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Abstract

Coding theory is the study of algorithms and techniques that facilitate reli-
able information transmission over noisy mediums, most notably through com-
binatorial objects called error-correcting codes. Following the inspiring works
of Shannon and Hamming, a sophisticated and extensive body of research on
error-correcting codes has led to a deep and detailed theoretical understanding
as well as practical implementations that have helped fuel the digital revolution.
Error-correcting codes can be found in essentially all modern communication,
computation, and data storage systems. While being remarkably successful in
understanding the theoretical limits and trade-offs of reliable communication
under errors and erasures, the coding theory literature significantly lags behind
when it comes to overcoming errors that concern the timing of communica-
tions. In particular, the study of correcting synchronization errors, i.e., symbol
insertions and deletions, while initially introduced by Levenshtein in the 60s,
has significantly fallen behind our highly sophisticated knowledge of codes for
Hamming-type errors.

This thesis investigates coding against synchronization errors under a vari-
ety of models and attempts to understand trade-offs between different qualities
of interest in respective coding schemes such as rate, distance, and algorith-
mic qualities of the code. Most of the presented results rely on synchronization
strings, simple yet powerful pseudorandom objects introduced in this work that
have proven to be very effective solutions for coping with synchronization errors
in various settings.

Through indexing with strings that satisfy certain pseudo-random proper-
ties, we provide synchronization codes that achieve near-optimal rate-distance
trade-off. We further attempt to provide constructions that enable fast encod-
ing/decoding procedures. We study the same problem under the list-decoding
regime, where the decoder is expected to provide a short list of codewords that
is guaranteed to contain the sent message. We will also try to better under-
stand the fundamental limits of list-decoding for synchronization errors such
as the list-decoding capacity or maximal error resilience for list-decodable syn-
chronization codes. This thesis furthermore studies synchronization strings and
other related pseudo-random string properties as combinatorial objects that are
of independent interest. Such combinatorial objects will be used to extend some
of our techniques to alternative communication problems such as coding from
block transposition errors or coding for interactive communication.
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Chapter 1

Introduction

Following the inspiring works of Shannon and Hamming, the field of coding theory has
advanced our understanding of how to efficiently correct symbol substitution and era-
sure errors occurring during a communication. The practical and theoretical impact of
error-correcting codes on technology and engineering as well as mathematics, theoretical
computer science, and other fields is hard to overestimate. The sophisticated and exten-
sive body of research on error-correcting codes has led to a deep and detailed theoretical
understanding as well as practical implementations that have helped fuel the Digital Rev-
olution. Error-correcting codes can be found in essentially all modern communication and
computation systems.

While being remarkably successful in understanding the theoretical limits and trade-offs
of reliable communication under symbol substitution and erasure errors, the coding theory
literature lags significantly behind when it comes to overcoming errors that concern the
timing of communications. In particular, the study of correcting synchronization errors,
i.e., symbol insertions and deletions, while initially introduced by Levenshtein in the 60s,
has significantly fallen behind our highly sophisticated knowledge of codes for Hamming-
type errors.

This discrepancy has been well noted in the literature. An expert panel [GDR+63] in
1963 concluded: “There has been one glaring hole in [Shannon’s] theory; viz., uncertainties
in timing, which I will propose to call time noise, have not been encompassed . . . . Our
thesis here today is that the synchronization problem is not a mere engineering detail, but
a fundamental communication problem as basic as detection itself !” however as noted
in a comprehensive survey [MBT10] in 2010: “Unfortunately, although it has early and
often been conjectured that error-correcting codes capable of correcting timing errors could
improve the overall performance of communication systems, they are quite challenging to
design, which partly explains why a large collection of synchronization techniques not based
on coding were developed and implemented over the years.” or as Mitzenmacher puts in
his survey [Mit09]: “Channels with synchronization errors, including both insertions and
deletions as well as more general timing errors, are simply not adequately understood by
current theory. Given the near-complete knowledge we have for channels with erasures and
errors . . . our lack of understanding about channels with synchronization errors is truly
remarkable.”
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abaccbabcabc

abacbababc

cabacbababca

Figure 1.1: An example depicting insertion and deletion errors. Two deletions in the
highlighted positions from the top string would convert it into the middle one and two
insertions in the highlighted positions into the middle string would result into the bottom
string.

We, too, believe that the current lack of good codes and general understanding of how
to handle synchronization errors is the reason why systems today still spend significant
resources and efforts on keeping very tight controls on synchronization while other noise
types are handled more efficiently using coding techniques. We are convinced that a better
theoretical understanding together with practical code constructions will eventually lead
to systems that naturally and more efficiently use coding techniques to address synchro-
nization and noise issues jointly. There are already several emerging application areas,
such as DNA-storage [OAC+17, BGH+16, GBC+13, CGK12, YKGR+15, BLC+16] that
significantly highlight the need for high-quality synchronization coding schemes. Besides,
we feel that better understanding the combinatorial structure underlying (codes for) in-
sertions and deletions will have an impact on other parts of mathematics and theoretical
computer science. This thesis is dedicated to studying and better understanding codes for
synchronization errors.

1.1 Synchronization Errors

In this thesis, we are concerned with the reliable communication of streams of symbols
through a given noisy channel. There are two basic types of noise that we will consider,
Hamming-type errors and synchronization errors. Hamming-type errors consist of era-
sures, that is, a symbol being replaced with a special “?” symbol indicating the erasure,
and substitutions where a symbol is replaced with another symbol of the alphabet. Synchro-
nization errors consist of deletions, that is, a symbol being removed without replacement,
and insertions, where a new symbol is added somewhere within the stream. (see Fig. 1.1
for an example)

Synchronization errors are strictly more general and harsher than Hamming-type errors.
In particular, any symbol substitution can also be achieved via a deletion followed by an
insertion at the same location and any erasure can be interpreted as a deletion together
with the extra information of where this deletion has taken place. This shows that any error
pattern generated by k Hamming-type errors can also be replicated using k synchronization
errors1, making dealing with synchronization errors at least as hard as Hamming-type

1See Chapter 3 for a precise argument using a proper measure to count Hamming-type errors.
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errors. The real problem that synchronization errors bring with them, however, is that
they cause sending and receiving parties to become “out of sync”. This easily changes
how received symbols are interpreted and makes designing codes or other systems tolerant
to synchronization errors an inherently more difficult and significantly less understood
problem.

1.2 Scope of the Thesis

The study of coding for synchronization errors was initiated by Levenshtein [Lev65] in
1966 when he showed that Varshamov-Tenengolts codes can correct a single insertion,
deletion, or substitution error with an optimal redundancy of almost log n bits. Ever since,
synchronization errors have been studied in various settings. In this section, we categorize
some of the commonly studied settings and specify the one relevant to this thesis.

The first important aspect is the noise model. Several works have studied coding for
synchronization errors under the assumption of random errors, most notably, to study the
capacity of deletion channels which independently delete each of the transmitting symbols
with some fixed probability. (See [Mit09, MBT10, CR20].) This thesis exclusively focuses
on worst-case error models in which correction has to be possible from any (adversarial)
error pattern bounded only by the total number of insertions and deletions.

Another angel to categorize the previous work on codes for synchronization error is the
noise regime. In the same spirit as ordinary error-correcting codes, the study of families of
synchronization codes have included both ones that protect against a fixed number of syn-
chronization errors and ones that consider error count that is a fixed fraction of the block
length. The inspiring work of Levenshtein [Lev65] falls under the first category and is fol-
lowed by several works designing synchronization codes correcting k errors for specific val-
ues of k [Slo02, Ten84, HF02, GS18] or with k as a general parameter [AGPFC11, BGZ18].
In this thesis, we focus on the second category, i.e., infinite families of synchronization
codes with increasing block length that are defined over a fixed alphabet size and can
correct from constant-fractions of worst-case synchronization errors.

We, furthermore, mainly focus on codes that can be efficiently constructed and decoded
– in contrast to merely existential results. The first such code was constructed in 1999
by Schulman and Zuckerman [SZ99]. They provided an efficient, asymptotically good
synchronization code with a constant rate and a constant distance. We will further discuss
the previous work and how contributions of this thesis fit into them when describing the
contributions in the following chapters.

1.3 Basics of Error Correcting Codes and InsDel

Codes

In this section, we give a general and informal description of error correcting codes (ECCs)
and insertion-deletion codes (InsDel codes) along with some basic notions associated with
them. We defer a more formal introduction to Chapter 2.
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Figure 1.2: In a code with a minimum distance of more than 2αn, balls of radius αn around
codewords are disjoint. Hence, unique decoding from αn substitutions is possible.

1.3.1 Error Correcting Codes

Consider the scenario where two parties, Alice and Bob, are communicating over a noisy
communication channel. More precisely, we assume that Alice can use this channel n
times to send over a symbol out of an alphabet Σ to Bob. Let us denote these symbols as
x1, x2, · · · , xn. We assume that the noise is modeled by an adversary that can apply αn
errors in the form of substituting one of the transmitted symbols to another symbol of the
alphabet Σ for some α ∈ (0, 1). Alice and Bob aim to conduct a reliable communication
over such a channel, i.e., communicate in a way that Bob is able to recover the message
sent by Alice and yet be able to convey as much “information” as possible.

Error-correcting codes are natural solutions for the scenario set forth above. Qualita-
tively speaking, an ECC is a set of strings (or codewords) in Σn that are “very different”
from each other – so much that Bob would be able to uniquely identify which codeword it
was that Alice has sent.

More precisely, we define the Hamming distance between two strings s1, s2 ∈ Σn as the
number of positions i ∈ {1, 2, · · · , n} where s1 and s2 do not agree, i.e., s1[i] 6= s2[i]. An
error-correcting code C ∈ Σn is said to have a minimum distance d if there is a Hamming
distance of d or more between any pair of codewords w1, w2 ∈ C. Note that if Alice
exclusively sends the codewords of the code C and the minimum distance of C is larger
than 2nα, then Bob will be able to uniquely recover the string sent by Alice. One can
verify this by thinking of αn radius balls around each codeword w (that is the set of all
strings with Hamming distance αn or less to w). Note that if Alice sends a codeword w,
what Bob will receive would reside inside this ball. If the minimum distance of the code
is larger than 2αn, then these balls are disjoint and, therefore, Bob is able to identify the
string sent by Alice using its distorted version.

Note that an interesting trade-off for ECCs is that “For a given n, Σ, and minimum
distance d, what is the largest possible size for a code C ∈ Σn with minimum distance d?”.
Note that using the code C, Alice can essentially send a number between one and |C| to
Bob. This is equivalent to log |C| bits of information.2 The notion of rate is defined as

2Throughout this document, all logarithms are binary unless stated otherwise.

4



the amount of information that Alice can convey using code |C| normalized by the total
amount of information that could be conveyed over the channel in the absence of noise,
i.e., n log |Σ|. A natural goal in the design of error-correcting codes is to find ones that
attain as high of a rate as possible.

There are also several interesting computational angles in the study of EECs. The
encoding procedure of an ECC C is the algorithm that Alice uses to compute the codewords
of C, i.e., one that computes (some) injective function from {1, 2, · · · , |C|} to C. Further,
the decoding procedure of C would be the algorithm that Bob uses to derive the codeword
sent by Alice using the distorted version of it. Finding codes with fast encoding and
decoding procedures has been an interesting algorithmic challenge in the study of ECCs.

1.3.2 Insertion-Deletion Codes

Insertion-deletion codes are equivalents of ECCs but for channels where the adversary is
capable of performing symbol insertion or symbol deletion errors. To define insdel codes
formally, we start with the definition of the edit distance which is the equivalent of the
notion of Hamming distance for ECCs. The edit distance between two strings is defined
as the smallest number of insertions and deletions required to turn one into the other one.

In the same spirit as ECCs, insdel codes are defined as sets of strings that have a
“large” minimum edit-distance. More precisely, and insdel code C ∈ Σn with minimum
edit-distance 2αn, would enable unique-decoding from αn synchronization errors on the
receiver’s end. The notions of rate, encoding complexity, and decoding complexity are
defined in the same manner as in ECCs.

1.4 Thesis Contributions and Structure

We begin the rest of this thesis by setting notations and presenting some preliminary
definitions in Chapter 2. Following is a brief description of the problems studied in each
of the chapters of this thesis.

Chapter 3: Coding via Indexing and Approaching the Singleton Bound

In Chapter 3, we introduce synchronization strings, which provide a novel way to effi-
ciently deal with synchronization errors. For every ε > 0, synchronization strings allow
to index a sequence with an ε−O(1) size alphabet such that one can efficiently transform k
synchronization errors into (1 + ε)k Hamming-type errors.

A straightforward application of our synchronization strings based indexing method
gives a simple black-box construction which transforms any error-correcting code (ECC)
into an equally efficient insertion-deletion (insdel) code with only a small increase in the
alphabet size. This instantly transfers much of the highly developed understanding for
regular ECCs into the realm of insdel codes. Most notably, for the complete noise spectrum
we obtain efficient “near-MDS” insdel codes which get arbitrarily close to the optimal rate-
distance tradeoff given by the Singleton bound. In particular, for any δ ∈ (0, 1) and ε > 0,
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we give a family of insdel codes achieving a rate of 1− δ − ε over a constant size alphabet
that efficiently corrects a δ fraction of insertions or deletions.

Chapter 4: List-decoding over Large Alphabets

In Chapter 4, we study codes that are list-decodable under insertions and deletions. Specif-
ically, we consider the setting where, given a codeword x of length n over some finite alpha-
bet Σ of size q, δ ·n codeword symbols may be adversarially deleted and γ ·n symbols may
be adversarially inserted to yield a corrupted word w. A code is said to be list-decodable
if there is an (efficient) algorithm that, given w, reports a small list of codewords that
include the original codeword x. Given δ and γ we study what is the rate R for which
there exists a constant q and list size L such that there exist codes of rate R correcting
δ-fraction insertions and γ-fraction deletions while reporting lists of size at most L.

Using the concept of synchronization strings, we show some surprising results. We show
that for every 0 ≤ δ < 1, every 0 ≤ γ <∞ and every ε > 0 there exist codes of rate 1−δ−ε
and constant alphabet (so q = Oδ,γ,ε(1)) and sub-logarithmic list sizes. Furthermore, our
codes are accompanied by efficient (polynomial time) decoding algorithms. We stress
that the fraction of insertions can be arbitrarily large (more than 100%), and the rate is
independent of this parameter. We also prove several tight bounds on the parameters of
list-decodable insdel codes. In particular, we show that the alphabet size of insdel codes
needs to be exponentially large in ε−1, where ε is the gap to capacity above.

These results shed light on the remarkable asymmetry between the impact of insertions
and deletions from the point of view of error-correction: Whereas deletions cost in the rate
of the code, insertion costs are borne by the adversary and not the code! Our results also
highlight the dominance of the model of insertions and deletions over the Hamming model:
A Hamming error is equal to one insertion and one deletion (at the same location). Thus
the effect of δ-fraction Hamming errors can be simulated by δ-fraction of deletions and
δ-fraction of insertions — but insdel codes can deal with much more insertions without
loss in rate (though at the price of higher alphabet size).

Chapter 5: Optimally Resilient Codes for List-Decoding

In Chapter 5, we give a complete answer to the following basic question: “What is the
maximal fraction of deletions or insertions tolerable by q-ary list-decodable codes with
non-vanishing information rate?”. This question has been open even for binary codes,
including the restriction to the binary insertion-only setting, where the best-known result
was that a γ ≤ 0.707 fraction of insertions is tolerable by some binary code family.

For any desired ε > 0, we construct a family of binary codes of positive rate which can
be efficiently list-decoded from any combination of γ fraction of insertions and δ fraction
of deletions as long as γ + 2δ ≤ 1 − ε. On the other hand, for any γ, δ with γ + 2δ = 1
list-decoding is impossible. Our result thus precisely characterizes the feasibility region of
binary list-decodable codes for insertions and deletions.

We further generalize our result to codes over any finite alphabet of size q. Surprisingly,
our work reveals that the feasibility region for q > 2 is not the natural generalization of the
binary bound above. We provide tight upper and lower bounds that precisely pin down
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the feasibility region, which turns out to have a (q − 1)-piece-wise linear boundary whose
q corner-points lie on a quadratic curve.

Chapter 6: Rate vs. Distance for List-Decoding

In this chapter, we provide results that further complete the picture portrayed by the results
of Chapters 4 and 5 in regard to list-decodable insdel codes. We prove several bounds on
the list-decoding capacity of worst-case synchronization channels, i.e., the highest rate
that is achievable for q-ary list-decodable insdel codes that can correct from δ fraction of
deletions and γ fraction of insertions. We present upper-bounds and lower-bounds for the
capacity for the cases of insertion-only channels (δ = 0), deletion-only channels (γ = 0),
and the generalized case of channels with both insertions and deletions. Our lower-bounds
are derived by analysis of random codes.

Note that this question generalizes the questions that Chapters 4 and 5 answer. Chap-
ter 4 finds the maximal achievable rate for codes that can correct (γ, δ) fraction of insdel
errors while allowing the alphabet size to be sufficiently large (therefore, ignoring the al-
phabet size) and Chapter 5 pins down the resilience region, i.e., the set of (γ, δ) error
fractions for which capacity is non-zero. These are both special cases of the question of
interest in this chapter.

The results of this chapter also give interesting implications on the code constructions
from Chapters 3 and 4.We show that the alphabet size of insdel codes needs to be exponen-
tially large in ε−1, where ε is the gap to capacity above. Our result even applies to settings
where the unique-decoding capacity equals the list-decoding capacity and when it does
so, it shows that the alphabet size needs to be exponentially large in the gap to capacity.
This is sharp contrast to the Hamming error model where alphabet size polynomial in ε−1

suffices for unique decoding. This lower bound also shows that the exponential dependence
on the alphabet size in Chapter 3 is actually necessary!

Chapter 7: Online Repositioning, Channel Simulation and Interactive Coding

In Chapter 7, we use an online repositioning algorithm for synchronization strings to present
many new results related to reliable (interactive) communication over insertion-deletion
channels.

We show how to hide the complications of synchronization errors in many applications
by introducing very general channel simulations which efficiently transform an insertion-
deletion channel into a regular symbol substitution channel with an error rate larger by a
constant factor and a slightly smaller alphabet. Our channel simulations depend on the fact
that, at the cost of increasing the error rate by a constant factor, synchronization strings
can be decoded in a streaming manner that preserves linearity of time. Interestingly, we
provide a lower bound showing that this constant factor cannot be improved to 1 + ε,
in contrast to what is achievable for error correcting codes. These channel simulations
drastically and cleanly generalize the applicability of synchronization strings.

Using such channel simulations, we provide interactive coding schemes which simulate
any interactive two-party protocol over an insertion-deletion channel. These results im-
prove over the state-of-the-art interactive coding schemes of Braverman et al.[BGMO17]
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and Sherstov and Wu [SW19] which achieve a small constant rate and require exponential
time computations with respect to computational and communication complexities. We
provide the first computationally efficient interactive coding scheme for synchronization
errors, the first coding scheme with a rate approaching one for small noise rates, and also
the first coding scheme that works over arbitrarily small alphabet sizes.

Finally, using our channel simulations, we provide an explicit binary insertion-deletion
code achieving a rate of 1 − O(

√
δ log(1/δ)) that improves over the codes by Guruswami

and Wang [GW17] in terms of the rate-distance trade-off. The codes of Guruswami and
Wang [GW17] were the state-of-the-art codes at the time of publishing this result. As we
will mention in Chapter 7, further improvements have been made in this regard ever since.

Chapter 8: Local Repositioning, Near-Linear Time Decoding

In Chapter 8, we present several algorithmic results for synchronization strings:

� We give a deterministic, linear time synchronization string construction, improving
over an O(n5) time randomized construction in Chapter 4.

� We give a deterministic construction of an infinite synchronization string which out-
puts the first n symbols in O(n) time.

� Both synchronization string constructions are highly explicit, i.e., the ith symbol can
be deterministically computed in O(log i) time.

� This chapter also introduces a generalized notion called long-distance synchroniza-
tion strings. Such strings allow for local and very fast decoding. In particular only
O(log3 n) time and access to logarithmically many symbols is required to reposition
any index.

This chapter also provides several applications for these improved synchronization strings:

� For any δ < 1 and ε > 0, we provide an insertion-deletion code with rate 1 − δ − ε
which can correct any δ/3 fraction of insertion and deletion errors in O(n log3 n)
time. This near linear computational efficiency is surprising given that we do not
even know how to compute the (edit) distance between the decoding input and output
in sub-quadratic time.

� We show that local decodability implies that error correcting codes constructed with
long-distance synchronization strings can not only efficiently recover from δ fraction
of insdel errors but, similar to [SZ99], also from any O(δ/ log n) fraction of block
transpositions and block replications. These block corruptions allow arbitrarily long
substrings to be swapped or replicated anywhere.

� We show that highly explicitness and local decoding allow for infinite channel sim-
ulations with exponentially smaller memory and decoding time requirements. These
simulations can then be used to give the first near-linear time interactive coding
scheme for insertions and deletions, similar to the result of [BN13] for Hamming
errors.
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Chapter 9: Approximating Edit Distance via Indexing, Near-Linear Time De-
coding

In Chapter 9, we introduce fast-decodable indexing schemes for edit distance which can be
used to speed up edit distance computations to near-linear time if one of the strings is
indexed by an indexing string I. In particular, for every length n and every ε > 0, one can,
in near-linear time, construct a string I ∈ Σ′n with |Σ′| = Oε(1), such that, indexing any
string S ∈ Σn with I (i.e., concatenating S symbol-by-symbol with I) results in a string
S ′ ∈ Σ′′n where Σ′′ = Σ × Σ′ for which edit distance computations are easy, i.e., one can
compute a (1 + ε)-approximation of the edit distance between S ′ and any other string in
O(npoly(log n)) time.

Our indexing schemes can be used to improve the decoding complexity of the state-
of-the-art error correcting codes for insertions and deletions. In particular, they lead to
near-linear time decoding algorithms for the insertion-deletion codes from Chapter 3 and
faster decoding algorithms for list-decodable insertion-deletion codes from Chapter 4. In-
terestingly, the latter codes are a crucial ingredient in the construction of fast-decodable
indexing schemes.

Chapter 10: Combinatorial Properties of Synchronization Strings

In Chapter 10, we study combinatorial properties of synchronization strings.
In Chapter 3, we show that for any parameter ε > 0, synchronization strings of arbitrary

length exist over an alphabet whose size depends only on ε. Specifically, we obtain an
alphabet size of O(ε−4), which leaves an open question on where the minimal size of such
alphabets lies between Ω(ε−1) and O(ε−4). In this chapter, we partially bridge this gap by
providing an improved lower bound of Ω

(
ε−3/2

)
, and an improved upper bound of O (ε−2).

We also provide fast explicit constructions of synchronization strings over small alphabets.
Further, along the lines of previous work on similar combinatorial objects, we study the

extremal question of the smallest possible alphabet size over which synchronization strings
can exist for some constant ε < 1. We show that one can construct ε-synchronization
strings over alphabets of size four while no such string exists over binary alphabets. This
reduces the extremal question to whether synchronization strings exist over ternary alpha-
bets.

1.5 Bibliographical Remarks

This thesis is based on collaborations of the author with several brilliant researchers. The
results presented in Chapter 3 are based on a joint work with Bernhard Haeupler [HS17].
Chapters 4 and 6 are based on joint works with Bernhard Haeupler and Madhu Su-
dan [HSS18, HS20]. Chapter 5 states our findings in a collaboration with Venkatesan
Guruswami and Bernhard Haeupler [GHS20]. Chapter 7 is based on a joint work with
Bernhard Haeupler and Ellen Vitercik [HSV18]. Chapter 8 presents the results of [HS18].
A collaboration with Aviad Rubinstein and Bernhard Haeupler [HRS19] lead to the re-
sults discussed in Chapter 9 and, finally, Chapter 10 is based on a joint work with Xin Li,
Bernhard Haeupler, Kuang Chen, and Ke Wu [CHL+19].
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Chapter 2

Preliminaries and Notation

2.1 Notations

In this section, we set some notation that will be frequently used throughout this thesis.
We often use [n] to denote the set {1, 2, · · · , n}. For two strings S ∈ Σn and S ′ ∈ Σn′

over alphabet Σ, we denote their concatenation with S ·S ′ ∈ Σn+n′ . For any positive integer
k, Sk is defined as k copies of S concatenated together and for integers 1 ≤ i ≤ j ≤ n,
we denote the substring of S starting from the ith index through and including the jth
one by S[i, j]. Such a substring is also called a factor of S. Further, for i < 1 we
define S[i, j] = ⊥−i+1 · S[1, j] where ⊥ is a special symbol not included in Σ. We denote
the substring from the ith index through, but not including, the jth index by S[i, j).
Substrings S(i, j] and S(i, j) are similarly defined. Finally, S[i] denotes the ith symbol
of string S and |S| denotes the length of S. Occasionally, the alphabets we use are the
Cartesian product of several alphabets, i.e. Σ = Σ1×· · ·×Σn. If T is a string over Σ, then
we write T [i] = (a1, . . . , an) where ai ∈ Σi. We often use the notion of indexing defined as
follows.

Definition 2.1.1 (String Indexing/Symbol-Wise Concatenation). For strings S ∈ Σn
S =

S1, S2, · · · , Sn and I ∈ Σn
I = I1, I2, · · · , In, we define S indexed by I or symbol-wise

concatenation of S and I as S × I = (S1, I1), (S2, I2), · · · , (Sn, In). Note that S × I ∈
(ΣS × ΣI)

n.

Definition 2.1.2 (Code Indexing). For string I ∈ Σn
I and code C ⊆ Σn

C, we define C
indexed by I, or C× I ⊆ (ΣS ×ΣI)

n, as a code that is obtained by indexing each codeword
of C with I.

Edit Distance. Throughout this work, we frequently rely on the well-known edit distance
metric defined as follows.

Definition 2.1.3 (Edit distance). The edit distance between two strings S1, S2 ∈ Σ∗, or
ED(S1, S2), is the minimum number of insertions and deletions required to transform S1

into S2.
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It is easy to see that edit distance is a metric on any set of strings and in particular
is symmetric and satisfies the triangle inequality property. Furthermore, ED (S1, S2) =
|S1|+|S2|−2·LCS (S1, S2), where LCS (S1, S2) is the size of the longest common subsequence
of S1 and S2.

2.2 Error Correcting Codes and InsDel Codes

Next, we give a quick summary of the standard definitions and formalism around error
correcting codes.

Codes, Distance, Rate, and Half-Errors. An error correcting code C is an injective
function which takes an input string s ∈ (Σ′)n

′
over alphabet Σ′ of length n′ and generates

a codeword C(s) ∈ Σn of length n over alphabet Σ. The length n of a codeword is also
called the block length. The two most important parameters of a code are its distance ∆
and its rate R. The rate R = n log |Σ|

n′ log |Σ′| measures what fraction of bits in the codewords

produced by C carries non-redundant information about the input. The code distance
∆(C) = mins,s′ ∆(C(s), C(s′)) is simply the minimum Hamming distance between any two

codewords. The relative distance δ(C) = ∆(C)
n

measures what fraction of output symbols
need to be substitutions to transform one codeword into another.

It is easy to see that if a sender sends out a codeword C(s) of code C with relative
distance δ, a receiver can uniquely recover s if she receives a codeword in which less
than a δ fraction of symbols are affected by an erasure, i.e., replaced by a special “?”
symbol. Similarly, the receiver can uniquely recover the input s if less than δ/2 symbol
substitutions—in which a symbol is replaced by any other symbol from Σ—occurred. More
generally, it is easy to see that the receiver can recover from any combination of ke erasures
and ks substitutions as long as ke+2ks < δn. This motivates defining half-errors to measure
both erasures and symbol substitutions where an erasure is counted as a single half-error
and a symbol substitution is counted as two half-errors. In summary, any code of relative
distance δ can tolerate any error pattern of less than δn half-errors.

Synchronization Errors. In addition to half-errors, we study synchronization errors
which consist of deletions, that is, a symbol being removed without replacement, and
insertions, where a new symbol from Σ is added anywhere. It is clear that synchronization
errors are strictly harsher and more general than half-errors (see Section 3.1.1). The above
formalism of codes, rate, and distance works equally well for synchronization errors if one
replaces the Hamming distance with edit distance. Instead of measuring the number of
symbol substitutions required to transform one string into another, edit distance measures
the minimum number of insertions and deletions to do so. Similar to error correcting codes
for Hamming-type errors, an error correcting code for insertions and deletions (or InsDel
code for short) is defined as a subset C ⊆ Σn for alphabet set Σ and block length n. The
minimum distance of C is defined as the minimum edit distance between the codewords of
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C, i.e.

δC =
minx,y∈C ED(x, y)

2n
.

We remark that the edit distance of two strings of length n can be as large as 2n and hence
the normalizing divisor is 2n. Further, the rate of the code C is defined as rC = log |C|

n log |Σ| .

An encoding function EncC : Σnr → Σn for C is a bijective function that maps any string
in Σnr to a member of C and a decoding function DecC is one that takes any string in
w ∈ Σn and returns the (unique) codeword that is within δn edit distance of w or ⊥ if
such codeword does not exist.

In this work we often consider families of codes, that are formally defined as follows.

Definition 2.2.1 (Family of Codes). A family of codes C with distance δ and rate r
is defined as an infinite series of codes with increasing block length like C1, C2, · · · with
distance δ and respective rates r1, r2, · · · where limn→∞ ri = r.

Efficient Codes. In addition to codes with a good minimum distance, one furthermore
wants efficient algorithms for the encoding and error-correction tasks associated with the
code. Throughout this thesis, we say a code is efficient if it has encoding and decoding
algorithms running in time polynomial in terms of the block length. While it is often
not hard to show that random codes exhibit a good rate and distance, designing codes
which can be decoded efficiently is much harder. We remark that most codes which can
efficiently correct for symbol substitutions are also efficient for half-errors. For insdel codes
the situation is slightly different. While it remains true that any code that can uniquely be
decoded from any δ(C) fraction of deletions can also be decoded from the same fraction of
insertions and deletions [Lev65] doing so efficiently is often much easier for the deletion-only
setting than the fully general insdel setting.
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Chapter 3

Coding via Indexing with
Synchronization Strings

In this chapter, we introduce synchronization strings, which provide a novel way to effi-
ciently deal with synchronization errors, i.e., insertions and deletions, which are strictly
more general and much harder to cope with than more commonly considered Hamming-
type errors, i.e., symbol substitutions and erasures. For every ε > 0, synchronization
strings allow to index a sequence with an ε−O(1) size alphabet such that one can effi-
ciently transform k synchronization errors into (1 + ε)k Hamming-type errors.
This powerful new technique has many applications. In this chapter, we focus on designing
uniquely-decodable error correcting block codes for insertion-deletion channels.

While ECCs for both Hamming-type errors and synchronization errors have been in-
tensely studied, the latter has largely resisted progress. As Mitzenmacher puts it in his
2009 survey [Mit09]: “Channels with synchronization errors . . . are simply not adequately
understood by current theory. Given the near-complete knowledge we have for channels
with erasures and errors ... our lack of understanding about channels with synchronization
errors is truly remarkable.” Indeed, it took until 1999 for the first insdel codes with con-
stant rate, constant distance, and constant alphabet size to be constructed and only since
2016 are there constructions of constant rate insdel codes for asymptotically large noise
rates. Even in the asymptotically large or small noise regimes, the codes proposed prior to
this work were polynomially far from the optimal rate-distance tradeoff. This makes the
understanding of insdel codes up to this work equivalent to what was known for regular
ECCs after Forney introduced concatenated codes in his doctoral thesis 50 years ago.

A straightforward application of our synchronization strings based indexing method
gives a simple black-box construction which transforms any ECC into an equally
efficient insdel code with only a small increase in the alphabet size. This instantly
transfers much of the highly developed understanding for regular ECCs into the realm of
insdel codes. Most notably, for the complete noise spectrum we obtain efficient “near-
MDS” insdel codes which get arbitrarily close to the optimal rate-distance tradeoff given
by the Singleton bound. In particular, for any δ ∈ (0, 1) and ε > 0, we give a family of
insdel codes achieving a rate of 1 − δ − ε over a constant size alphabet that efficiently
corrects a δ fraction of insertions or deletions.
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3.1 Introduction

This chapter introduces synchronization strings, a new combinatorial structure which al-
lows efficient synchronization and indexing of streams under insertions and deletions. Syn-
chronization strings and our indexing abstraction provide a powerful and novel way to
deal with synchronization issues. They make progress on the issues raised above and
have applications in a large variety of settings and problems. We have found appli-
cations in channel simulations, synchronization sequences [MBT10], interactive coding
schemes [Gel17, KR13, Hae14, GHS14, GH14, GH17a], edit distance tree codes [BGMO17],
and error correcting codes for insertion and deletions and suspect there will be many more.
This chapter focuses on the last application, namely, designing efficient error correcting
block codes over large alphabets for worst-case insertion-deletion channels.

The knowledge on efficient error correcting block codes for insertions and deletions,
also called insdel codes, severely lags behind what is known for codes for Hamming errors.
While Levenshtein [Lev65] introduced and pushed the study of such codes already in the
1960s it took until 1999 for Schulman and Zuckerman [SZ99] to construct the first insdel
codes with constant rate, constant distance, and constant alphabet size. Works of Gu-
ruswami et al. [GW17, GL16] in 2015 and 2016 gave the first constant rate insdel codes for
asymptotically large noise rates via list decoding. These codes are, however, polynomially
far from optimal in their rate or decodable distance respectively. In particular, they achieve
a rate of Ω(ε5) for a relative distance of 1 − ε or a relative distance of O(ε2) for a rate of
1 − ε, for asymptotically small ε > 0 (see Section 3.1.5 for a more detailed discussion of
related work).

This chapter essentially closes this line of work by designing efficient “near-MDS” insdel
codes which approach the optimal rate-distance trade-off given by the Singleton bound.
We prove that for any 0 ≤ δ < 1 and any constant ε > 0, there is an efficient family of
insdel codes over a constant size alphabet with rate 1 − δ − ε which can be uniquely and
efficiently decoded from any δ fraction of insertions and deletions. The code construction
takes polynomial time; and encoding and decoding can be done in linear and quadratic
time, respectively. More formally, we achieve the following theorem using the notion of
the edit distance of two given strings as the minimum number of insertions and deletions
required to convert one of them to the other one.

Theorem 3.1.1. For any ε > 0 and δ ∈ (0, 1) there exists an encoding map Enc : Σk → Σn

and a decoding map Dec : Σ∗ → Σk, such that, if EditDistance(Enc(m), x) ≤ δn then
Dec(x) = m. Further, k

n
> 1− δ − ε, |Σ| = f(ε), and Enc and Dec are explicit and can be

computed in linear and quadratic time in n.

This code is obtained via a black-box construction which transforms any ECC into
an equally efficient insdel code with only a small increase in the alphabet size. This
transformation, which is a straightforward application of our new synchronization strings
based indexing method, is so simple that it can be summarized in one sentence:

For any efficient ECC with alphabet bit size log ε−1

ε
, attaching to every

codeword, symbol by symbol, a random or suitable pseudorandom string over
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an alphabet of bit size log ε−1 results in an efficient insdel code with a rate and
decodable distance that are changed by at most ε.

Far beyond just implying Theorem 3.1.1, this enables us to instantly transfer much of
the highly developed understanding for regular ECCs into the realm of insdel codes.

Theorem 3.1.1 is obtained by using the “near-MDS” expander codes of Guruswami
and Indyk [GI05] as a base ECC. These codes generalize the linear time codes of Spiel-
man [Spi96] and can be encoded and decoded in linear time. Our simple encoding strategy,
as outlined above, introduces essentially no additional computational complexity during
encoding. Our quadratic time decoding algorithm, however, is slower than the linear time
decoding of the base codes from [GI05] but still pretty fast. In particular, a quadratic
time decoding for an insdel code is generally very good given that, in contrast to Hamming
codes, even computing the distance between the received and the sent/decoded string is
an edit distance computation. Edit distance computations, in general, do not run in sub-
quadratic time, which is not surprising given the SETH-conditional lower bounds [BI18].
We, however, will later enhance the decoding procedure to rub in near-linear time in Chap-
ter 9. Also, for the settings of insertion-only and deletion-only errors, we achieve analogs
of Theorem 3.1.1 with linear decoding time complexities in this chapter.

3.1.1 High-level Overview, Intuition and Overall Organization

While extremely powerful, the concept and idea behind synchronization strings is easily
demonstrated. In this section, we explain the high-level approach taken and provide intu-
ition for the formal definitions and proofs to follow. This section also explains the overall
organization of the rest of the chapter.

Synchronization Errors and Half-Errors

Consider a stream of symbols over a large but constant size alphabet Σ in which some
constant fraction δ of symbols is corrupted. There are two basic types of corruptions
we will consider, Hamming-type errors and synchronization errors. Hamming-type errors
consist of erasures, that is, a symbol being replaced with a special “?” symbol indicating
the erasure, and symbol substitutions in which a symbol is replaced with any other symbol
in Σ. In this thesis, we measure Hamming-type errors in terms of half-errors. The wording
half-error comes from the realization that, when it comes to code distances, erasures are
half as bad as symbol substitution. An erasure is thus counted as one half-error while a
symbol substitution counts as two half-errors. Synchronization errors consist of deletions,
that is, a symbol being removed without replacement, and insertions, where a new symbol
from Σ is added anywhere.

It is clear that synchronization errors are strictly more general and harsher
than half-errors. In particular, any symbol substitution, worth two half-errors, can also
be achieved via a deletion followed by an insertion. Any erasure can furthermore be in-
terpreted as a deletion together with the often very helpful extra information where this
deletion took place. This makes synchronization errors at least as hard as half-errors. The
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real problem that synchronization errors bring with them, however, is that they cause
sending and receiving parties to become “out of sync”. This easily changes how received
symbols are interpreted and makes designing codes or other systems tolerant to synchro-
nization errors an inherently difficult and significantly less well understood problem.

Indexing and Synchronization Strings: Reducing Synchronization Errors to
Half-Errors

There is a simple folklore strategy, which we call indexing, that avoids these synchronization
problems: Simply enhance any element with a time stamp or element count. More precisely,
consecutively number the elements and attach this position count or index to each element
of the stream. Now, if we only deal with deletions, it is clear that the position of any deletion
is easily identified via a missing index, thus transforming it into an erasure. Insertions can
be handled similarly by treating any stream index which is received more than once as
erased. If both insertions and deletions are allowed, one might still have elements with
a spoofed or substituted value caused by a deletion of the indexed symbol which is then
replaced by a different symbol with the same index inserted. This, however, requires two
insdel errors. Generally, this trivial indexing strategy can be seen to successfully transform
any k synchronization errors into at most k half-errors.

In many applications, however, this trivial indexing cannot be used because having
to attach a log n bit long index description to each element of an n-long stream is pro-
hibitively costly. Consider for example an error correcting code of constant rate R over
some potentially large but nonetheless constant size alphabet Σ, which encodes nR log |Σ|
bits into n symbols from Σ. Increasing Σ by a factor of n to allow each symbol to carry
its log n bit index would destroy the desirable property of having an alphabet which is
independent from the block length n and would furthermore reduce the rate of the code
from R to Θ( R

logn
), which approaches zero for large block lengths. For streams of unknown

or infinite length such problems become even more pronounced.

This is where synchronization strings come to the rescue. Essentially, synchroniza-
tion strings allow one to index every element in an infinite stream using only a
constant size alphabet while achieving an arbitrarily good approximate reduction from
synchronization errors to half-errors. In particular, using synchronization strings k syn-
chronization errors can be transformed into at most (1 + ε)k half-errors using
an alphabet of size independent of the stream length and in fact only polynomial
in 1

ε
. Moreover, these synchronization strings have simple constructions and fast and easy

repositioning procedures–i.e., algorithms that guess the original position of symbols using
the indexed synchronization string.

Attaching our synchronization strings to the codewords of any efficient error correcting
code which efficiently tolerates the usual symbol substitutions and erasures, transforms
any such code into an efficiently decodable insdel code while only requiring a negligible
increase in the alphabet size. This allows the decades of intense research in coding theory
for Hamming-type errors to be transferred into the much harder and less well-understood
insertion-deletion setting.
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3.1.2 Synchronization Strings: Definition, Construction, and
Decoding

Next, we briefly motivate and explain how one arrives at the natural definition of these
index sequences over a finite alphabet and what intuition lies behind their efficient con-
structions and decoding procedures.

Suppose that a sender has attached the symbols if an index sequence S to elements
of a communication stream and consider the time at which the receiver has received a
corrupted sequence of the first t index descriptors, i.e., a corrupted version of t-long prefix
of S. As the receiver tries to guess or decode the true position of the last received symbol at
this time, it should naturally consider all index symbols received so far and find the “most
plausible” prefix of S. This suggests that the prefix of length l of a synchronization string
S acts as a codeword for the position l and one should think of the set of prefixes of S as a
code associated with the synchronization string S. Naturally, one would want such a code
to have good distance properties between any two codewords under some distance measure.
While edit distance, i.e., the number of insertions and deletions needed to transform one
string into another seems like the right notion of distance for insdel errors in general, the
prefix nature of the codes under consideration will guarantee that codewords for indices
l and l′ > l will have edit distance exactly l′ − l. This implies that even two very long
codewords only have a tiny edit distance. On the one hand, this precludes synchronization
codes with a large relative edit distance between its codewords. On the other hand, one
should see this phenomenon as simply capturing the fact that at any time a simple insertion
of an incorrect symbol carrying the correct next index symbol will lead to an unavoidable
decoding error. Given this natural and unavoidable sensitivity of synchronization codes to
recent errors, it makes sense to, instead, use a distance measure which captures the recent
density of errors. In this spirit, we suggest the definition of a new (to our knowledge)
string distance measure which we call relative suffix distance, which intuitively measures
the worst fraction of insdel errors to transform suffixes, i.e., recently sent parts of two
strings, into each other. This natural measure, in contrast to a similar measure defined
in [BGMO17], turns out to induce a metric space on any set of strings.

With these natural definitions for an induced set of codewords and a natural distance
metric associated with any such set, the next task is to design a string S for which the set
of codewords has as large of a minimum pairwise distance as possible. When looking for
(infinite) sequences that induce such a set of codewords, and thus can be successfully used
as index strings, it becomes apparent that one is looking for highly irregular and non-self-
similar strings over a fixed alphabet Σ. It turns out that the correct definition to capture
these desired properties, which we call the ε-synchronization property, states that any two
neighboring intervals of S with total length l should require at least (1 − ε)l insertions
and deletions to transform to one another, where ε ≥ 0. A simple calculation shows
that this clean property also implies a large minimum relative suffix distance between any
two codewords. Not surprisingly, random strings essentially satisfy this ε-synchronization
property, except for local imperfections of self-similarity, such as, symbols repeated twice
in a row, which would naturally occur in random sequences about every |Σ| positions. This
allows us to use the probabilistic method and the general Lovász local lemma to prove the
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existence ε-synchronization strings. This also leads to an efficient randomized construction.

Finally, decoding any string to the closest codeword, i.e., the prefix of the synchroniza-
tion string S with the smallest relative suffix distance, can be easily done in polynomial
time because the size of the set of codewords associated with the synchronization string
S is linear and not exponential in n and suffix distance computations (to each codeword
individually) can be done in polynomial time as they essentially consist of edit distance
computations between suffixes of the two input strings.

3.1.3 More Sophisticated Decoding Procedures

All this provides an indexing solution which transforms any k synchronization errors into
at most (5 + ε)k half-errors. This already leads to insdel codes which achieve a rate
approaching 1 − 5δ for any δ fraction of insdel errors with δ < 1

5
. While this is already

a drastic improvement over the previously best 1− O(
√
δ) rate codes from [GL16], which

worked only for sufficiently small δ, it is a far less strong result than the near-MDS codes
we promised in Theorem 3.1.1 for every δ ∈ (0, 1).

We were able to slightly improve upon the above strategy by considering an alternative
to the relative suffix distance measure, which we call relative suffix pseudo distance (RSPD).
RSPD was introduced in [BGMO17] and, while neither being symmetric nor satisfying the
triangle inequality, can act as a pseudo-distance in the minimum-distance decoder. For any
set of k = ki + kd insdel errors consisting of ki insertions and kd deletions, this improved
indexing solution leads to no more than (1 + ε)(3ki + kd) half-errors. This already implies
near-MDS codes for deletion-only setting but still falls short for general insdel errors. We
leave open the question whether an improved pseudo-distance definition can achieve an
indexing solution with (1 + ε)k half-errors.

In order to achieve our main theorem, we developed an different strategy. Fortunately,
it turned out that achieving a better indexing solution and the desired insdel codes does
not require any changes to the definition of synchronization strings, the indexing approach
itself, or the encoding scheme but solely required a very different decoding strategy. In par-
ticular, instead of guessing the position of symbols in a streaming manner we consider more
global, offline repositioning algorithms. We provide several such repositioning algorithms
in Section 3.5. In particular, we give a simple global repositioning algorithm, for which the
number of misdecodings goes to zero as the parameter ε of the utilized ε-synchronization
string goes to zero, irrespectively of how many insdel errors are applied.

Our global repositioning algorithms crucially build on another key-property which we
prove holds for any ε-synchronization string S, namely that there is no monotone matching
between S and itself which mismatches more than an ε-fraction of indices. Besides being
used in our proofs, considering this ε-self-matching property has another advantage. We
show that this property is achieved easier than the full ε-synchronization property and
that indeed a random string satisfies it with good probability. This means that, in the
context of error correcting codes, one can even use a simple uniformly random string as a

“synchronization string”. Lastly, we show that even an n−O(1)-approximate O
(

logn
log(1/ε)

)
-

wise independent random string satisfies the desired ε-self-matching property which, using
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the celebrated small sample space constructions from [NN93] also leads to a deterministic
polynomial time construction for the index string.

Lastly, we provide simpler and faster global repositioning algorithms for the setting of
deletion-only and insertion-only errors. These algorithms are essentially greedy algorithms
which run in linear time. They furthermore guarantee that their position guessing is
error-free, i.e., they only output “I don’t know” for some indices but never produce an
incorrectly decoded index. Such decoding schemes have the advantage that one can use
them in conjunction with error correcting codes that efficiently recover from erasures (and
not necessarily from symbol substitutions).

3.1.4 Organization of this Chapter

The organization of this chapter closely follows the flow of the high-level description above.
We start by giving more details on related work in Section 3.1.5. In Section 3.2, we formalize
the indexing problem and solutions to it. Section 7.5 shows how any solution to the indexing
problem can be used to transform any regular error correcting codes into an insdel code.
Section 3.4 introduces the relative suffix distance and ε-synchronization strings, proves the
existence of ε-synchronization strings and provides an efficient construction. Section 3.4.2
shows that the minimum suffix distance decoder is efficient and leads to a good indexing
solution. We elaborate on the connection between ε-synchronization strings and the ε-
self-matching property in Section 3.5.1, introduce an efficient deterministic construction of
ε-self matching strings in Section 3.5.2, and provide our improved repositioning algorithms
in the remainder of Section 3.5.

3.1.5 Related Work

Shannon was the first to systematically study reliable communication. He introduced
random error channels, defined information quantities, and gave probabilistic existence
proofs of good codes. Hamming was the first to look at worst-case errors and code distances
as introduced above. Simple counting arguments on the volume of balls around codewords
given in the 50’s by Hamming and Gilbert-Varshamov produce simple bounds on the rate
of q-ary codes with relative distance δ. In particular, they show the existence of codes with
relative distance δ and rate at least 1−Hq(δ) where Hq(x) = x logq(q− 1)−x logq x− (1−
x) logq(1−x) is the q-ary entropy function. This means that for any δ < 1 and q = ω(1/δ)
there exists codes with distance δ and rate approaching 1 − δ. Concatenated codes and
the generalized minimum distance decoding procedure introduced by Forney in 1966 led
to the first codes which could recover from constant error fractions δ ∈ (0, 1) while having
polynomial time encoding and decoding procedures. The rate achieved by concatenated
codes for large alphabets with sufficiently small distance δ comes out to be 1−O(

√
δ). On

the other hand, for δ sufficiently close to one, one can achieve a constant rate of O(δ2).
Algebraic geometry codes suggested by Goppa in 1975 later led to error correcting codes
which, for every ε > 0, achieve the optimal rate of 1−δ−ε with an alphabet size polynomial
in ε while being able to efficiently correct from any δ fraction of half-errors [TV91].
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While this answered the most basic questions, research since then has developed a
tremendously powerful toolbox and selection of explicit codes. It attests to the importance
of error correcting codes that over the last several decades this research direction has
developed into the incredibly active field of coding theory with hundreds of researchers
studying and developing better codes. A small and highly incomplete subset of important
innovations include rateless codes, such as, LT codes [Lub02], which do not require to fix
a desired distance at the time of encoding, explicit expander codes [Spi96, GI05] which
allow linear time encoding and decoding, polar codes [GX15, GV15] which can approach
Shannon’s capacity polynomially fast, network codes [LYC03] which allow intermediate
nodes in a network to recombine codewords, and efficiently list decodable codes [GR08]
which allow to list-decode codes of relative distance δ up to a fraction of about δ symbol
substitutions.

While error correcting codes for insertions and deletions have also been intensely stud-
ied, our understanding of them is much less well developed. We refer to the 2002 survey by
Sloan [Slo02] on single-deletion codes, the 2009 survey by Mitzenmacher [Mit09] on codes
for random deletions and the most general 2010 survey by Mercier et al. [MBT10] for the
extensive work done around codes for synchronization errors and only mention the results
most closely related to Theorem 3.1.1 here: Insdel codes were first considered by Leven-
shtein [Lev65] and since then many bounds and constructions for such codes have been
given. However, while essentially the same volume and sphere packing arguments as for
regular codes show that there exist families of insdel codes capable of correcting a fraction
δ of insdel errors with rate approaching 1− δ, no efficient constructions anywhere close to
this rate-distance tradeoff are known. Even the construction of efficient insdel codes over a
constant alphabet with any (tiny) constant relative distance and any (tiny) constant rate
had to wait until Schulman and Zuckerman gave the first such code in 1999 [SZ99]. Over
the couple of years preceding this work, Guruswami et al. provided new codes improving
over this state-of-the-art in the asymptotically small or large noise regimes by giving the
first codes which achieve a constant rate for noise rates going to one and codes which pro-
vide a rate going to one for an asymptotically small noise rate. In particular, [GW17] gave
the first efficient codes codes over fixed alphabets to correct a deletion fraction approaching
1, as well as efficient binary codes to correct a small constant fraction of deletions with rate
approaching 1. These codes could, however, only be efficiently decoded for deletions and
not insertions. A follow-up work gave new and improved codes with similar rate-distance
tradeoffs which can be efficiently decoded from insertions and deletions [GL16]. In partic-
ular, these codes achieve a rate of Ω((1− δ)5) and 1− Õ(

√
δ) while being able to efficiently

recover from a δ fraction of insertions and deletions in high-noise and high-rate regimes
respectively. These works put the state-of-the-art for error correcting codes for insertions
and deletions prior to this work pretty much equal to what was known for regular error
correcting codes 50 years ago, after Forney’s 1965 doctoral thesis.
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3.2 The Indexing Problem

In this section, we formally define the indexing problem. In a nutshell, this problem is that
of sending a suitably chosen string S of length n over an insertion-deletion channel such
that the receiver will be able to figure out the original position of most of the symbols he
receives correctly. This problem can be trivially solved by sending the string S = 1, 2, . . . , n
over the alphabet Σ = {1, . . . , n} of size n. This way, the original position of every received
symbol is equal to its value. We will provide an interesting solution to the indexing problem
that does almost as well while using a finite size alphabet. While very intuitive and simple,
the formalization of this problem and its solutions enables an easy use in many applications.

Before giving a formal presentation, we introduce the string matching notion
from [BGMO17].

Definition 3.2.1 (String matching). Suppose that c and c′ are two strings in Σ∗ and ∗
is a symbol not included in Σ. Further, assume that there exist two strings τ1 and τ2

in (Σ ∪ {∗})∗ such that |τ1| = |τ2|, del (τ1) = c, del(τ2) = c′, and τ1[i] ≈ τ2[i] for all
i ∈ {1, . . . , |τ1|}. Here, del is a function that deletes every ∗ in the input string and a ≈ b
if a = b or one of a or b is ∗. Then, we say that τ = (τ1, τ2) is a string matching between
c and c′ (denoted by τ : c → c′). We furthermore denote with sc (τi) the number of ∗’s in
τi.

Note that the edit distance between strings c, c′ ∈ Σ∗ is exactly equal to

min
τ :c→c′

{sc (τ1) + sc (τ2)} .

We now formally define an (n, δ)-indexing problem where n denotes the number of
symbols which are being sent and δ denotes the maximum fraction of symbols that can be
inserted or deleted. We further call the string S of length n the index string. Lastly, we
describe the effect of the nδ worst-case insertions and deletions which transform S into the
related string Sτ in terms of a string matching τ . In particular, τ = (τ1, τ2) is the string
matching from S to Sτ such that del(τ1) = S, del(τ2) = Sτ , and for every k

(τ1[k], τ2[k]) =

{
(S[i], ∗) if S[i] is deleted
(S[i], Sτ [j]) if S[i] is delivered as Sτ [j]
(∗, Sτ [j]) if Sτ [j] is inserted

where i = |del(τ1[1, k])| and j = |del(τ2[1, k])|. (See Definition 3.2.1 for the definition of
del)

Definition 3.2.2 ((n, δ)-Indexing Solution). The pair (S,DS) consisting of the index string
S ∈ Σn and the repositioning algorithm DS is called a solution for (n, δ)-indexing problem
over alphabet Σ if, for any set of nδ insertions and deletions represented by τ which alters
S to a string Sτ , the algorithm DS(Sτ ) outputs, for every symbol in Sτ , either ⊥ or an

index between 1 and n, i.e., DS : Σ|Sτ | → ([1..n] ∪ ⊥)|Sτ |.

The⊥ symbol here represents an “I don’t know” response by the repositioning algorithm
while a numerical output j for the ith symbol of Sτ should be interpreted as the algorithm
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guessing that Sτ [i] was at position j in string S prior to going through the insertion-deletion
channel. We frequently refer to this procedure of guessing the position of the ith index
symbol as decoding index i. One seeks algorithms that correctly decode as many indexes
as possible. Naturally, one can only correctly decode index symbols that were successfully
transmitted. We give formal definitions of both notions here.

Definition 3.2.3 (Correctly Decoded Index Symbol). An (n, δ)-indexing solution (S,DS)
decodes index j correctly under τ if DS(Sτ ) outputs i for the jth received symbol and there
exists a k such that i = |del(τ1[1, k])|, j = |del(τ2[1, k])|, τ1[k] = S[i], and τ2[k] = Sτ [j].

We remark that this definition counts any ⊥ response as an incorrect decoding.

Definition 3.2.4 (Successfully Transmitted Symbol). For string Sτ , which was derived
from an index string S via τ = (τ1, τ2), we call the jth symbol Sτ [j] successfully transmitted
if it stems from a symbol coming from S, i.e., if there exists a k such that |del(τ2[1, k])| = j
and τ1[k] = τ2[k].

We now propose a way to measure the quality of an (n, δ)-indexing solution by counting
the maximum number of misdecoded symbols among those that were successfully trans-
mitted. Note that the trivial indexing strategy with S = 1, . . . , n which outputs for each
symbol the symbol itself has no misdecodings. One can therefore also interpret our defi-
nition of quality as capturing how far from this ideal solution a given indexing solution is
(stemming likely from the smaller alphabet which is used for S).

Definition 3.2.5 (Misdecodings of an (n, δ)-Indexing Solution). We say that an (n, δ)-
indexing solution has at most k misdecodings if for any τ corresponding to at most nδ
insertions and deletions, the number of successfully transmitted index symbols that are
incorrectly decoded is at most k.

Now, we introduce two further useful properties that an (n, δ)-indexing solution might
have.

Definition 3.2.6 (Error-free Solution). We call (S,DS) an error-free (n, δ)-indexing solu-
tion if for any error pattern τ , and for any element of Sτ , the repositioning algorithm DS
either outputs ⊥ or correctly decodes that element. In other words, the repositioning algo-
rithm never makes an incorrect guess, even for symbols which are inserted by the channel–it
may just output ⊥ for some of the successfully transmitted symbols.

It is noteworthy that error-free solutions are essentially only obtainable when dealing
with insertion-only or deletion-only settings. In both cases, the trivial solution with S =
1, · · · , n is error-free. We will introduce indexing solutions which provide this nice property,
even over a smaller alphabet, and show how being error-free can be useful in the context
of error correcting codes.

Lastly, another very useful property of some (n, δ)-indexing solutions is that their de-
coding process operates in a streaming manner, i.e, the repositioning algorithm guesses the
position of Sτ [j] independently of Sτ [j

′] where j′ > j. While this property is not particu-
larly useful for the error correcting block code application put forward in this chapter, it
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is an extremely important and strong property which is crucial in several applications we
know of, such as, rateless error correcting codes, channel simulations, interactive coding,
edit distance tree codes, and other settings.

Definition 3.2.7 (Streaming Solutions). We call (S,DS) a streaming solution if the output
of DS for the ith element of the received string Sτ only depends on Sτ [1, i].

Again, the trivial solution for (n, δ)-indexing problem over an alphabet of size n with
zero misdecodings can be made streaming by outputting for every received symbols the
received symbol itself as the guessed position. This solution is also error-free for the
deletion-only setting but not error-free for the insertion-only setting. In fact, it is easy
to show that an algorithm cannot be both streaming and error-free in any setting which
allows insertions.

Overall, the important characteristics of an (n, δ)-indexing solution are (a) its alphabet
size |Σ|, (b) the number of misdecodings it might bring about, (c) time complexity of
the repositioning algorithm DS, (d) time complexity of constructing the index string S
(preprocessing), (e) whether the algorithm works for the insertion-only, the deletion-only
or the full insdel setting, and (f) whether the algorithm satisfies the streaming or error-free
properties. Table 3.1 gives a summary over the different solutions for the (n, δ)-indexing
problem we give in this chapter. The repositioning algorithm in all these solutions are
deterministic and the index string is over an alphabet of size ε−O(1) for parameter ε > 0
that can be chosen arbitrarily small.

Algorithm Type Misdecodings Error-free Streaming DS(·) Complexity

Section 3.4.2 ins/del (2 + ε) · nδ X O(n4)
Section 3.5.3 ins/del 3

√
ε · n O (n2/

√
ε)

Section 3.5.4 del ε · nδ X O(n)
Section 3.5.5 ins (1 + ε) · nδ X O(n)
Section 3.5.5 del ε · nδ X O(n)
Section 3.5.7 ins/del (1 + ε) · nδ X O(n4)

Table 3.1: Properties and quality of (n, δ)-indexing solutions with S being an ε-
synchronization string. The alphabet size of string S is ε−O(1).

3.3 Insdel Codes via Indexing Solutions

Next, we show how a good (n, δ)-indexing solution (S,DS) over alphabet ΣS allows one to
transform any regular ECC C with block length n over alphabet ΣC which can efficiently
correct half-errors, i.e., symbol substitutions and erasures, into a good insdel code over
alphabet Σ = ΣC × ΣS.

To this end, we simply attach S symbol-by-symbol to every codeword of C, i.e., obtain
the code Cout = {x× S|x ∈ C}. On the decoding end, we first guess the original positions
of the symbols arrived using only the index portion of each received symbol and rearrange
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them accordingly. Positions where zero or multiple symbols are mapped to are considered
as ‘?’, i.e., ambiguous. We will refer to this procedure as the rearrangement procedure.
Finally, the decoding algorithm DC for C is used over this rearranged string to finish
decoding. These two straightforward algorithms are formally described as Algorithm 1
and Algorithm 2.

Theorem 3.3.1. If (S,DS) guarantees k misdecodings for the (n, δ)-indexing problem, then
the rearrangement procedure recovers the sent codeword up to nδ+2k half-errors, i.e., half-
error distance of the codeword sent and the one recovered by the rearrangement procedure
is at most nδ + 2k. If (S,DS) is error-free, the rearrangement procedure recovers the sent
codeword up to nδ + k half-errors.

Proof. Consider a set of insertions and deletions described by τ consisting of Dτ deletions
and Iτ insertions. Note that among n index symbols, at most Dτ were deleted and less
than k are decoded incorrectly. Therefore, at least n−Dτ − k index symbols are decoded
correctly. Thus, if the rearrangement procedure only included correctly decoded indices for
successfully transmitted symbols, the output would have contained up to Dτ + k erasures
and no symbol substitutions, resulting into a total of Dτ + k half-errors. However, any
symbol which is being incorrectly decoded or inserted may cause a correctly decoded index
to become an erasure by making it appear multiple times or change one of the initial
Dτ+k erasures into a substitution error by making the rearrangement procedure mistakenly
identify an index at that position. Overall, this can increase the number of half-errors by
at most Iτ + k to a total of at most Dτ + k + Iτ + k = Dτ + Iτ + 2k ≤ nδ + 2k half-errors.

For error-free indexing solutions, misdecodings only consist of ⊥ symbols and therefore
only result in erasures (one half-error). Thus, the number of incorrect indices is Iτ instead
of Iτ + k leading to the reduced number of half-errors in this case.

This makes it clear that applying an ECC C which is resilient to nδ+ 2k half-errors on
top of an (n, δ)-indexing solution enables the receiver side to fully recover m.

Algorithm 1 Insertion-Deletion Encoder using C and (S,DS)

Input: m
1: m̃ = EC(m)

Output: m̃× S

Next, we formally state how a good (n, δ)-indexing solution (S,DS) over alphabet ΣS

allows one to transform any regular ECC C with block length n over alphabet ΣC which
can efficiently correct half-errors, i.e., symbol substitutions and erasures, into a good insdel
code over alphabet Σ = ΣC × ΣS. The following Theorem is a corollary of Theorem 3.3.1
and the definition of the rearrangement procedure.

Theorem 3.3.2. Given an (efficient) (n, δ)-indexing solution (S,DS) over alphabet ΣS

with at most k misdecodings, and repositioning time complexity TDS and an (efficient)
ECC C over alphabet ΣC with rate RC, encoding complexity TEC , and decoding complexity
TDC that corrects up to nδ + 2k half-errors, one can obtain an insdel code by indexing
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Algorithm 2 Insertion-Deletion Decoder using C and (S,DS)

Input: y = m̃′ × S ′
1: Dec← DS(S ′)
2: for i = 1 to n do
3: if there is a unique j for which Dec[j] = i then
4: m̃[i] = m̃′[j]
5: else
6: m̃[i] = ?

Output: DC(m̃)

codewords of C with S that can (efficiently) decode from up to nδ insertions and deletions.
The rate of this code is at least

RC

1 + log |ΣS |
log |ΣC |

The encoding complexity remains TEC , the decoding complexity is TDC + TDS and the pre-
processing complexity of constructing the code is the complexity of constructing C and S.
Furthermore, if (S,DS) is error-free, then choosing a C which can recover only from nδ+k
erasures is sufficient to produce a code with same qualities.

Proof. Theorem 3.3.1 directly implies the distance quality. The encoding time complexity
follows from the fact that concatenating the codeword with the index string takes linear
time. The decoding time complexity is simply the sum of the running time of the algorithm
DS and the decoding complexity of code C. Finally, given that this transformation keeps
the number of codewords as that of C and only increases the alphabet size, the rate of the
resulting code is

R =
|C|

n log |ΣC × ΣS|
=

|C|
n(log |ΣC |+ log |ΣS|)

=
RC

1 + log |ΣS |
log |ΣC |

.

Note that if one chooses ΣC such that log |ΣS |
log |ΣC |

<< 1, the rate loss due to the attached

symbols will be negligible. Using the observations outlined so far, one can obtain Theo-
rem 3.1.1 as a consequence of Theorem 3.3.2.

3.3.1 Proof of Theorem 3.1.1

To prove this, we make use of the indexing solution that we will present later in Sec-
tion 3.5.3. As outlined in Table 3.1, for any δ, ε′ ∈ (0, 1), Section 3.5.3 provides an index-
ing solution with 3n

√
ε′ misdecodings and O(n2/

√
ε′) repositioning time complexity. The

alphabet size of the string in this solution is ε′−O(1). We also make use of the following
near-MDS expander codes from [GI05].
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Theorem 3.3.3 (Guruswami and Indyk [GI05, Theorem 3]). For every r, 0 < r < 1, and
all sufficiently small ε > 0, there exists an explicitly specified family of GF(2)-linear (also
called additive) codes of rate r and relative distance at least (1 − r − ε) over an alphabet
of size 2O(ε−4r−1 log(1/ε)) such that codes from the family can be encoded in linear time and
can also be (uniquely) decoded in linear time from a fraction e of errors and s of erasures
provided 2e+ s ≤ (1− r − ε).

Given the δ and ε from the statement of Theorem 3.1.1 we choose ε′ = ε2

182 and consider
the (n, δ)-indexing solution (S,DS) as given in Section 3.5.3 (see line 2 of Table 3.1) which
guarantees no more than 3n

√
ε′ = nε

6
misdecodings. We then choose a near-MDS expander

code C from [GI05] (Theorem 3.3.3) which can efficiently correct up to δC = δ + ε
3

half-
errors and has a rate of RC > 1 − δC − ε

3
= 1 − δ − 2ε

3
over an alphabet ΣC of size

exp(ε−O(1)) that satisfies log |ΣC| ≥ 3 log |ΣS |
ε

. This ensures that the final rate is indeed

at least RC

1+
log |ΣS |
log |ΣC|

≥ RC − log |ΣS |
log |ΣC |

= 1 − δ − 3 ε
3

and the fraction of insdel errors that can

be efficiently corrected is δC − 2 ε
6

= δ. The encoding and decoding complexities follow
Theorems 3.3.2 and 3.3.3 and the time complexity of the indexing solution as indicated in
line 2 of Table 3.1.

Theorem 3.1.1 is clearly optimal in its tradeoff between rate and efficiently decodable
distance. As discussed in Section 3.1, its linear and quadratic encoding and decoding times
are also optimal or hard to improve upon. (See Chapter 9 for an improved near-linear time
decoding algorithm.) The only parameter that could be tightened is the dependence of the
alphabet bit size on the parameter ε, which characterizes how close a code is to achieving
an optimal rate/distance pair summing to one. Our transformation seems to inherently
produce an alphabet bit size that is near-linear in 1

ε
due to the rate loss stemming from

alphabet expansion. For half-errors, ECCs based on algebraic geometry [TV91] achieving
alphabet bit size logarithmic in 1

ε
are known, but their encoding and decoding complexities

are higher. State of the art linear-time expander codes [RT06], which improve over [GI05],
have an alphabet bit size which is polylogarithmic in 1

ε
. Interestingly, we will show in

Chapter 4 that, as opposed to half-error ECCs, no such insdel code exist over alphabets
that have sub-linear bit-size in terms of 1

ε
.

3.4 Synchronization Strings

In this section, we formally define and develop ε-synchronization strings, which will be the
base index string S in our (n, δ)-indexing solutions. As explained in Section 3.1.2, one
can think of the prefixes S[1, l] of an index string S as codewords encoding their length l
since the prefix S[1, l], or a corrupted version of it, will be exactly all the position-related
information that has been received by the time the lth symbol is communicated.

Definition 3.4.1 (Codewords Associated with an Index String). Given any index string
S in a solution to an indexing problem, we define the set of codewords associated with S
to be the set of prefixes of S, i.e., {S[1, l] | 1 ≤ l ≤ |S|}.

Next, we define a distance metric on any set of strings, which will be useful in quanti-
fying how good an index string S and its associated set of codewords are.
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Definition 3.4.2 (Relative Suffix Distance). For any two strings S, S ′ ∈ Σ∗ we define
their relative suffix distance (RSD) as follows:

RSD(S, S ′) = max
k>0

ED
(
S
(
|S| − k, |S|

]
, S ′
(
|S ′| − k, |S ′|

])
2k

.

Note that this is the normalized edit distance between suffixes of length k in two strings,
maximized over k.

Next we show that RSD is indeed a distance which satisfies all properties of a metric
for any set of strings. To our knowledge, this metric is new. It is, however, similar in
spirit to the suffix distance defined in [BGMO17], which unfortunately is non-symmetric
and does not satisfy the triangle inequality but can otherwise be used in a similar manner
as RSD in the specific context here (see also Section 3.5.7).

Lemma 3.4.3. For any strings S1, S2, and S3 we have

� Symmetry: RSD(S1, S2) = RSD(S2, S1),

� Non-Negativity and Normalization: 0 ≤ RSD(S1, S2) ≤ 1,

� Identity of Indiscernibles: RSD(S1, S2) = 0⇔ S1 = S2, and

� Triangle Inequality: RSD(S1, S3) ≤ RSD(S1, S2) + RSD(S2, S3).

In particular, RSD defines a metric on any set of strings.

Proof. Symmetry and non-negativity follow directly from the symmetry and non-negativity
of edit distance. Normalization follows from the fact that the edit distance between
two length k strings can be at most 2k. To see the identity of indiscernibles note that
RSD(S1, S2) = 0 if and only if for all k the edit distance of the k-suffix of S1 and S2 is
zero, i.e., if for every k, the k-suffix of S1 and S2 are identical. This is equivalent to S1

and S2 being equal. Lastly, the triangle inequality also essentially follows from the triangle
inequality for edit distance. To see this let δ1 = RSD(S1, S2) and δ2 = RSD(S2, S3). By the
definition of RSD this implies that for all k the k-suffixes of S1 and S2 have edit distance at
most 2δ1k and the k-suffixes of S2 and S3 have edit distance at most 2δ2k. By the triangle
inequality for edit distance, this implies that for every k the k-suffixes of S1 and S3 have
edit distance at most (δ1 + δ2) · 2k which implies that RSD(S1, S3) ≤ δ1 + δ2.

With these definitions in place, it remains to find index strings which induce a set
of codewords, i.e., prefixes, with large relative suffix distance. It is easy to see that the
relative suffix distance for any two strings ending on a different symbol is one. This makes
the trivial index string, which uses each symbol in Σ only once, induce an associated set of
codewords of optimal minimum-RSD-distance one. Such trivial index strings, however, are
not interesting as they require an alphabet size linear in the length of the message. To find
good index strings over constant size alphabets, we give the following important definition
of an ε-synchronization string. The parameter 0 < ε < 1 should be thought of measuring
how far a string is from the perfect index string, i.e., a string of n distinct symbols.
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Definition 3.4.4 (ε-Synchronization String). String S ∈ Σn is an ε-synchronization string
if for every 1 ≤ i < j < k ≤ n+ 1 we have that ED (S[i, j), S[j, k)) > (1− ε)(k − i).

The next lemma shows that the ε-synchronization string property is strong enough to
imply a good minimum relative suffix distance between any two codewords associated with
it.

Lemma 3.4.5. If S is an ε-synchronization string, then RSD(S[1, i], S[1, j]) > 1 − ε for
any i < j, i.e., any two codewords associated with S have relative suffix distance of at least
1− ε.

Proof. Let k = j − i. The ε-synchronization string property of S guarantees that

ED (S[i− k, i), S[i, j)) > (1− ε)2k.

Note that this holds even if i − k < 1. To finish the proof, we point out that the maxi-
mization in the definition of RSD includes the term ED(S[i−k,i),S[i,j))

2k
> 1− ε, which implies

that RSD(S[1, i], S[1, j]) > 1− ε.

3.4.1 Existence and Construction

The next important step is to show that the ε-synchronization strings we just defined exist,
particularly, over alphabets whose size is independent of string length n. We show the
existence of ε-synchronization strings of arbitrary length for any ε > 0 using an alphabet
size which is only polynomially large in 1/ε. We remark that ε-synchronization strings can
be seen as a strong generalization of square-free sequences in which any two neighboring
substrings S[i, j) and S[j, k) only have to be different and not also far from each other in
edit distance. Thue [Thu12] famously showed the existence of arbitrarily large square-free
strings over a ternary alphabet. Thue’s methods for constructing such strings, however,
turns out to be fundamentally too weak to prove the existence of ε-synchronization strings,
for any constant ε < 1.

Our existence proof requires the general Lovász local lemma which we recall here first:

Lemma 3.4.6 (General Lovász Local Lemma). Let {A1, . . . , An} be a set of “bad” events.
The directed graph G(V,E) is called a dependency graph for this set of events if V =
{1, . . . , n} and each event Ai is mutually independent of all the events {Aj : (i, j) 6∈ E}.
Now, if there exists x1, . . . , xn ∈ [0, 1) such that for all i we have

P [Ai] ≤ xi
∏

(i,j)∈E

(1− xj)

then there exists a way to avoid all events Ai simultaneously and the probability for this to
happen is bounded below by

P

[
n∧
i=1

Āi

]
≥

n∏
i=1

(1− xi) > 0.
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Theorem 3.4.7. For any ε ∈ (0, 1) and n ≥ 1, there exists an ε-synchronization string of
length n over an alphabet of size Θ(1/ε4).

Proof. Let S be a string of length n obtained by symbol-size concatenating of two strings
T and R, where T is simply the repetition of 0, . . . , t − 1 for t = Θ

(
1
ε2

)
, and R is a

uniformly random string of length n over alphabet Σ. In other words, Si = (i mod t, Ri).
We prove that S is an ε-synchronization string with positive probability by showing that
there is a positive probability that S contains no bad triple, where (x, y, z) is a bad triple
if ED(S[x, y), S[y, z)) ≤ (1− ε)(z − x).

First, note that a triple (x, y, z) for which z−x ≤ t cannot be a bad triple as it consists
of completely distinct symbols by courtesy of T . Therefore, it suffices to show that there is
no bad triple (x, y, z) in R for x, y, z such that z−x > t. Let (x, y, z) be a bad triple and let
a1a2 · · · ak be the longest common subsequence of R[x, y) and R[y, z). It is straightforward
to see that ED(R[x, y), R[y, z)) = (y − x) + (z − y)− 2k = z − x− 2k. Since (x, y, z) is a
bad triple, we have that z−x− 2k ≤ (1− ε)(z−x), which means that k ≥ ε

2
(z−x). With

this observation in mind, we say that R[x, z) is a bad interval if it contains a subsequence
a1a2 · · · aka1a2 · · · ak such that k ≥ ε

2
(z − x).

To prove the theorem, it suffices to show that a randomly generated string does not
contain any bad intervals with a non-zero probability. We first bound above the probability
of an interval of length l being bad.

Pr
I∼Σl

[I is bad] ≤
(
l

εl

)
|Σ|−

εl
2

≤
(
el

εl

)εl
|Σ|−

εl
2

=

(
e

ε
√
|Σ|

)εl

,

where the first inequality holds because, if an interval of length l is bad, then it must
contain a repeating subsequence of length lε

2
. Any such sequence can be specified via εl

positions in the l long interval and the probability that a given fixed sequence is repeating

for a random string is |Σ|−
εl
2 . The second inequality comes from the fact that

(
n
k

)
<
(
ne
k

)k
.

The resulting inequality shows that the probability of an interval of length l being bad is
bounded above by C−εl, where C can be made arbitrarily large by taking a sufficiently
large alphabet size |Σ|.

To show that there is a non-zero probability that the uniformly random string R con-
tains no bad interval I of size t or larger, we use the general Lovász local lemma stated
in Lemma 3.4.6. Note that the badness of interval I is mutually independent of the bad-
ness of all intervals that do not intersect I. We need to find real numbers xp,q ∈ [0, 1)
corresponding to intervals R[p, q) for which

Pr [Interval R[p, q) is bad] ≤ xp,q
∏

R[p,q)∩R[p′,q′)6=∅

(1− xp′,q′).
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We have seen that the left-hand side can be upper bounded by C−ε|R[p,q)| = Cε(p−q).
Furthermore, any interval of length l′ intersects at most l + l′ intervals of length l. We
propose xp,q = D−ε|R[p,q)| = Dε(p−q) for some constant D > 1. Therefore, it suffices to find
a constant D that for all substrings R[p, q) satisfies

Cε(p−q) ≤ Dε(p−q)
n∏
l=t

(
1−D−εl

)l+(q−p)
,

or more clearly, for all l′ ∈ {1, · · · , n} satisfies

C−l
′ ≤ D−l

′
n∏
l=t

(
1−D−εl

) l+l′
ε ,

which means that

C ≥ D∏n
l=t (1−D−εl)

1+l/l′
ε

. (3.1)

For D > 1, the right-hand side of Equation (3.1) is maximized when n = ∞ and l′ = 1,
and since we want Equation (3.1) to hold for all n and all l′ ∈ {1, · · · , n}, it suffices to find
a D such that

C ≥ D∏∞
l=t (1−D−εl)

l+1
ε

.

To this end, let

L = min
D>1

{
D∏∞

l=t (1−D−εl)
l+1
ε

}
.

Then, it suffices to have |Σ| large enough so that

C =
ε
√
|Σ|
e
≥ L,

which means that |Σ| ≥ e2L2

ε2
allows us to use the Lovász local lemma. We claim that

L = Θ(1), which will complete the proof. Since t = ω
(

log 1
ε

ε

)
,

∀l ≥ t D−εl · l + 1

ε
� 1.

Therefore, we can use the fact that (1− x)k > 1− xk to show the following.

D∏∞
l=t (1−D−εl)

l+1
ε

<
D∏∞

l=t

(
1− l+1

ε
·D−εl

) (3.2)

<
D

1−
∑∞

l=t
l+1
ε
·D−εl

(3.3)

=
D

1− 1
ε

∑∞
l=t(l + 1) · (D−ε)l

(3.4)

=
D

1− 1
ε

2t(D−ε)t

(1−D−ε)2

(3.5)
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=
D

1− 2
ε3

D−
1
ε

(1−D−ε)2

. (3.6)

Equation (3.3) is derived using the fact that
∏∞

i=1(1− xi) ≥ 1−
∑∞

i=1 xi and Equation
(3.5) is a result of the following equality for x < 1:

∞∑
l=t

(l + 1)xl =
xt(1 + t− tx)

(1− x)2
<

2txt

(1− x)2
.

One can see that for D = 7, maxε

{
2
ε3

D−
1
ε

(1−D−ε)2

}
< 0.9, and therefore step (3.3) is

legal and (3.6) can be upper-bounded by a constant. Hence, L = Θ(1) and the proof is
complete.

Remarks on the alphabet size: Theorem 3.4.7 shows that for any ε > 0 there exists an
ε-synchronization string over alphabets of size O(ε−4). A polynomial dependence on ε is
also necessary. In particular, there do not exist any ε-synchronization string over alphabets
of size smaller than ε−1. In fact, any 1

ε
-long substring of an ε-synchronization string has

to contain completely distinct elements. This can be easily proven as follows: For sake of
contradiction let S[i, i+ε−1) be a substring of an ε-synchronization string where S[j] = S[j′]
for i ≤ j < j′ < i+ ε−1. Then, ED (S[j], S[j + 1, j′ + 1))) = j′− j − 1 = (j′+ 1− j)− 2 ≤
(j′ + 1− j)(1− 2ε). In Chapter 10, we use the Lovász local lemma together with a more
sophisticated non-uniform probability space, which avoids any repeated symbols within
a small distance, allows avoiding the use of the string T in our proof and improving the
alphabet size to O(ε−2). It seems much harder to improve the alphabet size to o(ε−2)
and we are not convinced that it is possible. This work thus leaves open the interesting
question of closing the quadratic gap between O(ε−2) and Ω(ε−1) from either side.

Theorem 3.4.7 also implies an efficient randomized construction.

Lemma 3.4.8. There exists a randomized algorithm which for any ε > 0 and n constructs
an ε-synchronization string of length n over an alphabet of size O(ε−4) with expected run-
ning time O(n5).

Proof. Using the algorithmic framework for the Lovász local lemma given by Moser and
Tardos [MT10] and the extensions by Haeupler et al. [HSS11], one can get such a random-
ized algorithm from the proof in Theorem 3.4.7. The algorithm starts with a random string
over any alphabet Σ of size Cε−4 for some sufficiently large C. It then checks all O(n2)
intervals for a violation of the ε-synchronization string property. For every interval this is
an edit distance computation which can be done in O(n2) time using the classic Wagner-
Fischer dynamic programming algorithm. If a violating interval is found the symbols in
this interval are assigned fresh random values. This is repeated until no more violations
are found. It is shown in [HSS11] that this algorithm performs only O(n) expected number
of resamplings. This gives an expected running time of O(n5) overall, as claimed.
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Lastly, since synchronization strings can be repositioned in a streaming fashion, they
can be used in many important applications where the length of the required synchro-
nization string is not known in advance. (see Chapters 7 and 8) In such a setting it is
advantageous to have an infinite synchronization string over a fixed alphabet. In particu-
lar, since every substring of an ε-synchronization string is also an ε-synchronization string
by definition, having an infinite ε-synchronization string also implies the existence for every
length n, i.e., Theorem 3.4.7. Interestingly, a simple argument shows that the converse is
true as well, i.e., the existence of an ε-synchronization string for every length n implies the
existence of an infinite ε-synchronization string over the same alphabet.

Lemma 3.4.9. For any ε ∈ (0, 1) there exists an infinite ε-synchronization string over an
alphabet of size Θ(1/ε4).

Proof. Fix any ε ∈ (0, 1). According to Theorem 3.4.7 there exist an alphabet Σ of size
O(1/ε4) such that there exists at least one ε-synchronization strings over Σ for every
length n ∈ N. We will define an infinite synchronization string S = s1 · s2 · s3 . . . with
si ∈ Σ for any i ∈ N for which the ε-synchronization property holds for any neighboring
substrings. We define this string inductively. In particular, we fix an ordering on Σ and
define s1 ∈ Σ to be the first symbol in this ordering such that an infinite number of ε-
synchronization strings over Σ starts with s1. Given that there is an infinite number of
ε-synchronization over Σ such an s1 exists. Furthermore, the subset of ε-synchronization
strings over Σ which start with s1 is infinite by definition, allowing us to define s2 ∈ Σ
to be the lexicographically first symbol in Σ such there exists an infinite number of ε-
synchronization strings over Σ starting with s1 · s2. In the same manner, we inductively
define si to be the lexicographically first symbol in Σ for which there exists and infinite
number of ε-synchronization strings over Σ starting with s1 · s2 · . . . · si. To see that the
infinite string defined in this manner does indeed satisfy the edit distance requirement of
the ε-synchronization property defined in Definition 3.4.4, we note that for every i < j < k
with i, j, k ∈ N there exists, by definition, an ε-synchronization string, and in fact an infinite
number of them, which contains S[1, k] and thus also S[i, k] as a substring implying that
indeed ED (S[i, j), S[j, k)) > (1 − ε)(k − i) as required. Our definition thus produces the
unique lexicographically first infinite ε-synchronization string over Σ.

We remark that any string produced by the randomized construction of Lemma 3.4.8
is guaranteed to be a correct ε-synchronization string and the only randomized aspect of
the algorithm is its running time. This randomized synchronization string construction
is furthermore only needed once as a pre-processing step. The encoder or decoder of any
resulting error correcting codes do not require any randomization. Furthermore, in Sec-
tion 3.5 we will provide a deterministic polynomial time construction of a relaxed version
of ε-synchronization strings that can still be used as a basis for good (n, δ)-indexing algo-
rithms thus leading to insdel codes with a deterministic polynomial time code construction
as well.

It nonetheless remains interesting to obtain fast deterministic constructions of finite
and infinite ε-synchronization strings. In Chapter 8, we achieve such efficient deterministic
constructions for ε-synchronization strings. These constructions even produce the infinite
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ε-synchronization string S proven to exist by Lemma 3.4.9, which is much less explicit:
While for any n and ε an ε-synchronization string of length n can in principle be found using
an exponential time enumeration, there is no straightforward algorithm which follows the
proof of Lemma 3.4.9 and given an i ∈ N produces the ith symbol of such an S in a finite
amount of time (bounded by some function in i). Our constructions in Chapter 8 require
significantly more work but in the end lead to an explicit deterministic construction of an
infinite ε-synchronization string for any ε > 0 for which the ith symbol can be computed
in only O(log i) time – thus satisfying one of the strongest notions of constructiveness that
can be achieved.

3.4.2 Repositioning Algorithm for ε-Synchronization Strings

We now provide an algorithm for repositioning synchronization strings, i.e., an algorithm
that can form a solution to the indexing problem along with ε-synchronization strings. In
the beginning of Section 3.4, we introduced the notion of relative suffix distance between
two strings. Theorem 3.4.5 stated a lower bound of 1−ε for relative suffix distance between
any two distinct codewords associated with an ε-synchronization string, i.e., its prefixes.
Hence, a natural repositioning scheme for guessing the position of a received symbol would
be finding the prefix of the index string with the closest relative suffix distance to the string
received thus far. We call this algorithm the minimum relative suffix distance decoding
algorithm.

We define the notion of relative suffix error density at index symbol i which represents
the maximized density of errors taken place over suffixes of S[1, i]. We will show that
this decoding procedure works correctly as long as the relative suffix error density is not
larger than 1−ε

2
. Then, we will show that if adversary is allowed to perform c insertions

or deletions, the relative suffix distance may exceed 1−ε
2

upon arrival of at most 2c
1−ε many

successfully transmitted symbols. Finally, we will deduce that this repositioning scheme
correctly decodes all but 2c

1−ε many index symbols that are successfully transmitted. For-
mally, we claim that:

Theorem 3.4.10. Any ε-synchronization string of length n along with the minimum rel-
ative suffix distance decoding algorithm form a solution to (n, δ)-indexing problem that
guarantees 2

1−εnδ or less misdecodings. This repositioning algorithm is streaming and can

be implemented in a way that works in O(n4) time.

Before proceeding to the proof of the claim above, we first provide the following useful
definitions.

Definition 3.4.11 (Error Count Function). Let S be an index string sent over an insertion-
deletion channel. We denote the error count from index i to index j with E(i, j) and define
it to be the number of insdels applied to S from the moment S[i] is sent until the moment
S[j] is sent. E(i, j) would count the deletion of S[j], however, it would not count the
deletion of S[i].

Definition 3.4.12 (Relative Suffix Error Density). Let string S be sent over an insertion-
deletion channel and let E denote the corresponding error count function. We define the
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relative suffix error density of the communication as

max
i≥1

E (|S| − i, |S|)
i

.

The following lemma relates the suffix distance of the string sent by the sender and the
one received by the receiver at any point of a communication over an insertion-deletion
channel to the relative suffix error density of the communication at that point.

Lemma 3.4.13. Let string S be sent over an insertion-deletion channel and the corrupted
version of it S ′ be received on the other end. The relative suffix distance between S and S ′,
RSD(S, S ′), is at most the relative suffix error density of the communication.

Proof. Let τ̃ = (τ̃1, τ̃2) be the string matching from S to S ′ that characterizes insdels that
have turned S into S ′. Then:

RSD(S, S ′) = max
k>0

ED(S(|S| − k, |S|], S ′(|S ′| − k, |S ′|])
2k

(3.7)

= max
k>0

minτ :S(|S|−k,|S|]→S′(|S′|−k,|S′|]{sc(τ1) + sc(τ2)}
2k

(3.8)

≤ max
k>0

2(sc(τ̃ k1 ) + sc(τ̃ k2 ))

2k
≤ Relative Suffix Error Density (3.9)

where τ̃ k is τ̃ limited to its suffix corresponding to S(|S| − k, |S|]). Note that (3.7) and
(3.8) follow from the definitions of edit distance and relative suffix distance. Moreover,
to verify step (3.9), one has to note that one single insertion or deletion on the k-element
suffix of a string may result in a string with k-element suffix of edit distance two of the
original string’s k-element suffix; one stemming from the inserted/deleted symbol and the
other one stemming from a symbol appearing/disappearing at the beginning of the suffix
in order to keep the size of suffix k.

A key consequence of Lemma 3.4.13 is that if an ε-synchronization string is being
sent over an insertion-deletion channel and at some step the relative suffix error density
corresponding to errors is smaller than 1−ε

2
, the relative suffix distance of the sent string

and the received one at that point is smaller than 1−ε
2

; therefore, as RSD of all pairs of
codewords associated with an ε-synchronization string are greater than 1− ε, the receiver
can correctly decode the index of–or guess the position of–the last received symbol of the
communication by simply finding the codeword (i.e., prefix of the synchronization string)
with minimum relative suffix distance to the string received so far.

The following lemma states that such a guarantee holds most of the time during the
transmission of a synchronization string.

Lemma 3.4.14. Let ε-synchronization string S be sent over an insertion-channel channel
and corrupted string S ′ be received on the other end. If there are ci symbols inserted and
cd symbols deleted, then, for any integer t, the relative suffix error density is smaller than
1−ε
t

upon arrival of all but t(ci+cd)
1−ε − cd many of the successfully transmitted symbols.
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Proof. Let E denote the error count function of the communication. We define the potential
function Φ over {0, 1, · · · , n} as follows.

Φ(i) = max
1≤s≤i

{
t · E(i− s, i)

1− ε
− s
}

Also, set Φ(0) = 0. We prove the theorem by showing the correctness of the following
claims:

1. If E(i−1, i) = 0, i.e., the adversary does not insert or delete any symbols in the inter-
val starting right after the moment S[i−1] is sent and ending at when S[i] is sent, then
the value of Φ drops by 1 or becomes/stays zero, i.e., Φ(i) = max {0,Φ(i− 1)− 1}.

2. If E(i− 1, i) = k, i.e., adversary inserts or deletes k symbols in the interval starting
right after the moment S[i−1] is sent and ending at when S[i] is sent, then the value
of Φ increases by tk

1−ε − 1, i.e., Φ(i) = Φ(i− 1) + tk
1−ε − 1.

3. If Φ(i) = 0, then the relative suffix error density of the string that is received when
S[i] arrives at the receiving side is not larger than 1−ε

t
.

Given the correctness of claims made above, the lemma can be proved as follows. As
adversary can apply at most ci + cd insertions or deletions, Φ can gain a total increase
of t·(ci+cd)

1−ε minus the number of is for which Φ(i) = 0 but Φ(i + 1) 6= 0. Since Φ always
drops by one or to zero and increases non-integrally, the value of Φ can be non-zero for
at most t·(ci+cd)

1−ε many inputs. As the value of Φ(i) is non-zero for all i’s where S[i] has

been removed by the adversary, there are at most t·(ci+cd)
1−ε − cd elements i where Φ(i) is

non-zero and i is successfully transmitted. Hence, at most t·(ci+cd)
1−ε − cd many of correctly

transmitted symbols can possibly be decoded incorrectly.

We now proceed to the proof of each of the above-mentioned claims to finish the proof:

1. In this case, E(i− s, i) = E(i− s, i− 1). So,

Φ(i) = max
1≤s≤i

{
t · E(i− s, i)

1− ε
− s
}

= max
1≤s≤i

{
t · E(i− s, i− 1)

1− ε
− s
}

= max

{
0, max

2≤s≤i

{
t · E(i− s, i− 1)

1− ε
− s
}}

= max

{
0, max

1≤s≤i−1

{
t · E(i− 1− s, i− 1)

1− ε
− s− 1

}}
= max {0,Φ(i− 1)− 1}
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2. In this case, E(i− s, i) = E(i− s, i− 1) + k. So,

Φ(i) = max
1≤s≤i

{
t · E(i− s, i)

1− ε
− s
}

= max

{
tk

1− ε
− 1, max

2≤s≤i

{
t · E(i− s, i− 1) + tk

1− ε
− s
}}

= max

{
tk

1− ε
− 1,

tk

1− ε
+ max

1≤s≤i−1

{
t · E(i− 1− s, i− 1)

1− ε
− s− 1

}}
=

tk

1− ε
− 1 + max

{
0, max

1≤s≤i−1

{
t · E(i− 1− s, i− 1)

1− ε
− s
}}

=
tk

1− ε
− 1 + max {0,Φ(i− 1)}

= Φ(i− 1) +
tk

1− ε
− 1

3. And finally,

Φ(i) = max
1≤s≤i

{
t · E(i− s, i)

1− ε
− s
}

= 0

⇒ ∀1 ≤ s ≤ i :
t · E(i− s, i)

1− ε
− s ≤ 0

⇒ ∀1 ≤ s ≤ i : t · E(i− s, i) ≤ s(1− ε)

⇒ ∀1 ≤ s ≤ i :
E(i− s, i)

s
≤ 1− ε

t

⇒ Relative Suffix Error Density = max
1≤s≤i

{
E(i− s, i)

s

}
≤ 1− ε

t

These finish the proof of the lemma.

Now, we have all necessary tools to analyze the performance of the minimum relative
suffix distance decoding algorithm:

Proof of Theorem 3.4.10. As adversary is allowed to insert or delete up nδ symbols, by
Lemma 3.4.14, there are at most 2nδ

1−ε successfully transmitted symbols during the arrival

of which at the receiving side, the relative suffix error density is greater than 1−ε
2

; Hence,

by Lemma 3.4.13, there are at most 2nδ
1−ε misdecoded successfully transmitted symbols.

Further, we remark that this algorithm can be implemented in O(n4) time. Using
dynamic programming, we can pre-process the edit distance of any substring of S, like
S[i, j] to any substring of S ′, like S ′[i′, j′], in O(n4) time. Then, to decode each index
symbol like S ′[l′] (i.e., guess its original position), we can find the codeword with minimum
relative suffix distance to S ′[1, l′] by calculating the relative suffix distance of it to all n
codewords. Finding suffix distance of S ′[1, l′] and a codeword like S[1, l] can also be simply

done by minimizing ED(S(l−k,l],S′(l′−k,l′])
k

over all k. This can be done in O(n) time. With an

38



O(n4) pre-process and an O(n3) computation as mentioned above, we have shown that the
decoding process can be implemented in O(n4) time. Finally, this algorithm clearly satisfies
streaming property as it decodes indices of arrived symbols merely using the symbols which
have arrived earlier.

We remark that by taking ε = o(1), one can obtain a solution to the (n, δ)-indexing
problem with a misdecoding guarantee of 2nδ(1+o(1)) which, using Theorem 3.3.1, results
into a translation of nδ insertions and deletions into nδ(5 + o(1)) half-errors.

In Section 3.5.7 , we show that this guarantee of the min-distance-decoder can be
slightly improved to nδ(3 + o(1)) half-errors, at the cost of some simplicity. In particular,
one can go beyond an RSD distance of 1−ε

2
by considering the relative suffix pseudo distance

RSPD, which was introduced in [BGMO17], as an alternative distance measure. RSPD
can act as a stand-in metric for the minimum-distance decoder and lead to the above-
mentioned slightly improved decoding guarantees, despite neither being symmetric nor
satisfying the triangle inequality. More precisely, for any set of k = ki + kd insdel errors
consisting of ki insertions and kd deletions the RSPD based indexing solution leads to at
most (1 + ε)(3ki + kd) half-errors which does imply “near-MDS” codes for deletion-only
channels but still falls short for general insdel errors.

This leaves open the intriguing question whether a further improved (pseudo) distance
definition can achieve an indexing solution with negligible number of misdecodings for the
minimum-distance decoder.

3.5 More Advanced Repositioning Algorithms and ε-

Self Matching Property

Thus far, we have introduced ε-synchronization strings as fitting solutions to the index-
ing problem. In Section 3.4.2, we provided an algorithm to solve the indexing problem
along with synchronization strings with an asymptotic guarantee of 2nδ misdecodings. As
explained in Section 3.1.3, such a guarantee falls short of giving Theorem 3.1.1. In this
section, we thus provide a variety of more advanced repositioning algorithms that provide
better decoding guarantees, in particular, achieve a misdecoding fraction which goes to
zero as ε goes to zero.

We start by pointing out a very useful property of ε-synchronization strings in Sec-
tion 3.5.1. We define a monotone matching between two strings as a common subsequence
of them. We will next show that in a monotone matching between an ε-synchronization
string and itself, the number of matches that both correspond to the same element of the
string is fairly large. We will refer to this property as ε-self-matching property. We show
that one can very formally think of this ε-self-matching property as a robust global guar-
antee in contrast to the factor-closed strong local requirements of the ε-synchronization
property. One advantage of this relaxed notion of ε-self-matching is that one can show
that a random string over alphabets polynomially large in ε−1 satisfies this property (Sec-
tion 3.5.2). This leads to a particularly simple generation process for S. Finally, showing
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that this property even holds for approximately log n-wise independent strings directly
leads to a deterministic polynomial time algorithm generating such strings as well.

In Section 3.5.3, we propose a repositioning algorithm for insdel errors that basically
works by finding monotone matchings between the received string and the synchronization
string. Using the ε-self-matching property we show that this algorithm guarantees O (n

√
ε)

misdecodings. This algorithm works inO(n2/
√
ε) time and is exactly what we need to prove

our main theorem.
In Sections 3.5.4 and 3.5.5 we provide two simpler linear-time repositioning algorithms

that solve the indexing problem under the assumptions that the adversary can only delete
symbols or only insert symbols. These algorithms not only guarantee asymptotically op-
timal ε

1−εnδ misdecodings but are also error-free. In Section 3.5.6, we present linear-time
near-MDS insertion-only and deletion-only codes that can be derived by these repositioning
algorithms.

Finally, in Section 3.5.7, we present an improved version of the minimum RSD decoding
algorithm that achieves a better misdecoding guarantee by replacing RSD with a similar
pseudo-distance.

See Table 3.1 for a break down of the repositioning schemes presented in this chapter,
the type of error under which they work, the number of misdecodings they guarantee,
whether they are error-free or streaming, and their repositioning time complexities.

3.5.1 ε-Self Matching Property

Before proceeding to the main results of this section, we define monotone matchings as
follows.

Definition 3.5.1 (Monotone Matchings). A monotone matching between S and S ′ is a
set of pairs of indexes like:

M = {(a1, b1), · · · , (am, bm)}

where a1 < · · · < am, b1 < · · · < bm, and S[ai] = S ′[bi].

We now point out a key property of synchronization strings that will be broadly used
in our repositioning algorithms in Theorem 3.5.2 which, basically, states that two large
similar subsequences of an ε-synchronization string cannot disagree on many positions.
More formally, let M = {(a1, b1), · · · , (am, bm)} be a monotone matching between S and
itself. We call the pair (ai, bi) a good pair if ai = bi and a bad pair otherwise. Then:

Theorem 3.5.2. Let S be an ε-synchronization string of size n and M =
{(a1, b1), · · · , (am, bm)} be a monotone matching of size m from S to itself containing g
good pairs and b bad pairs. Then,

b < ε(n− g)

Proof. Let (a′1, b
′
1), · · · , (a′b, b′b) indicate the set of bad pairs in M indexed as a′1 < · · · < a′b

and b′1 < · · · < b′b. Without loss of generality, assume that a′1 < b′1. Let k1 be the
largest integer such that a′k1

< b′1. Then, the pairs (a′1, b
′
1), · · · , (a′k1

, b′k1
) form a common
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(b) a′k1+1 > b′k1+1

Figure 3.1: Pictorial representation of T2 and T ′2

subsequence of size k1 between T1 = S[a′1, b
′
1) and T ′1 = S[b′1, b

′
k1

]. Now, the synchronization
string guarantee implies that:

k1 ≤ LCS(T1, T
′
1)

<
|T1|+ |T ′1| − ED (T1, T

′
1)

2

≤ ε(|T1|+ |T ′1|)
2

Note that the monotonicity of the matching guarantees that there are no good matches
occurring on indices covered by T1 and T ′1, i.e., a′1, · · · , b′k1

. One can repeat very same
argument for the remaining bad matches to rule out bad matches (a′k1+1, b

′
k1+1), · · · ,

(a′k1+k2
, b′k1+k2

) for some k2 having the following inequality guaranteed:

k2 <
ε(|T2|+ |T ′2|)

2
(3.10)

where {
T2 = [a′k1+1, b

′
k1+1) and T ′2 = [b′k1+1, b

′
k1+k2

] a′k1+1 < b′k1+1

T2 = [b′k1+1, a
′
k1+1) and T ′2 = [a′k1+1, a

′
k1+k2

] a′k1+1 > b′k1+1

For a pictorial representation see Figure 3.1.
Continuing the same procedure, one can find k1, · · · , kl, T1, · · · , Tl, and T ′1, · · · , T ′l for

some l. Summing up all inequalities of form (3.10), we will have:

l∑
i=1

ki <
ε

2
·

(
l∑

i=1

|Ti|+
l∑

i=1

|T ′i |

)
(3.11)

Note that
∑l

i=1 ki = b and Tis are mutually exclusive and contain good pair. Same

holds for T ′i s. Hence,
∑l

i=1 |Ti| ≤ n− g and
∑l

i=1 |T ′i | ≤ n− g. All these along with (3.11)
give that

b <
ε

2
· 2 (n− g) = ε(n− g).
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We define the ε-self-matching property as follows:

Definition 3.5.3 (ε-Self-Matching Property). String S satisfies ε-self-matching property
if any monotone matching between S and itself contains less than ε|S| bad pairs.

Note that ε-synchronization property concerns all substrings of a string while the ε-
self-matching property only concerns the string itself. Granted that, we now show that
ε-synchronization property and satisfying ε-self-matching property on all substrings are
equivalent up to a factor of two:

Theorem 3.5.4. ε-synchronization and ε-self matching properties are related in the fol-
lowing way:

a) If S is an ε-synchronization string, then all substrings of S satisfy ε-self-matching
property.

b) If all substrings of string S satisfy the ε
2
-self-matching property, then S is ε-

synchronization string.

Proof of Theorem 3.5.4 (a). This part is a straightforward consequence of Theorem 3.5.2.

Proof of Theorem 3.5.4 (b). Assume by contradiction that there are i < j < k such that

ED(S[i, j), S[j, k)) ≤ (1− ε)(k− i). Then, LCS(S[i, j), S[j, k)) ≥ k−i−(1−ε)(k−i)
2

= ε
2
(k− i).

The corresponding pairs of such longest common subsequence form a monotone matching
of size ε

2
(k − i) which contradicts ε

2
-self-matching property of S.

The repositioning algorithms we will propose for ε-synchronization strings in Sec-
tions 3.5.3, 3.5.4, and 3.5.5 only make use of the ε-self-matching property of ε-
synchronization strings. We now define ε-bad elements which will enable us to show that
ε-self matching property, as opposed to the ε-synchronization property, is robust against
local changes.

Definition 3.5.5 (ε-bad element). We call element k of string S an ε-bad element if there
exists a factor S[i, j] of S with i ≤ k ≤ j where S[i, j] does not satisfy the ε-self-matching
property. In this case, we also say that element k blames interval [i, j].

Using the notion of ε-bad elements, we now present Lemma 3.5.6. This lemma suggests
that a string containing limited fraction of ε-bad elements would still be an ε′-self matching
string for some ε′ > ε. An important consequence of this result is that if one changes a
limited number of elements in a given ε-self matching string, the self matching property
will be essentially preserved to a lesser extent. Note that no such robustness holds for
ε-synchronization strings.

Lemma 3.5.6. If the fraction of ε-bad elements in string S is less than γ, then S satisfies
(ε+ 2γ)-self matching property.
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Proof. Consider a matching from S to itself. The number of bad matches whose both
ends refer to non-ε-bad elements of S is at most |S|ε by the definition of ε-bad elements.
Further, each ε-bad element can appear at most once in each end of bad pairs. Therefore,
the number of bad pairs in S can be at most:

|S|ε+ 2|S|γ = |S|(ε+ 2γ)

which, by definition, implies that S satisfies the (ε+ 2γ)-self-matching property.

On the other hand, in the following lemma, we will show that within a given ε-self
matching string, there can be a limited number of ε′-bad elements for sufficiently large
ε′ > ε.

Lemma 3.5.7. Let S be an ε-self matching string of length n. Then, for any 3ε < ε′ < 1,
at most 3nε

ε′
many elements of S can be ε′-bad.

Proof. Let s1, s2, · · · , sk be ε′-bad elements of S and ε′-bad element si blame substring
S[ai, bi). As intervals S[ai, bi) are supposed to be bad, there has to be an ε′-self matching
within each S[ai, bi) like Mi for which |Mi| ≥ ε′ · |[ai, bi)|. We claim that one can choose a
subset of [1..k] like I for which

� Intervals that correspond to the indices in I are mutually exclusive. In other words,
for any i, j ∈ I where i 6= j, [ai, bi) ∩ [aj, bj) = ∅.

�

∑
i∈I |[ai, bi)| ≥

k
3
.

If such I exists, one can take
⋃
i∈IMi as a self-matching in S whose size is larger than

kε′

3
. As S is an ε-self matching string,

kε′

3
≤ nε⇒ k ≤ 3nε

ε′

which finishes the proof. The only remaining piece is proving the claim. Note that any
element in

⋃
i[ai, bi) is ε′-bad as they, by definition, belong to an interval with an ε′-self

matching. Therefore, |
⋃
i[ai, bi)| = k. In order to find set I, we greedily choose the

largest substring [ai, bi), put its corresponding index into I and then remove any interval
intersecting [ai, bi). We continue repeating this procedure until all substrings are removed.
The set I obtained by this procedure clearly satisfies the first claimed property. Moreover,
note that if li = |[ai, bi)|, any interval intersecting [ai, bi) falls into [ai − li, bi + li) which is
an interval of length 3li. This certifies the second property and finishes the proof.

As the final remark on the ε-self matching property and its relation with the more strict
ε-synchronization property, we show that using the minimum RSD decoder together with
an ε-self matching string leads to indexing solutions with a guarantee on the misdecoding
count which is only slightly weaker than the guarantee obtained by ε-synchronization
strings. In order to do so, we first show that the (1− ε) RSD distance property of prefixes
holds for any non-ε-bad element in any arbitrary string in Theorem 3.5.8. Then, using
Theorem 3.5.8 and Lemma 3.5.7, we upper-bound the number of misdecodings that may
occur using a minimum RSD decoder along with an ε-self matching string in Theorem 3.5.9.

43



Lemma 3.5.8. Let S be an arbitrary string of length n and 1 ≤ i ≤ n be such that ith
element of S is not ε-bad. Then, for any j 6= i, RSD(S[1, i], S[1, j]) > 1− ε.

Proof. Without loss of generality assume that j < i. Consider the interval [2j − i + 1, i].
As i is not ε-bad, there is no self matching of size 2ε(i− j) within [2j− i, i]. In particular,
the edit distance of S[2j− i+1, j] and [j+1, i] has to be larger than (1−ε) ·2(i− j) which
equivalently means RSD(S[1, i], S[1, j]) > 1− ε. Note that if 2j − i+ 1 < 0 the proof goes
through by simply replacing 2j − i+ 1 with zero.

Theorem 3.5.9. Using any ε-self matching string along with minimum RSD algorithm,
one can solve the (n, δ)-indexing problem with no more than n(4δ + 6ε) misdecodings.

Proof. Note that applying Lemma 3.5.7 for ε′ gives that there are at most 3nε
ε′

indices

in S that are ε′-bad. Further, using Theorem 3.4.10 and Lemma 3.5.8, at most 2nδ
1−ε′

many of the other indices might be decoded incorrectly upon their arrivals. Therefore, this
solution for the (n, δ)-indexing problem can contain at most n

(
3ε
ε′

+ 2δ
1−ε′
)

many incorrectly

decoded indices. Setting ε′ = 3ε
3ε+2δ

gives an upper bound of n(4δ + 6ε) on the number of
misdecodings.

3.5.2 Efficient Polynomial Time Construction of ε-Self Matching
Strings

In this section, we will use Lemma 3.5.6 to show that there is a polynomial deterministic
construction of a string of length n with the ε-self-matching property, which leads to a
deterministic efficient code construction. We start by showing that even random strings
satisfy the ε-selfmatching property if the alphabet size is an adequately large polynomial
in terms of ε−1.

Theorem 3.5.10. A random string over an alphabet of size O(ε−3) satisfies ε-selfmatching
property with a constant probability.

Proof. Let S be a random string on alphabet Σ of size |Σ| = O(ε−3) with an adequately
large constant factor hidden in the O notation that we determine later. We are going to find
the expected number of ε-bad elements in S. We first count the expected number of ε-bad
elements that blame intervals of length 2

ε
or smaller. If element k blames interval S[i, j]

where j− i < 2ε−1, there has to be two identical symbols appearing in S[i, j] which implies
that that there are two identical symbols in the 4ε−1-long interval S(k − 2ε−1, k + 2ε−1).
Therefore, the probability of element k being ε-bad blaming S[i, j] for some j − i < 2ε−1

can be upper-bounded by
(

4ε−1

2

)
1
|Σ| ≤ 8ε if |Σ| ≥ ε−3. Thus, the expected fraction of ε-bad

indices that blame intervals of length 2
ε

or smaller is less than 8ε.

We now proceed to finding the expected fraction of ε-bad elements in S blaming in-
tervals of length 2ε−1 or more. Since every interval of length l which does not satisfy
ε-self-matching property causes at most l ε-bad elements, the expected fraction of such
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ε-bad elements, i.e., γ′, is at most:

E[γ′] =
1

n

n∑
l=2ε−1

n∑
i=1

l · Pr[S[i, i+ l) does not satisfy ε-self-matching property]

=
n∑

l=2ε−1

l · Pr[S[i, i+ l) does not satisfy ε-self-matching property]

≤
n∑

l=2ε−1

l

(
l

lε

)2
1

|Σ|lε
(3.12)

Last inequality holds because the number of possible matchings is at most
(
l
lε

)2
. Further,

fixing the matching edges, the probability of the elements corresponding to pair (a, b) of
the matching being identical is independent from all pairs (a′, b′) where a′ < a and b′ < b.
Hence, the probability of the set of pairs forming a matching between the random string
S and itself is 1

|Σ|lε . Then,

E[γ′] ≤
n∑

l=2ε−1

l

(
le

lε

)2lε
1

|Σ|lε

≤
n∑

l=2ε−1

l

(
e

ε
√
|Σ|

)2εl

≤
∞∑

l=2ε−1

l

( e

ε
√
|Σ|

)2ε
l

Note that series
∑∞

l=2ε−1 lxl = 2ε−1x2ε−1−(2ε−1−1)x2ε−1+1

(1−x)2 for |x| < 1. Therefore, for 0 < x < 1
2
,∑∞

l=l0
lxl < 8ε−1x2ε−1

. So,

E[γ′] ≤ 8ε−1

(
e

2ε
√
|Σ|

)4εε−1

=
e4

2
ε−5 1

|Σ|2
≤ e4

2
ε

Lemma 3.5.6 implies that this random structure has to satisfy (ε+2γ)-self-matching prop-
erty where

E[ε+ 2γ] = ε+ 16ε+ e4ε = O(ε)

Therefore, using Markov inequality, a randomly generated string over alphabet O(ε−3)
satisfies ε-matching property with constant probability. The constant probability can be
as high as one wishes by applying higher constant factor in alphabet size.

As the next step, we prove a similar claim for strings of length n whose symbols are

chosen from an n−O(1)-approximate Θ
(

logn
log(1/ε)

)
-wise independent [NN93] distribution over

a larger, yet still ε−O(1) size, alphabet. This is the key step in allowing for a derandomization
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using the small sample spaces of Naor and Naor [NN93]. The proof of Theorem 3.5.11
follows a similar strategy as was used in [CGH13] to derandomize the constructive Lovász
local lemma. In particular, the crucial idea that is stated in Lemma 3.5.12, is to show that
for any large obstruction there has to exist a smaller yet not too small obstruction. This
allows one to prove that in the absence of any small and medium size obstructions no large
obstructions exist either.

Theorem 3.5.11. A n−c0-approximate c logn
log(1/ε)

-wise independent random string of size n

on an alphabet of size O(ε−6) satisfies ε-matching property with a non-zero constant prob-
ability. c and c0 are sufficiently large constants.

Proof. Let S be a pseudo-random string of length n with n−c0-approximate c logn
log(1/ε)

-wise

independent symbols. Then, Step (3.12) is invalid as the proposed upper-bound does

not work for l > c logn
ε log(1/ε)

. To bound the probability of intervals of size Ω
(

c logn
ε log(1/ε)

)
not

satisfying ε-self matching property, we claim the following.

Lemma 3.5.12. Any string of size l > 100m which contains an ε-self-matching contains
two sub-intervals I1 and I2 of size m where there is a matching of size 0.99mε

2
between I1

and I2.

Using Lemma 3.5.12, one can conclude that any string of size l > 100 c logn
ε log(1/ε)

which

contains an ε-self-matching contains two sub-intervals I1 and I2 of size c logn
ε log(1/ε)

where there

is a matching of size c logn
2 log(1/ε)

between I1 and I2. Then, Step (3.12) can be revised by

bounding above the probability of a long interval having an ε-self-matching by a union
bound over the probability of pairs of its subintervals having a dense matching. Namely,
for l > 100 c logn

ε log(1/ε)
, let us denote the event of S[i, i + l) containing a ε-self-matching by

Ai,l. Then, for c0 > 3c,

Pr[Ai,l] ≤ Pr

[
S contains I1, I2 : |Ii| =

c log n

ε log(1/ε)
and LCS(I1, I2) ≥ 0.99

c log n

2 log(1/ε)

]
≤ n2

(
ε−1c log n/ log(1/ε)

0.99c log n/2 log(1/ε)

)2
[(

1

|Σ|

) 0.99c logn
2 log(1/ε)

+ n−c0

]
≤ n2

(
2.04eε−1

) 2×0.99c logn
2 log(1/ε) 2ε

6×0.99c logn
2 log(1/ε)

= 2n2 (2.04e)
0.99c logn
log(1/ε) ε

4×0.99c logn
2 log(1/ε)

= 2n2+
c ln(2.04e)
log(1/ε)

−1.98c = O
(
n−c

′
)

where first inequality follows from the fact there can be at most n2 pairs of intervals of
size c logn

ε log(1/ε)
in S and the number of all possible matchings of size c logn

log(1/ε)
between them is

at most
(
ε−1c logn/ log(1/ε)
c logn/2 log(1/ε)

)2
. Further, for small enough ε, constant c′ can be as large as one
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desires by setting constant c large enough. Thus, Step (3.12) can be revised as:

E[γ′] ≤

100c logn
ε log(1/ε)∑
l=ε−1

l ·

( e

ε
√
|Σ|

)2ε
l +

n∑
l= 100c logn

ε log(1/ε)

lPr[Ai,l]

≤
∞∑

l=ε−1

l ·

( e

ε
√
|Σ|

)2ε
l + n2 ·O(n−c

′
) ≤ O(ε+ n2−c′)

For an appropriately chosen c, 2 − c′ < 0; hence, the second term vanishes as n grows.
Therefore, the conclusion E[γ] ≤ O(ε) holds for the n−O(1)-approximate logn

log(1/ε)
-wise inde-

pendent string as well.

Proof of Lemma 3.5.12. Let M be a monotone matching of size lε or more between S and
itself containing only bad edges. We chop S into l

m
intervals of size m. On the one hand,

the size of M is greater than lε and on the other hand, we know that the size of M is
exactly

∑
i,j |Ei,j| where Ei,j denotes the number of edges between interval i and j. Thus:

lε ≤
∑
i,j

|Ei,j| ⇒
ε

2
≤
∑

i,j |Ei,j|/m
2l/m

Note that
|Ei,j |
m

represents the density of edges between interval i and interval j. Further,

Since M is monotone, there are at most 2l
m

intervals for which |Ei,j| 6= 0 and subsequently
|Ei,j |
m
6= 0. Hence, on the right hand side we have the average of 2l

m
non-zero terms which

is greater than ε/2. So, there have to be some i′ and j′ for which:

ε

2
≤ |Ei

′,j′ |
m

⇒ mε

2
≤ |Ei′,j′ |

To analyze more accurately, if l is not divisible by m, we simply throw out up to m last
elements of the string. This may decrease ε by m

l
< ε

100
.

Note that using the polynomial sample spaces of [NN93] Theorem 3.5.11 directly leads
to a deterministic algorithm for finding a string of size n with ε-self-matching property. One
simply has to check all possible points in the sample space of the n−O(1)-approximate c logn

log(1/ε)
-

wise independent strings and finds a string S with γS ≤ E[γ] = O(ε). In other words, using
a brute-force complete search, one can find a string satisfying O(ε)-self-matching property

in O
(
|Σ|

c logn
log(1/ε)

)
= nO(1) time.

Theorem 3.5.13. There is a deterministic algorithm running in nO(1) time that finds a
string of length n satisfying ε-self-matching property over an alphabet of size O(ε−6).
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3.5.3 Global Repositioning Algorithm for Insdel Errors

Now, we provide an alternative repositioning algorithms to be used along with ε-self-
matching strings (and therefore ε-synchronization strings) to form indexing solutions.
Throughout the following sections, we let ε-synchronization string S be sent as the syn-
chronization string in an instance of (n, δ)-indexing problem and string S ′ be received at
the receiving end after going under up to nδ insertions or deletions.

The algorithm works as follows. On the first round, the algorithm finds the longest
common subsequence between S and S ′. Note that this common subsequence corresponds
to a monotone matching M1 between S and S ′. On the next round, the algorithm finds
the longest common subsequence between S and the subsequence of unmatched elements
of S ′ (i.e., those that have not appeared in M1). This common subsequence corresponds
to a monotone matching between S and the elements of S ′ that do not appear in M1. The
algorithm repeats this procedure 1

β
times to obtain M1, · · · ,M1/β where β is a parameter

that we will fix later. In the output of this repositioning algorithm, the position of S ′[j]
is guessed as S[i] if S ′[j] and S[i] correspond to each other under one of the 1/β common
subsequences that the algorithm finds. Otherwise, the algorithm declares ‘⊥’. (i.e., an “I
don’t know”) A formal description of the algorithm can be found in Algorithm 3.

Note that the longest common subsequence of two strings of length O(n) can be found in
O(n2) time using dynamic programming. Therefore, the whole algorithm runs in O (n2/β).
Now we proceed to analyzing the performance of the algorithm by bounding the number
of misdecodings.

Algorithm 3 Global Repositioning Algorithm for Insertions and Deletions

Input: S, S ′

1: for i = 1 to |S ′| do
2: Position[i]← ⊥
3: for i = 1 to 1

β
do

4: Compute LCS(S, S ′)
5: for all Corresponding S[i] and S ′[j] in LCS(S, S ′) do
6: Position[j]← i

7: Remove all elements of LCS(S, S ′) from S ′

Output: Position

Theorem 3.5.14. Let di and dr denote the number of symbols inserted into and deleted
from the communication respectively. The global repositioning algorithm formalized in Al-
gorithm 3 guarantees a maximum misdecoding count of (n+di−dr)β+ ε

β
n. More specifically,

for β =
√
ε, the number of misdecodings is no larger than 3n

√
ε and running time will be

O (n2/
√
ε).

Proof. First, we claim that at most (n+di−dr)β of the symbols that have been successfully
transmitted are not matched in any of M1, · · · ,M1/β. Assume by contradiction that more
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than (n + di − dr)β of the symbols that pass through the channel successfully are not
matched in any of M1, · · · ,M1/β. Then, there exists a monotone matching of size greater
than (n+ di− dr)β between the unmatched elements of S ′ and S after 1

β
rounds of finding

and removing the longest common subsequence. This implies that each Mi has a size of
(n+di−dr)β or more. Therefore, the summation of their sizes exceeds (n+di−dr)β× 1

β
=

n+ di − dr = |S ′| which is impossible.

Furthermore, as a result of Theorem 3.5.4, each Mi contains at most εn incorrectly
matched elements. Hence, no more than ε

β
n of the matched symbols are matched to an

incorrect element (i.e., lead to and incorrect decoding). Therefore, the total number of
misdecodings can be bounded by (n+ di − dr)β + ε

β
n.

3.5.4 Global Repositioning Algorithm for Deletion Errors

We now introduce a very simple linear time streaming repositioning algorithm that guar-
antees no more than ε

1−ε · nδ misdecodings.

Let dr denote the number of symbols removed by the adversary. As adversary is re-
stricted to symbol deletions, each symbol received at the receiver corresponds to a symbol
sent by the sender. Hence, there exists a monotone matching of size |S ′| = n′ = n − dr
like M = {(t1, 1), (t2, 2), · · · , (tn−dr , n− dr)} between S and S ′ which matches each of the
received symbols to their actual positions.

Our simple streaming algorithm greedily matches S ′ to its left-most appearance in S as
a subsequence. More precisely, the algorithm matches S ′[1] to S[t′1] where t′1 is the smallest
number where S[t′1] = S ′[1]. Then, the algorithm matches S ′[2] to the smallest t′2 > t′1
where S[t′2] = S ′[2] and construct the whole matching M ′ by repeating this procedure.
Note that as there is a matching of size |S ′| between S and S ′, the size of the resulting
matching M ′ will be |S ′| as well. We claim that the following holds for this algorithm:

Theorem 3.5.15. Any ε-synchronization string along with the algorithm described in Sec-
tion 3.5.4 form a linear-time streaming solution for deletion-only (n, δ)-indexing problem
guaranteeing ε

1−ε · nδ misdecodings.

Proof. This algorithm clearly works in a streaming manner and runs in linear time. To
analyze the performance, we make use of the fact that M and M ′ are both monotone match-
ings of size |S ′| between S and S ′. Therefore, M̄ = {(t1, t′1), (t2, t

′
2), · · · , (tn−dr , t′n−dr)} is

a monotone matching between S and itself. Note that if ti 6= t′i, then the algorithm has
incorrectly decoded the index symbol i. Let p be the number of all such symbols. Then
matching M̄ consists of n − dr − p good pairs and p bad pairs. Therefore, using Theo-
rem 3.5.2 we have the following.

p ≤ ε(n− (n− dr − p))⇒ p ≤ ε(dr + p)⇒ p <
ε

1− ε
· dr
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3.5.5 Global Repositioning Algorithm for Insertion Errors

We now consider another simplified case where adversary is restricted to only inserting
symbols. We propose a decoding algorithm whose output is guaranteed to be error-free
and to contain less than nδ

1−ε misdecodings.
Assume that di symbols are inserted into the string S to turn it in into S ′ of size n+ di

on the receiving side. Again, it is clear that there exists a monotone matching M of size n
like M = {(1, t1), (2, t2), · · · , (n, tn)} between S and S ′ that matches each symbol in S ′ to
its actual position in S.

The repositioning algorithm we present, matches S[i] to S ′[t′i] in its output, M ′, if and
only if in all possible monotone matchings between S and S ′ that saturate S (i.e., are of
size |S| = n), S[i] is matched to S ′[t′i]. Note that any symbol S[i] that is matched to S ′[t′i]
in M ′ has to be matched to the same element in M ; therefore, the output of this algorithm
does not contain any incorrectly decoded indices; therefore, the algorithm is error-free.

Now, we are going to first provide a linear time approach to implement this algorithm
and then prove an upper-bound of di

1−ε on the number of misdecodings. To this end, we
make use of the following lemma:

Lemma 3.5.16. Let ML = {(1, l1), (2, l2), · · · , (n, ln)} be the monotone matching between
S and S ′ such that yields the smallest lexicographical value for l1, · · · , ln. We call ML

the left-most matching between S and S ′. Similarly, let MR = {(1, r1), · · · , (n, rn)} be the
monotone matching for which rn, · · · , r1 yields the largest possible lexicographical value.
Then S[i] is matched to S ′[t′i] in all possible monotone matchings of size n between S and
S ′ if and only if (i, t′i) ∈MR ∩ML.

This lemma can be proved by a simple contradiction argument. Our algorithm starts
by computing left-most and right-most monotone matchings between S and S ′ using the
straightforward greedy algorithm introduced in Section 3.5.4 on (S, S ′) and their reversed
versions. It then outputs the intersection of these two matchings as the answer.

This algorithm runs in linear time since the task of finding the left-most and right-most
matchings are done in linear time. To analyze this algorithm, we bound above the number
of successfully transmitted symbols that the algorithm refuses to decode, denoted by p.
To do so, we make use of the fact that n − p elements of S ′ are matched to the same
element of S in both ML and MR. As there are p elements in S that are matched to
different elements in S ′ and there is a total of n+di elements in S ′, there has to be at least
2p− [(n+ di)− (n− p)] = p− di elements in S ′ that are matched to different elements of
S under ML and MR.

Consider the following monotone matching from S to itself.

M = {(i, i) : If S[i] is matched to the same position of S ′ in both M and M ′}
∪ {(i, j) : ∃k s.t. (i, k) ∈ML, (j, k) ∈MR}

Note that monotonicity follows the fact that both ML and MR are both monotone match-
ings between S and S ′. We have shown that the size of the second set is at least p − di
and the size of the first set is by definition n − p. Also, all pairs in the first set are good
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pairs and all in the second one are bad pairs. Therefore, Theorem 3.5.2 implies that

(p− di) ≤ ε(n− (n− p))⇒ p <
di

1− ε

which proves the efficiency claim and gives the following theorem.

Theorem 3.5.17. Any ε-synchronization string along with the algorithm described in Sec-
tion 3.5.5 form a linear-time error-free solution for insertion-only (n, δ)-indexing problem
guaranteeing 1

1−ε · nδ misdecodings.

Finally, we remark that a similar non-streaming algorithm can be applied to the case
of deletion-only errors. Namely, one can compute the left-most and right-most matchings
between the received string and string that is supposed to be received and output the
common edges. By a similar argument as above, one can prove the following:

Theorem 3.5.18. Any ε-synchronization string along with the algorithm described in Sec-
tion 3.5.5 form a linear-time error-free solution for deletion-only (n, δ)-indexing problem
guaranteeing ε

1−ε · nδ misdecodings.

3.5.6 Linear-Time Near-MDS Insertion-Only and Deletion-Only
Codes

In the same manner as in Theorem 3.1.1, we can use error-free indexing solutions presented
in Theorems 3.5.17 and 3.5.18 along with near-MDS (erasure) correcting codes to derive
the following linear-time insertion-only or deletion-only errors.

Theorem 3.5.19. For any ε > 0 and δ ∈ (0, 1):

� There exists an encoding map E : Σk → Σn and a decoding map D : Σ∗ → Σk such
that if x is a subsequence of E(m) where |x| ≥ n − nδ then D(x) = m. Further
k
n
> 1 − δ − ε, |Σ| = f(ε), and E and D are explicit and have linear running times

in n.

� There exists an encoding map E : Σk → Σn and a decoding map D : Σ∗ → Σk such
that if E(m) is a subsequence of x where |x| ≤ n + nδ then D(x) = m. Further
k
n
> 1 − δ − ε, |Σ| = f(ε), and E and D are explicit and have linear running times

in n.

3.5.7 Repositioning Using the Relative Suffix Pseudo-Distance
(RSPD)

In this section, we show how one can slightly improve the constants in the results obtained
in Section 3.4.2 by replacing RSD with a related notion of “distance” between two strings
introduced in [BGMO17]. We call this notion the relative suffix pseudo-distance or RSPD
both to distinguish it from our RSD relative suffix distance and also because RSPD is not
a metric–it is neither symmetric nor satisfies the triangle inequality.
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Figure 3.2: Pictorial representation of the notation used in Lemma 3.5.22

Definition 3.5.20 (Relative Suffix Pseudo-Distance (RSPD)). Given any two strings c, c̃ ∈
Σ∗, the relative suffix pseudo-distance between c and c̃ is

RSPD (c, c̃) = min
τ :c→c̃

{
|τ1|

max
i=1

{
sc (τ1 [i, |τ1|]) + sc (τ2 [i, |τ2|])
|τ1| − i+ 1− sc (τ1 [i, |τ1|])

}}
We derive our repositioning algorithm by proving the following useful property of ε-

synchronization strings.

Lemma 3.5.21. Let S ∈ Σn be an ε-synchronization string and c̃ ∈ Σm. Then there exists
at most one c ∈

⋃n
i=1 S[1..i] such that RSPD(c, c̃) ≤ 1− ε.

Before proceeding to the proof of Lemma 3.5.21, we prove the following lemma.

Lemma 3.5.22. Let RSPD(S, T ) ≤ 1− ε, then:

1. For every 1 ≤ s ≤ |S|, there exists t such that

ED (S[s, |S|], T [t, |T |]) ≤ (1− ε)(|S| − s+ 1).

2. For every 1 ≤ t ≤ |T |, there exists s such that

ED (S[s, |S|], T [t, |T |]) ≤ (1− ε)(|S| − s+ 1).

Proof. Each part will be proved separately.

Part 1. Let τ be the string matching that attains the minimization in the defini-
tion of RSPD(S, T ). There exist some r such that del(τ1 [r, |τ1|]) = S[s, |S|]. Note
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that del(τ2[r, |τ2|]) is a suffix of T . Therefore, there exists some t such that T [t, |T |] =
del(τ2[r, |τ2|]). Now,

ED(S[s, |S|], T [t, |T |]) ≤ sc(del(τ1 [r, |τ1|])) + sc(del(τ2 [r, |τ1|]))

=
sc(del(τ1 [r, |τ1|])) + sc(del(τ2 [r, |τ1|]))

|τ1| − r + 1− sc(τ1[r, |τ1|])
(3.13)

·(|τ1| − r + 1− sc(τ1[r, |τ1|]))
≤ RSPD(S, T ) · (|S| − s+ 1)

≤ (1− ε) · (|S| − s+ 1) (3.14)

Part 2. Similarly, let τ be the string matching yielding RSPD(S, T ). There exists some
r such that del(τ2 [r, |τ2|]) = T [t, |T |]. Now, del(τ1[r, |τ1|]) is a suffix of S. Therefore, there
exists some s such that S[s, |S|] = del(τ1[r, |τ1|]). Now, all the steps we took to prove
equation (3.14) hold and the proof is complete.

Algorithm 4 Minimum RSPD Decoding Algorithm (Guessing the position of the last
symbol of the received string)

Input: A received message c̃ ∈ Σm and an ε-synchronization string S ∈ Σn

1: ans← ∅
2: for Any prefix c of S do

3: d[i][j][l]← minτ :c(i)→c̃(j)
sc(τ1)=l

max
|τ1|
k=1

sc(τ1[k..|τ1|])+sc(τ2[k..|τ2|])
|τ1|−k+1+sc(τ1[k..|τ1|])

4: RSPD(c, c̃)← min
|c̃|
l′=0 d[i][|c̃|][l′]

5: if RSPD(c, c̃) ≤ 1− ε then
6: ans← c

Output: ans

Proof of Lemma 3.5.21. For a contradiction, suppose that there exist c̃, l and l′ such that
l < l′, RSPD(S[1, l], c̃) ≤ 1 − ε and RSPD(S[1, l′], c̃) ≤ 1 − ε. Now, using part 1 of
Lemma 3.5.22, there exists k such that ED (S[l + 1, l′], c̃[k, |c̃|]) ≤ (1− ε)(l′ − l). Further,
part 2 of Lemma 3.5.22 gives that there exist l′′ such that ED (S[l′′ + 1, l], c̃[k, |c̃|]) ≤
(1− ε)(l − l′′). Hence,

ED(S[l+1, l′], S[l′+1, l′′]) ≤ ED(S[l+1, l′], c̃[k, |c̃|])+ED(S[l′+1, l′′], c̃[k, |c̃|]) ≤ (1−ε)(l′−l′′)

which contradicts the fact that S is an ε-synchronization string.

In the same spirit as Section 3.4.2, one can develop a repositioning algorithm based
on Lemma 3.5.21 that works as follows: upon arrival of each symbol, find a prefix of
synchronization index string S that has the smallest RSPD to the string that is received
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so far (denoted by c̃). We call this algorithm the minimum RSPD decoding algorithm.
Theorems 3.5.23 and 3.5.24 describe the computational complexity and misdecoding count
of such repositioning algorithm.

Theorem 3.5.23. Let S ∈ Σn be an ε-synchronization string, and c̃ ∈ Σm. Then
Algorithm 4, given input S and c̃, either returns the unique prefix c of S such that
RSPD(c, c̃) ≤ 1 − ε or returns ⊥ if no such prefix exists. Moreover, Algorithm 4 runs
in O(n4) time. Therefore, using it over each received symbol to guess the position of all
symbols of a communication, one derives a repositioning algorithm that runs in O(n5) time.

Proof. To find c, we calculate the RSPD of c̃ and all prefixes of S one by one. We only
need to show that the RSPD of two strings of length at most n can be found in O(n3).
We do this using dynamic programming. Let us try to find RSPD(s, t). Further, let s(i)
represent the suffix of s of length i and t(j) represent the suffix of t of length j. Now, let
d[i][j][l] be the minimum string matching (τ1, τ2) from s(i) to t(j) such that sc(τ1) = l. In
other words,

d[i][j][l] = min
τ :s(i)→t(j)
sc(τ1)=l

|τ1|
max
k=1

sc (τ1 [k.. |τ1|]) + sc (τ2 [k.. |τ2|])
|τ1| − k + 1 + sc (τ1 [k.. |τ1|])

,

where τ is a string matching for s(i) and t(j). Note that for any τ : s(i)→ t(j), one of the
following three scenarios might happen:

1. τ1(1) = τ2(1) = s (|s| − (i− 1)) = t(|t| − (j − 1)): In this case, removing the first
elements of τ1 and τ2 gives a valid string matching from s(i− 1) to t(j − 1).

2. τ1(1) = ∗ and τ2(1) = t(|t| − (j − 1)): In this case, removing the first element of τ1

and τ2 gives a valid string matching from s(i) to t(j − 1).

3. τ2(1) = ∗ and τ1(1) = s(|s| − (i − 1)): In this case, removing the first element of τ1

and τ2 gives a valid string matching from s(i− 1) to t(j).

This implies that

d[i][j][l] = min

{
d[i− 1][j − 1][l] (Only if s(i) = t(j)),

max

{
d[i][j − 1][l − 1],

l + (j − (i− l))
(i+ l) + l

}
,

max

{
d[i− 1][j][l],

l + (j − (i− l))
(i+ l) + l

}}
.

Hence, one can find RSPD(s, t) by minimizing d[|s|][|t|][l] over all possible values of l, as
Algorithm 4 does in Step 4 for all prefixes of S. Finally, Algorithm 4 returns the prefix c
such that RSPD(c, c̃) ≤ 1− ε if one exists, and otherwise it returns ⊥.
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We conclude by showing that if an ε-synchronization string of length n is used along
with the minimum RSPD algorithm, the number of misdecodings will be at most nδ

1−ε .

Theorem 3.5.24. Suppose that S is an ε-synchronization string of length n over alphabet
Σ that is sent over an insertion-deletion channel with ci insertions and cd deletions. Repo-
sitioning via using Algorithm 4 to guess the position of each received symbol results into no
more than ci

1−ε + cdε
1−ε misdecodings.

Proof. The proof of this theorem is similar to the proof of Theorem 3.4.10. Let prefix
S[1, i] be sent through the channel and Sτ [1, j] be received on the other end as the result
of adversary’s set of actions τ . Further, assume that Sτ [j] is successfully transmitted and
is actually S[i] sent by the other end. We first show that RSPD(S[1, i], S ′[1, j]) is less than
the relative suffix error density:

RSPD(S[1, i], S ′[1, j]) = min
τ̃ :c→c̃

{
|τ̃1|

max
k=1

{
sc (τ̃1 [k, |τ̃1|]) + sc (τ̃2 [k, |τ̃2|])
|τ̃1| − k + 1− sc (τ̃1 [k, |τ̃1|])

}}
≤

|τ1|
max
k=1

{
sc (τ1 [k, |τ1|]) + sc (τ2 [k, |τ2|])
|τ1| − k + 1− sc (τ1 [k, |τ1|])

}
= max

j≤i

E(j, i)

i− j
= Relative Suffix Error Density

Now, using Theorem 3.4.14, we know that the relative suffix error density is smaller than
1− ε upon arrival of all but at most ci+dd

1−ε − cd of successfully transmitted symbols. Along
with Lemma 3.5.21, this results into the conclusion that the minimum RSPD decoding
algorithm guarantees no more than ci

1−ε + cd
(

1
1−ε − 1

)
misdecodings.
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Chapter 4

List-Decodable Codes via Indexing

In this chapter, we study codes that are list-decodable under insertions and deletions.
Specifically, we consider the setting where, given a codeword x of length n over some
finite alphabet Σ of size q, δ · n codeword symbols may be adversarially deleted and γ · n
symbols may be adversarially inserted to yield a corrupted word w. A code is said to
be list-decodable if there is an (efficient) algorithm that, given w, reports a small list of
codewords that include the original codeword x. Given δ and γ we study what is the rate
R for which there exists a constant q and list size L such that there exist codes of rate R
correcting δ-fraction insertions and γ-fraction deletions while reporting lists of size at most
L.

Using the concept of synchronization strings, introduced in Chapter 3, we show some
surprising results. We show that for every 0 ≤ δ < 1, every 0 ≤ γ < ∞ and every
ε > 0 there exist codes of rate 1− δ − ε and constant alphabet (so q = Oδ,γ,ε(1)) and sub-
logarithmic list sizes. Furthermore, these codes are accompanied by efficient (polynomial
time) decoding algorithms. We stress that the fraction of insertions can be arbitrarily large
(more than 100%), and the rate is independent of this parameter.

Our result sheds light on the remarkable asymmetry between the impact of insertions
and deletions from the point of view of error-correction: Whereas deletions cost in the rate
of the code, insertion costs are borne by the adversary and not the code! Our results also
highlight the dominance of the model of insertions and deletions over the Hamming model:
A Hamming error is equal to one insertion and one deletion (at the same location). Thus
the effect of δ-fraction Hamming errors can be simulated by δ-fraction of deletions and
δ-fraction of insertions — but insdel codes can deal with much more insertions without
loss in rate (though at the price of higher alphabet size).

57



4.1 Introduction

We study the complexity of “insdel coding”, i.e., codes designed to recover from insertion
and deletion of characters, under the model of “list-decoding”, i.e., when the decoding
algorithm is allowed to report a (short) list of potential codewords that is guaranteed to
include the transmitted word if the number of errors is small enough. The results presented
in Chapter 3 have shown major progress leading to tight, or nearly tight, bounds on central
parameters of codes (with efficient encoding and decoding algorithms as well) under the
setting of unique decoding. This chapter complements the results of Chapter 3 by exploring
the list-decoding versions of these questions. In the process, the results of this chapter also
reveal some striking features of the insdel coding problem that were not exposed by previous
works. To explain some of this, we introduce our model and lay out some of the context
below.

4.1.1 Insdel Coding and List Decoding

The principal question we ask is “what is the rate of a code that can recover from γ fraction
insertions and δ fraction deletions over a sufficiently large alphabet?”. Once the answer to
this question is determined we ask how small an alphabet suffices to achieve this rate. The
terms “rate”, “alphabet”, and “recovery” are defined similar to the unique-decoding case.
An insdel encoder over alphabet Σ of block length n is an injective function E : Σk → Σn.
The associated “code” is the image of the function C. The rate of a code is the ratio
k/n. We say that an insdel code C is (γ, δ, L(n))-list-decodable if there exists a function
D : Σ∗ → 2C such that |D(w)| ≤ L(n) for every w ∈ Σ∗ and for every codeword x ∈ C and
every word w obtained from x be δ ·n deletions of characters in x followed by γ ·n insertions,
it is the case that x ∈ D(w). In other words the list-decoder D outputs a list of at most
L(n) codewords that is guaranteed to include the transmitted word x if the received word
w is obtained from x by at most δ-fraction deletions and γ-fraction insertions. Our primary
quest in this chapter is the largest rate R for which there exists an alphabet of size q , |Σ|
and an infinite family of insdel codes of rate at least R, that are (γ, δ, L(n))-list-decodable.
Of course we are interested in results where L(n) is very slowly growing with n (if at all).
In the results below we get L(n) which is polynomially large in terms of n. Furthermore,
when a given rate is achievable we seek codes with efficient encoder and decoder (i.e., the
functions E and D are polynomial time computable).

Previous Work. The list-decoding model was first introduced by Elias [Eli57] and
Wozencraft [Woz58] for Hamming-type errors. Several breakthroughs for list-decoding
from Hamming-type errors have been made ever since. Notably, the first efficient list-
decoding procedure was designed for Reed-Solomon codes by Sudan [Sud97]. However, very
few works have considered list-decoding for insertion-deletion codes. A work by Wachter-
Zeh [WZ18] provides Johnson-like upper-bounds for insertions and deletions, i.e., bounds
on the list size in terms of the minimum edit-distance of a given code. Moreover, for
Varshamov-Tenengolts codes, [WZ18] presents lower bounds on the maximum list size as
well as a list-decoding algorithm against a constant number of insertions and deletions.
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Follow-up work by Hayashi and Yasunaga [HY18] corrected some subtle but crucial bugs
in [WZ18] and reproved a corrected Johnson Bound for insdel codes. They also showed that
the codes of [BGH17] could be list-decoded from a fraction ≈ 0.707 of insertions. Lastly,
via a concatenation scheme used in [GW17, GL16] they furthermore made these codes
efficient. A recent work of Liu, Tjuawinata, and Xing [LTX19] also provides efficiently
list-decodable insertion-deletion codes and derives a Zyablov-type bound.

4.1.2 Our Results

We now present our results on the rate and alphabet size of insdel coding under list-
decoding. Two points of contrast that we use below are corresponding bounds in (1) the
Hamming error setting for list-decoding and (2) the insdel coding setting with unique-
decoding.

Rate Under List Decoding

Our main theorem for list-decoding shows that, given γ, δ, ε ≥ 0 there is a q = qε,γ and
a slowly growing function L = Lε,γ(n) such that there are q-ary insdel codes that achieve
a rate of 1 − δ − ε that are (γ, δ, L(n))-list decodable. Furthermore, the encoding and
decoding are efficient! The formal statement of the main result is as follows.

Theorem 4.1.1. For every 0 < δ, ε < 1 and γ > 0, there exist a family of list-decodable
insdel codes that can protect against δ-fraction of deletions and γ-fraction of insertions and

achieves a rate of at least 1−δ−ε or more over an alphabet of size
(
γ+1
ε2

)O( γ+1

ε3
)

= Oγ,ε (1).
These codes are list-decodable with lists of size Lε,γ(n) = exp (exp (exp (log∗ n))), and have
polynomial time encoding and decoding complexities.

The rate in the theorem above is immediately seen to be optimal even for γ = 0. In
particular an adversary that deletes the last δ · n symbols already guarantees an upper
bound on the rate of 1− δ.

We now contrast the theorem above with the two contrasting settings listed earlier.
Under unique decoding the best possible rate that can be achieved with δ-fraction deletions
and γ-fraction insertions is upper bounded by 1 − (γ + δ). Matching constructions have
been achieved, only recently, by this body of work (see Chapter 3). In contrast our rate
has no dependence on γ and thus dominates the above result. The only dependence on γ is
in the alphabet size and list-size and we discuss the need for this dependence later below.

We now turn to the standard “Hamming error” setting: Here an adversary may change
an arbitrary δ-fraction of the codeword symbols. In this setting it is well-known that given
any ε > 0, there are constants q = q(ε) and L = L(ε) and an infinite family of q-ary codes
of rate at least 1− δ− ε that are list-decodable from δ fraction errors with list size at most
L. In a breakthrough from the last decade, Guruswami and Rudra [GR08] showed explicit
codes that achieve this with efficient algorithms. The state-of-the-art results in this field
yield list size L(n) = o(log(r) n) for any integer r where log(r) is the rth iterated logarithm

and alphabet size 2Õ(ε−2) [GX17], which are nearly optimal.
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The Hamming setting with δ-fraction errors is clearly a weaker setting than the setting
with δ-fraction deletions and γ ≥ δ fraction of insertions in that an adversary of the latter
kind can simulate the former. (A Hamming error is a deletion followed by an insertion at the
same location.) The insdel setting is thus stronger in two senses: it allows γ > δ and gives
greater flexibility to the adversary in choosing locations of insertions and deletions. Yet
our theorem shows that the stronger adversary can still be dealt with, without qualitative
changes in the rate. The only difference is in the dependence of q and L on γ, which we
discuss next.

We briefly remark at this stage that, while this chapter simultaneously “dominates”
the results of Chapter 3 of this body of work as well as Guruswami and Rudra [GR08], this
happens because we use both of these as ingredients in this chapter. We elaborate further
on this in Section 4.3. Indeed our first result (see Theorem 4.3.1) shows how we can obtain
Theorem 4.1.1 by using capacity achieving “list-recoverable codes” in combination with
synchronization strings in a modular fashion.

We will show in Chapter 9 that codes from Theorem 4.1.1 can be used to reduce the
decoding complexity of the Singleton-bound achieving codes from Theorem 3.1.1 to near-
linear time.

4.2 Definitions and Preliminaries

4.2.1 Synchronization Strings

In this section, we briefly recapitulate synchronization strings and core ideas around coding
via indexing from Chapter 3 for the sake of convenience. Readers familiar with Chapter 3
may skip this section.

Introduced in Chapter 3, synchronization strings are mathematical objects that are
very useful in overcoming synchronization errors. The general idea to obtain resilience
against synchronization errors in various communication setups is to index each symbol of
the communication with symbols of a synchronization string and then guessing the actual
position of received symbols on the other side using the indices.

Suppose that two parties are communicating over a channel that suffers from α-fraction
of insertions and deletions and one of the parties sends a pre-shared string S of length n
to the other one. A distorted version of S will arrive at the receiving end that we denote
by S ′. A symbol S[i] is called to be a successfully transmitted symbol if it is not removed
by the adversary. A repositioning algorithm on the receiving side is an algorithm that,
for any received symbol, guesses its actual position in S by either returning a number in
[1..n] or > which means the algorithm is not able to guess the position of that symbol. For
such a decoding algorithm, a successfully transmitted symbol whose index is not guessed
correctly by the decoding algorithm is called a misdecoding. For the sake of convenience,
we restate some of the useful definitions and theorems from Chapter 3.

Definition 4.2.1 (ε-synchronization string (Definition 3.4.4)). String S ∈ Σn is an ε-
synchronization string if for every 1 ≤ i < j < k ≤ n+1 we have that ED (S[i, j), S[j, k)) >
(1− ε)(k − i).
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It is shown in Chapter 3 that ε-synchronization strings exist over alphabets of size
poly (ε−1) and can be efficiently constructed. An important property of ε-synchronization
strings discussed in Chapter 3 is the self matching property defined as follows.

Definition 4.2.2 (ε-self-matching property (Definition 3.5.3)). String S satisfies ε-self-
matching property if for any two sequences of indices 1 ≤ a1 < a2 < · · · < ak ≤ |S| and
1 ≤ b1 < b2 < · · · < bk ≤ |S| that satisfy S[ai] = S[bi] and ai 6= bi, k is smaller than ε|S|.

In the end, we review the following theorem from Chapter 3 that shows the close
connection between synchronization string property and the self-matching property.

Theorem 4.2.3 (Restatement of Theorem 3.5.4). If S is an ε-synchronization string, then
all substrings of S satisfy ε-self-matching property.

4.2.2 List Recoverable Codes

A code C given by the encoding function E : Σnr → Σn is called to be (α, l, L)-list recov-
erable if for any collection of n sets S1, S2, · · · , Sn ⊂ Σ of size l or less, there are at most
L codewords for which more than αn elements appear in the list that corresponds to their
position, i.e.,

|{x ∈ C | |{i ∈ [n] | xi ∈ Si}| ≥ αn}| ≤ L.

The study of list-recoverable codes was inspired by Guruswami and Sudan’s list-decoder
for Reed-Solomon codes [GS99]. Since then, list-recoverable codes have became a very
useful tool in coding theory [GI01, GI02, GI03, GI04] and there have been a variety of
constructions provided for them by several works [GR08, GW11, GX13, Kop15, HW18,
GX17, HRZW19, KRR+19]. In this chapter, we will make use of the following capacity-
approaching polynomial-time list-recoverable codes given by Hemenway, Ron-Zewi, and
Wootters [HRZW19] that is obtained by modifying the approach of Guruswami and
Xing [GX13].

Theorem 4.2.4 (Hemenway et. al. [HRZW19, Theorem A.7]). Let q be an even power
of a prime, and choose l, ε > 0, so that q ≥ ε−2. Choose ρ ∈ (0, 1). There is an mmin =
O(l logq(l/ε)/ε

2) so that the following holds for all m ≥ mmin. For infinitely many n

(all n of the form qe/2(
√
q− 1) for any integer e), there is a deterministic polynomial-time

construction of an Fq-linear code C : Fρnqm → Fnqm of rate ρ and relative distance 1−ρ−O(ε)
that is (1− ρ− ε, l, L)-list-recoverable in time poly(n, L), returning a list that is contained

in a subspace over Fq of dimension at most
(
l
ε

)2log∗(mn)

.

4.3 List Decoding for Insertions and Deletions

In this section, we prove Theorem 4.1.1 by constructing a list-decodable code of rate
1− δ − ε that provides resilience against 0 < δ < 1 fraction of deletions and γ fraction of
insertions over a constant-sized alphabet. Our construction heavily relies on the following
theorem that, in the same fashion as Chapter 3, uses the technique of indexing an error
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correcting code with a synchronization string to convert a given list-recoverable code into
an insertion-deletion code.

Theorem 4.3.1. Let C : ΣnR → Σn be a (α, l, L)-list recoverable code with rate R, encoding
complexity TEnc and decoding complexity complexity TDec. For any ε > 0 and γ ≤ lε

2
− 1,

by indexing C with an ε2

4(1+γ)
-synchronization string, one can obtain an L-list decodable

insertion-deletion code C ′ : Σnr → [Σ × Γ]n that corrects from δ < 1 − α − ε fraction of

deletions and γ fraction of insertions where |Γ| = (ε2/(1 + γ))
−O(1)

. C ′ is encodable and
decodable in O(TEnc + n) and O(TDec + n2(1 + γ2)/ε) time respectively.

We take two major steps to prove Theorem 4.3.1. In the first step (Theorem 4.3.3),
we use the synchronization string indexing technique from Chapter 3 and show that by
indexing the symbols that are conveyed through an insertion-deletion channel with symbols
of a synchronization string, the receiver can make lists of candidates for any position of the
sent string such that 1− δ− ε fraction of lists are guaranteed to contain the actual symbol
sent in the corresponding step and the length of the lists is guaranteed to be smaller than
some constant Oγ,ε(1).

In the second step, we use list-recoverable codes on top of the indexing scheme to obtain
a list decoding using lists of candidates for each position produced by the former step.

We start by the following lemma that directly implies the first step stated in Theo-
rem 4.3.3.

Lemma 4.3.2. Assume that a sequence of n symbols denoted by x1x2 · · ·xn is indexed with
an ε-synchronization string and is communicated through a channel that suffers from up
to δn deletions for some 0 ≤ δ < 1 and γn insertions. Then, on the receiving end, it
is possible to obtain n lists A1, · · · , An such that, for any desired integer K, for at least
n ·
(
1− δ − 1+γ

K
−K · ε

)
of them, xi ∈ Ai. All lists contain up to K elements and the

average list size is at most 1 + γ. These lists can be computed in O (K(1 + γ)n2) time.

Proof. The decoding algorithm we propose to obtain the lists that satisfy the guarantee
promised in the statement is the global algorithm introduced in Theorem 3.5.14.

Let S be the ε-synchronization string used for indexing and S ′ be the index portion of
the received string on the other end. Note that S is pre-shared between the sender and
the receiver. The decoding algorithm starts by finding a longest common substring M1

between S and S ′ and adding the position of any matched element from S ′ to the list that
corresponds to its respective match from side S. Then, it removes every symbol that have
been matched from S ′ and repeats the previous step by finding another longest common
subsequence M2 between S and the remaining elements of S ′. This procedure is repeated
K times to obtain M1, · · · ,MK . This way, lists Ai are formed by including every element
in S ′ that is matched to S[i] in any of M1, · · · ,MK .

Ai contains the actual element that corresponds to S[i], denoted by S ′[j], if and only
if S[i] is successfully transmitted (i.e., not removed by the adversary), appears in one of
Mks, and matches to S[i] in Mk. Hence, there are three scenarios under which Ai does not
contain its corresponding element S[i].

1. S[i] gets deleted by the adversary.
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2. S[i] is successfully transmitted but, as S ′[j] on the other side, it does not appear on
any of Mks.

3. S[i] is successfully transmitted and, as S ′[j] on the other side, it appears in some Mk

although it is matched to another element of S.

The first case happens for at most δn elements as adversary is allowed to delete up to
δn many elements.

To analyze the second case, note that the sizes of Mks descend as k grows since we pick
the longest common subsequence in each step. If by the end of this procedure p successfully
transmitted symbols are still not matched in any of the matchings, they form a common
subsequence of size p between S and the remainder of S ′. This leads to the fact that
|M1|+ · · ·+ |MK | ≥ K · p. As |M1|+ · · ·+ |MK | cannot exceed |S ′|, we have p ≤ |S ′|/K.
This bounds above the number of symbols falling into the second category by |S ′|/K.

Finally, as for the third case, we draw the reader’s attention to the fact that each
successfully transmitted S[i] which arrives at the other end as S ′[j] and mistakenly gets
matched to another element of S like S[k] in some Mt, implies that S[i] = S[k]. We call
the pair (i, k) a pair of similar elements in S implied by Mt. Note that there is an actual
monotone matching M ′ from S to S ′ that corresponds to adversary’s actions. As Mt and
M ′ are both monotone, the set of similar pairs in S implied by Mt is a self-matching in S.
As stated in Theorem 4.2.3, the number of such pairs cannot exceed nε. Therefore, there
can be at most nε successfully transmitted symbols that get mistakenly matched in Mt for
any t. Hence, the number of elements falling into the third category is at most nKε.

Summing up all above-mentioned bounds gives that the number of bad lists can be
bounded above by the following.

nδ +
|S ′|
K

+ nKε ≤ n

(
δ +

1 + γ

K
+Kε

)
This proves the list quality guarantee. As proposed decoding algorithm computes longest

common substring K many times between two strings of length n and (1 + γ)n or less, it
will run in O(K(1 + γ) · n2) time.

Theorem 4.3.3. Suppose that n symbols denoted by x1, x2, · · · , xn are being communicated
through a channel suffering from up to δn deletions for some 0 ≤ δ < 1 and γn insertions
for some constant γ ≥ 0. If one indexes these symbols with an ε′ = ε2

4(1+γ)
-synchronization

string, then, on the receiving end, it is possible to obtain n lists A1, · · · , An of size 2(1+γ)/ε
such that, for at least n · (1− δ − ε) of them, xi ∈ Ai. These lists can be computed in
O (n2(1 + γ)2/ε) time.

Proof. Using an ε′ = ε2

4(1+γ)
-synchronization string in the statement of Lemma 4.3.2 and

choosing K = 2(1+γ)
ε

directly gives that the runtime is O (n2(1 + γ)2/ε) and list hit ratio
is at least

n ·
(

1− δ − 1 + γ

K
−K · ε′

)
= n · (1− δ − ε/2− ε/2) = n · (1− δ − ε)
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Theorem 4.3.3 facilitates the conversion of list-recoverable error correcting codes into
list-decodable insertion-deletion codes as stated in Theorem 4.3.1.

Proof of Theorem 4.3.1. To prove this, we simply index code C with an ε′ = ε2

4(1+γ)

synchronization string. In the decoding procedure, according to Theorem 4.3.3, the receiver
can use the index portion of the received symbol to maintain lists of up to 2(1 + γ)/ε ≤ l
candidates for each position of the sent codeword of C so that 1−δ−ε > α fraction of those
contain the actual corresponding sent message. Having such lists, the receiver can use the
decoding function of C to obtain an L-list-decoding for C ′. Finally, the alphabet size and
encoding complexity follow from the fact that synchronization strings over alphabets of
size ε′−O(1) can be constructed in linear time (see Chapter 8).

One can use any list-recoverable error correcting code to obtain insertion-deletion codes
according to Theorem 4.3.1. In particular, using the efficient capacity-approaching list-
recoverable code introduced by Hemenway, Ron-Zewi, and Wootters [HRZW19], one ob-
tains the insertion-deletion codes as described in Theorem 4.1.1.

Proof of Theorem 4.1.1. By setting parameters ρ = 1 − δ − ε
2
, l = 2(γ+1)

ε
, and ε = ε

4

in Theorem 4.2.4, one can obtain a family of codes C that achieves rate ρ = 1 − δ −
ε
2

and is (α, l, L)-recoverable in polynomial time for α = 1 − δ − ε/4 and some L =
exp (exp (exp (log∗ n))) (by treating γ and ε as constants). Such family of codes can be

found over an alphabet ΣC of size q = (l/ε)O(l/ε2) =
(
γ+1
ε2

)O( γ+1

ε3
)

= Oγ,ε(1) or infinitely
many integer numbers larger than q.

Plugging this family of codes into the indexing scheme from Theorem 4.3.1 by choosing
the parameter ε′ = ε

4
, one obtains a family of codes that can recover from 1 − α − ε′ =

1− (1− δ − ε/4)− ε/4 = δ fraction of deletions and γ-fraction of insertions and achieves
a rate of

1− δ − ε/2
1 + log|ΣS |

log|ΣC |

which, by taking |ΣC| large enough in terms of ε, is larger than 1−δ−ε. As C is encodable
and decodable in polynomial time, the encoding and decoding complexities of the indexed
code will be polynomial as well.

Remark 4.3.4. We remark that by using capacity-approaching near-linear-time list-
recoverable code introduced in Theorem 7.1 of Hemenway, Ron-Zewi, and Woot-
ters [HRZW19] in the framework of Theorem 4.3.1, one can obtain similar list-decodable
insertion-deletion codes as in Theorem 4.1.1 with a randomized quadratic time decoding.
Further, one can use the efficient list-recoverable in the recent work of Guruswami and
Xing [GX17] to obtain same result as in Theorem 4.1.1 except with polylogarithmic list
sizes.
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Chapter 5

Optimally Resilient List-Decodable
Synchronization Codes

In this Chapter, we give a complete answer to the following basic question: “What is the
maximal fraction of deletions or insertions tolerable by q-ary list-decodable codes with
non-vanishing information rate?”

This question has been open even for binary codes, including the restriction to the
binary insertion-only setting, where the best-known result was that a γ ≤ 0.707 fraction
of insertions is tolerable by some binary code family.

For any desired ε > 0, we construct a family of binary codes of positive rate which can
be efficiently list-decoded from any combination of γ fraction of insertions and δ fraction
of deletions as long as γ + 2δ ≤ 1 − ε. On the other hand, for any γ, δ with γ + 2δ = 1
list-decoding is impossible. Our result thus precisely characterizes the feasibility region of
binary list-decodable codes for insertions and deletions.

We further generalize our result to codes over any finite alphabet of size q. Surprisingly,
our work reveals that the feasibility region for q > 2 is not the natural generalization of the
binary bound above. We provide tight upper and lower bounds that precisely pin down
the feasibility region, which turns out to have a (q − 1)-piece-wise linear boundary whose
q corner-points lie on a quadratic curve.

The main technical work in the results of this chapter is proving the existence of code
families of sufficiently large size with good list-decoding properties for any combination of
δ, γ within the claimed feasibility region. We achieve this via an intricate analysis of codes
introduced by Bukh and Ma [BM14]. Finally, we give a simple yet powerful concatenation
scheme for list-decodable insertion-deletion codes which transforms any such (non-efficient)
code family (with vanishing information rate) into an efficiently decodable code family with
constant rate.
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5.1 Introduction

Error correcting codes have the ability to efficiently correct large fractions of errors while
maintaining a large communication rate. The fundamental trade-offs between these two
conflicting desiderata have been intensely studied in information and coding theory. Algo-
rithmic coding theory has further studied what trade-offs can be achieved efficiently, i.e.,
with polynomial time encoding and decoding procedures

As stated and discussed earlier on in this thesis, while codes for Hamming errors and the
Hamming metric are quite well understood, insdel codes have largely resisted such progress.
A striking example of a basic question that is open in the context of synchronization errors
is the determination of the maximal fraction of deletions or insertions a unique- or list-
decodable binary code with non-vanishing rate can tolerate. That is, we do not even know
at what fraction of errors the rate/distance tradeoff for insdel codes hits zero rate. These
basic and intriguing questions are open even if one just asks about the existence of codes,
irrespective of computational considerations, and even when restricted to the insertion-only
setting.

In this chapter, we fully answer these questions for list-decodable binary codes and more
generally for codes over any alphabet of a fixed size q. Our results are efficient and work
for any combination of insertions and deletions from which list decoding is information-
theoretically feasible at all.

5.1.1 Prior Results and Related Works

We now give an overview of the previous works related to the main thrust of this chapter,
namely the maximal tolerable fraction of worst-cast deletions or insertions for unique- and
list-decodable code families with non-vanishing rate.

Unique Decoding. Let us first review the situation for unique decoding, where the
decoder must determine the original transmitted codeword. For unique decoding of binary
codes, the maximal tolerable fraction of deletions is easily seen to be at most 1

2
because

otherwise either all zeros or all ones in a transmitted codeword can be deleted. (For q-
ary codes, this fraction becomes 1 − 1/q.) On the other hand, for a long time the best
(existential) possibility results for unique-decodable binary codes stemmed from analyzing
random binary codes.

In the Hamming setting, random codes often achieve the best known parameters and
trade-offs, and a lot of effort then goes into finding efficient constructions and decoding
algorithms for codes that attempt to come close to the random constructions. However, the
edit distance is combinatorially intricate and even analyzing the expected edit distance of
two random strings, which is the first step in analyzing random codes, is highly non-trivial.

Lueker [Lue09], improving upon earlier results by Danč́ık and Paterson [Dan94, DP95],
proved that the expected fractional length of the longest common subsequence between
two random strings lies between 0.788071 and 0.826280 (the exact value is still unknown).
Using this, one can show that a random binary code of positive rate can tolerate between
0.23 and 0.18 fraction of deletions or insertions. Edit distance of random q-ary strings
were studied by Kiwi, Loebl, and Matous̃ek [KLM05], leading to positive rate random

66



codes by Guruswami and Wang [GW17] that correct 1 − Θ( 1√
q
) fraction of deletions for

asymptotically large q. Because random codes do not have efficient decoding and encoding
procedures these results were purely existential. Computationally efficient binary codes
of non-vanishing rate tolerating some small unspecified constant fraction of insertions and
deletions were given by Schulman and Zuckerman [SZ99]. Guruswami and Wang [GW17]
gave binary codes that could correct a small constant fraction of deletions with rate ap-
proaching 1, and this was later extended to handle insertions as well [GL16].

In the regime of low-rate and large fraction of deletions, Bukh and Guruswami [BG16]
gave a q-ary code construction that could tolerate up to a q−1

q+1
fraction of deletions, which is

1
3

for binary codes. Note that this beats the performance of random codes. Together with

H̊astad [BGH17] they later improved the deletion fraction to 1− 2
q+
√
q

or
√

2− 1 ≈ 0.414

for binary codes. This remains the best known result for unique-decodable codes and
determining whether there exist binary codes capable of correcting a fraction of deletions
approaching 1

2
remains a fascinating open question.

List decoding. The situation for list-decodable codes over small alphabets is equally
intriguing. In list-decoding, one relaxes the decoding requirement from having to output
the codeword that was sent to having to produce a (polynomially) small list of codewords
which includes the correct one. The trivial limit of 1/2 fraction deletions for unique-
decoding binary codes applies equally well for list-decoding. In their paper, Guruswami
and Wang [GW17] showed that this limit can be approached by efficiently list-decodable
binary codes. Similarly, q-ary codes list-decodable from a deletion fraction approaching
the optimal 1− 1/q bound can be constructed.

However, the situation was not well understood when insertions are also allowed. It
had already been observed by Levenshtein [Lev65] that (at least existentially) insertions
and deletions are equally hard to correct for unique-decoding, in that if a code can correct
t deletions then it can also correct any combination of t insertions and deletions. This
turns out to be not true for list-decoding. This was demonstrated pointedly in Chapter 4,
where it is shown that arbitrary large γ = O(1) fractions of insertions (possibly exceeding
1) can be tolerated by list-decodable codes over sufficiently large constant alphabets (see
Theorem 4.1.1), whereas the fraction of deletions δ is clearly bounded by 1. Indeed, the
fraction of insertions γ does not even factor into the rate of these list-decodable insertion-
deletion codes—this rate can approach the optimal bound of 1− δ where δ is the deletion
fraction. The result in Chapter 4, however, applies only to sufficiently large constant
alphabet sizes, and does not shed any light on the list-decodability of binary (or any fixed
alphabet) insdel codes.

Considering a combination of insertions and deletions, the following bound is not hard
to establish.

Proposition 5.1.1. For any integer q and any δ, γ ≥ 0 with δ
1− 1

q

+ γ
q−1
≥ 1 there is no

family of constant rate codes of length n which are list-decodable from δn deletions and γn
insertions.

For the case of insertion-only binary codes, the above limits the maximum fraction of
insertions to 100%, which is twice as large as the best possible deletion fraction of 1/2.
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Turning to existence/constructions of list-decodable codes for insertions, recall that the
codes of Bukh, Guruswami, H̊astad (BGH) could unique-decode (and thus also list-decode)
a fraction of 0.414 insertions (indeed any combination of insertions and deletions totaling
0.414 fraction). Wachter-Zeh [WZ18] recently put forward a Johnson-type bound for insdel
codes. The classical Johnson bound works in the Hamming metric, and connects unique-
decoding to list-decoding (for Hamming errors) by showing that any unique-decodable code
must also be list-decodable from an even larger fraction of corruptions. One intriguing
implication of Wachter-Zeh’s Johnson bound for insdel codes is that any unique-decodable
insdel code which tolerates a 1

2
fraction of deletions (or insertions) would automatically

also have to be (existentially) list-decodable from a 100% fraction of insertions. Therefore,
even if one is interested in unique-decoding, e.g., closing the above-mentioned gap between√

2 − 1 and 1
2
, this establishes the search for maximally list-decodable binary codes from

insertions as a good and indeed necessary step towards this goal. On the other hand,
proving any non-trivial impossibility result bounding the maximal fraction of insertions of
list-decodable binary codes away from 100% would directly imply an impossibility result
for unique-decoding binary codes from a deletion fraction approaching 1

2
.

Follow-up work by Hayashi and Yasunaga [HY18] corrected some subtle but crucial bugs
in [WZ18] and reproved a corrected Johnson Bound for insdel codes. They furthermore
showed that the BGH codes [BGH17] could be list-decoded from a fraction ≈ 0.707 of
insertions. Lastly, via a concatenation scheme used in [GW17, GL16] they furthermore
made these codes efficient. In summary, for the binary insertion-only setting, the largest
fraction of insertions that we knew to be list-decodable (even non-constructively) was
≈ 0.707.

5.1.2 Our Results

We close the above gap and show binary codes which can be list-decoded from a fraction
1− ε fraction of insertions, for any desired constant ε > 0. In fact, we give a single family
of codes that are list-decodable from any mixed combination of γ fraction of insertions and
δ fraction of deletions, as long as 2δ + γ ≤ 1− ε.

Theorem 5.1.2. For any ε ∈ (0, 1) and sufficiently large n, there exists a constant rate
family of efficient binary codes that are L-list decodable from any δn deletions and γn
insertions in poly(n) time as long as γ+ 2δ ≤ 1− ε where n denotes the block length of the
code, L = Oε(exp(exp(exp(log∗ n)))), and the code achieves a rate of exp

(
− 1
ε10 log2 1

ε

)
.

Since the computationally efficient codes from Theorem 5.1.2 match the bounds from
Proposition 5.1.1 for every δ, γ, this nails down the entire feasibility region for list-
decodability from insertions and deletions for the binary case. We stress that while we
get constructive results, even the existence of inefficiently list-decodable codes, that too
just for the insertion-only setting, was not known prior to this work.

In the above result, the rather weird looking bound on the list-size is inherited from re-
sults on list-decoding from a huge number insertions over larger alphabets Chapter 4, which
in turn is inherited from the list-size bounds for the list-recoverable algebraic-geometric
code constructions in [GX13].
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Figure 5.1: Feasibility region for q = 5.

We use similar construction techniques to obtain codes with positive rate over any
arbitrary alphabet size q that are list-decodable from any fraction of insertions and deletions
under which list-decoding is possible. We, thus, precisely identify the feasibility region for
any alphabet size, together with an efficient construction. Again, recall that the existence
of such codes was not known earlier, even for the insertion-only case.

Theorem 5.1.3. For any positive integer q ≥ 2, define Fq as the concave polygon defined

over vertices
(
i(i−1)
q
, q−i

q

)
for i = 1, · · · , q and (0, 0). (An illustration for q = 5 is presented

in Fig. 5.1). Fq does not include the border except the two segments [(0, 0), (q − 1, 0))
and [(0, 0), (0, 1− 1/q)). Then, for any ε > 0 and sufficiently large n, there exists a
family of q-ary codes that, as long as (γ, δ) ∈ (1 − ε)Fq, are efficiently L-list decodable
from any δn deletions and γn insertions where n denotes the block length of the code,
L = O(exp(exp(exp(log∗ n)))), and the code achieves a positive rate of exp

(
− 1
ε10 log2 1

ε

)
.

We further show in Section 5.5 that for any pair of positive real numbers (γ, δ) 6∈ Fq,
there exists no infinite family of q-ary codes with rate bounded away from zero that can
be list decoded from a δ-fraction of deletions plus a γ-fraction of insertions.

5.1.3 Our Techniques

We achieve these results using two ingredients, each interesting in its own right. The first
is a simple new concatenation scheme for list-decodable insdel codes which can be used
to boost the rate of insdel codes. The second component, which constitutes the bulk of
this work, is a technically intricate proof of the list-decoding properties of the Bukh-Ma
codes [BM14] which have good (edit) distance properties but a tiny sub-constant rate. We
note that these codes were the inner codes in the “clean construction” in the BGH work on
codes unique-decodable from a 1/3 insdel fraction [BGH17]. This was driven by a property
of these codes called the span, which is a stronger form of edit distance that applies at all
scales. The Bukh-Ma codes were also used by Guruswami and Li [GL20] in their existence
proof of codes of positive rate for correcting a fraction of oblivious deletions approaching
1. In this work, the non-trivial list-decodability property of the Bukh-Ma codes drives our
result.
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Concatenating List-Decodable Insdel Codes

Our first ingredient is a simple but powerful framework for constructing list-decodable
insertion-deletion codes via code concatenation. Recall that code concatenation which
composes the encoding of an outer code Cout with an inner code Cin whose size equals the
alphabet size of Cout.

In our approach, the outer code Cout is chosen to be a list-decodable insdel code Cout

over an alphabet that is some large function of 1/ε, but which has constant rate and is
capable of tolerating a huge number of insertions. The inner code Cin is chosen to be a
list-decodable insdel code over a fixed alphabet of the desired size q, which has non-trivial
list decoding properties for the desired fraction δ, γ of deletions and insertions.

We show that even if Cin has an essentially arbitrarily bad sub-constant rate and is not
efficient, the resulting q-ary insdel code does have constant rate, and can also be efficiently
list decoded from the same fraction of insertions and deletions as Cin. For the problem
considered in this chapter, this framework essentially provides efficiency of codes for free.
More importantly, it reduces the problem of finding good constant-rate insdel codes over
a fixed alphabet to finding a family of good list-decodable insdel codes with an arbitrarily
large number of codewords, and a list-size bounded by some fixed function of 1/ε.

Our decoding procedure for concatenated list-decodable insdel codes is considerably
simpler than similar schemes introduced in earlier works [GW17, GL16, BGH17, SZ99].
Of course, the encoding is simply given by the standard concatenation procedure. The
decoding is done by (i) list-decoding shifted intervals of the received string using the inner
code Cin, (ii) creating a single string from the symbols in these lists, and (iii) using the
list-decoding algorithm of the outer code on this string (viewed as a version of the outer
codeword with some number of deletions and insertions).

The main driving force behind why this simplistic sounding approach actually works
is a judicious choice of the outer code Cout. Specifically, we use the codes from Chapter 4
which can tolerate a very large number of insertions. This means that the many extra
symbols coming from the list-decodings of the inner code Cin and the choice of overlapping
intervals does not disrupt the decoding of the outer code.

5.1.4 Analyzing the List-Decoding Properties of Bukh-Ma Codes

The main technical challenge that remains is to construct or prove the existence of arbi-
trarily large binary codes with optimal list decoding properties for any γ, δ (and q). For
this we turn to a simple family of codes introduced by Bukh and Ma [BM14], which consist
of strings (0r 1r)

n
r which oscillate between 0’s and 1’s with different frequencies. (Below we

will refer to r as the period, and 1/r should be thought of as the frequency of alternation.)

A simple argument shows that the edit distance between any two such strings with
sufficiently different periods is maximal, resulting in a tolerable fraction of edit errors of
1
2

for unique decoding. The Johnson bound of [WZ18, HY18] implies that this code must
also be list-decodable from a full fraction 100% of insertions. Therefore, using these codes
as the inner codes in the above-mentioned concatenation scheme resolves the list-decoding
question for the insertion-only setting. (The deletion-only setting is oddly easier as just
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random inner codes suffice, and was already resolved in [GW17].) This also raises hope
that the Bukh-Ma codes might have good list-decoding properties for other γ, δ as well.
Fortunately, this turns out to be true, though establishing this involves an intricate analysis
that constitutes the bulk of the technical work in this chapter.

Theorem 5.1.4. For any ε > 0 and sufficiently large n, let Cn,ε be the following Bukh-Ma
code:

Cn,ε =

{
(0r1r)

n
2r

∣∣∣r =

(
1

ε4

)k
, k < log1/ε4 n

}
.

For any δ, γ ≥ 0 where γ + 2δ < 1− ε, Cn,ε is list-decodable from any δn deletions and
γn insertions with a list size of O

(
1
ε3

)
.

In order to prove Theorem 5.1.4 we first introduce a new correlation measure which
expresses how close a string is to any given frequency (or Bukh-Ma codeword) if one allows
for both insertions and deletions each weighted appropriately. Using this we want to show
that it is impossible to have a single string v which is more than ε-correlated with more
than Θε(1) frequencies.

Intuitively, one might expect that each correlation can be (fractionally) attributed to a
(disjoint) part of v which would result in the maximum number of ε-close frequencies to be
at most 1/ε. This, however, turned out to be false. Instead, we use a proof technique which
is somewhat reminiscent of the one used to establish the polarization of the martingale of
entropies in the analysis of polar codes [Ari09, BGN+18].

In more detail, we think of recursively sub-sampling smaller and smaller nested sub-
strings of v, and analyze the expectation and variance of the bias between the fraction of
0’s and 1’s in these substrings. More precisely, we order the run lengths r1, r2, . . . that are
ε-correlated with v in decreasing order and first sample a substring v1 with r1 � |v1| � r2

from v. While the expected zero-one bias in v1 is the same as in v, we show that the vari-

ance of this bias is an increasing function in the correlation with (0r11r1)
n

2r1 . Intuitively, v1

cannot be too uniform on an scale of length l if it is correlated with r1.
Put differently, in expectation the sampled substring v1 will land in a part of v which

is either (slightly) correlated to one of the long stretches of zeros in v or in a part which is
correlated with a long stretch of ones in v, resulting in at least some variance in the bias
of v1. Because the scales r2, r3, . . . are so much smaller than v1, this sub-sampling of v1

furthermore preserves the correlation with these scales intact, at least in expectation.
Next we sample a substring v2 with r2 � |v2| � r3 within v1. Again, the bias in v2

stays the same as the one in v1 in expectation but the sub-sampling introduces even more
variance given that v1 is still non-trivially correlated with the string with period r2. The
evolution of the bias of the strings v1, v2, . . . produced by this nested sampling procedure
can now be seen as a martingale with the same expectation but an ever increasing variance.
Given that the bias is bounded in magnitude by 1, the increase in variance cannot continue
indefinitely. This limits the number of frequencies a string v can be non-trivially correlated
with, which is exactly what we were after.

Our generalization to larger q-ary alphabets follows the same high level blueprint, but
is technically even more delicate. Recall that in the non-binary case, there are (q − 1)
different linear trade-offs between δ, γ depending on the exact regime they lie in.

71



5.2 Preliminaries

5.2.1 List-Decodable Insertion-Deletion Codes

For the sake of convenience, we restate the following codes from Chapter 4 which will be
used as the outer code in our constructions.

Theorem 5.2.1 (Restatement of Theorem 4.1.1). For every δ, ε ∈ (0, 1) and constant
γ > 0, there exist a family of list-decodable insdel codes that can protect against δ-fraction
of deletions and γ-fraction of insertions and achieves a rate of 1 − δ − ε or more over

an alphabet of size
(
γ+1
ε2

)O( γ+1

ε3
)

= Oγ,ε (1). These codes are list-decodable with lists of
size Lε,γ(n) = exp (exp (exp (log∗ n))), and have polynomial time encoding and decoding
complexities.

5.2.2 Strings, Insertions and Deletions, and Distances

In this section, we provide preliminary definitions on strings, edit operations, and related
notions. We start by definition of count and bias.

Definition 5.2.2 (Count and Bias). We define counta(w) = |{i|w[i] = a}| as the number
of appearances of symbol a in string w. The bias of a binary string w is the normalized
difference between the appearances of zeros and ones in w, i.e., bias(w) = count1(w)−count0(w)

|w| .

With this definition, count0(w) = 1−bias(w)
2
|w| and count1(w) = 1+bias(w)

2
|w|.

Next, we formally define a matching between two strings.

Definition 5.2.3 (Matching). A matching M of size k between two strings S and S ′ is
defined to be two sequences of k integer positions 0 < i1 < . . . < ik ≤ |S| and 0 < i′1 < . . . <
i′k ≤ |S ′| for which S[ij] = S ′[i′j] for all j ≤ k. The subsequence induced by a matching M is
simply S[i1], . . . , S[ik]. Every common subsequence between S and S ′ implicitly corresponds
to a matching and we use the two interchangeably.

We now proceed to define the important notion of advantage.

Definition 5.2.4 (Advantage of a Matching). Let M be a matching between two binary
strings a and b. The advantage of the matching M is defined as

advM =
3|M | − |a| − |b|

|a|
.

Definition 5.2.5 (Advantage). For a given pair of strings a and b, the advantage of a to
b is defined as the advantage of the matching M that corresponds to the largest common
subsequence between them, i.e., adv(a, b) = advM=LCS(a,b). It is easy to verify that the
longest common subsequence M maximizes the advantage among all matchings from a to
b.
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We now make the following remark that justifies the notion of advantage as defined
above. Note that any matching between two strings a and b implies a set of insertions and
deletions to convert b to a which is, to delete all unmatched symbols in b and insert all
unmatched symbols in a within the remaining symbols.

Remark 5.2.6. Consider strings a and b and matching M between them. Think of a as a
distorted version of b and let δM and γM represent the fraction of deletions and insertions
needed to convert b to a as suggested by M , i.e.,

δM =
Number of unmatched symbols in b

|b|
=
|b| − |M |
|b|

,

and

γM =
Number of unmatched symbols in a

|b|
=
|a| − |M |
|b|

.

The advM function tracks the value of |b|(1− 2δM − γM) normalized by |a| rather than |b|.

advM(a, b) =
3|M | − |a| − |b|

|a|
=

3|b|(1− δM)− |b|(1− δM + γM)− |b|
|a|

=
|b|
|a|
·(1−2δM−γM)

We will make use of this unnatural normalization later on.

We now extend the definition of advantage to the case where the second argument is
an infinite string.

Definition 5.2.7 (Infinite Advantage). For a finite string a and infinite string b, the
advantage of a to b is defined as the minimum advantage that a has over all substrings of
b.

adv(a, b) = min
b′=b[i,j]

adv(a, b′).

We now define a family of binary strings called Alternating Strings.

Definition 5.2.8 (Alternating Strings). For any positive integer r, we define the infinite
alternating string of run-length r as Ar = (0r1r)∞ and denote its prefix of length l with
Ar,l = Ar[1, l].

We finish the preliminaries by the following lemma stating some properties of the no-
tions defined through this section.

Lemma 5.2.9. The following properties hold true:

� For any pair of binary strings S1, S2 where adv(S1, S2) > 0, lengths of S1 and S2 are

within a factor of two of each other, i.e, min(|S1|, |S2|) ≥ max(|S1|,|S2|)
2

.

� For any binary string S and integer r, adv(S,Ar) ≥ −1
2
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Proof. For the first part, let M = LCS(S1, S2). We have that adv(S1, S2) ≥ 0 ⇒ 3|M | ≥
|S1|+ |S2|, which, as |M | ≤ min(|S1|, |S2|), implies that min(|S1|, |S2|) ≥ max(|S1|,|S2|)

2
.

For the second part, let n = |S| and assume that b ∈ {0, 1} is the most frequent bit in
S and there are m occurrences of b in S. Take a substring S ′ in Ar as the smallest string
that starts at the beginning of a br block and contains the same number of bs as S. The
size of S ′ is no more than 2m and the longest common subsequence between S and S ′ is
at least m. Therefore,

adv(S,Ar) ≥ adv(S, S ′) ≥ 3|M | − |S| − |S ′|
|S|

≥ 3m− 2m− 2m

n
≥ −m

n
≥ −1

2
.

5.3 Proof of Theorem 5.1.4: List-Decoding for Bukh-

Ma Codes

To prove this theorem, we assume for the sake of contradiction that there exists a string v
and k > 1200

ε3
members of Cn,ε like Ar1,n, Ar2,n, · · · , Ark,n, so that each Ari,n can be converted

to v with Ii insertions and Di deletions where Ii + 2Di ≤ n(1− ε). We define the indices
in a way that r1 > r2 > · · · > rk. Given the definition of Cn,ε, ri ≥ ri+1

ε4
. We first show

that, for all i = 1, 2, · · · , k, adv(v, Ari,n) ≥ ε
2
.

Lemma 5.3.1. For any 1 ≤ i ≤ k, adv(v, Ari,n) ≥ ε
2
.

Proof. Let Mi denotes the matching that corresponds to the set of Ii insertions and Di

deletions that convert Ari,n to v.

Ii + 2Di ≤ n(1− ε)⇒ n− Ii − 2Di ≥ nε⇒ 1− γi − 2δi ≥ ε

Note that according to Remark 5.2.6, adv(v, Ari,n) = n
|v| ·(1−γi−2δi). Thus, adv(v,Ari,n) ≥

n
|v|ε ≥

ε
2
. The last step follows from the first item of Lemma 5.2.9.

Having Lemma 5.3.1, we are ready to prove Theorem 5.1.4. We start with defining a
couple of sequences of random variables via random sampling of nested substrings of v. We
split the string v into substrings of size l1 = r1ε

2, pick one uniformly at random and denote
it by v1. We define random variable A1 = adv(v1, Ar1) and random variable B1 = bias(v1).
Similarly, we split v1 into substrings of length l2 = r2ε

2 and pick v2 uniformly at random
and define A2 = adv(v2, Ar2) and B2 = bias(v2). Continuing this procedure, one can obtain
the two sequences of random variables A1, A2, · · · , Ak and B1, B2, · · · , Bk. We will prove
the following.

Lemma 5.3.2. The following hold for A1, A2, · · · , Ak and B1, B2, · · · , Bk.

1. E[Bi] = bias(v)

2. E[Ai] ≥ ε
2
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Proof. Note that one can think of vi as a substring of v that is obtained by splitting v into
substrings of length li and choosing one uniformly at random. Let U denote the set of all
such substrings. We have that

E[Bi] =
∑
v̂∈U

1

|U |
· bias(v̂) =

1

|U |
∑
v̂∈U

count1(v̂)− count0(v̂)

li

=
count1(v)− count0(v)

|U | · li
= bias(v).

A similar argument proves the second item. Take the matching Mi between v and Ari,n
that achieves the advantage adv(v,Ari,n), i.e., the largest matching between v and Ari,n.
Take some v̂ ∈ U ; v̂ is mapped to some substring in Ari,n under Mi. We call that substring
of v̂, the projection of v̂ under Mi and denote it by v̂ →Mi. We also represent the subset
of Mi that appears between v̂ and v̂ →Mi with Mi[v̂].

For a v̂ ∈ U , we define a(v̂) as the value for advantage that is yielded by the match-

ing Mi[v̂] between v̂ and v̂ → Mi. In other words, a(v̂) = 3|Mi[v̂]|−|v̂|−|v̂→Mi|
|v̂| . Given the

definitions of advantage and infinite advantage, we have that

a(v̂) ≤ adv(v̂, v̂ →Mi) ≤ adv(v̂, Ari).

This can be used to prove the second item as follows:

E[Ai] =
∑
v̂∈U

1

|U |
· adv(v̂, Ari) ≥

1

|U |
·
∑
v̂∈U

a(v̂)

=
1

|U |
·
∑
v̂∈U

3|Mi[v̂]| − |v̂| − |v̂ →Mi|
|v̂|

=
1

|U | · |v̂|
·
∑
v̂∈U

(3|Mi[v̂]| − |v̂| − |v̂ →Mi|)

=
1

|v|
· (3|Mi| − |v| − |Ari,n|) = adv(v, Ari,n) ≥ ε

2

where the last step follows from Lemma 5.3.1.

Lemma 5.3.3. For the sequence B1, B2, · · · , Bk, we have

Var(Bi+1) ≥ Var(Bi) +
ε3

1200
, ∀1 ≤ i < k.

Proof. To analyze the relation of Var(Bi) and Var(Bi+1), we use the law of total variance
and condition the variance of Bi+1 on vi, i.e., the substring chosen in the ith step of the
stochastic process, from which we sub sample vi+1.

Var(Bi+1) = Var (E[Bi+1|vi]) + E [Var(Bi+1|vi)]
= Var (Bi) + E [Var(Bi+1|vi)] (5.1)

Equation (5.1) comes from the fact that the average bias of substrings of length li+1 in vi is
equal to the bias of vi. Having this, we see that it suffices to show that E [Var(Bi+1|vi)] ≥
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Figure 5.2: Partitioning substrings of length li+1 into three sets U0, U1, Ue

ε3/1200. We remind the reader that vi+1 is obtained by splitting vi into substrings of
length li+1 = ri+1ε

2 and choosing one at random. We denote the set of such substrings
by U . Also, there is a matching Mi between vi and Ari+1

with advantage ε or more. Any
substring of length li+1 is mapped to some substring in Ari+1

, i.e., its projection of the
substring under Mi. Note there are three different possibilities for such projection. It is
either an all zeros string, an all one string, or a string that contains both zeros and ones.
We partition U into three sets U0, U1, and Ue based on which case the projection belongs
to. (See Fig. 5.2)

We partition the sample space into three events E0, E1, and Ee based on whether vi+1

belongs to U0, U1, or Ue respectively. We also define the random variable T over {0, 1, e}
that indicates which one of E0, E1, or Ee happens. Once again, we use the law of total
variance to bound E [Var(Bi+1|vi)].

E [Var(Bi+1|vi)] = Evi
[
VarT (E [Bi+1|vi, T ]) + ET [Var(Bi+1|vi, T )]

]
≥ Evi

[
VarT (E [Bi+1|vi, T ])

]
(5.2)

Note that the term VarT (E [Bi+1|vi, T ]) refers to variance of a 3-valued random variable
that takes the value Evi [Bi+1|vi, T = t] with probability Pr{T = t|vi} for t ∈ {0, 1, e}. We
use three important facts about this distribution to bound its variance from below.

First, Pr{T = e|vi} ≤ 2ε2. To see this, note that the run length of Ari+1
is ri+1 = li+1

ε2

and the length of the projection of vi in Ari under the matching that yields the optimal
adv(vi, Ari) is no more than 2|vi| = 2li (See Lemma 5.2.9). Therefore, |Ue| ≤ 2li

ri+1
and

consequently no more that a 2li/ri+1

li/li+1
= 2ε2 fraction of strings in U might be mapped to a

substring of Ari+1
that crosses the border of some 0ri+1 and 1ri+1 intervals.

Secondly, for any j ∈ {0, 1}, Pr{T = j|vi} ≥
adv(vi,Ari+1 )−8ε2

8
. This can be showed as

follows. Let M j
i represent the subset of pairs of Mi with one end in Uj for j ∈ {0, 1, e}

and vi → Mi represent the substring of Ari+1
where vi is projected under Mi. Note

that Pr{T = j|vi} =
|Uj |
|U | =

|Uj |·li
|vi| ≥

|Mj
i |
|vi| ≥

|Mj
i |

2|vi→Mi| . Assume for contradiction that

Pr{T = j|vi} <
adv(vi,Ari+1 )−8ε2

8
for some j. Then, |M j

i | < |vi → Mi|
adv(vi,Ari+1 )−8ε2

4
, which
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since |M j′

i | ≤
|vi→Mi|

2
for j′ ∈ {0, 1} and |M e

i | ≤ 2ε2|vi → Mi|, gives that |Mi| < |vi →
Mi|

(
1
2

+ 2ε2 +
adv(vi,Ari+1 )−8ε2

4

)
= |vi →Mi|

(
1
2

+
adv(vi,Ari+1 )

4

)
. However,

advMi
=

3|Mi| − |vi| − |p|
|vi|

⇒ 2|Mi| − |p| ≥ |vi|advMi
⇒ |Mi| ≥ |p|

(
1

2
+

advMi

4

)
.

This contradiction implies that Pr{T = j|vi} ≥
adv(vi,Ari+1 )−8ε2

8
.

The third and final important ingredient is provided by the following lemma that we
prove later on.

Lemma 5.3.4. The following holds true:∣∣∣E [Bi+1|vi, T = 0]− E [Bi+1|vi, T = 1]
∣∣∣ ≥ adv(vi, Ari+1

)− 5ε2

3

To summarize, the above three properties imply that we have a three-valued ran-
dom variable where the probability for one value is minuscule and there is at least
[adv(vi, Ari+1

) − 5ε2]/3 difference between the other two values each occurring with ad-
equately large probabilities. This is enough for us to bound below the variance of such
random variable. The following straightforward lemma abstracts this.

Lemma 5.3.5. Let X be a random variable that can take values a0, a1, and a2 where
Pr{X = ai} ≥ ξ for i ∈ {0, 1}. Then, we have that Var(X) ≥ ξ

2
(a0 − a1)2.

Proof. Var(X) =
∑

ai
Pr{X = ai}(ai−X̄)2 ≥ ξ

[
(a0 − X̄)2 + (a1 − X̄)2

]
≥ ξ

2
(a0−a1)2.

Applying Lemma 5.3.5 to our random variable gives that:

VarT (E [Bi+1|vi, T ]) ≥ 1

144

(
adv(vi, Ari+1

)− 8ε2
) (

adv(vi, Ari+1
)− 5ε2

)2

Note the right hand side of this inequality is negative when adv(vi, Ari+1
) ≤ 8ε2. Therefore,

we define function g(x) as a function that takes value of (x−8ε2)(x−5ε2)
144

when x > 8ε2 and
zero otherwise. Note that g is a convex function. We have that

VarT (E [Bi+1|vi, T ]) ≥ g(adv(vi, Ari+1
)) (5.3)

Plugging (5.3) into (5.2) gives that

E [Var(Bi+1|vi)] ≥ Evi
[
VarT (E [Bi+1|vi, T ])

]
≥ Evi

[
g(adv(vi, Ari+1

))
]

≥ g
(
Evi
[
adv(vi, Ari+1

)
])

= g(E[Ai+1]) (5.4)

≥ g
(ε

2

)
=

ε3

1152
+ o(ε3) (5.5)

where (5.4) follows from the Jensen inequality and (5.5) follows from Lemma 5.3.2 and
the fact that g is an increasing function. Note that the right hand side is at least ε

1200

for sufficiently small ε. This completes the proof of Lemma 5.3.3 (With the exception of
Lemma 5.3.4).
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Figure 5.3: Three steps of transformation in Lemma 5.3.4.

With Lemma 5.3.3 proved, one can easily prove Theorem 5.1.4.

Proof of Theorem 5.1.4. Since Var(Bi+1) ≥ Var(Bi) + ε3/1200, we have that

Var(Bk) ≥ Var(B1) + (k − 1)
ε3

1200
≥ (k − 1)ε3

1200
.

If k > 1200
ε3

, the above inequality implies that Var(Bk) > 1 which is impossible since Bk

takes value in [−1, 1]. This contradiction implies that the list size k ≤ 1200
ε3

.

We now proceed to the proof of Lemma 5.3.4.

5.3.1 Proof of Lemma 5.3.4

Consider vi and the matching that yields the optimal advantage from vi to Ari+1
, denoted

by Mi. We denote the substring of Ari+1
that is identified by the projection of vi under

Mi as p = vi → Mi. To simplify the analysis, we perform a series of transformations on
vi, Mi, and p that does not decrease advMi

except by a small quantity. Fig. 5.3 depicts the
steps of this transformation described below.

1. First, we delete all substrings of Ue—i.e., substrings of length li in vi whose projection
contain both zeros and ones—from vi.
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2. We reorder the substrings of length li+1 in vi by shifting all U0 substrings together
and all U1 substrings together. We accordingly shift the projections of these strings
in p to the similar order. This was, the remainder of Mi from step 1 will be preserved
as a valid matching between reordered strings.

3. At this point, string p consists of a stretch of zeros followed by a stretch of ones.
If the length of two stretches are not equal, we add adequate zeros or ones to the
smaller stretch to make p have the form of 0t1t.

To track the changes in advMi
during this transformation, we track how |Mi|, |vi| and

|p| change throughout the three steps mentioned above.

In the first step, a total of up to |Ue|li+1 elements are removed from vi and Mi. Note

that since the run length of Ari+1
is ri+1, there can only be |p|

ri+1
substrings in Ue. Therefore,

|Ue|li+1 ≤
|p|li+1

ri+1

= |p|ε2 ≤ 2ε2|vi|.

The second step preserves |Mi|, |vi| and |p|.
Finally, since p is a substring of Ari+1

, the third step increases |p| only by up to ri+1.
Note the run length of the Ari+1

s and consequently li+1s are different by a multiplicative

factor of at least 1
ε4

by the definition of the code C. Therefore, ri+1 = li+1

ε2
= li+1|vi|

ε2|vi| =
li+1|vi|
ε2li

≤ ε2|vi|.
Overall, the value of the advMi

= 3|M |−|p|−|vi|
|vi| can be affected by a maximum of (3−1)×

2ε2|vi|+ ε2|vi| = 5ε2|vi| decrease in the numerator and ε2|vi| decrease in the denominator.
Therefore, the eventual advantage does not drop below advMi

− 5ε2. Let us denote the
transformed versions of vi, p, and Mi by v̄i, p̄, and M̄i respectively. We have shown that

advM̄i
≥ advMi

− 5ε2. (5.6)

Further, let v̄i = (v̄0
i , v̄

1
i ) so that v̄0

i and v̄1
i respectively correspond to the part of v̄i that is

mapped to 0t and 1t under M̄i. Consider the matching between v̄i and p̄ that connects as
many zeros as possible between the v̄0

i and 0t and as many ones as possible between the
v̄1
i to 1t portion of p̄. Clearly, the size of M̄i cannot exceed the size of this matching and

therefore,

advM̄i
≤ 3 [min{t, count0(v̄0

i )}+ min{t, count1(v̄1
i )}]− |v̄i| − 2t

|v̄i|
(5.7)

Note that as long as t < count0(v̄0
i ) or t < count1(v̄1

i ), increasing t in the right hand
side term does not make it smaller. Therefore, the inequality (5.7) holds for t =
maxj∈{0,1}{countj(v̄ji )}. Without loss of generality, assume that count0(v̄0

i ) ≤ count1(v̄1
i )
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and set t = count1(v̄1
i ). Then we have the following.

advM̄i
≤ 3count0(v̄0

i ) + count1(v̄1
i )− |v̄i|

|v̄i|

⇒ advM̄i
≤

3
1−bias(v̄0

i )

2
|v̄0
i |+

1+bias(v̄1
i )

2
|v̄1
i | − (|v̄0

i |+ |v̄1
i |)

|v̄i|
⇒ 2advM̄i

|v̄i| ≤ 3(1− bias(v̄0
i ))|v̄0

i |+ (1 + bias(v̄1
i ))|v̄1

i | − 2(|v̄0
i |+ |v̄1

i |)
⇒ 2advM̄i

|v̄i| ≤
[
1− 3bias(v̄0

i )
]
|v̄0
i | −

[
1− bias(v̄1

i )
]
|v̄1
i | (5.8)

We claim that the above inequality leads to the fact that |bias(v̄1
i ) − bias(v̄0

i )| ≥ advM̄i
/3.

Assume for contradiction that this is not the case. Therefore, replacing the term bias(v̄0
i )

with bias(v̄1
i ) in (5.8) does not change the value of the right hand side by any more than

|v̄i| · advM̄i
. Same holds true with replacing the term bias(v̄1

i ) with bias(v̄0
i ) in (5.8). This

implies that, with b∗ = max{bias(v̄0
i ), bias(v̄

1
i )}, we have that

advM̄i
|v̄i| ≤ (1− 3b∗) · |v̄0

i | − (1− b∗) |v̄1
i |

⇒ (1− b∗) |v̄1
i | < (1− 3b∗) |v̄0

i | (5.9)

On the other hand, we assumed earlier (without loss of generality) that count0(v̄0
i ) ≤

count1(v̄1
i ). Therefore,

count0(v̄0
i ) ≤ count1(v̄1

i )

⇒
(
1− bias(v̄0

i )
)
|v̄0
i | ≤

(
1 + bias(v̄1

i )
)
|v̄1
i |

⇒ (1− b∗) |v̄0
i | ≤ (1 + b∗) |v̄1

i | (5.10)

Note that since |b∗| ≤ 1, (1− b∗)2 > (1 + b∗)(1− 3b∗)⇒ 1−3b∗

1−b∗ <
1−b∗
1+b∗

. Multiplying the two
sides of this inequality to the sides of (5.10) gives that

(1− 3b∗) |v̄0
i | ≤ (1 + b∗) |v̄1

i |

which contradicts (5.9). Therefore, we must have

|bias(v̄1
i )− bias(v̄0

i )| ≥ advM̄i
/3.

Note that bias(v̄ji ) = E [Bi+1|vi, T = j] since bias(v̄ji ) is the average bias of all strings in
Uj. Therefore, combining with (5.6), we have that∣∣∣E [Bi+1|vi, T = 0]− E [Bi+1|vi, T = 1]

∣∣∣ ≥ adv(vi, Ari+1
)− 5ε2

3
.

5.4 Proof of Theorem 5.1.2: Concatenated InsDel

Codes

We recall that the concatenation of an inner insdel code Cin over an alphabet of size |Σin|
and an outer insdel code, Cout, over an alphabet of size |Σout| = |Cin| as a code over alphabet
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Figure 5.4: The order of determining parameters in the proof of Theorem 5.1.2.

Σin, is obtained by taking each codeword x ∈ Cout, encoding each symbol of x with Cin,
and appending the encoded strings together to obtain each codeword of the concatenated
code.

In this section, we will show that, concatenating an inner code Cin from Theorem 5.1.4
that can Lin-list decode from any γ fraction of insertions and δ fraction deletions when
2δ+γ < 1−εin along with an appropriately chosen outer code Cout from Theorem 4.1.1, one
can obtain an infinite family of constant-rate insertion-deletion codes that are efficiently
list-decodable from any γ fraction of insertions and δ fraction of deletions as long as 2δ+γ <
1− ε for ε = 16

5
εin.

5.4.1 Construction of the Concatenated Code

We start by fixing some notation. Let Cout be able to Lout-list decode from δout fraction of
deletions and γout fraction of insertions. Further, let us indicate the block sizes of Cout and
Cin with nout and nin = dlog |Σout|e.

To construct our concatenated codes, we utilize Theorem 4.1.1 to obtain an efficient
family of codes Cout over alphabet Σout of size Oγout,δout(1) that is Lout-list decodable from
any δout fraction of deletions and γout fraction of insertions for appropriate parameters δout

and γout that we determine later. We then concatenate any code in Cout with an instance of
the binary list-decodable codes from Theorem 5.1.4, Cin, with parameter nin = dlog |Σout|e
and a properly chosen εin. We will determine appropriate values for all these parameters
given ε when describing the decoding procedure in Section 5.4.2. Fig. 5.4 shows the order
of determining all parameters. We remark that the following two properties for the utilized
inner and outer codes are critical to this order of fixing parameters:

1. The alphabet size of the family of codes used as the outer code only depends on δout

and γout and is independent of the outer block size nout. (See Theorem 4.1.1)

2. The list size of the family of codes used as the inner code, Lin, merely depends on
parameter εin in Theorem 5.1.4 and is independent of the size of the code or its block
length, i.e., |Cin| or nin.

5.4.2 Decoding Procedure and Determining Parameters

We now analyze the resulting family of codes and choose the undetermined parameters
along the way of describing the decoding procedure. A pseudo-code of the decoding pro-
cedure is available in Algorithm 5. Let C be a binary code with block length n that is
obtained from the above-mentioned concatenation. Take the codeword x ∈ C and split it
into blocks of length nin. Note that each such block corresponds to the encoding of some
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symbol in Σout under Cin. Let x′ be a string obtained by applying nγ insertions and nδ
deletions into x where n = ninnout and γ + 2δ < 1− ε. For each block of x, we define the
error count to be the total number of insertions that have occurred in that block plus twice
the number of deleted symbols in it. Clearly, the average value of error count among all

blocks is nin(γ+2δ) < nin(1−ε). By a simple averaging, at least
(

1− 1−ε
1−ε/4

)
nout ≥ 3ε

4
·nout

of those blocks have an error count of nin(1 − ε
4
) or less. Let us call the set of all such

blocks S.

Further, we partition S into smaller sets based on the number of deletions occurring in
the blocks of S. Let Si ∈ S be the subset of blocks in S for which the number of deletions
is in

[
nin · ε16

· (i− 1), nin · ε16
· i
)

for i = 1, 2, · · · , 8/ε1. The following two properties hold
true:

1. All blocks in Si suffer from at least nin · ε
16
· (i − 1) deletions. Further, they can

suffer from up to nin ·
(
1− ε

4
− 2ε

16
· (i− 1)

)
insertions. Therefore, they all appear as

substrings of length nin ·
(
2− ε

4
− 3ε

16
· (i− 1)

)
or less in x′.

2. We have that S =
⋃̇8/ε

i=1Si. By the Pigeonhole principle, for some i∗ ∈ [1, 8/ε],

|Si∗ | ≥ 3ε2

32
nout.

Our decoding algorithm consists of 8/ε rounds each consisting of two phases of inner
and outer decoding. During the first phase of each round i = 1, 2, · · · , 8/ε, the algorithm
uses the decoder of the inner code on x′ to construct a string Ti over alphabet Σout and
then, in the second phase, uses the decoder of the outer code on input Ti to obtain a list
Listi of size Lout. In the end, the decoding algorithm outputs the union of all such lists⋃
i Listi.

Algorithm 5 Decoder of the Concatenated Code

1: procedure Concatenated-Decoder(x′, ε, nin, nout,DecCin(·),DecCout(·))
2: Output ← ∅
3: for i ∈

{
1, 2, · · · , 8

ε

}
do . Round i

4: w ←
⌊
nin(2−ε/4−3ε(i−1)/16)

ninε/16

⌋
+ 1 . Length of the sliding window is w · ninε

16
.

5: Ti ← empty string

6: for j ∈
{

1, 2, · · · , |x′|
ninε/16

− w
}

do . Phase I: Inner Decoding

7: List← DecCin
(
x′
[
ninε
16
· j, ninε

16
· (j + w)

])
8: Pad symbols of Σout corresponding to the elements of List to the right of Ti.

9: Output ← Output ∪ DecCout (Ti) . Phase II: Outer Decoding

10: return Output

1Note that the fraction of deletions cannot exceed 1
2 assuming nin(γ + 2δ) < nin(1− ε).
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Description of Phase I (Inner Decoding) We now proceed to the description of the
first phase in each round i ∈ {1, 2, · · · , 8/ε}. In the construction of Ti, we aim for correctly
decoding the blocks in Si. As mentioned above, all such blocks appear in x′ in a substring
of length nin ·

(
2− ε

4
− 3ε

16
· (i− 1)

)
or less.

Having this observation, we run the deocoder of the inner code on substrings of x′ of
form x′

[
ninε
16
· j, ninε

16
· (j + w)

]
for all j = 1, 2, · · · , |x′|

ninε/16
− w where

w =

⌊
nin(2− ε/4− 3ε(i− 1)/16)

ninε/16

⌋
+ 1.

One can think of such substrings as a window of size w · ninε
16

that slides in ninε
16

increments.

Note that each block B in Si appears within such window and is far from it by, say,
DB deletions and no more than nin

(
1− ε

4

)
− 2DB + ninε

16
insertions where the additional

ninε
16

term in insertion count comes from the extra symbols around the block in the fixed
sized window. As long as the fraction of insertions plus twice the fraction of deletions that
are needed to convert a block of Si into its corresponding window does not exceed 1− εin,
the output of the inner code’s decoder for input x′

[
ninε
16
· j, ninε

16
· (j + w)

]
will contain the

block B of Si. So, we choose εin such that

nin

(
1− ε

4

)
− 2DB +

ninε

16
+ 2DB ≤ nin(1− εin) (5.11)

⇔ nin(1− 3ε/16) ≤ nin(1− εin)

⇔ εin ≤
3

16
ε

Now, each element in the output list corresponds to some codeword of the inner code
and, therefore, some symbol in Σout. For each run of the decoder of the inner code, we take
the corresponding symbols of Σout and write them back-to-back in arbitrary order. Then,
we append all such strings in the increasing order of j to obtain Ti.

Description of Phase II (Outer Decoding) Note that the length of Ti is at most
|x′|

ninε/16
Lin ≤ 2ninnout

ninε/16
Lin = nout · 32

ε
Lin. Further, Ti contains symbols corresponding to all

blocks of Si as a subsequence (i.e., in the order of appearance) except possibly the ones
that appear in the same run of the inner decoder together. Since the fraction of deletions
happening to each block in Si is less than 1

2
and the size of the inner decoding sliding

window is no more than 2nin, the number of blocks of Si that can appear in the same
window in the first phase is at most 4. This gives that Ti has a common subsequence of
size at least |Si|

4
with the codeword of the outer code.

We mentioned earlier that for some i∗, |Si∗| ≥ 3ε2

32
nout. Therefore, for such i∗, Ti∗ is

different from x by up to a 1 − 3ε2

128
fraction of deletions and 32

ε
Lin fraction of insertions.

Therefore, by taking δout = 1 − 3ε2

128
, γout = 32

ε
Lin = O

(
1
ε4

)
, and using each Ti as an input

to the decoder of the outer code in the second phase, x will certainly appear in the outer
output list for some Ti. (Specifically, for i = i∗.)
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5.4.3 Remaining Parameters

As shown in Section 5.4.2, we need a list-decodable code as outer code that can list-
decode from δout = 1 − 3ε2

128
fraction of deletions and γout = 32

ε
Lin = O

(
1
ε4

)
fraction

of insertions. To obtain such codes we use Theorem 4.1.1 with parameters γ = 32
ε
Lin

and ε = 3ε2

256
. This implies that the rate of the outer code is rout = 3ε2

256
= O(ε2), it is

Lout = Oε(exp(exp(exp(log∗ n)))) list-decodable, and can be defined over an alphabet size

of |Σout| = eO( 1
ε10 log 1

ε8
).

Consequently, |Cin| = log |Σout| = O
(

1
ε10 log 1

ε

)
. Note that in Theorem 5.1.4, the block

length of the inner code can be chosen independently of its list size as the list size only
depends on εin. This is a crucial quality in our construction since in our analysis εin and
Lin are fixed first and then |Cin| is chosen depending on the properties of the outer code.

As the decoder of the outer code is used 8
ε

times in the decoding of the concatenated
code, the list size of the concatenated code will be L = 8

ε
·Lout = Oε(exp(exp(exp(log∗ n)))).

The rate of the concatenated code is

r = routrin = O

(
ε2 · log log |Cin|

nin

)
= O

(
ε2 · log log |Cin|

(1/ε4)|Cin|

)
= e−O( 1

ε10 log2 1
ε).

Finally, since the outer code is efficient and the inner code is explicit and can be decoded
by brute-force in Oε(1) time, the encoding and decoding procedures run in polynomial time.
This concludes the proof of Theorem 5.1.2.

5.5 Extension to Larger Alphabets

In this section we extend the results presented so far to q-ary alphabets where q > 2.

5.5.1 Feasibility Region: Upper Bound

For an alphabet of size q, no positive-rate family of deletion codes can protect against 1− 1
q

fraction of errors since, with that many deletions, an adversary can simply delete all but
the most frequent symbol of any codeword. Similarly, for insertion codes, it is not possible
to achieve resilience against q− 1 fraction of errors as adversary would be able to turn any
codeword x ∈ qn to (1, 2, · · · , q)n.

The findings of the previous sections on binary alphabets might suggest that the feasibil-
ity region for list-decoding is the region mapped out by these two points, i.e., δ

1− 1
q

+ γ
q−1

< 1.

However, this conjecture turns out to be false. The following theorem provides a family of
counterexamples.

Theorem 5.5.1. For any alphabet size q and any i = 1, 2, · · · , q, no positive-rate q-ary
infinite family of insertion-deletion codes can list-decode from δ = q−i

q
fraction of deletions

and γ = i(i−1)
q

fraction of insertions.

84



Figure 5.5: Infeasible points inside the conjectured feasibility region. (Illustrated for q = 5)

Proof. Take a codeword x ∈ [q]n. With δn = q−i
q
·n deletions, the adversary can delete the

q − i least frequent symbols to turn x into x′ ∈ Σ
n(1−δ)
d for some Σd = {σ1, · · · , σi} ⊆ [q].

Then, with γn = n(1−δ)(i−1) = n i(i−1)
q

insertions, it can turn x′ into [σ1, σ2, · · · , σi]n(1−δ).

Such adversary only allows O(1) amount of information to pass to the receiver. Hence, no
such family of codes can yield a positive rate.

Note that all points (γ, δ) =
(
i(i−1)
q
, q−i

q

)
are located on a second degree curve inside

the conjectured feasibility region δ
1− 1

q

+ γ
q−1

< 1 (see Fig. 5.5). Our next step is to show

that the actual feasibility region is a subset of the polygon outlined by these points.

Theorem 5.5.2. For any positive integer q > 2, define Fq as the concave polygon defined

over vertices
(
i(i−1)
q
, q−i

q

)
for i = 1, · · · , q and (0, 0). (see Fig. 5.1). Fq does not include

the border except the two segments [(0, 0), (q − 1, 0)) and
[
(0, 0),

(
0, 1− 1

q

))
. Then, for

any pair of positive real numbers (γ, δ) 6∈ Fq, there exists no infinite family of q-ary codes
with positive rate that can correct from δ fraction of deletions and γ fraction of insertions.

Proof. In order to prove this, it suffices to show that for any pair of consecutive vertices on

the polygon like pi =
(
i(i−1)
q
, q−i

q

)
and pi+1 =

(
i(i+1)
q
, q−i−1

q

)
, the entirety of the segment

between pi and pi+1 lie outside of the feasibility region. To this end, we show that for any
i = 1, 2, · · · , q − 1 and α ∈ (0, 1), no family of codes with positive rate is list-decodable
from (γ0, δ0) = αpi + (1 − α)pi+1 fraction of insertions and deletions. Note that in Theo-
rem 5.5.1 we proved the infeasibility of the vertices of Fq by providing a strategy for the
adversary to convert any string into one out of a set of size Oq(1) using the corresponding
amount of insertions and deletions. To finish the proof, we similarly present a strategy for
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the adversary that is obtained by a simple time sharing between the ones used to show
infeasibility at pi and pi+1 in Theorem 5.5.1.

Consider a codeword x ∈ [q]n. As shown in Theorem 5.5.1, the adversary can utilize

nα · pi errors to convert the first αn symbols of x into a string of form [σ1, σ2, · · · , σi]nα·
i
q

where {σ1, σ2, · · · , σi} ⊆ Σ. Similarly, the remaining n(1 − α)pi+1 errors can be utilized

to turn the last (1 − α)n symbols of x into a string of the form [σ′1, σ
′
2, · · · , σ′i+1]n(1−α)· i+1

q

where {σ1, σ2, · · · , σi+1} ⊆ Σ. Note that there are no more than
(
q
i

)
i! ·
(
q
i+1

)
(i+1)! = Oq(1)

of such strings. Therefore, for any given positive rate code, there exists one string of the
above-mentioned form which is (γ0, δ0)-close to exponentially many codewords and, thus,
no positive-rate family of codes is list-decodable from (γ0, δ0) fraction of insertions and
deletions.

5.5.2 Feasibility Region: Exact Characterization

Finally, we will show that the feasibility region is indeed equal to the region Fq described
in Theorem 5.5.2. The proof closely follows the steps taken for the binary case but is
significantly more technical. We first formally define q-ary Bukh-Ma codes and show they
are list-decodable as long as the error rate lies in Fq and then use the concatenation in
Section 5.4 to obtain Theorem 5.1.3.

Theorem 5.5.3. For any integer q ≥ 2, ε > 0, and sufficiently large n, let Cq
n,ε be the

following Bukh-Ma code:

Cq
n,ε =

{
(0r1r · · · qr)

n
qr

∣∣∣r =

(
1

ε4

)k
, k < log1/ε4 n

}
.

For any (γ, δ) ∈ (1− ε)Fq it holds that Cq
n,ε is list decodable from any δn deletions and

γn insertions with a list size of O
(
q5

ε2

)
.

We remark that in the case of q = 2, Theorem 5.5.3 improves over Theorem 5.1.4 in
terms of the dependence of the list size on ε.

Proof Sketch for Theorem 5.5.3

To prove Theorem 5.5.3, we show that Bukh-Ma codes are list-decodable as long as the
error rate (γ, δ) lies beneath the line that connects a pair of consecutive non-zero vertices
of Fq.

In other words, for any pair of points
(
i(i−1)
q
, q−i

q

)
and

(
i(i+1)
q
, q−i−1

q

)
we consider the

line passing through them (see Fig. 5.6), i.e.,

γ + (2i)δ =
(2q − 1)i− i2

q
, i = 1, · · · , q − 1 (5.12)

and show that as long as γ+(2z)δ ≤ (1−ε) (2q−1)z−z2

q
for some z ∈ {1, · · · , q−1}, Bukh-Ma
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Figure 5.6: In the feasibility region for q = 5, the line passing through (1.2, 0.4) and
(1.8, 0.3) (indicated with red dotted line) is characterized as γ + 6δ ≤ 3.6. (Corresponding
to i = 3 in Eq. (5.12))

codes are list-decodable. Note that the union of such areas is equal to (1− ε)Fq.
The analysis for each line follows the arguments for the binary case. Namely, we

assume that k codewords can be converted to some center string v via (γ, δ) fraction
of errors. Then, using an appropriate advantage notion and considering some coupled
statistic processes obtained by sampling substrings, we show that k is bounded above by
some Oq (poly(1/ε)).

The only major difference is that the notion of bias cannot be directly used for q-ary
alphabets. In this general case, instead of keeping track of the variance of the bias, we keep
track of the sum of the variances of the frequency of the occurrence of each symbol. We show
that this quantity increases by some constant after each substring sampling (analogous
to Lemma 5.3.3) by showing that a positive advantage requires that the frequency of
occurrence of at least one of the symbols to be ε-different for two different values of the
random variable T (analogous to Lemma 5.3.4). The rest of this section contains more
formal description of generalized notions and proofs for generalized q-ary claims.

5.5.3 Generalized Notation and Preliminary Lemmas

To prove Theorem 5.5.3, we need to generalize some of the notions and respective prelim-
inary lemmas for the binary case. We start with defining ith order advantage.

Definition 5.5.4 (ith order q-ary advantage of matchingM). For a pair of positive integers
i < q, a pair of q-ary strings a and b, and a matching M between a and b, we define ith
order q-ary advantage of a to b as follows:

advq,iM (a, b) =
(2i+ 1)|M | − |a| − i+i2

q
· |b|

|a|
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Note that the notion of advantage utilized for the binary case is obtained for q = 2 and
i = 1 in the above definition. The notions of ith order advantage between two strings (that
is independent of a specific matching, i.e., advq,i(a, b)) and infinite ith order advantage are
defined in a similar manner to the binary case.

Remark 5.5.5. In the same spirit as of the binary case, advq,iM (a, b) is simply the value of

|b|
(

(2q − 1)i− i2

q
− (2i)δM − γM

)
normalized by the length of a. Indeed,

advq,iM (a, b) =
(2i+ 1)|M | − |a| − i+i2

q
· |b|

|a|

=
(2i+ 1)|b|(1− δM)− |b|(1− δM + γM)− i+i2

q
· |b|

|a|

=
|b|
|a|
·
[
(2i+ 1)(1− δM)− (1− δM + γM)− i+ i2

q

]
=
|b|
|a|
·
(

(2q − 1)i− i2

q
− (2i)δM − γM

)
.

Lemma 5.5.6. If for strings a and b, advq,i(a, b) ≥ 0, then |a| and |b| are within a q factor
of each other.

Proof. advq,i(a, b) ≥ 0 implies that for some matching M ,

advq,iM ≥ 0⇒ |a|+ i+ i2

q
· |b| ≤ (2i+ 1)|M |

⇒ q|a|+ (i+ i2) · |b| ≤ q(2i+ 1)|M | ≤ q(2i+ 1) min(|a|, |b|) (5.13)

Now if |a| ≤ |b|, (5.13) gives

q|a|+ (i+ i2)|b| ≤ q(2i+ 1)|a| ⇒ |b| ≤ 2q

i+ 1
· |a| ≤ q|a|

and if |b| < |a|, (5.13) gives

q|a|+ (i+ i2)|b| ≤ q(2i+ 1)|b| ⇒ |a| ≤ 2iq + q − i− i2

q
· |b| ≤ q|b|.

Definition 5.5.7 (q-ary Alternating Strings). For any positive integer r, we define the
infinite q-ary alternating string of run-length r as Aqr = (1r2r · · · qr)∞ and denote its prefix
of length l by Aqr,l = Aqr[1, l].
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5.5.4 Proof of Theorem 5.5.3

As mentioned before, Theorem 5.5.3 can be restated as follows.

Theorem 5.5.8 (Restatement of Theorem 5.5.3). For any integer q ≥ 2, ε > 0, sufficiently
large n, and any z ∈ {1, 2, · · · , q − 1}, the Bukh-Ma code Cn

n,ε from Theorem 5.5.3 is list
decodable from any δn deletions and γn insertions with a list size O (q5/ε2) as long as

γ + (2z)δ ≤ (1− ε) (2q−1)z−z2

q
.

To prove this restated version, once again, we follow the steps taken for the proof of
Theorem 5.1.4 and assume for the sake of contradiction that there exists a string v and

k = Ω
(
q5

ε2

)
members of Cq

n,ε like Aqr1,n, A
q
r2,n

, · · · , Aqrk,n, so that each Aqri,n can be converted

to v with Ii insertions and Di deletions where Ii + (2z)Di ≤ (1− ε) (2q−1)z−z2

q
·n. We define

the indices in a way that r1 > r2 > · · · > rk. Given the definition of Cq
n,ε, ri ≥

ri+1

ε4
.

Given Remark 5.5.5 and Lemma 5.5.6, an argument similar to the one presented in
Lemma 5.3.1 shows that for all these codewords, advq,z(v,Aqri,n) ≥ ε

q
.

We define the following stochastic processes similar to the binary case. We split the
string v into substrings of size l1 = r1ε

2, pick one uniformly at random and denote it by v1.
We define random variable A1 = advq,z(v1, A

q
r1

) and random variables F p
1 for p = 1, 2, · · · , q

as the frequency of the occurrence of symbol p in v1. In other words,

F p
1 =

countp(v1)

|v1|
.

We continue this process for j = 2, 3, · · · , k by splitting each vj−1 into substrings of
length lj = rjε

2, picking vj uniformly at random, and defining Aj = advq,z(vj, A
q
rj

) and

F p
j =

countp(vj)

|vj | for all p ∈ {1, 2, · · · , q}. We then define the sequence of real numbers

f1, f2, · · · , fk as follows:

fi =

q∑
p=1

Var(F p
i ).

This series of real numbers will play the role of Var(Bi) in the binary case.

Lemma 5.5.9. The following hold for A1, A2, · · · , Ak and F p
1 , F

p
2 , · · · , F

p
k for all p ∈

{1, 2, · · · , q}.

1. E[F p
i ] = F p

i−1

2. E[Ai] ≥ ε
q

Proof. Since vi is a substring of vi−1 chosen uniformly at random, the overall frequency of
symbol p is equal to the average frequency of its occurrence in each substrings. The second
item can be derived as in Lemma 5.3.2.

The next lemma mimics Lemma 5.3.3 for the binary case.
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Lemma 5.5.10. For the sequence f1, f2, · · · , fk, we have that

fi+1 ≥ fi + Ω

(
ε2

q4

)
.

Using Lemma 5.5.10, Theorem 5.5.8 can be simply proved as follows.

Proof of Theorem 5.5.8. Note that each fi is the summation of the variance of q random
variables that take values in [0, 1]. Therefore, their value cannot exceed q. Since fi+1 ≥
fi + Ω(ε2/q4), the total length of the series, k, may not exceed O

(
q5

ε2

)
. This implies that

the list size is O
(
q5

ε2

)
.

We now present the proof of Lemma 5.5.10.

Proof of Lemma 5.5.10. To relate fi and fi+1, we utilize the law of total variance as
follows:

Var(F p
i+1) = Var

(
E[F p

i+1|vi]
)

+ E
[
Var(F p

i+1|vi)
]

= Var (F p
i ) + E

[
Var(F p

i+1|vi)
]

(5.14)

Equation (5.14) comes from the fact that the average frequency of symbol p in substrings
of length li+1 of vi is equal to the frequency of p in vi. Having this, we see that it suffices
to show that E

[
Var(F p

i+1|vi)
]
≥ Ω (ε2/q4). Similar to Lemma 5.3.3 we define Ej for j =

1, 2, · · · , q and Ee respectively as the event that the projection of vi+1 falls inside a jri+1 in
Ari+1

or a string containing multiple symbols. We also define the random variable T out
of {e, 1, 2, · · · , q} that indicates which one of these events is realized. Once again, we use
the law of total variance to bound E

[
Var(F p

i+1|vi)
]
.

E
[
Var(F p

i+1|vi)
]

= Evi

[
VarT (E

[
F p
i+1|vi, T

]
) + ET

[
Var(F p

i+1|vi, T )
] ]

≥ Evi
[
VarT (E

[
F p
i+1|vi, T

]
)

]
(5.15)

Combining (5.14) and (5.15) gives

Var(F p
i+1) ≥ Var (F p

i ) + Evi
[
VarT

(
E
[
F p
i+1|vi, T

])]
⇒

q∑
p=1

Var(F p
i+1) ≥

q∑
p=1

Var (F p
i ) +

q∑
p=1

Evi
[
VarT

(
E
[
F p
i+1|vi, T

])]
⇒ fi+1 ≥ fi +

q∑
p=1

Evi
[
VarT

(
E
[
F p
i+1|vi, T

])]
⇒ fi+1 ≥ fi + Evi

[
q∑
p=1

VarT
(
E
[
F p
i+1|vi, T

])]
(5.16)
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Note that the term VarT
(
E
[
F p
i+1|vi, T

])
refers to the variance of a (q + 1)-valued

random variable that takes the value Evi
[
F p
i+1|vi, T = t

]
with probability Pr{T = t|vi}

for t ∈ {e, 1, 2, · · · , q}. Once again, we present a crucial lemma that bounds from below
the sum of variances of frequencies with respect to T assuming that the overall advantage
is large enough.

Lemma 5.5.11. For any realization of vi, the following holds true if advq,z(vi, Ari+1
) ≥

3qε2:
q∑
p=1

VarT
(
E
[
F p
i+1|vi, T

])
≥
(
advq,z(vi, Ari+1

)− 3qε2

2z + 1

)2

We defer the proof of Lemma 5.5.11 to Section 5.5.6. Using Jensen inequality, the fact
that z ≤ q, and Lemma 5.5.11 along with (5.16) give that

fi+1 ≥ fi + Evi

[(
advq,z(vi, Ari+1

)− 3qε2

2z + 1

)2
]
≥ fi +

(
ε/q − 3qε2

2q + 1

)2

= fi + Ω

(
ε2

q4

)
for sufficiently small ε > 0.

5.5.5 Proof of Theorem 5.1.3

To establish Theorem 5.1.3, we closely follow the concatenation scheme presented in Sec-
tion 5.4. In the following, we provide a high-level description of the proof skipping the
details mentioned in Section 5.4 and highlighting the necessary extra steps.

The construction of the concatenated code is exactly as in Section 5.4 with the exception
that the inner code is defined over an alphabet of size q. Note that if (γ, δ) ∈ (1 − ε)Fq,
then (γ, δ) lies underneath one of the lines in the set of lines represented by (5.12). In
other words, there exists some z ∈ {1, 2, · · · , q − 1} for which

γ + (2z)δ ≤ (1− ε)
(

(2q − 1)z − z2

q

)
.

Similar to Section 5.4, we define the notion of error count for each block in the codewords
of the concatenated code as

(I + 2z ·D) · q

(2q − 1)z − z2

where D and I denote the number of deletions and insertions occurred in the block
respectively. As in Section 5.4 one can show that at least 3ε

4
· nout of the blocks contain no

more than
(
1− ε

4

)
nin error count. We denote the set of all such blocks by S. Once again,

we partition S into subsets S1, S2, · · · depending on the number of deletions occurred in
the set. More precisely, we define Si ⊆ S as the set of blocks in S that contain a number

of deletions that is in the range
[
nin · ε

16q
· (i− 1), nin · ε

16q
· i
)

for i = 1, 2, · · · , 16q/ε. Once

again, the following hold true:
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1. We have that S =
⋃̇16q/ε

i=1 Si. By the Pigeonhole principle, for some i∗ ∈ [1, 16q/ε],

|Si∗ | ≥ 3ε2

64q
nout.

2. Take some i ∈ {1, 2, · · · , 16q/ε} and some block in Si. Say D deletions have occurred

in that block. Then, the total number of insertions is at most (1−ε/4) (2q−1)z−z2

q
nin−

2zD. Therefore, the total length of the block is

nin −D(1− ε/4)
(2q − 1)z − z2

q
nin − 2zD

= nin ·
[
1 +

(
1− ε

4

) (2q − 1)z − z2

q

]
− (2z + 1)D (5.17)

which is no more than

nin ·
[
1 +

(
1− ε

4

) (2q − 1)z − z2

q
− ε

16q
(i− 1)(2z + 1)

]
(5.18)

Based on these observations, it is easy to verify that the decoding algorithm and
analysis as presented in Section 5.4 and Algorithm 5 work for the q-ary case with the
following minor modifications:

(a) Based on (5.18), the parameter w determining the length of the window should
be

w =

nin ·
[
1 +

(
1− ε

4

) (2q−1)z−z2

q
− ε

16q
(i− 1)(2z + 1)

]
ninε/16

+ 1. (5.19)

(b) As in (5.11), parameter εin has to be chosen such that the error count in decoding
windows does not exceed nin(1− εin). Note that the choice of shifting steps for
the decoding window from (5.19) may add up to ninε

16
additional insertions to the

decoding window. Further, there is up to nin
ε

16q
uncertainty in the total length

of the block from (5.17) since D ∈
[
nin · ε

16q
· (i− 1), nin · ε

16q
· i
)

. This can also

add up to nin
ε

16q
(2z + 1) ≤ ε

8
insertions. Therefore, we need

nin(1− ε/4) + nin

( ε
16

+
ε

8

)
· q

(2q − 1)z − z2
≤ nin(1− εin).

Note that q
(2q−1)z−z2 ≤ q

2q−2
≤ 1. Hence, it suffuces that 1− ε

4
+ ε

8
+ ε

16
≤ 1− εin

or equivalently, εin ≤ ε
16

.

(c) Some modifications are necessary to the parameters of the outer code. Notably,

for alphabet size q, |Si∗ | ≥ 3ε2

64q
nout and the fraction of deletions can be as high

as 1− 1
q
. This requires δout = 1− 3ε2

128q2 .

(d) Finally, note the the value of z is not know to the decoder. So the decoder has
to run the algorithm with modifications mentioned above for all possible values
of z = 1, 2, · · · , q − 1 and the output the union of all lists produced.
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5.5.6 Proof of Lemma 5.5.11

We break down this proof into four steps. In the first step, similar to Lemma 5.3.4, we
modify vi and Ari+1,n into a simpler structure without significantly changing the advantage.
In the second step, we provide an upper bound for the advantage in this modified version
that depends on the local frequencies of symbols, more specifically, on what we refer to as
E
[
F j
i+1|vi, T = j

]
. In Step 3, we show that these upper-bounds would yield a non-positive

value on the advantage if one replaces the local frequencies with the overall frequency of
symbols in vi, i.e., F j

i . In the fourth and last step, we show that this means that the local
frequencies have to significantly deviate from global ones to attain the advantage achieved
by M̄i (i.e., advq,z

M̄i
), so much that the lower-bound promised in the lemma’s statement is

achieved.

Step 1. Modifying vi and Ari+1,n for the sake of simplicity: The proof starts
with modifying vi, Ari+1,n, and the advantage-yielding matching Mi between them in a
way that only slightly changes the value of advantage taking steps identical to the one
in Lemma 5.3.4. Similar to Lemma 5.3.4, we denote the projection of vi under Mi by
g = vi →Mi. (See Fig. 5.3 for a depiction of the steps in binary case.)

1. First, we delete all substrings of Ue–i.e., substrings of length li+1 in vi whose projection
does not entirely fall into some stretch of jri+1–from vi.

2. We reorder the substrings of length li+1 in vi by shifting all Uj substrings together
and the projections in g to preserve the remainder of Mi from step 1.

3. At this point, string g consists of a stretch of symbol 1 followed by a stretch of symbol
2, etc. If the length of all stretches are not equal, we add adequate symbols to each
stretch to make g have the form of 1t2t · · · qt.

To track the changes in advq,zMi
during this transformation, we track how |Mi|, |vi| and

|g| change throughout the three steps mentioned above.
In the first step, a total of up to |Ue|li+1 elements are removed from vi and Mi. Note

that since the run length of Ari+1
is ri+1, there can only be |g|

ri+1
substrings in Ue. Therefore,

|Ue|li+1 ≤
|g|li+1

ri+1

= |g|ε2 ≤ 2ε2|vi|.

The second step preserves |Mi|, |vi| and |g|.
Finally, since g is a substring of Ari+1

, the third step increases |g| only by up to qri+1.
Note the run length of the Ari+1

s and consequently li+1s are different by a multiplicative

factor of at least 1
ε4

by the definition of the code C. Therefore, qri+1 = qli+1

ε2
= qli+1|vi|

ε2|vi| =
qli+1|vi|
ε2li

≤ ε2q|vi|.

Overall, the value of the advq,zMi
=

(2z+1)|M |−|vi|− z+z
2

q
·|g|

|vi| can be affected by a maximum of

2z×2ε2|vi|+qε2|vi| = (2z+q)ε2|vi| ≤ 3qε2|vi| decrease in the numerator and ε2|vi| decrease
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in the denominator. Therefore, the eventual advantage does not drop below advq,zMi
− 3qε2.

Let us denote the transformed versions of vi, g, and Mi by v̄i, ḡ, and M̄i respectively. We
have shown that

advq,z
M̄i
≥ advq,zMi

− 3qε2. (5.20)

Step 2. Bounding Above advq,z
M̄i

with f ∗: Let v̄i = (v̄1
i , v̄

2
i , · · · , v̄

q
i ) so that v̄ji corre-

sponds to the part of v̄i that is mapped to jt under M̄i. Further, let f ∗j = E
[
F j
i+1|vi, T = j

]
represent the frequency of the occurrence of symbol j in v̄ji as a shorthand, i.e.,

f ∗j =
countj(v̄

j
i )

|v̄ji |

and pj be the relative length of v̄ji , i.e.,

pj =
|v̄ji |
|v̄i|

.

In this section, we compute an upperbound for advq,z
M̄i

that depends on f ∗j s. For the sake
of simplicity, from now on we assume, without loss of generality, that

count1(v̄1
i ) ≥ count2(v̄2

i ) ≥ · · · ≥ countq(v̄
q
i )

or equivalently,
f ∗1 p1 ≥ f ∗2 p2 ≥ · · · ≥ f ∗q pq.

Consider the matching between v̄i and p̄ that, for any j ∈ {1, 2, · · · , q} matches as many
js as possible from jt to v̄ji . This matching clearly yields the largest possible advantage
between the two that is an upperbound for the advq,z

M̄i
. Similar to the binary case, we find

a t that maximizes this advantage and use its advantage as an upper-bound for advq,z
M̄i

.

Let c be so that f ∗c |v̄ci | > t ≥ f ∗c+1|v̄c+1
i | . Then, increasing t by one would increase

the length of p̄ by q and increases the size of the matching by c. To see the effect of this
increment on the advantage, note that the denominator does not change and the numerator
changes by c(2z + 1)− z+z2

q
· q. This change in advantage is positive as long as

c(2z + 1)− (z + z2) ≥ 0

⇔ c ≥ z + z2

2z + 1
=
z

2
+

(
1

4
− 1

4(2z + 1)

)
.

Note that the term 1
4
− 1

4(2z+1)
is always between

[
0, 1

4

]
. Hence, incrementing t increases

the advantage as long as c ≥ b z
2
c + 1. This means that the highest possible advantage is

derived when t = f ∗w|v̄wi | for w = b z
2
c + 1. With this value for t, the matching contains

f ∗j |v̄
j
i | edges between jt and |v̄ji | for all j > w and t edges between jt and |v̄ji | for j ≤ w.

Therefore, the size of this matching is

tw +

q∑
j=w+1

f ∗j |v̄
j
i |.
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This yields the following advantage

(2z + 1)
[
tw +

∑q
j=w+1 f

∗
j |v̄

j
i |
]
− |v̄i| − z+z2

q
· qt

|v̄i|

=
(2z + 1)

[
f ∗w|v̄wi |w +

∑q
j=w+1 f

∗
j |v̄

j
i |
]
− |v̄i| − z+z2

q
· qf ∗w|v̄wi |

|v̄i|

= (2z + 1)

[
f ∗wpww +

q∑
j=w+1

f ∗j pj

]
− 1− (z + z2) · f ∗wpw

=
[
(2z + 1)w − (z + z2)

]
· f ∗wpw + (2z + 1)

q∑
j=w+1

f ∗j pj − 1

We remind that this is an upper-bound on the advq,z
M̄i

. Next, we plug in w = b z
2
c + 1 into

this bound. Note that

(2z + 1)w − (z + z2) = z(2w − z) + w − z =

{
3z+2

2
If z is even

z+1
2

If z is odd

Therefore, we have the following set of upper-bounds on the advantage

advq,z
M̄i
≤ 3z+2

2
· f ∗wpw + (2z + 1)

∑q
j=w+1 f

∗
j pj − 1 If z is even (5.21)

advq,z
M̄i
≤ z+1

2
· f ∗wpw + (2z + 1)

∑q
j=w+1 f

∗
j pj − 1 If z is odd (5.22)

Step 3. Proving Non-positivity of the Bound from Step 3 for Unit Sum Vectors:
In this step, we show that the bounds (5.21) and (5.22) on advantage that were presented
in Step 2 are necessarily non-positive for any vector (f ∗1 , · · · , f ∗q ) with unit sum including

the vector of overall frequencies f̄ = (f̄1, · · · , f̄q) where f̄j =
countj(v̄i)

|v̄i| = F j
i . In Step 4,

we use this fact to show that f ∗ needs to deviate noticeably from f̄ which gives that the
variance of frequencies with respect to T is large enough, thus finishing the proof.

Proposition 5.5.12. Let (p1, · · · , pq) and (f ∗1 , · · · , f ∗q ) be two positive real vectors with
unit sum that satisfy

f ∗1 p1 ≥ f ∗2 p2 ≥ · · · ≥ f ∗q pq.

Then, for all integers 1 ≤ z < q, the following hold for w = b z
2
c+ 1:

1. If z is even,

3z + 2

2
· f ∗wpw + (2z + 1)

q∑
j=w+1

f ∗j pj ≤ 1.

2. If z is odd,

z + 1

2
· f ∗wpw + (2z + 1)

q∑
j=w+1

f ∗j pj ≤ 1.

We defer the proof of Proposition 5.5.12 to Section 5.5.7.
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Step 4. Large Deviation of f ∗s from f̄s and Large Variance: Here we finish
the proof assuming z is odd. The even case can be proved in the same way. Note that
Proposition 5.5.12 gives that for the overall frequency vector f̄ which has a unit sum,

z + 1

2
· f̄wpw + (2z + 1)

q∑
j=w+1

f̄jpj − 1 ≤ 0. (5.23)

However, (5.20) and (5.22) imply that for local frequency vector f ∗

z + 1

2
· f ∗wpw + (2z + 1)

q∑
j=w+1

f ∗j pj − 1 ≥ advq,zMi
− 3qε2. (5.24)

Subtracting (5.23) from (5.24) gives that

z + 1

2
· pw(f ∗w − f̄w) + (2z + 1)

q∑
j=w+1

(f ∗j − f̄j)pj ≥ advq,zMi
− 3qε2.

⇒ z + 1

2
· pw|f ∗w − f̄w|+ (2z + 1)

q∑
j=w+1

|f ∗j − f̄j|pj ≥ advq,zMi
− 3qε2.

⇒ (2z + 1)

q∑
j=w

|f ∗j − f̄j|pj ≥ advq,zMi
− 3qε2.

⇒
q∑

j=w

|f ∗j − f̄j|pj ≥
advq,zMi

− 3qε2

2z + 1
.

This means that there exists some j0 for which

|f ∗j0 − f̄j0 |pj0 ≥
advq,zMi

− 3qε2

2z + 1
⇒ (f ∗j0 − f̄j0)2pj0 ≥ (f ∗j0 − f̄j0)2p2

j0
≥
(
advq,zMi

− 3qε2

2z + 1

)2

.

Note that

q∑
p=1

VarT
(
E
[
F p
i+1|vi, T

])
=

q∑
p=1

q∑
j=1

(
E
[
F p
i+1|vi, T = j

]
− F p

i

)2
Pr{T = j|vi}

≥
(
E
[
F j0
i+1|vi, T = j0

]
− F j0

i

)2
Pr{T = j0|vi}

= (f ∗j0 − f̄j0)2pj0 ≥
(
advq,zMi

− 3qε2

2z + 1

)2

.

5.5.7 Proof of Proposition 5.5.12

To prove Proposition 5.5.12 we provide several observations that simplify the form of the
solution that yields the maximum value by reducing the number of important free variables.
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Observation 5.5.13. Any solution that maximizes the left-hand-side satisfies

f ∗1 p1 = f ∗2 p2 = · · · = f ∗wpw.

We start with f ∗w−1pw−1 = f ∗wpw. Assume by contradiction that f ∗w−1pw−1 > f ∗wpw.
Then, there exists a small positive value ε for which decreasing f ∗w−1 by ε and increasing
f ∗w by ε would preserve f ∗w−1pw−1 ≥ f ∗wpw but increase the overall value of the expression.
This contradicts the fact that the solution maximizes the left-hand-side value. Similarly,
if f ∗w−2pw−2 > f ∗w−1pw−1 = f ∗wpw, same idea executed on f ∗w−2pw−2 and f ∗w−1pw−1 turns the
solution into one for which f ∗w−2pw−2 ≥ f ∗w−1pw−1 > f ∗wpw which is, again, contradictory
to the fact that the solution maximizes the left-hand-size. Continuing this argument gives
Observation 5.5.13.

We next present the two following lemmas that we will prove later in Section 5.5.7.

Lemma 5.5.14. Let f1, · · · , fq and p1, · · · , pq be positive numbers for which
∑q

i=1 fi =
F,

∑q
i=1 pi = P and f1p1 ≥ f2p2 ≥ · · · ≥ fqpq. Then

fqpq ≤
FP

q2

and equality is attained only at fi = F
q

and pi = P
q

for all i ∈ {1, 2, · · · , q}.

Lemma 5.5.15. Let f1, · · · , fq and p1, · · · , pq be positive variables with constraints∑q
i=1 fi = F ,

∑q
i=1 pi = P , f1p1 ≥ f2p2 ≥ · · · ≥ fqpq, and f1p1 ≤ m for some constant m.

Then, the largest possible value for
∑q

i=1 fipi is:

fmax(F, P,m) =


FP if FP ≤ m

um+ (
√
FP − u

√
m)2 if FP

(u+1)2 ≤ m < FP
u2 for u = 1, 2, · · · , q − 1

mq if m < FP
q2

We claim that if one fixes the two quantities f ∗wpw = α and
∑w

j=1 pj = β, then us-
ing observation 1 and Lemmas 5.5.14 and 5.5.15, the maximum value of the two terms
in the statement of the theorem can be written in terms of α and β. Note that with
f ∗wpw = α, both expressions are maximized when

∑q
j=w+1 f

∗
j pj is maximized and according

to Lemma 5.5.15, that happens when (
∑q

i=w+1 f
∗
i )(
∑q

i=w+1 pi) = (
∑q

i=w+1 f
∗
i )(1 − β) is

maximized or equivalently
∑w

i=1 f
∗
i is as small as possible.

Now, note that for j ≤ w all f ∗j pj’s are larger than or equal to α. Then according to

Lemma 5.5.14,
(
∑w
i=1 f

∗
i )×β

w2 ≥ α⇒
∑w

i=1 f
∗
i ≥ αw2

β
.

All in all, the above-mentioned observations and lemmas boil down the two parts of
theorem statement to the following:

For any α, β ∈ [0, 1] where αw2

β
≤ 1:

1. If z is even,
3z + 2

2
α + (2z + 1)fmax

(
1− αw2

β
, 1− β, α

)
≤ 1
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2. If z is odd,
z + 1

2
α + (2z + 1)fmax

(
1− αw2

β
, 1− β, α

)
≤ 1

Note that to maximize fmax term for a given α, one needs to maximize(
1− αw2

β

)
(1− β). This is attained with the following choice of β =

√
αw. With this

choice of β we have

fmax

(
1−
√
αw, 1−

√
αw, α

)
=



(1−
√
αw)2 if (1−

√
αw)2 ≤ α

uα + (1− w
√
α− u

√
α)2 if (1−

√
αw)2

(u+1)2 ≤ α < (1−
√
αw)2

u2

for 1 ≤ u ≤ q − w
αq if α < (1−

√
αw)2

(q−w)2

=



(1−
√
αw)2 if α ∈

[
1

(w+1)2 ,
1
w2

]
uα + (1− (w + u)

√
α)2 if α ∈

[
1

(w+u+1)2 ,
1

(w+u)2

)
for 1 ≤ u ≤ q − w

αq if α < 1
q2

Note that we require that β ≤ 1 ⇒ α ≤ 1
w2 . Therefore in the second line the regions

for α are truncated at 1
w2 .

As the next step, we plug in the above description for fmax into each of the two terms
and derive a piece-wise characterization of them based on α.

1. If z is even,

LHS =



3z+2
2
α + (2z + 1)(1−

√
αw)2 if α ∈

[
1

(w+1)2 ,
1
w2

]
3z+2

2
α + (2z + 1) [uα + (1− (u+ w)

√
α)2] if α ∈

[
1

(w+u+1)2 ,
1

(w+u)2

)
for u = 1, 2, · · · , q − w

3z+2
2
α + (2z + 1)αq if α < 1

q2

Note that this function is continuous. The derivative in α < 1
q2 region is positive

meaning that the function is increasing in that region.

For the region α ∈
[

1
(w+1)2 ,

1
w2

]
,

∂2

∂α2

[
3z + 2

2
α + (2z + 1)(1−

√
αw)2

]
= (z/2 + 1)(z + 1/2)α−3/2 > 0
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Therefore, the function is concave in this region; giving that the maximum value in
this region is obtained either at 1

(w+1)2 or 1
w2 . Note that we can easily exclude 1

w2 as

LHS function has a value of zero there.

We now analyze the derivative for the regions of form α ∈
[

1
(w+u+1)2 ,

1
(w+u)2

]
∂

∂α

[
3z + 2

2
α + (2z + 1)

(
uα + (1− (u+ w)

√
α)2
)]

=
3z + 2 + (4z + 2)((u+ w)2 + u)

2
− (u+ w)(2z + 1)√

α

and hence,

∂2

∂α2

[
3z + 2

2
α + (2z + 1)

(
uα + (1− (u+ w)

√
α)2
)]

= (u+ w)(2z + 1)α−3/2

and is always positive. Giving that within each region of form α ∈
[

1
(w+u+1)2 ,

1
(w+u)2

]
the expression is concave and attains no local maximum. The above observations
along with the fact that this piece-wise function is continuous, gives that the global
maximum is necessarily of the form α = 1

(w+u+1)2 for some u = 0, 1, 2, · · · , q − w.

Note that at such point the value of LHS is

LHS(u) =
3z + 2

2
α + (2z + 1)

[
uα + (1− (w + u)

√
α)2
] ∣∣∣∣∣
α= 1

(w+u+1)2

=
3z + 2

2(w + u+ 1)2
+ (2z + 1)

u+ 1

(w + u+ 1)2

=
3z + 2 + 2(2z + 1)(u+ 1)

2(w + u+ 1)2
=

7z + 4 + 2(2z + 1)u

2(w + u+ 1)2

To find the optimum u, we take derivative with respect to u.

∂

∂u
LHS(u) = 0

⇔ 2(2z + 1)2(w + u+ 1)2 − (7z + 4 + 2(2z + 1)u)4(w + u+ 1) = 0

⇔ (2z + 1)(w + u+ 1)− (7z + 4 + 2(2z + 1)u) = 0

⇔ −u(2z + 1) + (2z + 1)(z/2 + 2)− (7z + 4) = 0

⇔ u =
(2z + 1)(z/2 + 2)− (7z + 4)

2z + 1
=
z2 + 9

2
z + 2− 7z − 4

2z + 1

⇔ u =
(2z + 1)(z/2 + 2)− (7z + 4)

2z + 1
=
z2 − 5

2
z − 2

2z + 1
=
z

2
− 3z + 2

2z + 1

Note that the term 3z+2
2z+1

is always between 1 and 2. Hence, the maximum is achieved
either at u = z

2
− 1 or u = z

2
− 2. We simply compute LHS(u) for both of these

values to obtain the maximum.
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LHS
(z

2
− 1
)

=
7z + 4 + 2(2z + 1)(z/2− 1)

2(z + 1)2
=

2z2 + 4z + 2

2(z + 1)2
= 1

and

LHS
(z

2
− 2
)

=
7z + 4 + 2(2z + 1)(z/2− 2)

2z2
=

2z2

2z2
= 1

meaning that, indeed, the maximum achievable value for even z is 1. This finishes
the proof for even zs. The maximum value 1 can be achieved by f ∗1 = · · · = f ∗m =
1
m

= p1 = · · · = pm and all other values equal to zero for m = z or z + 1.

2. If z is odd,

LHS =



z+1
2
α + (2z + 1)(1−

√
αw)2 if α ∈

[
1

(w+1)2 ,
1
w2

]
z+1

2
α + (2z + 1) [uα + (1− (u+ w)

√
α)2] if α ∈

[
1

(w+u+1)2 ,
1

(w+u)2

)
for u = 1, 2, · · · , q − w

z+1
2
α + (2z + 1)αq if α < 1

q2

Note that this function is continuous. The derivative in α < 1
q2 region is positive

meaning that the function is increasing in that region.

Similar to the even z case, for regions α ∈
[

1
(w+1)2 ,

1
w2

]
and α ∈

[
1

(w+u+1)2 ,
1

(w+u)2

]
,

the second derivative is positive.

∂2

∂α2

[
z + 1

2
α + (2z + 1)(1−

√
αw)2

]
=

(z + 1)(z + 1/2)

2
α−3/2 > 0

∂2

∂α2

[
z + 1

2
α + (2z + 1)

(
uα + (1− (u+ w)

√
α)2
)]

= (u+ w)(2z + 1)α−3/2

Meaning that, once again, the global maximum is attained at a point necessarily of
the form α = 1

(w+u+1)2 for some u = 0, 1, 2, · · · , q − w. Note that at such point the

value of LHS is

LHS(u) =
z + 1

2
α + (2z + 1)

[
uα + (1− (w + u)

√
α)2
] ∣∣∣∣∣
α= 1

(w+u+1)2

=
z + 1 + 2(2z + 1)(u+ 1)

2(w + u+ 1)2
=

5z + 3 + 2(2z + 1)u

2(w + u+ 1)2
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To find the optimum u, we take derivative with respect to u.

∂

∂u
LHS(u) = 0

⇔ 2(2z + 1)2(w + u+ 1)2 − (5z + 3 + 2(2z + 1)u)4(w + u+ 1) = 0

⇔ (2z + 1)(w + u+ 1)− (5z + 3 + 2(2z + 1)u) = 0

⇔ −u(2z + 1) + (2z + 1)
z + 3

2
− (5z + 3) = 0

⇔ u =
(2z + 1)(z + 3)/2− (5z + 3)

2z + 1
=
z2 + 7

2
z + 3/2− 5z − 3

2z + 1

⇔ u =
z2 − 3

2
z − 3

2

2z + 1
=
z − 1

2
− z + 1

2z + 1

Note that the term z+1
2z+1

is always between 0 and 1. Hence, the maximum is achieved

either at u = z−1
2

or u = z−3
2

. We simply compute LHS(u) for both of these values to
obtain the maximum.

LHS

(
z − 1

2

)
=

5z + 3 + 2(2z + 1)(z − 1)/2

2(z + 1)2
=

2z2 + 4z + 2

2(z + 1)2
=
z2 + 2z + 1

z2 + 2z + 1
= 1

and

LHS

(
z − 3

2

)
=

5z + 3 + 2(2z + 1)(z − 3)/2

2z2
=

2z2

2z2
= 1

meaning that, indeed, the maximum achievable value for odd z is 1. This finishes the
proof. The maximum value 1 in the case of odd z can be achieved by setting f ∗1 = · · · =
f ∗m = 1

m
= p1 = · · · = pm and all other values equal to zero for m = z or z + 1.

Proof of Auxiliary Lemmas 5.5.14 and 5.5.15

Proof of Lemma 5.5.14. We prove this by induction on q. For the base case of q = 1
correctness is trivial. For any q > 1, we want to find the fq and pq that maximize fqpq and
for which an appropriate f1, · · · , fq−1 and p1, · · · , pq−1 exists. Note that

∑q−1
i=1 fi = 1− fq

and
∑q−1

i=1 pi = 1− pq. Therefore, by the induction hypothesis, the largest possible amount

that fq−1pq−1 can take would be (F−fq)(P−pq)
(q−1)2 . This gives that a pair (fq, pq) are feasible in

equations described in the lemma’s statement if and only if fqpq ≤ (F−fq)(P−pq)
(q−1)2 .
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Note that

fqpq ≤
(F − fq)(P − pq)

(q − 1)2

⇒ fq

(
pq +

P − pq
(q − 1)2

)
≤ F (P − pq)

(q − 1)2

⇒ fq ≤
F (P − pq)

pq(q − 1)2 + P − pq

⇒ fqpq ≤
F (P − pq)pq

pq(q2 − 2q) + P

We know determine the maximum value of the right hand side over the choice of pq by
setting the derivative to zero.

(FP − 2Fpq)(pq(q
2 − 2q) + P )− F (P − pq)pq(q2 − 2q)

(pq(q2 − 2q) + P )2
= 0

⇒ P 2 − 2Ppq − (q2 − 2q)p2
q = 0

⇒ pq =
−2P ±

√
4P 2 + 4P 2(q2 − 2q)

2(q2 − 2q)
=
−P ±

√
P 2(q2 − 2q + 1)

q2 − 2q

=
−P ± P (q − 1)

q2 − 2q

The only positive solution is pq = P
q

that yields fqpq = FP
q2 with fq = F

q
. Note that by

the induction hypothesis, this is obtained only when pi = P−pq
q−1

= P
q

and fi = F−fq
q−1

= F
q

for all i = 1, 2, · · · , q − 1.

Proof of Lemma 5.5.15. We start with the simple observation that in any optimal solu-
tion in which f1p1 = min(m,FP ). Assume for the sake of contradiction that this is not the
case. Let j be the smallest integer such that fjpj > 0. Clearly, either f1 > fj or p1 > pj.
Without loss of generality assume that the former holds. Then, it is easy to verify that
there exists a small enough ε > 0 such that reducing fj by ε and increasing f1 by ε yields
a strictly larger solution and contradicts the optimality assumption.

Having this observation, we prove the lemma by induction over q. As the basis of
the induction, take the case where q = 2. If m ≥ PQ, then using the above-mentioned
observation, setting f1 = F , p1 = P , and the rest of the variables to zero yields the
optimal solution. Otherwise, the observation rules that f1 and p1 must be chosen such
that f1p1 = m. A straight forward calculation shows that with the following choice of f1

and p1, f1p1 = f2p2 = m that is trivially an optimal solution.

f1 =
FP +

√
F 2P 2 − 4mFP

2P
, p1 =

FP −
√
F 2P 2 − 4mFP

2F

f2 =
FP −

√
F 2P 2 − 4mFP

2P
, p2 =

FP +
√
F 2P 2 − 4mFP

2F
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For the induction step, assume that the lemma holds for q − 1. Once again we use the
observation to determine f1 and p1 first. If FP ≤ m, setting f1 = F , p1 = P , and all
other values to zero gives the optimal solution. Otherwise, we have to choose f1 and p1

such that f1p1 = m. We can use the induction hypothesis for q′ = q − 1 to set the rest of
the variables with parameters m′ = m, F ′ = F − f1, and P ′ = P − p1. Note that fmax is
actually a function of FP and not F and P . Therefore, in the optimal solution f1 and p1

are chosen such that f1p1 = m and (F − f1)(P − p1) = FP +m− f1P − p1F is maximized,
or equivalently, f1P + p1F is minimized. Note that f1P + p1F = f1P + mF

f1
. Hence one has

to choose f1 =
√

mF
P

and p1 =
√

mP
F

.

With this choice for f1 and p1, F ′P ′ = FP + m − 2
√
mFP = (

√
FP −

√
m)2. Note

that if m < FP
u2 ⇔ u2 < FP

m
⇔ u <

√
FP√
m

=
√
F ′P ′√
m

+ 1⇔ m < F ′P ′

(u−1)2 .

Hence, if FP
(u+1)2 ≤ m < FP

u2 for some u = 2, · · · , q − 2, then F ′P ′

u2 ≤ m < F ′P ′

(u−1)2 and

fmax(F, P,m) = m+ (u− 1)m+ (
√
F ′P ′ − (u− 1)

√
m)2 = um+ (

√
FP −m)2.

If FP
4
≤ m < FP , fmax = f1p1 + f2p2 = m+ (F − f1)(P − p1) = m+ (

√
FP −

√
m)2.

Finally, if m < FP
q2 ⇔ m < (

√
F ′P ′+

√
m)2

q2 ⇔ m < F ′P ′

(q−1)2 and, therefore, fmax = m+m(q−
1) = mq.
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Chapter 6

Maximum Achievable Rate of
List-Decodable Synchronization
Codes

In this chapter, we provide results that further complete the picture portrayed by the results
of Chapters 4 and 5 in regard to list-decodable insdel codes. We prove several bounds on
the list-decoding capacity of worst-case synchronization channels, i.e., the highest rate
that is achievable for q-ary list-decodable insdel codes that can correct from δ fraction of
deletions and γ fraction of insertions. We present upper-bounds and lower-bounds for the
capacity for the cases of insertion-only channels (δ = 0), deletion-only channels (γ = 0),
and the generalized case of channels with both insertions and deletions. Our lower-bounds
are derived by analysis of random codes.

Note that this question generalizes the questions that Chapters 4 and 5 answer. Chap-
ter 4 found the maximal achievable rate for codes that can correct (γ, δ) fraction of insdel
errors while allowing the alphabet size to be sufficiently large (therefore, ignoring the al-
phabet size) and Chapter 5 pinned down the resilience region, i.e., the set of (γ, δ) error
fractions for which capacity is non-zero. These are both special cases of the question of
interest in this chapter.

The results of this chapter also give interesting implications on the code constructions
from Chapters 3 and 4.We show that the alphabet size of insdel codes needs to be exponen-
tially large in ε−1, where ε is the gap to capacity above. Our result even applies to settings
where the unique-decoding capacity equals the list-decoding capacity and when it does
so, it shows that the alphabet size needs to be exponentially large in the gap to capacity.
This is sharp contrast to the Hamming error model where alphabet size polynomial in ε−1

suffices for unique decoding. This lower bound also shows that the exponential dependence
on the alphabet size in Chapter 3 is actually necessary.
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6.1 Our Results

The main focus of this chapter is on understanding how the size of the alphabet factors
in to the highest rate that an insdel code can achieve. To this end, we provide several
bounds that characterize the relation between fundamental characteristics of insdel codes.
Including the two extreme cases with only deletions (i.e., γ = 0) and with only insertions
(i.e., with δ = 0). Let us start with an overview the results and bounds that are presented
in this chapter.

6.1.1 Upper-Bounds for Rate and Implications on Alphabet Size

We start with the insertion-only setting. We note here that one cannot hope to find a
constant rate family of codes that can protect n symbols out of an alphabet of size q
against (q−1)n many insertions or more. This is so since, with (q−1)n insertions, one can
turn any string y ∈ [1..q]n into the fixed sequence 1, 2, · · · , q, 1, 2, · · · , q, · · · , 1, 2, · · · , q by
simply inserting q−1 many symbols around each symbol of y to construct a 1, · · · , q there.
Hence, Theorem 6.1.1 only focuses on codes that protect n rounds of communication over
an alphabet of size q against γn insertions for γ < q − 1.

Theorem 6.1.1. Any list-decodable family of codes C that protects against γ fraction of in-
sertions for some γ < q−1 and guarantee polynomially-large list size in terms of block length

cannot achieve a rate R that is strictly larger than 1− logq(γ+1)−γ
(

logq
γ+1
γ
− logq

q
q−1

)
.

In particular, the theorem asserts that if the code has rate R = 1− ε, then its alphabet
size must be exponentially large in 1/ε, namely, q ≥ (γ + 1)1/ε.

Next, we turn to the deletion-only case. Here again we note that no constant rate q-ary
code can protect against δ ≥ q−1

q
fraction of deletions since such a large fraction of deletions

may remove all but the most frequent symbol of codewords. Therefore, Theorem 6.1.2
below only concerns codes that protect against δ ≤ q−1

q
fraction of deletions.

Theorem 6.1.2. Any list-decodable family of insdel codes that protect against δ-fraction
of deletions (and no insertions) for some 0 ≤ δ < q−1

q
that are list-decodable with

polynomially-bounded list size has rate R upper bounded as below:

� R ≤ f(δ) , (1− δ)
(
1− logq

1
1−δ

)
where δ = d

q
for some integer d.

� R ≤ (1− qδ′)f
(
d
q

)
+ qδ′f

(
d+1
q

)
where δ = d

q
+ δ′ for some integer d and 0 ≤ δ′ < 1

q
.

In particular if δ = d/q for integer d and rate is 1−δ−ε then the theorem above asserts

that q ≥
(

1
1−δ

) 1−δ
ε , or in other words q must be exponentially large in 1/ε. Indeed such a

statement is true for all δ as asserted in the corollary below.

Corollary 6.1.3. There exists a function f : (0, 1)→ (0, 1) such that any family of insdel
codes that protects against δ-fraction of deletions with polynomially bounded list sizes and

has rate 1− δ − ε must have alphabet size q ≥ exp
(
f(δ)
ε

)
.
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Figure 6.1: Depiction of the rate upper-bound from Theorem 6.1.4 for q = 5.

Finally, we use the bounds presented above for the special cases of insertion-only and
deletion only-codes to derive a bound on the rate of codes that correct from a combination
of insertions and deletions in Theorem 6.1.4. For every fixed alphabet size q, this bound can
be nicely plotted as a 3D-surface in a 3D-chart which plots the maximum communication
rate on the z-axis for all γ and δ (plotted on the x- and y-axes respectively). See Fig. 6.1
for an example of such a 3D-plot.

Note that in this representation, the cut onto the xz-plane corresponds to an upper-
bound in the special case of insertion-only setting that is addressed in Theorem 6.1.1.
Similarly, a cut onto the yz-plane derives a result for the deletion-only case that is ad-
dressed in Theorem 6.1.2. Finally, the cut onto the yz-plane specifies for which error rate
combinations of γ and δ the communication rate hits zero, i.e. the problem of error re-
silience which was fully answered in Chapter 5. See Fig. 6.2 for an illustration of these
three cuts.

A notable property of the upper bound of Theorem 6.1.4 is that, for every q, it exactly
matches the best previously known results on all three aforementioned projections/cuts.
That is, the upper bound implied for deletion-only codes (i.e., the cut on γ = 0 plane)
matches the deletion-only bound from Theorem 6.1.2. Similarly, it matched the insertion-
only bound of Theorem 6.1.1 when restricted to the δ = 0 plane. Finally, the error
resilience implied by Theorem 6.1.4 (i.e., where the curve in Figure 6.2 hits the floor)
precisely matches the list-decoding error resilience curve for insertions and deletions as
identified by Chapter 5. As such, the bound in Theorem 6.1.4 fully encapsulates and truly
generalizes the entirety of the current state-of-the-art of the fundamental rate-distance
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trade-off for list-decodable insertion-deletion codes for any fixed alphabet size q.

Theorem 6.1.4. Let C be a q-ary insertion-deletion code that is list-decodable from γ ∈
[0, q − 1] fraction of insertions and δ ∈ [0, 1− 1

q
]. Then, the rate of C is no larger than

α

(
1− d

q

)(
(1 + γ0) logq

q − d
1 + γ0

− γ0 logq
q − d− 1

γ0

)
+ (1− α)

(
1− d+ 1

q

)(
(1 + γ1) logq

q − d− 1

1 + γ1

− γ1 logq
q − d− 2

γ1

)
for d = bδqc, α = 1− δq+ d, and all γ0, γ1 ≥ 0 where α(1− d

q
)γ0 + (1−α)(1− d+1

q
)γ1 = γ.

The optimal choice for γ0 in this setting is

γ0 =
1

2α(q − d)
·
(
A−
√
B2 + C

)
for

A = 3αd2q+d2q−3αdq2−2dq2 +4αdq+2dq+αq3−2αq2 +q3−2q2 +γq+q−αd3−2αd2

B = αd3 +2αd2−3αd2q−d2q+3αdq2 +2dq2−4αdq−2dq−αq3 +2αq2−q3 +2q2−γq−q

C = 4(αq − αd)
(
γd2q − 2γdq2 + 2γdq + γq3 − 2γq2

)
(6.1)

Fig. 6.1 depicts this upper-bound for q = 5.

6.1.2 Implications for Unique Decoding

Even though the main thrust of this chapter is list-decoding, Corollary 6.1.3 also has
implications for unique-decoding. (This turns out to be a consequence of the fact that
the list-decoding radius for deletions-only equals the unique-decoding radius for the same
fraction of deletions.) We start by recalling the main result of Chapter 3: Given any
α, ε > 0 there exists a code of rate 1 − α − ε over an alphabet of size q = exp(1/ε) that
uniquely decodes from any α-fraction synchronization errors, i.e., from γ-fraction insertions
and δ-fraction deletions for any pair 0 ≤ γ, δ satisfying γ+ δ ≤ α. Furthermore, this is the
best possible rate one can achieve for α-fraction synchronization error. (See Section 6.5 for
a more detailed description with proof.)

Prior to this work, this exponential dependence of the alphabet size on ε was unex-
plained. This is also in sharp contrast to the Hamming error setting, where codes are known
to get ε close to unique decoding capacity (half the “Singleton bound” on the distance of
code) with alphabets of size polynomial in 1/ε. Indeed, given this contrast one may be
tempted to believe that the exponential growth is a weakness of the “indexing-based syn-
chronization string” approach presented in Chapter 3. But Corollary 6.1.3 actually shows
that an exponential bound is necessary. We state this result for completeness even though
it is immediate from the Corollary above, to stress its importance in understanding the
nature of synchronization errors.
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Corollary 6.1.5. There exists a function f : (0, 1)→ (0, 1) such that for every α, ε > 0 ev-
ery family of insdel codes of rate 1−α−ε that protects against α-fraction of synchronization

errors with unique decoding must have alphabet size q ≥ exp
(
f(δ)
ε

)
.

Corollary 6.1.5 follows immediately from Corollary 6.1.3 by setting δ = α and γ = 0 (so
we get to the zero insertion case) and noticing that a unique-decoding insdel code for α-
fraction synchronization error is also a list-decoding insdel code for δ-fractions of deletions
(and no insertions). The alphabet size lower-bound for the latter is also an alphabet size
lower-bound for the former.

6.1.3 Lower-Bounds on Rate: Analysis of Random Codes

Finally, in Section 6.4, we provide an analysis of random codes and compute the rates they
can achieve while maintaining list-decodability against insertions and deletions. Such rates
are essentially lower-bounds for the capacity of insertion and deletion channels and can be
compared against the upper-bounds provided in Section 6.2.

Theorem 6.1.6 shows that the family of random codes over an alphabet of size q can,
with high probability, protect against δ-fraction of deletions for any δ < 1 − 1/q up to
a rate of 1 − (1 − δ) logq

1
1−δ − δ logq

1
δ
− δ logq(q − 1) = 1 − Hq(δ) using list decoding

with super-constant list sizes in terms of their block length where Hq represents the q-ary
entropy function.

Theorem 6.1.6. For any alphabet of size q and any 0 ≤ δ < q−1
q

, the family of random

codes with rate R < 1− (1− δ) logq
1

1−δ − δ logq
1
δ
− δ logq(q− 1)− 1−δ

l+1
is list-decodable with

list size of l from any δ fraction of deletions with high probability. Further, the family of
random deletion-codes with rate R > 1 − (1 − δ) logq

1
1−δ − δ logq

1
δ
− δ logq(q − 1) is not

list-decodable with high probability.

Further, Theorem 6.1.7 shows that the family of random block codes over an alphabet
of size q can, with high probability, protect against γ fraction of insertions for any γ < q−1
up to a rate of 1− logq(γ+ 1)− γ logq

γ+1
γ

using list decoding with super-constant list sizes
in terms of block length.

Theorem 6.1.7. For any alphabet of size q and any γ < q−1, the family of random codes
with rate R < 1− logq(γ + 1)− γ logq

γ+1
γ
− γ+1

l+1
is list-decodable with a list size of l from

any γn insertions with high probability.

Similar to the upper-bound results, we provide the following theorem that gives a
lower-bound on the maximum achievable rate of list-decodable insertion-deletion codes.
This result is also derived by analysis of the list-decodability of random codes.

Theorem 6.1.8. For any integer q ≥ 2 and δ ∈
[
0, 1− 1

q

]
and γ ∈ [0, q − 1], a family of

random codes with rate

R < 1− (1− δ + γ)Hq

(
γ

1− δ + γ

)
−Hq (δ) + γ logq(q − 1)
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Figure 6.3: Depiction of our lower and upper bounds for q = 5 from two angles. The more
transparent surface is the upper bound of Theorem 6.1.4 and the surface underneath is the
lower bound derived in Theorem 6.1.8.

is list-decodable from a fraction γ of insertions and a fraction δ of deletions with high
probability.

Fig. 6.3 illustrates the lower-bound implied by Theorem 6.1.8 in contrast to the upper-
bound depicted in Fig. 6.1 for q = 5.

6.1.4 Organization of the Chapter

In Section 6.2, we proved proof for the rate upper-bounds presented in Section 6.1.1. We
provide the proof of Corollary 6.1.3 in Section 6.3. We give the details of our random
code analysis as summarized in Section 6.1.3 in Section 6.4 and, finally, present a formal
argument for a claim made in Section 6.1.2 in Section 6.5 for the sake of completeness.

6.2 Upper Bounds on Rate

6.2.1 Deletion Codes (Theorem 6.1.2)

Proof of Theorem 6.1.2. To prove this claim, we propose a strategy for the adversary
which can reduce the number of strings that may possibly arrive at the receiving side to a
number small enough that implies the claimed upper bound for the rate.

We start by proving the theorem for the case where δq is integer. For an arbitrary code
C, upon transmission of any codeword, the adversary can remove all occurrences of δq least
frequent symbols as the total number of appearances of such symbols does not exceed δn.
In case there are more deletions left, adversary may choose to remove arbitrary symbols
among the remaining ones. This way, the received string would be a string of n(1 − δ)
symbols consisted of only q − qδ many distinct symbols. Therefore, one can bound above
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the size of the ensemble of strings that can possibly be received by the following.

|E| ≤
(

q

q(1− δ)

)
[q(1− δ)]n(1−δ)

As the best rate that any L = poly(n)-list decodable code can get is at most log(|E|·L)
n log q

=
log |E|
n log q

+ o(1), the following would be an upper bound for the best rate one might hope for.

R ≤ log |E|
n log q

+ o(1)

=
log
(

q
q(1−δ)

)
+ n(1− δ)(log(q(1− δ)))

n log q
+ o(1)

= (1− δ)
(

1− logq
1

1− δ

)
+ o(1)

This shows that for the case where qδ is an integer number, there are no family of codes
that achieve a rate that is strictly larger than (1− δ)

(
1− logq

1
1−δ

)
.

We now proceed to the general case where δ = d/q+δ′ for some integer d and 0 ≤ δ′ < 1
q
.

We closely follow the idea that we utilized for the former case. The adversary can partition
n sent symbols into two parts of size nqδ′ and n(1− qδ′), and then, similar to the former
case, removes the d+ 1 least frequent symbols from the first part by performing d+1

q
· nqδ′

deletions and d least frequent symbols from the second one by performing d
q
·n(1−qδ′) ones.

This is possible because d+1
q
· nqδ′ + d

q
· n(1− qδ′) = nδ. Doing so, the string received after

deletions would contain up to q − d − 1 distinct symbols in its first nqδ′ (1− (d+ 1)/q)
positions and up to q − d distinct symbols in the other n(1 − qδ′) (1− d/q) positions.
Therefore, the size of the ensemble of strings that can be received is bounded above as
follows.

|E| ≤
(

q

q − d− 1

)
[q − d− 1]nqδ

′(1− d+1
q ) ·

(
q

q − d

)
[q − d]n(1−qδ′)(1− d

q )

This bounds above the rate of any family of list-decodable insdel codes by the following.

log |E|
n log q

=
log
(

q
q−d−1

)
+ nqδ′

(
1− d+1

q

)
log(q − d− 1) + log

(
q
q−d

)
+ n(1− qδ′)

(
1− d

q

)
log(q − d)

n log q

= qδ′
[(

1− d+ 1

q

)(
1− logq

1

1− (d+ 1)/q

)]
+ (1− qδ′)

[(
1− d

q

)(
1− logq

1

1− d/q

)]
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6.2.2 Insertion Codes (Theorem 6.1.1)

Before providing the proof of Theorem 6.1.1, we first point out that any q − 1 insertions
can be essentially used as a single erasure. As a matter of fact, by inserting q− 1 symbols
around the first symbol adversary can make a 1, 2, · · · , q substring around first symbol and
therefore, essentially, make the receiver unable to gain any information about it. In fact,

with γn insertions, the adversary can repeat this procedure around any
⌊
γn
q−1

⌋
symbols

he wishes. This basically gives that, with γn insertions, adversary can erase
⌊
γn
q−1

⌋
many

symbols. Thus, one cannot hope for finding list-decodable codes with rate 1− γ
q−1

or more
protecting against γn insertions.

Proof of Theorem 6.1.1. To prove this, consider a code C with rate R ≥ 1 − logq(γ +

1) − γ
(

logq
γ+1
γ
− logq

q
q−1

)
+ ε for some ε > 0. We will show that there exist cn0 many

codewords in C that can be turned into one specific string z ∈ [1..q]n(γ+1) with γn insertions
for some constant c0 > 1 that merely depends on q and ε.

First, the lower bound assumed for the rate implies that

|C| = qnR ≥ qn(1−logq(γ+1)−γ(logq
γ+1
γ
−logq

q
q−1)+ε). (6.2)

Let Z be a random string of length (γ + 1)n over the alphabet [1..q]. We compute the
expected number of codewords of C that are subsequences of Z denoted by X.

E[X] =
∑
y∈C

Pr{y is a subsequence of Z}

=
∑
y∈C

∑
1≤a1<a2<···<an≤n(γ+1)

1

qn

(
1− 1

q

)an−n
(6.3)

= |C| (q − 1)−n
n(1+γ)∑
l=n

(
l

n

)(
q − 1

q

)l
≥ |C| (q − 1)−n

(
n(1 + γ)

n

)(
q − 1

q

)n(1+γ)

(6.4)

= nγ|C|(q − 1)nγq−n(1+γ)2n(1+γ)H( 1
1+γ )+o(n)

= nγ|C|qn(γ logq(q−1)−1−γ+logq(1+γ)+γ logq
1+γ
γ )+o(1)

= qnε+o(n) (6.5)

Step (6.6) is obtained by conditioning the probability of y being a subsequence of Z over
the leftmost occurrence of y in Z indicated by a1, a2, · · · , an as indices of Z where the
leftmost occurrence of y is located. In that event, Zai has to be similar to yi and yi cannot

appear in Z[ai−1 + 1, ai − 1]. Therefore, the probability of this event is
(

1
q

)n (
1− 1

q

)an−n
.
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By (6.8), there exists some z ∈ [1..q](a+1)n to which at least qεn+o(n), i.e., exponentially
many codewords of C are subsequences. Therefore, polynomial-sized list decoding for
received message z is impossible and proof is complete.

We would like to remark that the lower-bound in Step (6.7) is asymptotically tight.
To verify this, we show that the summation in previous step takes its largest value when

l = n(1+γ) and bound the summation above by nγ times that term. To see that
(
l
n

) (
q−1
q

)l
is maximized for l = n(1 + γ) in n ≤ l ≤ n(1 + γ) it suffices to show that the ratio of
consecutive terms is larger than one for l ≤ n(1 + γ):

(
l
n

) (
q−1
q

)l
(
l−1
n

) (
q−1
q

)l−1
=

l

l − n
· q − 1

q
=

1− 1
q

1− n
l

≥ 1

The last inequality follows from the fact that l ≤ n(γ + 1) ≤ nq ⇒ 1
q
< n

l
.

6.2.3 Insertion-Deletion Codes (Theorem 6.1.4)

Linear Upper Bounds using Resilience Results

Before discussing Theorem 6.1.4, we present a simple upper-bound using the error-resilience
region identified in Theorem 5.1.3. We show that the multiplicative distance to this region
gives a valid upper-bound on the rate of any list-decodable insertion-deletion code:

Theorem 6.2.1. For any alphabet size q and any (γ, δ) ∈ Fq let α ≥ 1 be the smallest
number such that (αγ, αδ) /∈ Rq. Any family of (γ, δ)-list decodable q-ary codes cannot
achieve a rate of more than 1− 1/α.

A different way to look at this upper bound is to think of it as the collection of lines
that connect every point on the infeasibility region Fq identified in Theorem 5.1.3 on c = 0
plane and the point (γ, δ, c) = (0, 0, 1) which indicates the trivial achievable rate of 1 in
the absence of noise. (See Fig. 6.4)

The proof of the theorem above is easy once one recalls how the upper bound for the
feasibility region Rq is proven in Chapter 5. It basically consists of a simple strategy
transforming any sent string into one of a small Oq(1) number of canonical strings, thus
erasing almost all information sent. One can prove Theorem 6.2.1 by doing the same but
only on an 1

α
fraction of the string. We present an alternative and shorter formal proof in

the following.

Proof of Theorem 6.2.1. Assume by contradiction that family of (γ, δ)-list-decodable codes
C = {C1, C2, · · · } with block lengths n1 < n2 < · · · and rates r1, r2, · · · achieve a rate of
r = limi→∞ ri = 1− 1

α
+ ε for some ε > 0.

We convert this family of codes to a new family of codes C ′ by converting each code
Ci into a code C ′i as follows: In all codewords of Ci, consider the ni (1− 1/α)-long prefix.
Among all such prefixes, let p be the most frequent one. We set C ′i to be a code containing
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Figure 6.4: Illustration of the upper bound from Theorem 6.2.1 for q = 5.

all codewords of Ci that start with p. Since all such codewords start with p, we omit the
prefix p from all such codewords. Note that the block length of C ′i is n′i = ni−ni (1− 1/α) =
ni/α. Also, since there are qni(1−1/α) q-ary strings of length ni (1− 1/α),

|C ′i| ≥
|Ci|

qni(1−1/α)
=

qniri

qni(1−1/α)
= qni(ri−1+1/α).

This implies that the rate of C ′i is at least

r′i =
logq |C ′i|
n′i

≥ ni(ri − 1 + 1/α)

n′i
= α(ri − 1 + 1/α)

and, hence, the rate of the family of codes C ′ is at least limi→∞ r
′
i ≥ αε > 0.

Further, we claim that if C is (γ, δ, L(n))-list decodable, then C ′ will be (αγ, αδ, L(αn′))-
list decodable. To show this, we construct such list-decoder for all codes C ′i ∈ C ′ with input
y′ by simply padding the most frequent ni(1 − 1/α)-prefix of codewords of Ci ∈ C, p, in
front of y′ and running the list-decoder of Ci with input y = p·y′. Among the list generated
by the decoder of Ci, the ones that do not start with p are withdrawn. The remaining
strings will form the output of our list-decoder for C ′i after omitting their prefix p. Note
that this indeed gives a (αγ, αδ, L(αn′))-list-decoder since for any codeword x ∈ C ′i that is
(αγ, αδ)-close to y, p · x ∈ Ci is (γ, δ)-close to p · y.

Note that we were able to show that the family of codes C ′ achieves a positive rate
and is (αγ, αδ)-list decodable for (αγ, αδ) /∈ Fq. This is a contradiction to Theorem 5.1.3
proving that the rate of C ′ may not exceed 1− 1

α
, thus, proving the theorem.

Upper Bounds and Convexity of the Unachievability Region.

We would like to remark that one can interpret the upper bound from Theorem 6.2.1 in
the following manner: We know that no code can achieve a rate larger than one even in
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the absence of noise, i.e., the region R1 = {(γ, δ, r) | γ = δ = 0, r > 1} is “infeasible”.
Further, the resilience result from Chapter 5 demonstrates that all points within R2 =
{(γ, δ, 0) | (γ, δ) 6∈ Fq} are infeasible. Theorem 6.2.1 shows that the convex combination of
R1 and R2 is infeasible as well, implying a pyramid-shaped feasibility region with Fq as its
base and (0, 0, 1) as its apex. (See Figure 6.4.) Also, note that the argument in the proof
of Theorem 6.2.1 is generic and independent of the shape of Fq. This is similar to some
known upper bounds for ordinary error-correcting codes which essentially present a convex
generalization between two known infeasible points such as the Singleton bound. While
being more complicated and less generic, our tighter upper bound in Theorem 6.1.4 also
fits the same pattern of showing infeasibility of convex combinations of known infeasible
points. It is, however, unknown to us whether one can generically prove the convexity of
the infeasibility region in this setting.

Correctness of Theorem 6.1.4

We now proceed to discussing Theorem 6.1.4. Before providing the proof of Theorem 6.1.4,
we give a simple representation of the bound set forth in Theorem 6.1.4. Consider a code
C that is (γ, δ)-list-decodable and assume that δ = d

q
for some integer q. We propose

a strategy for the adversary as follows: The adversary can use the d
q

deletion to remove
all occurrences of the d-least frequent symbols of the alphabet and hence transform the
codewords to strings of length n(1− δ) over an alphabet of size q(1− δ) = q − d. We can
then apply the bound that we have for insertion-only codes to derive an upper bound on
the size and, thus, the rate of the code. For the general case of δ not necessarily being an
integer multiply of 1

q
, we use a time-sharing argument to show that the points obtained

by the linear combination of upper-bound in this special case serve as upper-bounds for
the rest of (γ, δ) pairs. See Fig. 6.5 for a representation of this bound for q = 5 (both the
special case of δ = d

q
and the general case are depicted).

We start with the statement of bound for the special case of δ = d
q
.

Theorem 6.2.2. For any alphabet size q, any insertion rate γ < q − 1 and any deletion
rate δ = d

q
for some integer d ≤ q, it is true that any family of q-ary codes C which is (γ, δ)-

list-decodable has a rate of at most (1− δ)
[(

1 + γ
1−δ

)
logq

q−d
γ

1−δ+1
− γ

1−δ ·
(

logq
q−d−1

γ
1−δ

)]
.

Proof. Consider a code C that is (γ, δ)-list-decodable and assume that δ = d
q

for some
integer d. Assume that we restrict the adversary to utilize its deletions in the following
manner: The adversary uses the d

q
deletion to remove all occurrences of the d-least frequent

symbols of the alphabet. If there are remaining deletions, the adversary removes symbols
from the end of the transmitted word.

Let us define the code C ′ that is obtained from C by deleting a δ fraction of symbols from
each codeword of C as described above. Note that the block length of C ′ is n′ = n(1− δ)
and each of its codewords consist of up to q′ = q(1 − δ) = q − d symbols of the alphabet
though this subset of size q−d may be different from codeword to codeword. We partition
the codewords of C ′ into

(
q
q−d

)
sets C ′1, C

′
2, · · · , C ′( q

q−d)
based on which (q− d)-subset of the

alphabet they consist of.
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Since C is (γ, δ)-list-decodable, each of the C ′is are list-decodable from γn insertions.
Therefore, Theorem 6.1.1 implies that the size of each code C ′i is no larger than:

q
′n′
[
1−logq′ (γ

′+1)−γ′
(

logq′
γ′+1
γ′ −logq′

q′
q′−1

)]

where q′ = q−d, n′ = n(1− δ), and γ′ = γ
1−δ . Therefore, the size of the code C is no larger

than (
q

q − d

)
q
n(1−δ)

[
logq q

′−logq(γ
′+1)−γ′

(
logq

γ′+1
γ′ −logq

q′
q′−1

)]

and, consequently, its rate is no larger than

(1− δ)
[
logq(q − d)− logq

(
γ

1−δ + 1
)
− γ

1−δ ·
(

logq
γ+1−δ
γ
− logq

q−d
q−d−1

)]
= (1− δ)

[(
1 + γ

1−δ

)
logq

q−d
γ

1−δ+1
− γ

1−δ ·
(

logq
q−d−1

γ
1−δ

)]
.

Given the nice and explicit form of Theorem 6.2.2 for any q and γ with multiple specific
values of δ, it seems tempting to conjecture that the restriction of δ is unnecessary making

(1 − δ)
[(

1 + γ
1−δ

)
logq

q−d
γ

1−δ+1
− γ

1−δ ·
(

logq
q−d−1

γ
1−δ

)]
a valid upper bound for any value of δ

(and γ). This, however, could not be further from the truth. Indeed, for any δ not of the
form restricted to by Theorem 6.2.2, there exists a γ for which this extended bound is prov-
ably wrong because it contradicts the existence of certain list-decodable codes constructed
in Chapter 5.

In fact, for the valid points where δ is a multiple of 1
q
, the rate bound of Theorem 6.2.2

hits zero at exactly the corner points of the piece-wise linear resilience region Fq charac-
terized by Chapter 5. Taking this as an inspiration, one could try to extend the bound of
Theorem 6.2.2 to all values of δ by considering for each q and each rate r the roughly q

r

points where Theorem 6.2.2 hits the plane corresponding to rate r and extend these points
in a piece-wise linear manner to a complete 2D-curve for this rate r. This would give a
rate bound for any γ, δ, and q as desired, which reduces to a piece-wise linear function for
any fixed r and also correctly reproduce Fq for r = 0.

It turns out that this is indeed a correct upper bound. However, a stronger form
of convexity, which takes full 3D-convex interpolations between any points supplied by
Theorem 6.2.2 and in particular combines points with different rates, also holds and is
needed to give our final upper bound.

Theorem 6.2.3. For a fixed q suppose that (γ0, δ0 = d0

q
) and (γ1, δ1 = d1

q
) are two error

rate combinations for which Theorem 6.2.2 implies a maximal communication rate of r0

and r1, respectively. For any 0 ≤ α ≤ 1 consider the following convex combinations of
these quantities: γ = αγ0 + (1− α)γ1, δ = αδ0 + (1− α)δ1, and r = αr0 + (1− α)r1. It is
true that any (δ, γ)-list-decodable q-ary code has a rate of at most r.

See Figure 6.1 for an illustration of this bound for q = 5. Red curves indicate the upper
bound described above for the special values of δ of the form d

q
as given by Theorem 6.2.2.
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Theorem 6.2.3 together with Theorem 6.2.2 gives a conceptually very clean description
of our upper bound. However, an (exact) evaluation of the upper bound as given by
Theorem 6.2.3 is not straightforward since there are many convex combinations which
all produce valid bound but how to compute or select the one which gives the strongest
guarantee on the rate for a given (γ, δ) pair is not clear. This is particularly true since, as
already mentioned above, the optimal points to combine do not lie on the same rate-plane.

Theorem 6.1.4 is an alternative statement to Theorem 6.2.3 which produces an explicit
upper bound for any (γ, δ) as an α-convex combination of two points (γ0, δ0) and (γ1, δ1)
only in dependence on the free parameter γ0. It then shows an explicit expression for the
optimal value for γ0. This produces a significantly less clean but on the other hand fully
explicit description of our upper bound.

Proof of Theorem 6.1.4 (and Theorem 6.1.4). We first note that the statements of
Theorem 6.1.4 and Theorem 6.2.3 are merely a rephrasing of each other with the exception
that Theorem 6.1.4 only allows and optimizes over convex combinations of neighboring
spokes of Theorem 6.2.2, namely the ones for d0 = d and d1 = d + 1 for d = bδqc. This
restriction, however, is without loss of generality. Indeed, for any values from the do-

main
{

(γ, δ) | δ = d
q
, 0 ≤ d ≤ q − 1, d ∈ Z

}
, Theorem 6.2.2 gives values which come from

the function f(γ, δ) = (1 − δ)
[(

1 + γ
1−δ

)
logq

q(1−δ)
γ

1−δ+1
− γ

1−δ ·
(

logq
q(1−δ)−1

γ
1−δ

)]
. This func-

tion f(γ, δ) is convex. (see Section 6.6 for a formal proof.) Any value given as a convex
combination between two non-neighboring spokes can therefore be at least matched (and
indeed, thanks to the strict convexity of f(·, ·) always be improved) by choosing a different
convex combination between neighboring spokes. This justifies the “restricted” formula-
tion of Theorem 6.1.4, which helps in reducing the number of parameters and simplifies
calculations.

In order to prove Theorem 6.1.4 we, again, fix a specific strategy for the adversary’s
use of deletions. In particular, the adversary will use nαd

q
deletions on the first nα symbols

of the transmitted codeword to eliminate all instances of the d least-frequent symbols
there. Similarly, he removes all instances of the respective d + 1 least frequent symbols
from the last n(1 − α) symbols of the codeword. The resulting string is one out of some

Σ
nα(1− d

q
)

0 ×Σ
n(1−α)(1− d+1

q
)

1 where Σ0,Σ1 ⊆ [q], q0 = |Σ0| = q− d, q1 = |Σ1| = q− d− 1. This
deletion strategy fits within the budgeted number of deletions since δ = αd

q
+ (1 − α)d+1

q

for d = bδqc and α = 1− δq + d.

Note that while the adversary can convert any codeword of C to a string of such form,
the sub-alphabets Σ0 and Σ1 will likely be different between different codewords of C. Let
(Σ0,Σ1) be the pair of the most frequently reduced to alphabets and let C0 be the set of
codewords of C that, after undergoing the above-described procedure, turn into a string

out of Σ
nα(1− d

q
)

0 ×Σ
n(1−α)(1− d+1

q
)

1 . Note that |C|
(qd)(

q
d+1)
≤ |C0| ≤ |C|. Further, let D0 be the set

of codewords in C0 after undergoing the alphabet reduction procedure mentioned above.
To give an upper bound of the rate of C it thus suffices to bound from above the size of
C0 (or equivalently, D0.)

We bound above the size of D0 by showing that if |D0| is too large, there will be some
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received word that can be obtained by exponentially many words in D0 after nγ insertions.
Similar to the insertion-only case, we utilize the linearity of expectation to derive this. Let
us pick a random string Z = (Z0, Z1) that consists of nα(1 − d

q
)(1 + γ0) symbols chosen

uniformly out of Σ0 (referred to by Z0) and n(1− α)(1− d+1
q

)(1 + γ1) symbols uniformly

chosen out of Σ1 (referred to by Z1). We have that α(1− d
q
)γ0 + (1− α)(1− d+1

q
)γ1 = γ.

(γ0 and γ1 will be determined later.) We calculate the expected number of the members
of D0 that are subsequences of such string – denoted by X. In the following, we will often
describe members of D0 like y as the concatenation (y0, y1) where |y0| = n0 = nα(1 − d

q
)

and |y1| = n1 = n(1− α)(1− d+1
q

).

E[X] =
∑

y=(y0,y1)∈D0

Pr{y is a subsequence of Z}

≥
∑

y=(y0,y1)∈D0

Pr{y0 is a subsequence of Z0} · Pr{y1 is a subsequence of Z1}

=
∑

y=(y0,y1)∈D0

∏
j=1,2

Pr{yj is a subsequence of Zj}

=
∑

y=(y0,y1)∈D0

∏
j=1,2

∑
1≤a1<a2<···<anj≤nj(1+γj)

1

|Σj|nj

(
1− 1

|Σj|

)anj−nj
(6.6)

= |D0|
∏
j=1,2

(|Σj| − 1)−nj
nj(1+γj)∑
l=nj

(
l

nj

)(
|Σj| − 1

|Σj|

)l

≥ |D0|
∏
j=1,2

(|Σj| − 1)−nj
(
nj(1 + γj)

nj

)(
|Σj| − 1

|Σj|

)nj(1+γj)

(6.7)

= |D0|
∏
j=1,2

(|Σj| − 1)njγj |Σj|−nj(1+γj)2
nj(1+γj)H

(
1

1+γj

)
+o(n)

= |D0|
∏
j=1,2

qnj(γj logq(qj−1)−(1+γj) logq qj+(1+γj) logq(1+γj)−γj logq γj)+o(1)

= |D0|
∏
j=0,1

q
nj

(
γj logq

qj−1

γj
−(1+γj) logq

qj
1+γj

)
+o(1)

= |D0|q
∑
j=0,1 nj

(
γj logq

qj−1

γj
−(1+γj) logq

qj
1+γj

)
+o(1)

(6.8)

Step (6.6) is obtained by conditioning the probability of yj being a subsequence of Zj
over the leftmost occurrence of yj in Zj indicated by a1, a2, · · · , an as indices of Zj where
the leftmost occurrence of yj is located. In that event, Zj[ai] has to be similar to yj[i]
and yj[i] cannot appear in Zj[ai−1 + 1, ai − 1]. Therefore, the probability of this event is(

1
qj

)n
j

(
1− 1

qj

)an−nj
. To verify Step (6.7), we show that the summation in previous step

takes its largest value when l = nj(1 + γj) and bound the summation below by that term.
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To see that
(
l
nj

) ( qj−1

qj

)l
is maximized for l = nj(1 + γj) in nj ≤ l ≤ nj(1 + γj), it suffices

to show that the ratio of consecutive terms is larger than one for l ≤ nj(1 + γj):

(
l
nj

) ( qj−1

qj

)l
(
l−1
nj

) ( qj−1

qj

)l−1
=

l

l − nj
· qj − 1

qj
=

1− 1
qj

1− nj
l

≥ 1

The last inequality follows from the fact that l ≤ nj(γj + 1) ≤ njqj ⇒ 1
qj
<

nj
l

.

Finally, by (6.8), there exists some realization of Z to which at least

|D0|q
∑
j=0,1 nj

(
γj logq

qj−1

γj
−(1+γj) logq

qj
1+γj

)
+o(1)

codewords of C are subsequences. In order for C to be list-decodable, this quantity needs
to be sub-exponential. Therefore,

rC =
logq |D0|+O(1)

n
≤
∑
j=0,1

nj
n

(
(1 + γj) logq

qj
1 + γj

− γj logq
qj − 1

γj

)
= α

(
1− d

q

)(
(1 + γ0) logq

q0

1 + γ0

− γ0 logq
q0 − 1

γ0

)
+(1− α)

(
1− d+ 1

q

)(
(1 + γ1) logq

q1

1 + γ1

− γ1 logq
q1 − 1

γ1

)
= α

(
1− d

q

)(
(1 + γ0) logq

q − d
1 + γ0

− γ0 logq
q − d− 1

γ0

)
+(1− α)

(
1− d+ 1

q

)(
(1 + γ1) logq

q − d− 1

1 + γ1

− γ1 logq
q − d− 2

γ1

)
(6.9)

Note that (6.9) is an upper bound for the rate for all choices of γ0, γ1 ≥ 0 where
α(1− d

q
)γ0 + (1− α)(1− d+1

q
)γ1 = γ.

To find the optimal value for γ0, we find the choice of γ0 that minimizes (6.6). To this
end, we calculate the ratio between the values of (6.6) when nγ insertions are distributed
between two parts as (n0γ0, n1γ1) and when distributed as (n0γ0 + 1, n1γ1 − 1). We then
find out the choice of γ0 for which this ratio exceeds one. This would indicate the value of
γ0 for which (6.6) is minimized and, hence, the optimal choice of γ0.

(
n0(1+γ0)

n0

) ( |Σ0|−1
|Σ0|

)n0(1+γ0) (
n1(1+γ1)

n1

) ( |Σ1|−1
|Σ1|

)n1(1+γ1)

(
n0(1+γ0)+1

n0

) ( |Σ0|−1
|Σ0|

)n0(1+γ0)+1 (
n1(1+γ1)−1

n1

) ( |Σ1|−1
|Σ1|

)n1(1+γ1)−1
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=

(
n0(1+γ0)

n0

)(
n1(1+γ1)

n1

) ( |Σ1|−1
|Σ1|

)
(
n0(1+γ0)+1

n0

) ( |Σ0|−1
|Σ0|

) (
n1(1+γ1)−1

n1

)
=

(
n0(1+γ0)

n0

)(
n1(1+γ1)

n1

)(
n0(1+γ0)+1

n0

)(
n1(1+γ1)−1

n1

) × |Σ0| × (|Σ1| − 1)

(|Σ0| − 1)× |Σ1|

=

n1(1+γ1)
n1(1+γ1)−n1

n0(1+γ0)+1
n0(1+γ0)+1−n0

× |Σ0| × (|Σ1| − 1)

(|Σ0| − 1)× |Σ1|

=

n1(1+γ1)
n1γ1

n0(1+γ0)+1
n0γ0+1

× |Σ0| × (|Σ1| − 1)

(|Σ0| − 1)× |Σ1|

=
1 + 1

γ1

1 + 1
γ0+1/n0

×
1− 1

|Σ1|

1− 1
|Σ0|

Therefore, the optimal choice of γ0 would be one for which:

1 + 1
γ1

1 + 1
γ0+1/n0

×
1− 1

|Σ1|

1− 1
|Σ0|

= 1

⇔
(

1 +
1

γ1

)(
1− 1

|Σ1|

)
=

(
1 +

1

γ0 + 1/n0

)(
1− 1

|Σ0|

)
Given that families of codes with increasing block lengths n are considered, the term
1
n0

= 1
n·α(1−d/q) vanishes. Thus, we are looking for a choice of γ0 that satisfies(

1 +
1

γ1

)(
1− 1

|Σ1|

)
=

(
1 +

1

γ0

)(
1− 1

|Σ0|

)
.

Putting this together with the equation α(1− d
q
)γ0 +(1−α)(1− d+1

q
)γ1 = γ and solving

the resulting system of equations analytically using computer software, the stated equation
for the optimal choice of γ0 is derived.

6.3 Alphabet Size vs. the Gap from the Singleton

Bound (Corollary 6.1.3)

Before providing the proof of Corollary 6.1.3, we start with an informal argument that
shows the necessity of exponential dependence of alphabet size on ε−1. Consider a com-
munication of n symbols out of an alphabet of size q where adversary is allowed to delete
δ < 1

2
fraction of symbols. Note that one can map symbols of the alphabet to binary strings

of length log q. Let adversary act as follows. He looks at the first 2nδ symbols and among
symbols whose binary representation start with zero and symbols whose binary represen-
tation start with one chooses the least frequent ones and removes them. This can be done
by up to nδ symbol deletions and he can use the remainder of deletions arbitrarily. This
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way, the receiver receives n(1− δ) symbols where only q/2 distinct symbols might appear
in the first nδ ones. This means that receiver can essentially get n(1 − δ) log q − nδ + 1
bits of information which implies a rate upper bound of 1 − δ − 1

log q
. Therefore, to get a

rate of 1− δ − ε, alphabet size has to satisfy the following.

1

log q
< ε⇒ q > 2ε

−1

.

Proof of Corollary 6.1.3. According to Theorem 6.1.2, in order to obtain a family of
codes of rate 1− δ − ε, the following condition should hold.

1− δ − ε ≤ qδ′
[
(1− (d+ 1)/q)

(
1− logq

1

1− (d+ 1)/q

)]
+(1− qδ′)

[
(1− d/q)

(
1− logq

1

1− d/q

)]
⇒ ε ≥ qδ′

[
(1− (d+ 1)/q) logq

1

1− (d+ 1)/q

]
+ (1− qδ′)

[
(1− d/q) logq

1

1− d/q

]
⇒ q ≥ 2

1
ε
·qδ′[(1−(d+1)/q) log 1

1−(d+1)/q ]+(1−qδ′)[(1−d/q) log 1
1−d/q ] ≥ 2

f(δ)
ε

which finishes the proof. The only step that might need some clarification is the following
inequality that bounds below the right hand term with some function that only depends
on δ and is non-zero in (0, 1).

qδ′
[
(1− (d+ 1)/q) log

1

1− (d+ 1)/q

]
+ (1− qδ′)

[
(1− d/q) log

1

1− d/q

]
≥ f(δ)

Note that the left hand side is the convex combination of the points that are obtained by
evaluating function g(x) = (1 − x) log 1

1−x at multiples of 1
q

(See Figure 6.6). We denote

the left hand term by g′(δ, q).
We only need to find a function of δ that is non-zero in (0, 1) and is strictly smaller

than such convex combinations for any q. One good candidate is the simple piece-wise
linear function f(·) that consists of a segment from (0, 0) to (0.5, 0.2) and a segment from
(0.5, 0.2) to (1, 0). Now, we show that for this choice of f , g′(δ, q) ≥ f(δ) for any q.

Note that f(δ) ≤ g(δ), therefore, for any i
q
≤ δ ≤ i+1

q
that both i

q
and i+1

q
are smaller

than 1
2

or both are larger than 1
2
, g′(δ, q) ≥ f(δ). Further, for the case of bq/2c

q
≤ δ ≤ dq/2e

q
,

we draw readers attention to the fact that constant 0.2 in the definition of f(·) has been
chosen small enough so that g′(1/2, 3) ≥ f(1/2) which implies that g′(1/2, q) ≥ f(1/2) for

any q and consequently g′(δ, q) ≥ f(δ) for all bq/2c
q
≤ δ ≤ dq/2e

q
(See Figure 6.6).

6.4 Analysis of Random Codes

6.4.1 Random Deletion Codes (Theorem 6.1.6)

Proof of Theorem 6.1.6. Let C be a random code that maps any x ∈ [1..q]nR to some
member of [1..q]n denoted by EC(x) that has been chosen uniformly at random. Note that
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Figure 6.6: (I) Solid line: g(δ), (II) Dashed-dotted line: f(δ), (III) Dashed lines: g′(δ, q)
for q = 2, 3, 5.

in a deletion channel, for any y = EC(x) sent by Alice, the message z ∈ [1..q]n(1−δ) Bob
receives is necessarily a subsequence of y. The probability of a fixed z ∈ [1..q]n(1−δ) being
a subsequence of a random y ∈ [1..q]n is bounded above as follows.

Pr
y
{z is a substring of y} =

∑
1≤a1<···<an(1−δ)≤n

q−n(1−δ)
(

1− 1

q

)an(1−δ)−n(1−δ)

(6.10)

=
n∑

l=n(1−δ)

(
l

n(1− δ)

)
q−n(1−δ)

(
1− 1

q

)l−n(1−δ)

≤ nδ

(
n

n(1− δ)

)
q−n(1−δ)

(
1− 1

q

)nδ
(6.11)

= nδ2nH(1−δ)+o(n)q−n (q − 1)nδ

= qn((1−δ) logq
1

1−δ+δ logq
1
δ

+δ logq(q−1)−1+o(1)) (6.12)

Step (6.10) is obtained by conditioning the probability over the leftmost appearance of
z in y as a subsequence. a1, · · · , an(1−δ) denote the positions in y where the first instance
of z is occurred. Note that in such event, yai has to be identical to zi and symbol zi cannot
appear in y[ai−1 + 1, ai− 1]. Hence, the probability of z appearing in a1, · · · , an(1−δ) as the

leftmost occurrence is
(

1
q

)n(1−δ) (
1− 1

q

)an−n(1−δ)
.

To verify (6.11), we show that the largest term of the summation in the previous step
is attained at l = n and bound the summation above by n times that term. To prove this,
we simply show that the ratio of the consecutive terms of the summation is larger than
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one. (
l

n(1−δ)

)
q−n(1−δ)

(
1− 1

q

)l−n(1−δ)

(
l−1

n(1−δ)

)
q−n(1−δ)

(
1− 1

q

)l−1−n(1−δ) =
l

l − n(1− δ)
·
(

1− 1

q

)
=

1− 1
q

1− n(1−δ)
l

≥ 1

where the last inequality follows from the fact that δ < 1− 1
q
⇒ 1

q
< 1− δ ⇒ 1

q
< n(1−δ)

l
.

According to (6.12), for a random code C of rate R, the probability of l + 1 code-
words EC(m1), EC(m2), · · · , EC(ml+1) for m1, · · · ,ml+1 ∈ [1..q]nR containing some fixed
z ∈ [1..q]n(1−δ) as a subsequence is bounded above as follows.

Pr {z is a subseq. of all EC(m1), · · · } ≤ qn(l+1)((1−δ) logq
1

1−δ+δ logq
1
δ

+δ logq(q−1)−1+o(1))

Hence, by applying the union bound over all z ∈ [1..q]n(1−δ), the probability of random
code C not being l-list decodable can be bounded above as follows.

Pr
C

{
∃z ∈ [1..q]n(1−δ),m1, · · · ,ml+1 ∈ [1..q]nR s.t. z is a subseq. of all EC(m1), · · ·

}
≤ qn(1−δ) (qRn)l+1

qn(l+1)((1−δ) logq
1

1−δ+δ logq
1
δ

+δ logq(q−1)−1+o(1))

As long as n’s coefficient in the exponent of q is negative, this probability is less than one
and drops exponentially to zero as n grows.

n(1− δ) +Rn(l + 1) + n(l + 1)

(
(1− δ) logq

1

1− δ
+ δ logq

1

δ
+ δ logq(q − 1)− 1 + o(1)

)
< 0

⇔ R < 1− (1− δ) logq
1

1− δ
− δ logq

1

δ
− δ logq(q − 1)− 1− δ

l + 1
− o(1) (6.13)

Therefore, the random code C with any rate R that satisfies (6.13) is list-decodable with a
list of size l with high probability.

We now proceed to prove the second side of Theorem 6.1.6. We will show that any
family of random codes with rate R > 1− (1− δ) logq

1
1−δ − δ logq

1
δ
− δ logq(q − 1) is not

list decodable with high probability.
To see this, fix a received word z ∈ [1..q]n(1−δ). Let Xi be the indicator random variable

that indicates whether ith codeword contains z as a subsequence or not. Probability of
Xi = 1 was calculated in (6.12) and gives that the expected number of codewords that
contain z is

µ = qnR · qn((1−δ) logq
1

1−δ+δ logq
1
δ

+δ logq(q−1)−1+o(1)).

Note that for R > 1 − (1 − δ) logq
1

1−δ − δ logq
1
δ
− δ logq(q − 1) and large enough n, this

number is exponentially large in terms of n. Further, as Xis are independent, Chernoff
bound gives the following.

Pr{X > µ/2} ≥ 1− e−µ/8

Which implies that, with high probability, exponentially many codewords contain z and,
therefore, the random code is not list-decodable.

125



6.4.2 Random Insertion Codes (Theorem 6.1.7)

Proof of Theorem 6.1.7. We prove the claim by considering a random insertion code C
that maps any x ∈ [1..q]Rn to some uniformly at random chosen member of [1..q]n denoted
by EC(x) and showing that it is possible to list-decode C with high probability.

Note that in an insertion channel, the original message sent by Alice is a substring of the
message received on Bob’s side. Therefore, a random insertion code C is l-list decodable if
for any z ∈ [1..q](γ+1)n, there are at most l codewords of C that are subsequences of z. For
some fixed z ∈ [1..q](γ+1)n, the probability of some uniformly at random chosen y ∈ [1..q]n

being a substring of z can be bounded above as follows.

Pr
y
{y is a subsequence of z} ≤

(
(γ + 1)n

n

)
q−n

= 2n(γ+1)H( 1
γ+1

)+o(n)q−n

= qn(logq(γ+1)+γ logq
γ+1
γ
−1+o(1))

Therefore, for a random code C of rate R and any m1, · · · ,ml+1 ∈ [1..q]nR and some fixed
z ∈ [1..q]n(γ+1):

Pr {EC(m1), · · · , EC(ml+1) are subsequences of z} ≤ qn(l+1)(logq(γ+1)+γ logq
γ+1
γ
−1+o(1))

Hence, using the union bound over z ∈ [1..q]n(γ+1), for the random code C:

Pr
C

{
∃z ∈ [1..q]n(γ+1),m1, · · · ,ml+1 ∈ qnR s.t. EC(m1), · · · , EC(ml+1) are subseq. of z

}
≤ qn(γ+1)

(
qRn
)l+1

qn(l+1)(logq(γ+1)+γ logq
γ+1
γ
−1+o(1))

= qn(γ+1)+Rn(l+1)+n(l+1)(logq(γ+1)+γ logq
γ+1
γ
−1+o(1)) (6.14)

As long as q’s exponent in (6.14) is negative, this probability is less than one and drops
exponentially to zero as n grows.

n(γ + 1) +Rn(l + 1) + n(l + 1)

(
logq(γ + 1) + γ logq

γ + 1

γ
− 1 + o(1)

)
< 0

⇔ R < 1− logq(γ + 1)− γ logq
γ + 1

γ
− γ + 1

l + 1
+ o(1) (6.15)

Therefore, the family of random codes with any rate R that satisfies (6.15) is list-decodable
with a list of size l with high probability.

6.4.3 Random Insertion-Deletion Codes (Theorem 6.1.8)

Before Proceeding to the proof of Theorem 6.1.8, we provide a straightforward analysis of
the size of the insertion-deletion ball.
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Analysis of the Insertion-Deletion Ball

We start with a preliminary lemma.

Lemma 6.4.1 (From [Lev74]). Let n, ni, and q be positive integers and S ∈ [q]ni. Then,
the number of strings that lie inside the insertion ball of radius ni around S is

|Bi(S, ni)| =
ni∑
i=0

(
n+ ni
i

)
(q − 1)i.

In the following, we give a simple bound on the size of the insertion-deletion ball.

Lemma 6.4.2. Let x ∈ [q]n, δ ∈
[
0, 1− 1

q

]
and γ ∈ [0, (q − 1)(1 − δ)]. The size of the

insertion-deletion ball of insertion-radius γn and deletion-radius δn around x is no larger
than

B(x, γn, δn) ≤ qn(Hq(δ)+(1−δ+γ)Hq( γ
1−δ+γ )−δ logq(q−1))+o(n).

Proof.

B(x, γn, δn) =
∑

x0∈Bd(x,δ)

|Bi(x0, γ)|

≤
(
n

δn

) γn∑
i=0

(
n(1− δ + γ)

i

)
(q − 1)i (6.16)

≤ nγ

(
n

nδ

)(
n(1− δ + γ)

nγ

)
(q − 1)γn (6.17)

= qn(Hq(δ)−δ logq(q−1)+(1−δ+γ)Hq( γ
1−δ+γ )−γ logq(q−1)+γ logq(q−1))+o(n) (6.18)

= qn(Hq(δ)+(1−δ+γ)Hq( γ
1−δ+γ )−δ logq(q−1))+o(n)

Note that (6.16) follows from Lemma 6.4.1 and (6.17) is true because the term in summation
reaches its maximum when i = nγ. To see this, we test the ratio between the value of the
term for two consecutive parameter values i and i+ 1:(

n(1−δ+γ)
i+1

)
(q − 1)i+1(

n(1−δ+γ)
i

)
(q − 1)i

=
n(1− δ + γ)− i

i+ 1
(q − 1)

Note that n(1−δ+γ)−i
i+1

(q − 1) ≥ 1⇔ n(1−δ+γ)−i
i+1

≥ 1
q−1
⇔ iq + 1 ≤ n(1− δ + γ)(q − 1). This

holds for all i ≤ nγ because: nγq+1 ≤ n(1−δ+γ)(q−1)⇔ nγ < n(1−δ)(q−1). Finally,
(6.18) follows from the definition of the q-qry entropy function

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x)

and the equation
(
n
np

)
= qn(Hq(p)−p logq(q−1))+o(n).
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Proof of Theorem 6.1.8

Take the random codeword X ∈ [q]n and some string y ∈ [q]n(1−δ+γ) of length n′ =
n(1− δ + γ). Using Lemma 6.4.2, the probability of X being inside the insertion-deletion
ball of deletion-radius δ′n′ = γn and insertion-radius γ′n′ = δn of y is

Pr{X ∈ B(y, γ′n′, δ′n′)} ≤ q
n′
(
Hq(δ′)+(1−δ′+γ′)Hq

(
γ′

1−δ′+γ′

)
−δ′ logq(q−1)

)
+o(n)

qn

=
qn(1−δ+γ)(Hq( γ

1−δ+γ )+ 1
1−δ+γHq(δ)−

γ
1−δ+γ logq(q−1))+o(n)

qn

= qn(Hq(δ)+(1−δ+γ)Hq( γ
1−δ+γ )−γ logq(q−1)−1)+o(n)

For the random code C with rate R to not be l-list decodable for some integer l, there has
to exists some string y ∈ [q]n(1−δ+γ) that can be obtained by l + 1 codewords of C via δn
deletions and γn insertions, i.e., codewords that lie in B(y, δn, γn). Using the union bound
over all y ∈ [q]n(1−δ+γ), the probability of the existence of such y is at most.

qn(1−δ+γ)
(
qnR
)l+1

(
qn(Hq(δ)+(1−δ+γ)Hq( γ

1−δ+γ )−γ logq(q−1)−1)+o(n)
)l+1

= qn(l+1)(R+Hq(δ)+(1−δ+γ)Hq( γ
1−δ+γ )−γ logq(q−1)−1+ 1−δ+γ

l+1
+ol(1)) (6.19)

Note that we used the trivial bound
(
qnR

l+1

)
≤
(
qnR
)l+1

in the above calculation. Equation
(6.19) implies that as long as

R < 1− (1− δ + γ)Hq

(
γ

1− δ + γ

)
−Hq (δ) + γ logq(q − 1),

for an appropriately large l = Oγ,δ,q(1), the exponent of (6.19) is negative and, therefore,
the family of random codes is (γ, δ)-list-decodable with high probability.

6.5 Rate Needed for Unique Decoding

For the sake of completeness, in this section we provide a formal argument for a claim
made in Section 6.1.2. In the following claim, we assert that for every δ, γ > 0 the rate of
any insdel code that uniquely recovers from δ-fraction deletions and γ-fraction insertions
is at most 1− (γ + δ).

Claim 6.5.1. If C is an insdel code of rate R that can recover from δ-fraction insertions
and γ-fraction deletions with unique decoding, then R ≤ 1− (δ + γ).

Proof. Let C ⊆ Σn be a code with qk codewords, where q = |Σ|, for some integer k >
(1− (δ+ γ))n+ 1. Consider the projection of codewords to the first k− 1 coordinates. By
the pigeonhole principle there must be two codewords x, y ∈ C that agree on the first k−1
coordinates. Let x = stu and y = svw where s is of length k − 1, t, v are of length γn,
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and u,w are of length δn. Now consider the string stv: This can be obtained from either
x or y by first deleting the last δn coordinates, and then inserting either t (for y) or v (for
x). Thus no unique decoder can uniquely decode this code from δ fraction insertions and
γ fraction deletions.

The results of Chapter 3 in contrast show that given α and ε > 0 there is a single code
C of rate 1− α− ε that can recover from δ fraction deletions and γ fraction insertions for
any choice of δ, γ with γ + δ ≤ α. Corollary 6.1.5 shows that any such result must have
exponentially large alphabet size in ε though it does not rule out the possibility that there
may exist specific choices of γ and δ for which smaller alphabets may suffice.

6.6 Missing Convexity Proof from Section 6.2.3

In this section, we show that the bivariate function

f(γ, δ) = (1− δ)

[(
1 +

γ

1− δ

)
logq

q(1− δ)
γ

1−δ + 1
− γ

1− δ
·

(
logq

q(1− δ)− 1
γ

1−δ

)]

is convex. To prove the convexity, our general strategy is to show that the Hessian matrix
of f is positive semi-definite. In order to do so, we take the following steps: We first
characterize a domain D for f(γ, δ), over which we analyze the convexity. We then calculate
the Hessian matrix of the function f , Hf . To show the positive semi-definiteness of Hf ,
we form its characteristic polynomial and then show that both of its solutions are real and
non-negative – meaning that both eigenvalues of Hf are non-negative over the domain D.
This would imply that Hf is positive semi-definite and, hence, f is convex over D.

Determining the domain D. Let us begin with describing the domain D. As stated
in Section 6.1.1, we only consider the error rates that are within δ ∈ [0, 1 − 1/q] and
γ ∈ [0, q − 1]. Note that for any fixed value δ ∈ [0, 1 − 1/q), f(γ = 0, δ) is positive. We
will show that as γ grows, the value of f(γ, δ) continuously drops until it reaches zero at
γ = (1− δ)(q − qδ − 1). This suggests that the domain D has to be defined as follows:

D =

{
(γ, δ) | 0 ≤ δ ≤ 1− 1

q
, 0 ≤ γ ≤ (1− δ)(q − qδ − 1)

}
.

To show the claim above, we demonstrate two simple facts: (I) The partial derivative of f
with respect to γ is negative within 0 ≤ γ ≤ (1 − δ)(q − qδ − 1) and, (II) f(γ, δ) = 0 for
γ = (1− δ)(q − qδ − 1).

To see claim (a), note that

∂f

∂γ
= logq

(
(1− δ)2q

1− δ + γ

)
− logq

(
(1− δ)(q − qδ − 1)

γ

)
= logq

(
q(1− δ)γ

(1− δ + γ)(q − qδ − 1)

)
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which is non-positive as long as

∂f

∂γ
≤ 0 ⇔ q(1− δ)γ

(1− δ + γ)(q − qδ − 1)
< 1

⇔ q(1− δ)γ ≤ (1− δ + γ)(q − qδ − 1) (6.20)

⇔ γ ≤ (1− δ)(q − qδ − 1)

Note that (6.20) is valid since 1− δ+ γ ≥ 0 and δ ≤ 1− 1
q
⇒ q− qδ− 1 ≥ 0. One can also

easily evaluate f(γ, δ) for γ = (1− δ)(q − qδ − 1) to confirm claim (b).

Hessian Matrix and Characteristic Polynomial. We now proceed to calculating the
Hessian matrix of f and forming its characteristic polynomial.

Hf =

[
H1,1 H1,2

H2,1 H2,2

]
=

 ∂2f
∂γ2

∂2f
∂γ∂δ

∂2f
∂δ∂γ

∂2f
∂δ2


=


1−δ

γ(1−δ+γ) log(q)
γ+(1−δ)2q

(1−δ)(1−δ+γ)(q−qδ−1) log(q)

γ+(1−δ)2q
(1−δ)(1−δ+γ)(q−qδ−1) log(q)

(1−δ)3q2(1−δ+2γ)+(2(1−δ)q−1)(γ2−γ(1−δ)−(1−δ)2)
(1−δ)2(1−δ+γ)(q−qδ−1)2 log(q)

 (6.21)

We prove semi-definiteness by deriving the characteristic polynomial of Hf . The eigen-
values of Hf are the roots of this polynomial.

det(Hf − λI) = 0 ⇔
∣∣∣∣H1,1 − λ H1,2

H2,1 H2,2 − λ

∣∣∣∣ = 0

⇔ (H1,1 − λ)(H2,2 − λ)−H1,2H2,1 = 0

⇔ λ2 − (H1,1 +H2,2)λ+ (H1,1H2,2 −H1,2H2,1) = 0 (6.22)

To prove the semi-definiteness of Hf , we show that both of its eigenvalues are non-negative,
or equivalently, the roots of the quadratic equation (6.22) are both non-negative. We
remind the reader of the straightforward fact that in a quadratic equation of form x2 −
Sx + P = 0, S is the sum of the roots and P is their product. Therefore, to show that
both roots are non-negative, we only need to show that S and P are both non-negative
and that the roots are both real, i.e., ∆ = S2 − 4P ≥ 0.

1. H1,1 +H2,2 ≥ 0

2. H1,1H2,2 −H1,2H2,1 ≥ 0

3. (H1,1 +H2,2)2 − 4(H1,1H2,2 −H1,2H2,1) ≥ 0

In the remainder of this section, we prove the three items listed above.
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Proof of Item 1. Given (6.21), we have that

H1,1 +H2,2 =
1

log(q)
·
(

1

γ
+

γq2

(q − qδ − 1)2
+

γ(1− γ − δ)
(1− δ)2(1− δ + γ)

)
=

1

log(q)
·
(

1

γ
+

γ

(1− 1/q − δ)2
+

γ

(1− δ)(1− δ + γ)
− γ2

(1− δ)2(1− δ + γ)

)
(6.23)

Note that terms 1
γ

and γ
(1−δ)(1−δ+γ)

are positive. Therefore, to prove that H1,1 + H2,2 is

non-negative, we show that

γ

(1− 1/q − δ)2
− γ2

(1− δ)2(1− δ + γ)
≥ 0. (6.24)

Note that

1− δ − 1/q < 1− δ ⇒ γ

(1− 1/q − δ)2
≥ γ

(1− δ)2
. (6.25)

Also, since δ ≤ 1, we have that 1− δ + γ ≥ γ ⇒ γ
1−δ+γ ≤ 1. Thus, (6.25) holds even if one

multiplies its right-hand side by γ
1−δ+γ which gives (6.24) and, thus, proves Item 1.

Proof of Item 2. Given (6.21), we have that

H1,1H2,2 −H1,2H2,1 =
(1− δ)2(q − qδ − 1)2 − γ2

γ(1− δ)2(1− δ + γ)(q − qδ − 1)2 log2(q)
.

Note that all terms in the denominator are positive. The numerator is positive as well
since, as mentioned earlier, the domain D is defined only to include points (γ, δ) where
γ ≤ (1− δ)(q − qδ − 1).

Proof of Item 3. This claim can be simply shown to be true as follows:

(H1,1 +H2,2)2−4(H1,1H2,2−H1,2H2,1) = (H1,1−H2,2)2 +4H1,2H2,1 = (H1,1−H2,2)2 +4H2
1,2

The final term is trivially positive. Note that the last step follows from the fact that
H1,2 = H2,1.
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Chapter 7

Online Repositioning: Channel
Simulations and Interactive Coding

In this chapter, we use an online repositioning algorithm for synchronization strings to
present many new results related to reliable (interactive) communication over insertion-
deletion channels.

We show how to hide the complications of synchronization errors in many applications
by introducing very general channel simulations which efficiently transform an insertion-
deletion channel into a regular symbol substitution channel with an error rate larger by a
constant factor and a slightly smaller alphabet. Our channel simulations depend on the fact
that, at the cost of increasing the error rate by a constant factor, synchronization strings
can be decoded in a streaming manner that preserves linearity of time. Interestingly, we
provide a lower bound showing that this constant factor cannot be improved to 1 + ε,
in contrast to what is achievable for error correcting codes. These channel simulations
drastically and cleanly generalize the applicability of synchronization strings.

Using such channel simulations, we provide interactive coding schemes which simulate
any interactive two-party protocol over an insertion-deletion channel. These results im-
prove over the state-of-the-art interactive coding schemes of Braverman et al.[BGMO17]
and Sherstov and Wu [SW19] which achieve a small constant rate and require exponential
time computations with respect to computational and communication complexities. We
provide the first computationally efficient interactive coding scheme for synchronization
errors, the first coding scheme with a rate approaching one for small noise rates, and also
the first coding scheme that works over arbitrarily small alphabet sizes. We also show tight
connections between synchronization strings and edit-distance tree codes which allow us
to transfer results from tree codes directly to edit-distance tree codes.

Finally, using our channel simulations, we provide an explicit binary insertion-deletion
code achieving a rate of 1 − O(

√
δ log(1/δ)) that improves over the codes by Guruswami

and Wang [GW17] in terms of the rate-distance trade-off.
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7.1 Introduction

In this chapter, we show that one-way and interactive communication in the presence of
synchronization errors can be reduced to the problem of communication in the presence
of half-errors. We present a series of efficient channel simulations which allow two parties
to communicate over a channel afflicted by synchronization errors as though they were
communicating over a half-error channel with only a slightly larger error rate. This allows
us to leverage existing coding schemes for robust communication over half-error channels
in order to derive strong coding schemes resilient to synchronization errors.

One of the primary tools we use are synchronization strings which were introduced
in Chapter 3 to design essentially optimal error correcting codes (ECCs) robust to syn-
chronization errors. For every ε > 0, synchronization strings allow a sender to index a
sequence of messages with an alphabet of size ε−O(1) in such a way that k synchroniza-
tion errors are efficiently transformed into (1 + ε)k half-errors for the purpose of designing
ECCs. Chapter 3 provide a black-box construction which transforms any ECC into an
equally efficient ECC robust to synchronization errors. However, channel simulations and
interactive coding in the presence of synchronization errors present a host of additional
challenges that cannot be solved by the application of an ECC. Before we describe our
results and techniques in detail, we begin with an overview of the well-known interactive
communication model.

Interactive communication. Throughout this work, we study a scenario where there
are two communicating parties, whom we call Alice and Bob. The two begin with some
input symbols and wish to compute a function of their input by having a conversation.
Their goal is to succeed with high probability while communicating as few symbols as
possible. In particular, if their conversation would consist of n symbols in the noise-free
setting, then they would like to converse for at most αn symbols, for some small α, when
in the presence of noise. One might hope that Alice and Bob could correspond using error-
correcting codes. However, this approach would lead to poor performance because if a
party incorrectly decodes a single message, then the remaining communication is rendered
useless. Therefore, only a very small amount of noise could be tolerated, namely less than
the amount to corrupt a single message.

There are three major aspects of coding schemes for interactive communication that
have been extensively studied in the literature. The first is the coding scheme’s maximum
tolerable error-fraction or, in other words, the largest fraction of errors for which the
coding scheme can successfully simulate any given error-free protocol. Another important
quality of coding schemes for interactive communication, as with one-way communication,
is the communication rate or, equivalently, the amount of communication overhead in
terms of the error fraction. Finally, the efficiency of interactive coding schemes have been
of concern in the previous work.

Schulman initiated the study of error-resilient interactive communication, showing how
to convert an arbitrary two-party interactive protocol to one that is robust to a δ = 1/240
fraction of adversarial errors with a constant communication overhead [Sch92, Sch93].
Braverman and Rao increased the bound on the tolerable adversarial error rate to δ < 1/4,
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also with a constant communication overhead [BR14]. Brakerski et al. [BKN14] designed
the first efficient coding scheme resilient to a constant fraction of adversarial errors with
constant communication overhead. The above-mentioned schemes achieve a constant over-
head no matter the level of noise. Kol and Raz were the first to study the trade-off between
error fraction and communication rate [KR13]. Haeupler then provided a coding scheme
with a communication rate of 1−O(

√
δ log log(1/δ)) over an adversarial channel [Hae14].

Further prior work has studied coding for interactive communication focusing on com-
munication efficiency and noise resilience [GH17a, BE17, GH14] as well as computational
efficiency [BTK12, BN13, BKN14, GMS11, GMS14, GH14]. Other works have studied
variations of the interactive communication problem [GHS14, FGOS15, ERB16, AGS16,
BNT+19].

The main challenge that synchronization errors pose is that they may cause the parties
to become “out of sync.” For example, suppose the adversary deletes a message from Alice
and inserts a message back to her. Neither party will know that Bob is a message behind,
and if this corruption remains undetected, the rest of the communication will be useless.
In most state-of-the-art interactive coding schemes for symbol substitutions, the parties
communicate normally for a fixed number of rounds and then send back and forth a series
of checks to detect any symbol substitutions that may have occurred. One might hope
that a synchronization error could be detected during these checks, but the parties may be
out of sync while performing the checks, thus rendering them useless as well. Therefore,
synchronization errors require us to develop new techniques.

Very little is known regarding coding for interactive communication in the presence of
synchronization errors. A 2016 coding scheme by Braverman et al. [BGMO17], which can
be seen as the equivalent of Schulman’s seminal result, achieves a small constant commu-
nication rate while being robust against a 1/18− ε fraction of errors. The coding scheme
relies on edit-distance tree codes, which are a careful adaptation of Schulman’s original
tree codes [Sch93] for edit distance, so the decoding operations are not efficient and require
exponential time computations. A recent work by Sherstov and Wu [SW19] closed the
gap for maximum tolerable error fraction by introducing a coding scheme that is robust
against 1/6 − ε fraction of errors which is the highest possible fraction of insertions and
deletions under which any coding scheme for interactive communication can work. Both
Braverman et al. [BGMO17] and Sherstov and Wu [SW19] schemes are of constant com-
munication rate, over large enough constant alphabets, and inefficient. In this work we
address the next natural questions which, as arose with ordinary interactive communica-
tion, are on finding interactive coding schemes that are computationally efficient or achieve
super-constant communication efficiency.

7.1.1 Our results

We present very general channel simulations which allow two parties communicating over an
insertion-deletion channel to follow any protocol designed for a regular symbol substitution
channel. The fraction of errors on the simulated symbol substitution channel is only
slightly larger than that on the insertion-deletion channel. Our channel simulations are
made possible by synchronization strings. Crucially, at the cost of increasing the error
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rate by a constant factor, synchronization strings can be decoded (i.e., repositioned) in a
streaming manner which preserves the linearity of time. Note that the similar technique is
used in Chapter 3 to transform synchronization errors into ordinary symbol substitutions
as a stepping-stone to obtain insertion-deletion codes from ordinary error correcting codes
in a black-box fashion. However, in the context of error correcting codes, there is no
requirement for this transformation to happen in real time. In other words, in the study
of insertion-deletion codes in Chapter 3, the entire message transmission is done and then
the receiving party uses the entire message to transform the synchronization errors into
symbol substitutions. In the channel simulation problem, this transformation is required to
happen on the fly. Interestingly, we have found out that in the harder problem of channel
simulation, the factor by which the number of synchronization errors increase by being
transformed into substitution errors cannot be improved to 1 + o(1), in contrast to what is
achievable for error correcting codes. This chapter exhibits the widespread applicability of
synchronization strings and opens up several new use cases, such as coding for interactive
communication over insertion-deletion channels. Namely, using synchronization strings, we
provide techniques to obtain the following simulations of substitution channels over given
insertion-deletion channels with binary and large constant alphabet sizes.

Theorem 7.1.1. (Informal Statement of Theorems 7.3.3, 7.3.5, 7.3.11, and 7.3.13)

(a) Suppose that n rounds of a one-way/interactive insertion-deletion channel over an
alphabet Σ with a δ fraction of insertions and deletions are given. Using an ε-
synchronization string over an alphabet Σsyn, it is possible to simulate n (1−Oε(δ))
rounds of a one-way/interactive substitution channel over Σsim with at most Oε (nδ)
symbols corrupted so long as |Σsim| × |Σsyn| ≤ |Σ|.

(b) Suppose that n rounds of a binary one-way/interactive insertion-deletion channel
with a δ fraction of insertions and deletions are given. It is possible to simulate
n(1 − Θ(

√
δ log(1/δ))) rounds of a binary one-way/interactive substitution channel

with Θ(
√
δ log(1/δ)) fraction of substitution errors between two parties over the given

channel.

Based on the channel simulations presented above, we present novel interactive cod-
ing schemes which simulate any interactive two-party protocol over an insertion-deletion
channel.

We use our large alphabet interactive channel simulation along with constant-rate effi-
cient coding scheme of Ghaffari and Haeupler [GH14] for interactive communication over
symbol substitution channels to obtain a coding scheme for insertion-deletion channels that
is efficient, has a constant communication rate, and tolerates up to 1/44− ε fraction of er-
rors. Note that despite the fact that this coding scheme fails to protect against the optimal
1/6− ε fraction of synchronization errors as the recent work by Sherstov and Wu [SW19]
does, it is an improvement over all previous work in terms of computational efficiency as
it is the first efficient coding scheme for interactive communication over insertion-deletion
channels.
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Theorem 7.1.2. For any constant ε > 0 and n-round alternating protocol Π, there is an
efficient randomized coding scheme simulating Π in presence of δ = 1/44 − ε fraction of
edit-corruptions with constant rate (i.e., in O(n) rounds) and in O(n5) time that works with
probability 1− 2Θ(n). This scheme requires the alphabet size to be a large enough constant
Ωε(1).

Next, we use our small alphabet channel simulation and the substitution channel in-
teractive coding scheme of Haeupler [Hae14] to introduce an interactive coding scheme for
insertion-deletion channels. This scheme is not only computationally efficient, but also the
first with super constant communication rate. In other words, this is the first coding scheme
for interactive communication over insertion-deletion channels whose rate approaches one
as the error fraction drops to zero. Our computationally efficient interactive coding scheme
achieves a near-optimal communication rate of 1−O(

√
δ log(1/δ)) and tolerates a δ frac-

tion of errors. Besides computational efficiency and near-optimal communication rate, this
coding scheme improves over all previous work in terms of alphabet size. As opposed
to coding schemes provided by the previous work[BGMO17, SW19], our scheme does not
require a large enough constant alphabet and works even for binary alphabets.

Theorem 7.1.3. For sufficiently small δ, there is an efficient interactive coding scheme
for fully adversarial binary insertion-deletion channels which is robust against δ fraction
of edit-corruptions, achieves a communication rate of 1−Θ(

√
δ log(1/δ)), and works with

probability 1− 2−Θ(nδ).

We also utilize the channel simulations in one-way settings to provide efficient binary
insertion-deletion codes correcting δ-fraction of synchronization errors–for δ smaller than
some constant–with a rate of 1−Θ(

√
δ log(1/δ)). This was an improvement in terms of rate-

distance trade-off over the binary insertion-deletion codes by Guruswami and Wang [GW17]
which were the state-of-the-art insertion-deletion code at the time of the publication of this
result. The codes by Guruswami and Wang [GW17] achieve a rate of 1−O(

√
δ log(1/δ)).

Ever since, a couple of independent works by Haeupler [Hae19] and Cheng et al. [CJLW18]
improved over our codes by introducing efficient binary codes with rate 1−O(δ log2 1

δ
) via

providing deterministic document exchange protocols.

Finally, we introduce a slightly improved definition of edit-distance tree codes, a gen-
eralization of Schulman’s original tree codes defined by Braverman et al. [BGMO17]. We
show that under our revised definition, edit-distance tree codes are closely related to syn-
chronization strings. For example, edit-distance tree codes can be constructed by merging
a regular tree code and a synchronization string. This transfers, for example, Braverman’s
sub-exponential time tree code construction [Bra12] and the candidate construction of
Schulman [Sch03] from tree codes to edit-distance tree codes. Lastly, as a side note, we will
show that with the improved definition, the coding scheme of Braverman et al. [BGMO17]
can tolerate 1/10− ε fraction of synchronization errors rather than 1/18− ε fraction that
the scheme based on their original definition did. This improved definition is independently
observed by Sherstov and Wu [SW19].
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7.1.2 The Organization of this Chapter

We start by reviewing basic definitions and concepts regarding interactive communication
and synchronization strings in Section 7.2. Then we study channel simulations under
various assumptions in Section 7.3. We use these channel simulations to obtain novel
coding schemes for one-way and interactive communication in Sections 7.3 and 7.4. Finally,
in Section 7.6, we discuss connections between synchronization strings, tree codes and edit-
distance tree codes introduced by Braverman et al. [BGMO17].

7.2 Definitions and preliminaries

In this section, we define the channel models and communication settings considered in this
work. We also review some important notations and lemmas related to synchronization
strings from Chapter 3.

Error model and communication channels. In this chapter, we study two types
of channels, substitution channels and synchronization channels. The former is one that
suffers from symbol substitution and the latter from insertions and deletions.

In the one-way communication setting over an insertion-deletion channel, messages to
the listening party may be inserted, and messages sent by the sending party may be deleted.
The two-way channel requires a more careful setup. We emphasize that we cannot hope
to protect against arbitrary insertions and deletions in the two-way setting because in
the message-driven model, a single deletion could cause the protocol execution to “hang.”
Therefore, following the standard model of Braverman et al.’s work [BGMO17] that is
employed in all other previous works on this problem [SW19], we restrict our attention to
edit corruptions, which consist of a single deletion followed by a single insertion, which may
be aimed at either party. Braverman et al. [BGMO17] provide a detailed discussion on
their model and show that it is strong enough to generalize other natural models one might
consider, including models that utilize clock time-outs to overcome the stalling issue.

In both the one- and two-way communication settings, we study adversarial channels
with error rate δ. Our coding schemes are robust in both the fully adversarial and the
oblivious adversary models. In the fully adversarial model, the adversary may decide
at each round whether or not to interfere based on its state, its own randomness, and
the symbols communicated by the parties so far. In the oblivious adversary model, the
adversary must decide which rounds to corrupt in advance, and therefore independently
of the communication history. A simple example of an oblivious adversary is the random
error channel, where each round is corrupted with probability δ. In models we study, there
is no pre-shared randomness between the parties.

Interactive and one-way communication protocols. In an interactive protocol Π
over a channel with alphabet Σ, Alice and Bob begin with two inputs from Σ∗ and then
engage in n rounds of communication. In a single round, each party either listens for a
message or sends a message, where this choice and the message, if one is generated, depends
on the party’s state, its input, and the history of the communication thus far. After the n
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rounds, the parties produce an output. We study alternating protocols, where each party
sends a message every other round and listens for a message every other round. In this
message-driven paradigm, a party “sleeps” until a new message comes, at which point the
party performs a computation and sends a message to the other party. Protocols in the
interactive communication literature typically fall into two categories: message-driven and
clock-driven. In the message-driven paradigm, a party “sleeps” until a new message comes,
at which point the party performs a computation and sends a message to the other party.
Meanwhile, in the clock-driven model, each party has a clock, and during a single tick, each
party accepts a new message if there is one, performs a computation, and sends a message
to the other party if he chooses to do so. In this work, we study the message-driven model,
since in the clock-driven model, dealing with insertions and deletions is too easy. After
all, an insertion would mean that one symbol is changed to another as in the case of the
standard substitution model and a deletion would be detectable, as it would correspond
to an erasure. In the presence of noise, we say that a protocol Π′ robustly simulates a
deterministic protocol Π over a channel C if given any inputs for Π, the parties can decode
the transcript of the execution of Π on those inputs over a noise-free channel from the
transcript of the execution of Π′ over C.

Finally, we also study one-way communication, where one party sends all messages and
the other party listens. Coding schemes in this setting are known as error-correcting codes.

String Notation. We recap the following definitions from Chapter 3 that were originally
defined by [BGMO17]:

Definition 7.2.1 (String matching(Definition 3.2.1)). Suppose that c and c′ are two strings
in Σ∗, and suppose that ∗ is a symbol not in Σ. Next, suppose that there exist two strings
τ1 and τ2 in (Σ ∪ {∗})∗ such that |τ1| = |τ2|, del (τ1) = c, del(τ2) = c′, and τ1[i] ≈ τ2[i] for
all i ∈ {1, . . . , |τ1|}. Here, del is a function that deletes every ∗ in the input string and
a ≈ b if a = b or one of a or b is ∗. Then we say that τ = (τ1, τ2) is a string matching
between c and c′ (denoted τ : c → c′). We furthermore denote with sc (τi) the number of
∗’s in τi.

Note that the edit distance between strings c, c′ ∈ Σ∗ is exactly equal to
minτ :c→c′ {sc (τ1) + sc (τ2)}.

Definition 7.2.2 (Relative Suffix Pseudo-Distance or RSPD (Definition 3.5.20)). Given
any two strings c, c̃ ∈ Σ∗, the relative suffix pseudo-distance between c and c̃ is

RSPD (c, c̃) = min
τ :c→c̃

{
|τ1|

max
i=1

{
sc (τ1 [i, |τ1|]) + sc (τ2 [i, |τ2|])
|τ1| − i+ 1− sc (τ1 [i, |τ1|])

}}
Indexing via Synchronization Strings and Intermediaries. We now review some im-
portant notions from previous chapters regarding synchronization strings long with defining
the role of intermediaries that will be used later in our channel simulations. In short, syn-
chronization strings allow communicating parties to protect against synchronization errors
by indexing their messages. In this chapter, we think of this technique by introducing
two intermediaries, CA and CB, that conduct the communication over the given insertion-
deletion channel. CA receives all symbols that Alice wishes to send to Bob, CA sends
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the symbols to CB, and CB communicates the symbols to Bob. CA and CB respectively
handle the “indexing with synchronization strings” and “repositioning” procedures that is
involved in keeping Alice and Bob in sync by helping CB guess the actual index of symbols
he receives. In this way, Alice and Bob communicate via CA and CB as though they were
communicating over a half-error channel.

Let S be the synchronization string used by CA to index the communication. Next,
suppose that the adversary injects a total of nδ insertions and deletions, thus transforming
the string S to the string Sτ . Here, τ = (τ1, τ2) is a string matching such that del(τ1) = S,
del(τ2) = Sτ , and for all k ∈ [|τ1|] = [|τ2|],

(τ1[k], τ2[k]) =


(S[i], ∗) if S[i] is deleted

(S[i], Sτ [j]) if Sτ [j] is successfully transmitted and sent as S[i]

(∗, Sτ [j]) if Sτ [j] is inserted,

where i is the index of τ1[1, k] upon deleting the stars in τ1[1, k], or in other words, i =
|del(τ1[1, k])| and similarly j = |del(τ1[1, k])|. We formally say that a symbol Sτ [j] is
successfully transmitted if there exists a k such that |del(τ2[1, k])| = j and τ1[k] = τ2[k]. It
was not inserted or deleted by the adversary.

We remind the reader that CA and CB know the synchronization string S beforehand.
The intermediary CB will receive a set of transmitted indices Sτ [1], . . . , Sτ [n]. Upon receipt
of the jth transmitted index, for all j ∈ [n], CB “matches” Sτ [1, j] to a prefix S[1, i] and
therefore guesses the actual position of Sτ [j] as i. We call the algorithm that CB runs
to determine this matching an (n, δ)-indexing algorithm. The algorithm can also return
a symbol > which represents an “I don’t know” response. Formally, an (n, δ)-indexing
solution was defined in Chapter 3 as follows.

Definition 7.2.3 ((n, δ)-indexing solution (Definition 3.2.2)). The pair (S,DS) consisting
of a string S ∈ Σn and an algorithm DS is called an (n, δ)-indexing solution over alphabet
Σ if for any set of nδ insertions and deletions corresponding to the string matching τ and
altering the string S to a string Sτ , the algorithm DS(Sτ ) outputs either > or an index
between 1 and n for every symbol in Sτ .

Recall that in Chapter 3, the symbol Sτ [j] is successfully transmitted if there exists an
index k such that |del(τ2[1, k])| = j and τ1[k] = S[i] for some i ∈ [n]. It makes sense, then,
to say that the algorithm correctly decodes Sτ [j] if it successfully recovers the index i.
Indeed, we express this notion formally by saying that an (n, δ)-indexing solution (S,DS)
guesses the position of index j correctly under τ = (τ1, τ2) if DS(Sτ ) outputs i and there
exists a k such that i = |del(τ1[1, k])|, j = |del(τ2[1, k])|, τ1[k] = S[i], and τ2[k] = Sτ [j].
Notice that outputting > counts as an incorrect decoding. We now have the language
to describe how well an (n, δ)-indexing solution performs. An algorithm has at most k
misdecodings if for any τ corresponding to at most nδ insertions and deletions, there are
at most k successfully transmitted and incorrectly repositioned symbols. An indexing
solution is streaming if the decoded index for the ith element of the string Sτ only depends
on Sτ [1, i].

We now recall one streaming indexing solution from Chapter 3 that is based on the
following property of ε-synchronization strings.
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Lemma 7.2.4 (Implied by Lemma 3.5.21). Let S ∈ Σn be an ε-synchronization string and
let Sτ [1, j] be a prefix of Sτ . Then there exists at most one index i ∈ [n] such that the suffix
distance between Sτ [1, j] and S[1, i], denoted by RSPD(Sτ [1, j], S[1, i]) is at most 1− ε.

This lemma suggests a simple (n, δ)-indexing solution given an input prefix Sτ [1, j]:
search over all prefixes of S for the one with the smallest RSPD from Sτ [1, j]. We recall
this algorithm outlined as Algorithm 4 from Chapter 3.

Theorem 7.2.5 (Theorems 3.5.23 and 3.5.24). Let S ∈ Σn be an ε-synchronization string
that is sent over an insertion-deletion channel with a δ fraction of insertions and deletions.
There exists a streaming (n, δ)-indexing solution that returns a solution with ci

1−ε + cdε
1−ε

misdecodings. The algorithm runs in time O(n5), spending O(n4) on each received symbol.

7.3 Channel Simulations

In this section, we show how ε-synchronization strings can be used as a powerful tool
to simulate substitution channels over insertion-deletion channels. In Section 7.5, we use
these simulations to introduce coding schemes resilient to insertion-deletion errors.

We study the context where Alice and Bob communicate over an insertion-deletion
channel, but via a blackbox channel simulation, they are able to run coding schemes
that are designed for half-error channels. As we describe in Section 7.2, we discuss this
simulation by introducing two intermediaries, CA and CB, that conduct the simulation by
communicating over the given insertion-deletion channel.

7.3.1 One-way channel simulation over a large alphabet

Assume that Alice and Bob have access to n rounds of communication over a one-way
insertion-deletion channel where the adversary is allowed to insert or delete up to nδ
symbols. In this situation, we formally define a substitution channel simulation over the
given insertion-deletion channel as follows:

Definition 7.3.1 (Substitution Channel Simulation). Let Alice and Bob have access to n
rounds of communication over a one-way insertion-deletion channel with the alphabet Σ.
The adversary may insert or delete up to nδ symbols. Intermediaries CA and CB simulate
n′ rounds of a substitution channel with alphabet Σsim over the given channel as follows.
First, the adversary can insert a number of symbols into the insertion-deletion channel
between CA and CB. Then for n′ rounds i = 1, . . . , n′, the following procedure repeats:

1. Alice gives Xi ∈ Σsim to CA.

2. Upon receiving Xi from Alice, CA wakes up and sends a number of symbols (possibly
zero) from the alphabet Σ to CB through the given insertion-deletion channel. The
adversary can delete any of these symbols or insert symbols before, among, or after
them.
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3. Upon receiving symbols from the channel, CB wakes up and reveals a number of
symbols (possibly zero) from the alphabet Σsim to Bob. We say all such symbols are
triggered by Xi.

Throughout this procedure, the adversary can insert or delete up to nδ symbols. However,
CB is required to reveal exactly n′ symbols to Bob regardless of the adversary’s actions.
Let X̃1, · · · , X̃n′ ∈ Σsim be the symbols revealed to Bob by CB. This procedure successfully
simulates n′ rounds of a substitution channel with a δ′ fraction of errors if for all but n′δ′

elements i of the set {1, . . . , n′}, the following conditions hold: 1) X̃i = Xi; and 2) X̃i is
triggered by Xi.

When X̃i = Xi and X̃i is triggered by Xi, we call X̃i an uncorrupted symbol. The second
condition, that X̃i is triggered by Xi, is crucial to preserving linearity of time, which is the
fundamental quality that distinguishes channel simulations from channel codings. It forces
CA to communicate each symbol to Alice as soon as it arrives. Studying channel simulations
satisfying this condition is especially important in situations where Bob’s messages depends
on Alice’s, and vice versa.

Conditions (1) and (2) also require that CB conveys at most one uncorrupted symbol
each time he wakes up. As the adversary may delete nδ symbols from the insertion-deletion
channel, CB will wake up at most n(1 − δ) times. Therefore, we cannot hope for a sub-
stitution channel simulation where Bob receives more than n(1− δ) uncorrupted symbols.
In the following theorem, we prove something slightly stronger: no deterministic one-way
channel simulation can guarantee that Bob receives more than n(1 − 4δ/3) uncorrupted
symbols and if the simulation is randomized, the expected number of uncorrupted trans-
mitted symbols is at most n(1−7δ/6). This puts channel simulation in contrast to channel
coding as one can recover 1− δ − ε fraction of symbols there (as shown in Chapter 3).

Theorem 7.3.2. Assume that n uses of a one-way insertion-deletion channel over an
arbitrarily large alphabet Σ with a δ fraction of insertions and deletions are given. There
is no deterministic simulation of a substitution channel over any alphabet Σsim where the
simulated channel guarantees more than n (1− 4δ/3) uncorrupted transmitted symbols. If
the simulation is randomized, the expected number of uncorrupted transmitted symbols is
at most n(1− 7δ/6).

Proof. Consider a simulation of n′ rounds of a substitution channel on an insertion-deletion
channel. Note that for any symbol that CA receives, she will send some number of symbols
to CB. This number can be zero or non-zero and may also depend on the content of the
symbol she receives. We start by proving the claim for deterministic simulations. Let
X1, X2, · · · , Xn′ ∈ Σsim and X ′1, X

′
2, · · · , X ′n′ ∈ Σsim be two possible sets of inputs that

Alice may pass to CA such that for any 1 ≤ i ≤ n′, Xi 6= X ′i and Y1, · · · , Ym ∈ Σ and
let Y ′1 , · · · , Y ′m′ ∈ Σ be the symbols that CA sends to CB through the insertion-deletion
channel as a result of receiving {Xi} and {X ′i} respectively.

Now, consider Y1, · · · , Ynδ. Let k be the number of CA’s input symbols which are
required to trigger her to output Y1, · · · , Ynδ. We prove Theorem 7.3.2 in the following two
cases:
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1. k ≤ 2nδ
3

: In this case, Y1, · · · , Ynδ will cause CB to output at most 2nδ
3

uncorrupted
symbols. If the adversary deletes nδ arbitrary elements among Ynδ+1, · · · , Ym, then
CB will receive m− 2nδ ≤ n− 2nδ symbols afterwards; Therefore, he cannot output
more than n − 2nδ uncorrupted symbols as the result of receiving Ynδ+1, · · · , Ym.
Hence, no simulation can guarantee n(1− 2δ) + k < n

(
1− 4

3
δ
)

uncorrupted symbols
or more.

2. k > 2nδ
3

: Consider the following two scenarios:

(a) Alice tries to conveyX1, X2, · · · , Xn′ to Bob using the simulation. The adversary
deletes the first nδ symbols. Therefore, CB receives Ynδ+1, · · · , Ym.

(b) Alice tries to conveyX ′1, X
′
2, · · · , X ′n′ to Bob using the simulation. The adversary

inserts Ynδ+1, · · · , Y2nδ at the very beginning of the communication. Therefore,
CB receives Ynδ+1, · · · , Y2nδ, Y

′
1 , Y

′
2 , · · · , Y ′m′ .

Note that the first nδ symbols that CB receives in these two scenarios are the same.
Assume that CB outputs k′ symbols as the result of the first nδ symbols he receives.
In the first scenario, the number of uncorrupted symbols CB outputs as the result of
his first nδ inputs is at most max{0, k′−k}. Additionally, at most m−2nδ ≤ n−2nδ
uncorrupted messages may be conveyed within the rest of the communication. In the
second scenario, the number of uncorrupted communicated symbols is at most n−k′.
Now, at least for one of these scenarios the number of guaranteed uncorrupted sym-
bols in the simulation is

min {n− 2nδ + max{0, k′ − k}, n− k′}
≤ max

k′
min {n− 2nδ + max{0, k′ − k}, n− k′}

≤ max
k′

min {n− 2nδ + max{0, k′ − 2nδ/3}, n− k′}

= n− 4nδ/3 = n

(
1− 4

3
δ

)
.

This completes the proof for deterministic simulations. Now, we proceed to the case of
randomized simulations.

Take an arbitrary input sequence X1, · · · , Xn′ ∈ Σn′ . Let KX be the random variable
that represents the number of CA’s input symbols which are required to trigger her to
output her first nδ symbols to CB. If Pr{KX ≤ 2nδ/3} ≥ 1

2
, for any sequence X1, · · · , X̄n′

given to CA by Alice, the adversary acts as follows. He lets the first nδ symbols sent by
CA pass through the insertion-deletion channel and then deletes the next nδ symbols that
CA sends to CB. As in the deterministic case, if KX ≤ 2nδ/3, the number of uncorrupted
symbols conveyed to Bob cannot exceed n(1 − 4δ/3). Hence, the expected number of
uncorrupted symbols in the simulation may be upper-bounded by:

E[Uncorrupted Symbols] ≤ p · n(1− 4δ/3) + (1− p) · n(1− δ)

≤ n

(
1− 3 + p

3
δ

)
≤ n

(
1− 3 + 1/2

3
δ

)
= n

(
1− 7

6
δ

)
.
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Now, assume that Pr{KX ≤ 2nδ/3} < 1
2
. Take an arbitrary input X ′1, X

′
2, · · · , X ′n′ ∈

Σsim such that Xi 6= X ′i for all 1 ≤ i ≤ n′. Consider the following scenarios:

(a) Alice tries to convey X1, X2, · · · , Xn′ to Bob using the simulation. The adversary re-
moves the first nδ symbols sent by CA. This means that CB receives is Ynδ+1, · · · , Ym
where Y1, · · · , Ym is a realization of CA’s output distribution given X1, X2, · · · , Xn′

as input.

(b) Alice tries to convey X ′1, X
′
2, · · · , X ′n′ to Bob using the simulation. The adversary

mimics CA and generates a sample of CA’s output distribution given X1, X2, · · · , Xn′

as input. Let that sample be Y1, · · · , Ym. The adversary inserts Ynδ+1, · · · , Y2nδ at
the beginning and then lets the communication go on without errors.

Note that the distribution of the first nδ symbols that CB receives, i.e., Ynδ+1, · · · , Y2nδ,
is the same in both scenarios. Let K ′X′ be the random variable that represents the number
of symbols in CB’s output given that specific distribution over the symbols Ynδ+1, · · · , Y2nδ.
Now, according to the discussion we had for deterministic simulations, for the first scenario:

E[Uncorrupted Symbols] ≤ E[n− 2nδ + max{0, K ′X′ −KX}]
≤ n− 2nδ + p · E[K ′X′ ] + (1− p)(E[K ′X′ ]− 2nδ/3)

≤ n− 2nδ + E[K ′X′ ]− 2(1− p)nδ/3

and for the second one:

E[Uncorrupted Symbols] ≤ E[n−K ′X′ ] ≤ n− E[K ′X′ ].

Therefore, in one of the above-mentioned scenarios

E[Uncorrupted Symbols] ≤ min{n− 2nδ + E[K ′X′ ]− 2(1− p)nδ/3, n− E[K ′X′ ]}
≤ max

γ
min{n− 2nδ + γ − 2(1− p)nδ/3, n− γ}

= n

(
1− 4− p

3
δ

)
< n

(
1− 4− 1/2

3
δ

)
= n

(
1− 7

6
δ

)
.

Therefore, for any randomized simulation, there exists an input and a strategy for the
adversary where

E[Uncorrupted Symbols] ≤ n

(
1− 7

6
δ

)
.
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We now provide a channel simulation using ε-synchronization strings. Every time CA
receives a symbol from Alice (from an alphabet Σsim), CA appends a new symbol from a
predetermined ε-synchronization string over an alphabet Σsyn to Alice’s symbol and sends
it as one message through the channel. On the other side of channel, suppose that CB
has already revealed some number of symbols to Bob. Let IB be the index of the next
symbol CB expects to receive. In other words, suppose that CB has already revealed IB−1
symbols to Bob. Upon receiving a new symbol from CA, CB uses the part of the message
coming from the synchronization string to guess the index of the message Alice sent. We
will refer to this decoded index as ĨA and its actual index as IA. If ĨA < IB, then CB
reveals nothing to Bob and ignores the message he just received. Meanwhile, if ĨA = IB,
then CB reveals Alice’s message to Bob. Finally, if ĨA > IB, then CB sends a dummy
symbol to Bob and then sends Alice’s message.

Given that the adversary can insert or delete up to nδ symbols, if CA sends n symbols,
then CB may receive between n− nδ and n + nδ symbols. We do not assume the parties
have access to a clock, so we must prevent CB from stalling after CA has sent all n messages.
Therefore, CB only listens to the first n(1− δ) symbols it receives.

The protocols of CA and CB are more formally described in Algorithm 6 . Theorem 7.3.3
details the simulation guarantees.

Algorithm 6 Simulation of a one-way constant alphabet channel

1: Initialize parameters: S ← ε-synchronization string of length n

2: if CA then
3: Reset Status: i← 0
4: for n iterations do
5: Get m from Alice, send (m,S[i]) to CB, and increment i by 1.

6: if CB then
7: Reset Status: IB ← 0
8: for n(1− δ) iterations do
9: Receive (m̃, s̃) sent by CA and set ĨA ← Synchronization string decode(s̃, S)

10: if ĨA = IB then
11: Send m̃ to Bob and increment IB.

12: if ĨA < IB then
13: Continue
14: if ĨA > IB then
15: Send a dummy symbol and then m̃ to Bob, then increment IB by 2.

Theorem 7.3.3. Assume that n uses of a one-way insertion-deletion channel over an al-
phabet Σ with a δ fraction of insertions and deletions are given. Using an ε-synchronization
string over an alphabet Σsyn, it is possible to simulate n(1 − δ) rounds of a one-way sub-
stitution channel over Σsim with at most 2nδ(2 + (1− ε)−1) symbols substituted so long as
|Σsim| × |Σsyn| ≤ |Σ| and δ < 1/7.
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Proof. Let Alice and Bob use n rounds of an insertion-deletion channel over alphabet Σ as
sender and receiver respectively. We describe the simulation as being coordinated by two
intermediaries CA and CB, who act according to Algorithm 6.

In order to find a lower-bound on the number of rounds of the simulated communication
that remain uncorrupted, we upper-bound the number of rounds that can be corrupted. To
this end, let the adversary insert ki symbols and delete kd symbols from the communication.
Clearly, the kd deleted symbols do not pass across the channel. Also, each of the ki inserted
symbols may cause CB to change IB. We call these two cases error-bad incidents. Further,
nδ + ki − kd symbols at the end of the communication are not conveyed to Bob as we
truncate the communication at n(1− δ). Moreover, according to Theorem 7.2.5, ki

1−ε + kdε
1−ε

successfully transmitted symbols may be misdecoded upon their arrival. We call such
incidents decoding-bad incidents. Finally, we need to count the number of successfully
transmitted symbols whose indexes are decoded correctly (ĨA = IA) but do not get conveyed
to Bob because ĨA 6∈ {IB, IB + 1}, which we call zero-bad incidents. Zero-bad incidents
happen only if |IA − IB| 6= 0. To count the number of zero-bad incidents, we have to
analyze how IA and IB change in any of the following cases:

Cases when IA > IB IA IB IA − IB
Deletion by the Adversary +1 0 +1
Insertion by the Adversary 0 0,+1,+2 0, -1, -2

Correctly Transmitted but Misdecoded +1 0,+1,+2 -1, 0, +1
Correctly Transmitted and Decoded +1 +2 -1

Cases when IA < IB IA IB IB − IA
Deletion by the Adversary +1 0 -1
Insertion by the Adversary 0 0,+1,+2 0, +1, +2

Correctly Transmitted but Misdecoded +1 0,+1,+2 -1, 0, +1
Correctly Transmitted and Decoded +1 0 -1

Cases when IA = IB IA IB IB − IA
Deletion by the Adversary +1 0 -1
Insertion by the Adversary 0 0,+1,+2 0, +1, +2

Correctly Transmitted but Misdecoded +1 0,+1,+2 -1, 0, +1
Correctly Transmitted and Decoded +1 +1 0

Table 7.1: How IA and IB change in different scenarios.

Note that any insertion may increase |IA − IB| by up to 2 units and any misdecoding
or deletion may increase |IA − IB| by up to 1 unit. Therefore, |IA − IB| may be increased
2ki + kd + ki

1−ε + kdε
1−ε throughout the algorithm. However, as any successfully transmitted

and correctly decoded symbol decreases this variable by at least one, there are at most
2ki + kd + ki

1−ε + kdε
1−ε zero-bad incidents, i.e. successfully transmitted and correctly decoded

symbols that are not conveyed successfully in the simulated substitution channel.

Hence, the following is an upper-bound on the number of symbols that may not remain
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uncorrupted in the simulated channel:

#(error-bad) + #(decoding-bad) + #(zero-bad) + #(truncated symbols)

≤ kd +

[
ki

1− ε
+

kdε

1− ε

]
+

[
2ki + kd +

ki
1− ε

+
kdε

1− ε

]
+ [nδ + ki − kd]

= nδ + kd

(
1 +

2ε

1− ε

)
+ ki

(
3 +

2

1− ε

)
≤ nδ

(
4 +

2

1− ε

)
.

As error fraction shall not exceed one, the largest δ for which this simulation works is
as follows.

nδ
(
4 + 2

1−ε

)
n(1− δ)

∣∣∣∣∣
ε=0

=
6δ

1− δ
< 1⇔ δ <

1

7

7.3.2 Interactive channel simulation over a large alphabet

We now turn to channel simulations for interactive channels. As in Section 7.3.1, we
formally define a substitution interactive channel simulation over a given insertion-deletion
interactive channel. We then use synchronization strings to present one such simulation.

Definition 7.3.4 (Substitution Interactive Channel Simulation). Let Alice and Bob have
access to n rounds of communication over an interactive insertion-deletion channel with
alphabet Σ. The adversary may insert or delete up to nδ symbols. The simulation of an
interactive substitution channel is performed by a pair of intermediaries CA and CB where
Alice communicates with CA, CA interacts over the given insertion-deletion channel with
CB, and CB communicates with Bob. More precisely, CA and CB simulate n′ rounds of a
substitution interactive channel with alphabet Σsim over the given channel as follows. The
communication starts when Alice gives a symbol from Σsim to CA. Then Alice, Bob, CA,
and CB continue the communication as follows:

1. Whenever CA receives a symbol from Alice or CB, he either reveals a symbol from
Σsim to Alice or sends a symbol from Σ through the insertion-deletion channel to CB.

2. Whenever CB receives a symbol from Bob or CA, he either reveals a symbol from Σsim

to Bob or send a symbols from Σ through the insertion-deletion channel to CA.

3. Whenever CB reveals a symbol to Bob, Bob responds with a new symbol from Σsim.

4. Whenever CA reveals a symbol to Alice, Alice responds with a symbol in Σsim except
for the n′

2
th time.

Throughout this procedure, the adversary can inject up to nδ edit corruptions. However,
regardless of the adversary’s actions, CA and CB have to reveal exactly n′/2 symbols to
Alice and Bob respectively.

Let X1, . . . , Xn′ be the symbols Alice gives to CA and X̃1, . . . , X̃n′ ∈ Σsim be the sym-
bols CB reveals to Bob. Similarly, Let Y1, . . . , Yn′ be the symbols Bob gives to CB and
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Algorithm 7 Simulation of a substitution channel using an insertion-deletion channel
with a large alphabet: CA’s procedure

1: Π← n-round interactive coding scheme over a substitution channel to be simulated
2: Initialize parameters: S ← ε-synchronization string of length n/2
3: IA ← 0
4: for n/2− nδ

(
1 + 1

1−ε

)
iterations do

5: Get m from Alice, send (m,S[IA]) to CB, and increment IA by 1.
6: Get (m̃, S̃) from CB and send m̃ to Alice.

7: Commit.
8: for nδ

(
1 + 1

1−ε

)
iterations do

9: Send (0, 0) to CB, and increment IA by 1.
10: Get (m̃, S̃) from CB.

Ỹ1, . . . , Ỹn′ ∈ Σsim be the symbols CA reveals to Alice. We call each pair of tuples (Xi, X̃i)
and (Yi, Ỹi) a round of the simulated communication. We call a round corrupted if its
elements are not equal. This procedure successfully simulates n′ rounds of a substitution
interactive channel with a δ′ fraction of errors if for all but n′δ′ of the rounds are corrupted.

Theorem 7.3.5. Assume that n uses of an interactive insertion-deletion channel over
an alphabet Σ with a δ fraction of insertions and deletions are given. Using an ε-
synchronization string over an alphabet Σsyn, it is possible to simulate n−2nδ(1+(1−ε)−1)

uses of an interactive substitution channel over Σsim with at most a 2δ(5−3ε)
1−ε+2εδ−4δ

fraction of
symbols corrupted so long as |Σsim| × |Σsyn| ≤ |Σ| and δ < 1/14.

Proof. Suppose that Alice and Bob want to communicate a total of n − 2nδ
(
1 + 1

1−ε

)
symbols over the simulated substitution channel, and that this channel is simulated by the
intermediaries CA and CB, who are communicating via a total of n uses of an insertion-
deletion channel. We will show later on that both parties have the chance to commit
before the other has sent n/2 messages over the insertion-deletion channel. We say an
intermediary commits when it finishes simulating the channel for its corresponding party,
i.e., when it sends the last simulated symbol out. Intermediaries may commit and yet
carry on exchanging symbols over the channel so that the other intermediary finishes its
simulation as well. An intermediary may stall by waiting for receiving symbols from the
channel but the nature of simulation necessitates the intermediaries not to stall before they
commit.

To analyze this simulation, we categorize the bad events that could occur as follows.
We say that CA takes a step when it sends a message, receives a message, and completes
its required communication with Alice. We say that CA’s step is good if the message CA
receives is an uncorrupted response to its previous outgoing message and CB correctly
decodes the index that CA sends. Figure 7.1 illustrates a sequence of steps where only the
first is good.

If CA has a good step when IA = IB and neither party has committed, then Alice and
Bob are guaranteed to have an error-free round of communication. We lower bound the
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Algorithm 8 Simulation of a substitution channel using an insertion-deletion channel
with a large alphabet: CB’s procedure

1: Π← n-round interactive coding scheme over a substitution channel to be simulated

2: Initialize parameters: S ← ε-synchronization string of length n/2

3: IB ← 0
4: for n/2 iterations do
5: Receive (m̃, s̃) from CA.
6: ĨA ← Synchronization string decode(s̃, S).
7: if Committed then
8: Send a dummy message to CA.
9: else if ĨA = IB then

10: Send m̃ to Bob and increment IB by 1.
11: Receive m from Bob and send (m, 0) to CA.
12: else if ĨA < IB then
13: Send a dummy message to CA.
14: else if ĨA > IB then
15: Send a dummy message to Bob.
16: Send m̃ to Bob and increment IB by 2.
17: Receive m from Bob and send (m, 0) to CA.

18: If IB = n/2− nδ
(
1 + 1

1−ε

)
, commit.

total number of Alice and Bob’s error-free rounds of communication by lower bounding
the number of good steps that CA takes when IA = IB. The total number of good steps
CA takes is S = n/2− nδ

(
1 + 1

1−ε

)
− d, where d is the number of rounds there are before

CA commits but after CB commits, if CB commits first. If a step is not good, then we
say it is bad. Specifically, we say that it is commit-bad if CB commits before CA. We say
that it is decoding-bad if neither party has committed, CB receives an uncorrupted message
from CA, but CB does not properly decode the synchronization string index. Otherwise,
we say that a bad step is error-bad. Since every good step corresponds to a message sent
by both Alice and Bob, we may lower bound the number of error-free messages sent over
the substitution channel by

2

(
n

2
− nδ

(
1 +

1

1− ε

)
− d−#(error-bad steps)−#(decoding-bad steps)

−#(good steps when IA 6= IB)

)
.

In order to lower bound this quantity, we now upper bound d, the number of error-bad
and decoding-bad steps, and the number of good steps when IA 6= IB.

We claim that there are at most nδ error-bad steps since a single adversarial injection
could cause CA’s current step to be bad, but that error will not cause the next step to
be bad. Next, we appeal to Theorem 7.2.5 to bound the number of decoding-bad steps.
The cited theorem guarantees that if an ε-synchronization string of length m is sent over
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Figure 7.1: Illustration of five steps where only the first is good.

an insertion-deletion channel with a δ′ fraction of errors, then the receiver will decode the
index of the received symbol correctly for all but δ′m

1−ε symbols. In this scenario, m = n/2
and δ′ = nδ/(n/2) = 2δ since an error over the insertion-deletion channel can cause at
most one error in the synchronization string transmission. Therefore, there are at most
nδ/(1− ε) decoding-bad steps.

Now, a single error, be it an adversarial injection or synchronization strings improper
decoding, may cause |IB−IA| to increase by at most two since a single error may cause CB
to simulate Step 16 of Algorithm 8 and increment IB by two, while IA does not change.
Further, if an error does not occur but CB incorrectly decodes the synchronization symbol
CA sends, then |IB − IA| may increase by at most one, since CB might increase IB by
two or zero while CA increases IA by one. Meanwhile, if |IA − IB| ≥ 1 and CA takes
a good step, then this difference will decrease by at least 1. In total, over the course of
the computation, since there are at most nδ adversarial injections and nδ

1−ε synchronization

string improper decodings, we have that |IB − IA| increases by at most 2nδ + nδ
1−ε , which

means that CA will take at most 2nδ+ nδ
1−ε good steps where IB 6= IA. We may bound this

number of good steps a bit tighter as follows. Let I∗A and I∗B be the values of IA and IB
when the first of CA or CB commits. If |I∗A − I∗B| > 0, then each party only had at most
2nδ + nδ

1−ε − |I
∗
A − I∗B| good steps where IB 6= IA.

Finally, we must upper bound the number d of rounds there are before CA commits
but after CB commits if CB commits first. Assuming CB commits first, it must be that
I∗B = n

2
− nδ

(
1 + 1

1−ε

)
. Therefore, the number of steps before CA commits is

d =
n

2
− nδ

(
1 +

1

1− ε

)
− I∗A = |I∗A − I∗B| .

We have shown that the number of error-free messages sent over the substitution channel
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is at least

2

(
n

2
− nδ

(
1 +

1

1− ε

)
− d−#(error-bad steps)−#(decoding-bad steps)

−#(good steps when IA 6= IB)

)
≤ 2

(
n

2
− nδ

(
1 +

1

1− ε

)
− |I∗B − I∗A| − nδ −

nδ

1− ε
−
(

2nδ +
nδ

1− ε
− |I∗A − I∗B|

))
= n− 8nδ − 6nδ

1− ε
.

Since Alice and Bob send a total of n−2nδ
(
1 + 1

1−ε

)
messages over the simulated channel,

the error rate δs over the simulated channel is at most 1 − n−8nδ− 6nδ
1−ε

n−2nδ(1+ 1
1−ε)

= 2δ(5−3ε)
1−ε−2δ(1−ε)−2δ

.

Therefore, if δ < 1/14, then δs <
2δ(5−3ε)

1−ε+2δε−4δ

∣∣∣
ε=0

= 10δ
1−4δ

< 1, as is necessary.

The last step is to show that CA has the chance to commit before CB has sent n/2
messages over the insertion-deletion channel, and vice versa. Recall that CA (respectively
CB) commits when IA (respectively IB) equals n/2− nδ

(
1 + 1

1−ε

)
. Let iB be the number

of messages sent by CB over the insertion-deletion channel. The difference |iB − IA|
only increases due to an error, and a single error can only increase this difference by at
most one. Therefore, when iB = n/2, IA ≥ n/2 − nδ, so CA has already committed.
Next, IA only grows larger than IB if there is an error or if CB improperly decodes a
synchronization symbol and erroneously chooses to not increase IB. Therefore, IA is never
more than nδ

(
1 + 1

1−ε

)
larger than IB. This means that when IA = n/2, it must be that

IB ≥ n/2−
(
1 + 1

1−ε

)
, so CB has committed.

7.3.3 Binary interactive channel simulation

We now show that with the help of synchronization strings, a binary interactive insertion-
deletion channel can be used to simulate a binary interactive substitution channel, inducing
a Õ(
√
δ) fraction of bit-flips. In this way, the two communicating parties may interact as

though they are communicating over a substitution channel. They therefore can employ
substitution channel coding schemes while using the simulator as a black box means of
converting the insertion-deletion channel to a substitution channel.

The key difference between this simulation and the one-way, large alphabet simulation
is that Alice and Bob communicate through CA and CB for blocks of r rounds, between
which CA and CB check if they are in sync. Due to errors, there may be times when Alice
and Bob are in disagreement about which block, and what part of the block, they are in.
CA and CB ensure that Alice and Bob are in sync most of the time.

When Alice sends CA a message from a new block of communication, CA holds that
message and alerts CB that a new block is beginning. CA does this by sending CB a
header that is a string consisting of a single one followed by s− 1 zeros (10s−1). Then, CA
indicates which block Alice is about to start by sending a synchronization symbol to CB.
Meanwhile, when CB receives a 10s−1 string, he listens for the synchronization symbol,
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Algorithm 9 Simulation of a substitution channel using an insertion-deletion channel, at
CA’s side

1: Π← n-round interactive coding scheme over a substitution channel to be simulated

2: Initialize parameters: r ←
√

log(1/δ)
δ

; Rtotal ←
⌈
n
√

δ
log(1/δ)

⌉
; s ← c log(1/δ); S ← ε-

synchronization string of length Rtotal

3: Reset Status: i← 0

4: for Rtotal iterations do
5: Send s zeros to CB
6: Send S[i] to CB
7: For r rounds, relay messages between CB and Alice
8: i← i + 1

makes his best guess about which block Alice is in, and then communicates with Bob and
CA accordingly. This might entail sending dummy blocks to Bob or CA if he believes that
they are in different blocks.Algorithms 9 and 10 detail CA and CB’s protocol. To describe
the guarantee that our simulation provides, we first define block substitution channels.

Definition 7.3.6 (Block Substitution Channel). An n-round adversarial substitution chan-
nel is called a (δ, r)-block substitution channel if the adversary is restricted to substitution
nδ symbols which are covered by nδ/r blocks of r consecutively transmitted symbols.

Theorem 7.3.7. Suppose that n rounds of a binary interactive insertion-deletion chan-
nel with a δ fraction of insertions and deletions are given. For sufficiently small δ, it
is possible to deterministically simulate n(1 − Θ(

√
δ log(1/δ))) rounds of a binary inter-

active (Θ(
√
δ log(1/δ)),

√
(1/δ) log(1/δ))-block substitution channel between two parties,

Alice and Bob, assuming that all substrings of form 10s−1 where s = c log(1/δ) that Alice
sends can be covered by nδ intervals of

√
(1/δ) log(1/δ) consecutive rounds. The simulation

is performed efficiently if the synchronization string is efficient.

Proof. Suppose Alice and Bob communicate via intermediaries CA and CB who act ac-
cording to Algorithms 9 and 10. In total, Alice and Bob will attempt to communicate ns
bits to one another over the simulated channel, while CA and CB communicate a total of
n bits to one another. The adversary is allowed to insert or delete up to nδ symbols and
CA sends n/2 bits, so CB may receive between n/2−nδ and n/2 +nδ symbols. To prevent
CB from stalling indefinitely, CB only listens to the first n(1− 2δ)/2 bits he receives.

For r =
√

(1/δ) log(1/δ), we define a chunk to be rc := (s + |Σsyn| + r/2) consecutive
bits that are sent by CA to CB. In particular, a chunk corresponds to a section header
and synchronization symbol followed by r/2 rounds of messages sent from Alice. As CB
cares about the first n(1− 2δ)/2 bits it receives, there are n(1−2δ)

2rc
chunks in total. Hence,

ns = n(1−2δ)
2rc

· r since CB and CA’s communication is alternating.

Note that if Alice sends a substring of form 10s−1 in the information part of a chunk,
then Bob mistakenly detects a new block. With this in mind, we say a chunk is good if:
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Algorithm 10 Simulation of a substitution channel using an insertion-deletion channel,
at CB’s side

1: Π← n-round interactive coding scheme over a substitution channel to be simulated

2: Initialize parameters: r ←
√

log(1/δ)
δ

; Rtotal ←
⌊
n(1 − δ)

√
δ

log(1/δ)

⌋
; s ← c log(1/δ);

S ← ε-synchronization string of length Rtotal

3: Reset Status: i, z, IB ← 0

4: for Rtotal iterations do
5: while z < s do
6: Receive b from CA
7: if b = 0 then
8: z← z + 1
9: else

10: z← 0
11: Send dummy bit to CA
12: z← 0

13: Receive m, the next |Σsyn| bits sent by CA
14: ĨA ← Synchronization string decode(m,S)
15: if ĨA = IB then
16: For r rounds, relay messages between CA and Bob
17: IB ← IB + 1

18: if ĨA < IB then
19: For r rounds, send dummy messages to CA
20: if ĨA > IB then
21: For r rounds, send dummy messages to Bob
22: For r rounds, relay messages between CA and Bob
23: IB ← IB + 2

1. There are no errors injected in the chunk or affecting CB’s detection of the chunk’s
header,

2. CB correctly decodes the index that CA sends during the chunk, and

3. CA does not send a 10s−1 substring in the information portion of the chunk.

If a chunk is not good, we call it bad. If the chunk is bad because CB does not decode
CA’s index correctly even though they were in sync and no errors were injected, then we
call it decoding-bad. If it is bad because Alice sends a 10s−1 substring, we call it zero-bad
and otherwise, we call it error-bad. Throughout the protocol, CB uses the variable IB to
denote the next index of the synchronization string CB expects to receive and we use IA
to denote the index of the synchronization string CA most recently sent. Notice that if a
chunk is good and IA = IB, then all messages are correctly conveyed.
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We now bound the maximum number of bad chunks that occur over the course of the
simulation. Suppose the adversary injects errors into the ith chunk, making that chunk
bad. The (i+1)th chunk may also be bad, since Bob may not be listening for 10s−1 from CA
when CA sends them, and therefore may miss the block header. However, if the adversary
does not inject any errors into the (i + 1)th and the (i + 2)th chunk, then the (i + 2)th

chunk will be good. In effect, a single error may render at most two chunks useless. Since
the adversary may inject nδ errors into the insertion-deletion channel, this means that the
number of chunks that are error-bad is at most 2nδ. Additionally, by assumption, the
number of zero-bad chunks is also at most nδ.

We also must consider the fraction of rounds that are decoding-bad. In order to do
this, we appeal to Theorem 7.2.5, which guarantees that if an ε-synchronization string
of length N is sent over an insertion-deletion channel with a δ′ fraction of insertions and
deletions, then the receiver will decode the index of the received symbol correctly for all but
2Nδ′/(1−ε) symbols. In this context, N is the number of chunks, i.e. N = n(1−2δ)/(2rc),
and the fraction of chunks corrupted by errors is δ′ = 4nδ/N . Therefore, the total number
of bad chunks is at most 4δn+ 2Nδ′/(1− ε) = 4δn(3− ε)/(1− ε).

We will now use these bounds on the number of good and bad chunks to calculate how
many errors there are for Alice and Bob, communicating over the simulated channel. As
noted, so long as the chunk is good and IA = IB, then all messages are correctly conveyed
to Alice from Bob and vice versa. Meanwhile, a single error, be it an adversarial injection
or a synchronization string improper decoding, may cause |IB − IA| to increase by at
most two since a single error may cause Bob to erroneously simulate Step 13 and therefore
increment IB by two when, in the worst case, IA does not change. On the other hand, if
|IB − IA| ≥ 1 and the chunk is good, this difference will decrease by at least 1, as is clear
from Lines 18 and 20 of Algorithm 10.

In total, we have that over the course of the computation, |IB − IA| increases at most
3−ε
1−ε · 4δn times and each time by at most 2. Therefore, there will be at most 3−ε

1−ε · 8δn good

chunks during which |IB−IA| ≥ 1. This gives that all but 3−ε
1−ε ·12δn chunks are good chunks

and have IA = IB upon their arrival on Bob’s side. Remember that the total number of

chunks is n(1−2δ)
2rc

, hence, the simulated channel is a
(

12δn(3−ε)/(1−ε)
n(1−2δ)/(2rc)

, r
)

=
(

24δrc(3−ε)
(1−ε)(1−2δ)

, r
)

block substitution channel.

Thus far, we have shown that one can simulate n(1−2δ) r
2rc

rounds of a
(

24δrc(3−ε)
(1−ε)(1−2δ)

, r
)

-

block substitution channel over a given channel as described in the theorem statement.
More specifically, over n(1−2δ) rounds of communication over the insertion-deletion chan-

nel, a 2rc−r
2rc

= s+|Σsyn|
rc

fraction of rounds are used to add headers and synchronization

symbols to chunks and a 24δrc(3−ε)
(1−ε)(1−2δ)

fraction can be lost due to the errors injected by

the adversary or 10s−1 strings in Alice’s stream of bits. Therefore, the overall fraction
of lost bits in this simulation is s+|Σsyn|

rc
+ 24δrc(3−ε)

(1−ε)(1−2δ)
. Since s = c log 1

δ
, ε and |Σsyn| are

constants, and 1 − 2δ approaches to one for small δ, the optimal asymptotic choice is
r =

√
(1/δ) log 1/δ. This choice gives a simulated channel with characteristics described

in the theorem statement. This simulation is performed efficiently if the synchronization
symbols are efficiently computable.
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The simulation stated in Theorem 7.3.7 burdens an additional condition on Alice’s
stream of bits by requiring it to have a limited number of substrings of form 10s−1. We
now introduce a high probability technique to modify a general interactive communication
protocol in a way that makes all substrings of form 10s−1 in Alice’s stream of bits fit into
nδ intervals of length r =

√
(1/δ) log(1/δ).

Lemma 7.3.8. Assume that n rounds of a binary interactive insertion-deletion channel
with an oblivious adversary who is allowed to inject nδ errors are given. There is a pre-
coding scheme that can be utilized on top of the simulation introduced in Theorem 7.3.7.
It modifies the stream of bits sent by Alice so that with probability 1 − e− c−3

2
nδ log 1

δ
(1+o(1)),

all substrings of form 10s−1 where s = c log(1/δ) in the stream of bits Alice sends over
the simulated channel can be covered by nδ intervals of length r =

√
(1/δ) log(1/δ). This

pre-coding scheme comes at the cost of a Θ(
√
δ log(1/δ)) fraction of the bits Alice sends

through the simulated channel.

Proof. Note that in the simulation process, each r
2

consecutive bits Alice sends will form
one of the chunks CA sends to CB alongside some headers. The idea of this pre-coding
is simple. Alice uses the first s

2
data bits (and not the header) of each chunk to share s

2

randomly generated bits with Bob (instead of running the interactive protocol) and then
both of them extract a string S ′ of r

2
s
2
-wise independent random variables. Then, Alice

XORs the rest of data bits she passes to CA with S ′ and Bob XORs those bits with S ′

again to retrieve the original data.
We now determine the probability that the data block of a chunk of the simulation

contains a substring of form 10s−1. Note that if a block of size r
2

contains a 10s−1 substring,
then one of its substrings of length s

2
starting at positions 0, s

2
, 2s

2
, · · · is all zero. Since P

is s
2
-wise independent, the probability of each of these s

2
substrings containing only zeros

is 2−
s
2 = δ

c
2 . Taking a union bound over all these substrings, the probability of a block

containing a 10s−1 substring can be bounded above by

p =
r/2

s/2
· δ

c
2 =

√
δc−1

log(1/δ)
.

Now, we have:

Pr
{

Number of blocks containing 10s−1 > nδ
}

<

(
n
s

nδ

)
pnδ ≤

( ne
nsδ

)nδ(√ δc−1

log(1/δ)

)nδ

<

(
δ(c−3)/2e

c log3/2(1/δ)

)nδ
= e−

c−3
2
nδ log 1

δ
(1+o(1)).

Applying this pre-coding for c ≥ 3 on top of the simulation from Theorem 7.3.7 implies
the following.
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Theorem 7.3.9. Suppose that n rounds of a binary interactive insertion-deletion channel
with a δ fraction of insertions and deletions performed by an oblivious adversary are given.
For sufficiently small δ, it is possible to simulate n(1−Θ(

√
δ log(1/δ))) rounds of a binary

interactive (Θ(
√
δ log(1/δ)),

√
(1/δ) log 1/δ)-block substitution channel between two parties

over the given channel. The simulation works with probability 1 − exp(−Θ(nδ log(1/δ)))
and is efficient if the synchronization string is efficient.

Lemma 7.3.10. Suppose that n rounds of a binary, interactive, fully adversarial insertion-
deletion channel with a δ fraction of insertions and deletions are given. The pre-coding
scheme proposed in Lemma 7.3.8 ensures that the stream of bits sent by Alice contains
fewer than nδ substrings of form 10s−1 for s = c log(1/δ) and c > 5 with probability
1− e−Θ(nδ log(1/δ)).

Proof. Lemma 7.3.8 ensures that for a fixed adversarial error pattern, the stream of bits
sent by Alice contains fewer than nδ substrings of form 10s−1 upon applying the pre-
coding scheme. However, in the fully adversarial setting, the adversary need not fix the
error pattern in advance. Since the communication is interactive, the adversary can thus
adaptively alter the bits Alice chooses to send. In this proof, we take a union bound over
all error patterns with a δ fraction of errors and show that with high probability, upon
applying the pre-coding scheme, the stream of bits sent by Alice contains fewer than Θ(nδ)
substrings of form 10s−1.

We claim that the number of error patterns with exactly k insertions or deletions is
at most 3k

(
n+k
k

)
. Note that if symbols s1, . . . , sn are being sent, each of the k errors can

potentially occur within the intervals [s1, s2), [s2, s3), . . . , [sn−1, sn), or after sn is sent. Each
error could be a deletion, insertion of “1”, or insertion of “0”. This gives the claimed error
pattern count. Further, any error pattern with fewer than k−1 errors can be thought of as
an error pattern with either k − 1 or k errors where the adversary deletes an arbitrary set
of symbols and then inserts the exact same symbols immediately. Therefore, the number
of all possible error patterns with at most nδ insertions or deletions can be upper-bounded
by

nδ∑
k=nδ−1

3k
(
n+ k

k

)
≤ 2·3nδ

(
n(1 + δ)

nδ

)
≤ 2·3nδ

(
n(1 + δ)e

nδ

)nδ
< 2

(
6e

δ

)nδ
= enδ log 1

δ
(1+o(1)).

Now, since summation of exp (nδ log(1/δ)(1 + o(1))) many probabilities any of which
smaller than exp

(
− c−3

2
nδ log(1/δ)(1 + o(1))

)
is still exp (−Θ (nδ log(1/δ))) for c > 5, the

probability of this pre-coding making more than nδ disjoint 10s−1 substrings for s = c log 1
δ

in fully adversarial setting is again 1− exp (−Θ (nδ log(1/δ))).

Theorem 7.3.7 and Lemma 7.3.10 allow us to conclude that one can perform the sim-
ulation stated in Theorem 7.3.7 over any interactive protocol with high probability (see
Theorem 7.3.11).

Theorem 7.3.11. Suppose that n rounds of a binary interactive insertion-deletion chan-
nel with a δ fraction of insertions and deletions performed by a non-oblivious adversary
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are given. For a sufficiently small δ, it is possible to simulate n
(

1−Θ
(√

δ log(1/δ)
))

rounds of a binary interactive

(
Θ
(√

δ log(1/δ)
)
,
√

log 1/δ
δ

)
-block substitution channel be-

tween two parties, Alice and Bob, over the given channel. The simulation is efficient if the
synchronization string is efficient and works with probability 1− exp (−Θ (nδ log(1/δ))).

7.3.4 Binary One Way Communication

It is trivial to simplify Algorithms 9 and 10 from Section 7.3 to prove our simulation guar-
antees over binary alphabets. Specifically, the messages that Bob sends may be completely
ignored and thereby we immediately obtain the following result for one-way insertion-
deletion channels:

Theorem 7.3.12. Suppose that n rounds of a binary one-way insertion-deletion channel
with a δ fraction of insertions and deletions are given. For a sufficiently small δ, it is

possible to deterministically simulate n
(

1−Θ
(√

δ log(1/δ)
))

rounds of a binary(
Θ

(√
δ log

1

δ

)
,

√
log(1/δ)

δ

)

one-way block substitution channel between two parties, Alice and Bob, over the given
channel assuming that all substrings of form 10s−1 for s = c log 1

δ
in Alice’s stream of bits

can be covered by nδ intervals of
√

log(1/δ)
δ

consecutive rounds. This simulation is performed

efficiently if the synchronization string is efficient.

Further, one can use the pre-coding technique introduced in Lemma 7.3.8 and Theo-
rem 7.3.12 to show that:

Theorem 7.3.13. Suppose that n rounds of a binary one-way insertion-deletion channel
with a δ fraction of insertions and deletions are given. For sufficiently small δ, it is possi-

ble to simulate n
(

1−Θ
(√

δ log(1/δ)
))

rounds of a binary

(
Θ
(√

δ log(1/δ)
)
,
√

log 1/δ
δ

)
block substitution channel between two parties, Alice and Bob, over the given channel. The
simulation works with probability 1− e−Θ(nδ log(1/δ)), and is efficient if the synchronization
string is efficient.

7.4 Applications: Binary Insertion-Deletion Codes

The binary one-way simulation in Theorem 7.3.13 suggests a natural way to overcome
insertion-deletion errors in one-way binary channels. One can simply simulate the sub-
stitution channel and use appropriate substitution channel error correcting codes on top
of the simulated channel to make the communication resilient to insertion-deletion errors.
However, as the simulation works with high probability, this scheme is not deterministic.
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As preserving the streaming quality is not necessary for the sake of designing binary
insertion-deletion codes, we can design a deterministic pre-coding and error correcting code
that can be used along with the deterministic simulation introduced in Theorem 7.3.12 to
generate binary insertion-deletion codes.

Lemma 7.4.1. There exist error correcting codes for
(

Θ
(√

δ log(1/δ)
)
,
√

log(1/δ)/δ
)

block substitution channels with rate 1−Θ(
√
δ log(1/δ))− δc/2 whose codewords are guar-

anteed to be free of substrings of form 10s−1 for c log 1
δ
.

Proof. Assume that we are sending n bits over a

(pb, rb) =

(
Θ

(√
δ log

1

δ

)
,

√
log(1/δ)

δ

)

block substitution channel. Let us chop the stream of bits into blocks of size rb. Clearly,
the fraction of blocks which may contain any errors is at most 2pb. Therefore, by looking
at each block as a symbol from a large alphabet of size 2rb , one can protect them against
2pb fraction of errors by having Θ(H2rb (2pb) + pb) fraction of redundant blocks.

In the next step, we propose a way to efficiently transform each block of length rb of
the encoded string into a block of rb(1 + δc/2) bits so that the resulting stream of bits be
guaranteed not to contain 10s−1 substrings.

To do so, we think of each block of length rb as a number in the range of zero to
2rb − 1. Then, we can represent this number in 2s/2 − 1 base and then map each of the
symbols of this presentation to strings of s

2
bits except the s

2
all-zero string. This way,

one can efficiently code the string into a stream of bits free of 10s−1 substrings by losing a
2−s/2-fraction of bits.

On the other side of the channel, Bob has to split the stream he receives into blocks of
length s

2
, undo the map to find out a possibly corrupted version of the originally encoded

message and then decode the 2rb-sized alphabet error correcting code to extract Alice’s
message.

This introduces an insertion-deletion code with rate of 1 − Θ(H2rb (2pb) + pb) − 2−s/2.

As s = c log 1
δ
, 2−s/2 = δc/2, pb =

√
δ log 1

δ
, and

H2rb (2pb) = Θ(2pb log2rb (1/2pb)) = Θ

(
2pb log2(1/2pb)

rb

)
= Θ


√
δ log 1

δ
log 1

δ√
log(1/δ)

δ

 = Θ

(
δ log

1

δ

)

the proof is complete.

One can set c ≥ 1 and then apply such error correcting codes on top of a simulated
channel as described in Theorem 7.3.12 to construct a binary insertion-deletion code re-

silient to δ fraction of insertions and deletions with rate 1−Θ
(√

δ log 1
δ

)
for a sufficiently

small δ.
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Theorem 7.4.2. There exists a constant 0 < δ0 < 1 such that for any 0 < δ < δ0 there

is a binary insertion-deletion code with rate 1 − Θ
(√

δ log 1
δ

)
which is decodable from δ

fraction of insertions and deletions.

7.5 Applications: New Interactive Coding Schemes

Efficient Coding Scheme Tolerating 1/44 Fraction of Errors. In this section, we
will provide an efficient coding scheme for interactive communication over insertion-deletion
channels by first making use of large alphabet interactive channel simulation provided in
Theorem 7.3.5 to effectively transform the given channel into a simple substitution in-
teractive channel and then use the efficient constant-rate coding scheme of Ghaffari and
Haeupler [GH14] on top of the simulated channel. This will give an efficient constant-
rate interactive communication over large enough constant alphabets as described in The-
orem 7.1.2. We review the following theorem of Ghaffari and Haeupler [GH14] before
proving Theorem 7.1.2.

Theorem 7.5.1 (Theorem 1.1 from [GH14]). For any constant ε > 0 and n-round protocol
Π there is a randomized non-adaptive coding scheme that robustly simulates Π against an
adversarial error rate of ρ ≤ 1/4 − ε using N = O(n) rounds, a near-linear n logO(1) n
computational complexity, and failure probability 2−Θ(n).

Proof of Theorem 7.1.2. For a given insertion-deletion interactive channel over alphabet
Σ suffering from δ fraction of edit-corruption errors, Theorem 7.3.5 enables us to simulate
n− 2nδ(1 + (1− ε′)−1) rounds of ordinary interactive channel with 2δ(5−3ε′)

1−ε′+2ε′δ−4δ
fraction of

symbol by designating log |Σsyn| bits of each symbol to index simulated channel’s symbols
with an ε′-synchronization string over Σsyn.

One can employ the scheme of Ghaffari and Haeupler [GH14] over the simulated channel

as long as error fraction is smaller than 1/4. Note that 2δ(5−3ε′)
1−ε′+2δε′−4δ

∣∣∣
ε′=0

= 10δ
1−4δ

< 1
4
⇔

δ < 1
44
. Hence, as long as δ = 1/44 − ε for ε > 0, for small enough ε′ = Oε(1), the

simulated channel has an error fraction that is smaller than 1/4. Therefore, by running
the efficient coding scheme of Theorem 7.5.1 over this simulated channel one gets a constant
rate coding scheme for interactive communication that is robust against 1/44− ε fraction
of edit-corruptions. Note that this simulation requires the alphabet size to be large enough
to contain synchronization symbols (which can come from a polynomially large alphabet in
terms of ε′) and also meet the alphabet size requirements of Theorem 7.5.1. This requires
the alphabet size to be Ωε(1), i.e., a large enough constant merely depending on ε. The
success probability and time complexity are direct consequences of Theorem 7.5.1 and
Theorem 7.2.5.

Efficient Coding Scheme with Near-Optimal Rate over Small Alphabets. In
this section we present another insertion-deletion interactive coding scheme that achieves
near-optimal communication efficiency as well as computation efficiency by employing a
similar idea as in Section 7.5.
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In order to derive a rate-efficient interactive communication coding scheme over small
alphabet insertion-deletion channels, Algorithms 9 and 10 can be used to simulate a sub-
stitution channel and then the rate-efficient interactive coding scheme for substitution
channels introduced by Haeupler [Hae14] can be used on top of the simulated channel.

We start by a quick review of Theorems 7.1 and 7.2 of Haeupler [Hae14].

Theorem 7.5.2 (Theorem 7.1 from [Hae14]). Suppose any n-round protocol Π using any
alphabet Σ. Algorithm 3 [from [Hae14]] is a computationally efficient randomized coding
scheme which given Π, with probability 1− 2−Θ(nδ), robustly simulates it over any oblivious
adversarial error channel with alphabet Σ and error rate δ. The simulation uses n(1 +
Θ(
√
δ)) rounds and therefore achieves a communication rate of 1−Θ(

√
δ).

Theorem 7.5.3 (Theorem 7.2 from [Hae14]). Suppose any n-round protocol Π using
any alphabet Σ. Algorithm 4 [from [Hae14]] is a computationally efficient random-
ized coding scheme which given Π, with probability 1 − 2−Θ(nδ), robustly simulates it
over any fully adversarial error channel with alphabet Σ and error rate δ. The simula-

tion uses n(1 + Θ
(√

δ log log 1
δ

)
rounds and therefore achieves a communication rate of

1−Θ
(√

δ log log 1
δ

)
.

The interaction between the error rate and rate loss provided in Theorems 7.5.2
and 7.5.3 (Theorems 7.1 and 7.2 of [Hae14]) leads us to the following corollary.

Corollary 7.5.4. There are high-probability efficient coding schemes for interactive com-
munication over insertion-deletion channels that are robust against δ fraction of edit-

corruptions for sufficiently small δ and have communication rate of 1 − Θ
(

4

√
δ log 1

δ

)
against oblivious adversaries and 1−Θ

(
4

√
δ log 1

δ
log2 log 1

δ

)
in fully adversarial setup.

However, these results can be improved upon by taking a closer look at the specifics of
the interactive communication coding scheme in [Hae14].

In a nutshell, the interactive coding scheme proposed in [Hae14] simulates an interactive
protocol Π by splitting the communication into iterations. In each iteration, the coding
scheme lets Alice and Bob communicate for a block of r̄ rounds, then uses rc rounds of
communication after each block so the parties can verify if they are on the same page and
then decide whether to continue the communication or to roll back the communication for
some number of iterations. The parties perform this verification by exchanging a fingerprint
(hash) of their versions of the transcript. Next, each party checks if the fingerprint he
receives matches his own, which in turn identifies whether the parties agree or disagree
about the communication transcript. Based on the result of this check, each party decides
if he should continue the communication from the point he is already at or if he should
roll back the communication for some number of iterations and continue from there. (see
Algorithms 3 and 4 of [Hae14])

The analysis in Section 7 of Heaupler [Hae14] introduces a potential function Φ which
increases by at least one whenever a round of communication is free of any errors or hash
collisions. A hash collision occurs if the parties’ transcripts do not agree due to errors
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that occurred previously, yet the two parties’ fingerprints erroneously match. The analysis
also shows that whenever a round of communication contains errors or hash collisions,
regardless of the number of errors or hash collisions happening in a round, the potential
drops by at most a fixed constant. (Lemmas 7.3 and 7.4 of [Hae14])

For an error rate of δ̄, there can be at most nδ̄ rounds suffering from an error. Haeupler
[Hae14] shows that the number of hash collisions can also be bounded by Θ(nδ̄) with
exponentially high probability. (Lemmas 7.6 and 7.7 and Corollary 7.8 of [Hae14]) Given
that the number of errors and hash collisions is bounded by Θ(nδ̄), Haeupler [Hae14] shows
that if Φ > n

r̄
+Θ(nδ̄), then the two parties will agree on the first n steps of communication

and therefore the communication will be simulated thoroughly and correctly. Therefore,
after n

r̄
+ Θ(nδ̄) rounds the simulation is complete, and the rate of this simulation is

1−Θ
(
rδ̄ + rc

r̄

)
.

Theorem 7.5.5 (Interactive Coding against Block Substitution). By choosing an ap-
propriate block length in the Haeupler [Hae14] coding scheme for oblivious adversaries
(Theorem 7.5.2), one obtains a robust efficient interactive coding scheme for (δb, rb)-block
substitution channel with communication rate 1 − Θ(

√
δb max {δb, 1/rb}) that works with

probability 1− 2−Θ(nδb/rb).

Proof. Let us run Haeupler [Hae14] scheme with block size r̄. This way, each block of
substitution that rises in channel, may corrupt max

{
rb
r̄
, 1
}

blocks of Haeupler [Hae14]
scheme. Therefore, the total number of corrupted blocks in Haeupler [Hae14] scheme can
be:

nδb
rb

max
{rb
r̄
, 1
}

Therefore, the total fraction of Haeupler [Hae14] scheme’s blocks containing errors is at
most

δ̄ = δb max

{
1,
r̄

rb

}
For oblivious adversaries, Haeupler [Hae14] suggests a verification process which can be

performed in rc = Θ(1) steps at the end of each round. We use the exact same procedure.
Lemma 7.6 of [Hae14] directly guarantees that the fraction of hash collisions using this
procedure is upper-bounded by Θ(δ̄) with probability 1 − 2−Θ(nδ̄/r̄). As the fraction of
blocks suffering from hash collisions or errors is at most Θ(δ̄), the communication can
be shown to be complete in (1 + δ̄) multiplicative factor of rounds by the same potential
argument as in [Hae14].

Therefore, the rate lost in this interactive coding scheme is

Θ
(
δ̄ +

rc
r̄

)
= Θ

(
δb max

{
1,
r̄

rb

}
+

1

r̄

)
Now, the only remaining task is to find r̄ that minimizes the rate loss mentioned above.

If we choose r̄ ≤ rb, the best choice is r̄ = rb as it reduces the rate to δb + 1
rb

. On the other

hand if we choose r̄ ≥ rb, the optimal choice is r̄ =
√

rb
δb

if
√

rb
δb
≥ rb ⇔ rb ≤ 1

δb
or r̄ = rb

161



otherwise. Hence, we set

r̄ =

{ √
rb
δb

if rb ≤ 1
δb

rb rb >
1
δb

Plugging this values for r̄ gives that:

Rate =

{
1−Θ

(√
δb
rb

)
rb ≤ 1

δb

1−Θ (δb) rb >
1
δb

= 1−Θ

(√
δb max

{
δb,

1

rb

})

Also, the probability of this coding working correctly is:

1− 2−Θ(nδ̄/r̄) = 1− 2
−δb max

{
1
r̄
, 1
rb

}
=

{
1− 2

−δb max

{√
δb
rb
, 1
rb

}
rb ≤ 1

δb

1− 2
−δb max

{
1
rb
, 1
rb

}
rb >

1
δb

= 1− 2
−Θ(

δb
rb
n)

Applying the coding scheme of Theorem 7.5.5 over the simulation from Theorem 7.3.9
implies the following.

Theorem 7.5.6. For sufficiently small δ, there is an efficient interactive coding
scheme over binary insertion-deletion channels which, is robust against δ fraction
of edit-corruptions by an oblivious adversary, achieves a communication rate of 1 −
Θ(
√
δ log(1/δ)), and works with probability 1− 2−Θ(nδ).

Moreover, we show that this result is extendable for the fully adversarial setup, as
summarized in Theorem 7.1.3.

Proof of Theorem 7.1.3. Similar to the proofs of Theorems 7.5.5 and 7.5.6, we use the sim-
ulation discussed in Theorem 7.3.11 and coding structure introduced in Haeupler [Hae14]

with rounds of length r̄ =
√

log(1/δ)
δ

on top of that. However, this time, we use another

verification strategy with length of rc = log log 1
δ

which is used in Haeupler [Hae14] as a
verification procedure in the interactive coding scheme for fully adversarial channels.

The idea of this proof, similar to the proof of Theorem 7.5.5, is to show that the
number of rounds suffering from errors or hash collisions can be bounded by Θ(nδ) with
high probability and then apply the same potential function argument. All of the steps of
this proof are, like their analogs in Theorem 7.5.5, implications of Haeupler[Hae14], except
for the fact that the number of hash collisions can be bounded by Θ(nδ). This is because
of the fact that the entire Haeupler [Hae14] analysis, except Lemma 7.7 that bounds hash
collisions, are merely based on the fact that all but O(nδ) rounds are error free.

Therefore, if we show that the number of hash collisions in the fully adversarial case is
bounded by Θ(nδ), the simulation rate will be

1−
(

Θ(nδ)

n/r
+
rc
r̄

)
= 1−Θ

√ log(1/δ)

δ
· δ +

log log 1
δ√

log(1/δ)
δ

 = 1−Θ

(√
δ log

1

δ

)
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and the proof will be complete.
We now bound the number of hash collisions in our interactive coding scheme. The ver-

ification process for fully adversarial setting uses a two level hash function hash2(hash1(·)),
where the seed of hash1 is randomly generated in each round.

Lemma 7.7 of Haeupler [Hae14] implies that for any oblivious adversary, the number
of hash collisions due to hash1 is at most Θ(nδ) with probability 1 − δΘ(nδ). To find a
similar bound for non-oblivious adversaries, we count the number of all possible oblivious
adversaries and then use a union bound. The number of oblivious adversaries is shown to
be less than

(
3e
δ

)nδ
= enδ log(1/δ)(1+o(1)) in Lemma 7.3.10. Hence, the probability of having

more than Θ(nδ) hash1 hash collisions in any fully adversarial scenario is at most 2−Θ(nδ).
Now, Corollary 7.8 of Haeupler [Hae14] can be directly applied to show that the number
of hash2 hash collisions can also be bounded by Θ(nδ) with probability 1− 2−Θ(nδ). This
completes the proof.

This insertion-deletion interactive coding scheme is, to the best of our knowledge, the
first to be computationally efficient, to have communication rate approaching one, and to
work over arbitrarily small alphabets.

7.6 Synchronization Strings and Edit-Distance Tree

Codes

We start by providing a new upper bound on the error tolerance of Braverman et al.’s
coding scheme for interactive communication with a large alphabet over a insertion-deletion
channel [BGMO17]. We tweak the definition of edit-distance tree codes, the primary tool
that Braverman et al. use in their coding scheme. In doing so, we show that their scheme
has an error tolerance of 1/10− ε rather than 1/18− ε, which is the upper bound provided
by Braverman et al. In particular, we prove the following theorem, which is a restatement
of Theorem 1.4 from Braverman et al.’s work except for the revised error tolerance. The
proof can be found in Section 7.6.1.

Theorem 7.6.1. For any ε > 0, and for any binary (noiseless) protocol Π with communica-
tion CC(Π), there exists a noise-resilient coding scheme with communication Oε(CC(Π))
that succeeds in simulating Π as long as the adversarial edit-corruption rate is at most
1/10− ε.

We then review the definition and key characteristics of edit-distance tree codes and
discuss the close relationship between edit-distance tree codes and synchronization strings
using the revised definition of edit-distance tree codes.

7.6.1 Revised definition of edit-distance tree codes

Before proceeding to the definition of edit-distance tree codes, we begin with some defini-
tions.
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Definition 7.6.2 (Prefix Code, Definition 3.1 of [BGMO17]). A prefix code C : Σn
in → Σn

out

is a code such that C(x)[i] only depends on x[1, i]. C can also be considered as a |Σin|-ary
tree of depth n with symbols written on edges of the tree using the alphabet Σout. On this
tree, each tree path from the root of length l corresponds to a string x ∈ Σl

out and the symbol
written on the deepest edge of this path corresponds to C(x)[l].

Definition 7.6.3 (ε-bad Lambda, Revision of Definition 3.2 of [BGMO17]). We say that
a prefix code C contains an ε-bad lambda if when this prefix code is represented as a tree,
there exist four tree nodes A,B,D,E such that B 6= D, B 6= E, B is D and E’s common
ancestor, A is B’s ancestor or B itself, and ED(AD,BE) ≤ (1−ε) · (|AD|+ |BE|).1 Here
AD and BE are strings of symbols along the tree path from A to D and the tree path from
B to E. See Figure 7.2 for an illustration.

Definition 7.6.4 (Edit-distance Tree Code, Definition 3.3 of [BGMO17]). We say that a
prefix code C : Σn

in → Σn
out is an ε-edit-distance tree code if C does not contain an ε-bad

lambda.

Using this revised definition of edit-distance tree code, we prove Theorem 7.6.1 as
follows:

Proof of Theorem 7.6.1. We relax Braverman et al.’s definition of an edit-distance tree
code [BGMO17], which is an adaptation of Schulman’s original tree codes [Sch93]. Edit-
distance tree codes are parameterized by a real value ε, and Braverman et al. define an
ε-edit-distance tree code to be a prefix code C : Σn

in → Σn
out that does not contain what

they refer to as an ε-bad lambda. The code C contains an ε-bad lambda if when one
considers C as a tree, there exist four tree nodes A,B,D,E such that B 6= D, B 6= E,
B is D and E’s common ancestor, A is B’s ancestor or B itself, and ED(AD,BE) ≤
(1 − ε) · max(|AD|, |BE|). Here AD and BE are strings of symbols along the tree path
from A to D and the tree path from B to E. See Figure 7.2 for an illustration. We relax
the definition of an ε-bad lambda to be any four tree nodes A,B,D,E as above such that
ED(AD,BE) ≤ (1− ε) · (|AD|+ |BE|).

We use synchronization strings together with Schulman’s original tree codes to prove
that edit-distance tree codes, under this revised definition, exist. In particular, in Theo-
rem 7.6.9, we show that synchronization strings can be concatenated with tree codes to
produce edit-distance tree codes. Given that tree codes and synchronization strings exist,
this means that edit-distance tree codes according to our revised definition exist.

As we saw in Lemma 7.6.6, if C : Σn
in → Σn

out is an ε-edit-distance tree code and
c̃ ∈ Σm

out, then there exists at most one c ∈ ∪ni=1C (Σn
in) [1, i] such that SD(c, c̃) ≤ 1 − ε.

This leads to an improved version of Lemma 4.2 from Braverman et al.’s work, which we
describe after we set up notation. In Braverman et al.’s protocol, let NA and NB be the
number of messages Alice and Bob have sent when one of them reaches the end of the
protocol. Let sA and rA be the messages Alice has sent and received over the course of
the protocol, and let sB and rB be the messages Bob has sent and received over the course

1Braverman et al. say that A,B,D,E form an ε-bad lambda if ED(AD,BE) ≤ (1 − ε) ·
max(|AD|, |BE|).
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of the protocol. Let τA = (τ1, τ2) be the string matching between sB[1, NB] and rA[1, NA]
and let τB = (τ3, τ4) be the string matching between sA[1, NA] and rB[1, NB]. Braverman
et al. call a given round a good decoding if Alice correctly decodes the entire set of tree
code edges sent by Bob. Lemma 7.6.6 admits the following improved version of Lemma
4.2 from Braverman et al’s work:

Lemma 7.6.5 (Revision of Lemma 4.2 from [BGMO17]). Alice has at least NA +(
1− 1

1−ε

)
sc(τ2)−

(
1 + 1

1−ε

)
sc(τ1) good decodings. Bob has at least NB +

(
1− 1

1−ε

)
sc(τ4)−(

1 + 1
1−ε

)
sc(τ3) good decodings.

The proof of this revised lemma follows the exact same logic as the proof of Lemma
4.2 in Braverman et al.’s work. The theorem statement now follows the same logic as the
proof of Theorem 4.4 in Braverman et al.’s work. We include the revised section of the
proof below, where the only changes are the maximum error tolerance ρ, the value of n
(which is smaller by a factor of 1

2
), and several equations. We set ρ = 1

10
− ε and n = d T

8ε
e,

where T is the length of the original protocol. Let gA be the number of good decodings
of Alice and bA = NA − gA be the number of bad decodings of Alice. Similarly, let gB be
the number of good decodings of Bob and bB = NB − gB be the number of bad decodings
of Bob. In Braverman et al.’s protocol, Alice and Bob share an edit-distance tree code
C : Σn

in → Σn
out. By definition of edit distance, sc(τ1) + sc(τ3) = sc(τ2) + sc(τ4) ≤ 2ρn. By

Lemma 7.6.5,

bA + bB ≤
1

1− ε
(sc(τ1) + sc(τ2)) + sc(τ1)− sc(τ2) +

1

1− ε
(sc(τ3) + sc(τ4)) + sc(τ3)− sc(τ4)

≤ 4ρn

1− ε
.

Therefore,

gA = NA − bA ≥ NA −
4ρn

1− ε
= (NA − n(1− 2ρ) + n(1− 2ρ) + n(1− 2ρ)− 4ρn

1− ε

≥ bA + bB −
4ρn

1− ε
+ (NA − n(1− 2ρ)) + n(1− 2ρ)− 4ρn

1− ε

= bA + bB + (NA − n(1− 2ρ)) + n

(
1− 8ρ

1− ε
− 2ρ

)
≥ bA + bB + (NA − n(1− 2ρ)) + n

(
1− 8ρ

1− ε
− 2ρ

)
≥ bA + bB + (NA − n(1− 2ρ)) + 8εn ≥ bA + bB + (NA − n(1− 2ρ)) + T.

The remainder of the proof follows exactly as is the proof of Theorem 4.4 from Braverman
et al.’s work.

Suppose that Alice uses an ε-edit-distance tree code C : Σn
in → Σn

out to send a message
c to Bob. In the following theorem, we show that if SD(c, c̃) < 1− ε, then Bob can decode
Alice’s message. Braverman et al. proved a weaker version of this theorem [BGMO17],
but our revised definition of an edit-distance tree code easily admits the follow lemma.
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Lemma 7.6.6 (Revision of Lemma 3.10 from [BGMO17]). Let C : Σn
in → Σn

out be an
ε-edit-distance tree code, and let c̃ ∈ Σm

out. There exists at most one c ∈ ∪ni=1C (Σn
in) [1, i]

such that SD(c, c̃) ≤ 1− ε.

Proof. The proof follows exactly the same logic as the proof of Lemma 3.10 from
[BGMO17]. The proof begins by assuming, for a contradiction, that there exist two mes-
sages c, c′ ∈ ∪ni=1C (Σn

in) [1, i] such that both SD(c, c̃) ≤ (1 − ε) and SD(c′, c̃) ≤ (1 − ε).
Then, the proof reaches its conclusion by the exact same logic.

In Theorem 7.6.13, we will show that one can extend an ε-synchronization string S to
a (2ε− ε2)-edit-distance tree code. This implies the following corollary of Lemma 7.6.6.

Corollary 7.6.7. Let S ∈ Σn be an ε-synchronization string, and c ∈ Σm. There exists at
most one prefix c̃ of S for which SD(c, c̃) ≤ (1− ε)2.

7.6.2 Edit-distance tree codes and synchronization strings

We prove that under the revised definition, edit-distance tree codes still exist by relating
edit-distance tree codes to Schulman’s original tree codes. We introduce a method to
obtain an edit-distance tree code using ordinary tree codes and synchronization strings.
Intuitively, using synchronization strings and tree codes together, one can overcome the
synchronization problem using the synchronization string and then overcome the rest of the
decoding challenges using tree codes, which are standard tools for overcoming Hamming-
type errors. Tree codes are defined as follows.

Definition 7.6.8 (Tree Codes, from [Sch96]). A d-ary tree code over an alphabet Σ of
distance parameter α and depth n is a d-ary tree of depth n in which every arc of the tree
is labeled with a character from the alphabet Σ subject to the following condition. Let v1

and v2 be any two nodes at some common depth h in the tree. Let h − l be the depth of
their least common ancestor. Let W (v1) and W (v2) be the concatenation of the letters on
the arcs leading from the root to v1 and v2 respectively. Then ∆(W (v1),W (v2)) ≥ αl.

Schulman [Sch93, Sch96] proved that for any α < 1, there exists a d-ary tree code with
distance α and infinite depth over an alphabet of size (cd)1/(1−α), for some constant c < 6.
We now prove that edit-distance tree codes can be obtained using synchronization strings
and tree codes.

Theorem 7.6.9. Let T be a tree code of depth n and distance parameter (1− α) and let
S be an ε-synchronization string of length n. Let the tree T ′ be obtained by concatenating
all edges on ith level of T with S[i]. Then T ′ is a (1− ε− α)-edit-distance tree code.

Proof. To prove that T ′ is a (1− ε− α)-edit-distance tree code, we show that T ′ does not
contain any (1 − ε − α)-bad lambdas. Let A,B,D, and E be nodes in T ′ that form a
lambda structure.

We refer to the string consisting of edge labels on the path from node A to D by AD
and similarly we refer to the string consisting of labels on the path from B to E by BE.
Let τ be the string matching characterizing the edit distance of AD and BE. We call i
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a matching position if τ1[i] = τ2[i]. Further, we call i a same-level matching position if
τ1[i] and τ2[i] correspond to symbols on the same level edges and disparate-level matching
position otherwise.

By the definition of a tree code, the number of same-level matching positions is at most

αmin {|BD|, |BE|} ≤ α(|AD|+ |BE|).

Further, in Chapter 3 we showed that for any monotone matching between an ε-
synchronization string and itself, i.e. a set of pairs M = {(a1, b1) , . . . , (am, bm)} where
a1 < · · · < am, b1 < · · · bm, and S [ai] = S [bi], the number of pairs where ai 6= bi is at
most ε|S|. This means that the number of disparate-level matching positions is at most
ε(|AD|+ |BE|). Therefore,

ED(AD,BE) ≥ |AD|+ |BE| − ε(|AD|+ |BE|)− α(|AD|+ |BE|)
≥ (1− ε− α)(|AD|+ |BE|).

Note that Theorem 7.6.9 suggests a construction for edit-distance tree codes by simply
constructing and concatenating an ordinary tree code and a synchronization string. As syn-
chronization strings are efficiently constructible and tree codes can be constructed in sub-
exponential time [Sch03, Bra12], this construction runs in sub-exponential time which im-
proves over the construction of edit-distance tree codes from Braverman et al. [BGMO17].

The following theorems discuss further connections between synchronization strings and
edit-distance tree codes. Theorems 7.6.11 and 7.6.13 show that edit-distance tree codes and
synchronization strings are essentially similar combinatorial objects. In Theorem 7.6.11,
we show that the edge labels along a monotonically down-going path in an edit-distance
tree code form a synchronization string as though, in a manner, synchronization strings
are one dimensional edit-distance tree codes. On the other hand, in Theorem 7.6.13, we
show that for any synchronization string S, there is an edit-distance tree code that has S
on one of its monotonically down-going paths.

Lemma 7.6.10. In an ε-edit-distance tree code, for every three vertices X, Y , and Z
where X is an ancestor of Y and Y is an ancestor of Z, we have that ED(XY, Y Z) ≥(

1− ε− 1
|XZ|

)
|XZ|.

Proof. To show this, we set A = X,B = Y,E = Z and denote the child of Y which is not
in the path from Y to Z by D (see Figure 7.2). Then A,B,D, and E form a lambda in
the tree (Definition 7.6.3). As ε-edit-distance tree codes are ε-bad lambda free, we know
that ED(AD,BE) ≥ (1− ε) · (|AD|+ |BE|).

Note that ED(AD,BE) = ED(XD,Y Z) ≤ 1 +ED(XY, Y Z) and |AD| = |XY |+ 1 >
|XY |, which means that ED(XY, Y Z) + 1 ≥ (1 − ε)|XZ|. Therefore, ED(XY, Y Z) ≥(

1− ε− 1
|XZ|

)
· |XZ|.

Using this property, one can obtain synchronization strings using monotonically down-
going paths in a given edit-distance tree code as follows:

167



𝑋 = 𝐴 

𝑌 = 𝐵 

𝑍 = 𝐸 

𝐷 

Figure 7.2: (A,B,D,E) form a Lambda structure.

Theorem 7.6.11. Concatenating the symbols on any monotonically down-going path in
an ε-edit-distance tree code with a string consisting of repetitions of 1, 2, · · · , l gives an(
ε+ 1

l

)
-synchronization string.

Proof. Consider three indices i < j < k in such string. If k − i < l, the(
ε+ 1

l

)
-synchronization property holds as a result of the 1, · · · , l, · · · portion. Unless,

the edit-distance path symbols satisfy
(
ε+ 1

l

)
-synchronization property as a result of

Lemma 7.6.10.

Theorem 7.6.11 results into the following corollary:

Corollary 7.6.12. Existence of synchronization strings over constant-sized alphabets
can be implied by Theorem 7.6.11 and the fact that edit-distance tree codes exist
from [BGMO17]. However, the alphabet size would be exponentially large in terms of 1

ε
.

Theorem 7.6.13. Any ε-synchronization string in Σn
1 can be extended to a (2ε − ε2)-

edit-distance tree code C : Σin → (Σout ∪ Σ1)n using the ε-edit-distance tree code C ′ :
(Σn

in → Σn
out) such that a monotonically down-going path on C is labeled as S.

Proof. We simply replace the labels of edges on the rightmost path in the tree associated
with C ′ to obtain C. We show that C is a valid (2ε− ε2)-edit-distance tree code. To prove
this, we need to verify that this tree does not contain an (2ε− ε2)-bad lambda structure.
In this proof, we set α = 1− (2ε− ε2) = (1− ε)2 and α′ = 1− ε.

Let A,B,D,E form a lambda structure in the corresponding tree of C. We will prove
the claim under two different cases:

� BE does not contain any edges from the rightmost path: Assume that AD
contains l edges from the rightmost path. In order to turn AD into BE, we must
remove all l symbols associated with the rightmost path since BE has no symbols
from Σ1. Hence, ED(AD,BE) is equal to l plus the edit distance of BE and AD after
removal of those l edges. Note that removing l elements in AD and then converting
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the remaining string (ÃD) to BE is also a way of converting AD to BE in the
original tree. Thus,

EDoriginal(AD,BE) ≤ l + ED(ÃD,BE) = EDmodified(AD +BE)

On the other hand, EDoriginal(AD,BE) ≥ α′ · (|AD|+ |BE|). Therefore,

EDmodified(AD,BE) ≥ α′ · (|AD|+ |BE|).

� BE contains some edges from the rightmost path: It must be that all of AB
and a non-empty prefix of BE, which we refer to as BX, both lie in the rightmost
path in tree code (Fig. 7.3). Since the symbols in the rightmost path are from the
alphabet Σ1,

ED(AD,BE) = ED(AB,BX) + ED(BD,XE).

We consider the following two cases, where c is a constant we set later.

1. c · (|AB|+ |BX|) > |BD|+ |XE|:
In this case,

ED(AD,BE) = ED(AB,BX) + ED(BD,XE)

≥ ED(AB,BX)

≥ (1− ε) · (|AB|+ |BX|)

≥ 1− ε
c+ 1

· ((|AB|+ |BX|) + (|BD|+ |EX|))

≥ 1− ε
c+ 1

· (|AD|+ |BE|).

2. c · (|AB|+ |BX|) ≤ |BD|+ |XE|: Since (A,B,D,E) form a lambda structure,

EDoriginal(AD,BE) ≥ α′ · (|AD|+ |BE|)
and therefore,

EDmodified(AD,BE) ≥ EDmodified(BD,EX) + ED(AB,BX)

≥ [EDoriginal(AD,BE)− (|AB|+ |BX|)] + ED(AB,BX)

≥ α′ · (|AD|+ |BE|)− (|AB|+ |BX|) + (1− ε) · (|AB|+ |BX|)
= α′ · (|AD|+ |BE|)− ε(|AB|+ |BX|)
≥ α′ · (|AD|+ |BE|)− ε

c+ 1
(|AD|+ |BE|)

=

(
α′ − ε

c+ 1

)
(|AD|+ |BE|).

Hence:

ED(AD,BE) ≥ min

{
α′ − ε

c+ 1
,
1− ε
c+ 1

, α′
}

(|AD|+ |BE|)

As α′ = 1− ε, setting c = ε
1−ε gives that

ED(AD,BE) ≥ (1− ε)2 · (|AD|+ |BE|)
which finishes the proof.
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A 

B 

D 

E 

X 

Figure 7.3: AD and BE both contain edges from the rightmost path. Straight lines
represent the edges in the rightmost path and dashed ones represent other edges.
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Chapter 8

Local Repositioning: Near-Linear
Time

In this chapter, we present several algorithmic results for synchronization strings:

� We give a deterministic, linear time synchronization string construction, improving
over an O(n5) time randomized construction in Chapter 4.

� We give a deterministic construction of an infinite synchronization string which out-
puts the first n symbols in O(n) time.

� Both synchronization string constructions are highly explicit, i.e., the ith symbol can
be deterministically computed in O(log i) time.

� This chapter also introduces a generalized notion called long-distance synchroniza-
tion strings. Such strings allow for local and very fast decoding. In particular only
O(log3 n) time and access to logarithmically many symbols is required to reposition
any index.

This chapter also provides several applications for these improved synchronization strings:

� For any δ < 1 and ε > 0, we provide an insertion-deletion code with rate 1 − δ − ε
which can correct any δ/3 fraction of insertion and deletion errors in O(n log3 n)
time. This near linear computational efficiency is surprising given that we do not
even know how to compute the (edit) distance between the decoding input and output
in sub-quadratic time.

� We show that local decodability implies that error correcting codes constructed with
long-distance synchronization strings can not only efficiently recover from δ fraction
of insdel errors but, similar to [SZ99], also from any O(δ/ log n) fraction of block
transpositions and block replications. These block corruptions allow arbitrarily long
substrings to be swapped or replicated anywhere.

� We show that highly explicitness and local decoding allow for infinite channel sim-
ulations with exponentially smaller memory and decoding time requirements. These
simulations can then be used to give the first near-linear time interactive coding
scheme for insertions and deletions, similar to the result of [BN13] for Hamming
errors.
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8.1 Introduction: Our Results and Structure of this

Chapter

This chapter provides drastically improved constructions of finite and infinite synchroniza-
tion strings and a stronger synchronization-string-like property which allows for reposi-
tioning algorithms that are local and significantly faster. We, furthermore, give several
applications for these results, including near-linear time insertion-deletion codes, a near-
linear time coding scheme for interactive communication over insertion-deletion channels,
exponentially better channel simulations in terms of time and memory, infinite channel
simulations, and codes that can correct block transposition and block replication errors.
We now give an overview of the main results and the overall structure of this chapter. We
also put our result in the context of the related previous works.

8.1.1 Deterministic, Linear-Time, Highly Explicit Construction
of Infinite Synchronization Strings

In Chapter 3, we introduced synchronization strings and gave an O(n5) time randomized
construction for them. This construction could not be easily derandomized. In order to
provide deterministic and explicit constructions of insertion deletion block codes, we intro-
duced a strictly weaker notion called self-matching strings, showed that these strings could
also be used for code constructions, and gave a deterministic nO(1) time construction for
self-matching strings. Obtaining a deterministic construction for synchronization strings,
however, was not addressed. Chapter 3 also showed the existence of infinite synchroniza-
tion strings. This existence proof is highly non-constructive. In fact, even the existence of
a computable infinite synchronization string was not shown; i.e., there was no algorithm
that would compute the ith symbol of some infinite synchronization string in finite time.

In this chapter, we give deterministic constructions of finite and infinite synchronization
strings. Instead of going to a weaker notion, as done in Chapter 3, Section 8.3.1 introduces
a stronger notion called long-distance synchronization strings. Interestingly, while the
existence of these generalized synchronization strings can be shown with a similar Lovász
local lemma based proof as for plain synchronization strings, this proof allows for an easier
derandomization, which leads to a deterministic polynomial time construction of
(long-distance) synchronization strings. Beyond this derandomization, the notion of
long-distance synchronization strings turns out to be very useful and interesting in its own
right, as will be shown later.

Next, two different boosting procedures, which make synchronization string construc-
tions faster and more explicit, are given. The first boosting procedure, given in Sec-
tion 8.3.3, leads to a deterministic linear time synchronization string construc-
tion. We remark that concurrently and independently Cheng, Li, and Wu obtained a
deterministic O(n log2 log n) time synchronization string construction [CLW17].

Our second boosting step, which is introduced in Section 8.3.4, makes our synchro-
nization string construction highly-explicit, i.e., allows to compute any position of a
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synchronization string of length n in time O (log n). This highly-explicitness is a property
of crucial importance in most of our new applications.

Lastly, in Section 8.3.5 we give a simple transformation which allows us to use any
construction for finite length synchronization strings to give a construction of an infinite
synchronization string. This transformation preserves highly-explicitness. Infinite syn-
chronization strings are important for applications in which one has no prior bound on the
running time of a system, such as, streaming codes, channel simulations, and interactive
communications. Overall, we get the following simple theorem:

Theorem 8.1.1. For any 0 < ε < 1, there exists an infinite ε-synchronization string
S over an alphabet of size ε−O(1) and a deterministic algorithm, which, for any i, takes
O(log i) time to compute S[i, i + log i], i.e., the ith symbol of S as well as the next log i
symbols.

Since any substring of an ε-synchronization string is also an ε-synchronization string
itself, this infinite synchronization string construction also implies a deterministic linear
time construction of finite synchronization strings which is fully parallelizable. In partic-
ular, for any positive integer n, there is a linear work parallel NC1 algorithm with depth
O(log n) and O(n/ log n) processors which computes the ε-synchronization string S[1, n].

8.1.2 Long Distance Synchronization Strings and Fast Local De-
coding

Section 8.4 shows that the long-distance property we introduced in Section 8.3.1, together
with our highly explicit constructions from Section 8.3.3, lead to a much faster and highly
local decoding (i.e., repositioning) procedure. In particular, to recover the position of an
element in a stream that was indexed with a synchronization string, it suffices to look at
only O(log n) previously received symbols. The repositioning takes only O(log3 n) time
and can be done in a streaming (i.e, online) fashion. This is significantly faster than the
O(n3) streaming decoder or the O(n2) global repositioning algorithms given in Chapter 3.

This chapter, furthermore, gives several applications which demonstrate the power of
these improved synchronization string constructions and the local decoding procedure.

8.1.3 Application: Codes Against InsDels, Block Transpositions
and Replications

Near-Linear Time Decodable Codes

Fast encoding and decoding procedures for error correcting codes have been important
and influencial in both theory and practice. For regular error correcting block codes, the
celebrated expander code framework given by Sipser and Spielman [SS96] and in Spiel-
man’s thesis [Spi95] as well as later refinements by Alon, Edmonds, and Luby [AEL95] and
Guruswami and Indyk [GI05, GI01] gave good ECCs with linear time encoding and decod-
ing procedures. More recently, a work by Hemenway, Ron-Zewi, and Wooters [HRZW19]
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achieved linear time decoding also for capacity achieving list-decodable and locally list-
recoverable codes.

The synchronization string based insdel codes from Chapter 3 have linear encoding time
complexity but quadratic decoding time complexity. As pointed out in Chapter 3, the latter
seemed almost inherent to the harsher setting of insdel errors because “in contrast to Ham-
ming codes, even computing the distance between the received and the sent/decoded string
is an edit distance computation. Edit distance computations, in general, do not run in sub-
quadratic time, which is not surprising given the SETH-conditional lower bounds [BI18]”.
Surprisingly, our fast decoding procedure allows us to construct insdel codes with near
linear decoding complexity:

Theorem 8.1.2. For any δ < 1 and ε > 0 there exists an insdel error correcting block
code with rate 1− δ− ε that can correct from any δ/3 fraction of insertions and deletions
in O(n log3 n) time. The encoding time is linear and the alphabet bit size is near-linear in

1
δ+ε

.

Note that, for any input string, the decoder finds the codeword that is closest to it in edit
distance if a codeword with edit distance of at most O(δn) exists. However, computing
the distance between the input string and the codeword output by the decoder is an
edit distance computation. Surprisingly, even now, we do not know of any sub-quadratic
algorithm that can compute this distance between input and output of our decoder even
though intuitively this seems to be much easier almost prerequisite step for the distance
minimizing decoding problem itself. After all, decoding asks to find the closest (or a close)
codeword to the input from an exponentially large set of codewords, which seems hard
to do if one cannot even approximate the distance between the input and any particular
codeword.

Application: High-Rate InsDel Codes that Efficiently Correct Block Transpo-
sitions and Replications

Section 8.5.2 gives another interesting application of our local decoding (repositioning)
procedure. In particular, we show that local decodability directly implies that insdel ECCs
constructed with our highly-explicit long-distance synchronization strings can not only
efficiently recover from δ fraction of insdel errors but also from any O(δ/ log n) fraction of
block transpositions and block replications. Block transpositions allow for arbitrarily
long substrings to be swapped while a block replication allows for an arbitrarily long
substring to be duplicated and inserted anywhere else. A similar result, albeit for block
transpositions only, was shown by Schulman, Zuckerman [SZ99] for the efficient constant
distance constant rate insdel codes given by them. They also show that the O(δ/ log n)
resilience against block errors is optimal up to constant factors. A more recent work of
Cheng et al. [CJLW19] also provides codes that can correct from insertions and deletions
as well as block transpositions.
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8.1.4 Application: Exponentially More Efficient Infinite Channel
Simulations

In Chapter 7, we introduced the powerful notion of a channel simulation. In particular,
we showed that for any adversarial one-way or two-way insdel channel one can put two
simulating agents at the two ends of the channel, such that, to any two parties interacting
with these agents, the agents simulate a much nicer Hamming channel which only intro-
duces (a slightly larger fraction of) symbol erasures and symbol substitutions. To achieve
this, these agents are required to know in advance for how many rounds R the channel
would be used and require an amount of memory that is linear in terms of R. Further-
more, for each transmission at a time step t, the receiving agent would perform a O(t3)
time computation. We show that using our locally-decodable highly-explicit long-distance
synchronization strings can reduce both the memory requirement and the computation
time complexity exponentially. In particular, each agent is only required to have O(log t)
bits of memory (which is optimal because, at the very least, they need to store the length
of the communication t) and their computations are done in O(log3 t) time. Furthermore,
due to our infinite synchronization string constructions, the channel simulations agents are
not anymore required to know (an upper bound to) the length of the communication in
advance. These drastic improvements make channel simulations significantly more useful
and indeed potentially quite practical.

8.1.5 Application: Near-Linear Time Interactive Coding
Schemes for InsDel Errors

Interactive coding schemes, as introduced by Schulman [Sch92, Sch96], allow to add re-
dundancy to any interactive protocol between two parties in such a way that the result-
ing protocol becomes robust to noise in the communication. Interactive coding schemes
that are robust to symbol substitutions have been intensely studied over the last few
years [BR14, FGOS15, KR13, Hae14, BTK12, BN13, GH14, GMS14]. Similar to error cor-
recting codes, the main parameters for an interactive coding scheme is the fraction of errors
it can tolerate [Sch92, Sch96, BR14, FGOS15], its communication rate [KR13, Hae14], and
its computational efficiency [BTK12, BN13, GH14, GMS14]. In particular, Brakerski and
Kalai [BTK12] gave the first computationally efficient polynomial time interactive coding
scheme. Brakerski and Naor [BN13] improved the time complexity to near-linear. Lastly,
Ghaffari and Haeupler [GH14] gave a near-linear time interactive coding scheme that also
achieved the optimal maximal robustness. More recently, interactive coding schemes that
are robust to insertions and deletions have been introduced by Braverman, Gelles, Mao,
and Ostrovsky [BGMO17]. Subsequently, Sherstov and Wu [SW19] gave a scheme with
optimal error tolerance and we, as stated in Chapter 7, used channel simulations to give
the first computationally efficient polynomial time interactive coding scheme for insdel er-
rors. Our improved channel simulation can be used together with the coding scheme from
[GH14] to directly get the first interactive coding scheme for insertions and deletions with a
near-linear time complexity, i.e., the equivalent of the result of Brakerski and Naor [BN13]
for insertions and deletions.
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8.2 Definitions and Preliminaries

In this section, we review some of the notation and definitions from previous chapters that
will be used throughout the rest of the chapter. We start with recapitulating the definition
of the relative suffix distance and its metric property from Chapter 3.

Definition 8.2.1 (Relative Suffix Distance (Definition 3.4.2)). For any two strings S, S ′ ∈
Σ∗ we define their relative suffix distance RSD as follows:

RSD(S, S ′) = max
k>0

ED (S(|S| − k, |S|], S ′(|S ′| − k, |S ′|])
2k

Lemma 8.2.2 (Lemma 3.4.3). For any strings S1, S2, S3 we have

� Symmetry: RSD(S1, S2) = RSD(S2, S1),

� Non-Negativity and Normalization: 0 ≤ RSD(S1, S2) ≤ 1,

� Identity of Indiscernibles: RSD(S1, S2) = 0⇔ S1 = S2, and

� Triangle Inequality: RSD(S1, S3) ≤ RSD(S1, S2) + RSD(S2, S3).

In particular, RSD defines a metric on any set of strings.

We now briefly review some fundamental concepts regarding synchronization strings
and the indexing technique presented in previous chapters. In short, synchronization
strings allow communicating parties to protect against synchronization errors by indexing
their messages without blowing up the communication rate. The general idea of coding
schemes introduced and utilized in previous chapters was to index communicated symbols
in the sender side with symbols of a synchronization string and then guess the actual po-
sition of received symbols on the other end using the attached indices – a procedure that
we named repositioning.

Generally speaking, for a communication of length n that suffers from δ-fraction of
synchronization errors, such a pair of index string and repositioning algorithm is called an
(n, δ)-indexing solution. In this setup, a symbol which is sent by Alice and is received by
Bob without being deleted by the adversary is called a successfully transmitted symbol.
Ideally, a indexing solution is supposed to correctly figure out the position of as many
successfully transmitted symbols as possible. The measure of misdecodings was introduced
in Chapter 3 to evaluate the quality of a (n, δ)-indexing solution as the number of suc-
cessfully transmitted symbols that an algorithm might not decoded correctly. An indexing
algorithm is called to be streaming if its output for a particular received symbol depends
only on the symbols that have been received before it. We will make use of the following
theorem from Chapter 3 that summarizes how indexing solutions and ECCs can be used
to construct insdel codes.

Theorem 8.2.3 (Theorem 3.3.2 from Chapter 3). Given a synchronization string S over
alphabet ΣS with an (efficient) decoding algorithm DS guaranteeing at most k misdecodings
and decoding complexity TDS(n) and an (efficient) ECC C over alphabet ΣC with rate RC,
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encoding complexity TEC , and decoding complexity TDC that corrects up to nδ + 2k half-
errors, one obtains an insdel code that can be (efficiently) decoded from up to nδ insertions
and deletions. The rate of this code is at least

RC

1 + log |ΣS |
log |ΣC |

The encoding complexity remains TEC , the decoding complexity is TDC + TDS(n) and the
preprocessing complexity of constructing the code is the complexity of constructing C and
S.

In Chapter 3, we introduced synchronization strings, a family of strings parametrized
by ε that were shown to be good candidates for forming indexing solutions. Synchroniza-
tion strings exist over alphabets of constant size in terms of communication length n and
dependent merely on parameter ε. We review the formal definition of synchronization
strings here.

Definition 8.2.4 (ε-Synchronization String (Definition 3.4.4)). String S ∈ Σn is an ε-
synchronization string if for every 1 ≤ i < j < k ≤ n+1 we have that ED (S[i, j), S[j, k)) >
(1− ε)(k − i). We call the set of prefixes of such a string an ε-synchronization code.

We will make use of the following repositioning algorithm for synchronization strings
from Chapter 3.

Theorem 8.2.5 (Simplified version of Theorem 3.5.14). There is a repositioning algorithm
(Algorithm 3) for an ε-synchronization string of length n which guarantees decoding with
up to O(n

√
ε) misdecodings and runs in O(n2/

√
ε) time.

8.3 Highly Explicit Constructions of Long-Distance

and Infinite ε-Synchronization Strings

We start this section by introducing a generalized notion of synchronization strings in Sec-
tion 8.3.1 and then provide a deterministic efficient construction for them in Section 8.3.2.
In Section 8.3.3, we provide a boosting step which speeds up the construction to linear
time in Theorem 8.3.7. In Section 8.3.4, we use the linear time construction to obtain
a linear-time high-distance insdel code (Theorem 8.3.14) and then use another boosting
step to obtain a highly-explicit linear-time construction for long-distance synchronization
strings in Theorem 8.3.15. We provide similar construction for infinite synchronization
strings in Section 8.3.5. A pictorial representation of the flow of theorems and lemmas in
this section can be found in Figure 8.1.

8.3.1 Long-Distance Synchronization Strings

The existence of synchronization strings is proven in Chapter 3 using an argument based
on Lovász local lemma. This lead to an efficient randomized construction for synchro-
nization strings which cannot be easily derandomized. Instead, the authors introduced
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Figure 8.1: Schematic flow of Theorems and Lemmas of Section 8.3

the weaker notion of self-matching strings and gave a deterministic construction for them.
Interestingly, in this chapter, we introduce a revised notion, denoted by f(l)-distance ε-
synchronization strings, which generalizes ε-synchronization strings and allows for a deter-
ministic construction.

Note that the synchronization string property poses a requirement on the edit distance
of neighboring substrings. f(l)-distance ε-synchronization string property extends this
requirement to any pair of intervals that are close by. More formally, any two intervals
of aggregated length l that are of distance f(l) or less have to satisfy the edit distance
property in this generalized notion.

Definition 8.3.1 (f(l)-distance ε-synchronization string). String S ∈ Σn is an f(l)-
distance ε-synchronization string if for every 1 ≤ i < j ≤ i′ < j′ ≤ n + 1 we have
that ED (S[i, j), S[i′, j′)) > (1− ε)l if i′ − j ≤ f(l) where l = j + j′ − i− i′.

It is noteworthy to mention that the constant function f(l) = 0 gives the original
ε-synchronization strings. Chapter 3 studied the existence and construction of synchro-
nization strings for this case. In particular, they have shown that arbitrarily long ε-
synchronization strings exist over an alphabet that is polynomially large in terms of ε−1.
Besides f(l) = 0, there are several other functions that might be of interest in this context.

One can show that, as we do in Section 8.8, for any polynomial function f(l), arbitrarily
long f(l)-distance ε-synchronization strings exist over alphabet sizes that are polynomially
large in terms of ε−1. Also, for exponential functions, these strings exist over exponentially
large alphabets in terms of ε−1 but not over sub-exponential alphabet sizes. Finally, if
function f is super-exponential, f(l)-distance ε-synchronization strings do not exist over
any constant size alphabet. The similar question of constructing infinite binary strings
that avoid identical substrings of length n with exponential distance in terms of n have
been studied by Beck [Bec84].

While studying existence, construction, and alphabet sizes of f(l)-distance ε-
synchronization strings might be of interest by its own, we will show that having syn-
chronization string edit distance guarantee for pairs of intervals that are exponentially far
in terms of their aggregated length is of significant interest as it leads to improvements over
applications of ordinary synchronization strings described in Chapters 3 and 7 from several
aspects. Even though distance function f(l) = cl provides such property, throughout the
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rest of this paper, we will focus on a variant of it, i.e., f(l) = n · 1l>c logn which allows
polynomial-sized alphabet. 1l>c logn is the indicator function for l > c log n, i.e., is one if
l > c log n and zero otherwise

To compare distance functions f(l) = cl and f(l) = n · 1l>c logn, note that the first one
allows intervals to be exponentially far away in their total length. In particular, intervals
of length l > c log n or larger can be arbitrarily far away. The second function only asks for
the guarantee over large intervals and does not strengthen the ε-synchronization property
for smaller intervals. We refer to the latter as c-long-distance ε-synchronization string
property.

Definition 8.3.2 (c-long-distance ε-synchronization strings). We call n ·1l>c logn-distance
ε-synchronization strings c-long-distance ε-synchronization strings.

8.3.2 Efficient Construction of Long-Distance Synchronization
Strings

An LLL-based proof for the existence of ordinary synchronization strings has been provided
in Chapter 3. Here we provide a similar technique along with the deterministic algorithm
for Lovász local lemma from Chandrasekaran et al. [CGH13] to prove the existence and
give a deterministic polynomial-time construction of strings that satisfy this quality over
an alphabet of size ε−O(1).

Before giving this proof right away, we first show a property of these strings which
allows us to simplify the proof and, more importantly, get a deterministic algorithm using
deterministic algorithms for Lovász local lemma from Chandrasekaran et al. [CGH13].

Lemma 8.3.3. If S is a string and there are two intervals i1 < j1 ≤ i2 < j2 of total
length l = j1 − i1 + j2 − i2 and ED(S[i1, j1), S[i2, j2)) ≤ (1 − ε)l then there also exists
intervals i1 ≤ i′1 < j′1 ≤ i′2 < j′2 ≤ j2 of total length l′ ∈ {dl/2e − 1, dl/2e, dl/2e + 1} with
ED(S[i′1, j

′
1), S[i′2, j

′
2)) ≤ (1− ε)l′.

Proof. As ED(S[i1, j1), [i2, j2)) ≤ (1−ε)l, there has to be a common subsequence of length
m ≥ εl

2
between S[i1, j1) and S[i2, j2) locating at indices a1 < a2 < · · · < am and b1 < b2 <

· · · < bm respectively. We call M = {(a1, b1), · · · , (am, bm)} a monotone matching from
S[i1, j1) to S[i2, j2). Let 1 ≤ i ≤ m be the largest number such that |S[i1, ai]|+ |S[i2, bi]| ≤
dl/2e. It is easy to verify that there are integers ai < k1 ≤ ai+1 and bi < k2 ≤ bi+1 such
that |S[i1, k1)|+ |S[i2, k2)| ∈ {dl/2e − 1, dl/2e}.

Therefore, we can split the pair of intervals (S[i1, j1), S[i2, j2)) into two pairs of intervals
(S[i1, k1), S[i2, k2)) and (S[k1, j1), S[k2, j2)) such that each pair of the matching M falls into
exactly one of these pairs. Hence, in at least one of those pairs, the size of the matching
is larger than ε

2
times the total length. This gives that the edit distance of those pairs is

less than 1− ε and finishes the proof.

Lemma 8.3.3 shows that if there is a pair of intervals of total length l that have small
relative edit distance, we can find a pair of intervals of size {dl/2e − 1, dl/2e, dl/2e + 1}
which have small relative edit distance as well. Now, let us consider a string S with a pair of
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intervals that violate the c-long distance ε-synchronization property. If the total length of
the intervals exceed 2c log n, using Lemma 8.3.3 we can find another pair of intervals of al-
most half the total length which still violate the c-long distance ε-synchronization property.
Note that as their total length is longer than c log n, we do not worry about the distance
of those intervals. Repeating this procedure, we can eventually find a pair of intervals of a
total length between c log n and 2c log n that violate the c-long distance ε-synchronization
property. More formally, we can derive the following statement by Lemma 8.3.3.

Corollary 8.3.4. If S is a string which satisfies the c-long-distance ε-synchronization
property for any two non-adjacent intervals of total length 2c log n or less, then it satisfies
the property for all pairs of non-adjacent intervals.

Proof. Suppose, for the sake of contradiction, that there exist two intervals of total length
2 logc n or more that violate the c-long-distance ε-synchronization property. Let [i1, j1) and
[i2, j2) where i1 < j1 ≤ i2 < j2 be two intervals of the smallest total length l = j1−i1+j2−i2
larger than 2 logc n (breaking ties arbitrarely) for which ED(S[i1, j1), [i2, j2)) ≤ (1−ε)l. By
Lemma 8.3.3 there exists two intervals [i′1, j

′
1) and [i′2, j

′
2) where i′1 < j′1 ≤ i′2 < j′2 of total

length l′ ∈ [l/2, l) with ED(S[i′1, j
′
1), [i′2, j

′
2)) ≤ (1 − ε)l. If l′ ≤ 2 logc n, the assumption of

c-long-distance ε-synchronization property holding for intervals of length 2 logc n or less is
contradicted. Unless, l′ > 2 logc n that contradicts the minimality of our choice of l.

Theorem 8.3.5. For any 0 < ε < 1 and every n there is a deterministic nO(1) time algo-
rithm for computing a c = O(1/ε)-long-distance ε-synchronization string over an alphabet
of size O(ε−4).

Proof. To prove this, we will make use of the Lovász local lemma and deterministic al-
gorithms proposed for it in [CGH13]. We generate a random string R over an alphabet
of size |Σ| = O(ε−2) and define bad event Bi1,l1,i2,l2 as the event of intervals [i1, i1 + l1)
and [i2, i2 + l2) violating the O(1/ε)-long-distance synchronization string property over
intervals of total length 2/ε2 or more. In other words, Bi1,l1,i2,l2 occurs if and only if
ED(R[i1, i1+l1), R[i2, i2+l2)) ≤ (1−ε)(l1+l2). Note that by the definition of c-long-distance
ε-synchronization strings, Bi1,l1,i2,l2 is defined for (i1, l1, i2, l2)s where either l1 + l2 ≥ c log n
and i1 + l1 ≤ i2 or 2/ε2 < l1 + l2 < c log n and i2 = i1 + l1. We aim to show that for large
enough n, with non-zero probability, none of these bad events happen. This will prove the
existence of a string that satisfies c = O(1/ε)-long-distance ε-synchronization strings for all
pairs of intervals that are of total length 2/ε2 or more. To turn this string into a c = O(1/ε)-
long-distance ε-synchronization strings, we simply concatenate it, symbol-by-symbol, with
a string consisting of repetitions of 1, · · · , 2ε−2, i.e., 1, 2, · · · , 2ε−2, 1, 2, · · · , 2ε−2, · · · . This
will take care of the edit distance requirement for neighboring intervals with total length
smaller than 2ε−2.

Note that using Lemma 8.3.3 and by a similar argument as in Claim 8.3.4, we only
need to consider bad events where l1 + l2 ≤ 2c log n. As the first step, note that Bi1,l1,i2,l2

happens only if there is a common subsequence of length ε(l1 + l2)/2 or more between
R[i1, i1 + l1) and R[i2, i2 + l2). Hence, the union bound gives that
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Pr {Bi1,l1,i2,l2} ≤
(

l1
ε(l1 + l2)/2

)(
l1

ε(l1 + l2)/2

)
|Σ|−

ε(l1+l2)
2

≤
(

l1e

ε(l1 + l2)/2

)ε(l1+l2)/2(
l2e

ε(l1 + l2)/2

)ε(l1+l2)/2

|Σ|−
ε(l1+l2)

2

=

(
2e
√
l1l2

ε(l1 + l2)
√
|Σ|

)ε(l1+l2)

≤

(
el

εl
√
|Σ|

)εl

=

(
e

ε
√
|Σ|

)εl

where l = l1 + l2. In order to apply LLL, we need to find real numbers xi1,l1,i2,l2 ∈ [0, 1]
such that for any Bi1,l1,i2,l2

Pr{Bi1,l1,i2,l2} ≤ xi1,l1,i2,l2
∏

[S[i1,i1+l1)∪S[i2,i2+l2)]∩[S[i′1,i
′
1+l′1)∪S[i′2,i

′
2+l′2)]6=∅

(1− xi′1,l′1,i′2,l′2) (8.1)

We eventually want to show that our LLL argument satisfies the conditions required for
polynomial-time deterministic algorithmic LLL specified in [CGH13]. Namely, it suffices
to certify two other properties in addition to (8.1). The first additional requirement is
to have each bad event in LLL depend on up to logarithmically many variables and the
second is to have (8.1) hold with a constant exponential slack. The former is clearly true
as our bad events consist of pairs of intervals each of which is of a length between c log n
and 2c log n. To have the second requirement, instead of (8.1) we find xi1,l1,i2,l2 ∈ [0, 1] that
satisfy the following stronger property.

Pr{Bi1,l1,i2,l2} ≤

xi1,l1,i2,l2 ∏
[S[i1,i1+l1)∪S[i2,i2+l2)]∩[S[i′1,i

′
1+l′1)∪S[i′2,i

′
2+l′2)]6=∅

(1− xi′1,l′1,i′2,l′2)

1.01

(8.2)
Any small constant can be used as slack. We pick 1.01 for the sake of simplicity. We
propose xi1,l1,i2,l2 = D−ε(l1+l2) for some D > 1 to be determined later. D has to be chosen
such that for any i1, l1, i2, l2 and l = l1 + l2:

(
e

ε
√
|Σ|

)εl

≤

D−εl ∏
[S[i1,i1+l1)∪S[i2,i2+l2)]∩[S[i′1,i

′
1+l′1)∪S[i′2,i

′
2+l′2)] 6=∅

(
1−D−ε(l′1+l′2)

)1.01

(8.3)

Note that:

D−εl
∏

[S[i1,i1+l1)∪S[i2,i2+l2)]∩[S[i′1,i
′
1+l′1)∪S[i′2,i

′
2+l′2)]6=∅

(
1−D−ε(l′1+l′2)

)
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≥ D−εl
2c logn∏
l′=c logn

l′∏
l′1=1

(
1−D−εl′

)[(l1+l′1)+(l1+l′2)+(l2+l′1)+(l2+l′2)]n

×
c logn∏
l′′=1/ε2

(
1−D−εl′′

)l+l′′
(8.4)

= D−εl
2c logn∏
l′=c logn

l′∏
l′1=1

(
1−D−εl′

)4(l+l′)n

×
c logn∏
l′′=1/ε2

(
1−D−εl′′

)l+l′′

= D−εl
2c logn∏
l′=c logn

(
1−D−εl′

)4l′(l+l′)n

×

 c logn∏
l′′=1/ε2

(
1−D−εl′′

)l × c logn∏
l′′=1/ε2

(
1−D−εl′′

)l′′

≥ D−εl

(
1−

2c logn∑
l′=c logn

(4l′(l + l′)n)D−εl
′

)

×

1−
c logn∑
l′′=1/ε2

D−εl
′′

l ×
1−

c logn∑
l′′=1/ε2

l′′D−εl
′′

 (8.5)

≥ D−εl

(
1−

2c logn∑
l′=c logn

(4 · 2c log n(2c log n+ 2c log n)n)D−εl
′

)

×

1−
∞∑

l′′=1/ε2

D−εl
′′

l ×
1−

∞∑
l′′=1/ε2

l′′D−εl
′′


= D−εl

(
1−

2c logn∑
l′=c logn

(
32c2n log2 n

)
D−εl

′

)
×

[
1− D−ε·1/ε

2

1−D−ε

]l

×

(
1− D−ε·1/ε

2
(D−ε + 1/ε2 −D−ε/ε2)

(1−D−ε)2

)

≥ D−εl
(
1− 32c3n log3 nD−εc logn

) [
1− D−1/ε

1−D−ε

]l
×
(

1− D−1/ε(D−ε + 1/ε2 −D−ε/ε2)

(1−D−ε)2

)
(8.6)

To justify equation (8.4), note that there are two kinds of bad events that might intersect
Bi1,l1,i2,l2 . The first product term is considering all pairs of long intervals of length l′1 and l′2
where l1 + l2 ≥ c log n that overlap a fixed pair of intervals of length l1 and l2. The number
of such intervals is at most [(l1 + l′1) + (l1 + l′2) + (l2 + l′1) + (l2 + l′2)]n. The second one is
considering short neighboring pairs of intervals (ε−2 ≤ l′′ = l′′1 + l′′2 ≤ c log n).

Equation (8.5) is a result of the following inequality for 0 < x, y < 1:

(1− x)(1− y) > 1− x− y.
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We choose D = 2 and c = 2/ε. Note that limε→0
2−1/ε(2−ε+1/ε2−2−ε/ε2)

(1−2−ε)2 = 0. So, for small

enough ε, 2−1/ε

1−2−ε
< 1

2
. Also, for D = 2 and c = 2/ε,

32c3n log3 nD−εc logn =
28

ε3
· log3 n

n
= o(1).

Finally, one can verify that for small enough ε, 1− 2−1/ε

1−2−ε
> 2−ε. Therefore, for sufficiently

small ε and sufficiently large n, (8.6) is satisfied if the following is satisfied.

D−εl
∏

[S[i1,i1+l1)∪S[i2,i2+l2)]∩[S[i′1,i
′
1+l′1)∪S[i′2,i

′
2+l′2)]6=∅

(
1−D−ε(l′1+l′2)

)
(8.7)

≥ 2−εl
(

1− 1

2

)(
2−ε
)l(

1− 1

2

)
≥ 4−εl

4
(8.8)

So, for LLL to work, the following have to be satisfied.(
e

ε
√
|Σ|

) εl
1.01

≤ 4−εl

4
⇔ 4 ≤

(
ε
√
|Σ|

e41.01

) εl
1.01

⇐ 4 ≤

(
ε
√
|Σ|

e41.01

) ε·1/ε2
1.01

⇔ 42.02(1+ε)e2

ε2
≤ |Σ|

Therefore, for |Σ| = 44.04e2

ε2
= O(ε−2), the deterministic LLL conditions hold. This finishes

the proof.

8.3.3 Boosting I: Linear Time Construction of Synchronization
Strings

Next, we provide a simple boosting step which allows us to polynomially speed up any
ε-synchronization string construction. Essentially, we propose a way to construct an O(ε)-
synchronization string of length Oε(n

2) having an ε-synchronization string of length n.

Lemma 8.3.6. Fix an even n ∈ N and γ > 0 such that γn ∈ N. Suppose S ∈ Σn is an
ε-synchronization string. The string S ′ ∈ Σ′γn

2
with Σ′ = Σ3 and

S ′[i] =

(
S[i mod n], S[(i+ n/2) mod n], S

[⌈
i

γn

⌉])
is an (ε+ 6γ)-synchronization string of length γn2.

Proof. Intervals of length at most n/2 lie completely within a copy of S and thus have
the ε-synchronization property. For intervals of size l larger than n/2 we look at the
synchronization string which is blown up by repeating each symbol γn times (i.e., third
element of the concatenation). Ensuring that both sub-intervals contain complete blocks
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changes the edit distance by at most 3γn and thus by at most 6γl. Once only complete
blocks are contained we use the observation that the longest common subsequence of any
two strings becomes exactly a factor k larger if each symbols is repeated k times in each
string. This means that the relative edit distance does not change and is thus at least
ε. Overall this results in the (ε + 6γ)-synchronization string property to hold for large
intervals in S ′.

We use this step to speed up the polynomial time deterministic ε-synchronization string
construction in Theorem 8.3.5 to linear time.

Theorem 8.3.7. There exists an algorithm that, for any 0 < ε < 1, constructs an ε-
synchronization string of length n over an alphabet of size ε−O(1) in O(n) time.

Proof. Note that if one takes an ε′-synchronization strings of length n′ and applies the
boosting step in Theorem 8.3.6 k times with parameter γ, he would obtain a (ε′ + 6kγ)-
synchronization string of length γ2k−1n2k .

For any 0 < ε < 1, Theorem 8.3.5 gives a deterministic algorithm for constructing an
ε-synchronization string over an alphabet O(ε−4) that takes O(nT ) time for some constant
T independent of ε and n. We use the algorithm in Theorem 8.3.5 to construct an ε′ = ε

2

synchronization string of length n′ = n1/T

γ
for γ = ε

12 log T
over an alphabet of size O(ε−4)

in O(n′T ) = O(n) time. Then, we apply boosting step I k = log T times with γ = ε
12 log T

to get an (ε′ + 6γ log T = ε)-synchronization string of length γT−1n′T ≥ n. As boosting
step have been employed constant times, the eventual alphabet size will be ε−O(1) and the
run time is O(n).

8.3.4 Boosting II: Explicit Constructions for Long-Distance Syn-
chronization Strings

We start this section by a discussion of explicitness quality of synchronization string con-
structions. In addition to the time complexity of synchronization strings’ constructions, an
important quality of a construction that we take into consideration for applications that we
will discuss later is explicitness or, in other words, how fast one can calculate a particular
symbol of a synchronization string.

Definition 8.3.8 (T (n)-explicit construction). If a synchronization string construction
algorithm can compute ith index of the string it is supposed to find, i.e., S[i], in T (n) we
call it an T (n)-explicit algorithm.

We are particularly interested in cases where T (n) is polylogarithmically large in terms
of n. For such T (n), a T (n)-explicit construction implies a near-linear construction of
the entire string as one can simply compute the string by finding out symbols one by
one in n · T (n) overall time. We use the term highly-explicit to refer to O(log n)-explicit
constructions.

We now introduce a boosting step in Lemma 8.3.10 that will lead to explicit con-
structions of (long-distance) synchronization strings. Lemma 8.3.10 shows that, using a
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high-distance insertion-deletion code, one can construct strings that satisfy the require-
ment of long-distance synchronization strings for every pair of substrings that are of total
length Ωε(log n) or more. Having such a string, one can construct a Oε(1)-long-distance
ε-synchronization string by simply concatenating the outcome of Lemma 8.3.10 with rep-
etitions of an Oε(log n)-long ε-synchronization string.

This boosting step is deeply connected to our new definition of long-distance ε-
synchronization strings. In particular, we observe the following interesting connection
between insertion-deletion codes and long-distance ε-synchronization strings.

Lemma 8.3.9. If S is a c-long-distance ε-synchronization string over an alphabet of size
q where c = Θ(1) then C = {S(i ·c log n, (i+1) ·c log n]|0 ≤ i < n

c logn
−1} is an insdel error

correcting code with minimum distance at least 1− ε and constant rate Ωq(1). Further, if
any substring S[i, i+ log n] is computable in O(log n) time, C has a linear encoding time.

Proof. The distance follows from the definition of long-distance ε-synchronization strings.

The rate follows because the rate R is equal to R = log |C|
c logn log q

=
log n

c logn

Oq(logn)
= Ωq(1). Finally,

since |S(i · c log n, (i+ 1) · c log n]| = c log n, one can compute S(i · c log n, (i + 1) · c log n]
in linear time in terms of its length.

Our boosting step is mainly built on the converse of this observation.

Lemma 8.3.10. Suppose C is a block insdel code over alphabet of size q, block length N ,
distance 1− ε and rate R and let S be a string obtained by attaching all codewords back to
back in any order. Then, for ε′ = 4ε, S is a string of length n = qR·N · N which satisfies
the long-distance ε′-synchronization property for any pair of intervals of aggregated length
4
ε
N ≤ 4

ε log q
(log n − logR) or more. Further, if C is linear-time encodable, S has a highly

explicit construction.

Proof. The length of S follows from the definition of rate. Moreover, the highly explicitness
follows from the fact that every substring of S of length log n may include parts of 1

ε log q
+1

codewords each of which can be computed in linear time in terms of their length. Therefore,

any substring S[i, i + log n] can be constructed in O
(

max
{

logn
ε log q

, log n
})

= Oε,q(log n).

To prove the long distance property, we have to show that for every four indices i1 < j1 ≤
i2 < j2 where j1 + j2 − i1 − i2 ≥ 4N

ε
, we have

ED(S[i1, j1), S[i2, j2)) ≥ (1− 4ε)(j1 + j2 − i1 − i2). (8.9)

Assume that S[i1, j1) contains a total of p complete blocks of C and S[i2, j2) contains
q complete blocks of C. Let S[i′1, j

′
1) and S[i′2, j

′
2) be the strings obtained be throwing

the partial blocks away from S[i1, j1) and S[i2, j2). Note that the overall length of the
partial blocks in S[i1, j1) and S[i2, j2) is less than 4N , which is at most an ε-fraction of
S[i1, j1) ∪ S[i2, j2), since 4N

4N/ε
< ε.
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Assume by contradiction that ED(S[i1, j1), S[i2, j2)) < (1− 4ε)(j1 + j2− i1− i2). Since
edit distance preserves the triangle inequality, we have that

ED (S[i′1, j
′
1), S[i′2, j

′
2)) ≤ ED (S[i1, j1), S[i2, j2)) + |S[i1, i

′
1)|+ |S[j′1, j1)|+ |S[i2, i

′
2)|+ |S[j′2, j2)|

≤ (1− 4ε) (j1 + j2 − i1 − i2) + ε(j1 + j2 − i1 − i2)

≤ (1− 4ε+ ε) (j1 + j2 − i1 − i2)

<

(
1− 3ε

1− ε

)
((j′1 − i′1) + (j′2 − i′2)) .

This means that the longest common subsequence of S[i′1, j
′
1) and S[i′2, j

′
2) has length

of at least
1

2

[
(|S[i′1, j

′
1)|+ |S[i′2, j

′
2)|)

(
1− 1− 3ε

1− ε

)]
,

which means that there exists a monotonically increasing matching between S[i′1, j
′
1) and

S[i′2, j
′
2) of the same size. Since the matching is monotone, there can be at most p + q

pairs of error-correcting code blocks having edges to each other. The Pigeonhole Principle
implies that there are two error-correcting code blocks B1 and B2 such that the number of
edges between them is at least

1
2

[
(|S[i1, j1)|+ |S[i2, j2)|)

(
1− 1−3ε

1−ε

)]
p+ q

=
(p+ q)N

(
1− 1−3ε

1−ε

)
2(p+ q)

>
1

2

(
1− 1− 3ε

1− ε

)
·N.

Notice that this is also a lower bound on the longest common subsequence of B1 and
B2. This means that

ED(B1, B2) < 2N −
(

1− 1− 3ε/4

1− ε/4

)
N <

(
1 +

1− 3ε

1− ε

)
N =

2− 4ε

1− ε
N < 2 (1− ε)N.

This contradicts the error-correcting code’s distance property, which we assumed to be
larger than 2(1− ε)N , and therefore we may conclude that for all indices i1 < j1 ≤ i2 < j2
where j1 + j2 − i1 − i2 ≥ 4N

ε
, (8.9) holds.

We point out that even a brute force enumeration of a good insdel code could be used
to find a string that satisfies ε-synchronization property for pairs of intervals with large
total length. All needed to get an ε-synchronization string is to concatenate that with
a string which satisfies ε-synchronization property for small intervals. This one could be
brute forced as well. Overall, this gives an alternative polynomial time construction (still
using the inspiration of long-distance strings, though). More importantly, if we use a linear
time construction for short intervals and a linear time encodable insdel code for long ones,
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we get a simple Oε(log n)-explicit long-distance ε-synchronization string construction for
which any interval [i, i+Oε(log n)] is computable in Oε(log n).

In the rest of this section, as depicted in Figure 8.1, we first introduce a high-distance,
small-alphabet error correcting code that is encodable in linear time in Lemma 8.3.13 using
a high-distance linear-time code introduced in [GI05]. We then turn this code into a high-
distance insertion-deletion code using the indexing technique from Chapter 3. Finally, we
will employ this insertion-deletion code in the setup of Lemma 8.3.10 to obtain a highly-
explicit linear-time long-distance synchronization strings.

Our codes are based on the following code from Guruswami and Indyk [GI05].

Theorem 8.3.11 (Theorem 3 from [GI05]). For every r, 0 < r < 1, and all sufficiently
small ε > 0, there exists a family of codes of rate r and relative distance at least (1− r− ε)
over an alphabet of size 2O(ε−4r−1 log(1/ε)) such that codes from the family can be encoded in
linear time and can also be (uniquely) decoded in linear time from (1 − r − ε) fraction of
half-errors, i.e., a fraction e of errors and s of erasures provided 2e+ s ≤ (1− r − ε).

One major downside of constructing ε-synchronization strings based on the code from
Theorem 8.3.11 is the exponentially large alphabet size in terms of ε. We concatenate this
code with an appropriate small alphabet code to obtain a high-distance code over a smaller
alphabet size.

Lemma 8.3.12. For sufficiently small ε and A,R > 1, and any set Σi of size |Σi| =
2O(ε−5 log(1/ε)), there exists a code C : Σi → ΣN

o with distance 1 − ε and rate εR where
|Σo| = O(ε−A).

Proof. To prove the existence of such code, we show that a random code with distance
δ = 1− ε, rate r = εA, alphabet size |Σo| = ε−A, and block length

N =
log |Σi|
log |Σo|

· 1

r
= O

(
ε−5 log(1/ε)

A log(1/ε)
· 1

εR

)
=

1

A
·O
(
ε−5−R)

exists with non-zero probability. The probability of two randomly selected codewords of
length N out of Σo being closer than δ = 1 − ε can be bounded above by the following
term. (

N

Nε

)(
1

|Σo|

)−Nε
Hence, the probability of the random code with |Σo|Nr = |Σ1| codewords having a minimum
distance smaller than δ = 1− ε is at most the following.(

N

Nε

)(
1

|Σo|

)Nε(|Σi|
2

)
≤

(
Ne

Nε

)Nε |Σi|2

|Σo|Nε

=
(e
ε

)Nε 2O(ε−5 log(1/ε))

(ε−A)Nε

= 2O((1−A) log(1/ε)Nε+ε−5 log(1/ε))

= 2(1−A)O(ε−4−R log(1/ε))+O(ε−5 log(1/ε))
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For A > 1, 1−A is negative and for R > 1, ε−4−R log(1/ε) is asymptotically larger than
ε−5 log(1/ε). Therefore, for sufficiently small ε, the exponent is negative and the desired
code exists.

Concatenating the code from Theorem 8.3.11 (as the outer code) and the code from
Lemma 8.3.12 (as inner code) gives the following code.

Lemma 8.3.13. For sufficiently small ε and any constant 0 < γ, there exists an error
correcting code of rate O(ε2.01) and distance 1−ε over an alphabet of size O(ε−(1+γ)) which
is encodable in linear time and also uniquely decodable from an e fraction of erasures and
s fraction of symbol substitutions when s+ 2e < 1− ε in linear time.

Proof. To construct such code, we simply concatenate codes from Theorem 8.3.11 and
Lemma 8.3.12 as outer and inner code respectively. Let C1 be an instantiation of the
code from Theorem 8.3.11 with parameters r = ε/4 and ε = ε/4. Code C1 is a code of
rate r1 = ε/4 and distance δ1 = 1 − ε/4 − ε/4 = 1 − ε/2 over an alphabet Σ1 of size
2O(ε−4r−1 log(1/ε)) = 2O(ε−5 log(1/ε)) which is encodable and decodable in linear time.

Further, according to Lemma 8.3.12, one can find a code C2 : Σ1 → ΣN2
2 for Σ2 = ε−(1+γ)

with distance δ2 = 1 − ε/2 rate r2 = O(ε1.01) by performing a brute-force search. Note
that block length and alphabet size of C2 is constant in terms of n. Therefore, such code
can be found in Oε(1) and by forming a look-up table can be encoded and decoded from
δ half-errors in O(1). Hence, concatenating codes C1 and C2 gives a code of distance
δ = δ1 · δ2 = (1 − ε/2)2 ≥ 1 − ε and rate r = r1 · r2 = O(ε2.01) over an alphabet of size
|Σ2| = O

(
ε−(1+γ)

)
which can be encoded in linear time in terms of block length and decoded

from e fraction of erasures and s fraction of symbol substitutions when s + 2e < 1 − ε in
linear time as well.

Indexing the codewords of a code from Lemma 8.3.13 with linear-time constructible
synchronization strings of Theorem 8.3.7 using the technique from Chapter 3 summarized
in Theorem 3.3.2 gives Theorem 8.3.14.

Theorem 8.3.14. For sufficiently small ε, there exists a family of insertion-deletion codes
with rate εO(1) that correct from 1− ε fraction of insertions and deletions over an alphabet
of size εO(1) that is encodable in linear time and decodable in quadratic time in terms of
the block length.

Proof. Theorem 3.3.2 provides a technique to convert an error correcting code into an
insertion-deletion code by indexing the codewords with a synchronization string. We use
the error correcting code C from Lemma 8.3.13 with parameter ε′ = ε/2 and γ = 0.01
along with a linear-time constructible synchronization strings S from Theorem 8.3.7 with
parameter ε′′ = (ε/2)2 in the context of Theorem 3.3.2. We also use the global repositioning
algorithm from Chapter 3 for the synchronization string (see Theorem 8.2.5). This will give
an insertion-deletion code over an alphabet of size εO(1) corrects from (1−ε′)−

√
ε′′ = 1−ε

insdels with a rate of

rC
1 + |ΣS|/|ΣC|

=
O (ε2.01)

1 +O(ε′′−O(1)/ε−1.01)
= εO(1).
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As C is encodable and S is constructible in linear time, the encoding time for the insdel
code will be linear. Further, as C is decodable in linear time and S is decodable in quadratic
time (using the global repositioning algorithm from Theorem 8.2.5), the code is decodable
in quadratic time.

Using insertion-deletion code from Theorem 8.3.14 and boosting step from
Lemma 8.3.10, we can now proceed to the main theorem of this section that provides
a highly explicit construction for c = Oε(1)-long-distance synchronization strings.

Theorem 8.3.15. There is a deterministic algorithm that, for any constant 0 < ε < 1 and
n ∈ N, computes a c = ε−O(1)-long-distance ε-synchronization string S ∈ Σn where |Σ| =
ε−O(1). Moreover, this construction is O(log n)-explicit and can even compute S[i, i+log n]
in Oε(log n) time.

Proof. We simply use an insertion-deletion code from Theorem 8.3.14 with parameter

ε′ = ε/4 and block length N =
logq n

R
where q = ε−O(1) is the size of the alphabet from

Theorem 8.3.14. Using this code in Lemma 8.3.10 gives a string S of length qRN ·N ≥ n
that satisfies 4ε′ = ε-synchronization property over any pair of intervals of total length
4N
ε

= O
(

logn
εR log q

)
= O

(
ε−O(1) log n

)
or more. Since the insertion-deletion code from Theo-

rem 8.3.14 is linearly encodable, the construction will be highly-explicit.
To turn S into a c-long-distance ε-synchronization string for c = 4N

ε logn
= O

(
ε−O(1)

)
,

we simply concatenate it with a string T that satisfies ε-synchronization property for
neighboring intervals of total size smaller than c log n. In other words, we propose the
following structure for constructing c-long-distance ε-synchronization string R.

R[i] = (S[i], T [i]) =

(
C
(⌊

i

N

⌋)
[i (modN)] , T [i]

)
(8.10)

Let S ′ be an ε-synchronization string of length 2c log n. Using linear-time construction
from Theorem 8.3.7, one can find S ′ in linear time in its length, i.e, O(log n). We define
strings T1 and T2 consisting of repetitions of S ′ as follows.

T1 = (S ′, S ′, · · · , S ′), T2 = (0c logn, S ′, S ′, · · · , S ′)

The string T1 ·T2 satisfies ε-synchronization strings for neighboring intervals of total length
c log n or less as any such substring falls into one copy of S ′. Note that having S ′ one can
find any symbol of T in linear time. Hence, T has a highly-explicit linear time construction.
Therefore, concatenating S and T gives a linear time construction for c-long-distance ε-
synchronization strings over an alphabet of size ε−O(1) that is highly-explicit and, further,
allows computing any substring [i, i+ log n] in O(log n) time. A schematic representation
of this construction can be found in Figure 8.2.

8.3.5 Infinite Synchronization Strings: Highly Explicit Con-
struction

Throughout this section, we focus on construction of infinite synchronization strings. To
measure the efficiency of a an infinite string’s construction, we consider the required time

189



 

C(1) C(2) C(3) C(4) 

 
 

 
 

 

𝑁 

4

ε
⋅ 𝑁 

𝑖’th element 
of the string 

Figure 8.2: Pictorial representation of the construction of a long-distance ε-synchronization
string of length n.
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Figure 8.3: Construction of Infinite synchronization string T

complexity for computing the first n elements of that string. Moreover, besides the time
complexity, we employ a generalized notion of explicitness to measure the quality of infinite
string constructions.

In a similar fashion to finite strings, an infinite synchronization string is called to have
a T (n)-explicit construction if there is an algorithm that computes any position S[i] in
O (T (i)). Moreover, it is said to have a highly-explicit construction if T (i) = O(log i).

We show how to deterministically construct an infinitely-long ε-synchronization string
over an alphabet Σ which is polynomially large in ε−1. Our construction can compute
the first n elements of the infinite string in O(n) time, is highly-explicit, and, further, can
compute any [i, i+ log i] in O(log i).

Theorem 8.3.16. For all 0 < ε < 1, there exists an infinite ε-synchronization string con-
struction over a poly(ε−1)-sized alphabet that is highly-explicit and also is able to compute
S[i, i + log i] in O(log i). Consequently, using this construction, the first n symbols of the
string can be computed in O(n) time.

Proof. Let k = 6
ε

and let Si denote a ε
2
-synchronization string of length i. We define U

and V as follows:

U = (Sk, Sk3 , Sk5 , . . . ), V = (Sk2 , Sk4 , Sk6 , . . . )
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In other words, U is the concatenation of ε
2
-synchronization strings of length k, k3, k5, . . .

and V is the concatenation of ε
2
-synchronization strings of length k2, k4, k6, . . . . We build

an infinite string T such that T [i] = (U [i], V [i]) (see Figure 8.3).
First, if finite synchronization strings Skl used above are constructed using the highly-

explicit construction algorithm introduced in Theorem 8.3.15, any index i can be computed
by simply finding one index in two of Skls in O(log n). Further, any substring of length
n of this construction can be computed by constructing finite synchronization strings of
total length O(n). According to Theorem 8.3.15, that can be done in Oε(n).

Now, all that remains is to show that T is an ε-synchronization string. We use following
lemma to prove this.

Lemma 8.3.17. Let x < y < z be positive integers and let t be such that kt ≤ |T [x, z)| <
kt+1. Then there exists a block of Ski in U or V such that all but a 3

k
fraction of T [x, z) is

covered by Ski.

Note that this lemma shows that

ED(T [x, y), T [y, z)) >
(

1− ε

2

)
(|T [x, y)|+ |T [y, z)|)

(
1− 3

k

)
=

(
1− ε

2

)2

(|T [x, y)|+ |T [y, z)|) ≥ (1− ε) (|T [x, y)|+ |T [y, z)|)

which implies that T is an ε-synchronization string.

Proof of Lemma 8.3.17. We first define ith turning point qi to be the index of T at which
Ski+1 starts, i.e., qi = ki + ki−2 + ki−4 + · · · . Note that

qi =

{
k2 + k4 + · · ·+ ki Even i

k + k3 + · · ·+ ki Odd i
(8.11)

=

{
k2 ki−1

k2−1
Even i

k k
i+1−1
k2−1

Odd i
(8.12)

Note that qt−1 < 2kt−1 and |T [x, z)| ≥ kt. Therefore, one can throw away all the elements
of T [x, z) whose indices are less than qt−1 without losing more than a 2

k
fraction of the

elements of T [x, z). We will refer to the remaining part of T [x, z) as T̃ .
Now, the distance of any two turning points qi and qj where t ≤ i < j is at least

qt+1 − qt, and

qt+1 − qt =

{
k k

t+2−1
k2−1

− k2 kt−1
k2−1

Even t

k2 kt+1−1
k2−1

− k kt+1−1
k2−1

Odd t
(8.13)

=

{
(k−1)(kt+2+k)

k2−1
= kt+2+k

k+1
Even t

(k−1)(kt+2−k)
k2−1

= kt+2−k
k+1

Odd t.
(8.14)

Hence, qt+1 − qt > kt+1
(
1− 1

k

)
. Since |T̃ | ≤ |T [x, z)| < kt+1, this fact gives that

there exists a Ski which covers a
(
1− 1

k

)
fraction of T̃ . This completes the proof of the

lemma.
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A similar discussion for infinite long-distance synchronization string can be found in
Section 8.9.

8.4 Local Decoding

In Section 8.3, we discussed the close relationship between long-distance synchronization
strings and insertion-deletion codes and provided highly-explicit constructions of long-
distance synchronization strings based on insdel codes.

In this section, we make a slight modification to the highly explicit structure (8.10)
we introduced in Theorem 8.3.15 where we showed one can use a constant rate insertion-
deletion code C with distance 1− ε

4
and block length N = O(log n) and a string T satisfying

ε-synchronization property for pairs of neighboring intervals of total length c log n or less
to make a c-long-distance synchronization string of length n. In addition to the symbols of
the string consisting of codewords of C and symbols of string T , we append Θ

(
log 1

ε

)
extra

bits to each symbol to enable local decodability. This extra symbol, as described in (8.15),
essentially works as a circular index counter for insertion-deletion codewords.

R[i] =

(
C
(⌊

i

N

⌋)
[i (modN)] , T [i],

⌊
i

N

⌋(
mod

8

ε3

))
(8.15)

With this extra information appended to the construction, we claim that if the relative
suffix error density is smaller than ε upon arrival of some symbol, then one can decode
the corresponding index correctly by only looking at the last O(log n) symbols. At any
point of a communication over an insertion-deletion channel, relative suffix error density
is defined as the maximum fraction of errors occurred over all suffixes of the message sent
so far. (Definition 5.12 from Definition 3.4.2).

Theorem 8.4.1. Let R be a highly-explicit long-distance ε-synchronization string con-
structed according to (8.15). Let R[1, i] be sent by Alice and be received as R′[1, j]
by Bob. If relative suffix error density is smaller than 1 − ε

2
, then Bob can find i

in 4
ε
· TDec(N) + 4N

ε
· (TEnc(N) + ExT (c log n) + c2 log2 n) only by looking at the last

max(4N
ε2
, c log n) received symbols where TEnc and TDec is the encoding and decoding com-

plexities of C and ExT (l) is the amount of time it takes to construct a substring of T of
length l.

For linear-time encodable, quadratic-time decodable code C and highly-explicit string
T constructed by repetitions of short synchronization strings used in Theorem 8.3.15,
construction (8.15) provides the following.

Theorem 8.4.2. Let R be a highly-explicit long-distance ε-synchronization string con-
structed according to (8.15) with code C and string T as described in Theorem 8.3.15. Let
R[1, i] be sent by Alice and be received as R′[1, j] by Bob. If relative suffix error density
is smaller than 1 − ε

2
, then Bob can find i in O(log3 n) time only by looking at the last

O(log n) received symbols.
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This decoding procedure, which we will refer to as local decoding consists of two principal
phases upon arrival of each symbol. During the first phase, the receiver finds a list of
1
ε

numbers that is guaranteed to contain the index of the actual codeword associated
with the current position. This gives N

ε
candidates for the index of the received symbol.

The second phase uses the relative suffix error density guarantee to choose the correct
candidate among this list. The following lemma formally presents the first phase. This
resembles a commonly utilized idea of using list-decoding as a middle step in the decoding
procedure [GL16, GW17, GH14, GR06].

Lemma 8.4.3. Let S be an ε-synchronization string constructed as described in (8.15).
Let S[1, i] be sent by Alice and be received as Sτ [1, j] by Bob. If relative suffix error density
is smaller than 1− ε/2, then Bob can compute a list of 4N

ε
numbers that is guaranteed to

contain i.

Proof. Note that as relative suffix error density is smaller than 1 − ε/2 < 1, the last
received symbol has to be successfully transmitted. Therefore, Bob can correctly figure
out the insertion-deletion code block index counter value which we denote by count. Note
that if there are no errors, all symbols in blocks with index counter value of count, count−
1, · · · , count− 4/ε+ 1 mod 8

ε3
that was sent by Bob right before the current symbol, have

to be arrived within the past 4/ε ·N symbols. However, as adversary can insert symbols,
those symbols can appear anywhere within the last 2

ε
4N
ε

= 8N
ε2

symbols.
Hence, if Bob looks at the symbols arrived with index i ∈ {count, count−1, · · · , count−

4/ε + 1} mod 8
ε3

within the last 8N
ε2

received symbols, he can observe all symbols coming
from blocks with index count, count − 1, · · · , count − 4/ε + 1 mod 8

ε3
that was sent right

before S[i]. Further, as our counter counts modulo 8
ε3

, no symbols from older blocks with
indices count, count−1, · · · , count−1/ε+1 mod 8

ε3
will appear within the past 8N

ε2
symbols

due to adversary’s deletions. Therefore, Bob can find the symbols from the last 4
ε

blocks
up to some insdel errors. By decoding those blocks, he can make up a list of 4

ε
candidates

for the actual codeword block number associated with the received symbol. As each block
contains N elements, there are a total of 4N

ε
many candidates for i.

Note that as relative suffix error density is at most 1− ε/2 and the last block may not
have been completely sent yet, the total fraction of insdels in reconstruction of the last 4

ε

blocks on Bob’s side smaller than 1− ε/2 + N
4N/ε2

≤ 1− ε
4
. Therefore, the error density in

at least one of those blocks is not larger than 1− ε
4
. This guarantees that at least one block

will be correctly decoded and, therefore, the list contains the correct actual index.

We now define a limited version of relative suffix distance which enables us to find the
correct index among candidates found in Lemma 8.4.3.

Definition 8.4.4 (Limited Relative Suffix Distance). For any two strings S, S ′ ∈ Σ∗ we
define their l-limited relative suffix distance, l-LRSD, as follows:

l-LRSD(S, S ′) = max
0<k<l

ED (S(|S| − k, |S|], S ′(|S ′| − k, |S ′|])
2k

Note that l = O(log n)-limited suffix distance of two strings can be computed in O(l2) =
O(log2 n) by computing edit distance of all pairs of prefixes of their l-long suffixes.
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Lemma 8.4.5. If string S is a c-long distance ε-synchronization string, then for any two
distinct prefixes S[1, i] and S[1, j], (c log n)-LRSD(S[1, i], S[1, j]) > 1− ε.

Proof. If j − i < c log n, the synchronization string property gives that ED(S(2i −
j, i], S(i, j]) > 2(j − i)(1 − ε) which gives the claim for k = j − i. If j − i ≥ c log n,
the long-distance property gives that ED(S(i − log n, i], S(j − log n, j]) > 2(1 − ε)c log n
which again, proves the claim.

Lemmas 8.4.3 and 8.4.5 enable us to prove Theorem 8.4.1.

Proof of Theorem 8.4.1. Using Lemma 8.4.3, by decoding 4/ε codewords, Bob forms a list
of 4N/ε candidates for the index of the received symbol. This will take 4/ε ·TDec(N) time.
Then, using Lemma 8.4.5, for any of the 4N/ε candidates, he has to construct a c log n
substring of R and compute the (c log n)-LRSD of that with the string he received. This
requires looking at the last max(4n/ε, c log n) recieved symbols and takes 4N/ε·(TEnc(N)+
ExT (c log n) + c2 log2 n) time.

8.5 Application: Near Linear Time Codes Against

Insdels, Block Transpositions, and Block Repli-

cations

In Sections 8.3 and 8.4, we provided highly explicit constructions and local repositionings
for synchronization strings. Utilizing these two important properties of synchronization
strings together suggests important improvements over insertion-deletion codes introduced
in Chapter 3. We start by stating the following important lemma which summarizes the
results of Sections 8.3 and 8.4.

Lemma 8.5.1. For any 0 < ε < 1, there exists an streaming (n, δ)-indexing solution
with ε-synchronization string S and streaming decoding algorithm D that figures out the
index of each symbol by merely considering the last Oε(log n) received symbols and in
Oε(log3 n) time. Further, S ∈ Σn is highly-explicit and constructible in linear-time and
|Σ| = O

(
ε−O(1)

)
. This solution may contain up to nδ

1−ε misdecodings.

Proof. Let S be a long-distance 2ε-synchronization string constructed according to Theo-
rem 8.3.15 and enhanced as suggested in (8.15) to ensure local decodablity. As discussed in
Sections 8.3 and 8.4, these strings trivially satisfy all properties claimed in the statement
other than the misdecoding guarantee.

According to Theorem 8.4.2, correct decoding is ensured whenever relative suffix error
density is less than 1 − 2ε

2
= 1 − ε. Therefore, as relative suffix error density can exceed

1− ε upon arrival of at most nδ
1−ε many symbols (see Lemma 3.4.14), there can be at most

nδ
1−ε many successfully received symbols which are not decoded correctly. This proves the
misdecoding guarantee.
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8.5.1 Near-Linear Time Insertion-Deletion Code

Using the indexing technique from Theorem 3.3.2 with synchronization strings and decod-
ing algorithm from Theorem 8.2.5, one can obtain the following insdel codes.

Theorem 8.5.2. For any 0 < δ < 1/3 and sufficiently small ε > 0, there exists
an encoding map E : Σk → Σn and a decoding map D : Σ∗ → Σk, such that, if
EditDistance(E(m), x) ≤ δn then D(x) = m. Further, k

n
> 1 − 3δ − ε, |Σ| = f(ε),

and E and D can be computed in O(n) and O(n log3 n) time respectively.

Proof. We closely follow the proof of Theorem 3.1.1 and use Theorem 3.3.2 to convert a
near-MDS error correcting code to an insertion-deletion code satisfying the claimed prop-
erties.

Given the δ and ε, we choose ε′ = ε
12

and use locally decodable Oε′(1)-long-distance

ε′-synchronization string S of length n over alphabet ΣS of size ε′−O(1) = ε−O(1) from Theo-
rem 8.4.2. We plug this synchronization string with the local decoding from Theorem 8.4.2
into Theorem 3.3.2 with a near-MDS expander code [GI05] C (see Theorem 8.3.11) which
can efficiently correct up to δC = 3δ + ε

3
half-errors and has a rate of RC > 1− δC − ε

3
over

an alphabet ΣC of size exp(ε−O(1)) such that log |ΣC| ≥ 3 log |ΣS |
ε

. This ensures that the final
rate is indeed at least

RC

1 + log |ΣS |
log |ΣC |

≥ RC −
log |ΣS|
log |ΣC|

= 1− 3δ − 3
ε

3
= 1− 3δ − ε

and the fraction of insdel errors that can be efficiently corrected is δC − 2 δ
1−ε′ ≥ 3δ+ ε/3−

2δ(1 + 2ε′) ≥ δ. The encoding and decoding complexities are straightforward according to
guarantees stated in Theorem 8.5.1 and the linear time construction of S.

8.5.2 Insdels, Block Transpositions, and Block Replications

In this section, we introduce block transposition and block replication errors and show that
code from Theorem 8.5.2 can overcome these types errors as well.

One can think of several way to model transpositions and replications of blocks of data.
One possible model would be to have the string of data split into blocks of length l and
then define transpositions and replications over those fixed blocks. In other words, for
message m1,m2, · · · ,mn ∈ Σn, a single transposition or replication would be defined as
picking a block of length l and then move or copy that blocks of data somewhere in the
message.

Another (more general) model is to let adversary choose any block, i.e., substring of
the message he wishes and then move or copy that block somewhere in the string. Note
that in this model, a constant fraction of block replications may make the message length
exponentially large in terms of initial message length. We will focus on this more general
model and provide codes protecting against them running near-linear time in terms of the
length of the received message. Such results automatically extend to the weaker model
that does not lead to exponentially large corrupted messages.

We now formally define (i, j, l)-block transposition as follows.
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Definition 8.5.3 ((i, j, l)-Block Transposition). For a given string M = m1 · · ·mn, the
(i, j, l)-block transposition operation for 1 ≤ i ≤ i + l ≤ n and j ∈ {1, · · · , i − 1, i + l +
1, · · · , n} is defined as an operation which turns M into

M ′ = m1, · · · ,mi−1,mi+l+1 · · · ,mj,mi · · ·mi+l,mj+1, · · · ,mn if j > i+ l

or
M ′ = m1, · · · ,mj,mi, · · · ,mi+l,mj+1, · · · ,mi−1,mi+l+1 · · · ,mn if j < i

by removing M [i, i+ l] and inserting it right after M [j].

Also, (i, j, l)-block replication is defined as follows.

Definition 8.5.4 ((i, j, l)-Block Replication). For a given string M = m1 · · ·mn, the
(i, j, l)-block replication operation for 1 ≤ i ≤ i + l ≤ n and j ∈ {1, · · · , n} is defined
as an operation which turns M into M ′ = m1, · · · ,mj,mi · · ·mi+l,mj+1, · · · ,mn which is
obtained by copying M [i, i+ l] right after M [j].

We now proceed to the following theorem that implies the code from Theorem 8.5.2
recovers from block transpositions and replications as well.

Theorem 8.5.5. Let S ∈ Σn
S be a locally-decodable highly-explicit c-long-distance ε-

synchronization string from Theorem 8.4.2 and C be an half-error correcting code of
block length n, alphabet ΣC, rate r, and distance d with encoding function EC and de-
coding function DC that run in TEC and TDC respectively. Then, one can obtain an en-
coding function En : Σnr

C → [ΣC × ΣS]n that runs in TEC + O(n) and decoding function
Dn : [ΣC × ΣS]∗ → Σnr

C which runs in TDC + O
(
log3 n

)
and recovers from nδinsdel fraction

of synchronization errors and δblock fraction of block transpositions or replications as long

as
(

2 + 2
1−ε/2

)
δinsdel + (12c log n)δblock < d.

Proof. To obtain such codes, we simply index the symbols of the given error correcting
code with the symbols of the given synchronization strings. More formally, the encoding
function E(x) for x ∈ Σnr

C first computes EC(x) and then indexes it, symbol by symbol,
with the elements of the given synchronization string.

On the decoding end, D(x) first uses the indices on each symbol to guess the actual
position of the symbols using the local decoding of the c-long-distance ε-synchronization
string. Rearranging the received symbols in accordance to the guessed indices, the receiving
end obtains a version of EC(x), denoted by x̄, that may suffer from a number of symbol
corruption errors due to incorrect index misdecodings. As long as the number of such
misdecodings, k, satisfies nδinsdel + 2k ≤ nd, computing DC(x̄) gives x. The decoding
procedure naturally consists of decoding the attached synchronization string, rearranging
the indices, and running DC on the rearranged version. Note that if multiple symbols
where detected to be located at the same position by the synchronization string decoding
procedure or no symbols where detected to be at some position, the decoder can simply
put a special symbol ‘?’ there and treat it as a half-error. The decoding and encoding
complexities are trivial.
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In order to find the actual index of a received symbol correctly, we need the local
decoding procedure to compute the index correctly. For that purpose, it suffices that no
block operations cut or paste symbols within an interval of length 2c log n before that
index throughout the entire block transpositions/replications performed by the adversary
and the relative suffix error density caused by synchronization errors for that symbol does
not exceed 1 − ε/2. As any block operation might cause three new cut/cop/paste edges
and relative suffix error density is larger than 1 − ε/2 for up to 1

1−ε/2 many symbols

(according to Lemma 3.4.14), the positions of all but at most k ≤ 3nδblock × 2c log n +
nδinsdel

(
1 + 1

1−2ε

)
symbols will be decoded incorrectly via synchronization string decoding

procedure. Hence, as long as nδinsdel + 2k ≤ 6δblock × 2c log n+ nδinsdel
(
3 + 2

1−2ε

)
< d the

decoding procedure succeeds. Finally, the encoding and decoding complexities follow from
the fact that indexing codewords of length n takes linear time and the local decoding of
synchronization strings takes O(n log3 n) time.

Employing locally-decodable Oε(1)-long-distance synchronization strings of Theo-
rem 8.4.2 and error correcting code of Theorem 8.3.11 in Theorem 8.5.5 gives the following
code.

Theorem 8.5.6. For any 0 < r < 1 and sufficiently small ε there exists a code with rate r
that corrects nδinsdel synchronization errors and nδblock block transpositions or replications
as long as 6δinsdel+c log nδblock < 1−r−ε for some c = O(1). The code is over an alphabet
of size Oε(1) and has O(n) encoding and O(N log3 n) decoding complexities where N is the
length of the received message.

8.6 Applications: Near-Linear Time Infinite Channel

Simulations with Optimal Memory Consumption

We now show that the indexing algorithm introduced in Theorem 8.5.1 can improve the ef-
ficiency of channel simulations from Chapter 7 as well as insdel codes. Consider a scenario
where two parties are maintaining a communication that suffers from synchronization er-
rors, i.e, insertions and deletions. In Chapter 7, we provided a simple technique to overcome
this desynchronization. Our solution consists of a simple symbol by symbol attachment of
a synchronization string to any transmitted symbol. The attached indices enables the re-
ceiver to correctly detect indices of most of the symbols he receives. However, the decoding
procedure introduced in Chapter 7 takes polynomial time in terms of the communication
length. The explicit construction introduced in Section 8.3 and local repositioning pro-
vided in Section 8.4 can reduce the construction and decoding time and space complexities
to polylogarithmic. Further, the decoding procedure only requires to look up Oε(log n)
recently received symbols upon arrival of any symbol.

Interestingly, we will show that, beyond the time and space complexity improvements
over simulations in Chapter 7, long-distance synchronization strings can make infinite
channel simulations possible. In other words, two parties communicating over an insertion-
deletion channel are able to simulate a corruption channel on top of the given channel
even if they are not aware of the length of the communication before it ends with similar
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guarantees as of Chapter 7. To this end, we introduce infinite strings that can be used
to index communications to convert synchronization errors into symbol corruptions. The
following theorem analogous to the indexing algorithm of Lemma 8.5.1 provides all we need
to perform such simulations.

Theorem 8.6.1. For any 0 < ε < 1, there exists an infinite string S that satisfies the
following properties:

1. String S is over an alphabet of size ε−O(1).

2. String S has a highly-explicit construction and, for any i, S[i, i+log i] can be computed
in O(log i).

3. Assume that S[1, i] is sent over an insertion-deletion channel. There exists a decoding
algorithm for the receiving side that, if relative suffix error density is smaller than
1 − ε, can correctly find i by looking at the last O(log i) and knowing the number of
received symbols in O(log3 i) time.

Proof. To construct such a string S, we use our finite-length highly-explicit locally-
decodable long-distance synchronization string constructions from Theorem 8.4.2 and use
to construct finite substrings of S as proposed in the infinite string construction of The-
orem 8.3.16 which is depicted in Figure 8.3. We choose length progression parameter
k = 10/ε2. Similar to the proof of Lemma 8.3.17, we define turning point qi as the in-
dex at which Ski+1 starts. We append one extra bit to each symbol S[i] which is zero if
qj ≤ i < qj+1 for some even j and one otherwise.

This construction clearly satisfies the first two properties claimed in the theorem state-
ment. To prove the third property, suppose that S[1, i] is sent and received as S ′[1, i′] and
the error suffix density is less than 1 − ε. As error suffix density is smaller than 1 − ε,
iε ≤ i′ ≤ i/ε which implies that i′ε ≤ i ≤ i′/ε. This gives an uncertainty interval whose
ends are close by a factor of 1/ε2. By the choice of k, this interval contains at most one
turning point. Therefore, using the extra appended bit, receiver can figure out index j
for which qj ≤ i < qj+1. Knowing this, it can simply use the local decoding algorithm for
finite string Sj−1 to find i.

Theorem 8.6.2. [Improving Channel Simulations of Theorem 7.1.1]

(a) Suppose that n rounds of a one-way/interactive insdel channel over an alphabet Σ
with a δ fraction of insertions and deletions are given. Using an ε-synchronization
string over alphabet Σsyn, it is possible to simulate n (1−Oε(δ)) rounds of a one-
way/interactive corruption channel over Σsim with at most Oε (nδ) symbols corrupted
so long as |Σsim| × |Σsyn| ≤ |Σ|.

(b) Suppose that n rounds of a binary one-way/interactive insertion-deletion channel
with a δ fraction of insertions and deletions are given. It is possible to simulate
n(1 − Θ(

√
δ log(1/δ))) rounds of a binary one-way/interactive corruption channel

with Θ(
√
δ log(1/δ)) fraction of corruption errors between two parties over the given

channel.
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Having an explicitly-constructible, locally-decodable, infinite string from Theorem 8.6.1 uti-
lized in the simulation, all of the simulations mentioned above take O(log n) time for send-
ing/starting party of one-way/interactive communications. Further, on the other side, the
simulation spends O(log3 n) time upon arrival of each symbol and only looks up O(log n)
many recently received symbols. Overall, these simulations take a O(n log3 n) time and
O(log n) space to run. These simulations can be performed even if parties are not aware
of the communication length.

Proof. We simply replace ordinary ε-synchronization strings used in all such simulations
in Chapter 7 with the highly-explicit locally-decodable infinite string from Theorem 8.6.1
with its corresponding local-repositioning procedure instead of the minimum RSD decoding
procedure that is used in Chapter 7. This keeps all properties that simulations from Chap-
ter 7 guarantee. Further, by properties stated in Theorem 8.6.1, the simulation is performed
in near-linear time, i.e., O(n log3 n). Also, constructing and decoding each symbol of the
string from Theorem 8.6.1 only takes O(log n) space which leads to an O(log n) memory
requirement on both sides.

8.7 Applications: Near-Linear Time Coding Scheme

for Interactive Communication

Using the near-linear time interactive channel simulation in Theorem 8.6.2 with the near-
linear time interactive coding scheme of Haeupler and Ghaffari [GH14] (stated in Theo-
rem 8.7.1) gives the near-linear time coding scheme for interactive communication over
insertion-deletion channels stated in Theorem 8.7.2.

Theorem 8.7.1 (Theorem 1.1 from [GH14]). For any constant ε > 0 and n-round protocol
Π there is a randomized non-adaptive coding scheme that robustly simulates Π against an
adversarial error rate of ρ ≤ 1/4 − ε using N = O(n) rounds, a near-linear n logO(1) n
computational complexity, and failure probability 2−Θ(n).

Theorem 8.7.2. For a sufficiently small δ and n-round alternating protocol Π, there is a
randomized coding scheme simulating Π in presence of δ fraction of edit-corruptions with
constant rate (i.e., in O(n) rounds) and in near-linear time. This coding scheme works
with probability 1− 2Θ(n).

8.8 Alphabet Size vs Distance Function

In this section, we study the dependence of alphabet size over distance function, f , for
f(l)-distance synchronization strings. We will discuss this dependence for polynomial, ex-
ponential, and super exponential function f . As briefly mentioned in Section 8.3.1, we
will show that for any polynomial function f , one can find arbitrarily long f(l)-distance
ε-synchronization strings over an alphabet that is polynomially large in terms of ε−1 (The-
orem 8.8.1). Also, in Theorem 8.8.2, we will show that one cannot hope for such guarantee
over alphabets with sub-polynomial size in terms of ε−1. Further, for exponential distance
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function f , we will show that arbitrarily long f(l)-distance ε-synchronization strings exist
over alphabets that are exponentially large in terms of ε−1 (Theorem 8.8.1) and, further-
more, cannot hope for such strings over alphabets with sub-exponential size in terms of
ε−1 (Theorem 8.8.3). Finally, in Theorem 8.8.4, we will show that for super-exponential
f , f(l)-distance ε-synchronization string does not exist over constant-sized alphabets in
terms of string length.

Theorem 8.8.1. For any polynomial function f , there exists an alphabet of size O(ε−4)
over which arbitrarily long f(l)-distance ε-synchronization strings exist. Further, for any
exponential function f , such strings exist over an alphabet of size exp(ε−1).

Proof. To prove this we follow the same LLL argument as in Theorem 8.3.5 and Chap-
ter 3 to prove the existence of a string that satisfies the f(l)-distance ε-synchronization
string property for intervals of length t or more and then concatenate it with
1, 2, · · · , t, 1, 2, · · · , t, · · · to take care of short intervals. We define bad events Bi1,l1,i2,l2

in the same manner as in Theorem 8.3.5 and follow similar steps up until (8.3) by propos-
ing xi1,l1,i2,l2 = D−ε(l1+l2) for some D > 1 to be determined later. D has to be chosen such
that for any i1, l1, i2, l2 and l = l1 + l2:

(
e

ε
√
|Σ|

)εl

≤ D−εl
∏

[S[i1,i1+l1)∪S[i2,i2+l2)]∩[S[i′1,i
′
1+l′1)∪S[i′2,i

′
2+l′2)] 6=∅

(
1−D−ε(l′1+l′2)

)
(8.16)

Note that:

D−εl
∏

[S[i1,i1+l1)∪S[i2,i2+l2)]∩[S[i′1,i
′
1+l′1)∪S[i′2,i

′
2+l′2)]6=∅

(
1−D−ε(l′1+l′2)

)
(8.17)

≥ D−εl
n∏
l′=t

l′∏
l′1=1

(
1−D−εl′

)[(l1+l′1)+(l1+l′2)+(l2+l′1)+(l2+l′2)]f(l′)

(8.18)

= D−εl
n∏
l′=t

(
1−D−εl′

)4l′(l+l′)f(l′)

(8.19)

= D−εl

[
n∏
l′=t

(
1−D−εl′

)4l′f(l′)
]l
×

n∏
l′=t

(
1−D−εl′

)4l′2f(l′)

(8.20)

≥ D−εl

[
1−

n∑
l′=t

4l′f(l′)D−εl
′

]l
×

(
1−

n∑
l′=t

4l′
2
f(l′)D−εl

′

)
(8.21)

To bound below this term we use an upper-bound for series Σ∞i=tg(i)xi. Note that the

proportion of two consecutive terms in such summation is at most g(t+1)xt+1

g(t)xt
. Therefore,
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Σ∞i=tg(i)xi ≤ g(t)xt

1− g(t+1)xt+1

g(t)xt

. Therefore, for LLL to work, it suffices to have the following.

(
e

ε
√
|Σ|

)εl

≤ D−εl

1− 4tf(t)D−εt

1− 4tf(t+1)D−ε(t+1)

4tf(t)D−εt

l ×
1− 4t2f(t)D−εt

1− 4t2f(t+1)D−ε(t+1)

4t2f(t)D−εt

(8.22)

= D−εl

[
1− 4tf(t)D−εt

1− f(t+1)D−ε

f(t)

]l
×

(
1− 4t2f(t)D−εt

1− f(t+1)D−ε

f(t)

)
(8.23)

Polynomial Distance Function: For polynomial function f(l) =
∑d

i=0 ail
i of degree d,

we choose t = 1/ε2 and D = e. This choice gives that

L1 =
4tf(t)D−εt

1− f(t+1)D−ε

f(t)

=
4ε−2f(ε−2)e−1/ε

1− (1 + ε2)de−ε

and

L2 =
4t2f(t)D−εt

1− f(t+1)D−ε

f(t)

=
4ε−4f(ε−2)e−1/ε

1− (1 + ε2)de−ε
.

We study the following terms in ε→ 0 regime. Note that 4ε−2 and 4ε−4 are polynomials
in ε−1 but e−1/ε is exponential in ε−1. Therefore, for sufficiently small ε,

4ε−2f(ε−2)e−1/ε, 4ε−4f(ε−2)e−1/ε ≤ e−0.9/ε.

Also, 1− (1 + ε2)de−ε ≤ 1− (1 + ε2)d(1− ε/2) = 1− (1− ε/2 + o(ε2)). So, for small enough
ε, 1− (1 + ε2)de−ε ≤ 3

4
ε. This gives that, for small enough ε,

L1, L2 ≤
e−0.9/ε

(3/4)ε
≤ e−0.8/ε. (8.24)

Note that 1 − e−0.8/ε ≥ e−ε for 0 < ε < 1. Plugging this fact into (8.23) gives that, for
small enough ε, the LLL condition is satisfied if(

e

ε
√
|Σ|

)εl

≤ e−εl · e−εl · e−ε ⇔

(
e3

ε
√
|Σ|

)εl

≤ 1

eε
⇔ |Σ| ≥ e6+2/l

ε2
⇐ |Σ| ≥ e8

ε2
= O(ε−2)

Therefore, for any polynomial f , f(l)-distance ε-synchronization strings exist over alpha-
bets of size t× |Σ| = O(ε−4).

Exponential Distance Function: For exponential function f(l) = cl, we choose t = 1
and D = (8c)1/ε. Plugging this choice of t and D into (8.23) turns it into the following.(

e

ε
√
|Σ|

)εl

≤ D−εl

[
1− 4tf(t)D−εt

1− f(t+1)D−ε

f(t)

]l
×

(
1− 4t2f(t)D−εt

1− f(t+1)D−ε

f(t)

)
(8.25)

= (2c)−l
[
1− 4c(8c)−1

1− c 1
8c

]l
×
(

1− 4c(8c)−1

1− c 1
8c

)
(8.26)

=
1

(2c)l
·
[
1− 1/2

7/8

]l+1

=
2 · (3/14)l+1

cl
(8.27)
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Therefore, if |Σ| satisfies the following, the LLL condition will be satisfied.(
e

ε
√
|Σ|

)εl

≤ 2 · (3/14)l+1

cl
⇐ |Σ| ≥ e2

ε2
·
(

142c

32

)2/ε

Therefore, for any exponential f , f(l)-distance ε-synchronization strings exist over alpha-

bets of size c
1/ε
0 where c0 is a constant depending on the basis of the exponential function

f .

Theorem 8.8.2. Any alphabet Σ over which arbitrarily long f(l)-distance ε-
synchronization strings exist has to be of size Ω(ε−1). This holds for any function f .

Proof. We simply prove this theorem for f(l) = 0, i.e., ordinary synchronization strings
which trivially extends to general f . Note that ε-synchronization guarantee for any pair
of intervals [i, j) and [j, k) where k− i < ε−1 dictates that no symbol have to appear more
than once in [i, k). Therefore, the alphabet size has to be at least ε−1 − 1.

Theorem 8.8.3. Let f be an exponential function. If arbitrarily long f(l)-distance ε-
synchronization strings exist over an alphabet Σ, the size of Σ has to be at least exponen-
tially large in terms of ε−1.

Proof. Let f(l) = cl. In a given f(l)-distance ε-synchronization string, take two intervals
of length l1 and l2 where l1 + l2 ≤ ε−1/2 < ε−1. The edit distance requirement of ε-
synchronization definition requires those two intervals not to contain any similar symbols.
Note that this holds for any two intervals of total length l = ε−1/2 in a prefix of length
cl = cε

−1/2. Therefore, no symbol can be appear more than once throughout the first
cε
−1/2 symbols of the given strings. This shows that the alphabet size has to be at least

exponentially large in terms of ε−1.

Theorem 8.8.4. For any super-exponential function f and any finite alphabet Σ, there
exists a positive integer n such that there are no f(l)-distance ε-synchronization strings of
length n or more over Σ.

Proof. Consider a substring of length l in a given string over alphabet Σ. There are |Σ|l
many possible assignments for such substring. Since f is a super-exponential function, for
sufficiently large l ≥ ε−1, f(l)

l
≥ |Σ|l. For such l, consider a string of length n ≥ f(l).

Split the first f(l) elements into f(l)
l

blocks of length l. As f(l)
l
> |Σ|l, two of those blocks

have to be identical. As l was assumed to be larger than ε−1, this violates f(l)-distance
ε-synchronization property for those two blocks and therefore finishes the proof.

8.9 Infinite long-Distance Synchronization Strings:

Efficient Constructions

In this section, we introduce and discuss the construction of infinite long-distance synchro-
nization strings. The definition of c-long-distance ε-synchronization property strongly de-
pends on the length of the string. This definition requires any two neighboring intervals as
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well as any two intervals of aggregated length of c log n or more to satisfy ε-synchronization
property. A natural generalization of this property to infinite strings would be to require
similar guarantee to hold over all prefixes of it.

Definition 8.9.1 (Infinite Long-Distance Synchronization Strings). An infinite string S is
called a c-long-distance ε-synchronization string if any prefix of S like S[1, n] is a c-long-
distance ε-synchronization string of length n.

We prove infinite long distance synchronization strings exist and provide efficient con-
structions for them. We prove this by providing a structure similar to the one proposed
in Theorem 8.3.16 that constructed an infinite ε-synchronization string using finite ε-
synchronization strings.

Lemma 8.9.2. Let A(n) be an algorithm that computes a c-long-distance ε-synchronization
string S ∈ Σn in T (n) time. Further, let Ap(n, i) be an algorithm that computes ith position
of a c-long-distance ε-synchronization string of length n in Tp(n). Then, for any integer
number m ≥ 2, one can compose algorithms A′(n) and A′p(i) that compute S ′[1, n] and

S ′[i] respectively where S ′ is an infinite c-long-distance
(
ε+ 4

c logm

)
-synchronization string

over Σ × Σ. Further, A′(n) and A′p(i) run in min {T (mn), n · Tp(mn)} and Tp(m
i) time

respectively.

Proof. We closely follow the steps we took in Theorem 8.3.16, except, instead of using
geometrically increasing synchronization strings in construction of U and V , we will use
c-long-distance ε-synchronization strings whose length increase in the form of a tower
function. We define the tower function tower(p, i) for p ∈ R, i ∈ Z+ recursively as follows:
Let tower(p, 1) = p and for i > 1, tower(p, i) = ptower(p,i−1). Then, we define two infinite
strings U and V as follows:

U = (Sm, Smmm , . . . ), V = (Smm , Smmmm , . . . ).

where Sl is a c-long-distance ε-synchronization string of length l. We define the infinite
string T as the point by point concatenation of U and V .

We now show that this string satisfies the c-long-distance
(
ε+ 4

c logm

)
-synchronization

property. We define turning points {qi}∞i=1 in the same manner as we did in Theorem 8.3.16,
i.e., the indices of T where a Stower(m,i) starts. Let qi be the index where Stower(m,i+1) starts.

Consider two intervals [i1, j1) and [i2, j2) where j1 ≤ i2 and (j1 − i1) + (j2 − i2) ≥
c log j2. Let k be an integer for which qk < j2 ≤ qk+1. Then, (j1 − i1) + (j2 − i2) ≥
c log j2 ≥ c log (tower(m, k)) = c logm · tower(m, k − 1). Note that all but tower(m, k −
1) + tower(m, k − 3) + · · · ≤ 2 · tower(m, k − 1) elements of T [i1, j1) ∪ T [i2, j2) lie in
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T [qk−1, qk+1) which is covered by Stower(m,k−1). Therefore, for l = (j1 − i1) + (j2 − i2)

ED(T [i1, j1), T [i2, j2)) ≥ ED(T [max{i1, qk−1}, j1), T [i2, j2))− 2 · tower(m, k − 1)

≥ (1− ε) · [(j2 − i2) + (j1 −max{i1, qk−1})]− 2 · tower(m, k − 1)

≥ (1− ε) · [l − 2 · tower(m, k − 1)]− 2 · tower(m, k − 1)

≥ (1− ε) · l − 4 · tower(m, k − 1)

≥
(

1− ε− 4 · tower(m, k − 1)

l

)
· l

≥
(

1− ε− 4

c logm

)
· l

Further, any two neighboring intervals [i1, i2) and [i2, i3) where i3 − i1 < c log i3 and
k ≤ i3 < k+ 1, [i1, i3) completely lies in Sk−1 and therefore ε-synchronization property for
short neighboring intervals holds as well. Thus, this string satisfies infinite c-long-distance(
ε+ 4

c logm

)
-synchronization property.

Finally, to compute index i of infinite string T constructed as mentioned above, one
needs to compute a single index of two finite c-long-distance ε-synchronization strings of
length mi or less. Therefore, computing T [i] takes Tp(m

i). This also implies that T [1, n]
can be computed in n · Tp(mn). Clearly, on can also compute T [1, n] by computing all
finite strings that appear within the first n elements. Hence, T [1, n] is computable in
min {T (mn), n · Tp(mn)}.

Utilizing the construction proposed in Lemma 8.9.2 with m = 2 along with the highly-
explicit finite Oε(1)-long-distance ε

2
-synchronization string construction introduced in The-

orem 8.3.15, results in the following infinite string construction:

Theorem 8.9.3. For any constant 0 < ε < 1 there is a deterministic algorithm which
computes ith position of an infinite c-long-distance ε-synchronization string S over an
alphabet of size |Σ| = ε−O(1) where c = Oε(1) in Oε(i) time. This implies a quadratic time
construction for any prefix of such string.
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Chapter 9

Appoximating Edit Distance via
Indexing: Near-Linear Time Codes

In Chapter 9, we introduce fast-decodable indexing schemes for edit distance which can be
used to speed up edit distance computations to near-linear time if one of the strings is
indexed by an indexing string I. In particular, for every length n and every ε > 0, one can,
in near-linear time, construct a string I ∈ Σ′n with |Σ′| = Oε(1), such that, indexing any
string S ∈ Σn with I (i.e., concatenating S symbol-by-symbol with I) results in a string
S ′ ∈ Σ′′n where Σ′′ = Σ × Σ′ for which edit distance computations are easy, i.e., one can
compute a (1 + ε)-approximation of the edit distance between S ′ and any other string in
O(npolylog(n)) time.

Our indexing schemes can be used to improve the decoding complexity of the state-
of-the-art error correcting codes for insertions and deletions. In particular, they lead to
near-linear time decoding algorithms for the insertion-deletion codes from Chapter 3 and
faster decoding algorithms for list-decodable insertion-deletion codes from Chapter 4. In-
terestingly, the latter codes are a crucial ingredient in the construction of fast-decodable
indexing schemes.
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9.1 Introduction

9.1.1 (Near) Linear-Time Codes

The seminal works of Shannon, Hamming, and others in the late 40s and early 50s estab-
lished a good understanding of the optimal rate/distance tradeoffs achievable existentially
and over the next decades, near-MDS codes achieving at least polynomial time decoding
and encoding procedures were put forward. Since then, lowering the computational com-
plexity has been an important goal of coding theory. Particularly, the 90s saw a big push,
spearheaded by Spielman, to achieve (near) linear coding complexities: in a breakthrough
in 1994, Sipser and Spielman [SS96] introduced expander codes and derived linear codes
with some constant distance and rate that are decodable (but not encodable) in linear
time. In 1996 Spielman [Spi96] build upon these codes to derive asymptotically good error
correcting codes that are encodable and decodable in linear time. As for codes with better
rate distance trade-off, Alon et al. [AEL95] obtained near-MDS error correcting codes that
were decodable from erasures in linear time. Finally, in 2004, Guruswami and Indyk [GI05]
provided near-MDS error correcting codes for any rate than can be decoded in linear time
from any combination of symbol erasures and symbol substitutions.

9.1.2 Codes for Insertions and Deletions

Similar questions on communication and computational efficiencies hold for synchroniza-
tion codes, i.e., codes that correct from symbol insertions and symbol deletions. As a
matter of fact, an analogous flow of progress can be recognized for synchronization codes.
The study of synchronization codes started with the work of Levenshtein [Lev65] in the
60s. In 1999, Schulman and Zuckerman [SZ99] gave the first (efficient) synchronization
code with constant distance and rate. Only recently, synchronization codes with stronger
communication efficiency have been found. Guruswami et al. [GW17, GL16] introduced
the first synchronization codes in the asymptotically small or large noise regimes by giving
efficient codes which achieve a constant rate for noise rates going to one and codes which
provide a rate going to one for an asymptotically small noise rate. The work presented
in Chapters 3 and 4 of this thesis, was able to finally achieve efficient synchronization
codes with the optimal (near-MDS) rate/distance tradeoff, for any rate and distance using
synchronization strings for unique-decoding and list-decoding settings.

All of the codes mentioned so far have decoders with large polynomial complexity
between Ω(n2) and O(nO(1/ε)). The only known insertion-deletion codes prior to this work
with subquadratic time decoders are given in Chapter 8. Unfortunately, these codes only
work for δ ∈

(
0, 1

3

)
fraction of errors while achieving a rate of 1 − 3δ − ε (instead of the

desired 1− δ − ε).
In this work, we take the natural next step and address the problem of finding near-

linear time encodable/decodable (near-MDS) codes for insertions and deletions.
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9.1.3 Quadratic Edit Distance Computation Barrier

Many of the techniques developed for constructing efficient regular error correcting codes
also apply to synchronization strings. Indeed, the synchronization string based construc-
tions show that this can largely be done in a black-box manner. However, there is a serious
new barrier that arises in the setting of synchronization errors if one tries to push com-
putational complexities below n2. This barrier becomes apparent once one notices that
decoding an error correcting code is essentially doing a distance minimization where the
appropriate distance in the synchronization setting is the edit distance1. As we discuss
below, merely computing the edit distance between two strings (the input and a candidate
output of the decoder) in subquadratic time is a well known hard problem. An added
dimension of challenge in our setting is that we must first select the candidate decoder
outputs among exponentially many codewords.

A simple algorithm for computing the edit distance of two given strings is the classic
Wagner-Fischer dynamic programming algorithm that runs in quadratic time. Improving
the running time of this simple algorithm has been a central open problem in computer sci-
ence for decades (e.g. [CKK72]). Yet to date, only a slightly faster algorithm (O(n2/ log2 n))
due to Masek and Paterson [MP80] is known. Furthermore, a sequence of complexity
breakthroughs from recent years suggests that a near-quadratic running time may in fact
be optimal [AWW14, BI18, ABW15, BK15, AHWW16] (under the Strong Exponential
Time Hypothesis (SETH) or related assumptions). In order to obtain subquadratic run-
ning times, computer scientists have considered two directions: moving beyond worst-case
instances, and allowing approximations.

Beyond worst case

Edit distance computation is known to be easier in several special cases. For the case
where edit distance is known to be at most k, Ukkonen [Ukk85] provided an O(nk) time
algorithm and Landau et al. [LMS98] improved upon that with an O(n+k2) time algorithm.
For the case where the longest common subsequence (LCS) is known to be at most L,
Hirschberg [Hir77] gave an algorithm running in time O(n log n + Ln). Following a long
line of works, Gawrychowski [Gaw12] currently has the fastest algorithm for the special
case of strings that can be compressed as small straight-line programs (SLP). Andoni and
Krauthgamer [AK12] obtain efficient approximations to edit distance for the case where
the strings are perturbed a-la smoothed analysis. Goldwasser and Holden [GH17b] obtain
subquadratic algorithms when the input is augmented with auxiliary correlated strings.

Other special cases have also been considered (see also [BK18]), but the work closest
to ours is by Hunt and Szymanski [HS77], who obtained a running time of O((n+ r) log n)
for the special case where there are r “matching pairs”, i.e. pairs of identical characters
(see also Section 9.3.2). While we directly build on their algorithm, note that there is
an obstacle to applying it in our setting: for a constant size alphabet, we expect that a
constant fraction of all n2 pairs of characters will be matching, i.e. r = Θ(n2).

1We define the edit distance between two strings S, S′ as the minimum number of character insertions
and deletions required to transform S to S′. Note that this is slightly different (but closely related) to the
more standard definition which also allows character substitutions.
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Approximation algorithms

There is a long line of works on efficient approximation algorithms for edit distance in the
worst case [BYJKK04, BES06, AKO10, AO12, BEG+18, CDG+18]. First, it is important
to note that even after the recent breakthrough of Chakraborty et al. [CDG+18], it is not
known how to obtain approximation factors better than 3 (see also discussion in [Rub18]).
Furthermore, our running time is much faster than Chakraborty et al.’s [CDG+18] and
even faster than the near-linear time approximations of [AKO10, AO12]. The best known
approximation factor in time O(npolylog(n)) is still worse than n1/3 [BES06].

In terms of techniques, our algorithm is most closely inspired by the window-compatible
matching paradigm introduced by the recent quantum approximation algorithm of Borou-
jeni et al. [BEG+18] (a similar idea was also used by Chakraborty et al. [CDG+18]).

A new ray of hope

In this work we combine both approaches: namely we allow for (arbitrarily good) approx-
imation, and also restrict our attention to the special case of computing the edit distance
between a worst case input and a codeword from our code. The interesting question thus be-
comes if there is a way to build enough structure into a string (or a set of strings/codewords)
that allows for fast edit distance computations. Given the importance and pervasiveness of
edit distance problems we find this to be a question of interest way beyond its applicability
to synchronization codes. An independent work of Kuszmaul [Kus19] also employs the
combination of the two approaches and provides a near-linear time algorithm for approx-
imating the edit distance between a pseudo-random string and an arbitrary one within a
constant factor.

9.2 Our Results

In this chapter, we introduce a simple and generic structure that achieves this goal. In
particular, we will show that there exist strings over a finite alphabet that, if one indexes
any given string S with them, the edit distance of the resulting string to any other string
S ′ can be approximated within a 1 + ε factor in near-linear time. This also leads to
breaking the quadratic decoding time barrier for insertion-deletion codes with near-optimal
communication efficiency.

We start with a formal definition of string indexing followed by the definition of an
indexing scheme.

Definition 9.2.1 (String Indexing or Coordinate-Wise String Concatenation). Let S ∈ Σn

and S ′ ∈ Σ′n be two strings of length n over alphabets Σ and Σ′. The coordinate-wise
concatenation of S and S ′ or S indexed by S ′ is a string of length n over alphabet Σ×Σ′

whose ith element is (Si, S
′
i). We denote this string with S × S ′.

Definition 9.2.2 (Indexing Scheme). The pair (I, ẼDI) consisting of string I ∈ Σn
Index and

algorithm ẼDI is an ε-indexing scheme if for any string S ∈ Σn and S ′ ∈ [Σ × ΣIndex]n,

ẼDI(S × I, S ′) outputs a set of up to (1 + ε)ED(S × I, S ′) symbol insertions and symbol
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deletions over S × I that turns it into S ′. The ED(·) notation represents the edit distance
function.

The main result of this work is on the existence of indexing schemes that facilitate
approximating the edit distance in near-linear time.

Theorem 9.2.3. For any ε ∈ (0, 1) and integer n, there exist a string I ∈ Σn
Index and an

algorithm ẼDI where (I, ẼDI) form an ε-indexing scheme, |ΣIndex| = exp
(

log(1/ε)
ε3

)
, ẼDI

runs in Oε(npolylog(n)) time, and I can be constructed in Oε(npolylog(n)) time.

9.2.1 Applications

One application of indexing schemes that we introduce in this work is in enhancing the
design of insertion-deletion codes (insdel codes) from Chapters 3 and 4. The construction
of codes from Chapters 3 and 4 consist of indexing each codeword of some appropriately
chosen error correcting code with symbols of a synchronization string which, in the decoding
procedure, will be used to recover the position of received symbols. As we will recapitulate
in Section 9.7, this procedure of recovering the positions consists of several longest common
subsequence computations between the utilized synchronization string and some other
version of it that is altered by a number of insertions and deletions. This fundamental step
resulted in an Ω(n2) decoding time complexity for codes in Chapters 3 and 4.

Using the ε-indexing schemes in this chapter, we will modify constructions of Chapters 3
and 4 so that the above-mentioned longest common subsequence computations can be
replaced with approximations of the longest common subsequence (using Theorem 9.2.3)
that run in near-linear time. The following theorem, that improves Theorem 3.1.1 with
respect to the decoding complexity, gives an insertion-deletion code for the entire range of
distance that approaches the Singleton bound and is decodable in near-linear time.

Theorem 9.2.4. For any ε > 0 and δ ∈ (0, 1) there exists an encoding map E : Σk → Σn

and a decoding map D : Σ∗ → Σk, such that, if ED(E(m), x) ≤ δn then D(x) = m.
Further, k

n
> 1 − δ − ε, |Σ| = exp (ε−4 log(1/ε)), and E and D are explicit and can be

computed in linear and near-linear time in terms of n respectively.

A very similar improvement is also applicable to the design of list-decodable insertion-
deletion codes from Chapter 4 as they also utilize indexed synchronization strings and
a similar position recovery procedure along with an appropriately chosen list-recoverable
code. (See Definition 9.3.2) In this case, we obtain list-decodable insertion-deletion codes
that match the fastest known list-recoverable codes in terms of decoding time complexity.

Theorem 9.2.5. For every 0 < δ, ε < 1 and ε0, γ > 0, there exists a family of list-
decodable codes that can protect against δ-fraction of deletions and γ-fraction of insertions
and achieves a rate of at least 1 − δ − ε over an alphabet of size Oε0,ε,γ (1). There exists
a randomized decoder for these codes with list size Lε0,ε,γ(n) = exp (exp (exp (log∗ n))),
O(n1+ε0) encoding and decoding complexities, and decoding success probability 2/3.

Both Theorems 9.2.4 and 9.2.5 are built upon the fact that if one indexes a synchro-
nization string with an appropriate indexing scheme, the resulting string will be a synchro-
nization string that is decodable in near-linear time.
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9.2.2 Other Results, Connection to List-Recovery, and the Or-
ganization

In the rest of this chapter, we first provide some preliminaries and useful lemmas from
previous works in Section 9.3. In Section 9.4, we introduce the construction of our in-
dexing schemes and prove Theorem 9.2.3. The construction of these indexing schemes
utilize insertion-deletion codes that are list-decodable from large fractions of deletions and
insertions. We use list-decodable codes from Chapter 4 for that purpose, which themselves
use list-recoverable codes as a core building block. Therefore, the quality of indexing
schemes that we provide, namely, time complexity and alphabet size, greatly depend on
utilized list-recoverable codes and can be improved following the prospective advancement
of list-recoverable codes in the future.

In Section 9.5, we enhance the structure of the indexing scheme from Theorem 9.2.3 and
provide Theorem 9.5.1 that describes a construction of indexing schemes using (ε, 1

ε
, L)-

list-recoverable codes as a black-box. This result opens the door to potentially reduce the
polylogarithmic terms in the time complexity of indexing schemes from Theorem 9.2.3 by
future developments in the design of list-recoverable codes. For instance, finding near-
linear time (ε, 1

ε
, polylog(n))-list recoverable codes leads to indexing schemes that run in

O(npoly(log log n)) time via Theorem 9.5.1.

As of the time of writing this thesis, no such list-recoverable code is known. However,
a recent work of Hemenway, Ron-Zewi, and Wootters [HRZW19] presents list-recoverable
codes with O (n1+ε0) time probabilistic decoders for any ε0 > 0 that are appropriate for
the purpose of being utilized in the construction of indexing schemes as outlined in The-
orem 9.5.1. In Section 9.6, we use such codes with the indexing scheme construction
method of Theorem 9.5.1 to provide a randomized indexing scheme with O(n logε0 n) time
complexity for any chosen ε0 > 0.

Then, in Section 9.7, we discuss the application of indexing schemes in the design of
insertion-deletion codes. We start by Theorem 9.7.1 that enhances synchronization strings
by using them along with indexing schemes and, therefore, enables us to reduce the time
complexity of the position recovery subroutine of the decoders of codes from Chapters 3
and 4 to near-linear time. In Section 9.7.2, we discuss our results for uniquely-decodable
codes and prove Theorem 9.2.4. At the end, in Section 9.7.3, we address construction of list-
decodable synchronization codes using indexing schemes. We start by Theorem 9.7.4 that
gives a black-box conversion of a given list-recoverable code to a list-decodable insertion-
deletion code by adding only a near-linear time overhead to the decoding complexity and,
therefore, paves the path to obtaining insertion-deletion codes that are list-decodable in
near-linear time upon the design of near-linear time list-recoverable codes. We use this
conversion along with list-recoverable codes of [HRZW19] to prove Theorem 9.2.5.

The notion of edit distance that we study in this thesis is defined as the smallest
number of insertions and deletions needed to convert one string to another. In Section 9.8,
we extend our techniques to approximate more general edit-distance-like metrics, most
notably, the Levenshtein distance which allows symbol substitutions as well as symbol
insertions and deletions as a unit of modification.
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9.3 Preliminaries and Notation

In this section, we provide definitions and preliminaries that will be useful throughout the
rest of this chapter.

9.3.1 Synchronization Strings

We start by some essential definitions and lemmas regarding synchronization strings. In
Chapter 3, we showed that ε-synchronization matchings satisfy the following property.

Theorem 9.3.1 (Theorem 3.5.2). Let S be an ε-synchronization string of length n and
1 ≤ i1 < i2 < · · · < il ≤ n and 1 ≤ j1 < j2 < · · · < jl ≤ n be integers so that S(ik) = S(jk)
but ik 6= jk for all 1 ≤ k ≤ l. Then l ≤ εn.

In Chapter 4, we proposed a construction of list-decodable insertion-deletion codes by
indexing the codewords of a list-recoverable code with symbols of a synchronization string.
As we will use similar techniques and ideas throughout this chapter, we formally define
list-recoverable codes and review the main result of Chapter 4 in the following.

Definition 9.3.2 (List-recoverable codes). Code C with encoding function Enc : Σnr → Σn

is called (α, l, L)-list recoverable if for any collection of n sets S1, S2, · · · , Sn ⊂ Σ of size l
or less, there are at most L codewords for which more than αn elements appear in the list
that corresponds to their position, i.e.,

|{x ∈ C | |{i ∈ [n] | xi ∈ Si}| ≥ αn}| ≤ L.

Theorem 9.3.3 (Restatement of Theorem 4.1.1). For every 0 < δ, ε < 1 and γ > 0, there
exist a family of list-decodable insdel codes that can protect against δ-fraction of deletions
and γ-fraction of insertions and achieves a rate of 1 − δ − ε or more over an alphabet

of size
(
γ+1
ε2

)O( γ+1

ε3
)

= Oγ,ε (1). These codes are list-decodable with lists of size Lε,γ(n) =
exp (exp (exp (log∗ n))), and have polynomial time encoding and decoding complexities.

By choosing δ = γ = 1 − ε and ε = ε/2 in Theorem 4.1.1, we derive the following
corollary.

Corollary 9.3.4. For any 0 < ε < 1, there exists an alphabet Σε with size exp(ε−3 log 1/ε)
and an infinite family of insertion-deletion codes, C, that achieves a rate of ε

2
and is L-

list-decodable from any (1− ε)n deletions and (1− ε)n insertions in polynomial time where
L = exp(exp(exp(log∗ n))).

9.3.2 Non-crossing Matchings

The last element that we utilize as a preliminary tool in this chapter is an algorithm
provided in a work of Hunt and Szymanski [HS77] to compute the maximum non-crossing
matching in a bipartite graph. Let G be a bipartite graph with an ordering for vertices in
each part. A non-crossing matching in G is a matching in which edges do not intersect.
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Definition 9.3.5 (Non-Crossing Matching). Let G be a bipartite graph with ordered ver-
tices u1, u2, · · · , um and v1, v2, · · · , vn in each part. A non-crossing matching is a subset of
edges of G like

{(ui1 , vj1), (ui2 , vj2), · · · , (uil , vjl)}
where i1 < i2 < · · · < il and j1 < j2 < · · · < jl.

In this chapter, we use an algorithm by Hunt and Szymanski [HS77] that essentially
computes the largest non-crossing matching in a given bipartite graph.

Theorem 9.3.6 (Theorem 2 of Hunt and Szymanski [HS77]). Let G be a bipartite graph
with n ordered vertices in each part and r edges. There is an algorithm that computes the
largest non-crossing matching of G in O ((n+ r) log log n).

9.4 Near-Linear Edit Distance Computations via In-

dexing

We start by a description of the string that will be used in our indexing scheme. Let C
be an insertion-deletion code over alphabet ΣC, with block length N , and rate r that is
L-list decodable from any N(1− ε) deletions and N(1− ε) insertions in TDecC(N) for some
sufficiently small ε > 0. We construct the indexing sequence I by simply concatenating
the codewords of C. The construction of such indexing sequence resembles long-distance
synchronization strings from Chapter 4.

Throughout this section, we consider string S of length N · |ΣC|Nr that consists of
coordinate-wise concatenation of a content string m and the indexing string I. In other
words, Si = (mi, Ii). We will provide algorithms that approximate the edit distance of S
to a given string S ′.

Consider the longest common subsequence between S and S ′. One can represent such
common subsequence by a matching MLCS with non-crossing edges in a bipartite graph
with two parts of size |S| and |S ′| where each vertex corresponds to a symbol in S or S ′ and
each edge corresponds to a pair of identical symbols in the longest common subsequence.

Note that one can turn S into S ′ by simply deleting any symbol that corresponds to
an unmatched vertex in S and then inserting symbols that correspond to the unmatched
vertices in S ′. Therefore, the edit distance between S and S ′ is equal to the number of
non-connected vertices in that graph. To provide a (1 + ε) edit distance approximation
as described in Theorem 9.2.3, one only needs to compute a common subsequence, or
equivalently, a non-crossing matching between S and S ′ in which the number of unmatched
vertices does not exceed a 1 + ε multiplicative factor of MLCS’s.

We start by an informal intuitive justification of the algorithm. The algorithm starts by
splitting the string S ′ into blocks of length N in the same spirit as S. We denote ith such
block by S ′(i) and the ith block of S by S(i). Note that the blocks of S are codewords of
an insertion-deletion code with high distance indexed by m (S(i) = C(i)×m[N(i−1), Ni−
1]). Therefore, one might expect that any block of S that is not significantly altered by
insertions and deletions, (1) appears in a set of consecutive blocks in S ′ and (2) has a small
edit distance to at least one of those blocks.
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Following this intuition, our proposed algorithm works thusly: For any block of S ′ like
S ′(i), the algorithm uses the list decoder of C to find all (up to L) blocks of S that can
be turned into S ′(i) by N(1 − ε) deletions and N(1 − ε) insertions ignoring the content
portion on S ′. In other words, let S ′(i) = C ′i ×m′[N(i− 1), Ni− 1]. We denote the set of
such blocks by DecC(C

′
i). Then, the algorithm constructs a bipartite graph G with |S| and

|S ′| vertices on each side (representing symbols of S and S ′) as follows: a symbol in S ′(i)
is connected to all identical symbols in the blocks that appear in DecC(C

′
i) or any block

that is in their w = O
(

1
ε

)
neighborhood, i.e., is up to O

(
1
ε

)
blocks away from at least

one of the members of DecC(C
′
i).

Note that any non-crossing matching in G corresponds to some common subsequence
between S and S ′ because G’s edges only connect identical symbols. In the next step,
the algorithm finds the largest non-crossing matching in G,MALG, and outputs the corre-
sponding set of insertions and deletions as the output. We will use the algorithm proposed
by Hunt and Szymanski [HS77] (see Theorem 9.3.6) to find the largest non-crossing match-
ing. A formal description of the algorithm is available in Algorithm 11.

Algorithm 11 (1 + 11ε)-Approximation for Edit Distance

1: procedure ED-Approx(S, S ′, N,DecC(·))
2: Make empty bipartite graph G with parts of size (|S|, |S ′|)
3: w = 1

ε

4: for each S ′(i) = C ′i ×m′[N(i− 1), Ni− 1] do
5: List← DecC(C

′
i)

6: for each j ∈ List do
7: for k ∈ [j − w, j + w] do
8: Connect pairs of vertices in G that correspond to identical symbols in
S(k) and S ′(i).

9: MALG ← Largest non-crossing matching in G (Using Theorem 9.3.6)
10: returnMALG

9.4.1 Analysis

We now proceed to the analysis of approximation guarantee and time complexity of Algo-
rithm 11.

Theorem 9.4.1. For n = max(|S|, |S ′|), the running time of Algorithm 11 is
O
(
n
N
· TDecC(N) + NL

ε
· n log log n

)
.

Proof. The algorithm starts by using the decoder for any block in S ′ which takes a total
of n

N
· TDecC(N) time. Further, construction of G will take O

(
nLN 1

ε

)
. G has no more

than n · NL · w = O
(
nNL
ε

)
edges. Thus, by using Hunt and Szymanski’s [HS77] algo-

rithm (Theorem 9.3.6), the maximum non-crossing matching in G can be computed in
O
(
(n+ nNL

ε
) log log n

)
= O

(
NL
ε
· n log log n

)
.
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𝑆 

𝑆’ 𝑆′ 2  

Projection of 𝑆′ 2  

Figure 9.1: An example of a matching between S and S ′ depicting the projection of S ′(2).
This matching is 3-window-limited.

Before providing the analysis for the approximation ratio of Algorithm 11, we define
the following useful notions.

Definition 9.4.2 (Projection). LetM be a non-crossing matching between S and S ′. The
projection of S ′(i) under M is defined to be the substring of S between the leftmost and
the rightmost element of S that are connected to S ′(i) in M. (see Fig. 9.1 for an example)

Definition 9.4.3 (Window Limited). A non-crossing matching between S and S ′ is called
w-window-limited if the projection of any block of S ′ fits in w consecutive blocks of S.

The definition of window-limited matchings is inspired by the window-compatibility
notion from [BEG+18].

Theorem 9.4.4. For 0 < ε < 1
21

, Algorithm 11 computes a set of up to (1+11ε)·ED(S, S ′)
insertions and deletions that turn S into S ′.

Proof. Let EDALG denote the edit distance solution obtained by the matching suggested
by Algorithm 11. We will prove that EDALG ≤ (1 + 11ε) · ED(S, S ′) in the following two
steps:

1. LetMW be the largest w =
(

1
ε

+ 1
)
-window-limited matching between S and S ′ and

EDW be its count of unmatched vertices. In the first step, we show the following.

EDW ≤ (1 + 3ε)ED(S, S ′) (9.1)

To prove this, considerMLCS, the matching that corresponds to the longest common
subsequence. Then, we modify this matching by deleting all the edges connected to
any block S ′(i) that violates the w-window-limited requirement. In other words, if the
projection of S ′(i) spans over at least w+1 blocks in S, we remove all the edges with
one endpoint in S ′(i). Note that removing the edges connected to S ′(i) might increase
the number of unmatched vertices in the matching by 2N . However, as projection of
S ′(i) spans over at least w+1 blocks in S, one can assign all the originally unmatched
vertices in that projection, which are at least (w − 1) · N − N ≥ (w − 2)N , to the
newly introduced unmatched edges as an “approximation budget”. Note that this
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assignment is mutually exclusive since projections of two distinct blocks of S ′ are
disjoint. Therefore, the above-mentioned removal procedure increases the number
of unmatched vertices by a multiplicative factor no larger than (w−2)N+2N

(w−2)N
= w

w−2
=

1+ε
1−ε ≤ 1 + 3ε for ε ≤ 1

3
.

Note that the matching obtained by the above-mentioned removal procedure is a
w-window-limited matching and, therefore, has at least EDW unmatched vertices by
the definition of MW . Hence, Eq. (9.1) is proved.

2. In the second step, we show that

EDALG ≤ (1 + 7ε)EDW . (9.2)

Similar to Step 1, consider the largest w-window-limited matching MW and then
modify it by removing all the edges connected to any block S ′(i) that has less than
εN edges to any block in S. Again, we prove an approximation ratio by exclusively
assigning some of the unmatched vertices in MW to each S ′(i) that we choose to
remove its edges.

Consider some S ′(i) that has less than εN edges to any block in S. We assign all
unmatched vertices in S ′(i) and all unmatched vertices in the projection of S ′(i) as the
approximation budget for eliminated edges. Let B be the number of blocks in S that
are contained or intersect with projection of S ′(i). As S ′(i) has less than εN edges to
any block in S, the total number of removed edges is less than NBε. This gives that
there are at least N−NBε unmatched vertices within S ′ and max{B−2, 0}·N(1−ε)
unmatched vertices in its projection that are assigned to 2NBε new unmatched
edges appearing as a result of removing S ′(i)’s edges. Therefore, this process does
not increase the number of unmatched vertices by a multiplicative factor more than
1 + 2NBε

(N−NBε)+max{B−2,0}·N(1−ε) .

If B = 1 or 2, the above approximation ratio can be bounded above by 1+ 2NBε
(N−NBε) ≤

1 + 4ε
1−2ε

≤ 1 + 5ε for ε ≤ 1
10

. Unless, B ≥ 3, therefore the approximation ratio is

less than 1 + 2NBε
(B−2)N(1−ε) ≤ 1 + 6ε

1−ε ≤ 1 + 7ε for ε ≤ 1
7
. Therefore, the edge removal

process in Step 2 does not increase the number of unmatched vertices by a factor
larger than 1 + 7ε.

Note that the matching obtained after the above-mentioned procedure is a w-window
limited one in which any block of S ′ that contains at least one edge, has more than
Nε edges to some block in S within its projection. Therefore, this matching is a
subgraph of G. SinceMALG is defined to be the largest non-crossing matching in G,
the number of unmatched vertices in MALG, EDALG is not larger than the ones in
the matching we obtained in Step 2. Hence, proof of Eq. (9.2) is complete.

Combining Eqs. (9.1) and (9.2) implies the following approximation ratio.

EDALG ≤ (1 + 3ε)(1 + 7ε)ED(S, S ′) ≤ (1 + 11ε)ED(S, S ′) (9.3)

The last inequality holds for ε ≤ 1
21

.
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9.4.2 Proof of Theorem 9.2.3

Proof. To prove this theorem, take ε′ = ε
11

. Further, take C as an insertion-deletion code

from Theorem 4.1.1 with block lengthN = c0· logn·ε′3
(1−2ε′) log(1/ε′)

and parameters δC = γC = 1−ε′,
εC = ε′. (constant c0 will be determined later)

According to Theorem 4.1.1, C is Oε(exp(exp(exp(log∗ n))))-list decodable from (1 −
ε′)N insertions and (1 − ε′)N deletions, is over an alphabet of size qC = ε′−O(1/ε′3) =

exp
(

log(1/ε′)
ε′3

)
, and has rate rC = 1− 2ε′.

Construct string I according to the structure described in the beginning of Section 9.4
using C as the required list-decodable insertion-deletion code. Note that |I| = N · qrCNC =
N · exp (c0 ·O(log n)). Choosing an appropriate constant c0 that cancels out the constants
hidden in O-notation that originate from hidden constants in the alphabet size will lead
to |I| = Nn = O(n log n). Truncate the extra elements to have string I of length n. As C
is efficiently encodable, string I can be constructed in near-linear time.

Further, define algorithm ẼDI as follows. ẼDI takes S×I and S ′ and runs an instance of
Algorithm 11 with S×I, S ′, N , and the decoder of C as its input. Theorem 9.4.4 guarantees

that ẼDI(S×I, S ′) generates a set of at most (1+11ε′)ED(S×I, S ′) = (1+ε)ED(S×I, S ′)
insertions and deletions over S×I that converts it to S ′. Finally, Theorem 9.4.1 guarantees

that ẼDI runs in

O

(
n

N
· TDecC(N) +

NL

ε
· n log log n

)
= Oε

(
n

log n
TDecC(log n) + n log n log log n exp(exp(exp(log∗ n)))

)
= Oε(npoly(log n))

time.

9.5 Enhanced Indexing Scheme

In Section 9.4, we provided an indexing scheme, using which, one can essentially ap-
proximate the edit distance by a (1 + ε) multiplicative factor for any ε > 0. Note
that if code C that was used in that construction has some constant rate r = Oε(1),
then |S| = N · |ΣC|Nr and, therefore, N = Θε

(
logn
r

)
. This makes the running time

of Algorithm 11 from Theorem 9.4.1 O
(

nr
logn
· TDecC(log n) + logn·L

ε
· n log log n

)
. As de-

scribed in the proof of Theorem 9.2.3, using the efficient list-decodable codes from Corol-
lary 9.3.4, one can obtain edit distance computations in Oε(n·poly(log n)+n log n·log log n·
exp (exp(exp(log∗ n)))) = Oε(n · poly(log n)).

In this section, we try to enhance this running time by reducing the poly-logarithmic
terms. To this end, we break down the factors in our construction and edit distance
computation that contribute to the poly-logarithmic terms in the decoding time complexity.

1. Edges in graph G: The number of edges in graph G can be as high as Θ
(
nNL
ε

)
=

Θ(n log n · poly(log log n)) which, as discussed above, leads to an additive n log n ·
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log log n · exp (exp(exp(log∗ n))) component. In Section 9.5.1, we will show that this
component can be reduced to O(n · poly(log log n)) by having two layers of indices
via indexing each codeword of C with an indexing scheme as described in Section 9.4
(constructed based on some code of block length O(log log n)).

2. Decoding complexity of code C from Corollary 9.3.4 (TDecC(·)): As described
in Section 9.3.1, list-decodable insdel codes from Theorem 4.1.1 are obtained by
indexing codewords of a list-recoverable code with a synchronization string and their
decoding procedure consist of (1) calculating a constant number of longest common
subsequence computations, and (2) running the decoder of the list-recoverable code.

Part (1) consumes quadratic time in terms ofN . However, using the indexing schemes
for approximating edit distance from Theorem 9.2.3, we will show in Theorem 9.7.4

that one can reduce the running time of part (1) to O
(

n
logn
· log n · poly(log log n)

)
=

O (n · poly(log log n)).

Applying the above-metioned enhancements to the structure of our indexing scheme
will result in the black-box construction of indexing schemes using list-recoverable codes
as formalized in the following theorem.

Theorem 9.5.1. For any ε ∈ (0, 1), given a family of codes over alphabet Σ that are(
ε
46
, 276
ε
, L(·)

)
-list recoverable in TDec(·) time and achieve a rate of r = Oε(1), one can

construct an ε-indexing scheme (I, ẼDI) with any positive length n over an alphabet of size

|Σ|2 × exp
(

log(1/ε)
ε3

)
where ẼDI has

Oε

(
n ·
[
TDec(log n)

log n
+
TDec(log log n)

log log n
+ log2 log n · L(log n)L(log log n) + poly(log log n)

])
running time complexity. Further, if the given family of codes are efficiently encodable, I
can be constructed in near-linear time.

These enhancements do not eventually yield an indexing scheme that works in O(n ·
poly(log log n)) as the bottleneck of the indexing scheme’s time complexity is the decoding
time of the utilized list-recoverable code.

As of the time of writing this thesis, no deterministic list recoverable code with our ideal
properties and a decoding time complexity faster than an unspecified large polynomial is
found. However, because of the enhancements discussed in this section, improvements in
decoding time complexity of list-recoverable codes can lead to ε-indexing schemes that run
in O(n·poly(log log n)) time. Particularly, having a linear-time (ε, 1/ε, L(n) = poly(log n))-
list recoverable code would suffice.

9.5.1 Two Layer Indexing

Our enhanced indexing sequence I consists of the coordinate-wise concatenation of two
string I1 and I2 where I1 is the ordinary indexing sequence as described in Section 9.4,
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𝐼1 

𝐼2 𝐼′ 

𝒞1 1  𝒞1 2  𝒞1 3  𝒞1 |𝒞1|  

𝐼′ 𝐼′ 

𝑁2 

𝐼′ 𝒞2 1  𝒞2 2  𝒞2 3  𝒞2 |𝒞2|  

𝑁1 

𝐼′ 

(a) Construction of enhanced indexing string.

𝑆 
𝒞1 1  𝒞1 2  𝒞1 |𝒞1|  𝒞1 𝑘  

𝒞2 1  𝒞2 𝒞2  ⋯ 𝒞2 1  ⋯ 𝒞2 1  𝒞2 𝒞2  ⋯ 𝒞2 1  ⋯ ⋯ 

⋯ 

⋯ 

⋯ 

𝑆 𝑘  

⋯ 𝒞2 𝑘′  

𝑆 𝑘, 𝑘′  

𝑆′  
𝐶1
′ 𝐶2

′  𝐶 𝑆′ /𝑁1

′  𝐶𝑖
′ 

𝐶1,1
′′  𝐶1,𝑁1/𝑁2

′′  ⋯ 𝐶2,1
′′  ⋯ 𝐶𝑖,1

′′  𝐶𝑖,𝑁1/𝑁2

′′  ⋯ 𝐶 𝑆′

𝑁1
,1

′′  ⋯ 

⋯ 

⋯ 

⋯ 

𝑆′ 𝑖  

⋯ 𝐶𝑖,𝑖′
′′  

𝑆′ 𝑖, 𝑖′  

⋯ 

(b) Decoding for enhanced construction.

Figure 9.2
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i.e, the codewords of a code C1 with block length N1, and I2 is repetitions of an ordinary
indexing sequence I ′ of length N1 constructed using some code C2. (See Fig. 9.2a)

In other words, let C2 be a code of block length N2 and rate r2 over alphabet ΣC2
that is L2-list decodable from N2(1 − ε) insertions and N2(1 − ε) deletions. Writing the
codewords of C2 back to back would give the string I ′ of length |I ′| = N2 · |ΣC2|N2r2 . Then,
let code C1 be a code of block length N1 = |I ′| and rate r1 over alphabet ΣC1 that is L1-list
decodable from N1(1− ε) insertions and N1(1− ε) deletions. We form string I1 by writing
the codewords of C1 one after another and string I2 by repeating I ′ for |C1| times. Finally,
I = (I1, I2).

We provide a decoding algorithm for indexing sequence I that is very similar to Al-
gorithm 11 with an extra step in the construction of bipartite graph G that reduces the
number of edges at the cost of a weaker yet still constant approximation guarantee.

In Line 8 of Algorithm 11, instead of adding an edge between any two pair of identical
symbols in S(k) and S ′(i) (that can be as many as log2 n), the algorithm runs another
level of list-decoding and window-limiting based on the copy of I ′ that is a component of
S(k). In other word, the algorithm uses the decoder of C2 for any sub-block of length N2

in S ′(i), like S ′(i, i′), to find up to L2 sub-blocks of length N2 in S(k), like S(k, k′), and
adds an edge between any two identical symbols between S ′(i, i′) and S(k, k′). We denote
the portion of S ′(i, i′) that corresponds to C2 codewords by C ′′i,i′ . (See Fig. 9.2b) A formal
description is available in Algorithm 12.

Algorithm 12 (1 + 23ε)-Approximation for Edit Distance

1: procedure Enhanced-ED-Approx(S, S ′, N1, N2,DecC1(·),DecC2(·))
2: Make empty bipartite graph G with parts of size |S| and |S ′|
3: w = 1

ε

4: for each S ′(i) = C ′i ×
[
C ′′i,1, C

′′
i,2, · · · , C ′′i,N1/N2

]
×m′[N1(i− 1), N1i− 1] do

5: List1 ← DecC1(C ′i)
6: for each j ∈ List1 do
7: for k ∈ [j − w, j + w] do
8: for i′ ∈ [1, N1/N2] do
9: List2 ← DecC2(C ′′i,i′)

10: for each j′ ∈ List2 do
11: for k′ ∈ [j′ − w, j′ + w] do
12: Connect any pair of vertices in G that correspond to identical

symbols in S(k, k′) and S ′(i, i′).

13: MALG ← Largest non-crossing matching in G (Using Theorem 9.3.6)
14: returnMALG

Theorem 9.5.2. Algorithm 12 runs in O
(

n
N1
· TDecC1

(N1) + n
N2
· TDecC2

(N2) + N2L1L2

ε2
· n log log n

)
time for n = max(|S|, |S ′|).

Proof. The algorithm uses the decoder of C1, n
N1

times and the decoder of C2, n
N2

times.

G can have up to n
N
· L1

ε
· N1

N2
· L2

ε
·N2

2 = N2L1L2

ε2
· n edges. Therefore, the use of Hunt and
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Szymanski’s [HS77] algorithm (Theorem 9.3.6) will take O (N2L1L2/ε
2 · n log log n) time.

Therefore, the time complexity is as claimed.

Theorem 9.5.3. For 0 < ε < 1
121

, Algorithm 12 computes a set of up to (1+23ε)·ED(S, S ′)
insertions and deletions that turn S into S ′.

Proof. In the proof of Theorem 9.4.4, we proved that for the graph G in Algorithm 11,
EDALG ≤ (1 + 11ε)ED(S, S ′). In other words, the number of unmatched vertices in the
largest non-crossing matching in that graph is at most (1 + 11ε) times the number of
unmatched vertices in the bipartite graph that corresponds to the longest common subse-
quence between S and S ′.

As graph G in Algorithm 12 is the same as the one in Algorithm 11 with some extra
edges removed, we only need to show that removing the extra edges does not increase
the number of non-matched vertices in the largest non-crossing matching by more than
a (1 + O(ε)) multiplicative factor. This can be directly concluded from Theorem 9.4.4
since the extra removed edges are eliminated by doing the same procedure between pairs
of codewords of C2 that is done between the strings in the statement of Theorem 9.4.4.
In fact, using similar budget-based arguments as in Eqs. (9.1) and (9.2), the extra edge
removal step will only increase the edit distance by a (1 + 11ε) factor. This leads to the
following upper bound on the approximation ratio of Algorithm 12 that holds for ε < 1

121
.

(1 + 11ε)(1 + 11ε)ED(S, S ′) ≤ (1 + 23ε)ED(S, S ′)

9.5.2 Proof of Theorem 9.5.1

Proof. Let ε′ = ε/46. Thus, the given family of codes is
(
ε′, 6

ε′
, L(·)

)
-list recoverable.

Take the code C1 as a code with block length N1 from the given family of codes where
N1 is large enough so that N1 · |Σ|r/2·N1 ≥ n. Similarly, take C2 with block length N2 so
that N2 · |Σ|r/2·N2 ≥ N1. For a large enough n, rates of C1 and C2 are at least r/2. We
reduce the rates of C1 and C2 to r/2 by arbitrarily removing codewords from them.

We now use Theorem 9.7.4 with parameters εconv = ε′ and γconv = 1−2ε′ to convert list-
recoverable codes C1 and C2 to list-decodable insertion-deletion codes C̃1 and C̃2 by indexing
their codewords with appropriately chosen indexing sequences from Theorem 9.2.3 and
synchronization strings. Note that we can do this conversion using Theorem 9.7.4 since

γconv = 1 − 2ε′ ≤ lCi ·εconv

3
− 1 = 6/ε′·ε′

3
− 1 = 1. Also, C̃i can L(Ni)-list decode from any

γconv = 1− 2ε′ fraction of insertions and any 1−αCi − εconv = 1− ε
46
− ε′ = 1− 2ε′ fraction

of deletions in TDec(Ni) +O (Nipoly(logNi)).
Also, it is known how to construct εs-synchronization strings and εI-indexing schemes

needed in Theorem 9.7.4. εs-synchronization strings can be constructed in linear time in

terms of their length over an alphabet of size ε
−O(1)
s and εI-indexing sequences from The-

orem 9.2.3 can be constructed in near-linear time over an alphabet of size exp
(

log(1/εI)

ε3I

)
.

Therefore, the alphabets of C̃1 and C̃2 will be of size |Σ| × exp
(

log(1/ε′)
ε′3

)
.
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We now use codes C̃1 and C̃2 in the structure described in the beginning of Section 9.5.1
to obtain an indexing sequence I of length n. Since the conversion of each codeword of Ci to
C̃i consumes near-linear time in terms of Ni, if the codes Ci are efficiently encodable, string
I can be constructed in near-linear time. Also, the above-mentioned discussion on alphabet

sizes of C̃i entails that I will be a string over an alphabet of size |Σ|2 × exp
(

log(1/ε′)
ε′3

)
.

We now have to provide an algorithm that produces a (1+ε)-approximation for the edit
distance using I. In the same spirit as the algorithm provided in the proof of Theorem 9.5.1,

we define algorithm ẼDI as an algorithm that takes S × I and S ′ and runs an instance of
Algorithm 12 with S × l, S ′, N1, N2, and decoders of C̃i as its input.

As codes C̃i list decode from 1− 2ε′ fraction of insertions and deletions, Theorem 9.5.3

guarantees that ẼDI generates a set of at most (1+23 ·2(ε′))ED(S×I, S ′) = (1+ε)ED(S×
I, S ′) insertions and deletions over S × I that converts it to S ′.

Finally, since N1 = O(log n), N2 = O(log log n) and C̃i list decode in TDec(Ni) +

O (Nipoly(logNi)) time, Theorem 9.5.2 guarantees that ẼDI runs in

O

(
n

N1

· TDecC̃1
(N1) +

n

N2

· TDecC̃2
(N2) +

N2L1L2

ε2
· n log log n

)
= Oε

(
n

log n
· [TDec(log n) + log npoly(log log n)] +

n

log log n
· [TDec(log log n) + log log npoly(log log log n)] +

n log2 log n · L(log n)L(log log n)

)
= Oε

(
n ·
[
TDec(log n)

log n
+
TDec(log log n)

log log n
+ log2 log n · L(log n)L(log log n) + poly(log log n)

])
time.

9.6 Randomized Indexing

In this section, we will prove the following theorem by taking similar steps as in the proof
of Theorem 9.5.1 to construct an indexing scheme according to the structure introduced
in Section 9.5.1.

Theorem 9.6.1. For any ε0 > 0, ε1, ε2 ∈ (0, 1), and integer n, there exists a randomized

indexing scheme (I, ẼDI) of length n where ẼDI(S × I, S ′) runs in O(n logε0 n) time and
proposes a set of insertions and deletions that turns S × I into S ′ and contains up to
(1 + ε1)ED(S × I, S ′) + ε2|S ′| operations with probability 1− 1

nO(1) .

Note that, as opposed to the rest of the results in this chapter, Theorem 9.6.1 provides
an approximation guarantee with both multiplicative and additive components.

To construct such an indexing scheme using the structure introduced in Section 9.5.1,
we will use a list-decodable insertion-deletion code of block length O(log log n) from Corol-
lary 9.3.4 and use Theorem 9.7.4 to obtain a list-decodable insertion-deletion code of block
length O(log n) from the following list recoverable codes of [HRZW19].
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Theorem 9.6.2 (Corollary of Theorem 7.1 of Hemenway et al. [HRZW19]). For any
ρ ∈ [0, 1], ε > 0, and positive integer l, there exist constants q0 and c0 so that, for any
c < c0 and infinitely many integers q ≥ q0, there exists an infinite family of codes achieving
the rate ρ over an alphabet Σ of size |Σ| = q that is encodable in n1+c time and prob-
abilistically (ρ + ε, l, L(n))-list recoverable in n1+c time with success probability 2/3 and
L(n) = Oε,ρ(exp(exp(exp(log∗ n)))) where n denotes the block length.

Before providing the proof of Theorem 9.6.1, we mention a couple of necessary lemmas.

Lemma 9.6.3. Let (α, l, L(n))-list-recoverable code C have a probabilistic decoder that runs
in TDec(n) and works with probability p. Then, for any integer k, C can be (α, l, k · L(n))-
list-recovered in kTDec(n) time with 1− (1− p)k success probability.

Proof. Use a decoding procedure for C that repeats the given decoder k times and outputs
the union of the lists produced by them. The final list size will be at most kL(n) long,
the running time will be kTDec(n), and the failure probability, i.e., the probability of the
output list not containing the correct codeword is at most (1− p)k.

Another required ingredient to the proof of Theorem 9.6.1 is to show how a probabilistic
decoder affect the approximation guarantee of Algorithm 12. To this end, we provide
the following lemma as an analogy of Theorem 9.5.3 when the decoder of code C1 is not
deterministic.

Lemma 9.6.4. Let the decoder of code C1 (DecC1(·)) be a randomized algorithm that L1-list

decodes the code C1 with probability 1− p. Then, with probability 1− e−
2|S′|p
3N1 , Algorithm 12

will generate a set of up to (1 + 23ε)ED(S, S ′) + 2p|S ′| insertions and deletions that turn
S into S ′.

Proof. If DecC1(·) worked with probability 1, the outcome of A would contain up to (1 +
23ε1) insertions and deletions. Each time that DecC1 fails to correctly list-decode a block
of length N1 (C ′i), up to N1 edges from MALG might be lost and, consequently, there can
be up to 2N1 units of increase in the number of insertions and deletions generated by A.

There are a total of n = |S ′|/N1 list decodings and each might fail with probability p.
Using the Chernoff bound,

Pr(more than 2np failures) ≤ e−2np/3 = e
− 2|S′|p

3N1 .

Thus, with probability 1− e−
2|S′|p
3N1 , the output of A contains (1 + 23ε)ED(S, S ′) + 2npN1 =

(1 + 23ε)ED(S, S ′) + 2p|S ′| or less insertions and deletions.

We are now adequately equipped to prove Theorem 9.6.1.
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9.6.1 Proof of Theorem 9.6.1

Proof. Our construction closely follows the steps taken in the proof of Theorem 9.5.1. Let
ε′ = ε1/46. Take C1 from the Theorem 9.6.2 with parameters εC1 = ε′, ρC1 = 2ε′, lC1 = 6/ε′,

cC1 = ε0, and block length N1 where N1 is large enough so that N1 · q
ρC1/2·N1

C1 ≥ n where qC1
is the size of the alphabet of the family codes.

According to Theorem 9.6.2, C1 is probabilistically (ε′, ε′/6, L(N1))-list recoverable
in Oε1(N1+ε0

1 ) time where L(N1) = exp(exp(exp(log∗N1))) and success probability is
2/3. We use Lemma 9.6.3 with repetition number parameter k = log3

2
ε2

to obtain

a
(
ε′, ε

′

6
, O
(

log 1
ε2
L(N1)

))
-list recovery algorithm for C1 that succeeds with probability

1− (1
3
)k = 1− ε2

2
and runs in Oε1

(
N

1+ε0
1

ε2

)
time.

We now use Theorem 9.7.4 with parameters εconv = ε′ and γconv = 1−2ε′ to convert list-
recoverable code C1 to a list-decodable insertion-deletion code C̃1 by indexing its codewords
with an appropriately chosen indexing sequence from Theorem 9.2.3 and a synchronization
string. Note that we can do this conversion using Theorem 9.7.4 since γconv = 1 − 2ε′ ≤
lC1 ·εconv

3
−1 = 6/ε′·ε′

3
−1 = 1. Also, C̃1 canO

(
log 1

ε2
L(N1)

)
-list decode from any γconv = 1−2ε′

fraction of insertions and any 1 − αC1 − εconv = 1 − ε
46
− ε′ = 1 − 2ε′ fraction of deletions

in Oε1,ε2

(
N1+ε0

1 +N1poly(logN1)
)
.

We further take code C̃2 from Corollary 9.3.4 with parameter εC̃2 = 2ε′ and block length

N2 large enough so that N2 · qε
′/2·N2

C̃2
≥ N1. C̃2 is exp(exp(exp(N2)))-list decodable from

any 1− 2ε′ fraction of insertions and 1− 2ε′ fraction of deletions.

String I for the indexing scheme is constructed according to the structure described in
Section 9.5.1 using C̃1 and C̃2.

We define algorithm ẼDI as an algorithm that takes S× I and S ′ and runs an instance
of Algorithm 12 with S × I, S ′, N1, N2, and decoders of C̃i as its input. As codes C̃i list

decode from 1− 2ε′ fraction of insertions and deletions, Lemma 9.6.4 guarantees that ẼDI

generates a set of insertions and deletions over S × I that converts it to S ′ and is of size
(1 + 23 ·2ε′)ED(S× I, S ′) + 2 · ε2

2
|S ′| = (1 + ε)ED(S× I, S ′) + ε2|S ′| or less with probability

1− e−
ε2

3N1 = 1− e−O( ε2
logn) = 1− 1

nOε1,ε2 (1) .

Finally, since N1 = O(log n), N2 = O(log log n), C̃1 is list-decodable in O(N1+ε0
1 +

N1poly(logN1)) time and C̃2 is efficiently list-decodable, Theorem 9.5.2 guarantees that
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ẼDI runs in

Oε1,ε2

(
n

N1

· TDecC̃1
(N1) +

n

N2

· TDecC̃2
(N2) +N2L1L2 · n log log n

)
= Oε1,ε2

(
n

log n
· TDecC̃1

(log n) +
n

log log n
· TDecC̃2

(log log n) + n log2 log nLC̃1(N1)LC̃2(N2)

)
= Oε1,ε2

(
n

log n
·
[
log1+ε0 n+ log npoly(log log n)

]
+

n

log log n
· [poly(log log n)] +

n log2 log n · exp(exp(exp(log∗ n)))

)
= Oε1,ε2 (n logε0 n)

time.

9.7 Near-Linear Time Insertion-Deletion Codes

The construction of efficient (uniquely-decodable) insertion-deletion codes from Chapter 3
and list-decodable codes from Chapter 4 profoundly depend on decoding synchronization
strings that are attached to codewords of an appropriately chosen Hamming-type code.
The decoding procedure, which was introduced in Chapter 3, consists of multiple rounds
of computing the longest common subsequence (LCS) between a synchronization string
and a given string. In this section, we will show that using the indexing schemes that are
introduced in this chapter, one can compute approximations of the LCSs instead of exact
LCSs to construct insertion-deletion codes of similar guarantees as in Chapters 3 and 4
that have faster decoding complexity.

Specifically, for uniquely-decodable insertion-deletion codes, Chapter 3 provided codes
with linear encoding-time and quadratic decoding-time that can approach the singleton
bound, i.e., for any 0 < δ < 1 and 0 < ε < 1 − δ can correct from δ-fraction of insertions
and deletions and achieve a rate of 1−δ−ε. Further, Chapter 8 provided codes with linear
encoding complexity and near-linear decoding complexity can can correct from δ < 1/3
fraction of insertions and deletions but only achieve a rate of 1− 3δ− ε. In Theorem 9.2.4
we will provide insertion-deletion codes that give the best of the two worlds, i.e., approach
the Singleton bound and can be decoded in near-linear time.

Further, in Theorem 9.7.4, we show that the same improvement can be made over list-
decodable insertion-deletion codes of Chapter 4. However, this improvement brings downs
the complexity of all components of the decoding procedure to near-linear time except the
part that depends on the decoding of a list-recoverable code that is used as a black-box in
the construction from Chapter 4. Even though this progress does not immediately improve
the decoding time of list-decodable codes of Chapter 4, it opens the door to enhancement
of the decoding complexity down to potentially a near-linear time by the future advances
in the design of list-recoverable codes.
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9.7.1 Enhanced Decoding of Synchronization Strings via Index-
ing

Let S be an ε-synchronization string that is communicated through a channel that suffers
from a certain fraction of insertions and deletions. A decoding algorithm DecS for syn-
chronization string S under such channel is an algorithm that takes string that is arrived
at the receiving end of the channel, and for each symbol of that string, guesses its actual
position in S. We measure the quality of the decoding algorithm DecS by a metric named
as misdecodings. A misdecoding in the above-mentioned decoding procedure is a symbol
of S that (1) is not deleted by the channel and (2) is not decoded correctly by DecS. (find
formal definitions in Chapter 3)

The important quality of synchronization strings that is used in the design of insertion-
deletion codes in Chapters 3 and 4 is that there are decoders for any ε-synchronization
string that run in quadratic time O(n2/ε) and guarantee O(n

√
ε) misdecodings. In this

chapter, by indexing synchronization strings with indexing sequences introduced in Theo-
rem 9.2.3, we will show that one can obtain a near-linear decoding that provides similar
misdecoding guarantee.

In the rest of this section, we first present and prove a theorem that shows an indexed
synchronization string can be decoded in near-linear time with guarantees that are expected
in Theorem 3.5.14 and Lemma 4.3.2. We then verify that the steps taken in Chapters 3
and 4 still follow through.

Theorem 9.7.1. Let S be a string of length n that consists of the coordinate-wise concate-
nation of an εs-synchronization string and an εI-indexing sequence from Theorem 9.2.3.
Assume that S goes through a channel that might impose up to δ · n deletions and γ · n
symbol insertions on S for some 0 ≤ δ < 1 and 0 ≤ γ and arrives as S ′ on the receiving
end of the channel. For any positive integer K, there exists a decoding for S ′ that runs in

O(Knpoly(log n)) time, guarantees up to n
(

1+γ
K(1+εI)

+ εI(1+γ/2)
1+εI

+Kεs

)
misdecodings, and

does not decode more than K received symbol to any number in [1, n].

Before proceeding to the proof of Theorem 9.7.1, we present and prove the following
simple yet useful lemma.

Lemma 9.7.2. Let us have a set of insertions and deletions that converts string S1 to
string S2 which is of size EDAPP ≤ (1 + ε)ED(S1, S2). The common subsequence between
S1 and S2 that is implied by such a set (LCSAPP ) is of size (1 + ε)|LCS| − ε

2
(|S1| + |S2|)

or larger.

Proof.

|LCSAPP | =
|S1|+ |S2| − EDAPP

2

≥ |S1|+ |S2| − (1 + ε)ED(S1, S2)

2

=
|S1|+ |S2| − (1 + ε)(|S1|+ |S2| − 2|LCS|)

2

= (1 + ε)|LCS| − ε

2
(|S1|+ |S2|)
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Proof of Theorem 9.7.1. The global repositioning algorithm introduced in Chapter 3 and
used in Chapter 4, consists of K repetitions of the following steps:

1. Find the longest common subsequence (LCS) of S and S ′.

2. For any pair (S[i], S ′[j]) in the LCS, decode S ′[j] as ith sent symbol.

3. Remove all members of the LCS from S ′ (not in S).

Finally, the algorithm declares a special symbol ⊥ as the decoded position of all elements
of S ′ that are not included in any of the K LCSs.

To derive a decoding algorithm as promised in the statement of this lemma, we imple-
ment similar steps except we make use of the indexing scheme and compute an approxima-
tion of LCS instead of the LCS itself. This crucial step reduces the quadratic time required
in the global repositioning from Chapter 3 to near-linear time.

In Chapter 3, it has been shown that any assignment from Item 2 that is derived from
any common subsequence between S and S ′ (not necessarily a LCS) does not contain
more than nεs misdecodings, i.e., successfully transmitted symbols of S that are decode
incorrectly. (see Theorem 9.3.1). Therefore, after K repetitions, among symbols of S that
are not deleted, there are at most Knεs ones that are decoded incorrectly.

To find an upper bound for the misdecodings of this algorithm, we need to bound
above the number of successfully transmitted symbols that are not included in any LCS,
i.e., decoded as ⊥ as well. Let r be number of successfully transmitted symbols of S
that remain undecoded after K repetitions of the matching procedure described above.
Note that these symbols form a LCS of length r between S and the remainder of S ′ after
all symbol eliminations throughout K repetitions. Indeed, this implies that the size of
the LCS at the beginning of each repetition is at least r. Therefore, by Lemma 9.7.2,
the size of the approximate longest common sequence found in each matching is at least
(1 + εI)r − εI/2(|S| + |S ′|) ≥ (1 + εI)r − εIn(1 + γ/2). Note that sum of the size of
all K common subsequences plus the remaining vertices cannot exceed |S ′| ≤ (1 + γ)n.
Therefore,

K · [(1 + εI)r − εIn(1 + γ/2)] ≤ (1 + γ)n

⇒ r ≤ n ·
[

1 + γ

K(1 + εI)
+
εI(1 + γ/2)

1 + εI

]
(9.4)

Using (9.4) along with the fact that there are at most Knεs incorrectly decoded symbols of

S gives that the overall number of misdecodings is at most n ·
[

1+γ
K(1+εI)

+ εI(1+γ/2)
1+εI

+Kεs

]
.

Further, as algorithm consists of K computations of the approximated longest common
subsequence as described in Section 9.4, the running time complexity is O(Knpoly(log n)).

Finally, note that in each of the K rounds, there is at most one element that gets
decoded as each number in [1, n]. Therefore, throughout the course of the algorithm, for
each i ∈ [1, n], there are at most K elements of S ′ that are decoded as i.
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9.7.2 Near-Linear Time (Uniquely-Decodable) Insertion-
Deletion Codes

The construction of Singleton-bound-approaching uniquely-decodable insertion-deletion
codes from Chapter 3 is consisted of a Singleton approaching error correcting code and
a synchronization string. More precisely, for a given δ and ε and a sufficiently large n, we
took a synchronization string S of length n and a Singleton-bound-approaching error cor-
recting code C with block length n (from [GI05]) and indexes each codeword of C, symbol
by symbol, with symbols of S. If S is over alphabet ΣS and C is over alphabet ΣC, the
resulting code would be over ΣC × ΣS.

As for the decoding procedure, note that the input of the decoder is some code word
of C, indexed with S, that might be altered by up to δ · n insertions and deletions. Such
insertions and deletions might remove some symbols, adds some new ones, or shift the
position of some of them. The decoder uses the synchronization portion of each symbol to
guess its actual position (in the codeword prior to n · δ insertions and deletions) and then
uses the decoder of code C to figure out the sent codeword.

Before proceeding to the proof of Theorem 9.2.4, we represent the following useful
theorem from Chapter 3.

Theorem 9.7.3 (Theorem 3.3.2). Given a synchronization string S over alphabet ΣS,
an (efficient) decoding algorithm DS with at most k misdecodings and decoding complexity
TDS(n) and an (efficient) ECC C over alphabet ΣC with rate RC, encoding complexity TEC ,
and decoding complexity TDC that corrects up to nδ + 2k half-errors, one obtains an insdel
code that can be (efficiently) decoded from up to nδ insertions and deletions. The rate of
this code is at least

RC

1 + log |ΣS |
log |ΣC |

.

The encoding complexity remains TEC , the decoding complexity is TDC + TDS(n) and the
complexity of constructing the code is the complexity of constructing C and S.

We make use of Theorem 9.7.3 along with Theorem 9.7.1 to prove Theorem 9.2.4.

Proof of Theorem 9.2.4. As described earlier in this section, we construct this code
by taking an error correcting code that approaches the Singleton bound and then index
its codewords with symbols of an εs-synchronization string and an indexing scheme from
Theorem 9.2.3 with parameter εI . For a given δ and ε, we choose εI = ε

18
, εs = ε2

288
. Fur-

thermore, we use the decoding algorithm from Theorem 9.7.1 with repetition parameter
K = 24

ε
. With εs, εI , and K chosen as such, the decoding algorithm guarantees a misde-

coding count of n ·
[

1+γ
K(1+εI)

+ εI(1+γ/2)
1+εI

+Kεs

]
≤ n ·

[
ε
12

+ ε
12

+ ε
12

]
= nε

4
or less. (note that

there can be up to δn insertions, i.e., γ ≤ δ < 1)
It has been shown in Chapter 8 that such synchronization string can be constructed in

linear time over an alphabet of size ε
−O(1)
s . Also, the indexing sequence from Theorem 9.2.3

has an alphabet of size exp
(

log(1/εI)

ε3I

)
. Therefore, the alphabet size of the coordinate-
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wise concatenation of the εs-synchronization string and the indexing sequence is |ΣS| =

exp
(

log(1/ε)
ε3

)
.

As the next step, we take code C from [GI05] as a code with distance δC = δ + ε
2

and

rate 1 − δC − ε
4

over an alphabet of size |ΣC| = |ΣS|4/ε. Note that |ΣS| = exp
(

log(1/ε)
ε3

)
,

therefore, the choice of |ΣC| is large enough to satisfy the requirements of [GI05]. C is also
encodable and decodable in linear time.

Plugging C and S as described above in Theorem 9.7.3 gives an insertion-deletion code
that can be encoded in linear time, be decoded in O(Knpoly(log n)) time, corrects from

any δn insertions and deletions, achieves a rate of RC

1+
log |ΣS |
log |ΣC|

≥ 1−δ−3ε/4
1+ε/4

≥ 1− δ − ε, and is

over an alphabet of size exp
(

log(1/ε)
ε4

)
.

9.7.3 Improved List-Decodable Insertion-Deletion Codes

A very similar improvement is also applicable to the design of list-decodable insertion-
deletion codes from Chapter 4 as it also utilizes indexed synchronization strings and a
similar position recovery procedure. In the following theorem, we will provide a black-box
conversion of a given list-recoverable code to a list-decodable insertion-deletion code that
only adds a near-linear time overhead to the decoding complexity. Hence, the following
theorem paves the way to obtaining insertion-deletion codes that are list-decodable in
near-linear time upon the design of near-linear time list-recoverable codes. We will use the
following theorem to prove Theorem 9.2.5 at the end of this section.

Theorem 9.7.4. Let C : ΣnR → Σn be a (α, l, L)-list recoverable code with rate R, encoding
complexity TEnc(·) and decoding complexity complexity TDec(·). For any ε > 0 and γ ≤
lε
3
− 1, by indexing codewords of C with an εs = ε2

9(1+γ)
-synchronization string over alphabet

Σs and εI = ε
3(1+γ/2)

-indexing sequence over alphabet ΣI , one can obtain an L-list decodable

insertion-deletion code C ′ : ΣnR → [Σ×Σs×ΣI ]
n that corrects from δ < 1−α− ε fraction

of deletions and γ fraction of insertions. C ′ is encodable and decodable in O(TEnc(n) + n)
and Oε,γ(TDec(n) + npoly(log n)) time respectively.

Proof. We closely follow the proof of Theorem 4.3.1 except that we use an indexed syn-
chronization string to speed up the decoding procedure.

Index the code C with an εs = ε2

9(1+γ)
-synchronization string and an εI = ε

3(1+γ/2)
-

indexing sequence as constructed in Theorem 9.2.3 to obtain code C ′.
In the decoding procedure, for a given word x̃ that is δn deletions and γn insertions

far from some codeword x ∈ C ′, we first use the decoding algorithm from Theorem 9.7.1
to decode the index portion of symbols with parameter K = 3(1+γ)

ε
. This will give a list of

up to K = 3(1+γ)
ε
≤ l candidate symbols for each position of the codeword x.

We know from Theorem 9.7.1 that all but

n

(
1 + γ

K(1 + εI)
+
εI(1 + γ/2)

1 + εI
+Kεs

)
≤ n

(
ε

3(1 + εI)
+

ε

3(1 + εI)
+
ε

3

)
≤ nε
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of the symbols of x that are not deleted are in the correct list. As there are up to n(1− δ)
deleted symbols, all but n(1− δ − ε) > nα of the lists contain the symbol from the corre-
sponding position in x. Having such lists, the receiver can use the list-recovery function of
C to obtain an L-list-decoding for C ′.

The encoding complexity follows from the fact that synchronization strings be con-
structed in linear time (see Chapter 8), the decoding complexity follows from Theo-
rem 9.7.1, and the alphabet of C ′ is trivially Σ × Σs × ΣI as it is obtained by indexing
codewords of C with the εs-synchronization string and the εI-indexing sequence.

We now use Theorem 9.7.4 to prove Theorem 9.2.5.

Proof of Theorem 9.2.5. Take list-recoverable code C from Theorem 9.6.2 with param-
eters ρC = 1 − δ − ε

2
, εC = ε

4
, lC = 12γ+4

ε
, and cC = ε0 over an alphabet Σ of adequately

large size |Σ| ≥ q0,C which we determine later. According to Theorem 9.6.2, C has a rate
of ρC and a randomized (ρC + εC, lC, L(n) = exp(exp(exp(log∗ n))))-list recovery that works
in O(n1+ε0) time and succeeds with probability 2/3.

We plug code C into Theorem 9.7.4 with parameters εconv = ε
4

and γconv = γ to obtain

code C ′. We can do this because γconv ≤ lCεconv
3
− 1. According to Theorem 9.7.4, C ′ is

L(n)-list decodable from 1 − ρC − εC − εconv = δ fraction of deletions and γ fraction of
insertions in O(n1+ε0). This list-decoding is correctly done if the list-recovery algorithm
works correctly. Therefore, the list decoder succeeds with probability 2/3 or more.

Note that the εs-synchronization strings in Theorem 9.7.4 exist over alphabets of size

|Σs| = ε
−O(1)
s and εI-indexing sequence exist over alphabets of size |ΣI | = exp

(
log(1/εI)

ε3I

)
.

Therefore, if we take alphabet Σ large enough so that |Σ| ≥ max
{
|Σs × ΣI |2/ε, q0,C

}
=

max
{

exp
(

log(1/ε)
ε4

)
, q0,C

}
= Oε0,ε,γ(1) the rate of the resulting code will be

ρC

1 + log(|ΣS |×|Σl|)
log |Σ|

≥ 1− δ − ε/2
1 + ε/2

≥ 1− δ − ε.

Finally, the encoding and decoding complexities directly follow from Theorem 9.7.4.

9.8 Approximating Levenshtein Distance in Õ(n1+εt)

Thus far in this chapter, we studied approximations for the edit distance defined as the
smallest number of insertions and deletions the are needed to convert a string to another
one. In this section, we focus on a similar notion celled Levenshtein distance (LevD). Gen-
erally, a symbol substitution, i.e., converting a symbol to another one, can be interpreted
as a deletion followed by an insertion at the same position. This interpretation, however,
associates two units of cost to the symbol substitution operation. Levenshtein Distance
is a similar notion that assigns a unit cost to symbol substitutions as well as insertions
and deletions. More precisely, Levenshtein distance between two strings is the minimum
number of symbol insertions, deletions, or substitutions that are needed to convert a string
to another one.
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In this section, we show that indexing strings with an string of type used in the indexing
scheme of Theorem 9.2.3 enables us to approximate Levenshtein distance within a 1 + ε
multiplicative factor in Õε(n

1+εt) time for any 0 < ε, εt. The following theorem summarizes
the main result of this section.

Theorem 9.8.1. For any 0 < ε, εt, there exists a randomized indexing scheme for any

length n (I, L̃evDI) where L̃evDI(S × I, S ′) runs in Õε(n
1+εt) time and proposes an LevD

solution that contains up to (1 + ε)LevD(S × I, S ′) insertions, deletions, or substitutions
with probability 1− n−Oε(logn).

We remark that the method we use to prove Theorem 9.8.1 can be further generalized to
any edit-distance-like metric that associates constant and possibly different costs for each
of the insertion, deletion, and substitution operations. However, for the sake of simplicity,
we only include the analysis for the Levenshtein distance.

Similar to previous sections, we assume that we have a string S × I of length n0

consisting of a string S indexed by string I constructed as in Theorem 9.2.3. We aim to
approximate the Levenshtein distance between S × I and some given string S ′ of length
n. Note that for an 1 + ε multiplicative approximation, one can assume, without loss of
generality, that the lengths of S and S ′ are within ε factor of each other since, otherwise,
a trivial LevD solution with min(|S|, |S ′|) substitutions and max(|S|, |S ′|)−min(|S|, |S ′|)
would yield a 1 + ε approximation.

In the construction of the index string I from Theorem 9.2.3, the label is constructed
by appending the codewords of some constant-rate code that is L-list decodable from
1 − εC fraction of deletions and 1 − εC fraction of insertions with block length N where
N = OεC(log n) and L is a sub-logarithmic function of n.

We start with an informal description of our algorithm. We split S ′ into intervals of
length N to which we will refer as blocks of S ′. The algorithm randomly chooses

√
n

blocks of S ′. Running the decoder of code C on each of those blocks would give a list
of L codewords or, equivalently, positions in S where that block might be mapped to the
matching between S and S ′ that corresponds to the optimal set of insertions, deletions, and
substitutions between them. At the high level, the algorithm does the following: for any
pair of randomly chosen blocks that are no more than O(

√
n log2 n) apart from each other,

the algorithm decodes both blocks to find L2 candidate substrings from S to where the
substring of S ′ surrounded by them might be mapped. The algorithm then approximates
the edit distance between the substring of S ′ surrounded by the pair of blocks and all L2

substrings in S recursively and uses dynamic programming to find the optimal combination
of such candidates. The algorithm is formally described in Algorithm 13.

The algorithm takes both strings, block length and the decoder of the utilized code, ε
and εt, as well as the parameter recdepth that keeps track of the depth of the recursion.

The algorithm only recurs for
⌈
log 1

εt

⌉
levels and at that level uses the quadratic time

dynamic programming to compute the exact LevD on small subproblems. On earlier
levels, the algorithm picks

√
n blocks of S ′, r1 < r2 < · · · < r√n

2, and decodes them to

2We use ri to both refer to the block itself as well as the i.d. of the block, i.e., block ri is located at
S[(ri − 1) ·N, ri ·N − 1]
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find L candidate “neighborhoods” in S to which that block might be matched to in the
matching that yields the optimal LevD. Then, in Algorithm 13, the algorithm loops over
a neighborhood of length OεC (N) around each codeword in S to “fine tune” where the
last element of the randomly chosen block is matched to. For each such location in S,
the algorithm aims to find the best matching between the prefix of S that ends at that
location and the prefix of S ′ that ends at the block of S ′ under consideration in the dynamic
programming represented by array d[·][·].

The algorithm updates the value of each d[i][j] using all d[i′][j′]s where i′ < i and
j′ < j and adding the LevD between the two added suffixes S[i′, i] and S ′(rj, rj′)

3. In
Algorithm 13 the algorithm checks whether the length of these suffixes are O(

√
n log2 n)

or not. If they are, the algorithm uses the recursion on Algorithm 13 to approximate the
LevD between them. Otherwise, it uses the trivial conversion between the two prefixes
instead. Algorithm 13 returns the final solution that is obtained by the choosing the best
d[i][j] plus the trivial LevD for the remaining suffixes.

9.8.1 Correctness

Parameter εC specifies the code C used in the construction of the index that can list-decode
from (1 − εC)N insertions and (1 − εC)N deletions. We will do the most of the analysis
relying on parameter εC and determine it later.

Similar to previous sections, we start by taking the matchingM between S and S ′ that
yields the optimal Levenshtein distance. We do the following modifications on M.

1. If a block in S ′ contains less than NεC edges, remove the edges or equivalently, in the
corresponding LevD solution, convert the matches to symbol substitutions. This will
increase the corresponding LevD by a multiplicative factor no larger than (1 +εC) as
one can use the N(1− εC) unmatched vertices in that block and their corresponding
edits/substitutions as the budget.

2. If the projection of a block of S ′ in S is larger than N
ε

, remove the edges or equiva-
lently, in the corresponding LevD solution, convert the matches to symbol substitu-
tions. This increases the size of the LevD solution up to another (1+εC) multiplicative
factor as we can use the N ·

(
1
ε
− 1
)

unmatched vertices in the projection of S as the
approximation error budget.

Let us denote the resulting matching with M′ and corresponding LevD solutions for
M and M′ with LevDM and LevDM′ . We know that

LevDM′ ≤ (1 + εC)2LevDM. (9.5)

With the following two assumptions, the LevD computed by the algorithm will be at
least as good as LevDM′ :

1. All recursive calls at depth 2 correctly compute the exact LevD between the input
strings.

3S′(rj , rj′) represents the substring of S′ that is surrounded by rj and rj′ including rj′ and excluding
rj , i.e., S′(rj , rj′) = S′ [(rj + 1) ·N, rj′ ·N ].
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Algorithm 13 (1 + ε)-Approximation for Levenshtein Distance in O(n1+εt) Time

1: procedure LevD-Approx(S, S ′, N,DecC(·), ε, εt, rec depth = 1)

2: if rec depth =
⌈
log 1

εt

⌉
then

3: return LevD-Exact(S, S ′) . Compute the LevD using dynamic programming.

4: n← |S ′|
5: εC ← ε

100 log 1
εt

6: Randomly select
√
n blocks r1, r2, · · · , r√n from S ′ . ri’s are ordered in the or-

der of appearance in S ′

from left to right.
7: initialize d[·][·]←∞ . d[i][j] represents the LevD between S[1, i] and the

substring of S ′ that ends at rj. Note that for each

j, we only care for up to L2

ε2
values for i.

8: ∀j ∈ [1,
√
n] : d[0][j]← N · j

9: for j = 1 to
√
n do

10: lj ← DecC(rj)
11: for each x ∈ lj do
12: for each i from x ·N − N

εC
to x ·N + N

εC
do

13: d[i][j]← max(i, rj ·N) . Trivial conversion with edit and substitutions
14: for each rj′ where j′ < j do
15: for each x′ ∈ lj′ do
16: for each i′ from x′ ·N − N

ε
to x′ ·N + N

ε
where i′ < i do

17: S̃ = S[i′, i]
18: S̃ ′ = S ′(r′j, rj) . S ′(r′j, rj) indicates the substring of S ′ that

start after r′j and ends at the end of rj
19: if |S̃ ′| ≤

√
nlog2 n and |S̃| ≤ 1

εC

√
n log2 n then

20: cost ← LevD-Approx(S̃, S̃ ′, N,DecC(·), ε, εt, rec depth +
1)

21: d[i][j]← min (d[i][j], d[i′][j′] + cost)
22: else
23: d[i][j]← min

(
d[i][j], d[i′][j′] + Trivial-LevD(S̃, S̃ ′)

)
24: . Trivial-LevD(x, y) is the size of the trivial

LevD between x and y, i.e., max (|x|, |y|).
25: return minj∈[1,

√
n],i d[i][j] + Trivial-LevD(S [|S| − i, |S|] , S ′ [(rj + 1) ·N, |S|])
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2. Among the blocks that are chosen in the random selection and their edges are not
removed in the elimination steps, no two consecutive ones are more than

√
n log2 n

apart.

Having these two assumptions, the LevD computed by the algorithm will be at least as
good as LevDM′ . This can be verified by considering the list of chosen blocks that fit
in the second condition. For each of such blocks, the algorithm iterates over the exact
location in S to where their last element is mapped in Algorithm 13. Because each two
consecutive such blocks are no more than

√
n log2 n far apart by the second condition, their

corresponding sub-problems update from each other in Algorithm 13 since they satisfy the
condition in Algorithm 13. Finally, as we assumed in the first condition that second depth
calls all compute the exact LevD, the solution provided by M′ appears in Algorithm 13.

In the following lemma, we show that the second condition holds with high probability,
except when the density of the edges between the two selected blocks in M′ is less than
εC. In which case, choosing the trivial matching in Algorithm 13 only adds an extra 1 + εC
multiplicative factor to the approximation.

Lemma 9.8.2. The following holds for the
√
n randomly chosen blocks with probability

1− n−OεC (logn).

1. In any substring of length
√
n log2 n, the number of chose blocks is in[

1
100
· log2 n, 100 · log2 n

]
.

2. There is at least one selected block that is not removed in the elimination process in
any substring of length

√
n log2 n in S ′ whose corresponding vertices in M′ contain

more than lεC blocks not deleted in the elimination process.

Therefore, with high probability, each level of recursion, adds only up to (1 + εC)
3

multiplicative factor to the approximation. Hence, overall, the approximation guarantee

will be (1 + εC)
3 log 1

εt . Note that with constant recursion depth, the size and the number
of the sub-problems will be polynomial in terms of n. Therefore, by the Union bound and
with choosing εC = ε

100 log(1/εt)
, the approximation ratio of the algorithm does not exceed

1 + ε with high probability.

Proof of Lemma 9.8.2. To prove this lemma, we use the following probability concentration
inequalities.

Lemma 9.8.3 (Chernoff Bound). Let X1, X2, · · · , Xn be independent random variables
taking values from {0, 1} and X = X1 + · · ·+Xn and µ = E[X]. Then, for any 0 < δ < 1

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ

2

and for any δ > 1

Pr(X ≥ (1 + δ)µ) ≤ e−
δµ
3 .
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For a specific substring of length
√
n log2 n, each randomly chosen block lies in there

with probability log2 n√
n

. Let X denote the number of such blocks. Clearly, have E[X] =

log2 n and, therefore, using the two forms of Chernoff inequality,

Pr

(
X 6∈

[
log2 n

100
, 100 log2 n

])
≤ n−O(logn).

Further, for the second condition, same argument with an expectation of at least εC log2 n
holds. Therefore, all conditions mentioned in the statement hold with probability 1 −
n−OεC (logn).

9.8.2 Time Analysis

The algorithm picks
√
n blocks and decodes each of them. Then it goes through

√
n · L ·

1
εC

sub-problems. For each sub problem, the corresponding dynamic programming value

is computed by looking at up to
√
n · L · 1

εC
other sub-problems and recursively calling

100 log2 n · L · 1
εC

sub-problems of size O(
√
n log2 n).

T (n) ≤ L
√
n

εC
·
[
T
(√

n log2 n
)

+
L
√
n

εC

]
=

L2n

ε2
C

+
L
√
n

εC
T
(√

n log2 n
)

Since the recursion goes on for
⌈
log 1

εt

⌉
levels, the time complexity would be as follows.

T (n) ≤ n1+εt

(
L log2 n

εC

)log 1
εt

= OεC

(
n1+εt log

2 log 1
εt n · exp(exp(exp(log∗ n)))

)
= ÕεC(n

1+εt)

(9.6)
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Chapter 10

Combinatorial Properties of
Synchronization Strings

In this chapter, we study combinatorial properties of synchronization strings. In Chapter 3,
we showed that for any parameter ε > 0, synchronization strings of arbitrary length exist
over an alphabet whose size depends only on ε. Specifically, we obtain an alphabet size
of O(ε−4), which leaves an open question on where the minimal size of such alphabets lies
between Ω(ε−1) and O(ε−4). In this chapter, we partially bridge this gap by providing an
improved lower bound of Ω

(
ε−3/2

)
, and an improved upper bound of O (ε−2). We also

provide fast explicit constructions of synchronization strings over small alphabets.
Further, along the lines of previous work on similar combinatorial objects, we study the

extremal question of the smallest possible alphabet size over which synchronization strings
can exist for some constant ε < 1. We show that one can construct ε-synchronization
strings over alphabets of size four while no such string exists over binary alphabets. This
reduces the extremal question to whether synchronization strings exist over ternary alpha-
bets.
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10.1 Introduction

This chapter focuses on the study of the combinatorial properties of synchronization string.
Informally, a synchronization string is a (finite or infinite) string that avoids similarities
between pairs of intervals in the string. Such nice properties and synchronization strings
themselves can actually be motivated from at least two different aspects: coding theory
and pattern avoidance. Throughout previous chapter we extensively studied synchroniza-
tion strings and their applications in numerous coding problems. We have also discussed
how properties of synchronization strings such as the parameter ε, their alphabet size,
their construction time, and their corresponding repositioning algorithms translate into
the properties of the codes that are constructed using synchronization strings. To further
motivate the discussions of this chapter, we now provide a brief review of the previous
work on the combinatorial objects similar to synchronization strings.

10.1.1 Motivation and Previous Work in Pattern Avoidance

Apart from applications in coding theory and other communication problems involving
insertions and deletions, synchronization strings are also interesting combinatorial objects
from a mathematical perspective. As a matter of fact, plenty of very similar combinatorial
objects have been studied prior to this work.

A classical work of Axel Thue [Thu06] introduces and studies square-free strings, i.e.,
strings that do not contain two identical consecutive substrings. Thue shows that such
strings exist over alphabets of size three and provides a fast construction of such strings
using morphisms. The seminal work of Thue inspired further works on the same prob-
lem [Thu12, Lee57, Cro82, She81, SS82, Zol15] and problems with a similar pattern avoid-
ance theme.

Krieger et. al. [KORS07] study strings that satisfy relaxed variants of square-freeness,
i.e., strings that avoid approximate squares. Their study provides several results on strings
that avoid consecutive substrings of equal length with small additive or multiplicative
Hamming distance in terms of their length. In each of these regimes, [KORS07] gives
constructions of approximate square free strings over alphabets with small constant size
for different parameters.

Finally, Camungol and Rampersad [CR+16] study approximate squares with respect to
edit distance, which is equivalent to the ε-synchronization string notion except that the
edit distance property is only required to hold for pairs of consecutive substrings of equal
length. [CR+16] employs a technique based on entropy compression to prove that such
strings exist over alphabets that are constant in terms of string length but exponentially
large in terms of ε−1. We note that in Chapter 3, we already improved this dependence to
O(ε−4).

Again, a main question addressed in most of the above-mentioned previous work on
similar mathematical objects is how small the alphabet size can be.
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10.1.2 Our Results

In this chapter, we study the question of how small the alphabet size of an ε-synchronization
string can be. We address this question both for a specified ε and for an unspecified ε. In
the first case, we try to bridge the gap between the upper bound of O (ε−4) provided in
Chapter 3 and the lower bound of Ω (ε−1). In the second case, we study the question of
how small the alphabet size can be to ensure the existence of an ε-synchronization string
for some constant ε < 1. In both cases, we also give efficient constructions that improve
previous results.

New Bounds on Minimal Alphabet Size for a given ε

Our first theorem gives an improved upper bound and lower bound for the alphabet size
of an ε-synchronization string for a given ε.

Theorem 10.1.1. For any 0 < ε < 1, there exists an alphabet Σ of size O (ε−2) such
that an infinite ε-synchronization string exists over Σ. In addition, ∀n ∈ N, a randomized
algorithm can construct an ε-synchronization string of length n in expected time O(n5 log n).
Further, the alphabet size of any ε-synchronization string that is long enough in terms of
ε has to be at least Ω

(
ε−3/2

)
.

Next, we provide efficient and even linear-time constructions of ε-synchronization
strings over drastically smaller alphabets than the efficient constructions in Chapter 8.

Theorem 10.1.2. For every n ∈ N and any constant ε ∈ (0, 1), there is a deterministic
construction of a (long-distance) ε-synchronization string of length n over an alphabet
of size O(ε−2) that runs in poly(n) time. Further, there is a highly-explicit linear time
construction of such strings over an alphabet of size O(ε−3).

Moreover, in Section 10.4.3, we present a method to construct infinite synchronization
strings using constructions for finite ones that only increases the alphabet size by a con-
stant factor—as opposed to the construction in Chapter 8 that increases the alphabet size
quadratically.

Theorem 10.1.3. For any constant 0 < ε < 1, there exists an explicit construction of an
infinite ε-synchronization string S over an alphabet of size O(ε−2). Further, there exists
a highly-explicit construction of an infinite ε-synchronization string S over an alphabet of
size O(ε−3) such that for any i ∈ N, the first i symbols can be computed in O(i) time and
S[i, i+ log i] can be computed in O(log i) time.

Minimal Alphabet Size for Unspecified ε: Three or Four?

One interesting question that has been commonly addressed by the previous work on
similar combinatorial objects is the size of the smallest alphabet over which one can find
such objects. Along the lines of [Thu06, Zol15, KORS07, CR+16], we study the existence
of synchronization strings over alphabets with minimal constant size.
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It is easy to observe that no such string can exist over a binary alphabet since any binary
string of length four either contains two consecutive identical symbols or two consecutive
identical substrings of length two. On the other hand, one can extract constructions over
constant-sized alphabets from the existence proofs in Chapters 3 and 8, but the unspecified
constants there would be quite large. In Section 10.6.2, for some ε < 1, we provide a
construction of arbitrarily long ε-synchronization strings over an alphabet of size four.
This narrows down the question to whether such strings exist over alphabets of size three.

To construct such strings, we introduce the notion of weak synchronization string, which
requires substrings to satisfy a similar property as that of an ε-synchronization string,
except that the lower bound on edit distance is rounded down to the nearest integer.
We show that weak synchronization strings exist over binary alphabets and use one such
string to modify a ternary square-free string ([Thu06]) into a synchronization string over
an alphabet of size four.

Finally, in Section 10.7, we provide experimental evidence for the existence of syn-
chronization strings over ternary alphabets by finding lower-bounds for ε for which
ε-synchronization strings over alphabets of size 3, 4, 5, and 6 might exist. Simi-
lar experiments have been provided for related combinatorial objects in the previous
work [KORS07, CR+16].

Constructing Synchronization Strings Using Uniform Morphisms

Morphisms have been widely used in previous work as a tool to construct similar combina-
torial objects. A uniform morphism of rank r over an alphabet Σ is a function φ : Σ→ Σr

that maps any symbol of an alphabet Σ to a string of length r over the same alphabet. Using
this technique, some similar combinatorial objects in previous work have been constructed
by taking a symbol from the alphabet and then repeatedly using an appropriate morphism
to replace each symbol with a string [Zol15, KORS07]. Here we investigate whether such
tools can also be utilized to construct synchronization strings. In Section 10.6.1, we show
that no such morphism can construct arbitrarily long ε-synchronization strings for any
ε < 1.

10.2 Some Notations and Definitions

We formally introduce the square-free property for strings in the following.

Definition 10.2.1 (square-free string). A string S is a square free string if ∀1 ≤ i <
i+ 2l ≤ |S|+ 1, (S[i, i+ l) and S[i+ l, i+ 2l)) are different as words.

We also introduce the following generalization of a synchronization string, which will
be useful in our deterministic constructions of synchronization strings.

Definition 10.2.2 (ε-synchronization circle). A string S is an ε-synchronization circle if
∀1 ≤ i ≤ |S|, Si, Si+1, . . . , S|S|, S1, S2, . . . , Si−1 is an ε-synchronization string.
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10.3 ε-synchronization Strings and Circles with Al-

phabet Size O(ε−2)

In this section, we show that by using a non-uniform sample space together with the
Lovász local Lemma, we can have a randomized polynomial time construction of an ε-
synchronization string with alphabet size O(ε−2). We then use this to give a simple con-
struction of an ε-synchronization circle with alphabet size O(ε−2) as well. Although the
constructions here are randomized, the parameter ε can be anything in (0, 1) (even sub-
constant), while our deterministic constructions in later sections usually require ε to be a
constant in (0, 1). We first recall the general Lovász local lemma.

Lemma 10.3.1. (General Lovász Local Lemma) Let A1, ..., An be a set of bad events.
G(V,E) is a dependency graph for this set of events if V = {1, . . . , n} and each event Ai
is mutually independent of all the events {Aj : (i, j) /∈ E}. If there exists x1, ..., xn ∈ [0, 1)
such that for all i we have

Pr(Ai) ≤ xi
∏

(i,j)∈E

(1− xj)

Then the probability that none of these events happens is bounded by

Pr

(
n∧
i=1

Āi

)
≥

n∏
i=1

(1− xi) > 0

Using this lemma, we have the following theorem showing the existence of ε-
synchronization strings over an alphabet of size O(ε−2).

Theorem 10.3.2. ∀ε ∈ (0, 1) and ∀n ∈ N, there exists an ε-synchronization string S of
length n over alphabet Σ of size Θ(ε−2).

Proof. Suppose |Σ| = c1ε
−2 where c1 is a constant. Let t = c2ε

−2 and 0 < c2 < c1. The
sampling algorithm is as follows:

1. Randomly pick t different symbols from Σ and let them be the first t symbols of S.
If t ≥ n, we just pick n different symbols.

2. For t + 1 ≤ i ≤ n, we pick the ith symbol S[i] uniformly randomly from Σ \ {S[i −
1], . . . , S[i− t+ 1]}

Now we prove that there’s a positive probability that S contains no bad interval S[i, k]
which violates the requirement that ED(S[i, j], S[j+1, k]) > (1−ε)(k−i) for any i < j < k.
This requirement is equivalent to LCS(S[i, j], S[j + 1, k]) < ε

2
(k − i).

Notice that for k− i ≤ t, the symbols in S[i, k] are completely distinct. Hence we only
need to consider the case where k− i > t. First, let’s upper bound the probability that an
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interval is bad:

Pr[interval I of length l is bad] ≤
(
l

εl

)
(|Σ| − t)−

εl
2

≤ el

εl

εl

(|Σ| − t)−
εl
2

≤

(
ε
√
|Σ| − t
e

)−εl
= C−εl

The first inequality holds because if the interval is bad, then it has to contain a repeating
sequence a1a2 . . . apa1a2 . . . ap where p is at least εl

2
. Such sequence can be specified via

choosing εl positions in the interval and the probability that a given sequence is valid for
the string in this construction is at most (|Σ| − t)− εl2 . The second inequality comes from
Stirling’s inequality.

The inequality above indicates that the probability that an interval of length l is bad
can be upper bounded by C−εl, where C is a constant and can be arbitrarily large by
modifying c1 and c2.

Now we use general Lovász local lemma to show that S contains no bad interval with
positive probability. First we’ll show the following lemma.

Claim. The badness of interval I = S[i, j] is mutually independent of the badness of all
intervals that do not intersect with I.

Proof. Suppose the intervals before I that do not intersect with I are I1, . . . , Im, and those
after I are I ′1, . . . , I

′
m′ . We denote the indicator variables of each interval being bad as b,

bk and b′k′ . That is,

b =

{
0 if I is not bad

1 if I is bad
, bk =

{
0 if Ik is not bad

1 if Ik is bad
, b′k′ =

{
0 if I ′k′ is not bad

1 if I ′k′ is bad

First we prove that there exists p ∈ (0, 1) such that ∀x1, x2, . . . , xm ∈ {0, 1},

Pr(b = 1|bk = xk, k = 1, . . . ,m) = p

According to our construction, we can see that for any fixed prefix S[1, i − 1], the
probability that I is bad is a fixed real number p′. That is,

∀ valid S̃ ∈ Σi−1,Pr(b = 1|S[1, i− 1] = S̃) = p′

This comes from the fact that, the sampling of the symbols in S[i, k] only depends on the
previous h = min{i−1, t−1} different symbols, and up to a relabeling these h symbols are
the same h symbols (e.g., we can relabel them as {1, · · · , h} and the rest of the symbols as
{h+ 1, · · · , |Σ|}). On the other hand the probability that b = 1 remains unchanged under
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any relabeling of the symbols, since if two sampled symbols are the same, they will stay
the same; while if they are different, they will still be different. Thus, we have:

Pr(b = 1|bk = xk, i = 1, . . . ,m)

=
Pr(b = 1, bk = xk, i = 1, . . . ,m)

Pr(bk = xk, k = 1, . . . ,m)

=

∑
S̃ Pr(b = 1, S[1, i− 1] = S̃)∑

S̃ Pr(S[1, i− 1] = S̃)

=
∑
S̃

Pr(b = 1, S[1, i− 1] = S̃)

Pr(S[1, i− 1] = S̃)
· Pr(S[1, i− 1] = S̃)∑

S̃′ Pr(S[1, i− 1] = S̃ ′)

=
∑
S̃

Pr(b = 1|S[1, i− 1] = S̃) · Pr(S[1, i− 1] = S̃)∑
S̃′ Pr(S[1, i− 1] = S̃ ′)

=p′
∑
S̃

Pr(S[1, i− 1] = S̃)∑
S̃′ Pr(S[1, i− 1] = S̃ ′)

=p′

In the equations, S̃ indicates all valid string that prefix S[1, i − 1] can be such that bk =
xk, k = 1, . . . ,m. Hence, b is independent of {bk, k = 1, . . . ,m}. Similarly, we can prove
that the joint distribution of {b′k′ , k′ = 1, . . . ,m′} is independent of that of {b, bk, k =
1, . . . ,m}. Hence b is independent of {bk, b′k′ , k = 1, . . . ,m, k′ = 1, . . . ,m′}, which means,
the badness of interval I is mutually independent of the badness of all intervals that do
not intersect with I.

Obviously, an interval of length l intersects at most l + l′ intervals of length l′. To use
the Lovász local lemma, we need to find a sequence of real numbers xi,k ∈ [0.1) for intervals
S[i, k] for which

Pr(S[i, k]is bad) ≤ xi,k
∏

S[i,k]∩S[i′,k′]6=∅

(1− xi′,k′)

The rest of the proof is the same as that of Theorem 3.4.7. We propose xi,k = D−ε(k−i)

for some constant D ≥ 1. Hence we only need to find a constant D such that for all S[i, k],

C−ε(k−i) ≤ D−ε(k−i)
n∏
l=t

(1−D−εl)l+(k−i)

That is, for all l′ ∈ {1, ..., n},

C−l
′ ≤ D−l

′
n∏
l=t

(1−D−εl)
l+l′
ε

which means that

C ≥ D∏n
l=t(1−D−εl)

l/l′+1
ε
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Notice that the righthand side is maximized when n = ∞, l′ = 1. Hence it’s sufficient to
show that

C ≥ D∏∞
l=t(1−D−εl)

l+1
ε

Let L = maxD>1
D∏∞

l=t(1−D−εl)
l+1
ε

. We only need to guarantee that C > L.

We claim that L = Θ(1). Since that t = c2ε
−2 = ω

(
log 1

ε

ε

)
,

D∏∞
l=t(1−D−εl)

l+1
ε

<
D∏∞

l=t(1−
l+1
ε
D−εl)

(10.1)

<
D

1−
∑∞

l=t
l+1
ε
D−εl

(10.2)

=
D

1− 1
ε

∑∞
l=t(l + 1)D−εl

=
D

1− 1
ε

2tD−εt

(1−D−ε)2

(10.3)

=
D

1− 2
ε3

D−
1
ε

(1−D−ε)2

(10.4)

Inequality (10.1) comes from the fact that (1−x)α > 1−αx, (10.2) comes from he fact

that
∏∞

i=1(1−xi) ≥ 1−
∑∞

i=1 xi and (10.3) is a result from
∑∞

l=t(l+1)xl = xt(1+t−tx)
(1−x)2 < 2txt

(1−x)2

which holds for x < 1.

We can see that for D = 7, maxε{ 2
ε3

D−
1
ε

(1−D−ε)2} < 0.9. Therefore (10.4) is bounded by a

constant, which means L = Θ(1) and the proof is complete.

Using a modification of an argument from Chapter 3, we can also obtain a randomized
construction.

Lemma 10.3.3. There exists a randomized algorithm which for any ε ∈ (0, 1) and any
n ∈ N, constructs an ε-synchronization string of length n over alphabet of size O(ε−2) in
expected time O(n5 log n).

Proof. The algorithm is similar to that of Lemma 3.4.8, using the algorithmic Lovász local
lemma from [MT10] and the extension in [HSS11]. It starts with a string sampled according
to the sampling algorithm in the proof of Theorem 10.3.2, over alphabet Σ of size Cε−2 for
some large enough constant C. Then the algorithm checks all O(n2) intervals for a violation
of the requirements for ε-synchronization string. If a bad interval is found, this interval is
re-sampled by randomly choosing every symbol s.t. each one of them is different from the
previous t− 1 symbols, where t = c′ε−2 with c′ being a constant smaller than C.

One subtle point of our algorithm is the following. Note that in order to apply the algo-
rithmic framework of [MT10] and [HSS11], one needs the probability space to be sampled
from n independent random variables P = {P1, · · · , Pn} so that each event in the collection
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A = {A1, · · · , Am} is determined by some subset of P . Then, when some bad event Ai
happens, one only resamples the random variables that decide Ai. Upon first look, it may
appear that in our application of the Lovász local lemma, the sampling of the i’th symbol
depends on the the previous h = min{i−1, t−1} symbols, which again depend on previous
symbols, and so on. Thus, the sampling of the i’th symbol depends on the sampling of
all previous symbols. However, we can implement our sampling process as follows: for the
i’th symbol we first independently generate a random variable Pi which is uniform over
{1, 2, · · · , |Σ| − h}, then we use the random variables {P1, · · · , Pn} to decide the symbols,
in the following way. Initially we fix some arbitrary order of the symbols in Σ, then for
i = 1, · · · , n, to get the i’th symbol, we first reorder the symbols Σ so that the previous
h chosen symbols are labeled as the first h symbols in Σ, and the rest of the symbols are
ordered in the current order as the last |Σ|−h symbols. We then choose the i’th symbol as
the (h + Pi)’th symbol in this new order. In this way, the random variables {P1, · · · , Pn}
are indeed independent, and the i’th symbol is indeed chosen uniformly from the |Σ| − h
symbols excluding the previous h symbols. Furthermore, the event of any interval S[i, k]
being bad only depends on the random variables (Pi, · · · , Pk) since no matter what the
previous h symbols are, they are relabeled as {1, · · · , h} and the rest of the symbols are
labeled as {h+ 1, · · · , |Σ|}. From here, the same sequence of (Pi, · · · , Pk) will result in the
same behavior of S[i, k] in terms of which symbols are the same. We can, thus, apply the
same algorithm as in Chapter 3.

Note that the time to get the i’th symbol from the random variables {P1, · · · , Pn} is
O(n log 1

ε
) since we need O(n) operations each on a symbol of size Cε−2. Thus, resampling

each interval takes O(n2 log 1
ε
) time since we need to resample at most n symbols. For every

interval, the edit distance can be computed using the Wagner-Fischer dynamic program-
ming within O(n2 log 1

ε
) time. [HSS11] shows that the expected number of re-sampling is

O(n). The algorithm will repeat until no bad interval can be found. Hence the overall
expected running time is O(n5 log 1

ε
).

Note that without loss of generality we can assume that ε > 1/
√
n because for smaller

errors we can always use the indices directly, which have alphabet size n. So the overall
expected running time is O(n5 log n).

We can now construct an ε-synchronization circle using Theorem 10.3.2.

Theorem 10.3.4. For every ε ∈ (0, 1) and every n ∈ N, there exists an ε-synchronization
circle S of length n over alphabet Σ of size O(ε−2).

Proof. First, by Theorem 10.3.2, we can have two ε-synchronization strings: S1 with length
dn

2
e over Σ1 and S2 with length bn

2
c over Σ2. Let Σ1 ∩ Σ2 = ∅ and |Σ1| = |Σ2| = O(ε−2).

Let S be the concatenation of S1 and S2. Then S is over alphabet Σ = Σ1 ∪Σ2 whose size
is O(ε−2). Now we prove that S is an ε-synchronization circle.

∀1 ≤ m ≤ n, consider string S ′ = sm, sm+1, . . . , sn, s1, s2, . . . , sm−1. Notice that for two
strings T and T ′ over alphabet Σ, LCS(T, T ′) ≤ ε

2
(|T |+ |T ′|) is equivalent to ED(T, T ′) ≥

(1− ε)(|T |+ |T ′|). For any i < j < k, we call an interval S ′[i, k] good if LCS(S ′[i, j], S ′[j+
1, k]) ≤ ε

2
(k − i). It suffices to show that ∀1 ≤ i, k ≤ n, the interval S ′[i, k] is good.
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Without loss of generality let’s assume m ∈ [dn
2
e, n]. Intervals which are substrings of

S1 or S2 are good intervals, since S1 and S2 are ε-synchronization strings. We are left with
intervals crossing the ends of S1 or S2.

If S ′[i, k] contains sn, s1 but doesn’t contain sdn
2
e: If j < n −m + 1, then there’s

no common subsequence between s′[i, j] and S ′[n−m+ 2, k]. Thus,

LCS(S ′[i, j], S ′[j+ 1, k]) ≤ LCS(S ′[i, j], S ′[j+ 1, n−m+ 1]) ≤ ε

2
(n−m+ 1− i) < ε

2
(k− i)

If j ≥ n−m+1, then there’s no common subsequence between S ′[j+1, k] and S ′[i, n−m+1].
Thus,

LCS(S ′[i, j], S ′[j+1, k]) ≤ LCS(S ′[n−m+2, j], S ′[j+1, k]) ≤ ε

2
(k−(n−m+2)) <

ε

2
(k−i)

Thus, intervals of this kind are good.

Figure 10.1: Example where S ′[i, k] contains sn, s1 but doesn’t contain sdn
2
e

If S ′[i, k] contains sbn
2
c, sdn

2
e but doesn’t contain sn: If j ≤ n−m+ bn

2
c+ 1, then

there’s no common subsequence between S ′[i, j] and S ′[n−m+ dn
2
e+ 1, k], thus,

LCS(S ′[i, j], S ′[j + 1, k]) ≤ LCS(S ′[i, j], S ′[j + 1, n−m+ bn
2
c+ 1]) <

ε

2
(k − i)
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If j ≥ n − m + bn
2
c + 1, then there’s no common subsequence between S ′[j + 1, k] and

S ′[i, n−m+ bn
2
c+ 1]. Thus,

LCS(S ′[i, j], S ′[j + 1, k]) ≤ LCS(S ′[n−m+ dn
2
e+ 1, j], S ′[j + 1, k]) <

ε

2
(k − i)

Thus, intervals of this kind are good.

Figure 10.2: Example where S ′[i, k] contains sbn
2
c, sdn

2
e

If S ′[i, k] contains sdn
2
e and sn: If n − m + 2 ≤ j ≤ n − m + bn

2
c + 1, then the

common subsequence is either that of S ′[i, n −m + 1] and S ′[n −m + dn
2
e + 1, k] or that

of S ′[n−m+ 2, j] and S ′[j + 1, n−m+ bn
2
c+ 1]. This is because Σ1 ∩ Σ2 = ∅. Thus,

LCS(S ′[i, j], S ′[j + 1, k])

≤ max
{

LCS(S ′[i, n−m+ 1], S ′[n−m+ dn
2
e+ 1, k]),

LCS(S ′[n−m+ 2, j], S ′[j + 1, n−m+ bn
2
c+ 1])

}
<

ε

2
(k − i)
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Figure 10.3: Example where S ′[i, k] contains sdn
2
e and sn

If j ≤ n−m+ 1, then there’s no common subsequence between S ′[i, j] and S ′[n−m+
2, n−m+

⌊
n
2

⌋
+ 1]. Thus,

LCS(S ′[i, j], S ′[j + 1, k])

≤ LCS(S ′[i, j], S ′[j + 1, n−m+ 1]) + LCS(S ′[i, j], S ′[n−m+
⌈n

2

⌉
+ 1, k])

<
ε

2
(n−m+ 1− i) +

ε

2
(n−

⌈n
2

⌉
) ≤ ε

2
(n−m+ 1− i) +

ε

2
(k − (n−m+ 2))

=
ε

2
(k − 1− i) < ε

2
(k − i)

If j ≥ S ′[n−m+ dn
2
e+ 1], the proof is similar to the case where j ≤ n−m+ 1.

This shows that S ′ is an ε-synchronization string. Thus, by the definition of synchro-
nization circle, the construction gives an ε-synchronization circle.

10.4 Deterministic Constructions of Long-Distance

Synchronization Strings

In this section, we give deterministic constructions of synchronization strings. In
fact, we consider a generalized version of synchronization strings, i.e., f(l)-distance ε-
synchronization strings as defined in Chapter 8. Throughout this section, ε is considered
to be a constant in (0, 1).
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Definition 10.4.1 (f(l)-distance ε-synchronization string (Definition 8.3.1)). A string
S ∈ Σn is an f(l)-distance ε-synchronization string if for every 1 ≤ i < j ≤ i′ < j′ ≤ n+1,
ED (S[i, j), S[i′, j′)) > (1− ε)(l) for i′ − j ≤ f(l) where l = j + j′ − i− i′.

As a special case, 0-distance synchronization strings are standard synchronization
strings.

Similar to Chapter 8, we focus on f(l) = n · 1l>c logn where 1l>c logn is the indicator
function for l > c log n. This function considers the edit distance of all pairs of large
intervals and adjacent small intervals.

Definition 10.4.2 (c-long-distance ε-synchronization strings (Definition 8.3.2)). We call
n · 1l>c logn-distance ε-synchronization strings c-long-distance ε-synchronization strings.

10.4.1 Polynomial Time Constructions of Long-Distance Syn-
chronization Strings

Here, by combining the deterministic Lovász local lemma of Chandrasekaran et al. [CGH13]
and the non-uniform sample space used in Theorem 10.3.2, we give a deterministic
polynomial-time construction of c-long ε-synchronization strings over an alphabet of size
O(ε−2). We first recall the following property of c-long synchronization strings.

Lemma 10.4.3 (Corollary 8.3.4). If S is a string which satisfies the c-long-distance ε-
synchronization property for any two non-adjacent intervals of total length 2c log n or less,
then it satisfies the property for all pairs of non-adjacent intervals.

We now have the following theorem.

Theorem 10.4.4. For any n ∈ N and any constant ε ∈ (0, 1), there is a deterministic con-
struction of a O(1/ε)-long-distance ε-synchronization string of length n, over an alphabet
of size O(ε−2), in time poly(n).

Proof. To prove this, we will use the Lovśz local lemma and its deterministic algorithm
in [CGH13]. Suppose the alphabet is Σ with |Σ| = q = c1ε

−2 where c1 is a constant. Let
t = c2ε

−2 and 0 < c2 < c1. We denote |Σ| − t as q. The sampling algorithm of string S
(1-index based)is as follows:

� Initialize an arbitrary order for Σ.

� For ith symbol:

– Denote h = min{t − 1, i − 1}. Generate a random variable Pi uniformly over
{1, 2, . . . , |Σ| − h}.

– Reorder Σ such that the previous h chosen symbols are labeled as the first h
symbols in Σ, and the rest are ordered in the current order as the last |Σ| − h
symbols.

– Choose the (Pi + h)’th symbol in this new order as S[i].
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Define the bad event Ai1,l1,i2,l2 as intervals S[i1, i1 + l1) and S[i2, i2 + l2) violating the
c = O(1/ε)-long-distance synchronization string property for i1 + l1 ≤ i2. In other words,
Ai1,l1,i2,l2 occurs if and only if ED(S[i1, i1 + l1), S[i2, i2 + l2)) ≤ (1 − ε)(l1 + l2), which is
equivalent to LCS(S[i1, i1 + l1), S[i2, i2 + l2)) ≥ ε

2
(l1 + l2).

Note that according to the definition of c-long distance ε-synchronization string and
Corollary 8.3.4, we only need to consider Ai1,l1,i2,l2 where l1 + l2 < c log n and c log n ≤
l1 + l2 ≤ 2c log n. Thus we can upper bound the probability of Ai1,l1,i2,l2 ,

Pr [Ai1,l1,i2,l2 ] ≤
(

l1
ε(l1 + l2)/2

)(
l2

ε(l1 + l2)/2

)
(|Σ| − t)−

ε(l1+l2)
2

≤
(

l1e

ε(l1 + l2)/2

)ε(l1+l2)/2(
l2e

ε(l1 + l2)/2

)ε(l1+l2)/2

(|Σ| − t)−
ε(l1+l2)

2

=

(
2e
√
l1l2

ε(l1 + l2)
√
|Σ| − t

)ε(l1+l2)

≤

(
el

εl
√
|Σ| − t

)εl

=

(
e

ε
√
|Σ| − t

)εl

= Ĉεl,

where l = l1 + l2 and Ĉ is a constant which depends on c1 and c2.
However, to apply the deterministic Lovász local lemma (LLL), we need to have two

additional requirements. The first requirement is that each bad event depends on up to
logarithmically many variables, and the second is that the inequalities in the Lovśz Local
Lemma hold with a constant exponential slack.

The first requirement may not be true under the current definition of badness. Consider
for example the random variables Pi1 , . . . , Pi1+l1−1, Pi2 , Pi2+l2−1 for a pair of split intervals
S[i1, i1+l1), S[i2, i2+l2) where the total length l1+l2 is at least 2c log n. The event Ai1,l1,i2,l2
may depend on too many random variables (i.e., Pi1 , . . . , Pi2+l2−1).

To overcome this, we redefine the badness of the split interval S[i1, i1 + l1) and
S[i2, i2 + l2) as follows: let Bi1,l1,i2,l2 be the event that there exists Pi1+l1 , . . . , Pi2−1

(i.e., the random variables chosen between the two intervals) such that the two intervals
generated by Pi1 . . . , Pi1+l1−1 and Pi2 , . . . , Pi2+l2−1 (together with Pi1+l1 , . . . , Pi2−1) makes
LCS(S[i1, i1 + l1), S[i2, i2 + l2)) ≥ ε

2
(l1 + l2) according to the sampling algorithm. Note that

if Bi1,l1,i2,l2 does not happen, then certainly Ai1,l1,i2,l2 does not happen.
Notice that with this new definition of badness, Bi1,l1,i2,l2 is independent of

{Pi1+l1 , . . . , Pi2−1} and only depends on {Pi1 . . . , Pi1+l1−1, Pi2 , . . . , Pi2+l2}. In particular,
this implies that Bi1,l1,i2,l2 is independent of the badness of all other intervals which have
no intersection with (S[i1, i1 + l1), S[i2, i2 + l2)).

We now bound Pr[Bi1,l1,i2,l2 ]. When considering the two intervals S[i1, i1 + l1), S[i2, i2 +
l2) and their edit distance under our sampling algorithm, without loss of generality we can
assume that the order of the alphabet at the point of sampling S[i1] is (1, 2, . . . , q) just by
renaming the symbols. Now, if we fix the order of the alphabet at the point of sampling
S[i2] in our sampling algorithm, then S[i2, i2 + l2) only depends on {Pi2 , . . . , Pi2+l2} and
thus LCS(S[i1, i1 + l1), S[i2, i2 + l2)) only depends on {Pi1 . . . , Pi1+l1−1, Pi2 , . . . , Pi2+l2}.
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Conditioned on any fixed order of the alphabet at the point of sampling S[i2], we have

that LCS(S[i1, i1 + l1), S[i2, i2 + l2)) ≥ ε
2
(l1 + l2) happens with probability at most Ĉεl by

the same computation as we upper bound Pr[Ai1,l1,i2,l2 ]. Note that there are at most q!
different orders of the alphabet. Thus, by a union bound we have

Pr[Bi1,l1,i2,l2 ] ≤ Ĉεl × q! = Cεl,

for some constant C.
In order to meet the second requirement of the deterministic algorithm of LLL, we also

need to find real numbers xi1,i1+l1,i2,i2+l2 ∈ [0, 1] such that for any Bi1,l1,i2,l2 ,

Pr[Bi1,l1,i2,l2 ] ≤

xi1,l1,i2,l2 ∏
[S[i1,i1+l1)∪S[i2,i2+l2)]∩[S[i′1,i

′
1+l′1)∪S[i′2,i

′
2+l′2)] 6=∅

(1− xi′1,l′1,i′2,l′2)

1.01

.

We propose xi1,l1,i2,l2 = D−ε(l1+l2) for some D > 1 to be determined later. D has to be
chosen such that for any i1, l1, i2, l2 and l = l1 + l2:

(
e

ε
√
|Σ|

)εl

≤

D−εl ∏
[S[i1,i1+l1)∪S[i2,i2+l2)]∩[S[i′1,i

′
1+l′1)∪S[i′2,i

′
2+l′2)] 6=∅

(
1−D−ε(l′1+l′2)

)1.01

(10.5)

Notice that

D−εl
∏

[S[i1,i1+l1)∪S[i2,i2+l2)]∩[S[i′1,i
′
1+l′1)∪S[i′2,i

′
2+l′2)] 6=∅

(
1−D−ε(l′1+l′2)

)
(10.6)

≥ D−εl
2c logn∏
l′=c logn

l′∏
l′1=1

(
1−D−εl′

)[(l1+l′1)+(l1+l′2)+(l2+l′1)+(l2+l′2)]n

×
c logn∏
l′′=t

(
1−D−εl′′

)l+l′′
(10.7)

= D−εl
2c logn∏
l′=c logn

l′∏
l′1=1

(
1−D−εl′

)4(l+l′)n

×
c logn∏
l′′=t

(
1−D−εl′′

)l+l′′
(10.8)

= D−εl
2c logn∏
l′=c logn

(
1−D−εl′

)4l′(l+l′)n

×

[
c logn∏
l′′=t

(
1−D−εl′′

)]l
×

c logn∏
l′′=t

(
1−D−εl′′

)l′′
(10.9)

≥ D−εl

(
1−

2c logn∑
l′=c logn

(4l′(l + l′)n)D−εl
′

)

×

[
1−

c logn∑
l′′=t

D−εl
′′

]l
×

(
1−

c logn∑
l′′=t

l′′D−εl
′′

)
(10.10)
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≥ D−εl

(
1−

2c logn∑
l′=c logn

(4 · 2c log n(2c log n+ 2c log n)n)D−εl
′

)
(10.11)

×

[
1−

∞∑
l′′=t

D−εl
′′

]l
×

(
1−

∞∑
l′′=t

l′′D−εl
′′

)
(10.12)

= D−εl

(
1−

2c logn∑
l′=c logn

(
32c2n log2 n

)
D−εl

′

)
×

[
1− D−c2ε

−1

1−D−ε

]l

×
(

1− D−c2/ε(D−ε + c2/ε
2 − c2D

−ε/ε2)

(1−D−ε)2

)
(10.13)

≥ D−εl
(
1− 32c3n log3 nD−εc logn

) [
1− D−c2ε

−1

1−D−ε

]l
×
(

1− D−c2/ε(D−ε + c2/ε
2 − c2D

−ε/ε2)

(1−D−ε)2

)
(10.14)

(10.7) holds because there are two kinds of pairs of intervals. The first kind contains
all pairs of intervals whose total length is between c log n and 2c log n intersecting with
S[i1, i1 + l1) or S[i2, i2 + l2). The number of such pairs is at most (l1 + l′1) + (l1 + l′2) +
(l2 + l′1) + (l2 + l′2). The second kind contains all adjacent intervals of total length less than
c log n. Notice that according to our sampling algorithm, every t consecutive symbols are
distinct, thus any adjacent intervals whose total length is less than t cannot be bad. Hence
the second term contains intervals such that t ≤ l′′ = l′′1 + l′′2 ≤ c log n. The rest of the
proof is the same as that Theorem 8.3.5.

(10.10) comes from the fact that for 0 < x, y < 1:

(1− x)(1− y) > 1− x− y

For D = 2 and c = 2/ε,

lim
ε→0

2−c2/ε

1− 2−ε
= 0

Thus, for sufficiently small ε, 2−c2/ε

1−2−ε
< 1

2
. Moreover,

32c2n log2 nD−εl
′
=

28

ε3

log3 n

n
= o(1)

Finally, for sufficiently small ε, 1 − D−c2/ε(D−ε+c2/ε2−c2D−ε/ε2)
(1−D−ε)2 > 2−ε. Therefore, for suffi-

ciently small ε and sufficiently large n, (10.14) is satisfied under the condition:

D−εl
∏

[S[i1,i1+l1)∪S[i2,i2+l2)]∩[S[i′1,i
′
1+l′1)∪S[i′2,i

′
2+l′2)]6=∅

(
1−D−ε(l′1+l′2)

)
≥ 2−εl

(
1− 1

2

)
(2−ε)l

(
1− 1

2

)
≥ 4−εl

4
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So for LLL to work, the following should be guaranteed:(
e

ε
√
|Σ| − t

) εl
1.01

≤ 4−εl

4
⇐ 42.02(1+ε)e2

ε2
≤ |Σ| − t

Hence the second requirement holds for |Σ| − t = 44.04e2

ε2
= O(ε−2).

Corollary 10.4.5. For any n ∈ N and any constant ε ∈ (0, 1), there is a deterministic
construction of an ε-synchronization string of length n, over an alphabet of size O(ε−2), in
time poly(n).

By a similar concatenation construction used in the proof of Theorem 10.3.4, we also
have a deterministic construction for synchronization circles.

Corollary 10.4.6. For any n ∈ N and any constant ε ∈ (0, 1), there is a deterministic
construction of an ε-synchronization circle of length n, over an alphabet of size O(ε−2), in
time poly(n).

10.4.2 Deterministic linear time constructions of c-long distance
ε-synchronization string

Here we give a much more efficient construction of a c-long distance ε-synchronization
string, using synchronization circles and standard error correcting codes. We show that
the following algorithm gives a construction of c-long distance synchronization strings.

Algorithm 14 Explicit Linear Time Construction of c-long distance ε-synchronization
string

Input:

� An ECC Ĉ ⊂ Σm
Ĉ

, with distance δm and block length m = c log n.

� An ε0-synchronization circle SC = (sc1, . . . , scm) of length m over alphabet ΣSC .

Operations:

� Construct a code C ⊂ Σm such that

C = {((ĉ1, sc1), . . . , (ĉm, scm))|(ĉ1, . . . , ĉm) ∈ Ĉ}

where Σ = ΣĈ × ΣSC .

� Let S be concatenation of all codewords C1, . . . , CN from C.
Output: S.

To prove the correctness, we first recall the following theorem from Chapter 3.

Theorem 10.4.7 (Implied by Theorems 3.3.2 and 3.5.14). Given an ε0-synchronization
string S with length n, and an efficient ECC C with block length n, that corrects up to
nδ 1+ε0

1−ε0 half-errors, one can obtain an insertion/deletion code C ′ that can be decoded from
up to nδ deletions, where C ′ = {(c′1, . . . , c′n)|∀i ∈ [n], c′i = (ci, S[i]), (c1, . . . , cn) ∈ C}.
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We have the following property of longest common subsequence.

Lemma 10.4.8. Suppose T1 is the concatenation of `1 strings, T1 = S1 ◦ · · · ◦ S`1 and T2

is the concatenation of `2 strings, T2 = S ′1 ◦ · · · ◦ S ′`2. If there exists an integer t such that
for all i, j, we have LCS(Si, S

′
j) ≤ t, then we have LCS(T1, T2) ≤ (`1 + `2)t.

Proof. We rename the strings in T2 by S`1+1, · · · , S`1+`2 . Suppose the longest common
subsequence between T1 and T2 is T̃ , which can be viewed as a matching between T1 and
T2. We can divide T̃ sequentially into disjoint intervals, where each interval corresponds
to a common subsequence between a different pair of strings (Si, Sj), where Si is from T1

and Sj is from T2. In addition, if we look at the intervals from left to right, then for any
two consecutive intervals and their corresponding pairs (Si, Sj) and (Si′ , Sj′), we must have
i′ ≥ i and j′ ≥ j since the matchings which correspond to two intervals cannot cross each
other. Furthermore either i′ > i or j′ > j as the pair (Si, Sj) is different from (Si′ , Sj′).

Thus, starting from the first interval, we can label each interval with either i or j such
that every interval receives a different label, as follows. We label the first interval using
either i or j. Then, assuming we have already labeled some intervals and now look at the
next interval. Without loss of generality assume that the previous interval is labeled using
i, now if the current i′ > i then we can label the current interval using i′; otherwise we
must have j′ > j so we can label the current interval using j′. Thus the total number
of the labels is at most l1 + l2, which means the total number of the intervals is also at
most l1 + l2. Note that each interval has length at most t, therefore we can upper bound
LCS(T1, T2) by (l1 + l2)t.

Lemma 10.4.9. The output S in Algorithm 14 is an ε1-synchronization circle, where
ε1 ≤ 10(1− 1−ε0

1+ε0
δ).

Proof. Suppose Ĉ can correct up to δm half-errors. Then according to lemma 10.4.7, C can
correct up to 1−ε0

1+ε0
δm deletions.

Let α = 1− 1−ε0
1+ε0

δ. Notice that C has the following properties:

1. LCS(C) = maxc1,c2∈C LCS(c1, c2) ≤ αm

2. Each codeword in C is an ε-synchronization circle over Σ.

Consider any shift of the start point of S, we only need to prove that ∀1 ≤ i < j < k ≤
n,LCS(S[i, j], S[j + 1, k]) < ε1

2
(k − i).

Suppose S1 = S[i, j] and S2 = S[j + 1, k]. Let ε1 = 10α.

Case 1: k − i > m. Let |S1| = s1 and |S2| = s2, thus s1 + s2 > m. If we look at each
Sh for h = 1, 2, then Sh can be divided into some consecutive codewords, plus at most two
incomplete codewords at both ends. In this sense each Sh is the concatenation of `h strings
with `h <

sh
m

+ 2. An example of the worst case appears in Figure 10.4.
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Figure 10.4: Example of the worst case, where j splits a codeword, and there are two
incomplete codewords at both ends.

Now consider the longest common subsequence between any pair of these strings where
one is from S1 and the other is from S2, we claim that the length of any such longest
common subsequence is at most αm. Indeed, if the pair of strings are from two different
codewords, then by the property of the code C we know the length is at most αm. On
the other hand, if the pair of strings are from a single codeword (this happens when j
splits a codeword, or when S[i] and S[k] are in the same codeword), then they must be
two disjoint intervals within a codeword. In this case, by the property that any codeword
is also a synchronization circle, the length of the longest common subsequence of this pair
is at most ε0

2
m.

Note that α = 1− 1−ε0
1+ε0

δ ≥ 1− 1−ε0
1+ε0

= 2ε0
1+ε0
≥ ε0 (since δ, ε0 ∈ (0, 1)). Thus ε0

2
m < αm.

Therefore, by Lemma 10.4.8, we have

LCS(S1, S2) <
(s1

m
+ 2 +

s2

m
+ 2
)
αm = α(s1+s2+4m) < 5α(s1+s2) = 5α(k−i) =

ε1

2
(k−i)

Case 2: If k− i ≤ m, then according to the property of synchronization circle SC, we
know that the longest common subsequence of S1 and S2 is less than ε0

2
(k− i) ≤ α(k− i) ≤

ε1
2

(k − i).
As a result, the longest common subsequence of S[i, j] and S[j + 1, k] is less than

ε1
2

(k − i), which means that S is an ε1-synchronization circle.

Similarly, we also have the following lemma.

Lemma 10.4.10. The output S of algorithm 14 is a c-long distance ε-synchronization
string of length n = Nm where N is the number of codewords in C, ε = 12(1− 1−ε0

1+ε0
δ).

Proof. By Lemma 10.4.9, S is an ε1-synchronization string, thus the length of longest
common subsequence for adjacent intervals S1, S2 with total length l < c log n is less than
ε1
2
l. We only need to consider pair of intervals S1, S2 whose total length l ∈ [c log n, 2c log n].

Notice that the total length of S1 and S2 is at most 2c log n, which means that S1

and S2 each intersects with at most 3 codewords from C. Using Lemma 10.4.8, we have
that LCS(S1, S2) ≤ 6αl. Thus, picking ε = max{12α, ε1} = 12α = 12(1 − 1−ε0

1+ε0
δ), S from

Algorithm 14 is a c-long distance ε-synchronization circle.

We need the following code constructed by Guruswarmi and Indyk [GI05].

Lemma 10.4.11 (Theorem 3 of [GI05]). For every 0 < r < 1, and all sufficiently small
ε > 0, there exists a family of codes of rate r and relative distance (1 − r − ε) over an
alphabet of size 2O(ε−4r−1 log(1/ε)) such that codes from the family can be encoded in linear
time and can also be uniquely decoded in linear time from 2(1 − r − ε) fraction of half
errors.
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Lemma 10.4.12 (ECC by Brute Force Search). For any n ∈ N, any ε ∈ [0, 1], one
can construct a ECC in time O(2εn(2e

ε
)nn log(1/ε)) and space O(2εnn log(1/ε)), with block

length n, number of codewords 2εn, distance d = (1− ε)n, alphabet size 2e/ε.

We can now use Algorithm 14 to give a linear time construction of c− long− distance
ε-synchronization strings.

Theorem 10.4.13. For every n ∈ N and any constant 0 < ε < 1, there is a deterministic
construction of a c = O(ε−2)-long-distance ε-synchronization string S ∈ Σn where |Σ| =
O(ε−3), in time O(n). Moreover, S[i, i+ log n] can be computed in O( logn

ε2
) time.

Proof. Suppose we have an error correcting code Ĉ with distance rate 1−ε′ = 1+ ε
36

1− ε
36

(1− ε
12

),

message rate rc = O(ε′2), over an alphabet of size |Σc| = O(ε′−1), with block length

m = O(ε′−2 log n). Let c = O(ε′−2) = O(ε−2). We apply Algorithm 14, using Ĉ and
an ε

36
-synchronization circle SC of length m over an alphabet of size O(ε−2). Here SC is

constructed by Corollary 10.4.6 in time poly(m) = poly(log n). By Lemma 10.4.10, we have

a c-long-distance 12(1− 1− ε
36

1+ ε
36

(1− ε′)) = ε-synchronization string of length m · |Σc|rcm ≥ n.

It remains to show that we can have such a Ĉ with linear time encoding. We use the
code in Lemma 10.4.11 as the outer code and the one in Lemma 10.4.12 as inner code.
Let Cout be an instantiation of the code in Lemma 10.4.11 with rate ro = εo = 1

3
ε′, relative

distance do = (1 − 2εo) and alphabet size 2O(ε−5
o log(1/εo)), and block length no = ε4o logn

log(1/εo)
,

which is encodable and decodable in linear time.
Further, according to Lemma 10.4.12 one can find a code Cin with rate ri = O(εi)

where εi = 1
3
ε′, relative distance 1 − εi, over an alphabet of size 2e

εi
, and block length

ni = O(ε−6
i log(1/εi)). Note that since the block length and alphabet size are both constant

because ε is a constant. So the encoding can be done in constant time.
Concatenating Cout and Cin gives the desire code Ĉ with rate O(ε′2), distance 1−O(ε′)

and alphabet of size O(ε′−1) and block length O(ε′−2 log n). Moreover, the encoding of Ĉ
can be done in linear time, because the encoding of Cout is in linear time and the encoding
of Cin is in constant time.

Note that since every codeword of Ĉ can be computed in time O( logn
ε2

), S[i, i + log n]

can be computed in O( logn
ε2

) time.

Corollary 10.4.14. For every n ∈ N and any constant 0 < ε < 1, there is a deterministic
construction of an ε-synchronization string S ∈ Σn where |Σ| = O(ε−3), in time O(n).
Moreover, S[i, i+ log n] can be computed in O( logn

ε2
) time.

10.4.3 Explicit Constructions of Infinite Synchronization Strings

In this section, we give construction algorithms of infinite synchronization strings. To mea-
sure the efficiency of the construction of an infinite string, we consider the time complexity
for computing the first n elements of that string. Remember from Chapter 8 that an infinite
synchronization string is said to have an explicit construction if there is an algorithm that
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computes any position S[i] in time poly(i). Moreover, it is said to have a highly-explicit
construction if there is an algorithm that computes any position S[i] in time O(log i).

We have the following algorithm.

Algorithm 15 Construction of infinite ε-synchronization string

Input:

� A constant ε ∈ (0, 1).

Operations:

� Let q ∈ N be the size of an alphabet large enough to construct an ε
2
-synchronization

string. Let Σ1 and Σ2 be two alphabets of size q such that Σ1 ∩ Σ2 = ∅.
� Let k = 4

ε
. For i = 1, 2, . . ., construct an ε

2
-synchronization string Ski of length ki,

where Ski is over Σ1 if i is odd and over Σ2 otherwise.

� Let S be the sequential concatenation of Sk, Sk2 , Sk3 , . . . , Skt , . . .

Output: S.

Lemma 10.4.15. If there is a construction of ε
2
-synchronization strings with alphabet size

q, then Algorithm 15 constructs an infinite ε-synchronization string with alphabet size 2q.

Proof. Fig. 10.5 depicts the construction proposed by Algorithm 15.

Figure 10.5: Sk and Sk3 are over alphabet Σ1 and Sk2 is over Σ2.

Now we show that S is an infinite ε-synchronization string.

Claim. Let x < y < z be positive integers and let t be such that kt ≤ |S[x, z)| < kt+1.
Then ED(S[x, y), S[y, z)) ≥ (1− ε

2
)(z − x)(1− 2

k
).

Proof. Let li be the index of S where Ski+1 starts. Then li =
∑i

j=1 k
j = ki+1−k

k−1
. Notice that

lt−1 < 2kt−1 and |S[x, z)| ≥ kt, one can throw away all elements of S[x, z) whose indices

are less than lt−1 without losing more than 2kt−1

kt
= 2

k
fraction of the elements of S[x, z).

We use S[x′, z) to denote the substring after throwing away the symbols before lt−1. Thus
x′ ≥ lt−1.

Since x′ ≥ lt−1, S[x′, z) either entirely falls into a synchronization string Skl or crosses
two synchronization strings Skl and Skl+1 over two entirely different alphabets Σ1 and Σ2.
Thus the edit distance of S[x′, y) and S[y, z) is at least (1− ε

2
)(z − x).

Since k = 4
ε
, we have that

ED(S[x, y), S[y, z)) ≥
(

1− ε

2

)
(z − x)

(
1− 2

k

)
=
(

1− ε

2

)2

(z − x) ≥ (1− ε)(z − x).

This shows that S is an ε-synchronization string.
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If we instantiate Algorithm 15 using Corollary 10.4.5, then we have the following the-
orem.

Theorem 10.4.16. For any constant 0 < ε < 1, there exists an explicit construction of
an infinite ε-synchronization string S over an alphabet of size O(ε−2).

Proof. We combine Algorithm 15 and Corollary 10.4.5. In the algorithm, we can construct
every substring Ski in polynomial time with alphabet size q = O(ε−2), by Corollary 10.4.5.
So the first n symbols of S can be computed in polynomial time.

By Lemma 10.4.15, S is an infinite ε-synchronization string over an alphabet of size
2q = O(ε−2).

If we instantiate Algorithm 15 using Corollary 10.4.14, then we have the following
theorem.

Theorem 10.4.17. For any constant 0 < ε < 1, there exists a highly-explicit construction
of an infinite ε-synchronization string S over an alphabet of size O(ε−3). Moreover, for any
i ∈ N, the first i symbols can be computed in O(i) time and S[i, i+ log i] can be computed
in O(log i) time.

Proof. Combine Algorithm 15 and Corollary 10.4.14. In the algorithm, we can construct
every substring Ski in linear time with alphabet size q = O(ε−3), by Corollary 10.4.14. So
the first i symbols can be computed in O(i) time. Also any substring S[i, i+ log i] can be
computed in time O(log i).

By Lemma 10.4.15, S is an infinite ε-synchronization string over an alphabet of size
2q = O(ε−3).

10.5 Ω
(
ε−3/2

)
Lower-Bound on Alphabet Size

The twin word problem was introduced by Axenovich, Person, and Puzynina [APP13] and
further studied by Bukh and Zhou [BZ16]. Any set of two identical disjoint subsequences
in a given string is called a twin word. [APP13, BZ16] provided a variety of results on the
relations between the length of a string, the size of the alphabet over which it is defined,
and the size of the longest twin word it contains. We will make use of the following result
from [BZ16] that is built upon Lemma 5.9 from [BHN08] to provide a new lower-bound on
the alphabet size of synchronization strings.

Theorem 10.5.1 (Theorem 3 from [BZ16]). There exists a constant c so that every word of
length n over a q-letter alphabet contains two disjoint equal subsequences of length cnq−2/3.

Further, Theorem 3.5.4 states that any ε-synchronization string of length n has to
satisfy ε-self-matching property which essentially means that it cannot contain two (not
necessarily disjoint) subsequences of length εn or more. These two requirements lead to
the following inequality for an ε-synchronization string of length n over an alphabet of size
q.

cnq−2/3 ≤ εn⇒ c′ε−3/2 ≤ q
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10.6 Synchronization Strings over Small Alphabets

In this section, we focus on synchronization strings over small constant-sized alphabets.
We study the question of what is the smallest possible alphabet size over which arbitrarily
long ε-synchronization strings can exist for some ε < 1, and how such synchronization
strings can be constructed.

Throughout this section, we will make use of square-free strings introduced by
Thue [Thu06], which is a weaker notion than synchronization strings that requires all
consecutive equal-length substrings to be non-identical. Note that no synchronization
strings or square-free strings of length four or more exist over a binary alphabet since a
binary string of length four either contains two consecutive similar symbols or two identi-
cal consecutive substrings of length two. However, for ternary alphabets, arbitrarily long
square-free strings exist and can be constructed efficiently using uniform morphism [Zol15].
In Section 10.6.1, we will briefly review this construction and show that no uniform mor-
phism can be used to construct arbitrary long synchronization strings. In Section 10.6.2,
we make use of ternary square-free strings to show that arbitrarily long ε-synchronization
strings exist over alphabets of size four for some ε < 1. Finally, in Section 10.7, we provide
experimental lower-bounds on ε’ for which ε-synchronization strings exist over alphabets
of size 3, 4, 5, and 6.

10.6.1 Morphisms cannot Generate Synchronization Strings

Previous works show that one can construct infinitely long square-free or approximate-
square-free strings using uniform morphisms. A uniform morphism of rank r over an
alphabet Σ is a function φ : Σ → Σr that maps any symbol out of an alphabet Σ to a
string of length r over the same alphabet. Applying the function φ over some string S ∈ Σ∗

is defined as replacing each symbol of S with φ(S).
[KORS07, Thu12, Lee57, Cro82, Zol15] show that there are uniform morphisms that

generate the combinatorial objects they study respectively. More specifically, one can start
from any letter of the alphabet and repeatedly apply the morphism on it to construct those
objects. For instance, using the uniform morphisms of rank 11 suggested in [Zol15], all
such strings will be square-free. In this section, we investigate the possibility of finding
similar constructions for synchronization strings. We will show that no such morphism can
possibly generate an infinite ε-synchronization strings for any fixed 0 < ε < 1.

The key to this claim is that a matching between two substrings is preserved under
an application of the uniform morphism φ. Hence, we can always increase the size of a
matching between two substrings by applying the morphism sufficiently many times, and
then adding new matches to the matching from previous steps.

Theorem 10.6.1. Let φ be a uniform morphism of rank r over alphabet Σ. Then φ does
not generate an infinite ε-synchronization string, for any 0 < ε < 1.

Proof. To prove this, we show that for any 0 < ε < 1, applying morphism φ sufficiently
many times over any symbol of alphabet Σ produces a strings that has two neighboring
intervals which contradict ε-synchronization property. First, we claim that, without loss

257



of generality, it suffices to prove this for morphisms φ for which φ(σ) contains all elements
of Σ for any σ ∈ Σ. To see this, consider the graph G with |Σ| vertices where each vertex
corresponds to a letter of the alphabet and there is a (σ1, σ2) edge if φ(σ1) contains σ2. It
is straightforward to verify that after applying morphism φ over a letter sufficiently many
times, the resulting string can be split into a number of substrings so that the symbols in
any of them belong to a subset of Σ that corresponds to some strongly connected compo-
nent in G. As ε-synchronization string property is a hereditary property over substrings,
this gives that one can, without loss of generality, prove the above-mentioned claim for
morphisms φ for which the corresponding graph G is strongly connected. Further, let d be
the greatest common divisor of the size of all cycles in G. One can verify that, for some
sufficiently large k, φkd will be a morphism that, depending on the letter σ to perform
recursive applications of the morphism on, will always generate strings over some alphabet
Σσ and φkd(σ′) contains all symbols of Σσ for all σ′ ∈ Σσ. As proving the claim for φkd

implies it for φ as well, the assumption mentioned above does not harm the generality.
We now proceed to prove that for any morphism φ of rank r as described above, any

positive integer n ∈ N, and any positive constant 0 < δ < 1, there exists m ∈ N so that

LCS(φm(a), φm(b)) ≥
[
1−

(
1− 1

|Σ|2r

)n
− δ
]
· rm

for any a, b ∈ Σ where φm represents m consecutive applications of morphism φ and
LCS(., .) denotes the longest common substring.

Having such claim proved, one can take δ = (1 − ε)/2 and n large enough so that m
applications of φ over any pair of symbols entail strings with a longest common substring
that is of a fraction larger than 1−(1−ε) = ε in terms of the length of those strings. Then,
for any string S ∈ Σ∗, one can take two arbitrary consecutive symbols of φ(S) like S[i] and
S[i+1]. Applying morphism φ, m more times on φ(S) makes the corresponding intervals of
φm+1(S) have an edit distance that is smaller than 1−ε fraction of their combined lengths.
This shows that φm+1(S) is not an ε-synchronization string and finishes the proof.

Finally, we prove the claim by induction on n. For the base case of n = 1, given the
assumption of all members of Σ appearing in φ(σ) for all σ ∈ Σ, φ(a) and φ(b) have a
non-empty common subsequence. This gives that

LCS(φ(a), φ(b)) ≥ 1 =

[
1−

(
1− 1

r

)]
· r >

[
1−

(
1− 1

|Σ|2r

)
− δ
]
· r.

Therefore, choosing m = 1 finishes the induction base.
We now prove the induction step. Note that by induction hypothesis, for some given

n, one can find m1 such that

LCS(φm1(a), φm1(b)) ≥
[
1−

(
1− 1

|Σ|2r

)n
− δ

2

]
· rm1 .

Now, let m2 =
⌈
logr

2
δ

⌉
. Consider φm2(a) and φm2(b). Note that among all possible pairs

of symbols from Σ2, one appears at least rm2

|Σ|2 times in respective positions of φm2(a) and

φm2(b). Let (a′, b′) be such pair. As φ(a′) and φ(b′) contain all symbols of Σ, one can
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take one specific occurrence of a fixed arbitrary symbol σ ∈ Σ in all appearances of the
pair φ(a′) and φ(b′) to find a common subsequence of size rm2

|Σ|2 = rm2+1

|Σ|2r or more between

φm2+1(a) and φm2+1(b) (See Figure 10.6).

𝑎 𝑎 𝑏 𝑐 𝑏 𝑎 𝜙(𝑎) 𝜙(𝑏) 𝜙(𝑐) 𝜙(𝑏) 𝜙(𝑎) 

𝑏 𝑐 𝑎 𝑏 𝑎 𝑏 𝜙(𝑐) 𝜙(𝑎) 𝜙(𝑏) 𝜙(𝑎) 𝜙(𝑏) 

𝜙𝑚2(𝑎) 

𝜙𝑚2(𝑏) 𝜙𝑚2+1(𝑏) 

𝜙𝑚2+1(𝑎) 

𝜎 𝜎 

𝜎 𝜎 

𝜙𝑚2(⋅) 𝜙(⋅) 

Figure 10.6: Induction step in Theorem 10.6.1; Most common pair (a′, b′) = (b, a).

Note that one can apply the morphism φ further times over φm2+1(a) and φm2+1(b) and
such common subsequence will still be preserved; However, one might be able to increase
the size of it by adding new elements to the common subsequence from equal length pairs
of intervals between current common subsequence elements (denoted by blue dashed line
in Figure 10.6). The total length of such intervals is

1− 1

|Σ|2r
− r

rm2+1
= 1− 1

|Σ|2r
− δ

2

or more. In fact, using the induction hypothesis, by applying the morphism m1 more times,
one can get the following for m = m1 +m2 + 1.

LCS(φm(a), φm(b)) ≥

[
1

|Σ|2r
+

(
1−

(
1− 1

|Σ|2r

)n
− δ

2

)

·
(

1− 1

|Σ|2r
− δ

2

)]
rm

≥

[
1−

(
1− 1

|Σ|2r

)n+1

− δ

]
rm

This completes the induction step and finishes the proof.

10.6.2 Synchronization Strings over Alphabets of Size Four

In this section, we show that synchronization strings of arbitrary length exist over alphabets
of size four. In order to do so, we first introduce the notion of weak ε-synchronization
strings. This weaker notion is very similar to the synchronization string property except
the edit distance requirement is rounded down.

Definition 10.6.2 (weak ε-synchronization strings). String S of length n is a weak ε-
synchronization string if for every 1 ≤ i < j < k ≤ n,

ED(S[i, j), S[j, k)) ≥ b(1− ε)(k − i)c.
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We start by showing that binary weak ε-synchronization strings exist for some ε < 1.

Binary Weak ε-Synchronization Strings

Here we prove that an infinite binary weak ε-synchronization string exists. The main idea
is to take a synchronization string over some large alphabet and convert it to a binary
weak synchronization string by mapping each symbol of that large alphabet to a binary
string and separating each binary encoded block with a block of the form 0k1k.

Theorem 10.6.3. There exists a constant ε < 1 and an infinite binary weak ε-
synchronization string.

Proof. Take some arbitrary ε′ ∈ (0, 1). According to the discussions from Chapter 3,
there exists an infinite ε′-synchronization string S over a sufficiently large alphabet Σ. Let
k = dlog |Σ|e. Translate each symbol of S into k binary bits, and separate the translated
k-blocks with 0k1k. We claim that this new string T is a weak ε-synchronization binary
string for some ε < 1.

First, call a translated k-length symbol followed by 0k1k a full block. Call any other
(possibly empty) substring a half block. Then any substring of T is a half-block followed
by multiple full blocks and ends with a half block.

Let A and B be two consecutive substrings in T . Without loss of generality, assume
|A| ≤ |B| (because edit distance is symmetric). Let M be a longest common subsequence
between A and B. Partition blocks of B into the following 4 types of blocks:

1. Full blocks that match completely to another full block in A.

2. Full blocks that match completely but not to just 1 full block in A.

3. Full blocks where not all bits within are matched.

4. Half blocks.

The key claim is that the 3k elements in B which are matched to a type-2 block in A
are not contiguous and, therefore, there is at least one unmatched symbol in B surrounded
by them. To see this, assume by contradiction that all letters of some type-2 block in
A are matched contiguously. The following simple analysis over 3 cases contradicts this
assumption:

� Match starts at middle of some translated k-length symbol, say position p ∈ [2, k].
Then the first 1 of 1k in A will be matched to the (k − p + 2)-th 0 of 0k in B,
contradiction.

� Match starts at 0-portion of 0k1k block, say at the p-th 0. Then the p-th 1 of 1k in
A will be matched to the first 0 of 0k in B, contradiction.

� Match starts at 1-portion of 0k1k block, say at the p-th 1. Then the p-th 0 of 0k in
A will be matched to the first 1 of 1k in B, contradiction.
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Let the number of type-i blocks in B be ti. For every type-2 block, there is an unmatched
letter in A between its first and last matches. Hence, |A| ≥ |M | + t2. For every type-3
block, there is an unmatched letter in B within. Hence, |B| ≥ |M | + t3. Therefore,
|A|+ |B| ≥ 2|M |+ t2 + t3.

Since |A| ≤ |B|, the total number of full blocks in both A and B is at most 2(t1 + t2 +
t3) + 1. (the additional +1 comes from the possibility that the two half-blocks in B allows
for one extra full block in A) Note t1 is a matching between the full blocks in A and the
full blocks in B. So due to the ε′-synchronization property of S, we obtain the following.

t1 ≤
ε′

2
(2(t1 + t2 + t3) + 1) =⇒ t1 ≤

ε′

1− ε′
(t2 + t3) +

ε′

2(1− ε′)

Furthermore, t1 + t2 + t3 + 2 > |B|
3k
≥ |A|+|B|

6k
. This, along with the above inequality, implies

the following.
1

1− ε′
(t2 + t3) +

4− 3ε′

2(1− ε′)
>
|A|+ |B|

6k
.

The edit distance between A and B is

ED(A,B) = |A|+ |B| − 2|M | ≥ t2 + t3

>
1− ε′

6k
(|A|+ |B|)− 4− 3ε′

2
>

1− ε′

6k
(|A|+ |B|)− 2.

Set ε = 1− 1−ε′
18k

. If |A|+ |B| ≥ 1
1−ε , then

1− ε′

6k
(|A|+ |B|)− 2 ≥

(
1− ε′

6k
− 2(1− ε)

)
(|A|+ |B|)

= (1− ε)(|A|+ |B|) ≥ b(1− ε)(|A|+ |B|)c.

As weak ε-synchronization property trivially holds for |A|+ |B| < 1
1−ε , this will prove that

T is a weak ε-synchronization string.

ε-Synchronization Strings over Alphabets of Size Four

A corollary of Theorem 10.6.3 is the existence of infinite synchronization strings over alpha-
bets of size four. Here we make use of the fact that infinite ternary square-free strings exist,
which was proven in previous work [Thu06]. We then modify such a string to fulfill the syn-
chronization string property, using the existence of an infinite binary weak synchronization
string.

Theorem 10.6.4. There exists some ε ∈ (0, 1) and an infinite ε-synchronization string
over an alphabet of size four.

Proof. Take an infinite ternary square-free string T over alphabet {1, 2, 3} [Thu06] and
some ε ∈

(
11
12
, 1
)
. Let S be an infinite weak binary ε′ = (12ε− 11)-synchronization string.

Consider the string W that is similar to T except that the i-th occurrence of symbol 1 in
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T is replaced with symbol 4 if S[i] = 1. Note W is still square-free. We claim W is an
ε-synchronization string as well.

Let A = W [i, j), B = W [j, k) be two consecutive substrings of W . If k− i < 1/(1− ε),
then ED(A,B) ≥ 1 > (1− ε)(k − i) by square-freeness.

Otherwise, k − i ≥ 1/(1 − ε) ≥ 12. Consider all occurrences of 1 and 4 in A and B,
which form consecutive subsequences As and Bs of S respectively. Note that |As|+ |Bs| ≥
(k − i− 3)/4, because, by square-freeness, there cannot be a length-4 substring consisting
only of 2’s and 3’s in W .

By weak synchronization property,

ED(As, Bs) ≥ b(1− ε′)(|As|+ |Bs|)c
≥ b3(1− ε)(k − i− 3)c > 3(1− ε)(k − i)− 9(1− ε)− 1

≥ (1− ε)(k − i),

and hence, ED(A,B) ≥ ED(As, Bs) ≥ (1−ε)(k−i). Therefore, W is an ε-synchronization
string.

10.7 Lower-bounds for ε in Infinite ε-Synchronization

Strings

It is known from Section 10.6.2 that infinite synchronization strings exist over alphabet
sizes |Σ| ≥ 4. A natural question to ask is the optimal value of ε for each such |Σ|.
Formally, we seek to discover

Bk = inf{ε : there exists an infinite ε-synchronization string with |Σ| = k}

for small values of k. To that end, a program was written to find an upper bound for
Bk for k ≤ 6. The program first fixes an ε, then exhaustively enumerates all possible
ε-synchronization strings over an alphabet size of k by increasing length. If the program
terminates, then this ε is a proven lower bound for Bk. Among every pair of consecutive
substrings in each checked string that failed the ε-synchronization property, we find the
one that has the lowest edit distance relative to their total length and such fraction would
be a lower-bound for Bk as well. Such experimentally obtained lower-bounds for alphabets
of size 3, 4, 5, and 6 are listed in Table 10.1.

k Bk ≥ ·
3 12/13
4 10/13
5 2/3
6 18/29

Table 10.1: Computationally proven lower-bounds of Bk
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Chapter 11

Concluding Remarks

In this dissertation, we addressed several fundamental questions regarding coding for syn-
chronization errors – questions which were extensively studied or even completely answered
for coding against ordinary symbol substitution errors but were left open for several decades
in the context of synchronization errors. While this thesis sheds light on several aspects of
synchronization coding, much has remained unknown. The open questions span from fun-
damental theoretical properties of synchronization channels to more practical challenges
rising in real computer systems afflicted by such errors. In this chapter, we review the
contributions of the thesis and remark some remaining questions that can inspire future
work on synchronization coding.

Most of the contributions of this thesis originated from the introduction of an index-
ing based coding scheme in Chapter 3. We introduced synchronization strings as simple
yet very powerful mathematical objects that are very helpful when dealing with synchro-
nization errors in communications. In particular, we used them to efficiently transform
insertion and deletion errors into much simpler Hamming-type errors in several communi-
cation problems.

An important question that this dissertation attempted to address was the character-
ization of the trade-off between the rate and distance in synchronization coding schemes
in various settings. In Chapter 3, we provided families of near-MDS insertion-deletion
correcting codes, i.e., for any δ ∈ (0, 1) and ε > 0, we gave a family of codes with relative
distance δ and rate 1 − δ − ε. Furthermore, these codes are efficient and were shown to
have an asymptotically optimal dependence of alphabet size on parameter ε. Later, in
Chapter 9, we improved the code construction to achieve near-linear time decoding. This
was achieved via indexing schemes that facilitated approximating the edit distance of the
indexed string to any other string in near-linear time and within a 1 + ε factor. Finding
near-MDS insertion-deletion codes that are decodable in linear time remains an interesting
open question. Such code would be the equivalent of the breakthrough of Spielman [Spi96]
for ECCs.

In Chapter 4, we extended this result to the list-decoding setting. We showed that
a similar indexing scheme can yield families of code that achieve near-optimal trade-off
between the rate and distance given that the alphabet size can be an arbitrarily large
constant. More precisely, for any δ ∈ (0, 1), γ > 0, and ε > 0, we gave a family of efficient
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codes that are list-decodable from δ-fraction of deletions and γ fraction of insertions and
achieve a rate of at least 1− δ − ε.

In Chapter 5, we started to factor in the alphabet size in our study of the rate-distance
trade-off for the list-decoding setting. We were able to fully identify the set of all pairs (γ, δ)
where positive-rate list-decodable codes correcting δ-fraction of deletions and γ fraction of
insertions exist. We furthermore provided explicit and efficient codes that are optimally
resilient. As the next natural step, we provided several upper- and lower-bounds on the
worst-case list-decoding capacity in Chapter 6. The exact characterization of the worst-
case list-decoding capacity of insertion-deletion channels remains open. Similar question
for unique-decoding has remained open as well. As mentioned in Chapter 5, even the
optimal error resilience for uniquely decodable insertion-deletion codes is unknown.

In Chapter 7, we showed that our synchronization string based indexing method can be
extended to fully simulate an ordinary substitution channel over a given insertion-deletion
channel (i.e., without any delay for repositioning). This was much stronger than construct-
ing insdel codes and allows us to completely hide the existence of synchronization errors in
many applications that go beyond insertion-deletion codes, such as, settings with feedback,
real-time control, or interactive communications. This finding lead to new interactive cod-
ing schemes for the setting with synchronization errors including the first efficient scheme
and the first scheme with good (and in fact likely near-optimal) communication rate for
small error fractions.

Chapter 7 also showed that the code construction methods presented in Chapter 3 can
be ported to the setting of binary codes to derive binary codes that tolerate a δ fraction
of synchronization errors while achieving a rate of 1−O(

√
δ log(1/δ)).

In Chapter 8, we provided several highly parallel, deterministic linear time construc-
tions for ε-synchronization strings. These constructions provide highly-explicit infinite
ε-synchronization strings in which the ith symbol can be computed deterministically in
O(log i) time. Chapter 8 also gives strengthened versions of the ε-synchronization string
property which comes with very fast local repositioning procedures that improve the time
and space complexities of channel simulations and interactive coding schemes from Chap-
ter 7 as well as codes correcting from block transposition and replication errors.

In Chapter 9, we employed a similar indexing scheme with a specific pseudo-random
string that enhances the global repositioning algorithm presented in Section 3.5.3 by de-
creasing its time complexity to near-linear time. This reduced the decoding complexity of
codes from Chapters 3 and 4.

Finally, in Chapter 10, we studied the combinatorial properties of synchronization
strings and addressed several extremal questions regarding them. This chapter leaves
a few open questions regarding synchronization strings as combinatorial objects of their
own interest, such as the minimal alphabet size over which synchronization strings exist.

Besides open questions set forth above, there are plenty of questions that have been
studied over decades for coding against Hamming-type errors that one can address in
the context of synchronization coding. The study of linear synchronization code is one
such example. A very recent work [CGHL20] have studied linear and affine synchroniza-
tion codes and have presented asymptotically good linear insertion-deletion codes using
synchronization strings. Another such question would be to investigate systematic codes
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for synchronization errors. While synchronization-based constructions presented in this
work do not yield systematic synchronization codes, it is an interesting question to in-
vestigate systematic synchronization codes. It may be possible, as shown to some extent
in [CGHL20], to develop resistance against synchronization errors with careful placement of
non-systematic symbols in a codeword. One can also think about formalizing local decod-
ability qualities for synchronization codes. Furthermore, some of the tools and techniques
presented in this document may be applicable to other relevant problems. A number of
recent works have already demonstrated the applicability of our techniques to problems
like document exchange [CJLW18, Hae19], trace reconstruction [BLS19], or coding against
block errors [CJLW19]. We hope that the ideas and techniques put forward in this disserta-
tion inspire further research on synchronization coding and the progress made by this body
of work along with the recent renewed interest of the community in insertion-deletion codes
lead to new directions in the fundamental study of timing issues in digital communication.
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