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Abstract

Ordinary differential equations (ODEs) are quintessential models of real-world
continuous behavior in the physical and engineering sciences. They also feature
prominently in hybrid system models that combine discrete and continuous dynamics,
and interactions thereof. Formal verification of ODEs and hybrid systems is of
increasing practical importance because the real-world systems they model, such as
control systems and cyber-physical systems, are often required to operate in safety-
and mission-critical settings—obtaining comprehensive and trustworthy verification
results for continuous and hybrid systems gives a strong measure of confidence that
the real-world systems they model operate correctly.

This thesis studies deductive verification for ordinary differential equations with a
focus on proofs of their i) safety, ii) liveness, and iii) stability properties. These proofs
are compositionally extended to obtain proofs of iv) stability for hybrid (switched) sys-
tems. The combination of safety, liveness, and stability is crucial for comprehensive
correctness of real-world systems: i) safety of a system model ensures that it always
stays within a prescribed set of safe states throughout its operation, ii) liveness
ensures that the modeled system will eventually reach its specified goal or complete
its mission, and iii) & iv) stability ensures that the idealized models are robust to
real-world perturbations, which is important for control system designs.

The overarching thesis insight is the use of deductive reasoning as a basis for
understanding the aforementioned properties and for developing their proofs. Specif-
ically, this thesis uses differential dynamic logic (dL), a logic for deductive verification
of hybrid systems, as a trustworthy logical foundation upon which all reasoning prin-
ciples for safety, liveness, and stability are rigorously derived. The thesis first shows
how ODE invariance, a key ingredient in proofs of ODE safety, can be completely ax-
iomatized and reasoned about syntactically in dL. Then, ODE liveness and existence
properties are formally proved through refinement-based reasoning in dL, where
each refinement step is justified by proving an ODE safety property. Finally, stability
properties for ODEs and hybrid systems are specified using dL’s ability to nest safety
and liveness modalities with first-order quantification. Proofs of those stability
specifications build on ODE safety and liveness (sub-)proofs by compositionally
adding dL reasoning for the first-order quantifiers and hybrid systems.

Formal dL specifications elucidate the logical relationships between the proper-
ties studied in this thesis. Indeed, these relationships are reflected in the thesis struc-
ture outlined above because they yield chapter-by-chapter identification, buildup,
and generalization of the deductive building blocks underlying proof methods for the
respective properties. The deductive approach enables such generalizations while
retaining utmost confidence in the correctness of the resulting proofs because every
step is soundly and syntactically justified using dL’s parsimonious axiomatization.
The derived proof principles and insights are put into practice by implementing
them in the KeYmaera X theorem prover for hybrid systems based on dL.
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Chapter 1

Introduction

Ordinary differential equations (ODEs) are quintessential mathematical models in the engineering
and physical sciences. Their importance stems from the fact that they provide a succinct and
tractable way of describing the complex dynamics of real-world continuous systems. However,
many real-world systems of practical interest, such as self-driving cars, autonomous factory
robots, or airplane autopilots, cannot be modeled purely continuously because they are also con-
trolled by discrete software components. For example, the continuous motion of an autonomous
vehicle may be controlled by software that makes abrupt, discrete changes to its steering, braking,
or other control inputs. These systems are examples of so-called cyber-physical systems (CPSs)
that feature an interaction between discrete computational control and continuous real-world
physics. The increasing prevalence of CPSs and the fact that they often operate in safety- and
mission-critical settings entail the need to ensure that those systems operate safely and correctly.
Hybrid systems [28, 45, 66, 75] are mathematical models that combine discrete and continuous
dynamics, and interactions thereof; this combination makes them natural models to use in the
study of the discrete-continuous dynamics present in CPSs [6, 144].

Deductive reasoning for hybrid systems is an emergent approach for the formal verification of
CPSs [45, 135, 144, 164, 188, 208, 213]. Broadly speaking, deductive reasoning refers to a class of
logic- and proof-based verification techniques [45] where a given system is shown to have the
desired correctness properties through a series of syntactic deduction steps. Such techniques are
attractive for hybrid systems because their flexibility allows for proofs of comprehensive correct-
ness specifications, while their sound logical foundations ensure trustworthiness of the resulting
conclusions. Compositionality is the key for scaling deductive techniques to larger models and
realizing the aforementioned benefits in practical applications. In particular, deductive proofs
for hybrid systems formally decompose those systems into their constituent dynamics and then
prove properties of the resulting simpler subsystems separately [45]. Conversely, composi-
tionality also lifts insights for discrete and continuous dynamics to corresponding insights for
hybrid systems. The goal of this thesis is to push the boundaries of formal verification for hybrid
systems by furthering the understanding of deductive reasoning for their constituent continuous
dynamics described by ODEs. The pursuit of this goal is guided by the thesis statement:

Deductive reasoning provides a powerful, uniform, and foundational way of proving
properties of ordinary differential equations. This logical foundation, in turn, yields
new insights towards the verification of continuous and hybrid systems.



ODE Safety + V,d reasoning + Hybrid systems reasoning

Proofs (Ch. 3) /\

+ Refinement ODE Stability Switched System
reasoning Proofs (Ch. 5) Stability Proofs (Ch. 6)

h 4

ODE Liveness
Proofs (Ch. 4)

+V, d reasoning

Background: Differential Dynamic Logic (Ch. 2)

Figure 1.1: An overview of the thesis chapters and dependencies between those chapters. An
arrow Chapter A — Chapter B indicates that Chapter B builds on material from Chapter A by
adding new proof ideas and deduction techniques.

1.1 Thesis Overview

This thesis studies deductive verification for three key classes of ODE properties: safety (Chap-
ter 3), liveness (Chapter 4), and stability (Chapter 5). Briefly, an ODE is safe if its continuous
solutions from a given set of initial states always stay within a prescribed set of safe states. Dually,
an ODE is live if its solutions eventually enter a specified goal region from the given initial states.
Proofs of ODE safety and liveness specifications provide mathematical guarantees that a given
continuous system operates safely and reaches its goals successfully. Proofs of stability show
that the ODE models under consideration are suitably robust to small, mathematically-defined
perturbations of the system. Such stability properties are complementary to safety and liveness
properties, especially for control systems which must be designed to operate robustly in the
presence of real-world perturbations. Figure 1.1 provides an overview of the thesis chapters
and illustrates the key role that compositionality plays throughout this thesis—later chapters
build on the deductive proofs from earlier chapters by adding various reasoning aspects. This
compositional arrangement culminates in the study of deductive stability proofs for switched
systems (Chapter 6), a class of hybrid systems featuring discrete switching between a family
of continuous modes. Hybrid switching designs can be used to achieve control objectives that
cannot otherwise be achieved by purely continuous means, but they can also exhibit subtle
stability behavior (see Section 1.1.4) which makes rigorous proofs of their stability desirable.
All of the aforementioned properties are formalized in this thesis using differential dynamic
logic (dL), a logic for deductive verification of hybrid systems [135, 139, 142, 144] (Chapter 2).
The use of dL as a uniform logical foundation throughout this thesis has several key benefits:

1. The dL proof calculus enables compositional reasoning, as illustrated by the logical depen-
dencies in Fig. 1.1. Proof insights for ODEs are lifted to corresponding results for hybrid
systems through dL’s hybrid program modeling language and reasoning principles [144].
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Figure 1.2: (Left) An appropriate invariant set shows that ODE evolutions from the initial states
always stays in the invariant and cannot enter the unsafe states. (Right) Trajectories from the
initial state eventually enter the target region without leaving the domain of safe states.

2. All reasoning principles for safety, liveness, and stability are syntactically derived from
a parsimonious set of dL axioms with well-established semantic and axiomatic founda-
tions [139, 142] which yields utmost confidence in the correctness of the resulting proofs.
Moreover, the dL foundation provides a basis for investigating proof-theoretical questions,
such as the completeness and deductive power of the proof calculus [139, 140].

3. The dL proof calculus is implemented in the KeYmaera family of hybrid system theorem
provers [115, 147] and related tools [55, 180]. Insights from this thesis are put into
practice through the KeYmaera X prover [54] which implements dL’s uniform substitution
calculus [142]. Thanks to the shared dL foundation, the thesis implementations and case
studies require minimal extensions to KeYmaera X’s soundness-critical axiomatic core and
thereby directly inherit the trustworthiness of KeYmaera X’s microkernel design [54, 115].

Informally, dL is also an excellent setting in which familiar intuitions from discrete program
verification can be analogously applied to continuous and hybrid systems. This connection is
exploited throughout the thesis, for example, the classical technique of introducing auxiliary
ghost state to a program for the sake of its verification [127] is crucially used to aid differential
equations reasoning in Chapters 3 and 4 through dL’s continuous differential ghost princi-
ple [139, 140]. The same idea reappears under a slightly different guise for stability specifications
in Chapter 5 and yet again in Chapter 6 for a switched system stability verification case study.

1.1.1 Safety and Invariance for Ordinary Differential Equations

An invariant (also called positive invariant) of an ODE is a set of states that cannot be left by
evolving the ODE forward in time starting from any state in that set. Such invariants play an
important role in proofs of safety for ODEs [144], as illustrated in Fig. 1.2 (left). Suppose the
system under consideration is evolved forward in time from a set of initial states (in green)
and it is undesirable for the system to enter the unsafe states (in red). The invariant set (in
blue, with dashed boundary) contains the initial set and is a subset of the safe states (unshaded).
Consequently, all forward evolutions of the ODE from the initial set are trapped within the
invariant and can therefore never enter the set of unsafe states.



Chapter 3 presents a dL differential equation axiomatization [148, 149] that is complete for
reasoning about ODE invariants. The key result is that, given an ODE and a candidate invariant
characterized by a formula of arithmetic, one can always syntactically prove (or disprove)
invariance of the candidate invariant from the parsimonious axiomatization of differential
equations reasoning principles in dL. The dL logical foundation is crucial for this result and, in
fact, Chapter 3 [149] proves the completeness result more generally for all ODEs and invariants
in any extended dL term language that meets three extended term conditions because the
dL axiomatization remains sound for those extensions [149]. The rich class of Noetherian
functions [12, 56, 57, 201] is shown to meet those criteria and therefore automatically inherits
the completeness result. Extension of dL’s term language with Noetherian functions is practically
useful because the Noetherian class includes many (non-polynomial) functions of use in models
of continuous and hybrid systems, e.g., the exponential and trigonometric functions. The chapter
also proves related completeness results for the special case of equational invariants, where dL’s
hybrid program axioms are used to compositionally lift those results to hybrid systems.

1.1.2 Liveness and Existence for Ordinary Differential Equations

An ODE is live if its solutions from the prescribed initial states eventually enter a given goal or
target region. For reach-avoid type applications [18, 22], these solutions may also be required to
avoid certain unsafe states before the goal or target region is reached. This liveness property is
illustrated in Fig. 1.2 (right), where trajectories from the initial set (in green) enter the target
region (in blue, dashed boundary) without entering the set of unsafe states (in red). Liveness
arguments are subtle in the continuous setting, e.g., ODE solutions may cease to exist after a
short time period before they reach the target region. These subtleties are the source of several
soundness errors identified in liveness arguments from the literature (see Table 4.1, page 76).

Chapter 4 [192, 195] presents an approach for deducing liveness properties of ODEs through
systematic, step-by-step refinements, where each step is justified using an ODE safety (or
invariance) property proved using the results of Chapter 3. The idea of using safety properties
in proofs of liveness properties is reminiscent of deductive proofs of liveness for discrete
(concurrent) systems [109, 128] and Chapter 4’s key insight is that this idea generalizes to
the continuous setting—as long as the new technical subtleties, such as sufficient duration
existence of solutions, are appropriately identified and handled. Refinement reasoning in
dL provides a sound and uniform basis for navigating these subtleties, in contrast to earlier
ad hoc (often unsound) approaches from the literature (surveyed in Table 4.1). Refinements
also naturally generalize to new ODE liveness arguments by soundly mix-and-matching or
generalizing previously identified refinement steps in new ways. As a special case, Chapter 4
applies the refinement approach to deductive proofs of sufficient duration existence for ODEs
which are a key hypothesis behind ODE liveness arguments. These insights are put into practice
through an implementation of ODE existence and liveness proofs in KeYmaera X.

1.1.3 Stability for Ordinary Differential Equations

At a high level, stability properties can be understood as a combination and/or variation of two
underlying properties [165]:



Figure 1.3: The leftmost plot shows a stable and attractive cruise controller driving a car’s speed
v back to the desired cruising speed v, over time ¢ from a small initial perturbation vy. Note
that v remains near v, throughout (stability) and converges to v, as t — oo (attractivity). The
middle plot shows a stable controller lacking attractivity, where v oscillates around v, but never
converges to v.. The rightmost plot shows an attractive controller that lacks stability; although
v converges to v, the car is transiently driven to a stop v = 0 before speeding up again.

Stability.* A stable system always stays close to its desired operating state(s) when initially
slightly perturbed from those operating state(s).

Attractivity. An attractive system dissipates initial perturbations and eventually returns to
a desired operating state.

A familiar example illustrating these properties is a cruise controller that is attempting to
keep a car at its desired cruising speed [6]. Stability of the cruise controller ensures that small
perturbations to the car’s cruising speed, e.g., from minor bumps in the road, do not result in
large and potentially unsafe changes in its speed. Attractivity of the controller ensures that
those perturbations are eventually dissipated so that the car successfully returns to its cruising
speed and does not, e.g., remain in uncomfortable oscillations that might be dangerous for the
car’s passengers. The behavior of various cruise controllers are illustrated in Fig. 1.3.

The informal descriptions of stability and attractivity are, respectively, similar to the de-
scriptions of ODE safety and liveness, with the added twist that stability and attractivity are
concerned with the local and long-term (asymptotic) behavior of a system near its desired operat-
ing state(s). Chapter 5 [194] shows how ODE stability and attractivity can be formally specified
as quantified and nested ODE safety and liveness properties, where the first-order quantifiers
V, 3 are used to express local and/or long-term asymptotic behaviors of the ODE solutions. Ac-
cordingly, deductive proofs of stability specifications are built by formalizing classical Lyapunov
function-based techniques [98] for stability through the combination of quantifier reasoning and
dL’s ODE safety and liveness reasoning principles studied in the preceding Chapters 3 and 4.
The flexibility afforded by dL’s formula syntax and proof calculus is crucial because there are a
number of stability variations, e.g., exponential or set stability, that may be of interest for any
given system with different specifications (see Chapter 5 for further examples). Unlike existing
stability verification approaches [3, 61, 88, 104, 170], the deductive approach rigorously proves
every step of a stability argument as opposed to arithmetic conditions that imply a given stability

The word “stability” is often used as a one-size-fits-all term to refer to various related stability notions. The
description of stability here is in the sense of the mathematical definition of Lyapunov stability for ODEs [71, 89, 165].
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Figure 1.4: Figures 1.4a and 1.4b in the top row show trajectories for ODEs in blue and dashed
red that spiral towards the stable origin © = 0, v = 0. Figures 1.4c and 1.4d in the bottom row
show two different switching designs that produce opposite stability outcomes for the overall
system: a stable spiral towards the origin for Fig. 1.4c but an unstable trajectory that diverges
from the origin for Fig. 1.4d. The alternating colors show the ODE that is being followed at each
point along the trajectory and the solid black lines indicate switching boundaries.

notion. Thus, instead of building an entirely new verification tool or proof approach for each
new stability notion, the deductive approach formalizes them all within dL, which enables the
use of KeYmaera X as a single trustworthy tool for stability verification.

1.1.4 Stability for Switched Systems

Stability is also an important design objective when the real-world systems of interest are
modeled by hybrid systems instead of purely continuous ODEs [44, 99, 118, 189]. The added
complication is that stability of a given hybrid system is a function of both its continuous ODEs



and its discrete dynamics, so both dynamics must be adequately accounted for in the overall
stability proof. This subtlety is present even for the sub-class of switched systems, i.e., hybrid
systems that discretely switch between a family of continuous modes but without discrete jumps
in their system state [28]. For example, Fig. 1.4 shows a system that switches between two
ODEs which are individually stable (Figs. 1.4a and 1.4b), but where the overall system becomes
unstable when subjected to a destabilizing switching signal (Fig. 1.4d). It is desirable to design
discrete switching mechanisms that maintain stability of the overall system (Fig. 1.4c) and, in
some cases, it may even be possible to use switching to stabilize otherwise unstable ODEs or to
use appropriately designed switching control to achieve control goals that cannot be achieved
by purely continuous means [99]. Rigorous proofs of switched system stability are important
to ensure that a given switching design achieves the intended effect of stabilizing a system,
especially for complicated designs where pen-and-paper proofs become error-prone.

Switched systems and their stability questions provide a practically useful proving grounds
for demonstrating the latter part of the thesis statement, i.e., that the deductive approach to
ODEs yields new insights towards the verification of hybrid systems. Chapter 6 [193, 196] applies
the results of the preceding Chapters 3-5 to the study of switched system stability.

Switched Systems as Hybrid Programs [193]. Various classes of switched systems are
modeled as looping hybrid programs in dL, where each loop iteration models a discrete switching
step followed by continuous evolution of the chosen mode. This bridge between formalisms—
switched systems from control theory and hybrid programs from verification—leads to fruitful
cross-pollination of ideas from their respective fields. For example, the completeness results for
ODE invariants in Chapter 3 are compositionally extended to complete invariance proof rules
for various classes of switched systems, which facilitates their effective safety verification in dL.

Switched System Stability Verification [196]. Switched system stability is proved for loop-
ing hybrid programs by blending classical ideas from the controls and verification literature
using dL. From controls, standard stability notions for various classes of switching mechanisms
are used [65, 66, 99], along with their corresponding Lyapunov function-based analysis tech-
niques [27, 89, 99]. From verification, properties of looping hybrid programs (modeling switched
systems) are verified by finding appropriate loop invariants, i.e., properties that are preserved
across each loop iteration [144]. This blend of ideas enables a trustworthy implementation
of switched system stability verification in KeYmaera X providing fully automated stability
proofs for standard classes of switching mechanisms, including automatically searching for
suitable Lyapunov functions. The generality of the dL approach also allows for verification of
switching control laws that require non-standard stability arguments because users can design
loop invariants that suitably express specific intuitions behind those control laws. This flexibility
is demonstrated on several case studies in Chapter 6.

1.1.5 Chapter Layout

Chapters 3-6 each have an associated appendix containing omitted details and proofs (Ap-
pendix A-D). It is recommended to read the thesis chapters in order, because later thesis chapters
build significantly on results developed in earlier chapters (see Fig. 1.1).
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Figure 1.5: An overview of approaches for the verification of continuous and hybrid systems. The
underlying trust story for each approach is shown in green, with darker shades corresponding
to a comparatively stronger trust story behind the approach’s verification results.

1.2 Related Work

This related work discussion broadly examines approaches for the formal verification of con-
tinuous and hybrid systems and explains how this thesis relates to the broader hybrid systems
verification landscape. Chapters 3-6 contain further related work discussion specific to the
material of the respective chapters. The discussion here is structured along a high-level catego-
rization of formal verification approaches along the automation, generality, and trust story axes,
as shown in Fig. 1.5. The automation axis examines the tools that implement a given category of
approaches; the generality axis examines the types of specifications that can be tackled, espe-
cially the safety, liveness, and stability properties studied in this thesis; and the trust story axis
examines what needs to be trusted by a user in order to trust a verification result produced by
the tools. This thesis seeks to improve syntactic deduction along the automation and generality
axes while retaining its strong trust story. Of course, the boundaries between categories are not
always clear-cut and approaches that overlap several categories are highlighted as well.

1.2.1 Reachability Approaches

There is an extensive literature on model checking and reachability analysis for hybrid systems [7,
31, 35, 48, 52, 53], often based on analyzing hybrid automata [7, 75], see Doyen et al. [45] for a
comprehensive survey. Briefly, these approaches compute an overapproximation of the image of
a set of initial states under the dynamics of a hybrid system. Safety specifications are verified by
checking that the overapproximate images do not intersect unsafe states.

* Automation. There are a number of tools for automated hybrid system reachability analysis
that handle different sub-classes of hybrid dynamics, e.g., SpaceEx [53] handles piecewise
affine hybrid automata while Flow™ [31] supports automata with nonlinear dynamics,



see Doyen et al. [45, Chapter 30.7] for a survey of other reachability tools [5, 15, 48,
52, 172]. A key ingredient for reachability computations is the use of efficient internal
representations of state sets that provide different trade-offs in runtime and accuracy for
computing overapproximations [45]. For example, SpaceEx converts between template
polyhedra and support function representations to apply different operations [53] while
Flow™ is based on Taylor model overapproximations [31]. Several tools provide modular
libraries [5, 15, 172] so that users and developers can flexibly experiment on different
combinations of representations and algorithms.

* Generality. Reachability analysis tools are often limited to i) sub-classes of hybrid sys-
tems, e.g., with piecewise affine dynamics in SpaceEx [53], ii) analysis over sufficiently
small bounded initial sets and for a finite time horizon to avoid error growth in overap-
proximations [45], and iii) fixed (or bounded) parameters for the hybrid system models.
The use of reachability analysis for liveness-type properties has not been as extensively
explored [122], although specialized tools have used, e.g., (under-approximate) reacha-
bility for liveness [32, 67] and stability verification [151], see related work discussion in
Chapters 4-6. Overall, reachability approaches have powerful automation but apply to
restricted subsets of the safety, liveness, and stability properties considered in this thesis.

* Trust story. To trust the output of each verification tool mentioned above, one must trust
the correctness of the underlying mathematical justification intrinsic to each approach
and the extrinsic tool implementation details. Intrinsic errors in mathematical justification
nullify verification results since there is no guarantee that those results correctly imply the
desired property. Extrinsic errors are mismatches between the tool implementation and
underlying justification. This also leads to gap in the trust story, e.g., the use of floating
point rather than exact arithmetic for efficiency in implementations [53]. One way to
eliminate both forms of error is to formally prove their absence within a general purpose
proof assistant, e.g., Immler [79] verified an ODE solver in Isabelle/HOL [124] using
rigorous Runge-Kutta methods [199, Section 2.7] that can produce verified enclosures for
solutions of ODEs. However, the verified tool’s performance is not competitive with other
(unverified) tools [84]. Another trust gap is that a disparate combination of tools must be
used in concert to achieve a comprehensive verification result of multiple specifications,
e.g., of safety, liveness, and stability for a given system, which enlarges the trusted base
of the verification result. Notwithstanding the trust story, the bag-of-tools approach is
advantageous because it applies complementary tools with different strengths to tackle
sub-classes of specifications. Combined approaches using reachability tools and others
(discussed below) have been successfully used for several case studies [101, 186, 212].

1.2.2 Numerical and Certificate-Based Approaches

An alternative class of automated verification techniques is based on generating certificates
that imply the properties of interest [45, Chapter 30.6]. For example, barrier certificates [155]
are a popular technique for certifying safety of a hybrid system, where the trajectories of the
hybrid system are proved to never enter unsafe states by showing that a given barrier function



(typically a polynomial function) satisfies certain arithmetical conditions that imply safety. Such
barriers are often found by numerically solving a sum-of-squares problem [129] with constraints
that encode the appropriate arithmetical conditions. Similar techniques for ODE and hybrid
system safety are based on finding invariants of those systems [146, 161, 169] (see Chapter 3).
Other (numerical) certificates include variants that imply liveness [156, 157, 191] (see Chapter 4)
and Lyapunov functions that imply stability [3, 61, 88, 170] (see Chapters 5 and 6).

* Automation. Approaches based on automatically generating certificates are implemented
in various tools [3, 61, 88, 91, 155, 156, 157, 170, 178, 180, 191]. The main difference between
tools is how they encode different (sufficient) arithmetical conditions into an appropriate
input format for different numerical solvers. For example, sufficient conditions for barrier
certificates come in various flavors, including strict [155], Darboux [210], exponential [91],
and vector barrier certificates [178]. These conditions have also been encoded (and solved)
differently, e.g., with linear programming [209], sum-of-squares programming [91, 155],
or other novel combinations of encoding and/or solving techniques [88, 132, 205, 210].

* Generality. Compared to reachability approaches, barrier certificates and invariants are
useful for certifying safety with respect to unbounded initial sets and over infinite time
horizons. However, tools for generating these certificates are highly-dependent on the
success of numerically solving the encoded problems and they suffer from scalability
issues for higher dimensional systems [180]. Some numerical generation techniques also
require bounded domains for the input model’s state or parameter values [3, 61, 170]. Thus,
problems can have safety certificates in theory but those certificates may not be easily
found by tools in practice. Certificates for liveness and stability can also be numerically
generated [49, 104, 130, 131, 156, 157, 200], subject to similar caveats, see related work
discussion in Chapters 4-6. Existing certificate-based methods form the basis for further
study in this thesis, e.g., Chapter 4 surveys and generalizes liveness arguments from the
literature while Chapters 5 and 6 formalize Lyapunov functions for stability.

* Trust story. Intrinsic errors in the mathematical justification for certificate-based ap-
proaches have been reported in the literature and in this thesis, e.g., for barrier certifi-
cates [45, Chapter 30.6.1], in the survey of liveness arguments (Table 4.1, page 76), and
for stability (Appendix C.2). A key contribution of this thesis is to soundly and syntacti-
cally justify proof rules for certificates by deriving them from a trustworthy logical basis.
Another important trust gap for certificate-based approaches arises when numerically
generated results are invalid because the results contain numerical errors and so do not
satisfy all of the required arithmetical conditions. Numerical issues have been highlighted
in the literature [3, 40, 88, 167, 170, 180] and they are often handled by not trusting the
output of numerical solvers but instead separately checking the correctness of any un-
trusted candidate certificates with a separate trusted tool. Certificate-based approaches
can be fruitfully integrated with deductive tools (discussed next) by using the latter tools
to soundly check untrusted certificates. For example, untrusted ODE invariant candidates
generated by the Pegasus tool [180] are formally checked by KeYmaera X.
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1.2.3 Syntactic Deduction

A number of proof calculi have been proposed for syntactic, deductive reasoning for hybrid
systems [45, 135, 164, 188, 213], including differential dynamic logic (dL) [135, 139, 142, 144]
which is used as the logical foundation throughout this thesis (Chapter 2).

* Automation. Hybrid Hoare Logic (HHL) [102, 213] extends Hoare logic to support hybrid
systems and it is implemented in the HHL prover [206] embedded in Isabelle/HOL. The
dL proof calculus is implemented in the KeYmaera [147] and KeYmaera X [54] provers
for hybrid systems [115]. A Hoare-style logic with dL-inspired proof rules has also been
implemented in Isabelle/HOL [50, 51]. These tools provide users with a high degree of
hybrid system-specific automation [54], e.g., ODE solving, invariant generation [180], and
automated application of canonical reasoning steps. However, unlike the reachability and
certificate-based approaches, syntactic deduction approaches are semi-automatic and often
require some manual user input to supply insights for more difficult parts of proof, such
as supplying loop invariants or proving properties of (complicated) ODEs [144, 213].

This thesis improves automation: Chapter 3 furnishes a means of automatically proving
ODE invariance; Chapter 4 provides an implementation of ODE liveness; Chapters 5 and 6
derive high-level stability proof rules in dL and implement them in KeYmaera X.

* Generality. Proof calculi are syntactically limited by the properties that can be expressed
in their specification language and by the reasoning principles available for proving those
specifications. For example, in dL, users can model and specify first-order dynamical
properties of hybrid system models [73, 144]. Deductive calculi can be composition-
ally extended to accommodate, e.g., (continuous) differential-algebraic [137], (construc-
tive) adversarial [18, 141, 143], doxastic [110], distributed [136], stochastic [138], and
concurrent [164, 213] dynamics. The base logic of dL has also been extended with tem-
poral [85, 133], relational [90], hybrid-logical [17], and refinement [19, 106] reasoning.
Compositionality can also be exploited through contract-based reasoning to scale verifica-
tion to larger hybrid systems consisting of interacting components [87, 100, 119].

This thesis improves generality: Chapter 3 extends the base term language of dL while
retaining complete invariance reasoning; Chapter 4 develops reasoning principles for ODE
liveness; Chapters 5 and 6 uses dL to tackle stability and its reasoning principles. The
fundamental advantage of compositional reasoning is that all results of this thesis can be
applied to answer ODE safety, liveness, and stability sub-questions arising in any of the
aforementioned extensions of dL without compromising the soundness of their logics.

* Trust story. To trust a syntactically proved result, one must trust its logical foundations. This
thesis uses dL, whose foundations are well established in the literature [135, 139, 142, 144].
Furthermore, soundness of dL’s uniform substitution calculus has been formally verified
in the general purpose proof assistants Isabelle/HOL and Coq [20]. Both KeYmaera and
KeYmaera X implement dL but with different design principles [115]: KeYmaera is built on
the KeY prover and inherits its significant visualization, automation, and user interaction
features; KeYmaera X is a clean-slate prover designed around a minimal, soundness-
critical core kernel implementing the aforementioned uniform substitution calculus for
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dL. Crucially, KeYmaera X’s microkernel (=2000 lines of Scala) [54, 115] is the only part
of its implementation that must be trusted to trust its axiomatic verification results. The
remaining trust question is how to handle arithmetic sub-questions arising in proofs:
KeYmaera and KeYmaera X both provide tools for proving simple arithmetic questions and
interfaces to various external arithmetic solvers [115]. Verified arithmetic is an active area
of research, including formally verified provers [36, 38, 113, 120, 121, 171], certificate-based
techniques [74, 150] (also available in KeYmaera), and combinations thereof [97].

This thesis retains the strong trust story of dL and KeYmaera X: it is based on syntactically
deriving high-level reasoning principles for ODE safety, liveness, and stability from a
core dL axiomatization. Such a syntactic approach fits particularly well with an imple-
mentation in KeYmaera X because those high-level reasoning principles are implemented
as (untrusted) tactics in KeYmaera X [55], with its sound kernel as a safeguard against
implementation errors or mistakes in pen-and-paper proof rule derivations.

1.2.4 Formalized Mathematics

General purpose proof assistants have been used to formalize specifications and theorems for
ODEs and hybrid systems. Examples of such efforts include: foundational theory for ODEs and
libraries for their verified numerical analysis [80, 83, 108], LaSalle’s invariance principle for
stability analysis [37, 166], and the Poincaré-Bendixson theorem [82].

* Automation. Formalizing mathematics in a proof assistant is often beset by significant
manual user effort in proofs, e.g., in dynamical systems formalization, Immler and Tan
[82] required ~7000 lines of proof script to formalize the Poincaré-Bendixson theorem,
building on significant existing libraries; Rouhling [166] required ~1000 lines of proof
to define and prove the stability of an inverted pendulum controller after extending an
earlier formalization of LaSalle’s invariance principle [37]. This effort contrasts with
syntactic deduction (e.g., in KeYmaera X) because users have to reason over the underlying
mathematical semantics of the properties being formalized. Addition of domain specific
automation, e.g., in the style of dL for hybrid systems [51], can help reduce user effort.

* Generality. In principle, general purpose proof assistants allow for formalization of com-
plicated mathematical properties of ODEs and hybrid systems, as long as the required
background libraries are available (or sufficient time and resources are devoted to develop-
ing those libraries). Examples of such libraries include the Archive of Formal Proofs (AFP)
for Isabelle/HOL,” the Lean mathematical library [111], and the Mathematical Compo-
nents library for Coq.> The AFP ODE library [81] has been used in a number of ODE and
hybrid system formalizations by various authors [20, 82, 145, 208], while the Mathematical
Components library is used by Cohen and Rouhling [37]. Libraries for real analysis are
available in most proof assistants [23].

*https://www.isa-afp.org
*https://math-comp.github.io
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* Trust story. To trust a formalized result, one must trust: i) the logical foundations of the
proof assistant used, ii) the proof assistant implementation, and iii) the correct definition
of mathematical concepts involved in the formalization. There is ongoing research towards
improving trust in the former two points, e.g., by mechanizing the logical foundations [95,
184] and developing verified kernel implementations [2, 42]. The latter point may be
alleviated by careful inspection, or by re-using well-accepted definitions from other
formalization efforts available in common libraries, such as the ones mentioned above.

Proof assistants can also be used to strengthen the trust story underlying the preceding
categories of approaches. Several deductive calculi for hybrid systems have been mechanized, e.g.,
dL and its game logic extension [20, 145], modal Kleene algebra for hybrid systems [50, 51, 208],
and Hybrid Hoare Logic [206]. The VeriDrone [163] and ROSCoq [8] projects both provide
mechanized frameworks within Coq which can be used to model and reason about hybrid
systems. Full mechanical verification is an intriguing future endpoint for the results of this
thesis, although the proof effort required may be prohibitive. In this respect, an important
contribution of this thesis is to identify what results are possible and useful to mechanize.
For example, a key property involving how ODE solutions can enter or exit semialgebraic
sets [64, 103] which is used in the complete analysis of ODE invariants (see Chapter 3) has been
formalized in PVS for real analytic functions [174].
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Chapter 2

Background: Differential Dynamic Logic

This chapter reviews the syntax, semantics, and axiomatics of differential-form differential dy-
namic logic (dL), which is the hybrid systems specification and verification logic used throughout
this thesis. The exposition herein is necessarily abbreviated and adapted for the purposes of this
thesis; interested readers are referred to the literature [135, 139, 142, 144] for more complete
expositions of dL. Notational conventions used in this thesis are also established in this chapter.

2.1 Syntax

The syntax of dL is the language in which hybrid systems are modeled and specified.

2.1.1 Terms

Terms are generated by the following grammar, where x € V is a variable from the set of all
variables V and ¢ € Q is a rational constant:

e,ex=uwl|clet+eéle-el(e)

Terms generated using only the first 4 clauses of this grammar correspond to polynomials
over the variables V under consideration. Differentials (e)" are used in dL for sound differential
equations reasoning [142], where the value of (¢)’ relates to how the value of term e changes
with each of its variables as a function also of how those variables themselves change. The
fundamental insight is that, along the evolution of a differential equation, the semantic value of
differential (e)’ coincides with the analytic time derivative of e [142, Lem. 35], so that proofs about
equations of differentials yield proofs about differential equations. It is crucial for soundness and
compositionality that differentials have a local semantics defined in any state, so that they can be
used correctly in any context to draw sound conclusions from syntactic manipulations mixing
dynamic statements about differential equations and static statements about differentials. The
precise semantics of differentials is elaborated in Section 2.2, while Section 2.3.3 explains how they
can be used to obtain a syntactic representation of (semantic) time derivatives along solutions to
differential equations. Syntactically, every variable x € V is assumed to have a corresponding
differential variable 2’ € V which, like differential terms, are syntactic representations of the
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semantic time derivative of  along ODE solutions. Section 2.3.3 shows that, in the context of an
ODE, differential terms (and variables) can be provably turned into terms that do not contain
any differentials or differential variables. Thus, e, € is exclusively used in this thesis to refer to
differential-free terms, i.e., (e)’ is the differential of e, where e is a differential-free term.

Notational Conventions (Terms). Results are often proved vectorially in this thesis, e.g., if
they hold for a differential equation system over any (finite) number of state dimensions. Thus,
for convenience, x will often be used to abbreviate a vector of state variables = = (x1, ..., z,).
Terms e(z), é(x) are written with explicit arguments (x) for emphasis when it is important
that the terms depend only on variables = free. When this dependency is unimportant, terms
e, € are written as usual without any arguments. The notation p, ¢ is reserved for emphasis
when the terms p, ¢ are polynomials, with dependencies p(z), ¢(x) added when necessary. For

. . ~ ~ ~ . ~ def
n-dimensional vectors of terms e = (ey,...,€,),6 = (€1,...,6,), the dot productise - é =

S | e;é; and the squared Euclidean norm is || e|3 &« S°" | €2. Other norms are explicitly defined

i=1"1"
when they are used.

2.1.2 Formulas

Formulas are generated by the following grammar, where ~ € {=,#, > > < <} is a compari-
son operator and « is a hybrid program (defined in Section 2.1.3).

First-order formulas of real arithmetic P,Q

b= e B DAY DV |~ V2 d| T2 | [adé ] {a)o

This grammar extends the first-order language of real arithmetic (FOLg) with the box ([a]¢)
and diamond ({«) ) modality formulas, which express that all or some runs of hybrid program
« satisfy the postcondition ¢, respectively. Note that the modalities [-], (-) can be freely nested
with first-order and modal connectives, which is crucial for the dL axiomatization (Section 2.3)
and the specification of stability properties in Chapters 5 and 6.

Notational Conventions (Formulas). In real arithmetic, formulas can be equivalently nor-
malized such that every atomic comparison e ~ € has 0 on the right-hand sideand ~ € {=, >, >}.
The notation e = € (resp. e < €) is used when the comparison operator can be either > or >
(resp. < or <). Other logical connectives, e.g., —, <>, are definable as usual in classical logic. As
with terms, variable dependencies for formulas ¢(x), 1)(z) are added when necessary. Formulas
not containing the modal connectives, i.e., formulas of FOL, are written as P, (). This convention
for formulas P, () is modified for extended term languages introduced in Section 3.2 (page 33).

2.1.3 Hybrid Programs

Hybrid programs are generated by the following grammar, where x is a variable, e is a dL term
and () is a dL formula.

Continuous program Discrete programs and connectives

0f = 7= f0)&Q | T=e Q| f|aUf|a
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Continuous Programs. Chapters 3-5 focus on deductive verification for the continuous
program ' = f(x) & @), which is a differential equation system | = fi(x),...,z), = f.(2)
over variables © = (x1, ..., z,), where the LHS 2/ is the time derivative of x; and the RHS f;(x)
is a dL term over variables . Following the notational convention, term f;(x) is differential-free
so the ODE system 2’ = f(z) is given in explicit form [142]. The autonomous ODEs 2’ = f(x)
do not depend explicitly on time on the RHS. A standard transformation is to add a clock variable
t to the system with 2’ = f(x,t),t = 1 if time dependency on the RHS is desired. The evolution
domain constraint formula () restricts the set of states in which the ODE is allowed to evolve
continuously; the ODE is simply written as 2’ = f(x) when there is no domain constraint, i.e.,
@ = true. The following example ODE «, over variables u, v is illustrated in Fig. 2.1:

ozezu':—v—i—%(l—u2—vz),v':u+£(1—u2—v2) (2.1)

To intuitively understand continu-
ous evolution, it is useful to draw an 1} -~

”
analogy between ODEs and discrete I;/ ‘_\\\\
program loops: solutions of an ODE | I & (" /
must continuously (locally) follow its ‘\ > )
RHS at each time instant; analogously, _, | -
alooping program must repeat its local
description given by its loop body on -2 0 2 u

each iteration.! The continuous evolu-
tion of . is visualized in Fig. 2.1 with
directional arrows corresponding to
the RHS of «, evaluated at points on
the plane. Observe that, even though
the RHS of . are polynomials in vari-
ables u, v, its solutions, which must locally follow the arrows, trace out trajectories in the u, v
plane that exhibit complex global behavior. For example, Fig. 2.1 suggests that all points on the
u, v plane (except the origin) globally evolve towards the unit circle.

Returning to the analogy, the complex behavior of ODE solutions is unsurprising: even
though the body of a loop may be simple, it is almost always impractical to reason about the
global behavior of loops by unfolding all possible iterations. Instead, the premier reasoning
technique for loops is to study their loop invariants, i.e., inductive properties that are preserved
across each execution of the loop body. Similarly, invariants of ODEs describe subsets of the
state space from which solutions of the ODEs cannot escape. Invariance reasoning principles
for ODEs form the basis upon which all further ODE reasoning is built in this thesis.

Figure 2.1: The red dashed circle u? + v? = 1 is ap-
proached by solutions of ., from all initial points except

the origin, e.g., the blue trajectory starting from (3, 1)

88
spirals towards the circle. The red circle, green region

u® < v? + 2, and origin are invariants of the system.

Discrete and Hybrid Programs. Hybrid dynamics arise in hybrid programs through the
combination of continuous ODEs with discrete programming constructs: discrete assignment
x := e sets the value of variable x to that of term e in the current state; test 7() checks that formula

'In fact, this analogy can be made precise: dL also has a converse relative completeness theorem [139, Theorem
2] that reduces hybrid systems and their ODEs completely to discrete Euler approximation loops.
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(@ is true in the current state and aborts the run otherwise; the sequence program «; 3 runs
program [3 after «; the choice program o U 3 nondeterministically chooses to run either « or 3;
and the loop program o* repeats o for n € N iterations where 7 is chosen nondeterministically.
The nondeterminism inherent in hybrid programs is useful for abstractly modeling real-world
behaviors [144], such as the discrete switching behavior between continuous ODEs studied
in Chapter 6.

Notational Conventions (Hybrid Programs). Conditional branching programs (if-else)
are defined as if (¢){a}else{S} = (7¢; a)U(?—¢; (). Single-sided conditionals (if) are defined
as if(¢){a} = (?¢;a) U (T—¢). Nondeterministic assignments z := % = 2’ =1Uz' = —1
model the assignment of an arbitrary value for x [144, Appendix 12.9.2]. Nondeterministic
choice over a finite family of hybrid programs o, for p € P, P = {1,...,m} is denoted
UpepapE()qUong...Uam.

Notational Conventions (Operator Precedence). This thesis uses the standard operator
precedences for dL, see [144, Expedition 4.3]. Briefly, all unary operators (-, Vz, 3z, [a], (@),
and (-)*) bind tighter than binary operators, sequential composition ; binds tighter than choice U,
conjunction A binds tighter than disjunction V, and both A, V bind tighter than (bi)implication
—, <. Arithmetic operators are left-associative, while logical and program operators are right-
associative, except —, <> which require explicit parentheses.

2.2 Semantics

The semantics of dL gives a formal, mathematical meaning to the elements of its syntax.

2.2.1 Terms

A dL state w : V — R assigns a real value to each variable in V; the set of all states is written S.
The semantics of term e in state w is written as w[e] € R and it is defined as usual for the standard
arithmetic operators [144, Definition 2.4], e.g., w[z] = w(x) and w[e + €] = w[e] + w[é]. The
semantics of differentials [142] is the sum of partial derivatives ag—geﬂ by all variables z € V
multiplied by the values of their associated differential variables 2/, where w(z’) selects the
direction in which x evolves locally and ag_gfq] describes how the value of e changes with a change
in the value of z:

wl(e)]=) _wa)— (2.2)

zev

Note that the semantics of differentials (e)’ is well-defined for isolated states w, independent
of any ODEs. Their importance for differential equations reasoning in dL stems from the
(upcoming) semantics of dL formulas and hybrid programs.
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2.2.2 Formulas and Hybrid Programs

Formulas. The semantics of comparison operations and first-order logical connectives are
defined as usual [144, Definition 2.5], with [¢] C S being the set of states where formula ¢ is
true, e.g., w € [e < €] iff wle] <wlé], andw € [¢ A Y] iff w € [¢] and w € [¢]. The semantics
of the modal connectives are defined over hybrid program semantics [a] C'S x S (below):

w € [[a]¢] iff for all states v such that (w,v) € [a],v € [¢]
w € [{a)¢] iff there is a state v such that (w,v) € [a] and v € [¢]

The semantics of hybrid programs are transition relations [o] C S x S, where (w,v) € [¢]
iff state v is reachable from state w by running hybrid program «. The semantics is defined
inductively over the syntax of hybrid programs as follows.

Continuous Programs. The semantics of an ODE, [z’ = f(x) & )], is the set of all pairs of
states that are connected by some solution of the ODE [142, Definition 7]:

(w,v) € [ = f(x) & Q] iff there is a duration 0 < T € R and a function ¢ : [0,7] — S
with p(0) = won {2/}, o(T) = v, and ¢ |= 2/ = f(z) AQ

The condition # = 2’ = f(z) A Q checks that the differential equations and domain are
satisfied ¢(¢) € [2/ = f(z) A Q], with ©(0) = () {x, 2'}* for all times 0 < ¢ < T, and, if
T > 0, then ds"( )(x) (€) exists, and is equal to ¢(¢) (') for all 0 < ¢ < T In other words, ¢ is
a solution of the differential equations 2/ = f(x) that always stays in the evolution domain
constraint . It is required to hold all variables other than x, 2’ constant and, importantly, the
values of the differential variables 2’ are required to match the value of the RHS f(z) of the
differential equation along the solution.

Discrete and Hybrid Programs. The remaining cases for hybrid programs « are as follows,
where o denotes relational composition and a® =?true, o™ = a™; a, see [144, Definition 3.2].

(w,u) € [x:=e] iff v = w except v(x) = w[e]
) e?Q]  iffv=wandw € [Q]
(OJ,V) € [o; 5] iff (w,v) € [o] o [4]
i.e., there exists state i such that (w, ) € [a] and (i, v) € [A]
(w,v) € [aUf] iff (w,v) € [a] or (w,v) € [F]
(w,v) € [a] iff (w,v) € U [a"],ie., (w,v) € [a"] for some n € N

neN

Formula ¢ is valid iff it is true in all states, i.e., [¢] = S. If formula P — [’ = f(x) & Q]P
is valid, then the formula P is called an invariant of the ODE, 2’ = f(x) & ). Unfolding the
semantics, this means that from any initial state w € [P], any solution ¢ of 2/ = f(z) starting
from w, which does not leave the evolution domain [Q], stays in [P] for its entire duration.
Fig. 2.1 suggests several invariants for the ODE o, from (2.1). The unit circle, u* + v* = 1, is an
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equational invariant because the direction of flow on the circle is always tangential to it. The
open unit disk, u? + v? < 1, is also invariant because trajectories within the disk spiral towards
the circle but never reach it. The green region described by u? < v? + % is invariant but needs a
careful proof. Similarly, if the formula P — [o*] P is valid, then the formula P is called a loop
invariant for the looping hybrid program a*.

Notational Conventions (Semantics). Variables y € V \ {z} that do not occur on the
LHS of ODE 2’ = f(z) remain constant along solutions ¢ : [0,7] — S of the ODE, with
o(1)(y) = ¢(0)(y) for all 7 € [0, T). Since only the values of x = (z1, ..., x,) change along
the solution ¢, the solution may also be viewed geometrically as a trajectory in R", dependent
on the initial values of the constant parameters y. Similarly, the values of terms and formulas
depend only on the values of their free variables [142]. Thus, terms (or formulas) whose free
variables are all parameters for 2’ = f(x) also have provably constant (truth) values along
solutions of the ODE. For formulas ¢(x) that only mention free variables x, [¢] can also be
viewed geometrically as a subset of R". Such a formula is said to characterize a (topologically)
open (resp. closed, bounded, compact) set with respect to variables x iff the set [¢] C R™ is
topologically open (resp. closed, bounded, compact) with respect to the Euclidean topology.
In Appendix B.1.3, a more general definition of these side conditions is given for formulas ¢
that mention parameters y. These side conditions are decidable [14, 197] when ¢ is a formula
of first-order real arithmetic and there are simple syntactic criteria for checking if they hold
(Appendix B.1.3). Analogously, by projecting dL states onto the state variables x of interest for
a hybrid program «, the transition semantics of o can be equivalently viewed as a relation in
Euclidean space [a] € R™xR". Formulas P, P and P are the syntactically definable topological
interior, closure, and boundary of the set characterized by P, respectively [14]. For example, the
closure formula for P(z) is defined as, P(z) = ¥t3y (P(z) A (ly — z||3 < t> vVt = 0)), with
fresh variables y, t not appearing in P(z) [14, Proposition 2.2.2]. The interior formula is defined
as P = —(=P) and the boundary formula is defined as 9P = P A —P.

2.3 Axiomatics

The axiomatics of dL are the sound axioms and proof rules by which dL syntax can be soundly
and syntactically manipulated to derive new, valid conclusions.

2.3.1 Sequent Calculus

This thesis uses a standard, classical sequent calculus [134] with the usual rules for manipulating
logical connectives and sequents. The semantics of sequent” I - ¢ is equivalent to the formula
(Ayer ¥) — ¢ and the sequent is valid iff its corresponding formula is valid. Formulas I" are
called antecedents of the sequent, while formula ¢ is its succedent. Proofs are written as a

%For notational simplicity, this thesis uses sequents with exactly one succedent I' I ¢ because all of the thesis
results focus on proving validity of an ODE or hybrid system specification ¢ from assumptions I'. Presentations of
dL with sequents I' - A where A is a set of succedents are available in the literature [135, 139, 142, 144].
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sequence of deduction steps, where the axiom or proof rule used in each step is annotated to the
left, as shown in the following illustrative proof outline:

Deduction :
Ul
TrY 'ToF iAo
I o Bl

Starting from the desired conclusion (below the rule bar), application of a proof rule, like
the propositional cut rule, yields its premises (above the rule bar). When an implicational or
equivalence axiom is used, like the [;] axiom [«; 5]¢ <> [a][5]¢ for sequential compositions,
propositional sequent manipulation steps are omitted and the proof step is directly labeled with
the axiom, giving the resulting premises accordingly [142]. Weakening steps that drop irrelevant
assumptions are also omitted. Completed branches are marked with * above the rule bar.

An axiom is sound iff all of its instances are valid and a proof rule is sound iff validity of
all of its premises imply validity of its conclusion. Axioms and proof rules are derivable iff all
of their instances can be deduced from sound dL axioms and proof rules. Soundness of the dL
axiomatization ensures that all axioms and proof rules that are syntactically derived from the
axiomatization are sound [142, 144] and can thereby be soundly used in subsequent deductions.

Arithmetic. First-order real arithmetic (over polynomial terms) is decidable [14, 197] so access
to such a decision procedure is assumed. Proof steps are labeled with r whenever they follow as
a substitution instance of a valid formula of first-order real arithmetic.

Propositional and First-Order Proof Rules. The following is an excerpt of sound proposi-
tional and first-order sequent calculus proof rules that are used in this thesis. Presentations of
the entire calculus, e.g., with the VR rule(s), are available in the literature [135, 139, 142, 144].
In rules VL, JR, an arbitrary dL term e can be used to instantiate the respective quantifiers. In
rules JL, VR, the Skolem variable y is fresh, i.e., does not occur free, in the conclusion:

L Tre o Doneat v L Dro Doty
T, —¢ b false NN I o1 — g b9
.
T ibe()x;f ;o e ;y(g;p v
WISt A

2.3.2 Base Axioms and Proof Rules

This section presents the subset of dynamic logic and hybrid program axioms of dL [139, 142, 144]
used in this thesis, except the axiomatization of differential equations which is deferred to the
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subsequent sections.

Theorem 2.1 (Base axioms and proof rules [139, 142]). The following are sound axioms and proof
rules of dL.

F o
() (@) > =[a]=¢ G TF [l

K [a)(¢p = ¥) = ([a]p — [a]v) V ¢ — [a]¢ (no free variable of ¢ is bound by «)

The three axioms (), K, V and proof rule G are usual reasoning principles for dynamic
logics [139] and they apply generally for any hybrid program «.. Axiom (-) expresses the duality
between the diamond and box modalities, allowing conversion between the two with a double
negation. Kripke axiom K is the modal modus ponens for postconditions of the box modality.
Vacuous axiom V says if no free variable of ¢ is bound by hybrid program «, then the truth value
of ¢ is also unchanged by a run of a. The free and bound variables of dL terms, formulas, and
hybrid programs are defined as usual [142, 144]. The G6del generalization rule G reduces proofs
of [a]¢ to a proof of ¢ but must discard all assumptions in the antecedents I" for soundness.

Theorem 2.2 (Hybrid program axioms [142]). The following are sound axioms of dL.
=] [r:=¢elg(x) ¢ ¢le) (efreeforzing) [] [a;5]¢ < [][f]o

7] [7Q)é < (Q = ¢) ] [e*]¢ <+ & A [a][ar]e

U] [ U Blg > [a]o A [Blo I [a*]g < A fa*](¢ — [a]¢)

Axioms [:=], [7], [U], [;], [*], I unfold box modalities of their respective hybrid programs ac-
cording to their semantics (see Section 2.2.2). Assignment axiom [:=| says to show postcondition
¢(z) after an assignment to variable z, it suffices to prove ¢(e) in the initial state; test axiom [?]
assumes that the test () succeeded when proving postcondition ¢; nondeterministic choice
axiom [U] proves the box modality for both branches « and /3 of the choice program o U 3
separately; sequential composition axiom [;| says to prove postcondition ¢ for all runs of «; f3,
one can equivalently prove the nested box modality postcondition [3]¢ for all runs of program «;
loop iteration axiom [*] says in order for postcondition ¢ to be true for all iterations of a loop a*,
¢ must be true in the initial state before running the loop and it must remain true after running
at least one iteration [a][a*]¢; and loop induction axiom I says to prove ¢ for all runs of loop o,
¢ must be true in the initial state and it must be inductively true along the loop [a*](¢ — [a]¢).
The soundness proofs for Theorems 2.1 and 2.2 are available elsewhere [139, 142], along with an
in-depth textbook exposition of the axioms [144].

Notational Conventions (Axioms). Key subformulas of (derived) equivalence or implication
axioms are marked in blue to indicate that the equivalence or implication is typically applied to
syntactically rewrite the marked subformula in proofs. For example, axiom [;] is typically used
to equivalently rewrite the key formula |«; 3¢ to [a][5]¢.
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Derived Axioms and Proof Rules

The dynamic logic and hybrid program axioms of dL can be fruitfully combined to derive new
axioms and proof rules that are useful in subsequent proofs. For example, the loop induction
rule loop with a chosen loop invariant Inv (below) derives from induction axiom I using Godel’s
generalization rule G [139, 144]; the monotonicity rule M[-], which derives from axiom K and
rule G, strengthens the postcondition 1) of a box modality to ¢ provided that formula ¢ implies v;
axiom [-]A, which is also derived from axiom K [144], says to prove a conjunctive postcondition
for a box modality it suffices to prove those postconditions for the box modality separately.

'k Inv Invk (o] Inv InvE ¢ N o TF [ae
I (oo R A

loop [N [ad(@ A ) < [ald Alaly

Axiom (-) is useful for deriving diamond modality versions of dL axioms and proof rules.
For example, the diamond Kripke axiom K(-) (below) derives from K by dualizing its inner
implication with (-) [139] and the monotonicity rule for diamond modality postconditions M(-)
derives from axiom K(-) by rule G. Similarly, dualizing [*] yields the diamond loop unfolding
axiom (*), which expresses that a loop can be repeated to reach postcondition ¢ iff either ¢ is
already true in the initial state or it can be reached by repeating the loop for at least one iteration.
Duality is exploited further for ODEs in Section 2.3.4 and in the refinement approach to ODE
liveness introduced in Chapter 4.

K() [0 (@ - ¥) > (@6 — (@) M() 2= ;”F ?O;w@cb
(") (a")p < oV () (o)

Axiom V is particularly useful when working with constant assumptions [144]. If formula
¢(y) is true initially and variable y is not bound in hybrid program «, then it remains true for
all states reachable by running a because the value of y is unchanged by « and the truth value
of ¢(y) depends only on the (unchanged) value of its free variables y [142]. Axiom V proves
this for box modalities in succedents and, by duality, for diamond modalities in antecedents.
Conversely, if a constant assumption ¢(y) is true in a final state reachable by hybrid program «,
then it must already be true initially. This is shown formally by the derivation below which uses
a classical case split with a cut on whether the formula ¢(y) is already true initially:

*

P), ()P AP F oly) T, =¢(y), () (P A y)) - oY)
VLF 0(y) V ~0(4). (@) (P A o(y) F (1)
" LA} (PAo(y) F oly)

The left premise closes trivially. For the right premise, a contradiction is derived with (-) as
follows, where the V, M- step uses the propositional tautology —¢(y) — —=(P A ¢(y)):

*

V.M —¢(y) F [a]=(P A o(y))
O 50y), ()P A b)) F fale
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Notational Conventions (Constant Assumptions). In the sequel, routine steps to maintain
constant assumptions in contexts are omitted (or simply labeled with V for emphasis). For
example, in the loop induction rule, all constant assumptions I'. C I" for « can be soundly kept
across rule application of loop by adding those assumptions to the loop invariant and proving
them with an internal use of V as follows [144]:
Lyt [0l
LA G [o](Te A 9)
Cho " T4k [0
cut T I— [&*]¢

Additional constant contexts, like I'. above, are useful when working with assumptions on
symbolic parameters, e.g., v > 0 to model a (constant) positive velocity unchanged by a.

2.3.3 Differentials and Lie Derivatives

ODEs 2/ = f(x) precisely specify equations on time derivatives that their solutions must obey.
The deduction of properties of ODE solutions from their differential equations therefore relates to
the study of time derivatives of quantities mentioned in those properties. However, directly using
time derivatives leads to numerous subtle sources of unsoundness because they are semantic
objects that only make sense when a “time” axis even exists at all. Such a continuous time axis is
furnished by the domain of definition of an ODE solution, but time derivatives are not otherwise
well-defined in arbitrary contexts, e.g., in isolated states or across discrete transitions.

It is of utmost importance for soundness that, unlike time derivatives, differentials have a
local semantics (2.2) that is well-defined in single states which enables their use in arbitrary
contexts for sound syntactic manipulations [142]. The crucial differential lemma [142, Lem. 35]
shows that, along a solution of the ODE 2’ = f(z), the value of the differential term (e)’ coincides
with the time derivative % of the value of term e. This relationship allows conclusions to be
drawn about the differential equations directly from syntactic dL proofs involving differentials.
The latter syntactic manipulation of differentials is achieved using the differential axioms of dL,
which are given below. In axiom DE, 2’ = f(x) is understood vectorially, i.e., = is a vector of
variables 1, ..., x,, 2’ the corresponding vector of differential variables ', ..., 2/, and f(x) a
vector of terms f1(z), ..., fu(2).

Theorem 2.3 (Differential axioms [142]). The following are sound axioms of dL:
DE [2" = f(2) & Q)] P(z,2") = [2" = f(2) & Q(x)][a":= f(2)| Pz, 2)
d () =0 v (x) =2
+ (e+é) = (e) + (&) Se-e) =(e)-e+e-(&)
The differential effect axiom (DE) says that the differential variables x’ take on the values of
the RHS along solutions to an ODE. This is expressed on its RHS with an assignment 2" := f(x)

to the differential variable z’. Together, axioms DE, [:=] allow replacing free occurrences of 2’ in
the postcondition P(z, z’) yielding postcondition P(x, f(x)). However, proofs usually need to
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work with differentials of terms (¢)’ rather than differential variables directly. This is where the
differential axioms (¢, /, +/, ') are used. Axiom ¢ says that the differential of a constant is 0,
while axiom 2’ says the differential of a variable ()’ is the corresponding differential variable z’.
Axioms +', -’ are the sum and product rules of differentiation respectively. Soundness of these
axioms allows differential terms to be rewritten equationally in all contexts, including in the
postcondition of an ODE and within sub-terms. The differential axioms enable sound syntactic
differentiation because differential terms (e)’ can be rewritten according to these equational
axioms until no further differential sub-terms occur; any remaining differential variables are
substituted away using DE, [:=| under an ODE. Such exhaustive use of differential axioms is
simply labeled as ( )’ in proofs. The following example shows such a derivation concretely using
a polynomial term from the example in Fig. 2.1:

Example 2.4 (Syntactic differentiation). The following dL derivation syntactically differentiates

the polynomial term v? — u? + g along the ODE «, from (2.1) for any comparison operator ~:

- foduw + 31— u )2 — u?) ~ 0
RHaeP (ut 51— —v2))—2u( v Bl — w2 — %) ~
T E = — o+ 41— w? = o) 1=u+ﬁ(1—u2—1)2)}2vv —2uu’ ~ 0
}_[ae][ulz—v—i- (1—u?—?)|i=u+2(1—u? — o) —u?+§) ~0
PP ] (v — w4+ 2) ~ 0

The first DE step makes available assignments on variables u’, v’ in the postcondition. The
( )/ step is then used to syntactically simplify (v> — u® 4 3)’ yielding 200’ — 2uu’. A subsequent
use of [:=] replaces the resulting differential variables ', v’ with their respective RHS along the
ODE. Finally, rules M[], r are used to rearrange the calculated derivative arithmetically, which
results in a (simplified) polynomial term. A

The exhaustive use of differential axioms means that all differential terms (e)’ under an
ODE 2/ = f(z) can be axiomatically rewritten to another term not mentioning differentials
and differential variables. This resulting term is called the Lie derivative of term e along ODE
x' = f(x), succinctly written as follows:

def Z
83:Z 1l

Unlike (semantic) time derivatives, Lie derivatives can be written down syntactically in the
syntactic term language. Like time derivatives though, Lie derivatives still depend on the ODE
context in which they are used, so they do not give a compositional means of defining syntactic
differentiation. The use of differentials in dL solves this problem by giving a compositional term
semantics that is defined independently of any hybrid programs or formulas. Along an ODE
¢’ = f(z), the value of Lie derivative L, (e) coincides with that of the differential ()’ and
dL allows transformation between the two by proof with the differential axioms [142]. The
Lie derivative L, () is written as ¢ when the ODE 2’ = f(x) is clear from the context. The
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i-th higher Lie derivative ¢*) of term e along the ODE 2/ = f(z) is defined by iterating the Lie
derivation operator:

. def o (i def X0 o def «
GO ) E 0

2.3.4 Differential Equation Axiomatization

Having enabled meaningful syntactic differentiation with differentials, it remains to give axioms
for working with differential equations. The following are dL axioms for differential equa-
tions [142, Figure 3], where each axiom DI, DC, DG progressively strengthens dL’s deductive
power for differential equation invariants [140]. All axioms are understood vectorially for
differential equations as described in Theorem 2.3 for axiom DE.

Theorem 2.5 (Differential equation axiomatization [142]). The following are sound axioms of
dL.? In axiom DG, the 3 quantifier can be replaced with a V' quantifier.

DL [2' = f(2) &Q](e) =0 = ([2' = f(x) & Qle = 0 ¢+ (Q —~ e =10))
DL [2' = f(z)&Q)(e) > 0 = ([2/ = f(x) & Qle = 0 > (Q — ¢ = 0)) (= either > or >)
DC [z = f(2) & QIR — ([+/ = f(2) & QP « [2' = f(x) &Q A R]P)

G [ = f(2) &QIP < Jy[a’ = f(z),y = a(x)y + b(z) &Q|P

Differential invariants (DI) reduce questions about invariance of ¢ = 0, e = 0 (globally, along
solutions of the ODE) to local questions about differentials. Only two instances (DI, DI.) of the
more general DI axiom [142] are needed here. Axiom DI_ says that the value of term e always
stays zero if its differential (e)’ is always zero along the solution, while axiom DI, says that e
stays non-negative (or strictly positive) if its differential stays non-negative. Note that axiom
DI, only requires (e)’ > 0 in its premise even for the e > 0 case. These axioms internalize the
mean value theorem (see Corollary 2.7). Differential cut (DC) expresses that, if the system never
leaves R while staying in () (the outer assumption), then R may be additionally assumed in
the domain constraint when proving the postcondition P (the RHS of the inner equivalence).
Axiom DC increases dL’s deductive power for invariants over DI [140] and the deductive power
increases even further [140] with the differential ghost axiom (DG) which adds a fresh variable y
to the system of ODEs for the sake of the proof. Since y is fresh, its initial value can be either
existentially (DG) or universally (DGy) quantified [142]. The syntactic restriction of DG is that
the new ODE must be linear (or affine) in y, hence a(x), b(x) are not allowed to mention .
This restriction prevents the newly added equation from unsoundly restricting the duration of
existence for solutions to the differential equations [140], e.g., the (unsound) differential ghost
y' = y? may cause finite-time (or early) blowup of solutions [204] (see Chapter 4). The added
differential ghost variable y co-evolves along solutions and crucially enables the expression

3For simplicity, this thesis only uses ODE axioms, e.g., DC, DG, with postconditions and domains involving
formulas without modal quantifiers, P, @), R, following the notational conventions from Section 2.1.2.
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of new (integral) relationships between variables along the differential equations. These new
relationships are then used to syntactically deduce properties of interest in the original system.

To use axioms DI, DC, DG in proofs, additional differential equation axioms syntactically
internalize temporal and first-order reasoning over differential equations.

Theorem 2.6 (Differential equation axiomatization (continued) [142]). The following are sound
axioms of dL.

B (2 = f(z) & Q(x))FyP(z,y) & y (o' = f(2) & Q(z)) P(z,y) (y &)

DW [2" = f(x) & QJQ

X [a" = f(2) &QIP < (@ = PN 2" = f(z) &Q]P) (@' & P,Q)
D] [o" = f(2) & QIP « [2" = f(2) &Q[a" = f(x) & QP
DMP [2" = f(2) & Q)@ = R) = ([¢" = f(2) & RIP — [+ = f(x) & Q]P)

Proof. 'The soundness of all axioms and proof rules in Theorem 2.6 are proved elsewhere [142],
except DX, D[;], DMP, which are proved here since they are written differently elsewhere.

DX Let w be an initial state. Classically, either w € [Q] or w € [-Q]. If w € [@Q], then, proposi-
tionally, it suffices to assume w € [[2' = f(x) & Q]P] and show w € [P]. Since w € [Q],
there is a trivial solution ¢ : [0,0] — S where ¢ |= 2’ = f(z) A Q and ¢(0) = w on {z'}L.
By assumption, ¢(0) € [P]. Since 2’ ¢ P, coincidence for formulas [142] implies w € [P].
Conversely, if w € [-Q)], then, propositionally, it suffices to show w € [[z' = f(z) & Q] P].
The box modality is vacuous because, by definition, no solution ¢ : [0, 7] — S can exist
for any 7' > 0 with ¢ |= 2/ = f(2) A Q. Any such solution would require ¢(0) € [Q] by
definition. However, because 2’ ¢ @, coincidence for formulas [142] with state w gives
w € [Q], contradiction.

D[;] Let w be an initial state and let ¢ : [0,7) — S,0 < T < oo be the unique, right-
maximal solution [33] to the ODE 2’ = f(z) with initial value ¢(0) = w. Unfolding the
semantics of the outer box modality, the RHS of axiom D[;] is true in state w iff for all times
0 < 7 < T such that ¢(¢) € [Q] for all 0 < ¢ < 7, the solution at time 7 satisfies ¢(7) €
[[#" = f(z) & Q] P]. Unfolding the semantics again, by uniqueness of ODE solutions [33],
this means that for all times 7 < ¢ < T, such that ¢(¢) € [Q] forall 7 < ¢ < t, the
solution at time ¢ satisfies ¢(t) € [P]. Thus, the RHS is true in state w iff for all times
0 < 7 < T such that p(¢) € [Q] forall 0 < ¢ < 7, the solution at time 7 satisfies
©(1) € [P], which is the unfolded semantics of the LHS of axiom D[;].

DMP Letw be an initial state satisfying both formulas on the left of the implications in DMP, i.e.,
Quw e [[z' = f(2) &Q(Q — R)|and@w € [[z' = f(x) & R]P]. Consider any solution
¢ : [0,T] — S where p(0) = w on {2/}%, and ¢ |= 2/ = f(z) A Q. By definition,
©(€) € [Q] for all ¢ € [0,T7], and so by @, ¢(¢) € [Q — R] for all ¢ € [0, T']. Therefore,
©(¢) € [R] forall ¢ € [0,T), and thus ¢ =2’ = f(x) A R. By @, o(T) € [P]. O
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The ODE Barcan axiom B’ specializes the Barcan axiom of dynamic logic [139] to ODEs in
the diamond modality. It commutes an existential quantifier Jy with the diamond modality,
where the variables y are required to be fresh in the ODE 2/ = f(x) (i.e., y & x). The differential
weakening axiom DW expresses that domain constraints are always obeyed along ODE solutions.
The differential skip axiom DX expresses a reflexivity property of differential equation solutions.
If domain constraint () is false in an initial state w, then the formula [z’ = f(z) & Q] P is trivially
true in w because no solution of the ODE starting from w stays in the domain constraint.
Conversely, if @) is true in w, then the postcondition P must already be true in w because of
the trivial solution of duration zero. The condition =’ &€ P, () of axiom DX is met as P, () are
differential-free (Section 2.1). The differential composition axiom D[;] is a transitivity property of
differential equation solutions which says that any state reachable from two sequential runs of
the same ODE is reachable in a single run of that ODE. Axiom DMP is the modus ponens for
domain constraints of ODEs which underlies differential cuts DC [142].

Derived Axioms and Proof Rules

Similar to Section 2.3.2, additional ODE axioms and proof rules can be derived from the ODE
axioms of Theorems 2.5 and 2.6 for use in subsequent deductive proofs. Rule dI. (below)
derives by combining DI, with the differential axioms ( )’ to provably transform differentials
to Lie derivatives in its premise. Rules dC, dW derive from their underlying axioms DC, DW
respectively [144].

Qb Lyw(€) 2 Ly (©)

TTeméb 2= f(x)&Qle = é

'k =fx)&Q]R T'F [2' = f(z)&Q A R|P

[H[a = f(z) &QIP
QFP

IE 2= f(z) &QIP
Axiom (-) also yields dual diamond readings for the ODE axioms and proof rules. For
example, the DI_ axiom internalizes a version of the mean value theorem [204, Appendix B.I].
This is shown in derived axiom MVT below which says that, if the value of term e is non-negative

initially and eventually becomes negative along the ODE 2’ = f(z) & @, then its differential
(e)’ must be negative somewhere along the solution to that ODE.

dI (where >= is either > or >)

dC

dw

Corollary 2.7 (Mean value theorem). The mean value theorem axiom MVT derives from DI_:
MVT e > 0A {2/ = f(2) & Qe <0 — (' = f(z)&Q)(e) <0

Proof. The derivation takes contrapositives (dualizing with (-)) before DI._ finishes it.

P e >0,[2" = f(2)&Q](e) > 0F [2' = f(z) & Qle > 0
ol R >0, (2" = f2) & Qe < 0F (' = f(z)&Q)(e) <0 O

Other useful proof rules are derived by combining the differential equation axioms with
the base axioms and proof rules. For example, the following monotonicity rules (for both
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box and diamond modalities) are derived from axiom K and dW. Compared to the mono-
tonicity rules M[-], M(:) which apply for general hybrid programs «, the ODE monotonicity
rules M['], M(’) additionally assume domain constraint () when strengthening the postcondition
from P to R for an ODE 2’ = f(z) & Q:

4 Q,R-P TFI[2=f(x)&Q|R / Q,RFP TH(@=fx)&Q)R
[ 2 = f(2) & QP [E (2= f(2)&Q)P

The “+” direction of DX allows domain constraint () to be assumed true initially when prov-
ing [z' = f(x) & Q] P (shown below, on the left). The “—” direction has the following equivalent
contrapositive reading using (-) and propositional simplification: Q A P — (z' = f(z) & Q) P,
i.e., if the domain constraint () and postcondition P are both true initially, then (z' = f(z) & Q)P
is true because of the trivial solution of duration zero. When proving the liveness property
(' = f(x) & Q) P, one can therefore always additionally assume =(Q A P) because, by DX, (-),
there is nothing to prove otherwise (shown below, on the right).

L,QF [ = f(z) & QP Io@AP)E (@' = f(z)&Q)P
DXTTF [ = f(2) & QP PR ) IE (2 = f(2)&Q)P
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Chapter 3

Safety and Invariance for Ordinary
Differential Equations

This chapter begins the study of deductive verification for ordinary differential equations (ODEs)
by examining dL proofs of ODE safety and invariance, and their proof theory. Classically,
differential equations are studied by analyzing their solutions, which is at odds with the fact that
those solutions are often much more complicated than the differential equations themselves. This
stark difference between the simple local description as differential equations and the complex
global behavior exhibited by their solutions is fundamental to the descriptive power of differential
equations. Poincaré’s qualitative study of differential equations [152] calls for the exploitation
of this difference by deducing properties of solutions directly from the differential equations.
This chapter completes an important step in Poincaré’s enterprise by identifying the logical
foundations for proving invariance properties of differential equations described by Noetherian
functions [12, 56, 57, 201]. These invariance proof principles further serve as foundational
building blocks for subsequent thesis chapters, e.g., as stepping stones in refinement proofs of
liveness (Chapter 4) and as powerful black box proof steps for ODE safety (sub-)questions arising
in stability proofs (Chapters 5 and 6). Consequently, the generality of all results presented in
this chapter yields corresponding generality in subsequent thesis chapters.

3.1 Introduction

The ODE safety specification I' - [2/ = f(z) & Q¢ says that, from initial states satisfying
assumptions I, all states reached by following the ODE 2’ = f(z) & @ from those states satisfy
the safety postcondition ¢. These ODE safety questions may arise, for example, when proving
that a continuous control law always keeps a system within safe bounds throughout its operation,
or as sub-questions within a larger hybrid system safety proof [144]. They can also come from
the system designer’s insights into physically meaningful quantities of the continuous system,
for example, conservation of an energy quantity £ along an ODE is expressed by the formula
[2' = f(z)]E = Ey, which says that E always stays at its initial value Fy along the system’s
continuous evolution. Such a conserved quantity (if proved) may, in turn, be used as part of
safety proofs or to provide physical insights into a given system.
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Unfortunately, it is rarely the case that ODEs 2’ = f(z) have closed form solutions that can be
mathematically analyzed to prove safety properties of its trajectories directly (recall Section 2.1.3,
page 16). Instead, the premier technique for proving ODE safety is to find a suitable invariant P
of the ODE such that: i) it contains the initial states I' - P, ii) it is safe P - ¢, and iii) solutions
of the ODEs cannot escape it P - [2' = f(z) & Q] P. The use of an invariant P is illustrated by
the following partial derivation with cut (to prove i) and M[-| (to prove ii):

PF=J@&QP Pr¢

r-p M P = f(x)&Q]o
“ TH[ = f(2)&Qlo
This chapter shows that one can always fill in the remaining “- - - 7 steps in the derivation be-

cause the invariance question for any formula P and ODE 2’ = f(x) & @ is provably equivalent
to an arithmetic question within dL. Thus, the remaining practical challenge for proofs of ODE
safety is to find suitable and succinct ODE invariants P; the invariance of any candidate formula
P can be proved or disproved by checking validity of the resulting arithmetic question after
applying the derived dL equivalence. In fact, a stronger result is proved for equational safety
properties, such as the energy conservation formula [2' = f(x)]E = E, above: dL completely
reduces such questions to arithmetic without the need for an intermediary invariant. These
completeness results are proved more generally for an extended dL term language, which enables
the use of extended (non-polynomial) functions in models and proofs of continuous and hybrid
systems while retaining sound and complete dL ODE invariance reasoning.

Formally, this chapter presents a differential equation invariance axiomatization based on dL.
For extended term languages (and ODEs) meeting three extended term conditions, the chapter
proves the following results:

1. All analytic invariants, i.e., finite conjunctions and disjunctions of equations between
extended terms, are provable using only the three dL ODE axioms DI, DC, DG. This result
generalizes to analytic hybrid programs with dL’s hybrid program axioms.

2. With axioms internalizing the existence and uniqueness theorems for solutions of differ-
ential equations, all local progress properties of ODEs are provable for all semianalytic
formulas, i.e., propositional combinations of inequalities between extended terms.

3. With a real induction axiom that reduces invariance to local progress, the dL calculus is
complete for proving all semianalytic invariants of differential equations.

4. These are axiomatic completeness results: all (semi)analytic invariance and local progress
questions are provably equivalent in dL to questions about the underlying arithmetic. This
equivalence also yields disproofs when the resulting arithmetic questions are refuted.

These results are proved constructively with syntactic derivations for each equivalence, thus
yielding practical and purely logical proof-producing procedures for reducing ODE invariance
questions to arithmetical questions in dL. The axiomatic approach crucially enables these contri-
butions because the syntactic dL axioms internalize basic properties of ODEs and thus remain
sound and complete for all extended term languages meeting the extended term conditions.

32



Furthermore, the identification of a parsimonious yet complete ODE axiomatization provides the
best of both worlds: parsimony minimizes effort required in implementation and verification of
the proof calculus while completeness guarantees that all ODE invariance reasoning is possible
using only syntactic proofs from the foundational axioms.

The most subtle step in the proofs is the construction of suitable differential ghosts that
simplify the analysis as a function of both the differential equations and desired invariant. Just
as discrete ghosts can make a program logic relatively complete [127], differential ghosts achieve
completeness for algebraic (and analytic) invariants in dL.

5. Scalar differential ghosts DG are used to derive (complete) reasoning principles for analytic
invariants, Darboux (in)equalities, and barrier certificates [155] for ODEs.

The result (5) is significant for implementation and proof-theoretical purposes because it
uncovers classes of invariants that are provable efficiently using only a constant number of
differential ghost reasoning steps. In practice, these classes cover many automatic invariant
generation techniques, such as those used by the Pegasus tool [180], which enables an efficient
combination of invariant generation and sound checking in KeYmaera X [54].

Finally, since Noetherian functions from real analytic geometry [12, 56, 57, 201] generate
Noetherian rings closed under partial derivatives, they meet all of the extended term conditions
and thus provide an ideal setting for extending dL’s term language. Many functions of practical
interest for modeling hybrid systems are Noetherian, e.g., the real exponential and trigonometric
functions, which are implicitly definable in dL [137, 139] but do not come with effective reasoning
principles.! Making them first-class members of the term language enables their explicit use in
hybrid systems models and proofs, especially in descriptions of ODE invariants.

6. Noetherian functions are shown to meet the extended term conditions. Any such extension
automatically inherits all of the aforementioned completeness results.

Thanks to the common dL logical foundation of this thesis, result (6) gives license to all
subsequent chapters to freely use extended Noetherian function terms, with the assurance that
the underlying ODE invariance reasoning can be handled completely and compositionally, in
isolation from other continuous and hybrid systems reasoning [139].

Contribution. The material for this chapter is drawn from Platzer and Tan [148, 149].

3.2 Differential Dynamic Logic with Extended Terms

This section introduces a generic extended term language for dL which enables models and proofs
of hybrid systems featuring non-polynomial terms. Of course, such a syntactic extension cannot
be completely arbitrary, e.g., adding functions whose interpretations are nowhere differentiable
would fundamentally break the enterprise of studying ODEs directly by their local behavior.
These unsuitable syntactic extensions are ruled out by a set of extended term conditions, which

The relative decidability theorem for dL [139, Theorem 11] needs either an oracle for (continuous) differential
equation properties or an oracle for discrete program properties.
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are developed and motivated along the way, with a summary in Section 3.2.4. The class of
Noetherian functions, which meets all the extended term conditions, is introduced in Section 3.7.

3.2.1 Syntax

The dL term language is extended with a finite number of new k-ary fixed function symbols,
h € {hi,...,h,}, with fixed interpretations.

eéu=x|cletEle-é|hlen....en) | (e)

As a running example of such an extended term language, consider the unary function
symbols exp, sin, cos which are always interpreted as the real exponential and trigonometric
functions respectively:

e,ei=uw|cle+eéle-é| exple)] sin(e) | cos(e) | (e) (3.1)

Notational Conventions (Extended Term Language). Polynomial terms are useful as fa-
miliar illustrative examples and they also enjoy special properties not necessarily shared by
extended term languages. As usual (Section 2.1.1), the notation p, ¢ is reserved for polynomial
terms, with dependencies p(x), ¢(x) added when necessary. Formulas over extended term
languages that do not contain the first-order quantifiers nor the modal connectives are called
semianalytic formulas and are written as P, (). The word “analytic” refers to the (semantic) real
analyticity [94] of terms extended with Noetherian functions in Section 3.7. Every semianalytic
formula can be normalized to one that is formed from only conjunctions and disjunctions of
atomic comparison formulas. Formulas P, () that are formed from only conjunctions and disjunc-
tions of equalities are called analytic formulas. When all atomic comparisons in (semi)analytic
formulas are restricted to only occur between polynomial terms p ~ ¢, the resulting formulas
are also known as (semi)algebraic formulas [14]. Compared to Section 2.1.2 the notational con-
vention for semianalytic formulas P, () disallows first-order quantification. No expressiveness is
lost by disallowing first-order quantifiers for polynomial terms because the first-order theory of
the reals with polynomial terms (and with quantifiers) admits quantifier elimination [14, 197],
so every first-order formula of real arithmetic (over polynomial terms) is provably equivalent to
a quantifier-free semialgebraic formula. Unfortunately, quantifier elimination is impossible even
for simple term language extensions like the exponential function [202].

3.2.2 Semantics

The dL term semantics w[e] € R is extended as follows, where the semantics of each k-ary fixed
function symbol & is given by a corresponding real-valued function i : R*¥ — R (using the same
symbol A for the LHS syntactic function symbol and its RHS semantic interpretation by a slight
abuse of notation):

wlh(e, ... ex)] = h(wled], ..., wlex])

There are two subtleties to highlight. First, the real-valued interpretations / are required
to be defined on the domain R* so that the term semantics are well-defined in all states. It is
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possible to extend dL with terms that are only defined within an open domain of definition rather
than the entire real domain [21] and this would allow, e.g., rational functions to be added to the
term language. Such an extension will not be pursued in this thesis although the Noetherian
functions from Section 3.7 and Proposition 3.34 give an implicit way of working with quotients
of extended terms. Second, the semantics of differentials implicitly requires that the partial
derivatives % exist for any term e. In fact, partial derivatives of any order for the semantics
of any term must exist because their differentials (which provably reduce to differential-free
terms by Section 2.3.3), in turn, have differentials that must also have well-defined semantics.
Following the dL interpretation of function symbols [142], it suffices to require that the fixed
function symbols / are interpreted as smooth C™ functions, i.e., h : R¥ — R with partial
derivatives of any order. Since the C* functions are closed under addition, multiplication and

function composition, the resulting term semantics are also smooth [142], as required.

3.2.3 Axiomatics

The soundness proofs for the axiomatization of dL in Section 2.3 carry over unchanged for
extended term languages because fixed function symbols / are interpreted as smooth C*>
functions [142]. The subtleties are in arithmetic reasoning using rule r and the introduction of
differential axioms for the fixed function symbols.

Arithmetic. Even for the extended term language (3.1) with trigonometric functions, arith-
metic questions are already undecidable [162]. Therefore, special care must be taken to dis-
tinguish first-order properties of the real closed fields, i.e., those described by (semi)algebraic
formulas [14], from those properties described by (semi)analytic formulas, as illustrated next.

Example 3.1 (Proving with r). Consider the following two proofs in extended term lan-
guage (3.1) with the real exponential function exp. The left sequent proves (as a substitution
instance) by r because the negation of a real number is its additive inverse. In contrast, the right
sequent does not prove by r alone (indicated by the subscript on rule Rr..,) because it uses the
fact that the real exponential function is strictly positive.

* *

T exp (@) + (—exp (2)) = 0 e e () > 0

An alternative understanding is that rule r can be used to conclude valid arithmetic properties
that follow only from first-order properties of the real closed fields [14, 197]. A

Differential Axioms. Section 2.3.3 showed how differential terms under an ODE 2/ = f(x)
can be axiomatically rewritten to the Lie derivative using the differential axioms ( ). This is
the case for differentials of polynomial terms (p)’, but differential axioms are still needed for
the fixed function symbols. Consider the case of a unary fixed function symbol h which is
semantically interpreted as the function h(y) : R — R. Expanding the semantics of term (h(e))’
and applying the chain rule:
wh(e h wle
lh@)] = L) 2N = 3 o) et L

zeV zeV
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zev

The RHS product between %(w [e]) and w[(e)] can be represented syntactically provided
that the partial derivative of h with respect to its argument y is representable as a term. Assume

(suggestively) that such a term is ertten as 8h( ). The easiest case is to think of g—;‘ as another
unary fixed function symbol and ( ) as function application, hence the suggestive notation.
This is not strictly necessary can be another term that mentions variable y free, in which
case gz (e) corresponds to subst1tut1ng e for y in that term. The differential axiom A’ for fixed

function symbol h uses a product of the (syntactic) partial derivative 2% and differential ()’ of e:

Ay

Example 3.2 (Unary extended differential axioms). For the extended term language (3.1), the
extended terms for the partial derivatives are as usual from calculus:

Ge)éz(y) = exp(y) as‘la_r;(y) = cos(y) 8%2(9) = —sin(y)

Following the axiom schema //, the differential axioms for these fixed function symbols are:

exp (exp(e)) = exp(e)-(e) sin' (sin(e)) = cos(e)-(e) cos’ (cos(e)) = —sin(e)- (e)’

Axioms sin’, cos’ illustrate a syntactic subtlety: fixed function symbols must be introduced
in a syntactically complete way with respect to differentials. The unary function symbol sin for
the trigonometric sine function cannot be added without also adding one for the cosine function
because there would otherwise be no way to express the differential of sin syntactically.? A

The following lemma generalizes the syntactic representation condition from the above
example and gives sound differential axioms for k-ary fixed function symbols.

Lemma 3.3 (Extended differential axioms). Let the k-ary fixed function symbol h be semantically

interpreted as a differentiable function h : R — R. Suppose its partial derlvatlve (yl, e YR)
atyi, ...,y is syntactically represented by the term ah for each i such thatw[[ (yl, o] =
on (W), ..., w(yk)) for all states w. Then the differential axiom schema I’ for h is sound:
" oh

h' (h(ey,...,ep)) = cooer) s (e)

v (hler, .. ex)) ;ayi(el ex) - (i)
Proof. The terms 5~ a h(ey, ..., ex) appearing on the RHS of axiom &' are understood as (syntactic)
function apphcatlon of 6; to the arguments ey, . . ., ex. Soundness of this axiom follows from

the (multivariate) chain rule and the semantics of dlfferenual terms. For any given state w:

zevV eV

Technically, 7w could be added and cos(x) encoded as sin(z + ) but that also requires another 0-ary function
symbol 7.
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The penultimate step uses the fact that all partial derivatives are syntactically represented in the
term language to replace a semantic function application with its syntactic representation. [l

Lemma 3.3 allows derivations to freely replace differential terms of extended term languages
(¢)’ under an ODE 2’ = f(z) with their corresponding Lie derivative L, ,,(e) by proof with the
differential axioms [142].

3.2.4 Extended Term Conditions

Two natural conditions on the fixed function symbols 4 € {hy, ..., h,} and their semantics have
been uncovered thus far. For this chapter’s completeness results, a third condition is needed. All
three extended term conditions are assumed throughout this chapter:

(S) Smoothness. All fixed function symbols h € {hy,...h,} in the extended term language
are interpreted as smooth ' functions & : R¥ — R.

(P) Syntactic partial derivatives. Each partial derivative g—; of A(y, ..., yr) has a syntactic
representation in the extended term language in the sense of Lemma 3.3.

(R) Computable differential radicals. The extended term language has computable differential
radicals, i.e., for each extended term e and ODE 2’ = f(x) with extended terms in its
RHS f(z), there must computably exist a natural number N > 1 and N extended terms
(9o, 91, - - -, gnv—1) such that the higher Lie derivatives of e along 2’ = f(x) provably satisfy
the following differential radical identity [63]:

N-1
e =3 " giet (3.2)
=0

Condition (S) ensures that the semantics are well-defined, while conditions (P) and (R) enable
(complete) syntactic analysis of differential equations invariance by their local (differential)
behavior. The C'*° smoothness required by (S) is subtly weaker than real analyticity [94]. This
chapter often gives brief but intuitive (semantic) explanations of results and explicitly indicates
when those arguments only apply in the real analytic setting. None of the actual proofs given
in this chapter require real analyticity. Condition (R) requires an algorithm that computes
and proves the identity (3.2). This identity is crucially used for completeness in Section 3.4
and Section 3.6, where it is also motivated logically. Intuitively, it yields a finiteness property on
the number of Lie derivatives that need to be analyzed for any given term e and ODE, i.e., from
identity (3.2), the first N —1 Lie derivatives will turn out to suffice for completely determining the
local behavior of extended term e along the ODE 2/ = f(z). All three extended term conditions
are met by the polynomial term language without extensions.
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Proposition 3.4. Polynomial term languages satisfy the extended term conditions.

Proof Sketch. A full proof is omitted because this is a corollary of a later result (Theorem 3.37).
Briefly, conditions (S) and (P) are met because polynomial functions are smooth (even real
analytic) and the polynomials are closed under partial derivatives. Condition (R) generalizes
different flavors of results that have been proved in the literature [63, 103, 125]. The proofs rely
on the fact that polynomials form a Noetherian ring [24] so that the ascending chain of ideals®
formed by successive (polynomial) Lie derivatives stabilizes. The polynomial identity (3.2) is
computable by successive ideal membership checks [63, 64, 103]. Moreover, it is a formula of real
arithmetic and can therefore always be proved by the rule r for decidable real arithmetic. [

It is less straightforward to show that an extended term language like (3.1) meets these
conditions. Indeed, even the simple language extension (3.1) already features exponential rings
which are not Noetherian [198, Remark 1.4.2] and undecidable arithmetic over the trigonometric
functions [162]. In the interest of a general presentation, the question of how to determine if a
candidate term language extension {h1, ..., h,} meets the extended term conditions is deferred
to Section 3.7. Until then, the only assumption about the extended term language is that it
satisfies those three conditions. This suffices for the chapter’s completeness results, which the
next section begins to show.

3.3 Darboux Invariants

This section exploits differential ghosts for proving an important class of invariance properties.
These are called Darboux invariants because they are inspired by Darboux polynomials [41].
The derived proof rule for Darboux equalities corresponds to the case N = 1 in the differential
radical identity (3.2), while the subsequent rule for Darboux inequalities is a crucial step for
the completeness result in Section 3.4. Their derivations also show how analytic and geomet-
ric notions from the theory of differential equations, such as Darboux polynomials [41] and
Gronwall’s lemma [70, 204, §29.VI] can be internalized syntactically with differential ghost
arguments without extension to any dL axiom.

3.3.1 Darboux Equalities

Assume that the extended term e satisfies the differential radical identity (3.2) with N = 1 and
extended term cofactor g, i.e., ¢ = ge. Taking Lie derivatives on both sides gives:

e = Lf(x)<é) = £f(x)(ge) = 576 + gé = (g + 92)6

By repeatedly taking Lie derivatives, note that all higher Lie derivatives of e can be written
as a product between e and some extended term cofactor. Now, consider an initial state w where
e evaluates to w[e] = 0, then:

wle] = wlge] = wlg] - wle] =0

>The ideal [14] generated by polynomials py,...,ps € R[z] is the set of all their linear combination with
polynomial cofactors g; € R[z], denoted by (p1,...,Dps) &f {E;;lgipq; . gi € Rlz]}.
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Similarly, because every higher Lie derivative is a product with e, all of them evaluate
simultaneously to 0 in state w. Thus, in the real analytic setting, e = 0 stays invariant along
solutions to the ODE starting at w because all its derivatives are 0. This motivates the following
proof rule for invariance of e = 0:

QFeé=ge
e=0F[2'=f(x)&Qle=0

dbx

Rule dbx derives using differential ghosts, which provides a first hint at their deductive power
for equational invariants. A special case of dbx proves invariance for Darboux polynomials, which
are polynomials p satisfying the polynomial identity p = gp for some polynomial cofactor g.
These polynomials are of significant interest in the study of (polynomial) ODEs [41] and invariant
generation for continuous and hybrid systems [169, 180]. In Section 3.4, dbx is generalized
vectorially to yield proofs of all analytic invariants with differential ghosts. Although the rule
can be derived from DG directly, this section follows a detour through a proof rule for Darboux
inequalities instead, which is crucially used for this vectorial generalization.

3.3.2 Darboux Inequalities

Assume that the extended term e satisfies the Darboux inequality ¢ > ge for some extended term
cofactor g. Semantically, in an initial state w where w[e] > 0, Gronwall’s lemma [70, 204, §29.VI]
implies that e > 0 stays invariant along solutions starting at w because the semantic value of
extended term e is bounded below by a (typically decaying) non-negative exponential solution
of the non-autonomous linear differential equation ¢’ = g(t)e for the variable e. Here, ¢(t) is the
time-dependent function corresponding to the value of term g evaluated along the solution to
the differential equations ' = f(x) from w, see Fig. 3.1a for an illustration. Indeed, if e satisfies
the Darboux equality ¢ = ge with cofactor g, then it satisfies both Darboux inequalities ¢ > ge
and ¢ < ge, giving an alternative semantic argument for the invariance of e = 0 in rule dbx.

Differentials and Lie derivatives along differential equations 2’ = f(x) provably coincide
(Section 2.3.3), so axiomatic Darboux inequalities assume [z’ = f(x) & Q](e)’ > ge and Darboux
equalities assume [z’ = f(z) & Q](e) = ge instead of ¢ > ge and e = ge, respectively. The use
of differentials in the axioms yield particularly efficient proofs within dL’s uniform substitution
calculus [142] because they derive once-and-for-all, independently of the ODE 2’ = f(x). Sub-
sequently substituting [142] for specific ODE instances means that only the final Lie derivative
calculation steps DE, ( )/, [:=| are needed for each concrete derived instance.

Lemma 3.5 (Darboux (in)equalities are diff. ghosts). The Darboux equality DBX and Darboux
inequality DBX._ axioms derive from DG (and DI, DC) for any extended term cofactor g.

DBX [2' = f(z) & Q](e) =ge = (e =0 — [2/ = f(z) & Qle = 0)

DBX._ [2' = f(z) & Q](e) > ge — (e =0 — [z = f(x) & Qe = 0) (= either > or >)

Proof. Axiom DBX. is derived first before axiom DBX is derived as a corollary. After propo-
sitional normalization, the derivation starts with a DG, DGy step, introducing a new ghost
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variable y satisfying a carefully chosen differential equation ' = —gy. Next, IR, VL pick an
initial value for y. It suffices to pick any y > 0. The augmented ODE is abbreviated with
a, =2’ = f(x),y = —gy in the derivation.
la, &Q(e) > ge,e =0,y >0F [a, &Qle =0
R L Yy loy, & Q)(e) > ge,e = 0F Fy[a, &Qle =0
DGDG [T f(2) & Q)(e) = gese = OF o = F(2) & Qe 7 0

The augmented ODE «, has a new provable invariant relationship ey >= 0 (see Fig. 3.1 and
discussion after this proof). To deduce the original property of interest (e = 0) from this new
relationship, it suffices to prove y > 0 invariant because the formulaey = 0Ay >0 —¢e =0
is provable by r. Axiom DC is used to prove y > 0 separately (right premise abbreviated
with D) and assume it in the evolution domain constraints of the left premise. Subsequently,
monotonicity rule M['] and r strengthen the postcondition to ey = 0 using the added domain
constraint y > 0.

lay, &Q Ny >0](e) >ge,e=0,y>0F [a,&Q ANy > 0ley =0
MR, & Q Ay > 0](e) > ge,e =0,y > 0F [a, &Q Ay > 0le = 0 )
e la, &Ql(e) > ge,e =0,y > 0F [, &Qle
From the left premise, a cut, r step adds ey = 0 to the assumptions using the provable

arithmetic formulae = 0 Ay > 0 — ey = 0. AX10m DI, is used to prove the inequational
invariant ey > 0 and the resulting differential (ey)’ simplifies with ()’ from Section 2.3.3

(page 24). An additional DE, [:=]| step replaces the differential variable ¢’ according to the
augmented ODE «,, before a monotonicity M['| (with a cut) and & step closes the derivation
using the domain constraint y > 0. The differential ghost y/ = —gy is specifically crafted so that
this final arithmetic step proves with r.
*
: (e) > ge.y > OF (e)y +e(—gy) 20
M [y &Q Ay > 0](e) = ge b [a, &Q Ay > 0](e)y + e(—gy) > 0
DE, [:=] [, &Q ANy >0](e) > get [, &Q Ay > 0](e)y +ey >0
o4 [, &Q Ay > 0](e) >ge|—[a &Q Ny >0](ey) >0
Pl [, &Q Ny > 0](e) > ge,ey =0F [, &Q ANy > 0ley =0
R, &Q Ay > 0](e) > ge,e =0,y > OI— [ay, &Q ANy > 0ley =0

The derivation continues from premise (D with a second differential ghost 2’ = § 2 analogously:

*
K QF (—gy)z’ +2y2( z) =0
aw F o' = f(2),y = —gy, 7' = $2&Q)(—gy)z* + 2yz(§2) = 0
PE =) 2 = f(a), y =—gy,?' = §2&Qly'2? + 2y22' = 0
DI, ()’ y22:1|—[ = f(x),y —qy, 2 :gz&Q]yz =1
3R, M['], R y>0F 32 [z :f(a:),y’ = —gy, 2 =22&QJy >0
POy >0k [2' = f(2),y = —gy&Qly > 0

In the IR, M['], r step, observe that if y > 0 initially, then there exists z such that yz? = 1.
Moreover, yz? = 1 is sufficient to imply y > 0 in the postcondition. Rule & again applies here
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since both of these are properties of real arithmetic. The differential ghost 2’ = £z is specifically

constructed so that y2? = 1 can be proved invariant along the differential equation.

Axiom DBX derives using the derived axiom [-]A, the equivalence e =0 <> e > 0A —e > 0
by ®, and the equality (—e)’ = —(e)’ provable by ( )’. The ODE is abbreviated in the derivation
below with a,, = 2’ = f(2) & Q.

PBX AL AR T(e) > ge A [a](—e) > g(—e),e > 0N —e > 0F [az]e > 0 A [ay]—e >0
" o, J((e) > ge A (=€) = g(=)).c 2 0A —¢ = 0F [al(e > 0A—c 2 0
v o' = f(2) &Ql(e) =ge.e =0F [/ = f(2) &Qle=0 O

The first two syntactic deduction steps in the derivation of DBX. do not appear to have
changed the sequent much, but they correspond to a significant geometric transformation of
the problem, as illustrated in Fig. 3.1b and Fig. 3.1c. In the system extended with differential
ghost y, there is now a new invariant ey > 0 which can be observed along solutions! While
the value of e decays (dangerously) towards 0, the chosen differential equation ¢’ = —gy yields
an (integral) value for y that counteracts this change, ensuring that their product still always
stays non-negative along all solutions. In fact, the value of ey even remains constant when
the extended term e satisfies the equational identity ¢ = ge. The second differential ghost
2" = %z in the proof is similarly constructed so that yz% = 1 can be proved invariant along the
differential equation. The geometric transformation from this second syntactic differential ghost
is illustrated in Fig. 3.1d. Since the first differential ghost y satisfies a differential equation, the
second ghost 2 exactly balances it out with the value of yz? remaining (provably) constant and
positive at 1 along solutions (similarly to Fig. 3.1b).

The derivation of DBX,_ illustrates how the ODE axioms of dL (DI, DC, DG) complement
each other in proofs of ODE invariance. For brevity, the same derivation is used for both > and
> cases of DBX,_ even though the latter only needs one ghost (using 3’ = —%y and invariant
ey? > 0 instead). Axiom DBX also derives directly (similarly to DBX,, using the invariant
ey = 0 instead) using just two differential ghosts rather than the four incurred with [-]A.

Corollary 3.6 (Darboux (in)equality rules). The Darboux equality dbx and Darboux inequality
dbx.. proof rules derive from DG (and DI, DC) for any extended cofactor term g.

Fe=ge e > ge
dbx « J dbx. “ = (>= either > or >)

e=0F[z'=f(x)&Qle=0 Tex=0F[=f(2)&Qle=0

Proof. The dbx proof rule derives from axiom DBX (and rule dbx. from axiom DBX. ) using an
additional ( )’, DE step to differentials (e)’ into Lie derivatives ¢, followed by dW:

QF e=ge QF ée>ge
™ F ' = f(z) & Qe = ge aw F Y = f(0) & Qe > ge
OPE b = @) & Q) =ge VPR T [0 = f@) & Qe > ge
DX e =0F [2 = f(2) & Qle =0 PBX- e 0F [2' = f(z) & Qle = 0 O

The following example shows a concrete proof utilizing the newly derived proof rules.

Example 3.7 (Proving ODE properties in dL). Judging by the plot (Fig.2.1) of the ODE «a,
from (2.1), trajectories from within the open (or closed) disk stay trapped within the disk. Rather
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(c) Differential ghost iy = —gy for ¢ > ge (d) Differential ghost 2’ = £z for y// = —gy

Figure 3.1: The horizontal axis tracks the evolution of time ¢ along solutions. Dashed lines
indicate steps based on semantical arguments while solid lines indicate constructions used in
the syntactical proof of Lemma 3.5 (lines are labeled above with their respective equations or
inequalities). In Fig. 3.1a, solutions of ¢ > ge (solid blue) are bounded below by those of the
non-autonomous linear differential equation €’ = g(¢)e (dashed blue) by Gronwall’s lemma. In
Fig. 3.1b, the differential ghost ' = —gy (solid green) balances out ¢’ = g()e so that the value
of ey (dashed red) remains constant at 1. In Fig. 3.1c, the same ghost 4/ = —gy also balances
out ¢ > ge, where the value of ey (solid red) remains non-negative but not necessarily constant.
In Fig. 3.1d, a second differential ghost 2z’ = 2 (solid black) balances out 3’ = —gy so that the
value of y2? (solid red) remains constant at 1. The constant 1 in the RHS of ey = 1 and y2% = 1
in Figs. 3.1b and 3.1d respectively is chosen for simplicity. Any positive constant suffices with
appropriate initial values of the differential ghosts.

than relying (informally) on a potentially incorrect plot though, this fact can be shown formally
by proving that e = 0, withe =1 — u? — v?, is an invariant of .. The Lie derivative of e along
aeis: £, (e) = —2u(—v + %(1 —u? —v?)) — 2v(u + %(1 — u? — v?)) = —1(u® + v?)e. Thus,

the following derivation with dbx, proves invariance of 1 — u? — v? 3= 0, since e satisfies the
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(polynomial) inequality ¢ > ge with polynomial cofactor g = —%(u2 + v?).

*
R E L, (1—u?—0?) > —5(u? + v*)(1 — v’ — %)
dxe] 2 — 2 = 0 F (]l —u? —v? = 0

In fact, the term e obeys the special equational case ¢ = ge (Fig. 3.1b) in which the seemingly
innocuous syntactic introduction of a differential ghost ¥/ = —gy even exactly balances out
the complicated (decaying) evolution of e geometrically. Indeed, in this case, e = 0 can also be
proved invariant for the ODE a, using rule dbx. This proves the observation from Fig. 2.1 that
the unit circle is also invariant for .. A

The derivations of axioms DBX, DBX. give constructive choices of differential ghosts when
the invariant is a Darboux (in)equality. The derived rule dbx. already exceeds the deductive
power of DI, DC because the formula y > 0 — [y’ = —y|y > 0 is easily provable by dbx. using
the Darboux equality y = —, but is not provable with DI, DC alone [140].

3.3.3 Barrier Certificates

Barrier certificates [155, 158] are certificates of safety for ODEs and hybrid systems. Briefly,
given an ODE safety question I' F [/ = f(z) & Q]¢, a barrier certificate term b is such that
formula b = 0 is a suitable invariant for proving that safety question, i.e., the sequents I' - b >= 0,
b=0F ¢,and b= 0+ [/ = f(x) & Qb = 0 are all valid. In practice, such certificates are
computationally attractive because they can (sometimes) be found by suitably encoding the
above validity questions, e.g., with sum-of-squares programming [155, 158], and solving the
resulting problem through numerical methods. However, numerical inaccuracies in the results,
especially when polynomials of high degree are involved, means that the generated candidates
are often unsound [40] and they must be carefully checked for soundness when used in safety
proofs. A useful application of rule dbx.. is to derive a sound proof rule* that checks the invariance
for b = 0 according to the barrier certificates condition.

Corollary 3.8 (Strict barrier certificates are differential ghosts). The barrier certificates Barr proof
rule derives from DG (and DI, DC) for any polynomial term p and polynomial ODE z' = f(x) in
a closed semialgebraic domain @), i.e., () is formed from conjunctions and disjunctions of non-strict
inequalities over polynomial terms.

Q,p=0Fp>0
B here = is >
arrp%OF[x’zf(m)&Q]pk—O (where = is > or >)

bp
o . max (p.p?) A
soundness, is not included in the syntax of extended dL terms because it contains division by

Proof. The proof starts by considering the cofactor “term” § = which, crucially for

*The sound justification of this rule is important, e.g., the earlier presentation of barrier certificates [155] with
p > 0 instead of p > 0 in the succedent of the premise of rule Barr is unsound [45, Example 2].
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the non-smooth max function. This cofactor is modified later to be a polynomial term but, for
the moment, note the following valid arithmetic inequality:

.2 o

. ov. D if p > p?
max (p,p)p =14 , L,
pp otherwise p < p

> pp? (in both cases) (3.3)

In the former case, inequality (3.3) is justified by multiplying both sides of the case assumption
p > p? by p (which is non-negative because it is bounded below by a squared term). From
the premise of rule Barr, the “term” max (p, p?) is strictly positive in domain @, so dividing
both sides of (3.3) by max (p, p?) proves the inequality p > gp. This argument justifies the LHS
“derivation” below which, however, uses an illegal cofactor “term” g.

Qp=0Fp>0 Qp=0Fp>0
QFp>gp : QEp=gp
-y Ok [ = f(2)&Qlp = 0 P pE Ok [ = f(2)&Qlp =0

It remains to identify a cofactor g that satisfies the inequality gp > gp in @) so that the RHS
derivation above is justified by rule r (because all entries of the sequent are formulas in FOLg).
The identification of g uses a bound on the rate of growth of continuous semialgebraic functions
from real algebraic geometry [14, Prop 2.6.2]. By an abuse of notation, all polynomial terms
below, e.g., p, p, denote their respective polynomial functions over .

p(z)
max (p(x),p(x)?)
because, within [()], its denominator is strictly positive and the graph relation o(z) = y is

characterized by the following semialgebraic formula, where the disjuncts case split on the max
function appearing in the denominator of o (z):

o(z) =y = (p(x) = p(2)* Ap(z) = yp(x)) V (p(z) < p(z)* A p(z) = yp(z)?)

Thus, by [14, Prop 2.6.2], the function o is bounded in norm with |o(z)| < ¢ (1 + H:L'Hi)r for
some (positive) constant ¢ € R and power r € N. This bound justifies the choice of (polynomial)
cofactor g = —c (1 + ||x||§)rp(a:) because for all z € [Q],

§(@)p(x) = o(2)p(x)® > —c (1 + ||2]3)" p(x)* = g(2)p(x) O

Corollary 3.8 generalizes an earlier result [178], which showed that many flavors of barrier
certificates in the literature can be understood using a comparison principle (in particular,
with dbx. ) to the case of strict barrier certificates [155, 158]. Together with dbx, dbx., rule Barr
enables sound checking of various invariant candidates using (at most) two DG steps. How-
ever, Corollary 3.8 is restricted to polynomials because it uses a bound from real algebraic
geometry [14, Prop 2.6.2] to select an appropriate polynomial cofactor. This restriction is im-
material in practice because techniques for generating barrier certificates use optimization
over polynomials anyway [155, 158]. Nevertheless, the general barrier certificates proof rule
for arbitrary extended terms e shown below is a special case of the complete proof rule for
semianalytic invariants derived in Theorem 3.29 with axiomatic extensions.

Q,e=0Fe>0

B here = is >
ot e=0F[2=f(2)&Qle=0 (where 3= is > or >)

The function o(z) = is a semialgebraic function on the closed domain [Q)] C R™
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The next section builds on these constructions, showing that the deductive power afforded
by axiom DG extends to all true analytic invariants.

3.4 Analytic Invariants

Analytic formulas are formed from finite conjunctions and disjunctions of equalities, but, over
R, can be normalized to a single equality e = 0 using the provable real arithmetic equivalences:
e=0Né=0we+é>=0ande=0Veé =0 < eé = 0. Thus, it suffices to restrict attention
to equational formulas e = 0 when proving completeness for analytic invariants.

The key to completeness is the differential radical identity (3.2) for e with arbitrary rank
N > 1, which analyzes all higher Lie derivatives simultaneously. Suppose that extended term e
satisfies identity (3.2) with rank N and some cofactors g;. Taking Lie derivatives on both sides
of identity (3.2) yields:

N-1 ' N-1 ' N-1 ' 4
ENTY = L0 (E) = Ly (Z gz-é@) =2 Liw@) = D (6" +g:e™)
=0 1=0 1=0
N-1 N-2
= (!jié(i)) + Z (Qié(iﬂ)) + gy e
1=0 1=0
N-1 N-2 N—-1
SWCIES TEURYA b 3Pl
=0 1=0 1=0

The last step follows using (3.2) to expand ¢¥). Observe that the resulting expression for
e+ is again a sum over the lower Lie derivatives () for i = 0,..., N — 1 multiplied by ap-
propriate cofactors. By repeatedly taking Lie derivatives on both sides, the higher Lie derivatives
eM) e+ can all be written as sums over these lower Lie derivatives with appropriate
cofactors. Thus, in the real analytic setting, for initial states w where w[e], w[¢], .. .,w[e™V V]
all simultaneously evaluate to 0, formula e = 0 (and similarly for all its higher Lie derivatives)
stays invariant along solutions to the ODE.

This suggests that rule dbx should be generalized by considering higher Lie derivatives. The
canonical technique for generalizing to higher derivatives comes from the study of ODEs. All
(explicit form) ordinary differential equations involving higher derivatives can be transformed
into vectorial systems of differential equations involving only first derivatives but possibly over
a vector of variables [204, §11.I]. This transformation can be done syntactically and is precisely
the idea used to derive the (complete) proof rule for analytic invariants by reduction to a suitable
vectorial generalization of rule dbx. This crucial vectorial generalization is derived first.

3.4.1 Vectorial Darboux Equalities

Suppose that the m-dimensional vector of extended terms e = (e, . . ., e,,) satisfies the vectorial
identity € = G'e, where G is an m x m matrix of extended terms and € denotes component-wise
Lie derivatives of vector e along 2’ = f(x) and (e)’ denotes component-wise differentials. If all
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components of e evaluate to 0 in an initial state, then they all always stay at 0 along 2’ = f(x)
because their component-wise Lie derivatives all evaluate to 0 in that initial state.

Lemma 3.9 (Vectorial Darboux equalities are differential ghosts). The vectorial Darboux ax-
iom VDBX derives from DG (and DI, DC), where G is an m X m cofactor matrix of extended terms
and e is an m-dimensional vector of extended terms.

VDBX [2/ = f(z) & Q](e) = Ge — (e = 0 — [2/ = f(z) & Qe = 0)

Proof. First, observe that the formula e = 0 is provably equivalent in real arithmetic to the

formula — ||e||5 > 0; recall that the term |e|| o >, €7 is the squared Euclidean norm of
vector e. The derivation starts with M['], cut and & to rephrase e = 0 using this equivalence.
Thanks to this rephrasing, the sequent no longer contains vectorial quantities and the derivation

is completed using a (scalar) DBX. step with the extended term cofactor g = ||G||% + 1, where

the term || G/|%. & >ty >0k, G is the squared Frobenius norm of matrix G.

R (e) = Gel (~|lelly) > g(— llel5)
- @' = f(2) &Q)(e) = GeF [¢ = f(x) & QI(~ llell3) > g(~llel5)
PR = f(2) &Ql(e) =Ge, —lell; 2 0F [+ = f(z) & Q] |lefl, > 0

Ml e B o = f(2) & Q)(e) = Ge, e=0F [ = f(z) & Qle =0

All that remains is to justify the final ( )’, r step after M['] by showing that the following
arithmetic formula is provable:

(e) = Ge — (—|lel5)" = g(—llel3) (34)
The differential (— ||e||3)" is calculated (and proved via ( ) from Section 2.3.3, page 24) as

follows, where u - v denotes the dot product of vectors u, v. The last step uses (e)' = Ge:

m m

(=llell3) == _el) =2 ei(e) = —2(e- (e)') = —2(e- (Ge))

i=1 i=1

Thus, it suffices to prove the validity of formula —2(e - (Ge)) > g(— |le||3), i.e., its truth in all
states w. Validity is first shown semantically. For ease of notation, let w[e], w[G] stand for the
respective real vector and matrix values of e and GG evaluated component-wise in state w. The
notation [|-||,, ||-|| » denotes the (real-valued) Euclidean and Frobenius norms for vectors and
matrices respectively. By the Cauchy-Schwarz inequality [204, §28.1], the dot product between
vectors w[e] and w|G]w[e] is bounded by the product of their norms:

wle] - (w[Glwle]) < flwle]ll, lw[Glwlelll,

The norm [|w[G]w[e]||, of this matrix-vector product is bounded by the product of their matrix
and vector norms because the Euclidean and Frobenius norms are compatible [204, §14.11]:

lw[Glwlellly < lwlGTlp llwlelll,
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Expanding the (square) inequality 0 < (||w[G]|| — 1)? yields an upper bound on the Frobenius
norm |w[G] || by its squared value:

2 |Gl e < IWGTI7 + 1
Chaining these (in)equalities yields:
w[-2(e - (Ge))] = —2(wle] - (w[G]w]e])) = =2 ||w]e]ll, [lw[G]w]e]ll,
> 2 |wle]ll; lw[GY lwlelll, = =2 1lw G- llwle]ll;
> (|w[G]IIF +D) (= llwle]lls) = wlg(— llell3)]

where ||w[G] ||§; + 1 is precisely the semantic value of cofactor g in state w. Since this semantic
argument for the validity of implication (3.4) only depends on first-order properties of the real
closed fields, which is decidable [14, 197], formula (3.4) is provable syntactically by ( ), k. [

Corollary 3.10 (Vectorial Darboux equality rule). The vectorial Darboux equality proof rule vdbx
derives from DG (and DI, DC), where G is an m X m cofactor matrix of extended terms and e is an
m-dimensional vector of extended terms.

OFé=Ge
e=0F[2'=f(z)&Qle=0

vdbx

Proof. Rule vdbx derives from derived axiom VDBX using ( )’, DE, [:=] to provably transform
between (e)’ and ¢, just like rule dbx derives from derived axiom DBX in Corollary 3.6. ]

The use of axiom DBX. in the derivation of axiom VDBX corresponds to an application
of Gronwall’s lemma [70, 204, §29.VI], as illustrated in Fig. 3.1a. In case e starts with value 0
initially and satisfies the Darboux inequality ¢ > ge, the constant zero solution of the differential
equation ¢/ = g(t)e bounds it from below. In Fig. 3.1a, this corresponds to the case where both
blue lines lie exactly on the horizontal axis. The proof uses the (squared) Euclidean and Frobenius
norms to reduce a vectorial equality (e = 0) to a scalar inequality (— ||e||> > 0), which enables
further analysis using scalar differential ghosts. The convenient choice of compatible norms
ensures that all syntactic proof steps are done within the extended term language. Since all
norms are equivalent on finite-dimensional vector spaces [204, §10.I1], this reduction can also
be done using other norms with suitable syntactic representations. Convenient choices of norms
are a common technique in the study of differential equations [204].

An alternative derivation of rule vdbx is given in an earlier result [148] based on Liouville’s
formula [204, §15.11T]. That alternative derivation has a geometric interpretation as a continuous
change of basis that is expressed purely syntactically [148] but requires the use of vectorial
differential ghosts and a number of ghost variables that is quadratic in the dimension. The new
derivation in Lemma 3.9 uses exactly 2 scalar differential ghosts in the DBX_ step independent
of dimension and relies only on basic properties of real arithmetic. In fact, just like the scalar
Darboux axioms, axiom VDBX for m-dimensional extended terms e derives once-and-for-all so
no differential ghosts are needed for its subsequent use.
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3.4.2 Completeness for Analytic Invariants

Returning to extended terms e satisfying the differential radical identity (3.2), the following
proof rule for invariance of e = 0 based on higher Lie derivatives derives as a direct instance of
derived rule vdbx:

Theorem 3.11 (Differential radical invariants are vectorial Darboux). The differential radical
invariant proof rule dRI derives from vdbx (which in turn derives from DG).

o DO AN 0 =0 Qi =y g
I'F2=f(x)&Qle=0

Proof Summary (Appendix A.2.3). Rule dRI derives from rule vdbx by transforming identity (3.2)
involving higher Lie derivatives of e into a vectorial Darboux equality involving only first Lie
derivatives of the extended term vector e, using the following choice of cofactor matrix G:

o1 0 ... 0 ¢
0 0 . .. et
G = : : . . O s e =
00 ... 0 1 eN=2)
£(N-1)
9 91 ... gn-2 9gnN-—1 €

The matrix G has 1 on its superdiagonal and the g; cofactors in the last row. The left premise
of dRI is used to prove formula e = 0 true initially, while the right premise of dRI is used to
show the premise of vdbx. ]

For any extended term e in the LHS of normalized equation e = 0, the computable differential
radicals condition (R) requires that the differential radical identity (3.2) (computably) exists and
proves with associated rank N and cofactors g; for e. The resulting (provable) identity (3.2)
proves the right premise of dRL°> The succedent in the remaining left premise of dRI thus gives a
finitary characterization for when all Lie derivatives of e evaluate to zero in the initial state. This
motivates the following definition of a finite formula summarizing that all higher Lie derivatives
of e are zero:

Definition 3.12 (Differential radical formula). The differential radical formula ¢*) = 0 for
extended term e of rank N > 1 from identity (3.2) with Lie derivatives along 2’ = f(z) is

defined to be the formula ége*) = 0 below (left), where the dependency on ODE z’ = f(z) is
dropped when it is clear from the context (shown on the right):

N-1
= AN =0
=0

>Theorem 3.11 shows ) can be assumed when proving the right premise of dRI. A finite rank must exist either
way, but assuming () may reduce the number of higher Lie derivatives of e that need to be considered for the proof
(as in Example 3.41).

def ds

Il
Il

N-1

. (% ) ‘(s
egc):O /\Ef(x)(e):() e =0
i=0
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The finiteness of ¢*) = 0 depends on Lie derivatives along the particular differential equation
x' = f(x) of interest, because, without considering the ODE, no corresponding chain of higher-
order differentials would stabilize. The rest of this chapter uses Lie derivatives for this finiteness
property, but relies under the hood on dL’s axiomatic proof transformation from differentials.

The completeness of derived rule dRI can be proved semantically by extending earlier argu-
ments [63] to extended term languages. Even better: the following equivalent characterization
in arithmetic of the truth of analytic formulas along forward evolutions of differential equations
derives axiomatically using the extensions developed in Section 3.5.° In contrast to the semantic
completeness argument, this syntactic characterization enables complete proofs and complete
disproofs of analytic invariance within the dL calculus. In other words, disproving the RHS of
the characterization under assumptions I, yields a dL proof of " - =[z’' = f(z) & Q]e = 0.

Theorem 3.13 (Analytic completeness). The differential radical invariant axiom DRI derives in dL
when () is a semianalytic formula formed from conjunctions and disjunctions of strict inequalities:

DRI [2/ = f(z) & Qle = 0 > (Q — ™) =0)

Proof Summary (Appendix A.2.3). The “<-” direction derives (for any Q) by an application of
derived rule dRI, whose right premise closes by (3.2). The “—” direction relies on existence
and uniqueness of solutions to differential equations, which are internalized later as axioms in
Section 3.5. [

For the proof of Theorem 3.13, the additional axioms are only required for syntactically deriv-
ing the “—” direction (completeness) of DRI. The “<* direction (soundness) derives using dRI,
which, by Theorem 3.11, can be derived using only DI, DC, DG. Thus, the base dL axiomatization
with differential ghosts is complete for proving properties of the form [z’ = f(z) & Qle = 0
because dRI provably reduces all such questions to ) — ¢*) = 0. The validity of this resulting
semianalytic formula is a purely arithmetical question. In fact, the base dL axiomatization
decides [2' = f(x) & Q]p = 0 in the case where 2/ = f(x) is polynomial and () is semialgebraic,
because the resulting RHS of DRI is semialgebraic, and hence, a formula of decidable real arith-
metic [14, 197]. The same applies for the next result, which is a corollary of Theorem 3.13 but
applies beyond the continuous fragment, thanks to the compositional application of dL’s hybrid
program axioms.

Corollary 3.14 (Analytic hybrid program completeness). For analytic formulas P and analytic
hybrid programs «, i.e., whose tests and domain constraints are negations of analytic formulas, it is
possible to compute an extended term e such that the equivalence o] P <+ e = 0 is derivable in dL,
provided that the term language is Noetherian.”

®With these axiomatic extensions, the requirement in Theorem 3.13 that @ is formed from strict inequalities is
not necessary. A derived equivalence axiom for analytic invariance with arbitrary semianalytic domain constraint
@ is given in Theorem 3.30.

"The set of extended terms always forms a ring because the +, - operations are interpreted as the usual real-
valued addition and multiplication and hence obey the ring axioms [24] for R. An extended term language is said
to be Noetherian if its corresponding ring of extended terms is Noetherian. Like the computable differential radicals
condition (R), an algorithm is assumed that decides (and proves) ideal membership in the ring of extended terms.
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Proof. The analytic formula P is provably equivalent in real arithmetic to a formula e = 0
for some extended term e by normalizing P with the provable real arithmetic equivalences
e=0Né=0¢e*+é2=0ande=0Veé=0 <« eé = 0. Assume without loss of generality
that it is already written in this form, and accordingly for the negated analytic formulas in « so
that analytic hybrid programs are generated by the grammar (3.5).

a,Br=x:=e|?d#£0 |2 = f(x)&d#0|aUB|a;8|a* (3.5)

The proof proceeds by structural induction on the fragment of dL programs generated
by the grammar (3.5), showing that for some (computable) extended term e, the equivalence
[ale = 0 <> € = 0 is derivable in dL.

* Case 2/ = f(x) & d # 0. The formula d 7& 0 is a strict inequality so Theorem 3.13 derives
[ = f(z )&d;é()]e—0<—> (d #0 — ¢®) = 0). Let N be the rank of e so that ¢*) = 0
expands to A, ¢) = 0 and let & = d(3°1 ' (¢®)?), giving the provable real arithmetic

equivalence (d # 0 — ¢*) = 0) ¢ & = 0. Rewriting with this derives the equivalence:
7' = f(x)&d#0le=0+¢=0

* Case z := e. Axiom [:=| derives the equivalence [z :=¢e]é(x) = 0 <> é(e) = 0, where é&(e)
is an extended term.

* Case 7d # 0. Axiom [?] derives the equivalence [?d # 0le = 0 <> (d # 0 — e = 0).
Rewriting with the provable real arithmetic equivalence (d # 0 — e = 0) <> de = 0
derives the equivalence:

[?7d #0le =0 <> de =0

+ Case aUf. Axiom [U] derives the equivalence [« U S]le = 0 <> [a]e = 0A[B]e = 0. By the
induction hypothesis on «, /3, the equivalences [a]e = 0 <> é; = O and [fle = 0 <> é, =0
derive for some extended terms ¢, é;. Moreover, €, = 0Aé; = 0 <> é2+¢3 = (is provable
in real arithmetic. Rewriting with the derived equivalences derives the equivalence:

[aUBle=0+ &7+ 63 =0

* Case «; 5. Axiom [;] derives the equivalence [o; S]e = 0 <> [a][S]e = 0. By the induction
hypothesis on f3, the equivalence [S]e = 0 <+ é; = 0 derives for some extended term
é;. Rewriting with this equivalence derives [a; fle = 0 <+ [a]és = 0. By the induction
hypothesis on «, the equivalence [a]és = 0 <> é; = 0 derives for some extended term é;.
Rewriting with the chain of derived equivalences derives the equivalence:

[a;Ble=0+<>¢é =0

+ Case o*. This case crucially requires that the extended term language is Noetherian.

First, construct the sequence of terms €; defined inductively with €& & and €;+1 is the
term satisfying the derived equivalence [a]é; = 0 <> €;;1 = 0 obtained by applying the
induction hypothesis on o with postcondition ¢; = 0 for i = 0,1, 2, .. .. Since the term
language is assumed to be Noetherian, the following ascending chain of ideals stabilizes:

(é0) C (€g,€1) C (€9,61,63) C ---
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By decidable ideal membership for the extended term language, there is a (smallest)
computable k such that € satisfies the provable identity (3.6), with cofactor terms g;:

k—1
& =Y giéi (3.6)
=0

The equivalence Zf:_ol e2=0+ /\i:ol ¢; = 0 is provable by real arithmetic so, to derive

the equivalence [a*]e = 0 « Zf:_ol ¢2 = 0, it suffices to show that the equivalence

[a*le = 0 < /\f:_o1 é; = 0 is derivable. The two directions of this latter equivalence are

shown separately:

“—” This direction is straightforward using the iteration axiom [*| k times together with
derived axiom [-]A. By construction, the formulas [«]é; = 0 are provably equivalent
to €;11 = 0 using derived equivalences, which derives the required implication:

*
Go=0Aé =0Aé=0A A& 1=0FANZle=0
e=0Afale=0A[a]lale=0A---Ala]...[a]e=0F AV) & =
——
k—1 times
(1 [1A
1 LA e=0Aale=0A[a][a][a*]le=0F AVl & =0
) A e=0A[a][ale=0F A2 e =0
* X k—1 -
"] la*le=0F A\, & =0
k—1 ~

“<=” The postcondition of the succedent box modality is strengthened to A;_; & = 0
by monotonicity with M[-], recalling that é, & e, so /\i':ol ¢ =0—>e=0isa
propositional tautology. Subsequently, the loop rule is used to prove that /\f;o1 e =0
is a loop invariant of a*:

Ny éi=0F[a] Ay & =0
L AR e =0F [0 ] Ny & =0
MIAL & =01 [a%]e =0

By axiom [-]A and AR, each conjunct of the postcondition (indexed by 0 < ¢ < k —1)
of the premise is proved separately. By construction, each [a]é; = 0 is provably
equivalent to €;;1 = 0 so the premises for indices 0 < ¢ < k — 1 all close trivially
because €;,1 = 0 is already in the antecedent. The last premise for index ¢ = k—1 has
succedent €, = 0. However, this follows (by construction and r) from the antecedent
using the provable identity (3.6).

*
* AR/\;:ol e;=0F /\f:_o1 €it1 =10
Nigé=0F Ny [a)ei =0
NN e =0 [ ALy & =0 =
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The Noetherian condition of Corollary 3.14 implies the computable differential radicals con-
dition (R). Polynomial term languages are Noetherian so Corollary 3.14 shows that dL decides
[a] P where P and « are both algebraic. However, extended term languages are not necessarily
Noetherian, for example, extended term language (3.1), even only with exp, is not Noethe-
rian [198, Remark 1.4.2].% Nevertheless, the stronger Noetherian condition is only required when
the analytic hybrid program « contains loops. Otherwise, the weaker condition (R) suffices for
loop-free o in Corollary 3.14. A version of Corollary 3.14 is proved for Noetherian functions
in Corollary 3.39 with loop-free « or with assignment-free o (with loops).

3.5 Extended Axiomatization

This section presents an axiomatic extension to dL whose purpose is to internalize standard
properties of differential equations, such as existence and uniqueness [204, §10.VI], as syntactic
reasoning principles. The extension requires that the ODE system 2’ = f(z) locally evolves r,
i.e., it has no fixpoint at which f(z) is the 0 vector. This can be ensured syntactically, e.g., by
requiring that the system contains a clock variable =} = 1 that tracks the passage of time. In
proofs, such a clock can always be added using axiom DG if necessary.

3.5.1 Existence, Uniqueness, and Continuity

The differential equations of dL are smooth so the Picard-Lindelof theorem [204, §10.VI] guaran-
tees that for any initial state w, a unique solution of the system 2’ = f(z),ie, ¢ :[0,7] = S
with ¢(0) = w, exists for some duration 7" > 0. The solution ¢ can be extended (uniquely) to its
maximal open interval of existence [204, §10.IX] and ¢(() is smooth with respect to (.

Lemma 3.15 (Continuous existence, uniqueness, and differential adjoints). The following axioms
are sound. In Cont and Dadj, y are fresh variables (not in x’ = f(x) & Q(x) or extended term e).

Uniq (' = f(z) & Q1 A Q2)P + ((:L" = f(x)&@l)P) A ((az’ = f(x)&QQ>P)
Cont z =y — ((2/ = f(z)&e>0)z £y e>0)

Dadj (2" = f(2) & Q(z))z =y < (Y = —f(y) &QW)y ==

Proof Summary (Appendix A.1.1). Uniq internalizes uniqueness, Cont internalizes continuity of
the values of e and existence of solutions, and Dadj internalizes differential adjoints by the group
action of time on ODE solutions, which is another consequence of existence and uniqueness. [

The uniqueness axiom Uniq says that if a state has two solutions 1, @9 respectively staying
in evolution domains ()1, ()> and whose endpoints satisfy P, then, by uniqueness, one of (¢, or
9 is a prefix of the other, and therefore, that prefix stays in both evolution domains Q)1 A Q)2
and satisfies P at its endpoint. The continuous existence axiom Cont expresses a notion of local

8The ring of all extended terms (including function composition) is not to be confused with the ring of Noetherian
functions generated by a single Noetherian chain, the latter of which is indeed Noetherian (see Section 3.7).

52



progress for differential equations. It says that from an initial state satisfying x = v, the system
can locally evolve to another state satisfying « # y while still staying in the open set of states
characterized by e > 0 iff the initial state is already in that open set. This uses the assumption
that the system locally evolves x at all. The differential adjoints axiom Dadj expresses that = can
flow forward to y iff y can flow backward to = along the negated ODE. It is at the heart of the
“there and back again” axiom that equivalently expresses properties of differential equations
with evolution domains in terms of properties of forward and backward differential equations
without evolution domains [139].

Although all three axioms are stated as (conditional’) equivalences to support intuition, the
main properties of interest are their “<—” directions. For example, the “—” direction of Uniq
derives from domain constraint monotonicity for the diamond modality (derived rule dRW{-)
below). Diamond modality monotonicity principles are given below because they are useful for
working with the newly introduced axioms. They are derived duals of the usual dL box modality
principles using axiom (-).

Corollary 3.16 (Derived diamond modality domain rules and axioms). The following axiom and
its corollary proof rule derive in dL:

DR()) [2' = f(2) & R]Q — ((2' = f(2) & R)P — (2’ = [(2) & Q)P)
RFQ THFH (& =f(x)&R)P
IE ' =flz)&Q)P
Proof. Axiom DR(-) derives from DMP (the roles of () and R are flipped) by dualizing with the
(- axiom. The final K, dW steps use the propositional tautology @ — (R — Q).

W F[o' = f(@) & R(Q = (R~ Q)
fw&mm%Q>
f@)&R
f

dRW(-)

K ("= J(@2) ERQF [
PV o = f(@) & RIQ, [ = f(2) & QI~PF [+ = f(x) & R]-P
ORI = f(2) & RIQ, (' = f(2) & R)PF (2/ = f(2) & Q)P

Rule dRW(-) derives from DR(-) by simplifying its outer (leftmost) assumption with rule dW. [

3.5.2 Real Induction

The final axiomatic extension is based on the real induction principle [34], briefly:

Definition 3.17 (Inductive subset [34]). The subset S C |a, b] is called an inductive subset of
the compact interval [a, b] iff for all a« < ¢ < b such that [a,() C S,

@ ¢ € Sand
@ if ¢ < bthen (¢,( + ¢] C S for some £ > 0.

Here, [a, a) is the empty interval, hence D requires a € S.

® Axiom Cont is sound even without the condition from assumption x = . It is stated conditionally to align
with the intuition of local evolution from an initial state satisfying x = y.
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Proposition 3.18 (Real induction [34]). The subset S C |a, b] is inductive iff S = [a, b].

Proof. In the “ <" direction, S = [a, b] is inductive by definition. For the “=-" direction, let
S C [a,b] be inductive. Suppose S # [a,b], so that the complement set S¢ = [a,b] \ S is
nonempty. Let ¢ be the infimum of S, then ¢ € [a, b] since [a, ] is left-closed. First, note that
[a, () C S. Otherwise, € is not an infimum of SC because there would exist a < 7 < (, such
that 7 € SC. By @, ¢ € S. Next, if { = b, then S = [a, b], contradiction. Thus, { < b, and by @),
(¢,¢ 4+ €] C S for some ¢ > 0. Since ¢ € S, this implies that ( + ¢ is a greater lower bound of
St than (, contradiction. ]

Proposition 3.18 is based on the completeness of the reals [34] for compact intervals [a, b] of R.
Applying it to the time axis of ODE solutions yields real induction along solutions of differential
equations. For brevity, only the real induction axiom for systems without evolution domain
constraints is presented here, leaving the general version to Appendix A.1.1, since evolution
domains are definable in dL [139].

Lemma 3.19 (Real induction). The real induction axiom RI is sound, where variable y is fresh in

formula [x' = f(x)]P.
RI [2/ = f(2)]P < Vyl2' = f(2) &PVa=yl(r =y = PN = f(2) &PVz=yz#y)

Proof Summary (Appendix A.1.1). The RI axiom follows from the real induction principle [34]
and the Picard-Lindelof theorem [204, §10.VI]. O]

Real induction axiom RI can be understood in
relation to Def. 3.17: its RHS is true in a state iff the
subset of times at which the solution satisfies P is
inductive. First, Vy [...](z = y — ...) can be un-
derstood as quantifying over all final states (r = v)
reached by trajectories staying within P except pos-
sibly at the endpoint + = y. This corresponds to
[a,¢) C S in Def.3.17. The left conjunct (P) under
the box modality expresses that P is still true at such
an endpoint, corresponding to D in Def. 3.17. The
right conjunct ((z' = f(z) & PV x =y)x # y) ex-
presses that P continues to remain true locally when
following the ODE for a short time, corresponding
to @ in Def. 3.17. Figure 3.2: The half-open green disk is not

To see the topological significance of R, recall Invariant for the ODE . from (2.1) be-
the ODE «, from (2.1) (page 17) and consider a set of €aUS€ the red and blue trajectories spiral
points that is not invariant. Figure 3.2 illustrates two ©ut of it at a closed (solid green) or open
trajectories that leave the half-open disk character- (dashed green) boundary, respectively.
ized by the disjunctive formula: u? + v? < }l Vu?+ o= %1 A u > 0. Trajectories starting in the
disk leave it through its boundary but only in one of two ways: either at a point which is also in
the disk (red trajectory exiting right) or which is not in the disk (blue trajectory exiting left).
The left conjunct of RI rules out trajectories like the blue one exiting left in Fig. 3.2, while the
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right conjunct rules out trajectories like the red trajectory exiting right. The right conjunct of
axiom RI also suggests a way to use it—axiom RI reduces proofs of invariance to local progress
properties under the box modality. This motivates the following syntactic modality abbreviation
for local progress into an evolution domain :

@ = [@)&QOE (@ = (@) &QVr=y)z £y

All proofs in this chapter use the () modality with an initial assumption = y, where y is
fresh. In this case, where w[z] = w[y], since the ODE locally evolves x, the () modality has the
following semantics:

w € [(2' = f(z) & Q)] iff there is a function ¢ : [0,7] — Swith T > 0, ¢(0) = w,
¢ solves the ODE 2’ = f(x) and ¢(() € [Q] for all ¢ in the half-open interval (0, 7’|

Thus, the abbreviation () is a continuous-time version of the next modality of temporal
logic [109] for differential equations. Conventionally, such a next state operator is excluded from
continuous-time generalizations of temporal logic [76] because there is no unique “next” state
in the continuous setting. The local progress modality () overcomes this by instead quantifying
over some time interval (0, T'], with T > 0, of states along the solution. Intuitively, the exclusion
of time 0 is because the () modality describes what solutions will do next (or locally) rather than
what they are doing now. A precise (topological) explanation is provided in Appendix A.2.2 and a
complete characterization of local progress for all semianalytic formulas is derived in Section 3.6.
As a corollary, Section 3.6 shows that, like its discrete counterpart, the () modality is self-dual
for semianalytic Q.

The final derived rule rI shows what the added axioms and local progress provide—axiom RI
reduces global invariance properties of ODEs to local progress properties. These local progress
properties are provable using Cont, Uniq and the dL axioms, as shown in the next section.

Corollary 3.20 (Real induction rule). The real induction proof rule rI derives from RI, Dad.
Variables y are fresh in the ODE 2’ = f(x) and formula P.

=y, PF (¢ = f@) & P)O  a=y,-PF (o' = —f(x) &=P)O

i PF o= f()P

Proof Summary (Appendix A.1.2). Rule 1l derives from axiom RI, where the left/right premises
of the rule correspond respectively to the right/left conjunct of the RHS of RI. Axiom Dadj is
used to syntactically flip signs in the right premise. [

3.6 Semianalytic Invariants

This section makes the simplifying assumption that domain constraint () = true since it is
definable in dL [139] and not central to the core idea of the section. Using the generalizations of
RI, rI from Appendix A.1, the case of semianalytic invariants for ODEs with arbitrary semianalytic
evolution domain () is given in Appendix A.2.
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The first step in invariance proofs for semianalytic P is to use derived rule rI, which yields
premises of the form x=y, P F (2’ = f(x) & P)(O (modulo sign changes and negation). These
premises express local progress properties of the ODE 2’ = f(z). Analogously to the equivalent
arithmetic reduction of equational properties of differential equations in Theorem 3.13 using
the finite differential radical formula (Def. 3.12), the key insight is that local progress for any
semianalytic formula is also (provably) completely characterized by a corresponding finite
semianalytic progress formula.

3.6.1 Local Progress

This section shows how an arithmetical characterization of local progress can be derived syntac-
tically in dL for extended term languages and proves the completeness of this characterization.
This characterization was previously used implicitly for semialgebraic invariants [64, 103]. The
derivation is built up systematically, starting from the base case of atomic inequalities before
moving on to the full semianalytic case. Interesting properties of this characterization, e.g.,
self-duality, are also observed.

Atomic Inequalities. Consider the atomic inequality e = 0. To show local progress into such
an inequality, it is sufficient to locally consider the first (significant) Lie derivative of e because
the sign of a smooth function is locally dominated by the sign of its first non-zero derivative, if
one exists. The key to a syntactic rendition uses the following lemma for non-strict inequalities.

Lemma 3.21 (Local progress step). The local progress step axiom LPi> derives from Cont. Variables
y are fresh in the ODE x’' = f(x) and extended term e.

LPi» o=y — <e >0A (e =0 (2 = fla)&e > 0)aty) — (& = f(z)&e > 0>;L'7éy>

Proof. The proof starts with a VL case split since the antecedent formula e > 0 is equivalent to
formula e > 0 V e = 0 by r. The resulting premises are respectively abbreviated @ for e > 0
and @ for e = 0 and continued below.

@ @
BVlp—y e>0,e=0—= (2/ = f(z)&e > 0)aty F (o' = f(z) &e > 0)xty

From premise (D, since the value of e is already positive initially, it must locally stay positive.
Using dRW (-}, the non-strict inequality in the domain constraint of the succedent is strengthened
to a strict one, after which axiom Cont finishes the derivation.

*
Cont p—y,e >0F (o' = f(z)&e > 0)ay
BV r—y,e > 0F (' = f(z) & e > 0)aty

From premise (), the local sign of e cannot be determined from its initial value alone. The
proof looks to the Lie derivative of e, which is assumed to be locally non-negative (in the
implication e = 0 — ...). Axiom DR(-) reduces the succedent to a box modality question,
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after which axiom DI finishes the proof; this refinement-style technique is further explored for
proving ODE liveness properties in Chapter 4.

DL (", DE, [:=] e=0F[2/= f(x)&e > 0e >0
DR() e=0,(x' = f(x)&e > 0atyt (' = f(z)&e > 0)zty
Lo e=0e=0— (2 = f(2)&é > 0ty - (2 = f(x) &e > 0)aty ]

Similar to DBX, DBX._, and VDBX, a version of LPi> derives once-and-for-all using differen-
tials ((¢)’ > 0) in domain constraints. This presentation is omitted to keep with the notational
convention that domain constraints are always differential-free formulas (Section 2.1). Mathe-
matically, to conclude that e is locally non-negative, it is important that the Lie derivative ¢ is
assumed to be locally non-negative rather than just initially non-negative. Just as the local sign
of ¢ cannot be determined (directly) when its initial value is zero, the same is true for ¢. This
difference drives the use of higher Lie derivatives when LPi> is generalized below. Syntactically,
this difference manifests in both DR(-), DI proof steps which crucially rely on the formula ¢ > 0
appearing in their respective domain constraints rather than simply as an initial assumption.

Observe that LPi> allows derivations to pass from reasoning about local progress'® for
e > 0 to local progress for its (first) Lie derivative ¢ > 0 whilst accumulating e = 0 in the
antecedent. This is reminiscent of derivative tests from elementary calculus used for testing
the local behavior around a given stationary point of a (sufficiently) smooth function. The
difference is that (syntactic) Lie derivatives have to be used for soundness instead of analytic
time derivatives, but these notions are provably equal along ODEs using differentials [142,
Lem. 35]. Similar to derivative tests, if the first Lie derivative is indeterminate as well, then the
derivation can look to the second higher Lie derivative, and so on. Deductively, this is done by
repeated use of derived axiom LPi> until the k-th derivative (shown as ... in the outline below):

[, 2=y,e=0,...,e* D =0F (z/ = f(z) &e®>0)asy
Ie=0Fe>0 .
F'Fe>0 "= T o=y,e=0F (2 = f(x) &e > 0)aty
P To=yk (@' = f(z)&e > 0)ay

Notice that the rightmost premise closes whenever the (strict) inequality ¢} > 0 can
be proved from the accumulated antecedents. In that case, the local sign of e (and of all its
Lie derivatives below the k-th one) is dominated by that of ¢*) because all of the lower (Lie)
derivatives have indeterminate sign. The use of Cont, dRW(-) finishes the proof because the
solution must then locally enter e®) > 0, for example, with:

*
cont p—y, e > 0F (2 = f(x)&e® > 0)aty
Doo=y,e=0,....e0D =0F e® >0 ®VO—y o®) S 0k (2 = flz)&e® > 0)aty
cut Doa=y,e=0,...,e* YV =0F (2/ = f(z) &e®) > 0)ay

The local progress property used in LPi> is syntactically simpler than for the () modality (no x = y in the
domain constraints). For non-strict inequalities, the two are equivalent but the syntactic simplification in LPi>
allows its re-use as a lemma in proving () local progress for both non-strict and strict inequalities.
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The extended term conditions for smoothness (S) and syntactic partial derivatives (P) guaran-
tee that all of the (infinitely many) higher Lie derivatives of e are well-defined semantically and
syntactically. Derivations, on the other hand, are finite syntactic objects and can only mention
finitely many Lie derivatives. Thus, one might suspect they are insufficient (hence incomplete)
when, e.g., none of the higher Lie derivatives has a definite sign or if (infinitely many) different
choices of k are needed in the proof depending on the initial state that satisfies assumptions I'.

This is where the third, computable differential radicals condition (R) is crucially used.
When N is the rank of e according to identity (3.2), then once the derivation has gathered
e=0,...,eN"Y = 0,1ie, e* = 0 in the antecedents, derived rule dRI proves the invariant
e = 0 and ODEs always locally progress in invariants. Furthermore, this argument shows
(mathematically) that it is unnecessary to analyze higher Lie derivatives of ¢ beyond N when
proving local progress for e > ( because none of those higher Lie derivatives will be sign-definite.
Thus, the rank from (3.2) provides a uniform and finite bound for the number of Lie derivatives
of e that need to be analyzed in any state, regardless of assumptions I'. This finiteness property
motivates the following definition, which gathers the above open premises to obtain a finite
formula characterizing the first significant Lie derivative of e:

Definition 3.22 (First significant Lie derivative). The progress formula égc*) > 0 for extended
term e of rank N > 1 from identity (3.2) with Lie derivatives along 2’ = f(x) is defined to be:
égc*) >0 défe 2 0A (6 =0— Ef(:v)<€) 2 0) A (6 =0A Lf(z)(e) =0— £}2()x)<6) 2 O)

(N-3)

MNe=0ALsmE)=0A ALy, (€)=0— L, (e) > 0)

The dependency on ODE 2’ = f(z) is dropped with £*) > 0 when it is clear from the context.
The progress formula ¢*) > 0 is defined to be ¢ > 0V ¢®*) = 0. The formulas ¢~ > 0 (or
¢~() > () are identical except their Lie derivatives are along the negated ODE 1’ = — f().

Lemma 3.23 (Local progress =). The local progress inequality axioms LP>~, LP« derive from
LPi> and thus from Cont. Variablesy are fresh in the ODE =’ = f(x) and extended term e.

LP-. z=y — (% >0 = (2/ = f(z) &e > 0)O)

LP.. 2=y — (6% >0 = (' = f(z)&e > 0)O)

Proof Summary (Appendix A.2.2). Both axioms derive after unfolding the syntactic abbreviation
of the (O modality. Axiom LP~~ derives by the preceding discussion with iterated use of derived
axioms LPi> and dRI. Axiom LP-« derives similarly, but with an additional tweak to weaken
the strict inequality e > 0 so that axiom LPi> can be used. []

The difference between the derivations of LP>+ and LP.- is mainly technical and boils
down to the handling of the assumptions about the initial state, and in particular, z=y (see
Appendix A.1.2 and A.2.2). Intuitively, the difference arises from the fact that the formula e > 0
characterizes a topologically closed set while e > 0 characterizes an open set. To locally progress
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into a set from initial state w, the state w must already be in the topological closure of that set.
Closed sets are equal to their closure so, e.g., w must already satisfy e > 0 in order to locally
progress into it. Sets that are not closed (e.g., open sets) are not equal to their closure as they
lack points on their topological boundary. An example of this is the half-open disk illustrated
in Fig. 3.2. Thus, it is possible to locally progress into such sets from their topological boundary
without w already starting in the set.

Semianalytic Formulas. Semianalytic formulas P normalize propositionally to the following
disjunctive normal form with extended terms e;;, €;;:

pP= \/(/\6m>0An/\6m>0> (3.7)

=0 5=0

Progress formulas are lifted homomorphically to semianalytic formulas in normal form:

Definition 3.24 (Semianalytic progress formula). The semianalytic progress formula P ) for a
semianalytic formula P in normal form (3.7) and Lie derivatives along 2’ = f(z) is deﬁned as:

M m(i)
155:«) dEef \/(/\ 61] >0/\/\ ew >
i=0  j=0

The dependency on ODE 2/ = f(x) is dropped with P™ when it is clear from the context.
The formula P~*) takes Lie derivatives along ODE 2’ = —f(z) instead. A mention of the
notation P* is understood as the progress formula for semianalytic formula P after it is

rewritten propositionally to any equivalent normal form (3.7).

Lemma 3.25 (Semianalytic local progress). The local progress formula axiom LPr derives from
Cont, Uniq. Variables y are fresh in the ODE ' = f(x) and semianalytic formula P.

LPrR 2=y — (]5(*) — (o' = f(z) &P>Q)

Proof Summary (Appendix A.2.2). The shape of the semianalytic progress formula pt ) guides
the proof. The derivation is sketched at a high level here for the representative example formula:

Pz(el >0Aé >O)\/<€2 > 0N ey >0)
PO = (6,0 > 006 >0) v (60 > 045 > 0)

To show local progress into a disjunction, it suffices to show local progress into either

disjunct. The derivation starts by decomposing pe according to its (outermost) disjunction and
accordingly decomposing P in the local progress succedent with dRW(-). The premise for the
second disjunct resulting from the VL step is symmetric and omitted here.

=y, 61 > 0N & >0k (@ = f(x)&er > 0N E > 00
BVOp—y, 6,0 > 0N e > 0F (2 = f(z) & P)O
. v=y, PP+ (2’ = f(2) & P)O
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To show local progress into a conjunction, by Unigq, it suffices to show local progress into
both conjuncts separately. The derivation continues using Uniq, AR to split the conjunctive local
progress succedent before the derived axioms LP>«, LP~« are used to finish the proofs in the
resulting atomic cases for inequalities >, >, respectively.

" *
Pzrgp=y, 6, > 0F (2/'=f(x) &6.120>O o gy, 60 > 0 F (@'=f(z)&e,>0)O
Unig, AR r=y,e,*) > 0,6, > 0F (2'=f(x)&e; > 0N E > 000 ]

Completeness could potentially be lost in several steps of the proof of Lemma 3.25, e.g., the
use of VL at the start of the derivation, or the implicational axioms LP~~, LP~-. The converse
(completeness) direction of axiom LPr therefore does not follow immediately from Lemma 3.25.
Instead, the axiom LPr can be re-used to derive its own strengthening to an equivalence. This
equivalence justifies the syntactic abbreviation (), recalling that the () modality of temporal
logic is self-dual. It also shows that the progress formulas are congruent over equivalences.

Theorem 3.26 (Local progress completeness). The local progress axiom LP derives from Cont,
Uniq. Variables y are fresh in the ODE 2’ = f(x) and semianalytic formula P.

LP z=y — ((2/ = f(2) & P)O ].3(*))

Corollary 3.27 (Duality and congruence). The duality axiom —~() and congruence proof rule for
progress formulas CLP derive from LP and thus from Cont, Uniq. Variables y are fresh in the ODE
x' = f(x) and semianalytic formulas P, R.

~O z=y = ((o/ = f(2) & P)O ¢ =(a’ = f(z) &=P)O)

P+ R
CLP ————— (for ODE 2’ = f(z))

P& & R()

Proof Summary for Theorem 3.26 and Corollary 3.27 (Appendix A.2.2). The derivation of axioms
LP, =() and proof rule CLP use the homomorphic definition of semianalytic progress formulas
which implies that any semianalytic formula P in normal form (3.7) has a corresponding normal

form for =P such that the equivalence ﬂ(]b(*)) “ (ﬂ.P)(*) is provable. Classically, in any

state, either formula ].3(*) or —|(]:"(*)) is true. Therefore, by LPr, the ODE must (exclusively,
by uniqueness) either locally progress into PP or =P from this state. Both axioms LP, =() are
derivable consequences of this fact, as shown syntactically in Appendix A.2.2. Rule CLP follows
from LP by congruential equivalence [142]. ]

Congruence rule CLP shows that any equivalent choice of normal form (3.7) for semianalytic

formula P gives a local progress formula that is (provably) equivalent to P®. The rule works for
all (semianalytic) equivalences, including arithmetical ones over extended term languages, e.g.,
exp (x) =1 <> x = 0 from (3.1), so CLP does not follow immediately from the homomorphic
definition of progress formulas.
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3.6.2 Completeness for Semianalytic Invariants

Combining derived axiom LP and derived rule rI yields an effective proof rule which reduces a
semianalytic invariance question to questions involving purely arithmetic formulas.

Theorem 3.28 (Semianalytic invariants). The semianalytic invariant proof rule sAl derives from
RI, Dadj, Cont, Uniq for semianalytic formula P.

P P® ~PF (~P)®

R Y T P}

Proof. 'This follows immediately by rewriting the premises of rule rI with the equivalence LP. [l

Completeness of sAl was first proved semantically for polynomial terms languages [103],
making crucial use of semialgebraic sets and real analytic solutions to polynomial ODE systems.
The proof rule sAl derives syntactically in dL and generalizes to semianalytic invariants for
extended term languages. Its completeness derives syntactically too, which yields dL disproofs
of semianalytic invariance when arithmetic counterexamples can be found.

Theorem 3.29 (Semianalytic invariant completeness). The semianalytic invariant axiom SAI
derives from RI, Dadj, Cont, Uniq for semianalytic formula P.

SAL Vz (P — [2' = f(x)|P) <> V& (P — P(*)) AVz (=P — (—|.}7)—(*))
Proof in Appendix A.2.4.

In Appendix A.2, a generalization of Theorem 3.29 is proven that handles semianalytic evolu-
tion domains () using LP and a corresponding generalization of axiom RI. The same appendix
proves the following generalization of Theorem 3.13 for semianalytic evolution domains:

Theorem 3.30 (Analytic completeness with semianalytic domains). The differential radical
invariant axiom DRI& derives from Cont, Uniq for semianalytic formula Q).

DRI& [z = f(z)&Qle =04 (Q > e=0A (Q(*) EINACO 0))
Proof in Appendix A.2.4.

Theorems 3.29 and 3.30 show that dL is complete for proving invariance of all (semi)analytic
P of differential equations because it reduces all such questions equivalently to first-order
formulas, e.g., on the RHS of derived axiom SAI. In addition, dL decides invariance properties
for all first-order real arithmetic formulas P, because quantifier elimination [14, 197] can equiv-
alently rewrite P to (semialgebraic) normal form (3.7) first. Unlike for Theorem 3.13 and its
generalization Theorem 3.30, which equivalently reduce safety properties with analytic postcon-
ditions to arithmetic directly, Theorem 3.29 and its generalized version in Appendix A.2 are only
equivalences for invariants P; the search for suitable invariants in proofs of ODE safety is the
remaining practical challenge [180].
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Of course, the complete proof rule sAI can be used to prove all of the suggested invariants
for the ODE «, from (2.1). However, Example 3.7 gives a significantly simpler proof for the
invariance of 1 — u? — v? %= 0 with dbx,.. This has implications for implementations of sAI
because simpler proofs help minimize dependence on real arithmetic decision procedures. For
semianalytic formulas (that are not semialgebraic), proof rules resulting in simpler arithmetic
premises might even be preferable because validity of the arithmetic premises is undecidable
in general [162]. Logically, when P is formed from only strict (resp. non-strict) inequalities
then the left (resp. right) premise of sAl closes trivially. This logical fact corresponds to the
topological fact that the set P characterizes is topologically open (resp. closed) so only one of
the two exit trajectories in Section 3.5.2 can occur.

3.7 Noetherian Functions

This section studies the class of Noetherian functions which meets all of the extended term
conditions required in Section 3.2.4 and therefore inherits all soundness and completeness results
of the preceding sections, including Theorems 3.29 and 3.30.

3.7.1 Mathematical Preliminaries

The following definition of Noetherian functions is standard, although the parameters that are
used for studying the complexity of these functions [12, 56, 57] have been omitted. The notation
h: H C RF — R is used for real-valued functions with domain H, i.e., an open, connected
subset of R*. With a slight abuse of notation, polynomials p € R[z] over indeterminates
x = (z1,...,x,) and their corresponding polynomial functions p(z1,...,z,) in R" — R are
used interchangeably.

Definition 3.31 (Noetherian chain and Noetherian function). A Noetherian chain is a sequence
of real analytic functions A1, ..., h, : H C R* — R such that all partial derivatives in H for all
i=1,...,kand j = 1,...,r have the following form, where each ¢;; € Ry, z] is a polynomial
in k 4 r indeterminates with y = (y1,...,yx), 2 = (21,. .., 2):

Oh;
Oy

(Y) = @iy, ha(y), - -, he(y)) (3.8)

The function i : H C R* — R is Noetherianiff it can be writtenas h(y) = p(y, h1(y), .. ., hr(v)),
where p € Ry, z] is a polynomial in k& + r indeterminates and Ay, . .., h, is a Noetherian chain.
In that case, h is said to be generated by this polynomial and Noetherian chain respectively but
the choice of generating chain and polynomial for / is not unique.

For the term language extension (3.1), exp is a 1-element Noetherian chain because its
derivative is a%p(y) = exp(y), while sin, cos form a 2-element Noetherian chain. All three
functions together form a 3-element Noetherian chain. More generally, the union of any (finite)
number of Noetherian chains is a Noetherian chain. By definition, any element of a Noetherian
chain is itself a Noetherian function so exp, sin, cos are also Noetherian functions. It is often

useful to consider Noetherian functions over a larger domain than the generating chain, e.g.,
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h(z,y) = exp(y) + sin(z) with A : R*> — R. In this case, the domain of definition of the
generating chain is implicitly extended by treating them as functions over the dimensionally
larger domain, e.g., with exp(z,y),sin(x,y) : R* — R which ignore their first and second
argument respectively. This is compatible with Def. 3.31 because the partial derivatives with
respect to the ignored arguments is trivially zero. Proposition 3.32 gives important closure
properties of the Noetherian functions generated by the same Noetherian chain, which are
crucial later and explain the name Noetherian function [57, 201].

Proposition 3.32 ([12, 56, 57]). The set R of Noetherian functions generated by a given Noetherian
chain hy, ..., h, : H C R¥ — R is a Noetherian ring that is closed under partial derivatives.

Proof. Lety = (y1,...,Yx),2 = (z1,...,2,) abbreviate indeterminates as in Def.3.31. The
set IR is a ring under the usual addition and multiplication of real-valued functions because
the corresponding generating polynomials form a ring. Now, R is Noetherian because it is a
finitely generated algebra [24, §2.11, Corollary 3] over the Noetherian polynomial ring R[y|. The
following constructive proof yields a computational method that is used later.

Consider an ascending chain of ideals Iy C I; C --- in R. For each I;, associate the set

of generating polynomials .J; & {p|ply,hi(y), ..., h(y)) € I} C Rly, z] with respect to the
generating Noetherian chain. Each J; is an ideal in R[y, z] because the corresponding I; are
themselves ideals. By construction, J; C J;11 because I; C I;,; for all . Since Jy C J; C --- is
an ascending chain of ideals in R[y, 2], which is a Noetherian polynomial ring, it must stabilize at
some N with Jy = Jy,1 = ---. Correspondingly, the chain of ideals /; stabilizes (at the latest)
at N so R is Noetherian. The chain Iy C [; C --- may stabilize earlier than the corresponding
J; chain but that is not important here.

To show that R is closed under partial derivatives, let h(y) = p(y, h1(y),...,h.(y)) € R
with p € Ry, z]. For the partial derivative of h with respect to y;, applying the chain rule yields:

y; 0y
dp " 9p Oh;
= —(y,h oo hy —(y, h o hy J
By definition, g—i(y, hi(y),...,h(y)) € R since g—i is a polynomial in R[y, z|. Each sum-
mand g—z_(y, hi(y),...,h.(y)) € R since g—z_ is a polynomial in R[y, z], and z—};(y) € R by
definition because hq, ..., h, is a Noetherian chain. Hence, all RHS sub-terms are in R, and so
g—;(y) € R. O

Proposition 3.32 implies that adding Noetherian functions to their generating chains yields
another Noetherian chain generating the same Noetherian ring R of Noetherian functions
because R is closed under ring addition and multiplication. Beyond closure properties for
a single Noetherian chain, the class of all Noetherian functions is also closed under other
mathematical operations, including function composition, multiplicative inverses, and function
inverses (with appropriate assumptions) [12]. Closure under function composition is proved
constructively in Proposition 3.33 as it is used later.
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Proposition 3.33 ([12]). Ifh : H C R*¥ — R is Noetherian and v : T C R! — RF has a
compatible image v(Y) C H where each componentv; : T C Rl — R fori = 1,...,k is
Noetherian, then the function composition f = h(vy,...,v;) : T C R — R is Noetherian.

Proof. Let y = (y1,...,9x),2 = (z1,---,2:),7Y = (7,...,7) abbreviate indeterminates.
The composed function f is well-defined on T since v(Y) C H. By assumption, h(y) =
p(y,hi(y), ..., h,(y)) for some generating Noetherian chain h1,...,h, : H C R¥ — R and
polynomial p € [y, z]. Since the union of Noetherian chains is Noetherian and by Proposi-

tion 3.32, assume without loss of generality, that the Noetherian functions v; for: =1,... )k
are members of the same generating Noetherian chain vy,...,vs : T C R! - R with k < s.
Putting these together, f can be written as: f = p(v, f1,..., f.), where v = (vy,...,v;) and
the function compositions f; def hi(vi,...,vg) fori =1,... r. From this representation, f is
generated by polynomial p over the sequence:
Ul,...,US,fl,...,fr (39)
In order to show that (3.9) is a Noetherian chain, it suffices to check that fi, ..., f. obey the
condition on partial derivatives (3.8) because vy, . . ., vy is already a Noetherian chain. For each

fi(y) : T C R" — R, taking the partial derivative with respect to 7, and applying the chain
rule:

dfi Ohi(v1(7y), ..., vk(7)) Oh; ou,
S ()= = (Wi(7); v () 5 =)
O 0 ; i 97
It suffices to check that each sub-term appearing on the RHS sum are generated as polyno-
mials over the sequence (3.9). The case for each g—?(y) follows immediately because vy, . . ., v,
J
is a Noetherian chain. Since Ay, ..., h, is a Noetherian chain, each ng is a polynomial combi-
nation g’;l" = ty(y, h1,...,h,) for some polynomial t; € Rly, z| and, thus, gzl" is generated by
chain (3.9):
Oh;
o (U1, ., 0K) = tg(v, he(V), ..., he (V) = tu(v, f1,. .., [r) O
!

Before turning to the study of Noetherian functions in dL, it is helpful to first understand how
they help with its differential equations reasoning. Polynomial ODEs are very expressive and
earlier results [69, 105, 137] make use of polynomial ODEs to implicitly characterize (and thus,
eliminate) real analytic functions appearing in initial value problems (IVPs). IVPs are specified by
a system of ODEs, 2’ = f(z), defined over domain D with RHS f(z) : D C R™ — R" and real
initial value Xy € D C R". The IVP is called Noetherian (resp. polynomial) when all components
of the RHS f(x) are Noetherian functions (resp. polynomials). Both Noetherian and polynomial
functions are analytic and therefore continuously differentiable. Under the assumption of
continuously differentiable RHS, the Picard-Lindel6f theorem [204, §10.VI] guarantees that
the IVP has a unique maximal solution ¢(t) : (a, ) — R" with —co < a < 0 < f < ©
such that ¢(0) = X, and dfj—l(f) = f(p(t)). Uniqueness and maximality here means that every
solution of the IVP is a truncation of ¢ to a smaller existence interval. The following generalizes
aforementioned results [69, 105, 137] to the Noetherian setting:
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Proposition 3.34. Function : (o, 5) — R" with —co<a<0<f<c0 is the (coordinate-projected)
solution of a Noetherian IVP iff it is the (coordinate-projected) solution of a polynomial IVP.

Proof. In the (trivial) converse “ < ” direction, suppose function ¢ solves the polynomial IVP
' =p(x,y),y = q(x,y) with initial values X, € R",Y; € R". Let ¢,, ¢, denote the projection
onto the x and y coordinates of ¢ respectively. Every solution of polynomial ODEs is a univariate
Noetherian function [57]. Therefore, the Noetherian IVP given by 2’ = p(p,(7), ¢, (7)), 7' =1
with the same initial value for x and 0 for 7 trivially has the (unique) solution (y.(t),?) :
(o, B) = R™ x R.

In the (nontrivial) “=-" direction, suppose that ¢ is the solution to the Noetherian IVP
' = f(x) where each f;(z) : D C R™ — R is Noetherian, and with initial value Xy € D.
By uniqueness of solutions, it suffices to construct a polynomial IVP so that ¢() solves it in
the x coordinates. Since the union of Noetherian chains is itself a Noetherian chain, assume
without loss of generality that the functions fi, ..., f, are generated by the same Noetherian
chain A4, ..., h, and that f; = p;(z, hi(z),..., h.(z)) for some polynomials p; € Rz, y] in
n + r indeterminates for ¢ = 1,...,n. Introduce new variables y; for j = 1,...,r which are
meant to take on the respective value of /; along solutions to the ODE. Accordingly, the RHS of
the Noetherian ODE is rewritten by replacing each f; with p;(z, y), i.e., the desired polynomial
ODEs for z is 2’ = p(z, y).

It remains to ensure that each of these newly introduced variables y; take on their intended
values h;(¢(t)) along the solution ¢. By (3.8), the partial derivatives for each h; can be written
as polynomials ¢;; € R[z, y| over the generating Noetherian chain. By the chain rule:

T = 50 T ) = a0l () 5

Back-substituting into the RHS of this equation using the intended values for y; and the new
ODEs for z, yields the following additional ODEs for y:

vy = ai(w,y)pi,y)

=1

The RHS of these additional ODEs are polynomials in R[z, y|, which completes the desired

polynomial IVP with the initial values Yj & (h1(xg), ..., h(x)) € R" for y. The construction of
this polynomial IVP is correct-by-construction because of the mechanical chain rule computation.

In particular, a solution to this IVP is given by the pair (¢(¢),y(t)) : (o, ) = R™ x R” where

y;(t) & hi(e(t)) : (o, ) — R. By uniqueness of solutions, this completes the proof. O

In the “=-" direction of Proposition 3.34, the constructed polynomial IVP may involve
additional ODEs over the variables y (with their respective initial values). The number of
additional equations required in this construction is the length of the shortest Noetherian chain
that generates the RHS of the input Noetherian ODE. The polynomial IVP may have a larger
maximal interval of existence than the input Noetherian IVP if it leaves the domain D of the
input RHS. In the “ < ” direction, only one additional time variable 7 is required. Consequently,
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the solution of any n-dimensional IVP that is the coordinate projection of the solution of a
polynomial IVP (of potentially much larger dimension) is the coordinate projection of the
solution of an (n + 1)-dimensional Noetherian IVP.

The constructive proof of the “=-" direction in Proposition 3.34 yields an approach for
transforming input Noetherian IVPs to polynomial IVPs assuming that the Noetherian functions
can be effectively associated with generating Noetherian chains and polynomials.

Example 3.35 (Flight dynamics [137, Equation 1]). A simple planar model of curved aircraft
motion is given by the following ODE system, where (z, y) are the aircraft’s planar coordinates,
6 its angular orientation, and v, w its linear and angular velocity respectively [137, Equation 1]:

' =vcos(f), y =vsin(d), 6 =w

Consider an IVP for this ODE with initial values x = Xy, y = Yy, 0 = Oy € R. The linear
and angular velocities v, w are left as symbolic constants in this model. The RHS of the ODE
is generated by the Noetherian chain: sin (6), cos (#). Introducing additional variables 21, 2o
for the elements of this chain, and replacing the RHS for 2’, ¥’ according to their generating
polynomials with respect to the chain gives:

¥ =vz, yY=vzn O0=w
A symbolic calculation (see Proposition 3.34) yields the following ODEs that z;, 2o must obey:
/ /
2] = W2e, 2y = —W2

To finish constructing the polynomial IVP, set the initial values z; = sin (©y), zo = cos (Oy).
The resulting ODE has higher dimension but a polynomial RHS. A

Proposition 3.34 shows that the utility of adding Noetherian functions to dL is not an increase
in expressiveness of the differential equations. Rather, extended term languages allow Noetherian
ODEs to be written down naturally instead of relying on implicit polynomial characterization
such as in Example 3.35. More importantly, they make it possible to use formulas as ODE
invariants that are not semialgebraic. By Theorems 3.29 and 3.30, the dL ODE axiomatization
provides an effective and complete calculus for (dis)proving the resulting semianalytic ODE
invariants involving Noetherian functions. This requires Noetherian functions to meet the
extended term conditions from Section 3.2.4, which is shown next.

3.7.2 Extended Term Conditions for Noetherian Functions

Assume from now on that the fixed k-ary function symbols h;, ..., h, are interpreted semanti-
cally as members of a Noetherian chain h4, ..., h, : R¥ — R respectively. Recall that extended
dL terms are formed syntactically from these function symbols according to the grammar
(Section 3.2.1). The first two extended term conditions are straightforward to check:

(S) All Noetherian functions are, by definition, C'">* smooth (even real analytic) so the semantics
of differentials are well-defined.
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(P) The partial derivative of each h;(yi,...,yx) : R¥ — R with respect to y; satisfies (3.8)
for some polynomial ¢;; € R[y, z]. Since polynomials are generated by addition and
multiplication, these partial derivatives g—;i(yl, ..., yx) are syntactically represented by
the extended term:

G (Y- U Py, k) B (YY)

Thus, Lemma 3.3 adds the (sound) differential axioms for each fixed function symbol /;
and therefore, all Lie derivatives are representable in the extended term language.

The final condition (R) is more involved and relies crucially on closure properties of Noethe-
rian functions. A syntactic subtlety arises for extended terms with nested function applications
such as exp(exp(z)). Its semantics is the iterated real exponential function generated by the
2-element Noetherian chain exp(x), exp(exp(x)). Thus, even though the fixed function symbols
hi,...,h, form a Noetherian chain, the extended term grammar could produce extended terms
that do not correspond to Noetherian functions generated by that chain. The following lemma
resolves this issue by computing another (syntactic) Noetherian chain that generates it instead:

Lemma 3.36. The semantics of every extended term e over Noetherian functions is a Noetherian
function and e can be effectively associated with a (syntactic) Noetherian chain that generates it.

Proof. By structural induction on extended dL term e. The cases for variables and constants are
obvious, while the cases for addition and multiplication follow inductively from closure under
ring operations (Proposition 3.32) and the fact that finite unions of Noetherian chains are Noethe-
rian chains. The only difficult case is when e is a function composition h(ey, ..., ex), where
é1,...,e; are extended terms. Inductively, each ey, . . . , e, semantically is a Noetherian function.
Moreover, h is (semantically) a Noetherian function by the assumption that the interpretation
of all fixed function symbols is an element of some Noetherian chain. Thus, Proposition 3.33
implies that the semantics of their composition is also a Noetherian function. Let vy, ..., v be
the union of Noetherian chains obtained inductively for ey, . . ., ex. The (constructive) proof of
Proposition 3.33 shows that the Noetherian chain (3.9) given by vy, ..., v, fi1,..., f, generates
h(ei, ..., ex), where vy, ..., v, are syntactically represented by extended terms using the induc-

tion hypothesis on ey, . .., e; and each f; def hi(e1, ..., ex) is an extended term by the extended
term grammar (Section 3.2.1). ]

Lemma 3.36 makes it possible to unambiguously refer to “the” generating Noetherian chain
and polynomial for any extended term e by giving an effective procedure for finding a syntactic
representation of such a generating chain in the extended term language. Together with Propo-
sition 3.32, this suffices to prove that the extended term language has the computable differential
radicals condition (R).

Theorem 3.37. Term languages with Noetherian functions satisfy the extended term conditions.

Proof. Conditions (S) and (P) have already been shown above. It remains to show condition (R),
i.e,any ODE 2’ = f(x) and extended term e has a computable (and provable) differential radical
identity (3.2). By Lemma 3.36, the terms f(z), e are (semantically) Noetherian and so, by taking

67



the union of Noetherian chains, are defined by the same generating Noetherian chain vy, . . . , vs.
The ring R generated by this chain is Noetherian by Proposition 3.32 and is closed under partial
derivatives. Recall that the Lie derivative of e along 2’ = f(x) is given by:

of o O
L (e) d_fz ‘ - fi()

— Jx;
=1

Every sub-term on the RHS of the Lie derivative of e is contained in the ring I? because the
ring already contains the RHS of the ODEs, f(x), and is closed under the partial derivatives of e.
Inductively, all higher Lie derivatives () fori = 0,1, ... are contained in R and are therefore
generated by the chain vy, ..., v, with é® = p;(z,vy,...,v,) for polynomials p; € R[z, ]
andy = (y1,...,ys). Following the proof of Proposition 3.32, consider this ascending chain of
polynomial ideals:

(po)  (po,p1) € (po,p1,p2) C -+

This chain stabilizes with the provable polynomial identity py = E?:OI q;p; for some
polynomial cofactors ¢; € R[z,y] and N > 1. The rank N and the polynomial cofactors ¢;
are computable by successive ideal membership checks [63, 64, 103]. Mapping this back into
elements of R gives the required provable differential radical identity for the Lie derivatives of e

by choosing cofactors g; def ¢i(x,v1,. .., 05):
N-1
o) — Zgié(i) u
i=0

An immediate corollary is that term language extensions with Noetherian functions inherit
all earlier soundness and completeness results, e.g., from Sections 3.4.2 and 3.6.2.

Corollary 3.38 (Noetherian invariant completeness). The dL proof calculus is complete for
(semi)analytic invariants of ODEs for term languages extended with Noetherian functions.

Proof. Completeness for Noetherian functions follows immediately from the extended term
conditions for Noetherian functions (Theorem 3.37) and the completeness theorems for term
languages meeting those conditions (Theorems 3.29 and 3.30). [

Similarly, analytic hybrid programs with Noetherian functions inherit Corollary 3.14 with
an additional restriction on the shape of analytic hybrid programs.

Corollary 3.39 (Noetherian analytic hybrid program completeness). For term languages extended
with Noetherian functions, it is possible to compute an extended term e such that the equivalence
[a]P <> e = 0 is derivable in dL for any analytic formula P and analytic hybrid programs a,
where « is either loop-free or assignment-free.

Proof. The proof for loop-free o follows immediately from the proof of Corollary 3.14 because
the only case of the structural induction that requires the Noetherian property of the extended
term language is loops a*. Otherwise, only (R) is required, which is shown in Theorem 3.37.
The proof for assignment-free o follows by strengthening the inductive hypothesis in the
proof of Corollary 3.14. Firstly, by Lemma 3.36, the (finite) set of all terms appearing in «
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are (semantically) Noetherian and so, by taking the union of Noetherian chains, are defined
by the same generating Noetherian chain. The ring R generated by this chain is Noetherian
by Proposition 3.32 and is closed under partial derivatives. The structural induction in Corol-
lary 3.14 is strengthened to show that the extended term € computed with derivable equivalence
[a]e = 0 <> € = 0 in each case (except assignments, which are assumed to not occur) is also
contained in ring R. The cases for test 7d # 0, choice o U f3, and sequential composition
«; B are omitted because they follow immediately from the corresponding cases in the proof
of Corollary 3.14 since the computed extended term ¢ in those cases are (inductively) in R. The
non-trivial cases are ODEs 2’ = f(x) & d # 0 and loops o*.

*+ Case 2’ = f(x) & d # 0. As with Corollary 3.14, the following equivalence is derived for
& =d(>N 5 (¢9)?), where N is the rank of e.

[ = f(x)&d#0le=0+¢é=0

Note that d is in R by definition of R and each subterm ¢ for0 < i < N — 1 1in the
summand of € is also in R by the closure of R under partial derivatives and because the
RHS of ODE 2’ = f(x) are in R by construction. Thus, € is also in the ring R.

* Case o. As with Corollary 3.14, construct the sequence of terms ¢; defined inductively
with € & ¢ and €i11 1s the term satisfying the derived equivalence [a]é; = 0 <> €41 =0
obtained by applying the induction hypothesis on a with postcondition ¢; = 0 for ¢ =
0,1,2,.... By the strengthened induction hypothesis, each €; in the sequence is in the
Noetherian ring 1. Thus, the following ascending chain of ideals in R stabilizes:

(€0) C (€9,€1) C (€9, €1,62) C ---

In particular, for some computable £, the sequence satisfies: €, = Zf:_ol gi€;. The equiva-
lence [a*]e = 0 <> Zf:_ol ¢ = 0 is derived identically to the loop case for Corollary 3.14
using the iteration axiom [*] for the “—” direction and the loop induction rule loop for
the “+-” direction (derivation omitted). Observe that term Zi‘:ol ¢2 is in R because each
subterm ¢; for 0 < ¢ < k—1isin the ring R (shown above, from inductive hypothesis). [

Additional cases of hybrid programs enjoying analytic completeness can be proved on a
case-by-case basis by building on Corollary 3.39, for example, given an analytic postcondition
P for a choice program [« U (] P between loop-free analytic program « and assignment free
analytic program [3, a suitable equivalence can be derived by first using equivalence axiom [U]
and then separately characterizing the resulting conjuncts in [o] P A [3]P.

3.7.3 Extended Term Language Example

This section illustrates the constructions from Sections 3.7.1 and 3.7.2 using the extended term
language (3.1). The first example shows the computations from Lemma 3.36 and Theorem 3.37:

Example 3.40 (Syntactic manipulation of Noetherian functions). Consider the extended term
ODE 2’ = exp(sin(z)) and the polynomial term ¢ = z + x?. The Noetherian chain for e is empty
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because it is already a polynomial while the Noetherian chain associated with exp(sin(x)) is
vy = sin(x),ve = cos(x),v3 = exp(sin(x)). The higher Lie derivatives of e are all extended
terms generated by the chain vy, vs, v3:

e = vs + 203z

e = 020y + 2(V3vax + v2) = (205 + Vav3 + 205v33) (1 + 22)eM) — dusge)

The (polynomial) identity for ¢(?) in terms of (1), e and their cofactors is obtained computa-
tionally by ideal membership checks for the polynomial ring R[x, v1, y2, 3] (the indeterminate
y; corresponds to v; for i = 1,2, 3), following Proposition 3.32. A

The next example illustrates how the extended term language allows effective proofs of more
invariants than possible with polynomial term languages.

Example 3.41 (Expressivity of Noetherian invariants). The polynomial invariant 1 —u? —v? = 0
was proved for the ODE «, from (2.1) in Example 3.7. With respect to Fig. 2.1, this means that
a trajectory starting at the point (1,0) stays on the circle. However, this invariant yields
no information about how fast the trajectory loops around the circle or whether it revolves
clockwise or anti-clockwise. In the extended term language, the most precise invariant can be
proved, namely the solution to the ODEs from this initial point. The solution is a trigonometric
function of time (given below), and so cannot be expressed as a polynomial (or semialgebraic)
invariant [14]. The precise solution also shows that the motion is anti-clockwise, as suggested
by Fig. 2.1.

The following derivation uses a DC to add the known polynomial invariant 1 — u? — v? = 0
which proves by dbx as in Example 3.7. The abbreviated premise after the differential cut assumes

1 — u? — v? = 0 in the ODE’s domain constraint. It is abbreviated ) and continued below.
*

PRy =Tv=0t=0F o, =11 -’ —0*=0 @
PCu=1,0=0,t =0F [ae,t'=1](u—cos(t) = 0 A v—sin(t) = 0)

From (@, first calculate the Lie derivatives, abbreviating ¢ = u — cos(t), s = v — sin():

L, n=1(c) =L, y_q(u—cos(t)) = —v+ %(1 —u® —v?) +sin(t) = —s + %(1 —u? —v?)

v v
L, 1=1(8) =L, y_y(v—sin(t)) =u+ Z(l —u? —v?) —cos(t) =c+ Z(l —u® —v?)
Under the domain constraint assumption 1 — u? — v? = 0, the additional 1 — u? — v? term
in both Lie derivatives simplifies to 0. The derivation starts with a cut of the postcondition
¢ = 0 A s = 0. This arithmetic premise, abbreviated (2), is discussed afterwards. Continuing on
the right premise, the vdbx step closes successfully using real arithmetic manipulations only:
*

e ()

Ve — 0N s =0F [, t'=1& 1 — u® — v> = 0](c=0 A s=0)
Uy =1v=0,t=0F [a,,t'=1& 1 — u® — v? = 0](c=0 A s=0)
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The premise (2) is valid, but it requires properties of the trigonometric functions (cos(0) = 1,
sin(0) = 0) so it cannot be proved using r. Instead, extended arithmetic Re,, gin cos 1S needed:

*
chp,sin,cosu — 177} — 07'[: — O l_ u — COS(t) == 0 /\ v — Sln(t) = 0

The extended arithmetic theory is undecidable in general [162] and so, unlike R, rule Re.; in,cos
cannot be implemented via an underlying decision procedure. Yet, simple arithmetic questions
such as (@ which just involve the evaluation of trigonometric functions can be easily checked.

The above derivation takes advantage of a known Darboux equality for 1 — u? — v? to
simplify the proof using vdbx. The proof could have instead directly made use of Theorem 3.13
by encoding ¢ = 0 A s = 0 as ¢® + s? = 0 and then calculating the rank of ¢? + s? (which involve
trigonometric functions) according to Theorem 3.37. This also works, but ¢® + s? has rank 3, and
the resulting cofactors are too large to even fit on this page. A

The final example below highlights an important insight from Proposition 3.34: even though
this chapter only considers extended term languages with terms that are defined everywhere,
it is possible to use logical formulas to implicitly characterize more terms, making use of
closure properties of the Noetherian functions [12]. The following example illustrates implicit
characterization of quotients which are defined everywhere in the domain of interest:

Example 3.42 (Implicit characterization of quotients). The trigonometric tangent function

tan(x) is Noetherian and defined on the interval (-7, 7). Consider the following “formula”

where x is restricted in the domain constraint so that the RHS tan(x) is always defined:

xr = % — [ =tan(z) & —1 <z < 1]:1:2%

This “formula” is not formally in the syntax of dL formulas because tan is not defined
everywhere. However, Proposition 3.34 can be used to ask an equivalent question in dL. Recall
from calculus:
sin(z) aﬁl(x) B sin(z)
cos(x) Or  (cos(w))?

Thus, sin(z), cos(x), —— forms a 3-element Noetherian chain that generates tan(z). For
brevity, by partially following the IVP construction of Proposition 3.34, the “formula” is rephrased
as an actual dL formula with y representing ﬁ along the ODE. After replacing ' = sin(x)y,
the required differential equation for ¥ is calculated with 3’ = sin(z)y?(sin(x)y) = sin®(z)y>.

tan(z) =

1 1
T=5 A cos(z)y —1=0— [/ =sin(x)y,y =sin*(2)y* & -1 <2 < 1]z > 3
For non-zero denominator, the initial value @ of y is logically characterized by the formula

cos(x)y — 1 = 0. The following Lie derivative calculation shows that cos(z)y — 1 satisfies a
Darboux equality and so cos(x)y — 1 = 0 can be proven invariant along the ODE (abbreviated

as «) by dbx.
L, (cos(x)y — 1) = —sin(x)(sin(z)y)y + cos(z)(sin*(x)y?*) = sin®(z)y*(cos(z)y — 1)
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The rephrased formula proves after a DC with this Darboux invariant for y using the ODE
invariant z > % and rule sAl (or its generalization with domain constraints from Appendix A.2).
Briefly, the invariance of 2 > 3 provably reduces to the following arithmetic premise which is
valid and falls within a decidable fragment of arithmetic with trigonometric functions [112]:

1
—1§x§1,cos(az)y—1:0,x:§l—sin(az)y>0 A

3.8 Related Work

This related work discussion focuses on deductive safety and invariance verification for differen-
tial equations. Readers interested in ODEs [204], real analysis [94, 204], algebra [24], and real
algebraic geometry [14] are referred to the cited textbooks. The orthogonal task of efficiently
generating invariants is investigated elsewhere [63, 103, 169].

Proof Rules for ODE Invariants. Numerous useful but incomplete proof rules for ODE
invariants [140, 155, 169, 190] are surveyed elsewhere [64]. The soundness and completeness
theorems for dRI and sAl were previously proved semantically [63, 103]. These earlier results are
limited to (semi)algebraic invariants as they depend on specific semantic properties limited to
polynomials. The extended term conditions (Section 3.2.4) and Noetherian functions (Section 3.7)
generalize these results, showing that all (semi)analytic invariance questions reduce completely
to arithmetic. In their original presentation [63, 103], dRI and sAI are algorithmic procedures
for checking invariance of semialgebraic sets, requiring e.g., checking ideal membership for
all polynomials in the semialgebraic decomposition. This makes them difficult to implement
soundly within a small, trusted axiomatic core [54]. This chapter shows that, by relying on the
logic dL, these rules can be derived from a small set of axiomatic principles. Although these
derivations also leverage ideal computations, they are only used in derived rules. With the aid of
a theorem prover like KeYmaera X, derived rules can be implemented as tactics that crucially
remain outside its soundness-critical axiomatic core.

Deductive Power and Proof Theory. The derivations shown in this chapter are fully general,
which is necessary for completeness of the resulting derived rules. The number of conjuncts in
the progress and differential radical formula for an extended term e is equal to the rank of e.
Known upper bounds for the rank, even in the case of polynomials in n variables, are doubly
exponential in n? Inn [125]. Many simpler classes of invariants can be proved using simpler
derivations, as exemplified by Examples 3.7 and 3.41. This is where a study of the deductive
power of sound, but incomplete, proof rules [64] is essential. For ODE invariants of a simpler
class, it suffices to use a proof rule that is complete for just that class, for example, with the proof
rules in Section 3.3 that derive from DG. This intuition is echoed in an earlier study [140] of the
relative deductive power of differential invariants (DI), differential cuts (DC), and differential
ghosts (DG). The first completeness result (Theorem 3.13) shows that dL with DG is complete for
algebraic and analytic invariants. Other proof-theoretical studies of dL [139] reveal surprising
correspondences between its hybrid, continuous, and discrete aspects in the sense that each
aspect can be axiomatized completely and effectively relative to any other aspect.
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Noetherian Functions. This chapter only touched on basic properties of Noetherian func-
tions. The model-theoretic study of Noetherian functions and the related Pfaffian functions is
fascinating in its own right [12, 56, 57]. Pfaffian functions are generated by chains satisfying (3.8)
except with triangular dependencies in their partial derivatives [57], and notably, the expansion
of the real field with Pfaffian functions is o-minimal [185, 203, 207]. Such o-minimal expansions
have been studied in reachability analysis for o-minimal hybrid systems [92, 96] because they
admit the construction of finite bisimulations for reachability analysis algorithms. In contrast,
expansions with (more general) Noetherian functions, e.g., (unrestricted) trigonometric sine and
cosine, are not o-minimal because they can be used to characterize the natural numbers. This is
a barrier to the construction of finite bisimulations [96] but not for deductive approaches, as
long as the relevant arithmetic is provable.

Undecidability of arithmetic is a delicate issue [162], but this chapter’s completeness results
show that ODE invariance verification completely reduces to arithmetic! Many (necessarily
incomplete) approaches and tools for handling special functions are available, e.g., resolution
with upper and lower bounds as implemented in MetiTarski [4], 6-decidability as implemented in
dReal [59, 60], or heuristic inference-based approaches as implemented in Polya [10]. Specialized
decision procedures may also be applicable for restricted fragments of arithmetic [112], as in
Examples 3.40 and 3.42. Even in settings where all of these automated tools fail to verify an
arithmetic question, the system designer can provide further mathematical intuition with an
interactive proof in KeYmaera X [54].

The findings of this chapter identify Noetherian functions as a more general unifying theme
behind earlier results in continuous/hybrid systems verification. Besides the completeness results
for invariants, Proposition 3.34 also generalizes earlier results [69, 105, 137] to the Noetherian
setting. This idea is called differential axiomatization [137] because it axiomatizes ODEs involving
special functions that have undecidable arithmetic using polynomial ODEs. Similarly, [105,
Proposition 1] gives an algorithm for replacing a fixed set of functions appearing in IVPs
with polynomials ones. The result from [69, Theorem 4] only applies in the case of univariate
Noetherian functions.

3.9 Discussion

This chapter demonstrates the impressive deductive power of differential ghosts: they prove all
Darboux invariants and, as a consequence, all analytic invariants for extended term languages
with the extended term conditions. Even scalar differential ghosts suffice for this result, but the
question of whether their deductive power extends to even larger classes of invariants is left open.
The chapter then introduces extensions to the dL axiomatization and shows how they can be used
to extend completeness to semianalytic invariance. The case of (semi)algebraic invariants is even
decidable, but the results prove completeness for much larger classes of (semi)analytic invariants.
Table 3.1 gives an instructive overview of the key mathematical properties of solutions and terms
that the soundness of each differential equation axiom rests on. With these axioms, mathematical
reasoning for differential equations can be carried out syntactically and axiomatically within the
dL proof calculus. This concise and foundational axiomatization of mathematical properties is
precisely what enables generalizations of earlier results [148] to the (semi)analytic setting with
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Table 3.1: Properties of ODE solutions underlying the differential equation axioms of dL.

ODE Axiom Mathematical Property

DI
DC
DG
Cont
Uniq
Dadj
RI

Mean value theorem
Prefix-closure of solutions
Picard-Lindel6f theorem
Existence of solutions
Uniqueness of solutions
Group action on solutions
Completeness of field R

Noetherian functions. A subtle question is left open: the extended term conditions in Section 3.2.4
do not require real analyticity for the fixed function symbols h even if Noetherian functions
are always real analytic. This suggests that there may still be a gap between the extended term
conditions and Noetherian functions. Are there C*° smooth (or even real analytic) functions
that meet the extended term conditions but are not Noetherian functions? In other words, are
Noetherian functions exactly the class of functions for which completeness results are possible?
Certainly, this chapter’s completeness results continue to hold for any functions meeting those

conditions, which would make both positive and negative results interesting.
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Chapter 4

Liveness and Existence for Ordinary
Differential Equations

This chapter turns to deductive verification for liveness and existence properties of ordinary
differential equations (ODEs), i.e., the question whether an ODE solution exists for long enough
to reach a given region without leaving its domain of evolution. Numerous subtleties complicate
the generalization of discrete liveness verification techniques, such as loop variants, to the
continuous setting. For example, ODE solutions may blow up in finite time or their progress
towards the goal may converge to zero. These subtleties are handled in dL by successively
refining ODE liveness properties using ODE safety properties, thereby building on the complete
dL axiomatization of invariants from Chapter 3. A special case of this approach is used to deduce
(global) existence of solutions for ODEs which are fundamental hypotheses behind ODE liveness
arguments. Proofs of global existence of solutions also help to justify the adequacy of ODE models
for real-world systems because those systems (typically) do not simply cease to exist after a short
time. These liveness and existence derivations are put into practice through an implementation
in KeYmaera X. Together with Chapter 3’s ODE safety proofs, this implementation provides the
practical basis for proving dL stability specifications involving nested, first-order, and modal
quantification over continuous and hybrid programs in the subsequent chapters.

4.1 Introduction

The ODE liveness specification I' F (z' = f(x) & Q)¢ says that, for each initial state satisfying
assumptions I, some state reached by following the ODE 2/ = f(x) & ) from that initial state
satisfies the postcondition ¢. Such liveness questions are dual to safety questions from Chapter 3:
recall that ODE safety questions arise when proving that a continuous or hybrid system always
satisfies a desired safety property; dually, ODE liveness questions arise when proving that those
systems eventually reach a desired goal or target region. This form of ODE liveness is in the
sense of Owicki and Lamport [128] for concurrent programs within their (linear) temporal logic.
Liveness for ODEs has sometimes been called eventuality [157, 176] and reachability [191]. To
minimize ambiguity, this chapter refers to the diamond modality formula (z' = f(z) & Q)¢ as
ODE liveness, while other related notions are discussed in Section 4.7.
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Table 4.1: Surveyed ODE liveness arguments with highlighting in blue for soundness-critical
corrections identified in this chapter. The applications (and corrections, if any) for each surveyed
argument is briefly described here. The referenced corollaries are corresponding derived proof
rules with details of the corrections.

Application Without Domain Constraints

Hybrid systems verification [137] OK (Cor. 4.16)
Automated ODE verification [156, 157] [157, Remark 3.6] is incorrect

Finding basin of attraction [159] if chosen set is compact (Cor. 4.23)
Staging set-based liveness proofs [176] OK (Cor. 4.20)
Switching logic synthesis [191] if ODE solutions assumed or proved global (Cor. 4.18)
Application With Domain Constraints

Hybrid systems verification [137] if domain open/closed, target initially false (Cor. 4.25)
Automated ODE verification [156, 157]  if arithmetical conditions checked globally  (Cor. 4.31)
Finding basin of attraction [159] if chosen set is compact (Cor. 4.27)
Staging set-based liveness proofs [176] OK (Cor. 4.28)
Switching logic synthesis [191] if ODE solutions assumed or proved global (Cor. 4.26)

For discrete systems, methods for proving liveness are well-known: loop variants show that
discrete loops eventually reach a desired goal [73], while temporal logic is used to specify and
study liveness properties in concurrent and infinitary settings [109, 128]. However, the deduction
of (continuous) ODE liveness properties is hampered by several difficulties: i) solutions of ODEs
may converge towards a goal without ever reaching it, ii) solutions of nonlinear ODEs may
blow up in finite time leaving insufficient time for the goal to be reached, and iii) the goal may
be reachable but only by illegally leaving the evolution domain constraint. Motivated by these
difficulties, this chapter uses dL to perform systematic, step-by-step refinement of ODE liveness
properties, where each refinement step is justified using an ODE safety (and invariance) property.
Notably, liveness proofs focus on high-level refinement arguments while their underlying ODE
safety justifications are handled transparently using Chapter 3’s complete ODE invariance proof
rules. Indeed, using safety to deduce liveness is a well-known proof technique for (discrete)
concurrent systems [109, 128] and this chapter shows that those techniques generalize to the
continuous setting—as long as the aforementioned difficulties are appropriately handled.

To demonstrate the applicability of the deductive refinement approach, this chapter surveys
several arguments from the literature and derives them all as (corrected) dL proof rules, see
Table 4.1. This logical presentation has two key benefits:

* The proof rules are syntactically derived from sound axioms of dL, which guarantees their
correctness. Many of the surveyed arguments contain subtle soundness errors; rather than
diminishing the surveyed work, these errors emphasize the need for an axiomatic, sound,
and uniform way of analyzing ODE liveness instead of relying on ad hoc approaches.

*+ The approach identifies common refinement steps that form a basis for the surveyed
liveness arguments drawn from various applications. This library of building blocks
enables sound development and justification of new ODE liveness proof rules, e.g., by
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generalizing individual refinement steps or by exploring different combinations of those
steps, e.g., in Corollaries 4.19, 4.21, and 4.30.

Another key insight is that all of the surveyed liveness arguments are based on reducing
liveness properties of ODEs to assumptions about sufficient existence duration for their solutions.
In fact, many of those arguments become significantly simpler (and sound) when the ODEs
of concern are assumed to have global solutions, i.e., they do not blow up in finite time. It
is reasonable and commonplace to make such an assumption for the continuous dynamics in
models of CPSs [6, Section 6]. For example, control systems are designed to always operate
near stable equilibria and they always have global solutions near those equilibria [71, Theorem
3.1]. Logically though, making an a priori assumption of global existence for ODEs means
that the correctness of any subsequent verification results for the ODEs and hybrid system
models are conditional on an unproved existence duration hypothesis. While global existence is
known to hold for linear systems, even the simplest nonlinear ODEs (see Section 4.3) fail to meet
the hypothesis of having global solutions without further assumptions. This chapter therefore
adopts the view that (global) existence should be proved rather than assumed for the continuous
dynamics in hybrid system models.

* Section 4.3 presents deductive dL proofs of global existence for ODE solutions. Together
with the liveness proofs of Sections 4.4 and 4.5, this yields unconditional proofs of ODE
liveness properties within the refinement framework, without existence presuppositions.

* Section 4.6 draws further practical insights from Sections 4.3-4.5 by implementing their
liveness proof rules as tactics in KeYmaera X. This includes: i) the design of proof rules
that are practically useful and well-suited for implementation (Section 4.6.1) and ii) the
design of proof support to aid users in existence and liveness proofs (Section 4.6.2).

The liveness proofs of Sections 4.3—-4.5 fit particularly well with an implementation in
KeYmaera X because axiomatic refinement closely mirrors KeYmaera X’s design principles.
KeYmaera X implements dL’s uniform substitution calculus [142] with a minimal, soundness-
critical trusted kernel; on top of this, KeYmaera X’s non-soundness-critical tactics framework [55]
adds support and automation for proofs. Liveness proofs are similarly based on a series of
small refinement steps which are, in turn, implemented as tactics based on a small basis of
derived refinement axioms. More complicated liveness arguments, such as those from Table 4.1
or from new user insights, are implemented by piecing those tactics together using tactic
combinators [55]. The implementation required minor changes to ~155 lines of soundness-
critical code in KeYmaera X, while the remaining ~1500 lines implement ODE existence and
liveness proof rules as non-soundness-critical tactics. These additions suffice to prove all of the
examples in this chapter and in ODE models elsewhere [22, 176] (Section 4.6.2).

Reminder (Extended Term Language). This chapter uses an extended dL term language
following the extended term conditions and notational conventions of Section 3.2 because the
dL axiomatization remains sound for all extended term languages meeting those conditions.

Contribution. The material for this chapter is drawn from Tan and Platzer [192, 195].
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1o 1w 1o 1w

Figure 4.1: Visualization of oy (left) and «,, (right). Solutions of oy globally spiral towards the
origin. In contrast, solutions of «,, spiral inwards within the inner red disk (dashed boundary), but
spiral outwards otherwise. For both ODEs, solutions starting on the black unit circle eventually

enter their respective shaded green goal regions. The ODE «, also exhibits finite-time blow up
of solutions from all initial states outside the red disk.

u 0 0:2 | 0.‘4 ‘0.‘6 t
Figure 4.2: Two views of the ODE «,, evolving from initial state © = 1, v = 0 over time ¢. The
left plot shows its trajectory in the u, v plane (cf. Fig. 4.1) while the right plot shows the squared
Euclidean norm u? + v? evolving over time ¢ (with logarithmic scaling for the vertical axis). The
solution blows up in finite time with norm approaching oo as ¢ approaches 0.58 (rounded up,
black dashed asymptote). Nevertheless, the solution reaches the green goal region u? + v* > 2
from Fig. 4.1 at ¢t ~ 0.31 (rounded up, green dot) before blowing up.

4.2 ODE Liveness via Box Refinements

This section explains step-by-step refinement for proving ODE liveness properties in dL. The
following two running example ODEs «; and v, are visualized in Fig. 4.1 with directional arrows
corresponding to their RHS evaluated at points on the plane:

g=u=—v—uv=u—v (4.1)
1 1
a, =u = —U—U(Z—UQ—UQ),’UIZU—U(Z—UZ—UQ) (4.2)

The ODE ( is linear because its RHS depends linearly on variables u and v while «, is
nonlinear because of the cubic terms in its RHS. The nonlinearity of v, results in more complex
behavior for its solutions, e.g., the difference in spiraling behavior inside or outside the red disk
shown in Fig. 4.1. In fact, solutions of «;,, blow up in finite time iff they start outside the disk
characterized by u? + v* < 1, whereas finite-time blow up is impossible for linear ODEs like
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ay [33, 204]. An illustration of finite-time blow up for «, from an initial state outside the red
disk is shown in Fig. 4.2. This phenomenon is precisely defined and investigated in Section 4.3,
which enables formal proofs of the aforementioned (absence of) finite-time blow up.

Figure 4.1 suggests that formulas' (a;)(3 < [|(u,v)||, < 1) and (a,)u® + v? > 2 are
true for initial states w on the unit circle. These liveness properties are rigorously proved in

Examples 4.17 and 4.22 respectively, using the refinement approach discussed next.

4.2.1 Liveness Refinement

Suppose that an initial liveness property (' = f(z) & Qo) Py is known for the ODE 2/ = f(x).
How could this be used to prove a desired liveness property (z' = f(z) & Q) P for that ODE?
Logically, this amounts to proving the following implication:

(' = f(2) & Qo) Py — (' = f(x) & Q)P (4.3)

Proving implication (4.3) refines knowledge of the initial liveness v
property to the desired liveness property. As an example of such arefine- 4
ment, consider the desired liveness property (o) (3 < ||(u,v)||, < 3)
for ODE q (4.1) starting from the initial circle u* + v? = 1 (cf. Fig. 4.1).
Suppose the initial liveness property (o )u® +v? = 1 is already proved,
e.g., using the techniques of Section 4.4. As visualized on the right, ODE
solutions starting from the black circle u* + v* = 1 eventually reach
the dashed blue circle u? + v? = i. Since the blue circle is entirely 1 0 1 4
contained in the green goal region, solutions that reach it must (trivially) also reach the goal
region. Formally, the following instance of implication (4.3) is provable by monotonicity M(-)

because the implication Fy — P between their respective postconditions is provable by r.

-1

(o) (w2 7 = ) = e (7 < w0 < 5) @49
T A }g

Similarly, if the implication between domain constraints )y — Qis v
provable, then implication (4.3) is proved by monotonicity, because any 4
solution staying in the smaller domain ()y must also stay in the larger
domain (). However, neither of these monotonicity-based arguments o 3
are sufficiently powerful for liveness proofs because they do not account
for the specific ODE 2’ = f(x) under consideration at all. Returning to
the ODE ¢, suppose instead that the initial (known) liveness property
is (a)u? +0v? = % This is visualized on the right with a smaller dashed 1 0 1 o
blue circle. The following instance of implication (4.3) is also valid for solutions starting from the
black circle u* + v* = 1, but it does not follow from a straightforward monotonicity argument

-1

'||-l, denotes the supremum norm, with ||z|| . = max]",|z;| for an n-dimensional vector z. The inequality
[(u,v)]l o < 3 is expressible in first-order real arithmetic as u? < ; Av? < 1. Similarly, 1 < [|(u,v)]| is

. 1 2., 1 2
expressible as 6 Su'Vig S vt
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because the smaller dashed blue circle u? + v? =
i.e., implication Py — P is not valid.

== is not contained in the green goal region,

(o) (u® + 0% = < (w,v)ll < 5) (4.5)

—~ N

Py P

Instead, a proof of implication (4.5) requires additional information about solutions of the
ODE qy, namely, that they are continuous and the system ¢ is planar. Informally, observe that
it is impossible to draw a line (without lifting your pen off the page) that connects the black
circle to the (smaller) dashed blue circle without crossing the green goal region. The continuous
solutions of ¢, are analogous to such lines and therefore must enter the green goal region
before reaching the blue circle. To formalize such reasoning, this chapter’s approach is built
on refinement axioms that conclude instances of implication (4.3), like (4.4) and (4.5), from box
modality formulas involving the ODE 2’ = f(x).

4.2.2 Liveness Refinement Axioms

The following are four ODE refinement axioms of dL that are used for the approach. Crucially,
these axioms are derived from their corresponding box modality axioms by exploiting the logical
duality between the box and diamond modalities of dL. This makes it possible to build liveness
arguments from dL’s sound and parsimonious logical foundation.

Lemma 4.1 (Diamond ODE refinement axioms). The following (-) ODE refinement axioms are
derivable in dL. In axioms BDG(-), DDG(-), y = (y1, - - ., Ym) is an m-dimensional vector of fresh
variables (not appearing in z) and g(x,y) is a corresponding m-dimensional vector of terms. Terms
e(x), L(x), M (x) and formulas P(x),Q(x) are dependent only on free variables x (and noty).

K(&) [ = f(2) & QA =P]=G = ((2' = f(2) & Q)G = (2" = f(2) & Q)P)
DR() [/ = f(2) & R]Q — ((2' = f(z) & R)P — (2' = f(2) & Q)P)
(

(
= Sy = gl & Q)] [ < ()
BOGH) 7, (0! = f(a) & Q) P(@) = (o = f(x).y’ = g(.y) & Q(a)) P(x))
DDG(-) (2" = f(2),y = g(2,y) & Q(z)] 2y - g(,y) < L( ) lylls + M (x)
(¢’ = f(2) & Q@) P(x) = (o = f(2).y = gl.) & Q) P(x)

Proof Summary (Appendix B.1.2). The axioms are all derived by duality using (-), except DDG(-)
which derives from BDG(-) by bounding solutions of the ghost ODE ¢/ = ¢(z,y) using the
affine bound 2y - g(z,y) < L(z) |Jy||> + M(z) on the Lie derivative of ||y||3. O

Axiom K(&) is best understood in the contrapositive. Formula [z’ = f(z) & Q A =P]-G
says G never happens along the solution while — P holds. Thus, the solution cannot get to G
unless it gets to P first. Axiom K(&) formalizes the informal reasoning used for implication (4.5)
above in the contrapositive, with G = v® + v? = 5-and P = (37 < [|(u,v)]|, < 3). In the
(partial) derivation shown below, the left premise requires a proof that the dashed blue circle

80



G cannot be reached while staying outside the green goal region P while the right premise
requires a proof of the initial liveness property (o) (u2 +v? = %) for ;. In a sequent calculus
proof, refinement steps are naturally read from top-to-bottom (downwards), while deduction
steps, i.e., axiom or rule applications, are read bottom-to-top (upwards).

Deduction

v+ =1F (& (3 < ()] < 3)]-W? +02 = 5)  u?+ 0 =1F (@) (u? +v* = 5)
ki) u? 4+ 0 =1k ()(§ < (w,0)]l < 35)
Refinement

Refinement axiom DR(-) is used in Chapter 3 but it is repeated here for clarity. In the axiom,
formula [2' = f(x) & R|Q says that the ODE solution never leaves () while staying in R, so
if the solution gets to P within R, then it also gets to P within (). The latter two refinement
axioms BDG(-), DDG(-) are both derived from axiom BDG below, a new vectorial generalization
of axiom DG that allows differential ghosts with provably bounded ODEs to be added.

Lemma 4.2 (Bounded differential ghosts). The following bounded differential ghosts axiom BDG
is sound, where y = (Y1, - .., Ym) is a m-dimensional vector of fresh variables (not appearing in x),
g(z,y) is a corresponding m-dimensional vector of terms, and ||y||5 is the squared Euclidean norm
of y. Term e(x) and formulas P(x), Q(x) are dependent only on free variables x (and not y ).

apg = F@).y = g(z,y) & Q)] lyll; < e(x)

S (17 = f@) & Q@P() © [ = f(2),y = glr,y) & Q)] P())
Proof Summary (Appendix B.1.1). The proof of BDG is similar to that for the differential ghosts
axiom DG [142], but generalizes it to support vectorial, nonlinear ODEs by adding a syntactic
precondition on boundedness of solutions of the added differential ghosts ¢’ = g(z, y). O]

Like axiom DG, axiom BDG allows an arbitrary vector of ghost ODEs ¢y’ = g(z,y) to be
added syntactically to the ODEs. However, it places no syntactic restriction on the RHS of the
ODE (such as linearity in axiom DG). For soundness, BDG instead adds a new precondition with
a bound ||y||> < e(z) in terms of x on the squared norm of y along solutions of the augmented
ODE. This syntactic precondition ensures that y cannot blow up before x, so that solutions of
' = f(x),y = g(z,y) have existence intervals as long as those of the solutions of 2’ = f(x).
Section 4.3 shows how to prove these preconditions in order to use axiom BDG in ODE existence
proofs through the refinement approach.

Returning to axioms BDG(-), DDG(-), the (nested) refinement in both axioms say that, if the
ODE «’ = f(x) can reach P(x), then the ODE 2’ = f(z),y = g(«,y), with the added variables
y, can also reach P(z). Axiom BDG(-) is the derived diamond version of BDG, obtained by
directly dualizing the inner equivalence of BDG with (-) and propositional simplification. The
intuition behind BDG(-) is identical to BDG: if the added ghost ODEs y never blow up in norm,
then they do not affect whether the solution of the original ODEs 2’ = f(z) can reach P(z).

Derived axiom DDG(:) is a differential version of BDG(-). Instead of bounding the squared
norm ||y||> explicitly, DDG(-) instead limits the rate of growth of the ghost ODEs by bounding
the Lie derivative £, _ () g(x,y)(||y||§) = 2y - g(z,y) of the squared norm. This derivative
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bound in turn implicitly bounds the squared norm of the ghost ODEs by the solution of the linear
differential equation 2’ = L(x)z + M (z), with dependency on the value of = along solutions
of the ODE 2’ = f(x), which ensures that premature blow-up of y before x itself blows up
is impossible. Any refinement step using axiom DDG(-) can also use axiom BDG(-) since the
former is derived from the latter. The advantage of DDG(-) is it builds in canonical differential
reasoning steps once-and-for-all (see Lemma 4.1 and Section 4.3) which simplifies the proofs.

Axioms K(&), DR(-), BDG(-), DDG(-) all prove implication (4.3) in just one refinement step.
Logical implication is transitive though, so a sequence of such steps can be chained together to
prove implication (4.3). This is shown in (4.6), with neighboring implications informally chained
together for illustration:

DR(-) with [2'=f(z) & Qo]Q1 K(&) with [z'=f(x) & Q1 A=P1]=Py
(2" = f(2) & Qo) Py — (' = f(2) & Q1) Py — (2’ = f(2) & Q1) P
N (4.6)

— (2’ = f@) & Q)P

The box modality formulas annotated above each implication in (4.6) are side conditions to be
proved for the chain of refinements (4.6) in order to prove the desired implication (4.3). However,
an unconditional proof of the liveness property (x' = f(z) & Q) P at the end of the chain still
needs a proof of the hypothesis (' = f(x) & Qo) P at the beginning of the chain. Typically,
this hypothesis is a (simple) existence assumption for the differential equation. Formalizing and
proving such existence properties is the focus of Section 4.3. Those proofs are also based on
refinements and make use of axioms BDG(-), DDG(-).

Refinement with axiom DR(-) requires proving the formula [2' = f(z) & R]Q. Naively, one
might expect that adding — P to the domain constraint should also work, i.e., the solution only
needs to be in () while it has not yet gotten to P:

DR(-)% [¢' = f(2) & RA=P|Q = ((2' = f(2) & R)P — (' = f(2) & Q)P)

This conjectured axiom is unsound (indicated by %) as the solution could sneak out of @)
exactly when it crosses from — P into P. In continuous settings, the language of topology makes
precise what this means (recall Section 2.2.2, page 19). The following topological refinement
axioms soundly restrict what happens at the crossover point:

Lemma 4.3 (Topological ODE refinement axioms). The following topological (-) ODE refinement
axioms are sound. In axiom COR, formulas P, () either both characterize topologically open or both
characterize topologically closed sets over variables x.

COR =P A2’ = f(z) & RA-P]Q — ((z/ = f(z) & R)P — (2/ = f(2) & Q)P)
SAR [/ = f(z) & RA—(PAQ)Q = ((«/ = f(z) &R)YP — (2/ = f(2) & Q)P)

Proof in Appendix B.1.2.

Axiom COR is the more informative topological refinement axiom. Like the (unsound) axiom
candidate DR(-)4%, it allows formula —P to be assumed in the domain constraint when proving
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the box refinement. For soundness though, axiom COR has crucial topological side conditions on
formulas P, () so it can only be used when those conditions are met. Several variations of COR
are possible (with similar soundness proofs), but they require alternative topological restrictions
and additional topological notions. One useful variation involving the topological interior is
given in Lemma 4.35. For the sake of generality, this chapter gives semantic topological side
conditions with associated semantic soundness proofs in Appendix B.1.2. Axiom SAR applies
more generally than COR but only assumes the less informative formula =(P A @) in the domain
constraint for the box modality. Its proof crucially relies on () being a semianalytic formula so
that the set it characterizes has tame topological behavior [14], see the proof in Appendix B.1.2
for more details. By topological considerations, axiom SAR is also sound if formula P (or resp. Q)
characterizes a topologically closed (resp. open) set over the ODE variables z. These additional
cases are also proved in Appendix B.1.2 without relying on the fact that () is semianalytic.

4.3 Finite-Time Blow Up and Global Existence

This section explains how global existence properties can be proved for a given ODE 2’ = f(x),
subject to assumptions I' about the initial states for the ODE. The existence and uniqueness
theorems for ODEs [33, 204] guarantee that (sufficiently smooth) ODEs 2’ = f(x) always have
a unique, right-maximal solution from any initial state, ¢ : [0,7) — S for some 0 < T < o0.
However, these theorems give no guarantees about the precise duration 7". In particular, ODEs
can exhibit a technical phenomenon known as finite-time blow up of solutions [33], where ¢ is
only defined on a bounded time interval [0, 7") with 7" < co. Intuitively, this happens when
the solution blows up because its norm tends to oo as time ¢ tends to 7', as shown in Fig. 4.2.
Additionally, it is possible that such finite-time blow up phenomena only happen for some initial
conditions (and corresponding solutions) of the ODE. These initial conditions (with finite-time
blow up) are typically irrelevant to the model of concern, especially when the dynamics of the
corresponding real-world system is controlled to stay away from the blow up. For example,
o, (4.2) exhibits finite blow up of solutions only outside the red disk as shown in Fig. 4.1 and
the blow up occurs well after its solutions have reached the target region, see Fig.4.2. As an
additional example, consider the following nonlinear ODE:

a, =v = —v? (4.7)
The solution to this ODE is v(t) = ks> where vg # 0 is the initial value of v at time ¢ = 0
(if vg = 0, then v(t) = 0 for all t). If vy < O initially, then this solution is only defined to the

right for the finite time interval [0, —vy), because the denominator vy + ¢ is 0 at £ = —vp. On the
other hand, for vy > 0, the existence interval to the right is [0, 00). Thus, ay, exhibits finite-time
blow up of solutions, but only for vy < 0.

4.3.1 Global Existence Proofs

The discussion above uses the mathematical solution v(t) of the ODE «, (4.7) as a function of
time. For deductive proofs, the (global) existence of solutions can be expressed in dL as a special
form of an ODE liveness property. The first step is to add a fresh variable ¢ with ¢’ = 1 that
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tracks the progress of time.? Then, using a fresh variable 7 not in z, ¢, the following formula
syntactically expresses that the ODE has a global solution because its solutions exceeds time 7,
for any arbitrary 7:

Vr (' = f(x),t' =1)t > 1 (4.8)

Proving formula (4.8) shows global existence of solutions for the ODE 2’ = f(x). The simplest
instance of (4.8) is for ODE ¢’ = 1 by itself without any ODE 2’ = f(z). The formula (4.8) is
valid because ¢/ = 1 is an ODE with constant RHS, as shown below in axiom TEx.

Lemma 4.4 (Time existence). The following axiom is derivable in dL.

TEx V7 (t' = 1)t > 1

Proof. Axiom TEx is derived directly from dL’s solution axiom [142] but it also has an easy
semantic soundness proof which is given here. Consider an initial state w and the corresponding
modified state w? where the value of variable 7 is replaced by an arbitrary d € R. The (right-
maximal) solution of ODE #’ = 1 from state w? is given by the function ¢ : [0, 00) — S, where
0(O)(t) = wi(t) + ¢ = w(t) + ¢, and p(¢)(y) = w(y) for all other variables 3. In particular,
©(C)(7) = d. Thus, at any time ¢ > d — w(t), p({)(t) = w(t) + ¢ > d = ¢(¢)(7). This time (
witnesses (t' = 1)t > 7. O

Other instances of (4.8) can be proved by refining axiom TEx using axioms BDG(-), DDG(-)
with appropriate assumptions about the initial conditions for the additional ODEs 2’ = f(x).
This is exemplified for the ODE «y, next.

Example 4.5 (Velocity of particle with air resistance). The ODE «, can be viewed as a model
of the velocity of a particle that is slowing down due to air resistance. Of course, it does not
make physical sense for the velocity of such a particle to “blow up”. However, the solution of
only exists globally if the particle starts with positive initial velocity v > 0, otherwise, it only
has short-lived solutions. The reason is that a;, only makes physical sense for positive velocities
v > 0, so that the air resistance term —v? slows the particle down instead of speeding it up.
Indeed, global existence (4.8) can be proved for «, if its initial velocity is positive, i.e., the dL

formulav > 0 — V7 (v/ = —0v? ¢/ = 1)t > 7 is valid.
*
By > 0F o = =0t =1]v >0 *
My > 0F U= =05t =120 (—02) <0 ™F ' =1)t>7
DDG(-) v>0F (W =—-0 t=1)t>T1
—R, VR

Fo>0—=Vr@=—v3t=1)t>r1

The derivation shown above starts with basic propositional steps (—R, VR), after which
axiom DDG(-) is used with v = —v? as the differential ghost equation with the trivial choice
of bounds L = 0, M = 0. This yields two premises, the right of which is proved by TEx. The
resulting left premise requires proving the formula 2v-(—v?) < 0 along the ODE. Mathematically,

%For consistency, the ODE 2’ = f(x) is assumed to not mention ¢ even if this is not always strictly necessary.
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this says that the derivative of the squared norm v? is non-negative along ay, so that v? is non-

increasing and cannot blow up.> An M[-] step strengthens the postcondition to v > 0 since
v > 0 implies 2v - (—v?) < 0 in real arithmetic. The resulting premise is an invariance property
for v > 0 which is proved using rule dbx,. from Corollary 3.6 (page 41) with cofactor g = —v.
The initial assumption v > 0 is crucially used in this invariance proof step, as expected. JAN

The idea of refinements from Section 4.2 offers another view of the derivation in Example 4.5
as a single refinement step in the chain (4.6), recall that refinement steps are read from top-to-
bottom. Here, an initial existence property for the ODE ¢’ = 1 is refined to the desired existence
property for the ODE v/ = —v? ¢ = 1. The refinement step is justified using DDG(-) with the
box modality formula [v' = —v?, ¢’ = 1] 2v - (—0v?) < 0.

DDG(-)
H=0t>7— == t=1)t>7

This chain can be extended to prove global existence for more complicated ODEs 2’ = f(x)
in a stepwise fashion, and (possibly) alternating between uses of DDG(-) or BDG(-) for the
refinement step. To do this, note that any ODE z’ = f(z) can be written in dependency order,
where each group y; is a vector of variables and each g¢; corresponds to the respective vectorial
RHS of the ODE for y; for i = 1,..., k. The RHS of each vy, is only allowed to depend on the
preceding vectors of variables (inclusive) 41, . . ., y;.

yi=91y1)y5 = 92(y1, 2), Y5 = 93 (Y1, 92, Y3) - -, Yo = Go(Y1, Y2, Y3, - Yi) (4.9)

J

z'=f(x) written?nrdependency order
Corollary 4.6 (Dependency order existence). Let the ODE x' = f(x) be in dependency or-
der (4.9), and T be a fresh variable not in x, t. The following rule with k stacked premises is derived
from BDG(-), DDG(-) and TEx, where the postcondition of each premise P; for 1 < i < k can be
chosen to be either of the form:

® P = ||y,||§ < e;i(t,y1,...,Yi_1) for some term e; with the indicated dependencies, or,

® P, =2yi-9(,-u) < Lty -, yie1) Hyzﬂg + M;(t,y1,...,yi—1) for some terms
L;, M; with the indicated dependencies.

I'F [y, =gi(n),t' =1~
91(11), v = go(y1,y2), ' = 1] Py
L =001), v =0, o), U =15

DE
* TFVr(z = f(z),t = 1)t >

Proof Summary (Appendix B.2.1). The derivation proceeds (backward) by successive refinements
using either BDG(-) for premises corresponding to the form ® or DDG(-) for those correspond-
ing to D), with the ghost equations for g; and the respective bounds e; or L;, M; at each step for
t=k,..., 1 ]

3The fact that v? is non-increasing can also be used in an alternative derivation with axiom BDG(-) and the
bound e = vZ, where vy syntactically stores the initial value of v.
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Rule DEx corresponds to a refinement chain (4.6) of length k, with successive BDG(-)
or DDG(:) refinement steps, e.g.:

) BDG() . DDG(:)
A =Dt>7—(yy =)t =t >7 — -

— <y1 :gl(yl)w"ay;g = gk(ylv"'uyk)vt/ = 1>t >T

In rule DEx any choice of the shape of premises (B and D)) is sound as these correspond to
an underlying choice of axiom BDG(-), DDG(-) to apply at each refinement step, respectively.
Another source of flexibility arises when choosing the dependency ordering (4.9) for the ODE
' = f(x), as long as the requisite dependency requirements are met. For example, one can
always choose the coarsest dependency order y; = 2,91 = f(x) to directly prove global
existence in one step using appropriate choice of bounds L, M;. The advantage of using finer
dependency orders in DEx is it allows the user to choose the bounds L;, M; in a step-by-step
manner for ¢ = 1, ..., k. On the other hand, the flexibility of rule DEx can also be a drawback
because it relies on manual effort from users to choose the partition and to prove the resulting
premises. Section 4.3.2 explains useful recipes for using the flexibility behind rule DEx, e.g.,
Corollaries 4.8 and 4.12, while Section 4.6.2 shows how to automate those proofs.

The discussion thus far proves global existence for ODEs with an explicit time variable ¢.
This is not a restriction for the liveness proofs in later sections of this chapter because such a
fresh time variable can always be added using the rule dGt below, which is derived from DG.
The rule also adds the assumption ¢ = 0 initially without loss of generality for ease of proof.

Mt=0F (2/ = f(z),t' =1&Q)P

dGt TF (@ = f() & Q)P

The derivation of rule dGt is shown below, using axiom (-) to switch between the box and
diamond modalities and axiom DGy to introduce a universally quantified time variable ¢ which
is then instantiated by VL to ¢ = 0.

Cit=0F (' = f(z),t! =1&Q)P

Ot =0,[2" = f(z),t' = 1& Q|-P + false
Vi [Vt[a' = f(x),t =1&Q|-P+ false
DGv D[z = f(x) & Q)P+ false
v ['F (@ = f(2)&Q)P

4.3.2 Derived Existence Axioms

For certain classes of ODEs and initial conditions, there are well-known mathematical techniques
to prove global existence of solutions. These techniques have purely syntactic renderings in dL as
special cases of BDG(-), DDG(-), and DEx. In particular, this section shows how axioms GEx, BEx
(shown below), which were proved semantically in an earlier presentation [192], can be derived
syntactically. The refinement approach also yields natural generalizations of these axioms.
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Globally Lipschitz ODEs

A function f : R™ — R™ is globally Lipschitz continuous if there is a (positive) Lipschitz constant
C' € R such that the inequality || f(z) — f(y)|| < C ||z — y|| holds for all z,y € R™, where |||
are appropriate norms. Since norms are equivalent on finite dimensional vector spaces [204,
§5.V], without loss of generality, the Euclidean norm is used for the following discussion. An
ODE 2/ = f(x) is globally Lipschitz if its RHS f(x) is globally Lipschitz continuous. Solutions
of globally Lipschitz ODEs always exist globally for all time [204, §10.VII]. Global Lipschitz
continuity is satisfied, e.g., by a; (4.1), and more generally by linear (or even affine) ODEs of
the form 2/ = Ax, where A is a matrix of (constant) parameters [204] because of the following
(mathematical) inequality with Lipschitz constant || A|| ., the Frobenius norm of A:

[Az — Ayll, = [[A(z = y)ll, < [Allp lz = yll,

This calculation uses norms ||-||,, ||-|| », which are not terms in dL because they are not
polynomials (nor extended terms of Section 3.2, e.g., ||z||, is not differentiable at « = 0). Thus,
a subtle technical challenge in proofs is to appropriately rephrase mathematical inequalities,
typically involving norms, into ones that can be reasoned about soundly also in the presence
of differentiation. In this respect, the Euclidean norm is useful, because expanding the valid
arithmetic inequality 0 < (1 — ||z||,)? and rearranging yields:

2|lzll, < 1+ |l (4.10)

Notice that, unlike the Euclidean norm ||z||,, the RHS of the square inequality (4.10) can be
represented syntactically. Indeed, the squared Euclidean norm is already used in axiom BDG and
its derived versions BDG(-), DDG(-). To support intuition, the proof sketches below continue
to use mathematical inequalities involving Euclidean norms, while the proofs in the appendix
rephrase them with (4.10) instead. The following corollary shows how global existence for
globally Lipschitz ODEs is derived using a norm inequality as a special case of rule DEx.

Corollary 4.7 (Global existence). The following global existence axiom is derived from DDG(:) in
dL, where T is a fresh variable not in x,t, and x’ = f(x) is globally Lipschitz.

GEx V7 (2 = f(z), ' = 1)t > 7

Proof Summary (Appendix B.2.1). Let C' be the Lipschitz constant for f. The proof uses DDG(-)
and two (mathematical) inequalities. The first inequality (4.11) bounds || f ()|, linearly in ||z|],.
The constant 0 is chosen here to simplify the resulting arithmetic.

LF @)y = N[ (2) = £(0) + F(O)ly < [[f () = SOOIy + [ (O)l,
< Clle = 0lly + £ (0)lly = Cllzll, + 1 (0)]], (4.11)

The next inequality (4.12) below uses bound (4.11) on || f(z)||, to further bound 2z - f(z)
linearly in ||z||5 along the ODE with appropriate choices of L, M that only depend on the
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(positive) Lipschitz constant C' and || f(0)]|,.

(4.11)
22+ f(x) < 2|zl If (@), < 2zl (Cllzlly + [£0)];)

(4.10)
= 2C ||zl + 2 [lll, [ FO)l, < 2C [ll5 + (1 + [l2l5) 11 £(O)]], (4.12)
= (2C + IFO)l) Il + IF Ol 0
(. ‘{ ~/ HM,—/

The derivation of axiom GEx uses DDG(:), but global existence extends to more complicated
ODEs with the aid of DEx as long as appropriate choices of L, M can be made. A useful example
of such an extension is global existence for ODEs that have an affine dependency order (4.9),
ie,eachy, = ¢;(y1,...,y;) is affine in y; with v} = A;(v1, ..., yi—1)yi + bi(y1, . .., yi—1) Where
A;, b; are respectively matrix and vector terms with appropriate dimensions and the indicated
variable dependencies.

Corollary 4.8 (Affine dependency order global existence). Axiom GEx is derivable from DDG(-)
indL for ODEs x' = f(x) with affine dependency order.

Proof Summary (Appendix B.2.1). The proof is similar to Corollary 4.7 but uses DEx to prove
global existence step-by-step for the dependency order. It uses the following (mathematical)
inequality and corresponding choices of L;, M; (shown below) for i = 1, ..., k at each step:

2y; + (Asyi + i) = 2(ys - (Agys) + v b5) < 201 Adll g Nwsll + 2 1wl 110l
2 2
< 2| Aill g Nlyslly + (U4 [lyall3) 10l

2
= 21 Aill g + 11bill,) lwslly + [1o:]l, (4.13)
~~ N~~~
L; M;

This inequality is very similar to the one used for Corollary 4.7, where || 4;|| . corresponds
to C, and ||b;||, corresponds to || f(0)||,. The difference is that terms L;, M; are allowed to
depend on the preceding variables y1, ..., y;_1. Importantly for soundness, both terms meet
the appropriate variable dependency requirements of DDG(-) because the terms A;, b; are not
allowed to depend on y; in the affine dependency order. ]

With the extended refinement chain underlying DEx, Corollary 4.8 enables more general
proofs of global existence for certain multi-affine ODEs that are not necessarily globally Lipschitz.

Example 4.9 (Multi-affine ODE). Consider the multi-affine ODE ' = u, v" = uwv. The RHS of
this ODE is given by the function (Z) — (z?v) which is not globally Lipschitz.* Nevertheless,

the ODE meets the dependency requirements of Corollary 4.8 and has provable global solutions.

4 For the function to be globally Lipschitz, there must exist a constant C' € R such that for all (151) , (152) € R?,
1 2
e v is satisfied. No such C exists because the u;v1 —ugvs
ULV — U202 / ||, U1 =02 /||,
component on the LHS grows quadratically while the corresponding component v; — vy on the RHS grows linearly
(consider setting u; = v; fori =1, 2).

the norm inequality

<c|
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The following derivation illustrates the proof of Corollary 4.8. In the first step, rule DEx
is used with dependency order y; = u,y> = v and Lipschitz constants L, (t) = 2, La(u,t) =
2u, My (t) = 0, M3(u,t) = 0. The dependency requirements of the Lipschitz constants, notably
for L, are satisfied by these choices and the resulting premises are proved by dW, r because
the postconditions are valid real arithmetic formulas.

* *

B 2(u)(u) < (2)u? B R200)(wv) < (2u)v?
W T = u,t' = 1]2(u)(u) < (2)u? W T =, v = uv, t' = 12(v) (uv) < (2u)v?
FVT (W =u v =uo, ' = 1)t > 71

DEx

Observe that the premises of DEx remove the ODEs for u, v in a step-by-step fashion. This
is the key for generalizing global existence for globally Lipschitz ODEs [204, §10.VII] to more
general classes of ODEs. A

Bounded Existence

Returning to the example ODEs «, (4.2) and «, (4.7), note that axiom GEx applies to neither of
those ODEs because they do not have affine dependency order. This should be unsurprising—as
observed earlier in Fig. 4.1 and Example 4.5 respectively, neither o, nor oy, have global solutions
from all initial states. Although Example 4.5 shows how global existence for o, can be proved
from assumptions motivated by physics, it is also useful to have general axioms (similar to GEx)
corresponding to well-known mathematical techniques for proving global existence of solutions
for nonlinear ODEs under particular assumptions.

Suppose that the solution of ODE 2z’ = f(x) is trapped within a bounded set (whose compact
closure is contained in the domain of the ODE), then, the ODE solution exists globally [71,
Corollary 2.5][89, Theorem 3.3]. In control theory, this principle is used to show the global
existence of solutions near stable equilibria [71, 89]. It also applies in case the model of interest
has state variables that are a priori known to range within a bounded set [6, Section 6].

This discussion suggests that the following formula is valid for any ODE 2z’ = f(x), where
B(z) characterizes a bounded set over the variables x so the assumption [z’ = f(z)]|B(x) says
that the ODE solution is always trapped within the bounded set characterized by B(z).

(' = f(x)]B(x) = V7 (2’ = f(z),t' = 1)t > 7 (4.14)

Formula (4.14) is (equivalently) rewritten succinctly in the following corollary by negating
the box modality.

Corollary 4.10 (Bounded existence). The following bounded existence axiom derives from BDG(-)
in dL, where T is a fresh variable not in x,t, and formula B(x) characterizes a bounded set over
variables x.

BEx V7 (z/ = f(z),t' = 1)(t > 7V = B(x))

Proof Summary (Appendix B.2.1). The squared norm ||z||5 function is continuous in z so it is
bounded above by a constant D on the compact closure of the set characterized by B(z). The
proof uses axiom BDG(-) with e(z) = D and rephrases formula (4.14) with axiom (-). O
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Example 4.11 (Trapped solutions). Axiom BEx proves global existence for o, (4.2) within the
compact disk u? 4+ v? < 1 by showing that solutions starting in the disk are trapped in it. After
the first VR step, a K(&) step adds a disjunction to the postcondition. On the resulting right
premise, axiom BEx finishes the proof. The left premise abbreviated @ is an ODE invariance
property u? + v? < 1 b [a,, ¢’ = 1& (¢ > 7)](u? 4 v? < 1), whose elided invariance proof is
easy using the techniques of Chapter 3.

*

D@ et =1t >TV AW+ 02 <)
K2 492 < th{an ' =)t > T
w402 <LEvr(a, ' =1t>r1 A

Axiom BEx removes the global Lipschitz (or affine dependency) requirement of GEx but
weakens the postcondition to say that solutions must either exist for sufficient duration or blow
up and leave the bounded set characterized by formula B(x). Like axiom GEx, axiom BEx is
derived by refinement using axiom BDG(:). This commonality yields a more general version
of BEx, which also incorporates ideas from GEx.

Corollary 4.12 (Dependency order bounded existence). Consider the ODE ©’ = f(x) in de-
pendency order (4.9), and where T is a fresh variable not in x,t. The following axiom is derived
from BDG(-), DDG(-) in dL, where the indicesi = 1... k are partitioned into two disjoint index
sets L, N such that:

* Foreachi € L,y. = g;(y1,...,y;) is affine in y;.

* Foreachi € N, B;(y;) characterizes a bounded set over the variables y;.

GBEx V1 (2’ = f(z),t = 1>(t >7VVien _‘Bz<l/z>)

Proof Summary (Appendix B.2.1). The derivation is similar to rule DEx, with an internal DDG(-)
step (similar to GEx) for i € L and an internal BDG(-) step (similar to BEx) for i € N. O

The index set L in Corollary 4.12 indicates those variables of 2’ = f () whose solutions are
guaranteed to exist globally (with respect to the other variables). On the other hand, the index
set N indicates the variables that may cause finite-time blow up of solutions. The postcondition
of axiom GBEx says that solutions either exist for sufficient duration or they blow up and leave
one of the bounded sets indexed by N. An immediate modeling application of Corollary 4.12
is to identify which of the state variables in a model must be proved (or assumed) to take
on bounded values [6, Section 6]. This idea underlies the automated existence proof support
discussed in Section 4.6.2.

4.3.3 Completeness for Global Existence

The derivation of the existence axioms GEx, BEx, GBEx and rule DEx illustrate the use of
liveness refinement for proving existence properties. Moreover, BDG(-) is the sole ODE diamond
refinement axiom underlying these derivations (recall DDG(-) is derived from BDG(-)). This
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raises a natural question: are there ODEs whose solutions exist globally, but whose global
existence cannot be proved syntactically using BDG(:)? The next completeness result gives a
conditional completeness answer: all global existence properties can be proved using BDG(:), if
the corresponding ODE solutions are syntactically representable by proof in dL.

Proposition 4.13 (Global existence completeness). If the ODE x’ = f(z) has a global solution
representable in the (extended) dL term language, then the global existence formula (4.8) is derivable
forz' = f(x) from axiom BDG(-).

Proof Summary (Appendix B.2.1). Suppose that ODE ' = f(x) has a global solution syntactically
represented in dL as term X (¢) dependent only on the free variable ¢, the (symbolic) initial values
xq of variables z, and the (constant) parameters for the ODE. The equality x = X (¢) is provable
along the ODE 2/ = f(x),t = 1 by the complete proof rule dRI from Theorem 3.11 (page 48)
because solutions are equational invariants. The proof uses BDG(:) with the bounding term
e = || X (t)||3, so that the required hypothesis of BDG(-), i.e., [z' = f(z),t' = 1] ||z||5 < || X (®)]3
proves trivially using the equality =z = X (¢). O

Notably, the proof of Proposition 4.13 actually only uses a syntactically representable and
provable upper bound X (t) with ||z||5 < || X (¢)]|3, rather than an equality. Such an upper bound,
if syntactically representable in dL, also suffices for proving global existence. The following
remarks illustrate the usage and limitations of Proposition 4.13 (even with an upper bound).

Remark 4.14 (Syntactically representable solutions). Consider the example ODE u' = u, v’ = uv
proved to have global solutions in Example 4.9. Mathematically, its solution is given by the
following functions (defined for all ¢ € R), where u, vy are the initial values of u, v at time
t = 0 and exp is the real exponential function.

Vo

u(t) = ugexp(t),v(t) = exp(up exp(t)) (4.15)

exp(up)
Since the solution (4.15) is defined globally, Proposition 4.13 seemingly provides an alternative
way to prove global existence for the ODE. The caveat is that Proposition 4.13 only applies when
a bound on the solution is syntactically representable as a term X (¢) in the term language. In
this case, (4.15) requires an extended term language with the real exponential function and
arithmetic over those terms.

Remark 4.15 (Global solutions with no syntactic bound). A further caveat is that there is a fixed
polynomial ODE y' = p(y), constructed by Bournez and Pouly [25, Theorem 1.3], such that
for any term language extension, there is an initial value for the ODE whose solution exists
globally but cannot be bounded above by any syntactic tower of function compositions that can
be written down in the extension.’

More precisely, consider a term language extension with a unary fixed function symbol that
has smooth interpretation h : R — R. Without loss of generality,® assume that / grows at least
linearly, i.e., t < h(t) for all t € R. Define the function g : N — R with g(n) = hl"l(n) which
diagonalizes h on natural number inputs, where iterated function compositions are defined with

SThanks to Jeremy Avigad (personal communication) for help with this result.
Otherwise, replace h with h(t) = h(t)? + 2 + 1.
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h%(n) = n and h*1(n) = h(hl"(n)) for all n € N using the usual injection from N to R. The
function g is constructed such that g(n) > hll(n) for all n > i,n,i € N, which is proved by
repeated use of the inequality ¢ < h(t) for all t € R:

W (n) < B (n) < B*2(n) < - < BP(n) = g(n) (4.16)

Define the (linear) interpolation H : R — R of g as follows, where [-], | | denote the ceiling
and floor functions respectively:

) = {9(0) if ¢t < 0 i
ottt + (@) —a(lt) - (¢ = 1)) otherwise |

The function H (t) = H(t) + 2 is continuous because H is continuous so, by Bournez and
Pouly [25, Theorem 1.3], the ODE ¢/ = p(y) has an initial value 1, such that the resulting unique
and global solution y(t) with 3/(0) = v satisfies the bound H (t) = H(t)+2 < ||y(t)|| + 1 for all
t € R. For any i € N and sufficiently large n > i, the ODE solution y(t) satisfies the following
lower bound on its norm at time n:

I < = <
(n) < g(n) H(n) < H(n) +1 < |[[y(n)]]
(4.16) (4.17)

Thus, a bound on the ODE solution y(t) cannot be syntactically represented by the i-th fold
composition hl(¢) for any i because the bound is violated at the points n € N shown above.

The complicated closed form solution (4.15) and the lack of explicit, representable bounds on
solutions in term language extensions highlight the advantage of axioms BDG(-), DDG(-) and
their use in the derived axioms of Corollaries 4.7-4.12 because they implicitly deduce global
existence without needing an explicitly representable solution for the ODEs.

4.4 Liveness Without Domain Constraints

This section presents proof rules for liveness properties of ODEs ' = f(z) without domain
constraints, i.e., where () is the formula ¢rue. Errors and omissions in the surveyed techniques

are highlighted in blue.

Notational Conventions (Global Existence). The rest of this chapter develops ODE liveness
proof rules that rely on the global existence proofs from Section 4.3. In all subsequent proof rules,
the ODE 2/ = f(z) is said to have provable global solutions if the global existence formula (4.8)
for 2’ = f(x) is provable. For example, if 2’ = f(x) were globally Lipschitz (or, as a special case,
linear), then its global existence can be proven using axiom GEx from Corollaries 4.7 and 4.8.
For uniformity, all proof steps utilizing this assumption are marked with GEx, although proofs
of global existence could use various other techniques described in Section 4.3. All proof rules
can also be soundly presented with explicit sufficient duration assumptions like dV_ below, but
those are omitted for brevity.
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4.4.1 Differential Variants

The fundamental technique for verifying liveness of discrete loops are loop variants, i.e., well-
founded quantities that always increase (or always decrease) on each loop iteration. Differential
variants [137] are their continuous analog, where the value of a given term e is shown to
increase along ODE solutions by showing that its rate of change is bounded below by a positive
constant £() > 0 along those solutions. Recall the notational convention (Section 2.1.1, page 15)
for variable dependencies, so term ¢() is not allowed to depend on any of the free variables
Z1,...,%, appearing in the ODE and must therefore remain constant along the ODE solution.

Corollary 4.16 (Atomic differential variants [137]). The following proof rules (where = is either
> or >) are derivable in dL. Terms (), eo() are constant for ODE 2’ = f(z),t' = 1. In rule dV.,
the ODE x’ = f(x) has provable global solutions.

qvr —(e=0)Fé>e()

" Te=ce),t=0,(2' = f(z),t' =1)(eo() + ()t > 0) F (&' = f(z),t/ = 1)e = 0
—(e=0)Fe>e()

Le() >0F (2 = f(x))e =0

v,

Proof Summary (Appendix B.2.2). Rule dV. is derived in Appendix B.2.2 as a corollary of rule dVg
because the ODE 2/ = f(x) is assumed to have solutions which (provably) exist globally.
Rule dV! is derived from axiom K(&) with the choice of formula G = (eo() + ()t > 0):

Ie=e(),t=0F [2/ = f(z),t' =1& (e = 0)](eo() + ()t < 0)
Toe=e(),t=0,(z/ = f(z),t! =1)(eo() + ()t > 0) F {2/ = f(z),t! =1)e = 0

Monotonicity M['] strengthens the postcondition to e > e(()+¢()¢ with the domain constraint
—(e = 0). A subsequent use of dI. completes the derivation:

—(e=0)Fe>e()
WTe=e),t=0F 2/ = f(x),t' = 1& (e = 0)](e > eo() +2()t)
MIT e =e(),t =0F [/ = f(z),t' = 1& (e = 0)](eo() + ()t <0) O

K(&)

In both rules dV_, dV,, the lower bound £() > 0 on the Lie derivative ¢ ensures that the
value of e strictly increases along solutions to the ODE. Geometrically, as illustrated in Fig. 4.3a,
the value of e is bounded below over time t by the line ey () + ()t with offset eq() and positive
slope ¢(). Since ey() + £()t is non-negative for sufficiently large values of ¢, the (lower bounded)
value of e is also eventually non-negative.

Two key subtleties underlying rules dV_, dV,. are illustrated in Figs. 4.3c and 4.3d. The first
subtlety, shown in Fig. 4.3c, is that ODE solutions must exist for sufficiently long for e or, more
precisely its lower bound, to become non-negative. This is usually left as a soundness-critical
side condition in liveness proof rules [137, 176], but any such side condition is antithetical
to approaches for minimizing the soundness-critical core in implementations [142] because
it requires checking the (semantic) condition that solutions exist for sufficient duration. The
conclusion of rule dV. formalizes this side condition as an assumption. In contrast, rule dV,
requires provable global existence for the ODEs (provable as in Section 4.3). The second subtlety,
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(@) e = 2u + 3v — 4, initial valueu = 1,v =0 (b)) e = =2 + 2u — u® — 5u> + 5v + uv — 2uv +

02 — Suv? — w3, initial value u = —0.52,v =0
0 t 0 2 4 6 8 10 12 t
e
€o
€o

(c)e = u+ v — 3, initial value u = 1,v =0 (d) e=—10(u?+v?) — 1, initial value u=0.49, v=0

Figure 4.3: The solid blue and red curves show the value of various terms e evaluated along
solutions of the ODE «,, (4.2) from respective initial values e, over time ¢. The blue curves
in Figs. 4.3a and 4.3b are respectively bounded below by a dashed black line (corresponding
to Corollary 4.16) and a dashed quadratic curve (corresponding to Corollary 4.19) which imply
that e is eventually non-negative along their respective ODE solutions. The red curve in Fig. 4.3¢c
is also bounded below by the dashed black line, but its solution only exists for 0.575 time units
(vertical red dashed asymptote) so the linear bound from Corollary 4.16 does not suffice for
proving that e is eventually non-negative along the solution. The red curve in Fig. 4.3d has
strictly positive derivative ¢ > 0 but the derivative tends to zero as ¢ approaches oo so the value
of e asymptotically increases towards a negative value (horizontal red dashed asymptote).

shown in Fig. 4.3d, is that rules dV_, dV,. crucially need a constant positive lower bound on
the Lie derivative ¢ > ¢() for soundness [137] instead of merely requiring ¢ > 0. In the latter
case, even though the value of e is strictly increasing along solutions, it is not guaranteed to
become non-negative in finite time because the rate of increase can itself converge to zero. In
fact, as Fig. 4.3d shows, e may stay negative by asymptotically increasing towards a negative
value as ¢ approaches oc.

The following example shows how rule dV can be applied in combination with refinements.

Example 4.17 (Linear liveness). The liveness property that Fig. 4.1 suggested for the linear

ODE q; (4.1) is proved by rule dV.. The proof is shown below and visualized on the right. The
first monotonicity step M(’) strengthens the postcondition to the inner blue circle u? + v? = i

contained within the green goal region, see refinement (4.4). Next, since solutions satisty
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u+v? =1 initially (black circle), the K(&) refinement step requires a proof of the box modality
formula [a; & u? + v* # ]u +v? > ; L (omitted below). Intultlvely, this formula expresses an
intermediate value property: the continuous solution cannot reach u? + v? § = unless it crosses
u? +v* = i' The postcondition is rearranged before dV.. is used with £() = % Its premise is
proved by r because the Lie derivative of i — (u? 4 v?) with respect to a; is 2(u? + v?), which
is bounded below by 2 5 under the assumption i (u? 4+ v?) < 0. This Lie derivative calculation
also shows that the value of u? + v? decreases along solutions of a; with rate (at least) per
unit time, which is visualized by the shrlnkmg (dashed) circles with radii eventually smaller
than 2 7+ Since the initial states satisfy u + v? = 1, a concrete upper bound on the time required

for the solution to satisfy u? + v? <  is given by (1 — 1) / 3 = 2 time units.
*

T <ut+0?F 2u? +0?) >

T (W +0?) <0k 20 +0?) >

v u2+02—1|—<al>1—(u2+02)20

R v

1

N[N

u? + 02 = 1F {ag)u? +02<7l
K& u? + 02 =1+ (ag)u? =z _
Ho u? +0? =1k (o) (5 < |l( Wl < 3)

-1 0 1 u

It is also instructive to examine the chain of refinements (4.6) underlying the proof above.
Since ¢ is a linear ODE, the first dV_ step refines the initial liveness property from GEx, i.e., that
solutions exist globally (so for at least % time units), to the property u? + v? < i. Subsequent
refinement steps can be read off from the steps above from top-to-bottom:

v, 1 K(&)

M(’) 1 1
(ag, t' = 1)t > = 5 {)u? + v? <4 — {a)u? +0? =

— (3= 1) <5) 4

2

pbh—‘

The latter two steps in Example 4.17 illustrate the idea behind the next two surveyed proof
rules. In their original presentation [191], the ODE 2’ = f(x) is only assumed to be locally
Lipschitz continuous, which is insufficient for global existence of solutions, making the original
rules unsound, see Appendix B.3 for counterexamples. Compared to Corollary 4.16, Corollary 4.18
below uses the fact that the value of differential variant e evolves continuously along an ODE
solution so it changes from e < 0 to e > 0 by crossing e = 0.

Corollary 4.18 (Equational differential variants [191]). The following proof rules are derivable in
dL. Term ¢() is constant for ODE x’' = f(x) and the ODE has provable global solutions.
e<0kFe>eg() e=0FP e<0Fe>e()

" Te()>0,e<0k (2= f(x))e=0 v [e() >0,e <0k (/= f(x))P

dv

Proof. Rule dV¥ is derived directly from dV_ with a M{’) monotonicity step:
e<0Fe>e()
e=0FP V=T () >0,e<0F (2’ = f(z))e =0
MOT,e() > 0,e <Ok (' = f(z))P
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Rule dV_ derives using axiom K(&) with G = e > 0 and rule dV. (with = being >) on the
resulting right premise, which yields the sole premise of dV_ (on the right, after dV.):
e<0Fe>e)
e<OF [2'=f(x)&e#0le<0 VeToe() > 0F (2 = f(x))e >0
K& [e() >0,e <0k (2 = f(z))e=0

From the left premise after using K(&), axiom DX allows the domain constraint e # 0 to be
assumed true initially, which strengthens the antecedent e < 0 to e < 0. Rule Barr proves the
invariance of formula e < 0 for the ODE 2’ = f(x) & e # 0 because the antecedents e # 0,e = 0
in its resulting premise are contradictory.

*
Re£0,e=0Feé<0

Barr e<O0F [2'=f(zx)&e#0le<0

DX e<O0kF [2/=f(z)&e#0le <0 O

Rule dV_ extends the refinement chain of dV,. with an additional K(&) step:

v, K(&)
(o' = f(@),t = 1)t > e) —> (2 = f(x))e = 0 —> (2’ = f(a))e =0

The refinement behind this additional step is an intermediate value property: if e < 0 is
true initially then the (continuous) solution can never reach states satisfying e > 0 without first
reaching one that satisfies e = (. The view of dV as a refinement of GEx in Example 4.17 also
yields generalizations of dV_ to higher Lie derivatives. Indeed, it suffices that any higher Lie
derivative ¢(¥) is bounded below by a positive constant £() rather than just the first. Geometrically,
this guarantees that e is bounded below by a degree k£ polynomial in time variable ¢ that is
non-negative for large enough ¢, see Fig. 4.3b for an illustration with £ = 2.

Corollary 4.19 (Atomic higher differential variants). The following proof rule (where = is either
> or>) is derivable in dL. Term £() is constant for ODE x' = f(z), k > 1 is a freely chosen natural
number, and the ODE has provable global solutions.

(e = 0) F e >¢()

N 0> 0F = Fa)e = 0

Proof Summary (Appendix B.2.2). Since ¢(*) is strictly positive outside the goal (e = 0), all lower
Lie derivatives ¢ of e for i < k, including e = ¢, eventually become positive. The derivation
uses a sequence of dC, dI_ steps to prove a (polynomial) lower bound in ¢. [

4.4.2 Staging Sets

The staging sets [176] proof rule adds flexibility to rules such as dV above by allowing users to
choose a staging set formula S that the ODE can only leave by entering the goal region P. Staging
sets are leaky invariants in the sense that they are almost invariant, except that they can be
left by reaching the goal P. This staging property is expressed in the contrapositive by the box
modality formula [2' = f(z) & —P]S.
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Corollary 4.20 (Staging sets [176]). The following proof rule is derivable in dL. Term () is
constant for ODE ©' = f(x) and the ODE has provable global solutions.

['F 2= f(z)&—-P]S Skte<0Ae>e()
I'e() >0F (2 = f(x))P

SP

Proof Summary (Appendix B.2.2). The derivation starts by using refinement axiom K(&) with
(G = —S. The rest of the derivation is similar to dV;, dv.. O]

The added choice of staging set formula S allows users to choose a staging set that, e.g.,
enables a liveness proof that uses a simpler differential variant e because e only needs to satisfy
derivative bound ¢ > ¢() in the staging set S as opposed to everywhere outside the goal,
as in dV_, dV,.. Furthermore, proof rules can be significantly simplified by choosing S with
desirable topological properties. For example, all of the liveness proof rules derived so far either
have an explicit sufficient duration assumption (like dV;) or assume that the ODEs have provable
global solutions (like dV. using axiom GEx). An alternative is to use axiom BEx, by choosing
the staging set formula S(x) to characterize a bounded or compact set over the variables x as in
the following corollary. The advantage of such a choice is the resulting staging set proof rules
show (implicitly) that solutions must exist for long enough to reach the goal.

Corollary 4.21 (Bounded/compact staging sets). The following proof rules are derivable in dL.
Terme() is constant forx’ = f(x). In rule SPy, formula S characterizes a bounded set over variables
x. In rule SP,, it characterizes a compact, i.e., closed and bounded, set over those variables.

I'F 2= f(z)&—-P]S Skeée>e() op L'k =f(z)&—-P]S Skée>0

SP,, F,E() S0k <,Z'/:f(l’)>P c '+ <£L‘/:f(x)>P

Proof Summary (Appendix B.2.2). Rule SP;, is derived using axiom BEx with differential variant
e to establish a time bound. Rule SP. is an arithmetical corollary of SP;, using the fact that
continuous functions on compact domains attain their extrema. [

Example 4.22 (Nonlinear liveness). The liveness property that Fig. 4.1 suggested for the nonlin-
ear ODE v, (4.2) is proved using rule SP, by choosing the staging set formula S = 1 < u?+v? < 2
and the differential variant e = u? + v2. The proof is shown on the left and visualized on the
right below; the goal u? + v? > 2 is shown in green while S is shown as a blue annulus.

* 1
S+ Jay, & = (u? + v*>2)]S *
Wb B2 L 02=1F [a, & ~(u? +1v2>2)]S  BSEFée>0 0
SPe u? + v =1+ (ap)u? + v?>2
-1

o 1 v
The Lie derivative ¢ with respect to a, is 2(u* + v?)(u* 4+ v* — 1), which is bounded below

by % in S. Thus, the right premise of SP, closes trivially. The left premise requires proving that

S is an invariant within the domain constraint —(u? + v* > 2). Intuitively, this is true because
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the ODE can only leave the blue annulus by entering the goal. The elided invariance proof for S
is easy using the techniques of Chapter 3.

This proof exploits the flexibility provided by staging sets in two ways. First, the formula S
is chosen to characterize a compact set (as required by rule SP.). As explained in Section 4.3,
solutions of «,, can blow up in finite time which necessitates the use of BEx for proving its
liveness properties. Second, S' cleverly excludes the red disk (dashed boundary) characterized
by u? + v? < }1. Solutions of «, behave differently in this region, e.g., the Lie derivative ¢ is
non-positive in this disk. The chain of refinements (4.6) behind this proof can be seen from
the derivation of rules SP;, SP. in Appendix B.2.2. The chain starts from the initial liveness
property BEx with concrete’ time bound % The first K(&) step shows that the staging set is
ultimately exited ({«,,)—.S), while the latter shows the desired liveness property:

/ 2 K(&) K(&) .
(st = 1)(t > 2V =5) — () =S — (anhu® +0* > 2 A

The need to use axiom BEx (or otherwise, assume global existence) is subtle and is often
overlooked in the surveyed liveness arguments. An example of this is an incorrect claim [157,
Remark 3.6] that an associated liveness argument [157, Theorem 3.5] works without assuming
that the relevant sets are bounded. This chapter’s axiomatic approach can be used to find and
fix errors involving these subtleties from dL’s sound reasoning foundations. As another example,
the following set Lyapunov function proof rule adapts ideas from the literature [159, Theorem
2.4, Corollary 2.5] for proving liveness when the postcondition P characterizes an open set.
The latter assumption on P enables a convenient choice of staging set in rule SP. because =P
characterizes a closed set.

Corollary 4.23 (Set Lyapunov functions [159]). The following proof rule is derivable in dL.
Formula K characterizes a compact set over variables x, while formula P characterizes an open set
over those variables.

e>0FK —-PKFe>0
SV TR 0T (v = fla)) P

Proof. Rule SLyap is derived from rule SP. with S = =P A K, since the intersection of a closed
set (characterized by —P) with a compact set (characterized by K) is compact. The resulting
right premise from using SP, is the right premise of SLyap:

Fie=0F [2' = f(z) & —P](-PANK) -PKtFe>0

° Lie=0F (' = f(x))P

Continuing from the left premise, a monotonicity step with the premise e > 0 = K turns

the postcondition to e = 0. Rule Barr is used, which, along with the premise e > 0 = K results
in the premises of rule SLyap:

SP

e>0F K
-PKFé>0 R Pe=0FK
e>0F K cut —-Pe=0Fe>0
BEPex=0F-PANK B e=0F [ = f(x)&=Ple = 0
MT] Te=0F [z = f(x)&-P](-P AK) O

The value of u? + v? grows at rate % per time unit along solutions and the initial states satisfy u? + v? = 1.
Thus, a lower bound on time required to leave the staging set (when u? + v? > 2)is (2 —1) / g = % time units.
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Rule SLyap was claimed [159, Theorem 2.4, Corollary 2.5] to hold for any closed set K, when,
in fact, K crucially needs to be compact as assumed implicitly in the associated proofs [159].

4.5 Liveness With Domain Constraints

This section presents proof rules for liveness properties ODEs 2’ = f(x) & ) with non-trivial
domain constraints (). These properties are significantly more subtle than liveness without
domain constraints, because the limitation to a domain constraint () may make it impossible for
an ODE solution to reach a desired goal region before leaving Q. v

Consider the following liveness property for o; (4.1) (shown 1
on the right), which adds domain constraint Q = u? + v* # 1%
restricting solutions from crossing the red dashed circle before
reaching the green goal region.

9 /1 1 -
(40?2 (<ol <5) @y

-1 0 1 u
As proved in Example 4.17, solutions starting from the black circle u*+v? = 1 reach the green
goal region. However, the continuous solutions must cross the red dashed circle u? + v? = 1%
to reach the goal, see discussion of implication (4.5). This violates the domain constraint and
falsifies (4.18) for initial states on the black circle.
Axiom DR(-) with R = true provides one way of soundly and directly generalizing the

proof rules from Section 4.4, as shown in the following example.

Example 4.24 (Nonlinear liveness with domain). The ODE liveness property u? +v* =1 —
{a)u? + v* > 2 was proved in Example 4.22 for the nonlinear ODE «, (4.2). The following
derivation proves a stronger liveness property with the added domain constraint 1 < u? + v? by
extending the proof from Example 4.22 with a DR(-) refinement step. The resulting left premise
is an invariance property of the ODE whose proof is elided (see Chapter 3); intuitively, solutions
starting from u? + v? = 1 grow outwards, and so they remain in the domain 1 < u? + v?
(see Fig. 4.1). The resulting right premise is proved in Example 4.22.

* *
u? + 02 =1F [a,]1 < u? + v? u? + 02 =1F (a,)u® +0v* > 2
DR() w? + 02 =1F {0, &1 < u? +v?)u? +0v* > 2 A

More generally, proof rules from Section 4.4 can be used from the right premise after refine-
ment with DR(-):
FEp'=f@Q Tk @ =f(x)P
PR IH (e = f(z)&Q)P

This derivation extends all chains of refinements (4.6) from Section 4.4 with a DR() step:

DR(-)

= (@ = f@)P— (' = f2) & Q)P
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However, liveness arguments become much more intricate when attempting to generalize
beyond domain constraint refinement with DR(), e.g., recall the unsound conjecture DR(-)5.
Indeed, unlike the technical glitches of Section 4.4, this chapter uncovers several subtle soundness-
critical errors in the literature. With dL’s deductive approach, these intricacies are isolated to
the topological axioms (Lemma 4.3) which have been proved sound once-and-for-all. Errors and
omissions in the surveyed techniques are again highlighted in blue.

The following proof rule generalizes differential variants dV,. to handle domain constraints.
Like rule dV, the differential variant e is guaranteed to eventually become non-negative along
solutions with constant positive lower bound ¢ > ¢() on its Lie derivative. The additional
twist is that the domain constraint () must be proved to hold as long as e is still negative, i.e.,
while the goal has not been reached. This is expressed in the contrapositive by the formula
[ = f(z) & —(e = 0)]Q in the left premise of the rule.

Corollary 4.25 (Atomic differential variants with domains [137]). The followmg proof rule (where
= is either > or >) is derivable in dL. Term £() is constant for the ODE x’ = f(x) and the ODE has
provable global solutions. Formula () characterizes a closed (resp. open) set when = is > (resp. >).

v g TP =f@)&(ez0]Q ~(e#0),QFe>e()
- Ie()>0,-(e=0)F (' = f(z)&Q)e =

Proof Summary (Appendix B.2.3). The derivation uses axiom COR choosing R = true, noting
that e > 0 (resp. e > 0) characterizes a topologically closed (resp. open) set so the appropriate
topological requirements of COR are satisfied. The highlighted —(e = 0) assumption is crucial
for soundly using axiom COR:

~(e0),QFé>e()

ME = f@&—(c=0)Q  Te)>0F @@=
L) > 0,2(c = 0 F (@ = [(2) &Q)e = 0

f(z))e =0

The derivation steps on the right premise are similar to the ones used in dV,. although an
intervening dC step is used to additionally assume () in the antecedents. O

Rule dV_& uses the topological refinement axiom COR to extend the refinement chain
for dV. as follows:

v COR

- (@ = fr))er 00— (' = f(2) &Q)e = 0 (4.19)

A subtle advantage of placing the refinement COR at the end of the refinement chain (4.19)
is that it decouples reasoning about domain constraint () from earlier refinement steps. Notably,
earlier refinement steps like dV, in the chain above can focus on handling other subtleties,
such as sufficient duration existence of solutions (Section 4.3), without worrying about domain
constraints. The original presentation of rule dV._& [137] omits the highlighted —(e = 0)
assumption, but the rule is unsound without it. In addition, the original presentation uses a
form of syntactic weak negation [137], which is unsound for open postconditions, as pointed
out earlier [176], see Appendix B.3 for counterexamples.
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The proofs of the next two corollaries also make use of axiom COR to derive the proof
rule dV¥ & [191] and the adapted rule SLyap& [159]. These rules respectively generalize dVY
and SLyap from Section 4.4 to handle domain constraints. The soundness issues in their original
presentations [159, 191], which were identified in Section 4.4, remain highlighted here. Like
rule dV. &, rules dV_4&, dVY & below have an additional premise requiring that the domain
constraint () provably holds while the goal has not yet been reached [z = f(x) & e < 0]Q.

Corollary 4.26 (Equational differential variants with domains [191]). The following proof rules
are derivable in dL. Term () is constant for the ODE x' = f(x) and the ODE has provable global
solutions for both rules. Formula () characterizes a closed set over variables x.
I =f(zx)&e<0]Q e<0,QFeée>e()
[e() >0,e<0,QF (2= f(z)&Q)e=0
Qe=0FP TH[Z=f(2)&e<0]Q e<0,QFe>¢()
Fe() >0,e<0,QF (o' = f(x)&Q)P

dv_&

dvMg&

Proof Summary (Appendix B.2.3). Rules dV_&, dV¥ & are both derived from rule dV.& with
> for =, since () characterizes a closed set. Their derivations are respectively similar to the
derivation of dV_, dV¥ from dV. and require the provable global solutions assumption for
soundly applying rule dV_&. []

Rule SLyap& below has identical premises to the corresponding SLyap rule (without domain
constraints). The additional insight is that, assuming e > 0 is true initially, those same premises
can be used to conclude the stronger liveness property (z' = f(z) & e > 0) P because e can
be additionally proved to stay positive along the solutions using the premises. This stronger
conclusion can be used with a monotonicity step to prove more general liveness properties with
an arbitrary domain constraint () as exemplified by rule SLyap™ &.

Corollary 4.27 (Set Lyapunov functions with domains [159]). The following proof rules are deriv-
able in dL. Formula K characterizes a compact set over variables x, while formula P characterizes
an open set over those variables.
e>0FK —-PKkFe>0
Ie>0F (¢/ = f(z)&e > 0)P
e>0FK —-PKFre>0 e>0FQ
[e>0F (2/ = f(x) & Q)P

SLyap&

SLyapM &

Proof Summary (Appendix B.2.3). Rule SLyap & is derived from rule SLyap& by monotonicity
on the domain constraints with the additional premise e > 0 - (). Rule SLyap& is derived
from SLyap after a refinement step with COR since both formulas e > 0 and P characterize
open sets as sketched below.

e>0F K -PKFe>0

e>0F K -P,KFe>0
Ie>0F [2' = f(x)&—Ple >0 ST e > 0F (o' = f(z))P
COR FCoe>0F (2 = f(x)&e > 0)P
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The left premise proves the invariance of e > 0 for ODE 2’ = f(z) with domain constraint
P. The elided derivation (see proof) reduces to two premises which are identical to those of
rule SLyap. The right premise uses rule SLyap, which necessitates the compactness assumption
for formula K for soundness. [

The following staging sets with domain constraints proof rule SP& [176] generalizes rule SP
using axiom SAR. Notably, unlike the preceding rules, rule SP& requires no topological assump-
tions® about the domain constraint @ nor of the goal region P so it can be used in proofs of
more general liveness properties.

Corollary 4.28 (Staging sets with domains [176]). The following proof rule is derivable in dL.
Term €() is constant for ODE ©' = f(x) and the ODE has provable global solutions.

P2 =f(x)&~(PAQ)S SEFQAe<0Ae>e()
Cie() >0k (2 = f(x) & Q)P

SP&

Proof Summary (Appendix B.2.3). The derivation starts with a SAR refinement step. On the
resulting left premise, an M['| monotonicity step yields the left premise and first (leftmost)
conjunct of the right premise of rule SP&. On the resulting right premise, rule SP is used with
a similar (see full proof) monotonicity step, which yields the remaining conjuncts of the right
premise of rule SP&.

SEe<0Ae>e()

THE = f@)&=(PAQIS  SEQ
M[' TF['=fz)&=(PAQIJQ  *TF (&= f(x))P
SAR 'k (2= f(x)&Q)P O

The rules derived in Corollaries 4.25-4.28 demonstrate the flexibility of dL’s refinement
approach for deriving the surveyed liveness arguments as proof rules. Indeed, their deriva-
tions are mostly straightforward adaptations of the corresponding domain-free rules presented
in Section 4.5, with the appropriate addition of either a COR or SAR axiomatic refinement step.
Moreover, the derived rules are sound, in contrast to (most of) the liveness arguments which
were missing subtle assumptions in the literature (summarized in Table 4.1). The flexibility and
soundness of this chapter’s approach is not limited to the surveyed liveness arguments because
refinement steps can also be freely mixed-and-matched for specific liveness questions.

Example 4.29 (Strengthening). The liveness property u? + v = 1 — (a,)u? + v* > 2 for
v, (4.2) was proved in Example 4.22 using the staging set formula S = 1 < u? +v? < 2,
and provably strengthened in Example 4.24 by adding the domain constraint u* + v? > 1
with a DR(-) refinement. Since S and u? + v* > 2 characterize closed sets, the refinement
axiom COR proves an even stronger liveness property with the strengthened domain S, as
shown in the derivation below. The derivation starts with axiom COR which yields three
premises. The leftmost premise is proved by & since it is a real arithmetic fact; the middle premise

8 Aside from the key notational convention (Section 3.2.1) that P, () are semianalytic formulas which is crucial
for the soundness of axiom SAR.
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u? +v? =1+ [a, & —(u? + v? > 2)]S (abbreviated D, proof elided) proves because S is an
invariant of the ODE «, (see Chapter 3), and the rightmost premise is proved in Example 4.22.

* k
B2 402 =1+ —(u? +0? > 2) D uw+vP=1F (o )u®+v*>2
COR u? + 02 =1F {a, & S)u? +v* > 2

Axiom COR extends the chain of refinements (4.6) from Example 4.22 as follows:

/ 2 K(&) K(&) . COR .
{ap, t' = 1)(t > 3 VaS) — (o) S — (a)u” + 07 > 2 — (o, & S)u” +v° > 2

The alternative staging set formula S=1<u?+v? < 2can also be used to prove Exam-
ple 4.22 with a similar refinement chain (using SP, instead of SP,.), but S does not characterize a
closed set. The topological restriction of axiom COR crucially prevents its unsound use (indicated
by % in the chain below):

, 2 ~ K&) ~ K(&) 5 o COR% 5 o
(o, t' = 1)(t > 3 V=aS) — (an)0S — (ap)u” + v > 2 — (a, & S)u” +v° > 2
(N - D

Similar to Example 4.22 Unsound step!

The liveness property (o, & S yu® + v? > 2 is unsatisfiable because S does not overlap with
u? 4+ v > 2. Notice that the weakening of an inequality between domain constraints S and S
leads to a wholly different conclusion! JAN

The refinement approach also enables the discovery of new, general liveness proof rules by
combining the underlying refinement steps in alternative ways. As an example, the following
chimeric proof rule combines ideas from Corollaries 4.19, 4.21, and 4.28:

Corollary 4.30 (Combination proof rule). The following proof rule is derivable in dL. Formula S
characterizes a compact set over variables x.
IF[2=f2)&~(PAQ)S SFQAe® >0

Spoke T @ = J) Q)P

Proof Summary (Appendix B.2.3). The derivation combines refinement steps used in the deriva-
tions of dV¥ (generalizing dV,. to higher derivatives), SP. (compact staging sets), and SP&
(refining domain constraints). [

The logical approach of dL derives complicated proof rules like SP*& from a small set of
sound logical axioms, which ensures their correctness. The proof rule E.& below is derived from
rule SP';& (for k = 1) and is adapted from the literature [157, Theorem 3.5], where additional
restrictions were imposed on the sets characterized by I', P, (), and different conditions were
given compared to the left premise of E.& (highlighted below). These original conditions were
overly permissive as they are checked on sets that are smaller than necessary for soundness,
see Appendix B.3 for counterexamples to those original conditions.
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Corollary 4.31 (Compact eventuality [157]). The following proof rule is derivable in dL. Formula
Q N\ P characterizes a compact set over variables .

Th [ = f(2) &~(PAQIQ Q,~PFé>0
' (2= f(z)&Q)P

E.&

Proof. Rule E.& is derived from SP*& with S = Q A =P and k = 1 because formula Q A =P is
assumed to characterize a compact set, as required by rule SP*&:

'k [z = f(z)&—~(P AQ)Q Q,-PFe>0
MIDF [2 = f(2) & ~(P A Q)|(Q A —P) Q.-PFQAE>0
e I'E (@' =f(z)&Q)P
The M['| step uses the propositional tautology =(P A Q) A Q — Q A —P. O

4.6 ODE Liveness Proofs in Practice

The preceding sections show how axiomatic refinement can be used to fruitfully navigate
and understand the zoo of ODE existence and liveness arguments from various applications
(Table 4.1). The generality of the approach enables the sound and foundational derivation of those
arguments from a parsimonious basis of refinement steps. This section provides a complementary
study of how the refinement approach and its derived ODE existence and liveness proof rules are
best implemented in practice. There are two canonical approaches for such an implementation:

1. Implement the foundational refinement steps and let users build their own arguments
using those steps, e.g., by following the derivations and proofs from Sections 4.3-4.5.

2. Implement the zoo of proof rules from Sections 4.3-4.5 directly and let users pick from
those rules for their particular ODE liveness applications.

The low-level flexibility of Approach 1 is also its drawback in practice because users need to
tediously reconstruct high-level ODE liveness arguments from basic refinements for each proof.
Approach 2 provides users with those high-level arguments but limits users to proof rules that
have been implemented, which squanders the generality of the refinement approach. Moreover,
users would still need to navigate the redundancies and tradeoffs among the zoo of proof rules
to select one that is best-suited for their proof. To account for these drawbacks, this section
advocates for a middle ground between those two extremes: implementations should provide
users with the basic refinement steps, bundled with a set of carefully curated, high-level proof
rules (Section 4.6.1) and associated proof support (Section 4.6.2) that help users navigate the
common cases in their liveness proofs.

These ideas are put into practice through an implementation of ODE existence and liveness
proof rules in KeYmaera X [54]. Proof rules and proof support are implemented as tactics
in KeYmaera X [55], which are not soundness-critical. Such an arrangement allows for the
implementation of useful ODE liveness proof rules and their associated proof support with
KeYmaera X’s sound kernel as a safeguard against implementation errors or mistakes in their
derivations and side conditions. This core design decision underlying KeYmaera X is discussed
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elsewhere [54, 55, 142]. All of the ODE liveness examples in this chapter have been formally
proved in KeYmaera X (Section 4.6.2). By leveraging existing infrastructure for hybrid programs
in KeYmaera X, the implementation can also be used as part of liveness proofs for hybrid systems.
For example, it is used for the liveness proofs of a case study involving a robot model driving
along circular arcs in the plane [22].

The basic refinements steps from Section 4.2 and the proof rules in Sections 4.3-4.5 are
mostly straightforward to implement by following their respective proofs. Thus, Sections 4.6.1
and 4.6.2 focus on a select number of new proof rules and proof support that are beneficial in
the implementation. For the sake of completeness, syntactic derivations of all liveness proof
rules presented in these sections are given in Appendix B.2.4.

4.6.1 Liveness Proof Rules

Atomic differential variants dV. is a useful primitive proof rule to implement in KeYmaera X
because many ODE liveness proof rules, e.g., dVY, SP, derive from it. From a practical perspective
though, rule dV._ as presented in Corollary 4.16 still requires users to provide a choice of the
constant (), e.g., the proof in Example 4.17 uses £() = 3. The following slight rephrasing of dV .
enables a more automated implementation.

Corollary 4.32 (Existential atomic differential variants [137]). The following proof rule (where
>= is either > or >) is derivable in dL, where ¢ is a fresh variable and ODE x’ = f(x) has provable
global solutions.

I'F3e>0Vz (—(e = 0) — & >¢)

v I'E (2’ = f(z))e =0

Proof. The derivation starts with a cut of the sole premise of dVi (the left premise abbreviated
(D below). The existentially bound variable is renamed to ¢ throughout the derivation for clarity.
After Skolemizing (with JL), rule dV. is used with () = J. The universally quantified antecedent
is constant for the ODE 2’ = f(x) so it is soundly kept across the application of dV._. The proof
is completed propositionally VL, —L.

x
o (H(e = 0) € >6), (e = 0)Fé>6
Ve >0,V (m(e=0) »e>6)F (2 = flz) & Qe =0
@) AL 35> 0V (e = 0) » e > 0) B (' = flz) & Q)e = 0
CTE(=f(2)&Qe =0 O

Just like rule dV,_, rule dV requires a positive lower bound ¢ > 0 on the derivative of e along
solutions. The difference is that the premise of rule dV3 is rephrased to ask a purely arithmetical
question about the existence of a suitable choice for €. This can be decided automatically to save
user effort in identifying e, but such automation comes at added computational cost because the
decision procedure must find a suitable instance of ¢ for the 3 quantifier (or decide that none
exist) rather than simply check a user-provided instance. Thus, the implementation gives users
control over the desired degree of automation in their proof by giving them the option of either

105



invoking an arithmetic decision procedure & on the premise of dV] or manually instantiating
the existential quantifier with a specific term for € by rule JR.

Another useful variation of rule dV. is its semianalytic generalization, i.e., where the goal
region is described by a formula P formed from conjunctions and disjunctions of (in)equalities.
Rules dV¥, SP provide examples of such a generalization, but they are indirect generalizations
because users must still identify an underlying (atomic) differential variant e as input when
applying either rule. In contrast, the new semianalytic generalization of dV,_ below directly
examines the syntactic structure of the goal region described by formula P. Its implementation
is enabled by KeYmaera X’s ODE invariance proving capabilities based on Chapter 3.

Corollary 4.33 (Semianalytic differential variants). Let b be a fresh variable, and term () be
constant for ODE x' = f(x),t' = 1. Let P be a semianalytic formula in the following normal
form (3.7) and G'p be its corresponding c-progress formula, also in normal form (3.7):

n(z)

pP= \/(7\6U20A/\ew>0>

=0 4=0

M m(3) n(7)
GPE\/</\€” (b+e()t >O/\/\e” (b+e() )>O>

i=0  j=0

The following proof rule is derivable in dL, where the ODE z' = f(x) has provable global solutions,
and (ﬂP) (G’p) are semianalytic progress formulas Def. 3.24 with respect tox’ = f(x),t' =

-P, (ﬁP)<*>,GP = (GP)<*>

L,e() >0F (2 = f(x))P

I Je>0VbViVa (=P A (ﬂP) ANGp — (Gp) ))
[ye() >0k (' = f(x))P

dv

dv?

Proof Summary (Appendix B.2.4). Rule dV- is derived from dV like the derivation of rule dV
from dV._. The derivation of dV is similar to rules dVl;, dV., but replaces the use of rule dI._
with complete ODE invariance reasoning (Chapter 3). The fresh variable b is used as a lower
bound along solutions of the ODE of the value of all terms ¢;;, €;; appearing in P. [

The intuition behind rule dV is similar to rule dV,, as long as the solution has not yet
reached the goal P, it grows towards P at “rate” ¢(). The technical challenge is how to formally
phrase the “rate” of growth for a semianalytic formula P, which does not have a well-defined
notion of derivative. Rule dV uses the e-progress formula G p, together with the semianalytic

progress formulas (—|P) (G p)™) and dL’s complete ODE invariance reasoning from Chapter 3
for this purpose. These formulas give sufficient, although implicit, arithmetical conditions for
proving liveness for P. Rule dV= rephrases dV with an arithmetical premise, similar to how dVi
rephrases dV_, to give users the added flexibility of choosing between invoking an automated
decision procedure or manually instantiating the existential quantifier for € and reasoning about
the resulting progress formulas. More explicit arithmetical premises for dV, dV7 can be obtained

by unfolding the definitions of (—|P) , (G p)(* as exemplified below.
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Example 4.34 (Non-differentiable progress functions [176]). Consider the following liveness
formula with two inequalities in its postcondition:

(W =—-u)y(-1<u<l) (4.20)
Formula (4.20) can be written equivalently with an atomic inequality using the min function:
(' = —u)min(l —u,u+1) >0 (4.21)

However, the postcondition of (4.21) is not a formula of real arithmetic and it does not have
well-defined dL semantics. Indeed, rule dV.. does not prove (4.21) because the Lie derivative of
its postcondition is not well-defined. One possible solution is to generalize dV. by considering
directional derivatives of continuous (but non-differentiable) functions such as min, max [176,
Section 5.2]. However, justifying the correctness of this option would require delicate changes to
dL semantics [21, 142, 143]. Rule dV instead proves (4.20) directly without requiring rephrasing,
nor complications associated with directional derivatives. The proof is as follows, with () = 1
andP=u+1>0AN1—-u>0Gp=u+1—(b+t)>0AN1—u—(b+1t) > 0. The left
conjunct in the succedent is abbreviated with R=u+1— (b+t) =0 — —u — 1 > 0 and the
right conjunct is omitted for brevity since the subsequent argument given below is symmetric.

%
Bu+1<0vli—u<0ut+1—0+t)>0A1—u—(b+t)>0F RA ...
_‘P7GP|_(G.P)(*)
~P,(~P)®),Gp F (Gp)®
v F(u=—-u)(—-1<u<l)

The proof starts by using rule dV, where the assumption (ﬂ.P)(*) in its premise is weakened

as it is unnecessary for the proof. Unfolding the definition of (G p)*) and simplifying leaves an
arithmetical question in the succedent with two conjuncts. The left conjunct R in the succedent is
proved by r because the assumptions u+1—(b+t) = Oand u+1—(b+t) > OAl—u—(b+t) > 0
imply 1 —u > w+1. This, in turn, implies —u—1 > 0 using the assumptionu+1 < 0V1—u < 0.
More generally, for a liveness postcondition comprising a conjunction of atomic inequalities
e = 0 A é = 0 (where = is either > or > in either conjunct), the premise resulting from
applying dV can be simplified in real arithmetic to the following arithmetical premise:

(e 0NER0F(e<é—oeé>e))A(e>éné>e))Ale=—é>c()Aé>e()
(4.22)
The arithmetical premise (4.22) is equivalent to the arithmetical progress conditions for
min(p,q) > 0 [176, Example 14], and both are decidable in real arithmetic. The intuition
behind (4.22) is that whenever e is further from the goal than €, then e is required to make ¢
progress towards the goal (symmetrically when € is further than e from the goal). A similar
simplification of dV for a disjunctive postcondition e = 0 V € >= 0 is shown in (4.23), which asks
for the term closer to the goal to make € progress towards the goal instead. Further simplifications
for semianalytic formulas P are obtained as nested combinations of (4.22) and (4.23).

(e 0VERrOF(e<é—né>e))A(e>éne>e))Ale=e—é>c()Ve>e()
(4.23)
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This example shows the intricate definition of semianalytic progress formulas, even for the
simple-looking conjunctive postcondition —1 < u < 1, which highlights the need for a careful
and trustworthy implementation of rules dV, dV-, as provided by KeYmaera X. A

The variations of dV,_ shown in Corollaries 4.32 and 4.33 (and their implementation) allow
users to focus on high-level liveness arguments in KeYmaera X rather than low-level derivation
steps. Another key usability improvement afforded by an implementation is the sound and
automatic enforcement of the appropriate side conditions for every proof rule. The common
side conditions for ODE liveness proof rules presented in this chapter can be broadly classified
as follows:

1. Freshness side conditions on variables, e.g., in rules dV_, dVi, dV, dV7. These are auto-
matically enforced in the implementation because KeYmaera X’s kernel insists on fresh
names when required for soundness. Various forms of renaming with fresh variables are
automatically supported [142].

2. Global existence of ODE solutions. These are semi-automatically proved (Section 4.6.2).

3. Topological side conditions, e.g., in axiom COR and rules dV..&, dV¥ &. These conditions
are important to correctly enforce because they may otherwise lead to subtle soundness
errors (Section 4.5). The implementation uses syntactic criteria for checking these side
conditions (Appendix B.1.3).

An example topological refinement axiom (Lemma 4.3) and its corresponding proof rule
implemented in KeYmaera X with syntactic topological side conditions is given next.

Lemma 4.35 (Closed domain refinement axiom). The following topological (-) ODE refinement
axiom is sound, where formula () characterizes a topologically closed set over variables x, and
formula () characterizes the topological interior of the set characterized by ().

CR =P A2 = f(z) & RA-P]Q — ((z' = f(x) & R)P — (2' = f(2) & Q)P)

Proof in Appendix B.1.2.

Corollary 4.36 (Closed domain refinement rule). The following proof rule is derivable in dL,
where formula () is formed from finite conjunctions and disjunctions of non-strict inequalities >, <,
and formula Q)2 is identical to Q) but with strict inequalities >, < in place of >, < respectively.

THQ TF[=fe)&RA-PAQIQZ Tk (= f(z)&R)P
(= f(x)&Q)P

cR

Proof in Appendix B.2.4.

Axiom CR is a variant of axiom COR with different topological conditions. It says that
if the ODE solution can reach goal P while staying in domain R then it can also reach that
goal while staying in the new (closed) domain (), provided that it stays within the interior
Q) of the new domain while it has not yet reached P. Solutions cannot sneak out of the

108



topologically open interior Q) as it enters the goal because, by definition of an open set, the
solution must locally remain in () for a short time as it enters the goal (see the proof for a
detailed explanation). In contrast to the semantical conditions of CR, its corresponding derived
rule cR gives syntactic side conditions for the formulas @), )< which are easily checked in an
implementation. In particular, formula %, which syntactically underapproximates the interior

@, can be automatically generated from () through its syntactic structure. Another advantage
of the derived rule cR is that the closed domain constraint () can be additionally assumed when
proving that solutions stay within ()2 in its middle premise. This addition makes rule cR a
powerful primitive for refining domain constraints amongst other options such as axiom DR().

4.6.2 Proof Support

Beyond enabling the sound implementation of complex ODE liveness proof rules such as those
in Section 4.6.1, tactics can also provide substantial proof support for users.

Automatic Dependency Ordering

Recall derived axiom GBEx from Corollary 4.12, which proves (global) existence of solutions
for an ODE 2/ = f(z). Users of the axiom must still identify precisely which dependency
order (4.9) to use, and provide the sequence of bounded sets B; for each group of variables y;
involving nonlinear ODEs. The canonical choice of such a dependency order can be automatically
produced by a tactic using a topological sort of the strongly connected components (SCCs)’ of the
dependency graph of the ODE.

More precisely, to prove global existence for an ODE 2’ = f(z), consider the dependency
graph G where each variable z; is a vertex and with a directed edge x; — z; if the RHS f;(z)
for x; depends on free variable z;. First, compute the SCCs of G, and then topologically sort the
SCCs. The groups of variables y; in dependency order can be chosen according to the vertices
in each SCC in topological order. An illustrative dependency graph with four SCCs for the
following 8-dimensional ODE is shown in Fig. 4.4.

! ! 2 /o2 ! 2 2
T1 = X5,Ty = X3 + X5, T3 = T3, Ty = X1 + X3 + Tg,

/ / 2 / /
Ty = T4, Tg = Ty, Tg = Ty, Tg = —T7 (4.24)

After finding the appropriate SCC-induced dependency order (as in Fig. 4.4), the global exis-
tence tactic can prove global existence for the variable clusters y; that have affine dependencies
within the cluster automatically. For example, the SCC y, = {21, x4, x5} has affine dependencies
because the RHS of the ODEs ', 2, % are affine in x1, 24, x5, so the solution of ODE (4.24)
is automatically proved to be global in those variables following the proof of Corollary 4.8.
The generated dependency order enables such a proof even though the RHS of 2/, depends
nonlinearly on variables 3, x¢ from earlier clusters. For the SCC y3 = {9, 26} which has
nonlinear dependencies on 2, x4, users are prompted to input a bounded set (or a bound on
derivatives) over variables x5, 24 in order to prove global existence for those variables. This

? A strongly connected component of a directed graph is a maximal subset of vertices that are pairwise connected
by paths.
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Figure 4.4: A dependency graph for the ODE (4.24) over the variables z1, ..., zs. There is a
directed edge z; — z; if the RHS for 2, depends on free variable ;. Each dashed rectangle is a
strongly connected component. Topologically sorting these components (according to the order
induced by the edges) yields one possible grouping of the variables ¥, ..., ys in dependency
order. The vertices in y; are not connected to those in s, y3, ¥4, so the order between these
groups can be chosen arbitrarily.

()

Figure 4.5: The univariate ODE 2/ = x* — 522 + 4 is illustrated by plotting its RHS f(z) =
x* — 5x? + 4 (vertical axis) against x (horizontal axis). Points on the horizontal axis evolve
towards the right (red arrow) when f(x) > 0 and towards the left (blue arrow) when f(z) < 0.
The fixed points 71, r2, 73, T4 are roots of the polynomial RHS where f(z) = 0. These fixed points
either attract trajectories (like 71, 73), or repel them (like 75, r4). All points on the horizontal axis
evolve asymptotically towards exactly one fixed point or approach co.

continues similarly for the SCCs 5 (nonlinear dependency) and y; (affine dependency) until
global existence is proved for the full ODE. This semi-automated proof support minimizes the
manual effort required of the user in proving global existence by focusing their attention on the
nonlinear parts of the ODE that may cause finite-time blowup of solutions.

To drive global existence proof automation further, key special cases can be added to the
method described above. One such special case for univariate ODEs is shown below.

Remark 4.37 (Global existence for univariate ODEs). Consider the case where a variable group
has just one variable and no incoming dependencies, e.g., yo = {23} in Fig. 4.4 or o, (4.7). Global
existence for such univariate polynomial ODEs is decidable [68], even if the RHS is highly
nonlinear, because all of its solutions either asymptotically approach one of the (finitely many)
roots of the polynomial RHS or diverge to infinity.

This result is best illustrated through the dynamical systems view of ODEs shown in Fig. 4.5
for the ODE 2’ = 2! — 522 + 4. This example ODE has global solutions from all initial states
satisfying x < r, because the solution from all such states are globally attracted to one of the
fixed points. Conversely, for all other initial conditions (x > r4), the ODE blows up in finite
time because the RHS is quartic in z.
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More generally, for a nonlinear univariate polynomial ODE z’ = f(x) and initial assumptions
I, it suffices to check validity of the following arithmetical sequent to decide global existence
from a set of initial assumptions I" on the state variable x:

FI—EIr(f(r):0/\(f(a:)20/\r2:€\/f(:v)SO/\rﬁx))

N~ ~~

@ ®

The existentially quantified variable r corresponds to a fixed point (a root with f(r) = 0).
Disjunct @) checks whether the solution approaches r from the left, e.g., the points between
ro and 73 in Fig. 4.5 approach r; from the left. Alternatively, disjunct ® checks whether the
solution approaches r from the right. The implementation checks validity of this sequent for
univariate nonlinear ODEs and then proves global existence using BDG(-) because the solution
is provably trapped between the initial value of x and the fixed point r.

Differential Cuts for Liveness Proofs

Differential cuts dC provide a convenient way to structure and stage safety proofs for ODEs in
dL. An in-depth discussion is available elsewhere [144, Part II], but the idea is illustrated by the
following derivation outline:

QANCLANCoN---NC,E P

aw :
ac Fl—[a:’:f(x)&Q/\Cl/\C’g]P
Tk = f(2)&QIC, % T+ [/ = f(x)&QACLP
dC I'E 2 = f(z) &QlP
The outline uses a sequence of differential cut steps to progressively add cuts Cy, Cy, ..., C),

to the domain constraint. A final dW step completes the proof when the postcondition P
is already implied by the (now strengthened) domain constraint. Intuitively, the differential
cuts are akin to dynamical lemmas in this derivation. For example, by proving the premise
I'F [ = f(x) & Q]CY, the cut Cy can now be assumed in the domain constraints of subsequent
steps. Just like the cut rule from sequent calculus, differential cuts dC allow safety proofs for
ODEs to be staged through a sequence of lemmas about those ODEs.
For proof modularity and maintainability, it is desirable to enable a similar kind of staging
for ODE liveness proofs. Suppose that the formula [z' = f(z) & Q]C has been proved as a cut:
I'E [ = f(z) &QIC
" Ik (@' = f(z) &Q)P

C

The challenge is how to (soundly) use this lemma in subsequent derivation steps (shown as
-+ +). Naively replacing ) with @) A C' in the domain constraint of the succedent is sound but
may even do more harm than good because the resulting ODE liveness question becomes more
difficult (Section 4.5). The refinement-based approach to ODE liveness provides a natural answer:
recall that each refinement step in the chain (4.6) requires the user to prove an additional box
modality formula. The insight is that, for these box modality formulas, any relevant lemmas
that have been proved can be soundly added to the domain constraint. For example, suppose
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that rule K(&) is used to continue the proof after the cut. The left premise of K(&) can now be
strengthened to include C' in its domain constraint:

L, [2'=f(z) & Q]CF [2'=f(z) & QA-PAC|-G

f(x)
“T,[0'=f(2) & QICF [7'=f(x) & QA-PI-G T, [2'=f(x) &QIC+ (a'=f(2) & Q)G
K& T, [2'=f(2) & QICF (/=f(x) & Q)P

Users could manually track and apply lemmas using dC as shown above, but this becomes
tedious in larger liveness proofs. The implementation instead provides users with tactics that
automatically search the antecedents I" for compatible assumptions that can be used to strengthen
the domain constraints. These tactics also use a form of ODE unification when determining
compatibility. More precisely, consider the sequent I' - [2' = f(x) & Q] P, which may arise as a
box refinement during a liveness proof. An antecedent formula [y = g(y) & R]C in I is called
a compatible assumption for the succedent [z’ = f(z) & Q]P if:

1. The set of ODEs iy’ = ¢(y) is a subset of the set of ODEs 2’ = f(x) and g(y) does not
mention free variables in x \ y. This is order-agnostic, e.g., the ODE v/ = v,v' = uis a
subset of the ODE v/ = u, v/ = v,w' = u+ v + w.

2. The domain constraint () implies domain constraint R, i.e., ) — R is valid.

Under these conditions, the ODE 3’ = g(y) & R permits more trajectories than the ODE
' = f(z) & Q. Thus, if formula C' is always true along solutions of the former ODE, then it
also stays true along solutions of the latter. Combining compatible assumptions with imple-
mentations of liveness proof rules yields turbo-charged versions of those rules. For example, in
rule dV, instead of simply assuming the negation of the postcondition (=(e = 0) — - - ) when
determining the existence of suitable ¢, all postconditions of compatible assumptions can be
assumed, e.g., with =(e > 0) A C — - - - for postcondition C' of a compatible assumption.

Microbenchmarks

The KeYmaera X implementation is used to formally prove all of the ODE liveness examples
from this chapter and elsewhere [22, 176]. Table 4.2 provides a summary of statistics from
these proofs, where all experiments were run on an Ubuntu 18.04 laptop with a 2.70 GHz Intel
Core i7-6820HQ CPU and 16GB memory. None of the proofs have been optimized to favor any
specific metric. The specific timings and proof steps are naturally subject to change on different
hardware and as various aspects of the KeYmaera X theorem prover are improved. Nevertheless,
the key takeaways from these microbenchmarks remain broadly applicable.

(M)anual and (A)utomatic Proofs. The implementation provides users with powerful proof
support but also exposes low-level primitives for users who prefer more fine-grained control over
(parts of) their proofs. Both types of proofs are shown for this chapter’s examples in Table 4.2.
Proofs that heavily exploit the proof support and automation are more convenient for users
and require fewer manual tactic invocations. Indeed, all of the automated proofs require fewer
tactic invocations than the corresponding manual proofs (where both proofs are available for
comparison). An example of this gap is Example 4.34, where the 28 step manual proof uses
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Table 4.2: Proof statistics for ODE existence and liveness properties proved using the implemen-
tation. For this chapter’s Examples 4.5-4.34, two proofs are presented: (M)anual proofs closely
follow the pen-and-paper derivations shown in this chapter, while (A)utomatic proofs make
extensive use of the implemented proof support. The cells in bold font indicate lower (more
desirable) values. The stronger ODE liveness property proved in Example 4.29 implies those from
Examples 4.22 and 4.24. Examples 11, 12 and 15 refer to the correspondingly numbered examples
from Sogokon and Jackson [176]. “Dimension” is the number of continuously evolving state
variables in the ODEs; “Parameters” is the number of parameters (non-state variables) in the
liveness specification; “Max Degree” is the maximum degree of polynomials with respect to the
state variables in the liveness specification; “Tactic Steps” counts the number of (manual) user
proof steps; “Kernel Steps” counts the number of internal steps taken by the soundness-critical
KeYmaera X kernel; and “Proof Time” measures the time taken (in seconds, averaged over 5
runs, rounded to 3 decimal places) for the proof to execute in KeYmaera X.

Liveness Property Dimension Parameters Max Degree

Example 4.5 1 1 2
Example 4.9 2 0 2
Example 4.11 2 0 3
Example 4.17 2 0 2
Example 4.29 (Examples 4.22 and 4.24) 2 0 3
Example 4.34 1 0 1
Sogokon and Jackson [176, Example 11] 2 0 4
Sogokon and Jackson [176, Example 12] 2 0 2
Sogokon and Jackson [176, Example 15] 2 0 1
Bohrer et al. [22, Goal Position Reachable] 3 4 2
Bohrer et al. [22, Velocity Bounds Reachable] 3 4 2

Tactic Steps  Kernel Steps  Proof Time (s)

Liveness Property (M) (A) M) (A) (M) (A)

Example 4.5 7 3 2040 12156 1.778 3.716
Example 4.9 8 2 962 898 0.220 0.203
Example 4.11 7 3 1562 1580 0.551 0.759
Example 4.17 29 5 3958 3501 3.286 3.034
Example 4.29 (Examples 4.22 and 4.24) 50 20 5549 6141 1.714 1.952
Example 4.34 28 1 1747 2571 0.575 0.990
Sogokon and Jackson [176, Example 11] - 50 - 11272 - 9.090
Sogokon and Jackson [176, Example 12] - 19 - 4818 - 1.388
Sogokon and Jackson [176, Example 15] - 1 - 4781 - 1.730
Bohrer et al. [22, Goal Position Reachable] - 34 - 8159 - 2.182
Bohrer et al. [22, Velocity Bounds Reachable] - 37 - 10521 - 3.042
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a refinement step K(&) to equivalently replace postcondition —1 < u < 1 by u* < 1 and
then completes the proof by manually following the derivation of rule dV.. In contrast, the
automated proof requires just one dV step.

On the other hand, the automated proofs are slower than their manual counterparts on
four out of six examples. Most of this overhead arises when there is significant proof search in
the automation. In particular, the automated proof of Example 4.5 is significantly slower and
requires almost six times more kernel steps compared to its manual counterpart. This gap arises
because the automated proof uses the decision procedure for univariate global existence outlined
in Remark 4.37 while the manual proof uses the direct argument in Example 4.5. However,
the latter proof required user insight about the physical system as a model of air resistance
(see Example 4.5). This illustrates the need for a flexible implementation that lets users navigate
the convenience and efficiency tradeoff according to their needs and proof insights.

Finally, the automated proofs are in fact faster for Examples 4.9 and 4.17, which both involve
linear ODEs. The speedups here can be attributed to the well-tuned implementation of global
existence proofs for affine systems and to the use of rule dV3 for the latter example. Thus, the
aforementioned tradeoff can be further skewed towards favoring user convenience by tuning
the implemented automation.

Trusted Kernel with Untrusted Tactics. All of the proofs in Table 4.2 make extensive use of
KeYmaera X’s existing tactics framework [55] to handle low-level interactions with KeYmaera X
soundness-critical kernel, as shown by the large number of kernel steps that each proof requires.
The soundness guarantee provided by the KeYmaera X kernel makes this implementation effort
a worthy tradeoff because it ensures that the proved results in Table 4.2 are trustworthy without
needing to trust the implementation of the tactics.

Applicability. The insights of this section are not limited to this chapter’s examples and they
scale to larger case studies (Table 4.2). Notably, the example from Sogokon and Jackson [176,
Example 11] consists of two liveness sub-properties for the same ODE, which makes it the largest
(and slowest) microbenchmark. The examples from Bohrer et al. [22] are liveness properties
drawn from a larger case study with a hybrid system model of a robot driving along circular
arcs in the plane [22]. Proof automation is indispensable for handling the scale of these proofs.

4.7 Related Work

Existence and Liveness Proof Rules. The ODE liveness arguments surveyed in this chapter
were originally presented in various notations, ranging from proof rules [137, 176, 191] to other
mathematical notation [156, 157, 159, 176]. All of them were justified directly through semantical
or mathematical means. This chapter unifies and corrects all of these arguments, and presents
them as dL proof rules which are syntactically derived by refinement from dL axioms.

This chapter is also the first to present a deductive approach for syntactic proofs of existence
properties for ODEs. In the surveyed liveness arguments [137, 156, 157, 159, 176, 191], sufficient
existence duration is either assumed explicitly or is implicitly used in the correctness proofs.
Such a hypothesis is unsatisfactory, since the global existence of solutions for (nonlinear) ODEs
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is a non-trivial question; in fact, it is undecidable even for polynomial ODEs [68]. Formal proofs
of any underlying existence assumptions thus yield stronger (unconditional) ODE liveness
proofs. Of course, such existence properties are an additional proof burden, but Section 4.6
also shows that proof support can help by automating easy existence questions, e.g., for affine
systems where global existence is well-known. A related problem arising in the study of hybrid
systems is Zeno phenomena [75, 214], where a trajectory of a hybrid model makes infinitely many
(discrete) transitions in finite (continuous) time. Like finite-time blow up, Zeno phenomena
typically occur as abstraction artifacts of hybrid systems models, and they do not occur in real
systems. Thus, analogous to the question of global existence, absence of Zeno phenomena must
either be assumed (or Zeno trajectories explicitly excluded) [75, 137], or proved when specifying
and verifying properties of such systems [214].

The refinement-based approach to ODE existence and liveness proofs underlies this chap-
ter’s implementation described in Section4.6. Compared to an earlier implementation in
KeYmaera [147], where rules like dV,_& are implemented monolithically, this chapter’s ap-
proach and implementation build those rules from smaller building blocks which yields a flexible
implementation together with powerful (core-checked) proof support. The high-level lessons
discussed in Section 4.6 are also broadly applicable to other deductive tools for ODEs and hybrid
systems [50, 206] that all currently lack support for ODE liveness proofs.

Other Liveness Properties. The liveness properties studied in this chapter are the contin-
uous analogues of eventually [109] or eventuality [157, 176] from temporal logics. In discrete
settings, temporal logic specifications give rise to a zoo of other liveness properties [109]. In
continuous settings, weak eventuality (requiring almost all initial states to reach the goal re-
gion) and eventuality-safety have been studied [156, 157]. In adversarial settings, differential
game variants [143] enable proofs of winning strategies for differential games. In dynamical
systems and controls, the study of asymptotic stability requires both stability (an invariance
property) with asymptotic attraction towards a fixed point or periodic orbit (an eventuality-
like property) [33, 159]. For hybrid systems, various authors have proposed generalizations
of classical asymptotic stability, such as persistence [179], stability [151], and inevitability [46].
Controlled versions of these properties are also of interest, e.g., (controlled) reachability and
attractivity [1, 191]. Eventuality(-like) properties are fundamental to all of these advanced
liveness properties. The formal understanding of eventuality in this chapter is therefore a key
step towards enabling formal analysis of more advanced liveness properties.

Automated Liveness Proofs. Automated reachability analysis tools [31, 53] can also be used
to answer certain liveness verification questions. For an ODE and initial set &}, computing an
over-approximation O of the reachable set X; C O at time ¢ shows that all states in X; reach O
at time ¢ [179] (if solutions do not blow up). Similarly, an under-approximation A/ C &; shows
that some state in A|) eventually reaches ¢/ [67] (if U/ is non-empty). Neither approach handles
domain constraints [67, 179] and, unlike deductive approaches, the use of reachability tools
limits them to proving liveness specifications with concrete time bounds ¢ and bounded initial
sets Ap. Deductive liveness approaches can also be (partially) automated, as shown in Section 4.6.
Lyapunov functions guaranteeing (asymptotic) stability can be found by sum-of-squares (SOS)
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optimization [130]. Liveness arguments can be similarly combined with SOS optimization to
find suitable differential variants [156, 157]. Other approaches are possible, e.g., a constraint
solving-based approach can be used for finding the so-called set Lyapunov functions [159] (e.g.,
the term e used in SLyap, SLyap&). Crucially, automated approaches must ultimately be based
on sound underlying liveness arguments. The correct justification of these arguments is precisely
what this chapter enables.

Refinement Calculi. This chapter’s view of ODE liveness arguments as step-by-step refine-
ments is closely related to refinement proof calculi [11, 93]. The shared idea is that the proof
of a complex property, like ODE liveness or program correctness, should be broken down into
(simpler) step-by-step refinements. The key difference is that, for refinement calculi, refine-
ment typically takes place between programs (or implementations) and their specification. For
example, a concrete implementation [ is said to refine its abstract specification « if the set of
transitions of /3 is a subset of those of o [11]. Proving such a refinement for hybrid programs
a, [ would, for example, prove the implication:

(B)P = (a)P (4.25)

Program refinement is not directly applicable to this chapter’s focus on proving liveness
for specific ODEs. Instead, as hinted by (4.25), program refinement plays an important role for
generalizing this chapter’s results beyond ODEs to hybrid systems, where, e.g., one may use
implications like (4.25) as part of a refinement chain (4.6). There are a number of refinement
calculi for hybrid systems [30, 50, 106, 164]. Notably, differential refinement logic [106] formally
extends dL with a refinement operator 5 < «, and can be used together with this chapter’s
results. Another direction for generalizing this chapter’s results is to consider larger classes of
continuous dynamics, such as differential inclusions, differential-algebraic constraints [137], and
differential games [143]. These open up the possibility of proving refinements between concrete
(ODE) descriptions and their more abstract continuous counterparts [47, 50, 137, 143].

4.8 Discussion

This chapter presents a refinement-based approach for proving liveness and, as a special case,
global existence properties for ODEs in dL. The associated KeYmaera X implementation demon-
strates the utility of this approach for formally proving concrete ODE liveness questions. Beyond
the particular proof rules derived in this chapter, the exploration of new and more general ODE
liveness proof rules is enabled by simply piecing together more refinement steps in dL, or in
the KeYmaera X implementation of those steps. Given its wide applicability and correctness
guarantees, this approach is a suitable framework for justifying ODE liveness arguments, even
for readers less interested in the logical aspects.
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Chapter 5

Stability for Ordinary Differential
Equations

This chapter studies deductive stability verification for ordinary differential equations (ODEs)
in dL. Stability is required for real-world controlled systems as it ensures that those systems
can tolerate small, real-world perturbations around their desired operating states. In contrast to
the previous chapters, the question of how to formally specify stability is interesting because
there are numerous variations of stability properties of interest in the literature, each with
subtly different specifications. The key insight is to specify ODE stability by suitably nesting
dL’s dynamic modalities with first-order logic quantifiers. Elucidating the logical structure of
stability properties in this way has three key benefits: i) it provides a flexible means of formally
specifying various stability properties of interest in the common language of dL, ii) it yields
rigorous proofs of those stability properties using dL’s ODE safety and liveness proof principles
from Chapters 3 and 4, and iii) it enables formal analysis of the relationships between various
stability properties which, in turn, inform proofs of those properties. These ODE stability proofs
lay the groundwork for the study of hybrid (switched) system stability proofs in Chapter 6.

5.1 Introduction

The study of stability has its roots in efforts to understand mechanical systems, particularly
those arising in celestial mechanics [77, 98, 153]. Today, it is an important part of numerous
applications in dynamical systems [187] and control theory [71, 89]. For example, in feedback
control systems [71, 89], stability of continuous controllers modeled by ODEs is a key correctness
requirement [6] that deserves fully rigorous proofs alongside proofs of other key properties
such as the ODE safety and liveness properties studied in Chapters 3 and 4. Despite this, formal
stability verification has received less attention compared to proofs of safety and liveness, e.g.,
through reachability or deductive techniques [45].

Stability for a continuous system (or ODEs) requires that i) its system state always stays
close to some desired operating state(s) when initially slightly perturbed from those operating
state(s) and ii) those perturbations are eventually dissipated so that the system returns to a
desired operating state. These properties are especially crucial for engineered systems because
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those systems must be robust to real-world perturbations deviating from idealized models.

Simple pendulums provide canonical examples of stability
phenomena: they are always observed to settle in the rest position
of Fig. 5.1 (bottom) after some time regardless of how they are ini-
tially released. In contrast, the inverted pendulum in Fig. 5.1 (top)
is theoretically also at a resting position but can only be observed
transiently in practice because the slightest real-world pertur-
bation will cause the pendulum to fall due to gravity. Stability
explains these observations—the resting position is (asymptoti-
cally) stable while the inverted position is unstable and requires
active control to ensure its stability. Proofs of safety and liveness
properties are still required for the inverted pendulum under con-
trol, e.g., its controller must never generate unsafe amounts of
torque and the pendulum must eventually reach the inverted po-
sition. The triumvirate of safety, liveness, and stability is required
for holistic correctness of the inverted pendulum controller.

The classical way of distinguishing the aforementioned sta-
bility situations is by designing a Lyapunov function [98], i.e
an energy-like auxiliary measure satisfying certain arithmetical
conditions [71, 89, 165] which implies that the auxiliary energy
decreases along system trajectories towards local minima at the
stable resting state(s), see Fig. 5.2. Prior approaches [3, 61, 88, 104,
170] have emphasized the need to formally verify those arithmeti-
cal conditions in order to guarantee that a conjectured Lyapunov
function correctly implies stability for a given system.

This chapter shows how deductive proofs of ODE stability
can be carried out in dL. The key insight is to specify stability
properties by suitably nesting the dynamic modalities of dL with
quantifiers of first-order logic. This makes it possible to syntac-
tically derive stability for a given system by combining the ODE
safety and liveness proof principles of Chapters 3 and 4 with
arithmetic and first-order quantifier reasoning in dL. This com-
bination enables trustworthy implementation of stability proofs
in KeYmaera X [54, 142]. Notably, the approach directly verifies
stability specifications, which goes beyond verifying arithmetic
that imply those specifications [3, 61, 88, 104, 170]. This is crucial
for advanced stability notions because those variations generally
require subtle twists to the required arithmetical conditions on
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Figure 5.1: A pendulum

(in green) hung by a rigid
rod from a pivot (in black)

* perturbed from its resting

state (bottom) and from its
inverted, upright position
(top). Perturbed states (with
dashed boundaries and lines)
are faded out to indicate the
progression of time.

Lyapunov Function

Figure 5.2: A Lyapunov func-
tion that decreases along the
pendulum trajectory shown
in Fig. 5.1 (bottom).

their Lyapunov functions [71]. Proofs of stability specifications alleviate the onus on system
designers to correctly pick and check the appropriate conditions for their applications.
Section 5.2 shows how various stability properties for ODE equilibria can be formally specified
and proved in dL with Lyapunov function techniques. Section 5.3 then generalizes those stability
specifications, yielding unambiguous formal specifications of advanced stability properties from
the literature [71, 89], along with their derived proof rules. These specifications also provide
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rigorous insights into the logical relationship between various stability notions, which are used
to inform their respective proofs. Section 5.4 illustrates the practicality of the dL approach
through several stability case studies formalized in KeYmaera X. Section 5.5 examines input-to-
state stability, a form of stability with respect to perturbation of the system dynamics [71, 89],
and discusses the syntactic limitations of dL for specifying and analyzing this form of stability.

Reminder (Extended Term Language). This chapter uses an extended dL term language
following the extended term conditions and notational conventions of Section 3.2 because the
dL axiomatization remains sound for all extended term languages meeting those conditions.

Contribution. The material for this chapter is drawn from Tan and Platzer [194].

5.2 Asymptotic Stability of an Equilibrium Point

This section presents Lyapunov’s classical notion of asymptotic stability [98] and its formal
specification in dL. This formalization enables the derivation of dL stability proof rules using
Lyapunov functions [71, 89, 98, 165]. Several related stability concepts are formalized in dL,
along with their relationships and proof rules. The following parametric ODE model of a simple
pendulum is used as a running example.

Example 5.1 (Pendulum model). The ODE o, = ¢' = w, W' = —¥sin(f) — bw models a
pendulum (illustrated below, right) suspended from a pivot by a rod of length L, where 6 is the
angle of displacement, w is the angular velocity of the pendulum, and g > 0 is the gravitational
constant. Parameter a = 7 is a positive scaling constant and parameter b > 0 is the coefficient
of friction for angular velocity. The symbolic parameters a, b make analysis of o, apply to a
range of concrete values, e.g., pendulums that are suspended by a long rod (with large L) are
modeled by small positive values of a, while frictionless pendulums have b = 0.
For illustrative purposes, a simplification of «,, is used because stability
analyses often concern the behavior of the pendulum near its resting (or in-
verted) state where 6 = (. For such nearby states with 6 ~ 0, the small angle

approximation sin(f) = 6 yields a linear ODE a;.!
=0 =w, w=—ab —bw (5.1)

An inverted pendulum is modeled by a similar ODE (illustrated on the
right) under a change of coordinates. Such a pendulum requires an external
torque input u(f, w) to maintain its stability. An appropriate input u(f, w) is
determined and proved correct in Section 5.4.

=0 =w, W =a —bw—u(f,w) (5.2)

'Mathematically, this linearization is justified by the Hartman-Grobman theorem [33]. A nonlinear polynomial

. . . 3
approximation, such as sin(¢) ~ 6 — %, can also be used.
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5.2.1 Mathematical Preliminaries

An equilibrium point of ODE 2’ = f(x) is a point 2y € R" where f(zy) = 0, so a system
that starts at z stays at xy along its continuous evolution. Such points are often interesting
in real-world systems, e.g., the equilibrium point § = 0, w = 0 for o from (5.1) is the resting
state of a pendulum. For a controlled system, equilibrium points often correspond to desired
steady system states where no further continuous control input (modeled as part of f(z)) is
required [89]. For brevity, assume the origin 0 € R" is an equilibrium point of interest. Any
other equilibrium point(s) of interest z; € R" can be translated to the origin with the change of
coordinates x — = — x( for the ODE, see Lemma C.1. The following definition of asymptotic
stability is standard [71, 89, 165], where the Euclidean norm ||-||, is used throughout without
loss of generality because norms are equivalent on finite dimensional vector spaces [204, §5.V].2

Definition 5.2 (Asymptotic stability [71, 89, 165]). The origin 0 € R" of ODE 2/ = f(x) is

« stable if, for all £ > 0, there exists 0 > 0 such that for all initial states x = x(0) with
||z]|, < 6, the right-maximal ODE solution z(¢) : [0,7) — R" satisfies ||z(t)||, < € for all
times 0 <t < T,

* attractive if there exists § > 0 such that for all z = z(0) with ||z||, < ¢, the right-maximal
ODE solution z(t) : [0,7) — R" satisfies lim;_,r z(t) = 0, and

+ asymptotically stable if it is stable and attractive.

These definitions can be understood using the resting state of the pendulum from Fig. 5.1
(bottom) which is asymptotically stable. When the pendulum is given a light push from its
bottom resting state (formally, ||z||, < ¢), it gently oscillates near that resting state (formally,
|z(t)]|, < €). In the presence of friction, these oscillations eventually dissipate so the pendulum
asymptotically returns to its resting state (formally, lim,_,7 2(¢) = 0). This behavior is local, i.e.,
for any given € > 0, there exists a sufficiently small § > 0 perturbation of the initial state that
results in gentle oscillations with ||z (¢)||, < €, see Fig.5.3 (left). A strong push, e.g., with § > ¢,
could instead cause the pendulum to spin around on its pivot.

Remark 5.3. Stability and attractivity do not imply each other [165, Chapter 1.2.7], see example
o, in Section 5.4. However, if the origin is stable, attractivity can be equivalently defined in a
simpler way. This is proved in dL, after characterizing stability and attractivity syntactically.

5.2.2 Formal Specification

The formal specification of asymptotic stability in dL combines i) the dynamic modalities of dL,
which are used to quantify over the dynamics of the ODE and ii) the first-order logic quantifiers,
which are used to express combinations of (topologically) local and asymptotic properties of
those dynamics. For a formula P, the e-neighborhood of P with respect to z is defined as the

2Some definitions of asymptotic stability in the literature require, or implicitly assume, right-maximal solutions
x(t) to be global, i.e., with T' = oo, see [89, Definition 4.1] and associated discussion. The definition given here is
better suited for subsequent generalizations.
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Figure 5.3: Solutions from points in the ¢ ball around the origin, like the green initial point z,
remain within the ¢ ball around the origin 0 € R" (black dot) and asymptotically approach the
origin. The latter two plots illustrate how asymptotic stability for an ODE can be broken down
into a pair of (quantified) ODE safety and liveness properties.

formula U (P) = Jy (f|lz — yl2 < e2AP (y)), where the existentially quantified variables y are
fresh in P. The neighborhood formula U (P) characterizes the set of states within (set) distance
¢ from P, with respect to the dynamically evolving variables z, which is useful for syntactically
expressing small ¢ perturbations, e.g., appearing in Def. 5.2. For formulas P of first-order real
arithmetic (over polynomial terms), the e-neighborhood, U (P), can be equivalently expressed in
quantifier-free form by quantifier elimination [14, 197]. For example, the neighborhood formula
U.(x = 0) is equivalent to the formula |25 < 2.

Lemma 5.4 (Asymptotic stability in dL). The origin of ODE z' = f(x) is, respectively, i) stable,
ii) attractive, and iii) asymptotically stable iff the dL formulas i) Stab(x’' = f(x)), ii) Attr(a’ =
f(x)), and iii) AStab(z’ = f(x)), respectively, are valid. Variablese, 0 are fresh, i.e., notinx, f(x).

Stab(z' = f(z)) = Ve>030>0Vz (Us(z = 0) — [2' = f(z)]U-(z = 0))
Attr(z’ = f(z)) = 36>0Vz (Us(z = 0) — Asym(z’ = f(z),z = 0))
AStab(a’ = f(x)) = Stab(z' = f(x)) A Attr(2’ = f(x))

Formula Asym(z' = f(z), P) = Ve>0 (2’ = f(2))[2’ = f(x)]U.(P) characterizes the set of
states that asymptotically approach P along ODE solutions.

Proof. The correctness of these specifications follows directly from the semantics of dL for-
mulas [142, 144] because they syntactically express the logical connectives and quantifiers
from Def.5.2 in dL. The open neighborhood formulas Us(x = 0) and U.(x = 0) are true in
states where ||z||, < § and ||z||, < € respectively. The main subtlety is formula Attr(z’ = f(x))
which characterizes the limit lim; 7 2(¢) = 0 using its subformula Asym(z’ = f(z),z = 0) as
follows. Unfolding the semantics, formula Asym(z’ = f(z), P) is true in an initial state iff for
any ¢ > 0, the right-maximal ODE solution to z’ = f(z) (restricted to variables x) denoted
z(t) : [0,T) — R™ has a time 7 € [0,T) where, because of uniqueness of ODE solutions [33,
Theorem 1.2], for all future times ¢ with 7 < ¢ < T, the solution at x(t) satisfies formula U (P).
For P = z = 0, this implies the bound ||z(¢)|, < ¢ at those future times, which is the real
analytic definition of the limit lim,;_,r z(t) = 0 [168, Definition 4.1]. O

Formula Stab(z’ = f(z)) is a syntactic dL rendering of the corresponding quantifiers
from Def. 5.2. The safety property Us(z = 0) — [’ = f(z)|]U.(x = 0) expresses that solutions
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starting from the d-neighborhood of the origin always (for all times) stay safely in the e-
neighborhood, as visualized in Fig. 5.3 (middle). Formula Attr(z’ = f(x)) uses the subformula
Asym(z’ = f(x),x = 0) which characterizes the limit in Def. 5.2. Recall lim;_,7 z(¢) = 0 iff for
all £ > 0 there exists a time 7 with 0 < 7 < T such that for all times ¢ with 7 < ¢t < T, the
solution satisfies ||z (t)||, < ¢, i.e., the limit requires for all distances ¢ > 0, the ODE solution
will eventually always be within distance ¢ of the origin, as visualized in Fig. 5.3 (right). This limit
is characterized using nested (-)[-| modalities, together with first-order quantification according
to Def. 5.2. More generally, formula Asym(z’ = f(z), P) characterizes the set of initial states
where the right-maximal ODE solution asymptotically approaches the set characterized by
formula P; this set is known as the region of attraction of P [89]. Thus, attractivity requires that
the region of attraction of the origin contains an open neighborhood Us(x = 0) of the origin.
Proving validity of the formula AStab(z’ = f(x)) yields a rigorous proof of asymptotic
stability for 2’ = f(x). Indeed, the syntactic shape of the formulas from Lemma 5.4 immediately
suggests how such a proof can be carried out using earlier thesis chapters: Stab(z’ = f(x))
needs ODE safety reasoning (Chapter 3) for its inner box modality, while, at a first glance,
Attr(2’ = f(z)) needs more complicated ODE liveness reasoning (Chapter 4) for the inner,
nested diamond-box (-)[-] modalities. However, if the origin is stable, then Corollary 5.5 below
simplifies the syntactic characterization of the region of attraction for the stable equilibrium from
a nested (-)[-] formula to a (-) formula, which is then directly amenable to liveness reasoning
(Chapter 4). This corollary is used to simplify proofs of asymptotic stability in the next section.

Corollary 5.5 (Stable attractivity). The following axiom is derivable in dL.
SAttr Stab(z’ = f(z)) = (Asym(2' = f(z), 2 = 0) > Ve>0 (2’ = f(z)) U.(z = 0))

Proof. A full proof is omitted as axiom SAttr is an instance of the more general axiom SetSAttr
derived in Corollary 5.21 (where P = x = 0). Briefly, the “—” direction of the inner equivalence
is valid even without assuming stability because postcondition [z’ = f(x)]U.(x = 0) mono-
tonically implies postcondition U.(z = 0). The more interesting “<—” direction of the inner
equivalence uses the stability assumption by choosing § > 0 sufficiently small so that solutions
reaching Us(z = 0) must stay in U. (x = 0) thereafter because of stability. ]

Notational Conventions (Abbreviations). All derived axioms and proof rules are presented
directly using the respective stability formula abbreviations, e.g., as listed in Lemma 5.4.

5.2.3 Lyapunov Functions

Lyapunov functions are the standard tool for showing stability of general, non-linear ODEs [71,
89, 165] and finding suitable Lyapunov functions is an important problem in its own right [3, 49,
61, 88, 104, 130, 131, 170, 200]. This section shows how a candidate Lyapunov function, once
found, can be used to rigorously prove stability. The following derived proof rules formalize
Lyapunov stability arguments [71, 89, 165] syntactically in dL.

Lemma 5.6 (Lyapunov functions). The following Lyapunov function proof rules are derivable in
dL, where the Lyapunov function V' is a dL term.
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FFO0)=0AV(0)=0 F 30z (0<|z]|2<+2 =V >0AV <0)

L
yapz - Stab(2/ = f(z))

. FFO0)=0AV(0)=0 F 3y>0Vz(0<[lz]2 <12 =V >0AV <0)
yap- ~ AStab(z' = f(2))

Proof Summary (Appendix C.1.1). Rule Lyap> is derived by showmg that, for carefully chosen
(symbolic) constants 0 < v < £ and W > 0, the formula ||z[|2 < v> AV < W is an 1nvar1ant
of the ODE 2’ = f (x). Here, 7 is chosen sufficiently small so that the left conjunct ||z||5 < ~2
implies || x> < 2 as required in the stability postcondltlon while the right conjunct V- < W
characterizes a smaller invariant set in the ball ||x||2 < ~? (see proof).

The derivation of rule Lyap- uses Lyap> as a stepping stone and the derived logical re-
lationship SAttr to simplify the proof. The derivation starts with a cut that proves stability
using rule Lyap~ because the premises of Lyap- are identical to those of Lyap- except for a
stronger, strict inequality requirement on the Lie derivative of V. The right conjunct of the right
premise of Lyap- is cut and Skolemized with dL; the resulting antecedent is abbreviated with

@=Vz(0< |z < 4% — V< 0) below. Next, instantiating £ = ~ in the stability antecedent
with VL and Skolemizing yields an initial disturbance § > 0 so that the ODE solutions from

states satisfying ||z||5 < 62 always stay within the ~ ball ||z||> < 7. The resulting antecedent is
abbreviated with ® = Vz ( |z))5 < 6% = [2' = f(2)] ||=]3 < 7).

Stab(z' = f(z)),@,6 > 0,® F Attr(z' = f(z))

L3 Stab(2’ = f(x)),y > 0,@F Attr(2’ = f(x))

cut, 3L Stab(z' = f(x)) F Attr(2’ = f(x))
cut, Lyap> F AStab(z' = f(x))

The existential quantifier in the succedent is witnessed by ¢ from the antecedents with IR and
the resulting sequent is simplified by Skolemization and instantiation of (® before axiom SAttr
is used to further simplify the succedent using the stability antecedent.

@ [o'=f(@)] ||2]2 < 42, e>0 F (2'=f(x)) ||z < 2

" @, [v'=f ()] [lx]; < 7*F Ve>0 (&'=f(2)) ||z]; < £

st Stab('=7(2)), @ 7 =f @)] 2]l < 7* - Asym(z'=f(z),=0)

et Stab(a'=f (2)), @, ®, ||z]|; < 6> Asym(a'=f(x), 2=0)

R R Stab(z'=f(z)),@,® F Vz ( |z)2 < 0% — Asym(z'=f(z),2=0))
R Stab(a'=f(z)),®, > 0, F Attr(2'=f(z))

The remaining open premise is a liveness property which is proved using rule SP,. from Corol-
lary 4.21 (page 97) with the choice of compact staging set S = &> < ||z]|; < y*ande = V.

*
e F o = f(2) & Jlall; > € Allzll; <v*]S ¥
= f@)] llzlls <y F [ = fe) & 2]y > €% @,e>0,5+V <0
e @, [v' = f(@)] el <7 e>0F (2 = f(2) ||=[l; <&
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The left premise proves with a differential cut dC of the antecedent and dW, r from the
resulting strengthened domain constraint ||z||; > €2 A ||z||3 <72. The right premise proves using
@ with antecedents S and £>0 to prove its implication LHS. [

Rule Lyap> uses the Lyapunov function V' as an auxiliary, energy-like function near the

origin which has non-positive derivative 1% < 0. Intuitively, this guarantees that the energy
of the system is non-increasing along ODE solutions near the origin so those solutions (with
sufficiently low energy) must stay close to the stable origin (energy V' (0) = 0). Rule Lyap-. is

similar, except the derivative is strictly negative IV < 0 so the energy decreases along system
trajectories towards 0 at the asymptotically stable origin, see Fig. 5.2. The right premise of both
rules use 3y>0Vz (0< ]2 <y? — - ) to require that the Lyapunov function conditions are

true in a y-neighborhood of the origin. The subtle difference in sign condition for V between
rules Lyap>, Lyap- is illustrated for the pendulum in the following example.

Example 5.7 (Pendulum asymptotic stability). For ODE «; from (5.1), a suitable Lyapunov

. . .- . 2 (b0+w)?+w?
function for proving its stability [89] is V' = a5 + “~————

along oy is V = —2(ab? + w?). Stability® is formally proved in dL for any parameter values
a > 0,0 > 0 using rule Lyap> because both of its resulting arithmetical premises are provable
by k. The derivation is shown below, where the left premise resulting from rule Lyap> is omitted
as it proves trivially by evaluation. The existentially quantified right premise proves by r since
V is positive except at the origin and its Lie derivative is non-positive.

, where the Lie derivative of V'

k
Y a>0,b>0F3IT>0V0Vw (0< ?+w? <725V >0A—2(ab? +w?) <0)
Wapzg > 0,0 > 0 Stab(a;)

When b > 0, i.e., friction is non-negligible, an identical derivation with Lyap- instead
of Lyap> proves asymptotic stability because —%(a@z + w?) is negative except at the origin.
Indeed, displacements to the pendulum’s resting state can only be dissipated in the presence of
friction and not when b = 0. A

5.2.4 Asymptotic Stability Variations

Asymptotic stability is a strong guarantee about the local behavior of ODE solutions near
equilibrium points of interest. In certain applications, stronger stability guarantees may be
needed for those equilibria [89]. This section examines two standard stability variations, shows
how they can be proved in dL, and analyzes their logical relationship with asymptotic stability.

Exponential Stability

As its name suggests, the first stability variation, exponential stability, guarantees an exponential
rate of convergence towards the equilibrium point from an initial displacement.

*Recall o is a linearization of the trigonometric pendulum ODE model c, from Example 5.1 for simplicity. The

2 2 .
Lyapunov function V' = a(1 — cos(0)) + W with Lie derivative V' = — (a6 sin(6) 4+ w?) proves stability
for o, [89] but requires arithmetic reasoning over trigonometric functions.
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Definition 5.8 (Exponential stability [71, 89, 165]). The origin 0 € R™ of ODE 2/ = f(x)
is exponentially stable if there are positive constants «, 5,0 > 0 such that for all initial
states x = x(0) with [|z||, < 0, the right-maximal ODE solution z(¢) : [0,7") — R" satisfies
lz(t)]l, < al|z(0)],exp (—Ft) for all times 0 <t < T

Exponential stability bounds the norm of solutions to ODE 2’ = f(z) near the origin by a
decaying exponential. It is specified in dL as follows.

Lemma 5.9 (Exponential stability in dL). The origin of ODE ' = f(x) is exponentially stable
iff the following dL formula is valid. Variables «, 3,0,y are fresh, i.e., not in z, f(x).

EStab(z' = f(z)) =3a>036>036>0Vz (Us(x = 0) —
ly:=a|lallys2’ = f(a),y' = —28y] |lz]l; < v)

Proof. The quantifiers 3a>035>030>0Vx (Z/{5<I =0) — - ) syntactically express the re-
spective quantifiers in the definition of exponential stability from Def. 5.8 in dL. For an initial
state satisfying Us(z = 0), i.e, with ||#(0), < 6, the assignment y := o2 ||z||; sets the ini-
tial value of fresh variable y (before the ODE) to o?||x(0)||3. Let x(¢) : [0,7) — R" and
y(t) : [0,T) — R respectively be the x and y projections of the unique, right-maximal so-
lution of the ODE 2’ = f(z),y’ = —2fy. By construction, the unique ODE solution for the
y-coordinates is y(t) = a2 ||z(0)||5 exp (—2/t), so the postcondition ||z||5 < y of the box modal-
ity expresses that for all times 0 < t < T, ||z(t)||5 < a?||z(0)|| exp (—25t) or, equivalently,
[(®)l, < o 2(0)l,exp (~3t), as required. .

Formula EStab(z’ = f(x)) uses a fresh ghost variable y with ODE 3y’ = —2fy and initialized
to a? ||z||3 so that y differentially axiomatizes (Proposition 3.34) the squared decaying exponential
function a? [|2(0) || exp (—2/t) along ODE solutions which bounds the squared norm term ||z 3.
An alternative (explicit) specification of exponential stability can also be given in an extended
term language with the exponential function exp, using fresh variables y to syntactically store
the initial norm value and ¢ to syntactically track the progression of time with ¢’ = 1:

EStabE(z’ = f(z)) =3a>038>035>0Vz (Us(z = 0) —
ly:=a?||zll3;t:=0;2" = f(x),t' = 1] [|z[|; < yexp (—21))

Corollary 5.10 (Exponential stability characterizations). The following axiom is derivable in dL,
where variables y,t are fresh in ODE 2’ = f(x).

y=a?|zlly;t=052" = f(x),t' = 1] |25 < yexp (—26t)

[
EStabE
& [y=a ||zl = flx),y' = —28y] ||2]; <y

Proof in Appendix C.1.1.

The explicit characterization EStabE (2’ = f(x)) corresponds more directly to Def. 5.8 but
needs explicit reasoning over the exponential function in the postcondition of the box modality.
In contrast, the implicit polynomial characterization of exponential decay given in EStab(z’ =
f(z)) allows syntactic proof steps to use decidable real arithmetic reasoning [14, 197] if the
provided Lyapunov functions V' are also polynomial terms. Corollary 5.10 shows that the two
characterizations can be used interchangeably in proofs.
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Lemma 5.11 (Lyapunov function for exponential stability). The following Lyapunov function
proof rule for exponential stability is derivable in dL, where ki, k2, ks € Q are positive constants.

F 3y>0v (]2l <92 = B lal <V < K|l AV < —2k5V)
F EStab(a’ = f(x))

Lyapg

Proof in Appendix C.1.1.

Rule Lyapg enables proofs of exponential stability in dL where the Lyapunov function

derivative condition V' < —2k3V guarantees that the (auxiliary) system energy V' is bounded
above by the decaying exponential exp (—2k3t) as required in EStab(z’ = f(z)) (with 5 = k3);
the factor 2 arises from the use of the squared norm in the specification. In fact, the proof
of Lemma 5.11 yields quantitative bounds, where EStab(z’ = f(x)) is explicitly witnessed with
scaling constant o = % and decay rate 5 = k3. These can be used to calculate time bounds
when the system state will return sufficiently close to the origin. Similarly, the disturbance
in EStab(z’ = f(x)) is quantitatively witnessed by %7 for any ~ witnessing validity of the
premise of rule Lyapg. This yields a provable estimate of the region around the origin where
exponential stability holds; this latter estimate is explored next.

Region of Attraction

Formulas Attr(z’ = f(x)) and EStab(2’ = f(z)) both feature a subformula of the form
36>0Vz (Us(x = 0) — - - - ) which expresses that attractivity (or exponential stability) is locally
true in some ¢ neighborhood of the origin. In many applications, it is useful to find and rigorously
prove that a given set is attractive or exponentially stable with respect to the origin [89, Chapter
8.2]. The second stability variation yields provable subsets of the region of attraction, including
the special case where it is the entire state space. This is formalized using the following variants
of Attr(a’ = f(x)) and EStab(z’ = f(z)) within a region characterized by the formula P.

Attr" (2" = f(z), P) =Va (P — Asym(2' = f(z),z = 0))
EStab” (2’ = f(z), P) = 3a>038>0Vz (P —
ly:=a?|lzl3;2" = f(2),y' = =28y] 25 < v)

The formula Attrf (2’ = f(z), P) is valid iff the set characterized by P is a subset of the
origin’s region of attraction [89]. For example, Attr(z’ = f(x)) is equivalent to an existentially
quantified region of attraction 30 > 0 Attrt (2' = f(z),Us(x = 0)). The flexibility afforded by
the choice of P is useful for formalizing stronger notions of stability in dL, such as the following
global stability notions [71, 89].

Definition 5.12 (Global stability [71, 89, 165]). The origin 0 € R™ of ODE 2’ = f(z) is globally
asymptotically stable if it is stable and its region of attraction is the entire state space, i.e., for
all zx = z(0) € R", the right-maximal ODE solution z(¢) : [0,7") — R" satisfies lim; ,7 x(t) = 0.
The origin is globally exponentially stable if there are positive constants «, 5 > 0 such that
for all initial states x = x(0) € R", the right-maximal ODE solution x(t) : [0,7) — R™ satisfies
lz(t)]l, < al|z(0)],exp (—Ft) for all times 0 <t < T'.
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Lemma 5.13 (Global stability in dL). The origin of ODE z’ = f(x) is globally asymptotically
stableiff the dL formula Stab(z' = f(z))AAttrP (2’ = f(x), true) is valid. The origin is globally
exponentially stable iff the dL formula EStab® (2’ = f(x), true) is valid.

Proof. The proof is identical to Lemmas 5.4 and 5.9, respectively, except the existential quan-
tification over a local neighborhood of the origin 36 > 0Vz (Us(x = 0) — ---) is replaced
by universal quantification over all initial states (where P = true), i.e., Vx (true — ---), as
required by the global stability definitions. ]

Global stability ensures that all perturbations to the system state are eventually dissipated.
Their proof rules are similar to Lyap-. and Lyapg respectively.

Lemma 5.14 (Lyapunov function for global stability). The following Lyapunov function proof rules
for global asymptotic and exponential stability are derivable in dL. In rule Lyapg, ki, ko, ks € Q

are positive constants.
e FIO)=0AV(0) =0 2£0F V>0 V<0 FVbIy>0Va (V<b— Uy (z = 0))
yap> F Stab(z/ = f(x)) A AttrP (2 = f(2), true)
- R lely <V < Bllzla AV < —2kV
F EStabP (2/ = f(x), true)

Lyapy

Proof in Appendix C.1.1.

Example 5.15 (Pendulum global exponential stability). For simplicity, instantiate Example 5.7
2 2
with parameters a = 1, b = 1. The Lyapunov function then simplifiesto V' = % + w with

(62 4-w?
2

Lie derivative V = — ), which satisfies the real arithmetic inequalities # <V < 024w?

and V < —%V. Thus, rule Lyapg proves global exponential stability of o; with &y = %, ko =1,

and k3 = %. An important caveat is that Example 5.7 used a local small angle approximation, so
this global phenomenon does not hold for a real-world pendulum (nor for «,). A

Logical Relationships

With the proliferation of stability variations just introduced, it is useful to take stock of their
logical relationships. An important example is shown in the following corollary.

Corollary 5.16 (Exponential stability implies asymptotic stability). The following axioms are
derivable in dL.

EStabStab EStab(z’ = f(x)) — Stab(2’ = f(x))

EStabAttr EStab”(z/ = f(x), P) — Attr"(2/ = f(z), P)

Proof in Appendix C.1.1.

Derived axioms EStabStab, EStabAttr show that exponential stability implies asymptotic
stability. In proofs, EStabAttr allows the region of attraction to be estimated using the region
where solutions are exponentially bounded.
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5.3 General Stability

This section provides stability definitions and proof rules that generalize stability for an equilib-
rium point from Section 5.2 to the stability of sets. These definitions are useful when the desired
stable system state(s) is not modeled by a single equilibrium point, but may instead, e.g., lie
on a periodic trajectory [89], a hyperplane, or a continuum of equilibrium points within the
state space [71]. The generalized definition is used to formalize two stability notions from the
literature [71, 89] and to justify their Lyapunov function proof rules.

5.3.1 General Stability and General Attractivity

The following general stability formula defines stability in dL with respect to an ODE 2’ = f(x)
and formulas P, R. The quantified variables ¢, ) are assumed to be fresh by bound renaming, i.e.,
do not appear in z, f(z), P or R.

Staby (' = f(z), P, R) = Ve>036>0Vx (Us(P) — [2' = f(2)|U(R))

This formula generalizes stability of the origin Stab(z’ = f(z)) by adding two logical tuning
knobs that can be intuitively understood as follows. The precondition P characterizes the initial
states from which the system state is expected to be disturbed by some disturbance 9. The
postcondition R characterizes the set of desired operating states that the system must remain
close (within the ¢ neighborhood of R?) after being disturbed from its initial states.

The general attractivity formula similarly generalizes Attr? (2’ = f(x), P) with a postcon-
dition R towards which the ODE solutions from initial states satisfying precondition P are
asymptotically attracted.

Attry (' = f(2), P, R) =Vz (P — Asym(2' = f(z), R))

Lemma 5.17 (General Lyapunov functions). The following Lyapunov function proof rule for
general stability with two stacked premises is derivable in dL, where formulas O(U,(R)) and U, (R)
characterize the topological boundary and closure of the set characterized by U (R), respectively
(see Section 2.2.2 and Appendix B.1.3).

FP—R

Vo (00U (R)) — V = W)A
FVe>030<y<eIW | F0<0<yVz (Us(P) — RV V<IW)A

Vo (RVV<W = [2'=f(z) &U,(R)|(RV V<WV))
- Stabk (v'=f(z), P, R)

GLyap

Proof Summary (Appendix C.1.2). The derivation of rule GLyap generalizes the ideas behind the
derivation of rule Lyap-, where the second (lower) premise of the rule gives an (unsimplified)
condition on the Lyapunov function V' for proving general stability. [

Rule GLyap proves general stability for precondition P and postcondition R. It generalizes
the Lyapunov function reasoning underlying rule Lyap> to support arbitrary pre- and postcon-

ditions. The conjunct Vz (O(U,(R)) — V > W) requires V' > W on the boundary of I, (R)
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while the middle conjunct requires V' < W for some small neighborhood of P excluding R.
The conjunct Vx (R VV < W — - ) asserts that R V V' < W is an invariant of the ODE

within closed domain U/, (R). This invariance question is provably equivalent in dL to a formula
of arithmetic (Chapter 3), so the premises of rule GLyap are, in theory, even decidable by r
for a given candidate (polynomial) Lyapunov function V' and for semialgebraic formulas P, R
(Section 3.2.1). In practice, it is prudent to consider specialized stability notions, for which the
premise of rule GLyap can be arithmetically simplified. Proof rules for generalized attractivity
are also derivable for specialized instances.

5.3.2 Specialization

General stability specializes to several stability notions in the literature.

Set Stability

An important special case of Staby, (z' = f(z), P, R) is when the desired operating states are
exactly the states from which disturbances are expected, i.e., R = P. This leads to the notion of
set stability of the set characterized by P [71, 89]. The following set stability definitions are
standard [71, 89], except (compared to the literature) the following definitions do not assume
any topological properties of the set characterized by formula P. The motivation for additional
topological restrictions is explained in Corollary 5.21.

Definition 5.18 (Set stability [71, 89]). Let dist(x, P) denote the distance of a point x € R" to
the set characterized by formula P. The set characterized by formula P is

« stable if, for all £>0, there exists 6>0 such that for all initial states z = 2(0) with
dist(z, P) < 4, the right-maximal ODE solution z(¢) : [0,7") — R" satisfies the distance
bound dist(z(t), P) < ¢ for all times 0 <t < T,

« attractive if there exists >0 such that for all initial states © = x(0) with dist(z, P) < ¢,
the right-maximal ODE solution z(t) : [0,7') — R" approaches the set characterized by
P asymptotically with lim,_,r dist(z(t), P) = 0,

+ asymptotically stable if it is stable and attractive, and

+ globally asymptotically stable if it is stable and for all initial states x = x(0) € R", the
right-maximal ODE solution z(¢) : [0,7") — R" satisfies the limit lim,_,7 dist(x(¢), P)=0.

Lemma 5.19 (Set Stability in dL). For the ODE x' = f(x), the set characterized by formula P is
i) stable, ii) attractive, iii) asymptotically stable, and iv) globally asymptotically stable iff
the following dL formulas are valid, respectively:
i) Stabk (2' = f(x), P, P),
ii) 36>0 Attrk (o' = f(z),Us(P), P),
iii) Stabk (2’ = f(x), P, P) A 36>0 Attrk (2 = f(z),Us(P), P), and
iv) Stabk (2/ = f(z), P, P) A Attrk () = f(z), true, P).
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Proof. Like Lemma 5.4, the correctness of these definitions is immediate from the semantics
of dL formulas because these definitions directly syntactically express the definitions in dL.
For ¢ > 0, the neighborhood formula U (P) characterizes the set of points z € R™ within
distance ¢ from P, i.e., dist(z, P) < €. Formula Asym(2’ = f(x), P) syntactically expresses the
limit lim;_,7 dist(z(t), P) = 0 for the right-maximal ODE solution x(t) : [0,7') — R™ in dL, as
shown in the proof of Lemma 5.4. O

The intuition for Lemma 5.19 is similar to Lemmas 5.4 and 5.13, except formula P (instead of
the origin) characterizes the set of desirable states. An application of set stability is shown in
the following example.

Example 5.20 (Tennis racket theorem [9]). The following system of ODEs models the rotation
of a 3D rigid body [33, 71], where x1, x5, x5 are angular velocities and I, > I, > I3 > 0 are the
principal moments of inertia along the respective axes.

13 — Il Il - I2

/ /
ToX3, Loy = I T3, XTg = 7 T1T2
2 3

/:IQ_IB

o =2 7
1

When such a rigid object is spun or rotated on each of its axes, a well-known physical
curiosity [9] is that the rotation is stable in the first and third axes, whilst additional (unstable)
twisting motion is observed for the intermediate axis. Mathematically, a perfect rotation, e.g.,
about 1, corresponds to a (large) initial value for x; with no rotation in the other axes, i.e.,
x9 = 0, 3 = 0. Accordingly the real-world observation of stability for rotations about the first
principal axis is explained by stability with respect to small perturbations in x2, x3, as formally
specified by formula (5.3) below. Note that the set characterized by formula x5 = 0 A 23 = 0 is
the entire x; axis, not just a single point. Similarly, rotations are stable about the third principal
axis iff formula (5.4) is valid.

Stabf{(ozm To = 0N T3 = 07132 =0A T3 = O) (53)
Stabg (a, 21 = 0 A 29 = 0,27 = 0 A 25 = 0) (5.4)
The validity of formulas (5.3) and (5.4) are proved in Example 5.23. A

The formal specification of set stability yields three provable logical consequences which are
important stepping stones for the set stability proof rules.

Corollary 5.21 (Set stability properties). The following axioms are derivable in dL. In ax-
iom SClosure, formula P characterizes the topological closure of formula P (see Section 2.2.2
and Appendix B.1.3). In axiom SClosed, formula P characterizes a closed set.

SetSAttr Stabf (2 = f(z), P, P) — (Asym(z/ = f(x), P) +» Ve>0 (2’ = f(z)) U.(P))

SClosure Stabk(z' = f(z), P, P) <> Stabk (2' = f(x), P, P)

SClosed Stabk (2’ = f(z), P, P) = Va (P — [2' = f()]P)

Proof in Appendix C.1.2.
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Axiom SetSAttr generalizes SAttr and provides a syntactic simplification of the region of
attraction for formula P when P is stable. Axiom SClosure says that stability of P is equivalent
to stability of its closure P, because for any perturbation § > 0, the neighborhoods U;(P) and
Us(P) are provably equivalent in real arithmetic. Axiom SClosed says that for closed formulas
P, invariance of P is a necessary condition for stability of P. Without loss of generality, it
suffices to develop proof rules for stability of formulas characterizing closed (using SClosure)
and invariant (using SClosed) sets. Indeed, standard definitions of set stability [71, 89] usually
assume that the set of concern is closed and invariant.

Lemma 5.22 (Set stability Lyapunov functions). The following Lyapunov function proof rules for
set stability are derivable in dL. In derived rules SLyap> and SLyap-., formula P characterizes a
compact (i.e., closed and bounded) set. In derived rule SLyapZ, the two premises are stacked and
there are no topological restrictions on formula P. -

PH=f@)]P -PFV>0AV<0 0PFV<0

SL
yap= - Stabk (z' = f(x), P, P)
o Pt/ =f(@)]P -PFV>0AV <0 OPFV<O
Y= NTStabl (v = f(x), P, P) A 36>0 Atk (z/ = f(x), Us(P), P)
Pk [a' = f(2)]P
iy (Y OU(P) > V= W)A N
F Ve>030<y<e J0<o<yVx (%(P) AN-P—=V <W)
S Va (U, (P) A ~P — V < 0)
yap= - Stabg (¢' = f(x), P, P)
Proof'in Appendix C.1.2.

All three proof rules have the necessary premise P - [2' = f(z)]P which says that for-
mula P is an invariant of the ODE 2/ = f(z). Rules SLyap>, SLyap-. are slight generaliza-
tions of Lyapunov function proof rules for set stability [71] and they respectively generalize
rules Lyap>, Lyap- to prove stability for an invariant P. Importantly, both rules assume that P
characterizes a compact, i.e., closed and bounded set, which simplifies the arithmetical condi-
tions on V in their premises. The rule without the boundedness requirement on P suggested
in the remark after [89, Definition 8.1], is unsound, see Counterexample C.2. For asymptotic
stability (in rule SLyap-.), boundedness also guarantees that perturbed ODE solutions always
exist for sufficient duration, which is a fundamental step in the ODE liveness proofs (Section 4.3).
Rule SLyap? is derived from rule GLyap using invariance of P by the first premise; it provides
a means of formally proving the set stability properties (5.3) and (5.4) from Example 5.20.

Example 5.23 (Stability of rigid body motion). The proof for (5.3) uses the Lyapunov function

V=14 11_312 T3 — 131_211 3), whose Lie derivative is V' = 0, and rule SLyap% with formula P =
w3 = 0 A xg = 0. The proof for (5.4) is symmetric. For the top premise of rule SLyap?, formula
P is a provable invariant of the ODE «,. by DRI. The bottom premise, although arithmetically

complicated, can be simplified by choosing 7 = ¢ and deciding the resulting formula by .
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Recall that the 7 axis is not a compact set so neither of the standard proof rules for set
stability SLyap~, SLyap- would be sound for this proof. A

Epsilon-Stability

Motivated by numerical robustness of proofs of stability, Gao et al. [61] define e-stability for
ODE:s as follows, except the first quantification over v > ¢ below is strict whereas in the original
definition [61] it is v > e. This difference is immaterial for the purpose of e-stability as ¢ is
a numerical parameter for the radius of a ball around which disturbances to the origin are to
be ignored. In particular, an ODE is e-stable by the following definition is ae-stable for any
a € (0,1) by its original definition [61].

Definition 5.24 (Epsilon-Stability [61]). The origin 0 € R" of ODE 2z’ = f(z) is e-stable for
a positive constant ¢ > 0 if, for all 7 > ¢, there exists § > 0 such that for points x = z(0)
with ||z||, < J, the right-maximal ODE solution z(¢) : [0,7") — R" satisfies the norm bound
|z(t)||, <~y forall times0 <t <T.

Lemma 5.25 (e-Stability in dL). The origin of ODE 2’ = f(z) is e-stable for constant € > 0 iff
the dL formula Staby, (z' = f(x),z = 0,U.(z = 0)) is valid.

Proof. The formula Stabk (2 = f(x),z = 0,U.(x = 0)) is valid iff for all v > 0, there
exists 0 > 0 such that for points = (0) with ||z||, < 0, the right-maximal ODE solution
x(t) : [0,7) — R” satisfies ||z(t)||, < € 4+ 7 for all times 0 < t < T, where the neighborhood
U,U.(z = 0)) is equivalently characterized by ||z|2> < 7 + . This unfolded semantics is
equivalent to the mathematical definition of e-stability in Def. 5.24 by reindexing the universal
quantifier with v +— v + ¢ instead. O]

Unlike set stability, e-stability is an instance of general stability where the pre- and post-
conditions differ. In e-stability, systems are perturbed from the precondition z = 0 (the origin),
but the postcondition enlarges the set of desired states to a ¢ > 0 neighborhood of the origin,
which is considered indistinguishable from the origin itself [61]. An immediate consequence
of Lemma 5.25 is that rule GLyap can be used to prove e-stability, as shown in the next section.

5.4 Stability in KeYmaera X

This section puts the dL stability specifications and derivations from the preceding sections
into practice through proofs for several case studies in the KeYmaera X theorem prover [54].*
Examples 5.7, 5.15, 5.20, 5.23 have also been formalized. The insights from these proofs are
discussed after an overview of the case studies.

*See https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability/0DE.
Git hash: c856£ddb383232adbd86679ef65567f9b90190bf
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Inverted Pendulum. The stability of the resting state of the pendulum is investigated in
Examples 5.7 and 5.15. For the inverted pendulum «; from (5.2), the controlled torque (6, w)
must be designed and rigorously proved to ensure feedback stabilization [89] of the inverted po-
sition. A standard PD (Proportional-Derivative) feedback controller can be used for stabilization,
where the continuous control input has the form u (0, w) = k10 + kow for tuning parameters
k1, ko, based on the values of the state variables § (proportional term) and w (derivative term).
Asymptotic stability of the inverted position is achieved for any control parameter choice where

k1 > a and ky > —b. The sequent a > 0,b > 0,k; > a, ks > —b F AStab(«;) is proved in
(k1—a)6? + ((b+k2)0+w)?+w?
2 1 :

KeYmaera X using the Lyapunov function

Frictional Tennis Racket Theorem. The stability of a 3D rigid body is investigated for «, in
Examples 5.20 and 5.23. The following ODEs model additional frictional forces that oppose the
rotational motion in each axis of the rigid body, where a4, a5, a3 > 0 are coefficients of friction:

/_[2_[3 /_[3_11 /_[1_[2
Tol3 — 011, Ty = T3T1 — Qalg, Ty = b
3

XT1Tg — Q33

In the presence of friction, rotations of the rigid body are globally asymptotically stable in
the first and third principal axes, as proved in KeYmaera X.

I'=15>10,10 > 15,13 >0,a1 > 0,0 >0,a3 >0
' I Stabp (af, 72 = 0 Az = 0,25 = 0 A w3 = 0) A Attry (ay, true, 75 = 0 A 13 = 0)
I+ Stabg(af,xl =0Axy =0,y =0A 123 =0) A Attrg(af, true,x;y = 0 A xg = 0)

Both asymptotic stability properties are proved using SLyap% and the liveness property
(Chapter 4) that the kinetic energy I 2?2 + I,23 + Is22 of the system tends to zero over time.
The latter property implies that solutions of oy exist globally and that the values of z1, z2, 73
asymptotically tend to zero, which proves global asymptotic stability with the aid of SetSAttr.
Even though a proof rule for (global) asymptotic stability of general nonlinear ODEs and
unbounded sets is not available (Section 5.3), this example shows that formalized stability
properties can still be proved on a case-by-case basis using dL’s ODE reasoning principles.

Attractive but Unstable System. Consider the ODE
a, = 2’ = (1 + 2)*(1 — z) which has equilibrium points
at x = *1 as visualized on the right. The set characterized
by formula P = x = 1V 2 = —1 is globally attractive but
not stable, i.e., the formulas Attry (' = f(z), true, P) and
—Stabk (2’ = f(z), P, P) are valid. Intuitively, all points
to the left of z = —1 are attracted towards the blue equilibrium point while all other points are
attracted to the red equilibrium point. However, the set consisting of both equilibria is not set
stable because states arbitrarily close to the right of the blue point are attracted towards the
red point, so those points attain a maximal distance of 1 from both equilibria at x = 0 (unfilled
black square). The proof of global attractivity in KeYmaera X follows the above intuition by case
splittingonz < —1V —1 < 2 < 1V z > 1. The proof of instability shows that points close to
the right of z = —1 eventually reach z = 0 (violating set stability) on their way towards = = 1.

(1+2)*(1 —x)
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Table 5.1: Proof statistics for ODE stability properties proved in Section 5.4. Examples 5-11
refer to the correspondingly numbered examples from Ahmed et al. [3]. “Dim.” is the number
of continuously evolving state variables in the ODEs; “Param.” is the number of parameters
(non-state variables) in the stability specification; “Deg.” is the maximum degree of polynomials
with respect to the state variables in the ODEs; “Tactic Steps” counts the number of (manual)
user proof steps; and “Proof Time” measures the time taken (in seconds, averaged over 5 runs,
rounded to 3 decimal places) for the proof to execute in KeYmaera X.

Stability Property Dim. Param. Deg. Tactic Steps Proof Time (s)
Example 5.7 2 2 1 119 6.757
Example 5.15 2 2 1 20 4.533
Inverted Pendulum 2 4 1 119 31.427
Examples 5.20 and Example 5.23 3 3 2 58 5.801
Frictional Tennis Racket Theorem 3 6 2 162 11.919
Attractive but Unstable System 1 0 3 93 21.911
Moore-Greitzer Jet Engine [61] 2 0 3 34 6.258
Ahmed et al. [3, Example 5] 6 0 3 86 26.440
Ahmed et al. [3, Example 6] 2 0 3 31 0.673
Ahmed et al. [3, Example 7] 3 0 3 33 1.835
Ahmed et al. [3, Example 8] 2 0 5 31 0.978
Ahmed et al. [3, Example 9] 4 0 3 54 4.694
Ahmed et al. [3, Example 10] 2 1 1 31 1.126
Ahmed et al. [3, Example 11] 2 4 3 31 11.460

Moore-Greitzer Jet Engine [61]. The origin of the ODE modeling a simplified jet engine
O = @) = —xy — 327 — 123, @) = 321 — 25 is e-stable for ¢ = 1070 [61]. The sequent
e =1071 & Stabk (ay,, 72 + 22 = 0,27 + 23 < £?) is proved in KeYmaera X. The key proof
ingredients are a e-Lyapunov function which can be automatically generated [61] and manual
arithmetic steps, e.g., instantiating existential quantifiers appearing in the specification of

e-stability with appropriate values [61].

Other Examples [3]. Stability for several ODEs with Lyapunov functions generated by an
inductive synthesis technique [3, Examples 5-11] were successfully verified in KeYmaera X.
The proof for the largest, 6-dim. nonlinear ODE [3, Example 5] required substantial manual
arithmetic reasoning in KeYmaera X.* The arithmetical conditions in [3, Equation 1] are identical
to the premises of rule Lyap~ except [3, Equation 1] unsoundly omits the condition V' (0) = 0,
see Counterexample C.3. The generated Lyapunov functions remain correct because the inductive
synthesis technique [3] implicitly guarantees this omitted condition.

5The Lyapunov function as given in [3, Example 5] does not work for its associated ODE. It works if the ODE is
corrected with &1 = —2% + 423 — 62374, as in the literature [130].
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Summary. These case studies demonstrate the feasibility of carrying out proofs of various
(advanced) stability properties within KeYmaera X using this chapter’s stability specifications.
Table 5.1 provides a summary of statistics from these proofs, where all experiments were run
on an Ubuntu 18.04 laptop with a 2.70 GHz Intel Core i7-6820HQ CPU and 16GB memory. The
proofs share similar high-level proof structure, which suggests that proof automation could
significantly reduce proof effort [55]. Such automation should also support user input of key
insights for difficult reasoning steps, e.g., real arithmetic reasoning with nested, alternating
quantifiers. These insights are used in the implementation of (more general) switched system
stability automation in Chapter 6.

5.5 Input-to-State Stability

This chapter has, thus far, focused on stability of ODEs with respect to perturbations of the system
state. This section takes a brief detour to examine stability properties of ODEs under perturbations
of the system dynamics, e.g., for a system under continuous feedback control, the system designer
may wish to account for noisy or unexpected perturbations to the continuous inputs, in addition
to state disturbances. A key barrier to formalizing stability under continuous perturbations
using ODEs in dL, i.e., without extensions like differential games [143] or differential-algebraic
programs [137], is those properties often need higher-order quantification over functions that
model perturbations of ODEs. As an example, consider the notion of input-to-state stability [71,
89, 181, 182] for an ODE 2’ = f(z, u(t)) with time-dependent control u(t) defined below.

Definition 5.26 (Input-to-state stability [71, 89, 181, 182]). The ODE z’ = f(x,u(t)) with
time-dependent input u(¢) and f(0,0) = 0 is input-to-state stable iff

* the unforced ODE (with 0 input) ' = f(x,0) is globally asymptotically stable and

* the ODE 2’ = f(z,u(t)) has the asymptotic gain property, i.e., for all £ > 0, there
exists A > 0, such that for all bounded functions u(t) with supremum norm ||u(t)|| < A
and for all z = x(0), the right-maximal ODE solution z(t) : [0,7) — R" satisfies
limsup, . [[£(t)]| < E.

The notion of input-to-state stability says that, without the forcing perturbation w(t), the
ODE 2’ = f(x,0) has the usual asymptotic stability with respect to perturbations of the system
state at the origin. In addition, for a bounded perturbation modeled by function u(¢), the ODE
remains asymptotically close to a ball around the origin with radius dependent on the magnitude
of the perturbing input. In particular, sufficiently small bounded perturbations to the continuous
dynamics cannot force the system arbitrarily far from the origin. Note that Def. 5.26 differs
slightly from the controls literature [71, 89, 181, 182] for uniformity with the rest of this chapter.
It is common to define input-to-state stability using so-called comparison functions, see the
literature [182, Section A]. The definition of input-to-state stability as a combination of global
asymptotic stability and asymptotic gain is one of many mathematically equivalent definitions
of input-to-state stability, as shown by Sontag and Wang [182, Theorem 1].

Turning to dL specification, by Lemma 5.13, global asymptotic stability of 2’ = f(z,0) is
specified by the formula Stab(z’ = f(x,0)) A AttrP (2’ = f(x,0), true). The asymptotic gain
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property, however, presents a challenge because the first-order quantifier syntax Vz /3z in
dL can only directly quantify over real numbers x. The following “formula” almost captures
the definition of asymptotic gain, where the required asymptotic bound on the norm of x(t)
is expressed by formula Asym({z’ = f(z,u(t)),t’ = 1},Ug(x = 0)) from Lemma 5.4. How-
ever, the “formula” is not syntactically allowed in dL because it uses higher-order (dependent)
quantification over all A-bounded functions u, as highlighted in red.

VE>03A>0Y|ul|  <AVz (Asym({z' = f(z,u(t)),t’ = 1},Up(x = 0)))

An alternative is to use dynamical extensions of dL that can express continuous perturbations
directly. For example, with the differential game [143] {2’ = f(x,u)&" ||ul|,, < A}, where the
input v is modeled by a continuous adversary that is constrained to output values u within the
domain ||u|| . < A, or the differential-algebraic program [137] {Juz’ = f(z,u) A |lull < A},
which models an input u that is chosen nondeterministically at each (continuous) time instant.

The base hybrid program language (without extensions) can be used to directly model
some sub-classes of perturbations u(t). As a preview of Chapter 6, consider the case where
the perturbations are piecewise constant, so they discretely switch between different values
on each time interval. Formally, the perturbations u(t) of interest are restricted to piecewise
constant functions with finitely many pieces on each finite time interval, so each u(t) is defined
by a sequence of switching times 0 = 79 < 7 < 7» < ... with 7;, — oo and a sequence
P1,P2, -+ € R, such that u(t) = p; forall 7,_; <t < 7;,1 < 4. The looping hybrid program
Qpiece Delow nondeterministically chooses a value with ||u|| ., < A on each loop iteration, and
then follows the ODE 2/ = f(x, u) for a nondeterministic duration.

Upiece = (u:=%;7||ull < Az’ = f(z, u))” (5.5)

Proposition 5.27. A state is reachable by hybrid program cup;ec. iff it is reachable in finite
time by the time-dependent ODE x' = f(x,u(t)) for some piecewise constant function u(t) with
lu®)]. <A, A € R and finitely many pieces on each finite time interval.

Proof Summary (Appendix D.1.1). The full proof is deferred to Chapter 6 because it is similar to
the proofs of the adequacy theorems for switched systems in that chapter. In the “=” direction,
a piecewise constant function u(t) is constructed from the sequence of choices for u := * from
the semantics of the loop in apiece. In the “<=” direction, a trace of hybrid program ap;ece is
constructed from the defining sequences 0 = 79 < 77 < 73 < ... and py, po,- -+ € R for u(t),
where each time interval [7;, 7,41] corresponds to one loop iteration in ayp;ece. O

Thanks to Proposition 5.27, the box modality formula [apiece] P expresses that for piecewise
constant u(t) (bounded with ||u(t)| ., < A), the solution of ODE 2’ = f(z,u(t)) satisfies
postcondition P at all times. Hence, safety properties of ODEs with piecewise constant (bounded)
perturbations can be specified and reasoned about in dL. Hybrid program models for other
switching mechanisms and their corresponding safety (and stability) specifications are explained
in more detail in Chapter 6.

Dually, the diamond modality formula (0piece) P’ expresses that for some piecewise con-
stant perturbations u(t), the solution of ODE 2’ = f(z,u(t)) eventually satisfies postcondi-
tion P. This leads to an important subtlety for stability specification because the formula
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Ve>0 (piece) [Opiece) Us (P) (similar to Lemma 5.4) characterizes that psece asymptotically ap-
proaches P for all u(t) with some (in red) piecewise constant prefix. A similar subtlety arises
for the differential game {7’ = f(z,u)&?||ul|,, < A} and differential-algebraic program
{Fua’ = f(z,u) A ||u||,, < A} discussed above, where, intuitively, the quantification over
all or some adversarial choice (or nondeterministic input Ju - - -) depends on the modality
in which the game appears (or differential-algebraic program) [143]. The question of how to
specify asymptotic gain for these models is subtle and left out of scope for this thesis. Neverthe-
less, Chapter 6 shows how to sidestep these subtleties for switched systems using the notion
of pre-attractivity from the controls literature [65, 66] which is specified as a quantified safety
property of switched system models.

5.6 Related Work

Stability is a fundamental property of interest across many different fields of mathematics [33,
77,98, 153, 165, 187] and engineering [71, 89, 99]. This related work discussion focuses on formal
approaches to stability of ODEs.

Logical Specification of Stability. Rouche et al. [165] provide a pioneering example of
using logical notation to specify and classify stability properties of ODEs. Alternative logical
frameworks have also been used to specify stability and related properties: stability is expressed
in HyperSTL [123] as a hyperproperty relating the trace of an ODE against two constant traces;
e-stability is studied in the context of d-complete reasoning over the reals [61]; region stability for
hybrid systems [151] is discussed using CTL*; the syntactic specification of Asym(z’ = f(x), P)
resembles the limit definition using filters [78]. This chapter uses dL as a sweet spot logical
framework, general enough to specify various stability properties of interest, e.g., asymptotic or
exponential stability, and the stability of sets, while simultaneously enabling syntactic, formal
proofs of those properties within the logic.

Formal Verification of Stability. There is a vast literature on finding Lyapunov functions
for stability, e.g., through numerical [130, 131, 200] and algebraic methods [49, 104]. Formal ap-
proaches are often based on finding Lyapunov function candidates and certifying the correctness
of those generated candidates [3, 61, 88, 170]. This chapter’s approach directly proves stability
specifications by step-by-step derivation using dL’s parsimonious axiomatization [139, 142, 144],
which goes beyond certification of arithmetic conditions on Lyapunov functions that imply
stability. This dL formalization yields logical insights into relationships between stability proper-
ties (e.g., Section 5.2.4 and Corollary 5.21). Furthermore, the practical application of the stability
derivations in KeYmaera X [54, 142] enables highly trustworthy certification of Lyapunov
function candidates generated by the aforementioned approaches (Section 5.4). Sections 5.3
and 5.4 also show that this chapter’s approach supports verification of advanced stability prop-
erties [61, 71, 89] within the same dL framework. New stability proof rules like GLyap can also
be soundly and syntactically justified in dL without the need for (low-level) semantic reason-
ing about the underlying ODE mathematics. As an example of the latter, semantic approach,
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LaSalle’s invariance principle is formalized in Coq [37] and used to verify the correctness of an
inverted pendulum controller [166].

5.7 Discussion

George Box’s famous quote—“All models are wrong, but some are useful”—is an important
adage to keep in mind whenever one is working with a model of a real-world system. Proofs
of stability for a model give increased confidence that conclusions drawn about that model
are useful because the models are sufficiently robust to real-world deviations. Such proofs are
especially important for justifying the correctness of control systems which must be designed
to operate robustly in the presence of real-world perturbations. This chapter shows how ODE
stability can be formalized in dL using the key idea that stability properties are V /3 -quantified
dynamical formulas. These specifications, their proof rules, and their logical relationships are all
syntactically derived from dL’s sound proof calculus, which enables trustworthy KeYmaera X
proofs that rigorously verify every step in an ODE stability argument, from arithmetical premises
down to dynamical reasoning for ODEs. Of course, the same adage applies to hybrid system
models of CPSs, which must also exhibit stability from both modeling and control perspectives.
The next chapter begins the exploration of hybrid system stability by extending the ideas and
derivations of this chapter to systems that discretely switch between a family of ODEs.
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Chapter 6

Stability for Switched Systems

This chapter applies the safety, liveness, and stability results for ordinary differential equa-
tions (ODEs) from the preceding chapters to deductive verification for switched systems. Dis-
crete switching between continuous controllers is a simple yet powerful hybrid control design
paradigm, but switched systems are known to exhibit subtle (in)stability behaviors so system de-
signers must carefully analyze the stability of closed-loop systems that arise from their proposed
switching control laws. This chapter begins by modeling various classes of switched systems
as looping hybrid programs so that safety and liveness properties for switched systems can
be compositionally verified by combining dL’s hybrid program reasoning principles with the
ODE safety and liveness reasoning developed in Chapters 3 and 4. Deductive proofs of switched
system stability for those models further blend classical ideas from the controls and verification
literature using dL: from controls, the approach uses standard stability notions for various
classes of switching mechanisms and their corresponding Lyapunov function-based analysis
techniques; from verification, ODE invariants underlying stability proofs from Chapter 5 are
lifted to switched systems by identifying appropriate loop invariants for each switching mecha-
nism, i.e., properties that are preserved across every switching loop iteration for their respective
looping hybrid program models. This blend of ideas enables a trustworthy implementation
of switched system stability verification in KeYmaera X, providing fully automated stability
proofs for standard classes of switching mechanisms. The generality of the dL approach also
allows for verification of switching control laws that require non-standard stability arguments
by modifying loop invariants to suitably express specific intuitions behind those control laws.
This flexibility is demonstrated on several case studies drawn from the literature.

6.1 Introduction

The study of hybrid systems, i.e., mathematical models that combine discrete and continuous
dynamics, is motivated by the need to understand the hybrid dynamics present in many real-
world systems [6, 28, 45, 66, 75, 144] (see Chapter 1). Various formalisms can be used to describe
hybrid systems, for example, impulsive differential equations [72]; switched systems [99, 189];
hybrid time combinations of discrete and continuous dynamics [65, 66]; hybrid automata [75];
and language-based models [45, 135, 144, 164, 188, 208, 213]. These formalisms differ in their

139



generality and in how the discrete-continuous dynamical combination is modeled, e.g., ranging
from differential equations with discontinuous right-hand sides, to combinators that piece
together discrete and continuous programs. Consequently, different formalisms may be better
suited for different hybrid system applications and it is worthwhile to explore connections
between different formalisms in order to exploit their various strengths for a given application.
This chapter investigates the connection between switched systems and dL’s hybrid programs.

A switched system consists of a family of continuous ODEs together with a discrete switching
signal which prescribes the active ODE that the system follows at each time. Switched systems
provide a powerful mathematical paradigm for the design and analysis of discontinuous (or
nondifferentiable) control mechanisms [43, 99, 118, 189]. Examples of such mechanisms include:
bang-bang controllers that switch between on/off modes; gain schedulers that switch between a
family of locally valid linear controllers; and supervisory control, where a supervisor switches
between candidate continuous controllers based on logical criteria [99, 118]. Switching con-
trol laws can be used to stabilize systems that cannot otherwise be stabilized by continuous
feedback control [99] (see Section 6.5.3). However, switched systems are known to exhibit
subtle (in)stability behaviors—recall Fig. 1.4 (page 6) which shows that switching between stable
subsystems can lead to instability [99]—so it is important for system designers to adequately
justify the stability of their proposed switching designs.

Hybrid programs model hybrid dynamics by combining discrete programming constructs
with continuous ODEs (see Section 2.1.3). This combination yields a rich and flexible language for
describing hybrid systems, e.g., with event- or time-triggered design paradigms [144]. Section 6.2
shows how various classes of switched systems can be fruitfully modeled using looping hybrid
programs, as illustrated by the following snippet. The switching loop body runs a discrete
controller u := ctrl(x) which selects a mode u, followed by the continuous plant 2’ = f,(x)
which evolves according to the selected mode.

{ u:=ctrl(z); // switching controller (discrete dynamics)
¥ = f,(x) // actuate decision (continuous dynamics) (6.1)
}*@invariant( ... ) // switching loop with invariant annotation

These models enable sound and compositional verification of switched systems in dL, e.g.,
the completeness results for ODE invariants from Chapter 3 are generalized to switched systems,
yielding an effective technique for proving switched system safety. Subtleties associated with
those models are also investigated, along with methods for detecting and avoiding those pitfalls.

Section 6.3 develops stability proofs for various classes of switching mechanisms using their
hybrid program models. The key insight is that control-theoretic stability arguments for switch-
ing control can be formally justified by blending techniques from discrete program verification
with analysis of continuous differential equations using dL. Similar to Chapter 5, switched system
stability is specified by nesting dL’s first-order quantification with its dynamic modalities, with
the added twist that the specifications must quantify over all switching behaviors of the system.
The resulting specifications are proved by combining fundamental ideas from verification and
control, namely: i) identification of appropriate loop invariants, @invariant in (6.1), i.e., proper-
ties of the (discrete) switching loop that are preserved across all executions of the loop body,
ii) compositional verification for separately analyzing the discrete u := ctrl(z) and continuous
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' = fu(x) dynamics of the loop body, and iii) Lyapunov functions, i.e., auxiliary energy func-
tions that enable stability analysis for the continuous dynamics. Crucially, these stability proofs
are syntactically derived from dL’s sound foundations for hybrid program reasoning [142, 144],
without the need to introduce new mathematical concepts such as non-classical weak solutions
or nondifferentiable Lyapunov functions [39, 65]. The remaining practical challenge is how to
(automatically) find suitable Lyapunov function candidates for a given switching mechanism;
the correctness of any generated candidates can be soundly checked in dL.

Section 6.4 adds support for switched systems to KeYmaera X [54], including a modeling in-
terface for switched systems, sum-of-squares search for Lyapunov function candidates [129, 154],
and fully automatic verification of stability specifications for standard switching mechanisms.
Notably, the implementation requires no extensions to KeYmaera X’s soundness-critical core and
thereby directly inherits all of KeYmaera X’s correctness guarantees [54, 115]. This trustwor-
thiness is necessary for computer-aided verification of complex switching designs because the
number of correctness conditions on their Lyapunov functions scales quadratically with the
number of switching modes (Section 6.3.3), making pen-and-paper proofs potentially error-prone
or infeasible. Section 6.5 further applies the deductive approach on three case studies, chosen
because each require subtle twists to standard switched system stability arguments.

* Longitudinal flight control [26]: This model is parametric (5 parameters, 2 state variables)
and its stability justification due to Branicky uses a “noncustomary” Lyapunov function [26,
43] with intricate arithmetic reasoning. The proof uses ghost switching, where virtual
switching modes are introduced for the sake of stability analysis, analogous to the use of
ghost variables in program verification [127] or in proofs for ODEs (Chapters 3 and 4).

* Automatic cruise control [126]: This hybrid automaton features switching between several
modes based on specific guard conditions: standard/emergency braking, accelerating, and
PI control. Lyapunov function candidates can be numerically generated with existing
tools, e.g., Stabhyli [116], but the results must be corrected for soundness.

* Brockett’s nonholonomic integrator [29]: A large class of control systems can be trans-
formed to the nonholonomic integrator but this system is not stabilizable by continuous
feedback [29, 99]. The stability argument must account for an initial control mode that
drives the system into a suitable region before a stabilizing control law can be applied.

These case studies are verified semi-automatically in KeYmaera X, with user guidance to
design and prove modified loop invariants that suitably capture the specific intuitions behind
their respective control laws. The flexibility and generality of the deductive approach enables
such (modified) stability arguments, while ensuring that every step in the argument remains
rigorously justified using sound dL logical foundations.

Reminder (Extended Term Language). This chapter uses an extended dL term language
following the extended term conditions and notational conventions of Section 3.2 because the

dL axiomatization remains sound for all extended term languages meeting those conditions.

Contribution. The material for this chapter is drawn from Tan and Platzer [193] and from Tan
et al. [196].
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t=2 t=0 switching

Figure 6.1: The green initial state evolves according to a hybrid program featuring (clockwise
from top): A) a discrete assignment (dashed line) followed sequentially by continuous ODE
evolution (solid line); B) a choice between two ODEs; C) a test that aborts (red x) system
evolutions leaving (); D) switching when the system state crosses the thick blue switching
surface; E) switching after time ¢ > 7 has elapsed; F) switching control that is designed to drive
the system state close to its initial position; and G) a loop that repeats system evolution.

6.2 Switched Systems as Hybrid Programs

This section explains how hybrid programs are used to model various classes of switching
mechanisms. Following the nomenclature from Liberzon [99], these mechanisms can be broadly
categorized into: autonomous switching (Section 6.2.2), i.e., without an explicit control logic [28,
99] and controlled switching (Section 6.2.3), like (6.1) where a discrete controller u := ctri(x)
decides the ODE 2/ = f,(x) to switch to on each switching loop iteration. The evolution of
various switching mechanisms and hybrid programs are illustrated in Fig. 6.1.

6.2.1 Mathematical Preliminaries

Switching phenomena can either be modeled explicitly as a function of time, or implicitly,
e.g., as a state predicate, depending on the real-world switching mechanism being modeled.
Mathematically, a switched system is described by the following data:

1. an open, connected set D C R™ which is the state space of interest for the system,
2. a finite (non-empty) family P of ODEs 2’ = f,(z) for modes p € P, and,

3. for each initial state w € D, a set of switching signals o : [0, 00) — P prescribing the ODE
x' = fou)(x) to follow at time ¢ for the system’s evolution from w.

Switching signals o : [0, 00) — P are always assumed to be well-defined [99, 189], i.e., every
o has finitely many discontinuities on each finite time interval in its domain [0, o), so that
they model physically realizable switching. For finite P, this means o is a piecewise constant
function with finitely many pieces on each finite time interval where, o prescribes a mode
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p € P to switch to on each piece. For simplicity, o is also assumed to be right-continuous [66],
so for neighboring discontinuities at times a < b, o has a constant value on the interval [a, b)
and its value changes at time 0. With these assumptions, switching signals are equivalently
defined by a sequence of switching times() = 19 < 7, < 72 < ... with 7, = 00 and a sequence
P1, P2, -+ € P where p; for ¢ > 1 specifies the value taken by o on the time interval [1;_1, 7;):

D1 ing§t<7'1

if p <t<
oty =P HT=tsT (6.2)

Pi ifTi,I <t<T

For a switching signal ¢ and initial state w € R", the solution ¢ of the switched system is
the function generated inductively on the sequences 7; and p; as follows. Define ¢(0) = w. For
switching time 7; with ¢ > 1, if  is defined at time 7;_1, then the definition of ¢ is extended by
considering the unique, right-maximal solution to the ODE ' = f,, () starting from ¢ (7;_1) [33],
e, i [0,6) = R withv;(0) = p(rim1), “42 = £, (i(t)),and 0 < ¢; < 00. If G < 7i—7iy,
then the system blows up before reaching the next switching time 7;, so define p(7;_1 +1) = ¥;(t)
on the bounded time interval ¢ € [0, (;). Otherwise, (; > 7, —7;_1, then define ©(7;_1 +t) = 1;(t)
on the time interval ¢ € [0, 7; — 7;_1]. This inductive construction uniquely defines a solution
¢ :[0,{) — R™ associated with w and o for (right-maximal) time ¢ > 0. The switched system
reaches ¢(t) at time ¢ € [0,(). When the system is associated with a family of domains @,
p € P, the switched system reaches (t) while obeying the domains iff for all i > 1 and time
v € [Ti—1, 7] N[0, ], the state () satisfies (),,. The truncated solution ¢ : [0,T,] — R" for
T, < ¢ is domain-obeying if the system obeys the domains for all times ¢ € [0, T,].

For simplicity, this chapter assumes that the state space is D = R". More general definitions
of switched systems are possible but are left out of scope [99]. For example, P can more generally
be an (uncountably) infinite family, like opiece from Proposition 5.27, and some switched systems
may have impulse effects where the system state is allowed to make instantaneous, discontinuous
jumps during the system’s evolution, such as the dashed jump in part A of Fig. 6.1.

6.2.2 Autonomous Switching

This section examines hybrid program models of autonomous switching mechanisms; these
models are syntactically simpler in the sense that they do not need an explicit program to model
their switching control logics [28, 99]. Nevertheless, models of these switching mechanisms
are useful because they can be used to describe real-world systems where discrete switching
behaviors occur nondeterministically outside of the system designer’s control [99]. Safety proofs
for these models account for all nondeterministic switching behaviors.

Arbitrary Switching

Real world systems can exhibit switching behaviors that are uncontrolled, a priori unknown,
or too complicated to describe succinctly in a model. For example, a driving vehicle may
encounter several different road conditions depending on the time of day, weather, and other
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unpredictable factors—given the multitude of combinations to consider, it is desirable to have a
single model that exhibits and switches between all of those road conditions without needing
explicit descriptions of exactly when and how switching between different conditions can occur.

Arbitrary switching is a useful tool for modeling such x
systems because it considers all possible switching signals
and their corresponding system evolutions. It is modeled by
the following hybrid program a,,, and illustrated in Fig. 6.2.

~

Qarb = ( U z' = fp(x)>* (6.3) ~ —— — ¢ .

peEP

Figure 6.2: Evolution of a,, that
Intuitively, avar, models arbitrary switching analogously (it hes between ODEs ' — =

to a computer simulation: on each loop iteration, the pro- (solid blue), 2/ = 1 (dotted black),
gram makes a (discrete) nondeterministic choice of switch- 4./ _ _,. (dashed red) from the
ing decision | J ¢ (-) to select an ODE 2’ = f,(z) which
it then follows continuously for an arbitrarily chosen du-
ration before repeating the switching loop. Two subtle be-
haviors are illustrated by the bottom trajectory in Fig. 6.2:
Qlarp can switch to the same ODE across a loop iteration or
it can chatter by making several discrete switches without
continuously evolving its state between those switches [177]. These behaviors are harmless for
safety verification because they do not change the set of reachable states of the switched system.
The adequacy of a,y, as a model of arbitrary switching is shown in the following proposition.

initial state (black circle). Switch-
ing steps are marked by green cir-
cles and faded colors illustrate pro-
gression in loop iterations for the
loop operator in aayy.

Proposition 6.1. A state is reachable by hybrid program o, iff it is reachable in finite time by a
switched system ©' = f,(x) forp € P following a switching signal 0.

Proof. This follows from the subsequent Proposition 6.2 with (), = true for all p € P. [

By Proposition 6.1, the dL formula [cv,,1,| P specifies safety for arbitrary switching, i.e., for all
switching signals o, all states reached by switching according to o satisfy the safety postcondition
P. Dually, formula (a1 ) P expresses that the system eventually reaches the goal P for some
switching signal o. Proofs of these specifications exploit compositionality [144] by combining
dL reasoning for the discrete loop and choice operators in o, with ODE safety and liveness
reasoning from Chapters 3 and 4. Conversely, reasoning principles for ODEs compositionally
lift to avayp, through dL axioms, so dL also has complete invariance reasoning principles for ayy,.
This is shown next, after a slight generalization to state-dependent switching models.

State-Dependent Switching

Arbitrary switching can be constrained by enabling switching to the ODE z’ = f,(x) only
when the system state belongs to a corresponding domain specified by formula (),. This yields
the state-dependent switching paradigm, which is useful for modeling real systems that are
either known or designed to have particular switching surfaces. State-dependent switching also
provides a simple means of modeling ODEs with continuous but nondifferentiable right-hand
sides, without extending dL’s smooth term language semantics [21, 142, 143]. For example, an
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ODE 2’ = max(e, €) can be modeled as a system that switches between the ODEs 2’ = e & e > é
and 2’ = € & e < é within the domains where the ODE RHS is dominated by e or € respectively
(see Section 6.5.1). For the finite family of ODEs with domains 2’ = f,(x) & Q,, p € P, state-
dependent switching is modeled as follows:

toae = (|J 0 = (@) £ Q) (64

peEP

Operationally, if the system is currently evolving in domain (); and is about to leave the
domain, it must switch to another ODE with domain (); that is true in the current state to
continue its evolution. Arbitrary switching a., is the special case of agyate With no domain
restrictions (), = true for all p € P). The following adequacy result generalizes Proposition 6.1
to consider only states that are reachable while obeying the specified domains.

Proposition 6.2. A state is reachable by hybrid program cvsy,:. iff it is reachable in finite time by
a switched system 1’ = f,(x) forp € P following a switching signal o while obeying the specified
domains Q).

Proof. Both directions of the proposition are proved separately for an initial state w € R™ using
the dL semantics of hybrid programs [135, 139, 142, 144] (see Section 2.2.2).

“=” Suppose (w, V) € [Astate].- By the semantics of dL loops, there is a sequence of states

W = W, W1, ...,w, = v for some n > 0 and for each 1 < ¢ < n, the states transition
according to the loop body, i.e., (wi—1,wi) € [Uyep @' = fp(z) & Q,]. In particular, for
each 1 < ¢ < n, there is a choice p; where state w;_; reaches w; by following the ODE
t’ = fp,(x) for some time ¢; > 0 and staying within the domain (),, for all times 0 < ¢ < (;
during its evolution.
The finite sequences (wo, w1, - .. ,wWy), (C1, .-, () and (p1, ..., p,) correspond to a well-
defined switching signal as follows. First, remove from all sequences the chattering indexes
1 < i < nwith ¢; = 0. This yields new sequences (&g, &1, - - -, Om), (51, . 5m), and
(P1,- .., Pm) with times ¢; > 0. Consider the switching signal o with switching times
T :Z§Z1Ejfor1 <i<mandT, =71+ 1fori>m,som <71 < ...andT; — oo.
Furthermore, extend the sequence of switching choices with p; = p,, for i > m. By
construction using (6.2), o is well-defined and the solution ¢ associated with ¢ from w
reaches v at time Z;n:l CNj and obeys the domains (), until that time.

Let o be a switching signal and ¢ : [0, () — R™ be the associated switched system solution
from w. Suppose that the switched system reaches ¢(t) for ¢ € [0, () while obeying the
domains (),. To show (w, p(t)) € [@state]. by the semantics of dL loops, it suffices to
construct a sequence of states w = wyp,wy, . . ., w, for some finite n, with w,, = ¢(¢), and
(wi—1,w;) € [Upep ' = fp(x) & Q] for 1 <i < n.

By (6.2), o is equivalently defined by a sequence of switching times 7p < 71 < 72 < ... and
a sequence of switching choices p1, po, . . ., where p; € P. Let 7, be the first switching time
such that ¢ < 7,,; the index n exists since 7; — 0. Define the state sequence w; = ¢(7;)
for 0 < i < nand w, = ¢(t). Note that wy = w by definition of ¢(0). It suffices to
show (w;_1,w;) € [/ = fp,(x) & Qp,] for 1 < i < n, but this follows by construction of
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¢ because w; is reached from w;_; by following the solution to ODE 2z’ = f,,(z), and, by
assumption, () satisfies ), for v € [r,_1, 7] N [0, 1]. O

Similar to o, Proposition 6.2 shows that dL’s box and diamond modality formulas express
safety (for all switching signals) and liveness (for some switching signal) properties of @state,
respectively. The next result syntactically derives sound and complete invariance reasoning
principles for state-dependent (and arbitrary) switching in dL.

Theorem 6.3. The following axioms are derivable in dL where P and all ODE domains (), for

p € P are semianalytic formulas. Formulas (ij)gf;), (P)Sj;), (ij)(_*])cp, (—|P)(_*])cp are the respective
semianalytic progress formulas Def. 3.24 with respect to the indicated ODEs for mode p € P.

Ve Vo (P — [Qgtate] P) ¢ /\p673 Vo (P — [2' = f,(x) & Q] P)

3 (%) P (%)

Al V2 (P = sl ) 6 A cp ( vz (P AQp A (@) fp(: (P)y, )A(*) )
YV (ﬂP AQp A (Qp)_fp — (ﬂP)_fp)

Proof Summary (Appendix D.1.1). Axiom SAlgtate derives immediately from Invgiate by equiva-
lently rewriting its RHS using the derived equivalent characterization of ODE invariants SAI&
from Theorem A.11 (page 212). Both directions of the equivalence Invgiate are derived separately.
The “+” direction, uses dL’s loop invariant rule to prove that P is a loop invariant of asate.
The “—” direction shows that a run of ODE 2’ = f,(x) & (), p € P must also be a run of asyate,
so if formula P is true for all runs of cvgtate, it must also be true for all runs of the ODEs. [

Axiom Invgiate equivalently characterizes invariants of gpare With invariants of each of its
constituent ODEs separately. Thus, when searching for an invariant of cgyate, it suffices to search
for a common invariant of every constituent ODE. The invariance of any candidate (common)
invariant P can be equivalently turned into an arithmetic question in dL by axiom SAlgite
which derives using dL’s complete axiomatization for ODE invariance from Chapter 3. In the
case where all ODEs in aigtate and P are all described by polynomials, axiom SAlgiate shows that
invariance for those state-dependent switching models is decidable because its RHS is a decidable
formula of real arithmetic [14, 197]. Following Chapter 3, the completeness result (but not
decidability) also applies to Noetherian functions, e.g., exponentials and trigonometric functions,
that can be used to describe state-dependent switching mechanisms. Indeed, for Noetherian
extensions, Corollary 3.39 shows that safety questions [(state] P With analytic postconditions P
are provably equivalent to arithmetic because astate is assignment-free.

Modeling Subtleties

The model astate as defined above makes no a priori assumptions about how the ODEs and
their domains 2’ = f,(z) & @, are designed, so results like Theorem 6.3 apply generally to all
state-dependent switching designs. However, state-dependent switching can exhibit some well-
known subtleties [99, 177] and it becomes the onus of modelers to appropriately account for
these subtleties. This section examines various subtleties that can arise in agtase and prescribes
sufficient arithmetical criteria for avoiding them; like Theorem 6.3, these arithmetical criteria
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are decidable for systems with polynomial terms [14, 197]. As a running example, let the line
X1 = T be a switching surface, i.e., the example systems described below are intended to exhibit
switching when their system state reaches this line.

Well-defined Switching. First, observe that the union of domains (), for p € P must
cover the entire state space; otherwise, there would be system states of interest where no
continuous dynamics is active. This can be formally guaranteed by checking validity of the
formula @: \/pep Qp. Next, consider the following pair of ODEs (illustrated below, right):

a7
=02 =1&x; > 29 =12, =0&x; < x9 et i
N -~ 7 N - v ‘ / . 3
x'=fa(x) & Q4 in green z'=fp(z) & Qp in blue 7
X2 /
A system evolution starting in Q4 = x; > x5 is illustrated on the X 1<Xa %
right. When the system reaches x; = x5 (illustration offset for clarity), 7 -
it is about to locally progress into Qp = x1 < x5 by switching to ODE ¢/ X1=X2
2’ = fp(x) but it gets stuck because it cannot make the infinitesimal s X1

jump from () 4 to enter (). Augmenting the domain () to 1 < x5 enables the switch. More
generally, to avoid systems getting stuck on infinitesimal jumps, domains (), can be augmented
to include states that locally progress into (), under the ODE 2z’ = f,(z) and, symmetrically,
states that locally exit (), [177]. Local progress (and exit) for ODEs is formalized using the
local progress () modality introduced in Section 3.5: recall that formula (' = f(z) & Q)O
characterizes the states from which ODE 2/ = f(x) locally progresses into ); conversely,
(@' = — f(x) & Q) characterizes those from which the ODE locally exits ). By the derived
axiom LP from Theorem 3.26 (page 60), local progress and local exit are provably characterized

by arithmetic formulas (Q)Sﬁk), (Q)(j} respectively. To avoid the stuck states exemplified above
for ODEs o' = f,(2) & Q,, p € P in Qsgate, it suffices to check validity of the formula @:

(Qp)gcz) v (Qp):)cp — (), for each p € P, which expresses that states locally entering or exiting
(), for ODE 2’ = f,(z) are included in @),,. Condition (2 is syntactically simpler but equivalent
to the domain augmentation presented in Sogokon et al. [177] for piecewise continuous models,
a form of state-dependent switching.

Sliding Modes. The preceding subtlety arose from incomplete domain constraint specifica-
tions. Another subtlety that can arise because of incomplete specification of ODE dynamics, as
exemplified by the following pair of ODEs (illustrated below, right):

i =02 =1&x; > 29 ri=112,=0&xz; <19

z'=fa(x) & Q 4 in green z'=fp(z) & Qp in blue

Systems starting in Q4 = 1 > 22 or Qp = 1 < 29 eventually
reach the line 1 = x5 (in red) but they then get stuck because the
ODEs on either side of 1 = x5 drive system evolution onto the line.
Mathematically, the system enters a sliding mode [99] along x1 = x5. This can be thought of
as infinitely fast switching between the ODEs that results in a new sliding dynamics along the
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switching surface 1 = x5 (dashed grey trajectory). When the sliding dynamics can be calculated
exactly, it suffices to add those dynamics explicitly to the switched system, e.g., adding the
sliding dynamics #} = £, 25 = $ & x1 = 1, to the example above allows stuck system states
on r; = x5 to continuously progress along the line (illustrated below, left). An alternative is
hysteresis switching [99] which enlarges domains adjacent to the sliding mode so that a system
that reaches the sliding surface is allowed to briefly continue following its current dynamics
before switching. For example, for a fixed ¢ > 0, the enlarged domains Q4 = x1 > 2 — € and
QB = r1 < x5 + ¢ allows the stuck states to evolve off the line for a short distance € > 0. This
yields arbitrary switching in the overlapped part of both domains (illustrated below, right). For
domains (), p € P meeting conditions @ and @), hysteresis switching is modeled by replacing
each (), with its closed e-neighborhood for ¢ > 0. Another way of modeling hysteresis using an
auxiliary memory variable to remember the current system mode is shown in the next section.

o fA A
X1 X1
Explicit sliding;: 93/1 =0,2b =1& 1 > 29 Hysteresis: 95/1 = 0,3:/2 =1&z1 > a9—1
i =125=0&m <9 ri=12,=0&x <m3+1
1, 1

Ty = 51 %2 = 5&1’1 = T3
Both approaches can be used (and can be mixed) in the hybrid program model ag;ate. To

guarantee the absence of stuck states, it suffices to check validity of the formula ®: \/ (Qp)gcz),
i.e., every point in the state space can switch to an ODE which locally progresses in its associated
domain. Models meeting conditions 2 and 3 also meet condition (.

Zeno Behavior. Hybrid and switched system models can also exhibit Zeno behavior, where
the model makes infinitely many discrete transitions in a finite time interval [99, 214], see
also [144, Expedition 9.1]. Such behaviors are an artifact of the model and are not reflective of
the real world. As such, Zeno traces are typically excluded when reasoning about hybrid system
models [99, 214], e.g., all switching signals considered in this section (Section 6.2.1) are assumed
to be well-defined (thus non-Zeno) and Proposition 6.2 specifies safety for all finite executions
of state-dependent switching. The detection of Zeno behavior in switched systems is left out of
scope for this thesis and the (upcoming) specification of switched system stability in Section 6.3
implicitly excludes them from consideration

6.2.3 Controlled Switching

This section turns to controlled switching models, where an explicit controller program is re-
sponsible for making logical switching decisions between the ODEs 2’ = f,(x),p € P. The
discrete fragment of hybrid programs can be used to flexibly model (computable) switching
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logics, e.g., those that combine state-dependent and time-dependent switching constraints, or
make complex switching decisions based on the state of the system. Controlled switching is
modeled by the hybrid program a.,1 in (6.5):

switching controller

T ~ ™~

Ceor = (au; U Cu=pia' = fo(a,9),0 = gz, 1) & Q) ) (6.5)

peEP

oy (plant, actuate decision)
7\

initialization

The model avc4r1 resembles the shape of standard models of event-triggered and time-triggered
systems in dL [144] but is adapted for controlled switching. It uses three subprograms: «; initial-
izes the system, then «,, (modeling the switching controller) and «, (modeling the continuous
plant dynamics) are run in a switching loop. The discrete programs «;, o, decide on values
for the control output v = p,p € P and the plant program «, responds to this output by
evolving the corresponding ODE 2’ = f,(z,v),y" = gy(x,y) & Q,. The programs «;, v, must
not modify the system state variables x, but they may modify other auxiliaries, including aux-
iliary continuous state variables y used to model timers or integral terms used in controllers,
see Section 6.5.2. This control-plant loop is a typical structure for hybrid systems modeled in
dL [135, 144]. As an example, the controller «,, below models the discrete switching logic present
in hybrid automata [28, 75, 135], without discrete jumps in the system state:

o, = U (?u =p; (U (?Gp,q; R, iu:= q) Uu :zu))

rer acr (6.6)
Rp,q =Yp:=€1,Y2:=€9,..., Y =€

For each mode p € P, the switching controller may nondeterministically switch to mode
q € P if the guard formula G, , (with free variables x, y) is true in the current state. By default,
the controller can trivially choose to stay in the current mode with u := . If the transition is
taken, the reset map R, , sets the values of auxiliary state variables y;, . .., y; respectively to
the value of terms ey, . . ., e;. Two important classes of switching mechanisms are modeled as
special instances of a4, next.

Guarded State-Dependent Switching

The instance aguara corresponds to the automata controller from (6.6) with a; = U bep W=D
and guard formulas G, ;, = G, ,(x). It does not use auxiliaries y nor the reset map R, ,.

o = Uu::p

peEP
Q'guard = (67)
Qy = U (?u = p; (U (?Gpqgiu=q)Uu :zu))
peEP q€P

The model aguara adds a form of hysteresis [86] to the state-dependent switching model
from Section 6.2.2, so that switching decisions at each guard GG, , depend explicitly on memory
of the current discrete mode « in addition to the continuous state. For simplicity, the system
is initialized by «; to start in any mode p € P, although this can be modified for different
applications, e.g., if the system has known initial mode(s).
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Proposition 6.4. A state is reachable by hybrid program o gyarq iff it is reachable in finite time by
a switched system ' = f,(x) forp € P following a switching signal o while obeying the specified
domains (), and guards G, , for modes p,q € P.

Proof Summary (Appendix D.1.1). The proof is similar to Proposition 6.2; in the “=" direction,
the proof constructs a suitable switching signal from the execution of hybrid program cgyara; in
the “«” direction, the proof shows that a given switching signal corresponds to a run of cgyara.
The main difference in both directions is to show that the fresh auxiliary variable u used to
control the switching signal produces the intended hysteresis effect(s). ]

The model apiece from (5.5) in Section 5.5 (page 135) similarly uses an auxiliary variable u
to model a piecewise continuous function. The deferred proof of adequacy for ay;ece (Proposi-
tion 5.27, page 136) is given in Appendix D.1.1.

Time-Dependent Switching

The instance i, Shown below models time-dependent switching, where switching decisions
are based on the time elapsed in each mode. Here, time is tracked by an auxiliary timer variable
7 with 7/ = 1 added to each ODE.

(o, =7:=0; Uu::p
peP
Opige = 4 u = U (?u =p; (U (?Gp,q <7;7:=0;u:= q) Uu:= u)) (6.8)
peEP qeP
a, = U (7u=p;a’ = fy(z), 7 =1&T < O,)
\ peEP

The controller program «,, enables switching from mode p € P to q € P after a minimum
dwell time 0 < 60,, < 7 has elapsed and resets the timer whenever such a switch occurs.
Conversely, the plant o, restricts modes with a maximum dwell time 7 < ©,, for ©, > 0,p € P;
an unbounded dwell time ©, = oo is represented by the domain constraint ¢rue. A special case
of Qyine is slow switching, where the system is allowed to switch arbitrarily between ODEs but
there is a global minimum dwell time 6 > 0 where 6, , = 0 for all p, ¢ € P. A sufficiently large
minimum dwell time 6 can be used to stabilize switching between any family of stable linear
ODEs [99]. Dwell time restrictions can also be used to stabilize systems that switch between
stable and unstable modes [211]. Intuitively, the system should stay in stable modes for sufficient
duration (0, , < 7) while it should avoid staying in unstable modes for too long (7 < ©,).

Proposition 6.5. A state is reachable by hybrid program o ;.. iff it is reachable in finite time by
a switched system ©' = f,(z) forp € P following a switching signal o that spends at least time
0pq > 0 for each switchp € P to g € P along the solution and at most time ©,, > 0 for each
mode p € P entered along the solution.

Proof in AppendixD.1.1.

Building on Propositions 6.1-6.5, the next section turns to the study of switched system
stability in dL through their hybrid program models.
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6.3 Switched System Stability

This section explains how stability for hybrid program models of switched systems is formally
specified and verified using dL. Similar to ODEs, various stability notions are of interest in
the continuous and hybrid systems literature [61, 66, 99, 126, 151, 189]. Stability variations for
switched systems can also be formally specified (see Chapter 5) but this chapter focuses on
proving one form of stability (UGpAS, defined below) for variations of switching mechanisms.

6.3.1 Stability as Quantified Loop Safety

This section studies uniform global pre-asymptotic stability (UGpAS) for switched systems [65,
66, 99], defined as follows:

Definition 6.6 (UGpAS [65, 66]). Let ®(z) denote the set of all (domain-obeying) solutions
¢ :[0,T,] — R" for a switched system from state x € R". The origin 0 € R" is:

+ uniformly stable if, for all ¢ > 0, there exists 6 > 0 such that from all initial states
x € R"with ||z||, < 4, all solutions ¢ € ®(x) satisfy ||¢(t)||, < ¢ forall times 0 < t < T,

+ uniformly globally pre-attractive if, for all ¢ > 0,0 > 0, there exists 7' > 0 such that
from all initial states x € R" with ||z||, < 0, all solutions ¢ € ®(x) satisfy ||¢(¢)||, < ¢
for all times 7" < ¢t < T, and

* uniformly globally pre-asymptotically stable if the system is uniformly stable and
uniformly globally pre-attractive.

The UGpAS definition can be understood intuitively for a system with a given switching
control mechanism analogously to stability for ODEs (e.g., Section 5.2.1 from page 120):

* stability means the mechanism keeps the system close to the origin if the system is initially
perturbed close to the origin,

* global pre-attractivity means the mechanism drives the system to the origin asymptotically
ast — 0o, and

* uniform means the stability and pre-attractivity properties are independent of both the
nondeterminism in the switching mechanism (e.g., arbitrary switching) and the choice of
initial states satisfying ||z||, < ¢; for brevity in subsequent sections, “uniform” is elided
when describing stability properties.

Remark 6.7. Switched systems whose solutions are all uniformly bounded in time, i.e., there
exists 7,, such that for all solutions ¢, T,, < T;,, are trivially pre-attractive. Goebel et al. [65, 66]
introduce the notion of pre-attractivity as opposed to attractivity for hybrid systems because it
separates considerations about whether a hybrid system’s solutions are complete, i.e., solutions
exist for all (forward) time, from conditions for stability and attractivity. Pre-attractivity also
sidesteps the difficult question of whether a switched system exhibits Zeno behavior (recall
modeling subtleties in Section 6.2.2) [99, 214]. Indeed, it is common in the hybrid and switched
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systems literature to either ignore incomplete solutions or assume the models under consideration
only have complete solutions [99, 116, 214]. Instead of predicating proofs on these hypotheses,
this chapter formalizes the (weaker) notion of UGpAS for switched systems, leaving proofs of
completeness of solutions out of scope.

The definition of UGpAS nests alternating quantification over real numbers with temporal
quantification over the solutions ¢ of switched systems. Accordingly, UGpAS for switched
systems is formally specified by nesting dL’s box modality with the first-order quantifiers; when
program « models a switched system, the box modality [](-) quantifies (uniformly) over all
times for all switching signals arising from the switching mechanism.

Notational Conventions (Norm Bounds). For notational simplicity in this chapter, Eu-

def
clidean norm bound formulas are directly written with ||z, ~ ¢ = (31, 22) ~ &2 (for £ > 0)

i=1%i
for comparison operators ~ € {=,#, > > < <}.

Lemma 6.8 (UGpAS in differential dynamic logic). The origin 0 € R" for a switched system
modeled by hybrid program « is UGpAS iff the dL formula UGpAS(«) is valid. Variables ¢,0, Tt
are fresh in o

UStab(a) = Ve>030>0Vz ([|z]l, < 6 — [a] ||z], <€)
UGpAttr(a) = Ve>0¥6>03T>0Vz (||zll, <d = [t:=0;0,t' = 1]t > T — |z||, <¢))
UGpAS(a) = UStab(a) A UGpAttr(«)

Here, UStab(«) and UGpAttr(«) characterize stability and global pre-attractivity of «, re-
spectively. In UGpAttr(«), a,t’ = 1 denotes the hybrid program obtained from o by augmenting
its continuous dynamics so that variable t tracks the progression of time.

Proof. Let ®(x) be the set of all domain-obeying solutions ¢ : [0, T,,] — R" for a given switched
system from state € R" as in Def. 6.6. Hybrid program a models the given switched system
if, for any initial state w € R™, the state v is reachable from state w, i.e., (w,v) € [a] by dL’s
hybrid program semantics [142, 144], iff v = (1) for some ¢ € ®(w) and 7 € [0,7,,]. For the
augmented program «,t = 1, in particular, ¢ syntactically tracks the progression of time so
that (w,v) € Ja,t’ = 1] iff v = () for some ¢ € ®(w) and 7 = v(t) — w(t). The adequacy of
looping hybrid program models for several switching mechanisms is proved in Section 6.2.
The formulas UStab(«) and UGpAttr(«) syntactically express their respective quantifiers
from Def. 6.6, where the box modality [-] is used in both formulas to quantify over all reachable
states of @ (and o, ¢’ = 1), i.e,, all times 7 € |0, TQD] along all solutions ¢ € ®. Thus, the
correctness of these specifications follows directly from the definition of dL’s formula seman-
tics [142, 144]. In UGpAttr(«), the clock variable ¢ is set to 0 initially and has ODE ¢’ = 1 so it
tracks the progression of time along the continuous evolution of program «. The implication
t > T — ... in the postcondition of the box modality restricts temporal quantification to all
times 7 with 7' < 7 < T, for all solutions ¢ € ®(w) for uniform pre-attractivity. ]

Formulas UStab(«) and UGpAttr(«) syntactically formalize in dL the corresponding quan-
tifiers in Def. 6.6. In UGpAttr(«), the fresh clock variable ¢ is initialized to 0 and syntactically
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tracks the progression of time along switched system solutions. The program «,t = 1 can,
e.g., be constructed by adding a clock ODE ¢’ = 1 to all ODEs in the switched system model
. Accordingly, the postcondition t > 7" — ||z||, < € expresses that the system state norm is
bounded by ¢ after 7' time units along any switching trajectory, as required in Def. 6.6. The key
(derived) dL proof rule used to prove UGpAS specifications is the loop rule [144], recalled below.

I'FInv Invk [o)Inv InviE ¢
I lare

loop

The loop rule says that, in order to prove validity of the conclusion (below the rule bar), it
suffices to prove the three premises (above the rule bar), respectively from left to right: i) the
initial assumptions I" imply Inv, ii) Inv is preserved across the loop body «a, i.e., Invis a loop
invariant for o*, and iii) Inv implies the postcondition ¢. The identification of loop invariants is
crucial for formal proofs of UGpAS for looping models of switched systems, as illustrated by the
following deductive proof skeleton for stability (a similar skeleton is used for pre-attractivity):

DibEgr o Tk o
. hybrid program
* : reasoning for o *
1 I'F Inv InvE [o] Inv Invi ||z||, <e
oop

P for] flal, <e
logic/arithmetic
< reasoning for I' )

F UStab(a*)

The proof skeleton above syntactically derives a proof rule that reduces a stability proof for
a* to proofs of its top-most premises, I'y = ¢; - - 'y I ¢. These correspond to required logical
and arithmetical conditions on Lyapunov functions for various switching mechanisms. The
choice of loop invariant (highlighted in red) crucially ties together these arithmetic conditions
on Lyapunov functions with hybrid program reasoning for switched systems. Throughout this
section, loop invariants are progressively tweaked to account for new design insights behind
increasingly complex switching mechanisms from Section 6.2.

6.3.2 Stability for Autonomous Switching

This section identifies loop invariants for proving UGpAS under autonomous switching mecha-
nisms with Lyapunov functions [27, 89, 99]; relevant mathematical arguments are presented
briefly, see Appendix D.1.2 for more details.

Arbitrary Switching

Stability for the arbitrary switching model a1, from (6.3) in Section 6.2.2 can be verified by
finding a so-called common Lyapunov function V for all of the ODEs 2’ = f,(x),p € P satisfying
the following arithmetical conditions [99, 189]:

i) V(0) =0and V(z) > 0 forall ||z]|, > 0,
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Stability Pre-attractivity

Figure 6.3: Loop invariants for UGpAS (arbitrary switching), stability (left) and pre-attractivity
(right). Switching trajectories are illustrated by alternating black and green arrows.

ii) V' is radially unbounded, i.e., for all b, there exists v > 0 such that ||z||, < = for all
V(z) <b,and

iii) for each ODE 2’ = f,(z), p € P, the Lie derivative £, (V') satisfies: £, (V)(0) = 0 and
Ly (V)(z) <0 forall ||lz[|, > 0.

Conditions i)-iii) are generalizations of well-known conditions for stability of ODEs [33, 89]
to arbitrary switching. Intuitively, conditions i) and iii) ensure that ' acts as an auxiliary
energy function whose value decreases asymptotically to zero (at the origin) along all switching
trajectories of the system; the radial unboundedness condition ii) ensures that this argument
applies to all system states for global pre-attractivity [89]. Correctness of these conditions can
be proved in dL using loop invariants, see Fig. 6.3 (explained below).

Stability. The specification UStab(;p) requires that all trajectories of o,y stay in the grey
ball ||z||, < €, starting from a chosen ball ||z ||, < J, see Fig. 6.3 (left). Condition i) guarantees that
the ball ||z||, < € contains (a connected component of) the sublevel set V <WW for some >0
(dashed blue curve) and this sublevel set contains a smaller ball ||z||, < ¢ [33, 89]. Condition iii)
shows that this sublevel set is invariant for each ODE 2’ = f,,(z),p € P because L (V))(z) <0,
illustrated by the dashed black and green arrows for two switching choices p € P both locally
pointing inwards on the boundary of the sublevel set. Formula Inv, = ||z]|, < e AV < W,
which characterizes the blue sublevel set, is an invariant for all possible switching choices in the
loop body of @ayp,. Thus, Invy is a suitable loop invariant for UStab(arp ).

Pre-Attractivity. The specification UGpAttr(aayp) requires that all trajectories of vy, stay
in the grey ball ||z||, < ¢ after a chosen time 7', starting from the initial ball |||, < d, see Fig. 6.3
(right). The ball ||z||, < ¢ is bounded, so it is contained in a sublevel set satisfying V' < W for
some W > 0 (outer dashed blue curve); this sublevel set is bounded by condition ii). Like the
stability argument, condition i) guarantees that there is a sublevel set V' < U for some U > 0
(inner dashed blue curve) contained in the ball ||z]|, < ¢, and condition iii) shows that the
sublevel sets characterized by V' < W and V' < U are both invariants for every ODE in the loop
body of ctayp. The set characterized by formula V' > U AV < W is compact and bounded away

154



from the origin, which implies by condition iii) that there is a uniform bound £ < 0 on this set,
where for each ODE ' = f,(z),p € P, L; (V)(z) < k. Thus, the value of Lyapunov function
V' decreases at rate k, regardless of switching choices in the loop body of a,yy, as long as it has
not entered V' < U. The loop invariant for UGpAttr(a.yp) syntactically expresses this intuition:
Inv, =V < WA (V >U — V < W + kt). For sufficiently large T with W + kT < U,
trajectories at time ¢ > 7T satisfy V' < U so they are contained in the ||z||, < ¢ ball.

The loop invariants identified above enable derivation of a formal dL stability proof rule
for app (deferred to a more general version for aigpate in Corollary 6.9 below). In fact, since
arbitrary switching is the most permissive form of switching [99], UGpAS for any switching
mechanism can be soundly justified using the loop invariants above in case a suitable common
Lyapunov function can be found (see Table 6.1, common Lyapunov function column).

State-Dependent Switching

State-dependent switching is modeled by hybrid program agtate from (6.4) in Section 6.2.2. The
same loop invariants for oy, are used for agate to derive the following proof rule. For brevity,
premises of all derived stability proof rules are implicitly conjunctively quantified over p € P.

Corollary 6.9 (UGpAS for state-dependent switching, CLF). The following proof rule for common
Lyapunov function V' with three stacked premises is derivable in dL.
FV(0)=0AVz(||z], >0—V(z)>0)

-3y Va (V) b Jlzll, <7)

Ly (V)(0) =0AVz(|z]l, >0AQp = Ly (V)(x) <0)

CLF
F UGpAS(astate)

(for all p € P)

Proof in Appendix D.1.2.

Corollary 6.9 syntactically derives a slight generalization of conditions i)-iii) from Sec-
tion 6.3.2 for Qsrate, Where the Lie derivatives £, (V)(x) for each p € P are required to be

negative on their respective domain closures' (). This generalization is justified by the same loop
invariants explained in Section 6.3.2 because the ODE invariance properties are only required to
hold in their respective domains.

The domain asymmetry in a1 Suggests another way of generalizing the stability argu-
ments, namely, through the use of multiple Lyapunov functions, where a (possibly) different
Lyapunov function V), is associated to each mode p € P [27]. Here, the function V, is responsi-
ble for justifying stability within domain (),, i.e., its value decreases along system trajectories
whenever the system is within (), as illustrated in Fig. 6.4. Constraints on these functions are
obtained by modifying the loop invariants to account for this intuition.

Stability. The stability loop invariant is modified by case splitting disjunctively on the domains
Qp,p € P, and requiring that the sublevel set characterized by V,, < W is invariant within its
respective domain Q: Invs = [|z][, <e AV cp (Qp AV, < W). Like Section 6.3.2, the bound
W is chosen so that each sublevel set characterized by V,, < W is contained in the ball ||z||, < ¢.

"The topological closure @ of domain () is needed for soundness of a technical compactness argument used in
the pre-attractivity proof, see Appendix D.1.2.
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Figure 6.4: A switching trajectory for Example 7 from Section 6.4.2 with state-dependent switch-
ing (left) and the value of two Lyapunov functions along that trajectory (right, log-scale on
vertical axis). Solid lines indicate the active Lyapunov function at time ¢. Two sublevel sets
Vp, Vg < W = 0.012 are shown dashed on the left within which the switching trajectory is

respectively trapped at any given time.

Pre-Attractivity. The pre-attractivity loop invariant is similarly modified by disjunctively
requiring that each V), decreases along system trajectories when the system is in their respective
domains Qp: Inv, =V cp (Qp ANV, < WA(V, >U — V, < W + kt)). The constants
U, W, k,T are chosen as appropriate lower or upper bounds for all the Lyapunov functions
(see proof of Corollary 6.10). Arithmetical conditions for the Lyapunov functions V,,,p € P are
derived from the modified invariants in the following rule.

Corollary 6.10 (UGpAS for state-dependent switching, MLF). The following proof rule for
multiple Lyapunov functions V,,, p € P with four stacked premises is derivable in dL.

FVp(0) =0AVz (||z||, > 0= V,(x) > 0)

= Vb Iy Ve (Vp(z) <b = flzf, <v)

=Ly, (Vp)(0) = 0AVa (2], >0 A Qp — L, (V)(2)<0)
= Auer (@A Qu = Vo = 15)

for all
- UGPAS(asvace) (forallp € P)

MLF

Proof in Appendix D.1.2.

The top three premises of Corollary 6.10 are similar to those of Corollary 6.9, but are now
required to hold for each Lyapunov function V,, p € P separately. The (new) bottom premise
corresponds to a compatibility condition between the Lyapunov functions arising from the loop
invariants. For example, consider the stability loop invariant (similarly for pre-attractivity) and
suppose the system currently satisfies disjunct ), A V,, < W with V}, justifying stability in
domain @),,. If the system switches to the ODE 2’ = f,(z) within domain (),, then Lyapunov
function V, becomes the active Lyapunov function which must satisfy V;, < W to preserve the
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stability loop invariant. The premise ), A () — V,, = V; says that the Lyapunov functions
Vp, V, take on equal values whenever such a switch is possible (in either direction), i.e., when
their domains @),,, @, overlap. This is illustrated in Fig. 6.4 (right), where the plotted Lyapunov
functions values are equal whenever switching occurs (black to green, or vice versa).

6.3.3 Stability for Controlled Switching

Stability analysis for controlled switching proceeds by identifying suitable loop invariants Inv for
Qer1 from (6.5) in Section 6.2.3. Compositional reasoning [135, 144] allows for separate analysis
of the discrete (c;, ov,) and continuous («;,) dynamics and then lifting those results to the full
hybrid dynamics. This idea is exemplified by the following derived variation of the loop rule:

I'F o) Inv Invt (o) Inv Invi (o) Inv InvE ¢
F I_ [O-/i; (au; ap)*]QS

loopT

Rule loopT says that loop invariant Inv is maintained throughout a1 = i (v ozp)*,
i.e., system initialization «; puts the system into a state satisfying the invariant Inv and Invis
compositionally preserved by both the discrete switching logic «,, and the continuous dynamics
. This rule is used to analyze the two instances of ay; introduced in Section 6.2.3 next.

Guarded State-Dependent Switching

The instance aigyarq from (6.7) adds hysteresis to state-dependent switching through the auxiliary
memory variable u which tracks the current mode of the system. This design change is reflected
in the loop invariants and in the corresponding proof rule below.

Stability. The stability loop invariant is modified (cf. Section 6.3.2) to case split on the possible
discrete modes u = p rather than the ODE domains: Invs = ||z, <AV cp (u=pAV, <W).

Pre-Attractivity. The pre-attractivity loop invariant is modified similarly to case split on the
discrete modes, with: Inv, = \/ p (u=pAV,<WA(V,>U -V, <W +kt)).

Corollary 6.11 (UGpAS for guarded state-dependent switching, MLF). The following proof rule
for multiple Lyapunov functions V,,, p € P with four stacked premises is derivable in dL.

- V,(0) = 0 AV (Jlz]l, > 0 = Vy(z) > 0)
- Vb3 Ve (Vy(a) < b — e, < 7)
- Ly, (V)(0) = 0 AV (|l >0 A Q, — £, (V,)(x)<0)

= /\qu <Gp7q =V < %)

MLE- for all
G - UGPAS(aigaara) (forall p € P)

Proof in Appendix D.1.2.

The premises of rule MLF; are identical to those from MLF except the bottom premise, which
derives from loopT and unfolding the controller o, with dL’s hybrid program axioms, e.g., the

157



following proof skeleton shows the unfolding for the stability loop invariant Invs corresponding
to a switch from mode p to mode ¢:

FGpy = Ve <V, Arithmetic
® V, <WF Gpy— Vy < W I
=y = p AV, < WE G gu=qllu=qAV, < W)
Unfold Inv, F [og) Inv,

Unlike rule MLF, the bottom premise of rule MLF; only uses an inequality, because the
guards (), ;, determine permissible switching.

Time-Dependent Switching

To reason about stability for instance a iy from (6.8), consider Lyapunov function conditions
L, (Vp)(z) < —A,V,, where ), is a constant associated with each mode p € P. This condition
bounds the value of V}, along the solution of ' = f,(x) by either a decaying exponential for stable
modes (\, > 0) or a growing exponential for unstable modes (A, < 0). LetS = {p € P, A\, > 0}
andU = {p € P, A, < 0} be the indexes of the stable and unstable modes in the loop invariants
below and assume an extended term language (Section 3.2) where exp (-) denotes the real
exponential function.

Stability. The stability loop invariant expresses the required exponential bounds with a case
split depending if p € Sorp € U:

\/ (u=pAV, < Wexp(—=Ay))V
peES

\/ (u=pAV, < Wexp(=X(T — 0,)) AT < O,)

peU

Invy =7 > 0A ||zf|, <e A

Forp € S, exp(—A,7) is the accumulated decay factor for V), after staying in the stable mode
for time 7. For p € U, exp(—\,(7 — O,)) is a buffer factor for the growth of V,, in the unstable
mode so that V}, < W still holds at the maximum dwell time 7 = ©,,. In both cases, the internal
timer variable is non-negative (7 > 0).

Pre-Attractivity. The pre-attractivity loop invariant has similar exponential decay and growth
bounds for each p € P in the current mode. In addition, it has an overall exponential decay term
exp(—o(t — 7)) for some o > 0, which ensures that the value of V,, tends to 0 as t — oo for all
switching trajectories; recall ¢ is the global clock introduced in the specification of pre-attractivity
in Lemma 6.8 while 7 is the auxiliary timer used to track time in the model cv;;pe.

Inv,=7>0At>TA

\/ (u=pAV, < Wexp(—c(t —T7))exp(—A,7))V

pES

\ (u=pAV, <Wexp(—a(t — 7)) exp(=Ap(T — ©,)) AT < O,)

peU
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Term exp(—o(t — 7)) in both p € S,U cases is the accumulated overall decay factor for
V,, until the switch to mode p at time ¢t — 7. Term exp(—A\,7) (resp. exp(—A,(7 — ©,))) is the
current decay (resp. growth) factor since the switch to mode p € S (resp. p € U).

Corollary 6.12 (UGpAS for time-dependent switching, MLF). The following proof rule for multiple
Lyapunov functions V,,, p € P with five stacked premises is derivable in dL.

= V,(0) =0AVz (||z|l, >0 — V,(z) > 0)
- Vb3 Ve (Vy() < b — ], <)
- Ly (V) < -\,

vip, s landInv, v b [ou]Inv, (for all p € P)
T - UGPAS(tyine) ey

The two red premises on the bottom row are expanded to arithmetical conditions on V,, by
unfolding the program structure of o, with dL axioms in AppendixD.1.2.

Proof in Appendix D.1.2.

The bottom premises of MLF, and MLF; exemplify a key benefit of dL stability reasoning:
conditions on V), that arise from Inv;, Inv, are derived by systematically unfolding the discrete
dynamics of a,, with sound dL axioms. This enables automatic, correct-by-construction derivation
of those conditions, which is especially important for controlled switching because the number
of possible transitions scales quadratically |P|*> with the number of modes |P].

6.4 KeYmaera X Implementation

This section presents a prototype implementation of a switched system modeling and proof
package for KeYmaera X [54]. The implementation consists of ~2700 lines and, crucially, does not
require any extension to KeYmaera X’s existing soundness-critical core. Accordingly, verification
results for switched systems obtained through this implementation directly inherit the strong
correctness properties guaranteed by the design of KeYmaera X [54, 115].

6.4.1 Modeling and Proof Interface

The implementation extends KeYmaera X’s proof IDE [114] with a convenient interface for
modeling switching mechanisms, as shown in Fig. 6.5. The interface allows users to express
switching mechanisms intuitively by rendering automaton plots while abstracting away the
underlying hybrid programs. It provides templates for switched systems following the switching
mechanisms of Section 6.2: state-dependent (autonomous), guarded, timed, and general con-
trolled switching (tabs “Autonomous”, “Guarded”, “Timed”, “Generic” in Fig. 6.5). From these
templates, KeYmaera X automatically generates programs and stability specifications, ensuring
that they have the correct dL hybrid program and formula structure.

Switched systems are represented internally with a common interface SwitchedSystem
which is implemented by four classes: StateDependent (igiate, Guarded guara, Timed Cyipe,
and Controlled agir;. The SwitchedSystem interface provides default stability and pre-
attractivity specifications, which can be adapted by users on the Ul if needed. Corollaries 6.9-6.12
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Switched Systems EEVOM  Start Proof | %

Switching Autonomous Timed Guarded | Generic

subgraph automaton Top-Down @
Model("x'=1 & x<=5")

Mode2("x'=-1 & x>=-5")
automaton

Model -->|"7?x>=5;x:=0;"| Mode2 Modet: x'=1 & x<=5 |
Mode2 ==>|"7?x<=-5;x:=%; ?-1<=x&x<=4;"| Model
end
Init: x:=0; ——» M>=5;x:=0;  Ix<=-5;x:=*;7-1<=xEx<=4;
Init("x:=0;") --> automaton

Mode2: x'=-1 & x>=-5

Specification | Stability | Attractivity Custom
{{mode:=Mode1(); ++ mode:=Mode2();} x:=0;}
{
mode = Model(); {{?x >= 5; x:=0;} mode:=Mode2(); ++ mode:=mode;}
++
?mode = Mode2(); {{?x <= (-5); xi=*; ?(-1) <= x & x <= 4;} mode:=Model(); ++ mode:=mode;}

{ ?mode = Model(); {x'=1l & x <= 5} ++ ?mode = Mode2(); {x'=(-1) & x >= (-5)} }
Ix

] x*2 < eps™2
Figure 6.5: Screenshot of the KeYmaera X switched systems editor: automata input on top-left,

rendered automaton top-right, generated hybrid program and specification(s) in dL at the bottom.

Table 6.1: Available tactics in KeYmaera X for switched systems stability proofs and Lyapunov
function generation.

Common Lyap. Multiple Lyap.

SwitchedSystem Proof Gen. Proof Gen.
StateDependent giate v v v v
Guarded (gyarq v v v v
Timed Qtime v v v -
Controlled cveer1 v v — —

are implemented as UGpAS proof tactics in KeYmaera X’s Bellerophon tactic language [55]. These
tactics automate all of the reasoning steps underlying stability proofs for their respective switch-
ing mechanisms, so that users only need to input candidate Lyapunov functions for KeYmaera X
to (attempt to) complete their proofs. Additionally, when candidates are not provided by the
user, the implementation uses sum-of-squares programming [129, 154] to automatically generate
candidate Lyapunov functions for a subset of switching designs. The generated candidates are
checked for correctness by KeYmaera X so the generator does not need to be trusted for cor-
rectness of the resulting proofs. Table 6.1 summarizes the available proof tactics and Lyapunov
function generation for classes of switching mechanisms.

6.4.2 Examples

The implementation is tested on a suite of examples drawn from the literature [27, 86, 154, 189]
featuring various switching mechanisms.? Table 6.2 summarizes the proof statistics, where all
experiments were run on a MacBook Pro 2019 with Intel Core i7 (6-core, 2.6GHz) and 32GB

See https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/stability/UGpAS (including
case studies from Section 6.5). Git hash: c856fddb383232adbd86679ef65567f9b90190bf
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Table 6.2: Stability proofs for examples drawn from the literature. The “Time” columns indicate
time (in seconds, rounded to 1 d.p.) to run the KeYmaera X proofs for stability (Stab.) and
attractivity (Attr.), x indicates incomplete proof. A v in the “Gen.” column indicates successful
Lyapunov function(s) generation, ? indicates that a candidate was generated but with numerical
issues, and — indicates inapplicability. In the latter two cases (?, —) known Lyapunov functions
from the literature were used for the proofs (if available).

Example Model Time (Stab.) Time (Attr) Gen.
1[27, Ex. 2.1] Olstate 2.6 30 v
2 [86, Motiv. ex.] Qgtate 2.2 2.3

3 [86, Ex. 1] Ostate 3.3 41 v
4[86,Ex. 2&3]  Orguara 2.8 38 2
5 [154, Ex. 6] Otguard X X ?
6 [189, Ex. 2.45]  trp 19.4 111 v
7 [189, Ex. 3.25]  Qstate 2.4 29
8 [189, Ex. 3.49]  (tyime 44 56 —
9 [211, Ex. 1] Csine 4.7 53 —
10 [211, Ex. 2] Qitime 256.9 x -

memory. All examples have a 2 dimensional state space and switch between 2 modes except
Example 4 (2 dimensions, 4 modes) and Example 6 (3 dimensions, 2 modes). The proof tactics
successfully prove most of the examples across various switching mechanisms. For Example
5, a suitable Lyapunov function (without numerical errors) could not be found.? For the time-
dependent switching models (Examples 8-10), KeYmaera X internally uses verified polynomial
Taylor approximations to the exponential function for decidability of arithmetic [14, 197];
Example 10 needs a high degree approximation (15 terms in the polynomial) for sufficient
accuracy and its attractivity proof could not be completed in reasonable time. Overall, this suite
of examples shows the feasibility of (fully) automated stability verification for various classes
of switched systems in KeYmaera X. Future work could improve internal arithmetic reasoning
steps (e.g., Examples 8-10) to shorten proof times.

6.5 Case Studies

This section presents three case studies applying the deductive verification approach to justify
various non-standard switched system stability arguments in KeYmaera X.

6.5.1 Canonical Max System

Branicky [26] investigates the longitudinal dynamics of an aircraft with an elevator controller
that mediates between two control objectives: i) tracking potentially unsafe pilot input and

$Prajna and Papachristodoulou [154, Ex. 6] report that a sextic (degree 6) Lyapunov function can be generated
with sum-of-squares techniques, but do not provide the generated function explicitly.
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ii) respecting safety constraints on the aircraft’s angle of attack. Assuming a state feedback
control law, the model is transformed to the following canonical max system [26, Remark 5],
with state variables z, y and parameters a, b, f, g,y satisfying a,b,a — f,b — g > 0and v < 0.

v’ =y,y = —ar — by + max(fr + gy +,0) (6.9)

The right-hand side of system (6.9) is non-differentiable but the equations can be equivalently
rewritten with state-dependent switching between a family of two ODEs corresponding to either
possibility for the max(fx + gy + 7, 0) term in the equation for ¢ as follows, where the system
follows ODE @) in domain fx + gy + v < 0 and ODE ®) in domain fz + gy + v > 0.

Q= =yy=-ar-by B®=r=yy=~(a—flr—(b-gy+~

Stability of this parametric system is not directly provable using standard techniques for
state-dependent switching presented in Section 6.3.2. For example, the ODE (@ stabilizes the
system to the origin but the ODE ®) stabilizes to the point (=377, 0), away from the origin

for v < 0. Instead, Branicky [26] proves global asymptotic stability of (6.9) with the following
“noncustomary” [43] Lyapunov function involving a nondifferentiable integrand:

V= %yQ +/0 a& — max(f&+v,0)d¢ (6.10)

The key idea used to deductively prove stability here is ghost switching: analogous to ghost
variables in program verification which are added for the sake of program proofs [127, 144]
or in proofs for ODEs (Chapters 3 and 4), ghost switching modes do not change the physical
dynamics of the system but are introduced for the purposes of the stability analysis. Here, ghost
switching between fxr + v < 0and fz + v > 0 is used to obtain closed form representations
for the integral in (6.10). This yields an instance of state-dependent switching agtate With 4
switching modes and the stability specification P,,:

Uy = (@1U®2U®1U®2)* p=frtgy+y q=frt+y

@, =@&p<0Ag<0 @, =@&p<0Ang>0
B =®&p>0Ag<0 B, =®&p>0Aq>0
P,=a>0Ab>0Aa—f>0Ab—g>0 A f#0 A v<0 — UGpAS(a,,)

The ghost switching modes enable a multiple Lyapunov function argument for stability using
the following modified closed-form representations of Branicky’s Lyapunov function (6.10), with

Vi for @, B and V5 for @),, ®,.*

Ji ag—max(f€+,0)dE where f& +7 < 0

1 2 2 a o

Vi(z,y) = 5 (ber” + 2eay +y7) + Sz
1 2
Valoy) = (e + 2y + ) + 32— LI

(.

I af—maX(fE-i-%O)d\ﬁrwhere fE+~v20

*An important technical requirement for V5 to be well-defined is f # 0. The case with f = 0 is also verified in
KeYmaera X but the details are omitted here for brevity. It does not require ghost switching and uses only V; as its
common Lyapunov function.
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The Lyapunov functions V;, V5 are also modified from (6.10) to use a quadratic form with
an additional constant c satisfying constraints 0 < ¢ < b,c < b—g,c < (“a__f)#, c < ﬁ—;z)
(such a constant always exists under the assumptions on a, b, f, g). This technical modification
is required to prove UGpAS for «,,, directly with the Lyapunov functions.

Another challenging aspect of this case study is verification of the parametric arithmetical
conditions for V7, V5, i.e., stability is verified for all possible parameter values a, b, f, g, v that
satisfy the assumptions in P,,,. Such questions are decidable in theory [14, 197], but are difficult
for automated solvers in practice (even out of reach of solvers that require numerically bounded
parameters [60]). KeYmaera X enables a user-aided proof of the required arithmetic conditions.

For example, the Lie derivative of the Lyapunov function V; for ®), is given by:
‘/1 = E:p’:y,y’:—(a—f)w—(b—g)y—l—'y(‘/1) = _(b - C)y2 - (ICZE2 + (CQ] + y)(fx + 9y + 7)

Here, V1 is required to be strictly negative away from the origin for stability. The arithmetical
argument uses domain constraint fx + gy +v > 0 A fx + v < 0 from ®); as follows: if

cx +y < 0, then by constraint fz + gy -+~ > 0, V1 satisfies V1 < —(b—c¢)y? — acx®. Otherwise,
cx + y > 0, then by constraint fz + v < 0, V, satisfies V; < —(b—g — c)y* — acx® + gcxy.
In either case, the RHS bound is a negative definite quadratic form by the earlier choice of
parameter c and therefore, V1 is negative away from the origin. The verification of F,, and all of
the required arithmetic reasoning is done in KeYmaera X.

6.5.2 Automated Cruise Control

Oehlerking [126, Sect. 4.6] verifies the stability of an automatic cruise controller modeled as a
hybrid automaton with 6 operating modes and 11 transitions between them: normal proportional-
integral (PI) control, acceleration, service braking (2 modes), and emergency braking (2 modes).
Figure 6.6 shows an abridged version of the corresponding KeYmaera X model (using ccy1)
with the PI control mode, where v is the relative velocity to be controlled to v = 0 and x, ¢ are
auxiliary integral and timer variables used in the controller. Briefly, this controller is designed
to use the PI controller near v = 0 for stability, while its other control modes drive the system
toward v = 0 by accelerating or braking.

Lyapunov function candidates for this model can be successfully generated using the Stab-
hyli [116] stability tool for hybrid automata, but Stabhyli (with default configurations) outputs
a Lyapunov function candidate for the PI control mode that is numerically unsound, see Ap-
pendix D.2 for the output and a counterexample; this is a known issue with Stabhyli for control
modes at the origin [116]. For this case study, the issue is manually resolved by truncating terms
with very small magnitude coefficients in the generated output and then checking in KeYmaera X
that the arithmetical conditions for the PI mode are satisfied for the truncated candidate.

Insights from the controller design are used in the UGpAS proof in KeYmaera X. Since stability
only concerns states and modes that are active near the origin, the stability argument only needs
to mention a single Lyapunov function for the PI control mode, while choosing ¢ (in Def. 6.6)
sufficiently small so that none of the other modes can be entered. In fact, the PI controller
equations are exactly those of a linearized pendulum, which has known Lyapunov functions [89]
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normalPI("v’ = -0.001%x-0.052*v, x’ = v, t’> =0
& -15 <= v & v <= 15
& -500 <= x & x <= 500")

normalPI -—>|"?(13 <= v & v <= 15 &

normalPl: v' = -0.001*x-0.052*v, X' = v, t' = 0
&-15<=v&v<=15
& -500 <= X & X <= 500

-500 <= x & x <= 500); 213<=v&v<=15& 215<=v&v<=-14&
t .= O;“l sbrakeact -500 <= X & X <= 500); t := 0; -500 <= X & X <= 500);

normalPl —=>|"7(~15 <= v & v <= ~14 & sbrakeact:..
-500 <= x & x <= 500);"| accelerate

. // Other modes

\forall eps ( eps > O -> // Abridged stability specification
[
... // Initialization
{
{ // Switching controller
. ++ // Transitions for other modes

?mode = normalPI();
{ {713 <=v & v <= 15 & -500 <= x & x <= 500; t := 0;}

mode := sbrakeact(); ++
7-15 <= v & v <= -14 & -500 <= x & x <= 500;
mode := accelerate(); ++
mode := mode; }
}
{ // Plant
++ // Plant ODEs for other modes
?mode = normalPI();
{ v’ = -0.001%x-0.052*v, x> =v, t> =0 &
-156 <= v & v <= 15 & -500 <= x & x <= 500 }
}

}* // Switching loop
] v°2 < eps”™2

Figure 6.6: Snippets of an automated cruise controller [126] modeled as a (switching) hybrid au-
tomaton. Users express the automaton within the description language (top left) and KeYmaera X
visualizes the automaton on-the-fly (top left). The implementation automatically generates the
appropriate hybrid program representation and UGpAS specification (bottom); ++,&, () denote
choice, conjunction, and constants in KeYmaera X’s ASCII syntax respectively.

(see Example 5.7, page 124)—it could be interesting to modify Stabhyli to accept user-provided
Lyapunov function hints for certain modes. Similarly, pre-attractivity only requires reasoning
about asymptotic convergence to the origin for the PI control mode so it suffices to show that
the system leaves all other modes in finite time.
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6.5.3 Brockett’s Nonholonomic Integrator

Verification of stabilizing control laws for Brockett’s nonholonomic integrator [29] is of signifi-
cant interest because stability for a large class of models can be reduced to that of the integrator
via coordinate transformations, e.g., Liberzon [99] transforms a unicycle model to the integrator
and provides a stabilizing switching control law corresponding to parking of the unicycle. The
nonholonomic integrator is described by the following system of differential equations with
state variables x, y, z and state feedback control inputs u = u(z,y, z),v = v(x,y, z) (to be
determined further below).
¥ =uy =v,2 =20 —9yu

Notably, this is a classical example of a system that is not stabilizable by purely continuous
feedback control. Intuitively, no choice of controls u, v can produce motion along the z-axis
(x = y = 0). Thus, to stabilize the system to the origin, the controller must first drive the system
away from the z-axis before switching to a control law that stabilizes the system from states away
from the z-axis. This intuition can be realized using two different switching strategies that are
analogous to the event-triggered and time-triggered CPS design paradigms respectively [144].

Event-Triggered Controller

Bloch and Drakunov [13] use the switching controller u = —z+ay sign(z), v = —y —ax sign(z)
to asymptotically stabilize the integrator in the region %(IQ +y?) > |2| for any given constant
a > 0. This controller first drives the system towards the plane z = 0 and, once it reaches
the plane, slides along the plane towards the origin. The closed-loop system is modeled as an
instance of state-dependent switching agyate With 3 modes depending on the sign of z and
specification F,:

/

= —a+tayy =—y—ar,? = —a(@®+y*) &z >0

x
v =2 —ay,y = —y+tar,? =a(z®+y*) &z <0

0 @&
I

¥ =—xy=—y,7=0&2=0 a,= <@U®U©>*
=a > 0 — UStab(ae)A

ou
I

V>0¥=>0 3720z, y, 2 ( [l2,, 2], < 6 A @) = 2] -

[t:=0;00,t' =1](t>T — |z, y, 2|, < 5)

The specification P, is identical to UGpAS except it restricts pre-attractivity to the applicable
region % (x* + y?) > |z| for Bloch and Drakunov [13]’s controller.” It is verified using the squared
norm term V' = 2% + y? + 22 as a common Lyapunov function for @-Q©). The key modification
to the pre-attractivity proof, cf. Section 6.3.2, is to use (and verify) the fact that %(z* + ¢°) > |2|
is a loop invariant of a.. This additional invariant corresponds to the fact that the controller
keeps the system within its applicable region (if the system is initially within that region). In

SThe applicable region is equivalently characterized by the real arithmetic formula
(20— %(2*+y?) > 2) A (2 <0— &(2® +y*) > —2), omitted for brevity.
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fact, a,. can be extended to a globally stabilizing controller, as modeled by a; below (if, else
branching is supported as an abbreviation in KeYmaera X [144]):

@Ex’:u,y’:v,z’:xv—yu&g(xQ—i—yQ) < |z
@Ex':u,y’:v,z’:xv—yu&%(wQ—l—yQ) > |z

5@ +v") = |2) {BUBLO)

else {

if(

if((z —y)z < 0){u:=c;v:=c} else{u:=—c;v:= —c};

{ouve} }
P:=a>0Ac>0— UGpAS(ay)

If the system is in the applicable region (outer if branch), then the previous controller from
a. is used. Otherwise, outside the applicable region (outer else branch), the system applies a
constant control ¢ > 0 chosen to drive the system into the applicable region. The pair of ODEs
O and ® model an event-trigger in dL [144], where the switching controller is triggered to
make its next decision when the system reaches the switching surface 4(z® + y?) = |z].

The specification P; is proved by modifying the loop invariants to account for an initial
period where the system is outside the applicable region. For example, the stability loop invariant
Invy = (-5 (2 +97) > |2| = |2| < 0) A (5@ +y°) > |2| = ||z, y,2]l, < €) expresses that
the controller keeps |z| sufficiently small with |z| < ¢ to preserve stability outside the applicable
region. The pre-attractivity loop invariant is similarly split between the two cases, with an
explicit time estimate on the time it takes for the system to enter the applicable region.

Time-Triggered Controller

The time-triggered switching strategy [144], modeled by «, below, is similar to that proposed
by Liberzon [99, Section 4.2]. If the system is on the z-axis and away from the origin &), the
controller sets an internal stopwatch 7 and drives the system away from the axis for maximum
duration Ty > 0 with u = 2z, v = 2. Otherwise ®), the controller drives the system towards the
origin along a parabolic curve of the form %(z* 4 y*) = z.

if(z=0Ay=0Az#£0){r=02" =2y =22 =2z—yz&7 < Ty} @\

oy = 2z
else{a::—;
x? + y?

P. =Ty, >0— UGpAS(«,)

/

o =—x+ay,y = —y—ax, 2 = —a(a® +9%)} ®

The specification P; is again proved by analyzing both cases of the controller in the loop
invariants, e.g., with the pre-attractivity invariant Inv,:

(2=0Ay=0Az#0—=|z| <dAt=0) A
(<@ =0Ay=0A2£0) = 2,52l > & > [, 2l < BT +1) — &t — Ty))
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The top conjunct says the system may start transiently on the z-axis (with z # 0) at time
t = 0. The bottom conjunct gives explicit bounds on ||z, y, 2|,, which, for sufficiently large
t > T, implies that the system enters ||z, y, z||, < ¢ as required for pre-attractivity. The transient
term 6%(27¢ + 1) upper bounds the (squared) norm of the system state after starting on the z-axis
in ball ||z, y, z||, < ¢ and following mode @) for the maximum stopwatch duration 7 = Tj.

6.6 Related Work

Hybrid System Formalisms. There are numerous hybrid system formalisms in the litera-
ture [65, 66, 72, 75, 99, 102, 135, 144, 164, 189]; see the cited articles and textbooks for further
references. Connections between several formalisms have been examined in prior work. Platzer
[135] shows how hybrid automata can be embedded into hybrid programs for their safety verifi-
cation; dL can also be generalized with (disjunctive) differential-algebraic constraints that can
be used to model and verify continuous dynamics with state-dependent switching [135, Chapter
3]. This chapter models switching with discrete program operators which enables compositional
reasoning for the hybrid dynamics in switched systems. Sogokon et al. [177] study hybrid
automata models for ODEs with piecewise continuous right-hand sides and highlight various
subtleties in the resulting models; similar subtleties for state-dependent switching models are
presented in Section 6.2.2. Goebel et al. [65, 66] show how impulsive differential equations,
hybrid automata, and switched systems can all be understood as hybrid time models, and de-
rive their properties using this connection. The decidability of invariance for state-dependent
switched systems is proved in Theorem 6.3 using their dL hybrid program models.

Switched Systems in Control. Comprehensive introductions to the analysis and design of
switching control can be found in the literature [43, 99, 189]. An important design consideration
(which this chapter sidesteps, cf. Remark 6.7) is whether a given switched or hybrid system
has complete solutions [65, 66, 107, 214]. Justification of such design considerations, and other
stability notions of interest for switching designs, e.g., quadratic, region, or set-based stability [65,
66,99, 151, 189], can be done in dL with appropriate formal specifications of the desired properties
from the literature [135, 144]. Another complementary question is how to design a switching
control law that stabilizes a given system. Switching design approaches are often guided by
underlying stability arguments [99, 160, 189]; the loop invariants from Section 6.3 are expected
to help guide correct-by-construction synthesis of such controllers.

Stability Analysis and Verification. Corollaries 6.9-6.12 formalize Lyapunov function-
based stability arguments from the literature [27, 211] using loop invariants, yielding trustworthy,
computer-checked stability proofs in KeYmaera X [54, 55]. Other computer-aided approaches
for switched system stability analysis are based on finding Lyapunov functions that satisfy
the requisite arithmetical conditions [88, 116, 126, 154, 170, 173]. Although the search for such
functions can often be done efficiently with numerical techniques [116, 129, 154], various au-
thors have emphasized the need to check that their outputs satisfy the arithmetical conditions
exactly, i.e., without numerical errors compromising the resulting stability claims [3, 88, 167]
(see, e.g., Section 6.5.2). This chapter’s deductive approach goes further as it comprehensively
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verifies all steps of the stability argument down to its underlying discrete and continuous rea-
soning steps [142, 144]. The generality of this approach is precisely what enables verification of
various classes of switching mechanisms all within a common logical framework (Section 6.3)
and verification of non-standard stability arguments (Section 6.5). Alternative approaches to
stability verification are based on abstraction [62, 183] and model checking [151].

6.7 Discussion

This chapter provides a blueprint for developing and verifying hybrid program models of
switched systems. In particular, it shows how to deductively verify switched system stability,
using dL’s nested quantification over hybrid programs to specify stability, and dL’s axiomatics to
prove those specifications. Loop invariants—a classical technique from verification—are used to
succinctly capture the desired properties of a given switching design; through deductive proofs,
these invariants yield systematic, correct-by-construction derivation of the requisite arithmetical
conditions on Lyapunov functions for stability arguments in implementations. An interesting
direction for future work is to add other Lyapunov function generation techniques [88, 116,
126, 173] to the implementation, which—thanks to the presented approach—do not have to be
trusted since their results can be checked independently by KeYmaera X. This would enable fully
automated, yet sound and trustworthy verification of switched system stability based on dL’s
parsimonious hybrid program reasoning principles.
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Chapter 7

Conclusion

An inspiration for the material of this thesis is the following snippet from the introduction to
Liberzon’s textbook on switched control systems [99]:

The field of hybrid systems has a strong interdisciplinary flavor, and different commu-
nities have developed different viewpoints. One approach, favored by researchers in
computer science, is to concentrate on studying the discrete behavior of the system, while
the continuous dynamics are assumed to take a relatively simple form. Basic issues
in this context include well-posedness, simulation, and verification. Many researchers
in systems and control theory, on the other hand, tend to regard hybrid systems as
continuous systems with switching and place a greater emphasis on properties of the
continuous state. The main issues then become stability analysis and control synthesis.

This thesis takes a significant step in reconciling the two viewpoints mentioned by Liberzon.
Chapters 3 and 4 show that deductive reasoning techniques from computer science scale to
non-trivial safety and liveness properties of non-trivial ODEs, while Chapters 5 and 6 further
show that those syntactic techniques are also well-suited for the formal study of control-theoretic
stability for continuous and hybrid (switched) systems. Deductive reasoning crucially enables
comprehensive and trustworthy verification results throughout this thesis—the modus operandi
of the aforementioned chapters is to i) identify logical building blocks for reasoning about their
respective specifications; then ii) generalize and/or combine those building blocks to obtain
powerful new reasoning principles while retaining confidence in the correctness of the results
by soundly and syntactically justifying every step from a parsimonious axiomatic foundation.

7.1 'Thesis Summary

Differential dynamic logic (dL) is used as the common logical foundation throughout this thesis,
which comes with three key benefits:

* Syntactic deduction in dL provides a means of formally proving a comprehensive set of
specifications of interest—safety, liveness, and stability—for a given system, all within
the same logical framework. These specifications come with powerful derived reasoning
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principles, such as the complete invariance reasoning principles of Chapter 3, refinement
reasoning for liveness in Chapter 4, and the compositional combination of first-order and
hybrid systems reasoning for stability specifications in Chapters 5 and 6.

* The uniform logical treatment yields trustworthy derived reasoning principles because the
correctness of those principles syntactically reduce to the soundness of dL’s parsimonious
axiomatic foundations. Of course, an important caveat for pen-and-paper renditions of
proof rules in this thesis is that one must trust the correctness of syntactic derivations
presented in Chapters 3-6 (and their appendices). While every effort has been made to
check the thesis results, the implementation of these derivations as (untrusted) tactics in
KeYmaera X provides an additional correctness safeguard in practice because all proof steps
are checked against KeYmaera X’s microkernel implementation of dL [54, 55, 115, 142].

* The compositional reasoning principles of dL is used throughout this thesis to lift thesis
results for ODEs to corresponding results for hybrid systems, notably Corollaries 3.14
and 3.39 which equivalently reduce analytic safety questions for analytic hybrid programs
to arithmetic questions; and Chapter 6 which derives stability verification techniques for
switched systems by combining (discrete) loop invariants with (continuous) Lyapunov
function reasoning. The ODE reasoning principles for dL’s box modality (Chapter 3) and
diamond modality (Chapter 4) developed in this thesis also provide practical building blocks
for proving sub-questions about continuous dynamics that arise, through compositional
reasoning, as part of larger hybrid systems proofs in dL and KeYmaera X.

The thesis statement (recalled below) provides a lens with which to view these benefits and
to summarize the results of Chapters 3-6.

Deductive reasoning provides a powerful, uniform, and foundational way of proving
properties of ordinary differential equations. This logical foundation, in turn, yields
new insights towards the verification of continuous and hybrid systems.

7.2 Future Directions

Various avenues for future investigation have been discussed in Chapters 3-6. These avenues
are summarized below, along with other potential directions.

Dynamical Generalizations. Ordinary differential equations (ODEs) are the quintessential
model of continuous dynamics used throughout this thesis. A natural avenue for generalizing the
thesis results is to investigate syntactic reasoning for alternative, or more general, descriptions of
continuous dynamics, such as differential games [143] and differential-algebraic programs [137].
As suggested in Section 5.5, such dynamical extensions could even be useful for specifying
properties of ODEs; recall, e.g., the continuous adversarial dynamics of a differential game
can be used to model noisy perturbations of an ODE. Broadly speaking, the term language
extensions from Chapter 3 are examples of practically fruitful dynamical generalizations be-
cause they expand the class of differential equations that can be directly modeled in dL while
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retaining sound and complete reasoning for their ODE invariants. Indeed, an implementation of
Noetherian term language extensions for KeYmaera X is ongoing work [58]. Future work could
examine the question posed at the end of Chapter 3, i.e., are there function classes that meet
the chapter’s extended term conditions but are not Noetherian functions? Or, more generally,
is sound and complete syntactic reasoning for ODE invariants possible for function classes
that do not necessarily meet those conditions? For example, dL can be extended with definite
descriptions [21] which yields terms that are not necessarily smooth (not even differentiable)
and it would be interesting to explore sound ODE reasoning principles for such an extension.

Syntactic Deduction and Control. Chapters 5 and 6 show how to carry out formal, syntactic
proofs of stability(-like) properties for differential equations and switched systems. Various
additional properties of control mechanisms are of interest in the literature [71, 89] and further
work could investigate how to formally specify and verify these properties within dL. As
argued in Section 5.5, such specifications may provide an avenue for exploring compositional
extensions of dL with other forms of dynamics [136, 137, 138, 141, 143]; or for using extensions
of dL’s specification language [17, 19, 85, 90, 106, 133] to (more directly) syntactically express
the control-theoretic properties of interest. This investigation is practically useful because it
would identify extensions of KeYmaera X (if any) that are needed to enable its use as a powerful,
semi-automated reasoning tool for trustworthy verification of continuous and hybrid control
designs. Existing automation in KeYmaera X can also be improved for this purpose, e.g., the
stability proof tactics for switched systems from Chapter 6 can be further complemented with a
collection of methods for automatically generating Lyapunov function candidates for ODEs and
switched systems, similar to the Pegasus tool [180] for generating ODE invariant candidates.

Verified Verification. From a bird’s eye view, this thesis can also be seen as an instance of
verified verification, i.e., the use of one verification technique (syntactic reasoning in dL) to study
and justify other verification tools or techniques. This is best exemplified by the refinement-
based approach to ODE liveness in Chapter 4, which is used to formally survey and correct
existing liveness arguments from the literature. The self-evident benefit of verified verification
is it adds an additional, alternative layer of correctness guarantee to the resulting verification
tools, which adds to their overall trustworthiness; this is especially useful for safety-critical
application domains, such as CPS verification [6, 144], where any added guarantee is worthwhile.
An additional, subtle benefit is that the new perspectives afforded by alternative verification
techniques may also lend themselves well to new verification insights. For example, the uniform
refinement approach of Chapter 4 reveals building blocks behind ODE liveness arguments in the
literature that can be generalized and pieced together to form new liveness arguments. Future
work can explore verified verification in alternative domains, such as software and hardware
verification, where the resulting correctness guarantees and generalizable insights are beneficial.
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Appendix A

Appendix: Safety and Invariance for
Ordinary Differential Equations

A.1 Differential Dynamic Logic Axiomatization

A.1.1 Extended Axiomatization Soundness

This section proves the soundness of the axiomatic extension from Section 3.5. For the solution
¢ :[0,T] — S, its truncation to the interval [0, t] for some 0 < ¢ < T is denoted ¢|; : [0,¢] — S,
with ¢|(¢) = ¢(() for ¢ € [0, t]. The shorthand notation ¢([a, b]) € [P] means ¢(¢) € [P] for
all a < ¢ < b, where the interval [a, b] is required to be a closed subinterval of the interval [0, T'].
Analogously, ¢((a, b)) is used when the interval is open, and similarly for the half-open cases.

As explained in Section 3.5, the soundness of the extended axioms requires that the ODE
system 2’ = f(x) always locally evolves x. An easy syntactic way to ensure this condition is to
check that the system already contains an equation z; = 1 to track the passage of time, which
can be added using axiom DG if necessary before using the axioms. However, the soundness
proofs below are more general and only use the assumption that the ODE system locally evolves
x, whether by ) = 1 or otherwise.

The soundness proofs make use of dL’s coincidence lemmas [142, Lemmas 10,11]:

Lemma A.1 (Coincidence for terms and formulas [142]). The following coincidence properties
hold for dL, where free variables FV(e), FV(¢) are defined as expected [142, Sections 2.3 and 2.4].

* If the states w, v agree on the free variables of term e (FV(e)), then w[e] = v]e].

* Ifthe states w, v agree on the free variables of formula ¢ (FV(9)), thenw € [¢] iffv € [¢].

Existence, Uniqueness, and Continuity. First, the axioms from Lemma 3.15 internalizing
basic existence and uniqueness properties of solutions of differential equations are proved sound.

Proof of Lemma 3.15. Let w be an arbitrary initial state. When interpreted as a function of the
variables x, the RHS f(x) of the ODE system z’ = f(x) is continuously differentiable. By the
Picard-Lindel6f theorem [204, §10.VI], from w, there is an interval [0, 7), 7 > 0 on which there
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is a unique, continuous solution ¢ : [0,7) — S with ¢(0) = w on {z’}°. The solution can be
uniquely extended in time up to its right-maximal open interval of existence [204, §10.IX].

Uniq The “—” direction follows directly from monotonicity of domain constraints because of

the propositional tautology (01 A Q2 — @1 (and similarly for ()s). For the “+” direction,
suppose that initial state w satisfies both conjuncts with w € [(' = f(z) & Q1) P] and
w € [(z' = f(x) & Q2) P]. Expanding the definition of the diamond modality, there exist
two solutions ¢ : [0,71] — S, ¢ : [0, T3] — S from w such that p; | 2’ = f(z) A Q4
and g9 = 2’ = f(x) A Qq, with both ¢1(T}) € [P] and ¢2(T3) € [P]. Suppose 11 < T.
Since ¢ ([0, T3]) € [Q2] and, by uniqueness, ; is a truncation of ¢, to a smaller existence
interval, p; =2’ = f(z) A (Q1 A Q2). At time T, the solution satisfies ¢ (77) € [P], so
w € [(2' = f(x) & Q1 A Qq) P], as required. The case for T» < T is similar, except with
po E o’ = f(z) A (Q1 A Q) and satisfying po(Ts) € [P] at time T3 instead.

Cont Assume that w satisfies the outermost implication, i.e., w € [z = y]. The (inner) “—”

Dadj

direction follows by definition because in order for there to be a solution staying in e > 0
at all, the initial state w must already satisfy e > 0 (evolution domains are differential-free).
For the (inner) “<-” direction, suppose further that w € [e > 0]. Since 2’ is not a free
variable of term e as e is differential-free (Section 2.3.3), coincidence (Lemma A.1) implies
©(0) € [e > 0]. As a composition of continuous evaluation [142, Definition 5] with the
continuous solution ¢, ¢(t)[e] is a continuous function of time ¢. Thus, ¢(0) € [e > 0]
implies ¢([0,77]) € [e > 0] for some 0 < 7" < 7 and the truncated solution ¢|r satisfies
o|lr = 2’ = f(x)Ae > 0. Since y is constant for the ODE but 2’ = f(x) was assumed to lo-
cally evolve (for example with 2} = 1), there is a time 0 < ¢ < T"at which ¢(¢) € [z # y].
The truncation ¢|. witnesses w € [(z' = f(z) &e > 0)x # y].

The “+” direction follows immediately from the “—” direction by swapping the names
x,y, because —(—f(x)) = f(x). Therefore, it suffices to prove the “—” direction. Sup-
pose w € [(z' = f(z) & Q(z)) x = y]. Unfolding the semantics, there is a solution ¢ :
[0, 7] — S, of the system 2’/ = f(z), with ©(0) = w on {2/}, with ([0, T]) € [Q(z)] and
©(T') € [x = y]. Since the variables y do not appear in the differential equations =’ = f(z),
their values are constant along the solution ¢. Consider the time- and variable-reversal

Y :[0,T] — S, where:

(T =7)(w:)  z=y
b(r)(2) = —(T = 7)(x) 2=y
w(z) otherwise

By construction, 1(0) agrees with w on {3/} because (T) € [z = y]. The signs of
the differential variables y, are negated along ). By uniqueness, the solutions of z’ =
—f(z) are the time-reversed solutions of ' = f(x). As constructed, 1 is the time-
reversed solution for 2’ = f(x) except the x were replaced by y instead. Moreover, since
©([0,T]) € [Q(x)], by construction and coincidence (Lemma A.1), ¥([0,7]) € [Q(y)].
Therefore, v =y’ = —f(y) A Q(y). Finally, observe that ¢)(T")(y) = ¢(0)(z), but ¢ holds
the values of z constant, thus ¢(T)(z) = w(z) = ¢(0)(x) and so Y(T') € [y = x] and ¢

witnesses w € [(y = —f(y) & Q(y))y = 7] -
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Real Induction. The following real induction axiom with domain constraints is proved sound.
Axiom RI from Lemma 3.19 follows as an instance with no domain constraint, i.e., () = true.

RI& [ = f(2) & QIP Yy [r' = f(2) & Q A (P V z=y)] (x:y 5

P A = [@)&QVa=y)a £y~ (' = [(@) &PV o=y)z £ y) )
~~ N ~

@ ®

Similar to axiom RI, the axiom RI& is based on the real induction principle [34] but also
accounts for an arbitrary domain constraint (). Its RHS conjuncts labeled @) and ® correspond
to @ and @ in Def. 3.17 respectively. The quantification Vy [... & Q](z =y — ...) now only
considers final states (x = y) reachable by trajectories that always stay within (), and within
P except possibly at the endpoint x = y. The conjunct @) expresses that P is still true at such
an endpoint. The conjunct ® expresses that P continues to remain true locally but only when
Q itself remains true locally. This added assumption for () corresponds to the “If { < b then

.” assumption in @ of Def. 3.17. The conjunct (® can be rewritten succinctly with the local
progress () modality as:

(@' = f(2) & Q)O — (' = f(2) & P)O

With completeness for local progress (Theorem 3.26), this gives a first hint at how RI& will
be used to obtain a complete proof rule for semianalytic invariants with domain constraints
in Appendix A.2.

Lemma A.2 (Real induction with domain constraints). The real induction axiom RI& is sound,

where y is fresh in [z = f(z) & Q]| P.

Proof (implies Lemma 3.19). The conjuncts on the RHS of RI& are labeled as @) and ® respec-
tively, as shown above. Consider an initial state w, both directions of the axiom are proved
separately.

“—” Assume the LHS of RI& is true initially with ® w € [[z’ = f(x) & Q]P]. Unfolding the
quantification and box modality on the RHS, let w,, be identical to w except where the values
for y are replaced with any arbitrary values d € R™. Consider any solution ¢, : [0,7] — S

where ¢, 2’ = [(2) A (Q A (PV @ = y)), 9,(0) = w, on {2'}%, and o, (T) € [ = y].
The following similar solution ¢ : [0,7] — S keeps y constant at their initial values in w:

o)) {%<t><z> 0

w(2) z € {y}

By construction, ¢(0) is identical to w on {2’}® and ¢ is identical to ¢, on {y}°. Since y
is fresh in 2’ = f(z) & @, by coincidence (Lemma A.1) the latter implies that ¢ = 2’ =
f(x) A Q. By assumption &), p(1") € [P], which implies that ¢, (T") € [P] by coincidence
(Lemma A.1) since y is fresh in P. This proves conjunct @. Unfolding the implication
and diamond modality of conjunct ®), assume there is another solution v, : [0,7] — S
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from ¢,(T) with ¢, = 2’ = f(z) A (Q V= = y) and 9,(7) € [z # y]. Note that
,(0) = ¢,(T) exactly rather than just on {z'}%, because both states have the same
values for the differential variables. To show the RHS of the implication in ), i.e., that
oy (T) € [(2' = f(x) & PV a =y)x #y], it suffices to show: ¢, = 2’ = f(z) A P,
because P propositionally implies P V o = y. In particular, since 9, already satisfies the
requisite differential equations and v, (7) € [x # y], it remains to show that ¢, stays in
the evolution domain P for its entire duration, i.e., ¢, ([0, 7]) € [P]. Let 0 < { < 7 and
consider the concatenated solution @ : [0,7 + (] — S defined by:

0y () (2) L<T, 2 e {y)°
O(t)(2) =y (t = T)(z) t>T,z¢€ {y}°
w(z) z e {y}

As with ¢, the solution ® is constructed to keep y constant at their initial values in w.
Since 1, must uniquely extend ¢, [204, §10.IX], the concatenated solution ® is a solution
starting from w, solving the system x’ = f(z). It stays in () for its entire duration by
coincidence (Lemma A.1) because ¢, (7T") € [Q] and all states satisfying © = y agree
with ¢, (T") on the free variables of formula (). In other words, ® = 2’ = f(x) A Q.
By ®, ®(T" + () € [P], which implies ¢/(¢) € [P] by coincidence (Lemma A.1) and so
Yy ([0,¢]) € [P], as required.

Assume the RHS of RI& is true in initial state w and show the LHS. Consider an arbitrary
solution ¢ : [0,7] — S starting from w such that ¢ | 2/ = f(z) A Q. To show
©([0,T]) € [P], using the real induction principle (Proposition 3.18), it suffices to show

that the set of times § & {C: o(C) € [P]} is an inductive subset of [0, T, i.e., it satisfies
properties D and @ in Def. 3.17. So, assume that [0, () C S for some time 0 < { < 7.
The proof instantiates quantified variables y on the RHS of RI& to match the values of
x at (). Since y is constant for the ODE, this allows properties of ¢(() to be deduced
using the RHS (namely @, ®) by mediating between ¢ and its augmentation ¢, below.
More precisely, consider the state w,, identical to w, except where the values for variables
y are replaced with the corresponding values of z in ¢((). Correspondingly, consider the
solution ¢, : [0, (] — S identical to ¢ but which keeps y constant at those initial values
in w, rather than in w:

() % w(z) z € {y}f L) def p(t)(z) =€ {y)*
“)‘{wom>z=% @N“)‘{%u> 2 {y)

By construction and coincidence (Lemma A.1), ¢, is a solution from initial state w,, solving
o, E 2’ = f(x) ANQand p,(() € [x = y]. By assumption and coincidence (Lemma A.1),
©,([0,¢)) € [P]. Therefore, p,([0,¢]) € [Q A (P V 2 = y)]. Unfolding the quantification,
box modality and implication on the RHS yields ¢,(¢) € [@ A ®].

@ By @, ¢, (¢) € [P] so by coincidence (Lemma A.1), ©(¢) € [P] as required for .

@ Further assume that ¢ < T and show ¢((¢,( + ¢]) € [P] for some € > 0. Observe
that since ¢ < T, there is a solution that extends from state ¢ (¢), i.e, ¢ : [0,7—(] —
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S, where (1) o o(T7+() and with ¢ |= 2’ = f(x) AQ. Construct the corresponding
solution ¢, : [0,T" — (] — S that extends from state ¢, () and still keeps y constant
at their values in w,:

w0k 2y

By coincidence (LemmaA.1), ¢, = 2’ = f(x) A @, so by weakening the domain
constraint, 1, = 2’ = f(z) A (Q V x = y). Since ¢, (() € [r = y|] by construction
and the differential equation is assumed to always locally evolve (for example with
x} = 1), there must be some duration 0 < § < T — ( (recall T — { > 0) after
which the value of x has changed from its initial value held constant in y, i.e.,
1y (9) € [z # y]. The truncation 1), |s witnesses the LHS of the implication in ®
with: ¢, (¢) € [(z' = f(z) & Q V & = y)z # y]. Using this with the implication in
® yields ¢,(C) € [(«' = f(x) & PV x = y)x # y]. Unfolding the semantics, this
gives a solution which, by uniqueness, is a truncation v, |. of 1,, for some ¢ > 0,
that satisfies ¢, |-([0,¢]) € [P V 2 = y]. From @ and coincidence (Lemma A.1), all
states satisfying © = y agree with ¢(() on the free variables of formula P thus
y|=([0,¢€]) € [P]. By construction, ,|.(7) coincides with ¢(7 + () on z for all
0 < 7 < g, which implies ¢(((, ¢ + ¢]) € [P] by Lemma A.1. O

z ¥ C
(D)) & {w)( ) z€{y}

Conjunct ® of RI& can be written as (' = f(2) & Q)x # y — (2/ = f(x) & P)x # y be-
cause () and P can be assumed true in the context where the conjunct appears. This flexibility can
be seen from its soundness proof above and will be made explicit syntactically in Corollary A.3.

A.1.2 Extended Derived Rules and Axioms
This section derives additional rules and axioms that make use of the axiomatic extensions

from Section 3.5.

Local Progress Properties. The local progress modality () excludes the initial state (z = y)
in the domain constraint when expressing local progress for formula (). Recall:

@ = [@)&QOE (@ = f()&QVr=y)z £y

The disjunct x = y in the domain constraint makes local progress an interesting question for
formulas characterizing sets that are not topologically closed (e.g., open sets as characterized by
the formula e > 0). As axiom Cont shows, the formula (z' = f(z) & e > 0)x # y which does
not exclude x = y in the evolution domain constraint is already equivalent to e > (. A precise
syntactic characterization of this difference is shown by the following derived axiom.

Corollary A.3 (Initial state inclusion). The following axiom derives in dL. Variables y are fresh
in the ODE x' = f(x) and formula Q).

it 2=y — ((z' = f(2) & Q)x #y < QA (2’ = f(2) & Q)O)
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Proof. First, by dualizing via (-) both sides of axiom DX, the following equivalence is derived:
(@' = f(@) & QP < (QN(PV (2 = f(r)&Q)P))

The derivation of Init starts by using this derived equivalence (DX, (-)), followed by a series
of equivalent propositional rewrites that simplify the logical structure of the succedent. The
propositional steps are shown below, first removing the disjunct x # y using the assumption
x=y, and then pulling out the common conjunct () as an antecedent assumption.

=y, QF (' = f(@)&Q)x £y & (2’ = f(2) &Q)O
r=yF QAN = f(@)&Qr#y < QA" = f(2)&Q)O
r=yE QA(x#yV @' =fla)&Qr#y) < QA = f(z)&Q)O
PO a=y (@ = f@) & Q)r £y < QA = f(2) &£ Q)O

Both directions of the resulting equivalence are proved separately by unfolding the abbrevia-
tion (). In the “—” direction, a dRW(-) step suffices using the tautology Q — @ V z=y:
*

dRW(-)I:y7 Q' =fx)&Q)x#yF (' = f(2)&QVar=y)z £y

In the “+” direction, the derivation starts with a DR(-) step which reduces to the box
modality. Since the formulas x = y and () are true initially, a V, DC step introduces the constant
assumption ()(y) into the domain constraint, which is ) with y in place of z. The derivation
closes with dW using the strengthened domain constraint.

aw ' = f(2) & (QVa=y) AQ[y)]Q
V,DC r=y,QF [2' = f(x) &Q V z=y|Q
PR2=y, Q, (2" = f(2) & QVa=y)z # yF (' = [(2) & Q) # y -

It is not possible to locally progress into both formula P and its negation — P simultaneously,
by uniqueness. This is the “—” direction of the duality axiom —() for local progress from
Corollary 3.27. The converse “<—” direction is more involved and relies on the characterization
axiom LP to be derived later.

Corollary A.4 (Local progress duality “—”). The following axiom derives from Uniq. Variables y
are fresh in the ODE ©' = f(x) and formula P.

~O, a=y = ((o/ = f(2) &P)O = =(a’ = f(z) &-P)O)

Proof. The derivation starts with —R, after which the resulting local progress antecedents are
combined by axiom Uniq, giving a conjunction of their domain constraints because the formula
(P V z=y) A\ (=P V x=y) is propositionally equivalent to (P A =P) V x=y. The conjunction
P A =P in the domain constraint is propositionally equivalent to false and, intuitively, no local
progress is possible into an empty set of states.
(' = f(x) & PAN=P)OF false
Ul — F@) & PYO, @' = J(@) & ~P)O - false
- ("= f(x) & P)YOF =" = f(2) &=P)O
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The derivation is completed by unfolding the () syntactic abbreviation, and shifting to the
box modality by (-) duality. The final step after using dW is a propositional tautology:

*
(PN-P)Vez=yktz=y
aw Flo'=fx)&(PA-P)Vax=ylr=y
Chmliy = f(2) & (PA-P)Vz =y)x #yhk false
(' = f(x) & P AN=P)OF false O

Reflection. The next two derived axioms rfl(-) and rfl internalize a mathematical property
of ODE invariants, namely, the formula P is invariant for the forward ODE 2’ = f(z) iff its
negation — P is invariant for the backward ODE 2’ = — f(z). This invariant reflection principle
is used in Appendix A.2 for proving completeness for semianalytic invariants and to flip the
signs in the second premise of rule rl. It is useful in its own right as it allows freely switching
between proving invariance for either the forward or backward ODEs, e.g., if one direction
yields simpler arithmetic.

Corollary A.5 (Reflection). The reflection axioms rfl(-), rfl derive from Dadj:
rfl(-) 3a (P(z) A (2" = f(2) & Q) R(x)) < Fz (R(x) A (2" = —f(2) &Q(z)) P(x))
rfl Vo (P(z) — [2' = f(2) & Q(2)|P(2)) <> Vz (=P(z) = [2/ = — f(z) & Q(z)]~P(z))

Proof. Axiom rfl derives from rfl(-) by instantiating with R(x) ) —P(z) and negating both
sides of the equivalence with (-). The diamond reflection axiom rfl(-) is derived from Dadj. Both
implications are proved separately and the “<” direction follows by instantiating the proof of
the “—” direction, since —(— f(x)) = f(x). The “—” direction is proved below.

In the derivation below, the formulas are bound renamed [142] for clarity. After Skolemizing,
the first K(-), dW step introduces an existentially quantified y under the diamond modality in the
antecedent by monotonicity using the provable first-order formula R(z) — Jy (x = y A R(y)).

P(z), (x' = f(x) &Q(x))3y (x =y A R(y)) = Ty (R(y) A (¢ = —f(y) & Q1)) P(y))
K(), oW P(z), (z' = f(z) & Q(2))R(z) - Jy (R(y) A {y' = —f(y) & Q(y)) P(y))
LAt Jz (P(x) A (2" = f(2) &Q(z))R(z)) F Jy (R(y) Ay = —f(y) & Q) P(y))

The ODE Barcan B’ axiom moves the existentially quantified y out of the diamond modality
since y is not in 2’ = f(z). A subsequent V step also moves the postcondition R(y) out from
the diamond modality into the antecedents.

P(x),R(y), (v' = f(2) & Q(z))r =y F Fy (Ry) ANy = —fy) &Qy))P(y))
V' P), (@ = f2)&Q)x=yARy)F Iy (Rly) Ay =—fy) &Qy))Py))
2P(x), 3y (o' = J(2) & Q(@))(w =y A R(y)) F Iy (R(y) Ay’ = —f(y) &Qy)) P(y))
P P(x), (2 = f(2)&Q(x))Ty (x =y AR(y)) - Jy (R(y) Ay = —fy) &Q(y)) P(y))

The derivation continues using differential adjoints Dadj to syntactically flip the antecedent
differential equations from evolving = forward to evolving y backward. The V, K(-) step then
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strengthens the postcondition to P(y) exploiting that the (negated) ODE does not modify z so
that P(z) remains true along the ODE. This completes the proof using y as a witness for Jy.

Real Induction Rule. The real induction rule with domain constraints corresponding to
axiom RI& is derived next. It is stated with the () modality from Section 3.5. The real induction
rule rI from Corollary 3.20 derives as an instance with domain constraint () = true.

Corollary A.6 (Real induction rule with domain constraints). The real induction proof rule ri&
(with two stacked premises) derives from RI&, Dadj, Uniq. Variablesy are fresh inthe ODEz' = f(x)
and formulas P, ().

r=y,P,Q, (2" = f(x) & Q)OO+ (' = f(2) & P)O
r=y, 2P, Q, (z' = —f(z) QO F (' = —f(z) &-P)O
Pt = f(x) &QP

Proof (implies Corollary 3.20). The derivation starts by rewriting the succedent with RI&, the
resulting right conjunct is abbreviated with R = (' = f(2) & Q)OO — (o' = f(z) & P)O. The
M['] step rewrites the postcondition with propositional tautology P A R <» P A (P — R) which
allows the left conjunct P to be assumed when proving the right conjunct R (the implication
x=y is also distributed over the conjunction). The two conjuncts are then split by [-]A, AR, with
the resulting two premises labeled (D and (@ respectively. These are shown and proved below.

@® @
[IA AR B [/ = f(2)&Q AN (PV 2= y)}((g;:y—>P)/\(x:y/\P—>R))
MIL"PE 2 = f(2) & QA (P V a=y)|(z=y — P A R)
" PEVy[a' = f(2) & QA (PVr=y)l(z=y = PAR)
PR = f(n) &QIP

rI&

The premise (2) yields the top premise of rule rI& directly (unfolding the abbreviation for R):
r=y, P,Q, (' = f(2) & Q)OF (' = f(2) & P)O
RAL QF (x==y AP = R)
w Pt =f(x)& QA (PVa=y)|(rt=y NP — R)

Continuing from premise (D, the derivation splits classically on whether x=y is true initially,
yielding two further premises labeled @ when =y and @ when = # y.

©) @
Mr=yVa#y Pk i = fx) & QA (PVa=y)|(z=y — P)
. PE "= f(x) & QA (PVz=y)|(z=y — P)
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From (), the antecedents =y and P imply that P(y) is true initially by a cut. Since y is held
constant by the ODE 2’ = f(z), a monotonicity step M['] followed by V completes the proof:

v T PWF [ = [@&QA(PVa=y)Py)
WMy —y PE [ = f(@) &Q A (PVa=y)|(z=y — P)

From (@, the derivation continues by dualizing to the diamond modality with (-), —R.

a7y, P« = f(2) &Q N (PVa=y))(x=y A ~P) I false
vy, P [2 = f(z) &Q N (P V 2=y)|(z=y — P)

From the resulting premise, axiom rfl(-) is used to syntactically reverse the diamond modality
ODE in the antecedent from 2’ = f(z) to 2’ = — f(z). The dRW(-) step weakens the resulting
postcondition of the diamond modality with the propositional tautology z#y A P — x#y.

r=y, P, (' = —f(x) &Q N (P V x=y))z#y F false
RWE) p—y, =P, (' = —f(x)&Q N (PVz=y))(x#y N P) F false
M0 gy, P (2 = f(2) & Q A (P V z=y))(z=y A —P) I false

The diamond modality in the antecedent splits by axiom Uniq into two assumptions with
domain constraints () and P V x=y respectively. With a use of derived axiom Init, all the
antecedents of the bottom premise of rule rI& are gathered, leaving only its succedent.

1=y, ~P,Q, (2 = —f(2) & Q)O, (¢ = —f(w) & PYO false
Ma=y, -P, (o' = —f(2) &Q)x # y, (' = —f(x) & PVa=y)z # y - false
Uniq x=y,~P (' = —f(x) & QN (P V x=y))x # y F false

Continuing with the derived implication —()_, results in the bottom premise of rule rl&:
r=y, 2P, Q, (' = —f(z) & Q)OF (¢’ = —f(2) &=P)O
o T=y, _‘Pa Q7 <$l = —f(l') &Q>Ov ﬁ<'CE/ = —f(.fE) & ﬁP><> - false
0= 4=y, ~P,Q, (@ = —f(@) & Q)O, (¢ = —f(2) & PYO F false m

The rule rI& discards any additional context in the antecedents of its premises. This is due
to the use of RI& which focuses on particular states along trajectories of the ODE 2’ = f(x). It
would be unsound to keep any assumptions about the initial state that depend on x because the
state being examined may not be the initial state! On the other hand, assumptions that do not
depend on x remain true along the ODE. These constant assumptions can be kept with uses of V
throughout the derivation above or added into () before using rI& by a DC that proves with V.
Following the notational conventions (Section 2.3.2), such additional steps are elided and rule
rI& is used directly while keeping these constant assumptions around.

)

A.2 Completeness

This appendix gives completeness proofs for the derived rules dRI, sAI and the derived local
progress characterization LP. Completeness of dRI is proved by showing that DRI is a derived
axiom and similarly for sAI by showing that SAI is a derived axiom. This syntactic approach
to proving completeness of dRI and sAl demonstrates the versatility of the dL calculus and it

199



also enables complete disproofs of invariance properties as opposed to just failing to apply a
complete proof rule. To conclude that invariance is disproved after applying an algorithmic
procedure (like the presentations of (semi)algebraic dRI and sAI [63, 103]), one would need to
trust, in addition to soundness, that no completeness errors are present in the implementation.
Recall that axioms Cont, RI& have an additional syntactic requirement, e.g., the presence of
x) = 1, which is assumed to be met throughout this appendix, using axiom DG if necessary.

A.2.1 Progress Formulas

Throughout this section, progress formulas are with respect to ODE 2’ = f(x). The following
are useful logical rearrangements of the progress formulas for extended term e.

Proposition A.7 (Atomic progress formula equivalences). Let N be the rank of extended term e.
The following are provable equivalences on the progress and differential radical formulas for e:

e >00e>0V(e=0Ae>0)V... (A.1)
Vie=0Ae=0A- AN =0peN2 > 0)
Vie=0Ae=0A AN D =0AeND >0

e >0ce>0A(e=0—¢e>0)A... (A2)

~—

Ale=0Aé=0NA ANV =0 N2 >0)
Ale=0Aé=0NA APV =0 VD >0)

() >0) ¢ ()W >0 =" >0) e () >0 (A3)

(6 = 0) ¥ >0V (—e)®) >0 (A4)

Proof. The equivalences are proved one at a time. By linearity of Lie derivatives, (—.e)(i) = — (é(i))

proves in real arithmetic for any 7. The proof also uses these provable real arithmetic equivalences:
e>0<e=0VvVe>0 —e>0Ne>0+e=0 —(e>0)+ —e>0

(A.1) This equivalence follows by real arithmetic, and simplifying with propositional rearrange-
ment as follows (here, the remaining conjuncts of ¢*) > 0 are abbreviated to . . .):

eZO/\((e:O—>é20)/\...>He>0/\<(e:0—>é20)/\...)
\/ezO/\((ezO—)éZO)/\...)

The first disjunct on the RHS simplifies by real arithmetic to e > 0 since all of its implica-
tional conjuncts contain e = 0 on the left of an implication. The latter disjunct simplifies

toe=0A <é >0A... ), yielding the provable equivalence:

é(*)>0<—>e>0\/620/\<é20/\...>

The equivalence (A.1) proves by iterating this expansion on the RHS of this equivalence
for its nested conjuncts with higher Lie derivatives.
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(A.2) This equivalence proves by expanding the formula ¢} > 0 which yields a disjunction
between ¢*) > 0 and ¢*) = 0. The latter formula is used to relax the strict inequality in
the last conjunct of ¢*) > 0 to a non-strict inequality.

(A.3) The equivalence for —(e™*) > 0) follows by negating both sides of equivalence (A.1) and
moving negations on the RHS inwards propositionally, yielding the provable equivalence:

~(¢% > 0) <—><—|(6 S0 A(e=0—=(&>0)A
A(e=0Ae=0A - NNV D=0 — ~(6V- 1)>0))>

The desired equivalence derives by negating the inequalities and by equivalence (A.2)

for (— : e)®) > 0. The equivalence for —(¢*) > 0) derives by negating both sides of the
equivalence for =(e™) > 0), since —(—¢) = e.

(A.4) By (A.3), the following equivalence is provable:

(9 > 0) A =((—e)® > 0) ¢ ((—e)® > 0) A () > 0)

By rewriting with (A.2), the RHS of this equivalence is provably equivalent to the formula
¢™) = 0 in real arithmetic. Negating both sides yields the provable equivalence (A.4). [J

The provable equivalences (A.3) are particularly important, because they underlie the next
proposition, from which the complete characterization of local progress follows:

Proposition A.8 (Negated semianalytic progress formula). Let semianalytic formula P bein

normal form (3.7), then =P can be put into normal form such that ﬁ(]b(*)) (—|P) is provable:

N ali)
P = \/(/\dzj>0/\/\dw>0)
=0 75=0

Proof. The proof uses the propositional tautologies =(A A B) <+ AV =B and ~(AV B) +
—A A —B. Formula P is negated (in normal form (3.7)) and all sub-terms are negated so the
inequalities have 0 on the RHS, yielding the following provable equivalence. The resulting RHS
is abbreviated by ¢:

M m(i) n(i)
=0 " j=0 =0 .
¢

The progress formula P® for the normal form of P satisfies the equivalence (by definition):

m(%)
<_>\/</\61](*>0/\/\6” )
=0 j=0
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Negating both sides of the progress formula for P and simplifying propositionally proves:

M ) n(i)
(P /_\ ( \_/ (€;) > 0) v \_/ EMORN 0))

Rewriting the RHS with equivalences (A.3) from Proposition A.7 yields the following provable
equivalence. The resulting RHS is abbreviated by :

€9

Observe that ¢, 1 have the same conjunctive normal form shape. Distribute the outer conjunction
over the inner disjunctions in ¢ to obtain the following provable equivalence, whose RHS is a
normal form for =P (for some indices IV, a(7), b(i) and extended terms d;;, d;;):

b(4)

ﬁPH\/</\dw>0\//\dU>O)

=0 75=0

Distribute the disjunction in v following the same syntactic steps taken for ¢ to obtain the
following provable equivalence:

N a(1) . b(7) .
oo\ (Ads=0v A dy >0)
i=0 j=0 3=0

Rewriting with the equivalences derived so far, and using the above normal form for — P, yields
the required, provable equivalence:

~(PM) & (~P)® O

A.2.2 Local Progress

This section derives the characterizations of local progress from Section 3.6.1. These characteri-
zations are used in the completeness proofs for both analytic and semianalytic invariants.

Atomic Inequalities. The proof of Lemma 3.23 was outlined in Section 3.6.1. The case where
= is > is proved first, while the more technical case where = is > is proved subsequently.

Proof of Lemma 3.23 (LP>+). Let N be the rank of extended term e with respect to 2’ = f(z)
from (3.2). For the derivation of LP>, the additional flexibility of the () modality with a disjunct
x = y in the domain constraint is not needed. This disjunction is removed after unfolding the
() abbreviation using a dRW(-) monotonicity step. The definition of ¢*) > 0 is also unfolded,
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with both disjuncts handled separately. The resulting premises are labeled (D (for the ¢ > 0
disjunct) and @ (for the é*) = 0 disjunct).
@ @
I og=y,e® >0ve =0F (2 (x)&e>0)zr £y
BV =y, e® > 0v e =0+ (2 (x)&e>0Vr=y)x#y
r=y,e® >0F (' = f(z)&e > 00

<=

From ), dRW(-) strengthens the inequality e > 0 in the domain constraint to an equation
e = 0. The derivation continues using DR(-), because by dRI, ¢ = 0 is provably invariant. The
proof is completed with Cont using the trivial arithmetic fact 1 > 0:

* *

RED —0F [ = f(2) &1 > 0je =0 “%ryF®“=ﬂ@&1>®x#y
DR(") =y, =0F (z/ = f(x) &ke=0)x #y
dRW(") r=y,e¥ =0F (2' = f(z)&e >0z #£y

From (@, the premise is lined up for the derived step axiom LPi-. The proof proceeds by
closing the (left) premises obtained by iterating LPi> for higher Lie derivatives. In this way, the
derivation continues until the final (rightmost) open premise which is abbreviated here with . . .
and continued below:

* r=y, e >0,... ...
% Re) > 0,e=0F¢é>0 LPi> ..
ReBI>0Fe>0 B g=y, 6™ > 0,e=0F (' = f(z) &e>0)x £y
P =y, e® > 0F (o' = f(2) &e > 0z # y

The remaining open premise corresponds to the last conjunct of ¢*) > 0. The implication
in the conjunct uses the gathered antecedents e = 0, ..., ¢é(N=2) = 0 after which Cont, dRW(-)
completes the proof:

*
Cont, dRW(+) =y, é(N—l) > 0F <:L’/: f( )&6 Z >1:7éy
W p=y,e® >0,e=0,...,eN D =0F (' = f(z) &NV >0z #y O

Unlike the non-strict case just derived for Lemma 3.23, the strict case (where = is >) crucially
uses the fact that the () modality excludes the initial state, so that it is possible to locally progress
into the strict inequality e > 0 without already satisfying it in the initial state. Topological
considerations made this exclusion irrelevant for the non-strict case (see Section 3.6.1), as derived
axiom Init explains logically. The idea behind the remaining proof of Lemma 3.23 for the strict
case is to syntactically embed this difference into the derivation of LP-«. Moreover, this syntactic
transformation reduces the proof to the non-strict case, so that the derived step axiom LPi> can
again be used to progressively analyze higher Lie derivatives. The following proposition is used
for the transformation:

Proposition A.9. Let d = ¢* for some k > 1 and 2’ = f(x) be an ODE with extended terms
e,d, f(x). Foreach 0 < i < k — 1, there (computably) exists an extended term cofactor g such that
the following identity is provable in real arithmetic:

49 = ge



Proof. The proof proceeds by induction on k.
« Fork=1,d = ¢! so¢® = ¢ hence the cofactor g = 1 suffices.

» For d = ¥, the j-th Lie derivative of d for 0 < j < k is given by Leibniz’s rule:

J . .
G ©) J j—i) 2 (i
1 = (et = 3 (1) oen
=0
The induction hypothesis implies (¢%)U~") = g;e is a provable identity for some computable
extended term cofactor g; for each 1 < ¢ < j. The final summand for 7 = 0 is:

() e — e

Thus, the cofactor g = (")) + 37_ (7) g;¢® yields the identity d9) = ge. This identity
is provable because it only depends on first-order properties of real arithmetic. [

Ford =eF k> 1, Proposition A.9 shows that formula e = 0 — /\f:_o1 c.l(i) = () is provable in
real arithmetic for extended terms e, d, which enables the remaining proof of Lemma 3.23.

Proof of Lemma 3.23 (LP~+). Let N > 1 be the rank of extended term e with respect to 2’ = f(x).
This rank bounds the number of higher Lie derivatives of e that need to be considered.

The derivation starts by unfolding the syntactic abbreviation of the () modality and reducing
to the non-strict case with dRW(-) and the real arithmetic fact e—d >0 — e > 0V x = y for
the abbreviation d & |z — y|*, which is a (polynomial) term: ((z1 — y1)?+ -+ + (2, — yn)Q)N.

*
Re—d>0Fe>0Vz=y r=y,e® >0k (2/ = f(z)&e—d > 0)x £y
dRW(:) r=y,e*) >0F (' = f(r)&e>0Vr=y)lz#y
r=y,e® >0F (' = f(x)&e > 0)0O

Next, the initial assumption x=y in the antecedent is used. The first cut proves using the
formula of real arithmetic: 7=y — |z — y|? = 0. As remarked, with |z — y|>* =0and N > 1,

by Proposition A.9, |x — y|* = 0 — /\z']\:ol d) = 0isa provable real arithmetic formula. The
second cut proves using this fact. The proof of the remaining open premise is continued below.
=y, A dD =0,6%) >0k (2 = f(z) &e—d > 0)x #£ y
B =yl —y? =0, > 0F (o' = f(x)&e—d > 0)a £y
cut. B r=y,e® > 0F (' = f(z) &e—d > 0)z £y

To continue, observe that for 0 <7 < N — 1, by linearity of the Lie derivative:
@) . (i (i
Lip(e—d) = e — d®

Using the conjunction /\Z.NZBl d® = 0 in the antecedents, the formula (e;d) @) = &0 proves
by a cut and real arithmetic for 0 < i < N — 1. This justifies the next real arithmetic step from
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the open premise, with the assumptions Fd /\fv 01 (e— d) — ¢, Intuitively, 'y allows the

derivation to locally work with higher Lie derivatives of e mstead of higher Lie derivatives of
e — d in subsequent steps.

Ly, =y, >0F (2 = f(z)&e—d > 0)x #y
Ry, AN Ldo = 0,6 >0F (2 = f(z)&e—d >0z #y

The derivation is completed using the same technique of iterating LPi>, as shown in the
earlier proof of Lemma 3.23 for the non-strict case LP>-. It starts with a single LPi> step. The
left premise closes by real arithmetic because ¢*) > 0 has the conjunct e > 0, and I, provides
e — d = e, which imply e — d > 0. The remaining open premise on the right is proved below.

*
BTy, e® >0k e—d>0 Tga=y,e® >0,e—d=0F (2' = f(z) & (e—d)MV>0)x # y
LPi> Ly, 2=y,e™ > 0F (2' = f(z)&e—d > 0z #y

Continuing from the open premise, local progress for the first Lie derivative of e—d is proved.
The first step simplifies formula e—d=0 in the antecedents using I';. The derived axiom LPi>,
together with I'y, simplifies and proves the left premise. The right premise is abbreviated @
(shown and continued below).

*
RBe=0—2¢>0,e=0Fe® >0
Ty, e® >0,e=0F (e~d) V>0 @
= Ly, 2=y, e® >0,e =0F (2 = f(2) & (e .d)( )>0)x £y
. I‘d,x:y,é(*)>O,e—d:0I—<x’:f(x)&(e.d) >0)x #y

The derivation continues from (D similarly for higher Lie derivatives of e—d, using ['; to

replace (e;d) () with ¢, and then using the corresponding conjunct of ¢*) > 0. The final open
premise obtained from (D by iterating LPi> corresponds to the last conjunct of ) > 0:

Ly, 2=y,e™ > 0,e=0,...,eV2D=0F (2/ = f(2) & (e— d) “D>0)x £y

LPi>

() & (e—d)®

LPi> Fd,x—y, é(*) >0,e=0,e) >0k (2 &
() & (e—d)®

Ly, x=y, e > 0,e=0, (e d)(l)ZOI— («'

0)z #y
yr #y

= f
- f

/>
/>0

The gathered antecedents e = 0, ..., (N2 = () are respectively obtained from I'y by real

arithmetic. The proof is closed with dRW( ), Cont, similarly to the non-strict case.

*
Cont r=y, (e;d)(N_1)>O (2" = f(z) & (e—d)N"V>0)x £ y
cut, R Ly, 2=y, eN"V>0F (o' = f(z) & (e—d)N"V>0)x # y
dRW() Ly, 2=y, eN"V>0F (o' = f(z) & (e—d)N"V>0)z # y
Py o=y, ™ >0,e=0,.., eV D=0+ (2' = f(x) & (e—=d)N"V>0)x £y O



Semianalytic Formulas. The proof in the semianalytic case is outlined in Section 3.6.1. It
lifts derived axioms LP~+ and LP- - according to the homomorphic definition of the semianalytic
progress formula, using axiom Uniq to prove local progress into a conjunction of two formulas
simultaneously.

Proof of Lemma 3.25. By congruential equivalence [142], assume, without loss of generality, that
formula P is propositionally rewritten to the same normal form (3.7) as in the corresponding

semianalytic progress formula P, Throughout this proof, similar premises are collapsed in
proofs and directly indexed by ¢, j. The ¢-th disjunct of P is abbreviated with

m(i) n(i)

PE Ney=0A N&;>0

j=0 7=0

The derivation starts by splitting the (outermost) disjunction in P® with VL. For each
resulting premise (indexed by ¢), local progress is proved for the corresponding disjunct P; of P.
The domain change with dRW(-) proves because P,V = y — PV x = y is a propositional
tautology for each i.

=y, /\*o ey = 0A N EY > 0k (@ = f@) & P)O
W Or=y, At e, 2 0A NJ &) > 0 (2 = f(2) & P)O
v x—y,j.j(*) (2 = f(x) & P)O

It suffices now to prove local progress in F;. The uniqueness axiom Uniq splits conjuncts
in P; then the dRW(:) step distributes z=y in domain constraint from () over conjunctions
using the propositional tautology (R; A Rs) V 2=y <> (R1 V z=y) A (R2 V x = y). This leaves
premises (indexed by 7) for the non-strict and strict inequalities of P; which are closed by LP>-
and LP- - respectively (labeled @ and @ respectively and shown immediately below).

O @
Uniq, AR, dRW(+) - y/\j 06” >O/\/\n(l~ >0|—< f(l')&R,>O
From @:
*
Frrp=y, e, > 0F (a'=f(z) &ei; > 0)O
From )
*
Pos gy &5 > 0 F (2'=f(2) & &; > 0)O 0

The implicational semianalytic local progress axiom LPr from Lemma 3.25 is strengthened
to an equivalent characterization of semianalytic local progress using Proposition A.8.

Proof of Theorem 3.26. By congruential equivalence [142], assume, without loss of generality,
that formula P is propositionally rewritten to the same normal form (3.7) as in the corresponding

semianalytic progress formula P, By Proposition A.8, there is a normal form for —P with

the provable equivalence ﬁ(P(*)) “ (—;P)(*). The “+” direction of the inner equivalence is
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LPr. The derivation in the “—” direction of the inner equivalence starts by reducing to the
contrapositive statement by propositional logic transformations. The final step rewrites the
negation in the antecedents using the above normal form for — P from Proposition A.8.

T=y, (—|'P)(*) |_ _|<QZI
R =y, ~(PY) F ~(a' = f(2) & P)O
cut—LoRy (0 — () & PYO F P

I
=
=
7
=3
O

By the derived axiom LPr from Lemma 3.25, the progress formula for — P in the antecedent
implies local progress for = P. The proof is completed with derived axiom =()_, of Corollary A .4:

“Onz=y, (2’ = f(x) &ﬂf’)@ ("= fx)&P)O
LPR =y, (=P)® F —(2' = f(z) & P)O N

Proof of Corollary 3.27. Self-duality axiom —() derives by using LP twice together with the prov-

able equivalence —|(P(*)) < (—|.P)(*) from Proposition A.8 (and double negation elimination).
*

Pr—y b (2! = f(z) & P)O) < P
Bomy b {2/ = f(2) & P)YO < ~(=P)")
Fr=yF (@' = f(2) & P)O & =@ = f(2) &-P)O
Local progress congruence rule CLP derives similarly by introducing an initial assumption

r=y with cut, r, JL, equivalently rewriting with LP, and congruential equivalence [142] in the
last step.

FP+< R
F ("= f(2) & P)O ¢ (2" = f(x) & R)O
P =y P ¢ RG)
cut, R, 3L - ].3(*) AN R(*) ]

A.2.3 Analytic Invariants

This section derives the analytic completeness axiom DRI (and its generalization DRI&), thus
proving completeness for analytic (Noetherian) invariants and also for analytic postconditions.

Differential Radical Invariants. The differential radical invariants proof rule dRI derives
from rule vdbx by equivalently turning the differential radical identity (3.2) into a provable
vectorial Darboux equality.

Proof of Theorem 3.11 . Let e be an extended term satisfying both premises of the dRI proof rule

. def «(; .
and let e be the vector of extended terms with components e; = ¢! fori = 1,2,..., N.
The derivation starts by setting up the premise for an application of derived rule vdbx. In the
first step, axiom DX is used to assume that the domain constraint () is true initially. On the

left premise after the cut, arithmetic equivalence /\f\;l e =0 <> e = 0 is used to rewrite the
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succedent to the left premise of dRL. On the right premise, monotonicity M['] strengthens the
postcondition to e = 0:

FQI—/\ZOe =0 e=0F[2'=f(x)&Qle=0
. QFe=0 M[,Je:Ol—[x’:f(a:)&Q]e:()
o IQF[2" = f(z)&Qle=0
X k2= f(z)&Qle =0

Continuing from the right premise, the component-wise Lie derivative of e is defined as
(€)i = Ly, (e) = ¢, The vector € will be obtained from e by matrix multiplication with
the following NV x N extended term cofactor matrix G with 1 on its superdiagonal, and the g;
cofactors in the last row:

0 1 0 0 e o)
00 : (1) £(2)

G = Do . 0 , e=|: , e=|:
00 ... 0 1 e =2 eN=1)
g0 91 --- gN-2 gN-1 eV e

The vectorial equation € = Ge is provably equivalent to the equation () = Zi]\:ol gie®.
To see this, note that for indices 1 < i < N, matrix multiplication yields:

(€); = e = (e)iz1 = (Ge);

Therefore, all but the final component-wise equality are trivially valid and prove by r. The
remaining (non-trivial) equation for i = N is (€)y = (Ge)y. The LHS of this equation simplifies
with (€)y = ), while the RHS simplifies by matrix multiplication to:

N-1
Ge N = Zgl 1 Zgl 16(1 1) Zgzé(l)
=0

Hence, real arithmetic equivalently turns the formula € = Ge into the succedent of the right
premise of rule dRI. An application of derived rule vdbx from Corollary 3.10 with cofactor matrix
G followed by rule r yields the remaining right premise of rule dRI, completing the derivation.

QF ¢ = ZZ-N:_OI g;e(®
R QF e=CGe
vire — 0k [2' = f(z) & Qle =0 O

The derivation of rule dRI uses a specific choice of cofactor matrix GG in rule vdbx to prove
invariance of the equation e = (. This suffices for analytic completeness because analytic
formulas can always be normalized to a single equation in real arithmetic. However, such
normalization may not yield the computationally most efficient way of proving an analytic
invariant (see Example 3.41).
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Completeness for Analytic Invariants. The analytic completeness axiom with semianalytic
domain constraints DRI& from Theorem 3.30 is derived next, making use of LPr from Lemma 3.25.
The completeness argument can be summarized by taking contrapositives: if the local progress
formula ¢*) = 0 is false in an initial state, then some higher Lie derivative of e is non-zero
and gives a definite (local) sign to the value of e, which, by LPr implies progress to e # 0. For
completeness, axiom DRI& also handles the vacuous case where domain constraint () is false
initially (Q — ... in DRI&) and the stuck case where the domain constraint is true initially but

cannot locally progress (Q(*) — ... in DRI&).

Proof of Theorem 3.30 (implies Theorem 3.13). For formulas () formed from conjunctions and dis-

junctions of strict inequalities, () — Q(*) is provable in real arithmetic, so axiom DRI follows as
an arithmetical corollary of DRI&. The derivation of axiom DRI& starts by rewriting its LHS
equivalently with axiom DX. This is followed by equivalent propositional rewrites that simplify
the logical structure of the succedent. The propositional steps are shown below, first pulling out
the common implication () then the common conjunct e = 0 as antecedent assumptions.

Q,e=0F ([2/ = f(2)&Qle =0) < (Q(*) — ¢ =0) .
QF+ (e:()/\[x':f(x)&@]e:()) s (e:O/\(Q(*)—>é(*)=O))
F(Q—=e=0A[2'= f(z)&Qle=0) (Q—>€:O/\(Q*)—>é(*):0))

bX F = f(@)&Qle =04 (Q = e=0A(QW = &M =0))

Next, a cut of the first-order formula Jy x=y proves trivially in real arithmetic and Skolem-
izing it with JL yields an initial state assumption (x=y for fresh variables ¥). To make use of
this initial state assumption, the derivation continues with a classical case split on whether the
semianalytic progress formula Q**) is true initially. The resulting premises are labeled (D (for

the Q(*) disjunct) and @ (for the ﬂ(Q(*)) disjunct) and continued below.

@ @
L o=y,Q,e =0, Q(*) ([x = f(x)&Q]e:O) < (Q = O)
cut T= yQe—Ol—([x’:f(x)&Q]e:O)H(Q —>e( :0)
AL Jyr=y,Q,e =0+ ([x’:f(x)&Q]e:O)H(Q —>e( :O)
cut R Qe=0F ([2' = f(2)&Qle = 0) + (QV) =0)

The premise ) corresponds to the case where solutions are stuck in the initial state because
no local progress in the domain constraint () is possible. Topologically, this corresponds to
the situation where initial states are on the boundary of the set characterized by () (and also
in )" but the ODE locally leaves (). Since e = 0 is already true in this stuck state, it trivially
remains true for all solutions staying in domain constraint (). The derivation from () starts with
a propositional simplification of the succedent since its RHS is vacuously equivalent to ¢rue by

assumption ~(Q™)). The local progress characterization axiom LP equivalently rewrites the

sub-formula Q(*) to local progress for () before axiom (-) unfolds the () modality turning it into

"This situation is impossible for domain constraints @ characterizing topologically open sets, which is the
semantical reason for derived axiom DRI having a simpler RHS characterization than DRI&.
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a box modality formula.

r=y,e=0,[2' = f2) & QVr=ylr =yl [2' = f(2)&Qle =0
v r=y,e = 0,~({7' = [@) & Q)O) - [t = f(2) &Qle = 0

. r=y.e=0,~(QU)F [#' = f(1)&Qle=0

: r=y,e=0,~(QY) F ([’ = f() &Qle =0) & (Q¥) — &) =0)

By axiom V, the constant assumption e(y) = 0 (with y in place of z) strengthens the
postcondition of the antecedent box modality to e = 0 using the provable arithmetic formula
e(y) = 0ANx =y — e = 0. A subsequent DMP, dW step finishes the proof using the
propositional tautology ) — Q V x = y.

QrQvVr=y
DMP. dW 2= fx)&QVr=yle=0F [/ = f(x) & Qe =
Vor=ye=0,[ = f(2)&QVae=ylr=yF o' = f(2) &Qle =

= f(z)&Qle = 0) «
¢®*) = 0 by assumption Q(*). The two directions of this simplified succedent are proved separately.
In the “<-” direction, the derivation uses rule dRI by setting N to the rank of extended term e,
so that the succedent of its left premise is exactly ¢*) = 0. The right premise resulting from dRI
closes by real arithmetic, since /V is the rank of e, it must, by definition satisfy the provable rank
identity (3.2).

From premise (D, the succedent propositionally simplifies to ([

*

R I—é(N):E S gze()
W) =0k [2/ = f(z) & Qle =0
The derivation in the “—” direction starts by reducing to the contrapositive statement with
duality (-) and propositional logical manipulation

.a;y@@< (9 =)k (@' = f(2) & Q)e £ 0
=y, Q,QW, (2 = f(2) & Q)e A0+ ¢ =0
O e=y,Q,Q9, [ = f(2) & Qle =0+ &) =0

By derived axiom LP, the antecedent assumption Q(*) is equivalently rewritten to local
progress for () before Init (Corollary A.3) is used to strengthen it with the assumption (). The
final step rewrites the resulting negated differential radical formula in the antecedents to two
progress formulas by (A.4) from Proposition A.7. Subsequent splitting with VL yields two

premises, which are abbreviated 3 (for disjunct ¢*) > 0) and @ (for disjunct (—e)™* > 0)
respectively, and continued below.

® @
ey, (o = f() & Q) # 3,6 > 0V (=) > 0F (o = f(x) &Q)e £ 0
: 1=y, (& = f(@) & Q)x £y, (e = 0) F (2 = f(a) & Q)e £0
o 7=4.Q.07 = S QO ~IT=0F (7= 1) & Qle £0
o 1=y, Q. QU (W = ) F (' = f(2) & Qe # 0
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Continuing from (3), the assumption ¢*) > 0 is rewritten with LP~ to obtain local progress
for e > 0. Unfolding the () abbreviation, the uniqueness axiom Uniq combines the two diamond
modality formulas in the antecedent:

| (2 = f(@) & QA (e > 0Va = ya £y (o' = f(z) &Q)e £0
Ui T = F@) & Q)r £ g, (o = F@)&e > 0Va=ya ZyF (o = fa) & Qe £0
@ = [@&Q)z £y, (@ = J@&e > 0OF (& = J(©)&Q)e £0

e v=y, (2’ = f(2) &Q)z £y, > 0F (2 = f(2) &Q)e # 0

The succedent’s domain constraint is strengthened to match the antecedent’s using rule
dRW(-) since Q A (e > 0V = = y) — (@ is a propositional tautology. The Kripke axiom K(-)
reduces the succedent to the box modality, after which the proof finishes with a dW step because
the formula e > 0 V 2 = y in the domain constraint implies the succedent by real arithmetic.

R QN(e>0Vazx=y) l— (x#y—e70)
w F [2'=f(2) & QA (e>0 V z=y)|(z£y—e#0)
Ke) (@ =flx)&QAN(e>0Ve=yhr#yk (' =fx)&QAN(e>0Vr=y))e#0

<
WO = f@)&QA(e>0vae=y)r Ayt (@' = f(x)&Q)e #0

The remaining premise @ follows similarly, except that the progress formula (—.e)(*) >0
enables the cut (z' = f(z) & —e > 0)(O which leads to the same postcondition e # 0 in the
succedent instead. ]

A.2.4 Completeness for Semianalytic Invariants with Semianalytic
Evolution Domains

The following generalized version of rule sAl from Theorem 3.28 additionally handles evolution
domain constraints. It derives from derived rule rI& and derived axiom LP.

Theorem A.10 (Semianalytic invariants with semianalytic domain constraints). The semianalytic
invariant proof rule with semianalytic domain constraints sAI& derives from RI&, Dadj, Cont, Uniq
for semianalytic formulas P, ().

P,Q,QW PO ~P,Q,Q~" k (=P)~)

PF 2= f(z)&Q|P
Proof (implies Theorem 3.28). Rule sAI& derives from rule rI& derived in Corollary A.6 and the
characterization of semianalytic local progress LP derived in Theorem 3.26. The x=y assumptions

provided by rI& are used to convert between local progress modalities and the semianalytic
progress formulas by LP, but, by weakening, v=y can be elided again in the premises of sAI&. [

sAI&

Recalling the earlier discussion for derived rule rl&, axiom V can be used, as usual, to keep
constant context assumptions that do not depend on variables z for the ODEs 2’ = f(z) in rule
sAl&, because it immediately derives from rl&, which supports constant contexts. The proof
rule sAI& is complete for invariance properties. This is proved syntactically, enabling complete
disproofs of invariance. The completeness of sAl from Theorem 3.29 follows as a special case,
where Q) = true.
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Theorem A.11 (Semianalytic invariant completeness with semianalytic domains). The semiana-
Iytic invariant axiom with semianalytic domain constraints SAI& derives from RI&, Dadj, Cont,
Uniq for semianalytic formulas P, ().

@
Vo (PAQAQW — PO) A
Vo (P AQA Q™) = (=P)"®)

-~

®

-~

SAI& YV (P — [2' = f(2) & Q]P) +

Proof (implies Theorem 3.29). The left and right conjunct on the RHS of SAI& are abbreviated
@ and ® respectively. The “<” direction derives by sAl&. The antecedents @ and ® are
first-order formulas quantified over x, the variables evolved by the ODE 2/ = f(z). They are
kept as constant context in the antecedents of the premises when applying rule sAI& and later
instantiated by VL.

wolg PQOWF PO MR P Q.0 Wk (<P) W
SAI& @,®,PF [/ = f(z)&Q|P
VR, R @, ®F Yz (P—[2" = f(z) & QIP)

In the “—” direction, the derivation proceeds by contraposition in both cases after AR. For ®),
the derived invariant reflection axiom (rfl) is used to syntactically turn the invariance assumption
for the forward ODE into an invariance assumption for the backward ODE.

Vi (ﬂPﬁ[ =—f( )&QI-P)F®
Vo (P = f(2)&QIP)F@ ™ Va(P—[d' = f(2)&QIP)F ®
MV (P—[2 = f(2) & QJP)F @ A®

Continuing from the left premise (with @) in its succedent), standard logical manipulation is
used to dualize both sides of the sequent. The JL step Skolemizes the existential in the antecedent,
with the resulting = used to witness the (then) existentially quantified succedent with 3R:

P,Q.QY, ~(PV) F (a' = f(x) & Q)~P
3R, AR P,Q, QW ( )I—Ela:(P/\(a?—f(ﬂf)&Q>_‘P)
L Hx(pAQAQw/\ (P9)) 3z (P A {2 = f(x) & Q)=P)
0L g (P! = f() & QIP) Ve (PAQAQU—PO)

Next, an initial state assumption x=y is introduced by a cut, r followed by dL to Skolemize

the resulting existential quantifier. The antecedent assumption ﬂ(l.D(*)) is replaced with (—|-P)(*)
equivalently, by Proposition A.8. Both local progress formulas in the antecedents are then
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replaced equivalently with the local progress modalities using the derived axiom LP.

r=y, P, Q, (@' = f(2) & Q)O, (2" = f() & ~P)O F (2" = f(2) & Q)=P

P z=y, P,Q, Q(*), (=P)*) F (2/ = f(x) & Q)—P

® r=y, P,Q,QW, ~(PY) k- (¢’ = f(2) & Q)=~P

1 Jyz=y, P,Q,Q",~(PY) F (2 = f(2) & Q)P

POV ~(PO)F (o' = f(2) £ Q)P

By Init from Corollary A.3, local progress for () is strengthened, while ) can only be unfolded
for = P. The two resulting diamond modality formulas are combined with Uniq:

, (@' = f@)&QNEPVr=y)r#yt (o' = fx) &Q)=P
P (' = f(2) &Q)r £y, (o' = f@)&~PVa =yl Fyk (' = f(2) & Q)P
. r=y, P,Q, (z' = f(2) &Q)O, («' = f(2) &=P)OF (' = f(x) &Q)=P

With a K(-), dW step, the diamond modality in the antecedent strengthens to —P in its
postcondition with the propositional tautology Q A (-PVz =y) — (x # y — —P). AdRW(-)
step completes the proof using the propositional tautology Q@ A (=P V z = y) — Q.

(7 = f(@) &QN (=P Va =y)-PF (' = f(x) £Q)=P
KW = J@) &QA (P Ve =y)a #yF (o' = f(2) &Q)-P

dRW(-)

The remaining derivation from the right premise (with ® in its succedent) is similar using
local progress for the already reflected backward differential equations instead. [
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Appendix B

Appendix: Liveness and Existence for
Ordinary Differential Equations

B.1 Proof Calculus

This appendix presents derivations and proofs for dL axioms and proof rules that are used in
the refinement approach. It also gives a generalized definition of the required topological side
conditions for those axioms.

B.1.1 Base Calculus

The bounded differential ghost axiom BDG from Lemma 4.2 (quoted and proved below) is a new
vectorial generalization of DG which allows differential ghosts with provably bounded ODEs to
be added.
in [ = 1)y = 9(r,9) & Q) Iyl < el)
— ([ = f(2) & Q@)]|P(z) ¢ [ = f(x),y = g(z,y) & Q(x)| P(x))

Proof of Lemma 4.2. The proof of BDG follows the proof of the differential ghosts axiom [142],
but generalizes it to support vectorial, nonlinear ODEs by adding a precondition on boundedness
of solutions. Let y be a vector of m fresh variables and iy’ = g(z, y) be its corresponding vector
of ghost ODEs. Both directions of the (inner) equivalence of axiom BDG are proved separately.

“—” The (easier) “—” direction does not require the outer bounding assumption of BDG, i.e., the
implication [’ = f(z) & Q(z)|P(x) — [2' = f(x),y = g(z,y) & Q(x)]P(z) is valid for
any ODE ¢y’ = g(x, y) meeting the freshness condition on y. The proof for this direction is
identical to the proof of soundness for differential ghosts [142, Theorem 38].

<" In the “<” direction, consider an initial state w € Sandlet p : [0,7) = S,0 < T < o0
be the unique, right-maximal solution [33, 204] to the ODE 2’ = f(z) with initial value
©(0) = w. Similarly, let ¢, : [0,7,) — S,0 < T, < oo be the unique, right-maximal
solution to the ODE 2’ = f(x),y’ = g(x,y) with initial value ¢,(0) = w. Assume that w
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satisfies both of the following assumptions in BDG:

w e [[a" = f(2),y' = 9(x,9) & Q)] yll; < e(2)] (B.1)
w € [[2" = f(z),y' = g(z,y) & Q(x)| P(x)] (B.2)

To show w € [[2' = f(z) & Q(z)]P(x)], unfold the semantics of the box modality and
consider any finite time 7 with 0 < 7 < T where ¢(() € [Q(z)] forall 0 < ( < 7. It
is proved further below that 7 is also in the existence interval for solution ¢,, i.e., ®:
7 < T,. By uniqueness, ¢, ¢, agree on the values of z on their common existence interval,
which includes the time interval [0, 7| by ®). Therefore, by coincidence for terms and
formulas [142], ¢, (¢) € [Q(z)] for all 0 < ¢ < 7. Thus, by (B.2), ¢, (7) € [P(z)] and by
coincidence for formulas [142], p(7) € [P(z)].

In order to prove &), suppose for contradiction that 7}, < 7. Let z(-) : [0,7") — R" denote
the projection of solution ¢ onto its x coordinates, and let e(z(+)) : [0,7) — R denote
the evaluation of term e along x(+). Since the projection z(+) and its composition with
the smooth term evaluation e(x(-)) are continuous in ¢ [142], e(z(+)) is bounded above by
(and attains) its maximum value €,,,, € R on the compact interval [0, 7].

Let y(-) : [0,7,) — R™ similarly denote the projection of ¢, onto its y coordinates
and [|y(-)||; denote the squared norm evaluated along (). Since T, < 7 < T, note
that y(-) must be the unique right-maximal solution of the time-dependent differential
equation ' = g(z(t),y). Otherwise, if there is a longer solution ¢ : [0,{) — R™ for
y" = g(x(t), y) which exists for time ( with 7}, < { < T, then the combined solution given
by (z(¢),%(t)) : [0,() — R™ x R™ extends ¢, beyond T}, (by keeping all variables other
than x, y constant at their initial values in state w). This contradicts right-maximality of
©,. Moreover, for all times 0 < ¢ < T}, by assumption ¢ < 7 and ¢(¢) € [Q(z)], so the
solution ¢, satisfies ,(() € [Q(z)] by coincidence for formulas [142]. From (B.1), for all
times 0 < ¢ < T}, the squared norm is bounded by ey, With [|y(C)[3 < e(#(¢)) < emax-
Hence, y(-) remains trapped within the compact R™ ball of radius |/epax on its domain
of definition [0,7)). By [33, Theorem 1.4], and right-maximality of y(-) for the time-
dependent ODE 3/ = g(z(t), y), the domain of definition of solution y(+) is equal to the
domain of definition of ¥/ = ¢(z(t),y), i.e., T, = T, which contradicts T, < 7 < T. [

The following lemma recalls derived dL ODE invariance proof rules from Chapter 3 that are

used in the derivations in Appendix B.2 for ease of reference.

Lemma B.1 (ODE invariance proof rules of dL). The following are derived ODE invariance proof
rules of dL. In rule dbx., g is any cofactor term. In rule sAI&, Q(*), P(*), Q_(*), (—|P)_(*) are
progress formulas Def. 3.24 with respect to ' = f(z). In rule Enc, formula P is formed from finite

conjunctions and disjunctions of strict inequalities >, <, and formula PZ is identical to P but with
non-strict inequalities >, < in place of >, < respectively.

dbx,

sAI&

QFe>ge
ex=0F 2= f(z)&Qle =0
P,Q,0®F P —P.Q O™ (;p)—@«)
' PF[ = f2)& QP

(%= either > or >)
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8 Q,e=0Fe>0 (wh S o
arr ce 0F [0 = ) & Ole = 0 where >= is > or >)
'cPz TEH[2=flx)&QAPZ|P

E 2" = f(x) &QIP

nc

Proof. These ODE invariance proof rules are all derived from the complete dL axiomatization
for ODE invariants from Chapter 3. [

Rule dbx, is the Darboux inequality proof rule, while rule sAl& is dL’s complete proof
rule for ODE invariants from Chapter 3. For closed (resp. open) semianalytic formulas P, the
right (resp. left) premise of rule sAl& closes trivially (see Section 3.6.2). This simplification is
useful for obtaining more succinct proof rules, e.g., rule dV makes use of sAI& with a closed
semianalytic formula. Rule Barr is the strict barrier certificates proof rule, which derives from DG
for polynomial terms p and as a special case of rule sAI& for extended terms e. Finally, rule Enc
says that, in order to prove that solutions stay in postcondition P which characterizes an open
set, it suffices to prove it assuming P~ in the domain constraint, where P> relaxes all strict
inequalities in P and thus provides an over-approximation of the topological closure of the
set characterized by P. The rule can also be understood in the contrapositive: if a continuous
solution leaves P, then it either already started outside the closure (ruled out by left premise),
or it starts in the closure and leaves P on its topological boundary (included in the closure). The
latter case is ruled out by the right premise of Enc, which says that solutions remaining in the
closure must stay in P.

B.1.2 Refinement Calculus

The following ODE liveness refinement axioms are quoted from Lemma 4.1, and their syntactic
derivations in the dL proof calculus are given below.

K(&) [o = f@) & Q A —P]-G = ({2’ = f() & Q)G — (2’ = [(x) & Q)P)
DR() [2/ = f(a) & RIQ — (&' = f(:r)&R>P S (o = f(x) & Q)P)

‘i —
8
I
<
—~
8
<
&
O
/\
§
N)_
|
)
/‘\

9(z,y) & Q(x)) P(x))
L(@) [lyll; + M (2)
=9

(
7' = y )
— ((2" = f(af)&Q(IDP(l’) — (2 ( )
a/ 9(z,y)

) (z,y) & Q(x)) P(x))

Y
= (z,y) & Q(z)] 2y - g( y) <
— ((z' = f(2) &Q(x))P(x) = (z' = f(x),y

Proof of Lemma 4.1. 'The four axioms are derived in order.

K(&) Axiom K(&) is derived as follows, starting with (-), L, =R to dualize the diamond
modalities in the antecedent and succedent to box modalities. A dC step using the right
antecedent completes the proof.

*

7= f@)&QA-PI=G, [z = f(2) & Q=P+ [’ = f(2) & Q-G
WL = J0) &QAPIRG, (o = f(0) L Q)G F (2 = f(2) L Q)P
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DR(-) Axiom DR(-) is similarly derived from axiom DMP with (-), see Corollary 3.16.

BDG(-) Axiom BDG(-) is derived from axiom BDG using axiom (-). The leftmost antecedent is
abbreviated with: R = [/ = f(z),y' = g(z,y) & Q(x)] ||lyll5 < e(x).

P8R ['=[(@), y'=g(,y) & Q@) ~P(2) F [v'=](2) & Q)] ~P(x)
VR R, (2'=[(2) & Q(x)) P(x) F (2'=f(x),y'=g(z,y) & Q(x)) P(x)

DDG(-) Axiom DDG(:) is derived as a differential version of axiom BDG(-) with the aid of DG.
The derivation starts with (-), =L, =R to turn diamond modalities in the sequent to box
modalities. Axiom DG then introduces a fresh ghost ODE 2’ = L(z)z + M(x), where the
antecedents are universally quantified over ghost variable z by DG, while the succedent is
existentially quantified. All quantifiers are then instantiated using VL, 3R, with z = ||y|3
so that z stores the initial value of the squared norm of y. Axiom BDG is used with
y' = g(x,y) as the ghost ODEs and with e(x, z) = 2. The antecedents are abbreviated as
follows and the topmost open premise is abbreviated (D:

R=[o'=f(x),y'=g(z,y) & Q(x)] 2y - gx,y) < L(x) |lyll3 + M(x)
R, = [o'=f(x),y/=g(x,y), ¥'=L(z)24+M(z) & Q(2)] 2y - g(z,y) < L(x) ||y|l; + M (x)
S =[d'=f(x),y'=g(x,y) &Q(x)]-P(x)
S, = [v'=f(),y'=g(z,y),'=L(z)2 + M(x) & Q(z)]-~P(z)

D= 2=|lyll3, R. - [2'=f(x),y'=g(x,y), #'=L(x)z + M(z) & Q(x)] |yll; < =

)

Bbe z=yly, R, S: F [o/ = f(x), 2 = L(x)z + M(x) & Q(x)]-P(x)
VL 3R VzR, VzS.,F 32’ = f x) 2 = L(x)z + M(z) & Q(z)]-P(z)

Po R, St 2" = f(z) &Q(z)|-P(z)

WIRTER (2l = f(a) & Q) Pla) F (2f = f(2),y = g(z,y) &Q(2)) P(x)

From the open premise (D, a dC step adds the postcondition of R, to the domain constraint
of the succedent, while M['] rearranges the postcondition into the form expected by
rule dbx.. The proof is completed using dbx, with cofactor ¢ = L(z). Its resulting
arithmetical premise is proved by r because the Lie derivative of z — ||y||§ is bounded
above by the following calculation, where the inequality from the domain constraint is
used in the second step.

L(x)z + M(z) — 2y - g(v,y)
L(z)z + M(z) — (L(z) |ly|l5 + M(x))
L(z)(z — |lyl13)

The ODEs 2’ = f(z),y' = g(x,y), 2’ = L(x)z+ M (x) are abbreviated . . . in the derivation
below and the premise after dbx. is abbreviated with:

2
E:p’:f(x),y’:g(x,y),z’:L(x)z—l—M(x) (Z - H y||2)

A%

@ =2y~ g(x,y)<L(x) llyll5 + M(z) = L(z)z + M(z) — 2y - g(x,y)=L(x) (= — [lyll5)

218



*

® @
P 2= lylaF [ &Qe) A2y - gz, y) < L) |lylly + M(x)] 2 = [lyll; > 0
M =yl F [ & Q) A2y - g(a,y) < L) |lyll; + M(2)] llyll; < =
Cr=lyll3, Rt [ &Q@)] |lyll; < 2 —~

The following topological (-) ODE refinement axioms are quoted from Lemmas 4.3 and 4.35.
The topological side conditions for these axioms are listed in Lemmas 4.3 and 4.35 respectively.
For semianalytic postcondition P and domain constraints (), R, these refinement axioms are
derived syntactically from the real induction axiom in Section 3.5.2. For the sake of generality,
the proofs below directly use the topological conditions.

COR =P A2’ = f(z) & RA-PIQ — ({' = f(x) & R)P — (' = f(z) & Q)P)
CR =P A[2' = f(x) & RA=P|Q — ({z' = f(z) & R)P — (' = f(z) & Q)P)
SAR [/ = f(x) & RA=(P AQ)Q — ((x’ = f(z) & RYP — (2/ = f(x)&@)P)

Proof of Lemmas 4.3 and 4.35. Letw € Sand ¢ : [0,7) — S,0 < T < 0o be the unique, right-
maximal solution [33, 204] to the ODE 2’ = f(z) with initial value ¢(0) = w. By definition,
¢ is differentiable, and therefore continuous. This proof uses the fact that preimages under
continuous functions of open sets are open [168, Theorem 4.8]. In particular, for an open set O,
if o(t) € O at some time 0 < t < T then the preimage of a sufficiently small open ball O. C O
centered at ¢(t) is open. Thus, if t > 0 and ¢(t) € O, then ¢ stays in the open set O for some
open time interval'around ¢, i.e., for some ¢ > 0:

o(() € Oforallt —e < (<t+e¢ (B.3)

For the soundness proof of axioms COR, CR, and SAR, assume thatw € [(z' = f(z) & R)P],
ie., there is a time 7 € [0,7) such that p(7) € [P] and ¢(¢) € [R] forall 0 < { < 7. The
proofs make use of the following set T containing all times ¢ such that the solution ¢ never
enters P on the time interval [0, ¢].

T={t|o)¢[P]forall0 < (<t} (B.4)

COR For axiom COR, assume that w € [P A [2' = f(z) & R A —P]Q]. The set of times
T (B.4) is non-empty since w = ¢(0) ¢ [P] so it has a supremum ¢ with 0 < ¢ < 7 and
©(C) ¢ [P] forall0 < ¢ < t.

* Suppose P, () both characterize topologically closed sets. Since P characterizes a
topologically closed set, its complement formula — P characterizes a topologically
open set. If ¢(t) & [P], i.e, p(t) € [-P], thent < 7 and by (B.3), the solution stays
in = P until time ¢+ ¢ for some € > 0, so ¢ is not the supremum of T, which is a contra-
diction. Thus, ¢(t) € [P] and 0 < tbecause p(0) ¢ [P]. Hence, p({) € [RA—P] for

In case t = 0, the time interval in (B.3) is truncated to the left with () € O forall0 < { <t +e.
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all 0 < ¢ < t, which, together with the assumption w € [[z' = f(z) & R A =P]Q]
implies p(¢) € [Q] for all 0 < ¢ < t. Since @ characterizes a topologically closed
set, this implies p(t) € [@Q]; otherwise, ¢(t) € [~Q] and —() characterizes an open
set, so (B.3) implies ¢({) € [~Q] for some 0 < ¢ < ¢, which contradicts the earlier
observation that ¢(¢) € [Q] for all 0 < ¢ < t. Thus, w € [(z' = f(z) & Q)P]
because p(t) € [P] and ¢(¢) € [Q] forall 0 < ¢ < t.

* Suppose P, Q) both characterize topologically open sets. Then, ¢(t) ¢ [P]; otherwise,
©(t) € [P] and since P characterizes an open set, by (B.3), there is a time 0 < { <t
where ¢(() € [P], which contradicts ¢ being the supremum of T. Note that ¢t < 7
and ¢(¢) € [R A —P] for all 0 < ¢ < ¢, which, together with the assumption
w € [[¢' = f(z)& R A —=P]Q] implies p(¢) € [Q] for all 0 < ¢ < ¢. Since @
characterizes a topologically open set, by (B.3), there exists ¢ > 0 wheret +¢ < 7
such that p(t + () € [@Q] for all 0 < ¢ < e. By definition of the supremum, for every
such ¢ > 0, there exists ( where 0 < ¢ < ¢ and ¢(t + () € [P], which yields the
desired conclusion.

CR For axiom CR, assume that w € [-P] and

SAR

w e [[z' = f(z) & R A -P)Q] (B.5)

The set of times T (B.4) is non-empty since w = ¢(0) ¢ [P] so it has a supremum ¢
with 0 < ¢t < 7and ¢(¢) ¢ [P] for all 0 < ¢ < t. Furthermore, ¢(¢) € [R A —P] for
all0 < ¢ < t, so by (B.5), ¢(¢) € [[Q]] for all 0 < ¢ < t. By assumption, formula Q
characterizes the open topological interior of the closed formula () so by continuity of ¢,
©(t) € [Q]. Furthermore, the interior of a set is contained in the set itself, i.e., [Q] € [Q].
so p(C) € [Q] for all 0 < ¢ < t. Classically, either p(t) € [P] or p(t) ¢ [P].
« If p(t) € [P], then since p(¢) € [@] for all 0 < ¢ < t, by definition, w €
[(2" = f(x) &Q)P].
« If p(t) ¢ [P]. then t < 7 and furthermore, by (B.5), ¢(t) € [Q]. Since the interior
is topologically open, by (B.3), there exists ¢ > 0 where ¢t + ¢ < 7 such that
o(t+¢) € [Q] € [Q] forall 0 < ¢ < e. By definition of the supremum, for every

such ¢ > 0, there exists ( where 0 < ¢ < ¢ and ¢(t + () € [P], which yields the
desired conclusion.

For axiom SAR, assume that
w e [[2' = f(z) & RA~(P A Q)] (B.6)

Ifw e [PAQ], thenw € (2 = f(z) & Q)P trivially by following the solution ¢ for
duration 0. Thus, assume w ¢ [PAQ]. From (B.6), w € [Q] which further impliesw ¢ [P].
The set of times T (B.4) is non-empty since w = ¢(0) ¢ [P] and has a supremum ¢ with
0<t<r7and () ¢ [P] forall 0 < ¢ < t. Thus, p(¢) € [RA —~(P A Q)] for all
0 < (¢ <t By(B.6), 9(C) € [Q] forall 0 < { < t. Classically, either ¢(t) € [P] or

p(t) ¢ [P].
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* Suppose p(t) € [P], if ¢(t) € [Q], then p(¢) € [Q] for all 0 < ¢ < t and so,

by definition, w € [(z' = f(z) & Q)P]. On the other hand, if ¢(t) ¢ [Q], then
0(Q) e [RA-(PAQ)] forall 0 < ¢ <t,so from (B.6), p(t) € [Q], which yields a
contradiction.
If the formula P is further assumed to characterize a closed set, this sub-case (with
©(t) € [P]) is the only possibility. Otherwise, ¢(t) € [-P] and P characterizes
an open set, so by (B.3), for some ¢ > 0, p(t + () € [-P] for all 0 < ¢ < ¢ which
contradicts ¢ being the supremum of T.

* Suppose ¢(t) ¢ [P], thent < 7and p({) € [RA-(PAQ)] forall 0 < { <t,so
from (B.6), ¢(t) € [Q]. Since @ is a semianalytic formula, solutions of the ODEs
either locally progress into the set characterized by @ or =@ by Corollary 3.27,2
i.e., there exists ¢ > 0, where t + ¢ < 7, such that either D ¢(t + () € [Q] for all
0<(<ecor@ep(t+() ¢ [Q] forall0 < ¢ < e. Since t is the supremum of T,
by definition, for every such ¢ there exists ( where 0 < ( < e and p(t + () € [P].
In case @, since ¢(t + () € [P] and ¢(v) € [Q] forall 0 < v < ¢ + (, then
w € [(z' = f(x) &Q)P]. If the formula () is further assumed to characterize an
open set, this sub-case (D) is the only possibility, even if @) is not a formula of first-
order real arithmetic, because ¢(t) € [Q)] implies ¢ continues to satisfy () for some
time interval to the right of ¢ by (B.3). In case (2), observe that p(v) € [RA—(P A Q)]
forall 0 < v <t+ ¢, from (B.6), p(t + () € [Q], which yields a contradiction. [

B.1.3 Topological Side Conditions

In Section 2.2.2, topological conditions are defined for formulas ¢ that only mention free variables
x occurring in an ODE x’ = f(x). For example, ¢ is said to characterize an open set with respect
to x iff the set [¢] is open when considered as a subset of R™ by projecting its semantics over
variables x = (z1,...,x,). This section defines a more general notion, where ¢ is allowed to
mention additional free parameters y that do not occur in the ODE. Adopting these (parametric)
side conditions makes the topological refinement axioms that use them, like COR, CR, more
general. Let (y1,...,y.) = V \ {2} be parameters, and w € S be a state. For brevity, write
y = (y1,...,y,) for the parameters and w(y) = (w(y1),...,w(y,)) € R" for the component-
wise projection, and similarly for w(z) € R™. Given the set [¢] C S and v € R", define:

([¢]), £ {w(z) € R* |w € [¢], w(y) =~}

The set ([¢] ), € R" is the projection onto variables x of all states w that satisfy ¢ and having
values v for the parameters y. Formula ¢ characterizes a (topologically) open (resp. closed,
bounded, compact) set with respect to variables z iff for all v € R", the set ([¢]), € R" is
topologically open (resp. closed, bounded, compact) with respect to the Euclidean topology.

These topological side conditions are even decidable [14, 197] for first-order formulas of real
arithmetic over polynomial terms because in Euclidean spaces they can be phrased as conditions

This property is specific to sets characterized by semianalytic formulas and ODEs (and certain topologically
well-behaved extensions [174, 176]) and is not true for arbitrary sets and ODEs.
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involving the first-order quantifiers. The following conditions are standard [14], although special
care is taken to universally quantify over the parameters y. Let P(x,y) be a formula mentioning
variables = and parameters y, then it is (with respect to variables x):

* open if the formula Vy Vz (P(:v,y) — Fe>0Vz (|lz — 2|2 < &2 = P(z,y))) is valid,

where the variables z = (21, ..., 2,,) are fresh for P(x,y),
* closed if its complement formula = P(z, y) is open,

* bounded if the formula Vy Ir>0Vz (P(z,y) — [l <r?) is valid, where variable 7 is
fresh for P(x,y), and

* compact if it is closed and bounded, by the Heine-Borel theorem [168, Theorem 2.4.1].

There are also syntactic criteria that are sufficient (but not necessary?) for checking whether
a formula satisfies the semantic conditions. For example, the formula P(x,y) is (with respect to
variables x):

* openifitis formed from finite conjunctions and disjunctions of strict inequalities (#, >, <),

* closed if it is formed from finite conjunctions and disjunctions of non-strict inequalities
(=2,5)
) =) — )

« bounded if it is of the form ||z||> < e(y) A R(z,y), where ¢(y) is a term depending only
on parameters y and R(x,y) is a formula. This syntactic criterion uses the fact that the
intersection of a bounded set (characterized by ||z||5 < e(y)) with any set (characterized
by R(z,y)) is bounded, and the formula P(z, y) is compact if < is < and R(z, y) is closed.

The importance of these syntactic criteria is they are easily checkable by an implementation
that inspects the syntactic shape of input formulas P, even if P contains extended terms with
undecidable arithmetic [162]. In contrast, checking the semantic topological conditions for P
requires invoking expensive real arithmetic decision procedures and those procedures are only
guaranteed to work if P is a FOLg formula over polynomial terms. As an example, the syntactic
side condition of rule cR from Corollary 4.36 enables its effective implementation, compared to
its underlying axiom CR from Lemma 4.35 which is more general but uses requires checking
semantic side conditions.

Notational Conventions (Topological Side Conditions and Arithmetic). The deriva-
tions used in this thesis often require properties of the smooth term semantics from real analysis.
For example, continuous functions on compact domains attain their extrema [168, Theorem 4.16]
so, for any compact formula P(x,y) and term e(z), the formula Im Vx (P(z,y) — e(z) < m)
is a valid arithmetic formula expressing that m is an upper bound of e on P. If e is a polynomial

SIf there are no parameters ¥, these syntactic checks are “necessary” conditions for semialgebraic formulas in
the sense that every open (resp. closed) semialgebraic formula P is provably equivalent in real arithmetic to a
(computable) formula formed from finite conjunctions and disjunctions of strict (resp. non-strict) inequalities [14,
Theorem 2.7.2].
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and P is a formula of real arithmetic over polynomial terms, then r proves the existence of
m above. For simplicity, such properties are also assumed to be provable by r in derivations
involving extended terms and the corresponding argument from real analysis is also provided.
This notational simplification is sound with the implicit understanding that any such real analytic
properties are axiomatized as additional (arithmetic) axioms for extended dL terms.

B.2 Derived Existence and Liveness Proof Rules

This appendix gives all omitted syntactic derivations of the existence and liveness proof rules
in Chapter 4. For ease of reference, this appendix is organized into four sections, corresponding
to Sections 4.3-4.6 of Chapter 4. The high-level intuition behind these proofs is available as
proof sketches in their respective sections, while motivation for important proof steps is given
directly in the subsequent proofs. Further motivation for the surveyed liveness arguments can
also be found in their original presentations [137, 156, 157, 159, 176, 191].

B.2.1 Proofs for Finite-Time Blow Up and Global Existence

Proof of Corollary 4.6. Assume that the ODE 2’ = f(z) is in dependency order (4.9). The deriva-
tion successively removes the ODEs y;, yx—_1, . . ., y1 in reverse dependency order using either
axiom BDG(-) or DDG(-), as shown below. This continues until all of the ODEs are removed
and the rightmost premise closes by axiom TEx. The left premises arising from refinement
with axioms BDG(-), DDG(-) are the premises of rule DEx. They are collectively labeled &) and
explained below.

*

) TEXFI—( Dt>1
@ BDGL)DDGL)

BDG(), DDG() I' <y,1:gl (yl)a cee ay;g_lzgk’ 1(917 s 7yk—1)7 t/:1> t>1
BDG<.>\;1]:DG<'> UFE Wi=01(v1), - Y1 =gr1 (W1, - Yp1), Yi= gk(yl,---,yk),t’=1>t>7
I'=Vr <?\/§:91(yl)7 s ay;g—lzgk—l(ylv v 7yk—1) yk gk(ylv <o aykZa tI:1> t>7

-~

2/=f(z) written in dependency order

Ateachstepi =k, ..., 1, the ODE y; in the succeedent is removed using either axiom BDG(-)
or DDG(-), depending on the user-chosen form (Corollary 4.6) of postcondition P;.

® In case formula P; = ||y;||5 < ei(t, y1,- ., %i_1) is of form ® (as defined in Corollary 4.6),
axiom BDG(-) is used. This yields the two stacked premises shown below, where the top
premise corresponds to premise %) above. The dependency order (4.9) enables the sound
use of axiom BDG() for this refinement step because the ODEs for yy, ..., y;_1 are not
allowed to depend on variables y;. The term e(, 41, . . ., y;_1) also meets the dependency
requirements of BDG(-) because it does not depend on ;.

(Y1) Yo = gia (Y, -+, Yi1), yz 9i(Y1, - yi), ¥ =1
(y )77y£ 1:gi—1(y17---;yi 1) 1>t>7—
1)

BDG(-)
DYy = Gimt(Wns - Yim1) Y = gi(yns - ya), V= 1)t > 7
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O In case formula P; = 2y, - g;(y1, .-, vi) < Li(t, y1, -, yio1) Hyl||g + M;(t, 1, Y1)
is of form @) (as defined in Corollary 4.6), axiom DDG(-) is used instead. Again, terms
Li(t,y1, - yi1), Mi(t, 91, - .., yi—1) meet the dependency requirements of DDG(-) be-
cause they do not depend on y;. The top premise corresponds to premise %) above, while
the ODE for y; is removed in the bottom premise.

PEy=0() - v = 9ia(yns - ic1), 05 = 95y, - 1), 0 = 11P;
> Py =a0(), ¥ = gia(W, - yia), ' =1t > 7
I =0() - vicn = iy wim) v = iy, - ) =1t >7 O
Proof of Corollary 4.7. 'The proof closely follows the proof sketch for Corollary 4.7 but with
an extra step to ensure that the chosen terms L, M are within the term language of dL. Let
the ODE 2z’ = f(z) be globally Lipschitz and C' be the (positive) Lipschitz constant for f,
ie, | f(z) — f(y)ll, £ C|lz -yl . Then f satisfies the following inequality, where the first

DDG(-

step (4.12) is proved in the sketch but its RHS contains norms ||-||, which are not in the dL term
syntax. The inequality (4.12) is prolonged by using inequality (4.10) to remove these non-squared
norm terms, which yields corresponding choices of bounding dL terms L, M.

20 f(2) S (20 + 1FO),) 22 + 17O,
4%0

(4.10) 1 1
(2C + S+ 1FO)I) ll]13 + S+ 1£(0)]13) (B.7)
Y Y

The inequality (B.7) is a valid real arithmetic formula and is thus provable by rule r. This
enables the derivation below using axiom DDG(-) because L, M satisfy the respective variable
constraints of the axiom. The resulting left premise is proved, after a dW step, by r. The resulting
right premise, after the ODEs 2’ = f(z) have been removed, is proved by axiom TEx.

*
B2 f(x) < Llzl; + M *
Wi o/ = f(z),t =1)2z - f(z) < L|z|5+ M B =1t > 7
DDG() - = fa),f = 1)t >
R V(e = f(z),t! =1)t>T1 O

Proof of Corollary 4.8. Assume that ODE 2/ = f(x) has affine dependency order (4.9) where each
ODE y. = ¢;(y1, . .., y;) is of the affine form v} = A;(v1, ..., yi—1)yi + bi(y1,...,y;_1) for some
matrix and vector terms A;, b; respectively with the indicated variable dependencies. From the
proof sketch for Corollary 4.8, A;, b; satisfy inequality (4.13) for each ¢ = 1, ..., k. Like the proof
of inequality (B.7), inequality (4.13) is prolonged by inequality (4.10) to remove non-squared
norm terms in its RHS, to obtain corresponding choices of bounding dL terms L;, M;.

(4.13)

2y; - (Aiys +b:) < (211 Aillp + 18:l) Nwills + 110l

(4.10) 1 1
< (41407 + 1+ 16:015)) llwills + 51+ 165]15) (B.8)
) T ’ D
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The inequality from (B.8) is a valid real arithmetic formula, and thus provable by & for each
1 =1,..., k. The derivation uses rule DEx, where the postcondition of each premise is chosen
to be of form @). The resulting premises are all proved, after a dW step, by r with the above
choice of L;, M; foreach:=1,... k.

k B
B E 2y« (A +01) <Ly lnill; +M, B F 2y - (Agy+bi) <Ly ||yl +Mi
Wi [yizgl(yl)atlzl]Pl e W [?Jizgl(yl), e 7y1;:9k(y17 cee ,yk),tlzl]Pk
DEx EVT(a'=f(x),t'=1)t > 1 (]

Proof of Corollary 4.10. The derivation starts by Skolemizing with VR, then switching the dia-
mond modality in the succedent to a box modality in the antecedent using (-), =R. The postcon-
dition of the box modality is simplified using the propositional tautologies —(¢ \V 1)) <> ~p A —p
and =—¢ <> ¢. Axiom [-|A, AL splits the conjunction in the antecedent, before (-) is used again
to flip the left antecedent to a diamond modality in the succedent. These (mostly) propositional
steps recover the more verbose phrasing of BEx from (4.14).
[2'=f(z),=1]B(z) b (/'=f(z),t'=1)t > T
O/ =f(x), t'=1]=(t > 1), [¢'=f(z), ' =1]B(x) F false

[1A, AL [2'=f(z),t'=1](=(t > 7) A B(z)) I false
. x - W=J@),t=1)( > 7V -B@)
VR V71 (2'=f(x),t'=1)(t > 7V ~B(z))

The formula B(z) is assumed to characterize a bounded set with respect to the variables
z. The closure of this set (with respect to ) is compact so the continuous norm function ||-||;
attains its maximum value on that set. Hence, the formula 3D Va (B(z) — ||z|3 < D) is valid
in first-order real arithmetic and is thus provable by rule r (Appendix B.1.3). The derivation
continues with a cut of this formula and Skolemizing with L. Axiom BDG(:) is then used to
remove the ODE 2’ = f(z) with e(x) = D. The resulting right premise is proved by axiom TEx,
while the resulting left premise is labeled (D and continued below.

D e =1)t>7
BDG(-) [+' = f(z),t' = 1]B(z),Vz (B(z) — Hng <D)F (2 = f(z),t! =1)t >T1
cut, R, JL ' = f(x),t! =1]B(x)F (2’ = f(z),t! = 1)t > 7

From premise D, a dC step adds the postcondition of the leftmost antecedent, B(z), to the
domain constraint. Since the remaining antecedent is universally quantified over variables =z,
it is soundly kept across an application of a subsequent dW step and the proof is completed
with VL, —L.

.t Vz (B(x) = «l; < D), B(@) F [le[2< D
w Ve (B(x) > el < D) F [/ = f(@),t = 1&B@)] [«[Z< D
© [ = f(2),¢ = 1JB@),Vz (B(x) — el < D)F [ = f2),¢ = 1] [eE< D O
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Proof of Corollary 4.12. Assume ODE 2/ = f(z) is in dependency order (4.9) and indices i =
1,..., k are partitioned into disjoint sets L, N as in Corollary 4.12. The first step in the derivation
Skolemizes the succedent with VR.

- <$/ = f(.l"),t/ = 1>(t >TV VjeN _'Bj(yj))
Bevr (o = f(z),t = 1)(t >7TV \/jeN ﬂBj(yj))

The derivation combines ideas from Corollaries 4.6,4.8, and 4.10 to remove the ODE y. =
9i(Y1, - .., y;) at each step. The corresponding disjunct —B;(y;) (if present) is also removed from
the succedent when ¢ € N. More precisely, at each step 7, the derivation turns a succedent of
the form (B.9) to the form (B.10) below which removes the variables y; from the formula.

Wi=g1(1), - Y=g s yim) Yi=gi(ur, - w) =1 (t > 7V \/ =B;(y;)) (B.9)

(h=910n)s - ¥ 1=gim1 (1, - - yia), =) (t > TV \/ —B;(y;)) (B.10)
FJENN{L,....i—1}

The derivation proceeds with two cases depending on whether¢ € Lori € N.

* Foreachi € L (similarly to Corollary 4.8), the ODE y/=A;(y1, - - -, ¥i—1)yi+b;(y1, - - -, Yi_1)
is affine for some matrix and vector terms A;, b; respectively with the indicated variable
dependencies. The RHS of this affine ODE satisfies the inequality (B.8) with terms L;, M;
as given in (B.8). Axiom DDG(-) is used with those choices of L;, M;, which removes the
ODE:s for y; in the resulting right premise. The resulting left premise is labeled D and
explained below. Note that the freshness conditions of axiom DDG(-) are met because
the postcondition of the succedent does not mention variables y; for ¢ € L. Similarly, the
indices from j € NN{1,...,i} are equal to those from j € NN{1,...,i—1} becausei ¢
N. The preceding ODEs are abbreviated Y; 1 = v/=¢1(v1), .-, ¥ 1=Gi-1 (Y1, - - -, Yi—1)-

@ - <Y;—1»t,:1>(t > TV \/ieNﬂ{l i—1} _‘Bz‘(yz‘))

-----

(Yo, vi=gi(y1, - y), V=1 (t > TV Vienng,.iy —B;i(y:))

-----

DDG(-)

From premise (D), the proof is completed with a dW and r step using inequality (B.8).
*

* 2y (Aigi +bi) < Lillyilly + Mi
Wi i =91(W1)s -y = gilya, - w), 1 = 1] 2y - (Ayi + bi) < Ly H%Hg + M;
* For each i € N (similarly to Corollary 4.10), the boundedness assumption on y; is first

.....

Y, = yi = gl(yl), ce ,yg = gi(yh ce 71%‘)-
Y, t' = 1Bi(y:) = Vi, ' = DR
VYt = =R, [V, = 1 Bi(y,)  false
[]A, AL [Y;, V= 1] (_|R A Bl(yl)) F false
(). -R (Y, t'=1)(RV ~Bi(y;))
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The formula B;(y;) is assumed to characterize a bounded set with respect to the variables
y;. Thus, like Corollary 4.10, the cut of the formula 3D;Vy; (B;(y;) — |luill3 < D) is
proved by r. The derivation continues by Skolemizing, abbreviating S = [Y;, ¢’ = 1] B;(y;).
Axiom BDG(:) is then used with e(y;) = D;, which removes the ODEs for y; in the

resulting right premise. The resulting left premise is labeled @ and explained below.

@  F =), yia=gi-1(y, - yio1) U'=DR
BPCCS, Wy (Bilyi)— llyill, <Di) b (Vi, ' =1)R
cut, R, 9L Sl_ <Y;,t,:1>R

The derivation continues from premise (2) identically to Corollary 4.10, with a dC step to
add the postcondition of the antecedent S to the domain constraint. The proof is completed
with dW and VL, —L. The universally quantified antecedent Vy; ... is soundly kept across

the use of dW since it does not mention any of the bound variables y, . .., y;, t of the
ODE free.
*
Ny (Byi) = llyills < Di), Blyi) F llyill; < D
2 2
w Vyi (B(yi) = |lyilly < D) - [Yi, " = 1& B(yi)] |lyilly < D
SV (By) = vl < Do) F Vit =1 lyill; < D
Using the steps for @ = k,...,1 (where either i € L or i € N) successively removes the
ODEs for yg, . . ., y; from the succedent. This is shown in the derivation below with abbrevi-

ations Yy, = vy = g1(y1), -, Y1 = Go-1 (Y15 Uk-1), Y = Gk, - Uk), Y1 = 4y =
a1(v1)s -y Yy = gre—1(y1, - - -, Yx—1). The proof is completed using TEx.

*
T =1t >1
H (= 1><t >TV \/jeNmrz) ﬂBj(yj))

.....

F (Ye,t' =1)(¢t > rv\/jeNﬁBj(yj)) ]

Proof of Proposition 4.13. The ODE x’ = f(x) is assumed to have a global solution that is syntac-
tically representable by term X (¢) in the term language. Formally, this representability condition
means that for any initial state w, the mathematical solution ¢ : [0, 00) — S exists globally and
in addition, for each time 7 € [0, c0), the solution satisfies ¢(7) = w] [X (¢)], where w] [ X (¢)]
is the value of term X (¢) in state w with the value of time variable ¢ set to 7. This implies that
the following formula is valid because terms x,t — to have value ¢(7) and T respectively at
time 7 € [0, 00) along the ODE 2’ = f(x),t = 1. The variables x, to store the initial values of
x,t respectively, which may be needed for the syntactic representation X (¢) of the solution.
Additionally, the syntactic representation X (¢) may mention parameters y ¢ x that remain
constant for the ODE z' = f(x).

t=toANx=x9— [2' = f(x),t =12z =X(t — 1) (B.11)
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Validity of formula (B.11) further implies that (B.11) is provable by dRI from Section 3.4.2
because the rule is complete for equational invariants (assuming that the resulting arithmetic
formula is proved). The derivation of global existence for 2’ = f(x) first Skolemizes with VR, then
introduces fresh variables z, t storing the initial values of x, ¢ with cut, r, IL. Axiom BDG(-)
is used with e(t) = || X (t — to)||3 to remove the ODEs 2’ = f(x). The resulting right premise is
proved by axiom TEx, while the resulting left premise is abbreviated (D and proved below.

*
) T =1t > 1
BDGC) ¢ — o A = a0 F (@ =flx), ' =1)t>71
cut, &, 3L F(a'=fx), ! =1)t>r1
R FVT (e = f(x),t =1)t>T1

From (@), the derivation continues with a dC, dRI step using the provable formula (B.11). The
premise after dW is proved by r after rewriting the succedent with the equality = = X (t — ()
and by reflexivity of <.

%
Boao=X(t—to)F [lz] < 1X(E—t)l3
w F 2 = fa),t = 1&a = X(t —to)] ||=]l; < [ X(t —to)|l3
CRE = tonw =m0 b [2/ = f2), ¢ = 1] ||2|; < | X(t —to)]|5

Note that, instead of assuming that X (¢) is a syntactically representable (global) solution for
the ODE z’/ = f(x), it also suffices for this derivation to assume that premise (D is provable, i.e.,
that the term || X (t — to)||5 (with free variables ¢, xo, ty and parameters y) is a provable upper
bound on the squared norm of x along solutions of the ODE. O

B.2.2 Proofs for Liveness Without Domain Constraints

Proof of Corollary 4.16. The complete derivation of rule dV_ using refinement axiom K(&) and
rule dI, is already given in the proof sketch for Corollary 4.16 so it is not repeated here.

The derivation of dV,. (as a corollary of dV.) starts by introducing fresh variables ey, i
representing the initial values of e and the multiplicative inverse of £() respectively using
arithmetic cuts (cut, r) and Skolemizing (4L). It then uses dGt to introduce a fresh time variable
to the system of differential equations:

I'Ne() >0,e=ep,ic() =1,t =0F (o' = f(x),t' =1)e =0
dat [ e() >0,e=-ep,ic() =1F (' = f(x))e =0
LT, e() >0,3e (e =eg),Ti(ic() = 1) F (' = f(x))e =0
cut, R Foe() >0F (2 = f(x))e =0

Next, an initial liveness assumption (2’ = f(z),t' = 1)eq + ()t > 0 is cut into the an-
tecedents after which rule dVI; is used to obtain the premise of dV.. Intuitively, this initial
liveness assumption says that the solution exists for sufficiently long, so that the term ey + ()¢
(which is proved to lower bound e) becomes positive for sufficiently large ¢. This cut is abbreviated
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(D and proved further below.

—

Vil e =ep,t =0,(x' = f(z),t' =1)eg+¢
out Ie() >0,e=eg,ic() =1,¢

l—e> ()
l_
l_

)t

7

(e 0
Ot >

OO\_/
/\/\
||

From premise (D, a monotonicity step M(') equivalently rephrases the postcondition of the
cut in real arithmetic. The arithmetic rephrasing works using the constant assumption £() > 0
and the choice of 7 as the multiplicative inverse of £(). Since the ODE 2’ = f(x) is assumed to
have provable global solutions, axiom GEx finishes the derivation by instantiating 7 = —e,
which is constant for the ODE.

*
GEx I'E (2 = f(x),t! =1)t > —ieg
EMOT e() > 0,ie() = 1F (@ = f(a),' = 1) e + ()t >0 -

Proof of Corollary 4.19. Rule dV’; can be derived in several ways. For example, because ¢(*) is
strictly positive, one can prove that the solution successively reaches states where ¢*~1) is
strictly positive and remains positive thereafter, followed by reaching states where ¢*~2) is
strictly positive (and remains positive thereafter), and so on. The following derivation shows
how dC can be elegantly used for this argument. The idea is to extend the derivation of rule dV_
to higher Lie derivatives by (symbolically) integrating with respect to the time variable ¢ using
the following sequence of inequalities, where ééi) is a symbolic constant that represents the
initial value of the i-th Lie derivative of e along 2’ = f(z) fori =0,1,...,k — 1:

. C(h=2) (ke t?
b= > gl L oy o ()—

2
(B.12)
T BT A S A
-0 O (k—2) (k—1)!
e>egt et 4 e tk_l +s()tk
0 O (k-1 k!
pz)

The RHS of the final inequality in (B.12) is a polynomial in the time variable ¢, denoted p(t),
which is positive for sufficiently large values of ¢ because its leading coefficient £() is strictly
positive, i.e., with antecedent £() > 0, formula 3¢, V¢ > ¢; p(t) > 0 is provable in real arithmetic.

The derivation of dV'; starts by introducing fresh ghost variables that remember the ini-

tial values of e and the (higher) Lie derivatives ¢V, ..., ¢*~1) using cut, r, L. The resulting
antecedents are abbreviated with I'y = (F, e=ep,..., e = é(()k_l)). It also uses dGt to

introduce a fresh time variable ¢ into the system. The arithmetic fact that p(t) is eventually
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positive for all times ¢ > ¢; is introduced with cut, g, JL.

Lo, t =0,Vt >t p(t) >0F (' = f(x),t' =1)e =0

cut, B, 3L Lo,e() >0,t=0F (o' = f(z),t! =1)e =0
Gt T e()>0,e=ceqp,...,e" D=V (2 = flz))e =0
o 3L [0 > 0F (& = f())e = 0

Next, an initial liveness assumption, (z' = f(z),t’ = 1)p(t) > 0, is cut into the assumptions.
Like the derivation of rule dV._, this initial liveness assumption says that the solution exists for
sufficiently long so that the term p(¢) from (B.12), which is proved to lower bound e, becomes
positive for sufficiently large ¢. The cut premise is abbreviated (D and further proved below. The
derivation continues from the remaining (unabbreviated) premise by refinement axiom K(&),
with G = p(t) > 0:

Lo, t =0F [ = f(x),t' =1&=(e = 0)]p(t) <0
KT, t =0, (@' = f(z),t' = p(t) >0F (&' = f(z),t! =)e =0 @D
cut Lo, t =0,Vt >t p(t) >0F (&' = f(z),t' =1)e =0

From the resulting open premise after K(&), monotonicity M['] strengthens the postcondition
to e > p(t) using the domain constraint —(e = 0) and the provable real arithmetic fact =(e = 0)A
e > p(t) — p(t) < 0. Notice that the resulting postcondition e > p(¢) is the final inequality
from the sequence of inequalities (B.12):
Lo, t =0F [¢f = f(x),t' = 1& (e = 0)]e > p(t)
MO t=0F [/ = f(z),t' = L& —(e = 0)]p(t) < 0

The derivation continues by using dC to sequentially cut in the inequality bounds outlined
in (B.12). The first differential cut dC step adds ¢~ > ¢V 4 2()¢ to the domain constraint.
The proof of this differential cut yields the premise of dV’; after a dI. step, see the derivation
labeled ® immediately below.

To,t =0F [/ = f(z),t' = 1& (e = 0) Aet=D > ¥V 4 c()tle > p(t) ®
Ty, t=0F [/ = f(z),t = 1& (e = 0)]e > p(t)

From ), the resulting open premise is the premise of rule dV’;:
(e = 0)F e® > ¢g()
Dot =0F [ = fx), ¢! = 1& (e = 0)]e®=D > D 4 ()¢

Subsequent dC, dI._ steps progressively add the inequality bounds from (B.12) to the domain
constraint until the last step where the postcondition is proved invariant with dI_:

*x

W Lot =0F [2/ = f(z), ' =1& --- A e > &) +"'+€()ﬁ]€ > p(t)
dC,dI> N

WCdp =0k [ = f(z),t =1& - A D > e('C ) 4 e(k Vi 4+ 8()%] > p(t)
Cdpot=0F [/ = f(2),t = 1& (e = 0) AeFD > Y 4 e()tle > p(t)




From premise (), a monotonicity step M(') rephrases the postcondition of the cut using
the (constant) assumption V¢ > ¢; p(t) > 0. Axiom GEx, with instance 7 = t;, finishes the
derivation because the ODE 2’ = f(z) is assumed to have provable global solutions.

%
GEx TF (2 = f(x),t' = 1)t >t
MOT Vit >t p(t) > 0F (' = f(x),t = 1)p(t) > 0 O

Proof of Corollary 4.20. The derivation of rule SP begins by using axiom K(&) with G = —S.
The resulting left premise is the left premise of rule SP, which is the staging property of the
formula S expressing that solutions of the ODE 2’ = f(x) can only leave S by entering P:
'k [ = f(z)&—P]S Fie() >0F (@ = f(x))~S
Kig) T.e() >0k (2’ = f(z))P

The derivation continues on the right premise, similarly to dV_, by introducing fresh variables
ep, i representing the initial value of e and the multiplicative inverse of £() respectively using
arithmetic cuts (cut, r). It then uses dGt to introduce a fresh time variable:

[ie() >0,e=ep,ic() =1,t =0F (2/ = f(x),t/ =1)=5
act [e() >0,e=cep,ie()=1F (z/ = f(x))=S
T T,e() >0,3ep (e =ep), Ji (zs() 1) (2 = f(x))~S
e e() > 0F (&' = f(z))-S

The next cut introduces an initial liveness assumption where the cut premise is abbreviated @
and proved identically to the correspondingly abbreviated premise from the derivation of dV._
using axiom GEx because the ODE 2’ = f(z) is assumed have provable global solutions.

[ie=ept=0,(x = f(z),t! =1)eg+ec()t >0F (' = f(x),t' =1)=S @)
cut [e() >0,e=ep,0>0,ic()=1,t=0F (' = f(x),t' =1)-S

From the remaining open premise, axiom K(&) is used with G = eq + ()t > 0:
Fe=ep,t=0F[2/= f(x),t' =1&S]eg+e()t <0
Ch e =eo,t =0, (' = f(z),t' =1)eg +e()t > 0F (' = f(x),t =1)=S

A monotonicity step M['] simplifies the postcondition using domain constraint .S, yielding
the left conjunct of the right premise of rule SP. The right premise after monotonicity is
abbreviated (2) and continued below.

SFe<0
RS e>eo+e()tF eg+e()t <0 @
MP Ie=ept=0F [2' = f(x),! =1&S]eg+e()t <0
From (2), rule dI. yields the right conjunct of the right premise of rule SP.
Ske>e()
BT e=cot=0F [/ = f(z),t =1& S]e > ey + ()t O

Proof of Corollary 4.21. Rule SP;, is derived first since rule SP,. follows from SP, as a corollary.
Both proof rules make use of the fact that continuous functions on compact domains attain their
extrema (see Appendix B.1.3). The derivation of SP; is essentially similar to SP except replacing
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the use of the global existence axiom GEx with the bounded existence axiom BEx. It starts by
using axiom K(&) with G = -5, yielding the left premise of SP:
'k [ = f(z)&—P]S Lie() >0F (2 = f(x))S
Kig) I.e()>0F (/= f(x)P

Continuing on the resulting right from K(&) (similarly to SP), the derivation introduces fresh
variables e, i representing the initial value of e and the multiplicative inverse of () respectively
using arithmetic cuts and Skolemizing (cut, ®, JL). Rule dGt is also used to introduce a fresh
time variable ¢ with ¢ = 0 initially.

Ie() >0,e=ep,ic() =1,t =0F (o' = f(x),t’ =1)=S
cut, R, 3L, dGt F,E() >0k <CL’/ — f($)>—|5

The set characterized by formula S is bounded so its closure is compact (with respect to
variables z). On this compact closure, the continuous semantics of term e attains its maximum
value, which implies that the value of e is bounded above in .S and cannot increase unboundedly
while staying in S. That is, the formula Je; R(e;) where R(e;) =V (S(z) — e < e1) is valid
in first-order real arithmetic and thus provable by r (Appendix B.1.3). This formula is added to
the assumptions with a cut, and the existential quantifier is Skolemized with JL. The resulting
symbolic constant e; represents the upper bound of e on S. Note that R(e;) is constant for the
ODE 2/ = f(x),t' = 1 because it does not mention any of the variables z (nor t) free:

['e() >0,e=ep,ic() = 1,t =0,R(ey) F (2’ = f(x),t' =1)=5
L T,e() >0,e=eg,ic() =1,t =0,3e; R(ey) F (2’ = f(z),t = 1)=S
cut, B [ie() >0,e=eg,ic() =1,t =0F (2/ = f(x),t/ =1)=5

Next, a cut introduces an initial liveness assumption saying that either the solution exists for
sufficient time for the bound ey + ()t > e; to be satisfied (at sufficiently large t) or the solution
leaves S. This assumption is abbreviated 7' = (' = f(x),t' = 1)(ep + ()t > e V ~5). The
main difference from SP is that the postcondition of assumption 7" adds a disjunction for the
possibility of leaving S (which characterizes a bounded set). This cut premise is abbreviated
and proved further below.

Fe=ep,t=0,R(e1), TF (' = f(x),! =1)-S @
U e() > 0,e =eg,ie() = 1,t =0, R(er) F (o' = f(x),t/ = 1)-5

Continuing from the open premise on the left, axiom K(&) is used with G = eg+¢()t > eV —S:
I'e=rep,t=0,R(er)F [2' = f(z),t! =1& S](eg + ()t < e AS)
KT e =eo,t =0,R(e1), T+ (&' = f(z),t' =1)=S

The postcondition of the resulting box modality is simplified to e > ey + ()t with a M[']
monotonicity step. This step crucially uses the assumption R(e;) which is constant for the
ODE. A dI. step yields the remaining premise of SP;, on the right, see the derivation labeled )
immediately below:

*
R S,;R(e1)Fe<e
BS R(ey),e>eg+e()tbeg+e()t<eyAS ®

Mr] Fie=-ep,t=0,R(e))F [2/ = f(x),t' =1&S](eg + ()t <e; AS)
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From (o:
Ske>e()
TTe=eyt=0F [/ = f(z),t' = 1& Sle > ey + ()t

From premise (D, a monotonicity step M(') equivalently rephrases the postcondition of the
cut of formula 7. Axiom BEXx finishes the proof because formula S(z) is assumed to be bounded

over variables z.
*

BEx F (' = f(z),t = 1)(t > i(e; — eg) V —5)
R,M</>€<) > 0715() =1+T

To derive rule SP, from SP;, the compactness of the set characterized by S(z) implies that
formula 3e>0 A(e) where A(e) =V (S(x)—e > ¢) and formula B = Vz (S(z)—é > 0) are
provably equivalent in first-order real arithmetic (Appendix B.1.3). This provable real arithmetic
equivalence follows from the fact that the continuous semantics of term ¢ is bounded below by
its minimum value on the compact set characterized by S(x) and this minimum value is strictly
positive. The derivation of SP. threads these two formulas through the use of rule SP,. After
Skolemizing 3e>0 A(e) with JL, the resulting formula A(¢) is constant for the ODE 2z’ = f(x)
so it is kept as a constant assumption across the use of SP;, leaving only the two premises of
rule SP,:

'k [z = f(x)&-P]S ES A(e)Fe>e SkEe>0
S [,e>0,A(e)F (o' = f(2))P RoROL B
A [,3e>0A(e) F (o' = f(2))P B 3>0A(%e)
cut 'k (2" = f(x))P O

B.2.3 Proofs for Liveness With Domain Constraints

Proof of Corollary 4.25. The derivation uses axiom COR with R = true and noting that e > 0
(resp. e > 0) characterizes a topologically closed (resp. open) set so the appropriate topological
requirements of COR are satisfied. The resulting left premise is the left premise of dV_&:
PE [ = f@) & (e = 0]Q  T,e()>0F (= fx))e =0
COR Foe() >0,7(e=0)F (/= f(z)&Q)e =0

The proof continues from the resulting right premise (after COR) identically to the derivation
of dV,. until the step where dV_ is used. The steps are repeated briefly here.

I'Ne=rep,t=0,(z' = f(z),t! =1)eg+e()t >0F <x’—f( ), =1)e =0

cut, GEx T,e()>0,e=ecpic()=1,t=0F (@' = f(x )t/: )e =0
dGt [ie() >0,e =eg,ic() =1F (' = f(x))e =
cut, R, 3L Le() >0F (@ = f(x )>€>0

Like the derivation of dV_, axiom K(&) is used with G = eo() + ()t > 0. The key difference
is an additional dC step, which adds @ to the domain constraint.* The proof of this differential

*Notably, the differential cuts proof support from Section 4.6.2 can add such a cut automatically.
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cut uses the left premise of dV_&, it is labeled (D and shown below.
Te=eo(),t=0F[2/ = f(x),t! =1&—(e = 0) A Q] eo() + &

) +e0t <
Cie=eo(),t=0F[2/ = f(x),t! =1& (e = 0)]es() + ()t <0
Fie=egt=0,(z'= f(x),t! =leg+e()t >0F (2/ = f(z),t! =1)e =0

@

dc
K(&)

The derivation from the resulting left premise (after the cut) continues similarly to d\/; using
a monotonicity step M['| to rephrase the postcondition, followed by dI._ which results in the
right premise of dV,_&:
—(e=0),QF e >¢()
TTe=e(),t=0F[2' = f(z), =1&—(e = 0)AQ]e > eo() + ()t
MIT e = eg(),t =0F [2/ = f(z),t' =1& (e = 0) AQ]eo() + ()t <0
The derivation from (O removes the time variable ¢ using the inverse direction of ax-
iom DG [142, 144]. Just as rule dGt (which is derived from DG) introduces a fresh time variable

t for the sake of proof, inverse DG simply removes the variable ¢ since it is irrelevant for the
proof of the differential cut.

LE 2 = fz) & (e = 0)]Q
DT e=e(),t =0F [2" = f(z),t' = 1& (e = 0)]Q O

Proof of Corollary 4.26. The derivations of rules dV_&, dV¥ & are similar to the derivations of
rules dV_, dV¥ respectively. Rule dV¥ & is derived from dV_& by monotonicity:
I'E[2=flx)&e<0]Q e<0,QFé>e()
Qe=0Fp =% Ie)>0,e<0,QF (o' = f(x)&Q)e =0
MOT, () > 0,e <0,QF (' = f(z) & Q)P

The derivation of rule dV_& starts by using axiom K(&) with G = e > 0. The resulting
box modality (right) premise is abbreviated (D and proved below. On the resulting left premise,
a DX step adds the negated postcondition e < 0 as an assumption to the antecedents since the
domain constraint () is true initially. Following that, rule dV._& is used (with > being >, since

() characterizes a closed set). This yields the two premises of dV_&:
L[ = f(z)&e < 0]Q e<0,QFe>eg()

V& Ie() >0,e<0F (/= f(z)&Q)e >0
X [e()>0QF (@' =f2)&@e=0 @
k(&) Te()>0,e<0,QF (2 = f(2)&Q)e =0
From premise (D), the derivation is completed similarly to dV_ using DX and Barr:
*

Re£0,e=0Fe<0
Barr e<OF [ =f(x)&Q Ne#0le <0
DX e<OF [2'=f(x)&Q Ne#0le <0 O

Proof of Corollary 4.27. Rule SLyap & is derived from SLyap& by a DR(-) monotonicity step
followed by dW on its resulting left premise and SLyap& on its resulting right premise:

e>0FQ e>0FK =P KFeé>0
BT e>0F [/ = f(z)&e > 0]Q Syl T e > 0F (2 = f(z) &e > 0)P
DR() Fe>0F (2 = f(x) & Q)P
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The derivation of rule SLyap& starts by adding assumption —P to the antecedents, because
if both e > 0 (which is already in the antecedents) and P were true initially, then the liveness
succedent is trivially true by DX. Next, axiom COR is used with R = true, its topological
restrictions are met since both formulas P and e > 0 characterize open sets. From the resulting
right premise, rule SLyap yields the corresponding two premises of SLyap& because formula K
(resp. P) characterizes a compact set (resp. open set):

e>0F K -P,KFeée>0
I'e>0F [2/ = f(x)&—Ple >0 S Te>0F (o' = f(2))P

COR I'N'e>0,-PF (2/ = f(x)&e>0)P
DX Fe>0F (o' = f(x)&e>0)P
From the leftmost open premise after COR, rule Barr is used and the resulting e = 0

assumption is turned into K using the left premise of SLyap&. The resulting open premises are
the premises of SLyap&::
e>0F K
~PEKte>0 Fe=0FK
cut -Pe=0Fe>0
Barr L,e>0F [ = f(x)&—Ple >0 O

Proof of Corollary 4.28. The derivation starts with a SAR refinement step. On the resulting left
premise, an M['] monotonicity step yields the left premise and first (leftmost) conjunct of the
right premise of rule SP&. The derivation continues from the resulting right premise below.
'k [z = f(z)&=(PAQ)]S SEQ
- P =f@)&=(PAQIQ Tk (¢ = f(x))P
o IE {2’ = fz) &Q)P

From the resulting right premise after using axiom SAR, rule SP yields the remaining two
premises of SP&. The dW, DMP monotonicity step uses the propositional tautology =P —
—(P A Q) to weaken the domain constraint so that it matches the left premise of rule SP&.

k[ = f@) & (P AQ)S
AW.DMPI L T/ = f(2) & —P]S SFe<0Aeé>e()
>F 'k (x' = f(x))P O

Proof of Corollary 4.30. The chimeric proof rule SP*& amalgamates refinement ideas behind
the derived rules SP&, dV’;, SP.. It is therefore unsurprising that the derivation of SP*& uses
various steps from the derivations of those rules. The derivation of SP*& starts similarly to SP&
(following Corollary 4.28) using axiom SAR:

TE[' = f2)&o(PAQIQ  TE (' = f(x)P
o k(@' =flz)&Q)P

S

From the left premise after SAR, a monotonicity step turns the postcondition into .S, yielding
the left premise and first conjunct of the right premise of SP*&:.

TH[' =f@)&(PAQIS  SEQ
M[] 't 2 = f(z)&=(P AQ)Q
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From the right premise after SAR, the derivation continues using K(&) with G = =5,
followed by dW, DMP. The resulting left premise is (again) the left premise of SP*&, while the
resulting right premise is abbreviated @ and continued below:

h [ = f2) & (P AQ)S
W.DMPD L T/ — f(2) & —P]S )
K& 'k (2 = f(x))P

The derivation continues from (D by interleaving proof ideas from Corollaries 4.19 and 4.21.
First, compactness of the set characterized by S(z) implies that the formula 3¢>0 A(c) where
A(e) =Vx (S(z) — ™ > ¢) and the formula B = Va (S(x) — ¢®) > 0) are provably equiv-
alent in first-order real arithmetic (Appendix B.1.3). These facts are added to the assumptions
similarly to the derivation of SP... The resulting right open premise is the right conjunct of the
right premise of SP*&:

St e >0
[,e>0,A() - (z' = f(x))-~S R®ORL B
LT, 3e>0A(e) F (@ = f(z))-S B 3e>0A(%e)
cut 'k (2 = f(x))=S

From the left premise, recall the derivation from Corollary 4.19 which introduces fresh
variables for the initial values of the Lie derivatives with cut, r, L. The derivation continues
similarly here, with the resulting antecedents abbreviated 'y = (I',e = ¢, ..., ™1 = é(()kfl)).
Rule dGt is also used to add time variable ¢ to the system of equations with initial value ¢ = 0.

[o,e >0,A(e),t =0F (2/ = f(x),t/ =1)=S
aGt Lo, e >0,A(e) F (o' = f(x))-S
cut, |, 3L [ie>0,A(e) F (o' = f(z))~S

Recall from Corollary 4.21 that the formula R(e;) = Vx (S(xz) — e < e;1) can be added
to the assumptions using cut, r, JL, for some fresh variable e; symbolically representing the
maximum value of e on the compact set characterized by S:

Fo,e >0,A(e),t =0,R(ey) F (2/ = f(z),t' =1)=8
cut 1 3L To.e > 0,A(e),t =0F (' = f(x),t' =1)=8

One last arithmetic cut is needed to set up the sequence of differential cuts (B.12). Recall
the polynomial p(t) from (B.12) is eventually positive for sufficiently large values of ¢ because
its leading coefficient is strictly positive. The same applies to the polynomial p(t) — e; so cut, r
(and Skolemizing with JL) adds the formula V¢ > t; (p(f) — e; > 0) to the assumptions:

Lo, e >0,A(e),t =0,R(ey),Vt > t1p(t) —e; >0k (2 = f(z),t =1)=8
cun I 3 To,e > 0,A(e),t =0,R(er) F (2 = f(x),t/ =1)=8

Once all the arithmetic cuts are in place, an additional cut introduces a (bounded) suffi-
cient duration assumption (z' = f(x),t' = 1)(p(t) — e; > 0V =.S) (antecedents temporarily
abbreviated with . .. for brevity). The cut premise, abbreviated (D), is proved further below:

Lo,y (@ = flx), ! =1)(p(t) —ey >0V =S)F (2/ = f(z),t' =1)-5 @
CutFng > 07A(€)7t = Oa R(61)7Vt > (p(t) — €1 > O) = <$/ = f(l’),t/ = 1>_‘S
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From the open premise on the left, axiom K(&) is used with G = p(t) — e; > 0V —S:

Lo,e >0, A(e),t=0, R(ey) - [2'=f(z),t'=1& S](p(t) —e1 < OAS)
KT, .. (@=f(x), !=1)(p(t) — e; > 0V =S) F (z/=f(x),t'=1)=S

Next, a monotonicity step M['] simplifies the postcondition using the (constant) assumption
R(ey) and the domain constraint S:

Lot =0,A(e) F [2' = f(z),t' = 1& Sle > p(t)
MITg, e > 0,A(e),t =0,R(e1) F [/ = f(2),t' = 1&S](p(t) —e1 < OAS)

The derivation closes using the chain of differential cuts from (B.12). In the first dC step, the
(constant) assumption A(¢e) is used, see the derivation labeled ® immediately below:

Lot =0k [ = f(2),t' = 1&S Ae® D > eV 4 (e > p(t) @
“To,t =0,A(e) F [« = f(x),t' = 1& Sle > p(t)

From

*
R Ale), S+ M > g()
WoPot =0, A(e) b [2/ = fx),t' = 1& S]e®=D > e 4 e()t

Subsequent dC, dI. steps are similar to the derivation in Corollary 4.19:

*

T Tot =0k [o = f(2),t' = 1& - AéD > &) + -+ e() e > p(t)

dc, dr,.

CAdopt=0F [2/ = f(z),t = 1& S A e*=D > eV 4 c()]e > p(t)

From premise (D, a monotonicity step M(') rephrases the postcondition of the cut using
the assumption V¢ > ¢; (p(t) — e; > 0). Axiom BEx finishes the derivation since formula S(x)
characterizes a compact (and hence bounded) set:

BEx (2 = f(x),t' = 1)(t > t; V=95)
MOVE >t (p(t) —ex > 0) F (2 = f(x), ¢ = 1)(p(t) —es > 0V —S) O

B.2.4 Proofs for ODE Liveness Proofs in Practice

Proof of Corollary 4.33. Assume that formulas P, G p are in normal form (3.7) as in Corollary 4.33.
Rule dV is derived first since rule dV- follows from dV as a corollary. The derivation of rule dV
uses variable b as a symbolic lower bound on the initial values of all terms e;;, €;; appearing

in formula P. The formula 3b /\f‘i 0 < /\;71:(2) eij > bA /\72) €ij > b) is a valid formula of real

arithmetic and is proved as a cut by r because P is a finite formula so there exists a lower bound
b smaller than the value of all of the terms e;;, €;;.
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The derivation starts similarly to dV. by introducing fresh variables b (for the bound above),
and i representing the multiplicative inverse of () using arithmetic cuts cut, r. It then Skolemizes
(JL) and uses dGt to introduce a fresh time variable to the system of differential equations:

T,e() >0, AY, (/\gﬂO ey 2 bANL) &y > b) c()=1,t=0F (2 = f(z),t' = )P
4Gt re() >0, A, ( AP ey > b A /\”“ &y > b),z’e() —1F (2/ = f(x))P
T, > 0,30 Ay (AFG e 2 bA N 5 2 0),3i () = 1) F (' = f()P
cut, R [e() >0F (2 = f(x))P

Next, the refinement axiom K(&) is used with G = (b + ()t > 0). This yields two premises,
the right of which is proved by GEx (after monotonic rephrasing with r, M(’)) because the
ODE 2z’ = f(x) is assumed to have provable global solutions. The left premise from K(&) is
abbreviated @) and continued below.

<
| GEXF - <ZL‘/ — (ZE) t = >t > —ib
B R MO T,e() > 0,ic() = LF (' = f(x),t = 1)(b+ ()t > 0)
I'e() >0, /\?io (/\T:(Z)) €ij = b/\/\?g()) €ij = b),zg() Lt=0F (2 = f(2),t' =1)P

Continuing from premise (D), monotonicity strengthens the postcondition from b + ()t < 0
to G'p under the domain constraint assumption —P. This strengthening is justified because,
assuming that =P and Gp are true in a given state, then propositionally, at least one of the
following pairs (each pair listed horizontally) of sub-formulas of =P and G p for some indices
1, 7 is true in that state:

€ij <0 61]—(b‘|‘€()t) >0
6” SO él]—(b—i-e()t)EO

Either pair of formulas imply that formula b + €()¢ < 0 is also true in that state, so the
strengthening is proved by M['], . Next, a cut, r step adds the formula Gp to the antecedents
using the assumptions A, (/\m(Z eij > bA /\n(Z €ij > b> and ¢t = 0. Rule sAI& yields the
sole premise of rule dV because G p characterizes a closed set.

_‘Pa( ) *) GP (GP) ()
SAI& Gpl— [;p _f(,]}),t,:1&—|P]GP
“ED AL (AR e 2 bA NG ey 2 b),t =0 2 = f(2),# = 1&~PGp
Ep AM (/\m“ ey > bAND 6, > b) t=0F [ = f(x),t' = 1& ~P|(b+ ()t < 0)

Rule dV~ is derived from rule dV similarly to the derivation of rule dV from rule dV,. The
derivation starts with a cut of the sole premise of dV? (the left premise below). The existentially
bound variable is renamed to  throughout the derivation for clarity. The right premise is
abbreviated @ and shown below.

Tk 35>0WbViVae (P A (-P)) AGp — (Gp)®) @
cut '+ <$/ = f(l’) & Q>P
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From (2), after Skolemizing (with JL), rule dV is used with () = 4. The universally quantified
antecedent is constant for the ODE 2/ = f(z) and the universal quantification over variables
b, 1 ensure that those variables are fresh in the rest of the sequent so the antecedent is soundly
kept across the application of rule dV. The proof is completed propositionally VL, —L, AL.

*
LAY (<P A (<P) ) A Gp — (Gp)®), =P, (=P)®), Gp - (Gp)®
v 6>0,VoVtVz (=P A (~P)® AGp — (Gp)W) F (2/ = f(z) & Q)P
AL AL 30>0VbVtVr (=P A (~P)® AGp = (Gp)W) F (2 = f(2) & Q)P O

Proof of Corollary 4.36. The derivation of rule cR is seemingly straightforward using axiom CR
followed by rule Enc on the resulting middle premise. There is a minor subtlety to address
because the formula ()7 (with strict inequalities replacing non-strict ones in ())) is only a syntactic
under-approximation of the interior of the set characterized by @, and so the axiom CR does not
immediately apply as stated. For example, formula z < x characterizes the empty set, while
the formula x < 2 characterizes the set of all states, whose interior is also the set of all states.
Assume that the interior of ) is characterized by formula 602.5

The derivation starts with a cut of the formula ) which yields the leftmost premise of rule cR.
This is followed with DX, which adds formula =P to the antecedents because there is nothing
to prove if both formulas () and P are already true initially. The derivation then uses CR with
the computable formula Q characterizing the topological interior of formula (). This yields two
premises, the right of which corresponds to the rightmost premise of rule cR. From the resulting
left premise (with postcondition Q), an M['], R monotonicity step strengthens the postcondition
because )7 — Qisa provable formula of real arithmetic (Appendix B.1.3). Rule Enc completes
the derivation because formula Q7 is formed from finite conjunctions and disjunctions of strict
inequalities, and (QZ)Z is syntactically equal to ) by definition.

IE[2' = f(z)&RA=PAQIQZ
MLQF [ = f(e) & RA-PIQ:

MIED O F [of = f(z)& R A —P]Q I+ (2" = f(z) & R)P
CR [Q,-PF (2 = f(x)&Q)P
r-qQ ™ LQF @ =f)&Q)P

“TE (o = f(2) & Q)P .

B.3 Counterexamples

This appendix gives explicit counterexamples to illustrate the soundness errors identified in
Sections 4.4 and 4.5.

SIf Q is a semialgebraic formula, there is a computable quantifier-free formula Q that exactly characterizes its
topological interior [14] which can be used with CR in the syntactic derivation.
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B.3.1 Finite-Time Blow Up

The soundness errors identified in Section 4.4 all arise because of incorrect handling of the fact
that solutions may blow up in finite time. This phenomenon is studied in detail in Section 4.3,
and it is illustrated by «,, (4.2), see Fig. 4.1, or oy (4.7), see Example 4.5. The following is a
counterexample for the original presentation of dV_ (and dVY, dV_&, dV¥ &) [191]. Similar
counterexamples can be constructed for [157, Remark 3.6] and for the original presentation
of SLyap, SLyap& [159].

Counterexample B.2. Consider rule dV_ without the restriction that the ODE has provable
global solutions. This unrestricted rule, denoted dV_%, is unsound as shown by the following
derivation using it with () = 1:
*
Fo—2<0F1>1
V%, 9 <0k (W =u*v=1-2=0

The conclusion of this derivation is not valid. Consider the initial state w with values w(u) = 1
and w(v) = 0. The explicit solution of the ODE from w is given by u(t) = 1=, v(t) = ¢ for
t € [0,1). This solution does not exist beyond the time interval [0, 1) because the u-coordinate
asymptotically approaches oo, i.e., blows up, as time approaches ¢t = 1. It is impossible to reach
a state satistying v — 2 = 0 from w along this solution since at least 2 time units are required.

This counterexample further illustrates the difficulty in handling nonlinear ODEs. Neither
the precondition (v — 2 < 0) nor postcondition (v — 2 = 0) mention the variable u, and the ODEs
v/ = u?,v" = 1 do not depend on variables v, u respectively, so it is tempting to disregard the
variable u entirely. Indeed, the liveness property v —2 < 0 — (v' = 1)v —2 = 0 is valid. Yet, for
liveness questions about the (original) ODE, u' = u?, v’ = 1, the two variables are inextricably
linked through the time axis of solutions to the ODE. 5

B.3.2 Topological Considerations

The soundness errors identified in Section 4.5 arise because of incorrect topological reasoning in
subtle cases where the topological boundaries of the sets characterized by the domain constraint
and desired liveness postcondition intersect. The original presentation of dV._& [137] gives
the following proof rule for atomic inequalities p > 0. For simplicity, assume that the ODE
x' = f(x) is globally Lipschitz continuous so that solutions exist for all time.

o' = f(z)&p <0]Q —(p=0),QFp>e()
Le() >0k (o' = f(z)&Q)p = 0

r

Compared to dV,_&, the unsound rule dV,_&% omits the assumption —(p = 0), makes no
topological assumptions on the domain constraint (), and uses syntactic weak negation [137]
for the domain constraint of its left premise. The following two counterexamples show that the
two assumptions are necessary.
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Counterexample B.3. Consider the following derivation using the unsound rule dV,_&% with
e()=1:

* *
WEySTFW =1&u<0u<l1 Fu<ou<ikF1>1
av,- & u>1F@W=1&u<1lu>0

The conclusion of this derivation is not valid. In states where u > 1 is true initially, the
domain constraint is violated immediately so the diamond modality in the succedent is trivially
false in those states. 5

Counterexample B.4 ([175]). This counterexample is adapted from [175, Example 142], which
has a minor typographical error (the sign of an inequality is flipped). Consider the following
derivation using the unsound rule dV_&% with £() = 1:

N *
dW’RI—[ulzl&ugl]ugl Rugl,ugll—lzl
v, &5 F =1&u<1)u>1

The conclusion of this derivation is not valid and, in fact, unsatisfiable. The domain constraint
u < 1 and postcondition u > 1 are contradictory so no solution can reach a state satisfying
both simultaneously. 4

The next two counterexamples are for the liveness arguments from [156, Corollary 1] and [157,
Theorem 3.5]. For clarity, the original notation from [157, Theorem 3.5] is used. The following
conjecture is quoted from [157, Theorem 3.5]:

Conjecture B.5. Consider the system ' = f(z), with f € C(R",R"). Let X C R", A, C X,
and X, C X be bounded sets. If there exists a function B € C*(R") satisfying:

B(z) <0 Vr € X, (B.13)
B(z) >0 Vo € 0X \ 0X, (B.14)
g—f (x) <0 Ve e X\ A, (B.15)

Then the eventuality property holds, i.e., for all initial conditions x € X, the trajectory x(t)
of the system starting at ©(0) = x satisfies (1) € X, and x(t) € X forallt € [0,T] for some
T > 0. The notation X (resp. 0X') denotes the topological closure (resp. boundary) of the set X .

In [156, Corollary 1], stronger conditions are required. In particular, the sets Xy, X, X" are
additionally required to be topologically open, and the inequality in (B.13) is required to be
strict, i.e., B(x) < 0 instead of B(x) < 0.

The soundness errors in both of these liveness arguments stem from the condition (B.14)
being too permissive. For example, notice that if the sets X, 0X, are equal then (B.14) is
vacuously true. The first counterexample below applies for the requirements of [157, Theorem
3.5], while the second applies even for the more restrictive requirements of [156, Corollary 1].
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Figure B.1: (Left) Visualization of Counterexample B.6. The solution from initial point u =
0,v = 1 (&), in black) leaves the domain unit disk (X', boundary in blue) immediately without
ever reaching its interior (X, in green with dashed boundary). The interior is slightly shrunk
for clarity in the visualization: the blue and green boundaries should actually overlap exactly.
(Right) Visualization of Counterexample B.7. Solutions from the initial set (Xp, in black with
dashed boundary) eventually enter the goal region (&, in green with dashed boundary). However,
the domain (X, in blue with dashed boundary) shares an (open) boundary with X, at v = 0 which
solutions are not allowed to cross. The sets are slightly shrunk for clarity in the visualization:
the blue and green boundaries should actually overlap exactly. The level curve B = 0 is plotted
in red. All points above the curve satisfy B < 0, while all points below it satisfy B > 0.

Counterexample B.6. Let the system 2’ = f(z) be v’ = 0,v" = 1. Let X, be the open unit
disk characterized by u? + v? < 1, X be the closed unit disk characterized by u? + v? < 1,
and &) be the single point characterized by u = 0 A v = 1. All of these sets are bounded.
Note that X \ 9., = () since both topological boundaries are the unit circle u? + v? = 1. Let
B(u,v) = —v, so that 28 f(z) = %—50 + %—fl =—1<0and B <0on &j.

All conditions of [157, Theorem 3.5] are met but the eventuality property is false. The
trajectory from A} leaves X immediately and never enters X, see Fig. B.1 (Left). 4

Counterexample B.7. Let the system 2’ = f(z) be '/ = 0,v" = 1. Let X, be the set char-
acterized by the formula u? + v? < 5 A v > 0, X be the set characterized by the formula
u? +v? < 5Av # 0, and X} be the set characterized by the formula u? + (v + 1)? < %
All of these sets are bounded and topologically open. Let B(u,v) = —v + u? — 2, so that
%—f (x) = %—50 + %—fl = —1 < 0,and B < 0 on A}. The set 0X \ 04, is characterized by
formula u? + v* = 5 A v < 0 and B is strictly positive on this set. These claims can be checked
arithmetically, see Fig. B.1 (Right) for a plot of the curve B = 0.

All conditions of [156, Corollary 1] are met but the eventuality property is false. Solutions
starting in &) eventually enter X, but can only do so by leaving the domain constraint X" at
v = 0, see Fig. B.1 (Right). E;
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Appendix C

Appendix: Stability for Ordinary
Differential Equations

C.1 Derived Stability Proof Rules

This appendix provides proofs for all lemmas and corollaries that were omitted from Sections 5.2
and 5.3. For ease of reference, this appendix is organized into two sections, corresponding to
proofs for Section 5.2 and Section 5.3 respectively. This appendix uses derived proof rules and
axioms from Chapters 3 and 4 (and their Appendices A and B) together with an additional
derived axiom:

2 = f(@) &QAPIRA[2 = f(2) &Q)(-P = [¢' = f(z) &£ Q]-P)

DCC T, 1 = F(2) & QI(P — R)

Axiom DCC to prove that an implication P — R is always true along an ODE, it suffices
to prove it assuming P in the domain if, whenever the solution leaves P, then it stays in the
negation — P afterwards (so the implication is trivially true in those states). The axiom is stated
as a proof rule elsewhere [90] and its axiomatic version is formally verified [16].

C.1.1 Proofs for Asymptotic Stability of an Equilibrium Point

This section concerns stability for the origin, whose € neighborhoods U. (z = 0) are equivalently
unfolded as the formula ||z||5 < £2. The following lemma formalizes the claim in Section 5.2.1
that a point x( of interest for the ODE 2’ = f(x) can be rigorously translated with proof to the
origin so that, without loss of generality, only stability of the origin needs to be considered for
the stability proof rules of Section 5.2.

Lemma C.1 (Translation to origin). The following axioms are derivable in dL, where the ODE
y' = f(y + zo) has point x translated to the origin and variables y are fresh, i.e., not in ODE
x' = f(x) or formula P(x).

Trans y = x — 19 — ([I’ = f(x)|]P(x —x) <> [y = fy + mo)]P(y))

TransStab Stab(y' = f(y + xo)) — Stabk (v/ = f(x), 2 = 2, 2 = w0)
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Proof. Axiom Trans is derived first before axiom TransStab is derived from it as a corollary. Only
the “—” direction of the inner equivalence for axiom Trans is derived since the “<—” direction
follows from the “—” direction by renaming and translation with respect to —z,.

Let o,y = 2’ = f(2),y = f(y+wo) abbreviate the combined ODE for variables = and y. The
derivation starts with a cut of formula [c,,] y = = — x0, which says that the value of y is always
equal to z — 2y (component-wise) along solutions of the combined ODE «,,. This cut is provable
in dL using axiom DRI which is complete for analytic invariants. Subsequently, axiom BDG
adds the ghost ODE ¢/ = f(y + 2) to ODE 2’ = f(z) in the antecedent box modality and ODE
2’ = f(z) to ODE ¢ = f(y + x¢) in the succedent box modality. The resulting boundedness
premises from the use of BDG are respectively abbreviated (D and (2) and they are both proved
using the cut antecedent as shown further below.

@  [awyly = 7 — 20, [0y | P(x — 20) F [0y | P(y)
POD Jagly = v — g, [ay Pz —x0) F [y = f(y + =0)]P(y)
BP6 Tagyly = x — o, [0/ = f()]P(x —x0) F [y = fy + 20)]P(y)
cut, DRI y = —x0, [ = f(x)|P(x —20) = [y = f(y +0)]P(y)

From the (unabbreviated) open right premise, a dC step adds formulas y = x — xy and
P(x — () to the domain constraint of the succedent. A subsequent dW step completes the proof
by substituting y = 2 — x¢ in the succedent P(y).

R y=x—x9APlx—1x9)F P(y)
aw Flag &y =2 —x0 APz — 20)]P(y)
“ [ty P(x — o) [y &y = 2 — 20] P(y)

ac [amy]y = T — Zo, [amy]P<x - [Eo) + [axy]P(y)

For premise D, the ghost variables y are provably bounded in (squared) norm by the term
|| — 2|3 for ODE @, The dC step adds y = x — x from the antecedent box modality to the
domain constraint, and the subsequent dW step completes the proof by substituting y = = — xg
and by real arithmetic r.

*
Y y=a—aok lyll; < llz — ol
v F awy &y =2 — 0] [lyll3 < |z — o3

2 2
Clawyly = 2 — 20 - [owy] lyl; < lle = woll

The derivation for premise (2) is similar, where the ghost variables x are provably bounded
in (squared) norm by the term ||y + x| for ODE q, instead.

*

R a0t 2l < Iy + 2ol

dw 2 2
Flag &y =2 —xo] ||z]]5 < ||y + 0|3

2 2
Clawyly =2 — 2o b o] Izl <y + ol

The derivation of axiom TransStab starts by Skolemizing ¢ in the succedent with VR and
then instantiating the antecedent with the resulting fresh Skolem variable € using VL. This is
followed by JL, IR which Skolemizes ¢ in the antecedent and then witnesses the succedent with

244



d. Next, VR, —R Skolemizes the succedent before VL instantiates y in the quantified antecedent,
with the translated coordinate y = 2 — 2. Formula y = z — 2 A ||z — zo]|5 < 62 — [|y||5 < 62
is provable by substitution in real arithmetic, so —L, ® proves the LHS of the implication
(Ilyll2 < %) in the antecedent before Trans completes the proof. The formulas are abbreviated
R,=[y = fly+zo)] lylls <e®and R = [/ = f(z)] || — 20| < €2, respectively.

*
frans y=x—x,RyF R
LRy =2 — 1, ||y||§ <0* = Ry, |z — x0||§ <FR
* Vy (gl < 8 = R,), & — |2 < 62F R
R OR vy ([lyl3 < 0> = R,) F Va (|| — xo|3 < 8* — R)
AL 3R >0y (|lyll; < 6% = R,) F 36>0Vx (||lx — xo)3 < 62 — R)
R, VL Stab(y' = f(y + xo)) F Stabk(2/ = f(2), 2 = zo,x = 79) O

Proof of Lemma 5.6. The full derivation of rule Lyap- from rule Lyap- is given in Lemma 5.6.
The derivation of rule Lyap> begins with a series of arithmetic cuts which are justified stepwise.
For any € > 0 and an equilibrium point at the origin with f(0) = 0, the second (right) premise
of Lyap> can be equivalently strengthened to choose v < ¢, i.e., the second premise provably
implies the following formula in real arithmetic; the universal quantifier on z is also distributed
across the inner conjunction as shown in conjuncts @) and ® below:

J0<y<e (Vo (0 < |22 < 7% = V > 0) AVz (o]} <42 = V <0))

@ ®

The derivation begins with a cut of this formula and Skolemizing with JL, yielding an-
tecedents @) and ® as indicated above. The postcondition is then monotonically strengthened
to ||z]|2 < 7? using antecedent v < «.

7> 0.@,®F 36>0a (| < 8 = [/ = f(2)] ||z]5 <)

M[] v>0,v<e@ O®F I0>0Vx ( ||x||§ <6 = 2/ = f(z)] ||:17||§ < 52)

cut, 3L >0k 35>0Va ( |23 < 0% = [/ = f()] ||z]|5 < e?)
VR F Stab(z’ = f(x))

From (@), the continuous Lyapunov function V' is positive on the compact set characterized
by ||z||3 = 7? and therefore is bounded below by its minimum W > 0 on that set. Furthermore,
from premise V' (0) = 0, by continuity, V' must take values smaller than W in a ball with
sufficiently small radius 0 < 0 <  around the origin.! Thus, the following formula proves in
real arithmetic from @).

I (Vx (]2 =42 = V > W) A J0<d<y Va (||z]2 < 62 = V < W)>

© @

IRecall the notational convention (Appendix B.1.3) that rule R proves these real analytic properties for Lyapunov
functions V' over extended terms.
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The derivation continues with a cut of the above formula and Skolemizing the resulting
antecedent with 3L, yielding antecedents (¢) and (@ as indicated above.

0<0<7,®,©,@F 36>0Vz (||z]], < 6* = [ = f(x)] |lz[l> < +*)
R >0,@.®F 36>0V ([|lz]; < 0® = [ = f(2)] l|lz]5 <°)

The succedent existential quantifier 36>0 is instantiated with the antecedent’s ¢ using 3R,
followed by simplification steps, Skolemizing and unfolding the succedent with VR, —R then
instantiating @ by VL, —L with the resulting ||z|5 < §2 assumption.

0<7,®,©, ||z]l; < 8V < W [ = f(2)] [|z]l; < 7*
Tt 0, ®,0,@, Jlafl; < 8 F 2 = f(2)] |lz]l; <72
R 0<7,®,©,DF vz ([loll; < 8 = [2' = f()] |l <)
R 0<6<y,®,©, @+ F6>0Vz ( 25 < 0% = [/ = f(2)] ||lz]5 < 7?)

Since formula HSL‘H2 < 7?2 characterizes an open ball and § < +, the antecedent HxH2 < &2
implies ||z||5 < ~? arithmetically so rule Enc is used to assume its closure ||z||; < 7? in the

domain constraint of the succedent ODE. With the strengthened domain, dC adds V < 0 to the
domain constraint by V using assumption (® which is universally quantified over .

©V <WF [t/ = f(a)& ||z]]2 <AV < 0] [lz]7 < 42
ac.v ®,©,V < Wk & = f(x) & |22 < 7] ]2 < 72
Bic 5y, ®,©, z]2 < 62,V < Wk [/ = f(z)] ||z]% < 2

The proof continues using dC to add invariant V' < W to the domain constraint; this

differential cut proves by dI. using conjunct V' < 0in the domain constraint. The subsequent dC
step adds ||z||> # 7? to the domain constraint using the contrapositive direction of the umversally
quantlﬁed antecedent (. Finally, a dW step completes the proof since con]uncts |z])2 < 7* and
||z]|2 # 42 in the resulting domain constraint imply the postcondition ||z||; < 7 by .

)
Hﬂ@stM@#ﬁFHwi 7

w F o' = @ & lelly <A Allelly £97 ll2ll; <+

ac @F[: f@) & |lzlls <> AV <OAV < W] |z} < 7

- dC ©.V <WF['=f(2)& |zl <AV <0]||z]; < 72 0

2

Proof of Corollary 5.10. The two directions of axiom EStabE are derived separately. In the “—
direction, the derivation starts by unfolding the discrete assignments in the sequent with [:=], [;].
In the derivation, the succedent is bound renamed with variable z [142] and the ODEs are
temporarily hidden with - - - (shown further below).

2 2 2 2
y=ao?llzlly,z = flzly, t =0, el <y b [-] llzl; < zexp (=261
ly:=allzlly;-- ] llzlls Sy b [2=a?lallyst=0;- ] [lall; < zexp (—251)

(=] [}

Continuing from the resulting premise, the cut, R, step adds formula y = z exp(—2/t) to
the antecedent because the exponential sub-term exp(—2/t) simplifies to 1 when ¢ = 0. This
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step requires arithmetic over the exponential function with rule Rex.

y=zexp(=268t), [ ] el Sy k[~ llall; < zexp (=251)
wefery = o2 [|afly, 2 = o |lally £ = 0,[ ) lzly; Sy [ lzl; < zexp (—26t)

Next, the derivation uses axiom DG to add ghost ODE #' = 1 to the antecedent box modality
and ODE ¢y’ = —2/y to the succedent, respectively. The resulting ODEs (identical in antecedent
and succedent) is abbreviated o,y = 2'=f(x), y'=—20y,t = 1. Rule dC adds the postcondition
of the antecedent box modality to the domain constraint, then M['] monotonically strengthens
the succedent postcondition to y==z exp(—2/5t) using the strengthened domain constraint (by
substitution). The proof is completed using rule dbx with cofactor g = —25.

*
dbx y — zexp(—20t) = 0 F [ay]y — zexp(—20t) =
y=zexp(—25t) I [ayly=2 exp(—2t)
) y—=exp(=280) F a0 & 2]} < 9] 213 < 2 exp (—250)
ac y=2 exp(—28), [ag] 121 < g laa] [l2]E < 2 exp (~251)
06— exp(—231), [1'— (), ——28y) |23 <y - [w'=F (), ¢=1] [[o]}} < 2 exp (~281)
The derivation in the “<” direction is similar and given briefly below. The derivation starts
by unfolding discrete assignments with [:=|, [;], where the ODEs temporarily hidden with - - -.

The cut, Rey, step adds formula y = z exp(—20t) to the antecedent because the exponential
sub-term exp(—2/t) simplifies to 1 when t = 0.

y = zexp(—2Bt), [ |lz]l; < zexp (=28t) b [-] ||z]l; <y
2 2
y=a?z|5,z=a? x|, t=0,[-] ||zl < zexp (—=28t) - [] [lz]; < y
p) 2
[z:=a2 ||zl55t:=0; -] [lz]; < zexp (=2Bt) F [y:==a? ||z|5;-] |z <y
The derivation then uses axiom DG to add ghost ODEs, where the resulting ODEs (identical

in antecedent and succedent) is abbreviated o, = 2'=f(x), y’=—20y,t = 1. The remaining
derivation is similar to the “—“ direction (details omitted).

cut, Rexp

(=) [

*
dbx y — zexp(—20t) = 0 F [ayu]y — zexp(—2pt) =

y=2exp(=261) - [ay]y== exp(=261)
Ml y=2exp(=261) I ay & ||z3 < zexp (=262)] [lall; < y
“Cy=2exp(=251), [ayd] ||zl3 < 2z exp (=268) F [ayd] ||zl3 < y
P y=zexp(=26t), [ -] lallz < zexp (=28t) - [+ [lzll5 < y O

Proof of Lemma 5.11. The proof starts by instantiating the existentially quantified variables «, 3
in EStab(z’ = f(z)) with a = % and decay rate § = k3. Since k1, ko, k3 are all positive
constants, these choices satisfy o > 0, 5 > 0.
- 36>0Va (|2l < 8® = [y:=(32)* |zl3: 2" = f(2),y = —2ksy] ||z]; < y)
R EStab(2’ = f(z))
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The subsequent cut step adds the premise of rule Lyapy to the antecedents and Skolemizes
it with JL. The resulting antecedent is abbreviated with

@=Va (o] <* = K zll2 <V < k22| AV < —2ksV)

Then 3R instantiates the succedent with 6 = 7+ and the sequent is logically simplified. Note @)

also implies k; < kg as ky,ky > 0s0d <7y and ||x||2 < 62 implies ||z||5 < ~ in real arithmetic.
The hybrid program y := (%)2 |z||2;2" = f(x),y' = —2ksy is abbreviated with - - - in the first
three steps below.

7> 0.@, llalls < (89)°F [y:= () llzllys 2’ = f(2),y' = —2ksy] |lzll5 < y

R 7> 0,@F Va (Jlzl; < (29)° =[] llells < )
* 7>0,@F 35>(W90(||9U||2<52 [ llzll; < w)
o =35>0V (||lzfl; < 0* = [+ [|lz]l; < v)
The discrete assignment y := (52 2)? ||]|2 sets the value of variable ¥ to (%) |2 initially. It
is turned into an equational assumption with the assignment axiom [:=] and [;] as follows [144].
N 0,@ llzlly < (2% y = () llally - [+ = fla).y' = —2ksy] [l2ll; <y
7> 0,@ llzls < (2?2 F ly:= (@) llzlls: " = fa).y' = —2ksy] llz]l5 < y

The antecedents are abbreviated I' = v > 0,@), ||z|> < (B Ly)?y = (lz—j)z |||, The

derivation continues with a differential cut dC adding formula HxH2 < 72 to the domain
constraint. This cut is abbreviated (D and proved further below. The next differential cut dC adds
formula V < k? 1y to the domain constraint. This cut is abbreviated (2) and also proved further
below. The derivation is completed with a dW, r step with the quantiﬁed antecedent @) and the
domain constraint, since they 1mply the chain of inequalities k7 ||z||5 < V < k?y, which implies
the succedent (after dW) ||z||> < y by k.

*
@zl <AV <Kyt ) <y
w @ Tk =fla),y = —2ky& |lz]; <AV < k] |lzlls <y
i @® Tk = f(2),y = —2ksy& |zll; < ¥ |lz]5 < v
€ DH [ = f(x),y = —2ksy] 2|5 < y

Returning to premise @ the derivation uses Enc to assume |z||; < 2 in the domain
constraint, since ||z||; < 2 is true initially. Then, a dC, dI.. step adds formula V' < k?? to the
domain constraint. This formula is proved true initially by r with antecedents I' using the chain
of inequalities from @), V < K2 ||z|3 < k:2(k )2 ki~2. It is proved invariant by dI._ because

> < ~?and quantified antecedent @) proves the chain of inequalities

V< —2kV < —2k3(k‘2 |z]|2) < 0. A dW, k step completes the proof because the domain
constraint ||z]|; < 7% AV < k}7? and quantified antecedent @ prove the chain of inequalities
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k2 ||z||2 <V < k242, which implies the succedent (after dW) ||z|> < 72 by k.

S
@zl <13 V<kF lally <4
aw, R Ik = f(x),y = —2ksy & [z]l; <+ AV<kiy?] ||lz]]; <72
dc, dr, TH [z = f(z).y = —2ksy & [|lz]; < 77 |25 <~
Enc Ik [ = f(x),y = —2ksy] ||9U||§ <?

For premise @), the inequality k¥y — V' > 0 is proved invariant using rule dbx, with cofactor
g = —2ks3 as follows.

" *

THERyY V=0 @l <7*F —2kiksy —V > ~2ks(kiy — V)
dbx,. Tk o' = f(x),y = —2ksy & |Jz]l; < Jkiy —V >0
cut, M['] N [I, — f<x>7y/ = —2]633/& Hl’Hg < 72]‘/ S k%y

The resulting left premise proves by r because the antecedents @ and y = (i—f)2 |]|3 in
I' prove the chain of inequalities V' < k% ||z||5 = k?y. For the resulting right premise, the
Lie derivative of k¥y — V from the LHS of the postcondition is —2k?kzy — V. With domain
constraint ||z||> < 7? and quantified antecedent @), this derivative provably satisfies the chain
of inequalities —2k?kzy — V> —2k2ksy + 2ksV = —2k3(k?y — V) by r. O
Proof of Lemma 5.14. The rules are derived in order starting with rule Lyapg. First, observe that

G

the first two premises of rule Lyap3’ imply the premises of Lyap- because if the sign conditions

onV and V are true globally, then they also hold for any choice of neighborhood of the origin.
Thus, the derivation starts with a cut, Lyap> step which proves stability of the origin. Next, the
definition of Attr”(z' = f(x), true) is logically unfolded and axiom SAttr is used to simplify
the succedent, together with logical unfolding steps VR, —R.

>0k (o' = f(2)) ol < 22
" Ve (@ = f(@) 2] <
SA Stab(a' = f(x)) F Asym(2' = f(z), true)
YR =R Stab(z’ = f(x)) - AttrP (2! = f(x), true)
cut, Lyap> F Stab(2’ = f(z)) A AttrP (2 = f(x), true)
The derivation continues with a cut, g, JL step, introducing a fresh Skolem variable b which

stores the initial value of the Lyapunov function V. Next, a cut adds the box modality formula

[' = f(x)] V < b to the antecedents. This cut proves by dI. because formula V' < b is true

initially and the premises of rule Lyapg prove the formula V' < 0.2

>0, [’ = f(2)]V <bF (2 = f(2)) ||2]3 < &
cut, e>0,V =bk (& = f(2)) ] < &
cut, R, 3L e>0F (v = f(x) [|=]; < &?

*When = = 0, the premise f(0) = 0 implies V=o.
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The subsequent M['] step strengthens the postcondition V' < b of the antecedent box modality
to ||]|3 < 7? using the (Skolemized) rightmost premise of rule Lyapg. This rightmost premise
corresponds to the assumption that the Lyapunov function V' is radially unbounded [71, 89].

e>0,[¢' = f(2)] |zl <7*F (@ = f(2)) |l=]l; < &

M e50,[2) = f(a)]V < b (@ = f(z)) ||z]? < &2

Like the derivation of rule Lyap- in Lemma 5.6, the remaining open premise is an ODE
liveness property which is proved using rule SP. with the choice of compact staging set S =
£? < ||z]|7 < 7% and e = V. The resulting left premise proves with a differential cut dC of the
antecedent and dW. The resulting right premise proves using r from the middle premise of

rule Lyapg and antecedents £>0, S.

N *
dC,dW[x/ = f(2)] ||xH§ <V F [ = fla) & ||:1;||§ > £28 Rg>0,5 -V <0
sp. e>0,[a" = f(@)] all; <7* F (@' = f(2)) all; <

The derivation of rule Lyapg is similar to the derivation of rule Lyapg from Lemma 5.11. The

proof steps are repeated briefly. The derivation starts by instantiating (using 9R) the existentially
quantified variables in succedent EStab® (2’ = f(x), true) with a = Z—f and decay rate 5 = kj,
followed by logical unfolding of the sequent.

y=(52)2 ||z|2 F ['=f(x).y/'= — 2ksy] |lz]2 < y
(=] [l - [y = (%)2 Hng ;x’:f(x), y’: - 2/<:3y] ||$||§ < )
R R - Va (true = [y:= (12)? |23 2'=f (2), ' = — 2ksy] |l«]l3 < v)
IR F EStab? (z'=f (), true)

The proof continues with a differential cut of the formula V' < k%y, which is proved invariant
with its equivalent rephrasing k?y — V' > 0 and rule dbx, using cofactor g = —2k3. Similar
to Lemma 5.11, the cut formula is true initially because the antecedent y = (%)2 ||| and the

premise of Lyapg imply the chain of inequalities V' < k? ||z||3 = k?y. The premise of Lyapg are

also used to show that the Lie derivative of k¥y — V' provably satisfies the chain of inequalities
—2kikgy — V > —2k3kgy + 2ksV = —2k3(k?y — V). The proof is completed by dW, r using
the premise of rule Lyapg’ .

*
F Rz <V
N V <kyt |lz]; <y
w - = f(2),y = —2ksy &V < Ky ||z]f; < y
Cy= (L2l [ = fz),y = —2ksy] |2]l; < y 0

Proof of Corollary 5.16. The two axioms are derived in order, starting with axiom EStabStab. The
derivation of axiom EStabStab starts by Skolemizing the existential quantifiers in EStab(a’ =
f(z)) with JL, then Skolemizing the succedent (VR) and instantiating (JR) the existentially
quantified >0 in the succedent with v = min(£, §) (note v > 0). The sequent is then simplified,
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noting that v < 4 so that assumption ||z||> < 2 proves the implication LHS Vz ( |z < 0% —
o ) in the antecedents. The subformula with discrete assignment to y in the antecedent is

abbreviated with R, = [y:= o ||z||5;2" = f(z),y = —2By] ||=|3 < v.
a>0, 3>0,6>0,e>0, Ry, |l[l3 <7* b [o'=f ()] ||«]5 <<
R RG>0, 8>0,6>0,>0,Vx (||2]; <?=R,) Vo (|Jo]; <2 —[v'=f(2)] ||z||3 <?)
R a>0,8>0,6>0,e>0,Vx (||7]]; <0?>—=R,) F 30>0Vz (|27 <?>—...)
)

VR a>0, >0,6>0,Vz (||lz]; <6>—=R,) F Stab(z'=f(z))
L EStab(x'=f(x)) I Stab(z'=f(x))

The discrete assignment in antecedent R, is unfolded with [:=], [;], similar to the proof
of Lemma 5.11, yleldlng the antecedent y= a2 ||||3 and abbreviated box modahty antecedent
P, = [ = f(x),y = —2py| HxH2 < y. Axiom DG adds dlfferentlal ghost y = —20y to
the succedent ODE and the postcondition is strengthened to y < &2 by K using assumption
P,. The proof is completed with a dbx, step with cofactor term —2/ because the (rephrased)
postcondition £ — y > 0 is proved by r from the antecedents with the chain of inequalities
y = a?|z|5 < a?y? < a?(£)? = £2. The Lie derivative of €2 — y is 23y which provably satisfies
the inequality 28y > 28y — 28¢% = —28(? — y) for 8 > 0.

.
P a>0,8>0,0>0,e>0,y=a? |[z|;, x|} <7*F [v'=f(x),y'=—28y]c* —y > 0
M a>0,8>0,6>0,e>0,y=0? |3, l|z]l; < v*F [#'=f(x), y'=—28y]y < &
“a>0,8>0,0>0,e>0,y=a?||z[l; , P, l|zll; < > F [#'=f(2), y'=—28y] ||=[l; < &
" 050,550,550, 550, y=0 [el}, By el < o F = )] [T < =

(=)0 a>0,3>0,6>0,e>0, Ry, ||z7 < 7%+ [2'=f(z)] ||lz|5 < 2

The derivation of axiom EStabAttr starts by unfolding and Skolemizing the existential quan-
tifiers for the antecedent, with abbreviated ODE «,, = 2’ = f(x),y’ = —25y and subformula
R, = [y:=a?||z]|3; auy) ||lz]|5 < y (identically to the preceding derivation for axiom EStabStab).
The succedent is logically unfolded and the resulting antecedent P proves the implication LHS in
the antecedent Vz (P — R,). Succedent Asym(z’ = f(z),x = 0) is then Skolemized with VR.?

a>0, >0, Ry b= (2’ = f(2))[a = f(2)] ||z]5 < &’

R a>0, 3>0, R,, P+ Asym(z' = f(x),2 = 0)
" =ta>0,8>0,V2 (P — R,), P Asym(2’ = f(z),2 = 0)
R 0>0,8>0,Vr (P — R,) F AttrP (2 = f(x), P)

L EStab? (2/ = f(z), P) - AttrP (2 = f(z), P)

The derivation continues with axioms DG, DGy to add the linear differential ghost 3/ =
—2y to both ODEs in the succedent. The postcondition of the succedent diamond modality is
monotonically strengthened with M() and postcondition (y < £2 A [a,] [|z]/2 < y). The two

3Unlike earlier proofs , the formula is not simplified using a stability assumption because the generalized
formula EStab (' = f(z), P) does not directly imply stability of the origin unless formula P provably contains
a neighborhood of the origin.
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resulting premises are abbreviated D and (2); they are shown and proved further below.

@ @
MO 00, 830, Ry F {(ay) ] [2]5 < €2
P&.DGv >0, >0, R, F (2/ = f(x))[z' = f(z)] ||lz|3 < &2

From premise ), a differential cut dC proves formula y < &2 invariant for the succedent
ODE «,, using rule dbx, . The subsequent dC adds the postcondition of the antecedent to the
domain constraint before dW, r finish the derivation.

*
B y <Al <yk |l < &

w &y <Al <yl |23 < €2
dC

[y Nlzlls S b lowy &y < €] lall; < &
10050,y < & awy] llzll; < v law)] llell; < &

From premise (2), the antecedent R, is unfolded with [:=], [;], then K(&), D[;] remove the
right conjunct of the postcondition because postcondition [a,] ||z||3 < v is true after all runs
of . Axiom BDG removes the ODEs for  in the succedent because ||z||> is bounded using
antecedent [oy,] [|z]5 < .

B>0F (y = —2By)y < &2
BPG - B>0, (o] [lzlls <y {oy)y < &2
KELDEB0, [ag,] (|25 <y (o) (¥ < €2 Ao [12]; < y)
=0l B>0, Ry 1= (auy) (y < €2 Aoy [|2]]5 < v)

The remaining open premise is an ODE liveness property for variable y. Its proof starts
by introducing a fresh variable y, storing the initial value of y. Then, rule SP. is used with
S = (¢ < y < yo). The resulting left premise is an invariance property of the ODE which
proves using M['], dI._, while the right premise proves by .

*
U=5>0,y=yo - [y = 28y &y > 2y < yo %
MIB>0,y = yo - [y = 28y &y > %S £3>0,5F —28y < 0
She B>0,y =yo - (y = —2By)y < £
cut, 3L B>0F (y = —2By)y < & O

C.1.2 Proofs for General Stability

This section derives proof rules for general stability and its specialized instances which are
introduced and motivated in Section 5.3.

Proof of Lemma 5.17. The derivation of rule GLyap generalizes the ideas behind the derivation of
rule Lyaps. The derivation starts with an VR step, followed by a cut and Skolemization JL of the
second (bottom) premise of rule GLyap. The resulting assumptions (for Skolem variables -y, J, W)
are abbreviated with: @ = V& (0U,(R)) - V > W), ® = Va (Us(P) - RVV < W),
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and© =Vz (RVV < W — [2/ = f(z) &U,(R)](RVV < W)). A subsequent M['] step
strengthens the postcondition monotonically since the formula U, (R) — U.(R) is provable
by r for vy < e.

0<7,0<0<y,@,®,© F 36>0x (Us(P) — [’ = f(2)]Uy(R))
ML <e 0<6<v,@, ®),© - 3050V (Us(P) — f(@)]U.(R))
cut, 3L > 0F 3050V (Uy(P) — [ = f(x)] U(R))

VR = Stabg (2' = f(x), P )

The existentially quantified ¢ in the succedent is witnessed with the Skolem variable § in the
antecedents and the sequent is simplified with VR, —R, —L, where the implication LHS in ® is
proved using antecedent assumption Us(P).

0<7,0<6<y,@,©,Us(P),RVV < W F [’ = f(z)|U,(R)
R L 0<7,0<0<7,@,®,© F Vo (Us(P) — [« = f(2)]U,(R))
- 0<7,0<6<y,@, ®,© F 36>0Vz (Us(P) — [+ = f(2)]Uy(R))

The derivation continues with rule Enc to assume the closure formula U4, (R) in the domain
constraint. This step uses the first premise of rule GLyap, i.e., precondition P implies postcondi-
tion R, so that the neighborhood formula U;(P) provably implies neighborhood formula ¢/, (R)
initially by r for § < 7. The subsequent dC step uses the antecedent () to prove the invariance
of formula RV V <W for the ODE 2’ = f(z) & U, (R) and adds it to the domain constraint. The
derivation is completed using dW, r, where the arithmetic step is justified below.

. 0<y,@,U(R), (RVV<W)FU,(R)
aw 0<v,@, RVV<W Ik [2/ = f(z) &U,(R) A (RV V<IW)|U,(R)
ac 0<v,@,©, RVV<W F 2/ = f(x) &U,(R)|U,(R)

0<7,0<0<7,@,©,Us(P), RV V<W I- [’ = f(2)]U(R)

To prove arithmetical premise 0<vy,@,U,(R), RV V<W  U,(R), note that the left dis-
junct R in the antecedent implies its neighborhood formula I/, (R) in real arithmetic for v > 0.
Thus, it suffices to justify the premise for the right disjunct, i.e., @,U,(R),V<W + U,(R).
Antecedent @) is instantiated to obtain assumption O(U,(R)) — V > W. This assumption says
that the right disjunct V' < W does not occur on the boundary of 9(U,(R)) which, together
with antecedent U, (R) implies succedent U, (R) in real arithmetic (Appendix B.1.3). O

Proof of Corollary 5.21. The three axioms are derived in order.

SetSAttr The two directions of the inner equivalence of SetSAttr are proved separately. The
easier “—” direction follows by Skolemizing ¢ in the succedent with VR, choosing the
same ¢ in the antecedent with VL, and then by M(’) because the resulting postcondition
[z" = f(x)]U.(P) monotonically implies postcondition U (P) by differential skip DX.

ox [z = f()]U-(P) F U.(P)
MO @ = @)’ = f@)]U(P) F {2 = f(2)) U(P)
VR, VL Asym(a’ = f(z), P) - Vex>0 (2" = f(x)) U.(P)



The more interesting “<—” direction uses the stability assumption. The first step Skolemizes
the succedent with VR, then the stability antecedent is instantiated with VL and Skolemized
with JL (yielding fresh Skolem variable ). Using the resulting quantified assumption
Va (Us(P) — 2/ = f(x)]U.(P)), the postcondition of the succedent is monotonically
strengthened to Us(P) with M(’). The derivation is completed by VL instantiating the
remaining quantified antecedent with 6.

e 5> 0,Ve>0 (@ = J(0)) U(P >F<x’ J(@)) Us(P)

MO 5> 0,Ve Us(P) = o' = [(@)]Ue(P)), V>0 (o’ = J(@))Ue(P) (o = f(@))[a’ = J(@)] Ue(P)
VL, 3L Stabk (2 = f (), P, P),Ve>0(z = f(2)) Ue(P),e>0F (& = f(z))[z’ = f(z) U(P)
VR Stabl(+' = f(2), P, P),Ve>0 {2’ = f(2)) U(P) I~ Asym(’ = [(2), P)

SClosure This axiom is derived immediately by equivalently rewriting with arithmetic equiva-
lences because for § > 0 the open neighborhood formulas Us(P) and Us(P) are provably
equivalent in real arithmetic by r (Appendix B.1.3).

SClosed This axiom is proved by contradiction so its derivation starts by negating the invariance
succedent using ().
Stabk (z' = f(z), P, P), P, (x' = f(x))=P\ false
bR Stabh (2’ = f(z), P, P), P+ [2' = f(x)|P
iR Stabj («/ = f(z), P, P) - Va (P — [/ = f(x)]P)

Since formula P characterizes a closed set, every point satisfying —F must be contained
in some £ > ( ball in the interior of the open set characterized by = F. Accordingly, these
points are ¢ > ( distance away from the set characterized by P and therefore, the formula
=P <> 3¢>0-U.(P) is provable in real arithmetic (Appendix B.1.3). This equivalence is
used to rewrite the postcondition of the diamond modality antecedent before the resulting
existentially quantified variable € is commuted with the diamond modality and Skolemized
with B/, 9L and V to extract the constant assumption £ > 0.

*

v r = f($)]U€(P>, <ZL’/ - f($)>_|u€(P) k- false
s >0,V (Us(P) — [ = f(o)]U(P)), P, (' = f(x))-U(P) & false
VL. 3L Stabg (¢' = f(x), P, P), P,e > 0,(z' = f(z))~U.(P) - false
v Staby (' = f(x), P, P), P, {2/ = f(x2))(e>0 A ~U.(P)) - false
B 3L Stabk(z/ = f(x), P, P), P, (2’ = f(x))3e>0-U.(P) I false

M(). R Stabl (z' = f(z), P, P), P, (z' = f(z))—~P \ false

The stability assumption is instantiated with ¢ using VL and Skolemized with JL. Since the
formula P — Us(P) is provable in real arithmetic for 6 > 0, the implication LHS in the
antecedents is proved with VL, —L. The proof is completed using (-) since the resulting
box and diamond modality antecedents are contradictory. [

Proof of Lemma 5.22. Rule SLyap? is derived first before SLyap> and SLyap- are derived us-
ing SLyap®, as a stepping stone further below. The derivation of rule SLyap® starts with a GLyap
step. The (left) resulting premise P — P proves trivially and is not shown below. For the (right)
resulting premise, the first two conjuncts under the nested quantifiers prove trivially from a cut
of the second (bottom) premise of rule SLyap? . It remains to prove the final conjunct for fresh
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Skolem variable W with antecedent abbreviated @ = Vz (U, (P) A =P — 1% < 0) from the
premise of SLyap?.
@, PVV<WE [ = f(x) &U,(P)](PVV<WV)
Vo (00U (P)) = V = WA
FVex>030<y<eIW | F0<0<yVz (Us(P) — PV V<IW)A

Vo (PVV<W = [2/ = f(z) &U,(P)](PV V<W))
- Stabk (¢/ = f(x), P, P)

cut

GLyap

The derivation continues using rule DCC to prove that V' < W is true along ODE solutions
until the invariant P is entered; the first step uses an equivalent propositional rephrasing of
PVvV < W as P — V < W. The two resulting premises are abbreviated (D and (2. They are
shown and proved further below.

@D @
PEC @, -P =V <WF[2= f(x)
Ml @ PVV<IWF 2 = f(2)

U (P)(~P =V < W)
U (P)|(PVV<W)

&
&

From premise (D, a DX step strengthens the antecedent to V' < W using the domain

constraint = P. Rule dI_ completes the proof because formula 1% < 0 proves from antecedent @)
with domain U, (P) A = P.

*
@,U,(P)AN-PFV <0

& @V <Wk [/ = f(z)

PX@,-P =V < Wk 2 = f(z)

U(PYA-PIV < W
U (PYA-PIV < W

&
&

From premise (2), a dW step reduces the premise to an invariance question for formula P
(since =P is propositionally equivalent to P). The DMP step weakens the domain constraint,
which proves using the first premise of rule SLyap?.

Pr [z = f(x)|P
PP [ = f(a)
= @)

u, (PP
Uy(P)](==P = [2" = f(x) &Uy(P)]=—P)

&
&

Rule SLyap> derives from SLyap% because the two rules share the invariance premise on P
and the latter two premises of rule SLyap> imply the latter premise of SLyap? in real arithmetic

when P characterizes a compact set. The variable y is witnessed by ¢ in the premise after SLyap? .
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The proof of the arithmetic premise is explained below.

*

Vo (OU(P)) = V = WA N
0<6<eVa (Us(P) A —P =V < W)
Vo (U(P) A —P — V < 0)
Sy (Y OULP) = V= W)A N
VR 3R F Ve>030<vy<e <0<y Ve Us(P) AP =V < W)
Va (U, (P) A =P — V < 0)
SLyaps, - Stabg (2" = f(x), P, P)

Roes0k

The conjunct Vz (U.(P) AN =P — V< 0) proves logically from the right conjunct of the
middle premise of rule SLyap-. For the existentially quantified conjunct, 3W ( e ), since
formula P characterizes a compact set, the boundary 0(U.(P)) is also compact and therefore the
continuous Lyapunov function V' must attain its minimum W on that set. This IV witnesses the
quantifier 3W and note that /" > 0 from the left conjunct of the middle premise of rule SLyap~
(because O(U.(P)) implies =P for € > 0). From the rightmost premise of rule SLyap-, the
Lyapunov function satisfies IV < 0 for all points x € R" on the boundary characterized by
formula OP. For each such point y on the boundary, by continuity, there is a radius 6 > 0 where
points in the open ball ||z — y||, < § satisfy V' < W because W > 0. The union of all such balls
over all points on the boundary is an open cover of the compact boundary which therefore has a
finite subcover. The minimum radius § > 0 of balls in this finite subcover witnesses the formula
J0<0<eVx (Us(P) N =P — V<W), justifying the use of r (Appendix B.1.3).

Rule SLyap- is derived from rule SLyap> similar to the derivation of Lyap-. from Lyap-.
The derivation starts with a cut of the set stability formula Stabf(z' = f(z), P, P) which
proves by SLyap> because rules SLyap-. and SLyap> have identical premises except for a strict

inequality on V.
Stabk (2/=f(x), P, P) F 36>0 Attrk (2'=f(x),Us(P), P)
cut, Slyap> F Stabk (2'=f(x), P, P) A 36>0 Attrk (2/=f(x),Us(P), P)

The stability antecedent is instantiated with € = 1; the positive constant 1 is chosen arbitrarily
to obtain a neighborhood in which solutions are trapped. After Skolemization, this yields an
initial disturbance 6 > 0 and the antecedent Vz (Us(P) — [2' = f(z)] U (P)). The succedent is
witnessed with 0, and the resulting sequent is simplified with VR, —R, —L. Then, axiom SetSAttr
simplifies the succedent using the stability antecedent.

6>0, [z'=f ()] Uy (P),Us(P) - Ve>0 (a'=f(x)) U-(P)
SetSAtr StabP( '=f(x), P, P),6>0, [2'=f(x)| U (P ) Us(P) F Asym(z'=f(z), P)
YR R 2LGtablh (2/=f (z), P, P), >0, Vz (Us(P) — [2'=f(2)] s P)) = Attrg (o'=f (), Us(P), P)
R Stabk (a'=f(z), P, P),6>0,Yz (Us(P) — [2'=f(2)]th(P))  36>0 Attr} (z'=f(z),Us(P), P)
cut, L Stabh (2/= ( ), P, P) - 36>0 Attrk (2/=f(z),Us(P), P)

The proof of the liveness property in the open premise uses rule SP. with the choice of
compact staging set S = U;(P) A —U.(P) and e = V. Note that formula S characterizes a
compact set because P is compact so the neighborhood U (P) is closed, the negation of the
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Figure C.1: An illustration of «. and the Lyapunov function v from Counterexample C.2, with
level curves (where V' = k for various k) shown in color.

open ¢ neighborhood is closed —U_(P), and U, (P) is bounded.

*

CNTT —F U (P) F [ = flz) & U(P)S  Be>0,SFV <0
SPe 6>0, [2" = f(2)]U(P),Us(P),e>0F (2" = f(x))U.(P)
R 5>0, [ = f(2)]Uy(P),Us(P) F Ye>0 (2’ = f(z))U-(P)

The left premise proves with a cut dC of the antecedent and dW. The right premise proves by real
arithmetic r using the middle premise of rule SLyap-. because the antecedents imply =P. [

C.2 Counterexamples

This appendix provides counterexamples for the soundness issues highlighted in Sections 5.3
and 5.4. The first counterexample illustrates the need to assume compactness, i.e., formula P
is closed and bounded in rule SLyap>. The remark after [89, Definition 8.1] suggests that the
following variant of SLyap is sound for formulas P that characterize a closed, invariant set:

PFV =0 —-PFV>0AV<0
+ Stabg (¢' = f(x), P, P)

SLyap>%

The rule SLyap=% is unsound (indicated by %); indeed, the rule SLyap> from Lemma 5.22 is
also unsound if the assumption that formula P characterizes a bounded set is omitted.

Counterexample C.2. Consider the ODE a. = ¢’ = y,t’ = 1 and the formula P = y = 0
which characterizes a closed invariant set of «, that is not bounded. The Lyapunov function
V = y? exp(—2t), satisfies all of the premises of rule SLyap-4% because V' = 0 when y = 0,
V > 0fory # 0, and V = 0. However, P is not stable for ODE «., as can be seen from Fig. C.1.
The norm of the right-maximal solution from all initial states that satisfy y # 0 approach oo.
This counterexample also illustrates the importance of the boundedness assumption for
formula P in Lemma 5.22 for rule SLyap> since all other premises of the rule are satisfied by
the above example. g
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The second counterexample below shows that rule Lyap~ needs the premise V' (0) = 0. This
premise is unsoundly omitted from the arithmetical conditions in [3, Equation 1].

Counterexample C.3. Consider the ODE ¢y = y with solution y(¢) = yo exp(t) from initial
value y(0) = yo. For all perturbed initial states yo # 0, ||y(t)|, approaches co as t — oo so this
ODE is not stable (nor attractive). However, the Lyapunov function V' = 1 trivially satisfies all
of the premises of rule Lyap> except the omitted premise 1/ (0) = 0. %
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Appendix D

Appendix: Stability for Switched
Systems

D.1 Switched System Models and Stability Proof Rules

This appendix provides proofs for all results that were omitted from Sections 6.2 and 6.3. For ease
of reference, this appendix is organized into two sections, corresponding to proofs for Section 6.2
and Section 6.3 respectively. All derived proof rules and axioms used in this appendix are
explained earlier in the thesis and in the preceding appendices.

D.1.1 Proofs for Switched Systems as Hybrid Programs

This section contains adequacy proofs for hybrid program models of various switching mecha-
nisms defined in Section 6.2.

Proof of Theorem 6.3. Axiom SAlgiate derives immediately from Invgiate by equivalently rewrit-
ing its RHS using the derived equivalent characterization of ODE invariants SAI& from Theo-
rem A.11 (page 212). Both directions of axiom Invgiate are derived separately.

‘“—” The (easier) “<—” direction uses rule loop to prove that P is a loop invariant of agate-
The antecedent assumption A\ .,V (P — [2" = f,(z) & Q] P) is constant for aissate, SO
it is soundly kept across the use of rule loop. The subsequent [U], AR step unfolds the
nondeterministic choice in agtate’s loop body, yielding a premise for each ODE in P. These
premises are indexed by p € P below and they are all proved propositionally from the
antecedent assumption.

AL, VL, HL/\

perx (P = [2' = fp(2) &Qp|P), P+ 2/ = fp(x) & Q]P  (p €P)
DA /\pepvx (P = [2' = [p(z) & Q| P), P [UpG’P‘r fo(z) & QP
PP N pep Vo (P = [ = f,(2) & QyIP), P+ [aaase] P

IR Npep Vo (P — [ = fo(2) & Qy)P) b VY (P — [igare) P)

~
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“—” The “—” direction shows that a run of ODE 2’ = f,,() & @, p € P must also be a run of
Olstate, SO If formula P is true for all runs of vgeate, it must also be true for all runs of the
constituent ODEs. The derivation starts with logical unfolding steps where the resulting
premises are indexed by p € P below.

[astate]P F [xl = fp(x) &QP]P
T VY (P = [ostace) P), PE [/ = f,(2) &Q,JP (p€P)
MR ZRVE (P — [astae) P) F Npep Vo (P — [2" = fy(x) & Q)] P)

Next, axiom [*] unfolds the loop in the antecedent before axiom [U] chooses the branch
corresponding to p € P in the loop body.

*
[} AL [Ctstarel P P
M [2" = fp(2) & Qplastare] P - [2" = fo(x) & Q)] P
ol AL[UpEP v = fp(x) Hastate] [ = p( ) & QP]P
[ AL [Qstate| P 1= [2/ = p(x) & QP]P
The derivation is completed using rule M[-] to monotonically strengthen the postcondition,
then unfolding the resulting antecedent with axiom [*]. O

Proof of Proposition 6.4. The proof is similar to Proposition 6.2 but with fresh auxiliary variable
u used to control the switching signal. The switched system obeys the guards G, , along a
solution if, for any switch from mode p, g, the system state in mode p satisfies a sequence of
guard formulas G ., Gp, pos - - - » Gp, 1 p. With p = pg and ¢ = p,,. Intuitively, this means the
system can take a sequence of zero-time jumps along a sequence of modes and guard conditions
to switch from mode p initially to mode ¢ at the end. Both directions of the proposition are
proved separately for an initial state w € R". The initialization program «; sets u to a choice of
mode p € P initially but leaves the state variables  unchanged.

“=" Suppose (w, V) € [guara]. By the semantics of dL programs, there is a sequence of states
W = Wy, w1, . ..,w, = v for some n > 0 and for each 1 < ¢ < n, there is a run of the loop
body with (w;_1,w;) € [ay; ;). Unfolding the sequential composition,' by the semantics
of the controller program «,, state w;_; satisfies u = p for some p € P and the guard
condition G, , for some ¢ € P, and there is an intermediate state v obtained from w;_,
by setting the value of variable u to ¢. The plant program «,, then runs the selected ODE
for mode ¢ from state « for some time (; > 0 to reach state w;. Thus, every state w; is
associated with its chosen mode p; and time (; > 0 for which the ODE for mode p; is
followed in that switching step. The state w;_; satisfies guard G}, , ,, fori > 1.

Similar to the proof of Proposition 6.2, remove from all sequences the chattering indexes
1 < i < nwith ¢ = 0. This yields new sequences (g, @1, - - ., @m)s (G, - -+ ), and
(P1, .., Dm) where 52 > (). Since no continuous evolution occurs When ¢ = O, for each
resulting pairs of adjacent states (w;_1, ;) with ¢ > 1, the state @; ; satisfies the required

!In case the controller «,, leaves the mode unchanged with v := u, the adjacent continuous evolutions belong
to the same mode and can be uniquely concatenated [33, Theorem 1.2]. Thus, assume without loss of generality
that the controller always performs a (guarded) switch from mode p € P to some mode g € P.
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sequence of guard formulas between mode p;_; and mode p; by following the (removed)
chattering indexes. Consider the switching signal o with switching times 7; = »"_, ¢
forl <i<m,t, = Z;.n:lgj—l—l,andn =71+ 1fori>m,som <7 <...and
7; — oo. Furthermore, extend the sequence of switching choices with p; = p,, fori > m.?
By construction using (6.2), o is well-defined and the solution ¢ associated with o from w
reaches v at time Z;n:l fj and it obeys the domains (), until that time.

<" Let o be a switching signal and ¢ : [0, () — R™ be the associated switched system solution
from w. Suppose that the switched system reaches ¢(t) for ¢ € [0, () while obeying the
domains (), and guards G, , for modes p, ¢ € P. To show (w, ¢(t)) € [guara], by the
semantics of dL loops, it suffices to construct a sequence of states w = wy, wy, . . ., w, for
some finite n, with w,, = (), and (w;_1,w;) € [(aw; )] for 1 < i < n, because loop
(ovu; @)™ unfolds to a nested self-loop ((v,; a;)")".
By (6.2), 0 is equivalently defined by a sequence of switching times 7p < 7 < 72 < ... and
a sequence of switching choices py, ps, . . ., where p; € P. Let 7,, be the first switching time
such that ¢ < 7,,; the index n exists since 7; — 0o. Define the state sequence w; = ¢(7;)
for 0 < i < nand w, = ¢(t). Note that wy = w by definition of ¢(0). It suffices to
show (w;—1,w;) € [(aw; ap)] for 1 < i < n. By assumption, the switched system takes a
sequence of zero-time jumps along a sequence of modes and guard conditions when it
switches from mode p;_; to mode p;. This sequence is simulated by program (c,; a,,)" by
unfolding the loop, switching to the respective mode(s) by «,, in each iteration and then
running the chosen ODE in o, for 0 time except for the last iteration (mode p;) where the
ODE 2’ = f,,(x) is followed continuously until state w; is reached. []

Proof of Proposition 5.27. The proof is similar to Proposition 6.4 by reasoning about the effect of
the fresh auxiliary variable u used to model the piecewise constant function u(t). The function
u(t) is viewed as a switching signal that prescribes switching choices on each interval with
associated solution generated according to (6.2). Both directions of the proposition are proved
separately for an initial state w € R".

“=" Suppose (w, V) € [piece]. By the semantics of dL programs, there is a sequence of states
W = wo,W1,...,w, = v for some n > 0 and for each 1 < 7 < n, there is a run of the
loop body with (w;_1,w;) € Ju:=%;7||ul| < A;2" = f(z,u)]. Unfolding the dL hybrid
program semantics, there are real value(s) U; with |U;]| . < A, such that state w; is
reached from state w;_; by following the ODE 2’ = f(x, U;) for time (; > 0. Define the
sequence of switching choices as p; = U; for 1 <i < n.

Following the proof of Proposition 6.4, remove from all sequences the chattering indexes
1 < i < nwith ¢; = 0. This yields new sequences (&g, &1, - .., Om), (C1y- -+, (), and
(P1, ..., Pm) where (; > 0. Consider the associated piecewise constant function () with
switching times 7; = Z;Zl 5;’ forl<i<mandr =7_1+1fori>m,som <1 <...
and 7; — 00, together with the extended sequence of switching choices with p; = p,, for
i > m. By construction using (6.2), u(t) is a bounded piecewise constant function and the

solution ¢ associated with u(t) from w reaches v at time > ™", (;.

>The choice of mode switches and guards are irrelevant for times ¢t > Z;nzl fj since they only need to be
obeyed until time E;":l (.
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“<” Let u(t) be a bounded piecewise constant function with bound ||u(t)

| < A and let
¢ : [0,{) — R™ be the associated switched system solution from w. Suppose that the
solution reaches ¢(t) for ¢ € [0, (). To show (w, ¢(t)) € [@piece], by the semantics of dL
loops, it suffices to construct a sequence of states w = wy, w1, ..., w, for some finite n,
with w,, = p(t), and (w1, w;) € [u:=*;7|ul| , < A;z' = f(z,u)] for 1 <i < n.

By (6.2), u(t) is equivalently defined by a sequence of switching times 7p < 73 < 75 < ...
and a sequence of switching choices py, pa, . .., where u(t) = p; forall ,_; <t < 7; for
1 <i. Let 7, be the first switching time such that ¢ < 7,,; the index n exists since 7, — oo.
Define the state sequence w; = ¢(7;) for 0 < i < n and w, = ¢(t). Note that wy = w by
definition of (0). It suffices to show (w;_1,w;) € [u:=x%;7 |lul| , < A;2’ = f(x,u)] for

1 <@ < n. By assumption, ||p;]| ., = [[u(t)]|., < A, so choose value p; for variable u in
u := * which passes the test ? ||u|| . < A. By construction of ¢, state w; is reached from
w;_1 by following the solution to ODE 2’ = f(z, p;). ]

Proof of Proposition 6.5. The proof is similar to Proposition 6.4 but with an additional fresh auxil-
iary variable 7 which tracks the time spent in each mode. Both directions of the proposition are
proved separately for an initial state w € R".

“=” Suppose (w, V) € [tine]. By the semantics of dL programs, there is a sequence of states

W = Wy, W1, . ..,w, = v for some n > 0 and for each 1 < ¢ < n, there is a run of the loop
body with (w;_1,w;) € [au; ;). Unfolding the sequential composition,’ by the semantics
of the controller program «,, state w;_; satisfies u = p for some p € P and the minimum
dwell time condition 6, ;, < 7 for some ¢ € P, and there is an intermediate state v obtained
from w;_; by setting the mode variable u to g and resetting the timer 7 to 0. The plant
program c, then runs the selected ODE for mode ¢ from state - for some maximum time
O, > (¢ > 0 to reach state w;, where ©, > 0 by assumption. Thus, every state w; is
associated with its chosen mode p; and time ©,, > ¢; > 0 for which the ODE for mode p;
is followed in that switching step. Moreover, minimum dwell time 6,,, , ,, < (;_; must be
spent in mode p;_; before switching to mode p;.

Similar to the proof of Proposition 6.2, remove from all sequences the chattering indexes
1 < i < nwith ¢; = 0. This yields new sequences (&g, &1, - - . , ), (51, . fm) and
(D1, - - - Pm) where @ > (. Consider the switching signal ¢ with switching times 7; =
23:1@' forl <i<mandt, =71+ 6, fori >m,som <7 <...and 7, = o0.
Furthermore, extend the sequence of switching choices with p; = p,, for i > m. The
switching times satisfy the maximum dwell times 7; — 7,_1 < ©;, and the minimum dwell
times 0, 5,,, < 7; — 7;—1 for i > 1 until time 37", {;. By construction using (6.2), o is
well-defined and the solution ¢ associated with ¢ from w reaches v at time Z;nzl (}.

Let o be a switching signal and ¢ : [0, () — R™ be the associated switched system solution
from w. Suppose that the switched system reaches ¢(t) for ¢ € [0, () while spending at
least time 7, , in mode p € P before switching to mode ¢ € P and spends at most ©,, > 0
time in mode p € P. To show (w, p(t)) € [sine], by the semantics of dL loops, it suffices

3Similar to the proof of Proposition 6.4, assume without loss of generality that the controller always performs

a switch since adjacent continuous evolutions can be uniquely concatenated whenever the controller leaves the
mode unchanged with u := .
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to construct a sequence of states w = wy,wy, . . ., w, for some finite n, with w,, = (1),
and (w;—1,w;) € Jay;ap] for 1 <i < n.

By (6.2), o is equivalently defined by a sequence of switching times 7p < 71 < 72 < ... and
a sequence of switching choices py, ps, . . ., where p; € P. Let 7,, be the first switching time
such that ¢ < 7,,; the index n exists since 7; — 00. Define the state sequence w; = ¢(7;)
for 0 <i < n and w,, = (t). Note that wy = w by definition of ¢(0). It suffices to show
(wi—1,w;) € [ay; ap) for 1 < i < n. By assumption, the minimum dwell time constraint
in o, is satisfied when switching from mode p;_; to mode p; (for ¢ = 1, skip with u :=u).
The maximum dwell time constraint on mode p; means that, by construction of ¢, w; is
reached from w;_; by following the solution to ODE 2’ = f,.(z), 7 =1&7 < 0,,. [

D.1.2 Proofs for Switched System Stability

This section derives stability proof rules for various switching mechanisms using the loop
invariants explained and motivated in Section 6.3. To improve readability in the proofs, formula
and premises are often abbreviated, e.g., with @), . To avoid confusion, the scope of these
abbreviations always extend to the end of each paragraph label, i.e., the abbreviations used in
the Stability proofs should not be confused with those used in the Pre-Attractivity proofs.

Proof of Corollary 6.9. Rule CLF is an instance of rule MLF from Corollary 6.10 where the Lya-

punov functions for all modes p € P are chosen identically with V,, = V. Nevertheless, a full

derivation of CLF is given here as it provides the main building blocks used in later derivations.

The stability and pre-attractivity conjuncts of UGpPAS(«state) are proved separately with AR:
F UStab(state) - UGpAttr(agtate)

R F UGpAS(@state)

A

Stability. The derivation for stability begins by Skolemizing the succedent with VR, —R,
followed by two arithmetic cuts which are justified as follows (recall convention from Ap-
pendix B.1.3). For any € > 0, the Lyapunov function V' attains a minimum value on the
compact set characterized by ||z||, = ¢. From the first (topmost) premise of rule CLF, this
minimum is attained away from the origin so it is positive, which proves the first cut of formula
JW>0@ where @ = Vz (||z||, = ¢ = V > W). After Skolemizing W with 3L, the premise
V(0) = 0 implies, by continuity of dL term semantics [142], that the sublevel set characterized
by V- < W with W > 0 (see Fig. 6.3) contains a sufficiently small § ball around the origin (with
§ < ¢). This proves the second arithmetic cut with the formula 30 (0 < § < ¢ A ®) where
® = Vz (||z]], < 0 — V < W). After both cuts, the Skolemized ¢ from the antecedent is used
to witness the succedent by JR.

@,0 <, ®F Y (||zll, < 6 — [tasare] |z]l, < €)

R @,0<6<e,®F 36>0Va ([2], < 0 — [aseare) 2], < €)
@t B3 S 0, > 0,@F 30>0Vz ([Jz]ly < 0 — [asase] 7], <€)
cut R, 3 e>0F 35>0Vx ||z, < 6 = [aseare] [|7[l, < 2)
VR, =R F UStab(agtate)
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The derivation continues from the open premise by Skolemizing the succedent with VR, —R
and proving the LHS of the implication in ® with VL, —L. Then, the loop rule is used with
the stability loop invariant Inv, = ||z|, < ¢ AV < W. This results in three premises: @
which shows that the invariant is implied by the initial antecedent assumptions; (2 the crucial
premise, which shows that the invariant Inv, is preserved across the loop body of agyate; and
@ which shows that the invariant implies the postcondition. These premises are shown and
proved further below.

®© @ 6
bop @,0 <&, 2], <0,V < Wk [agsae) |7l <
Lol @, <e,®, ||zl < 0F [Qorare) |2]l, < €
VR, SR @,0 <e,®F Va (|z]ly < 6 — [astase) |2]l, < €)

Premise (D proves by r from the antecedents using the inequalities ||z||, < d and § < e.

*
%5 <ezll, <0,V < W Inv,

Premise 3 proves trivially since the postcondition ||z||, < ¢ is part of the loop invariant:
*
v, F |zf, < €

The derivation continues from premise ) by unfolding the loop body of agtate With [U], AR.
This results in one premise for each switching choice p € P, indexed below by p.

@, Invs F [2' = fp(x) & Q,|Invs (peP)
LR @), Inv, - Uper @' = fo(2) & QplInv,

Each of these p € P premises is an ODE invariance question, which completely reduces to
an arithmetic question by proof in dL (Chapter 3). The derivation below shows how to directly
derive arithmetical conditions on V' from these premises. The right conjunct of Inv,, V- < W,
is added to the domain constraint with a dC step; the cut premise is labeled 4 and proved
below. A subsequent dC step adds ||z||, # € to the domain constraint using the contrapositive
of antecedent @ and the derivation is completed with rule Barr since the resulting ||z||, = ¢
assumption in its premise contradicts the domain constraint ||z ||, # ¢.

*
S llzlly # e lllly = e+ false

parr [zl, <eb [2" = fp(2) &Qp ANV < W A Jlzf|, # €] [z, <e
“ @, [zl <ebF [¢'=f(@) &Qp AV <W] |zl <e @

dc @, Invs F [/ = f,(z) & Qp|Invs

The derivation from @ is completed with a dI. step whose resulting arithmetic is implied by
the bottom premise of rule CLF.
%
R Q- L, (V) <0
BV <WF = f@)&Q,)V<W
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Pre-Attractivity. The derivation for pre-attractivity begins by Skolemizing the succedent 9,
with VR, =R, followed by a series of arithmetic cuts which are justified stepwise. First, the
Lyapunov function V' is bounded above on the ball characterized by ||z||, < §, which justifies
a cut of the formula IW>0@ with @ = Vz (||z[|, < § = V < W). After Skolemizing
the upper bound W, note that the set characterized by formula V' < W is compact by radial
unboundedness (middle premise of rule CLF). Therefore, the set characterized by formula
V < W A||z||, > € is an intersection of a compact and closed set, which is itself compact. Thus,
V attains a minimum U on that set which is positive by the first (topmost) premise. This justifies
an arithmetic cut of the formula 3U>0® with ® = Vz (V < WA ||z||, > & — V > U), where
U is subsequently Skolemized with JL. The steps are shown below, with the box modality in
UGpAttr(agtase) temporarily hidden with . . . as it is not relevant for this part of the derivation.

e>0,W>0@,U>0®FIT>0Vz (||zf, <6 —...)

cut B, 3L e>0,W>0,@k 3IT>0vz (|, <6 — ...)
cut B, 3L e>0F IT>0vx ([, <6 — ...)
VR, R F UGpAttr(astate)

Intuitively (see Fig. 6.3) the next arithmetic steps syntactically determine 7" > 0 such that the
value of V' decreases from W to U along all switching trajectories within time 7". Consider the set
characterized by formula Q, AU <V < W, which is the set of states (before reaching V' < U)
where switching to ODE 2’ = f,(z) & Q,(p € P) is possible. From the third (bottom) premise of
rule CLF, £ (V) is negative on the set characterized by the formula Q, AU < V < W because
conjunct U < V bounds the set away from the origin as U > 0. Using radial unboundedness
again, V' < W is compact, so the set characterized by Q_p AU <V < W is an intersection
of closed sets and compact sets which is therefore compact. Accordingly, £, (V') attains a
maximum value £, < 0 on that set, which justifies the following arithmetic cut, where the bound
k < 0 is chosen uniformly across all choices of p, e.g., as the maximum over all k, for p € P:

k<0 AV (QAU SV SW = L, (V)< k)

pEP
NS

/

~~

©

After Skolemizing k, it suffices to pick 1" > 0 for the succedent such that W + k7" < U.
Such a T" always exists since k£ < 0.
@ 0,k <0,©,W+kI <UFVz([lz]y,<d—...)
R e>0,W>0,@,U>00,k<0,©F3IT>0vz ([|2], <d—...)
cut, R, 3L e>0,W>0@,U>00®F3IT>0vz (||lzfl,<d—...)

The derivation continues by Skolemizing with VR, —R and proving the LHS of the implication
in @ with VL, —L. The assignment ¢ := 0 is unfolded with axioms [;], [:=], then the loop rule is
used with the pre-attractivity loop invariant Inv, =V < WA(V > U — V < W + kt). Similar
to the stability derivation, this results in three premises, where the crucial premise 2) requires
showing that Inv, is preserved across the loop body, while the other premises are labeled D and
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@ (all three premises are shown further below).

@ @ @
P 1V <« W0,k < 0,©,W +kT <U,t =0F [agtate,t’ = 1] ...
b 1= V<W,®0,k<0,©W+ET<UF [t:=0; agare, t’ = 1] ...
Lol @,0,k < 0,0, W + kT < U, ||z, < 6 F [t:=0; Qstare, ' = 1] . ..
VR R @,®.k < 0,0, W+ kT <UFVa([lzfl,<d—...)

Premise (D proves by r from the antecedents, using assumption ¢ = 0 to simplify the term
W + kt in Inv,,.
*

Ry < W, t=0F Inv,

Premise @ proves by r from the loop invariant using the following arithmetic argument.
Suppose for contradiction that there is a state satisfying the negation of the postcondition,
i.e., assume the negation t > T' A ||z||, > &. Then, using the left conjunct of Inv, together
with ||z||, > € to prove the LHS of the implication in ® gives assumption V > U. The right
conjunct of Inv, then yields the chain of inequalities V- < W + kt < W + kT < U, which is a
contradiction to assumption V' > U. The steps are outlined below.

%
Ry >U k<O WH+EKT <UV <W +kt,t > T false
R V>Uk<O0,W+kT <U,Inv,,t >TF+ false
B ®,k <0, W+ kT < U, Inv,t > T, ||z||, > e+ false
R ®, k< 0,W +kT <UInv,bt>T — |z|l, < e

The proof for premise (2) proceeds by unfolding the loop body with [U], AR, yielding one
premise for each switching choice p € P. A dC step proves the invariance of the left conjunct
V' < W of Inv, with dI_ (see the stability proof, sublevel sets of V' are invariant). The right
conjunct of Inv, is abbreviated I = V' > U — V < W + kt and it is proved below using
axiom DCC, which results in premises @ and ® (shown and proved further below).

@ ®
P @ TH o = f(x), ' =1&Q, NV <W]I
A=), Inv, F [2" = f,(2),t' = 1&Q,]Inv, (peP)
[L), AR ©, Inv, F [Upep ¥ = fp(z),t =1&Q,Inv,

From premise @), the proof is completed with a dI._ step using the quantified assumption (©)
because the domain constraint () implies its closure formula () and the strict inequality V' < W
implies the nonstrict inequality V' < W which is needed for the LHS of the nested implication
in (©. The Lie derivative of RHS W + kt is k using t' = 1.

*
F©Q ANV <WAV>UFL, (V)<k
- ©IF [ =@l =1&Q, AV <WAV > U]V <W +kt

From premise (5, the proof is completed with a generalization G step followed by dI. to
prove the invariance of formula V' < U (see the stability proof above, sublevel sets of 1 are
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invariant). The ODE in the outer box modality is elided with ... here.

sk
W V<UF [ = f(2),t =1&Q, ANV < W]V < U
G =R FLJV<U—=T[2" = f,(2),t =1&Q, ANV < W]V < U) O

Proof of Corollary 6.10. The derivation of rule MLF builds on the ideas of the derivation of
rule CLF from Corollary 6.9 so similar proof steps are explained in less detail here. The derivation
starts as usual with an AR step for the stability and pre-attractivity conjuncts which are proved
separately below.

F UStab(astate) + UGpAttr(astate)
AR F UGpAS(astate)

Stability. The derivation for stability similarly begins with cut and Skolemization steps. The
difference compared to the derivation of rule CLF is the cut formulas are now conjunctions
over all possible modes p € P for the Lyapunov functions V},. The first cut is 3W >0 @) with
@ = Ajep Vz ([[z], =€ — V, > W), where the upper bound W > 0 is chosen to be the
maximum of the respective bounds for each V,, on the compact set characterized by ||z||, = ¢.
After Skolemizing W, the second arithmetic cut is the formula 35 (0 < § < ¢ A ®) with
® = Ajep Vo (||lzfl, < 9 — V, < W). Such a § exists by continuity for each V,, p € P since
V,(0) = 0 from the first (topmost) premise of rule MLF. After both cuts, the Skolemized ¢ from
the antecedent is used to witness the succedent by JR.

@.0 <e,®F Va (||z]l, < 6 = [Qerace] [|7]l, < &)

R @.0<0<e,®F >0V (|2, < 6 — [tazare] 2], < &)
a3 S 0,W > 0,@F 30>0Vx (|2, < 0 = [Qstase] [[2]ly <€)
cut, R, 3L e>0F 36>0Vx ( ||SL’H2 <6 — [astate] Htz < 8)
VR, 9R F UStab(astate)

The derivation continues with logical simplification steps, Skolemizing the succedent and
then proving the LHS of the implications in antecedent ®.

@.0 < ll7lly < 0 Apep Vo < W I~ [atsease] 17l < =
VL, —L @,0 <e,®,||z]l, <0F [astate] ||Z]l, <&
VR, R @,0 <e,®F Vz ([z]l, < = [state] 7], <€)

Next, a cut, VL step case splits on whether the switched system is initially in its domain of
definition characterized by formula () = \/p cp @p- The case where the system is not in its domain
is labeled (@ and the proof for this case is deferred to the end. In case the system is in its domain,
the loop rule is used with stability loop invariant Inv, = ||z, <A\ .p (Qp AV, < W). This
yields three premises labeled -3 shown and proved further below.

@ @ O
P @), 6 < ¢, ||z, <, Npep Vo <W,QF [ageare] ||zfl, <6 ©
cut, VI @,0 < e, ||$||2 <9, /\pePV;J < W [astate) ||1’||2 <ée

peEP
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Premise (D proves by ® from the antecedents using inequalities ||z||, < § and ¢ < ¢ for the

left conjunct and propositionally from antecedents () and /\ . V}, < W for the right conjunct.

*

Vo < W,Q F Inv,

Yo <elzlly <0 Apep

Premise 3 proves trivially since the postcondition ||z||, < € is part of the loop invariant:
*
v, F |z], < €

The derivation continues from premise ) by unfolding the loop body of agtase With [U], AR.
Premises are indexed by p € P in the derivation. The M[:| step propositionally strengthens the
postcondition to its constituent disjunct ||z||, < e AV}, < W for the chosen mode p. Then, DX
assumes domain (), in the antecedent and a cut step adds the assumption ||z|[, <e AV, < W.
This cut corresponds to the last (bottom) premise of rule MLF. It is labeled @ and explained
below. The rest of the proof after the cut proceeds identically to the corresponding derivation
for rule CLF using the respective conjunct for p € P from @). The steps are omitted here.

*
@, [zl <e AV, <WH[2' = f(2) &Qpl([[z], <e AV, <W) @
ot @, Invy, Qp - [2' = fp(z) & Q](|[z]l, <e AV, <W)
DX @, Inv, F [2" = () &Qp)([|z], <e AV, <W)
ML) @, Invs F [/ = f,(z) & Qp|Invs (peP)
[U] AR @), Inv, - [Upep ' = fp(x) & Q,|Invs

The cut premise @ is proved by splitting the disjunction in Inv, with VL (indexed by ¢ € P
below). The disjunct corresponding to mode p proves trivially. For modes g # p, the derivation
yields a compatibility condition for switching from mode ¢ to mode p which is proved using the
last (bottom) premise of rule MLF. Note that the rule uses succedent 1}, = V/, since a symmetric
condition (V, < V,) is obtained when the roles of modes p, ¢ € P are swapped.

*
: 0.0V, <,
- PF Ry Ve <W.QpbVy <W (g€ P)
Viep (QuAV, < W), QpFV, <W
Invs, Qp F ||lzl|, <e AV, < W

Returning to premise (), for initial states not in the switched system’s domain, i.e., satisfying
—(, no continuous motion is possible within the model. This is proved using the loop invariant
In? = ||z||, < € A =Q. The first and third premise resulting from the loop rule are proved
trivially (not shown below). For the remaining premise, —() is preserved (trivially) across the
loop body after unfolding it with [U], AR and using DX to show that the system is unable to
switch to the ODE with domain (), because —() implies =(),, propositionally.

*
DX ~QF [¢' = f(2) &QIm  (peP)
(U] AR ) F [Uyep @ = fol@) & Q,lInV]

loop 5 < ¢, [zlly, <6, ~QF [agsate] 2], <€

268



Pre-Attractivity. The derivation for pre-attractivity begins with logical simplification fol-
lowed by a series of arithmetic cuts. First, the multiple Lyapunov functions V,,,p € P are
simultaneously bounded above on the ball characterized by ||z||, < ¢, with the cut IW>0@
where @ = A op Vz (llzll, <& — V,, < W). The upper bound W is Skolemized, then the next
arithmetic cut uses IU>0® with® = A .p V2 (V, < W A [z, > ¢ =V, > U) (using radial
unboundedness of all functions V,, from the second premise of MLF). Then, U is Skolemized
with JL. The steps are shown below, with the box modality in UGpAttr(agsate) temporarily

hidden with ... as it is not relevant for this part of the derivation.
e>0,W>0@U >0,®F 3IT>0vz (|, <5 —...)
cut, R, 3L e>0,W>0@F EITZOVx(HxH2<(5—>...)
cut, R, 3L e>0F 3IT>0z (|2, <6 —...)
¥R, R - UGpAttr(Qstate )

Like the derivation of rule CLF from Corollary 6.9, the premises of rule MLF prove that, for
each p € P, the Lie derivatives £, (V) are bounded above by some &, < 0 on the compact set

characterized by formula Q, A U < V,, < W. This justifies the following arithmetic cut, where
the bound k& < 0 is chosen to be the maximum over all %, across all switching choices p € P:

Ik <0 AVz (QAU <V, <W = L, (V,) < k)

peEP

J/

-

©

The derivation continues similarly to rule CLF, first picking 7" > 0 satisfying W + kT < U,
then Skolemizing and unfolding the succedent propositionally.

@0,k <0,0,T>0,W+kT <U, |zll, <5+ ...

R R @,®.k<0,0,7>0W+ kT <UFVa([lzll,<d—...)
R e>0,W>0@,U>00®,k<0,©F3T>0...
cut, &, 3L e>0,W >0,@,U >0 0O+ 3IT>0...
The LHS in antecedent @) is proved and the succedent is further unfolded with [;], [:=]. The

antecedents are abbreviated withI' = ®, %k < 0,©,7 > 0,W + kT < U below. Similar to
the stability proof, the derivation continues with a cut, VL step that case splits on whether the
switched system is initially in its domain of definition Q) = \/ p ). The case where the system
is not in its domain is labeled (@ and its proof is deferred to the end. In case the system is in
domain @, the loop rule is used with pre-attractivity loop invariant Inv, = \/pep (Qp ANV, <

WAV,>U—=V,<W+ k:t)) This results in three premises 1D-® which are proved below.
@ @ O
PP T Nyep Vo < Wt =0,QF [agrare, ' =1]... @
YT N pep Vo < Wit = 0F [0geate, ' = 1] ...
ver Vo [t:=0; Agrate, ' = 1] . ..
[t:

k= T A\yep Ve < WH
VL, =L I,@, ||z, < 6 F [t:=0; Qstate, t' = 1] ...
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Premise (D proves propositionally from the antecedents after simplifying the term W + kt
using assumption ¢ = 0.
*

Noep Vo <W,t=0,QF Inv,

Premise 3 proves by r from the loop invariant after using VL to split the disjuncts of the loop
invariant. The disjunct for mode p € P is abbreviated R =V, < WA (V, > U — V, < W +kt).
The rest of the arithmetic argument is identical to the corresponding premise for CLF using the
conjunct for p in ® (summarized below).

*
BV, > Uk <0,W+kT <U,V, <W +kt,t > Tt false
K V,>Uk <0,W+kT <U R, t>TH false
R ®,k <0, W + kT <U,R,t>T,|z|, > et false
R ®,k<0,W+kI' <URFt>T = ||z|l,<c¢
v ®, k< 0,W+kT <U,Inv, -t >T = ||z]l, < ¢

The derivation from premise (2) proceeds by unfolding the loop body with [U], AR, DX,
yielding one premise for each switching choice p € P. The M['] step selects the disjunct R (as
defined above for premise ®) in the postcondition corresponding to mode p and the cut adds
this disjunct to the antecedents (the cut premise @ is shown and proved below). The rest of the
proof after the cut is omitted here as it is identical to the corresponding derivation for rule CLF
using the respective conjunct for mode p in (©).

¥ = fy(x),t' = 1&Q,)Inv, (peP)
¥ = fy(x),t =1&Q,|Inv,

MY ©, Inv,, Q, -
[U],/\R, DX ©’ InVa '_ U

The cut premise @ is proved by splitting the disjunction in Inv, with VL (indexed by ¢ € P
below). For modes g # p, the derivation needs a compatibility condition which proves using the
last (bottom) premise of rule MLF, similar to the stability proof.

%
- Qu, QpF V, <V,
R p;«éq,QqAVq<W/\(V}Z2U—>Vq<W+kt),kaR (qu)
NWoep (QuA Ve < WAV, >U =V, <W+Et),Q,F R
Inva,Qpl—R

Returning to premise (0, similar to the case for stability, initial states satisfying =) have no
continuous motion possible so they are stuck at the initial state (with global clock ¢ = 0). This is
proved using the loop invariant Inv) = t = 0 A =(Q). The first and third premise resulting from
the loop rule are proved trivially (not shown below). For the remaining premise, —() is preserved
(trivially) across the loop body after unfolding it with [U], AR and using DX to show that the
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system is unable to switch to the ODE with domain (), because () implies =(),, propositionally.

*

DX Q¢ [2' = f(x),t' =1 &:Qp]lnvg (peP)
IS Iy b [Uyep @ = fp(x),t' = 1& Q,]Invg

loop T > O,t = 0, _'Q + [Oéstateat/ = 1](t >T — “xHQ < 8) [

Proof of Corollary 6.11. The derivation of rule MLF is similar to the derivation of rule MLF
from Corollary 6.10, but adapted to the shape of the guarded state-dependent switching model
Olguara and its corresponding loop invariants. The derivation starts as usual with an AR step for
the stability and pre-attractivity conjuncts which are proved separately below.

F UStab(aguara) - UGpAttr(oguara)
K l_ UGPAS(aguard)

A

Stability. The derivation for stability proceeds identically to the derivation for rule MLF
from Corollary 6.10 until the step before the stability loop invariant is used. These steps are
omitted below with ... and the resulting premise has antecedent formula abbreviated with
@ = Nyep Vo (lzfl, =2 =V, 2 W).

@,0 <&, |z, <, /\pepvp <WH [oguard] [Jzfly <

F UStab(aguara)

The derivation continues using the loopT rule with the modified stability loop invariant
Invg = ||zll, < e AV,ep (u =p AV, < W). This yields four premises labeled @-@, shown
and proved further below.

@ @ ©® @
Vo < W [aguara] [lz]l, <€

@, 0 <, flall, <A

Premise (D shows that the system state satisfies the invariant Inv, after running the initial-
ization program a; = |J,¢p u := p. This is proved by r after unfolding «; using [U], [:=].

peEP

*
R 0 <&, |lzlly <6, Apep Vo <W,u=pt Inv, (peP)
[ =] 0 <&, lzlly <6, Apep Vo < W F [av]Invs
Premise (@ proves trivially since the postcondition ||z||, < € is part of the loop invariant.
*

BInv, - x|, < €

The derivation from premise (2 yields correct-by-construction arithmetical conditions on the
Lyapunov functions from unfolding the switching controller in a/gyarq, recall

Qy = U (?u = p; (U (?Gpyu=q) Uu:= u))

peEP qeP

Axiom [U] unfolds the outer choice | J (-), yielding one premise for each mode p € P.
Then, axioms [;], [7] add the current mode u = p (before switching) to the assumptions. The cut
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step propositionally unfolds antecedent loop invariant assumption Inv; to the corresponding
disjunct for u = p. The inner choice |J cp ( - ) is unfolded next with axioms [U], [;], [?], yielding
one premise for each possible transition to mode ¢ € P guarded by formula G, ;; the case with
no switching u := w is trivial since the antecedents imply the postcondition (unchanged). The

assignment v := ¢ is unfolded with [:=], so the succedent simplifies to the disjunct for u = ¢ in
Inv,. An arithmetic simplification step yieds the bottom premise of rule MLF.
*
: Gpa - Va SV
® V, < W, Gy Vo<W

= Jally <& Vo < WGy b [u=gllnv, (g€ P)

[, ; "]HggHQ <egu=pV,<Wk [qup (?Gpqiu = q) Uu = u]lnv,
cut Invs,u=pt [U,cp (?Gpg;u:=q) Uu:=ullnv,
L1 [7] Inv, - [7u = p; (qup (?Gnq; U= q) Uy := u)]Invs (p c 73)
] Invg = [a,|Invg

The derivation from premise 3 unfolds the plant model o, = | ep (?u =p; 2’ = fo(z,y) & Qp).
The choice | ¢ (-) is unfolded with axiom [U], yielding one premise for each mode p € P.
Then, axioms [;, [7] add the mode selected by «, to the antecedent, where the antecedent
loop invariant assumption Invy is simplified by cut to the disjunct for u = p. Similarly M|
strengthens the postcondition to the disjunct for u = p. The rest of the proof proceeds identically
to the corresponding derivation for rule CLF in Corollary 6.9 so it is omitted here.

*

@, ||lzll, <&, V, < W [2

fo() &Qp](HIHz <eAV,<W)

[
M @), |zll, <e,V, <Wu=pk [2' = f,(x) & Qp]Inv,
cut @), Inv,, u F 2 = fp(:c) & QplInvg
o @, Invs [Pu = p;a’ = fy(z,y) & Q,]Inv, (p € P)
(] @), Inv, - [ap]lnvs

Pre-Attractivity. The derivation for pre-attractivity is also identical to MLF until the step
before the pre-attractivity loop invariant is used. These steps are omitted below with ... and
the resulting premise has antecedent formulas abbreviated with:

®= A\Ve(V, <WAlzlly>e =V, >U)

peEP

©= \Vz(QAUSV,<W =L, (V) <k)

peEP

Aper Vo < W, B,k < 0,©,W + kT < U,t = 0F [aguara ' = 1]...

F UGpAttr(oguara)
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The derivation continues using the loopT rule with pre-attractivity loop invariant Inv, =
Voer (u=pAV, <WA(V,>U—V,<W +kt)). This yields four premises labeled D-@
which are shown and proved further below.

@ @ ® @
IOOPT/\pEP‘/;? < W7®7k < 07©7W+kT§ th:()'_ [aguardat/: 1]

Premise (D proves the invariant Inv, after unfolding the initialization program «; using [U], [:=].

*
R /\pePV;D<W7t:O7u:pI—InVa
. [:=] Nper Vo < Wt =0 F [a]Inv,

Premise @ is proved by r after unfolding the disjuncts of the loop invariant with VL (the
arithmetical argument is identical to earlier proofs). The selected disjunct of Inv, (indexed by p)
isabbreviated R=u=pAV, <WA(V,>U =V, <W + kt).

*
R 0k<OWH+KT<URFt>T — |lz,<e (peP)
M0,k <0, W + kT <UInv,Ft>T — zf[, < ¢

The derivation from premise (2 unfolds «,, using dL’s hybrid program axioms similar to the
stability proof, and an arithmetic simplification step yields the premises of MLF for guarded
mode switches from p to g, for p,q € P.

*

Gpg P Ve <Vp
" R, Gy Vy<WA(V,>U =V, <W +kt)
[:=] R, G, 4 F [u:=q|Inv, (g €P)

(UL, G [7] R [qup (?Gpg; U= q) Uwu:= u]Inva
W VL = p b [qup (?Gpqu:=q) Uu:=ullnv,
(5. [7] Inv, F [?u = p; (qup (?Gp g u:=q) Uu:=u)|Inv, (p € P)
U] [

The derivation from premise 3) unfolds the plant model and proceeds identically to the
corresponding derivation for rule CLF, with R=u =pAV, < WA (V, >U — V, < W + kt).

*
©,RF [2' = fp(z),t! =1& QR
M[] ©, RF [2/ = fy(x),t =1& Q,|Inv,
U@, Invg,u =phk [2' = fpo(x),t =1&Q,|Inv,
b 7] ©, Inv, - [Tu = pya’ = fy(z,y),t' = 1& Q,Inv,
] ©, Inv, = [, t' = 1]Inv, O

Proof of Corollary 6.12. The derivation of rule MLF, departs more significantly from the deriva-
tions of rules CLF, MLF, MLF,. For this proof, k.., is used to indicate arithmetic steps that use
properties of the real exponential function. Although arithmetic over the exponential function
is not known to be decidable, tools are available for answering specialized subsets of such
questions [60]. Additional explanation is given below for r.., steps that only require elementary
properties of the exponential function.
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The proof also shows how to derive arithmetic conditions (arising from the time-dependent
switching controller) in a correct by construction manner through the hybrid program axioms of
dL [142, 144]. Recall from Corollary 6.12 that the modes p € P are partitioned into two subsets
consisting of the stable S = {p € P, \, > 0} and unstable Y = {p € P, A\, < 0} modes. The
derivation starts as usual with an AR step for the stability and pre-attractivity conjuncts which
are proved separately below.

F UStab(atgine) F UGpAttr(cine)
R - UGpAs(atime)

Stability. The stability derivation begins with cut and Skolemization steps. The first cut is
W >0@ with the abbreviation @ = A ¢ Vz (||z]|, = ¢ — V,, > W), where the upper bound
W > 0 is chosen to be the maximum of the respective bounds for each V), on the compact
set characterized by ||z||, = €. After Skolemizing W, the second arithmetic cut is the formula
36 (0 < § < e A®), where the conjuncts for p € U need the arithmetic fact exp(),0,) > 0.

®= AVa(lzll, <5 =V, <W)A A\ Va(|lzll, <6 =V, < Wexp(A,0,))

peS peU

Such a § exists by continuity for each V,,,p € P, V,,(0) = 0 from the premise of rule MLF;.
After both cuts, the Skolemized § from the antecedent is used to witness the succedent by JR.

@,0 <e,®F Vo ( llzlly, <0 = [ogine) 2]y < 5)
T @,0<6<e,®F 3>0Vz ([|lzfly < 6 = [eime) 2], < €)
wtlowFe > 0,W > 0,@F 36>0V2 (|2, <6 = [cpine] [|2]l, <€)
cut, &, 3L e>0F 36>0Vz (|lzll, <8 = [eine] 2], <€)
VR, =R F UStab(atgine)

The derivation continues after both cuts similarly to MLF from Corollary 6.10 by unfolding
and proving the LHS of the implications in antecedent ®. The resulting assumption on the
initial state is abbreviated B = A s V), < W A A o, V), < Wexp(),0,). Then, the loopT rule
is used with the following stability loop invariant Inv,, which yields premises (D-@ shown and
proved further below:

\/ (u=pAV, < Wexp(—=A7T))V

Inv,=7>0A |zl <e A | P
\/ (u=pAV, <Wexp(=X(T — 0,)) AT < O,)
peU
@ @ @ @

Y @0 < e flally < 0, BE [l fl2ll, < €
@0 <, ®, Jlafly < Ok [onme] [l2ll, <€
VR R @0 < e,®F Vo (2], < 6 = [awme) 2], <€)

Premise (D shows that the system state satisfies the invariant Inv; after initialization with
program «; = 7 :=0;J,cp u:=p. This is proved from B after unfolding «; using [U], [:=] and
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substituting 7 = 0 in the loop invariant (using exp(0) = 1).

*
Rer 5 < o, flolly < 0,7 = O,u = pF Inv,
[, =] 6 <e, x|, <0, BE [ag]Invs

Premise (@ proves trivially since the postcondition ||z||, < € is part of the loop invariant.
*

EInv, - |Jz]|, < €

The derivation from premise (2) unfolds the switching controller v, in yine With dL’s hybrid
program axioms, recall:

0y = U (?u:p;(U (?epﬂST;TIZO;UIZQ)UUZZU)>

peEP qeP

This unfolding yields four possible shapes of premises (abbreviated as ... and shown im-
mediately below) for a switch from the current mode p to mode q. As usual, the case with
no switching u := w is trivial and proves by [;], [U]. In each (non-trivial) case, the antecedent
assumption corresponds to the disjunct of Inv, for mode p, while the succedent assumption
corresponds to the disjunct for mode ¢ with timer 7 reset to 0 by the switching controller .

(U 6 70 (=T u—pl— Uyep (?0pg < 737:=0;u:=q)]Inv,
1Y I, u=pF Ugep (P0pq < 737 :=0;u:=q) Uu:=u]lnv,
(. [7] [?u = p; (Uyep (70,4 < 757:=0;u:=q) Uu:=u)|Inv,
[ Invg - [au]lnvs

Inv,

The four cases correspond to whether p € § or p € U and similarly for g, as labeled below.

Opg < TV, < Wexp(=A,7) IV < W (peS,qes)
Opg <7,V < Wexp(— pT)I—V < Wexp(A\,0y) (peS,qgel)
Opg < T,V <Wexp(—=Ap(T—0,)),7<O,FV, <W (pel,qgeS)
Opg <T,V, <Wexp(—M\(T—0,)),7<O,FV, < Wexp(\,©,) (peU,qeU)

These premises are correct-by-construction and can be handed to an arithmetic solver
directly. They can also be simplified, e.g., for p € S, ¢ € S, the inequalities can be rearranged to
eliminate 1 and 7. The first r step uses transitivity of < and <, while the second .., step uses
monotonicity exp(A,0,,) < exp(\,7) whenever \, > 0 (since p € S) and 6, , < 7. Intuitively,
the resulting (simplified) premise says that by choosing sufficiently large dwell time 0, , (for
stable mode p), one can offset an increase in value when switching from V), to V;,. The resulting
arithmetic condition V, <V, exp(\,0,,) is a correct-by-construction premise for rule MLF..

H Vq < V;?eXp()‘pep,q)
Rexp 0, < TV, <V,exp(A\,7)
B0,y < T,V < Wexp(=\7) FV, < W
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The derivation from premise 3 unfolds the plant model o, using dL axioms. There are two
possible shapes of the premises resulting from this unfolding, depending if p € S or p € U, these
are abbreviated (® and (® respectively. In either case, the derivation shows that the appropriate
upper bound on V), is preserved for the invariant.

® ©
Gl [?J@7 Inve,u =ph [2/ = fp(x% 7=1&7< @p]Invs
L. 7] @, Invy - [Pu =p;2’ = fo(x), 7 = 1& T < O,]Inv,
] @, Invs F [, Inv,

For premise (5), the proof uses dbx,. with cofactor —\,,, where the Lie derivative of subterm
W exp(—=A,7) is (—Ap)W exp(—A,7) from 7/ = 1. The resulting premise simplifies to the third
premise of rule MLF;.
*

L, (V) < =AY

- Efp(vp)_(_)‘p)wexp(_)‘pT) < —Ap(Vp—Wexp(—=Ap7))
W% W oexp(—=A\,7) < OF [2/ = fo(x), 7 = 1& 7 < 0,]V,—W exp(—\,7) <0
cut, M[] Vi, < Wexp(=A\7) F [/ = fo(z), 7 =1& T < O,|V, < Wexp(—A,7)

The proof for premise (6 also uses dbx,. with cofactor —\,, yielding the third premise of
rule MLF, again.
*
L, (Vo) < =AY
dbxﬂ/;? <Wexp(=Ap(T = 0p)) = [2 = fp(z), 7" = 1& 7 < O]V, < Wexp(—A,(T — O,))

Pre-Attractivity. The pre-attractivity proof requires an additional input parameter o > 0 for
the overall decay factor with o < A, for p € S (0 must also satisfy other arithmetic properties, to
be derived in a correct-by-construction manner in the proof). The derivation begins with logical
simplification followed by a series of arithmetic cuts. First, the multiple Lyapunov functions
V,,p € P are simultaneously bounded above on the ball characterized by ||z|, < ¢, with
the cut 3W >0 @) (abbreviated below) where the conjuncts for p € U need the arithmetic fact
exp(A,0p) > 0 (by Rexp).

@ = /\ Vo ([lzll, <6 =V, <W) A /\ Va ([[z]ly, <0 =V, < Wexp(A,6,))

peS peU

The upper bound W is Skolemized, then the next arithmetic cut uses 3U>0® with ® =
Npep V2 (Vy < W Alzll, > € =V}, > U), where U is Skolemized with L.
e>0,W>0@,U>00®F3IT>0ve (|z),<d—...)

cut, R, 3L e>0,W >0@F 3IT>0ve ([[zf, <d—...)
cut, Rexp, IL e>0F HTZOVZ‘ ( Hl’||2 <d— .. )
VR, =R F UGpAttr(aine)

The derivation continues by picking 7" > 0 using the abbreviated formula in the derivation
R=W < Uexp(cT) AN \,cqu W < Uexp(cT) exp(—00,), such a T exists by R, because
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o > 0 so the exp(cT’) term on the RHS of each inequality can be chosen arbitrarily large. The
quantifiers in the succedent are unfolded and the LHS of the implications in @) are proved. The
resulting antecedent (from @) is abbreviated B = A\ sV, <W A A oV, < Wexp(),0,).
The loopT rule is used with the following pre-attractivity loop invariant Inv,, which yields
premises D-@ shown and proved further below:

Inv,=7>0At>TA
\/ (u =pAV, < Wexp(—o(t—7)) exp(—)\pT))\/

pES
\ (u=pAV, <Wexp(—a(t —7))exp(—X,(T — ©,)) AT < ©,)
peU

@ @ ©® @

loopT ®,T>0,R,B,t =0F [aiggara, ¥’ = 1] ...
@O, T >0, R, [|z]l, < 6,6 = 0F [0guara, t' = 1] ...

[ =) @,®, T >0,R,||z]l, <O F [t:=0; guara, ' = 1] ...

VR, =R @,@,TZO,R"VJ?(HJ?HQ<5—>...)
Wlew 25> 0,W >0,@,U >0,®F IT>0Vz (|zf, <5 —...)

Premise (D is proved from B after unfolding «; using axioms [U], [:=] and substituting 7 = 0
and ¢ = 0 in the loop invariant (using exp(0) = 1).

*
Rew Bt =0,7=0,u=pk Inv,
WL =] Bt =0F [o;]Inv,

Premise @ is proved by unfolding the loop invariant with VL. This yields two possible
premise shapes, corresponding to p € S or p € U. In both cases, assuming the negation of the
succedent proves the corresponding implication LHS in the antecedent assumption (), which
gives V < U as an assumption. The remaining arithmetic argument underlying these premises
is proved by R, by contradicting assumption V' < U for each case resulting from VL. The cases
are shown and explained further below.

*
VEReo®) R Inv, -t >T — |zfl, < e

For p € S, the following sequence of inequalities is used:

V, < Wexp(—o(t — 7)) exp(—Ap7) (from invariant)
= W exp(—ot) exp(—7(A, — 0))
< Wexp(—oT)exp(—7(\, — 0)) (fromt > T,0 > 0)
< Uexp(—7(\p — 0)) (from R)
<U (from o < \,, 7 > 0, contradiction)
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For p € U, the following sequence of inequalities is used (note that 7 < ©,, is in the invariant
Inv, for p € U):

V, < Wexp(—o(t — 7)) exp(—=A,(7 — ©,)) (from invariant)
< Wexp(—o(t — 7)) (from 7 < 6,,\, <0)
= W exp(—ot) exp(oT)
< Wexp(—ot) exp(c©,) (fromo > 0,7 < 0O,)
< Wexp(—oT)exp(cO,) (fromt > T,0 > 0)

<U (from R, contradiction)

The derivation from premise (2) unfolds the switching controller v, in yi5e With dL’s hybrid
program axioms. Similar to the derivation for the stability conjunct, this unfolding yields four
possible shapes of premises (abbreviated as . .. and shown immediately below) for maintaining
the invariant Inv, after a switch from the current mode p to the next mode q.

LLE 0 =y, u = p (U,ep (70,4 < 757:=0;u:=q) Uu:=ullnv,

(171 Inv, - [?u = p; (Uyep (70pq < 737 :=0;u:=q) Uu:=u)]Inv,
U]

Inv, F [ ]Inv,

t>7,0p 0 <7,V < Wexp(—o(t — 7)) exp(=Ap7) bV, < Wexp(—ot)

(peS,qges)
t>7,0pg <7,V < Wexp(—o(t — 7)) exp(—=A,7) F Vy < W exp(—ot) exp(A;Oy)

peS,qel)
t>7,0pg <7,V < Wexp(—o(t — 7)) exp(—=Ap(7 — 0p)), 7 < O, F V, < Wexp(—ot)

(pel,qeS)
t>7,0p, <7,V < Wexp(—o(t — 7)) exp(=Ap(T — 0p)), 7 < O, F V; < Wexp(—ot) exp(A;Oy)

pel,qel)

The derivation from premise 3 unfolds the plant model «,. resulting in two possible shapes
of premises, depending if p € S or p € U, which are abbreviated (® and © respectively. In either
case, the key step is to show that the respective upper bound on V), is preserved along evolution
of the ODE.

® ©
0y, u=pk (2" = fplz), T =1L, =1&T < ©)]Inv,
(). 7] Inv, b [tu=p;a’ = fp(x), 7 =1,/ =1&7 < 0,]Inv,

V] Inv, = [oy|Inv,

For premise (5, the proof uses dbx,. with cofactor —)\,, with abbreviated term P, =
W exp(—o(t — 7)) exp(—A,7), noting that the Lie derivative of Ps is —\,Ps. This yields the
third premise of rule MLF;.
*

E Ly, (Vo) < =MV,
Wy < Pk [ = fo(x), 7 = 1, = 1&7 < O,]V, < P,
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The proof for premise © also uses rule dbx, with cofactor —\,, with abbreviated term
P, =W exp(—o(t — 7)) exp(—A,(7 — 6,)), noting that the Lie derivative of P, is —\,P,. This
yields the third premise of rule MLF;.

*
L, (Vp) S =XV
dbx>‘/ZD<Pu}—[x’:fp(x)ﬂ‘,:1,t,:1&7§®p]%<Pu [

D.2 Counterexamples

The cruise controller automaton from Section 6.5.2 is taken from the suite of examples for the
Stabhyli tool [116, 117]. Using the default instructions on a Linux machine, Stabhyli generates a
success message with the following output (newlines added for readability):

S0SSolution( Problem is solved. (accepted);

### Lyapunov template for mode normal PI: \
+V_23*relV~"2+V_22%intV"2+V_21*intV*relV \
+V_20*relV+V_19*intV

### Lyapunov function for mode normal PI: \
+572572089848357/1441151880758556872*intVxrelV \
+256336575597239/281474976710656%relV-2 \
+6008302119812893/4611686018427387904*intV=2 \
+5787253314511645/618970019642690137449562112*relV \
+5661677770976729/39614081257132168796771975168*intV

The hybrid system is stable

The generated Lyapunov function candidate V' does not satisfy all of the required arithmetical
conditions for the normal PI mode [116]. For example, one requirement is that it should be
non-negative in the mode invariant —15 < relV < 15 A =500 < ntV < 500. It can be checked
that intV = —m, relV = 0 is a counterexample, with V' = —3.90488 x 1072 < 0.

A heuristic approach to resolve this numerical issue is to truncate terms in the candidate V'
with extremely small coefficients and then check the resulting truncated candidate. This heuristic
is applied for the case study in Section 6.5.2, where the KeYmaera X proof succeeded using the
truncated candidate together with the rest of the Lyapunov function candidates generated by
Stabhyli (for other automaton modes).

More interestingly, it is also possible for Stabhyli to declare that a system is stable because
of numerical issues even though the system is unstable. Consider the following unstable system
with two modes and no switching allowed between the modes:

<z < ——— which is unstable at the origin and

r_ -1
* 2t =2+ 1& — 500000 < © < Tooooo0000

« 7/ = —x which is stable.
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Stabhyli always examines stability of the origin of the given hybrid system [116]. Using the
default instructions as before, Stabhyli generates a success message with the following output
(newlines added for readability):

S0SSolution( Problem is solved. (accepted);

### Lyapunov template for mode stable: +V_2*x"2+V_1%*x

### Lyapunov function for mode stable: \
+603702977637151/18889465931478580854784*x "2

### Lyapunov template for mode unstable: +V_4xx"2+V_3*x

### Lyapunov function for mode unstable: \
+457363293760441/18889465931478580854784*x "2
-224353181720881/77371252455336267181195264*x

The hybrid system is stable
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