
Elevating Jupyter Notebook Maintenance
Tooling by Identifying and Extracting

Notebook Structures
Yuan Jiang

CMU-CS-22-123

August 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christian Kästner (Chair)

Eunsuk Kang
Shurui Zhou (University of Toronto)

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright © 2022 Yuan Jiang

Keywords: Jupyter notebook, maintenance tooling, notebook structure, static analysis, data
dependency, classification, navigation, version, alternative

Abstract
Data analysis is an exploratory, interactive, and often collaborative process. Com-

putational notebooks have become a popular tool to support this process, among
others because of their ability to interleave code, narrative text, and results. The ex-
ploratory nature of computational notebooks allows their users to edit and execute
parts of their program in any order. However, notebooks in practice are often criti-
cized as hard to maintain and being of low code quality, including problems such as
unused or duplicated code and out-of-order code execution. Data scientists can ben-
efit from better tool support when maintaining and evolving notebooks. We argue
that central to such tool support is identifying the structure of notebooks. We present
a lightweight and accurate approach to extract notebook structure and outline sev-
eral ways such structure can be used to improve maintenance tooling for notebooks,
including navigation and finding common structural patterns. In addition, we inves-
tigate the history of notebooks and extend our approach to visualize how notebooks
evolve over multiple revisions. We measure statistics of changed, added, and re-
moved cells in Kaggle notebooks with history versions. Our formative study shows
our visualizations can be useful for tracing and understanding changes in notebook
evolution and identifying alternatives explored in specific stages of a data analysis
pipeline over notebook histories.

iv

Acknowledgments
I would like to thank my advisor Professor Christian Kästner for his invaluable

guidance and support for this project and my thesis. Thank you for introducing me
to this project in 2020, encouraging me to move forward with my research these past
two years, and challenging me to become a better researcher.

I would like to thank Professor Shurui Zhou for her continuing help and encour-
agement throughout this project. Thank you for always being there when I have
concerns or questions.

I would like to thank Professor Eunsuk Kang for joining my thesis committee
and providing valuable feedback for my thesis.

I would also like to thank everyone who has given me help or encouraged me
over the course of this project in any possible way.

Last but not least, I would like to thank my parents and friends for their enormous
support during the pursuit of my master degree at Carnegie Mellon University.

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Statement . 2
1.3 Our Contribution . 2
1.4 Thesis Outline . 3

2 Background & Related Work 5
2.1 Jupyter Notebook . 5
2.2 Previous Analysis or Tools to Improve Jupyter Notebooks 5
2.3 Labeling Notebook Cells . 7

3 Generation of Labeled Dependency Graphs 9
3.1 Data Dependency . 9
3.2 Identifying ML Stages . 10
3.3 Evaluation . 11

3.3.1 Dataset . 11
3.3.2 Accuracy . 11
3.3.3 Performance . 14

3.4 Examples of Anticipated Applications . 15
3.4.1 Navigation . 15
3.4.2 Notebook Patterns . 15
3.4.3 Documentation Generation . 16
3.4.4 Restructuring Notebooks . 16

4 Merging Notebook Structures 17
4.1 Methods . 17

4.1.1 Matching Notebook Cells . 18
4.1.2 Constructing Clusters of Notebook Cells 19
4.1.3 Constructing Edges . 20
4.1.4 Identifying ML Stages . 20

4.2 Evaluation . 20
4.2.1 Accuracy . 21
4.2.2 Analysis for Notebook Evolution . 21
4.2.3 A Formative Evaluation . 22

vii

4.3 Examples of Anticipated Applications . 23
4.3.1 A Navigation Prototype . 23
4.3.2 Finding Alternatives . 24

5 Conclusion 25

A Example Keywords for Identifying ML Stages 27

Bibliography 29

viii

List of Figures

1.1 Summary of Our Workflow: a Jupyter notebook is passed to our algorithm, which
labels notebook cells with ML stages and generates a data dependency graph.
The labeled dependency graph can be useful for applications such as naviga-
tion, annotation and documentation generation, merging and splitting cells, and
finding structural patterns in a notebook dataset. 3

1.2 This is a graph which merges 4 versions of a notebook. Nodes in the graph are
labeled with ML stages and colored accordingly. The clusters in the graph are
outlined by boxes. Every node contains a starting and ending version number and
a cell number (e.g., “V1-2[3]” represents Cell 3 from Version 1 to 2), represent-
ing the cells with the same content across all versions in between the starting and
ending versions inclusively. Edges represent data dependency relations among
nodes. 4

2.1 Jupyter Notebook Example . 6
2.2 Non-chronological Notebook Execution Marks Example 6
2.3 Data Science Pipeline . 8

3.1 ML Stage Definitions and Examples . 12
3.2 Confusion Matrix Between Manual and Algorithm’s Labels 14
3.3 Sketch of Navigation Tool Prototype . 15

4.1 Result of Matching Algorithm Between Two Notebook Versions 18
4.2 Example of chains and four types of cells: 1⃝, 2⃝ and 3⃝ represent the begin-

ning of three chains. 4⃝ represents a cell in the middle of a chain, whereas 5⃝
represents the end of a chain. 6⃝ and 7⃝ represent two isolated cells. 19

4.3 Cluster examples: On the left, the cluster contains a single node that is unchanged
over 4 versions, labeled by 1⃝. On the right, the cluster contains two nodes, 2⃝
and 3⃝, which reflects the modification of the cell in version 3 (an additional
line of print statement). 2⃝ represents the cell from version 1 to 2, whereas 3⃝
represents the cell from version 3 to 4. 19

4.4 Visualization of merged notebook structures and highlight of node content: the
source code highlights a newly added line of code in node “V3-4[3]”, compared
with node “V1-2[3]” in the same cluster. 23

ix

4.5 Example of a cluster with 4 nodes: this cluster shows that the cell content has
changed three times over the notebook history. Examining the source code, we
find three training alternatives explored in this cluster: RandomForestClassifier()
in 1⃝ and 3⃝, LogisticRegression() in 2⃝, and RandomForestClassifier(maxdepth=5)
in 4⃝. 24

A.1 Example Keywords for Identifying ML Stages 28

x

List of Tables

3.1 Average runtime per notebook for each step in the methods. 13

4.1 Total and average number (per version) of changed, added, and removed cells in
3 Kaggle notebooks with 32 versions in total. 21

4.2 Total number of changed, added, and removed cells in 3 Kaggle notebooks cate-
gorized by ML stages. 21

xi

xii

Chapter 1

Introduction

Data science is a field that extracts insights from data and applies these insights across a broad
range of applications. With the abundance of available data and the success of machine learning,
the community of data science practitioners is ever-growing [14]. Data science work is usually
exploratory and iterative, and often collaborative [7, 10, 11]. Computational notebooks enable
their users to interleave code, visualizations, and narrative texts in a single document [11]. The
exploratory nature of computational notebooks allows data scientists to write and refine code eas-
ily with the ability to execute parts of their code in any order and view the computational results
immediately [4]. Computational notebooks have become the primary coding environment for
data scientists, with thousands of papers and millions of data science notebooks shared publicly
each year [14]. Despite that computational notebooks are a widely-used tool for data scientists,
many problems still occur, including poor code quality [21], which undermines understanding
and collaboration among notebook users. Our project aims to provide better tool support for
notebook users to maintain and evolve notebooks. We implement an efficient and accurate ap-
proach to identify and extract notebook structures and extend our work to investigate notebook
history. For each part, we outline how our work can be useful for improving maintenance tooling
for notebooks.

1.1 Motivation

While computational notebooks are very popular among data scientists, many practitioners and
researchers report problems [2, 4]. Previous work examining millions of notebooks and dozens
of interviews has shown that many notebooks are “messy” and most contain minimal to no doc-
umentation and structuring (in markdown cells) that could facilitate easy understanding [2, 13].
Understanding is essential for collaboration, reuse, and maintenance though. Poor quality code
in public notebooks makes them unreliable for inexperienced learners who might use these note-
books as tutorials [21]. Common problems manifest in dead-ends, duplicated code, and tangled
or scattered code [20]. For example, one study shows that many notebooks contain unused vari-
ables – those defined but never reused [21], while another research finds that most notebook
cells are presented in a different order than they are executed and code related to a result is often
scattered across many distant cells [4]. These issues make it difficult for notebook users to or-

1

ganize or refactor their code in a reusable fashion [21]. Not only are ”messy” notebooks hard to
understand, they are also difficult to reproduce. Because notebook users can execute any part of
their code at any time, notebooks are criticized for unexpected execution order and bad practices
in modularizing code [13]. Our goal is to make it easier to build tooling that helps notebook
practitioners understand, navigate, modularize, and maintain notebook code, even across a series
of history revisions.

1.2 Thesis Statement
I develop an efficient and light-weight approach to identify and extract Jupyter notebook struc-
tures as labeled dependency graphs using static analysis to find data dependencies between cells
and a heuristics-based approach to label code cells with machine learning pipeline stages to
improve maintenance tooling for notebooks. I extend this algorithm to merge structures of differ-
ent revisions of a notebook into one labeled dependency graph to help understand changes and
alternatives in notebook histories.

1.3 Our Contribution
We lay the foundation for maintenance tooling with an efficient algorithm to identify and extract
Jupyter notebook structures as labeled dependency graphs, as summarized in Figure 1.1. We
automatically label each notebook cell with machine learning (ML) stages (e.g., data collection,
training, evaluation) and extract data dependency relations among the cells. Each labeled node
in the output graph represents a code cell, and every directed edge represents a def-use rela-
tion between a pair of cells. In our evaluation, we show that our approach is accurate and very
lightweight, outperforming prior approaches in terms of lower complexity, higher accuracy, and
lower execution time. We discuss potential tooling based on our labeled dependency graph by
sketching a navigation tool and reporting structural patterns commonly found in notebooks.

We extend our algorithm above to visualize how notebooks evolve over time, by merging struc-
tures of a series of notebook versions as one directed, labeled dependency graph, as an example
shown in Figure 1.2. In this graph, each node represents a set of cells with the same content from
consecutive notebook versions, each cluster represents a set of nodes which represent the same
cell with slightly different contents, and each edge represents a data dependency relation between
a pair of nodes. Nodes are also labeled by the ML stages inherited from the cells they represent.
Our visualizations can be useful for understanding and navigating through notebook histories,
and learning how notebook users explore alternatives in specific stages of an ML pipeline.

The contributions of this thesis include the following:
• An efficient and light-weight algorithm to identify and extract Jupyter notebook structures

as directed, labeled dependency graphs. Data dependencies between cells are identified
using static analysis, and notebook cells are automatically labeled with ML stages that fit
best on their source code. Evaluation shows 75% accuracy for cell labelings and practical

2

Figure 1.1: Summary of Our Workflow: a Jupyter notebook is passed to our algorithm, which
labels notebook cells with ML stages and generates a data dependency graph. The labeled de-
pendency graph can be useful for applications such as navigation, annotation and documentation
generation, merging and splitting cells, and finding structural patterns in a notebook dataset.

performance to run our methods in the background of notebook maintenance tooling. We
discuss potential applications of our approach.

• Manual labelings of 50 notebooks with ML stages that are considered ground truth.
• Comparison with two prior approaches about the accuracy and runtime of cell labelings.

Results show that our methods are not only more light-weight, but also more accurate.
• An approach to merge structures of different notebook revisions as a directed, labeled de-

pendency graph. Our analysis generates statistics of changed, added, and removed cells
over a notebook’s history of many versions, while our formative study shows our methods
could be useful for understanding and navigating through changes in notebook evolution
and identifying alternatives explored in specific ML stages.

We make all implementation code and manually labeled data publicly available. 1

1.4 Thesis Outline
This thesis is outlined as follows. In Chapter 2, we discuss the background of Jupyter notebooks
and related work of our project. In Chapter 3, we present our approach and evaluation of identi-
fying and extracting Jupyter notebook structures as labeled data dependency graphs, and outline
several examples of envisioned tooling using our algorithm. We describe our solution of merg-
ing notebook structures and visualizing notebook histories in Chapter 4, and discuss some of its
anticipated applications in notebook maintenance tooling. We discuss future work in Chapter 5
and give our conclusion in Chapter 6.

1https://github.com/cindyyuanjiang/Jupyter-Notebook-Project

3

Version 1 Version 2 Version 3 Version 4

 Data Collection
 N/A
 Data Wrangling
 Training
 Evaluation

Figure 1.2: This is a graph which merges 4 versions of a notebook. Nodes in the graph are labeled
with ML stages and colored accordingly. The clusters in the graph are outlined by boxes. Every
node contains a starting and ending version number and a cell number (e.g., “V1-2[3]” represents
Cell 3 from Version 1 to 2), representing the cells with the same content across all versions in
between the starting and ending versions inclusively. Edges represent data dependency relations
among nodes.

4

Chapter 2

Background & Related Work

We present the background of Jupyter notebook and discuss related work of our project in this
chapter. We study previous analysis and tooling which aim to improve Jupyter notebooks, and
focus on prior work addressing problems related to documentation, managing variants and re-
visions, and structuring notebook code in a more orderly fashion. Understanding which ML
pipeline stages each notebook cell is working on is an important part of our methods. We find
and discuss two prior approaches of labeling notebook cells using different techniques.

2.1 Jupyter Notebook
A computational notebook is an interactive literate programming document which is executed
in the computational environment; Python notebooks in the Jupyter environment are the most
popular of these [13]. Literate programming refers to the concept of combining code and natural
language which allows programmers to express their thoughts behind the logic of a program [7].
An interactive computational notebook environment allows code parts, known as cells, to be ex-
ecuted incrementally to produce immediate results and visualizations.

A Jupyter notebook consists of a sequence of cells, which can be code cells or markdown cells.
Code cells contain executable Python source code while markdown cells explain the program-
mer’s ideas behind the code logic [22]. Figure 2.1 illustrates an example of a notebook excerpt,
which contains one markdown cell followed by two code cells with immediate results and visu-
alization. The execution marks indicate the execution orders of code cells. Because notebook
users are free to execute any cell at any time, the execution marks may not be in chronological
order from top down, as shown in Figure 2.2.

2.2 Previous Analysis or Tools to Improve Jupyter Notebooks
Coding practices in notebooks and the popular computational notebook environments like Jupyter
themselves have been studied extensively (e.g., [2, 7, 13, 17, 20]), revealing many poor practices
and pain points that hamper understanding and maintenance. Many researchers have subse-
quently tried to address various problems through improved tooling.

5

Markdown Cell

Code Cell {

{

Figure 2.1: Jupyter Notebook Example

Figure 2.2: Non-chronological Notebook Execution Marks Example

A common theme are attempts to improve documentation. Previous research examining one
million open-source computational notebooks on Github has shown that one in four does not
contain any sort of written documentation [17]. Documentation is critical for collaboration and
understanding among data scientists though. Wang et al. [20] implemented a deep-learning-
based automated documentation generation system with three distinct approaches: creating new
documentation for source code, retrieving online API documentation for external libraries and

6

packages, and nudging users to write documentation. Yang et al. [27] used program synthesis
techniques and dynamic program analysis to generate documentation for data wrangling code by
summarizing data transformations on representative examples to help users with program under-
standing. Rule et al. [16] designed a Jupyter notebook extension for annotated cell folding which
aids navigation and comprehension.

Other tooling focuses on managing variants and revisions: For example, Kery et al. [5] designed
a local versioning plugin for Jupyter notebooks using algorithmic and visualization techniques to
help data science practitioners better forage and understand their past analysis choices. Their tool
provides light-weight support to quickly retrieve, trace or reproduce versions of specific artifacts,
and to compare multiple versions of different artifacts. Head et al. [4] introduced code gathering
tools to help data scientists clean and recover different versions of code in cluttered notebooks
using software slicing. The tools highlight dependencies used to compute selected results and
provide ordered, minimal, and complete code slices for them. In addition, the tools store past
results and code slices which produce them so that users can find, explore, and compare different
versions of their code. Weinman et al. [23] introduced a tool to support forking and backtrack-
ing, which allow users to create new interpreter sessions and navigate through previous execution
states for exploring alternatives. The tool’s design presents users multiple programming states
side by side for the users to compare these results easily.

Finally, several papers focus on supporting data scientists with structuring their code into ordered
cells: Titov et al. [18] proposed a heuristics-based algorithm for automatically resplitting (merg-
ing and splitting) cells into more semantically cohesive units. Wenskovitch et al. [24] designed a
visualization tool to support communication and exploration by summarizing and displaying the
relationships and dependencies between the cells of a notebook, using dynamic analysis.

Each of these tools developed custom infrastructure from scratch. We aim to encourage more
maintenance tooling for notebooks by providing a common underlying analysis infrastructure
that can extract the structure in a notebook effectively and efficiently.

2.3 Labeling Notebook Cells

In addition to dependencies between cells, it is often useful to understand what different parts of a
notebook are doing. Data science code is often structured according to a conceptual data science
pipeline, which starting from model requirements, considers data collection, data cleaning, data
labeling, feature engineering, model training, model evaluation, and deployment [1], as shown in
Figure 2.3. In notebooks, particularly data cleaning and feature engineering (collectively called
data wrangling [27, 28]), model training, and model evaluation are common.

Understanding which pipeline stages correspond to which notebook cells can be helpful for var-
ious comprehension and maintenance tasks and is a core of our approach. Past approaches to
identify stages either relied on very simple heuristics or relied heavily on expensive ML classi-
fication. On one end, Venkatesh et al. [19] simply labeled cells by API calls contained in them;

7

Data
Collection

Data
Cleaning

Feature
Engineering

Model
Training

Model
Evaluation Deployment

Loading Pre-processing

Data
Labeling

Modeling Deploying

Figure 2.3: Data Science Pipeline

on the other end, Zhang et al. [28] used a weakly supervised transformer architecture to classify
code snippets which jointly models data science code and natural language annotations. Our
proposed work outperforms both of these approaches, providing labels accurately and fast.

8

Chapter 3

Generation of Labeled Dependency Graphs

To provide the foundation for more maintenance tooling for notebooks, to address their common
“messy” and undocumented nature in an exploratory and iterative workflow, we develop an algo-
rithm to identify and extract structures from Jupyter notebooks as directed, labeled dependency
graphs where every node represents a code block (usually a notebook cell), every edge represents
a data dependency relation between a pair of nodes, and nodes are labeled corresponding to their
stages in the ML pipeline. In Figure 3.3, we illustrate the resulting output graph for an excerpt of
a notebook. By default, we use notebook cells as the granularity for graph nodes because an ideal
notebook cell can be viewed as a proto-function and reused to do one dedicated action [18]. To
build the labeled dependency graph, we proceed in two steps: identifying dependencies between
cells and mapping cells to ML stages.

3.1 Data Dependency

We used standard data flow analysis to identify def-use chains in a notebook’s code. We then
group these dependencies by code blocks (cells), representing dependencies among cells as di-
rected edges in our graph.

We and others [13] found that most notebook code is fairly simple, hence even fairly simple
and fast data-flow analysis provides accurate results (e.g., context sensitivity and pointer analy-
sis add little benefit). We largely reused the static data-flow analysis from the python-program-
analysis package developed by Microsoft [20] and modified it as follows: First, we did not
track dependencies from import statements because they obfuscate the dependency graph with-
out adding value for maintenance tasks. Second, we made the tool conservative with regards to
dependencies resulting from function side effects, assuming that a function call might modify its
arguments, therefore treating the function as a definition site of its arguments. We made the latter
change in preferring occasional false positive dependencies between cells over missing edges or
high analysis costs from inter-procedural analysis of library code.

9

3.2 Identifying ML Stages
We label each node in our dependency graph with a corresponding stage of the ML pipeline.
Commonly, an ML pipeline consists of data collection, data cleaning, labeling, feature engi-
neering, model training, and model evaluation [1]. As in prior work [27, 28], we combine
data cleaning, labeling, and feature engineering collectively as data wrangling to avoid poten-
tial overlapping of their meanings. We define the most relevant stages – Data Collection, Data
Wrangling, Training, Evaluation, and Exploration – with corresponding examples in Figure 3.1.
Our labels are similar to prior classification by Zhang et al. [28] because they are all based on
standard stages, but we do not include the Import stage because it is not very important from a
maintenance perspective.

Human developers can map most cells clearly to one or multiple of these stages (as we will
show in our evaluation). While investigating notebooks, we found that some cells may corre-
spond to multiple stages, for example, both perform feature engineering and data exploration
in the same cell. Usually though one stage is clearly the dominant purpose of a cell. To avoid
the complexity of having multiple labels, we agreed on a priority order, assigning always the
stage with the highest priority if multiple stages may apply. As sole exception, we introduce a
dedicated label for cells that perform both training and evaluation, as they often co-occur and
neither stage should be considered as subsumed by the other. Our final priority order is: Train-
ing+Evaluation > Training or Evaluation > Data Collection > Data Wrangling > Exploration.
If a cell does not correspond to any stage above, we label it as “N/A”.

While there are several different strategies to identify stages for code fragments, we develop
a simple but accurate heuristics-based approach that does not rely on textual documentation in
the notebook and avoids computationally expensive and brittle ML techniques.

As recognized in prior work [14, 24], data science code often uses a small set of popular li-
braries for typical ML activities. We use knowledge about such APIs as the seed for our labels.
We build an API-to-ML-stage mapping for commonly used ML libraries (currently scikit-learn,
Keras, and pandas). We map API calls to specific stages by inspecting their functionalities in the
respective official API references. To correctly distinguish API calls with the same name (e.g.,
‘fit’ used for Training in KNeighborsClassifier or used for Data Wrangling in PCA in scikit-
learn), we use a type inference tool pyright [9] to identify which library class makes the API call
and label it accordingly.

We use known APIs as seeds to identify stages for a cell and propagate information from there
along data-flow edges. We found that identifying a cell’s stage solely by API calls contained in
the cell is insufficient, but that notebook users often put logically related statements in the same
cell or structurally close to one another. We hence propagate information as follows: Every time
we analyze a statement, we consider two scenarios based on the number of child statements it
has according to the data-flow analysis.

• One child statement: if the current statement and its child statement are in the same code
cell or the current statement is the closest parent to the child statement with regard to

10

their location in the source code, we propagate the current statement’s labels to the child
statement.

• Multiple child statements: for every pair consisting of the current statement and one of its
child statements, we follow the same mechanism in the previous case.

After the algorithm traverses every data-flow edge between a pair of statements in the source
code and propagates information along the edge using heuristics described above, it labels each
cell with the highest-priority label existing in that cell. If none of the labels exist, the cell is
labeled as “N/A”.

3.3 Evaluation
To be useful in tooling for maintenance and evolution, our labeled dependency graph needs to be
accurate and fast to compute. Accuracy ensures our results provide valuable insights into Jupyter
notebook structures, whereas the latter is important both when analyzing many notebooks (e.g.,
when indexing reusable structures for search) and when computing analyses in the background
(e.g., within a notebook plugin).

First, we evaluate the accuracy of our algorithm, especially cell labelings. Second, we measure
the performance of each step in our algorithm.

3.3.1 Dataset
We assembled a dataset of all public notebooks scraped from GitHub repositories created on
two specific days, January 1 (704 notebooks) and January 6 (1629 notebooks), 2021. Both are
weekdays, though January 1 is a holiday in many countries. We expect that January 1 skews
more toward hobbyists whereas January 6 represents a more typical workday, together covering
a comprehensive representative of notebooks on GitHub. We sampled by release days rather than
popularity to get a full cross section of notebooks typically published on GitHub; we evaluated
on recent notebooks that represent the state of practice now, rather than performing longitudinal
analysis of historic data.

3.3.2 Accuracy
To evaluate the correctness of the output data dependency graphs, we need to measure the accu-
racy of both the node labelings and the dependencies between cells.

Accuracy of Node Labelings. To evaluate accuracy, we need to establish ground truth of the
correct label for each cell. We establish ground truth manually.

To assure reliability of manual labeling, we first created explicit labeling instructions and evalu-
ated inter-rater agreement among three labelers. Specifically, two authors independently labeled
102 and 153 cells from two different sets of 6 notebooks randomly selected from our dataset, and

11

Stage Name Definition/Description Example

Data Collection Data Collection cells load data
that will often be passed to other
stages in the notebook.

Data Wrangling Data wrangling cells clean,
transform, or filter data loaded
from the data collection stage.
These cells also perform feature
engineering on the collected
data.

Training Training cells define and fit
supervised-learning ML models
to the collected data to predict
on some feature of the data.

Evaluation Evaluation cells predict a feature
of some dataset using ML
model(s) or measure/compute
the accuracy or explanatory
power of the model(s).

Training+Evaluation Training+Evaluation cells
include both training and
evaluation stages, as described
above.

Exploration Exploration cells visualize, print
or plot data or data’s relevant
information (e.g. shape) and plot
or print results related to the
training or evaluation process.
Unsupervised learning is also
classified as exploration.

Figure 3.1: ML Stage Definitions and Examples

a third author independently labeled all 255 cells of these 12 notebooks, until each cell had two
independent labels. We computed agreement with Cohen’s kappa and discussed disagreements
between raters. We then refined the instructions and repeated the process for 434 cells of another
11 randomly selected notebooks. After the second round, we reached a kappa score of 0.83,
which is generally interpreted as almost perfect agreement [8], suggesting that manual labeling
is indeed reliable.

After establishing reliability, we then manually labeled 1208 cells from 50 notebooks as ground

12

Table 3.1: Average runtime per notebook for each step in the methods.
Step in Methods Avg. Runtime

Type Inference File Generation 3720 ms
Seed Function Identification &
Data Flow Analysis

144 ms

Information Propagation & Labeled
Graph Generation

187 ms

truth, 25 fresh notebooks randomly selected from each of the January 1 and January 6 datasets
respectively. We ran our algorithm on these notebooks and compared the results against experts’
manual labels. Automated labels match our ground truth in 903 out of 1208 cells, for 75% accu-
racy (compared to 38% accuracy for a simple baseline predictor that always predicts the majority
label Data Wrangling).

To better understand the sources of inaccuracy, we explored the confusion matrix, shown in Fig-
ure 3.2. Almost half of the errors (44%) come from mislabeling Exploration and Data Wrangling
cells as “N/A”, and almost a quarter of the errors (23%) come from mislabeling Exploration as
Data Wrangling or vice versa. Distinguishing among Exploration, Data Wrangling, and “N/A”
could be difficult in some scenarios. For instance, some Data Wrangling processes are uniden-
tified because they do not call any Data Wrangling APIs nor are they near them, thus require
deeper understanding of the code’s context to identify the stage. Another problem is that some
cells make Data Wrangling API calls, but only intend to explore the data. We have not yet found
a way to better distinguish these cases heuristically.

We compared our accuracy result against two previously discussed approaches on identifying
ML stages for notebook cells. Venkatesh et al. [19] labeled cells solely by API calls contained
in them, but they did not evaluate accuracy or release their implementation. We approximated
their approach by running our implementation without type inference or information propaga-
tion along data-flow edges. This resulted in an accuracy of 69%, showing how our improvements
correspond to a 19% reduction in error over merely identifying API calls within a cell. Zhang
et al. [28] used ML techniques to classify code snippets based on content and context. We were
unable to reproduce their results (we only achieved 12% accuracy replicating their methods on
their dataset), but the paper reported 70% accuracy for a very similar task. This indicates that
our much simpler approach can achieve a reduction in error of 17% over their reported numbers.

Accuracy of Cell Dependencies. Establishing ground truth for cell dependencies is tedious. We
opted to not perform a systematic evaluation, but instead relied on manual inspection of anal-
ysis results in the sampled notebooks. We found occasional spurious edges from conservative
assumptions in our analysis, but no substantial problems.

13

6/22/22, 1:12 AM confusion_matrix.ipynb - Colaboratory

https://colab.research.google.com/drive/1ZSNUlpwcYuFNH3m5HzHwvPm4bO3EO7EQ#scrollTo=Izw7JuPl0X1r 1/6

import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay
import numpy as np

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f1f1cb7d950>

cm = [[340, 3, 31, 4, 8, 0, 73],
 [2, 53, 1, 0, 0, 0, 3],
 [39, 3, 126, 2, 1, 0, 62],
 [2, 0, 3, 72, 1, 2, 13],
 [17, 0, 1, 2, 117, 0, 7],
 [2, 0, 0, 5, 0, 95, 2],
 [10, 1, 1, 3, 0, 0, 101]
]
dl = ["explorarion", "collection", "wrangling", "training", "evaluation", "training+ev
disp = ConfusionMatrixDisplay(confusion_matrix=np.array(cm), display_labels=np.array(d
disp.plot(xticks_rotation='vertical')

import matplotlib.pyplot as plt

fig = plt.figure()

import numpy
from numpy import ravel, reshape, swapaxes
import scipy.io
from sklearn import svm
from sklearn.metrics import confusion_matrix
from random import sample

plt.matshow(cm)
plt.title('Problem 1: Confusion Matrix Digit Recognition')
plt.colorbar()
plt.ylabel('True Label')
plt.xlabel('Predicated Label')
plt.savefig('confusion_matrix'+'.pdf')

Figure 3.2: Confusion Matrix Between Manual and Algorithm’s Labels

3.3.3 Performance

We measure execution times of our analysis using a commodity laptop (2.8 GHz Quad-Core In-
tel Core i7, Intel Iris Plus Graphics 655 1536MB, 16GB memory) for all 2333 notebooks in our
dataset and report times separately for the three steps. The slowest component is Type Inference
File Generation using the off-the-shelf tool pyright [9], which is used to disambiguate API calls
with the same name. All other components can be executed in much under one second for almost
all notebooks, see Table 3.1. Assuming type inference information can be cached (or improved
with a different tool), the entire analysis for a full notebook can be performed in 331ms on aver-
age, fast enough to run in the background during interactive use.

Previous work by Zhang et al. [28] used an ML architecture to predict stages for notebook cells.
The paper did not report any performance numbers. While we were not able to exactly replicate
their approach due to limitation of our GPU support and did not receive access to their pretrained
models, we could train a smaller model using the paper’s script (at significant one time training
cost). Even with the smaller model, label inference took 2007ms per notebook in the provided
test dataset. That is, our much simpler (and more accurate) approach seems more feasible for
interactive settings.

14

Identified Training Scikit-Learn API:
1. KNeighborsClassifier()
2. fit()

Note:
2: Data Collection
3: N/A
4: Data Wrangling
5: Training
6: Evaluation

Data Dependency Graph

Figure 3.3: Sketch of Navigation Tool Prototype

3.4 Examples of Anticipated Applications
We believe the labeled dependency graph is a useful foundation for many tools by providing
support for maintenance and evolution for notebooks specifically and data-science pipelines more
generally. Here we outline examples of envisioned tooling.

3.4.1 Navigation

Most obviously, we expect that visualizations of the graph will be useful for navigating in a
notebook along dependency edges (e.g., jumping over deadends or cells that perform exploration)
or navigating directly to code of specific stages. We sketch a simple visualization in Figure 3.3.
A plugin could link nodes in the graph with cells in the notebook in both directions. It could
further highlight through which variables or cells are dependent or why cells are identified as
belonging to specific stages. Highlighting the cells helps the users to track where the cells are
and how the dependencies are reflected in the notebook.

3.4.2 Notebook Patterns

Extracting structures from a large set of notebooks allows us to find patterns among them, useful
for a variety of tasks. Users can search over code structures of public notebooks. A plugin may
highlight alternative cells to the one currently edited, if they exist. Analysis tools might indicate
when a user’s notebook has an unusual structure. Researchers and tool builders can learn about

15

common or uncommon patterns and use this information to develop tools that are useful for a
large number of notebook users. Our graph provides a good abstraction for analyzing patterns.

As an example, we identify (1) when notebooks train multiple models in parallel (models trained
independently in different cells on shared or separate input data), (2) when they compare the
results of multiple training models, and (3) when they contain deadends. We record the number
of these pattern occurrences over all 2333 notebooks from the January 1 and January 6 datasets.

Parallel training processes happen when users explore multiple ML training models on a shared
or separate datasets. In such settings, developer tools could help to prune no longer needed
branches, merge branches, or even make manually explored differences accessible to AutoML
tools. Among all 2333 notebooks in our dataset, 169 notebooks contain parallel training pro-
cesses on a shared dataset and 575 notebooks contain parallel training processes on separate
datasets. In total, 32% of the notebooks explore alternatives in training processes.

In contrast, explicit comparison between different evaluation processes is rare. We found only 83
notebooks among the ones analyzed, which accounts for less than 4% of all notebooks. It seems
more common to simply print accuracy numbers and to compare them manually than to compare
them in code.

Finally, deadends – data wrangling or exploration cells with no children in the data dependency
graphs – occur in almost every notebook analyzed (94%). Tooling could suggest cleanup mech-
anisms, manual or automated.

3.4.3 Documentation Generation
Our methods can be useful for documentation generation tools for Jupyter notebooks. Well-
documented notebooks make it easier for notebook users to understand each other’s work. Un-
derstanding is important for collaboration among data scientists. One core of our approach is to
understand which notebook code cells correspond to which ML pipeline stages. Our methods
also provide information of how the cells are classified. These information could be useful for
documentation purposes by showing the data science pipelines in notebooks.

3.4.4 Restructuring Notebooks
Restructuring notebooks by merging or splitting cells is another possible application of our work.
Our tool labels each code cell with an ML stage using a priority rule to avoid the complexity of
multiple labels. Ideally, a notebook cell can be reused to do one dedicated action [18]. Multiple
labels might indicate that the cell contains content from different ML stages. Therefore, it could
be split up into multiple cells so that each cell only corresponds to one specific ML stage. It is
also possible that consecutive cells labeled by the same ML stage should be merged into a larger
cell. Our methods provide a fast and accurate way to generate labels for each cell, which can be
useful for tools that need to restructure notebooks by merging or splitting cells.

16

Chapter 4

Merging Notebook Structures

Data science is a fundamentally iterative and exploratory process. There are many different
approaches to solve a data science problem. Data scientists usually explore many alternatives for
different stages in an ML pipeline (e.g., data wrangling, model training and evaluation) to achieve
better performance or prediction results or overcome a dead-end [12]. Computational notebooks
provide little support for their users to compare or visualize alternatives explored over notebook
histories. While variants and iterations are common in notebooks [7], manually identifying these
alternatives is a difficult and time-consuming task. Developers could benefit from better tool
support when studying and comparing different notebook versions. We argue central to such
support is visualization or navigation tooling which summarizes notebook structures of history
versions. A straightforward approach of combining information from several models into one is
model merging [15]. We extend our previous methods to merge structures of different notebook
versions into one labeled dependency graph, as shown in Figure 1.2. This is an example output
graph of merging structures of 4 notebook versions, where every node represents a set of cells
with the same content from a series of consecutive notebook versions, every cluster, consisting
of one or more nodes, represents a set of cells that are considered the same or modified across
multiple consecutive notebook versions, and every edge represents a data dependency relation
between nodes in different clusters. We label each node with an ML stage as in the previous
chapter. Our goal is to use this graph as a road-map to navigate through and understand notebook
evolution and identify alternatives explored in notebook histories.

4.1 Methods

To provide more effective support for comprehension of notebook evolution and comparing and
visualizing alternatives explored in specific ML stages, we present an algorithm to merge struc-
tures of different notebook versions as one directed, labeled dependency graph where every node
represents one or more cells with the same content from multiple consecutive notebook versions,
every cluster represents one or more connected nodes, and every edge represents a data depen-
dency relation between a pair of nodes in different clusters. In other words, cells identified as
the same or modified across a number of consecutive notebook versions belong to one cluster.
Within a cluster, multiple nodes occur when a cell’s content is modified at some point(s) over

17

Version 1 Version 2

Figure 4.1: Result of Matching Algorithm Between Two Notebook Versions

these versions. In Figure 1.2, we illustrate the output graph of a notebook with 4 versions.

4.1.1 Matching Notebook Cells

To cluster cells from different notebook versions by their content, we need to find out which
cells are related. Since all notebook versions follow a chronological order, we can first deter-
mine which cells are considered the same or related (modified from previous version) between
all pairs of consecutive versions and use the results to learn which cells are related over multiple
consecutive versions. To solve the fundamental problem, we use the Needleman-Wunsch Algo-
rithm [25] to match cells in two consecutive notebook versions and store a one-to-one mapping
of these matching cells. This algorithm produces an optimal global alignment between two sets
of notebook cells. We use this alignment to identify related cells in two notebook versions. This
alignment works because most notebooks are linear and notebook users are unlikely to change
the order of cells in a notebook. Therefore, notebook cells usually remain in relatively the same
order as those in the previous version.

To achieve the most optimal matching, we use the Needleman-Wunsch Algorithm to minimize
the total Levenshtein distances [26] of all matched pairs of cells. The Levenshtein distance mea-
sures the difference between two cells (represented as strings in our program). We argue that a
lower Levenshtein distance indicates that the cells have more similar contents – a better match.
Therefore, the minimal total Levenshtein distances of all matched cells produces an optimal so-
lution for our problem. An example of our matching result of two notebook versions is shown in

18

①

②

③

④ ⑤

⑥

⑦

Figure 4.2: Example of chains and four types of cells: 1⃝, 2⃝ and 3⃝ represent the beginning of
three chains. 4⃝ represents a cell in the middle of a chain, whereas 5⃝ represents the end of a
chain. 6⃝ and 7⃝ represent two isolated cells.

①

①

② ③

②

③

Figure 4.3: Cluster examples: On the left, the cluster contains a single node that is unchanged
over 4 versions, labeled by 1⃝. On the right, the cluster contains two nodes, 2⃝ and 3⃝, which
reflects the modification of the cell in version 3 (an additional line of print statement). 2⃝ repre-
sents the cell from version 1 to 2, whereas 3⃝ represents the cell from version 3 to 4.

Figure 4.1.

4.1.2 Constructing Clusters of Notebook Cells
In a notebook revision, the user might modify existing cells, add new cells, or remove unwanted
cells. The cells in the new version which result from modification of existing cells are considered
as the same cell in our methods. In a notebook’s history, a cell could stay the same for a series
of versions, then being continuously modified in the next few versions, and stay unchanged for
a number of versions. We expect to represent these cells in consecutive versions by a cluster in
our graph to show their connections over time. To form these clusters, we need to find groups
of cells related to each other that are identified as the same across a number of consecutive note-
book versions using our matching algorithm. Each notebook version is associated with a unique
version number to represent the chronological order among all notebook versions.

To form these clusters, we iterate through all notebook versions chronologically (i.e. from the
lowest version number to the highest) and find all pairs of matching cells between every pair of
consecutive versions. In each notebook version, we classify every cell into four types: the mid-

19

dle, beginning, or end of a chain, or an isolated cell. A chain refers to a series of consecutively
matched cells across multiple versions, and an isolated cell is one that does not belong to any
chain, as shown in Figure 4.2.

Every match we found between two cells is represented by an edge from the cell with the lower
version number to the one with the higher number. To classify these cells, we consider their
number of incoming and outgoing edges as the following cases:

• No incoming or no outgoing edges: this cell is an isolated cell.
• No incoming edge but an outgoing edge: this cell is the beginning of a chain.
• An incoming edge but no outgoing edge: this cell is the end of a chain.
• Both an incoming and an outgoing edge: this cell is in the middle of a chain.

We construct a cluster for every chain and every isolated cell in our output graph. For every
isolated cell, the cluster has one node representing the cell. For every chain, the cluster can have
one or multiple nodes. Every time the content of the cells changes in a chain, one node is added
to reflect this modification, as shown in Figure 4.3.

4.1.3 Constructing Edges
Edges represent data dependency relations between nodes in different clusters. To identify these
edges, we iterate through data dependency relations in all notebook versions. For each data
dependency relation between two cells in a notebook version, we find their corresponding nodes
and add an edge between them. We keep a dictionary to record existing edges in the graph
to avoid multiple edges between the same pair of nodes. We also maintain a mapping from a
notebook version number and a cell number to its corresponding node in the graph so that we
can look up nodes easily.

4.1.4 Identifying ML Stages
Our goal is to label each node in our graphs of merged notebook structures to learn which ML
pipeline stage it belongs to. We first generate labeled dependency graphs of all notebook versions
using our previous algorithm, then inherit the ML stage labelings from these results. Since every
cell in the notebooks corresponds to a unique node in the graph after merging, we can use the
cell number and its notebook version number to find the node using our mapping from before
and label the node accordingly.

4.2 Evaluation
To be useful for maintenance and evolution tooling, our algorithm of merging structures of note-
book versions into labeled, dependency graphs needs to be accurate. This ensures our results
provide valuable understanding of notebook histories. To show our methods is useful for learning
and extracting insights from notebook evolution, we measure how often notebook users modify,

20

Table 4.1: Total and average number (per version) of changed, added, and removed cells in 3
Kaggle notebooks with 32 versions in total.

Type of Cell Total Number Average Number

Changed 64 2
Added 83 2.59

Removed 38 1.19

Table 4.2: Total number of changed, added, and removed cells in 3 Kaggle notebooks categorized
by ML stages.

ML Stage Changed Added Removed

Data Collection 0 1 1
Data Wrangling 14 9 2

Training 8 4 0
Evaluation 1 0 0

Training+Evaluation 0 0 0
Exploration 22 17 10

N/A 19 52 25

add, or remove cells in different ML stages. We also discuss feedback from a formative evalu-
ation on the usefulness of our methods for learning alternatives explored in specific ML stages
over notebook histories.

We evaluate our methods in three ways. First, we measure the accuracy of our generated graph.
Second, we present statistics measured for a sample of 3 Kaggle notebooks. Third, we present
feedback collected from our formative evaluation.

4.2.1 Accuracy
To evaluate the accuracy of our graph, we manually checked all nodes, clusters, and edges for a
selected notebook with 4 versions, and confirmed the matched cells between all pairs of consec-
utive notebook versions. We constructed the 4 notebook versions manually to cover all possible
cases of nodes and clusters and the entire ML pipeline so that we could evaluate our methods
thoroughly. We opted not to perform a systematic evaluation here because establishing ground
truth is both tedious and time-consuming. Since we have evaluated cell labelings in the last
chapter, we decided not to perform new evaluation here.

4.2.2 Analysis for Notebook Evolution
We expect our algorithm to be useful for extracting insights in notebook evolution by learning
how often notebook cells are modified, added, or removed in specific ML stages or in general
across a number of notebook versions. We generated a sample of 3 Kaggle notebooks. Kag-
gle is a platform where data scientists upload datasets or solutions to Kaggle competitions [27].

21

We decided to use Kaggle notebooks because they are high-quality and they provide all history
versions of the notebooks automatically. For our sample, we selected notebooks in the top 5
places in a competition with respect to community upvotes, with more than 400 lines of code, 10
history versions, and no mention of “tutorial”, “guide”, “beginner”, or “introduction” in the title
or competition name.

We measured the number of cells modified, added, and removed across all versions in all three
notebooks, and categorize them by ML stages. For cells modified, we measured the Levenshtein
distances of these cells between the previous and current versions, and whether their ML stage
labels became different. Our observations are shown in Table 4.1 and Table 4.2. The total Lev-
enshtein distances is 3816, averaged to 59.63 per modified cell. Out of all 64 modified cells, only
3 ML stage labels change.

4.2.3 A Formative Evaluation
Formative evaluation is a systematic process which gathers information and data to revise and
improve the product under development, which usually happens in the early stages of the de-
sign [3]. We expect a formative evaluation to be helpful for us to understand how users are
thinking about the usefulness of our methods.

We performed a simple formative evaluation with one participant, who was currently working on
a project that requires manually identifying alternatives explored in different ML pipeline stages
over a notebook’s history. We aim to select participants whose work can potentially benefit from
our methods, specifically in identifying alternatives explored in notebook versions. Due to lim-
ited time, this participant is the one we can find who fits best to our goal.

In the evaluation, we discussed our methods and results with our participant and collected feed-
back on the usefulness of our algorithm for identifying alternatives in different ML stages. We
first presented our participant a small graph example of a notebook with 4 versions, and explained
how different parts of the graph structure work. Once the participant got a better understand of
our methods, we presented our result of a notebook with 14 versions which the participant had
worked on before, and discussed how we can use the graph to trace potential explored alterna-
tives in specific ML stages in the notebook versions. We showed the participant a cluster in the
graph corresponding to three alternatives in the training process, which confirmed with the results
found manually by the participant. The participant agreed that the graph is useful for navigating
through notebook history and visualizing the notebook structures and ML stages: “The graph can
be used like a road-map to trace the machine learning pipeline workflows in different notebook
versions”. In addition, we discussed whether our tool could be helpful for finding alternatives
explored in the ML pipeline, and concluded that the graph is useful for showing potential sites of
alternatives explored in specific ML stages that can be confirmed easily after checking the source
code. This visualization could make manually identifying alternatives in specific ML stages a
much less stressful and more efficient process.

While our formative evaluation provides insights into the usefulness of our work, it is limited

22

(X_train, X_test, y_train, y_test) = \
 ms.train_test_split(X, y, test_size=.25)
+print(X_train[0:10])

Figure 4.4: Visualization of merged notebook structures and highlight of node content: the source
code highlights a newly added line of code in node “V3-4[3]”, compared with node “V1-2[3]”
in the same cluster.

by the number of participants. As future work, we expect to reach out to more developers and
structure our evaluation in a more formal way.

4.3 Examples of Anticipated Applications
We believe that merging notebook structures as one graph is a useful foundation for tools that
provide support for visualizing and navigating through notebook evolution and identifying alter-
natives explored in specific ML stages over notebook histories. We discuss examples of potential
applications as follows.

4.3.1 A Navigation Prototype
We expect that merging notebook structures as a labeled dependency graph will be useful for
visualizing and navigating through notebook histories. The output graph shows how notebook
cells change over time and which cells are identified as the same over a series of versions. The
visualizations can be helpful for navigating along dependency edges (e.g., tracing a ML pipeline)
or jumping directly to code of specific versions or stages. A plugin could link nodes in the graph
with cells represented by the nodes in both directions. It could further highlight how the source
code of a node is changed compared with the previous one in a cluster (e.g., which lines are
changed, added or removed). Highlighting the cells helps the users to track where the cells are

23

①

① ②

②

③

③

④

④

Figure 4.5: Example of a cluster with 4 nodes: this cluster shows that the cell content has changed
three times over the notebook history. Examining the source code, we find three training alter-
natives explored in this cluster: RandomForestClassifier() in 1⃝ and 3⃝, LogisticRegression() in
2⃝, and RandomForestClassifier(maxdepth=5) in 4⃝.

in the notebook versions and highlighting the changes shows the users how the cells change
over time. The tools could also mark which variables or cells are dependent to show how the
dependencies are reflected in the notebooks. We sketch a simple visualization in Figure 4.4.

4.3.2 Finding Alternatives
Data scientists explore alternatives in different ML pipeline stages to analyze data and build
high-performance ML models. Studies show that data scientists frequently reuse previous ideas
to develop new analysis and explore a non-linear path to reach their final results (e.g., copying
and reusing code, keeping old code and analysis in case they will be useful later) [6]. Relying
only on memory of their code or informal practices like copying or commenting out code is in-
sufficient for data scientists to find all explored alternatives in past notebook versions.

Our visualization of merging structures of different notebook versions is useful for finding al-
ternatives explored in a notebook’s history. Users can search for clusters on a graph in which
the cell’s content changes multiple times. These could be potential sites of explored alternatives
and the users can check the notebooks’ source code to confirm their hypotheses easily. Finding
these clusters in our graph and checking their source code would be much more time-efficient
than manually looking for alternatives in a large number of notebook versions. We generated
our visualization for a notebook with 14 versions, and show one cluster of nodes in the graph
corresponding to explored training alternatives in Figure 4.5.

24

Chapter 5

Conclusion

Computational notebooks enable their users to interleave code, visualizations, and narrative texts
in a single document [11], and have become a very popular coding environment among data
scientists. While their exploratory nature allows data scientists to write and refine code easily
and to execute parts of their code in any order [4], many practitioners and researchers still report
problems [2, 4]. Common complaints include dead-ends, duplicated code, and tangled or scatter
code [20]. Studies have shown that most notebook cells are presented in a different order than
they are executed, and code that produces a result is often scatter across many cells [4]. “Messy”
notebooks are also criticized for bad practices in modularizing code [13]. Poor code quality in
notebooks undermines understanding, reuse, and collaboration among data scientists [21]. These
problems motivate us to improve tool support for notebook maintenance and evolution so that
data scientists can better understand, navigate, modularize, and maintain notebook code, even
across many notebook revisions. We believe central to such tool support is identifying the struc-
ture of notebooks.

We implemented an efficient and lightweight algorithm to identify and extract Jupyter notebook
structures as directed, labeled data dependency graphs, where nodes represent cells and directed
edges represent data dependency relations among cells. The algorithm involves generating data
dependency information of cells and labeling cells with ML stages. Our evaluation shows that
our methods achieve high accuracy (75%) for labeling cells and fast runtime performance. We
compare our evaluation results with two prior works and find our methods are better in terms of
both accuracy and performance. We sketch a navigation tool prototype using our labeled data
dependency graphs and discuss a number of patterns found in our notebook dataset. Given the ef-
ficient runtime, tool builders can run our analysis in the browser background and use our labeled
dependency graphs for various purposes like navigation, documentation generation, or learning
about notebook structures in general. We believe our methods would encourage more notebook
maintenance tooling by providing a common underlying analysis infrastructure to identify and
extract notebook structures effectively and efficiently.

In addition, we extend our algorithm to merge notebook structures as one directed, labeled data
dependency graph for multiple versions of a notebook to visualize notebook evolution and re-
visions. In this graph, nodes represent cells with the same content from consecutive notebook

25

versions, clusters represent a set of nodes which represent the same cell with slightly different
content, and edges represent data dependency relations among nodes. For evaluation, we manu-
ally verify the accuracy of a graph, and present how often are cells changed, added, or removed in
a sample of 3 Kaggle notebooks, which shows our methods allow us to analyze and measure the
changes between consecutive notebook versions. We discuss examples of possible applications
of this extension, which include navigating through a notebook’s history for better understanding
and finding alternatives explored in specific ML stages over notebook revisions.

We discuss future work for our methods of identifying and merging notebook structures in Chap-
ter 3.4 and 4.3 respectively, including building a navigation tool and finding alternatives explored
in specific ML stages.

26

Appendix A

Example Keywords for Identifying ML
Stages

27

Stage Name Class Name/API Calls

Data Collection fetch_20newsgroups
fetch_california_housing
load_digits
load_iris
load_sample_images
…

Data Wrangling PCA
DictVectorizer
MinMaxScaler
OneHotEncoder
FunctionTransformer
…

Training GaussianProcessClassifier
LogisticRegression
Perceptron
RidgeClassifier
LinearRegression
…

Evaluation accuracy_score
average_precision_score
confusion_matrix
f1_score
log_loss
…

Training+Evaluation Training and Evaluation API calls as above

Exploration ConfusionMatrixDisplay
PrecisionRecallDisplay
summary
histogram
KMeans
…

Figure A.1: Example Keywords for Identifying ML Stages

28

Bibliography

[1] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar,
Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. Software engineering
for machine learning: A case study. In Proc. ICSE-SEIP, 2019. 2.3, 3.2

[2] Souti Chattopadhyay, I. Prasad, Austin Z. Henley, Anita Sarma, and Titus Barik. What’s
wrong with computational notebooks? pain points, needs, and design opportunities. In
Proc. CHI, 2020. 1.1, 2.2, 5

[3] Walter Dick and Lou M Carey. Formative evaluation. Instructional design: Principles and
applications, pages 311–333, 1977. 4.2.3

[4] Andrew Head, Fred Hohman, Titus Barik, Steven Mark Drucker, and Robert DeLine. Man-
aging messes in computational notebooks. In Proc. CHI, 2019. 1, 1.1, 2.2, 5

[5] Mary Beth Kery and Brad A. Myers. Interactions for untangling messy history in a compu-
tational notebook. In Proc. Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC), pages 147–155, 2018. 2.2

[6] Mary Beth Kery, Amber Horvath, and Brad A. Myers. Variolite: Supporting exploratory
programming by data scientists. Proceedings of the 2017 CHI Conference on Human Fac-
tors in Computing Systems, 2017. 4.3.2

[7] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A Myers.
The story in the notebook: Exploratory data science using a literate programming tool. In
Proc. CHI, 2018. 1, 2.1, 2.2, 4

[8] Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia medica, 22(3):276–
282, 2012. 3.3.2

[9] Microsoft. Pyright. https://github.com/microsoft/pyright, 2020. 3.2, 3.3.3

[10] Nadia Nahar, Shurui Zhou, Grace Lewis, and Christian Kästner. Collaboration challenges in
building ml-enabled systems: Communication, documentation, engineering, and process.
In Proc. ICSE, 2022. 1

[11] Kayur Patel, James Fogarty, James A Landay, and Beverly Harrison. Investigating statistical
machine learning as a tool for software development. In Proc. CHI, pages 667–676, 2008.
1, 5

[12] Kayur Patel, James Fogarty, James A. Landay, and Beverly L. Harrison. Investigating
statistical machine learning as a tool for software development. In CHI, 2008. 4

[13] João Felipe Pimentel, Leonardo Gresta Paulino Murta, Vanessa Braganholo, and Juliana

29

https://github.com/microsoft/pyright

Freire. A large-scale study about quality and reproducibility of Jupyter notebooks. In Proc.
Conf. Mining Software Repositories (MSR), pages 507–517, 2019. 1.1, 2.1, 2.2, 3.1, 5

[14] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Matteo Interlandi, Avrilia Floratou, Konstantinos
Karanasos, Wentao Wu, Ce Zhang, Subru Krishnan, Carlo Curino, and Markus Weimer.
Data science through the looking glass and what we found there. ArXiv, abs/1912.09536,
2019. 1, 3.2

[15] Julia Rubin and Marsha Chechik. N-way model merging. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, page 301–311,
New York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450322379.
doi: 10.1145/2491411.2491446. URL https://doi.org/10.1145/2491411.
2491446. 4

[16] Adam Rule, Ian Drosos, Aurélien Tabard, and James D. Hollan. Aiding collaborative reuse
of computational notebooks with annotated cell folding. In Proc. CHI, 2018. 2.2

[17] Adam Rule, Aurélien Tabard, and James D. Hollan. Exploration and explanation in com-
putational notebooks. Proc. CHI, 2018. 2.2

[18] Sergey D. Titov, Yaroslav Golubev, and Timofey Bryksin. Resplit: Improving the structure
of Jupyter notebooks by re-splitting their cells. ArXiv, abs/2112.14825, 2021. 2.2, 3, 3.4.4

[19] Ashwin Prasad Shivarpatna Venkatesh and Eric Bodden. Automated cell header gener-
ator for Jupyter notebooks. In Proc. International Workshop on AI and Software Test-
ing/Analysis, page 17–20, 2021. ISBN 9781450385411. doi: 10.1145/3464968.3468410.
URL https://doi.org/10.1145/3464968.3468410. 2.3, 3.3.2

[20] April Yi Wang, Dakuo Wang, Jaimie Drozdal, Michael J. Muller, Soya Park, Justin D.
Weisz, Xuye Liu, Lingfei Wu, and Casey Dugan. Documentation matters: Human-centered
AI system to assist data science code documentation in computational notebooks. ACM
Transactions on Computer-Human Interaction, 29, 2022. 1.1, 2.2, 3.1, 5

[21] Jiawei Wang, Li Li, and Andreas Zeller. Better code, better sharing: On the need of analyz-
ing Jupyter notebooks. In Proc. ICSE-NIER, page 53–56, 2020. ISBN 9781450371261.
doi: 10.1145/3377816.3381724. URL https://doi.org/10.1145/3377816.
3381724. 1, 1.1, 5

[22] Jiawei Wang, Tzu yang Kuo, Li Li, and Andreas Zeller. Assessing and restoring repro-
ducibility of Jupyter notebooks. In Proc. ASE, pages 138–149, 2020. 2.1

[23] Nathaniel Weinman, Steven M. Drucker, Titus Barik, and Robert DeLine. Fork it: Support-
ing stateful alternatives in computational notebooks. In Proceedings of the 2021 CHI Con-
ference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450380966. doi: 10.1145/3411764.
3445527. URL https://doi.org/10.1145/3411764.3445527. 2.2

[24] John E. Wenskovitch, Jian Zhao, Scott A. Carter, Matthew L. Cooper, and Chris North.
Albireo: An interactive tool for visually summarizing computational notebook structure. In
Proc. Visualization in Data Science (VDS), pages 1–10, 2019. 2.2, 3.2

[25] Wikipedia contributors. Needleman–wunsch algorithm — Wikipedia, the free ency-

30

https://doi.org/10.1145/2491411.2491446
https://doi.org/10.1145/2491411.2491446
https://doi.org/10.1145/3464968.3468410
https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/3377816.3381724
https://doi.org/10.1145/3411764.3445527

clopedia. https://en.wikipedia.org/w/index.php?title=Needleman%
E2%80%93Wunsch_algorithm&oldid=1090847497, 2022. [Online; accessed 19-
July-2022]. 4.1.1

[26] Wikipedia contributors. Levenshtein distance — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Levenshtein_
distance&oldid=1096620738, 2022. [Online; accessed 19-July-2022]. 4.1.1

[27] Chenyang Yang, Shurui Zhou, Jin L. C. Guo, and Christian Kästner. Subtle bugs every-
where: Generating documentation for data wrangling code. In Proc. ASE, pages 304–316,
2021. 2.2, 2.3, 3.2, 4.2.2

[28] Ge Zhang, Michael Merrill, Yang Liu, Jeffrey Heer, and Tim Althoff. Coral: Code repre-
sentation learning with weakly-supervised transformers for analyzing data analysis. EPJ
Data Science, 11, 2022. 2.3, 3.2, 3.3.2, 3.3.3

31

https://en.wikipedia.org/w/index.php?title=Needleman%E2%80%93Wunsch_algorithm&oldid=1090847497
https://en.wikipedia.org/w/index.php?title=Needleman%E2%80%93Wunsch_algorithm&oldid=1090847497
https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=1096620738
https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=1096620738

	1 Introduction
	1.1 Motivation
	1.2 Thesis Statement
	1.3 Our Contribution
	1.4 Thesis Outline

	2 Background & Related Work
	2.1 Jupyter Notebook
	2.2 Previous Analysis or Tools to Improve Jupyter Notebooks
	2.3 Labeling Notebook Cells

	3 Generation of Labeled Dependency Graphs
	3.1 Data Dependency
	3.2 Identifying ML Stages
	3.3 Evaluation
	3.3.1 Dataset
	3.3.2 Accuracy
	3.3.3 Performance

	3.4 Examples of Anticipated Applications
	3.4.1 Navigation
	3.4.2 Notebook Patterns
	3.4.3 Documentation Generation
	3.4.4 Restructuring Notebooks

	4 Merging Notebook Structures
	4.1 Methods
	4.1.1 Matching Notebook Cells
	4.1.2 Constructing Clusters of Notebook Cells
	4.1.3 Constructing Edges
	4.1.4 Identifying ML Stages

	4.2 Evaluation
	4.2.1 Accuracy
	4.2.2 Analysis for Notebook Evolution
	4.2.3 A Formative Evaluation

	4.3 Examples of Anticipated Applications
	4.3.1 A Navigation Prototype
	4.3.2 Finding Alternatives

	5 Conclusion
	A Example Keywords for Identifying ML Stages
	Bibliography

