6, 6.1, 6.3, 6.3.2, 6.3.2, 6.4.1,
6.4.1, 6.4.2, 6.4.4, 6.4.4, 6.5.2

[175] Tom Tseng, Laxman Dhulipala, and Julian Shun. Parallel batch-dynamic minimum spanning forest
and the efficiency of dynamic agglomerative graph clustering. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2022. 1.4, 5.1, 6.7, 11

[176] Yung Hyang Tsin. On handling vertex deletion in updating spanning trees. Information Processing Letters,
27(4):167–168, 1988. 7.1

[177] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33:103–111, 1990. 4.2

[178] Peter Varman and Kshitij Doshi. A parallel vertex insertion algorithm for minimum spanning trees. In
International Colloquium on Automata, Languages and Programming (ICALP), 1986. 7.1

[179] Peter Varman and Kshitij Doshi. An efficient parallel algorithm for updating minimum spanning trees.
Theoretical Computer Science (TCS), 58(1-3):379–397, 1988. 7.1

[180] Uzi Vishkin. An optimal parallel connectivity algorithm. Discrete Applied Mathematics, 9(2):197–207,
1984. 6.1

[181] Keval Vora, Rajiv Gupta, and Guoqing Xu. KickStarter: Fast and accurate computations on streaming
graphs via trimmed approximations. In International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2017. 6.1

[182] Zhengyu Wang. An improved randomized data structure for dynamic graph connectivity. arXiv preprint
arXiv:1510.04590 [cs.DS], 2015. 1.2.2, 6.1

[183] Renato F Werneck. Design and analysis of data structures for dynamic trees. PhD thesis, Princeton
University, 2006. 5.4.1

[184] C. Wickramaarachchi, A. Kumbhare, M. Frincu, C. Chelmis, and V. K. Prasanna. Real-time analytics for
fast evolving social graphs. In IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2015. 6.1

[185] Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2013. 1.2.2, 6.1

[186] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case update time.
In ACM Symposium on Theory of Computing (STOC). ACM, 2017. 1.2.2

215


	1 Introduction and Overview
	1.1 Introduction
	1.2 Overview of Results
	1.2.1 Parallel Rake-Compress Trees
	1.2.2 Parallel Batch-Dynamic Graphs
	1.2.3 Parallel Minimum Cut
	1.2.4 Parallel Self-Adjusting Computation

	1.3 Publications and Attributions
	1.4 Broader Outlook and Thesis Statement

	2 Preliminaries
	2.1 Models of Computation
	2.1.1 Models of Parallelism
	2.1.2 Concurrency

	2.2 Parallel Primitives
	2.3 Randomness

	I Parallel Rake-Compress Trees
	3 Parallel Rake-Compress Trees
	3.1 Introduction
	3.1.1 Related Work

	3.2 Rake-Compress Trees
	3.2.1 Parallel Tree Contraction
	3.2.2 From Tree Contraction to RC-Trees
	3.2.3 Representing RC-Trees
	3.2.4 Balanced RC-Trees
	3.2.5 Rooted RC-Trees

	3.3 Parallel Batch-Dynamic RC-Trees
	3.3.1 Performing Structural Updates to RC-Trees
	3.3.2 Handling Trees of Arbitrary Degree
	3.3.3 Maintaining Augmented Values in RC-Trees

	3.4 Decomposition Properties and Queries
	3.4.1 The Cluster Path
	3.4.2 The Common Boundary
	3.4.3 Path Decompositions and Queries
	3.4.4 Subtree Decompositions and Queries

	3.5 Batch Queries on RC-Trees
	3.5.1 Batch Connectivity Queries
	3.5.2 Batch Subtree Queries
	3.5.3 Batch LCA Queries
	3.5.4 Batch Path Queries with Inverses
	3.5.5 Batch Path-Minimum/Maximum Queries
	3.5.6 Batch Nearest Marked Vertex Queries

	3.6 Discussion

	4 Randomized Batch-Dynamic Parallel Tree Contraction
	4.1 Introduction
	4.2 Round-Synchronous Algorithms
	4.3 Algorithmic Dynamization
	4.3.1 Correctness
	4.3.2 Cost Analysis

	4.4 Dynamizing Tree Contraction
	4.5 Stability Analysis
	4.5.1 Analysis of Construction
	4.5.2 Analysis of Dynamic Updates

	4.6 Discussion

	5 Deterministic Batch-Dynamic Parallel Tree Contraction
	5.1 Introduction
	5.2 A Deterministic Contraction Algorithm
	5.3 A Deterministic Dynamic Update Algorithm
	5.4 Performance Analysis
	5.4.1 Round and Tree-Size Bounds
	5.4.2 Analysis of the Static Algorithm
	5.4.3 Analysis of the Update Algorithm

	5.5 Optimizations
	5.5.1 A Lower Span Static Algorithm
	5.5.2 Eliminating Concurrent Writes
	5.5.3 A Lower Span Dynamic Algorithm
	5.5.4 A Lower Span Randomized Algorithm

	5.6 Discussion


	II Parallel Batch-Dynamic Graph Algorithms
	6 Parallel Batch-Dynamic Graph Connectivity
	6.1 Introduction
	6.2 The Sequential Algorithm and Data Structure
	6.3 Parallel Data Structures
	6.3.1 Adjacency Arrays
	6.3.2 Augmented Euler-Tour Trees

	6.4 A Simple Parallel Algorithm
	6.4.1 Connectivity Queries
	6.4.2 Inserting Batches of Edges
	6.4.3 Deleting Batches of Edges
	6.4.4 Cost Bounds

	6.5 A Faster Parallel Algorithm
	6.5.1 The Interleaved Deletion Algorithm
	6.5.2 Cost Bounds

	6.6 Analysis of Batching
	6.7 Discussion

	7 Parallel Batch-Incremental Minimum Spanning Trees
	7.1 Introduction
	7.2 The Compressed Path Tree
	7.2.1 A Parallel Algorithm for Compressed Path Trees
	7.2.2 Analysis

	7.3 Batch-Incremental Minimum Spanning Forest
	7.3.1 Analysis

	7.4 Applications to the Sliding Window Model
	7.4.1 Graph Connectivity
	7.4.2 Bipartiteness
	7.4.3 Approximate MSF Weight
	7.4.4 k-Certificate and Graph k-Connectivity
	7.4.5 Cycle-Freeness
	7.4.6 Graph Sparsification
	7.4.7 Connection to Batch-Incremental Algorithms

	7.5 Discussion


	III Parallel Minimum Cuts
	8 Batch-Dynamic Trees with Mixed Queries and Updates
	8.1 Introduction
	8.2 RC-Simple Operation Sets
	8.3 Batched Mixed Operations Algorithm
	8.4 Path Updates and Path/Subtree Queries
	8.5 Discussion

	9 Parallel Minimum Cuts
	9.1 Introduction
	9.2 Producing the Tree Packing
	9.3 Parallel log n-Approximate Minimum Cut
	9.3.1 Mixed Connectivity and Component Weight
	9.3.2 Parallel k-Approximate Minimum Cut

	9.4 Sampling, Certificates, and Low-Weight Cuts
	9.4.1 Transformation to Bounded Edge Weights
	9.4.2 Sampling Binomial Random Variables
	9.4.3 Subsampling p-Skeletons
	9.4.4 Parallel Weighted Sparse Certificates
	9.4.5 Parallelizing Matula's Algorithm

	9.5 Parallel O(1)-Approximate Minimum Cut
	9.6 Finding Minimum 2-respecting Cuts
	9.6.1 Descendant Edges
	9.6.2 Independent Edges

	9.7 Discussion


	IV Parallel Self-Adjusting Computation
	10 Parallel Self-Adjusting Computation
	10.1 Introduction
	10.1.1 Technical Overview

	10.2 Framework
	10.3 Change Propagation Algorithm
	10.4 Analysis
	10.4.1 Setting
	10.4.2 Analyzing the Computation Distance of Algorithms

	10.5 Implementation
	10.5.1 Reader Set Implementation
	10.5.2 Garbage Collection
	10.5.3 Supporting Dynamically-Sized Inputs

	10.6 Benchmarks and Evaluation
	10.6.1 Results
	10.6.2 Additional Experiments

	10.7 Discussion

	11 Conclusion
	Bibliography


