
Machine Learning: Social Values, Data Efficiency,
and Beyond Prediction

Travis Dick

CMU-CS-19-113

May 2019

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Maria-Florina Balcan (Chair)

Tom Mitchell
Ariel Procaccia

Yishay Mansour (Tel Aviv University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2019 Travis Dick

This research was sponsored by Schmidt Sciences and the National Science Foundation under grant numbers CCF-1422910,
CCF-1535967, and IIS-161874. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Data-efficient Machine Learning, Data-driven Algorithm Configuration, Online Piece-
wise Lipschitz Optimization, Differential Privacy, Fairness in Machine Learning, Envy-freeness

Abstract
In this thesis, we build on the theory and practice of Machine Learning to accommodate

several modern requirements of learning systems. In particular, we focus on new requirements
stemming from three distinct sources: making the best use of available data, applying learning
tools to problems beyond standard prediction, and incorporating social values. Each of these
themes provides an exciting research direction for the practice and theory of Machine Learning.

Learning from Mostly Unlabeled Data in Multi-class Settings. Large scale multi-class
learning tasks with an abundance of unlabeled data are ubiquitous in modern Machine Learning.
For example, an in-home assistive robot needs to learn to recognize common household objects,
familiar faces, facial expressions, gestures, and so on in order to be useful. Such a robot can
acquire large amounts of unlabeled training data simply by observing its surroundings, but it
would be prohibitively time consuming to ask its owner to annotate any large portion of this data.
More generally, in many modern learning problems we often have easy and cheap access to large
quantities of unlabeled training data but obtaining high-quality labeled examples is relatively
expensive. The first chapter of my thesis focuses on theory for large-scale multi-class learning
with limited labeled data. We begin by assuming that a given supervised learning algorithm would
succeed at the learning task if it had access to labeled data. Then we use the implicit assumptions
made by that algorithm to show that different label-efficient algorithms will also succeed.

Machine Learning Beyond Standard Prediction Problems. While most machine learn-
ing focuses on learning to make predictions, there are important learning problems where the
output of the learner is not a prediction rule. We focus on data-driven algorithm configuration,
where the goal is to find the best algorithm parameters for a specific application domain. A recent
exciting line of work has considered data-driven algorithm configuration in the statistical setting,
where each application domain is modeled as a distribution over problem instances. In this work,
we extend the theoretical foundations of this field to accommodate two new learning settings:
the online setting where problems are chosen by an adversary and arrive one at a time, and the
private setting, where each problem instance contains sensitive information that should not be
released. Algorithm configuration problems often reduce to the maximization of a collection of
piecewise Lipschitz functions. Unfortunately, the discontinuities of these functions lead to worst-
case impossibility results for both the online and private settings. We introduce a novel condition
called dispersion that, when satisfied, allows for meaningful regret bounds and utility guaran-
tees in these settings. Next, we show that dispersion is satisfied for many data-driven algorithm
configuration problems under very mild assumptions. Finally, we uncover additional structure in
data-driven algorithm configuration problems enabling efficient semi-bandit feedback, leading to
very efficient configuration procedures with strong regret bounds.

Social Values for Machine Learning Systems. Machine learning systems are becoming
central to the infrastructure of our society. The wide-spread use of such systems creates exciting
possibilities for profoundly positive impacts in our lives though improvements to, for example,
medicine, communication, and transportation. Since these systems are often not explicitly de-
signed with social values in mind, there is a risk that their adoption could result in undesired
outcomes such as privacy violations or unfair treatment of individuals. My thesis develops prin-
cipled techniques for incorporating two social values into machine learning algorithms: privacy
and fairness. We import the fairness notion of envy-freeness from fair division into machine
learning and consider whether it is possible to learn envy-free classifiers. We also develop gen-
eral tools for differentially private optimization of piecewise Lipschitz functions, a problem that
arises naturally in several learning settings, including applications beyond standard prediction
problems.

iv

Acknowledgments

First, I would like to thank my advisor, Nina Balcan. Throughout my five years
at CMU, Nina has been an inspiration and incredibly supportive of my research. Her
expertise and deep intuition across a wide range of topics made it easy to find interesting
and fruitful research directions. In addition to her intellectual support, Nina also helped
me in many other ways. For example, my presentation and writing skills have been
dramatically improved thanks to her mentorship. She also helped me to make many
connections in the research community, both at CMU and more broadly. I thank Nina for
her generosity during my PhD—without her, this thesis would not have been possible.

I am incredibly thankful for the interesting discussions and insightful comments
given by the other members of my thesis committee: Yishay Mansour, Tom Mitchell,
and Ariel Procaccia. I could not have asked for a more exciting committee to share my
work with.

I thank all of my other wonderful collaborators: Kareem Amin, Misha Khodak, Alex
Kulesza, Manuel Lang, Mu Li, Yingyu Liang, Andrés Muñoz Medina, Wenlong Mou,
Ritesh Noothigattu, Wesley Pegden, Krishna Pillutla, Tuomas Sandholm, Dravyansh
Sharma, Alex Smola, Sergei Vassilvitskii, Ellen Vitercik, Colin White, and Hongyang
Zhang. I enjoyed working with and learning from all of you. I also want to thank
the computer science community at CMU more broadly, and especially Deb Cavlovich,
Catherine Copetas, and Amy Protos, for being extremely helpful.

I am also thankful for my advisors and friends from the University of Alberta that
helped set me on my path towards academia. In particular, I would like to thank Rich
Sutton, András György, Csaba Szepesvári, Martin Jagersand, Martin Müller, and the
“Concord Crew” (Roshan Shariff, Clint Pahl, and honorary member Adel Lari).

Finally, I would like to thank my family for their endless support and encouragement.
My parents Barry and Linda have been profoundly supportive and are always excited to
hear about what I am working on, even at 3am on the first night of a visit! My sisters
Stephanie and Kristen are some of my closest friends and never hesitate to give advice or
support. Finally, my niece and nephew, Niah and Nathan, make every visit brighter and
make me hopeful for the future. Thank you all so much.

vi

Contents

1 Introduction 1

2 Label Efficient Learning by Exploiting Multi-class Output Codes 4
2.1 Introduction . 4
2.2 Related Work . 6
2.3 Preliminaries . 7
2.4 Error Correcting Output Codes . 7
2.5 One-Versus-All on the Unit Ball . 12
2.6 The Boundary Features Condition . 18
2.7 Extensions to the Agnostic Setting . 24
2.8 Conclusion and Discussion . 24

3 Online and Private Algorithm Configuration 26
3.1 Private and Online Algorithm Configuration from Dispersion 27

3.1.1 Introduction . 27
3.1.2 Dispersion Condition . 32
3.1.3 Online Optimization . 34
3.1.4 Differentially Private Optimization . 36
3.1.5 Dispersion in application-specific algorithm selection 38
3.1.6 Generalization guarantees for distributional learning 40
3.1.7 Conclusion . 41

3.2 Semi-bandit Optimization in the Dispersed Setting 41
3.2.1 Introduction . 41
3.2.2 Semi-bandit Optimization of Piecewise Lispchitz Functions 45
3.2.3 General Tools for Verifying Dispersion . 48
3.2.4 Online Algorithm Selection with Semi-bandit Feedback 49

4 Data-driven Algorithm Configuration and Metric Learning for Clustering 55
4.1 Introduction . 55
4.2 Learning Clustering Metrics . 56
4.3 Learning Merge Functions . 59
4.4 Efficient Algorithm Selection . 60

4.4.1 Optimizing the Merge Function . 61
4.4.2 Optimizing the Metric . 64

4.5 Experiments . 66

vii

5 A New Approach to Individual Fairness: Envy-free Classification 72
5.1 Introduction . 72

5.1.1 Our Results . 74
5.1.2 Related Work . 74

5.2 The Model . 75
5.2.1 Envy-Freeness . 75
5.2.2 Optimization and Learning . 76

5.3 Arbitrary Classifiers . 76
5.4 Low-Complexity Families of Classifiers . 77

5.4.1 Natarajan Dimension Primer . 78
5.4.2 Main Result . 78

A Appendix for Chapter 2 93
A.1 Appendix for Error Correcting Output Codes . 93
A.2 Appendix For One-vs-all on the Unit Ball . 95
A.3 Appendix for Boundary Features Condition . 96

B Appendix for Chapter 3 98
B.1 Appendix for Section 3.1 . 98

B.1.1 Generic lemmas for dispersion . 98
B.1.2 Properties of κ-bounded distributions . 101
B.1.3 Efficient sampling . 103
B.1.4 Proofs for online learning (Section 3.1.3) 106
B.1.5 Proofs for differential privacy (Section 3.1.4) 119
B.1.6 Proofs for algorithm configuration (Section 3.1.5) 124
B.1.7 Proofs for distributional learning (Section 3.1.6) 139
B.1.8 Discretization-based algorithm . 140

B.2 Appendix for Section 3.2 . 141
B.2.1 Online Optimization . 141
B.2.2 Dispersion Tools . 147
B.2.3 Appendix for Applications . 150
B.2.4 Transformations of Bounded Densities . 153
B.2.5 Discretization-based Algorithm . 155

C Appendix for Chapter 4 158

D Appendix for Chapter 5 160

viii

List of Figures

2.1 An example problem satisfying Assumption 2.2 and the projected density q when the
density p is uniform on K. 12

2.2 An example of the boundary features problem. The arrows indicate the positive side
of the linear functions. 18

2.3 Examples of half-balls that would be included (green) or excluded (red) by the plane
detection algorithm. 19

3.1 The dashed and solid lines correspond to two partitionings of the rectangle. Each of
the displayed balls is either not split, split by one partition, or split by both. 33

4.1 A two dimensional dataset with well separated clusters that become interleaved when
projecting onto either the x or y axes. 57

4.2 An example clustering instance where both single and complete linkage produce high-
cost clusterings, but a mixture of the two merge functions leads to zero cost. 60

4.3 An example of the execution tree of Amerge(Dmin,Dmax) for a clustering instance
with 4 points. We also show the clustering of the points produced by the sequence
of merges associated with each node in the tree. Each colored rectangle represents
a cluster (and for clarity we also show the two children of each cluster). The leaves
show the two possible cluster trees that can be output by any algorithm from the
family Amerge(Dmin,Dmax) for this instance. 62

4.4 Empirical loss for interpolating between single and complete linkage as well as aver-
age and complete linkage on 1000 randomly sampled tasks from the MNIST subsets
distribution. 70

4.5 Empirical loss for interpolating between single and complete linkage as well as av-
erage and complete linkage on 1000 randomly sampled tasks from the CIFAR-10
Subsets distribution. 70

4.6 Empirical loss for interpolating between single and complete linkage as well as aver-
age and complete linkage on 1000 randomly sampled tasks from the rings and disks
distribution. 70

4.7 Empirical loss for interpolating between single and complete linkage as well as aver-
age and complete linkage on 1000 randomly sampled tasks from the Omniglot Sub-
sets distribution. 71

4.8 Empirical loss for interpolating between the neural network feature embedding metric
and stroke metric for Omniglot data. β = 0 corresponds to the stroke distance, while
β = 1 corresponds to the neural network embedding. 71

ix

B.1 A graph of the 2-linear function φ2. 131
B.2 Relationship between the binary search intervals [a, b] and [c, d] and the true interval

[ρ∗min, ρ
∗
max] on which A(x, ρ′) outputs yρ. 152

D.1 Illustration of X and an example utility function u for d = 2. Red shows preference
for 1, blue shows preference for 0, and darker shades correspond to more intense pref-
erence. (The gradients are rectangular to match the L∞ norm, so, strangely enough,
the misleading X pattern is an optical illusion.) . 163

x

Chapter 1

Introduction

In this thesis we extend the practice and theory of machine learning to accommodate several new
requirements. We focus on three themes, each stemming from the application of machine learning to
modern real-world scenarios. First we look at making the best use of the types of data that are readily
available. Next, we apply machine learning tools to problems beyond standard prediction. Finally,
we consider incorporating social values, like privacy and fairness, into machine learning systems.

Data Efficiency in Multi-class Learning. In many real-world classification problems, unlabeled
data is cheap and readily available, while obtaining high-quality labels is time consuming or expen-
sive. Machine learning systems should make the best use of the cheap and abundantly available
unlabeled data to minimize the need for the more expensive labeled data. This has been the focus of
the fields of semi-supervised and active learning. In Chapter 2, we explore conditions for large-scale
multi-class learning under which unlabeled data provably reduces the labeled sample complexity of
learning. Our results argue that if the underlying learning task is one for which a given supervised
learning algorithm would succeed at learning, given a fully labeled dataset, then much more label-
efficient algorithms will also succeed. We obtain these results by carefully examining the implicit
assumptions made by specific classes of supervised learning algorithms, showing that when they
succeed it implies geometric structure in the underlying learning problem that can be exploited in
semi-supervised and active learning settings.

Machine Learning Beyond Prediction. Most machine learning systems learn to make predictions
from data. For example, in medical settings, the learner may receive a training dataset consisting of
medical feature representations describing patients, together with an expert diagnosis for each patient.
Then the learner’s goal is to identify patterns in the expert diagnoses so that it can predict what the
diagnosis will be for new unseen patients. A key requirement is that the learned prediction rules
generalize, in the sense that they make accurate predictions on new unseen data.

There are many other important learning problems where the output of the learner is not a predic-
tion rule. An alternate setting that we consider in Chapter 3 is data-driven algorithm configuration.
Our goal is to find the best parameter settings for a parameterized algorithm when it is used for
problem instances arising in some specific target application. The parameter-tuning procedure learns
about the specific application of the algorithm by observing a collection of example problem instances
from that application domain. For example, if our goal is to learn good parameters for a clustering
algorithm, then the training data could consist of clustering instances together with target clusterings

1

for each instance. Then the learner’s goal is to find parameters that produce clusterings with the best
possible agreement with the target clusterings. In data-driven algorithm configuration, we care about
finding parameters that will continue to perform well on future instances.

While there are many similarities between learning to predict and data-driven algorithm config-
uration, there are also a number of important differences that need to be overcome. For example,
the output of an algorithm is often a volatile function of its parameters, and very small changes to
the parameters can lead to a cascade of differences in the output. Chapter 3 explores online and pri-
vate optimization of piecewise Lipschitz functions, an optimization problem that captures many of
the challenges of online data-driven algorithm configuration. In particular, in Section 3.1, we intro-
duce a condition on sequences of piecewise Lipschitz functions, called dispersion, that measures how
concentrated their discontinuities are. We show that for sufficiently dispersed functions, both online
and private optimization are possible. We also show that many interesting algorithm configuration
problems satisfy dispersion under mild and realistic assumptions, allowing us to provide online con-
figuration procedures for these settings. In Section 3.2, we uncover additional structure present in
many algorithm configuration problems and use it to design even more efficient online configuration
procedures. Intuitively, when tuning the parameters of algorithms, we need to run the algorithm with
different parameter settings to learn how well they perform. We show that running the algorithm
with a single parameter setting often reveals the performance of a whole range of similar parameter
settings, essentially at no additional computational cost. Leveraging this extra information leads to
more efficient optimization procedures.

In Chapter 4 we study the algorithmic aspects of data-driven algorithm configuration for linkage
based clustering. Rather than working in the online setting, where the learner faces an adversarially
chosen sequence of clustering instances, we give results for the distributional setting. Here, each
clustering application domain is modeled as a distribution over problem instances, the algorithm con-
figuration procedure obtains an i.i.d. set of training instances, and their goal is to find the algorithm
with highest expected performance. We provide sample complexity guarantees for learning the best
metric to use when clustering, and design efficient algorithms for finding the empirically optimal al-
gorithm for a set of training instances. We conduct experiments on a number of clustering application
distributions showing that algorithm selection can dramatically improve performance.

Social Values in Machine Learning. When machine learning systems interact with society, we
expect them to uphold our social values. For example, if a model is trained on data containing
sensitive information about individuals, it should not be possible to learn about specific individuals
in the training data by inspecting either its predictions or its parameters. Similarly, when machine-
learned models are used to make consequential decisions, such as whether to release a defendant on
bail, or whether to grant an individual a loan, we want guarantees that the learned models uphold our
notions of fair treatment. Since models trained to maximize predictive accuracy may not inherently
have these properties, an important research direction is to design principled techniques for explicitly
incorporating social values into learning algorithms.

In Chapter 5, we import envy-freeness from fair-division as a notion of fairness in machine learn-
ing. Envy-freeness is particularly well-suited to situations where we are learning to assign one of
many outcomes to individuals who have heterogeneous preferences for those outcomes. This is in
contrast with much of the fairness literature, which focuses on binary classification settings with one
desirable outcome and one undesirable. Intuitively, a classifier that assigns individuals to outcomes is
envy-free if no individual would prefer to change their assignment to that of someone else. Our cur-

2

rent results focus on the generalizability of envy-freeness, showing that as long as the learner restricts
itself to a set of relatively low-complexity classifiers, classifiers that are envy-free on a large enough
sample will remain approximately envy-free on the underlying distribution.

The project on piecewise Lipschitz optimization discussed in Chapter 3 also connects with the
theme of incorporating social values into machine learning systems. Our results show how to optimize
a collection of piecewise Lipschitz functions while at the same time providing very strong privacy
guarantees when those functions encode sensitive information about individuals.

3

Chapter 2

Label Efficient Learning by Exploiting
Multi-class Output Codes

2.1 Introduction

Motivation: Large scale multi-class learning problems with an abundance of unlabeled data are
ubiquitous in modern machine learning. For example, an in-home assistive robot needs to learn
to recognize common household objects, familiar faces, facial expressions, gestures, and so on in
order to be useful. Such a robot can acquire large amounts of unlabeled training data simply by
observing its surroundings, but it would be prohibitively time consuming (and frustrating) to ask its
owner to annotate any significant portion of this raw data. More generally, in many modern learning
problems we often have easy and cheap access to large quantities of unlabeled training data (e.g.,
on the internet) but obtaining high-quality labeled examples is relatively expensive. More examples
include text understanding, recommendation systems, or wearable computing [136, 138, 137, 107].
The scarcity of labeled data is especially pronounced in problems with many classes, since supervised
learning algorithms typically require labeled examples from every class. In such settings, algorithms
should strive to make the best use of unlabeled data in order to minimize the need for expensive
labeled examples.

Overview: We approach label-efficient learning by making the implicit assumptions of popular
multi-class learning algorithms explicit and showing that they can also be exploited when learning
from limited labeled data. We focus on a family of techniques called output codes that work by de-
composing a given multi-class problem into a collection of binary classification tasks [108, 57, 97,
29]. The novelty of our results is to show that the existence of various low-error output codes con-
strains the distribution of unlabeled data in ways that can be exploited to reduce the label complexity
of learning. We consider both the consistent setting, where the output code achieves zero error, and
the agnostic setting, where the goal is to compete with the best output code. The most well known
output code technique is one-vs-all learning, where we learn one binary classifier for distinguishing
each class from the union of the rest. When output codes are successful at learning from labeled data,
it often implies geometric structure in the underlying problem. For example, if it is possible to learn
an accurate one-vs-all classifier with linear separators, it implies that no three classes can be collinear,
since then it would be impossible for a single linear separator to distinguish the middle class from the
union of the others. In this work exploit this implicitly assumed structure to design label-efficient al-

4

gorithms for the commonly assumed cases of one-vs-all and error correcting output codes, as well as
a novel boundary features condition that captures the intuition that every bit of the codewords should
be significant.

Our results: Before discussing our results, we briefly review the output code methodology. For a
problem with L classes, a domain expert designs a code matrix C ∈ {±1}L×m where each column
partitions the classes into two meaningful groups. The number of columnsm is chosen by the domain
expert. For example, when recognizing household objects we could use the following true/false
questions to define the partitions: “is it made of wood?”, “is it sharp?”, “does it have legs?”, “should
I sit on it?”, and so on. Each row of the code matrix describes one of the classes in terms of these
partitions (or semantic features). For example, the class “table” could be described by the vector
(+1,−1,+1,−1), which is called the class’ codeword. Once the code matrix has been designed, we
train an output code by learning a binary classifier for each of the binary partitions (e.g., predicting
whether an object is made of wood or not). To predict the class of a new example, we predict its
codeword in {±1}m and output the class with the nearest codeword under the Hamming distance.
Two popular special cases of output codes are one-vs-all learning, where C is the identity matrix
(with -1 in the off-diagonal entries), and error correcting output codes, where the Hamming distance
between the codewords is large.

In each of our results we assume that there exists a consistent or low-error linear output code
classifier and we impose constraints on the code matrix and the distribution that generates the data.
We present algorithms and analysis techniques for a wide range of different conditions on the code
matrix and data distribution to showcase the variety of implicit structures that can be exploited. For
the code matrix, we consider the case when the codewords are well-separated (i.e., the output code is
error correcting), the case of one-vs-all (where the code matrix is the identity), and a natural boundary
features condition. These conditions can loosely be compared in terms of the Hamming distance
between codewords. In the case of error correcting output codes, the distance between codewords is
large (at least d + 1 when the data is d-dimensional), in one-vs-all the distance is always exactly 2,
and finally in the boundary features condition the distance can be as small as 1. In the latter cases,
the lower Hamming distance requirement is balanced by other structure in the code matrix. For the
distribution, we either assume that the data density function satisfies a thick level set condition or
that the density is upper and lower bounded on its support. Both regularity conditions are used to
ensure that the geometric structure implied by the consistent output code will be recoverable based
on a sample of data.

Error correcting output codes: We first showcase how to exploit the implicit structure assumed
by the commonly used and natural case of linear output codes where the Hamming distance between
codewords is large. In practice, output codes are designed to have this property in order to be robust
to prediction errors for the binary classification tasks [57]. We suppose that the output code makes
at most β errors when predicting codewords and has codewords with Hamming distance at least
2β + d + 1 in a d-dimensional problem. The key insight is that when the code words are well
separated, this implies that points belonging to different classes must be geometrically separated as
well. This suggests that tight clusters of data will be label-homogeneous, so we should be able to
learn an accurate classifier using only a small number of label queries per cluster. The main technical
challenge is to show that our clustering algorithm will not produce too many clusters (in order to keep
the label complexity controlled), and that with high probability, a new sample from the distribution

5

will have the same label as its nearest cluster. We show that when the data density satisfies a thick-
level set condition (requiring that its level sets do not have bridges or cusps that are too thin), then
a single-linkage clustering algorithm can be used to recover a small number of label-homogeneous
clusters.

One-vs-all: Next, we consider the classic one-vs-all setting for data in the unit ball. This is an
interesting setting because of the popularity of one-vs-all classification and because it significantly
relaxes the assumption that the codewords are well separated (in a one-vs-all classifier, the Hamming
distance between codewords is exactly 2). The main challenge in this setting is that there need not be
a margin between classes and a simple single-linkage style clustering might group multiple classes
into the same cluster. To overcome this challenge, we show that the classes are probabilistically
separated in the following sense: after projecting onto the surface of the unit ball, the level sets of
the projected density are label-homogeneous. Equivalently, the high-density regions belonging to
different classes must be separated by low-density regions. We exploit this structure by estimating
the connected components of the ε level set using a robust single-linkage clustering algorithm.

The boundary features condition: Finally, we introduce an interesting and natural condition on
the code matrix capturing the intuition that every binary learning task should be significant. This
condition has the weakest separation requirement, allowing the codewords to have a Hamming dis-
tance of only 1. This setting is our most challenging, since it allows for the classes to be very well
connected to one another, which prevents clustering or level set estimation from being used to find
a small number of label-homogeneous clusters. Nevertheless, we show that the implicit geometric
structure implied by the output code can be exploited to learn using a small number of label queries.
In this case, rather than clustering the unlabeled sample, we apply a novel hyperplane-detection algo-
rithm that uses the absence of data to learn local information about the boundaries between classes.
We then use the implicit structure of the output code to extend these local boundaries into a globally
accurate prediction rule.

Agnostic Setting: Finally, we show that our results for the error correcting, one-vs-all, and bound-
ary features cases can all be extended to an agnostic learning setting, where we do not assume that
there exists a consistent output code classifier.

Our results show an interesting trend: when linear output codes are able to learn from labeled data,
it is possible to exploit the same underlying structure in the problem to learn using a small number
of label requests. Our results hold under several natural assumptions on the output code and general
conditions on the data distribution, and employ both clustering and hyperplane detection strategies to
reduce the label complexity of learning.

2.2 Related Work

Reduction to binary classification is one of the most widely used techniques in applied machine learn-
ing for attacking multi-class problems. Indeed, the one-vs-all, one-vs-one, and the error correcting
output code approaches [57] all follow this structure [108, 97, 29, 50, 1].

There is no prior work providing error bounds for output codes using unlabeled data and in-
teraction. There has been a long line of work for providing provable bounds for semi-supervised

6

learning [11, 9, 31, 42] and active learning [12, 51, 10, 79]. These works provide bounds on the ben-
efits of unlabeled data and interaction for significantly different semi-supervised and active learning
methods that are based different assumptions, often focusing on binary classification, thus the results
are largely incomparable. Another line of recent work considers the multi-class setting and uses un-
labeled data to consistently estimate the risk of classifiers when the data is generated from a known
family of models [59, 7, 8]. Their results do not immediately imply learning algorithms and they
consider generative assumptions, while in contrast our work explicitly designs learning algorithms
under commonly used discriminative assumptions.

Another work related to ours is that of Balcan et al. [14], where labels are recovered from unla-
beled data. The main tool that they use, in order to recover the labels, is the assumption that there are
multiple views and an underlying ontology that are known, and restrict the possible labeling. Simi-
larly, Steinhardt and Liang [131] show how to use the method of moments to estimate the risk of a
model from unlabeled data under the assumption that the data has three independent views. Our work
is more widely applicable, since it applies when we have only a single view.

The output-code formalism is also used by Palatucci et al. [116] for the purpose of zero shot
learning. They demonstrate that it is possible to exploit the semantic relationships encoded in the
code matrix to learn a classifier from labeled data that can predict accurately even classes that did not
appear in the training set. These techniques make very similar assumptions to our work but require
that the code matrix C is known and the problem that they solve is different.

2.3 Preliminaries

We consider multiclass learning problems over an instance space X ⊂ Rd where each point is labeled
by f∗ : X → {1, . . . , k} to one out of k classes and the probability of observing each outcome x ∈ X
is determined by a data distribution P onX . The density function of P is denoted by p : X → [0,∞).
In all of our results we assume that there exists a consistent (but unknown) linear output-code classifier
defined by a code matrix C ∈ {±1}L×m and m linear separators h1, . . . , hm. We denote class i’s
code word by Ci and define h(x) = (sign(h1(x)), . . . , sign(hm(x))) to be the predicted code word
for point x. We let dHam(c, c′) denote the Hamming distance between any codewords c, c′ ∈ {±1}m.
Finally, to simplify notation, we assume that the diameter of X is at most 1.

Our goal is to learn a hypothesis f̂ : X → {1, . . . , k} minimizing err(f̂) = PrX∼P(f̂(x) 6=
f(x)) from an unlabeled sample drawn from the data distribution P together with a small set of
actively queried labeled examples.

Finally, we use the following notation throughout this chapter: For any set A in a metric space
(X , d), the σ-interior of A is the set intσ(A) = {x ∈ A : B(x, σ) ⊂ A}, where B(x, σ) denotes the
ball of radius σ about x. We use the notation Õ(·) to suppress logarithmic terms.

2.4 Error Correcting Output Codes

We first consider the implicit structure when there exists a consistent linear error correcting output
code classifier:

Assumption 2.1. There exists a code matrix C ∈ {±1}L×m and linear functions h1, . . . , hm such
that: (1) there exists β ≥ 0 such that any point x from class y satisfies dHam(h(x), Cy) ≤ β, (2)

7

The Hamming distance between the codewords of C is at least 2β + d + 1; and (3) at most d of the
separators h1, . . . , hm intersect at any point.

Part (1) of this condition is a bound on the number of linear separators that can make a mistake
when the output code predicts the codeword of a new example, part (2) formalizes the requirement
of having well separated codewords, and part (3) requires that the hyperplanes be in general position,
which is a very mild condition that can be satisfied by adding an arbitrarily small perturbation to the
linear separators.

Despite being very natural, Assumption 2.1 conveniently implies that there exists a distance g > 0
such that any points that f∗ assigns to different classes must be at least distance g apart. To see
this, fix any pair of points x and x′ with f∗(x) 6= f∗(x′). By the triangle inequality, we have that
dHam(h(x), h(x′)) ≥ d+ 1, implying that the line segment [x, x′] crosses at least d+ 1 of the linear
separators. Since only d linear separators can intersect at a point, the line segment must have non-zero
length. Applying this argument to the closest pair of points between all pairs of classes and taking the
minimum length gives the result. A formal proof is given Section A.1 of the Appendix.

Lemma 2.1. Under Assumption 2.1, there exists g > 0 such that if points x and x′ belong to different
classes, then ‖x− x′‖ > g.

Lemma 2.1 suggests that we should be able to reduce the label complexity of learning by cluster-
ing the data and querying the label of each cluster, since nearby points must belong to the same class.
If we use a single-linkage style clustering algorithm that merges clusters whenever their distance is
smaller than g, we are guaranteed that the clusters will be label-homogeneous, and therefore we can
recover nearly all of the labels by querying one label from the largest clusters. See Algorithm 1 for
pseudocode.

Algorithm 1 Single-linkage learning.
Input: Sample S = {x1, . . . , xn}, radius rc > 0, target error ε > 0
1. Let {Â1}Ni=1 be the connected components of the graph G with vertex set S and an edge between
xi and xj if ‖xi − xj‖ ≤ rc.

2. In decreasing order of size, query the label of each Âi until ≤ ε
4n points belong to unlabeled

clusters.
3. Output f̂(x) = label of nearest labeled cluster to x.

In order to get a meaningful reduction in label complexity, we need to ensure that when we cluster
a sample of data, most of the samples will belong to a small number of clusters. For this purpose, we
borrow the following very general and interesting thick level set condition from Steinwart [132]: a
density function p hasC-thick level sets if there exists a level λ0 > 0 and a radius σ0 > 0 such that for
every level λ ≤ λ0 and radius σ < σ0, (1) the σ-interior of {p ≥ λ} is non-empty and (2) every point
in {p ≥ λ} is at most distance Cσ from the σ-interior. This condition elegantly characterizes a large
family of distributions for which single-linkage style clustering algorithms succeed at recovering the
high-density clusters and only rules out distributions whose level sets have bridges or cusps that are
too thin. The thickness parameter C measures how pointed the boundary of the level sets of p can
be. For example, in Rd if the level set of p is a ball then C = 1, while if the level set is a cube, then
C =

√
d (as a result of the “pointy” corners of the cube).

Using the thick level set condition to guarantee that our clustering algorithm will not subdivide
the high-density clusters of p, we obtain the following result for Algorithm 1

8

Theorem 2.1. Suppose that Assumption 2.1 holds and that the data distribution hasC-thick level sets.
For any target error ε > 0, let N be the number of connected components of {p ≥ ε/(2 Vol(K))}.
With probability at least 1 − δ, running Algorithm 1 with parameter rc < g on an unlabeled sample
of size n = Õ(1

ε2
((4C)2ddd+1/r2d

c + N)) will query at most N labels and output a classifier with
error at most ε.

Proof. For convenience, define σ = rc/(4C) and λ = ε/(2 Vol(K)). Using a standard VC-bound
[141] together with the fact that balls have VC-dimension d + 1, for n = O((4C)2ddd+1/(ε2r2d

c))
guarantees that with probability at least 1− δ/2 the following holds simultaneously for every center
x ∈ Rd and radius r ≥ 0:

∣∣∣∣
|B(x, r) ∩ S|

n
− P(B(x, r))

∣∣∣∣ ≤
1

2
λσdvd, (2.1)

where vd denotes the volume of the unit ball in Rd. Assume that this high probability event occurs.
We first show that the sample S forms a 2Cσ-covering of the set {p ≥ λ}; that is, for every

x ∈ {p ≥ λ} we have d(x, S) ≤ 2Cσ. Let x be any point in {p ≥ λ}. Since p has C-thick level
sets, we know that there exists a point y ∈ intσ({p ≥ λ}) such that ‖x − y‖ ≤ Cσ. Moreover, the
ball B(y, σ) is contained in {p ≥ λ}, which implies that it has probability mass at least λσdvd and by
(2.1) we have that |B(y, r)∩S|/n ≥ 1

2λσ
dvd > 0, so there must exist a point z ∈ S ∩B(y, σ). Now

we have that d(x, S) ≤ ‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖ ≤ Cσ + σ ≤ 2Cσ, where the final inequality
follows from the fact that C ≥ 1.

Now let A1, . . . , AN be the N connected components of {p ≥ λ}. We will argue that for each
i ∈ [N], there exists a unique cluster output by step 1 of the algorithm, say Âi, such that Âi contains
Ai ∩ S and for any point x ∈ Ai, the closest output cluster is Âi.

To see that Âi contains Ai ∩ S, consider any pair of points x and x′ in Ai ∩ S. Since Ai is
connected, we know there is a path π : [0, 1] → Ai such that π(0) = x and π(1) = x′. Since the
sample set X is a 2Cσ covering of {p ≥ λ}, it is also a 2Cσ-covering of Ai, which implies that we
can find a sequence of points y1, . . . , yM ∈ X (possibly with repetition) such that the path π passes
through the balls B(y1, 2Cσ), . . . , B(yM , 2Cσ) in order. Since consecutive balls must touch at the
point that the path π crosses from one ball to the next, we know that ‖yi − yi+1‖ ≤ 4Cσ = rc, and
therefore the path x→ y1 → · · · → yM → x′ is a path in the graph G connecting x and x′.

Now consider any point x ∈ Ai. We argued above that there exists a sample point z ∈ Âi that
was within distance 2Cσ from x. Now let z∗ be the closest sample in X to x. Then we know that
‖x−z∗‖ ≤ ‖x−z‖ ≤ 2Cσ. By the triangle inequality, we have that d‖z−z∗‖ ≤ ‖z−x‖+‖x−z∗‖ ≤
4Cσ ≤ rc, and therefore z and z∗ are connected in the graph G. Since z belongs to Âi, it follows that
z∗ does too, and therefore the closest cluster to x is Âi.

It remains to bound the error of the resulting classification rule. Since there is a margin of width
g > 0 separating the classes, we know that every connected component of {p ≥ λ} must contain
points belonging to exactly one class. Moreover, since we ran the algorithm with connection radius
rc < g, we know that the clusters output by step 1 will contain points belonging to exactly one class.
It follows that if we query the label of any point in the cluster Âi then the algorithm will not error on
any test point in Ai. Say that one of the connected components Ai is labeled if we query the label of
the corresponding cluster Âi.

Applying Hoeffding’s inequality and the union bound to all possible 2N unions of the sets A1,
. . . , AN , our value of n guarantees that with probability at least 1 − δ/2, the following holds simul-

9

taneously for all subsets of indices I ⊂ [N]:
∣∣∣∣
∣∣S ∩

(⋃

i∈I
Ai
)∣∣/n− P (

⋃

i∈I
Ai)

∣∣∣∣ ≤
ε

4
.

Since the algorithm queries labels until at most ε
4n points belong to unlabeled clusters, we know

that the number of samples belonging to the unlabeled Ai sets is at most ε
4n. By the above uniform

convergence, it follows that their total probability mass is at most ε/2. Finally, since the algorithm
only errors on test points in {p ≤ λ}, which has probability mass at most ε/2 or on unlabeled Ai sets,
the error of the resulting classifier is at most ε.

The exponential dependence on the dimension in Theorem 2.1 is needed to ensure the sample S
will be a fine covering of the level set of p w.h.p., which guarantees that Algorithm 1 will not subdi-
vide its connected components into smaller clusters. When the data has low intrinsic dimensionality,
the unlabeled sample complexity is only exponential in the intrinsic dimension. The following result
shows that under the common assumption that the distribution is a doubling measure, then the un-
labeled sample complexity is exponential only in the doubling dimension. Recall that a probability
measure P is said to have doubling dimension D if for every point x in the support of P and every
radius r > 0, we have that P(B(x, 2r)) ≤ 2DP(B(x, r)) (see, for example, [52]).

Theorem 2.2. Suppose that Assumption 2.1 holds the data distribution P has doubling dimension
D, and the support of P has N connected components. With probability at least 1 − δ, running
Algorithm 1 with parameter rc < g on a sample of size n = Õ

(
d/r2D

c +N/ε2
)

will query at most N
labels and have error at most ε.

Proof. Let x be any point in the support of P . Since we assumed that the diameter of X is 1, we
know that X ⊂ B(x, 1) and therefore P(B(x, 1)) = 1. Applying the doubling condition lg(r) times,
it follows that for any radius r > 0 we have that P(B(x, r)) ≥ r−D.

As in the proof of Theorem 2.1, for our choice of n the following holds with probability at least
1− δ/2 uniformly for every center x in X and radius r ≥ 0:

∣∣|B(x, r) ∩ S|/n− P(B(x, r))
∣∣ ≤ 1

2
r−D.

Assume this high probability event occurs. Since every ball of radius r centered at a point in the
support of P has mass at least r−D, each such ball must contain at least one sample point and it
follows that the sample S forms an r−D-covering of the support of P .

The rest of the proof now follows identically the proof of Theorem 2.1 with the A1, . . . , AN
sets being the connected components of the support of P , since each connected component must be
label-homogeneous.

The unlabeled sample complexity in Theorem 2.1 depends on the gap g between classes because
we must have rc < g. Such a scale parameter must appear in our results, since Assumption 2.1 is
scale-invariant, yet our algorithm exploits scale-dependent geometric properties of the problem. If
we have a conservatively small estimate ĝ ≤ g, then the conclusion of Theorem 2.1 and Theorem 2.2
continue to hold if the connection radius and unlabeled sample complexity are set using the estimate
ĝ. Nevertheless, in some cases we may not have an estimate of g, making it difficult to to apply
Algorithm 1. The following result shows that if we have an estimate of the number of high-density

10

clusters, and these clusters have roughly balanced probability mass, then we are still able to take
advantage of the geometric structure even when the distance g is unknown. The idea is to construct
a hierarchical clustering of S using single linkage, and then to use a small number of label queries to
find a good pruning.

Algorithm 2 Hierarchical single-linkage learning.
Input: Sample S = {x1, . . . , xn}, t ∈ N.
1. Let T be the hierarchical clustering of S obtained by single-linkage.
2. Query the labels of a random subset of S of size t.
3. Let {B̂i}Mi=1 be the coarsest pruning of T such that each B̂i contains labels from one class.
4. Output f̂(x) = label of nearest B̂i to x.

Theorem 2.3. Suppose Assumption 2.1 holds and the density p has C-thick level sets. For any 0 <
ε ≤ 1/2, suppose that {Ai}Ni=1 are the connected components of {p ≥ ε/(2 Vol(K))} and for some
α ≥ 1 we have P (Ai) ≤ αP (Aj) for all i, j. With probability ≥ 1 − δ, running Algorithm 2 with
t = Õ(αN) on an unlabeled sample of size n = Õ(1

ε2
(C2ddd+1/g2d +N)) will have error ≤ ε.

Proof. Define λ = ε/(2 Vol(K)) and let A1, . . . , AN be the connected components of {p ≥ λ}.
Suppose that each Ai set has probability mass at least γ. Under the assumption that the probability
mass of the largest Ai is at most α times the mass of the smallest, we have that γ ≥ (1 − ε)/(αN),
but the result holds for any arbitrary lower bound γ.

Since we query the labels of points without replacement, the set of labeled examples is an iid
sample from the data density p. Whenever m ≥ 2

γ ln 2N
δ , with probability at least 1− δ/2, every set

Ai will contain at least one labeled example, since they each have probability mass at least γ. Assume
this high probability event holds.

Let g be the margin between classes that is guaranteed by Lemma 2.1. Whenever samples x, x′ ∈
S have ‖x− x′‖ ≤ g, they must belong to the same cluster B̂i. Applying an identical covering-style
argument as in Theorem 2.1, we have that with probability at least 1 − δ/2, for every Ai set there is
a cluster, say B̂i, such that:

1. All samples in Ai ∩ S are contained in B̂i.

2. For every x ∈ Ai, the nearest cluster to x is B̂i.

Since every Ai set contains at least one labeled example, it follows that whenever two of these
high-density clusters belong to different classes, they will contain differently labeled points and there-
fore will not have been merged by Algorithm 2. It follows that the label of B̂i must agree with the
label of Ai. At this point, the error analysis follows identically as in Theorem 2.1.

In Section 2.7 we describe a meta-argument that can be used to extend our results into the agnostic
setting, where we no longer require that the output code is consistent. Details for the error correcting
case are given in Section A.1.

In this section we showed that when there exists linear error correcting correcting output code with
low error, then it is possible to reduce the label complexity of learning to the number of high-density
clusters, which are the connected components of {p ≥ ε}. The label-complexity of our algorithms
is always linear in the number of high density clusters, while the worst-case unlabeled complexity of
our algorithms is exponential in the dimension (or intrinsic dimension).

11

✓

q(✓)
K1

K2

K3

Figure 2.1: An example problem satisfying Assumption 2.2 and the projected density q when the
density p is uniform on K.

2.5 One-Versus-All on the Unit Ball

In this section we show that even when the codewords are not well separated, we can still exploit the
implicit structure of output codes to reduce the label complexity of learning by clustering the data.
Specifically, we consider the implicit structure of a linear one-vs-all classifier over the unit ball:

Assumption 2.2. The instance space X there exist L linear separators h1, . . . , hL such that: (1)
point x belongs to class i iff hi(x) > 0, and (2) for all i, hi(x) = w>i x − bi with ‖wi‖ = 1 and
bi ≥ bmin > 0.

See Figure 2.1 for an example problem satisfying this condition. Since a one-vs-all classifier
is an output code where the code matrix is the identity, the Hamming distance between any pair of
codewords is exactly 2. Therefore, in this setting we do not have a result similar to Lemma 2.1 to
ensure that the classes are geometrically separated. Instead, we exploit the one-vs-all structure to
show the classes are probabilistically separated and employ a robust clustering algorithm.

As before, we study this problem under a mild constraint on the data distribution. For each class
i denote the set of points in class i by Ki = {x : ‖x‖ ≤ 1, hi(x) > 0} and K =

⋃L
i=1Ki. In this

section, we assume that the density p is supported on K with upper and lower bounds:

Assumption 2.3. There exist constants 0 < clb ≤ cub s.t. for x ∈ K we have clb ≤ p(x) ≤ cub and
otherwise p(x) = 0.

This distributional constraint is quite general: it only requires that we will not observe examples
for which the one-vs-all classifier would be confused (i.e., where none of its linear separators claim
the point) and that the density does not take extreme values. When K is compact, every continuous
density supported on K satisfies Assumption 2.3.

Our algorithm for this setting first projects the data onto the unit sphere Sd−1 = {x ∈ Rd :
‖x‖ = 1} and then applies a robust clustering algorithm to the projected data. The projection does
not introduce any errors, since the label of an example is independent of its distance to the origin.
This is because each linear separator carves out a spherical cap for its class, and no two class caps
overlap. Since we assume that no class contains the origin, it follows that an examples label depends
only on its projection to the sphere. We show that projecting to the sphere has the useful property
that the projected density goes to zero at the boundary of the classes, which suggests that we can use
a robust single-linkage style clustering algorithm to find label-homoegeneous clusters. Algorithm 3
gives pseudocode, using the notation θ(u, v) = arccos(u>v) for the angle between u and v and V d(r)
is the probability that a uniformly random sample from Sd−1 lands in a given spherical cap of angular
radius r.

Our first result characterizes the density of the projected data (defined relative to the uniform
distribution on Sd−1).

12

Algorithm 3 Robust single-linkage learning.
Input: Sample S = {x1, . . . , xn}, radius rc > 0.
1. Define ra = rc/2 and τ = clb

2cub
V d(ra)ε.

2. Let vi = xi
‖xi‖ be the projection of xi to the sphere.

3. Mark vi active if |{vj : θ(vi, vj) ≤ ra}| ≥ τn and inactive otherwise for i ∈ [n].
4. Let Â1, . . . , ÂN be the connected components of the graph G whose vertices are the active vi with

an edge between vi and vj if θ(vi, vj) < rc.
5. In decreasing order of size, query the label of each Âi until ≤ ε

4n points belong to unlabeled
clusters.

6. Output f̂(x) = label of nearest cluster to x/‖x‖.

Lemma 2.2. Suppose Assumptions 2.2 and 2.3 hold and let q : Sd−1 → [0,∞) be the density function
of the data projected onto the unit sphere. Then qlb(v) ≤ q(v) ≤ qub(v), where

qlb(v) =

{
clbdvd(1− (bi/w

>
i v)d) if v ∈ Ki

0 otherwise,

and qub(v) = cub/clb · qlb(v), where vd is the volume of the unit ball in d dimensions.

Proof. Let X ∼ p be and set V = X/‖X‖2 so that V is a sample from q. For any set A ⊂ Sd−1, we
know that Pr(V ∈ A) = Pr(X ∈ cone(A)), where cone(A) = {rv : r > 0, v ∈ A}, which gives

Pr(V ∈ A) = Pr(X ∈ cone(A)) =

∫

x∈cone(A)
p(x) dx =

∫

v∈A
dvd

∫ ∞

r=0
p(rv)rd−1 dr dµ◦(v),

where the last inequality follows by a change of variables x to (r, v) where r = ‖x‖2 and v = x/‖x‖2.
The term rd−1 is the determinant of the Jacobian of the change of variables, and the term dvd, which
is the surface area of Sd−1, appears since µ◦ is normalized so that µ◦(Sd−1) = 1. From this, it
follows that the density function q can be written as

q(v) = dvd

∫ ∞

r=0
p(rv)rd−1 dr, (2.2)

since integrating this function over any set A gives the probability that V will land in A. From our
assumptions on p, we know that

p(rv) ≥
L∑

i=1

I{rv ∈ Ki}clb.

Moreover, we can rewrite the indicator as I{rv ∈ Ki} = I{ bi
w>i v

< r ≤ 1}. Substituting this into

13

(2.2) gives

q(v) ≥
L∑

i=1

clbdvd

∫ ∞

r=0
I
{

bi

w>i v
< r ≤ 1

}
rd−1 dr

=

L∑

i=1

I{v ∈ Ki}clbdvd

∫ 1

r=bi/(w>i v)
rd−1 dr

=

L∑

i=1

I{v ∈ Ki}clbdvd(1− bi/(w>i v)d)

= qlb(v)

Note that the indicator I{v ∈ Ki} appears in line 2 because the integral is only non-zero when
bi/(w

>
i v) < 1, which is exactly the condition that v ∈ Ki. The upper bound on q follows by an

identical argument using the upper bound on p(rv).

Both bounds are defined piece-wise with one piece for each class. Restricted to class i, both
the qlb(v) and qub(v) are decreasing functions of θ(wi, v), which implies that their λ-level sets are
spherical caps. Therefore, each class contributes one large connected component to the level set of
q that is roughly a spherical cap centered at the point wi and the density of q goes to zero at the
boundary of each class. Our main result is as follows:

Theorem 2.4. Suppose Assumptions 2.2 and 2.3 hold and that f∗ is consistent. There exists an rc
satisfying rc = Ω(εclb/(c

2
ubbmin)) such that with probability at least 1− δ, running Algorithm 3 with

parameter rc on an unlabeled sample of size n = Õ((c4
ubd/(ε

2c2
lbb

2
min))d) will query at most L labels

and output a classifier with error at most ε.

Note that if the scale parameter bmin is unknown, the conclusion of Theorem 2.4 continues to
hold if the connection radius rc and unlabeled sample complexity n are set using a conservatively
small estimate b̂min satisfying b̂min ≤ bmin. This comes at the cost of an increased unlabeled sample
complexity.

Before proving Theorem 2.4, we develop some general results for the robust linkage clustering
algorithm. More generally, Algorithm 3 can be applied in any metric space (X , d) by replacing θ with
the distance metric d and suitable settings for the internal parameters ra and τ . For the robust linkage
approach to have low error, each class should have one large connected component in the graph G
constructed by the algorithm so that: (1) with high probability a new point in class i will be nearest
to that largest component, and (2) the large components of different classes are separated. Intuitively,
G will have these properties if each positive region Ki has a connected high-density inner region Ai
covering most of its probability mass and when it is rare to observe a point that is close to two or
more classes. This notion is formalized below.

Let S be any set in X . We say that a path π : [0, 1] → X crosses S if the path starts and ends in
different connected components of the complement of S in X and we say that the width of S is the
length of the shortest path that crosses S.

Definition 2.1. The sets A1, . . . , Ak are (rc, ra, τ, γ)-clusterable under probability P if there exists
a separating set S of width at least rc such that: (1) Each Ai is connected; (2) If x ∈ X satis-
fies d(x,Ai) ≤ rc/3 then PrX∼P (X ∈ B(x, ra)) > τ + γ; (3) If x ∈ Ai then PrX∼P (X ∈

14

B(x, rc/3)) > γ; (4) Every path from Ai to Aj crosses S; and (5) If x ∈ S then PrX∼P (X ∈
B(x, ra)) < τ − γ.

Note that typically there must be a gap between the set Ai and the set S in order to satisfy the
probability requirements (i.e., the set S will be smaller than X −⋃L

i=1Ai). The first three properties
ensure that each set Ai will have one large connected component and the remaining two properties
ensure that these connected components will be disconnected. Following an analysis similar to that
of the cluster tree algorithm of Chaudhuri and Dasgupta [44] gives the following result.

Lemma 2.3. Suppose that the sets A1, . . . , AN are (rc, ra, τ, γ)-clusterable with respect to distribu-
tion P . For any failure probability δ > 0, let G be the graph constructed by Algorithm 3 run on a
sample S of size O(1

γ2
(D + ln 1

δ), where D is the VC-dimension of balls in (X , d), with parameters
and rc, ra, and τ . Define Ki = {x ∈ S : d(x,Ai) ≤ rc/3} for each i ∈ [N]. With probability at
least 1− δ, the graph G has the following properties:

1. Complete: For each i, all samples in Ki are active and included in the graph G.

2. Separated: For any i 6= j, there is no path in G from Ki to Kj .

3. Connected: For every i, the set Ki is connected in G.

4. Extendible: For any point x ∈ Ai, the nearest connected component of G to x contains Ki.

Proof. The proof technique used here follows a similar argument as Chaudhuri and Dasgupta [44].
We use a standard VC bound [141] to relate the probability constraints in the clusterability defi-

nition to the empirical measure P̂ . For our value of n we have

Pr
(
sup
x,r

∣∣P̂ (B(x, r))− P (B(x, r))
∣∣ > γ

)
< δ.

This implies that with probability at least 1 − δ for all points x we have: (1) if d(x,Ai) ≤ rc
3 for

any i then P̂ (B(x, ra)) > τ ; (2) if x ∈ S then P̂ (B(x, ra)) < τ ; and (3) if x ∈ Ai for any i then
P̂ (B(x, rc3)) > 0. We now use these facts to prove that the graphG has the completeness, separation,
and connectedness properties.

Completeness follows from the fact that every sample x ∈ K̂i is within distance rc/3 of Ai and
therefore P̂ (B(x, ra)) > τ .

To show separation, first observe that every sample z ∈ S that belongs to S will be marked as
inactive, since P̂ (B(z, ra)) < τ . Now let x ∈ K̂i and x′ ∈ K̂j for i 6= j. Since the graph G does not
contain any samples in the set S, any path in G from x to x′ must have one edge that crosses S. Since
the width of S is at least rc, this edge would not be included in the graph G, and therefore G does not
include a path from x to x′.

To show connectedness, let x and x′ be any pair of samples in K̂i and let v and v′ be their nearest
points in Ai, respectively. By definition of K̂i, we know that d(x, v) < rc/3 and d(x′, v′) < rc/3.
Since Ai is a connected set, there is a path π : [0, 1]→ Ai in Ai starting at v and ending at v′. Cover
the path π with a sequence of points z1, . . . , zk such that d(zj , zj+1) < rc/3 for all j and the path π
is covered by the balls B(zj , rc/3). Further, choose z1 = v and zk = v′. Since each point zj belongs
to Ai, the empirical probability mass of the ball B(zj , rc/3) is non-zero, which implies that it must
contain at least one sample point, say yj ∈ S. We may take y1 = x and yk = x′. Since every sample
y1, . . . , yk is within distance rc/3 of Ai, they are all active and included in the graph G. Moreover,

15

since d(yj , yj+1) < rc, we have that the path x = y1 → · · · → yk = x′ is a path connecting x and x′

in G, as required.
Finally to show extensibility, let x ∈ Ai be any point. By the uniform convergence for balls,

P (x, rc/3) has non-zero empirical probability mass and therefore contains at least one active sample,
say z. Since z is within distance rc/3 of Ai, it belongs to the set Ki. Now let z∗ be the closest active
sample to x. We must have d(x, z∗) ≤ d(x, z) ≤ rc/3 and it follows that d(z, z∗) ≤ d(z, x) +
d(x, z∗) ≤ 2rc/3 < rc. Therefore, z∗ also belongs to Ki, as required.

We now prove Theorem 2.4 by combining Lemmas 2.2 and 2.3:

Proof of Theorem 2.4. For each class i ∈ [L], define Ai = {q(i)
ub ≥ ε}. We will show that the sets

A1, . . . , AL are (rc, ra, γ, τ)-clusterable for appropriate choices of the parameters. Then Lemma 2.3
will guarantee that with high probability, the clustering produced by Algorithm 3 will approximate
the connected components of the ε-level of {qub ≥ ε}.

Recall that for each class i ∈ [L], the sets {q(i)
ub ≥ ε} and {q(i)

lb ≥ ε} are spherical caps. To
simplify notation, let C(u, r) = {v ∈ Sd−1 : θ(v, u) ≤ r} denote the spherical cap of angular
radius r centered at u. Let ρ(i)

ub(λ) = arccos(bi(1 − λ/(cubdvd))
−1/d) denote the angular radius of

{q(i)
ub ≥ ε}, so that {q(i)

ub ≥ ε} = C(wi, ρ
(i)
ub(ε)), and ρ(i)

lb (λ), defined similarly, be the angular radius
of {q(i)

lb ≥ ε}. Define ε̃ = clb
cub
ε and suppose for the moment that we can find an activation radius

ra > 0 small enough so that the following inequalities hold for all classes i = 1, . . . , L:

5

3
ra ≤ ρ(i)

lb

(3ε̃

4

)
−ρ(i)

ub(ε) and 2ra ≤ ρ(i)
ub(0)− ρ(i)

ub

(ε̃
4

)
.

Given such an activation radius, we will show that the sets A1, . . . , AL are (rc, ra, τ, γ)-clusterable
with rc = 2ra, τ = ε̃V d(ra)

2 , and γ = ε̃V d(rc/3)
4 and the separating set is S = {v ∈ Sd−1 : θ(v, wi) ≥

ρ
(i)
ub(0)− ra for all i}:

1. Connection: Each Ai set is a spherical cap and therefore connected.

2. High-density near Ai: Let v ∈ Sd−1 be such that θ(v,Ai) < rc/3 and let u ∈ C(v, ra) be any
point in the spherical cap of angular radius ra about v. By the triangle inequality, we know that
θ(wi, u) ≤ θ(wi, v) + θ(v, u) ≤ ρ

(i)
ub(ε) + 5

3ra ≤ ρ
(i)
lb (3ε̃

4). This implies that q(u) ≥ 3ε̃
4 for all

points in C(v, ra) and therefore PrV∼q(V ∈ C(v, ra)) ≥ 4ε̃
3 V

d(ra) ≥ τ + γ.

3. High-density inside Ai: Now let v ∈ Ai. Since rc/3 < ra, the above arguments show
that q(u) ≥ 4ε̃

3 for all points u ∈ C(v, rc/3) and therefore PrV∼q(V ∈ C(v, rc/3)) ≥
4ε̃
3 V

d(rc/3) ≥ γ.

4. Separation by the set S: For each class i, the set S contains the annulus {v ∈ Sd−1 : ρ
(i)
ub(0)−

ra ≤ θ(wi, v) ≤ ρ
(i)
ub(0)} which has width ra. Any path from one Ai to another Aj must cross

two such annuli, each of width ra, so the length of the path crossing S is at least 2ra = rc.

5. Low density inside S: Finally, let v be any point in the set S and let u ∈ C(v, ra). For any class
i, the reverse triangle inequality gives that θ(wi, v) ≥ θ(v, wi) − θ(u,wi) ≥ ρ

(i)
ub(0) − 2ra ≥

ρ
(i)
ub(ε̃4). Since this is true for all classes i, we have q(v) ≤ ε̃

4 and therefore PrV∼q(V ∈
C(v, ra)) ≤ ε̃

4V
d(ra) ≤ τ − γ.

16

It follows that the sets A1, . . . , AL are (rc, ra, τ, γ)-clusterable and it only remains to find an
activation radius ra that satisfies the above inequalities. Since the robust linkage algorithm needs to
estimate the probability mass of balls to within error γ = ε̃V d(2ra/3)

4 , we want this activation radius
to be not too small.

Taking the first order Taylor expansion of the ρ(i)
lb and ρ(i)

ub functions, we have:

ρ
(i)
lb (λ) = arccos(bi)−

bi√
1− b2i

1

clbdvd
λ+O(λ2)

ρ
(i)
ub(λ) = arccos(bi)−

bi√
1− b2i

1

cubdvd
λ+O(λ2),

as λ→ 0. Therefore, we have that

ρ
(i)
lb (3ε̃/4)− ρ(i)

ub(ε) =
1

4dvdcub
· bi√

1− b2i
ε+O(ε2)

and
ρ

(i)
ub(0)− ρ(i)

ub(ε̃/4) =
clb

4dvdc
2
ub

· bi√
1− b2i

ε+O(ε2),

which shows that it is sufficient to set ra = 3clb
20dvdc

2
ub
· bi√

1−b2i
ε+O(ε2) = Ω(clb

c2ub
bminε) as ε→ 0 and

it follows that n = O(1
γ2

(d+ ln 1
δ) = Õ((c4

ubd/(ε
2c2

lbb
2
min))d).

Finally, we show that the algorithm correctly recovers the labels of the large clusters. For n =
Õ(L/ε2), we have that with probability at least 1 − δ the following holds simultaneously for all 2L

subsets I ⊂ [L]:
∣∣P̂ (AI)−P (AI)

∣∣ ≤ ε/4, where AI =
⋃
i∈I Ai. Since all samples in AI are marked

as active (by Lemma 2.3), this implies that all but at most ε4n of the active points will belong to theAi
sets. It follows that if the algorithm queries the labels of the L largest clusters, they will also contain
all but ε4n active samples.

On the other hand, whenever we query the label of one of the Ai sets, we know that we will
correctly classify every test point belonging to Ai, so the error of the resulting classifier is at most the
probability mass of {qub ≤ ε} together with the probability mass of the Ai sets for which we did not
query the label. Since the unqueried Ai sets have empirical probability mass at most ε/4 and we have
uniform convergence for all unions of Ai sets to within error ε/4, it follows that the total probability
mass of the unlabeled Ai sets is at most ε/2 and it follows that the error of the resulting classifier is
at most ε.

There are two main differences between the sample complexity of Theorem 2.4 and the results
from Section 2.4. First, the unlabeled sample complexity now has an ε−2d dependence, rather than
only ε−2. This is because the distance between the connected components of {p ≥ ε} goes to zero (in
the worst case) as ε→ 0, so our algorithm must be able to detect low-density regions of small width.
In contrast, Lemma 2.1 allowed us to establish a non-diminishing gap g > 0 between the classes
when the codewords were well separated. On the other hand, the label complexity in this setting is
better, scaling with L instead of N , since we are able to establish that each class will have one very
large cluster containing nearly all of its data.

Theorem A.2 in the appendix gives an analysis of Algorithm 3 in the agnostic setting of Sec-
tion 2.7.

17

2.6 The Boundary Features Condition

Finally, in this section we introduce a novel condition on the code matrix called the boundary fea-
tures condition that captures the intuition that every binary classification task should be significant.
Assumption 2.4 formalizes this intuition.

Assumption 2.4. There exists a code matrix C ∈ {±1}L×m, linear functions h1, . . . , hm, and a scale
parameter R > 0 so that: (1) for any point x in class y, we have h(x) = Cy; (2) for each hj , there
exists a class i such that negating the jth entry of Ci produces a codeword C ′i not in C and there
exists a point x on the hyperplane hj = 0 such that every point in B(x,R) has either code word Ci
or C ′i; and (3) any pair of points x, x′ ∈ X such that h(x) and h(x′) are not codewords in C and
h(x) 6= h(x′) must have ‖x− x′‖ ≥ R.

Part (1) of this assumption requires that the output code classifier is consistent, part (2) is a
condition that guarantees every linear separator hj separates at least one class i from a region of
space that does not belong to any class, and part (3) requires that points with codewords not in the
code matrix must either have the same codeword or be separated by distance R. Part (3) allows us
to simplify our algorithm and analysis and is trivially satisfied in cases where all points in X that do
not belong to any class have the same codeword, as is the case for one-vs-all classification and the
problem in Figure 2.2.

Problems in this setting are more challenging than those of the previous sections because they may
not be amenable to clustering-based learning strategies. Whenever the Hamming distance between a
pair of codewords is only 1, this implies that one of the linear separators hj forms a shared boundary
between the classes, and therefore these classes may be connected by a large and high-density region.
Instead, Assumption 2.4 guarantees that for every linear separator hj , there is some ball B(x,R)
centered on hj that is half-contained in the set of points belonging to some class i and the other half
belongs to the set of points that do not belong to any class. Therefore, by looking for hyperplanes
that locally separate sample data from empty regions of space, we can recover the linear separator hj
from the local absence of data. DefineKi = {x ∈ X : h(x) = Ci} to be the set of points that belong
to class i and K =

⋃L
i=1Ki. Under the condition that the density p is supported on K and is upper

and lower bounded, we exploit this structure in an algorithm that directly learns the linear separators
h1, . . . , hm.

Our hyperplane detection algorithm works by searching for balls of radius r whose centers are
sample points such that one half of the ball contains very few samples. If a half-ball contains very few
sample points then it must be mostly disjoint from the set K. But since its center point belongs to the
set K, this means that the hyperplane defining the half-ball is a good approximation to at least one of
the true hyperplanes. See Figure 2.3 for examples of half-balls that would pass and fail this test. The

h1

h2h3

K1 K2

K3

K4

C =

2
664

+1 �1 �1
+1 +1 �1
�1 +1 �1
�1 �1 +1

3
775

Figure 2.2: An example of the boundary features problem. The arrows indicate the positive side of
the linear functions.

18

Figure 2.3: Examples of half-balls that would be included (green) or excluded (red) by the plane
detection algorithm.

collectionH of hyperplanes produced in this way partition the space into cells. Our algorithm queries
the labels of the cells containing the most sample points and classifies test points based on the label
of their cell in the partition (and if the label is unknown, we output a random label). Pseudocode is
given in Algorithm 4 using the following notation: for any center x ∈ X , radius r ≥ 0, and direction
w ∈ Sd−1, let B1/2(x, r, w) = {y ∈ B(x, r) : w>(y − x) > 0} and define p1/2(r) = 1

2clbr
dvd.

Algorithm 4 Plane-detection algorithm.
Input: Sample S = {x1, . . . , xn}, r > 0, τ > 0.
1. Initialize set of candidate hyperplanes H = ∅.
2. For all samples x̂ ∈ S with B(x̂, r) ⊂ X :

(a) Let ŵ = argminw∈Sd−1 |B1/2(x̂, r, w) ∩ S|.
(b) If |B1/2(x̂, r, ŵ) ∩ S|/n < τ , add (x̂, ŵ) to H .

3. Let {Ĉi}Ni=1 be the partitioning of X induced by H .
4. Query the label of the L cells with the most samples.
5. Output f̂(x) = label of Ci containing x.

Each candidate hyperplane produced by Algorithm 4 is associated with a half-ball that caused it to
be included in H . In fact, we can think of the pairs (x̂, ŵ) in H as either encoding the linear function
ĥ(x) = w>(x − x̂) or the half-ball B1/2(x̂, r, ŵ), where r is the scale parameter of the algorithm.
Most of our arguments will deal with the half-balls directly, so we adopt the second interpretation.
The analysis of Algorithm 4 has two main steps. First, we show that the face of every half-ball in the
set H is a good approximation to at least one of the true hyperplanes, and that every true hyperplane
is well approximated by the face of at least one half-ball in H . Second, using the fact that the half-
balls in H are good approximations to the true hyperplanes, we argue that the output classifier will
only be inconsistent with the true classification rule in a small margin around each of the true linear
separators. Then the error of the classification rule is easily bounded by bounding the probability
mass of these margins.

To measure the approximation quality, we say that the half-ball B1/2 = B1/2(x̂, r, ŵ) is an
α-approximation to the linear function h if PrX∼B1/2(sign(h(X)) = sign(h(x̂))) ≤ α, where
PrX∼B1/2 denotes the probability when X is sampled uniformly from the half-ball B1/2. The moti-
vation for this definition is as follows: given any point x̂ ∈ X , the half-ball B1/2(x̂, r, ŵ) will be an
α-approximation to hi only if x̂ is on one side of the decision surface of hi and all but an α-fraction
of the half-ball’s volume is on the other side. Intuitively, this means that the face of the half-ball must

19

approximate the decision surface of the function hi.
The following Lemma shows that when Algorithm 4 is run with appropriate parameters and on a

large enough sample drawn from the data distribution, then with high probability the algorithm will
include at least one half-ball in H α-approximating each true hyperplane hi and every half-ball in H
will be an α-approximation to at least one true hyperplane. Recall that p1/2(r) = 1

2clbr
dvd is a lower

bound on the probability mass of a half-ball of radius r contained in the set K.

Lemma 2.4. Fix any α > 0 and confidence parameter δ > 0. Let H be the set of half-balls produced
by Algorithm 4 when run with parameters r = R/2 and τ = 1

2αp
1/2(r) on a sample of size n =

O(1
γ2

(ln2 d
γ +ln 1

δ)) where γ = 2
5τ = 1

5αp
1/2(r). Then with probability at least 1−δ, every half-ball

inH will be an α-approximation to at least one true hyperplane hi, and every true hyperplane hi will
be α-approximated by at least one half-ball in H .

Proof. Since the VC-dimension of both balls and half-spaces in Rd is d + 1, the VC-dimension of
the set of intersections of balls and up to two half-spaces is O(d ln d). Therefore, by a standard VC-
bound [141], if we see an iid sample S of size n = O(1

γ2
(ln2 d

γ + ln 1
δ)), then with probability at

least 1 − δ the empirical measure of any ball intersected with up to two half-spaces will be within
γ of its true probability mass. In other words, the fraction of the sample set S that lands in any ball
intersected with up to two half-spaces will be within γ of the probability that a sample X drawn from
P will land in the same set. For the remainder of the proof, assume that this high-probabilty event
holds.

First, we show that every half-ball in the set H is an α-approximation to at least one true hyper-
plane. Suppose otherwise, then there is a half-ball B1/2 = B1/2(x̂, r, ŵ) with (x̂, ŵ) ∈ H that is
not an α approximation to any true hyperplane hi. The center x̂ of the half-ball must belong to the
positive region K, since it is one of the sample points. If the half-ball B1/2 is contained entirely in
the set K, then the probability that a new sample X drawn from P will land in the half-ball B1/2 is
p1/2(r) and therefore the fraction of samples that landed in the half-ball is at least p1/2(R/2) − γ.
But since p1/2(r) − γ ≥ 4

5αp
1/2(r) > τ , this contradicts the half-ball being included in the set H .

Otherwise, the half-ball contains at least one point y that does not belong to the set K (i.e., it does
not belong to any class). Since x̂ is in the set K, there is at least one true hyperplane hi that separates
x̂ from y. Since r = R/2 < R, every other point y′ in the half-ball that does not belong to any class
must have the same code word as y (since, by assumption, points outside of K that do not belong to
any class must have the same code word when they are closer than R), and therefore must be on the
same side of hi as y. It follows that all points in the half-ball on the same side of hi as x̂ (i.e., those
points for which the sign of hi matches the sign of hi(x̂)) belong to the set K. But, since the half-ball
is not an α-approximation to hi, this implies that at least an α fraction of the half-ball’s volume must
belong to the set K. Therefore, the probability that a new sample x drawn from the data distribution
p belongs to the half-ball can be lower bounded as follows:

Pr
x∼p

(x ∈ B1/2) ≥ clb Vol(B1/2 ∩K) = clb Vol(B1/2)
Vol(B1/2 ∩K)

Vol(B1/2)
≥ αp1/2(r).

By the uniform convergence argument, the fraction of the samples in S contained in the half-ballB1/2

is at least αp1/2(r) − γ > τ , which contradicts the half-ball being in H . In either case we arrived
at a contradiction and it follows that every half-ball in H is an α-approximation to at least one true
hyperplane hi.

20

Finally, we show that the set H will contain at least one half-ball that is an α-approximation to
each true hyperplane hi. Fix any true hyperplane hi. By assumption, there is a class ` and a point x0

on the decision surface of hi so that one half-ball of B(x0, R) with face hi is is contained in K` ⊂ K
and the other half-ball is disjoint from K. Suppose WLOG that the half-ball on the negative side of
hi is contained in K (the case when the half-ball on the positive side is contained in K is identical).
Define ρ > 0 to be the width such that the probability that a new sample X from P lands in the
slice of the ball S = {x ∈ B(x̂0, r) : hi(x) ∈ [−ρ, 0]} is equal to τ − γ. Note that, since the
half-ball on the negative side of hi is a subset of K and τ − γ = 3

10αp
1/2(r) < p1/2(r), such a

value of ρ always exists. Since τ − γ > γ, the uniform convergence argument guarantees that there
will be at least one sample point in the slice, say x̂ ∈ S. Since x̂ is within distance r = R/2 of
the point x0, the ball B(x̂, r) is contained in B(x0, R). Therefore, the ball of radius r centered at x̂
only contains points that either belong to class ` or no class, since only the linear separator hi passes
through this ball. By construction, the half-ball B1/2(x̂, r, wi) (where wi is the coefficient vector
defining hi(x) = w>i x − bi) with face parallel to hi intersects the set K in a slice of width at most
ρ and therefore has probability mass at at most τ − γ. It follows that the direction ŵ that minimizes
the number of samples in the half-ball B1/2(x̂, r, ŵ) will result in the half-ball containing at most a
τ fraction of the sample set, and therefore the pair (x̂, ŵ) will be included in H , and this will be an
α-approximation to hi.

Naturally, if a half-ball B1/2(x̂, r, ŵ) is an α-approximation to the linear function h, we expect
that the decision surface of ĥ(x) = ŵ>(x − x̂) is similar to the decision surface of h. In turn, this
suggests that either ĥ(x) or −ĥ(x) should take similar function values to h(x) (since the coefficient
vectors are normalized). We first give a simple probability lemma that bounds the fraction of a ball
contained between two parallel hyperplanes, one passing through the ball’s center. The proof of
Lemma 2.5 is in Section A.3 of the appendix.

Lemma 2.5. Let r > 0 be any radius and X be a random sample drawn uniformly from the ball of
radius r centered at the origin. For any width 0 ≤ ρ ≤ r/

√
2, the probability that the first coordinate

of X lands in [0, ρ] can be bounded as follows:
√

d

2dπ

ρ

r
≤ Pr

X∼B(r,0)
(X1 ∈ [0, ρ]) ≤

√
d+ 1

2π

ρ

r
.

Using Lemma 2.5, we show the following:

Lemma 2.6. Let the half-ball B1/2(x̂, r, ŵ) be an α-approximation to the linear function h(x) =
w>x − b with ‖w‖ = 1, x̂ ∈ X , and α < 1

2 . Let D be the diameter of X . If h(x̂) < 0 then for all
x ∈ X we have

|h(x)− ĥ(x)| ≤
(

2D +

√
2dπ

d

r

2

)√
α,

where ĥ(x) = ŵ>(x−x̂). Otherwise, if h(x̂) > 0 then the same upper bound holds for |h(x)+ĥ(x)|.

Proof. Suppose that h(x̂) < 0 and let X be a uniformly random sample from the half-ball B1/2 =
B1/2(x̂, r, ŵ). By assumption, we know that Pr(h(X) < 0) ≤ α.

First we show that ‖w − ŵ‖ is small. Since α < 1/2 we have that w>ŵ > 0. To see this, notice
that we must have h(x̂ + rŵ) ≥ 0, since otherwise at least half of the half-ball would be on the
negative side of h. Define g(x) = w>(x − x̂) to be the linear function whose decision surface runs

21

parallel to that of h but passes through the point x̂. Since h(x) = g(x) + h(x̂) ≤ g(x), we have that
α > Pr(h(X) < 0) ≥ Pr(g(X) < 0). Moreover, since the decision surface of g passes through the
center of the half-ball B1/2 and the uniform distribution on the half-ball is radially symmetric about
the point x̂, we have that Pr(g(X) < 0) = θ(w,ŵ)

π . It follows that θ(w, ŵ) ≤ πα. Using this fact, we
can bound ‖w − ŵ‖ as follows:

‖w − ŵ‖2 = ‖w‖2 + ‖ŵ‖2 − 2w>ŵ = 2(1− w>ŵ).

Since w>ŵ = cos(θ(w, ŵ)) and on the interval [0, π/2], the cos(θ) function is decreasing and lower
bounded by 1 − 2

πθ, we have that 2(1 − w>ŵ) ≤ 4α. Taking the square root gives that ‖w − ŵ‖ ≤
2
√
α.
Next we show that |h(x̂)| (the distance from x̂ to the decision surface of h) is not too large. The

half-ballB1/2(x̂, r, w), whose directionw matches the coefficient vector of h is one half-ball centered
at x̂ of radius r minimizing the fraction of its volume contained on the same side of h as x̂. This is
because every point in the ball B(x̂, r) not on the same side as x̂ is contained in B1/2(x̂, r, w). Let
Y be uniformly sampled from B1/2(x̂, r, w). By construction of the half-ball Y is sampled from, we
have that Pr(h(X) < 0) ≥ Pr(h(Y) < 0), which gives

α ≥ Pr
X∼B1/2(x̂,r,ŵ)

(
h(X) < 0

)
≥ Pr

Y∼B1/2(x̂,r,w)

(
h(Y) < 0

)
≥
√

d

2dπ

2|h(x̂)|
r

,

which implies that

|h(x̂)| ≤
√

2dπ

d

rα

2
.

Finally, let x′ be any point on the decision surface of h, so that h(x) = w>(x − x′). Combining
the above calculations we have

|h(x)− ĥ(x)| = |w>(x− x′)− ŵ>(x− x̂)|
= |w>(x− x̂) + w>(x̂− x′)− ŵ>(x− x̂)|
= |(w − ŵ)(x− x̂) + w>(x̂− x′)|
≤ ‖w − ŵ‖‖x− x̂‖+ |h(x̂)|

≤ 2
√
αD +

√
2dπ

d

rα

2

≤ (2D +

√
2dπ

d

r

2
)
√
α,

as required. The proof of the case when h(x) > 0 follows by applying the above arguments to the
function −h.

Recall that for any hyperplane h(x) = w>x− b with ‖w‖2 = 1, the distance from point x to the
decision surface of h is |h(x)|. The above lemma implies that if B1/2(x̂, r, ŵ) is an α-approximation
to h, then either ĥ or −ĥ will have the same sign as h for all points in X except those in a margin of
width O(

√
α) around h. Under the uniform distribution on K, the probability mass of the margins

surrounding the true hyperplanes isn’t large, which results in low error for the classification rule.

22

Theorem 2.5. Suppose Assumptions 2.3 and 2.4 hold. For any desired error ε > 0, with probability
at least 1 − δ, running Algorithm 4 with parameters r ≤ R/2 and τ = αp1/2(r)/2 for a known
constant α on on a sample of size n = Õ(dm2c2

ubR
d/(c2

lbε
4)) will have error at most ε.

Proof. By Lemma 2.4, for the parameter settings τ and r and the given sample size, with probability
at least 1−δ every half-ball included in the setH will be an α-approximation to some true hyperplane
hi, and every true hyperplane hi is α-approximated by at least one half-ball in H . Assume that this
high probability event occurs.

Let H = {(x̂1, ŵ1), . . . , (x̂M , ŵM)} be the set of of half-balls produced by the algorithm and
define ĥi(x) = ŵ>i (x − x̂i) for i = 1, . . . ,M to be the corresponding linear functions. Algorithm 4
uses these hyperplanes to partition the space X into a collection of polygonal regions and assigns a
unique class label to each cell in the partition. Notice that negating any of the ĥi functions does not
change the partitioning of the space. Therefore, negating any subset of the ĥi will not change the
permutation-invariant error of the resulting classifier.

Let I1, . . . , Im be a partition of the set of indices {1, . . . ,M} such that for all j ∈ Ii, we have
that B1/2(x̂j , ŵj , r) is an α-approximation to hi. By Lemma 2.6, we know that for at least one
g ∈ {ĥj ,−ĥj}, we have that

|hi(x)− g(x)| ≤
(

2D +

√
2dπ

d

r

2

)
√
α

Since negating any of the functions ĥj does not change the error of the resulting classifier, assume
WLOG that the above holds for g = ĥj .

This implies that whenever |hi(x)| > c
√
α, where c = 2D +

√
2dπ
d

R
4 , then for every j ∈ Ii, the

sign of ĥj(x) is the same as the sign of hi(x). It follows that for points that are not within a margin
of c
√
α of any of the true hyperplanes, every ĥj function with j ∈ Ii will have the same sign as hi for

all i = 1, . . . ,m. It follows that the classifier can only error on points that are within a c
√
α margin

of one of the true hyperplanes.
Using Lemma 2.5 we can bound the probability that a sample X drawn uniformly from K lands

in the c
√
α-margin of hyperplane hi as follows:

Pr(X in c
√
α-margin of hi) ≤ 2

√
d+ 1

2π

c
√
α

D
Ddvdcub,

where D is the diameter of X . We can make this upper bound equal to ε/m by setting

α =
π

2(d+ 1)

(
εD

mcDdvdclb

)2

= Ω

(
ε2

m22dR2D2dv2
dc

2
lb

)

Applying the union bound to them hyperplanes h1, . . . , hm shows that the error of f̂ is at most ε.

Note that if the scale parameter R is unknown, the conclusions of Theorem 2.5 continue to hold
when the parameter r and the unlabeled sample complexity n are set using a conservatively small
estimate R̂ satisfying R̂ ≤ R.

Theorem A.3 in the appendix extends the above result to the agnostic setting considered in Sec-
tion 2.7.

23

2.7 Extensions to the Agnostic Setting

The majority of our algorithms have two phases: first, we extract a partitioning of the unlabeled data
into groups that are likely label-homogeneous, and second, we query the label of the largest groups.
We can extend our results for these algorithms to the agnostic setting by querying multiple labels
from each group and using the majority label.

Specifically, suppose that the data is generated according to a distribution P over X × [L] and
there exists a labeling function f∗ such that Pr(x,y)∼P (f∗(x) 6= y) ≤ η and our assumptions hold
when the unlabeled data is drawn from the marginal PX but the labels are assigned by f∗. That
is, the true distribution over class labels disagrees with a function f∗ satisfying our assumptions with
probability at most η. In this setting, the first phase of our algorithms, which deals with only unlabeled
data, behaves exactly as in the realizable setting. The only difference is that we will need to query
multiple labels from each group of data to ensure that the majority label is the label predicted by f∗.
Suppose that the training data is (x1, y1), . . . , (xn, yn) drawn from P (where the labels yi are initially
unobserved). For n = Õ(1/η2), we are guaranteed that on at most 2ηn of the training points we
have that yi 6= f∗(xi). Moreover, if we only need to guess the label of large groups of samples, say
those containing at least 8ηn points, then we are guaranteed that within each group at least 1/4 of
the sample points will have labels that agree with f∗. Therefore, after querying O(log(1/δ)) labeled
examples from each group, the majority label will agree with f∗. If we use these labels in the second
phase of the algorithm, we would be guaranteed that the error of our algorithm would be at most ε
had the labels been produced by f∗, and therefore the error under the distribution P is at most η + ε.
The appendix contains agnostic versions of Theorems 2.1, 2.4, and 2.5.

Similarly, modifying Algorithm 2 to require that the each cluster in the pruning have a majority
label that accounts for at least 3/4 of the cluster’s data can be used to extend the corresponding results
to the agnostic setting.

2.8 Conclusion and Discussion

In this work we showed how to exploit the implicit geometric assumptions made by output code
techniques under the well studied cases of one-vs-all and well separated codewords, and for a novel
boundary features condition that captures the intuition that every binary learning task should be sig-
nificant. We provide label-efficient learning algorithms for both the consistent and agnostic learning
settings with guarantees when the data density has thick level sets or upper and lower bounds. In all
cases, our algorithms show that the implicit assumptions of output code learning can be used to learn
from very limited labeled data.

In this work we focused on linear output codes, which have been in several practical works. For
example Palatucci et al. [116] use linear output codes for neural decoding of thoughts from fMRI
data, Berger [28] used them successfully for text classification, and Crammer and Singer [48] show
that they perform well on MNIST and several UCI datasets. Many other works use non-linear output
codes, and it is a very interesting research direction to extend our work to such cases.

The unlabeled sample complexity of our algorithms is exponential in the dimension because our
algorithms require the samples to cover high-density regions. It is common for semi-supervised al-
gorithms to require exponentially more unlabeled data than labeled, e.g. [129, 37]. Our results also
show that the unlabeled sample complexity only scales exponentially with the intrinsic dimension,
which may be significantly lower than the ambient dimension for real-world problems. An interest-

24

ing direction for future work is to determine further conditions under which the unlabeled sample
complexity can be drastically reduced.

25

Chapter 3

Online and Private Algorithm
Configuration

In this chapter we consider data driven algorithm configuration, where the goal is to use machine
learning tools to find the parameters for an algorithm that give the best performance on a specific
application domain. For example, given a parameterized family of clustering algorithms, we might
want to learn the parameters that lead to the most semantically meaningful clusterings of text docu-
ments. To formulate this as a learning problem, we might collect example text document clustering
instances, each with a hand-crafted clustering. With this training data in hand, our goal is to find
the parameters that result in clusterings with maximal agreement with the hand-crafted clusterings.
We focus primarily on two settings: the online setting, where a sequence of problem instances (e.g.,
clustering datasets) arrives one at a time, and we must choose parameters for each instance. Our goal
is to design algorithms for which the cumulative performance of the parameters chosen by the algo-
rithm is nearly as high as the best fixed parameters in hindsight. We also consider the private setting,
where each problem instance encodes sensitive information about an individual, and our goal is to
find high-performing parameters without divulging that sensitive information. For example, if each
clustering instance we encountered consisted of the search queries made by a single user of a search
engine, we may want to obtain high quality algorithm parameters while at the same time ensuring
that we protect each user’s data.

In both the online and private settings, tuning the parameters of combinatorial algorithms often
reduces to optimization of piecewise Lipschitz functions. These are particularly challenging opti-
mization problems, since the discontinuities of piecewise Lipschitz functions allows them to be in-
credibly sensitive near the optimal parameters. Section 3.1 introduces a novel dispersion condition
that roughly measures how concentrated the discontinuities of a sequence of piecewise Lipschitz fun-
tions are. We provide matching upper and lower bounds for both private and online optimization that
depend on the level of dispersion in the underlying sequence. In Section 3.2, we design very efficient
algorithms for online algorithm configuration by taking advantage of rich additional structure present
for many combinatorial algorithm configuration problems: running the algorithm on an instance for a
given parameter setting can sometimes reveal an entire range of parameter values with similar perfor-
mance. Exploiting this additional information leads to algorithms with better guarantees than those
explored in Section 3.1.

26

3.1 Private and Online Algorithm Configuration from Dispersion

3.1.1 Introduction

Data-driven algorithm design, that is, choosing the best algorithm for a specific application, is a crit-
ical problem in modern data science and algorithm design. Rather than use off-the-shelf algorithms
with only worst-case guarantees, a practitioner will often optimize over a family of parametrized
algorithms, tuning the algorithm’s parameters based on typical problems from his domain. Ideally,
the resulting algorithm will have high performance on future problems, but these procedures have
historically come with no guarantees. In a seminal work, Gupta and Roughgarden [77] study algo-
rithm selection in a distributional learning setting. Modeling an application domain as a distribution
over typical problems, they show that a bound on the intrinsic complexity of the algorithm family
prescribes the number of samples sufficient to ensure that any algorithm’s empirical and expected
performance are close.

We advance the foundations of algorithm selection in several important directions: online and
private algorithm selection. In the online setting, problem instances arrive one-by-one, perhaps ad-
versarially. The goal is to select parameters for each instance in order to minimize regret, which is
the difference between the cumulative performance of those parameters and the optimal parameters
in hindsight. We also study private algorithm selection, where the goal is to find high-performing pa-
rameters over a set of problems without revealing sensitive information contained therein. Preserving
privacy is crucial when problems depend on individuals’ medical or purchase data, for example.

We analyze several important, infinite families of parameterized algorithms. These include greedy
techniques for canonical subset selection problems such as the knapsack and maximum weight inde-
pendent set problems. We also study SDP-rounding schemes for problems that can be formulated as
integer quadratic programs, such as max-cut, max-2sat, and correlation clustering. In these cases, our
goal is to optimize, online or privately, the utility function that measures an algorithm’s performance
as a function of its parameters, such as the value of the items added to the knapsack by a param-
eterized knapsack algorithm. The key challenge is the volatility of this function: a small tweak to
the algorithm’s parameters can cause a cascade of changes in the algorithm’s behavior. For example,
greedy algorithms typically build a solution by iteratively adding items that maximize a scoring rule.
Prior work has proposed parameterizing these scoring rules and tuning the parameter to obtain the
best performance for a given application [77]. Slightly adjusting the parameter can cause the algo-
rithm to select items in a completely different order, potentially causing a sharp change in the quality
of the selected items.

Despite this challenge, we show that in many cases, these utility functions are well-behaved in
several respects and thus can be optimized online and privately. Specifically, these functions are
piecewise Lipschitz and moreover, they satisfy a condition we call dispersion. Roughly speaking, a
collection of piecewise Lipschitz functions is dispersed if no small region of space contains disconti-
nuities for many of the functions. We provide general techniques for online and private optimization
of the sum or average of dispersed piecewise Lipschitz functions. Taking advantage of dispersion in
online learning, we improve over the best-known regret bounds for a variety problems, prove regret
bounds for problems not previously studied, and provide matching regret lower bounds. In the pri-
vacy setting, we show how to optimize performance while preserving privacy for several important
problems, giving matching upper and lower bounds on performance loss due to privacy.

Though our main motivation is algorithm selection, we expect dispersion is even more widely
applicable, opening up an exciting research direction. For this reason, we present our main results

27

more generally for optimizing piecewise Lipschitz functions. We also uncover dispersion in domains
beyond algorithm selection, namely, auction design and pricing, so we prove online and privacy
guarantees for these problems as well. Finally, we answer several open questions: Cohen-Addad and
Kanade [46] asked how to optimize piecewise Lipschitz functions and Gupta and Roughgarden [77]
asked which algorithm selection problems can be solved with no regret algorithms. As a bonus, we
also show that dispersion implies generalization guarantees in the distributional setting. In this setting,
the configuration procedure is given an iid sample of problem instances drawn from an unknown
distribution d, and the goal is to find the algorithm parameters with highest expected utility. By
bounding the empirical Rademacher complexity, we show that the sample and expected utility for all
algorithms in our class are close, implying that the optimal algorithm on the sample is approximately
optimal in expectation.

Our contributions

In order to present our contributions, we briefly outline the notation we will use. Let A be an infinite
set of algorithms parameterized by a set C ⊆ Rd. For example, A might be the set of knapsack
greedy algorithms that add items to the knapsack in decreasing order of v(i)/s(i)ρ, where v(i) and
s(i) are the value and size of item i and ρ is a parameter. Next, let Π be a set of problem instances
for A, such as knapsack problem instances, and let u : Π × C → [0, H] be a utility function where
u(x,ρ) measures the performance of the algorithm with parameters ρ on problem instance x ∈ Π.
For example, u(x, ρ) could be the value of the items chosen by the knapsack algorithm with parameter
ρ on input x.

We now summarize our main contributions. Since our results apply beyond application-specific
algorithm selection, we describe them for the more general problem of optimizing piecewise Lipschitz
functions.

Dispersion Let u1, . . . , uT be a set of functions mapping a set C ⊆ Rd to [0, H]. For exam-
ple, in the application-specific algorithm selection setting, given a collection of problem instances
x1, . . . , xT ∈ Π and a utility function u : Π × C → [0, H], each function ui(·) might equal the
function u(xi, ·), measuring an algorithm’s performance on a fixed problem instance as a function
of its parameters. Dispersion is a constraint on the functions u1, . . . , uT . We assume that for each
function ui, we can partition C into sets C1, . . . , CK such that ui is L-Lipschitz on each piece, but
ui may have discontinuities at the boundaries between pieces. In our applications, each set Ci is
connected, but our general results hold for arbitrary sets. Informally, the functions u1, . . . , uT are
(w, k)-dispersed if every Euclidean ball of radius w contains discontinuities for at most k of those
functions (see Section 3.1.2 for a formal definition). This guarantees that although each function ui
may have discontinuities, they do not concentrate in a small region of space. Dispersion is sufficient
to prove strong learning generalization guarantees, online learning regret bounds, and private opti-
mization bounds when optimizing the empirical utility 1

T

∑T
i=1 ui. In our applications, w = Tα−1

and k = Õ(Tα) with high probability for any 1/2 ≤ α ≤ 1, ignoring problem-specific multiplicands.

Online learning We prove that dispersion implies strong regret bounds in online learning, a fun-
damental area of machine learning [38]. In this setting, a sequence of functions u1, . . . , uT arrive
one-by-one. At time t, the learning algorithm chooses a parameter vector ρt and then either observes
the function ut in the full information setting or the scalar ut(ρt) in the bandit setting. The goal is

28

to minimize expected regret: E[maxρ∈C
∑
ut(ρ) − ut(ρt)]. Under full information, we show that

the exponentially-weighted forecaster [38] has regret bounded by Õ(H(
√
Td + k) + TLw). When

w = 1/
√
T and k = Õ(

√
T), this results in Õ(

√
T (H

√
d + L)) regret. We also prove a match-

ing lower bound. This algorithm also preserves (ε, δ)-differential privacy with regret bounded by
Õ(H(

√
Td/ε + k + δ) + TLw). Finally, under bandit feedback, we show that a discretization-

based algorithm achieves regret at most Õ(H(
√
dT (3R/w)d + k) + TLw). When w = T−1/(d+2)

and k = Õ(T (d+1)/(d+2)), this gives a bound of Õ(T (d+1)/(d+2)(H
√
d(3R)d + L)), matching the

dependence on T of a lower bound by Kleinberg et al. [91] for (globally) Lipschitz functions.
Online algorithm selection is generally not possible: Gupta and Roughgarden [77] give an al-

gorithm selection problem for which no online algorithm can achieve sub-linear regret. Therefore,
additional structure is necessary to prove guarantees, which we characterize using dispersion.

Private batch optimization We demonstrate that it is possible to optimize over a set of dispersed
functions while preserving differential privacy [64]. In this setting, the goal is to find the parameter ρ
that maximizes average utility on a set S = {u1, . . . , uT } of functions ui : C → R without divulging
much information about any single function ui. Providing privacy at the granularity of functions is
suitable when each function encodes sensitive information about one or a small group of individuals
and each individual’s information is used to define only a small number of functions. For example, in
the case of auction design and pricing problems, each function ui is defined by a set of buyers’ bids or
valuations for a set of items. If a single buyer’s information is only encoded by a single function, then
we preserve her privacy by not revealing sensitive information about any one function ui. This will be
the case, for example, if the buyers do not repeatedly return to buy the same items day after day. This
is a common assumption in online auction design and pricing [32, 33, 35, 40, 90, 125, 60] because it
means the buyers will not be strategic, aiming to trick the algorithm into setting lower prices in the
future.

Differential privacy requires that an algorithm is randomized and its output distribution is in-
sensitive to changing a single point in the input data. Formally, two multi-sets S and S ′ of T
functions are neighboring, denoted S ∼ S ′, if |S∆S ′| ≤ 1. A randomized algorithm A is (ε, δ)-
differentially private if, for any neighboring multi-sets S ∼ S ′ and set O of outcomes, Pr(A(S) ∈
O) ≤ eε Pr(A(S ′) ∈ O) + δ. In our setting, the algorithm’s input is a set S of T functions,
and the output is a point ρ ∈ C that approximately maximizes the average of those functions.
We show that the exponential mechanism [104] outputs ρ̂ ∈ C such that with high probability
1
T

∑T
i=1 ui(ρ̂) ≥ maxρ∈C

1
T

∑T
i=1 ui(ρ) − Õ(HT (dε + k) + Lw) while preserving (ε, 0)-differential

privacy. We also give a matching lower bound. Our private algorithms always preserve privacy, even
when dispersion does not hold.

Computational efficiency In our settings, the functions have additional structure that enables us to
design efficient implementations of our algorithms: for one-dimensional problems, there is a closed-
form expression for the integral of the piecewise Lipschitz functions on each piece and for multi-
dimensional problems, the functions are piecewise concave. We leverage tools from high-dimensional
geometry [26, 101] to efficiently implement the integration and sampling steps required by our algo-
rithms. Our algorithms have running time linear in the number of pieces of the utility function and
polynomial in all other parameters.

29

Dispersion in algorithm selection problems

Algorithm selection. We study algorithm selection for integer quadratic programs (IQPs) of the
form maxz∈{±1}n z

>Az, where A ∈ Rn×n for some n. Many classic NP-hard problems can be
formulated as IQPs, including max-cut [72], max-2SAT [72], and correlation clustering [43]. Many
IQP approximation algorithms are semidefinite programming (SDP) rounding schemes; they solve
the SDP relaxation of the IQP and round the resulting vectors to binary values. We study two families
of SDP rounding techniques: s-linear rounding [67] and outward rotation [152], which include the
Goemans-Williamson algorithm [72] as a special case. Due to these algorithms’ inherent random-
ization, finding an optimal rounding function over T problem instances with n variables amounts to
optimizing the sum of (1/T 1−α, Õ(nTα))-dispersed functions for 1/2 ≤ α < 1. This holds even for
adversarial (non-stochastic) instances, implying strong online learning guarantees.

We also study greedy algorithm selection for two canonical subset selection problems: the knap-
sack and maximum weight independent set (MWIS) problems. Greedy algorithms are typically de-
fined by a scoring rule determining the order the algorithm adds elements to the solution set. For
example, Gupta and Roughgarden [77] introduce a parameterized knapsack algorithm that adds items
in decreasing order of v(i)/s(i)ρ, where v(i) and s(i) are the value and size of item i. Under mild con-
ditions — roughly, that the items’ values are drawn from distributions with bounded density functions
and that each item’s size is independent from its value — we show that the utility functions induced
by T knapsack instances with n items are (1/T 1−α, Õ(nTα))-dispersed for any 1/2 ≤ α < 1.

Pricing problems and auction design Market designers use machine learning to design auctions
and set prices [149, 81]. In the online setting, at each time step there is a set of goods for sale and a set
of consumers who place bids for those goods. The goal is to set auction parameters, such as reserve
prices, that are nearly as good as the best fixed parameters in hindsight. Here, “best” may be defined
in terms of revenue or social welfare, for example. In the offline setting, the algorithm receives a set of
bidder valuations sampled from an unknown distribution and aims to find parameters that are nearly
optimal in expectation (e.g., [66, 47, 83, 105, 109, 124, 56, 74, 35, 110, 17, 24]). In the paper that this
chapter is based on [22], we analyze multi-item, multi-bidder second price auctions with reserves, as
well as pricing problems, where the algorithm sets prices and buyers decide what to buy based on
their utility functions. These classic mechanisms have been studied for decades in both economics
and computer science. We note that data-driven mechanism design problems are effectively algorithm
design problems with incentive constraints: the input to a mechanism is the buyers’ bids or valuations,
and the output is an allocation of the goods and a description of the payments required of the buyers.
For ease of exposition, we discuss algorithm and mechanism design separately.

Related work

Gupta and Roughgarden [77] and Balcan et al. [18] study algorithm selection in the distributional
learning setting, where there is a distribution d over problem instances. A learning algorithm re-
ceives a set S of samples from d. Those two works provide uniform convergence guarantees, which
bound the difference between the average performance over S of any algorithm in a class A and its
expected performance on d. It is known that regret bounds imply generalization guarantees for var-
ious online-to-batch conversion algorithms [39], but in this work, we also show that dispersion can
be used to explicitly provide uniform convergence guarantees via Rademacher complexity. Beyond
this connection, our work is a significant departure from these works since we give guarantees for

30

private algorithm selection and we give no regret algorithms, whereas Gupta and Roughgarden [77]
only study online MWIS algorithm selection, proving their algorithm has small constant per-round
regret.

Private empirical risk minimization (ERM) The goal of private ERM is to find the best machine
learning model parameters based on private data. Techniques include objective and output perturba-
tion [45], stochastic gradient descent, and the exponential mechanism [26]. These works focus on
minimizing data-dependent convex functions, so parameters near the optimum also have high utility,
which is not the case in our settings.

Private algorithm configuration Kusner et al. [95] develop private Bayesian optimization tech-
niques for tuning algorithm parameters. Their methods implicitly assume that the utility function is
differentiable. Meanwhile, the class of functions we consider have discontinuities between pieces,
and it is not enough to privately optimize on each piece, since the boundaries themselves are data-
dependent.

Online optimization Prior work on online algorithm selection focuses on significantly more re-
stricted settings. Cohen-Addad and Kanade [46] study single-dimensional piecewise constant func-
tions under a “smoothed adversary,” where the adversary chooses a distribution per boundary from
which that boundary is drawn. Thus, the boundaries are independent. Moreover, each distribution
must have bounded density. Gupta and Roughgarden [77] study online MWIS greedy algorithm se-
lection under a smoothed adversary, where the adversary chooses a distribution per vertex from which
its weight is drawn. Thus, the vertex weights are independent and again, each distribution must have
bounded density. In contrast, we allow for more correlations among the elements of each problem
instance. Our analysis also applies to the substantially more general setting of optimizing piecewise
Lipschitz functions. We show several new applications of our techniques in algorithm selection for
SDP rounding schemes, price setting, and auction design, none of which were covered by prior work.
Furthermore, we provide differential privacy results and generalization guarantees.

Neither Cohen-Addad and Kanade [46] nor Gupta and Roughgarden [77] develop a general
theory of dispersion, but we can map their analysis into our setting. In essence, Cohen-Addad
and Kanade [46], who provide the tighter analysis, show that if the functions the algorithm sees
map from [0, 1] to [0, 1] and are (w, 1)-dispersed, then the regret of their algorithm is bounded by
O(
√
T ln(1/w)). Under a smoothed adversary, the functions are (w, 1)-dispersed for an appropriate

choice ofw. In this work, we show that using the more general notion of (w, k)-dispersion is essential
to proving tight learning bounds for more powerful adversaries. We provide a sequence of piecewise
constant functions u1, . . . , uT mapping [0, 1] to [0, 1] that are (1/8,

√
T + 1)-dispersed, which means

that our regret bound is O(
√
T log(1/w) + k) = O(

√
T). However, these functions are not (w, 1)-

disperse for any w ≥ 2−T , so the regret bound by Cohen-Addad and Kanade [46] is trivial, since√
T log(1/w) with w = 2−T equals T . Similarly, Weed et al. [143] and Feng et al. [68] use a notion

similar to (w, 1)-dispersion to prove learning guarantees for the specific problem of learning to bid,
as do Rakhlin et al. [119] for learning threshold functions under a smoothed adversary.

Our online bandit results are related to those of Kleinberg [89] for the “continuum-armed bandit”
problem. They consider bandit problems where the set of arms is the interval [0, 1] and each payout
function is uniformly locally Lipschitz. We relax this requirement, allowing each payout function to
be Lipschitz with a number of discontinuities. In exchange, we require that the overall sequence of

31

payout functions is fairly nice, in the sense that their discontinuities do not tightly concentrate. The
follow-up work on Multi-armed Bandits in Metric Spaces [91] considers the stochastic bandit problem
where the space of arms is an arbitrary metric space and the mean payoff function is Lipschitz. They
introduce the zooming algorithm, which has better regret bounds than the discretization approach
of Kleinberg [89] when either the max-min covering dimension or the (payout-dependent) zooming
dimension are smaller than the covering dimension. In contrast, we consider optimization over Rd
under the `2 metric, where this algorithm does not give improved regret in the worst case.

Auction design and pricing Several works [32, 33, 35, 40, 90, 125] present stylized online learn-
ing algorithms for revenue maximization under specific auction classes. In contrast, our online algo-
rithms are highly general and apply to many optimization problems beyond auction design. Dudı́k et
al. [60] also provide online algorithms for auction design. They discretize each set of mechanisms
they consider and prove their algorithms have low regret over the discretized set. When the bidders
have simple valuations (unit-demand and single-parameter) minimizing regret over the discretized set
amounts to minimizing regret over the entire mechanism class. In contrast, we study bidders with
fully general valuations, as well as additive and unit-demand valuations.

A long line of work has studied generalization guarantees for auction design and pricing problems
(e.g., [66, 47, 83, 105, 109, 124, 56, 74, 35, 110, 73, 17, 24]). These works study the distributional
setting where there is an unknown distribution over buyers’ values and the goal is to use samples
from this distribution to design a mechanism with high expected revenue. Generalization guarantees
bound the difference between a mechanism’s empirical revenue over the set of samples and expected
revenue over the distribution. For example, several of these works [105, 109, 110, 17, 24, 106, 135]
use learning theoretic tools such as pseudo-dimension and Rademacher complexity to derive these
generalization guarantees. In contrast, we study online and private mechanism design, which requires
a distinct set of analysis tools beyond those used in the distributional setting.

Bubeck et al. [35] study auction design in both the online and distributional settings when there
is a single item for sale. They take advantage of structure exhibited in this well-studied single-item
setting, such as the precise form of the optimal single-item auction [112]. Meanwhile, our algorithms
and guarantees apply to the more general problem of optimizing piecewise Lipschitz functions.

3.1.2 Dispersion Condition

In this section we formally define (w, k)-dispersion using the same notation as in Section 3.1.1. Recall
that Π is a set of problem instances, C ⊂ Rd is a parameter space, and u is an abstract utility function.
Throughout this chapter, we use the `2 distance and letB(ρ, r) = {ρ′ ∈ Rd : ‖ρ−ρ′‖2 ≤ r} denote
a ball of radius r centered at ρ.

Definition 3.1. Let u1, . . . , uT : C → [0, H] be a collection of functions where ui is piecewise
Lipschitz over a partition Pi of C. We say that Pi splits a set A if A intersects with at least two sets in
Pi (see Figure 3.1). The collection of functions is (w, k)-dispersed if every ball of radius w is split
by at most k of the partitions P1, . . . ,PT . More generally, the functions are (w, k)-dispersed at a
maximizer if there exists a point ρ∗ ∈ argmaxρ∈C

∑T
i=1 ui(ρ) such that the ball B(ρ∗, w) is split by

at most k of the partitions P1, . . . ,PT .

Given S = {x1, . . . , xT } ⊆ Π and a utility function u : Π × C → [0, H], we equivalently say
that u is (w, k)-dispersed for S (at a maximizer) if {u(x1, ·), . . . , u(xT , ·)} is (w, k)-dispersed (at a
maximizer).

32

Split once

Split twice

Not split

Figure 3.1: The dashed and solid lines correspond to two partitionings of the rectangle. Each of the
displayed balls is either not split, split by one partition, or split by both.

We often show that the discontinuities of a piecewise Lipschitz function u : R → R are random
variables with κ-bounded distributions. A density function f : R → R corresponds to a κ-bounded
distribution if max{f(x)} ≤ κ.1 To prove dispersion we will use the following probabilistic lemma,
showing that samples from κ-bounded distributions do not tightly concentrate.

Lemma 3.1. Let B = {β1, . . . , βr} ⊂ R be a collection of samples where each βi is drawn from a
κ-bounded distribution with density function pi. For any ζ ≥ 0, the following statements hold with
probability at least 1− ζ:

1. If the βi are independent, then every interval of width w contains at most k = O(rwκ +√
r log(1/ζ)) samples. In particular, for any α ≥ 1/2 we can take w = 1/(κr1−α) and

k = O(rα
√

log(1/ζ)).

2. If the samples can be partitioned into P buckets B1, . . . ,BP such that each Bi contains in-
dependent samples and |Bi| ≤ M , then every interval of width w contains at most k =
O(PMwκ +

√
M log(P/ζ). In particular, for any α ≥ 1/2 we can take w = 1/(κM1−α)

and k = O(PMα
√

log(P/ζ)).

Proof sketch. If the βi are independent, the expected number of samples in any interval of width w is
at most rκw. Since the VC-dimension of intervals is 2, it follows that with probability at least 1− ζ,
no interval contains more than rκw +O(

√
r log(1/ζ)) samples.

The second claim follows by applying this counting argument to each of the buckets Bi with
failure probability ζ ′ = ζ/P and taking the union bound over all buckets. With probability at least
1 − ζ, every interval of width w contains at most Mκw + O(

√
M log(P/ζ)) samples from each

bucket, and at most k = PMκw +O(P
√
M log(P/ζ)) samples in total from all P buckets.

Lemma 3.1 allows us to provide dispersion guarantees for “smoothed adversaries” in online learn-
ing. Under this type of adversary, the discontinuity locations for each function ui are random vari-
ables, due to the smoothness of the adversary. In our algorithm selection applications, the randomness
of discontinuities may be a byproduct of the randomness in the algorithm’s inputs. For example, in the
case of knapsack algorithm configuration, the item values and sizes may be drawn from distributions
chosen by the adversary. This induces randomness in the discontinuity locations of the algorithm’s
cost function. We can thus apply Lemma 3.1 to guarantee dispersion.

1For example, for all µ ∈ R, N (µ, σ) is 1
2πσ

-bounded.

33

We also use Lemma 3.1 to guarantee dispersion even when the adversary is not smoothed. Sur-
prisingly, we show that dispersion holds for IQP algorithm configuration without any assumptions
on the input instances. In this case, we exploit the fact that the algorithms are themselves random-
ized. This randomness implies that the discontinuities of the algorithm’s cost function are random
variables, and thus Lemma 3.1 implies dispersion.

3.1.3 Online Optimization

In this setting, a sequence of functions u1, . . . , uT arrive one-by-one. At time t, the learning algorithm
chooses a vector ρt and then either observes the function ut(·) in the full information setting or the
value ut(ρt) in the bandit setting. The goal is to minimize expected regret: E[maxρ∈C

∑T
t=1(ut(ρ)−

ut(ρt))]. In our applications, the functions u1, . . . , uT are random, either due to internal randomiza-
tion in the algorithms we are configuring or from assumptions on the adversary2. We show that the
functions are (w, k)-dispersed with probability 1 − ζ over the choice of u1, . . . , uT . The following
regret bounds hold in expectation with an additional term of HTζ bounding the effect of the rare
event where the functions are not dispersed.

Full information. The exponentially-weighted forecaster algorithm samples the vectors ρt from the
distribution pt(ρ) ∝ exp(λ

∑t−1
s=1 us(ρ)). We prove the following regret bound. The full proof is in

Appendix B.1.4.

Theorem 3.1. Let u1, . . . , uT : C → [0, H] be any sequence of piecewise L-Lipschitz functions that
are (w, k)-dispersed at the maximizer ρ∗. Suppose C ⊂ Rd is contained in a ball of radius R and
B(ρ∗, w) ⊂ C. The exponentially weighted forecaster with λ =

√
d ln(R/w)/T/H has expected

regret bounded by

O

(
H

(√
Td log

R

w
+ k

)
+ TLw

)
.

For all rounds t ∈ [T], suppose
∑t

s=1 us is piecewise Lipschitz over at most K pieces. When
d = 1 and exp(

∑t
s=1 us) can be integrated in constant time on each of its pieces, the running

time is O(TK). When d > 1 and
∑t

s=1 us is piecewise concave over convex pieces, we provide
an efficient approximate implementation. For approximation parameters η = ζ = 1/

√
T and λ =√

d ln(R/w)/T/H , this algorithm has the same regret bound as the exact algorithm and runs in time
Õ(T (K · poly(d, 1/η) + poly(d, L, 1/η)).

Proof sketch. Let Ut be the function
∑t−1

i=1 ui(·) and let Wt =
∫
C exp(λUt(ρ)) dρ. We use (w, k)-

dispersion to lower bound WT+1/W1 in terms of the optimal parameter’s total payout. Combining
this with a standard upper bound on WT+1/W1 in terms of the learner’s expected payout gives the
regret bound. To lower boundWT+1/W1, let ρ∗ be the optimal parameter and let OPT = UT+1(ρ∗).
Also, let B∗ be the ball of radius w around ρ∗. From (w, k)-dispersion, we know that for all ρ ∈ B∗,

2As we describe in Section 3.1.1, prior research [77, 46] also makes assumptions on the adversary. For example, Cohen-
Addad and Kanade [46] focus on adversaries that choose distributions with bounded densities from which the discontinuities
of ut are drawn. In Lemma B.12 of Appendix B.1.4, we show that their smoothness assumption implies dispersion with
high probability.

34

UT+1(ρ) ≥ OPT−Hk − LTw. Therefore,

WT+1 =

∫

C
exp(λUT+1(ρ)) dρ ≥

∫

B∗
exp(λUT+1(ρ)) dρ

≥
∫

B∗
exp(λ(OPT−Hk − LTw))dρ

≥ Vol(B(ρ∗, w)) exp(λ(OPT−Hk − LTw)).

Moreover, W1 =
∫
C exp(λU1(ρ)) dρ ≤ Vol(B(0, R)). Therefore,

WT+1

W1
≥ Vol(B(ρ∗, w))

Vol(B(0, R))
exp(λ(OPT−Hk − LTw)).

The volume ratio is equal to (w/R)d, since the volume of a ball of radius r in Rd is proportional to
rd. Therefore, WT+1/W1 ≥ (w/R)d exp(λ(OPT−Hk − LTw)). Combining the upper and lower
bounds on WT+1

W1
gives the result.

Our efficient algorithm (Algorithm 17 of Appendix B.1.4) approximately samples from pt. Let
C1, . . . , CK be the partition of C over which

∑
ut(·) is piecewise concave. Our algorithm picks CI

with probability approximately proportional to
∫
CI pt [101] and outputs a sample from the conditional

distribution of pt on CI [26]. Crucially, we prove that the algorithm’s output distribution is close to
pt, so every event concerning the outcome of the approximate algorithm occurs with about the same
probability as it does under pt.

The requirement that B(ρ∗, w) ⊂ C is for convenience. In Lemma B.11 of Appendix B.1.4 we
show how to transform the problem to satisfy this. Setting λ =

√
d/T/H , which does not require

knowledge of w, has regret O(H(
√
Td log(R/w) + k) + TLw). Under alternative settings of λ, we

show that our algorithms are (ε, δ)-differentially private with regret bounds of Õ(H
√
T/ε + Hk +

LTw) in the single-dimensional setting and Õ(H
√
Td/ε+H(k + δ) + LTw) in the d-dimensional

setting (see Theorems B.3 and B.4 in Appendix B.1.4).
Next, we prove a matching lower bound. We warm up with a proof for the single-dimensional

case and generalize it to the multi-dimensional case in Appendix B.1.4.

Theorem 3.2. Suppose T ≥ d. For any algorithm, there are piecewise constant functions u1, . . . , uT
mapping [0, 1]d to [0, 1] such that ifD = {(w, k) : {u1, . . . , uT } is (w, k)-dispersed at the maximizer},
then

max
ρ∈[0,1]d

E

[
T∑

t=1

ut (ρ)− ut (ρt)

]
= Ω

(
inf

(w,k)∈D

{√
Td log

1

w
+ k

})
,

where the expectation is over the random choices ρ1, . . . ,ρT of the adversary.

Proof sketch. For each dimension, the adversary plays a sequence of axis-aligned halfspaces with
thresholds that divide the set of optimal parameters in two. The adversary plays each halfspace Θ(Td)
times, randomly switching which side of the halfspace has a positive label, thus forcing regret of at
least

√
Td

64 . We prove that the resulting set of optimal parameters is contained in a hypercube of side
length 1

2 . The adversary then plays
√
T + d copies of the indicator function of a ball of radius 2−T

at the center of this cube. This ensures the functions are not (w, 0)-dispersed at the maximizer for
any w ≥ 2−T , and thus prior regret analyses [46] give a trivial bound of T . In order to prove the

35

theorem, we need to show that
√
Td

64 = Ω
(

inf(w,k)∈D

{√
Td log 1

w + k
})

. Therefore, we need to
show that the set of functions played by the adversary is (w, k)-dispersed at the maximizer ρ∗ for
w = Θ(1) and k = O

(√
Td
)
. The reason this is true is that the only functions with discontinuities

in the ball
{
ρ : ||ρ∗ − ρ|| ≤ 1

8

}
are the final

√
T + d functions played by the adversary. Thus, the

theorem statement holds.

Bandit feedback. We now study online optimization under bandit feedback.

Theorem 3.3. Let u1, . . . , uT : C → [0, H] be any sequence of piecewise L-Lipschitz functions that
are (w, k)-dispersed at the maximizer ρ∗. Moreover, suppose that C ⊂ Rd is contained in a ball
of radius R and that B(ρ∗, w) ⊂ C. There is a bandit-feedback online optimization algorithm with
regret

O


H

√
Td

(
3R

w

)d
log

R

w
+ TLw +Hk


 .

The per-round running time is O((3R/w)d).

Proof. Let ρ1, . . . , ρM be a w-net for C. The main insight is that (w, k)-dispersion implies that the
difference in utility between the best point in hindsight from the net and the best point in hindsight
from C is at most Hk + TLw. Therefore, we only need to compete with the best point in the net.
We use the Exp3 algorithm [4] to choose parameters ρ̂1, . . . , ρ̂T by playing the bandit with M
arms, where on round t arm i has payout ut(ρi). The expected regret of Exp3 is Õ(H

√
TM logM)

relative to our net. In Lemma B.13 of Appendix B.1.4, we show M ≤ (3R/w)d, so the overall regret
is Õ(H

√
Td(3R/w)d log(R/w) + TLw +Hk) with respect to C.

If w = T
d+1
d+2
−1 = 1

T 1/(d+2) and k = Õ
(
T
d+1
d+2

)
, Theorem 3.3 gives the optimal exponent on

T . Specifically, the regret is Õ
(
T (d+1)/(d+2)

(
H
√
d(3R)d + L

))
, and no algorithm can have regret

O (T γ) for γ < (d+ 1)/(d+ 2) for the special case of (globally) Lispchitz functions [91].

3.1.4 Differentially Private Optimization

We show that the exponential mechanism, which is (ε, 0)-differentially private, has high utility when
optimizing the mean of dispersed functions. In this setting, the algorithm is given a collection of func-
tions u1, . . . , uT : C → [0, H], each of which depends on some sensitive information. In cases where
each function ui encodes sensitive information about one or a small group of individuals and each
individual is present in a small number of functions, we can give meaningful privacy guarantees by
providing differential privacy for each function in the collection. We say that two sets of T functions
are neighboring if they differ on at most one function. Recall that the exponential mechanism out-
puts a sample from the distribution with density proportional to f εexp(ρ) = exp

(
ε

2∆T

∑T
i=1 ui(ρ)

)
,

where ∆ is the sensitivity of the average utility. Since the functions ui are bounded, the sensitivity of
1
T

∑T
i=1 ui satisfies ∆ ≤ H/T . The following theorem states our utility guarantee. The full proof is

in Appendix B.1.5.

36

Theorem 3.4. Let u1, . . . , uT : C → [0, H] be piecewise L-Lipschitz and (w, k)-dispersed at the
maximizer ρ∗, and suppose that C ⊂ Rd is convex, contained in a ball of radiusR, andB(ρ∗, w) ⊂ C.
For any ε > 0, with probability at least 1− ζ, the output ρ̂ of the exponential mechanism satisfies

1

T

T∑

i=1

ui (ρ̂) ≥ 1

T

T∑

i=1

ui (ρ∗)−O
(
H

Tε

(
d log

R

w
+ log

1

ζ

)
+ Lw +

Hk

T

)
.

When d = 1, this algorithm is efficient, provided f εexp can be efficiently integrated on each piece
of
∑

i ui. For d > 1 we also provide an efficient approximate sampling algorithm when
∑

i ui is
piecewise concave defined on K convex pieces. This algorithm preserves (ε, δ)-differential privacy
for ε > 0, δ > 0 with the same utility guarantee (with ζ = δ). The running time of this algorithm is
Õ(K · poly(d, 1/ε) + poly(d, L, 1/ε)).

Proof sketch. The exponential mechanism can fail to output a good parameter if there are drastically
more bad parameters than good. The key insight is that due to dispersion, the set of good parameters
is not too small. In particular, we know that every ρ ∈ B(ρ∗, w) has 1

T

∑
i ui(ρ) ≥ 1

T

∑
i ui(ρ

∗)−
Hk
T − Lw because at most k of the functions ui for have discontinuities in B(ρ∗, w) and the rest are
L-Lipschitz.

In a bit more detail, for a constant c fixed later on, the probability that a sample from µexp lands
in E = {ρ : 1

T

∑
i ui(ρ) ≤ c} is F/Z, where F =

∫
E fexp and Z =

∫
C fexp. We know that

F ≤ exp
(
Tεc
2H

)
Vol(E) ≤ exp

(
Tεc
2H

)
Vol
(
B(0, R)

)
, where the second inequality follows from the

fact that a ball of radius R contains the entire space C. To lower bound Z, we use the fact that at most
k of the functions u1, . . . , uT have discontinuities in the ball B(ρ∗, w) and the rest of the functions
are L-Lipschitz. It follows that for any ρ ∈ B(ρ∗, w), we have 1

T

∑
i ui(ρ) ≥ 1

T

∑
i ui(ρ

∗) −
Hk
|S| − Lw. This is because each of the k functions with boundaries can affect the average utility
by at most H/|T | and otherwise 1

T

∑
i ui(·) is L-Lipschitz. Since B(ρ∗, w) ⊂ C, this gives Z ≥

exp
(
Tε
2H (1

T

∑
i ui(ρ

∗))− Hk
T − Lw)

)
Vol
(
B(ρ∗, w)

)
.

Putting the bounds together, we have that F/Z ≤ exp
(
Tε
2H (c − 1

T

∑
i ui(ρ

∗) + Hk
T + Lw

)
·

Vol(B(0,R))
Vol(B(ρ∗,w)) . The volume ratio is equal to (R/w)d, since the volume of a ball of radius r in Rd is
proportional to rd. Setting this bound to ζ and solving for c gives the result.

Our efficient implementation (Algorithm 15 in Appendix B.1.5) relies on the same tools as our
approximate implementation of the exponentially weighted forecaster. The main step is proving the
distribution of ρ̂ is close to the distribution with density fexp.

In Appendix B.1.8, we also give a discretization-based computationally inefficient algorithm in d
dimensions that satisfies (ε, 0)-differential privacy.

We can tune the value of w to make the dependence on L logarithmic: if T ≥ 2Hd
wεL , then with

probability 1− ζ, 1
T

∑
i ui(ρ̂) ≥ 1

T

∑
i ui(ρ

∗)−O
(
Hd
Tε log LεRT

Hd + Hk
T + H

Tε log 1
ζ

)
(Corollary B.5

in Appendix B.1.5).
Finally, we provide a matching lower bound. See Appendix B.1.5 for the full proof. When d = 1,

we can instantiate these lower bounds using MWIS instances.

Theorem 3.5. For every dimension d ≥ 1, privacy parameter ε > 0, failure probability ζ > 0,
T ≥ d

ε (
ln 2
2 − ln 1

ζ)) and ε-differentially private optimization algorithmA that takes as input a collec-
tion of T piecewise constant functions mapping B(0, 1) ⊂ Rd to [0, 1] and outputs an approximate

37

maximizer, there exists a multiset S of such functions so that with probability at least 1−ζ, the output
ρ̂ of A(S) satisfies

1

T

∑

u∈S
u(ρ̂) ≤ max

ρ∈B(0,1)

1

T

∑

u∈S
u(ρ)− Ω

(
inf

(w,k)

d

Tε

(
ln

1

w
− ln

1

ζ

)
+
k

T

)
,

where the infimum is taken over all (w, k)-dispersion at the maximizer parameters satisfied by S.

Proof sketch. We construct M = 2d multi-sets of functions S1, . . . ,SM , each with T piecewise
constant functions. For every pair Si and Sj , |Si∆Sj | is small but the set ISi of parameters maximiz-
ing
∑

u∈Si u(ρ) is disjoint from ISj . Therefore, for every pair Si and Sj , the distributions A(Si) and
A(Sj) are similar, and since IS1 , . . . , ISt are disjoint, this means that for some Si, with high probabil-
ity, the output of A(Si) 6∈ ISi . The key challenge is constructing the sets Si so that the suboptimality
of any point not in ISi is d

Tε log R
w + k

T , where w and k are dispersion parameters for Si. We construct
Si so that this suboptimality is Θ(d

Tε), which gives the desired result if w = Θ(R) and k = Θ(dε). To
achieve these conditions, we carefully fill each Si with indicator functions of balls centered packed
in the unit ball B(0, 1).

3.1.5 Dispersion in application-specific algorithm selection

We now analyze dispersion for a range of algorithm configuration problems. In the private setting,
the algorithm receives samples S ∼ dT , where d is an arbitrary distribution over problem instances
Π. The goal is to privately find a value ρ̂ that nearly maximizes

∑
x∈S u(x,ρ). In our applications,

prior work [110, 77, 18] shows that ρ̂ nearly maximizes Ex∼d[u(x,ρ)]. In the online setting, the
goal is to find a value ρ that is nearly optimal in hindsight over a stream x1, . . . , xT of instances, or
equivalently, over a stream u1 = u(x1, ·), . . . , uT = u(xT , ·) of functions. Each xt is drawn from a
distribution d(t), which may be adversarial. Thus in both settings, {x1, . . . , xT } ∼ d(1) × · · · × d(T),
but in the private setting, d(1) = · · · = d(T).

Greedy algorithms. We study greedy algorithm configuration for two important problems: the
maximum weight independent set (MWIS) and knapsack problems. In MWIS, there is a graph
and a weight w (v) ∈ R≥0 for each vertex v. The goal is to find a set of non-adjacent vertices
with maximum weight. The classic greedy algorithm repeatedly adds a vertex v which maximizes
w (v) / (1 + deg (v)) to the independent set and deletes v and its neighbors from the graph. Gupta
and Roughgarden [77] propose the greedy heuristic w (v) / (1 + deg (v))ρ where ρ ∈ C = [0, B] for
some B ∈ R. When ρ = 1, the approximation ratio is 1/D, where D is the graph’s maximum de-
gree [127]. We represent a graph as a tuple (w, e) ∈ Rn×{0, 1}(

n
2), ordering the vertices v1, . . . , vn

in a fixed but arbitrary way. The function u (w, e, ·) maps a parameter ρ to the weight of the vertices
in the set returned by the algorithm parameterized by ρ.

Theorem 3.6. Suppose all vertex weights are in (0, 1] and for each d(i), every pair of vertex weights
has a κ-bounded joint distribution. For any w and e, u (w, e, ·) is piecewise 0-Lipschitz and for any
α ≥ 1/2, with probability 1− ζ over S ∼×T

i=1 d
(i), u is

(
1

T 1−ακ lnn
,O

(
n4Tα

√
ln
n

ζ

))
-dispersed

with respect to S.

38

Proof sketch. The utility u
(
w(t), e(t), ρ

)
has a discontinuity when the ordering of two vertices under

the greedy score swaps. Thus, the discontinuities have the form

ln
(
w

(t)
i

)
− ln

(
w

(t)
j

)

ln (d1)− ln (d2)

for all t ∈ [T] and i, j, d1, d2 ∈ [n], where w(t)
j is the weight of the jth vertex of

(
w(t), e(t)

)
[77]. We

show that when pairs of vertex weights have κ-bounded joint distributions, then the discontinuities
each have (κ lnn)-bounded distributions. Let Bi,j,d1,d2 be the set of discontinuities contributed by
vertices i and j with degrees d1 and d2 across all instances in S. The buckets Bi,j,d1,d2 partition the
discontinuities into n4 sets of independent random variables. Therefore, applying Lemma 3.1 with
P = n4 and M = T proves the claim.

In Appendix B.1.6, we prove Theorem 3.6 and demonstrate that it implies strong optimization
guarantees. The analysis for the knapsack problem is similar (see Appendix B.1.6).

Integer quadratic programming (IQP) algorithms. We now apply our dispersion analysis to two
popular IQP approximation algorithms: s-linear [67] and outward rotation rounding algorithms [152].
The goal is to maximize a function

∑
i,j∈[n] aijzizj over z ∈ {±1}n, where the matrix A = (aij)

has non-negative diagonal entries. Both algorithms are generalizations of the Goemans-Williamson
(GW) max-cut algorithm [72]. They first solve the SDP relaxation

∑
i,j∈[n] aij〈ui,uj〉 subject to

the constraint that ‖ui‖ = 1 for i ∈ [n] and then round the vectors ui to {±1}. Under s-linear
rounding, the algorithm samples a standard GaussianZ ∼ Nn and sets zi = 1 with probability 1/2+
φs (〈ui,Z〉) /2 and−1 otherwise, where φs (y) = −1y<−s+ y

s ·1−s≤y≤s+1y>s and s is a parameter.
The outward rotation algorithm first maps each ui to u′i ∈ R2n by u′i = [cos (γ)ui ; sin (γ) ei] and
sets zi = sign (〈u′i,Z〉), where ei is the ith standard basis vector, Z ∈ R2n is a standard Gaussian,
and γ ∈ [0, π/2] is a parameter. Feige and Langberg [67] and Zwick [152] prove that these rounding
functions provide a better worst-case approximation ratio on graphs with “light” max-cuts, where the
max-cut does not constitute a large fraction of the edges.

Our utility u maps the algorithm parameter (either s or γ) to the objective value obtained. We
exploit the randomness of these algorithms to guarantee dispersion. To facilitate this analysis, we
imagine that the GaussiansZ are sampled ahead of time and included as part of the problem instance.
For s-linear rounding, we write the utility as uslin(A,Z, s) =

∑n
i=1 a

2
i +

∑
i 6=j aijφs(vi)φs(vj),

where vi = 〈ui,Z〉. For outward rotations, uowr(A,Z, γ) =
∑

i,j aij sign(v′i) sign(v′j), where
v′i = 〈u′i,Z〉.

First, we prove a dispersion guarantee for uowr. The full proof is in Appendix B.1.6, where
we also demonstrate the theorem’s implications for our optimization settings (Theorems B.14, B.15,
B.16, and B.17).

Theorem 3.7. For any matrix A and vector Z, uowr (A,Z, ·) is piecewise 0-Lipschitz. With proba-
bility 1 − ζ over Z(1), . . . ,Z(T) ∼ N2n, for any A(1), . . . , A(T) ∈ Rn×n and any α ≥ 1/2, uowr

is (
Tα−1, O

(
nTα

√
log

n

ζ

))
-dispersed

with respect to S =
{(
A(t),Z(t)

)}T
t=1

.

39

Proof sketch. The discontinuities of uowr (A,Z, γ) occur whenever 〈u′i,Z〉 shifts from positive to
negative for some i ∈ [n]. Between discontinuities, the function is constant. By definition of u′i,
this happens when γ = tan−1 (−〈ui,Z[1, . . . , n]〉/Z[n+ i]), which comes from a 1/π-bounded
distribution. The next challenge is that the discontinuities are not independent: the n discontinuities
from instance t depend on the same vector Z(t). To overcome this, we let Bi denote the set of
discontinuities contributed by vector ui across all instances. The buckets Bi partition the set of
discontinuities into P = n sets, each containing at most T discontinuities. We then apply Lemma 3.1
with P and M = T to prove the claim.

Next, we prove the following guarantee for uslin. The full proof is in Appendix B.1.6, where we
also demonstrate the theorem’s implications for our optimization settings (Theorems B.18, B.19, and
B.20).

Theorem 3.8. With probability 1−ζ overZ(1), . . . ,Z(T) ∼ Nn, for any matricesA(1), . . . , A(T) and
any α ≥ 1/2, the functions uslin

(
Z(1), A(1), ·

)
, . . . , uslin

(
Z(T), A(T), ·

)
are piecewise L-Lipschitz

with L = Õ
(
MT 3n5/ζ3

)
, where M = maxi,j∈[n],t∈[T] |a(t)

ij |, and uslin is
(
Tα−1, O

(
nTα

√
log

n

ζ

))
-dispersed

with respect to S =
{(
A(t),Z(t)

)}T
t=1

.

Proof sketch. We show that over the randomness of Z(1), . . . ,Z(T), uslin is (w, k)-dispersed. By
definition of φs, the discontinuities of uslin

(
A(t),Z(t), ·

)
have the form s = |〈u(t)

i ,Z
(t)〉|, where

u
(t)
i is the ith vector in the solution to SDP-relaxation of A(t). These random variables have density

bounded by
√

2/π. Let Bi be the set of discontinuities contributed by u(1)
i , . . . ,u

(T)
i . The points

within each Bi are independent. We apply Lemma 3.1 with P = n and M = T and arrive at our
dispersion guarantee.

Proving that the piecewise portions of uslin are Lipschitz is complicated by the fact that they are
quadratic in 1/s, so the slope may go to±∞ as s goes to 0. However, if s is smaller than the smallest
boundary s0, uslin

(
Z(t), A(t), ·

)
is constant because φs deterministically maps the variables to −1 or

1, as in the GW algorithm. We prove that s0 is not too small using anti-concentration bounds. The
Lipschitz constant is then roughly bounded by n2/s3

0, since we take the derivative of the sum of n2

inverse quadratic functions.

3.1.6 Generalization guarantees for distributional learning

It is known that regret bounds imply generalization guarantees for various online-to-batch conver-
sion algorithms [39], but we also show that dispersion can be used to explicitly provide uniform
convergence guarantees, which bound the difference between any function’s average value on a
set of samples drawn from a distribution and its expected value. Our primary tool is empirical
Rademacher complexity [93, 25], which is defined as follows. Let F = {fρ : Π → [0, 1] : ρ ∈ C},
where C ⊂ Rd is a parameter space and let S = {x1, . . . , xT } ⊆ Π. (We use this notation for
the sake of generality beyond algorithm selection, but mapping to the notation from Section 3.1.1,
fρ(x) = u(x,ρ).) The empirical Rademacher complexity of F with respect to S is defined as
R̂(F ,S) = Eσ

[
supf∈F

1
T

∑T
i=1 σif(xi)

]
, where σi ∼ U({−1, 1}). Classic results from learn-

ing theory [93, 25] guarantee that for any distribution d over Π, with probability 1 − ζ over S =

40

{x1, . . . , xT } ∼ dT , for all fρ ∈ F ,
∣∣ 1
T

∑T
i=1 fρ(xi)−Ex∼d[fρ(x)]

∣∣ = O(R̂(F ,S)+
√

log(1/ζ)/T).
Our bounds depend on the the dispersion parameters of functions belonging to the dual class G. That
is, let G = {ux : C → R : x ∈ Π} be the set of functions ux(ρ) = fρ(x) where x is fixed and
ρ varies. We bound R̂(F ,S) in terms of the dispersion parameters satisfied by ux1 , . . . , uxT ∈ G.
Moreover, even if these functions are not well dispersed, we can always upper bound R̂(F ,S) in terms
of the pseudo-dimension of F , denoted by Pdim(F) (we review the definition in Appendix B.1.7).
The full proof of Theorem 3.9 is in Appendix B.1.7.

Theorem 3.9. Let F = {fρ : Π → [0, 1] : ρ ∈ C} be parameterized by C ⊂ Rd, where C lies in a
ball of radius R. For any set S = {x1, . . . , xT }, suppose the functions uxi(ρ) = fρ(xi) for i ∈ [T]
are piecewise L-Lipschitz and (w, k)-dispersed. Then

R̂(F ,S) ≤ O
(

min

{√
d

T
log

R

w
+ Lw +

k

T
,

√
Pdim(F)

T

})
.

Proof sketch. The key idea is that when the functions ux1 , . . . , uxT are (w, k)-dispersed, any pair of
parameters ρ and ρ′ with ‖ρ − ρ′‖2 ≤ w satisfy |fρ(xi) − fρ′(xi)| = |uxi(ρ) − uxi(ρ′)| ≤ Lw
for all but at most k of the elements in S. Therefore, we can approximate the functions in F on
the set S with a finite subset F̂w = {fρ̂ : ρ̂ ∈ Ĉw}, where Ĉw is a w-net for C. Since F̂w is
finite, its empirical Rademacher complexity is O((log |F̂w|/T)1/2). We then argue that the empirical
Rademacher complexity of F is not much larger, since all functions in F are approximated by some
function in F̂w.

3.1.7 Conclusion

We study online and private optimization for application-specific algorithm selection. We introduce
a general condition, dispersion, that allows us to provide strong guarantees for both of these settings.
As we demonstrate, many problems in algorithm and auction design reduce to optimizing dispersed
functions. In this way, we connect learning theory, differential privacy, online learning, bandits,
high dimensional sampling, computational economics, and algorithm design. Our main motivation
is algorithm selection, but we expect that dispersion is even more widely applicable, opening up an
exciting research direction.

3.2 Semi-bandit Optimization in the Dispersed Setting

3.2.1 Introduction

Overview. In this work, we consider the problem of online optimization of piecewise Lipschitz
functions with semi-bandit feedback. This is an important family of non-convex optimization prob-
lems that arises in algorithm selection problems for combinatorial settings, where the goal is to decide
in a data-driven way what algorithm to use from a large family of algorithms for a given problem do-
main. For example, we may want to decide which clustering algorithm to use from a large family
of clustering procedures in order to obtain the highest quality clusterings. In the online version of
the algorithm selection problem, on each round the learner chooses an algorithm from the family and
receives a new instance of the problem. The problem is characterized by a loss function that mea-
sures the performance of each algorithm in the family for the given instance. The goal is to select

41

algorithms so that the cumulative performance of the learner is nearly as good as the best algorithm in
hindsight for that sequence of problems. The major challenge in these settings is that it is potentially
computationally expensive for the learner to characterize the loss function for each round, since each
run of the chosen algorithm reveals the value of the loss function at just the single point correspond-
ing to the algorithm selected. Moreover, for combinatorial problems, small differences between two
algorithms can lead to a cascade of changes in their behavior and dramatically change their perfor-
mance. However, in many cases the loss function can be shown to be piecewise Lipschitz, so we can
phrase the problem as online optimization of piecewise Lipschitz functions.

Prior work on piecewise Lipschitz optimization was limited to two more extreme feedback regimes:
Either the learner carries out a computationally expensive process to obtain full-information feedback
(i.e., it observes the loss of every algorithm on each instance), or accepts suboptimal regret bounds
to work in the bandit feedback setting (i.e., it only observes the loss of only one algorithm for each
instance). This creates a tradeoff between computational efficiency and good regret bounds. How-
ever, many of these algorithm selection problems exhibit rich additional structure that is ignored by
these two approaches. In particular, evaluating the loss function for a single algorithm can sometimes
reveal the loss for a range of similar algorithms, essentially for free; in the context of the loss function,
we show that an entire Lipshitz region can often be learned at once, which we call the semi-bandit
feedback setting. Our new results in the semi-bandit feedback regime achieve the best of both worlds:
we can efficiently obtain the necessary feedback while also having regret bounds that are nearly as
good as under full-information.

We apply our results to two online algorithm selection problems. Our results for optimizing over
a family of greedy knapsack algorithms improve over the procedures of Balcan et al. [22], Gupta and
Roughgarden [77], and Cohen-Addad and Kanade [46] by simultaneously being more efficient and
having tighter regret bounds. We also provide the first online algorithm selection procedures for a rich
family of linkage based clustering algorithms introduced by Balcan et al. [18] in the batch statistical
setting that interpolates between single and complete linkage, which are algorithms that are widely
used in practice [6, 126, 145] and known to perform optimally in many settings [5, 16, 15, 76].

Problem Setup. We consider the problem of online piecewise Lipschitz optimization. The learn-
ing protocol is as follows: on each round t, the learner chooses a parameter ρt belonging to a d-
dimensional parameter space C ⊂ Rd, the adversary chooses a piecewise Lipschitz loss function
`t : C → [0, 1], and the learner incurs a loss equal to `t(ρt). A function `t : C → [0, 1] is piecewise
L-Lipchitz if we can partition the parameter space C into regions such that `t is L-Lipschitz when
restricted to each region. Many important algorithm selection problems require optimizing piecewise
Lipschitz functions [77, 18, 21, 23, 24]. In these problems, the family of algorithms is parameterized
and each parameter ρ ∈ C corresponds to one algorithm. We suppose that on each round t there is a
partition A(t)

1 , . . . , A
(t)
M of the parameter space C, called the feedback system. If the learner’s param-

eter ρt belongs to the set A(t)
i , then they observe both the set A(t)

i as well as the loss `t(ρ) for every
ρ ∈ A(t)

i . We consider the uninformed setting, where the learner does not know the feedback system
for round t in advance of selecting a parameter. For simplicity, we consider oblivious adversaries that
choose their sequence of loss functions `1, `2, . . . adversarially, but before the interaction with the
learner begins. The learner’s goal is to minimize regret, which is the difference between their total
accumulated loss and that of the best parameter in hindsight:

∑T
t=1 `t(ρt)−minρ∈C

∑T
t=1 `t(ρ).

Throughout this chapter, we use the notation Õ(·) to suppress all logarithmic terms and depen-
dence on parameters other than the time horizon T and the dimension of the parameter space d.

42

Main Results and Techniques.

Semi-bandit Regret Bounds in the Dispersed Setting. It is known that it is not always possible to
achieve sub-linear regret for piecewise Lipschitz loss functions [100, 27, 119]. Balcan et al. [22] pro-
vide regret bounds in the full-information and bandit feedback settings under a dispersion condition
that roughly measures the number of discontinuous functions in any balls of a given radius, and which
is satisfied for a diverse collection of combinatorial algorithm configuration problems. In this chapter,
we introduce a simplified version of this condition that captures what is asymptotically important for
our regret bounds.

Definition 3.2. The sequence of loss functions `1, `2, . . . is β-dispersed for the Lipshitz constant L if
for all T and for all ε ≥ T−β , we have that, in expectation, the maximum number of functions among
`1, . . . , `T which are not L-Lipshitz in any ε-ball of C is at most Õ(εT). That is, for all T and for all
ε ≥ T−β , we have

E
[
max
ρ∈C

∣∣{1 ≤ i ≤ T | `i is not L-Lipshitz in B(ρ, ε)}
∣∣] = Õ(εT).

In our applications, the sequence of loss functions will be chosen by a smoothed adversary. Infor-
mally, the functions chosen by a smoothed adversary are corrupted by a small random perturbations.
The expectation in this definition is over this randomness in the sequence of loss functions. (Balcan
et al. [22] also show examples where sufficient randomness can arise from the algorithm itself, rather
than smoothness constraints on the adversary.) In all of our applications, we prove β-dispersion with
β = 1/2. We provide an algorithm for online piecewise Lipschitz optimization under semi-bandit
feedback whose regret is characterized by the β-dispersion parameter of the adversarially chosen
functions. In Section 3.2.2, we prove the following result:

Theorem 3.10. Let C ⊂ Rd be a bounded parameter space and `1, `2, · · · : C → [0, 1] be piecewise
Lipschitz functions that are β-dispersed. Running Algorithm 5 under semi-bandit feedback with an
appropriate choice of λ has expected regret bounded by

E

[
T∑

t=1

`t(ρt)− `t(ρ∗)
]
≤ Õ

(√
dT + T 1−β

)
.

In comparison, the bandit-feedback algorithm of Balcan et al. [22] (the subject of Section 3.1) has
expected regret bounded by Õ(dT

d+1
d+2 3d + T 1−β). Even in one-dimensional problems, this leads to a

regret of Õ(T 2/3 +T 1−β), which is significantly worse than our results. Under different assumptions,
the bandit algorithm of Cohen-Addad and Kanade [46] also has Õ(T 2/3) regret for the special case
of one-dimensional piecewise constant functions.

General Tools for Verifying Dispersion. We also provide general tools for proving that a sequence of
piecewise Lipschitz functions satisfies dispersion. When the sequence `1, `2, . . . is random, we can
usually directly bound the expected number of loss functions that are not L-Lipschitz on any specific
ball of radius ε by Õ(Tε). However, this does not imply that the functions are β-dispersed, since the
expected number of non-Lipschitz functions in the worst ball of radius ε will typically be larger than
the expected number in any specific ball. In Section 3.2.3, we consider sequences of loss functions
that are independent, have a one-dimensional domain, and a bounded number of discontinuities. If
every ball of radius ε has at most Õ(Tε) non-Lipschitz functions among `1, . . . , `T in expectation,
then we show that the functions are 1

2 -dispersed.

43

Practical Online Algorithm Selection. In Section 3.2.4, we apply our semi-bandit optimization re-
sults to design practical algorithm selection procedures for parameterized families of algorithms for
linkage-based clustering and the knapsack problem. We show how to efficiently obtain semi-bandit
feedback from by running a single algorithm in the family together with a small amount of additional
bookkeeping. In contrast, selection procedures that require full-information feedback typically must
run the many algorithm from the family per round in order to observe the loss associated with ev-
ery parameter value. Using semi-bandit feedback provides significant computational improvements
over full-information optimization. At the same time, our procedures achieve regret bounds that are
nearly as good as those given by prior work for the full-information setting. We also prove dispersion
guarantees for each problem when the adversary is smoothed.

Explicit Comparison for Knapsack. In Section 3.2.4 we consider selecting the best algorithm
from a parameterized family of greedy algorithms for the knapsack problem. The algorithm with
parameter ρ assigns the score σρ(i) = vi/s

ρ
i to item i, where the value and size of item i are vi and

si, respectively. Then, the algorithm greedily selects items in decreasing order of their score. In each
round of the online game, the algorithm chooses a parameter ρ, a new knapsack instance with n items
arrives, and our goal is for the total value of items selected by the learner to be close to the total value
of the best fixed parameter ρ in hindsight. We compare our results to the best prior full-information
and bandit feedback procedures for this problem.

Full-information. Balcan et al. [22] show that the exponentially weighted forecaster, when given
access to full-information feedback, achieves a regret bound of Õ(n2

√
T). Our tighter analysis im-

proves the bound to Õ(
√
T). Obtaining full-information feedback involves running the greedy algo-

rithm O(n2) times per round, each costing O(n log n) time, leading to a total cost of O(n3 log n) per
round.

Bandit Feedback. The discretization-based bandit algorithm of Balcan et al. [22] achieves a regret
bound of Õ(T 2/3n2), but only requires a single run of the greedy algorithm per round, costing
O(n log n) time.

Semi-bandit Feedback. Finally, in this chapter we give an algorithm whose regret is bounded by
Õ(n
√
T) using semi-bandit feedback obtainable in time O(n log n) per round. Note that our algo-

rithm is as efficient as the bandit-feedback algorithm, yet achieves essentially the same regret bound
as the full-information algorithm.

Related Work. For online optimization of one-dimensional piecewise constant functions, Cohen-
Addad and Kanade [46] provide full-information and bandit online optimization procedures. Balcan
et al. [22] consider the more general setting of multi-dimensional piecewise Lipschitz functions. They
introduce a dispersion condition that roughly measures how many functions are not Lipschitz in any
ball, and provide algorithms with dispersion-dependent full-information and bandit regret bounds.
They also verify that dispersion is satisfied for a diverse collection of algorithm selection problems.

Semi-bandit feedback was first considered for online shortest path problems, where on each round
the learner selects a path through a graph and observes the length of the edges along that path (but not
for other edges) [78, 85]. Alon et al. [2] introduce the Exp3-SET algorithm for semi-bandit feedback
for finite-armed bandits. They consider cases where on each round t, there is a feedback graph Gt
over the arms of the bandit and playing arm i reveals the loss for arm i and all arms adjacent in the
graph Gt.

44

There is a rich literature on data-driven algorithm selection. Most prior work focuses on the
statistical setting, where the learner is given a large i.i.d. sample of problem instances from some
distribution, and the goal is to find the algorithm with the best performance in expectation. Gupta and
Roughgarden [77] introduced this formal setting and provide sample complexity results for several
families of greedy algorithms. Balcan et al. [18] consider semidefinite rounding schemes for integer
quadratic programs and linkage based clustering algorithms, Balcan et al. [21] consider learning the
best branch and bound algorithms for mixed integer programs, and Balcan et al. [23] consider learning
the best initialization procedures for k-means clustering. In addition to these formal results, this
statistical setting has been the predominant model for data-driven algorithm configuration in artificial
intelligence [120], combinatorial auctions [99], numerical linear algebra [55], vehicle routing [36],
and SAT solving [147].

Another related line of work aims to select an algorithm with the fastest average running time
for a collection of problems even when some algorithms have very large running times and without
making any structural assumptions about the family of algorithms [92, 144].

3.2.2 Semi-bandit Optimization of Piecewise Lispchitz Functions

In this section we provide an algorithm for online piecewise Lispchitz optimization and analyze its
regret under dispersion. We consider the following the semi-bandit feedback setting.

Definition 3.3 (Uninformed Semi-bandit Feedback.). An online optimization problem with loss func-
tions `1, `2, . . . has semi-bandit feedback if for each time t, there is partition A(t)

1 , . . . , A
(t)
M of the

parameter space C, called a feedback system, such that when the learner plays point ρt ∈ A(t)
i , they

observe the set A(t)
i and `t(ρ) for all ρ ∈ A(t)

i . For any ρ ∈ C, we let A(t)(ρ) denote the feedback set
that contains ρ.

We analyze a continuous version of the Exp3-SET algorithm of Alon et al. [2]. This algorithm
uses importance weighting to construct unbiased estimates of the complete loss function on each
round, which it passes as input to a continuous version of the exponentially weighted forecaster.
Pseudocode is given in Algorithm 5. In Appendix B.2.1, we show how to implement this algorithm
with O(log T) per round computational complexity for the case of piecewise constant losses in one
dimension.

Algorithm 5 Continuous Exp3-SET
Parameter: Step size λ ∈ [0, 1]
1. Let w1(ρ) = 1 for all ρ ∈ C
2. For t = 1, . . . , T

(a) Let pt(ρ) = wt(ρ)/Wt, where Wt =
∫
C wt(ρ) dρ.

(b) Sample ρt from pt, play it, and observe feedback set A(t)(ρ) and losses `t(ρ) for all ρ ∈ At.
(c) Let ˆ̀

t(ρ) = I{ρ∈A(t)(ρt)}
pt(A(t)(ρt))

`t(ρ), where pt(A(t)(ρt)) =
∫
A(t)(ρt)

pt(ρ) dρ.

(d) Let wt+1(ρ) = wt(ρ) exp(−λˆ̀
t(ρ)) for all ρ ∈ C.

Given the learner’s observations on round t, Algorithm 5 uses importance weighting to estimate
the complete loss function by ˆ̀

t(ρ) = I{ρ∈A(t)(ρt)}
pt(A(t)(ρt))

`t(ρ). The key property of ˆ̀
t is that it is an

unbiased estimate of the true loss function conditioned on the history until the beginning of round

45

t. More formally, let Et[·] = E[·|ρ1, . . . , ρt−1, `1, . . . , `t] denote the conditional expectation given
the learner’s choices until round t− 1 and the first t loss functions. This expectation is only over the
randomness of the learner’s choice of ρt at time t. For clarity, we also use the notation E<t[·] to denote
the expectation of any random variable that is a function of only ρ1, . . . , ρt−1 and `1, . . . , `t so that for
any random quantity X , we have E[X] = E<t

[
Et[X]

]
. For any fixed ρ ∈ C and any time t, a straight

forward calculation shows that Et[ˆ̀t(ρ)] = `t(ρ). Intuitively, the importance weight 1/pt(A
(t)(ρt))

increases the estimated losses of points that belong to feedback sets assigned low probabilities by the
algorithm to compensate for the fact that they are less likely to be observed.

To simplify presentation, we use the following technical condition.

Definition 3.4 (r0-interior optimum). Let C ⊂ Rd be a parameter space and consider a sequence of
random functions `1, `2, · · · : C → R. We say these functions have an r0-interior optimum if for all
times T ∈ N, with probability one there exists ρ∗ ∈ argminρ∈C

∑T
t=1 `t(ρ) such that B(ρ∗, r0) ⊂ C.

Note that we can usually modify a sequence of loss functions to obtain an equivalent optimization
problem that is guaranteed to have an r0-interior minimizer. For example, when the parameter space
C is convex (e.g., a cube in Rd, which covers most algorithm configuration applications), we can
apply the following transformation: define an enlarged parameter space C′ =

⋃
ρ∈C B(ρ, r0) and a

modified sequence of loss functions `′t : C → [0, 1] given by `′t(ρ
′) = `t(ΠC(ρ

′)), where ΠC denotes
the Euclidean projection onto C. Using the fact that projections onto convex sets are contractions,
it follows that the sequence `′1, `

′
2, . . . is also L-Lispchitz and f -dispersed. Moreover, it has an r0-

interior minimizer and any sequence of parameters ρ′1, ρ
′
2, · · · ∈ C′ can be converted into ρ1, ρ2, . . .

with ρt = ΠC(ρ
′
t) so that `t(ρt) = `′t(ρ

′
t) for all t. In particular, an algorithm with low regret playing

against `′1, `
′
2, . . . can be converted into one that plays against `1, `2, . . . with an identical regret

bound.
We bound the regret of Algorithm 5 under a generalization of both both β-dispersion and the

(w, k)-dispersion definition of Balcan et al. [22], leading to more precise bounds and broader appli-
cability.

Definition 3.5. The sequence of loss functions `1, `2, . . . is f -dispersed for the Lipshitz constant L
and dispersion function f : N× [0,∞)→ R if for all T and for all ε > 0, we have

E
[
max
ρ∈C

(
∣∣{1 ≤ i ≤ T | `i is not L-Lipshitz in B(ρ, ε)}

∣∣] ≤ f(T, ε).

We can express both (w, k)-dispersion and β-dispersion in terms of f -dispersion. In particular,
suppose that the functions `1, `2, . . . are β-dispersed. Then for any ε ≥ T−β , at most Õ(εT) of the
functions are not Lipschitz on the worst ball of radius ε. In particular, for ε = T−β , this gives that
the number of non-Lipschitz functions is bounded by T 1−β and this bound also applies to smaller
balls, since decreasing the radius can only decrease the number of non-Lipschitz functions. It follows
that the functions are f -dispersed for f(T, ε) = Õ(εT + T 1−β). Next, suppose `1, `2, . . . are (w, k)-
dispersed. Then they are f -dispersed where f(T, ε) = k for all ε ≤ w and f(T, ε) = T otherwise.

We bound the regret of Algorithm 5 in terms of the f -dispersion of the losses.

Theorem 3.11. Let C ⊂ Rd be contained in a ball of radiusR and `1, `2, · · · : C → [0, 1] be piecewise
L-Lipschitz functions that are f -dispersed with an r0-interior minimizer. Moreover, suppose the
learner gets semi-bandit feedback and, on each round t, the feedback system A

(t)
1 , . . . , A

(t)
M has M

46

feedback sets. For any r ∈ (0, r0], running Algorithm 5 with λ =
√
d log(R/r)/(TM) satisfies the

following regret bound:

E
[T∑

t=1

`t(ρt)− `t(ρ∗)
]
≤ O

(√
dTM log(R/r) + f(T, r) + TLr

)
.

Proof sketch. Following the proof for the finite-armed case of Alon et al. [2], we upper and lower
bound the quantity E[log(WT+1/W1)], whereWt =

∫
C wt(ρ) dρ is the normalizing constant at round

t. The upper bound is in terms of the expected total loss of the algorithm, while the lower bound
depends on the expected total loss of the best parameter ρ∗ in hindsight. Dispersion plays a crucial
role in the lower bound. Combining these inequalities leads to the desired regret bound.

Following a continuous analogue of the arguments used by Alon et al. [2], we arrive at the fol-
lowing upper bound:

E
[
log

WT+1

W1

]
≤ −λE

[T∑

t=1

`t(ρt)
]

+
λ2

2
E
[T∑

t=1

∫

C
pt(ρ)ˆ̀

t(ρ)2 dρ
]
,

where the second term roughly quantifies our dependence on the second moment of the estimated
losses ˆ̀

t(ρ). We show that for any fixed ρ ∈ C we have that Et[ˆ̀t(ρ)2] ≤ 1
pt(A(t)(ρ))

. This implies
that

E
t

[∫

C
pt(ρ)ˆ̀

t(ρ)2 dρ
]
≤
∫

C
pt(ρ)

1

pt(A(t)(ρ))
dρ =

M∑

i=1

∫

A
(t)
i

pt(ρ)
1

pt(A
(t)
i)

dρ = M,

where the first equality follows from the fact that the feedback system A
(t)
1 , . . . , A

(t)
M is a partition of

C. Substituting this into our upper bound, we have

E
[
log

WT+1

W1

]
≤ −λE

[T∑

t=1

`t(ρt)
]

+
λ2

2
TM.

Next, let ρ∗ ∈ argminρ
∑T

t=1 `t(ρ) be a minimizer with B(ρ∗, r0) ⊂ C, let r be any radius
satisfying r ≤ r0 and let B = B(ρ∗, r) be the ball of radius r about ρ∗. We lower bound logWT+1

by integrating wT+1 over just the ball B consisting of parameters close to ρ∗:

logWT+1 = log
(∫

C
exp
(
−λ

T∑

t=1

ˆ̀
t(ρ)

)
dρ
)
≥ log

(∫

B
exp
(
−λ

T∑

t=1

ˆ̀
t(ρ)

)
dρ
)
.

Using the fact that log is concave, applying Jensen’s inequality to the right hand side gives logWT+1 ≥
log(Vol(B)) − λ

Vol(B)

∫
B
∑T

t=1
ˆ̀
t(ρ) dρ. Let E`[·] = E[·|`1, . . . , `T] denote the expectation condi-

tioned on the sequence of loss functions (i.e., only taking the expectation over the randomness of the
algorithm). Then, since W1 = Vol(C), we have that E`[

WT+1

W1
] ≥ log Vol(B)

Vol(C) − λ
Vol(B)

∫
B
∑T

t=1 `t(ρ).

Here, we used the fact that ˆ̀
t is an unbiased estimate of `t. Finally, letting D denote the number of

non-Lipschitz functions in `1, . . . , `T on the ball B, we can upper bound the loss of all ρ ∈ B by∑T
t=1 `t(ρ) ≤ ∑T

t=1 `t(ρ
∗) + TLr + D. Since the functions `1, `2, . . . are f -dispersed, we know

that the expected number of non-Lipschitz functions in the worst ball of radius r is at most f(T, r).

47

In particular, this implies that E[D] ≤ f(T, r). Therefore, taking the expectation of our lower bound
gives E[

WT+1

W1
] ≥ log Vol(B)

Vol(C) − λ(
∑T

t=1 `t(ρ
∗) + TLr + f(T, r)).

Combining the upper and lower bounds on E[log(WT+1/W1)], using the fact that Vol(B)
Vol(C) ≥ (rR)d,

and rearranging gives

E
[T∑

t=1

`t(ρt)− `t(ρ∗)
]
≤ λ

2
TM +

d

λ
log

R

r
+ TLr + f(T, r).

Substituting the given value of λ completes the proof.

Our regret bound for β-dispersed losses given in Theorem 3.10 follows immediately from Theo-
rem 3.11. In particular, when a sequence of loss functions is β-dispersed, then it is also f -dispersed
for f(T, ε) = Õ(Tε + T 1−β). Applying Theorem 3.11 with r = 1

Tβ(L+1)
bounds the algorithm’s

expected regret by Õ(
√
Td+ T 1−β).

Note that our results are also applicable in two closely related settings: maximizing piecewise
Lipschitz and dispersed utility functions, and the case when losses are bounded in [0, H] for some
known bound H instead of [0, 1]. A discussion of the necessary transformations can be found in
Appendix B.1.4.

3.2.3 General Tools for Verifying Dispersion

In this section we provide a general tool for demonstrating that a sequence of loss functions `1, `2, . . .
is dispersed. For many sequences of loss functions and any fixed ball B(ρ, ε), we are able to bound
the expected number of functions among `1, . . . , `T that are not L-Lipschitz on that ball. However,
this does not directly imply that the functions are dispersed, since in general the expected number of
non-Lipschitz functions in the worst ball will be larger than the expected number of non-Lipschitz
functions in any specific ball. Our main result in this section shows that for sequences of independent
loss functions `1, `2, . . . that are defined over a one-dimensional parameter space with at most K
discontinuities each, to prove dispersion for the sequence, it is sufficient to bound the expected number
of non-Lipschitz functions for any fixed ball.

Theorem 3.12. Let `1, `2, · · · : R→ R be independent piecewise L-Lipschitz functions, each having
at most K discontinuities. Let D(T, ε, ρ) =

∣∣{1 ≤ t ≤ T | `t is not L-Lipschitz on [ρ− ε, ρ+ ε]}
∣∣ be

the number of functions in `1, . . . , `T that are not L-Lipschitz on the ball [ρ− ε, ρ+ ε]. Then we have

E[sup
ρ∈R

D(T, ε, ρ)] ≤ sup
ρ∈R

E[D(T, ε, ρ)] +O(
√
T log(TK)).

Proof sketch. For simplicity, we assume that every function has exactly K discontinuities and let
α(t) ∈ RK be the vector whose entries are the discontinuity locations of `t. The vectors α(1), α(2), . . .
are independent.

For any interval I ⊂ R, define the function fI : RK → {0, 1} by fI(α) = 1 if any compo-
nent of α belongs to I and fI(α) = 0 otherwise. The sum

∑T
t=1 fI(α

(t)) counts the number of
vectors α(1), . . . , α(T) that have a component in the interval I or, equivalently, the number of func-
tions `1, . . . , `T that are not L-Lipschitz on I . The main result will follow from VC-dimension based
uniform convergence arguments applied to the class F = {fI : RK → {0, 1} | I ⊂ R is an interval}.

48

First, we bound the VC-dimension ofF byO(logK). The key insight is the following connection
between F and the class of indicator functions for intervals: let S = {x(1), . . . , x(n)} ⊂ RK be any
collection of n vectors in RK and let P = {x(1)

1 , . . . , x
(1)
K , . . . , x

(n)
1 , . . . , x

(n)
K } ⊂ R denote the set

containing the union of their combined nK component values. Now consider any pair of intervals I
and I ′. If the indicator functions for I and I ′ agree on all the points in P (i.e., the intervals contain
exactly the same subset of P), then we must have that fI and fI′ agree on every vector in S. This
is because if I and I ′ contain exactly the same subset of P , then for each vector x(i), both intervals
contain the same subset of its component values and we must have fI(x(i)) = fI′(x

(i)). Therefore,
that the number of distinct ways that the class F can label the set of vectors S is at most the number
of ways that intervals can label the set of points P . The bound on the VC-dimension of F follows
from the fact that, by Sauer’s Lemma, intervals can only label the points in P in O((Kn)2) distinct
ways, which limits the size of the largest set S that is shatterable by F .

Applying VC-dimension based uniform convergence arguments to the class F and using the fact
that D(T, ε, ρ) =

∑T
t=1 fI(α

(t)), where I = [ρ− ε, ρ+ ε], it follows that for all time horizons T and
all radiuses ε, with probability at least 1 − δ we have supρ∈RD(T, ε, ρ) ≤ supρ∈R E[D(T, ε, ρ)] +

O(
√
T log(K/δ)). Converting this high-probability bound into a bound in expectation completes the

proof.

If we can show that for all times T , radiuses ε > 0 and any fixed interval I of radius ε, the expected
number of non-Lipschitz functions on interval I is at most Õ(Tε), then Theorem 3.12 guarantees that
the losses are β-dispersed with β = 1/2. Similarly, if the expected number of non-Lipschitz functions
on the interval I is at most g(T, ε), then the functions are f -dispersed for f(T, ε) = g(T, ε) +
O(
√
T log(TK)).

Balcan et al. [22] also provide general tools for proving (w, k)-dispersion that can be adapted to
β and f -dispersion. Our bounds provide an exponential improvement in the dependence on K, the
number of discontinuities per function. Under the same assumptions as Theorem 3.12, they are able
to show E[supρ∈RD(T, ε, ρ)] ≤ supρ∈R E[D̃(T, ε, ρ)] + O(K

√
T log(TK)), where D̃(T, ε, ρ) is

the total number of discontinuities across the functions `1, . . . , `T that fall in the interval of radius ε
centered at ρ (i.e., it counts multiple discontinuities from each loss function `t) (see Lemma B.33 in
Appendix B.2.2). The dependence of our additive term on K is exponentially smaller and leads to
improved dispersion analysis.

3.2.4 Online Algorithm Selection with Semi-bandit Feedback

In this section we apply our semi-bandit optimization results to online algorithm selection for two
rich parameterized families of algorithms. For each family, we show that semi-bandit feedback can
be obtained efficiently by running a single algorithm together with a small amount of bookkeeping.
We also provide dispersion analysis for these problems under the assumption that the adversary is
smoothed. In both cases, we obtain Õ(

√
T) regret bounds in the semi-bandit feedback setting. Finally,

in Appendix B.2.3 we show how to use binary search to obtain semi-bandit feedback for a large class
single-parameter algorithm families.

Smoothed adversaries. We consider adversaries that are smoothed in the sense of Spielman and
Teng [130], where their decisions are corrupted by small random perturbations. Formally, we say that
a parameter chosen by the adversary is κ-smooth if it is a random variable whose density is bounded
by κ. After the adversary chooses the density for each smoothed parameter, nature samples each

49

parameter value independently from their corresponding distributions. Small values of κ correspond
to larger random perturbations of the problem parameters, while in the limit as κ→∞, the adversary
is able to choose the parameters deterministically. In each application, we will specify which problem
parameters are smoothed, together with the bound κ on their density. For simplicity, we assume that
all κ-smooth random variables are independent (i.e., the corruption of the adversary’s choices is not
correlated across variables).

Greedy Algorithms for Knapsack

First, we consider selecting the best algorithm from a parameterized family of a greedy algorithms
for the knapsack problem. Recall that an instance of the knapsack problem consists of n items, where
item i has a value vi and a size si, and a knapsack capacity C. Our goal is to find the most valuable
subset of items whose total size does not exceed C. Gupta and Roughgarden [77] propose using the
following parameterized family of greedy knapsack algorithms: for a given parameter ρ ∈ [0, R], set
the score of item i to be σρ(i) = vi/s

ρ
i . Then, in decreasing order of score, add each item to the

knapsack if there is enough capacity left. This algorithm runs in time O(n log n). In our analysis, we
assume that the adversary’s item values are κ-smooth.

First, we show how to perform a small amount of bookkeeping in order to obtain semi-bandit
feedback. Pseudocode for the modified algorithm is given in Algorithm 6.

Algorithm 6 Greedy Knapsack Algorithm with Bookkeeping
Input: Parameter ρ ≥ 0, item values v1, . . . , vn, item sizes s1, . . . , sn, knapsack capacity C ≥ 0.
1. Let π : [n]→ [n] be the item permutation such that σρ(π(1)) ≥ · · · ≥ σρ(π(n)).
2. Initialize S ← ∅.
3. For i = 1, . . . , n: if sπ(i) ≤ C then add π(i) to S and set C ← C − sπ(i).
4. For i = 1, . . . , n− 1: let ci ← log(vπ(i)/vπ(i+1))/ log(sπ(i)/sπ(i+1)).
5. Let ρmin ← max{ci | ci ≤ ρ} and ρmax ← min{ci | ci > ρ}.
6. Return S and interval A = (ρmin, ρmax).

Lemma 3.2. Consider a knapsack instance with capacity C and n items with values v1, . . . , vn,
and sizes s1, . . . , sn. Algorithm 6 runs in time O(n log n). Moreover, there is feedback system
A1, . . . , AM partitioning C into M = O(n2) intervals such that set of items output by the algo-
rithm is constant for ρ ∈ Ai. When run with parameter ρ, in addition to the item set S, the algorithm
outputs the interval Ai containing ρ.

Proof. Computing the permutation π takes O(n log n) time and finding the item set S and interval A
only require linear passes through the items, resulting in O(n log n) total running time.

Gupta and Roughgarden [77] show that for any knapsack instance, the algorithm’s output is a
piecewise constant function of the parameter ρ with at most O(n2) discontinuities. In particular, for
each pair of items i and j, there is a critical parameter value cij = log(vi/vj)/ log(si/sj) such that
the relative order of items i and j changes at ρ = cij . These critical parameter values partition C
into M = O(n2) sets A1, . . . , AM such that the item ordering is fixed for all ρ ∈ Ai. Algorithm 6
computes the critical values for the each consecutive pair of items π(i) and π(i + 1) and outputs
the largest interval A containing ρ and none of these critical values. For all ρ′ ∈ A, we must have
σρ′(π(i)) ≥ σρ′(π(i+1)) for i = 1, . . . , n−1, and therefore the item ordering is constant for ρ′ ∈ A.

50

It follows that that A does not contain cij for any pair of items i and j. On the other hand, the end
points of A are critical values, so A must be equal to one of the M sets Ai.

Next, we provide a dispersion analysis for selecting the parameter ρ ∈ [0, R] in order to maximize
the value of items selected. We assume that each instance has the same capacity C, item sizes are
in [1, C], and the item values are in [0, 1] and κ-smooth. The corresponding loss function is `(ρ) =
C−∑i∈Sρ vi, where Sρ is the set of items selected by Algorithm 6 when run with parameter ρ. Since
each item has vi/si ≤ 1, the maximum achievable value is C and this loss takes values in [0, C].

Lemma 3.3. Consider an adversary choosing knapsack instances with a fixed knapsack capacity C
where the tth instance has item sizes s(t)

1 , . . . , s
(t)
n ∈ [1, C], and κ-smooth item values v(t)

1 , . . . , v
(t)
n ∈

[0, 1]. The loss functions `1, `2, . . . defined above are piecewise constant and f -dispersed for f(T, ε) =
Tεn2κ2 ln(C) +O(

√
T log(Tn)) and β-dispersed for β = 1/2.

Proof. Let c(t)
ij = log(v

(t)
i /v

(t)
j)/ log(s

(t)
i /s

(t)
j) be the critical parameter value such that at ρ = c

(t)
ij ,

items i and j swap their relative order in the tth instance. Balcan et al. [22] show that each critical
value c(t)

ij is random and has a density function bounded by κ2 ln(C)/2. It follows that for any

interval I of radius ε, the expected total number of critical values c(t)
ij summed over all pairs of items

and t = 1, . . . , T is at most Tεn2κ2 ln(C). This is also an upper bound on the expected number of
loss functions in `1, . . . , `T that are not constant on I . Applying Theorem 3.12, it follows that the
functions are f -dispersed for f(T, ε) = Tεn2κ2 ln(C) + O(

√
T log(Tn)) = Õ(Tε +

√
T), which

implies β-dispersion with β = 1/2.

Note that our analysis is tighter than that of Balcan et al. [22] due to the better bound given by
Theorem 3.12. Running Algorithm 5 using the semi-bandit feedback returned by Algorithm 6, we
obtain the following.

Corollary 3.1. Under the same conditions as Lemma 3.3, using Algorithm 5 to tune the parameter
ρ ∈ [0, R] of Algorithm 6 under semi-bandit feedback has expected regret bounded by

O(Cn
√
T log(RTnκ log(C))).

The full-information regret bound obtained by Balcan et al. [22] is Õ(Cn2
√
T), which is worse

than our semi-bandit bound. Moreover, applying our analysis gives a Õ(C
√
T) regret bound under

full-information.

Interpolating between Single and Complete Linkage Clustering

Next, we consider a rich family of linkage-based clustering algorithms introduced by Balcan et al. [18]
that interpolates between the classic single and complete linkage procedures. Clustering instances are
described by a matrix D = (dij) ∈ Rn×n giving the pairwise distances between a collection of n
data points and the goal is to organize the points into a hierarchy or cluster tree. We provide the first
dispersion analysis and online configuration procedures for this class of algorithms. We assume that
each distance dij is κ-smooth.

The algorithm family we consider, called ρ-linkage, is family of agglomerative clustering al-
gorithms with a single parameter ρ ∈ [0, 1]. These algorithms take as input a distance matrix

51

D = (dij) ∈ Rn×n and the parameter value ρ ∈ [0, 1] and output a cluster tree, which is a binary
tree where each node corresponds to a cluster in the data. The leaves of the tree are the individual
data points, while the root node corresponds to the entire dataset. The children of each node subdi-
vide that cluster into two subclusters. The ρ-linkage algorithm starts with each point belonging to
its own cluster. Then, it repeatedly merges the closest pair of clusters according the distance defined
by dρ(A,B) = (1 − ρ) dmin(A,B) + ρ dmax(A,B), where A and B are clusters (i.e., subsets of
[n]), dmin(A,B) = mina∈A,b∈B dab and dmax(A,B) = maxa∈A,b∈B dab. When there is only a sin-
gle cluster remaining, the algorithm outputs the constructed cluster tree. Running this algorithm with
ρ = 0 and ρ = 1 recovers single and complete linkage, respectively. To simplify notation in the rest of
this section, given any clusters C1, C2, C

′
1 and C ′2, we let c(C1, C2, C

′
1, C

′
2) = ∆min/(∆min−∆max),

where ∆min = dmin(C ′1, C
′
2)− dmin(C1, C2) and ∆max = dmax(C ′1, C

′
2)− dmax(C1, C2), denote the

unique parameter value such that for ρ = c(C1, C2, C
′
1, C

′
2) we have dρ(C1, C2) = dρ(C

′
1, C

′
2).

First, we show that we can obtain semi-bandit feedback when running ρ-linkage by performing a
small amount of bookkeeping. This algorithm maintains an interval (ρmin, ρmax) with the invariant
that at any iteration, for all parameters ρ′ ∈ (ρmin, ρmax), the algorithm would make the same merges
that have been made so far. Pseudocode for this procedure is given in Algorithm 7

Algorithm 7 ρ-Linkage with Bookkeeping
Input: Parameter ρ ∈ [0, 1], symmetric matrix D ∈ [0,M]n×n.
1. Let S ← {Leaf(i) for i ∈ [n]}.
2. Let ρmin ← 0 and ρmax ← 1.
3. While |S| > 1:

(a) Let (C1, C2) be the pair of clusters in S minimizing dρ(C1, C2).
(b) For each pair of clusters (C ′1, C

′
2) 6= (C1, C2) in S

i. Let c′ ← c(C1, C2, C
′
1, C

′
2).

ii. If c′ > ρ then set ρmax ← min(ρmax, c
′), otherwise set ρmin ← max(ρmin, c

′).
(c) Remove C1 and C2 from S and add Node(C1, C2) to S.

4. Return the only element T of S, which is the constructed cluster tree, and the interval A =
[ρmin, ρmax].

Lemma 3.4. Consider a clustering instance with distance matrix D ∈ Rn×n. Algorithm 7 runs in
time O(n3). Moreover, there is a feedback system A1, . . . , AM partitioning [0, 1] into M = O(n8)
intervals such that the cluster tree output by the algorithm is constant for ρ ∈ Ai. When run with
parameter ρ, in addition to the cluster tree T , the algorithm outputs the interval Ai containing ρ.

Proof. The algorithm performs n − 1 merges, and for each merge it makes two passes through the
O(n2) clusters to find the closest pair and to update ρmin and ρmax, giving a total running time of
O(n3).

Balcan et al. [18] prove that there exists a partition A1, . . . , AM of C into M = O(n8) intervals
such that the algorithm output is constant for ρ ∈ Ai. In particular, for any pair of possible cluster
merges (C1, C2) and (C ′1, C

′
2) with dmin(C1, C2) < dmin(C ′1, C

′
2), the algorithm prefers to merge

C1 and C2 over C ′1 and C ′2 for all values of the parameter ρ < c(C1, C2, C
′
1, C

′
2). Moreover, since

c(C1, C2, C
′
1, C

′
2) only depends on 8 points—the closest and farthest pairs of points between C1 and

C2 and betweenC ′1 andC ′2—and there are onlyO(n8) ways to select 8 points, these critical parameter
values partition C into the M = O(n8). For ρ ∈ Ai, the ordering on all possible merges is fixed, so
the algorithm will output the same cluster tree.

52

Finally, an invariant satisfied at every iteration of the algorithm is that for all values of ρ′ ∈
(ρmin, ρmax), running the algorithm with parameter ρ′ would make the same sequence of merges
made up until the current iteration. Moreover, since ρmax and ρmin are always equal to one of the
critical parameter values above, it follows that the output interval A is equal to some set Ai from the
piecewise constant partition.

Next, we provide a dispersion analysis for selecting the parameter ρ of Algorithm 7 when the
clustering instances are chosen by a smoothed adversary. In particular, we suppose that on each
round the adversary chooses a distance matrix D(t) where each distance d(t)

ij is κ-smooth and takes
values in [0, B], for some maximum distance B. The quantity B/(1/κ) = Bκ roughly captures the
scale of the perturbations relative to the true distances. Our analysis leads to regret that depends on
Bκ only logarithmically.

Fix any loss function g where g(D,T) measures the cost of cluster tree T for distance matrix D
(e.g., the distance from a ground-truth target clustering). We consider the sequence of loss functions
defined by `t(ρ) = g(D(t),A(D(t); ρ)), where A(D; ρ) denotes the output of Algorithm 7 run on D
with parameter ρ.

Lemma 3.5. Consider an adversary choosing clustering instances where the tth instance has sym-
metric distance matrix D(t) ∈ [0, B]n×n and for all i ≤ j, d(t)

ij is κ-smooth. The loss functions
`1, `2, . . . defined above are piecewise constant and f -dispersed for f(T, ε) = 32Tεn8κ2M2 +
O(
√
T log(Tn)) and β-dispersed for β = 1/2.

Proof sketch. In the proof of Lemma 3.4, we showed that for each time t, there are O(n8) critical
parameter values partitioning C into regions so that the algorithm output is constant on each region.
Since the loss `t only depends on ρ through the algorithm output, `t is also piecewise constant with
at most O(n8) pieces.

Moreover, we argued that every discontinuity of `t occurs at a critical parameter value of the form
c = (d

(t)
rr′ − d

(t)
ii′)/(d

(t)
jj′ − d

(t)
ii′ + d

(t)
rr′ − d

(t)
ss′) where i, i′, j, j′, r, r′, s, s′ are 8 point indices. Similarly

to the knapsack example, we show that each critical parameter value is random and has a density
function bounded by 16(κB)2. From this, it follows that for any interval I of radius ε, the expected
total number of critical values summing over all instances t = 1, . . . , T that land in interval I is at
most 32Tε(κB)2. This also bounds the expected number of functions `1, . . . , `T that are not constant
on I . By Theorem 3.12, the functions are f -dispersed for f(T, ε) = 32Tε(κB)2 +

√
T log(Tn) =

Õ(Tε+
√
T), also implying 1

2 -dispersion.
There are several cases when bounding the density of the critical value c, depending on whether

any of the 4 distances correspond to the same entry in the distance matrix D. We give the argument
for the case when all 4 distances are distinct entries and therefore independent. The remaining cases
are similar and considered in Appendix B.1.6. Let X = drr′ − dii′ and Y = djj′ − dss′ so that
c = X/(X + Y). The variables X and Y are independent. Since X and Y are each the sum of
κ-smooth random variables, Lemma B.37 implies that they are each have κ-bounded densities. Using
the fact that |X + Y | ≤ 2B, applying Lemma B.39 implies that the ratio c = X/(X + Y) has a
16(κB)2 bounded density, as required.

Running Algorithm 5 using the semi-bandit feedback returned by Algorithm 7, we obtain the
following:

53

Corollary 3.2. Under the same conditions as Lemma 3.5, using Algorithm 5 to tune the parameter
ρ ∈ [0, 1] of Algorithm 7 under semi-bandit feedback has expected regret bounded by

O(n4
√
T log(TnκB)).

54

Chapter 4

Data-driven Algorithm Configuration
and Metric Learning for Clustering

4.1 Introduction

Clustering is an important part of many modern data analysis pipelines. For example, we might cluster
emails based on content as a pre-processing step for spam detection, or we might cluster individuals
in a social network in order to suggest new connections. There are a myriad of different clustering
algorithms, and it is not always clear what algorithm will give the best performance on a specific
clustering task. Similarly, we often have multiple different ways to measure distances between data
points, and it is not obvious which distance metric will lead to the best performance. In this work, we
study data-driven algorithm selection and metric learning for clustering problems, where the goal is
to use data to learn the best algorithm or metric for a specific application such as clustering emails or
users of a social network. Each specific application is modeled as a distribution over clustering tasks,
we observe an i.i.d. sample of clustering instances drawn from that distribution, and our goal is to
choose an approximately optimal algorithm from a parameterized family of algorithms (according to
some well-defined loss function). This corresponds to settings where we repeatedly solve clustering
instances (e.g., clustering the emails that arrive each day) and we want to use historic instances to
learn the best clustering algorithm.

We build on a recent line of work that provides learning-theoretical guarantees for data-driven
algorithm configuration [77, 18, 20, 23]. These papers analyze the intrinsic complexity of parame-
terized algorithm families in order to provide sample complexity guarantees; that is, bounds on the
number of sample instances needed in order to select an approximately optimal algorithm. In this
work, we have three main contributions: first, we provide sample complexity guarantees for learning
the best metric to use for a given clustering application domain. Second, we design computationally
efficient procedures for data-driven clustering algorithm selection. These procedures take a sample
of clustering instances and output the algorithm from the family with the lowest empirical cost. Fi-
nally, we use our efficient algorithm selection procedures to evaluate data-driven clustering algorithm
selection in a number of different clustering application domains.

We study parameterized families of agglomerative or linkage-based clustering algorithms. These
procedures take as input a clustering instance S and output a hierarchical clustering of S represented
as a binary cluster tree. Each node in the tree represents a cluster in the data at one level of granularity,
with the leaves corresponding to individual data points and the root node corresponding to the entire

55

dataset. Each internal node represents a cluster obtained by merging its two children. Linkage-based
clustering algorithms build a cluster tree from the leaves up, starting with each point belonging to its
own cluster and repeatedly merging the “closest” pair of clusters until only one remains.

Our algorithm families vary two aspects of this algorithm template. The first family allows us to
vary the metric used to measure the distance between points in the clustering instance. Optimizing
over this family can equivalently be viewed as learning the best metric for a given clustering appli-
cation. The second family allows us to vary the meaning of “closest” by changing how we measure
distances between clusters (in terms of the distances between their points). Two classic examples are
single linkage, which measures distances in terms of the closest pair of points, and complete linkage,
which measures distance in terms of the farthest pair of points. Varying each of these aspects can lead
to significantly different clustering algorithms.

For these families of algorithms, we provide computationally efficient empirical risk minimization
(ERM) procedures. These procedures are given a sample of clustering instances and must output an
algorithm from the family that has the lowest empirical loss. A key challenge of the ERM problem for
our algorithm families is that, for each clustering task S, the loss we optimize is a piecewise constant
function of the algorithm parameter. This implies that the optimization problem is non-convex and the
loss derivative is zero anywhere that it is defined, rendering gradient descent and similar approaches
ineffective. Instead, our ERM procedures exploit structure in the piecewise constant partitionings of
the parameter space to efficiently find optimal parameters.

Problem Formulation. Let X be a data domain. Each clustering instance consists of a point set
S = {x1, . . . , xn} ⊂ X and an (unknown) target clustering Y = (C1, . . . , Ck), where the sets
C1, . . . , Ck partition S into k clusters. Linkage-based clustering algorithms output a hierarchical
clusterings, represented by a cluster tree. We measure the agreement of a cluster tree T with the
target clustering Y = (C1, . . . , Ck) in terms of the Hamming distance between the best pruning of T
into k clusters (i.e., k disjoint subtrees that cover the leaves of T). More formally, we define the loss

`(T,Y) = min
P1,...,Pk

min
σ∈Sn

1

|S|
K∑

i=1

|Ci − Pσi |, (4.1)

where the first minimum is over all prunings P1, . . . , Pk of the cluster tree T and the second minimum
is over all permutations of the k cluster indices. This formulation allows us to handle the case where
each clustering task has a different number of clusters, and where the desired number might not be
known in advance. Our analysis applies to any loss function ` measuring the quality of the output
cluster tree T , but we focus on the Hamming distance for simplicity. Given a distribution D over
clustering instances (i.e., point sets together with target clusterings), our goal is to find the algorithm
A from a familyAwith the lowest expected loss for an instance sampled fromD. As training data, we
assume that we are given an i.i.d. sample of clustering instances annotated with their target clusterings
drawn from the application distribution D.

4.2 Learning Clustering Metrics

For many clustering problems, we have multiple different ways to measure distances between points.
For example, in a dataset of captioned images, we can measure the distance between two examples in
terms of either the images or the captions. Alternatively, we might have both a hand-crafted feature

56

original Data projection to y axis Projection to x axis

Figure 4.1: A two dimensional dataset with well separated clusters that become interleaved when
projecting onto either the x or y axes.

representation incorporating expert knowledge of the clustering domain, as well as a neural network
feature embedding. How should we combine these distance metrics in order to obtain high quality
clusterings? In this section we introduce a parameterized family of algorithms that can use any
linear combination of two given metrics. After introducing the algorithm family, we prove sample
complexity guarantees for learning the optimal parameter values from sample clustering instances.

Fix two metrics d0, d1 : X × X → R defined on the data universe. We define an algorithm
family Ametric(d0, d1) parameterized by β ∈ [0, 1]. The algorithm with parameter β runs complete
linkage using the metric dβ(x, x′) = (1 − β) d0(x, x′) + β d1(x, x′). That is, it builds a cluster tree
as follows: starting with each point in a cluster of its own, it repeatedly merges the pair of clusters
that are the closest according to the distance function Dmax(A,B;β) = maxa∈A,b∈B dβ(a, b) until
only one cluster remains. Each merge introduces a new interal node in the cluster tree. Pseudocode
is given in Algorithm 8. When the two metrics d0 and d1 are clear from context, we let Ametric

β (S)
denote the cluster tree output by this algorithm when run on clustering instance S.

Algorithm 8 β-linkage Clustering
Input: Metrics d0 and d1, parameter β ∈ [0, 1], and clustering instance S = {x1, . . . , xn}.
1. Let N = {Leaf(x1), . . . ,Leaf(xn)} be the initial set of nodes (one leaf per point).
2. While |N | > 1

(a) Let A,B ∈ N be the clusters in N minimizing maxa∈A,b∈B dβ(a, b).
(b) Remove nodes A and B from N and add Node(A,B) to N .

3. Return the cluster tree (the only element of N).

Next, we show that using a mixture of two metrics d0 and d1 can lead to lower loss clusterings
than either base metric alone. In Figure 4.1 we construct a two-dimensional dataset and suppose that
d0 and d1 are distance metrics that only use one of the two dimensions. Clustering the data according
to either d0 or d1 is equivalent to clustering the data after projecting to either the x or y axis, which
interleaves points belonging to the two target clusters and leads to high error. On the other hand, the
algorithm Ametric

β with β = 0.5 is is equivalent to using the `1-distance for the original 2 dimensional
data, which keeps the two clusters well separated, and leads to low error.

Finally, we give sample-complexity guarantees for learning the best algorithm from this family
(or equivalently, the best metric). These results ensure that for a sufficiently large sample of cluster-
ing instances, with high probability, the empirical loss of every parameter β ∈ [0, 1] is close to its
expected cost on the application specific distribution. This implies that an empirically optimal param-
eter is also approximately optimal in expectation. Our sample complexity results are a conseqeuence

57

of the following key structural property of the algorithm family.

Theorem 4.1. For any distance metrics d0 and d1 and any clustering instance S = {x1, . . . , xn},
there exists a partition of [0, 1] into M = O(n4) intervals I1, . . . , IM such that for any i ∈ [M] and
any β, β′ ∈ Ii, we have Ametric

β (S) = Ametric
β′ (S). That is, the algorithm outputs the same cluster tree

for all values of β in the interval Ii.

Proof. Complete linkage can be implemented in such a way that it only makes comparisons of pair-
wise distances between points (e.g., is dβ(x, x′) bigger or smaller than dβ(y, y′)?) but never uses the
exact values of the pairwise distances. In particular, finding the farthest pair of points between two
clusters can be done with only distance comparisons and, similarly, once we have the farthest pair of
points between each pair of clusters, determining which of those pairs is closest can again be done
using only distance comparisons. It follows that if two metrics dβ and dβ′ give the same answers to all
pairwise distance comparisons, then running complete linkage with both metrics will output exactly
the same cluster tree.

We will argue that for any fixed clustering instance S = {x1, . . . , xn}, there is a partitioning of
[0, 1] into M = O(n4) intervals I1, . . . , IM with the following property: For every interval Ii in the
partition and any pair of parameters β, β′ ∈ Ii, for all points x, x′, y, y′ ∈ S, we have dβ(x, x′) <
dβ(y, y′) if and only if dβ′(x, x′) < dβ′(y, y

′). In other words, all comparisons between pairwise
distances have the same outcome under the metrics dβ and dβ′ . By the above argument, it follows
there is one cluster tree that complete linkage will output when run with the metric dβ for any β ∈ Ii.

All that remains is to construct the partition described above. Fix any subset of 4 points x, x′, y, y′ ∈
S. We start by characterizing the subset of β values for which dβ(x, x′) < dβ(y, y′). Expanding the
definition of dβ , the following inequality describes this subset.

(1− β) · d0(x, x′) + βd1(x, x′) < (1− β) · d0(y, y′) + βd1(y, y′). (4.2)

Since (4.2) is linear in the parameter β, it follows that either dβ(x, x′) < dβ(y, y′) for all or none of
the values β ∈ [0, 1], or there exists a unique critical parameter value at

c =
d0(y, y′)− d0(x, x′)

d1(x, x′)− d0(x, x′) + d0(y, y′)− d1(y, y′)
,

such that the outcome of the comparison between dβ(x, x′) and dβ(y, y′) only changes at β = c.
Since there are only O(n4) subsets of 4 points from S, it follows that there are at most O(n4) of
these critical parameter values. The collection of critical parameter values partitions [0, 1] into O(n4)
intervals, such that on each interval the outcome of every comparison of pairwise distances is fixed,
as required.

Following similar arguments as Balcan et al. [18], this leads to the following uniform convergence
guarantee, which we prove in Appendix C.

Theorem 4.2. Consider the familyAmetric(d0,d1) and let (S1,Y1), . . . , (SN ,YN) be an i.i.d. sample
of clustering instances with target clusterings of size N = O

(
1
ε2

(log n+ log 1
δ)
)
, where n is a bound

on the number of points per instance. With probability at least 1 − δ, the following holds for all
β ∈ [0, 1] ∣∣∣∣∣

1

N

N∑

i=1

`(Ametric
β (Si),Yi)− E

(S,Y)∼D
[`(Ametric

β (S),Y)]

∣∣∣∣∣ ≤ ε.

58

4.3 Learning Merge Functions

We also provide efficient algorithm configuration procedures for a family of linkage-based clustering
algorithms introduced by Balcan et al. [20]. We briefly introduce the algorithm family and state
their sample complexity results for this family. Linkage based clustering algorithms construct cluster
trees by repeatedly merging the “closest” pair of clusters. However, there are many different ways to
measure the distance between a pair of clusters in terms of the distance between their points. To avoid
confusion with learning the best metric, we refer to a distance function defined on clusters as a merge
function. For example, single linkage measures distances in terms of the closest pair of points; that
is, it uses the merge function Dmin(A,B) = mina∈A,b∈B d(a, b), where d is a fixed metric defined on
the data universe X . Alternatively, complete linkage uses the farthest pair of points: Dmax(A,B) =
maxa∈A,b∈B d(a, b). Another popular linkage based algorithm is average linkage, which uses the
merge function Davg(A,B) = 1

|A||B|
∑

a∈A,b∈B d(a, b). For any pair of merge functions D0 and
D1, we define an algorithm family Amerge(D0,D1) parameterized by α ∈ [0, 1]. The algorithm with
parameter α uses the merge function Dα(A,B) = (1−α) D0(A,B) +αD1(A,B). When the merge
functions D0 and D1 are clear from context, we let Amerge

α (S) denote the cluster tree output by the
algorithm with parameter α run on clustering instance S. Pseudocode is given in Algorithm 9.

Algorithm 9 α-linkage Clustering
Input: Merge functions D0 and D1, parameter α ∈ [0, 1], and clustering instance S = {x1, . . . , xn}.
1. Let N = {Leaf(x1), . . . ,Leaf(xn)} be the initial set of nodes (one leaf per point).
2. While |N | > 1

(a) LetA,B ∈ N be the clusters inN minimizing Dα(A,B) = (1−α)·D0(A,B)+α·D1(A,B).
(b) Remove nodes A and B from N and add Node(A,B) to N .

3. Return the cluster tree (the only element of N).

To motivate this algorithm family, we show that mixing two merge functions can lead to signif-
icantly lower loss clusterings than either of the two original merge functions. Figure 4.2 shows a
two-dimensional dataset where both single and complete linkage fail to find high-quality clusterings,
yet a combination of them has zero error. Intuitively, the two ring-shaped clusters are easy for single
linkage to recover, but difficult for complete linkage, while the two disk-shaped clusters are easy for
complete linkage, but hard for single linkage. Figures 4.2b and 4.2d show the clusters obtained by
single and complete linkage, respectively, after some number of merges have been performed. In
both cases, the algorithms have already merged many points that belong to different target clusters,
and therefore no pruning of the cluster tree will have low Hamming distance to the target clustering.
Single linkage merges large portions of the two disk-shaped clusters together because there are very
near points that belong to different clusters. On the other hand, complete linkage struggles to keep the
two ring-shaped clusters separated; once the diameter of a cluster of points belonging to the inner or
outer ring becomes larger than the gap between the two rings, complete linkage will prefer to merge
that cluster with points from the opposite ring instead of points belonging to the same ring. However,
running the algorithm with α ∈ [0.07, 0.16] results in zero error. These values of α put most of
their weight on single linkage, and succeed at recovering the ring-shaped clusters. The small weight
placed on complete linkage penalizes merges that produce large-diameter clusters, and this discour-
ages merging clusters across the two disk clusters before merging each disk cluster itself, since this
produces clusters of larger diameter.

Balcan et al. [18] provide sample complexity guarantees for a number of linkage-based clustering

59

(a) A clustering instance with 4 target clusters. (b) Clusters for single linkage after 370 merges.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

H
am

m
in

g
E

rr
or

(c) The error of α-linkage as a function of α.
(d) Clusters for complete linkage after 389
merges.

Figure 4.2: An example clustering instance where both single and complete linkage produce high-cost
clusterings, but a mixture of the two merge functions leads to zero cost.

algorithms. They explicitly consider the family Amerge(Dmin,Dmax) that interpolates between single
and complete linkage. Their key results show that for any fixed clustering instance S with n points,
the parameter space [0, 1] can be partitioned into O(n8) intervals such that for each interval I , the
cluster tree produced by Amerge

α for α ∈ I is fixed. Using this, they prove the following sample
complexity guarantee:

Theorem 4.3 ([18]). Consider the family Amerge(Dmin,Dmax) and let (S1,Y1), . . . , (SN ,YN) be an
i.i.d. sample of clustering instances with target clusterings of size N = O

(
1
ε2

(log n+ log 1
δ)
)
, where

n is a bound on the number of points per instance. With probability at least 1− δ, the following holds
for all α ∈ [0, 1]

∣∣∣∣∣
1

N

N∑

i=1

`(Amerge
α (Si),Yi)− E

(S,Y)∼D
[`(Amerge

α (S),Y)]

∣∣∣∣∣ ≤ ε.

4.4 Efficient Algorithm Selection

In this section we design efficient procedures for finding the algorithm from the families introduced
in Section 4.2 and Section 4.3 that has the lowest average loss on a sample of labeled clustering
instances (S1,Y1), . . . , (SN ,YN) where Yi = (C

(i)
1 , . . . , C

(i)
ki

) is the target clustering for instance
Si. Recall that the loss function `(T,Y) defined in (4.1) computes the Hamming distance between
the target clustering Y and the best pruning of the cluster tree T . Formally, our goal is to solve the
following optimization problems:

argmin
α∈[0,1]

1

N

N∑

i=1

`(Amerge
α (Si),Yi) and argmin

β∈[0,1]

1

N

N∑

i=1

`(Ametric
β (Si),Yi).

60

The key challenge of these optimization problems is that, for a fixed clustering instance S and any
of our algorithm families, we can partition the parameter space [0, 1] into finitely many intervals such
that for each interval I , the cluster tree output by the algorithm is the same for every parameter in I . It
follows that the loss function is a piecewise constant function of the algorithm parameter. Therefore,
both optimization problems are non-convex the loss derivative is zero wherever it is defined, rendering
gradient descent and similar algorithms ineffective.

We solve the optimization problems by explicitly computing the piecewise constant loss function
for each instance S. That is, we find a collection of discontinuity locations 0 = c0 < · · · < cM = 1
and values v1, . . . , vM ∈ R so that for each i ∈ [M], running the algorithm on instance S with a
parameter in [ci−1, ci) has loss equal to vi. Given this representation of the loss functions for all N
instances, finding the parameter with minimal loss can be done inO(

∑N
i=1Mi logN) time, whereMi

is the number of discontinuities for Si. The bulk of the computational cost is incurred by computing
the piecewise constant loss functions, which we focus on for the rest of the section.

Our efficient optimization procedures exploit a more powerful structural property of the algorithm
families we study: for a clustering instance S, not only is the output cluster tree a piecewise constant
function of the algorithm parameter, but for any length t, the sequence of first t merges performed by
the algorithm is a piecewise constant function of the parameter. For length t = 0, the partition is a
single region containing all parameters in [0, 1], since every algorithm trivially starts with the empty
sequence of merges. For each length t > 0, the piecewise constant partition for the first t merges is
a refinement of the partition for t − 1 merges. We can represent this sequence of partitions using a
partition tree, which is a tree where each node is labeled by an interval, for all depths t the nodes at
depth t partition [0, 1], and edges represent subset relationships. The tree described above represents
all possible execution paths for the algorithm family when run on the instance S as we vary the
algorithm parameter. In particular, each path from the root node to a leaf corresponds to one possible
sequence of merges. We therefore call this tree the execution tree of the algorithm family when run
on an instance S. Figure 4.3 shows an example execution tree for the family Amerge(Dmin,Dmax) on
a small dataset with 4 points. To find the piecewise constant loss function for a clustering instance
S, we perform a depth-first traversal of the leaves of the execution tree and compute the loss for the
cluster tree produced at each leaf.

4.4.1 Optimizing the Merge Function

In this section we show that for any merge functions D0 and D1 anda ny clustering instance S, the
execution tree of Amerge(D0,D1) when run on S is well defined. Moreover, we give an efficient
algorithm for finding the children of any node in the tree. Finally, we show how to compute the
piecewise constant loss function for Amerge(D0,D1) on the instance S by performing a depth-first
traversal of the execution tree.

Lemma 4.1. For any merge functions D0 and D1 and any clustering instance S, the execution tree
for Amerge(D0,D1) when run on S is well defined. That is, there exists a partition tree such that for
any node v at depth t, the same sequence of first t merges is performed by Amerge

α for all α in the
interval for node v.

Proof. The proof is by induction on the depth t. The base case is for depth t = 0, in which case
we can use a single node whose interval is [0, 1]. Since all algorithms in the family start with an
empty-sequence of merges, this satisfies the execution tree property.

61

𝛼 ∈ [0,1]

𝛼 ∈ [0,1]

𝛼 ∈ (½,1]𝛼 ∈ [0,½]

𝛼 ∈ [0,½] 𝛼 ∈ (½,1]

Figure 4.3: An example of the execution tree of Amerge(Dmin,Dmax) for a clustering instance with 4
points. We also show the clustering of the points produced by the sequence of merges associated with
each node in the tree. Each colored rectangle represents a cluster (and for clarity we also show the
two children of each cluster). The leaves show the two possible cluster trees that can be output by any
algorithm from the family Amerge(Dmin,Dmax) for this instance.

Now suppose that there is a tree of depth t with the execution tree property. If t = |S| − 1 then
we are finished, since the algorithms in Amerge(D0,D1) make exactly |S| − 1 merges. Otherwise,
consider any leaf node v of the depth t tree with parameter interval Iv. It is sufficient to show that
we can partition Iv into subintervals such that for α in each subinterval the next merge performed is
constant. By the inductive hypothesis, we know that the first t merges made by Amerge

α are the same
for all α ∈ Iv. After performing these merges, the algorithm will have arrived at some set of clusters
C1, . . . , Cm with m = |S| − t. For each pair of clusters Ci and Cj , the distance Dα(Ci, Cj) =
(1−α) D0(Ci, Cj)+αD1(Ci, Cj) is a linear function of the parameter α. Therefore, for any clusters
Ci, Cj , Ck, and Cl, the algorithm will prefer to merge Ci and Cj over Cj and Ck for a (possibly
empty) sub-interval of Iv, corresponding to the values of α ∈ Iv where Dα(Ci, Cj) < Dα(Ck, Cl).
For any fixed pair of clusters Ci and Cj , taking the intersection of these intervals over all other pairs
Cj and Ck guarantees that clusters Ci and Cj will be merged exactly for parameter values in some
subinterval of Iv. For each merge with a non-empty parameter interval, we can introduce a child node
of v labeled by that parameter interval. These children partition Iv into intervals where the next merge
is constant, as required.

Figure 4.3 shows the execution tree for the family Amerge(Dmin,Dmax) on a clustering instance
with n = 4 points. For this clustering instance, only the second merge depends on the algorithm
parameter α, resulting in two possible output cluster trees.

Next, we provide an efficient algorithm for finding the children of a node in the execution tree.
Given the node’s parameter interval I and the set of clusters C1, . . . , Cm resulting from that node’s
merge sequence, we use a sweep-line algorithm to determine all possible next merges and the cor-
responding parameter intervals. First, we calculate the merge for α = αlo by enumerating all
pairs of clusters. Suppose clusters Ci and Cj are the optimal merge for α = αlo. We then deter-
mine the largest value α′ for which we will still merge these clusters by solving the linear equation
Dα(Ci, Cj) = Dα(Ck, Cl) for all other pairs of clusters Ck and Cl, keeping track of the minimal
solution larger than α. Denote the minimal solution larger than α by c ∈ I . We are guaranteed that
A

merge
α′ will merge clusters Ci and Cj for all α′ ∈ [α, c). We repeat this procedure starting from α = c

to determine the next merge and corresponding interval, and so on, until α ≥ αhi. Pseudocode is
given in Algorithm 10. Our next result bounds the running time of this procedure.

Lemma 4.2. Let C1, . . . , Cm be a collection of clusters, D0 and D1 be any pair of merge functions,

62

and [αlo, αhi) be a subset of the parameter space. If there areM distinct cluster pairsCi, Cj that min-
imize Dα(Ci, Cj) for values of α ∈ [αlo, αhi), then the running time of Algorithm 10 is O(Mm2K),
where K is the cost of evaluating the merge functions D0 and D1.

Proof. The loop in step 4 of Algorithm 10 runs once for each possible merge, giving a total of M
iterations. Each iteration finds the closest pair of clusters according to Dα using O(m2) evaluations
of the merge functions D0 and D1. Calculating the critical parameter value c involves solving O(m2)
linear equations whose coefficients are determined by four evaluations of D0 and D1. It follows that
the cost of each iteration is O(m2K), where K is the cost of evaluating D0 and D1, and the overall
running time is O(Mm2K).

Algorithm 10 Find all merges for AmergeD0,D1

Input: Set of clusters C1, . . . , Cm, merge functions D0,D1, parameter interval [αlo, αhi).
1. LetM = ∅ be the initially empty set of possible merges.
2. Let I = ∅ be the initially empty set of parameter intervals.
3. Let α = αlo.
4. While α < αhi:

(a) Let Ci, Cj be the pair of clusters minimizing (1− α) ·D0(Ci, Cj) + α ·D1(Ci, Cj).
(b) For each k, l ∈ [m], let ckl = ∆0/(∆0 − ∆1), where ∆p = Dp(Ci, Cj) − Dp(Ck, Cl) for

p ∈ {0, 1}.
(c) Let c = min

(
{ckl | ckl > α} ∪ {βhi}

)
.

(d) Add merge (Ci, Cj) toM and [α, c) to I.
(e) Set α = c.

5. ReturnM and I.

With this, our algorithm for computing the piecewise constant loss function for an instance S
performs a depth-first traversal of the leaves of the execution tree for Amerge(D0,D1), using Algo-
rithm 10 to determine the children of each node. When we reach a leaf in the depth-first traversal,
we have both the corresponding parameter interval I ⊂ [0, 1], as well as the cluster tree T such that
A

merge
α (S) = T for all α ∈ I . We then evaluate the loss `(T,Y) to get one piece of the piecewise con-

stant loss function. Detailed pseudocode for this approach is given in Algorithm 11. The following
Lemma characterizes the overall running time of the algorithm.

Theorem 4.4. Let S = {x1, . . . , xn} be a clustering instance and D0 and D1 be any two merge
functions. Suppose that the execution tree of Amerge(D0,D1) on S has E edges. Then the total
running time of Algorithm 11 is O(En2K), where K is the cost of evaluating the merge functions D0

and D1.

Proof. Fix any node v in the execution tree with m clusters C1, . . . , Cm and M outgoing edges (i.e.,
M possible merges from the state represented by v). We run Algorithm 10 to determine the children
of v, which by Lemma 4.2 costs O(Mn2K), since m ≤ n. Summing over all non-leaves of the
execution tree, the total cost is O(En2K). In addition to computing the children of a given node, we
need to construct the children nodes, but this takes constant time per child.

We can also express the running time of Algorithm 11 in terms of the number of discontinuities
of the function α 7→ A

merge
α (S). There is one leaf of the execution tree for each constant interval of

this function, and the path from the root of the execution tree to that leaf is of length n−1. Therefore,

63

Algorithm 11 Depth-first Enumeration of α-linkage Execution Tree
Input: Point set x1, . . . , xn, cluster distance functionds d1 and d2.
1. Let r be the root node of the execution tree with r.N = {(x1), . . . , (xn)} and r.I = [0, 1].
2. Let s be a stack of execution tree nodes, initially containing the root r.
3. Let T = ∅ be the initially empty set of possible cluster trees.
4. Let I = ∅ be the initially empty set of intervals.
5. While the stack s is not empty:

(a) Pop execution tree node e off stack s.
(b) If e.N has a single cluster, add e.N to T and e.I to I.
(c) Otherwise, for each merge (Ci, Cj) and interval Ic returned by Algorithm 10 run on e.N and

e.I:
i. Let c be a new node with state given by e.N after merging Ci and Cj and c.I = Ic.

ii. Push c onto the stack s.
6. Return T and I.

the cost associated with that path is at most O(Kn3) and enumerating the execution tree to obtain
the piecewise constant loss function for a given instance S spends O(Kn3) time for each constant
interval of α 7→ A

merge
α (S). In contrast, the combinatorial approach of Balcan et al. [18] requires

that we run α-linkage once for every interval in their partition of [0, 1], which always contains O(n8)
intervals (i.e., it is a refinement of the piecewise constant partition). Since each run of α-Linkage
costs O(Kn2 log n) time, this leads to a running time of O(Kn10 log n). The key advantage of our
approach stems from the fact that the number of discontinuities of the function α 7→ A

merge
α (S) is

often several orders of magnitude smaller than O(n8).
It is crucial to use a depth-first instead of breadth-first traversal. The depth of the execution tree

ofAmerge(D0,D1) on a clustering instance S = {x1, . . . , xn} is n−1, while the width of the tree can
be very large. In a depth-first traversal, we only need to store one path of the tree in memory at a time,
and we can save intervals of the piecewise constant loss function to disk as they are encountered. On
the other hand, breadth-first traversal requires that we keep an entire layer of the execution tree in
memory, which can be very large.

4.4.2 Optimizing the Metric

Next, we show that a similar algorithmic approach can be used for finding the piecewise constant
loss function for the family Ametric(d0,d1) on a clustering instance S. We prove that the execution
tree is well defined, and provide an efficient algorithm for finding the children of each node in the
execution tree, allowing us to use a depth-first traversal to find the piecewise constant loss function
for any clustering instance S.

Lemma 4.3. For any metrics d0 and d1 and any clustering instance S, the execution tree for the
family Ametric(d0,d1) when run on S is well defined. That is, there exists a partition tree such that
for any node v at depth t, the same sequence of first t merges is performed by Ametric

β for all β in the
interval for node v.

Proof. The proof is by induction on the depth t. The base case is for depth t = 0, in which case
we can use a single node whose interval is [0, 1]. Since all algorithms in the family start with an
empty-sequence of merges, this satisfies the execution tree property.

64

Now suppose that there is a tree of depth t with the execution tree property. If t = |S| − 1 then
we are finished, since the algorithms in Ametric(d0,d1) make exactly |S| − 1 merges. Otherwise,
consider any leaf node v of the depth t tree with parameter interval Iv. It is sufficient to show that
we can partition Iv into subintervals such that for β in each subinterval the next merge performed
is constant. By the inductive hypothesis, we know that the first t merges made by Ametric

β are the
same for all β ∈ Iv. After performing these merges, the algorithm will have arrived at some set
of clusters C1, . . . , Cm with m = |S| − t. Recall that algorithms in the family Ametric(d0, d1) run
complete linkage using the metric dβ . Complete linkage can be implemented in such a way that it
only makes comparisons between pairwise point distances (i.e., is dβ(x, x′) larger or smaller than
dβ(y, y′)?). To see this, for any pair of clusters, we can find the farthest pair of points between them
using only distance comparisons. And, once we have the farthest pair of points between all pairs of
clusters, we can find the pair of clusters to merge by again making only pairwise comparisons. It
follows that if two parameters β and β′ have the same outcome for all pairwise distance comparisons,
then the next merge to be performed must be the same. We use this observation to partition the
interval Iv into subintervals where the next merge is constant. For any pair of points x, x′ ∈ S,
the distance dβ(x, x′) = (1 − β) d0(x, x′) + β d1(x, x′) is a linear function of the parameter β.
Therefore, for any points x, x′, y, y′ ∈ S, there is at most one critical parameter value where the
relative order of dβ(x, x′) and dβ(y, y′) changes. Between these O(|S|4) critical parameter values,
the ordering on all pairwise merges is constant, and the next merge performed by the algorithm will
also be constant. Therefore, there must exist a partitioning of Iv into at most O(|S|4) sub-intervals
such that the next merge is constant on each interval. We let the children of v correspond to the
coarsest such partition.

Next, we provide an efficient procedure for determining the children of a node v in the execution
tree of Ametric(d0, d1). Given the node’s parameter interval I = [βlo, βhi) and the set of clusters
C1, . . . , Cm resulting from that node’s sequence of merges, we again use a sweep-line procedure to
find the possible next merges and the corresponding parameter intervals. First, we determine the pair
of clusters that will be merged byAmetric

β for β = βlo by enumerating all pairs of clusters. Suppose the
winning pair is Ci and Cj and let x ∈ Ci and x′ ∈ Cj be the farthest pair of points between the two
clusters. Next, we find the largest value of β′ for which we will still merge the clusters Ci and Cj . To
do this, we enumerate all other pairs of clusters Ck and Cl and all pairs of points y ∈ Ck and y′ ∈ Cl,
and solve the linear equation dβ’(x, x

′) = dβ(y, y′), keeping track of the minimal solution larger than
β. Denote the minimal solution larger than β by c. We are guaranteed that for all β′ ∈ [β, c), the
pair of clusters merged will be Ci and Cj . Then we repeat the process with β = c to find the next
merge and corresponding interval, and so on, until β ≥ βhi. Pseudocode for this procedure is given
in Algorithm 12. The following Lemma bounds the running time:

Lemma 4.4. Let C1, . . . , Cm be a collection of clusters, d0 and d1 be any pair of metrics, and
[βlo, βhi) be a subset of the parameter space. If there are M distinct cluster pairs Ci, Cj that com-
plete linkage would merge when using the metric dβ for β ∈ [βlo, βhi), then the running time of
Algorithm 12 is O(Mn2).

Proof. The loop in step 4 of Algorithm 12 runs once for each possible merge, giving a total of M
iterations. Each iteration finds the merge performed by complete linkage using the dβ metric, which
takesO(n2) time, and then solvesO(n2) linear equations to determine the largest value of β′ such that
the same merge is performed. It follows that the cost of each iteration is O(n2), leading to an overall
running time of O(Mn2). Note, we assume that the pairwise distances dβ(x, x′) can be evaluated in

65

constant time. This can always be achieved by precomputing two n×n distance matrices for the base
metrics d0 and d1, respectively.

Algorithm 12 Find all merges for Ametricd0, d1

Input: Set of clusters C1, . . . , Cm, metrics d0, d1, parameter interval [βlo, βhi).
1. LetM = ∅ be the initially empty set of possible merges.
2. Let I = ∅ be the initially empty set of parameter intervals.
3. Let β = βlo.
4. While β < βhi:

(a) Let Ci, Cj be the pair of clusters minimizing maxa∈A,b∈B dβ(a, b).
(b) Let x ∈ Ci and x′ ∈ Cj be the farthest points between Ci and Cj .
(c) For all pairs of points y and y′ belonging to different clusters, let cyy′ = ∆0/(∆0 − ∆1)

where ∆p = dp(y, y′)− dp(x, x′) for p ∈ {0, 1}.
(d) Let c = min

(
{cyy′ | cyy′ > α} ∪ {αhi}

)
.

(e) Add merge (Ci, Cj) toM and [β, c) to I.
(f) Set β = c.

5. ReturnM and I.

Our algorithm for computing the piecewise constant loss function for an instance S performs
a depth-first traversal of the leaves of the execution tree for Ametric(d0, d1), using Algorithm 12 to
determine the children of each node. When we reach a leaf in the depth-first traversal, we have both
the corresponding parameter interval I ⊂ [0, 1], as well as the cluster tree T such that Ametric

β (S) = T
for all β ∈ I . We then evaluate the loss `(T,Y) to get one piece of the piecewise constant loss
function. Detailed pseudocode for this approach is given in Algorithm 13. The following Lemma
characterizes the overall running time of the algorithm.

Theorem 4.5. Let S = {x1, . . . , xn} be a clustering instance and d0 and d1 be any two merge
functions. Suppose that the execution tree ofAmetric(d0,d1) on S hasE edges. Then the total running
time of Algorithm 13 is O(En2).

Proof. Fix any node v in the execution tree with m clusters C1, . . . , Cm and M outgoing edges (i.e.,
M possible merges from the state represented by v). We run Algorithm 12 to determine the children
of v, which by Lemma 4.4 costs O(Mn2). Summing over all non-leaves of the execution tree, the
total cost is O(En2).

Again, we can express the running time of Algorithm 13 in terms of the number of discontinuities
of the function β 7→ Ametric

β (S). There is one leaf of the execution tree for each constant interval of
this function, and the path from the root of the execution tree to that leaf is of length n−1. Therefore,
the cost associated with that path is at most O(n3) and enumerating the execution tree to obtain the
piecewise constant loss function for a given instance S spends O(n3) time for each constant interval
of β 7→ Ametric

β (S).

4.5 Experiments

In this section we cary out experiments for both algorithm families we study on clustering applications
derived from classification datasets. Our experiments demonstrate that the best algorithm for different

66

Algorithm 13 Depth-first Enumeration of β-linkage Execution Tree
Input: Point set x1, . . . , xn, cluster distance functionds d1 and d2.
1. Let r be the root node of the execution tree with r.N = {(x1), . . . , (xn)} and r.I = [0, 1].
2. Let s be a stack of execution tree nodes, initially containing the root r.
3. Let T = ∅ be the initially empty set of possible cluster trees.
4. Let I = ∅ be the initially empty set of intervals.
5. While the stack s is not empty:

(a) Pop execution tree node e off stack s.
(b) If e.N has a single cluster, add e.N to T and e.I to I.
(c) Otherwise, for each merge (Ci, Cj) and interval Ic returned by Algorithm 12 run on e.N and

e.I:
i. Let c be a new node with state given by e.N after merging Ci and Cj and c.I = Ic.

ii. Push c onto the stack s.
6. Return T and I.

application varies greatly (i.e., there is no single algorithm from the families that works well across
all the distributions we consider). Second, we also observe that in many cases it is possible to achieve
non-trivial improvements in clustering quality by using a mixture of two base algorithms or metrics.

Experimental setup. In each of our experiments we define a distribution D over clustering tasks
(i.e., clustering instances S together with target clusterings Y). For each clustering instance, the
loss of the cluster tree output by a clustering algorithm is measured in terms of the loss defined in
(4.1), which computes the Hamming distance between the target clustering and the best pruning of
the cluster tree. The losses take values in [0, 1] and correspond to the fraction of the dataset assigned
to clusters that disagree with the target clustering. To evaluate algorithm performance, we draw N
sample clustering tasks from the given distribution and use the algorithms developed in Section 4.4 to
evaluate the average empirical loss every algorithm in one algorithm family. In each experiment, we
specify the pair of merge functions D0 and D1 or the pair of metrics d0 and d1 that we are interpolating
between.

Clustering instance distributions. We perform experiments on the following application-specific
distributions:

MNIST Subsets. Our first distribution over clustering tasks corresponds to clustering subsets of the
MNIST dataset [98], which contains 80,000 hand-written examples of the digits 0 through 9. We gen-
erate a random clustering instance from the MNIST data as follows: first, we select k = 5 digits from
{0, . . . , 9} at random, then we randomly select 200 examples belonging to each of the selected digits,
giving a total of n = 1000 images. The target clustering for this instance is given by the ground-truth
digit labels. We measure distances between any pair of digits in terms of the the Euclidean distance
between their images represented as vectors of pixel intensities.

CIFAR-10 Subsets. We also consider a distribution over clustering tasks that corresponds to clustering
subsets of the CIFAR-10 dataset [94]. This dataset contains 6000 images of each of the following
classes: airplate, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each example is
a 32 × 32 color image with 3 color channels. We pre-process the data to obtain neural-network

67

feature representations for each example. We include 50 randomly rotated and cropped versions of
each example and obtain feature representations from layer ‘in4d’ of a pre-trained Google inception
network1. This gives a 144-dimensional feature representation for each of the 2500000 examples (50
randomly rotated copies of the 6000 examples for each of the 10 classes). Like in the MNIST Subsets
distribution, we generate clustering tasks from CIFAR-10 as follows: first, select k = 5 classes at
random, then choose 50 examples belonging to each of the selected classes, giving a total of n = 250
images. The target clsutering for this instance is given by the ground-truth class labels. We measure
distance between any pair of images as the distance between their feature embeddings.

Omniglot Subsets. Next, we consider a distribution over clustering tasks corresponding to clustering
subsets of the Omniglot dataset [96]. The Omniglot dataset consists of written characters from 50
different alphabets with a total of 1623 different characters. The dataset includes 20 examples of
each character, leading to a total of 32,460 examples. We generate a random clustering instance from
the Omniglot data as follows: first, we choose one of the alphabets at random. Next, we choose k
uniformly in {5, . . . , 10} and choose k random characters from that alphabet. The clustering instance
consists of all 20k examples for the selected characters, and the target clustering is given by the
ground-truth character labels.

We use two different distance metrics on the Omniglot dataset. First, we use the cosine distance
between neural network feature embeddings. The neural network was trained to perform digit classi-
fication on MNIST. Second, each example has both an image of the written character, as well as the
stroke trajectory for the written character (i.e., a time series of (x, y) coordinates of the tip of the pen
when the character was written). We also use the following distance defined in terms of the strokes:
Given two pen stroke trajectories s = (xt, yt)

T
t=1 and s′ = (x′t, y

′
t)
T
t=1, we define the distance between

them by

d(s, s′) =
1

T + T ′

(
T∑

t=1

d
(
(xt, yt), s

′)+
T ′∑

t=1

d
(
(x′t, y

′
t), s

)
)
,

where d
(
(xt, yt), s

′) denotes the Euclidean distance from the point (xt, yt) to the closest point in s′.
This is the average distance from any point from either trajectory to the nearest point on the other
trajectory.

Synthetic Rings and Dicsc. We consider a two dimensional synthetic distribution similar to the rings
and disks example given in Figure 4.2. Each clustering instance has 4 clusters, where two are ring-
shaped and two are disk-shaped. To generate each instance we sample 100 points uniformly at random
from each ring or disc. The two rings have radiuses 0.4 and 0.8, respectively, and are both centered at
the origin. The two disks have radius 0.4 and are centered at (1.5, 0.4) and (1.5,−0.4), respectively.
For this data, we measure distances between points in terms of the Euclidean distance between them.

Results

Learning merge functions for MNIST. First we evaluate the family Amerge(Dmin,Dmax) that interpo-
lates between single and complete linkage, and the family Amerge(Davg,Dmax) that interpolate be-
tween average and complete linkage on the MNIST data. Figure 4.4 shows the loss for both families
averaged over N = 1000 samples from the MNIST clustering task distribution. The best standard

1The exact feature extraction code used for the CIFAR-10 data can be found at https://github.com/dmlc/
mxnet-notebooks/blob/master/python/moved-from-mxnet/cifar10-recipe.ipynb

68

https://github.com/dmlc/mxnet-notebooks/blob/master/python/moved-from-mxnet/cifar10-recipe.ipynb
https://github.com/dmlc/mxnet-notebooks/blob/master/python/moved-from-mxnet/cifar10-recipe.ipynb

algorithm for this distribution is complete linkage, which achieves an average loss of 0.478. When in-
terpolating between single and complete linkage, the optimal parameter value is given by α = 0.874
which achieves an average loss of 0.4392, which is an improvement of 0.037. When interpolating
between average and complete linkage, the optimal parameter is α = 0.599, which has average loss
of 0.4431. In both cases, the optimal intermediate algorithm gives a non-trivial improvement over the
best classic algorithm, and the optimal mixing parameter is different for the two considered algorithm
families.

Learning merge functions for CIFAR-10. Figure 4.5 shows the results of learning the best merge
function from the families Amerge(Dmin,Dmax) and Amerge(Davg,Dmax) on the CIFAR-10 Subsets
distribution averaged over N = 1000 sampled instances. When interpolating between single and
complete linkage, the optimal parameter is α = 0.98 which achieves average loss 0.543. When
interpolating between average and complete linkage, the optimal parameter is α = 0.954 and achieves
average loss 0.544. The average loss of complete linkage (α = 1.0) is 0.548. For this distribution,
complete linkage performs very well. One explanation is that the neural network feature embedding
might be grouping the points belonging to each class into separated ball-shape groups, which is the
best-case for complete linkage.

Learning the merge function for Rings and Discs. Figure 4.6 shows the results of learning the best
merge function from the families Amerge(Dmin,Dmax) and Amerge(Davg,Dmax) When interpolating
between single and complete linkage, the optimal parameter is α = 0.179, which achieves average
loss of 0.042. In contrast, single linkage (α = 0) has average loss 0.236 and complete linkage (α = 1)
has average loss 0.269. Optimizing over the family results in clusterings that correctly classify almost
an additional 20% of the data. When interpolating between average and complete linkage, however,
we find that there is significantly less variation in the cost. The explanation is that both average
and complete linkage succeed at clustering the disk-shaped clusters, and both fail at clustering the
ring-shaped clusters.

Learning the merge function for Omniglot Subsets. Figure 4.7 shows the results of learning the best
merge function from the families Amerge(Dmin,Dmax) and Amerge(Davg,Dmax). For this experiment,
we use the distance based on cosine distance between the neural network feature embedding for each
image. When interpolating between single and complete linkage, the optimal parameter is α = 0.179,
which achieves average loss of 0.042. In contrast, single linkage (α = 0) has average loss 0.236 and
complete linkage (α = 1) has average loss 0.269. Optimizing over the family results in clusterings
that correctly classify almost an additional 20% of the data. When interpolating between average
and complete linkage, however, we find that there is significantly less variation in the cost. The
explanation is that both average and complete linkage succeed at clustering the disk-shaped clusters,
and both fail at clustering the ring-shaped clusters.

Learning the metric for Omniglot. Next we consider learning the best metric for the Omniglot clus-
tering distribution. In this case, we interpolate between the two distance metrics described above: the
cosine distance between neural network embeddings of each example image, and a hand-designed
stroke distance. Figure 4.8 shows the empirical loss for each parameter β averaged over N = 4000
samples from the Omniglot distribution. The best “base” metric is the neural network feature embed-
ding, which results in an average loss of 0.421. The optimal parameter value occurs at β = 0.514
with an average loss of 0.330, giving an improvement of 0.091. In other words, running complete
linkage with the mixed metric correctly clusters almost an extra 10% of the data correctly.

69

0.0 0.2 0.4 0.6 0.8 1.0

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ha
m

m
in

g
Co

st

(a) Empirical loss for Amerge(Dmin,Dmax).

0.0 0.2 0.4 0.6 0.8 1.0

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ha
m

m
in

g
Co

st

(b) Empirical loss for Amerge(Davg,Dmax).

Figure 4.4: Empirical loss for interpolating between single and complete linkage as well as average
and complete linkage on 1000 randomly sampled tasks from the MNIST subsets distribution.

0.0 0.2 0.4 0.6 0.8 1.0
0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ha
m

m
in

g
Co

st

(a) Empirical loss for Amerge(Dmin,Dmax).

0.0 0.2 0.4 0.6 0.8 1.0
0.50

0.55

0.60

0.65

0.70

0.75

0.80
Ha

m
m

in
g

Co
st

(b) Empirical loss for Amerge(Davg,Dmax).

Figure 4.5: Empirical loss for interpolating between single and complete linkage as well as average
and complete linkage on 1000 randomly sampled tasks from the CIFAR-10 Subsets distribution.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ha
m

m
in

g
Co

st

(a) Empirical loss for Amerge(Dmin,Dmax).

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ha
m

m
in

g
Co

st

(b) Empirical loss for Amerge(Davg,Dmax).

Figure 4.6: Empirical loss for interpolating between single and complete linkage as well as average
and complete linkage on 1000 randomly sampled tasks from the rings and disks distribution.

70

0.0 0.2 0.4 0.6 0.8 1.0
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ha
m

m
in

g
Co

st

(a) Empirical loss for Amerge(Dmin,Dmax).

0.0 0.2 0.4 0.6 0.8 1.0

0.46

0.48

0.50

0.52

0.54

0.56

0.58

Ha
m

m
in

g
Co

st

(b) Empirical loss for Amerge(Davg,Dmax).

Figure 4.7: Empirical loss for interpolating between single and complete linkage as well as average
and complete linkage on 1000 randomly sampled tasks from the Omniglot Subsets distribution.

0.0 0.2 0.4 0.6 0.8 1.0

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

Ha
m

m
in

g
Co

st

Figure 4.8: Empirical loss for interpolating between the neural network feature embedding metric and
stroke metric for Omniglot data. β = 0 corresponds to the stroke distance, while β = 1 corresponds
to the neural network embedding.

71

Chapter 5

A New Approach to Individual Fairness:
Envy-free Classification

5.1 Introduction

The study of fairness in machine learning is driven by an abundance of examples where learning
algorithms were perceived as discriminating against protected groups [134, 53]. Addressing this
problem requires a conceptual — perhaps even philosophical — understanding of what fairness means
in this context. In other words, the million dollar question is (arguably1) this: What are the formal
constraints that fairness imposes on learning algorithms?

In this chapter, we propose a new measure of algorithmic fairness. It draws on an extensive
body of work on rigorous approaches to fairness, which — modulo one possible exception (see
Section 5.1.2) — has not been tapped by machine learning researchers: the literature on fair divi-
sion [34, 111]. The most prominent notion is that of envy-freeness [69, 142], which, in the context
of the allocation of goods, requires that the utility of each individual for his allocation be at least
as high as his utility for the allocation of any other individual; this is the gold standard of fairness
for problems such as cake cutting [121, 118] and rent division [133, 71]. In the classification setting,
envy-freeness would simply mean that the utility of each individual for his distribution over outcomes
is at least as high as his utility for the distribution over outcomes assigned to any other individual.

It is important to say upfront that envy-freeness is not suitable for several widely-studied problems
where there are only two possible outcomes, one of which is ‘good’ and the other ‘bad’; examples
include predicting whether an individual would default on a loan, and whether an offender would
recidivate. In these degenerate cases, envy-freeness would require that the classifier assign each and
every individual the exact same probability of obtaining the ‘good’ outcome, which, clearly, is not a
reasonable constraint.

By contrast, we are interested in situations where there is a diverse set of possible outcomes, and
individuals have diverse preferences for those outcomes. For example, consider a system responsible
for displaying credit card advertisements to individuals. There are many credit cards with different
eligibility requirements, annual rates, and reward programs. An individual’s utility for seeing a card’s
advertisement will depend on his eligibility, his benefit from the rewards programs, and potentially
other factors. It may well be the case that an envy-free advertisement assignment shows Bob adver-

1Recent work takes a somewhat different view [87].

72

tisements for a card with worse annual rates than those shown to Alice; this outcome is not unfair if
Bob is genuinely more interested in the card offered to him. Such rich utility functions are also evi-
dent in the context of job advertisements [53]: people generally want higher paying jobs, but would
presumably have higher utility for seeing advertisements for jobs that better fit their qualifications
and interests.

A second appealing property of envy-freeness is that its fairness guarantee binds at the level
of individuals. Fairness notions can be coarsely characterized as being either individual notions,
or group notions, depending on whether they provide guarantees to specific individuals, or only on
average to a protected subgroup. The majority of work on fairness in machine learning focuses on
group fairness [102, 62, 151, 80, 84, 150].

There is, however, one well-known example of individual fairness: the influential fair classifi-
cation model of Dwork et al. [62]. The model involves a set of individuals and a set of outcomes.
The centerpiece of the model is a similarity metric on the space of individuals; it is specific to the
classification task at hand, and ideally captures the ethical ground truth about relevant attributes. For
example, a man and a woman who are similar in every other way should be considered similar for
the purpose of credit card offerings, but perhaps not for lingerie advertisements. Assuming such a
metric is available, fairness can be naturally formalized as a Lipschitz constraint, which requires that
individuals who are close according to the similarity metric be mapped to distributions over outcomes
that are close according to some standard metric (such as total variation).

As attractive as this model is, it has one clear weakness from a practical viewpoint: the availability
of a similarity metric. Dwork et al. [62] are well aware of this issue; they write that justifying this
assumption is “one of the most challenging aspects” of their approach. They add that “in reality the
metric used will most likely only be society’s current best approximation to the truth.” But, despite
recent progress on automating ethical decisions in certain domains [115, 70], the task-specific nature
of the similarity metric makes even a credible approximation thereof seem unrealistic. In particular,
if one wanted to learn a similarity metric, it is unclear what type of examples a relevant dataset would
consist of.

In place of a metric, envy-freeness requires access to individuals’ utility functions, but — by con-
trast — we do not view this assumption as a barrier to implementation. Indeed, there are a variety
of techniques for learning utility functions [41, 114, 13]. Moreover, in our running example of ad-
vertising, one can use standard measures like expected click-through rate (CTR) as a good proxy for
utility.

It is worth noting that the classification setting is different from classic fair division problems in
that the “goods” (outcomes) are non-excludable. In fact, one envy-free solution simply assigns each
individual to his favorite outcome. But this solution may be severely suboptimal according to another
(standard) component of our setting, the loss function, which, in the examples above, might represent
the expected revenue from showing an ad to an individual. Typically the loss function is not perfectly
aligned with individual utilities, and, therefore, it may be possible to achieve smaller loss than the
naı̈ve solution without violating the envy-freeness constraint.

In summary, we view envy-freeness as a compelling, well-established, and, importantly, practica-
ble notion of individual fairness for classification tasks with a diverse set of outcomes when individ-
uals have heterogeneous preferences. Our goal is to understand its learning-theoretic properties.

73

5.1.1 Our Results

The challenge is that the space of individuals is potentially huge, yet we seek to provide universal
envy-freeness guarantees. To this end, we are given a sample consisting of individuals drawn from
an unknown distribution. We are interested in learning algorithms that minimize loss, subject to
satisfying the envy-freeness constraint, on the sample. Our primary technical question is that of
generalizability, that is, given a classifier that is envy free on a sample, is it approximately envy free
on the underlying distribution? Surprisingly, Dwork et al. [62] do not study generalizability in their
model, and we are aware of only one subsequent paper that takes a learning-theoretic viewpoint on
individual fairness and gives theoretical guarantees (see Section 5.1.2).

In Section 5.3, we do not constrain the classifier. Therefore, we need some strategy to extend
a classifier that is defined on a sample; assigning an individual the same outcome as his nearest
neighbor in the sample is a popular choice. However, we show that any strategy for extending a
classifier from a sample, on which it is envy free, to the entire set of individuals is unlikely to be
approximately envy free on the distribution, unless the sample is exponentially large.

For this reason, in Section 5.4, we focus on structured families of classifiers. On a high level, our
goal is to relate the combinatorial richness of the family to generalization guarantees. One obstacle
is that standard notions of dimension do not extend to the analysis of randomized classifiers, whose
range is distributions over outcomes (equivalently, real vectors). We circumvent this obstacle by con-
sidering mixtures of deterministic classifiers that belong to a family of bounded Natarajan dimension
(an extension of the well-known VC dimension to multi-class classification). Our main theoretical
result asserts that, under this assumption, envy-freeness on a sample does generalize to the underly-
ing distribution, even if the sample is relatively small (its size grows almost linearly in the Natarajan
dimension).

In the full version of the paper [19], we also design and implement an algorithm that learns
(almost) envy-free mixtures of linear one-vs-all classifiers. These empirical results suggest that in
practice, solving the empirical risk minimization problem subject to envy-freeness constraints is com-
putationally tractible.

5.1.2 Related Work

Conceptually, our work is most closely related to work by Zafar et al. [150]. They are interested in
group notions of fairness, and advocate preference-based notions instead of parity-based notions. In
particular, they assume that each group has a utility function for classifiers, and define the preferred
treatment property, which requires that the utility of each group for its own classifier be at least its
utility for the classifier assigned to any other group. Their model and results focus on the case of
binary classification where there is a desirable outcome and an undesirable outcome, so the utility of
a group for a classifier is simply the fraction of its members that are mapped to the desirable outcome.
Although, at first glance, this notion seems similar to envy-freeness, it is actually fundamentally
different.2 Our paper is also completely different from that of Zafar et al. in terms of technical
results; theirs are purely empirical in nature, and focus on the increase in accuracy obtained when
parity-based notions of fairness are replaced with preference-based ones.

2On a philosophical level, the fair division literature deals exclusively with individual notions of fairness. In fact, even
in group-based extensions of envy-freeness [103] the allocation is shared by groups, but individuals must not be envious.
We subscribe to the view that group-oriented notions (such as statistical parity) are objectionable, because the outcome can
be patently unfair to individuals.

74

Concurrent work by Rothblum and Yona [123] provides generalization guarantees for the metric
notion of individual fairness introduced by Dwork et al. [62], or, more precisely, for an approximate
version thereof. There are two main differences compared to our work: first, we propose envy-
freeness as an alternative notion of fairness that circumvents the need for a similarity metric. Second,
they focus on randomized binary classification, which amounts to learning a real-valued function,
and so are able to make use of standard Rademacher complexity results to show generalization. By
contrast, standard tools do not directly apply in our setting. It is worth noting that several other papers
provide generalization guarantees for notions of group fairness, but these are more distantly related
to our work [151, 146, 58, 86, 82].

A very recent paper by Kim et al. [88] proposes a fairness notion called preference-informed
individual fairness (PIIF) that is a relaxation of both the metric fairness of Dwork et al. [62] and the
envy-freeness notion of this work. Informally, their fairness notion requires that a pair of similar
individuals should receive similar treatment, but this constraint can be violated when the assigned
outcomes only increase each individual’s utility. In particular, similar individuals may receive very
different treatment, provided they prefer that treatment. One of the main strengths of envy-freeness
is that it does not require a suitable distance metric on individuals encoding our social expectations
about when individuals should be treated similarly. In contrast, PIIF requires both a suitable similarity
metric and knowledge of individual preferences. Like Dwork et al. [62], they focus on the problem
of finding PIIF allocations for finite sets of individuals with a known distance metric and utilities
and do not give algorithms for optimizing over parameterized allocation functions or generalization
guarantees.

5.2 The Model

We assume that there is a space X of individuals, a finite space Y of outcomes, and a utility function
u : X × Y → [0, 1] encoding the preferences of each individual for the outcomes in Y . In the adver-
tising example, individuals are users, outcomes are advertisements, and the utility function reflects
the benefit an individual derives from being shown a particular advertisement. For any distribution
p ∈ ∆(Y) (where ∆(Y) is the set of distributions over Y) we let u(x, p) = Ey∼p[u(x, y)] denote
individual x’s expected utility for an outcome sampled from p. We refer to a function h : X → ∆(Y)
as a classifier, even though it can return a distribution over outcomes.

5.2.1 Envy-Freeness

Roughly speaking, a classifier h : X → ∆(Y) is envy free if no individual prefers the outcome
distribution of someone else over his own.

Definition 5.1. A classifier h : X → ∆(Y) is envy free (EF) on a set S of individuals if u(x, h(x)) ≥
u(x, h(x′)) for all x, x′ ∈ S. Similarly, h is (α, β)-EF with respect to a distribution P on X if

Pr
x,x′∼P

(
u(x, h(x)) < u(x, h(x′))− β

)
≤ α.

Finally, h is (α, β)-pairwise EF on a set of pairs of individuals S = {(xi, x′i)}ni=1 if

1

n

n∑

i=1

I{u(xi, h(xi)) < u(xi, h(x′i))− β} ≤ α.

75

Any classifier that is EF on a sample S of individuals is also (α, β)-pairwise EF on any pairing
of the individuals in S, for any α ≥ 0 and β ≥ 0. The weaker pairwise EF condition is all that is
required for our generalization guarantees to hold.

5.2.2 Optimization and Learning

Our formal learning problem can be stated as follows. Given sample access to an unknown distribu-
tion P over individuals X and their utility functions, and a known loss function ` : X × Y → [0, 1],
find a classifier h : X → ∆(Y) that is (α, β)-EF with respect to P minimizing expected loss
Ex∼P [`(x, h(x))], where for x ∈ X and p ∈ ∆(Y), `(x, p) = Ey∼p[`(x, y)].

We follow the empirical risk minimization (ERM) learning approach, i.e., we collect a sample
of individuals drawn i.i.d from P and find an EF classifier with low loss on the sample. Formally,
given a sample of individuals S = {x1, . . . , xn} and their utility functions uxi(·) = u(xi, ·), we are
interested in a classifier h : S → ∆(Y) that minimizes

∑n
i=1 `(xi, h(xi)) among all classifiers that

are EF on S.
Recall that we consider randomized classifiers that can assign a distribution over outcomes to

each of the individuals. However, one might wonder whether the EF classifier that minimizes loss on
a sample happens to always be deterministic. Or, at least, the optimal deterministic classifier on the
sample might incur a loss that is very close to that of the optimal randomized classifier. If this were
true, we could restrict ourselves to classifiers of the form h : X → Y , which would be much easier
to analyze. Unfortunately, it turns out that this is not the case. In fact, there could be an arbitrary
(multiplicative) gap between the optimal randomized EF classifier and the optimal deterministic EF
classifier. The intuition behind this is as follows. A deterministic classifier that has very low loss on
the sample, but is not EF, would be completely discarded in the deterministic setting. On the other
hand, a randomized classifier could take this loss-minimizing deterministic classifier and mix it with
a classifier with high “negative envy”, so that the mixture ends up being EF and at the same time has
low loss. This is made concrete in Example D.1 in Appendix D.

5.3 Arbitrary Classifiers

An important (and typical) aspect of our learning problem is that the classifier h needs to provide an
outcome distribution for every individual, not just those in the sample. For example, if h chooses
advertisements for visitors of a website, the classifier should still apply when a new visitor arrives.
Moreover, when we use the classifier for new individuals, it must continue to be EF. In this section,
we consider two-stage approaches that first choose outcome distributions for the individuals in the
sample, and then extend those decisions to the rest of X .

In more detail, we are given a sample S = {x1, . . . , xn} of individuals and a classifier h : S →
∆(Y) assigning outcome distributions to each individual. Our goal is to extend these assignments to
a classifier h : X → ∆(Y) that can be applied to new individuals as well. For example, h could be
the loss-minimizing EF classifier on the sample S.

For this section, we assume that X is equipped with a distance metric d. Moreover, we assume
in this section that the utility function u is L-Lipschitz on X . That is, for every y ∈ Y and for all
x, x′ ∈ X , we have |u(x, y)− u(x′, y)| ≤ L · d(x, x′).

Under the foregoing assumptions, one natural way to extend the classifier on the sample to all of
X is to assign new individuals the same outcome distribution as their nearest neighbor in the sample.

76

Formally, for a set S ⊂ X and any individual x ∈ X , let NNS(x) ∈ arg minx′∈Sd(x, x′) denote the
nearest neighbor of x in S with respect to the metric d (breaking ties arbitrarily). The following simple
result (whose proof is relegated to Appendix D) establishes that this approach preserves envy-freeness
in cases where the sample is exponentially large.

Theorem 5.1. Let d be a metric on X , P be a distribution on X , and u be an L-Lipschitz utility
function. Let S be a set of individuals such that there exists X̂ ⊂ X with P (X̂) ≥ 1 − α and
supx∈X̂ (d(x,NNS(x)) ≤ β/(2L). Then for any classifier h : S → ∆(Y) that is EF on S, the
extension h : X → ∆(Y) given by h(x) = h(NNS(x)) is (α, β)-EF on P .

The conditions of Theorem 5.1 require that the set of individuals S is a β/(2L)-net for at least a
(1 − α)-fraction of the mass of P on X . In several natural situations, an exponentially large sample
guarantees that this occurs with high probability. For example, if X is a subset of Rq, d(x, x′) =
‖x− x′‖2, and X has diameter at most D, then for any distribution P on X , if S is an i.i.d. sample of
sizeO(1

α(
LD
√
q

β)q(q log
LD
√
q

β +log 1
δ)), it will satisfy the conditions of Theorem 5.1 with probability

at least 1 − δ. This sampling result is folklore, but, for the sake of completeness, we prove it in
Lemma D.1 of Appendix D.

However, the exponential upper bound given by the nearest neighbor strategy is as far as we can
go in terms of generalizing envy-freeness from a sample (without further assumptions). In the full
version of the paper, we also prove a lower bound showing that any algorithm — even randomized —
for extending classifiers from the sample to the entire space X requires an exponentially large sample
of individuals to ensure envy-freeness on the distribution P . The proof of Theorem 5.2 can be found
in Appendix D.

Theorem 5.2. There exists a space of individuals X ⊂ Rq, and a distribution P over X such that,
for every randomized algorithm A that extends classifiers on a sample to X , there exists an L-
Lipschitz utility function u such that, when a sample of individuals S of size n = 4q/2 is drawn
from P without replacement, there exists an EF classifier on S for which, with probability at least
1− 2 exp(−4q/100)− exp(−4q/200) jointly over the randomness of A and S, its extension by A is
not (α, β)-EF with respect to P for any α < 1/25 and β < L/8.

We remark that a similar result would hold even if we sampled S with replacement; we sample
here without replacement purely for ease of exposition.

5.4 Low-Complexity Families of Classifiers

In this section we show that (despite Theorem 5.2) generalization for envy-freeness is possible using
much smaller samples of individuals, as long as we restrict ourselves to classifiers from a family of
relatively low complexity.

In more detail, two classic complexity measures are the VC-dimension [141] for binary classifiers,
and the Natarajan dimension [113] for multi-class classifiers. However, to the best of our knowledge,
there is no suitable dimension directly applicable to functions ranging over distributions, which in
our case can be seen as |Y|-dimensional real vectors. One possibility would be to restrict ourselves
to deterministic classifiers of the type h : X → Y . However, we have seen in Section 5.2 that envy-
freeness is a very strong constraint on deterministic classifiers. Instead, we will consider a family H
consisting of randomized mixtures of deterministic classifiers belonging to a family G ⊂ {g : X →
Y} of low Natarajan dimension. This allows us to adapt Natarajan-dimension-based generalization
results to our setting while still working with randomized classifiers.

77

5.4.1 Natarajan Dimension Primer

Before presenting our main result, we briefly summarize the definition and relevant properties of the
Natarajan dimension. For more details, we refer the reader to [128].

We say that a family G multi-class shatters a set of points x1, . . . , xn if there exist labels y1, . . . yn
and y′1, . . . , y

′
n such that for every i ∈ [n] we have yi 6= y′i, and for any subset C ⊂ [n] there exists

g ∈ G such that g(xi) = yi if i ∈ C and g(xi) = y′i otherwise. The Natarajan dimension of a family
G is the cardinality of the largest set of points that can be multi-class shattered by G.

For example, suppose we have a feature map Ψ : X×Y → Rq that maps each individual-outcome
pair to a q-dimensional feature vector, and consider the family of functions that can be written as
g(x) = arg maxy∈Yw

>Ψ(x, y) for weight vectors w ∈ Rq. This family has Natarajan dimension at
most q.

For a set S ⊂ X of points, we let G
∣∣
S

denote the restriction of G to S, which is any subset of G
of minimal size such that for every g ∈ G there exists g′ ∈ G

∣∣
S

such that g(x) = g′(x) for all x ∈ S.
The size of G

∣∣
S

is the number of different labelings of the sample S achievable by functions in G.
The following Lemma is the analogue of Sauer’s lemma for binary classification.

Lemma 5.1 (Natarajan). For a family G of Natarajan dimension d and any subset S ⊂ X , we have∣∣G
∣∣
S

∣∣ ≤ |S|d|Y|2d.

Classes of low Natarajan dimension also enjoy the following uniform convergence guarantee.

Lemma 5.2. Let G have Natarajan dimension d and fix a loss function ` : G × X → [0, 1]. For any
distribution P over X , if S is an i.i.d. sample drawn from P of size O(1

ε2
(d log |Y| + log 1

δ)), then
with probability at least 1− δ we have supg∈G

∣∣Ex∼P [`(g, x)]− 1
n

∑
x∈S `(g, x)

∣∣ ≤ ε.

5.4.2 Main Result

We consider the family of classifiers that can be expressed as a randomized mixture ofm deterministic
classifiers selected from a family G ⊂ {g : X → Y}. Our generalization guarantees will depend on
the complexity of the family G, measured in terms of its Natarajan dimension, and the number m of
functions we are mixing. More formally, let g = (g1, . . . , gm) ∈ Gm be a vector of m functions in
G and η ∈ ∆m be a distribution over [m], where ∆m = {p ∈ Rm : pi ≥ 0,

∑
i pi = 1} is the

m-dimensional probability simplex. Then consider the function hg,η : X → ∆(Y) with assignment
probabilities given by Pr(hg,η(x) = y) =

∑m
i=1 I{gi(x) = y}ηi. Intuitively, for a given individual

x, hg,η chooses one of the gi randomly with probability ηi, and outputs gi(x). Let

H(G,m) = {hg,η : X → ∆(Y) : g ∈ Gm, η ∈ ∆m}
be the family of classifiers that can be written this way. Our main technical result shows that envy-
freeness generalizes for this class.

Theorem 5.3. Suppose G is a family of deterministic classifiers of Natarajan dimension d, and let
H = H(G,m) for m ∈ N. For any distribution P over X , γ > 0, and δ > 0, if S = {(xi, x′i)}ni=1 is
an i.i.d. sample of pairs drawn from P of size

n ≥ O
(

1

γ2

(
dm2 log

dm|Y| log(m|Y|/γ)

γ
+ log

1

γ

))
,

then with probability at least 1 − δ, every classifier h ∈ H that is (α, β)-pairwise-EF on S is also
(α+ 7γ, β + 4γ)-EF on P .

78

Theorem 5.3 is only effective insofar as families of classifiers of low Natarajan dimension are
useful. And, indeed, several prominent families have low Natarajan dimension [49], including one
vs. all (which is a special case of the example given in Section 5.4.1), multiclass SVM, tree-based
classifiers, and error correcting output codes.

We now turn to the theorem’s proof, which consists of two steps. First, we show that envy-freeness
generalizes for finite classes. Second, we show thatH(G,m) can be approximated by a finite subset.

Lemma 5.3. Let H ⊂ {h : X → ∆(Y)} be a finite family of classifiers. For any γ > 0, δ > 0,
and β ≥ 0 if S = {(xi, x′i)}ni=1 is an i.i.d. sample of pairs from P of size n ≥ 1

2γ2
ln |H|δ , then

with probability at least 1 − δ, every h ∈ H that is (α, β)-pairwise-EF on S (for any α) is also
(α+ γ, β)-EF on P .

Proof. Let f(x, x′, h) = I{u(x, h(x)) < u(x, h(x′))− β} be the indicator that x is envious of x′ by
at least β under classifier h. Then f(xi, x

′
i, h) is a Bernoulli random variable with success probability

Ex,x′∼P [f(x, x′, h)]. Applying Hoeffding’s inequality to any fixed hypothesis h ∈ H guarantees that
PrS(Ex,x′∼P [f(x, x′, h)] ≥ 1

n

∑n
i=1 f(xi, x

′
i, h) + γ) ≤ exp(−2nγ2). Therefore, if h is (α, β)-EF

on S, then it is also (α + γ, β)-EF on P with probability at least 1 − exp(−2nγ2). Applying the
union bound over all h ∈ H and using the lower bound on n completes the proof.

Next, we show that H(G,m) can be covered by a finite subset. Since each classifier in H is
determined by the choice of m functions from G and mixing weights η ∈ ∆m, we will construct
finite covers of G and ∆m. Our covers Ĝ and ∆̂m will guarantee that for every g ∈ G, there exists
ĝ ∈ Ĝ such that Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m. Similarly, for any mixing weights η ∈ ∆m, there
exists η̂ ∈ ∆m such that ‖η − η̂‖1 ≤ γ. If h ∈ H(G,m) is the mixture of g1, . . . , gm with weights η,
we let ĥ be the mixture of ĝ1, . . . , ĝm with weights η̂. This approximation has two sources of error:
first, for a random individual x ∼ P , there is probability up to γ that at least one gi(x) will disagree
with ĝi(x), in which case h and ĥ may assign completely different outcome distributions. Second,
even in the high-probability event that gi(x) = ĝi(x) for all i ∈ [m], the mixing weights are not
identical, resulting in a small perturbation of the outcome distribution assigned to x.

Lemma 5.4. Let G be a family of deterministic classifiers with Natarajan dimension d, and let H =

H(G,m) for somem ∈ N. For any γ > 0, there exists a subset Ĥ ⊂ H of sizeO
((dm|Y|2 log(m|Y|/γ))dm

γ(d+1)m

)

such that for every h ∈ H there exists ĥ ∈ H satisfying:

1. Prx∼P (‖h(x)− ĥ(x)‖1 > γ) ≤ γ.

2. If S is an i.i.d. sample of individuals of size O(m
2

γ2
(d log |Y| + log 1

δ)) then w.p. ≥ 1 − δ, we

have ‖h(x)− ĥ(x)‖1 ≤ γ for all but a 2γ-fraction of x ∈ S.

Proof. As described above, we begin by constructing finite covers of ∆m and G. First, let ∆̂m ⊂ ∆m

be the set of distributions over [m] where each coordinate is a multiple of γ/m. Then we have
|∆̂m| = O((mγ)m) and for every p ∈ ∆m, there exists q ∈ ∆̂m such that ‖p− q‖1 ≤ γ.

In order to find a small cover of G, we use the fact that it has low Natarajan dimension. This
implies that the number of effective functions in G when restricted to a sample S′ grows only poly-
nomially in the size of S′. At the same time, if two functions in G agree on a large sample, they will
also agree with high probability on the distribution.

Formally, let S′ be an i.i.d. sample drawn from P of sizeO(m
2

γ2
d log |Y|), and let Ĝ = G

∣∣
S′

be any
minimal subset of G that realizes all possible labelings of S′ by functions in G. We now argue that with

79

probability 0.99, for every g ∈ G there exists ĝ ∈ Ĝ such that Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m. For any
pair of functions g, g′ ∈ G, let (g, g′) : X → Y2 be the function given by (g, g′)(x) = (g(x), g′(x)),
and let G2 = {(g, g′) : g, g′ ∈ G}. The Natarajan dimension of G2 is at most 2d (see Lemma D.2
below). Moreover, consider the loss c : G2 × X → {0, 1} given by c(g, g′, x) = I{g(x) 6= g′(x)}.
Applying Lemma 5.2 with the chosen size of |S′| ensures that with probability at least 0.99 every pair
(g, g′) ∈ G2 satisfies ∣∣∣∣∣ Ex∼P [c(g, g′, x)]− 1

|S′|
∑

x∈S′
c(g, g′, x)

∣∣∣∣∣ ≤
γ

m
.

By the definition of Ĝ, for every g ∈ G, there exists ĝ ∈ Ĝ for which c(g, ĝ, x) = 0 for all x ∈ S′,
which implies that Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m.

Using Lemma 5.1 to bound the size of Ĝ, we have that

|Ĝ| ≤ |S′|d|Y|2d = O

((
m2

γ2
d|Y|2 log |Y|

)d)
.

Since this construction succeeds with non-zero probability, we are guaranteed that such a set Ĝ exists.
Finally, by an identical uniform convergence argument, it follows that if S is a fresh i.i.d. sample of
the size given in Item 2 of the lemma’s statement, then, with probability at least 1− δ, every g and ĝ
will disagree on at most a 2γ/m-fraction of S, since they disagree with probability at most γ/m on
P .

Next, let Ĥ = {hg,η : g ∈ Ĝm, η ∈ ∆̂m} be the same family as H, except restricted to
choosing functions from Ĝ and mixing weights from ∆̂m. Using the size bounds above and the fact
that

(
N
m

)
= O((Nm)m), we have that

|Ĥ| =
(|Ĝ|
m

)
· |∆̂m| = O

(
(dm2|Y|2 log(m|Y|/γ))dm

γ(2d+1)m

)
.

Suppose that h is the mixture of g1, . . . , gm ∈ G with weights η ∈ ∆m. Let ĝi be the approxi-
mation to gi for each i, let η̂ ∈ ∆̂m be such that ‖η − η̂‖1 ≤ γ, and let ĥ be the random mixture of
ĝ1, . . . , ĝm with weights η̂. For an individual x drawn from P , we have gi(x) 6= ĝi(x) with probabil-
ity at most γ/m, and therefore they all agree with probability at least 1− γ. When this event occurs,
we have ‖h(x)− ĥ(x)‖1 ≤ ‖η − η̂‖1 ≤ γ.

The second part of the claim follows by similar reasoning, using the fact that for the given sample
size |S|, with probability at least 1−δ, every g ∈ G disagrees with its approximation ĝ ∈ Ĝ on at most
a 2γ/m-fraction of S. This means that ĝi(x) = gi(x) for all i ∈ [m] on at least a (1 − 2γ)-fraction
of the individuals x in S. For these individuals, ‖h(x)− ĥ(x)‖1 ≤ ‖η − η̂‖1 ≤ γ.

Combining the generalization guarantee for finite families given in Lemma 5.3 with the finite
approximation given in Lemma 5.4, we are able to show that envy-freeness also generalizes for
H(G,m).

Proof of Theorem 5.3. Let Ĥ be the finite approximation to H constructed in Lemma 5.4. If the
sample is of size |S| = O(1

γ2
(dm log(dm|Y| log |Y|/γ) + log 1

δ)), we can apply Lemma 5.3 to this

finite family, which implies that for any β′ ≥ 0, with probability at least 1 − δ/2 every ĥ ∈ Ĥ that
is (α′, β′)-pairwise-EF on S (for any α′) is also (α′ + γ, β′)-EF on P . We apply this lemma with

80

β′ = β+2γ. Moreover, from Lemma 5.4, we know that if |S| = O(m
2

γ2
(d log |Y|+log 1

δ)), then with

probability at least 1−δ/2, for every h ∈ H, there exists ĥ ∈ Ĥ satisfying ‖h(x)−ĥ(x)‖1 ≤ γ for all
but a 2γ-fraction of the individuals in S. This implies that on all but at most a 4γ-fraction of the pairs
in S, h and ĥ satisfy this inequality for both individuals in the pair. Assume these high probability
events occur. Finally, from Item 1 of the lemma we have that Prx1,x2∼P (maxi=1,2 ‖h(xi)−ĥ(xi)‖1 >
γ) ≤ 2γ.

Now let h ∈ H be any classifier that is (α, β)-pairwise-EF on S. Since the utilities are in [0, 1]
and maxx=xi,x′i

‖h(x) − ĥ(x)‖1 ≤ γ for all but a 4γ-fraction of the pairs in S, we know that ĥ is
(α+4γ, β+2γ)-pairwise-EF on S. Applying the envy-freeness generalization guarantee (Lemma 5.3)
for Ĥ, it follows that ĥ is also (α+ 5γ, β + 2γ)-EF on P . Finally, using the fact that

Pr
x1,x2∼P

(
max
i=1,2

‖h(xi)− ĥ(xi)‖1 > γ

)
≤ 2γ,

it follows that h is (α+ 7γ, β + 4γ)-EF on P .

It is worth noting that the (exponentially large) approximation Ĥ is only used in the generalization
analysis; importantly, an ERM algorithm need not construct it. Also note that the number of outcomes
|Y| only appears in the logarithmic terms of the sample complexity bounds, allowing these results
to handle very large outcome spaces, provided that we choose a suitable family G of deterministic
classifiers.

81

Bibliography

[1] E. Allwein, R. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying approach
for margin classifiers. In Journal of Machine Learning Research, 2000. 2.2

[2] Noga Alon, Nicolò Cesa-Bianchi, Claudio Gentile, Shie Mannor, Yishay Mansour, and Ohad
Shamir. Nonstochastic multi-armed bandits with graph-structured feedback. SIAM J. Comput.,
46(6):1785–1826, 2017. 3.2.1, 3.2.2, 3.2.2, B.2.1, B.2.5, B.2.5

[3] Martin Anthony and Peter Bartlett. Neural Network Learning: Theoretical Foundations. Cam-
bridge University Press, 2009. B.23

[4] Peter Auer, Nicoló Cesa-Bianchi, Yoav Freund, and Robert Shapire. The nonstochastic multi-
armed bandit problem. In SIAM Journal on Computing, 2003. 3.1.3

[5] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturbation
stability. In Information Processing Letters, 2012. 3.2.1

[6] Pranjal Awasthi, Maria-Florina Balcan, and Konstantin Voevodski. Local algorithms for inter-
active clustering. In ICML, 2014. 3.2.1

[7] K. Balasubramanian, P. Donmez, and G. Lebanon. Unsupervised supervised learning ii:
Margin-based classification without labels. In AISTATS, pages 137–145, 2011. 2.2

[8] K. Balasubramanian, P. Donmez, and G. Lebanon. Unsupervised supervised learning ii:
Margin-based classification without labels. In Journal of Machine Learning Research, vol-
ume 12, pages 3119–3145, 2011. 2.2

[9] M-F. Balcan and A. Blum. A discriminative model for semi-supervised learning. In Journal of
the ACM, 2010. 2.2

[10] M-F. Balcan and R. Urner. Active learning. In Survey in the Encyclopedia of Algorithms, 2015.
2.2

[11] M-F. Balcan, A. Blum, and K. Yang. Co-training and expansion: Towards bridging theory and
practice. In NeurIPS, 2004. 2.2

[12] M-F. Balcan, A. Beygelzimer, and J. Lanford. Agnostic active learing. In ICML, 2006. 2.2

[13] M.-F. Balcan, F. Constantin, S. Iwata, and L. Wang. Learning valuation functions. In 25th
Proceedings of the Conference on Learning Theory (COLT), pages 4.1–4.24, 2012. 5.1

82

[14] M.-F. Balcan, A. Blum, and Y. Mansour. Exploiting ontology structures and unlabeled data for
learning. In Proceedings of the 31st International Conference on Machine Learning (ICML),
pages 1112–1120, 2013. 2.2

[15] Maria-Florina Balcan and Yingyu Liang. Clustering under perturbation resilience. In SIAM
Journal on Computing, 2016. 3.2.1

[16] Maria-Florina Balcan, Nika Haghtalab, and Colin White. k-center clustering under perturba-
tion resilience. In Proceedings of the Annual International Colloquium on Automata, Lan-
guages, and Programming (ICALP), 2016. 3.2.1

[17] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Sample complexity of auto-
mated mechanism design. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS), 2016. 3.1.1, 3.1.1

[18] Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. Learning-
theoretic foundations of algorithm configuration for combinatorial partitioning problems. Pro-
ceedings of the Conference on Learning Theory (COLT), 2017. 3.1.1, 3.1.5, 3.2.1, 3.2.1, 3.2.1,
3.2.4, 3.2.4, 4.1, 4.2, 4.3, 4.3, 4.4.1, B.1.6, B.22, B.1.6, B.1.6, B.30, B.2.3

[19] Maria-Florina Balcan, Travis Dick, Ritesh Noothigattu, and Ariel D. Procaccia. Envy-free clas-
sification. CoRR, abs/1809.08700, 2018. URL http://arxiv.org/abs/1809.08700.
5.1.1

[20] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
ICML, 2018. 4.1, 4.3

[21] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch.
In ICML, 2018. 3.2.1, 3.2.1

[22] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. Dispersion for data-driven algorithm
design, online learning, and private optimization. In FOCS, 2018. 3.1.1, 3.2.1, 3.2.1, 3.2.1,
3.2.1, 3.2.1, 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.4, B.2.2, B.35, B.36

[23] Maria-Florina Balcan, Travis Dick, and Colin White. Data-driven clustering via parameterized
lloyd’s families. In NeurIPS, 2018. 3.2.1, 3.2.1, 4.1

[24] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. A general theory of sample com-
plexity for multi-item profit maximization. Proceedings of the ACM Conference on Economics
and Computation (EC), 2018. 3.1.1, 3.1.1, 3.2.1

[25] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002. 3.1.6,
B.1.1

[26] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Differentially private empirical risk min-
imization: Efficient algorithms and tight error bounds. In Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), 2014. 3.1.1, 3.1.1, 3.1.3, B.1.3, B.1.3, B.1

[27] Shai Ben-David, David Pal, and Shai Shalev-Shwartz. Agnostic online learning. In COLT,
2009. 3.2.1

83

http://arxiv.org/abs/1809.08700

[28] A. Berger. Error-correcting output coding for text classification. In IJCAI Workshop on ma-
chine learning for information filtering, 1999. 2.8

[29] A. Beygelzimer, J. Langford, and P. Ravikumar. Error-correcting tournaments. ALT, 2009. 2.1,
2.2

[30] Francesca Biagini and Massimo Campanino. Elements of Probability and Statistics: An In-
troduction to Probability with de Finetti’s Approach and to Bayesian Statistics, volume 98.
Springer, 2016. B.1.6

[31] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT,
1998. 2.2

[32] Avrim Blum and Jason D. Hartline. Near-optimal online auctions. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1156–1163. Society for Industrial
and Applied Mathematics, 2005. 3.1.1, 3.1.1

[33] Avrim Blum, Vijay Kumar, Atri Rudra, and Felix Wu. Online learning in online auctions.
Theoretical Computer Science, 324(2-3):137–146, 2004. 3.1.1, 3.1.1

[34] S. J. Brams and A. D. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution. Cam-
bridge University Press, 1996. 5.1

[35] Sébastien Bubeck, Nikhil R Devanur, Zhiyi Huang, and Rad Niazadeh. Online auctions and
multi-scale online learning. Proceedings of the ACM Conference on Economics and Compu-
tation (EC), 2017. 3.1.1, 3.1.1, 3.1.1

[36] Yves Caseau, François Laburthe, and Glenn Silverstein. A meta-heuristic factory for vehi-
cle routing problems. In International Conference on Principles and Practice of Constraint
Programming, pages 144–158. Springer, 1999. 3.2.1

[37] V. Castelli and T. Cover. On the exponential value of labeled samples. In Pattern Recognition
Letters, 1995. 2.8

[38] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge univer-
sity press, 2006. 3.1.1

[39] Nicoló Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of
on-line learning algorithms. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 359–366, 2002. 3.1.1, 3.1.6

[40] Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Regret minimization for reserve
prices in second-price auctions. IEEE Transactions on Information Theory, 61(1):549–564,
2015. 3.1.1, 3.1.1

[41] U. Chajewska, D. Koller, and D. Ormoneit. Learning an agent’s utility function by observing
behavior. In 18th Proceedings of the International Conference on Machine Learning (ICML),
pages 35–42, 2001. 5.1

[42] O. Chapelle, B. Schlkopf, and A. Zien. Semi-Supervised Learning. The MIT Press, 1st edition,
2010. ISBN 0262514125, 9780262514125. 2.2

84

[43] Moses Charikar and Anthony Wirth. Maximizing quadratic programs: extending
Grothendieck’s inequality. In Proceedings of the IEEE Symposium on Foundations of Com-
puter Science (FOCS), 2004. 3.1.1, B.1.6

[44] K. Chaudhuri and S Dasgupta. Rates of convergence for the cluster tree. In Advances in Neural
Information Processing 23 (NeurIPS), pages 343–351, 2010. 2.5, 2.5

[45] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empir-
ical risk minimization. Journal of Machine Learning Research, 12(Mar):1069–1109, 2011.
3.1.1

[46] Vincent Cohen-Addad and Varun Kanade. Online Optimization of Smoothed Piecewise Con-
stant Functions. In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), 2017. 3.1.1, 3.1.1, 2, 3.1.3, 3.2.1, 3.2.1, 3.2.1, B.1.4, B.1, B.2.1, B.2.1,
B.2.1

[47] Richard Cole and Tim Roughgarden. The sample complexity of revenue maximization. In
Proceedings of the Annual Symposium on Theory of Computing (STOC), 2014. 3.1.1, 3.1.1

[48] K. Crammer and Y. Singer. Improved output coding for classification using continuous relax-
ation. In NeurIPS, 2000. 2.8

[49] A. Daniely, S. Sabato, and S. Shalev-Shwartz. Multiclass learning approaches: A theoreti-
cal comparison with implications. In 25th Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS), pages 485–493, 2012. 5.4.2

[50] A. Daniely, M. Schapira, and G. Shahaf. Multiclass learning approaches: A theoretical com-
parison with implications. In NeurIPS, 2012. 2.2

[51] S. Dasgupta. Two faces of active learning. In Theoretical Computer Science, 2011. 2.2

[52] S. Dasgupta and K. Sinha. Randomized partition trees for exact nearest neighbor search. In
COLT, 2013. 2.4

[53] A. Datta, M. C. Tschantz, and A. Datta. Automated experiments on ad privacy settings: A tale
of opacity, choice, and discrimination. In 15th, pages 92–112, 2015. 5.1

[54] Anindya De. Lower bounds in differential privacy. In Proceedings of the Theory of Cryptog-
raphy Conference (TCC), pages 321–338, 2012. B.1.5

[55] Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet, Rich Vuduc,
R Clint Whaley, and Katherine Yelick. Self-adapting linear algebra algorithms and software.
Proceedings of the IEEE, 93(2):293–312, 2005. 3.2.1

[56] Nikhil R Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. The sample complexity
of auctions with side information. In Proceedings of the Annual Symposium on Theory of
Computing (STOC), 2016. 3.1.1, 3.1.1

[57] T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting output
codes. Journal of Artificial Intelligence Research, pages 263–286, 1995. 2.1, 2.1, 2.2

85

[58] M. Donini, L. Oneto, S. Ben-David, J. Shawe-Taylor, and M. Pontil. Empirical Risk Mini-
mization under Fairness Constraints. arXiv:1802.08626, 2018. 5.1.2

[59] P. Donmez, G. Lebanon, and K. Balasubramanian. Unsupervised supervised learning i: Es-
timating classification and regression errors without labels. In Journal of Machine Learning
Research, volume 11, pages 1323–1351, 2010. 2.2

[60] Miroslav Dudı́k, Nika Haghtalab, Haipeng Luo, Robert E Schapire, Vasilis Syrgkanis, and
Jennifer Wortman Vaughan. Oracle-efficient learning and auction design. Proceedings of the
IEEE Symposium on Foundations of Computer Science (FOCS), 2017. 3.1.1, 3.1.1

[61] R. M. Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian
processes. Journal of Functional Analysis, 1(3):290 – 330, 1967. B.1.1, B.1.7

[62] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. S. Zemel. Fairness through awareness.
In 3rd Proceedings of the ACM Conference on Innovations in Theoretical Computer Science
(ITCS), pages 214–226, 2012. 5.1, 5.1.1, 5.1.2

[63] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Founda-
tions and Trends in Theoretical Computer Science, 9(34):211–407, 2014. B.1.5

[64] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sen-
sitivity in private data analysis. In Proceedings of the Theory of Cryptography Conference
(TCC), pages 265–284. Springer, 2006. 3.1.1

[65] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), 2010. B.15

[66] Edith Elkind. Designing and learning optimal finite support auctions. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007. 3.1.1, 3.1.1

[67] Uriel Feige and Michael Langberg. The RPR2 rounding technique for semidefinite programs.
Journal of Algorithms, 60(1):1–23, 2006. 3.1.1, 3.1.5

[68] Zhe Feng, Chara Podimata, and Vasilis Syrgkanis. Learning to bid without knowing your
value. Proceedings of the ACM Conference on Economics and Computation (EC), 2018. 3.1.1

[69] D. Foley. Resource allocation and the public sector. Yale Economics Essays, 7:45–98, 1967.
5.1

[70] R. Freedman, J. Schaich Borg, W. Sinnott-Armstrong, J. P. Dickerson, and V. Conitzer. Adapt-
ing a kidney exchange algorithm to align with human values. In 32nd Proceedings of the AAAI
Conference on Artificial Intelligence, pages 1636–1645, 2018. 5.1

[71] Y. Gal, M. Mash, A. D. Procaccia, and Y. Zick. Which is the fairest (rent division) of them all?
Journal of the ACM, 64(6): article 39, 2017. 5.1

[72] Michel X Goemans and David P Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of the ACM
(JACM), 42(6):1115–1145, 1995. 3.1.1, 3.1.5

86

[73] Kira Goldner and Anna R Karlin. A prior-independent revenue-maximizing auction for multi-
ple additive bidders. In Proceedings of the Conference on Web and Internet Economics (WINE),
2016. 3.1.1

[74] Yannai A Gonczarowski and Noam Nisan. Efficient empirical revenue maximization in single-
parameter auction environments. In Proceedings of the Annual Symposium on Theory of Com-
puting (STOC), pages 856–868, 2017. 3.1.1, 3.1.1

[75] Robert D Gordon. Values of Mills’ ratio of area to bounding ordinate and of the normal
probability integral for large values of the argument. The Annals of Mathematical Statistics,
12(3):364–366, 1941. B.27

[76] Anna Grosswendt and Heiko Roeglin. Improved analysis of complete linkage clustering. In
European Symposium of Algorithms, 2015. 3.2.1

[77] Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm selec-
tion. SIAM Journal on Computing, 46(3):992–1017, 2017. 3.1.1, 3.1.1, 3.1.1, 3.1.1, 3.1.1, 2,
3.1.5, 3.1.5, 3.2.1, 3.2.1, 3.2.1, 3.2.4, 3.2.4, 4.1, B.18, B.1.6, B.19, B.1.6, B.20, B.21

[78] András György, Tamás Linder, and György Ottucsák. The shortest path problem under partial
monitoring. In COLT, 2006. 3.2.1

[79] S. Hanneke. Theory of active learning. Foundations and Trends in Machine Learning, 7(2–3),
2014. 2.2

[80] M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In 30th
Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 3315–3323, 2016. 5.1

[81] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah,
Ralf Herbrich, Stuart Bowers, et al. Practical lessons from predicting clicks on ads at Facebook.
In Proceedings of the International Workshop on Data Mining for Online Advertising, 2014.
3.1.1

[82] Ú. Hébert-Johnson, M. P. Kim, O. Reingold, and G. N. Rothblum. Calibration for the
(computationally-identifiable) masses. In 35th Proceedings of the International Conference
on Machine Learning (ICML), 2018. Forthcoming. 5.1.2

[83] Zhiyi Huang, Yishay Mansour, and Tim Roughgarden. Making the most of your samples. In
Proceedings of the ACM Conference on Economics and Computation (EC), 2015. 3.1.1, 3.1.1

[84] M. Joseph, M. Kearns, J. Morgenstern, and A. Roth. Fairness in learning: Classic and contex-
tual bandits. In 30th Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 325–333, 2016. 5.1

[85] Satyen Kale, Lev Reyzin, and Robert E. Shapire. Non-stochastic bandit slate problems. In
NeurIPS, 2010. 3.2.1

[86] M. Kearns, S. Neel, A. Roth, and S. Wu. Computing parametric ranking models via rank-
breaking. In 35th Proceedings of the International Conference on Machine Learning (ICML),
2018. 5.1.2

87

[87] N. Kilbertus, M. Rojas-Carulla, G. Parascandolo, M. Hardt, D. Janzing, and B. Schölkopf.
Avoiding discrimination through causal reasoning. In 31st Proceedings of the Annual Confer-
ence on Neural Information Processing Systems (NeurIPS), pages 656–666, 2017. 1

[88] Michael P. Kim, Aleksandra Korolova, Guy N. Rothblum, and Gal Yona. Preference-informed
fairness, 2019. 5.1.2

[89] Robert Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In Proceed-
ings of the Annual Conference on Neural Information Processing Systems (NeurIPS), 2004.
3.1.1

[90] Robert Kleinberg and Tom Leighton. The value of knowing a demand curve: Bounds on regret
for online posted-price auctions. In Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS), 2003. 3.1.1, 3.1.1

[91] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces.
In Proceedings of the Annual Symposium on Theory of Computing (STOC), 2008. 3.1.1, 3.1.1,
3.1.3

[92] Robert Kleinberg, Kevin Leyton-Brown, and Brendan Lucier. Efficiency through procrastina-
tion: Approximately optimal algorithm configuration with runtime guarantees. In IJCAI, 2017.
3.2.1

[93] Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transac-
tions on Information Theory, 47(5):1902–1914, 2001. 3.1.6, B.1.1

[94] Alex Krizhevsky. Learning multiple layers of features from tiny images. In Technical Report,
2009. 4.5

[95] Matt Kusner, Jacob Gardner, Roman Garnett, and Kilian Weinberger. Differentially private
Bayesian optimization. In Proceedings of the International Conference on Machine Learning
(ICML), pages 918–927, 2015. 3.1.1

[96] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015. doi:
10.1126/science.aab3050. 4.5

[97] J. Langford and A. Beygelzimer. Sensitive error correcting output codes. COLT, 2005. 2.1,
2.2

[98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, 1998. 4.5

[99] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Empirical hardness models:
Methodology and a case study on combinatorial auctions. Journal of the ACM (JACM), 56(4):
22, 2009. 3.2.1

[100] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. In Machine Learning, 1998. 3.2.1

88

[101] László Lovász and Santosh Vempala. Fast algorithms for logconcave functions: Sampling,
rounding, integration, and optimization. In Proceedings of the IEEE Symposium on Founda-
tions of Computer Science (FOCS), 2006. 3.1.1, 3.1.3, B.1.3, B.1

[102] B. T. Luong, S. Ruggieri, and F. Turini. k-NN as an implementation of situation testing for dis-
crimination discovery and prevention. In 17th Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 502–510, 2011. 5.1

[103] P. Manurangsi and W. Suksompong. Asymptotic existence of fair divisions for groups. Math-
ematical Social Sciences, 89:100–108, 2017. 2

[104] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In Proceedings
of the IEEE Symposium on Foundations of Computer Science (FOCS), pages 94–103, 2007.
3.1.1

[105] Andres Munoz Medina and Mehryar Mohri. Learning theory and algorithms for revenue opti-
mization in second price auctions with reserve. In Proceedings of the International Conference
on Machine Learning (ICML), 2014. 3.1.1, 3.1.1

[106] Andrés Muñoz Medina and Sergei Vassilvitskii. Revenue optimization with approximate bid
predictions. Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS), 2017. 3.1.1

[107] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gard-
ner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E. Platan-
ios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov,
M. Greaves, and J. Welling. Never-ending learning. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI-15), 2015. 2.1

[108] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT press,
2012. 2.1, 2.2

[109] Jamie Morgenstern and Tim Roughgarden. On the pseudo-dimension of nearly optimal auc-
tions. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS), 2015. 3.1.1, 3.1.1

[110] Jamie Morgenstern and Tim Roughgarden. Learning simple auctions. In Proceedings of the
Conference on Learning Theory (COLT), 2016. 3.1.1, 3.1.1, 3.1.5

[111] H. Moulin. Fair Division and Collective Welfare. MIT Press, 2003. 5.1

[112] Roger Myerson. Optimal auction design. Mathematics of Operation Research, 6:58–73, 1981.
3.1.1

[113] B. K. Natarajan. On learning sets and functions. Machine Learning, 4(1):67–97, 1989. 5.4

[114] T. D. Nielsen and F. V. Jensen. Learning a decision maker’s utility function from (possibly)
inconsistent behavior. Artificial Intelligence, 160(1–2):53–78, 2004. 5.1

89

[115] R. Noothigattu, S. S. Gaikwad, E. Awad, S. Dsouza, I. Rahwan, P. Ravikumar, and A. D.
Procaccia. A voting-based system for ethical decision making. In 32nd Proceedings of the
AAAI Conference on Artificial Intelligence, pages 1587–1594, 2018. 5.1

[116] M. Palatucci, D. Pomerleau, G. Hinton, and T. Mitchell. Zero-shot learning with semantic
output codes. In NeurIPS, 2009. 2.2, 2.8

[117] David Pollard. Convergence of Stochastic Processes. Springer, 1984. B.1.7, C

[118] A. D. Procaccia. Cake cutting: Not just child’s play. Communications of the ACM, 56(7):
78–87, 2013. 5.1

[119] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Stochastic, con-
strained, and smoothed adversaries. In Proceedings of the Annual Conference on Neural In-
formation Processing Systems (NeurIPS), 2011. 3.1.1, 3.2.1

[120] John R Rice. The algorithm selection problem. In Advances in computers, volume 15, pages
65–118. Elsevier, 1976. 3.2.1

[121] J. M. Robertson and W. A. Webb. Cake Cutting Algorithms: Be Fair If You Can. A. K. Peters,
1998. 5.1

[122] Vijay K Rohatgi and AK Md Ehsanes Saleh. An introduction to probability and statistics. John
Wiley & Sons, 2015. B.1.2

[123] G. N. Rothblum and G. Yona. Probably approximately metric-fair learning. arXiv:1803.03242,
2018. 5.1.2

[124] Tim Roughgarden and Okke Schrijvers. Ironing in the dark. In Proceedings of the ACM
Conference on Economics and Computation (EC), 2016. 3.1.1, 3.1.1

[125] Tim Roughgarden and Joshua R Wang. Minimizing regret with multiple reserves. In Proceed-
ings of the ACM Conference on Economics and Computation (EC), pages 601–616. ACM,
2016. 3.1.1, 3.1.1

[126] Mehreen Saeed, Onaiza Maqbool, Haroon Atique Babri, Syed Zahoor Hassan, and S. Mansoor
Sarwar. Software clustering techniques and the use of combined algorithm. In European
Conference on Software Maintenance and Reengineering, 2003. 3.2.1

[127] Shuichi Sakai, Mitsunori Togasaki, and Koichi Yamazaki. A note on greedy algorithms for the
maximum weighted independent set problem. Discrete Applied Mathematics, 126(2):313–322,
2003. 3.1.5

[128] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge University Press, 2014. 5.4.1, B.1.1

[129] A. Singh, X. Zhu, and R. Nowak. Unlabeled data: Now it helps, now it doesn’t. In NeurIPS,
2008. 2.8

[130] Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004.
3.2.4

90

[131] J. Steinhardt and P. Liang. Unsupervised risk estimation using only conditional independence
structure. In NeurIPS, 2016. 2.2

[132] I. Steinwart. Fully adaptive density based clustering. In Annals of Statistics, volume 43, pages
2132–2167, 2015. 2.4

[133] F. E. Su. Rental harmony: Sperner’s lemma in fair division. American Mathematical Monthly,
106(10):930–942, 1999. 5.1

[134] L. Sweeney. Discrimination in online ad delivery. Communications of the ACM, 56(5):44–54,
2013. 5.1

[135] Vasilis Syrgkanis. A sample complexity measure with applications to learning optimal auc-
tions. Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS), 2017. 3.1.1

[136] S. Thrun. Explanation-Based Neural Network Learning: A Lifelong Learning Approach.
Kluwer Academic Publishers, Boston, MA, 1996. 2.1

[137] S. Thrun and T. Mitchell. Learning one more thing. In Proc. 14th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 1217–1225, 1995. 2.1

[138] Sebastian Thrun and Tom M. Mitchell. Lifelong robot learning. Robotics and Autonomous
Systems, 15(1-2):25–46, 1995. 2.1

[139] Henk Tijms. Understanding probability. Cambridge University Press, 2012. B.1.2, B.1.6

[140] Alexandre Tsybakov. Introduction to Nonparametric Estimation. Springer-Verlag New York,
2009. B.1.4

[141] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971. 2.4,
2.5, 2.6, 5.4

[142] H. Varian. Equity, envy and efficiency. Journal of Economic Theory, 9:63–91, 1974. 5.1

[143] Jonathan Weed, Vianney Perchet, and Philippe Rigollet. Online learning in repeated auctions.
In Proceedings of the Conference on Learning Theory (COLT), pages 1562–1583, 2016. 3.1.1,
B.14, B.1.4, B.1.4

[144] Gellért Weisz, András György, and Csaba Szepesvári. Leapsandbounds: A method for approx-
imately optimal algorithm configuration. In ICML, 2018. 3.2.1

[145] James R. White, Saket Navlakha, Niranjan Nagarajan, Mohammad-Reza Ghodsi, Carl Kings-
ford, and Mihai Pop. Alignment and clustering of phylogenetic markers—implications for
microbial diversity studies. In BCM Bioinformatics, 2010. 3.2.1

[146] B. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro. Learning non-discriminatory
predictors. In 30th Proceedings of the Conference on Learning Theory (COLT), pages 1920–
1953, 2017. 5.1.2

91

[147] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: portfolio-based
algorithm selection for sat. Journal of artificial intelligence research, 32:565–606, 2008. 3.2.1

[148] A. C. Yao. Probabilistic computations: Towards a unified measure of complexity. In 17th
Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pages 222–
227, 1977. D

[149] Hector Yee and Bar Ifrach. Aerosolve: Machine learning for humans. Open Source, 2015.
URL http://nerds.airbnb.com/aerosolve/. 3.1.1

[150] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, K. P. Gummadi, and A. Weller. From parity
to preference-based notions of fairness in classification. In 31st Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS), pages 228–238, 2017. 5.1,
5.1.2

[151] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair representations. In 30th
Proceedings of the International Conference on Machine Learning (ICML), pages 325–333,
2013. 5.1, 5.1.2

[152] Uri Zwick. Outward rotations: a tool for rounding solutions of semidefinite programming
relaxations, with applications to max cut and other problems. In Proceedings of the Annual
Symposium on Theory of Computing (STOC), 1999. 3.1.1, 3.1.5

92

http://nerds.airbnb.com/aerosolve/

Appendix A

Appendix for Chapter 2

A.1 Appendix for Error Correcting Output Codes

First, we show that the line segment [x, y] crosses the decision surface of the linear separator hk if
and only if h(x) and h(y) differ on the kth entry.

Lemma A.1. Let i 6= j be any pair of classes whose codewords disagree on the kth bit. Then for any
points x ∈ Ki and y ∈ Kj , the line segment [x, y] intersects with the line hk = 0.

Proof. Without loss of generality, suppose that Cik = 1 and Cjk = −1. Then, from the definition
of Ki and Kj , we have that hk(x) > 0 and hk(y) < 0. The function f(t) = hk((1 − t)x + ty) is
continuous and satisfies f(0) = hk(x) > 0 and f(1) = hk(y) < 0. It follows that there must be
some t0 ∈ (0, 1) such that f(t0) = 0. But this implies that the point z = (1 − t0)x + t0y ∈ [x, y]
satisfies hk(z) = 0 and it follows that hk = 0 intersects with [x, y] at the point z.

Next, we show that when the consistent linear output code makes at most β errors when predicting
the code word of a new example and the Hamming distance of the code words is at least 2β + d+ 1,
then there must be a minimum gap g > 0 between any pair of points belonging to different classes.

Lemma 2.1. Under Assumption 2.1, there exists g > 0 such that if points x and x′ belong to different
classes, then ‖x− x′‖ > g.

Proof. For sets A and B, let d(A,B) = mina∈A,b∈B ‖a − b‖ denote the distance between them and
recall that for each i = 1, . . . , L, we defined Ki = {x ∈ X : dHam(h(x), Ci) ≤ β} to be the set of
points that belong to class i.

Fix any pair of classes i and j and suppose for contradiction that d(Ki,Kj) = 0. This implies
that there are two code words c, c′ ∈ {±1}m such that dHam(c, Ci) ≤ β, dHam(c′, Cj) ≤ β, and the
distance between A = {x ∈ X : h(x) = c} and B = {x ∈ X : h(x) = c′} is 0. First, we construct
a point x that belongs to A ∩ B, where A and B denote the closure of A and B, respectively. Since
d(A,B) = 0, there exists a sequence of points x1, x2, . . . ∈ A such that d(xn, B) → 0 as n → ∞.
But, since A is bounded, so is the sequence (xn), and therefore by the Bolzano-Weierstrass theorem,
(xn) has a convergent subsequence. Without loss of generality, suppose that (xn) itself converges to
the point x. Then x is a limit point of A and therefore belongs to the closure of A. On the other hand,
since the function z 7→ d(z,B) is continuous, it follows that d(x,B) = limn→∞ d(xn, B) = 0 and
therefore x is also in the closure of B.

93

Now let k be any index such that the code words c and c′ differ on the kth entry. Next, we show
that hk(x) = 0. For each integer n > 0, let Cn = B(x, 1/n) be the ball of radius 1/n centered at
x. Since x belongs to the closure of A and Cn is a neighborhood of x, we can find some point, say
xn that belongs to the intersection A ∩ Cn. Similarly, we can find a point yn belonging to B ∩ Cn.
Since the line segment [xn, yn] passes from A to B, Lemma A.1 guarantees that there is a point
zn ∈ [xn, yn] ⊂ Cn such that hk(zn) = 0. But, by construction, the sequence zn is converging to x
and, since linear functions are continuous, it follows that hk(x) = limn→∞ hk(zn) = 0.

But this leads to a contradiction: since the codewords c and c′ must disagree on at least d + 1
entries, at least d+1 of the linear separators h1, . . . , hm intersect at the point x, which contradicts our
assumption that at most d lines intersect at any point x ∈ X . Therefore, we must have d(Ki,Kj) > 0.
Since there are finitely many classes, taking g = mini,j d(Ki,Kj) completes the proof.

Next, we prove a similar result to Theorem 2.1 that holds in the agnostic setting of Section 2.7.

Theorem A.1. Assume Assumption 2.1, err(f∗) ≤ η, and p has C-thick level sets. For 0 < ε ≤ η,
suppose {p ≥ ε/(2 Vol(K))} has N connected components, each with probability at least 7η. With
probability at least 1− δ, running Algorithm 1 with parameter rc < g on an unlabeled sample of size
n = Õ(1

ε2
((4C)2ddd+1/r2

cd+N)) and querying t = O(lnN/δ) labels per cluster will have error at
most η + ε after querying at most Nt labels.

Proof. Define λ = ε/(2 Vol(K)) and let A1, . . . , AN be the connected components of {p ≥ λ}.
Since Assumption 2.1 holds, Lemma 2.1 guarantees that there is a distance g > 0 such that whenever
f∗(x) 6= f∗(x′), we must have ‖x− x′‖ ≥ g. This implies that for any λ′ > 0, f∗ must be constant
on the connected components of {p ≥ λ′}, since otherwise we could construct a pair of points closer
than g with f∗(x) 6= f∗(x′). In particular, we know that f∗ is constant on each of the Ai sets.

Since the clustering produced by Algorithm 1 does not see the labeled examples, an identical
covering argument to the one in the proof of Theorem 2.1 shows that for n = O((4C)2ddd+1/(ε2r2d

c))
with probability at least 1− δ, for each set Ai there is a unique cluster, say Âi, such that Âi contains
S ∩Ai, the closest cluster to every point in Ai is Âi. Assume this high probability event occurs.

Similarly to the proof of Theorem 2.1, for n = O(N
ε2

ln 1
δ), we have that with probability at least

1− δ, for any subset of indices I ⊂ [N], we have that
∣∣|S ∩AI |/n− PX (AI)

∣∣ ≤ ε,

where AI =
⋃
i∈I Ai. Assume this high probability event occurs.

Now let y1, . . . , yn be the (unobserved) labels corresponding to the unlabeled sample x1, . . . , xn.
Since Pr(x,y)∼P (f∗(x) 6= y) ≤ η, if n = O(1

η2
ln 1

δ), then with probability at least 1 − δ, we have
that f∗(xi) 6= yi for at most 2ηn of the sample points.

Now, for any connected component Ai, let Âi be the cluster containing Ai ∩ S. Since we have
uniform convergence for all unions of theAi sets, and PX (Ai) ≥ 7η, we know that the setAi contains
at least 6ηn sample points. Therefore, even if every point whose label yi disagrees with f∗ belongs to
Âi, we know that at most a 2ηn/(6ηn) = 1/3 fraction of the points belonging to the cluster Âi will
have labels other than f∗(Ai). If we query the label of t = 32 ln 2N

δ = O(ln N
δ) points belonging

to cluster Âi, then with probability at least 1 − δ/N the majority label will agree with f∗ on Ai.
Applying the union bound over the connected components A1, . . . , AN gives the same guarantee for
all connected components with probability at least 1− δ.

Let f̂ be the classifier output by Algorithm 1 and Q ⊂ [N] be the indices of the Ai sets for which
the algorithm queried the label of the corresponding cluster Âi. The above arguments show that with

94

probability at least 1 − 4δ, we have that f̂(x) = f∗(x) for any x ∈ ∪i∈QAi and, as in Theorem 2.1,
we know that PX (

⋃
i 6∈QAi) ≤ ε/2. This gives the following bound on the error of f̂ : Let (x, y) ∼ P ,

then

Pr(f̂(x) 6= y) = Pr(f̂(x) 6= y, x ∈ {p < λ})
+ Pr(f̂(x) 6= y, x ∈

⋃

i∈Q
Ai)

+ Pr(f̂(x) 6= y, x ∈
⋃

i 6∈Q
Ai)

≤ Pr(x ∈ {p < λ})
+ Pr(f∗(x) 6= y)

+ Pr(x ∈
⋃

i 6∈Q
Ai).

By our choice of λ, the first term is at most ε/2, by assumption the second term is at most η, and the
last term is at most ε/2, giving the final error bound of η + ε.

A.2 Appendix For One-vs-all on the Unit Ball

The following result is similar to Theorem 2.4 and shows that Algorithm 3 continues to work in the
agnostic setting of Section 2.7.

Theorem A.2. Suppose the data is drawn from distribution P over X × [L] and that there exists a
labeling function f∗ such that Pr(x,y)∼P (f∗(x) 6= y) ≤ η and Assumptions 2.2 and 2.3 hold when
labels are assigned by f∗. Assume that Prx∼PX (f∗(x) = i) ≥ 19η for all classes i. For any excess
error ε, There exists an rc satisfying rc = Ω(εclb/(c

2
ubbmin)) such that with probability at least 1− δ,

running Algorithm 3 with parameter rc on an unlabeled sample of size n = Õ((c4
ubd/(ε

2c2
lbb

2
min))d)

and querying t = O(ln N
δ) labels from each cluster will output a classifier with error at most η + ε

and query at most tL labels.

Proof. For small enough ε, we know that at least half of the probability mass of the points assigned
to class i will belong to the ε-level set of {q(i)

ub ≥ ε} (in the notation of Theorem 2.4). Therefore,
the probability mass of each of the sets A1, . . . , AL in the proof of Theorem 2.4 is at least 9η. It
follows that if we see an unlabeled set of size n = Õ(1

η2
), then with probability at least 1 − δ every

Ai set will contain at least 8ηn points. Since these points belong to Ai, we know that they will be
active, included in the graph G, and connected to the cluster that contains samples belonging to Ai.
Moreover, under the same high probability event, we know that there are at most 2ηn points whose
labels disagree with f∗. Therefore, the cluster that contains samples from Ai must have at least 8ηn
points, at most 2ηn of which can have labels that disagree with f∗, so the label assigned by f∗ will
account for at least a 3/4 fraction of the points belonging to the cluster containing Ai. It follows that
if we query O(log(L/δ)) labels from each Ai set then with probability at least 1− δ, we will output a
classification rule that agrees with f∗ except with probability ε. It follows that the error with respect
to P at most η + ε.

95

A.3 Appendix for Boundary Features Condition

We begin by proving the probability bounds for slices of a d-dimensional ball under the uniform
distribution.

Lemma 2.5. Let r > 0 be any radius and X be a random sample drawn uniformly from the ball of
radius r centered at the origin. For any width 0 ≤ ρ ≤ r/

√
2, the probability that the first coordinate

of X lands in [0, ρ] can be bounded as follows:
√

d

2dπ

ρ

r
≤ Pr

X∼B(r,0)
(X1 ∈ [0, ρ]) ≤

√
d+ 1

2π

ρ

r
.

Proof. LetB be the ball of radius r centered at the origin and S = {x ∈ B : x1 ∈ [0, ρ]} be the slice
of B for which the first coordinate is in the interval [0, ρ]. The probability that a uniformly random
sample from B lands in the subset S is given by Vol(S)/Vol(B), where Vol denotes the (Lebesgue)
volume of a set.

We bound the volume of the set S by writing the volume as a double integral over the first
coordinate x1 and the remaining d− 1 coordinates xR.

Vol(S) =

∫ ρ

0

∫

Rd−1

I{‖xR‖22 ≤ r2 − x2
1} dxR dx1

Noticing that the inner integral is actually the volume of a d−1 dimensional ball of radius
√
r2 − x2

1,
and using the fact that for any d, the volume of a d-dimensional ball of radius r is rdvd, where vd is
the volume of the d-dimensional unit ball, we have

Vol(S) = vd−1

∫ ρ

0
(r2 − x2

1)(d−1)/2 dx1.

Upper bounding the integrand by rd−1 gives that Vol(S) ≤ vd−1ρr
d−1. Lower bounding the inte-

grand by (r2 − ρ2)(d−1)/2 and using the fact that ρ ≤ r√
2

we have that Vol(S) ≥ vd−1
1√

2d−1
ρrd−1.

Dividing both inequalities by the volume ofB, which is rdvd, and using the fact that for all d we have
vd−1

vd
∈ [
√

d
2π ,
√

d+1
2π] gives

√
d

2dπ

ρ

r
≤ Pr

X∼B
(X ∈ S) ≤

√
d+ 1

2π

ρ

r
,

as required.

The following is an extension of Theorem 2.5 to the agnostic setting described in Section 2.7.

Theorem A.3. Suppose the data is drawn from distribution P over X × [L] and that there exists a
labeling function f∗ such that Pr(x,y)∼P (f∗(x) 6= y) ≤ η and Assumptions 2.3 and 2.4 hold when
labels are assigned by f∗. Moreover, assume that Prx∼PX (f∗(x) = i) ≥ 10η for all classes i. For
any excess error 0 < ε ≤ η, with probability at least 1− δ, running Algorithm 4 with parameters r ≤
R/2 and τ = αp1/2(r)/2 for a known constant α on on a sample of size n = Õ(dm2c2

ubR
d/(c2

lbε
4))

and querying t = O(ln(N/δ)) labels from the L largest clusters will have error at most η + ε.

96

Proof. In the proof of Theorem 2.5 we argued that with the set of hyperplanes produced by Algo-
rithm 4 will be good approximations to the true hyperplanes. We additionally showed that the set of
hyperplanes approximating one of the linear separators hi defining the output code will agree with
high probability with hi except in a small margin and we bounded the probability mass of these mar-
gins around each hi by ε. It follows that for each class i, the probability mass of the set of points in
that class not contained in these margins is at least 10η − ε ≥ 9η, and it follows that if our unlabeled
sample is of size at least Õ(1

η2
) that with probability at least 1−δ, we will see at least 8ηn points from

each class which are not contained in the small margins. Under the same high probability event, we
know that at most 2ηn of the labels we query can disagree with f∗, which implies that the majority
label within the L largest cells will be the label predicted by f∗ on these cells. It follows that if we
query the labels of O(lnN/δ) labels from each class, then with probability at least 1− δ the resulting
classifier will predict labels that disagree with f∗ with probability at most ε. It follows that the error
of the classifier with respect to the distribution P is at most η + ε.

97

Appendix B

Appendix for Chapter 3

B.1 Appendix for Section 3.1

B.1.1 Generic lemmas for dispersion

In this appendix we provide several general tools for demonstrating that a collection of functions will
be (w, k)-dispersed. The dispersion analyses for each of our applications leverages the general tools
presented here. We first recall the definition of dispersion.

Definition 3.1. Let u1, . . . , uT : C → [0, H] be a collection of functions where ui is piecewise
Lipschitz over a partition Pi of C. We say that Pi splits a set A if A intersects with at least two sets in
Pi (see Figure 3.1). The collection of functions is (w, k)-dispersed if every ball of radius w is split
by at most k of the partitions P1, . . . ,PT . More generally, the functions are (w, k)-dispersed at a
maximizer if there exists a point ρ∗ ∈ argmaxρ∈C

∑T
i=1 ui(ρ) such that the ball B(ρ∗, w) is split by

at most k of the partitions P1, . . . ,PT .

We begin by proving the dispersion lemma from Section 3.1.2.

Lemma 3.1. Let B = {β1, . . . , βr} ⊂ R be a collection of samples where each βi is drawn from a
κ-bounded distribution with density function pi. For any ζ ≥ 0, the following statements hold with
probability at least 1− ζ:

1. If the βi are independent, then every interval of width w contains at most k = O(rwκ +√
r log(1/ζ)) samples. In particular, for any α ≥ 1/2 we can take w = 1/(κr1−α) and

k = O(rα
√

log(1/ζ)).

2. If the samples can be partitioned into P buckets B1, . . . ,BP such that each Bi contains in-
dependent samples and |Bi| ≤ M , then every interval of width w contains at most k =
O(PMwκ +

√
M log(P/ζ). In particular, for any α ≥ 1/2 we can take w = 1/(κM1−α)

and k = O(PMα
√

log(P/ζ)).

Proof. We begin by proving part 1 of the statement. The expected number of samples that land in any
interval I of width w is at most wκr, since for each i ∈ [r], the probability βi lands in I is at most
wκ. If the distributions p1, . . . , pr were identical, then the βi would be i.i.d. samples and we could
apply standard uniform convergence results leveraging the fact that the VC-dimension of intervals is
2. It is folklore that these uniform convergence results also apply for independent but not identically

98

distributed random variables. We provide a proof of this fact in Lemma B.1 for completeness. By
Lemma B.1, we know that with probability at least 1− ζ over the draw of the set B,

sup
a,b∈R,a<b

(
r∑

i=1

1βi∈(a,b) − E
B′

[
r∑

i=1

1β′i∈(a,b)

])
≤ O

(√
r log

1

ζ

)
,

where B′ = {β′1, . . . , β′r} is another sample drawn from p1, . . . , pr. This implies that with probability
at least 1−ζ, every interval I of widthw satisfies |B∩I| ≤ wκr+O(

√
r log(1/ζ)). For any α ≥ 1/2,

setting w = rα−1/κ gives |B ∩ I| = O(rα
√

log 1/ζ) for all intervals of width w with probability at
least 1− ζ.

Next we prove part 2. Applying the argument from part 1 to each bucket Bi, we know that with
probability at least 1 − ζ/P , any interval of width w contains at most wκM + O(

√
M log(P/ζ))

samples belonging to Bi. Taking the union bound over the P buckets, it follows that with probability
at least 1 − ζ, every interval of width w contains at most P (wκM + O(

√
M log(1/ζ))) samples in

total from all P buckets. For any α ≥ 1/2, setting w = Mα−1/κ guarantees that the number of
samples in any interval of width w is at most O(PMα

√
log(P/ζ)).

Corollary B.1. Let B = {β1, . . . , βr} be a collection of samples where βi ∼ Uniform([ai, ai +W])
and a1, . . . , ar,W are arbitrary parameters. For any ζ > 0 and α ≥ 1/2, with probability at least

1− ζ, every interval of width w = W
r1−α contains at most O

(
rα
√

log 1
ζ

)
points.

Proof. The density function for a uniform random variable on an interval of widthW is 1/W . There-
fore, the corollary follows from part 1 of Lemma 3.1.

Finally, for completeness, we include the following folklore lemma which allows us to use uni-
form convergence for non-identical random variables, whereas typical uniform convergence bounds
are written in terms of identical random variables. It follows by modifying the well-known proof for
uniform convergence using Rademacher complexity [25, 93, 128].

Lemma B.1. Let B = {β1, . . . , βr} ⊂ R be a set of random variables where βi ∼ pi. For any ζ > 0,
with probability at least 1− ζ over the draw of the set B,

sup
a,b∈R,a<b

(
r∑

i=1

1βi∈(a,b) − E
B′

[
r∑

i=1

1β′i∈(a,b)

])
≤ O

(√
r ln

1

ζ

)
,

where B′ = {β′1, . . . , β′r} is another sample drawn from p1, . . . , pr.

Proof. Let σ be a vector of Rademacher random variables. Since the VC-dimension of intervals is 2,
we know from work by Dudley [61] that

E
σ

[
sup

a,b∈R,a<b

r∑

i=1

σi1βi∈(a,b)

]
≤ O

(√
r
)
. (B.1)

Also, we have that

sup
a,b∈R,a<b

(
r∑

i=1

1βi∈(a,b) − E
B′

[
r∑

i=1

1β′i∈(a,b)

])
= sup

a,b∈R,a<b
E
B′

[
r∑

i=1

1βi∈(a,b) −
r∑

i=1

1β′i∈(a,b)

]

≤ E
B′

[
sup

a,b∈R,a<b

(
r∑

i=1

1βi∈(a,b) − 1β′i∈(a,b)

)]
.

99

Taking the expectation over the draw of B, we have that

E
B

[
sup

a,b∈R,a<b

(
r∑

i=1

1βi∈(a,b) − E
B′

[
r∑

i=1

1β′i∈(a,b)

])]
≤ E
B,B′

[
sup

a,b∈R,a<b

(
r∑

i=1

1βi∈(a,b) − 1β′i∈(a,b)

)]
.

For each i, βi and β′i are independent and identically distributed. Therefore, we can switch them
without replacing the expectation, as follows.

E
B,B′

[
sup

a,b∈R,a<b

(
r∑

i=1

1βi∈(a,b) − 1β′i∈(a,b)

)]
= E
B,B′

[
sup

a,b∈R,a<b

(
r∑

i=1

1β′i∈(a,b) − 1βi∈(a,b)

)]
.

Letting σi be a Rademacher random variable, we have that

E
B,B′

[
sup

a,b∈R,a<b

(
r∑

i=1

1βi∈(a,b) − 1β′i∈(a,b)

)]
= E
σ,B,B′

[
sup

a,b∈R,a<b

(
r∑

i=1

σi

(
1βi∈(a,b) − 1β′i∈(a,b)

))]
.

Since

sup
a,b∈R,a<b

(
r∑

i=1

σi

(
1βi∈(a,b) − 1β′i∈(a,b)

))
≤ sup

a,b∈R,a<b

r∑

i=1

σi1βi∈(a,b) + sup
a,b∈R,a<b

r∑

i=1

−σi1β′i∈(a,b),

we have that

E
σ,B,B′

[
sup

a,b∈R,a<b

(
r∑

i=1

σi

(
1βi∈(a,b) − 1β′i∈(a,b)

))]

≤ E
σ,B

[
sup

a,b∈R,a<b

r∑

i=1

σi1βi∈(a,b)

]
+ E
σ,B′

[
sup

a,b∈R,a<b

r∑

i=1

σi1β′i∈(a,b)

]

=2 E
σ,B

[
sup

a,b∈R,a<b

r∑

i=1

σi1βi∈(a,b)

]
.

All in all, this means that

sup
a,b∈R,a<b

(
r∑

i=1

1βi∈(a,b) − E
B′

[
r∑

i=1

1β′i∈(a,b)

])
≤ 2 E

σ,B

[
sup

a,b∈R,a<b

r∑

i=1

σi1βi∈(a,b)

]
. (B.2)

We now apply McDiarmid’s Inequality to

E
σ∼{−1,1}r

[
sup

a,b∈R,a<b

r∑

i=1

σi1βi∈(a,b)

]
. (B.3)

Notice that if we switch βj with an arbitrary β′j , Equation (B.3) will change by at most 1. Therefore,
with probability at least 1− ζ over the draw of B,

∣∣∣∣∣Eσ

[
sup

a,b∈R,a<b

r∑

i=1

σi1βi∈(a,b)

]
− E
σ,B

[
sup

a,b∈R,a<b

r∑

i=1

σi1βi∈(a,b)

]∣∣∣∣∣ ≤
√
r

2
ln

2

ζ
. (B.4)

Combining Equations (B.1), (B.2), and (B.4), we have that with probability at least 1− ζ,

sup
a,b∈R,a<b

(
r∑

i=1

1βi∈(a,b) − E
B′

[
r∑

i=1

1β′i∈(a,b)

])
≤ O

(√
r ln

1

ζ

)
.

100

B.1.2 Properties of κ-bounded distributions

In order to prove dispersion for many of our applications, we start by assuming there is some random-
ness present in the relevant problem parameters and show that this implies that the resulting utility
functions are (w, k)-dispersed with meaningful parameters. The key step of these arguments is to
show that the discontinuity locations resulting from the randomness in the problem parameters have
κ-bounded density functions. The following lemmas are helpful for reasoning about how transforma-
tions of a κ-bounded random variable affect the density upper bound.

Lemma B.2. Suppose X and Y are independent, real-valued random variables drawn from κ-
bounded distributions. Let Z = |X − Y |. Then Z is drawn from a 2κ-bounded distribution.

Proof. Let fX and fY be the density functions of X and Y . The cumulative density function for Z is

FZ(z) = Pr[Z ≤ z] = Pr[Y −X ≤ z and X − Y ≤ z] = Pr[Y − z ≤ X ≤ z + Y]

=

∫ ∞

−∞

∫ y+z

y−z
fX,Y (x, y) dxdy =

∫ ∞

−∞

∫ y+z

y−z
fX(x)fY (y) dxdy

=

∫ ∞

−∞
(FX(y + z)− FX(y − z))fY (y) dy.

Therefore, applying the fundamental theorem of calculus, the density function of Z can be bounded
as follows:

fZ(z) =
d

dz
FZ(z) =

∫ ∞

−∞

d

dz
(FX(y + z)− FX(y − z))fY (y) dy

=

∫ ∞

−∞
(fX(y + z) + fX(y − z))fY (y) dy ≤ 2κ

∫ ∞

−∞
fY (y) dy = 2κ.

Next, we show that even when X and Y are dependent random variables with a κ-bounded joint
distribution, X − Y has a Wκ-bounded distribution, as long as the support set of X and Y are of
width at most W .

Lemma B.3. Suppose X and Y are real-valued random variables taking values in [a, a + W] and
[b, b + W] for some a, b,W ∈ R and suppose that their joint distribution is κ-bounded. Let Z =
X − Y . Then Z is drawn from a Wκ-bounded distribution.

Proof. The cumulative density function for Z is

FZ(z) = Pr[Z ≤ z] = Pr[X − Y ≤ z] = Pr[X ≤ z + Y]

=

∫ b+W

b

∫ y+z

a
fX,Y (x, y) dxdy.

101

The density function for Z is

fZ(z) =
d

dz
FZ(z)

=
d

dz

∫ b+W

b

∫ y+z

a
fX,Y (x, y) dxdy

=

∫ b+W

b

d

dz

∫ y+z

a
fX,Y (x, y) dxdy

=

∫ b+W

b

(
d

dz

∫ y

a
fX,Y (x, y) dx+

d

dz

∫ z

0
fX,Y (y + t, y) dt

)
dy

=

∫ b+W

b
(0 + fX,Y (y + z, y)) dy ≤Wκ,

as claimed.

Finally, we prove that if X and Y have support in (0, 1] and a κ-bounded joint distribution,
then ln(X) and ln(Y) have a κ-bounded joint distribution as well. We will use this fact to show
that ln(X) − ln(Y) is κ/2-bounded. These results are primarily useful for the maximum weight
independent set and knapsack algorithm selection dispersion analyses.

Lemma B.4. Suppose X and Y are random variables taking values in (0, 1] and suppose that their
joint distribution is κ-bounded. Let A = lnX and B = lnY . Then A and B have a κ-bounded joint
distribution.

Proof. We will perform a change of variables using the function g(x, y) = (lnx, ln y). Let g−1(a, b) =
h(a, b) = (ea, eb). Then fA,B(a, b) = fX,Y (a, b)|Jh(a, b)| ≤ κeaeb ≤ κ, where Jh is the Jacobian
matrix of h.

Lemma B.5. Suppose X and Y are random variables taking values in (0, 1] and suppose that their
joint distribution is κ-bounded. Then the distribution of ln(X)− ln(Y) is κ/2 bounded.

Proof. Let Z = ln(X) − ln(Y). We will perform change of variables using the function g(x, y) =
(x, ln(x)− ln(y)). Let g−1(x, z) = h(x, z) = (x, xe−z). Then

Jh(x, z) = det

(
1 e−z

0 −xe−z
)

= −xe−z.

Therefore, fX,Z(x, z) = xe−zfX,Y (x, xe−z). This means that fZ(z) =
∫ 1

0 xe
−zfX,Y (x, xe−z) dx ≤

κ
2ez , so when z ≥ 0, fZ(z) ≤ κ/2.

Next, we will perform change of variables using the function g(x, y) = (ln(x) − ln(y), y). Let
g−1(z, y) = h(z, y) = (yez, y). Then

Jh(z, y) = det

(
yez 0
ez 1

)
= yez.

Therefore, fZ,Y (z, y) = yezfX,Y (yez, y). This means that fZ(z) =
∫ 1

0 ye
zfX,Y (yez, y) dy ≤ κez

2 ,
so when z ≤ 0, fZ(z) ≤ κ/2.

Combining these two bounds, we see that fZ(z) ≤ κ/2.

102

Lemma B.6. Suppose X and Y are two independent continuous random variables. Suppose that
Y has a κ-bounded density function and −W ≤ X ≤ W with probability 1. Then Y/X has a
κW -bounded density function.

Proof. Let Z = Y
X and let fZ be the probability density function of Z. We want to show that for all

z ∈ R, fZ(z) ≤ κW .
It is well-known (e.g., [122]) that because X and Y are independent,

fZ(z) =

∫ ∞

−∞
|x|fX(x)fY (zx) dx.

Since Y has a κ-bounded density function and −W ≤ X ≤W with probability 1, this means that

fZ(z) =

∫ ∞

−∞
|x|fX(x)fY (zx) dx ≤ κ

∫ ∞

−∞
|x|fX(x) dx = κ

∫ W

−W
|x|fX(x) dx ≤ κW

∫ W

−W
fX(x) dx

= κW.

The first inequality follows because Y has a κ-bounded density function, the second equality follows
because −W ≤ X ≤ W with probability 1, and the final equality follows because fX is a density
function.

Lemma B.7. Suppose X is a random variable with κ-bounded distribution and suppose c 6= 0 is a
constant. Then X

c has a |c|κ-bounded distribution.

Proof. Let fX be the density function of the variable X . It is well-known [139] that if the function
v(x) is strictly increasing or strictly decreasing, then the probability density of the random variable
Y = v(X) is given by fX(a(y)) |a′(y)|, where a(y) is the inverse function of v(x). In our setting
v(x) = x

c , so a(x) = cx. Therefore, the probability density of Y = X
c is |c|fX(cx). Since X has a

κ-bounded distribution, max |c|fX(cx) ≤ |c|κ.

B.1.3 Efficient sampling

Both our differential privacy and online algorithms critically rely on our ability to sample from a
particular type of distribution. Specifically, let g be a piecewise Lipschitz function mapping vectors
in the set C ⊆ Rd to R. These applications require us to sample from a distribution µ with density
proportional to eg(ρ). We use the notation fµ(ρ) = eg(ρ)/

∫
C e

g(ρ′) dρ′ to denote the density function
of µ. In this section we provide efficient algorithms for approximately sampling from µ. Our utility
guarantees, privacy guarantees, and regret bounds in the following sections include bounds that hold
under approximate sampling procedures.

Efficient implementation for 1-dimensional piecewise Lipschitz functions

We begin with an efficient and exact algorithm for sampling from µ in 1-dimensional problems. Our
algorithms for higher dimensional sampling have the same basic structure. First, our algorithm re-
quires that the parameter space C is an interval on the real line. Second, it requires that fµ is piecewise
defined with efficiently computable integrals on each piece of the domain. More formally, suppose
there are intervals

{
[ai, bi)

}K
i=1

partitioning C such that the indefinite integral Fi of fµ restricted to
[ai, bi) is efficient to compute. We propose a two-stage sampling algorithm. First, it randomly chooses

103

one of the intervals [ai, bi) with probability proportional to
∫ bi
ai
fµ(ρ) dρ = Fi(bi)− Fi(ai). Then, it

outputs a sample from the conditional distribution on that interval. By breaking the problem into two
stages, we take advantage of the fact that fµ has a simple form on each of its components. We thus
circumvent the fact that fµ may be a complicated function globally. We provide the pseudocode in
Algorithm 14.

Algorithm 14 One-dimensional sampling algorithm

Require: Function g, intervals
{

[ai, bi)
}K
i=1

partitioning C
1: Define h(ρ) = exp

(
g(ρ)

)
and let Hi be the indefinite integral of h on [ai, bi).

2: Let Zi = Hi(bi)−Hi(ai) and define Pi(ρ) = 1
Zi

(
Hi(ρ)−Hi(ai)

)
.

3: Choose random interval index I = i with probability Zi/
∑

j Zj .
4: Let U be uniformly distributed in [0, 1] and set ρ̂ = P−1

I (U).
Ensure: ρ̂

The following lemma shows that Algorithm 14 exactly outputs a sample from fµ(ρ) ∝ eg(ρ).

Lemma B.8. Algorithm 14 outputs samples from the distribution µ with density fµ(ρ) ∝ eg(ρ).

Proof. Let µ be the target distribution. The density function for µ is given by fµ(ρ) = h(ρ)/Z, where
h(ρ) = eg(ρ) and Z =

∫
C g(ρ) dρ =

∑K
i=1 Zi. Let ρ̂ be the output of Algorithm 14. We need to show

that Pr(ρ̂ ≤ τ) =
∫ τ
a1
fµ(ρ) dρ for all τ ∈ C.

Fix any τ ∈ C and let T be the largest index i such that bi ≤ τ . Then we have

Pr(ρ̂ ≤ τ) =
T∑

i=1

Pr(ρ̂ ∈ [ai, bi)) + Pr(ρ̂ ∈ [aT+1, τ)) =
1

Z

T∑

i=1

Zi +
1

Z
(HT+1(τ)−HT+1(aT+1))

=
1

Z

T∑

i=1

∫ bi

ai

h(ρ) dρ+
1

Z

∫ τ

aT+1

f(ρ) dρ =
1

Z

∫ τ

a1

h(ρ) dρ =

∫ τ

a1

fµ(ρ) dρ,

as required.

Efficient approximate sampling in multiple dimensions

In this section, we turn to the multi-dimensional setting. We present an efficient algorithm for ap-
proximately sampling from µ with density fµ(ρ) ∝ eg(ρ). It applies to the case where the input
function g is piecewise concave and each piece of the domain is a convex set. As in the single di-
mensional case, the algorithm first chooses one piece of the domain with probability proportional to
the integral of fµ on that piece, and then it outputs a sample from the conditional distribution on that
piece. See Algorithm 15 for the pseudo-code. Our algorithm uses techniques from high dimensional
convex geometry. These tools allow us to approximately integrate and sample efficiently. Bassily et
al. [26] used similar techniques for differentially private convex optimization. Their algorithm also
approximately samples from the exponential mechanism’s output distribution. We generalize these
techniques to apply to cases when the function g is only piecewise concave.

We will frequently measure the distance between two probability measures in terms of the relative
(multiplicative) distance D∞. This is defined as D∞(χ, σ) = supρ

∣∣log dχ
dσ (ρ)

∣∣, where dχ
dσ denotes

the Radon-Nikodym derivative. The following lemma characterizes the D∞ metric in terms of the
probability mass of sets:

104

Lemma B.9. For any probability measures χ and σ, we have that D∞(χ, σ) ≤ β if and only if for
every set S we have e−βσ(S) ≤ χ(S) ≤ eβσ(S).

Proof. First, suppose that D∞(χ, σ) ≤ β. Then for every ρ, we have that −β ≤ log dχ
dσ (ρ) ≤ β.

Exponentiating both sides gives e−β ≤ dχ
dσ (ρ) ≤ eβ . Now fix any set A. We have:

χ(A) =

∫

A

dχ

dσ
(ρ) dσ(ρ) ≤ eβ

∫

A
1 dσ(s) = eβσ(A).

Similarly, χ(A) ≥ e−βσ(A).
Now suppose that e−βσ(A) ≤ χ(A) ≤ eβσ(A) for all sets A and let ρ be any point. Let

Bi = B(x, 1/i) be a sequence of decreasing balls converging to ρ. The Lebesgue differentiation
theorem gives that

dχ

dσ
(ρ) = lim

i→0

1

σ(Bi)

∫

Bi

dχ

dσ
(y) dσ(y) = lim

i→0

χ(Bi)

σ(Bi)
.

Since e−β ≤ χ(Bi)
σ(Bi)

≤ eβ for all i, it follows that −β ≤ log dχ
dσ (ρ) ≤ β, as required.

Our algorithm depends on two subroutines from high-dimensional convex computational geom-
etry. These subroutines use rapidly mixing random walks to approximately integrate and sample
from µ. These procedures are efficient when the function we would like to integrate or sample is
logconcave. which holds in our setting, since fµ is piecewise logconcave when g is piecewise con-
cave. Formally, we assume that we have access to two procedures, Aintegrate and Asample, with the
following guarantees. Let h : Rd → R≥0 be any logconcave function, we assume

1. For any accuracy parameter α > 0 and failure probability ζ > 0, running Aintegrate(h, α, ζ)
outputs a number Ẑ such that with probability at least 1− ζ we have e−α

∫
h ≤ Ẑ ≤ eα

∫
h.

2. For any accuracy parameter β > 0 and failure probability ζ > 0, runningAsample(h, β, ζ) outputs
a sample X̂ drawn from a distribution µ̂h such that with probability at least 1−ζ,D∞(µ̂h, µh) ≤ β.
Here, µh is the distribution with density proportional to h.

For example, the integration algorithm of Lovász and Vempala [101] satisfies our assumptions on
Aintegrate and runs in time poly(d, 1

α , log 1
ζ , log R

r), where the domain of h is contained in a ball
of radius R, and the level set of h of probability mass 1/8 contains a ball of radius r. Similarly,
Algorithm 6 of Bassily et al. [26] satisfies our assumptions on Asample with probability 1 and runs
in time poly(d, L, 1

β , log R
r). When we refer to Algorithm 15 in the rest of the chapter, we use these

integration and sampling procedures.

Algorithm 15 Multi-dimensional sampling algorithm for piecewise concave functions

Require: Piecewise concave function g, partition C1, . . . , CK on which g is concave, approximation
parameter η, confidence parameter ζ.

1: Define α = β = η/3.
2: Let h(ρ) = exp(g(ρ)) and hi(ρ) = I{ρ ∈ Ci}h(ρ) be h restricted to Ci.
3: For each i ∈ [K], let Ẑi = Aintegrate(hi, α, ζ/(2K)).
4: Choose random partition index I = i with probability Ẑi/

∑
j Ẑj .

5: Let ρ̂ be the sample output by Asample(hI , β, ζ/2).
Ensure: ρ

105

The main result in this section is that with high probability the output distribution of Algorithm 15
is close to µ.

Lemma B.10. With probability at least 1−ζ all the approximate integration and sampling operations
performed by Algorithm 15 succeed. Let µ̂ be the output distribution of Algorithm 15 conditioned
on all integration and sampling operations succeeding and let µ be the distribution with density
fµ(ρ) ∝ eg(ρ). Then we have D∞ (µ̂, µ) ≤ η.

Proof. First, with probability at least 1 − ζ every call to the subprocedures Aintegrate and Asample

succeeds. Assume this high probability event occurs for the remainder of the proof.
Let C1, . . . , CK , fµ, and h1, . . . , hK be as defined in Algorithm 15. Let E ⊂ C be any set of

outcomes and let µ̂i denote the output distribution of Asample(hi, β, δ
′/(2K)). We have

µ̂(E) = Pr(ρ̂ ∈ E) =
K∑

i=1

Pr(ρ̂ ∈ E|ρ̂ ∈ Ci) Pr(ρ̂ ∈ Ci) =
K∑

i=1

µ̂i(E) · Ẑi∑
j Ẑj

.

Using the guarantees on Aintegrate and Asample and Lemma B.9, it follows that

µ̂(E) ≤
K∑

i=1

eβµi(E)e2α Zi∑
j Zj

= eηµ(E),

where Zi =
∫
Ci fµ and µi is the distribution with density proportional to ρ 7→ I{ρ ∈ Ci} · h(ρ).

Similarly, we have that µ̂(E) ≥ e−ηµ(E). By Lemma B.9 it follows that D∞(µ̂, µ) ≤ η.

B.1.4 Proofs for online learning (Section 3.1.3)

In our regret bounds and utility guarantees for differentially private optimization, we assume that the
ball of radius w centered at an optimal point ρ∗ is contained in the parameter space C. Lemma B.11
shows that when C is convex, we can transform the problem so that this condition is satisfied, at the
cost of doubling the radius of C.

Lemma B.11. Let C ⊂ Rd be a convex parameter space contained in a ball of radius R and let
u1, . . . , uT : C → [0, H] be any piecewise L-Lipschitz and (w, k)-dispersed utility functions. There
exists an enlarged parameter space C′ ⊃ C contained in a ball of radius 2R and extended utility
functions q1, . . . , qT : C′ → [0, H] such that:

1. Any maximizer of
∑

t qt can be transformed into a maximizer for
∑

t ut by projecting onto C.

2. The functions q1, . . . , qt are piecewise L-Lipschitz and (w, k)-dispersed.

3. There exists an optimizer ρ∗ ∈ argmaxρ∈C′
∑

t qt(ρ) such that B(ρ∗, R) ⊂ C′.

Proof. For any ρ ∈ Rd, let C(ρ) = argminρ′∈C ‖ρ− ρ′‖2 denote the Euclidean projection of ρ onto
C. Define C′ = {ρ ∈ Rd : ‖ρ− C(ρ)‖2 ≤ R} to be the set of points within distance R of C, and let
qt : C′ → [0, H] be given by qt(ρ) = ut(C(ρ)) for t ∈ [T]. Since C is contained in a ball of radius R
and every point in C′ is within distance R of C, it follows that C′ is contained in a ball of radius 2R.

Part 1. Let ρ∗ ∈ argmaxρ∈C′
∑T

t=1 qt(ρ) be any maximizer of
∑

t qt. We need to show that C(ρ∗)
is a maximizer of

∑
t ut. First, since for any ρ ∈ C′ we have qt(ρ) = ut(C(ρ)), it follows that

106

maxρ∈C′
∑T

t=1 qt(ρ) = maxρ∈C
∑T

t=1 ut(ρ) (i.e., the maximum value attained by
∑

t qt over C′ is
equal to the maximum value attained by

∑
t ut over C). Since ρ∗ is a maximizer of

∑
t qt, we have

maxρ∈C
∑T

t=1 ut(ρ) =
∑T

t=1 qt(ρ
∗) =

∑T
t=1 ut(C(ρ∗)) and it follows that C(ρ∗) is a maximizer for∑

t ut.

Part 2. Next, we show that each function qt is piecewise L-Lipschitz. Let C1, . . . , CN be the partition
of C such that ut is L-Lipschitz on each piece, and define C′1, . . . , C′N by C′i = {ρ ∈ C′ : C(ρ) ∈ Ci}
for each i ∈ [N]. We will show that qt is L-Lipschitz on each set C′i. To see this, we use the fact
that projections onto convex sets are contractions (i.e., ‖ρ − ρ′‖2 ≥ ‖C(ρ) − C(ρ′)‖2). From this it
follows that for any ρ,ρ′ ∈ C′i we have

|qt(ρ)− qt(ρ′)| = |ut(C(ρ))− ut(C(ρ′))| ≤ L · ‖C(ρ)− C(ρ′)‖2 ≤ L · ‖ρ− ρ′‖2,

where the first inequality follows from the fact that C(ρ) and C(ρ′) belong to Ci and ut is L-Lipschitz
on Ci.

Next, we show that q1, . . . , qT are (w, k)-dispersed. Fix any function index t, let B = B(ρ, w)
be any ball of radius w and suppose that B is split by the partition C′1, . . . , C′N of C′ defined above
for which qt is piecewise Lipschitz. This implies that we can find two points ρ1 and ρ2 in B such
that (after possibly renaming the partitions) we have ρ1 ∈ C′1 and ρ2 ∈ C′2. By definition of the sets
C′i, it follows that C(ρ1) ∈ C1 and C(ρ2) ∈ C2. Moreover, since projections onto convex sets are
contractions, we have that C(ρ1) and C(ρ2) are both contained in B(C(ρ), w). Therefore, the ball
B(C(ρ), w) is split by the partition C1, . . . , CT of C on which ut is piecewise L-Lipschitz. It follows
that if no ball of radius w is split by more than k of the piecewise Lipschitz partitions for the functions
u1, . . . , uT , then the same is true for q1, . . . , qT .

Part 3. Finally, let ρ∗ ∈ argmaxρ∈C
∑

t ut(ρ). This point is also a maximizer for
∑

t qt, and is
contained in the R-interior of C′.

We now turn to proving our main result for online piecewise Lipschitz optimization in the full
information setting.

Algorithm 16 Online learning algorithm for single-dimensional piecewise functions

Require: λ ∈ (0, 1/H]
1: Set u0(·) = 0 to be the constant 0 function over C.
2: for t = 1, 2, . . . , T do
3: Obtain a point ρt using Algorithm 14 with g = λ

∑t−1
s=0 us. (The point ρt is sampled with

probability proportional to eg(ρt).)
4: Observe the the function ut(·) and receive payoff ut(ρt).

Theorem 3.1. Let u1, . . . , uT : C → [0, H] be any sequence of piecewise L-Lipschitz functions that
are (w, k)-dispersed at the maximizer ρ∗. Suppose C ⊂ Rd is contained in a ball of radius R and
B(ρ∗, w) ⊂ C. The exponentially weighted forecaster with λ =

√
d ln(R/w)/T/H has expected

regret bounded by

O

(
H

(√
Td log

R

w
+ k

)
+ TLw

)
.

107

Algorithm 17 Online learning algorithm for multi-dimensional piecewise concave functions

Require: λ ∈ (0, 1/H], η, ζ ∈ (0, 1).
1: Set u0(·) = 0 to be the constant 0 function over C.
2: for t = 1, 2, . . . , T do
3: Obtain a vector ρt using Algorithm 15 with g = λ

∑t−1
s=0 us, approximation parameter η/4,

and confidence parameter ζ/T . (The vector ρt is sampled with probability that is approximately
proportional to eg(ρt).)

4: Observe the function ut(·) and receive payoff ut(ρt).

For all rounds t ∈ [T], suppose
∑t

s=1 us is piecewise Lipschitz over at most K pieces. When
d = 1 and exp(

∑t
s=1 us) can be integrated in constant time on each of its pieces, the running

time is O(TK). When d > 1 and
∑t

s=1 us is piecewise concave over convex pieces, we provide
an efficient approximate implementation. For approximation parameters η = ζ = 1/

√
T and λ =√

d ln(R/w)/T/H , this algorithm has the same regret bound as the exact algorithm and runs in time
Õ(T (K · poly(d, 1/η) + poly(d, L, 1/η)).

Proof. Define u0(ρ) = 0 and Ut(ρ) =
∑t−1

s=0 us(ρ) for each t ∈ [T]. Let Wt =
∫
C exp(λUt(ρ)) dρ

be the normalizing constant at round t and let Pt = Eρ∼pt [ut(ρ)] denote the expected payoff achieved
by the algorithm in round t, where the expectation is only with respect to sampling ρt from pt. Also,
let P (A) =

∑T
t=1 Pt be the expected payoff of the algorithm (with respect to its random choices).

We begin by upper bounding Wt+1/Wt by exp
((
eλ − 1

)
Pt
)
.

Wt+1

Wt
=

∫
C exp(λUt+1(ρ)) dρ∫
C exp(λUt(ρ)) dρ

=

∫
C exp(λUt(ρ)) · exp(λut(ρ)) dρ∫

C exp(λUt(ρ)) dρ
(Ut+1 = Ut + ut)

=

∫

C
pt(ρ) exp(λut(ρ)) dρ (By definition of pt)

≤
∫

C
pt(ρ)

(
1 + (eHλ − 1)

ut(ρ)

H

)
dρ (For z ∈ [0, 1], eλz ≤ 1 + (eλ − 1)z)

≤ 1 + (eHλ − 1)
Pt
H
≤ exp

(
(eHλ − 1)

Pt
H

)
(1 + z ≤ ez).

Therefore,

WT+1

W1
≤ exp

(
eHλ − 1

H

T∑

i=1

Pt

)
= exp

(
P (A)

(
eHλ − 1

)

H

)
. (B.5)

We now lower bound WT+1/W1. To do this, let ρ∗ be the optimal parameter and let OPT =
UT+1(ρ∗). Also, let B∗ be the ball of radius w around ρ∗. From (w, k)-dispersion, we know that for

108

all ρ ∈ B∗, UT+1(ρ) ≥ OPT−Hk − LTw. Therefore,

WT+1 =

∫

C
exp(λUT+1(ρ)) dρ

≥
∫

B∗
exp(λUT+1(ρ)) dρ

≥
∫

B∗
exp(λ(OPT−Hk − LTw))dρ

≥ Vol(B(ρ∗, w)) exp(λ(OPT−Hk − LTw)).

Moreover, W1 =
∫
C exp(λU1(ρ)) dρ ≤ Vol(B(0, R)). Therefore,

WT+1

W1
≥ Vol(B(ρ∗, w))

Vol(B(0, R))
exp(λ(OPT−Hk − LTw)).

The volume ratio is equal to (w/R)d, since the volume of a ball of radius r in Rd is proportional to
rd. Therefore,

WT+1

W1
≥
(w
R

)d
exp(λ(OPT−Hk − LTw)). (B.6)

Combining Equations B.5 and B.6, taking the log, and rearranging terms, we have that

OPT ≤ P (A)(eHλ − 1)

Hλ
+
d ln(R/w)

λ
+Hk + LTw.

We subtract P (A) on either side have that

OPT− P (A) ≤ P (A)(eHλ − 1−Hλ)

Hλ
+
d ln(R/w)

λ
+Hk + LTw.

We use the fact that for z ∈ [0, 1], ez ≤ 1 + z + (e− 2)z2 and the that P (A) ≤ HT to conclude that

OPT− P (A) ≤ H2Tλ+
d ln(R/w)

λ
+Hk + LTw.

The analysis of the efficient multi-dimensional algorithm that uses approximate sampling is given in
Theorem B.1.

Next, we argue that the dependence on the Lipschitz constant can be made logarithmic by tun-
ing the parameter w exploiting the fact that any functions that are (w, k)-dispersed are also (w′, k)-
dispersed for w′ ≤ w.

Corollary B.2. Let u1, . . . , uT be the functions observed by Algorithm 16 and suppose they satisfy the
conditions of Theorem 3.1. Suppose T ≥ 1/(Lw). Setting λ = 1/(H

√
T), the regret of Algorithm 16

is bounded by H
√
T (1 + d ln(RNL)) +Hk + 1.

Proof. This bound follows from applying Theorem 3.1 using the (w′, k)-disperse critical boundaries
condition with w′ = 1/(LT). The lower bound on requirement on T ensures that w′ ≤ w.

Lemma B.12 shows that when the sequence of functions u1, . . . , uT are chosen by a smoothed
adversary in the sense of Cohen-Addad and Kanade [46] then the set of functions is (w, k)-dispersed
with non-trivial parameters.

109

Lemma B.12. Let u1, . . . , uT be a sequence of functions chosen by a κ-smoothed adversary. That is,
each function ut has at most τ discontinuities, each drawn independently from a potentially different
κ-bounded density. For any α ≥ 1/2, with probability at least 1 − ζ the functions u1, . . . , uT are
(w, k)-dispersed with w = 1

κ(Tτ)1−α and k = O((Tτ)α
√

log 1/ζ).

Proof. There are a total of Tτ discontinuities from the T functions, each independently drawn from
a κ-bounded density. Applying the first part of Lemma 3.1 guarantees that with high probability,
every interval of width w contains at most O(Tτκw +

√
Tτ log(1/ζ)) discontinuities. Setting w =

1
κ(Tτ)1−α completes the proof.

Bandit Online Optimization

Our algorithm for online learning under bandit feedback requires that we construct a w-net for the
parameter space C. The following Lemma shows that there exists a w-net for any set contained in a
ball of radiusR of size (3R/w)d. This is a standard result, but we include the proof for completeness.

Lemma B.13. Let C ⊂ Rd be contained in a ball of radius R. Then there exists a subset Ĉw ⊂ C
such that |Ĉw| ≤ (3R/w)d and for every ρ ∈ C there exists ρ̂ ∈ Ĉw such that ‖ρ− ρ̂‖2 ≤ w.

Proof. Consider the following greedy procedure for constructing Ĉw: while there exists any point in C
further than distance w from Ĉw, pick any such point and it to the Ĉw. Suppose this greedy procedure
has added points rho1, . . . , ρn to the covering so far. We will argue that the algorithm must terminate
with n ≤ (3R/w)d.

By construction, we know that the distance between any ρi and ρj is at least w, which implies that
the balls B(ρ1, w/2), . . . , B(ρn, w/2) are all disjoint. Moreover, since their centers are contained C
which is contained in a ball of radiusR, we are guaranteed that the balls of radiusw/2 centered on ρ1,
. . . , ρn are also contained in a ball of radius R + w/2. Therefore, we have Vol(

⋃n
i=1B(ρi, w/2)) ≤

Vol(B(0, R + w/2)). Since the balls B(ρi, w/2) are disjoint, we have Vol(
⋃n
i=1B(ρi, w/2)) =∑n

i=1 Vol(B(ρi, w/2)) = n(w/2)dvd, where vd is the volume of the unit ball in d dimensions.
Similarly, Vol(B(0, R + w/2)) = (R + w/2)dvd. Therefore, we have n ≤

(2(R+w/2)
w

)d ≤
(

3R
w

)d,
where the last inequality follows from the fact that w < R.

Approximate sampling for online learning

Theorem B.1. Let u1, . . . , uT : C → [0, H] be the sequence of functions observed by Algorithm 17.
Suppose that each ut is piecewise L-Lipschitz and concave on convex pieces. Moreover, suppose that
u1, . . . , uT are (w, k)-disperse, C ⊂ Rd is convex and contained in a ball of radius R, and that for
some ρ∗ ∈ argmaxρ∈C

∑T
t=1 ut(ρ) we have B(ρ∗, w) ⊂ C. Then for any η, ζ ∈ (0, 1), the expected

regret of Algorithm 17 with λ =
√
d ln(R/w)/T/H is bounded by

O(H(
√
Td ln(R/w) + k) + TLw + ηHT + ζHT).

Moreover, suppose there are K intervals partitioning C so that
∑T

t=1 ut is piecewise L-Lipschitz
on each region. Also, suppose that we use the integration algorithm of Lovász and Vempala [101]
and the sampling algorithm of Bassily et al. [26] to implement Algorithm 15. The running time of
Algorithm 17 is

T

(
K · poly

(
d,

1

η
, log

TK

ζ
, log

R

r

)
+ poly

(
d, L,

1

η
, log

R

r

))
.

110

Proof. On each round we use Algorithm 15 to approximately sample a point from the distribution
proportional to gt(ρ) = exp(λ

∑T
t=1 ut(ρ)). Each invocation of Algorithm 15 has failure probability

ζ ′ = ζ/T , which implies that with probability at least 1 − ζ the sampler succeeds on every round.
Assume this high probability event holds for the remainder of the proof. In this case, Lemma B.10
guarantees that if µ̂t is the output distribution of Algorithm 15 oun round t and µt is the distribution
with density proportional to gt, then we have D∞(µ̂t, µt) ≤ η.

Next, we show that the expected utility per round of the approximate sampler is at most a (1− η)
factor smaller than the expected utility per round of the exact sampler. Let ρ̂t ∼ µ̂t and ρt ∼ µt be
samples drawn from the approximate and exact samplers at round t, respectively. Then we have

E[ut(ρ̂t)] =

∫ ∞

0
Pr(ut(ρ̂t) ≥ τ) dτ ≥ e−η

∫ ∞

0
Pr(ut(ρt) ≥ τ) dτ = e−η·E[ut(ρt)] ≥ (1−η)·E[ut(ρt)].

where the first inequality follows from Lemma B.9 (i.e., since D∞(µ̂t, µt) ≤ η, we know that the
probability mass of any event under µ̂t is at least e−η of its mass under µt). Using this, we can bound
the excess regret suffered by the approximate sampler compared to the exact sampling algorithm:

E
[T∑

t=1

ut(ρt)− ut(ρ̂t)
]
≤ E

[T∑

t=1

ut(ρt)

]
− (1− η) · E

[T∑

t=1

ut(ρt)

]
= η · E

[T∑

t=1

ut(ρt)

]
≤ ηHT.

Combining this with the regret bound for the exact sampling algorithm gives a regret bound of

H2Tλ+
d ln(R/W)

λ
+Hk + TLw + ηHT + ζHT.

where the ζHT term comes from the ζ-probability event that at least one invocation of the approxi-
mate sampler fails, in which case the maximum possible regret is HT . Setting η = ζ = 1/

√
T and λ

as in Theorem 3.1 gives a regret bound of

O(H(
√
Td log(R/w) + k) + TLw).

Lower bound for single-dimensional parameter spaces

We will use the following adversarial construction to prove our lower bound.

Lemma B.14 (Weed et al. [143]). Define the two functions u(0) : [0, 1] → [0, 1] and u(1) : [0, 1] →
[0, 1] such that

u(0)(ρ) =

{
1
2 if ρ < 1

2

0 if ρ ≥ 1
2

and u(1)(ρ) =

{
1
2 if ρ < 1

2

1 if ρ ≥ 1
2 .

There exists a pair of adversaries U and L defining two distributions µU and µL over
{
u(0), u(1)

}

such that for any learning algorithm,

max
A∈{U,L}

max
ρ∈[0,1]

E

[
T∑

t=1

ut(ρ)−
T∑

t=1

ut(ρt)

]
≥ 1

32

√
T ,

where the expectation is over u1, . . . , uT ∼ µA and the random choices ρ1, . . . , ρT of the algorithm.
Moreover, under adversaryU , any parameter ρ ≥ 1

2 is optimal and under adversaryL, any parameter
ρ < 1

2 is optimal.

111

Specifically, the adversary U defined by Weed et al. [143] selects the function u(0) with proba-
bility 1

2 − 1
8
√
T

and u(1) with probability 1
2 + 1

8
√
T

. Meanwhile, the adversary L selects the function

u(0) with probability 1
2 + 1

8
√
T

and u(1) with probability 1
2 − 1

8
√
T

. The theorem’s proof follows from
standard information theoretic techniques for lower bounds (e.g., Tsybakov [140]).

Weed et al. [143] study the specific problem of learning to bid in an online setting. A single item
is sold at each round. The learner is a potential buyer, and he does not know his value for the item
at any given round. The seller sells each item in a second-price auction. The other buyers’ values
may be adversarially selected. If the buyer wins the item, he learns his value, but if he does not win
the item, he learns nothing about his value at that round. Thus, the buyer must learn to bid without
knowing his value. Weed et al. [143] prove that the buyer’s optimization problem amounts to the
online optimization of threshold functions with a specific structure. They do not develop a general
theory of dispersion, but we can map their analysis into our setting. In essence, they prove that if these
threshold functions are (w, 0)-dispersed at the maximizer, then the adversary’s regret is bounded by

O
(√

T log 1
w

)
. They use Lemma B.14 to prove a matching lower bound.

Theorem B.2. For any learning algorithm and T ≥ 3, there is a sequence u1, . . . , uT of piecewise
constant functions mapping [0, 1] to [0, 1] such that if

D = {(w, k) : {u1, . . . , uT } is (w, k)-dispersed at the maximizer},

then

max
ρ∈[0,1]

E

[
T∑

t=1

ut(ρ)− ut (ρt)

]
= Ω

(
inf

(w,k)∈D

{√
T log

1

w
+ k

})
.

Proof. We begin with an outline of the proof. For the first T −
√
T rounds, our adversary behaves

exactly like the worse of the two adversaries defined in Lemma B.14, playing threshold functions at
each round. Each threshold function has a discontinuity at ρ = 1

2 . Since these functions are piecewise

constant, either 1
4 or 3

4 maximizes the sum
∑T−

√
T

t=1 ut. Denoting this maximizer as ρ∗, our adversary
then plays

√
T copies of the indicator function corresponding to the interval

[
ρ∗ − 2−T , ρ∗ + 2−T

]
.

At the end of all T rounds, ρ∗ maximizes the sum
∑T

t=1 ut. We prove that the expected regret incurred
by this adversary is at least

√
T

64 , which follows from Lemma B.14. In order to prove the theorem,

we need to show that
√
T

64 = Ω
(

inf(w,k)∈D

{√
T log 1

w + k
})

. Therefore, we need to show that the
set of functions played by the adversary is (w, k)-dispersed at the maximizer ρ∗ for w = Θ(1) and
k = O

(√
T
)
. The reason this is true is that the only functions with discontinuities in the interval

[
ρ∗ − 1

8 , ρ
∗ + 1

8

]
are the final

√
T functions played by the adversary. Thus, the theorem statement

holds.

Regret lower bound. Fix the learning algorithm. We begin be demonstrating the existence of a
sequence of functions inducing a regret lower bound of Ω

(√
T
)

.

Claim B.1. Let T ′ =
⌊
T −
√
T
⌋

. There is a sequence u1, . . . , uT ′ of piecewise constant functions
mapping [0, 1] to [0, 1] such that:

1. The expected regret is lower bounded as follows: maxρ∈[0,1] E
[∑T ′

t=1 ut(ρ)− ut (ρt)
]
≥
√
T

64 ,

where the expectation is over the random choices ρ1, . . . , ρT ′ of the learner.

112

2. Each function ut is a threshold function with a discontinuity at 1
2 .

3. Either
[
0, 1

2

]
= argmaxρ∈[0,1]

∑T ′

t=1 ut(ρ) or
(

1
2 , 1
]

= argmaxρ∈[0,1]

∑T ′

t=1 ut(ρ).

Proof of Claim B.1. By Lemma B.14, there exists a randomized adversary such that

max
ρ∈[0,1]

E

[
T ′∑

t=1

ut(ρ)− ut (ρt)

]
≥ 1

32

√
T ′ =

1

32

√⌊
T −
√
T
⌋
≥ 1

32

√
T −
√
T

2
≥
√
T

64
,

where the expectation is over the random sequence u1, . . . , uT ′ of functions chosen by the adversary
and the random choices ρ1, . . . , ρT ′ of the learner. Since this inequality holds in expectation over the
adversary’s choices, there must be a sequence u1, . . . , uT ′ of functions such that

max
ρ∈[0,1]

E

[
T ′∑

t=1

ut(ρ)− ut (ρt)

]
≥
√
T

64
,

where the expectation is only over the random choices ρ1, . . . , ρT ′ of the learner. Therefore, the first
part of the claim holds. By Lemma B.14, we know that each function is piecewise constant with a
discontinuity at 1

2 , so the second part of the claim holds. Finally, Lemma B.14 guarantees that either
every parameter in [0, 1/2] is optimal, or every parameter in (1/2, 1] is optimal, so the third part of
the claim holds.

Construction of the final
√
T functions. From the previous claim, we know that either

[
0, 1

2

]
=

argmaxρ∈[0,1]

∑T ′

t=1 ut(ρ) or
(

1
2 , 1
]

= argmaxρ∈[0,1]

∑T ′

t=1 ut(ρ). We define the parameter ρ∗ ∈{
1
4 ,

3
4

}
such that ρ∗ = 1

4 in the former case, and ρ∗ = 3
4 in the latter case. Under this definition,

ρ∗ maximizes the sum
∑T ′

t=1 ut. We now define the functions uT ′+1, . . . , uT to all be equal to the
function ρ 7→ 1{ρ∈[ρ∗−2−T ,ρ∗+2−T]}. Under this definition, the parameter ρ∗ remains a maximizer of
the sum

∑T
t=1 ut.

In our final regret bound, we will use the following property of the functions uT ′+1, . . . , uT .

Claim B.2. For any parameters ρT ′+1, . . . , ρT ,
∑T

t=T ′+1 ut (ρ∗)− ut (ρt) ≥ 0.

Proof of Claim B.2. By definition,
∑T

t=T ′+1 ut (ρ∗) = T − T ′ + 1. Since the range of each function
ut is contained in [0, 1], for any parameters ρT ′+1, . . . , ρT ,

∑T
t=T ′+1 ut (ρt) ≤ T −T ′+1. Therefore,

the claim holds.

Dispersion parameters. We now prove that the only functions with discontinuities in the interval[
ρ∗ − 1

8 , ρ
∗ + 1

8

]
are the functions uT ′+1, . . . , uT . Since T ≥ 3, if ρ∗ = 1

4 , then
[
ρ∗ − 2−T , ρ∗ + 2−T

]
⊆[

ρ∗ − 1
8 , ρ
∗ + 1

8

]
⊂
[
0, 1

2

]
and ρ∗ = 3

4 , then
[
ρ∗ − 2−T , ρ∗ + 2−T

]
⊆
[
ρ∗ − 1

8 , ρ
∗ + 1

8

]
⊂
(

1
2 , 1
]
.

Since the discontinuities of the functions u1, . . . , uT ′ only fall at 1
2 , this means that the interval[

ρ∗ − 1
8 , ρ
∗ + 1

8

]
only contains the discontinuities of the functions uT ′+1, . . . , uT . Since T − T ′ =

T −
⌊
T −
√
T
⌋
≤ T −

(
T −
√
T − 1

)
=
√
T + 1, the set {u1, . . . , uT } is

(
1
8 ,
√
T + 1

)
-dispersed

113

at the maximizer ρ∗. Therefore,

inf
(w,k)∈D

{√
T log

1

w
+ k

}

≤
√
T log 8 +

√
T + 1

≤ 4
√
T + 0

≤ 256 max
ρ∈[0,1]

E

[
T ′∑

t=1

ut(ρ)− ut (ρt)

]
+ E

[
T∑

t=T ′+1

ut (ρ∗)− ut (ρt)

]
(Claims B.1 and B.2)

= 256E

[
T ′∑

t=1

ut (ρ∗)− ut (ρt)

]
+ E

[
T∑

t=T ′+1

ut (ρ∗)− ut (ρt)

] (
ρ∗ ∈ argmax

ρ∈[0,1]

T ′∑

t=1

ut(ρ)

)

≤ 256E

[
T∑

t=1

ut (ρ∗)− ut (ρt)

]

≤ 256 max
ρ∈[0,1]

E

[
T∑

t=1

ut (ρ)− ut (ρt)

]
.

Therefore,

max
ρ∈[0,1]

E

[
T∑

t=1

ut(ρ)− ut (ρt)

]
= Ω

(
inf

(w,k)∈D

{√
T log

1

w
+ k

})
,

as claimed.

Remark B.1. As we describe in Section 3.1.1, Cohen-Addad and Kanade [46] show that if the func-
tions their full-information, online optimization algorithm sees are piecewise constant, map from
[0, 1] to [0, 1], and are (w, 0)-dispersed at the maximizer, then their algorithm’s regret is bounded by
O
(√

T ln(1/w)
)

. The worst-case, piecewise constant functions u1, . . . , uT from Theorem B.2 map

from [0, 1] to [0, 1] and are
(

1
8 ,
√
T + 1

)
-dispersed at the maximizer, which means that our regret

upper bound (Theorem 3.1) is O
(√

T log(1/w) + k
)

= O
(√

T
)

. However, these functions are

not (w, 0)-dispersed at the maximizer for any w ≥ 2−T , so the regret bound by Cohen-Addad and
Kanade [46] is trivial, since

√
T log(1/w) with w = 2−T equals T .

Lower bound for multi-dimensional parameter spaces

We begin with the following corollary of Lemma B.14 by Weed et al. [143] which simply generalizes
the adversarial functions from single-dimensional thresholds to multi-dimensional thresholds (i.e.,
axis-aligned hyperplanes).

Corollary B.3 (Corollary of Lemma B.14). For any i ∈ [d], define the two functions u(0) : [0, 1]d →
[0, 1] and u(1) : [0, 1]d → [0, 1] such that

u(0)(ρ) =

{
1
2 if ρ[i] < 1

2

0 if ρ[i] ≥ 1
2

and u(1)(ρ) =

{
1
2 if ρ[i] < 1

2

1 if ρ[i] ≥ 1
2 .

114

There exists a pair of adversaries U and L defining two distributions µU and µL over
{
u(0), u(1)

}

such that for any learning algorithm,

max
A∈{U,L}

max
ρ∈[0,1]d

E

[
T∑

t=1

ut(ρ)−
T∑

t=1

ut(ρt)

]
≥ 1

32

√
T ,

where the expectation is over u1, . . . , uT ∼ µA and the random choices ρ1, . . . ,ρT of the algorithm.
Moreover, under adversary U , any parameter vector ρ such that ρ[i] > 1

2 is optimal and under
adversary L, any parameter vector ρ such that ρ[i] ≤ 1

2 is optimal.

Theorem 3.2. Suppose T ≥ d. For any algorithm, there are piecewise constant functions u1, . . . , uT
mapping [0, 1]d to [0, 1] such that ifD = {(w, k) : {u1, . . . , uT } is (w, k)-dispersed at the maximizer},
then

max
ρ∈[0,1]d

E

[
T∑

t=1

ut (ρ)− ut (ρt)

]
= Ω

(
inf

(w,k)∈D

{√
Td log

1

w
+ k

})
,

where the expectation is over the random choices ρ1, . . . ,ρT of the adversary.

Proof. The proof of this theorem is a straightforward generalization of Theorem B.2. We begin with
an outline of the proof. For each dimension i ∈ [d], the adversary plays

⌊
T−
√
T

d

⌋
thresholds aligned

with the ith axis, behaving exactly like the worse of the two adversaries defined in Corollary B.3.
Each threshold function has a discontinuity along the hyperplane

{
ρ ∈ [0, 1]d : ρ[i] = 1

2

}
. Since

these functions are piecewise constant, either
{
ρ ∈ [0, 1]d : ρ[i] ≤ 1

2

}
is the set of points maximizing

the sum of these
⌊
T−
√
T

d

⌋
thresholds or

{
ρ ∈ [0, 1]d : ρ[i] > 1

2

}
. Denoting this maximizing set as

P∗i , let P∗ =
⋂d
i=1 P∗i be the set of points maximizing all

⌊
T−
√
T

d

⌋
thresholds over all d dimensions.

By definition of the sets P∗i , this set is a hypercube with side-length 1
2 . Let ρ∗ be the center of

the hypercube P∗. Our adversary then plays T − d
⌊
T−
√
T

d

⌋
≤
√
T + d copies of the indicator

function corresponding to the ball
{
ρ : ||ρ∗ − ρ|| ≤ 2−T

}
. At the end of all T rounds, ρ∗ maximizes

the sum
∑T

t=1 ut. We prove that the expected regret incurred by this adversary is at least
√
Td

64 ,

which follows from Corollary B.3. In order to prove the theorem, we need to show that
√
Td

64 =

Ω
(

inf(w,k)∈D

{√
Td log 1

w + k
})

. Therefore, we need to show that the set of functions played by

the adversary is (w, k)-dispersed at the maximizer ρ∗ for w = Θ(1) and k = O
(√

Td
)
. The reason

this is true is that the only functions with discontinuities in the ball
{
ρ : ||ρ∗ − ρ|| ≤ 1

8

}
are the final√

T + d functions played by the adversary. Thus, the theorem statement holds.

Regret lower bound. Fix the learning algorithm. We begin be demonstrating the existence of a
sequence of functions inducing a regret lower bound of Ω

(√
Td
)

.

Claim B.3. Let T ′ =
⌊
T−
√
T

d

⌋
. There is a sequence u1, . . . , uT ′d of piecewise constant functions

mapping [0, 1]d to [0, 1] such that:

1. The expected regret is lower bounded as follows: maxρ∈[0,1] E
[∑T ′d

t=1 ut(ρ)− ut (ρt)
]
≥

√
Td

64 , where the expectation is over the random choices ρ1, . . . ,ρT ′d of the learner.

115

2. The set of points maximizing
∑T ′d

t=1 ut is a hypercube of side length 1
2 .

Proof of Claim B.3. Corollary B.3 with i = 1 tells us there exists a randomized adversary such that

max
ρ∈[0,1]d

E

[
T ′∑

t=1

u
(1)
t (ρ)− u(1)

t (ρt)

]
≥ 1

32

√
T ′,

where the expectation is over the random sequence u(1)
1 , . . . , u

(1)
T ′ of functions chosen by the adver-

sary and the random choices ρ1, . . . ,ρT ′ of the learner. Next, for each i ∈ {2, . . . , d}, we apply
Corollary B.3 to get T ′ random functions u(i)

1 , . . . , u
(i)
T ′ such that

max
ρ∈[0,1]d

E

[
T ′∑

t=1

u
(i)
t (ρ)− u(i)

t

(
ρ(i−1)T ′+t

)
]
≥ 1

32

√
T ′, (B.7)

where the expectation is over the random sequence u(i)
1 , . . . , u

(i)
T ′ of functions chosen by the adversary

and the random choices ρ(i−1)T ′+1, . . . ,ρiT ′ of the learner. Since for each i ∈ [d], Equation (B.7)

holds in expectation over the adversary’s choices, there must be a sequence u(i)
1 , . . . , u

(i)
T ′ of functions

such that

max
ρ∈[0,1]d

E

[
T ′∑

t=1

u
(i)
t (ρ)− u(i)

t

(
ρ(i−1)T ′+t

)
]
≥ 1

32

√
T ′,

where the expectation is only over the random choices ρ(i−1)T ′+1, . . . ,ρiT ′ of the learner.
From Corollary B.3, we know that either

{
ρ ∈ [0, 1]d : ρ[i] ≤ 1

2

}
= argmax

ρ∈[0,1]d

{
E

[
T ′∑

t=1

u
(i)
t (ρ)− u(i)

t

(
ρ(i−1)T ′+t

)
]}

or {
ρ ∈ [0, 1]d : ρ[i] >

1

2

}
= argmax

ρ∈[0,1]d

{
E

[
T ′∑

t=1

u
(i)
t (ρ)− u(i)

t

(
ρ(i−1)T ′+t

)
]}

.

Call this set of maximizing points P∗i . Note that the intersection P∗ =
⋂d
i=1 P∗i of these d sets is a

hypercube with side length 1
2 . Therefore, for any ρ ∈ P∗,

E

[
d∑

i=1

T ′∑

t=1

u
(i)
t (ρ)− u(i)

t

(
ρ(i−1)T ′+t

)
]
≥ d

32

√
T ′ =

d

32

√√√√
⌊
T −
√
T

d

⌋
≥ d

32

√
T

4d
=

√
Td

64
.

For ease of notation, we relabel the functions u(1)
1 , . . . , u

(1)
T ′ , . . . , u

(d)
1 , . . . , u

(d)
T ′ as u1, . . . , uT ′d.

Construction of the final T − T ′d functions. Let ρ∗ be the center of the hypercube P∗. We now
define the functions uT ′d+1, . . . , uT to all be equal to the function ρ 7→ 1{||ρ−ρ∗||≤2−T }. Under this
definition, the parameter ρ∗ remains a maximizer of the sum

∑T
t=1 ut.

In our final regret bound, we will use the following property of the functions uT ′d+1, . . . , uT .

Claim B.4. For any parameters ρT ′d+1, . . . ,ρT ,
∑T

t=T ′d+1 ut (ρ∗)− ut (ρt) ≥ 0.

116

Proof of Claim B.4. By definition,
∑T

t=T ′d+1 ut (ρ∗) = T−T ′d+1. Since the range of each function
ut is contained in [0, 1], for any parameters ρT ′d+1, . . . ,ρT ,

∑T
t=T ′d+1 ut (ρt) ≤ T − T ′d + 1.

Therefore, the claim holds.

Dispersion parameters. We now prove that the only functions with discontinuities in the ball
{
ρ : ||ρ∗ − ρ|| ≤ 1

8

}

are the functions uT ′d+1, . . . , uT . Since P∗ is a hypercube with side length 1
2 and ρ∗ is the center

of that hypercube,
{
ρ : ||ρ∗ − ρ|| ≤ 1

8

}
⊂ P∗. Therefore, the ball

{
ρ : ||ρ∗ − ρ|| ≤ 1

8

}
only con-

tains the discontinuities of the functions uT ′d+1, . . . , uT . Since T − T ′d = T − d
⌊
T−
√
T

d

⌋
≤

T −d
(
T−
√
T

d − 1
)

=
√
T +d, the set {u1, . . . , uT } is

(
1
8 ,
√
T + d

)
-dispersed at the maximizer ρ∗.

Therefore,

inf
(w,k)∈D

{√
Td log

1

w
+ k

}

≤
√
T log 8 +

√
T + d

≤ 4
√
Td+ 0

≤ 256 max
ρ∈[0,1]d

E

[
T ′d∑

t=1

ut(ρ)− ut (ρt)

]
+ E

[
T∑

t=T ′d+1

ut (ρ∗)− ut (ρt)

]
(Claims B.3 and B.4)

= 256E

[
T ′d∑

t=1

ut (ρ∗)− ut (ρt)

]
+ E

[
T∑

t=T ′d+1

ut (ρ∗)− ut (ρt)

] (
ρ∗ ∈ argmax

ρ∈[0,1]d

T ′d∑

t=1

ut(ρ)

)

≤ 256E

[
T∑

t=1

ut (ρ∗)− ut (ρt)

]

≤ 256 max
ρ∈[0,1]d

E

[
T∑

t=1

ut (ρ)− ut (ρt)

]
.

Therefore,

max
ρ∈[0,1]d

E

[
T∑

t=1

ut(ρ)− ut (ρt)

]
= Ω

(
inf

(w,k)∈D

{√
Td log

1

w
+ k

})
,

as claimed.

Differentially Private Online Learning

Lemma B.15 (Dwork et al. [65]). Given target privacy parameters ε ∈ (0, 1) and δ > 0, to ensure
(ε, τδ′ + δ) cumulative privacy loss over τ mechanisms, it suffices that each mechanism is (ε′, δ′)-
differentially private, where

ε′ =
ε

2
√

2τ ln(1/δ)
.

117

Theorem B.3. Let u1, . . . , uT be the sequence of functions observed by Algorithm 16 and suppose
they satisfy the conditions of Theorem 3.1. Let ε ∈ (0, 1) and δ > 0 be privacy parameters. If
λ = ε

4H
√

2T ln(1/δ)
, then Algorithm 16 is (ε, δ)-differentially private. Its regret is bounded by

H
√
T

(
ε

4
√

2 ln(1/δ)
+

4 ln(R/w)
√

2 ln(1/δ)

ε

)
+Hk + LTw.

Moreover, suppose there are K intervals partitioning C so that
∑T

t=1 = ut is piecewise L-Lipschitz
on each interval. Then the running time of Algorithm 16 is T · poly(K).

Proof. For all t ∈ [T], the sensitivity of the function
∑t−1

i=0 ui is bounded by H . Therefore, at each
time step t, Algorithm 16 samples from the exponential mechanism with privacy parameters ε′ =

ε

2
√

2T ln(1/δ)
and δ = 0. The privacy guarantee therefore follows from Lemma B.15. The regret bound

follows from Theorem 3.1. The running time follows from the running time of Algorithm 14.

Corollary B.4. Let u1, . . . , uT be the sequence of functions observed by Algorithm 16 and suppose
they satisfy the conditions of Theorem 3.1. Let ε ∈ (0, 1) and δ > 0 be privacy parameters. Suppose
T ≥ 1/(Lw). If λ = ε

4H
√

2T ln(1/δ)
, then Algorithm 16 is (ε, δ)-differentially private. Its regret is

bounded by

H
√
T

(
ε

4
√

2 ln(1/δ)
+

4 ln(RLT)
√

2 ln(1/δ)

ε

)
+Hk + 1.

Proof. This bound follows from applying Theorem B.3 using the (w′, k)-disperse critical boundaries
condition with w′ = 1/(LT). The lower bound on requirement on T ensures that w′ ≤ w.

For multi-dimensional parameter spaces, we prove a similar theorem with respect to Algorithm 17.

Theorem B.4. Let u1, . . . , uT be the sequence of functions observed by Algorithm 17 and suppose
they satisfy the conditions of Theorem 3.1. Moreover, suppose

∑T
t=1 ut is piecewise concave on

convex pieces. Let ε ∈ (0, 1) and δ > 0 be privacy parameters. Also, let ε′ = ε/
(

2
√

2T ln(2/δ)
)

,

λ = ε′/(6H), η = ε′/3, and ζ = δ/
(

2T
(

1 + eε
′
))

. Algorithm 17 with input λ, η, and ζ is
(ε, δ)-differentially private. Moreover, its regret is bounded by

Hε

12

√
T

2 ln(1/δ)
+

12Hd ln(R/w)
√

2T ln(1/δ)

ε
+H

(
k + 2 +

δ

2

)
+ LTw.

Moreover, suppose there are K intervals partitioning C so that U(S, ·) is piecewise L-Lipschitz on
each interval. Then the running time of Algorithm 17 is TK · poly

(
d,H, T,K, 1

ε , log 1
δ , log R

r

)
.

Proof. For all t ∈ [T], the sensitivity of the function
∑t−1

i=0 ui is bounded by H . By Lemma B.16, at
each time step t, Algorithm 17 samples from a distribution that is (ε′, δ/(2T))-differentially private.
By Lemma B.15, this means that Algorithm 17 is (ε, 2δ)-differentially private. The regret and running
time bounds follow from Theorem B.1.

118

B.1.5 Proofs for differential privacy (Section 3.1.4)

Theorem 3.4. Let u1, . . . , uT : C → [0, H] be piecewise L-Lipschitz and (w, k)-dispersed at the
maximizer ρ∗, and suppose that C ⊂ Rd is convex, contained in a ball of radiusR, andB(ρ∗, w) ⊂ C.
For any ε > 0, with probability at least 1− ζ, the output ρ̂ of the exponential mechanism satisfies

1

T

T∑

i=1

ui (ρ̂) ≥ 1

T

T∑

i=1

ui (ρ∗)−O
(
H

Tε

(
d log

R

w
+ log

1

ζ

)
+ Lw +

Hk

T

)
.

When d = 1, this algorithm is efficient, provided f εexp can be efficiently integrated on each piece
of
∑

i ui. For d > 1 we also provide an efficient approximate sampling algorithm when
∑

i ui is
piecewise concave defined on K convex pieces. This algorithm preserves (ε, δ)-differential privacy
for ε > 0, δ > 0 with the same utility guarantee (with ζ = δ). The running time of this algorithm is
Õ(K · poly(d, 1/ε) + poly(d, L, 1/ε)).

Proof. The proof follows the same outline as the utility guarantee for the exponential mechanism
given by Dwork and Roth [63] when the set of outcomes is finite. The main additional challenge is
lower bounding the normalizing constant for fexp, which is the key place where we use dispersion.

Let fexp(ρ) = exp
(
εT
2H · 1

T

∑T
t=1 ut(ρ)

)
be the unnormalized density sampled by the exponential

mechanism. For a utility threshold c that we will set later, let E = {ρ ∈ C : 1
T

∑T
t=1 ut(ρ) ≤ c}

be the set of output points with average utility at most c. We can write the probability that a sample
drawn from fexp lands in E as F/Z, where F =

∫
E fexp and Z =

∫
C fexp. We bound F and Z

independently.
First, we have

F =

∫

E
fexp(ρ) dρ ≤

∫

E
exp

(
εTc

2H

)
dρ = exp

(
εTc

2H

)
·Vol(E) ≤ exp

(
εTc

2H

)
·Vol(C).

To lower bound Z, we use the fact that at most k of the functions u1, . . . , uT have discontinuities
in the ball B(ρ∗, w) and the rest are L-Lipschitz. This implies that every ρ ∈ B(ρ∗, w) satisfies
1
T

∑T
t=1 ut(ρ) ≥ OPT − Lw −Hk/T , where OPT = 1

T

∑T
t=1 ut(ρ

∗). Therefore, we have

Z =

∫

C
fexp(ρ) dρ ≥

∫

B(ρ∗,w)
fexp(ρ) dρ ≥ exp

(
εT

2H
(OPT − Lw −Hk/T)

)
·Vol(B(ρ∗, w)).

Combining these bounds gives

F

Z
≤ exp

(
εT

2H
(c−OPT+Lw+Hk/T)

)
Vol(C)

Vol(B(ρ∗, w))
≤ exp

(
εT

2H
(c−OPT+Lw+Hk/T)

)(
R

w

)d
,

where the second inequality follows from the fact that C is contained in a ball of radius R, and the
volume of a ball of radius r is proportional to rd. Choosing c so that this bound on the probability of
outputting a point with average utility at most c is at most ζ completes the proof.

Our efficient sampling algorithm is given in Algorithm 15. Given target privacy parameters ε > 0
and δ > 0, we use Algorithm 15 to approximately sample from the unnormalized density g(ρ) =
ε′T
2H

1
T

∑T
t=1 ut(ρ) with parameters ε′ = η = ε/3 and ζ = δ/(1 + eε). In Lemma B.16 we show

that for these parameter settings, the algorithm preserves (ε, δ)-differential privacy and still has high
utility.

119

Next, as in the full-information online learning setting, we show that the utility dependence on the
Lipschitz constant L can be made logarithmic. The main idea is that whenever functions are (w, k)-
dispersed, they are also (w′, k)-dispersed for any w′ ≤ w. By choosing w′ sufficiently small, we are
able to balance the Lw and dH

Tε log R
w terms.

Corollary B.5. Suppose the functions u1, . . . , uT satisfy the conditions of Theorem 3.4 and T ≥ 2Hd
wεL .

Then with probability at least 1− ζ the output ρ̂ sampled from fexp satisfies:

1

T

T∑

t=1

ut(ρ̂) ≥ 1

T

T∑

t=1

ut(ρ
∗)−O

(
H

Tε

(
d log

LεRT

2Hd

(
+ log

1

ζ

)
+
Hk

T

)

Proof. If the functions u1, . . . , uT are (w, k)-dispersed, then they are also (w′, k)-dispersed for any
w′ ≤ w. This bound follows from applying Theorem 3.4 using the (w′, k)-dispersion with w′ = 2Hd

εLT .
The bound on T ensures that w′ ≤ w.

In all of our applications we show (w, k)-dispersion for w ≈ 1/
√
T and k ≈

√
T (ignoring

problem-specific parameters). In this case, the requirement on T becomes T 3/2 ≥ 2H
εL , which will be

satisfied for sufficiently large T .

Approximate sampling for differential privacy

Lemma B.16. Let u1, . . . , uT be piecewise L-Lipschitz and (w, k)-dispersed at a maximizer ρ∗ ∈ C,
and suppose that C ⊂ Rd is convex, contained in a ball of radius R, and B(ρ∗, w) ⊂ C. For any
privacy parameters ε > 0 and δ > 0, let ρ̂ be the output of running Algorithm 15 to sample from
g(ρ) = Tε′

2H · 1
T

∑T
t=1 ut(ρ) with parameters η = ε′ = ε/3 and ζ = δ/(1 + eε). This procedure

preserves (ε, δ)-differential privacy and with probability at least 1− δ we have

1

T

T∑

t=1

ut(ρ̂) ≥ 1

T

T∑

t=1

ut(ρ
∗)−O

(
H

Tε

(
d log

R

w
+ log

1

δ

)
− Lw − Hk

T

)
.

Proof. Let u1, . . . , uT and u′1, . . . , u
′
T be two neighboring sets of functions (that is, they differ on

at most one function) and let g(ρ) = Tε′

2H · 1
T

∑T
t=1 ut(ρ) and g′(ρ) = Tε′

2H · 1
T

∑T
t=1 u

′
t(ρ). Let µ

and µ′ be the distributions with densities proportional to g and g′, respectively. The distributions µ is
the output distribution of the exponential mechanism when maximizing 1

T

∑T
t=1 ut (and similarly for

µ′). We know that exactly sampling from µ preserves (ε, 0)-differential privacy and has strong utility
guarantees. When we run Algorithm 15, we get approximate samples from µ and µ′. We need to
show that the approximate sampling procedure still preserves (ε, δ)-differential privacy and has good
utility.

Let ρ̂ and ρ̂′ be samples produced by Algorithm 15 when run on g and g′, respectively. From
Lemma B.10, we know that all approximate integration and sampling operations of Algorithm 15
succeed with probability at least 1 − ζ. Let µ̂ be the output distribution of Algorithm 15 when run
on g conditioned on success for all integration and sampling operations (and similarly let µ̂′ be the
distribution when run on g′ without failures). Also by Lemma B.10, we know that D∞(µ̂, µ) ≤ η

120

and D∞(µ̂′, µ′) ≤ η. With this, for any set E ⊂ C of outcomes, we have

Pr(ρ̂ ∈ E) ≤ µ̂(E) + ζ (Failure probability of Algorithm 15)

≤ eηµ(E) + ζ (D∞(µ̂, µ) ≤ η)

≤ e2ηµ′(E) + ζ (The exp. mech. preserves η-differential privacy)

≤ e3ηµ̂′(E) + ζ (D∞(µ̂′, µ′) ≤ η)

≤ e3η(Pr(ρ̂′ ∈ E) + ζ) + ζ (Failure probability of Algorithm 15)

= eε Pr(ρ̂′ ∈ E) + δ.

It follows that the approximate sampling procedure preserves (ε, δ)-differential privacy.
Next we turn to proving the utility guarantee. Let

E =

{
ρ ∈ C :

1

T

T∑

t=1

ut(ρ) <
1

T

T∑

t=1

ut(ρ
∗)− 2H

Tη

(
d log

R

w
+ log

1

ζ

)
− Lw − Hk

|S|

}
,

be the set of parameter vectors with high suboptimality. By Theorem 3.4 we know that µ(E) ≤ ζ.
Applying Lemma B.10, we have

Pr(ρ̂ ∈ E) ≤ µ̂(E) + ζ ≤ eηµ(E) + ζ ≤ (1 + eη)ζ = δ,

and the claim follows.

Lower bound for differential privacy

Our privacy lower bounds follow a similar packing construction as the bounds given by De [54]. We
will make use of the following simple Lemma arguing that we can pack many balls of radius r into
the unit ball in d dimensions.

Lemma B.17. For any dimension d and any radius 0 < r ≤ 1/2, there exist t = (4r)−d disjoint
balls B1, . . . , Bt of radius r contained in B(0, 1).

Proof. Let ρ1, . . . ,ρt ∈ B(0, 1/2) be any maximal set of points satisfying ‖ρi − ρj‖2 ≥ 2r for
any i 6= j. First, we argue that B(0, 1) is contained in

⋃t
i=1B(ρi, 2r). For contradiction, suppose

there is some point ρ ∈ B(0, 1/2) that is not contained in
⋃t
i=1B(ρi, 2r). Then we must have that

‖ρ − ρi‖2 ≥ 2r for all r, which implies that it could be added to the list ρ1, . . . ,ρt, contradicting
maximality. From this, it follows that Vol(B(0, 1/2)) ≤ Vol(

⋃
iB(ρi, 2r)). Using the fact that

Vol(B(·, r)) = rdvd and Vol(
⋃
iB(ρi, 2r)) ≤

∑
i Vol(B(ρi, 2r)), this implies that (1/2)dvd ≤

t(2r)dvd. Rearranging gives t ≥ (4r)−d.
Now consider the set of balls given by Bi = B(ρi, r). We know that Bi ⊂ B(0, 1), since

ρi ∈ B(0, 1/2) and r ≤ 1/2. Moreover, since ‖ρi − ρj‖2 ≥ 2r for all i 6= j, we have that
Bi ∩ Bj = ∅ for all i 6= j. It follows that the set of balls B1, . . . , Bt are disjoint and contained in
B(0, 1).

With this, we are ready to prove our differential privacy lower bound.

121

Theorem 3.5. For every dimension d ≥ 1, privacy parameter ε > 0, failure probability ζ > 0,
T ≥ d

ε (
ln 2
2 − ln 1

ζ)) and ε-differentially private optimization algorithmA that takes as input a collec-
tion of T piecewise constant functions mapping B(0, 1) ⊂ Rd to [0, 1] and outputs an approximate
maximizer, there exists a multiset S of such functions so that with probability at least 1−ζ, the output
ρ̂ of A(S) satisfies

1

T

∑

u∈S
u(ρ̂) ≤ max

ρ∈B(0,1)

1

T

∑

u∈S
u(ρ)− Ω

(
inf

(w,k)

d

Tε

(
ln

1

w
− ln

1

ζ

)
+
k

T

)
,

where the infimum is taken over all (w, k)-dispersion at the maximizer parameters satisfied by S.

Proof. We will constructM = 2d multisets S1, . . . ,SM of piecewise constant functions all satisfying
the same (w, k)-dispersion parameters. We argue that for every ε-differentially private optimizer A,
there is at least one Si such that A(Si) outputs a relatively suboptimal point with high probability.
Next, we tune the parameters of the construction so that this suboptimality bound can be expressed in
terms of the dispersion parameters w and k.

Set Construction. Let ρ1, . . . , ρM be a collection of M = 2d points such that the balls B(ρi, 1/8)
for i = 1, . . . ,M are disjoint and contained in B(0, 1) (Lemma B.17 ensures that such a collection
exists). Now define uall(ρ) = I{ρ ∈ ⋃M

i=1B(ρi, 1/8)} and ui(ρ) = I{ρ ∈ B(ρi, r)} for each
i = 1, . . . ,M , where r is a parameter we will set later. Finally, for each index i, let Si be the multiset
of functions that contains N copies of ui and T − N copies of uall, where N is a second parameter
of the construction that we will set later.

Dispersion Parameters. For each set Si, we can exactly characterize the (w, k)-dispersion parameters
at the maximizer. First, for Si, the point ρi is a maximizer with total utility T . On the other hand, any
point outsideB(ρi, r) has utility at most T −N < T . For any w ≤ r, the ballB(ρi, w) is not split by
any of the discontinuities of functions in Si, so the functions are (w, 0)-dispersed at the maximizer.
For r < w ≤ 1/8, the ball B(ρi, w) is split by the discontinuities of the N copies of ui, and so
the functions are (w,N)-dispersed at the maximizer. Finally, for any w > 1/8, the functions are
(w, T)-dispersed at the maximizer, since every function’s discontinuity splits the ball. To summarize,
the functions are (w, k)-dispersed at the maximizer for any w with

k =





0 if w < r

N if r ≤ w < 1/8

T if w ≥ 1/8.

Suboptimality. Let A be any ε-differentially private optimizer for collections of piecewise constant
functions. We first argue that running A on S1 must output a point with low utility for at least one of
the other sets of functions Si with high probability. Since the balls B(ρi, 1/8) are disjoint, we also
know that the balls B(ρi, r) are also. Therefore, we have that

∑M
i=1 Pr(A(S1) ∈ B(ρi, r)) ≤ 1.

But this implies that there exists some i such that Pr(A(S1) ∈ B(ρi, r)) ≤ 1/M = 2−d. Given that
any point outside of B(ρi, r) has suboptimality at least N for the set Si, it follows that A(S1) has
suboptimality at least N for the functions in Si with probability at least 1− 2−d. Next, we show that
this implies that A has low utility when run on Si itself. Since A is ε-differentially private and the

122

sets of functions S1 and Si differ only 2N functions (the N copies of u1 in S1 and the N copies of ui
in Si), we have

Pr(A(Si) ∈ B(ρi, r)) ≤ e2εN Pr(A(S1) ∈ B(ρi, r)) ≤ e2εN/M

Therefore, with probability at least 1− e2εN/M , the point A(Si) is N -suboptimal for Si.

Parameter Setting. There are two parameters in the above construction that we can set: r, the radius
of the small optimal balls, and N , the number of copies of the indicator function for those small balls
in each set of functions. Inuitively, we will set r to be small enough so that the dispersion parameters
giving the best bound are w = 1/8 and k = N . Tuning the value of N is more involved.

Let r be small enough that dε log 1
r ≥ d

ε log 1
8 +N . For this value of r we have that

inf
w,k

d

ε
log

1

w
+ k =

d

ε
log

1

8
+N.

We also know that with probability at least 1−e2εN/M , the suboptimality of algorithmAwhen run on
Si is at least N . Choosing the value of N trades between two competing effects: first, as we increase
N , the suboptimality of A in the bad event that it outputs a point outside of B(ρi, r) get worse
(formally, our suboptimality lower bound scales with N). Second, as we increase N , the datasets
S1, . . . ,SM become more different, and the probability of the bad event required by ε-differential
privacy drops (formally, 1−e2εN/M gets smaller asN grows). We will have proved the theorem if we
can find a value of N such that the probability e2εN/M ≤ ζ and N = Ω(inf(w,k)

d
ε (log 1

w − log 1
ζ) +

k). We will have e2εN/M ≤ ζ whenever N ≤ d
ε (

ln 2
2 − ln 1

ζ). Therefore, setting N = d
ε (

ln 2
2 − ln 1

ζ)
achieves the probability requirement. Finally, for this setting we have that N = Ω(N + N) =
Ω(inf(w,k)

d
ε (log 1

w−ln 1
ζ)+k). For this setting to be justified, we must have T ≥ N = d

ε (
ln 2
2 −ln 1

ζ)).
Finally, this bound was on the total suboptimality. Dividing by T proves the theorem.

Next, we show that the above lower bound can be instantiated by maximum weight indepen-
dent set instances, showing that these lower bounds bind for algorithm configuration problems. In
this case, the dimension of the problem is d = 1. To show this, we only need to construct MWIS
instances for which the utility function of our greedy algorithm as a function of its parameter be-
haves like the indicator set for some subinterval of [0, 1]. The following Lemma shows that this can
be achieved. For a graph x, let u(x, ρ) be the total weight of the independent set returned by the
algorithm parameterized by ρ.

Lemma B.18 (Gupta and Roughgarden [77]). For any constants 0 < r < s < 1 and any t ≥ 2, there
exists a MWIS instance x on t3 + 2t2 + t − 2 vertices such that u(x, ρ) = 1 when ρ ∈ (r, s) and
u(x, ρ) = tr(t2−2)+t−s(t2+t+1)

t3−1
when ρ ∈ [0, 1] \ (r, s).

Corollary B.6. For any constants 1
10 < r < s < 3

20 , there exists a MWIS instance x on 178 vertices
such that u(x, ρ) = 1 when ρ ∈ (r, s) and 2

5 ≤ u(x, ρ) ≤ 1
2 when ρ ∈ [0, 1] \ (r, s).

While the Corollary B.6 does not show that the constructed instance behave exactly as indicator
functions for subintervals, it demonstrates that for any interval [r, s] ⊂ [2

20 ,
3
20], we can construct

a graph x so that the utility for any ρ ∈ [r, s] is 1, and the utility for any ρ 6∈ [r, s] is at most
1/2. This additive gap is enough to instantiate Theorem 3.5 (after rescaling appropriately so that the
construction is performed in the interval [2

20 ,
3
20]).

123

B.1.6 Proofs for algorithm configuration (Section 3.1.5)

MWIS algorithm configuration

Theorem 3.6. Suppose all vertex weights are in (0, 1] and for each d(i), every pair of vertex weights
has a κ-bounded joint distribution. For any w and e, u (w, e, ·) is piecewise 0-Lipschitz and for any
α ≥ 1/2, with probability 1− ζ over S ∼×T

i=1 d
(i), u is

(
1

T 1−ακ lnn
,O

(
n4Tα

√
ln
n

ζ

))
-dispersed

with respect to S.

Proof. Given a set of samples S =
{(
w(1), e(1)

)
, . . . ,

(
w(T), e(T)

)}
, Gupta and Roughgarden [77]

prove that the
∑T

t=1 u
(
w(t), e(t), ·

)
is piecewise constant and the boundaries between the constant

pieces have the form
ln
(
w

(t)
i

)
− ln

(
w

(t)
j

)

ln (d1)− ln (d2)

for all t ∈ [T] and i, j, d1, d2 ∈ [n], where w(t)
j is the weight of the jth vertex of the tth sample. For

each unordered pair (i, j) ∈
(

[n]
2

)
and degrees d1, d2 ∈ [n], let

Bi,j,d1,d2 =





ln
(
w

(t)
i

)
− ln

(
w

(t)
j

)

ln (d1)− ln (d2)
: t ∈ [T]



 .

The points in each set Bi,j,d1,d2 are independent since they are determined by different problem in-
stances. Since the vertex weights are supported on (0, 1] and have pairwise κ-bounded joint densities,
Lemma B.5 tells us that ln

(
w

(t)
i

)
− ln

(
w

(t)
j

)
has a κ/2-bounded distribution for all i, j ∈ [n] and

t ∈ [T]. Also, since | ln (d1) − ln (d2) | ≤ lnn, Lemma B.7 allows us to conclude that the elements
of each set Bi,j,d1,d2 come from κ lnn

2 -bounded distributions. The theorem statement follows from
Lemma 3.1 with M = max |Bi,j,d1,d2 | = T and P = n4/2.

Theorem B.5 (Differential privacy). Given a set of samples S =
{(
w(1), e(1)

)
, . . . ,

(
w(T), e(T)

)}
∼

dT , suppose Algorithm 14 takes as input the function
∑T

t=1 u
(
w(t), e(t), ·

)
and the set of intervals

over which this function is piecewise constant. Suppose all vertex weights are in (0, 1] and every pair
of vertex weights has a κ-bounded joint distribution. Algorithm 14 returns a parameter ρ̂ such that
with probability at least 1− ζ over the draw of S ,

E
(w,e)∼d

[u (w, e, ρ̂)] ≥ max
ρ∈[0,B]

E
(w,e)∼d

[u (w, e, ρ)]−O
(
H

Tε
log

BTκ lnn

ζ
+Hn4

√
log (n/ζ)

T

)
.

Proof. The theorem statement follows from Theorems 3.4 and 3.6 and Lemma B.19.

Theorem B.6 (Full information online optimization). Let u
(
w(1), e(1), ·

)
, . . . , u

(
w(T), e(T), ·

)
be

the set of functions observed by Algorithm 16, where each instance
(
w(t), e(t)

)
is drawn from a

distribution d(t). Suppose all vertex weights are in (0, 1] and every pair of vertex weights has a κ-

bounded joint distribution. Algorithm 16 with input parameter λ = 1
H

√
ln(B

√
Tκ lnn)
T has regret

bounded by Õ
(
n4H
√
T
)
.

124

Proof. In Theorem 3.6, we show that with probability 1− ζ over S ∼×T
t=1 d

(t), u is
(

1√
Tκ lnn

,O
(
n4
√
T ln(n/ζ)

))
-dispersed

with respect to S . Therefore, by Theorem 3.1, with probability at least 1 − ζ, the expected regret of
Algorithm 16 is at most Õ

(
Hn4
√
T
)
. If this regret bound does not hold, then the regret is at most

HT , but this only happens with probability ζ. Setting ζ = 1/
√
T gives the result.

Theorem B.7 (Differentially private online optimization in the full information setting). Let

u
(
w(1), e(1), ·

)
, . . . , u

(
w(T), e(T), ·

)

be the set of functions observed by Algorithm 16, where each instance
(
w(t), e(t)

)
is drawn from

a distribution d(t). Suppose all vertex weights are in (0, 1] and every pair of vertex weights has
a κ-bounded joint distribution. Algorithm 16 with input parameter λ = ε

4H
√

2T ln(1/δ)
is (ε, δ)-

differentially private and has regret bounded by Õ
(
H
√
T
(
1/ε+ n4

))
.

Proof. The proof is exactly the same as the proof of Theorem B.6, except we rely on Theorem B.3
instead of Theorem 3.1 to obtain the regret bound.

Theorem B.8 (Bandit feedback). Let u
(
w(1), e(1), ·

)
, . . . , u

(
w(T), e(T), ·

)
be a sequence of func-

tions where each instance
(
w(t), e(t)

)
is drawn from a distribution d(t). Suppose all vertex weights

are in (0, 1] and every pair of vertex weights has a κ-bounded joint distribution. There is a bandit-
feedback online optimization algorithm with regret bounded by Õ

(
HT 2/3

(√
B + n4

))
.

Proof. In Theorem 3.6 with α = 2/3, we show that with probability 1− ζ over S ∼×T
t=1 d

(t), u is
(

1

T 1/3κ lnn
,O
(
n4T 2/3

√
ln(n/ζ)

))
-dispersed

with respect to S. Therefore, by Theorem 3.3 with R = B, with probability at least 1 − ζ, there
is a bandit-feedback algorithm with expected regret at most Õ

(
HT 2/3

(√
B + n4

))
. If this regret

bound does not hold, then the regret is at most HT , but this only happens with probability ζ. Setting
ζ = 1/T 1/3 gives the result.

Lemma B.19 ([77]). Let
{(
w(1), e(1)

)
, . . . ,

(
w(T), e(T)

)}
∼ dT be a set of samples. Then with

probability at least 1− ζ, for all ρ > 0,
∣∣∣∣∣
1

T

T∑

t=1

u
(
w(t), e(t), ρ

)
− E

(w,e)∼d
[u (w, e, ρ)]

∣∣∣∣∣ = O

(
H

√
1

T
log

n

ζ

)
.

125

Knapsack algorithm configuration

In the knapsack problem, the input is a knapsack capacity C and a set of n items i each with a value
vi and a size si. The goal is to determine a set I ⊆ {1, . . . , n} with maximium total value

∑
i∈I vi

such that
∑

i∈I si ≤ C. We assume that vi ∈ (0, 1] for all i ∈ [n]. Gupta and Roughgarden [77]
suggest the family of algorithms parameterized by ρ ∈ [0,∞) where each algorithm returns the better
of the following two solutions:

• Greedily pack items in order of nonincreasing value vi subject to feasibility.

• Greedily pack items in order of vi/s
ρ
i subject to feasibility.

It is well-known that the algorithm with ρ = 1 achieves a 2-approximation. We consider the family
of algorithms where we restrict the parameter ρ to lie in the interval C = [0, B] for some B ∈
R. We model the distribution d over knapsack problem instances as a distribution over value-size-
capacity tuples (v, s, C) ∈ (0, 1]n × Rn × R. For a sample of knapsack problem instances S ={(
v(t), s(t), C(t)

)}T
t=1

, we denote the value and size of item i under instance
(
v(t), s(t), C(t)

)
as v(t)

i

and s(t)
i . We use the notation u (v, s, C, ρ) to denote the total value of the items returned by the

algorithm parameterized by ρ given input (v, s, C).
Gupta and Roughgarden [77] prove the following fact about the function u.

Lemma B.20 ([77]). Given a set of samples
{(
v(t), s(t), C(t)

)}T
t=1

, the function

T∑

t=1

u
(
v(t), s(t), C(t), ·

)

is piecewise constant. It has at most Tn2 constant pieces and the boundaries between constant pieces
have the form

ln
(
v

(t)
i

)
− ln

(
v

(t)
j

)

ln
(
s

(t)
i

)
− ln

(
s

(t)
j

)

for all t ∈ [T] and i, j ∈ [n].

We now prove that dispersion holds under natural conditions.

Theorem B.9. Suppose that every pair of item values has a κ-bounded joint distribution, every item
size is in [1,W], and the item values are independent from the item sizes. For any tuple (v, s, C),
u(v, s, C, ·) is piecewise 0-Lipschitz. With probability at least 1 − ζ over S ∼ ×Tt=1d

(t), for any

α ≥ 1/2, u is
(

1
T 1−ακ lnW

, O
(
n2Tα

√
ln n

ζ

))
-dispersed with respect to S .

Proof. Consider the following partitioning of the boundaries:

Bi,j =





ln
(
v

(t)
i

)
− ln

(
v

(t)
j

)

ln
(
s

(t)
i

)
− ln

(
s

(t)
j

) : t ∈ [T]





for all (i, j) ∈
(

[n]
2

)
. The points making up each Bi,j are all independent since they come from dif-

ferent samples. Since the values are supported on (0, 1] and have pairwise κ-bounded joint densities,

126

Lemma B.5 tells us that ln
(
v

(t)
i

)
− ln

(
v

(t)
j

)
has a κ/2-bounded distribution for all i, j ∈ [n] and

t ∈ [T]. Also, since
∣∣∣ln
(
s

(t)
i

)
− ln

(
s

(t)
j

)∣∣∣ ≤ lnW and the numerator of each element in Bi,j is
independent from its denominator, Lemma B.6 implies that the elements of each Bi,j come from
κ lnW

2 -bounded distributions. Applying Lemma 3.1 with M = T and P ≤ n2 gives the result, since
each bin Bi,j contains T elements and there are at most n2 bins.

Theorem B.10 (Differential privacy). Given a set of samples

S =
{(
v(1), s(1), C(1)

)
, . . . ,

(
v(T), s(T), C(T)

)}
∼ dT ,

suppose Algorithm 14 takes as input the function
∑T

t=1 u
(
v(t), s(t), C(t), ·

)
and the set of intervals

over which this function is piecewise constant. Suppose that every pair of item values has a κ-bounded
joint value distribution, every item size is in [1,W], and the item values are independent from the item
sizes. Algorithm 14 returns a parameter ρ̂ such that with probability at least 1 − ζ over the draw of
S,

E[u (v, s, C, ρ̂)] ≥ max
ρ∈[0,B]

E[u (v, s, C, ρ)]−O
(
H

Tε
log

BTκ lnW

ζ
+Hn2

√
log (n/ζ)

T

)
.

Proof. The theorem statement follows from Theorems 3.4 and B.9 and Lemma B.21.

Theorem B.11 (Full information online optimization). Let

u
(
v(1), s(1), C(1), ·

)
, . . . , u

(
v(T), s(T), C(T), ·

)

be the set of functions observed by Algorithm 16, where each instance
(
v(t), s(t), C(t)

)
is drawn from

a distribution d(t). Suppose that every pair of item values has a κ-bounded joint distribution, every
item size is in [1,W], and the item values are independent from the item sizes. Algorithm 16 with

input parameter λ = 1
H

√
ln(B

√
Tκ lnW)
T has regret bounded by Õ

(
Hn2
√
T
)
.

Proof. In Theorem B.9, we show that with probability 1− ζ over S ∼ ×Tt=1d
(t), u is

(
1√

Tκ lnW
,O

(
n2

√
T ln

n

ζ

))
-dispersed

with respect to S . Therefore, by Theorem 3.1, with probability at least 1 − ζ, the expected regret of
Algorithm 16 is at most Õ

(
Hn2
√
T
)
. If this regret bound does not hold, then the regret is at most

HT , but this only happens with probability ζ. Setting ζ = 1/
√
T gives the result.

Theorem B.12 (Differentially private online optimization in the full information setting). Let

u
(
v(1), s(1), C(1), ·

)
, . . . , u

(
v(T), s(T), C(T), ·

)

be the set of functions observed by Algorithm 16, where each instance
(
v(t), s(t), C(t)

)
is drawn

from a distribution d(t). Suppose that every pair of item values has a κ-bounded joint distribution,
every item size is in [1,W], and the item values are independent from the item sizes. Algorithm 16
with input parameter λ = ε

4H
√

2T ln(1/δ)
is (ε, δ)-differentially private and has regret bounded by

Õ
(
H
√
T
(
1/ε+ n2

))
.

127

Proof. The proof is exactly the same as the proof of Theorem B.11, except we rely on Theorem B.3
instead of Theorem 3.1 to obtain the regret bound.

Theorem B.13 (Bandit feedback). Let u
(
v(1), s(1), C(1), ·

)
, . . . , u

(
v(T), s(T), C(T), ·

)
be a sequence

of functions where each instance
(
v(t), s(t), C(t)

)
is drawn from a distribution d(t). Suppose that ev-

ery pair of item values has a κ-bounded joint distribution, every item size is in [1,W], and the item
values are independent from the item sizes. There is a bandit-feedback online optimization algorithm
with regret bounded by Õ

(
HT 2/3

(√
B + n2

))
.

Proof. In Theorem B.9 with α = 2/3, we show that with probability 1− ζ over S ∼×T
t=1 d

(t), u is
(

1

T 1/3κ lnW
,O
(
n2T 2/3

√
ln(n/ζ)

))
-dispersed

with respect to S. Therefore, by Theorem 3.3 with R = B, with probability at least 1 − ζ, there
is a bandit-feedback algorithm with expected regret at most Õ

(
HT 2/3

(√
B + n2

))
. If this regret

bound does not hold, then the regret is at most HT , but this only happens with probability ζ. Setting
ζ = 1/T 1/3 gives the result.

Lemma B.21 ([77]). Let
{(
v(t), s(t), C(t)

)}T
t=1

be T knapsack problem instances sampled from d.
Then with probability at least 1− ζ, for all ρ ≥ 0,

∣∣∣∣∣
1

T

T∑

t=1

u
(
v(t), s(t), C(t), ρ

)
− E

(v,s,C)∼d
[u (v, s, C, ρ)]

∣∣∣∣∣ = O

(
H

√
log (n/ζ)

T

)
.

Outward rotation rounding algorithms

Algorithm 18 SDP rounding algorithm with rounding function r : R→ [−1, 1]

Require: Matrix A ∈ Rn×n.
1: Solve the SDP

maximize
∑

i,j∈[n]

aij 〈ui,uj〉 subject to ui ∈ Sn−1

for the optimal embedding U = {u1, . . . ,un}.
2: Draw Z ∼ Nn.
3: For all i ∈ [n], with probability (1 + r (〈Z,ui〉)) /2, set zi = 1 and with probability

(1− r (〈Z,ui〉)) /2, set zi = −1.
Ensure: z1, . . . , zn.

Theorem 3.7. For any matrix A and vector Z, uowr (A,Z, ·) is piecewise 0-Lipschitz. With proba-
bility 1 − ζ over Z(1), . . . ,Z(T) ∼ N2n, for any A(1), . . . , A(T) ∈ Rn×n and any α ≥ 1/2, uowr

is (
Tα−1, O

(
nTα

√
log

n

ζ

))
-dispersed

with respect to S =
{(
A(t),Z(t)

)}T
t=1

.

128

Algorithm 19 SDP rounding algorithm using γ-outward rotation

Require: Matrix A ∈ Rn×n
1: Solve the SDP

maximize
∑

i,j∈[n]

aij 〈ui,uj〉 subject to ui ∈ Sn−1

to obtain the optimal embedding U = {u1, . . . ,un}.
2: Define a new embedding u′i in R2n as follows. The first n co-ordinates correspond to ui cos γ

and the following n co-ordinates are set to 0 except the (n+ i)th co-ordinate which is set to sin γ.
3: Choose a random vector Z ∈ R2n according to the 2n-dimensional Gaussian distribution.
4: For each decision variable zi, assign zi = sign (〈u′i,Z〉) .

Ensure: z1, . . . , zn.

Proof. Balcan et al. [18] prove that the function
∑T

t=1 uowr

(
A(t),Z(t), ·

)
consists of nT + 1 piece-

wise constant components. The discontinuities are of the form

tan−1


−

〈
u

(j)
i ,Z(j)[1, . . . , n]

〉

Z(j)[n+ i]




for each u(j)
i in the optimal SDP embedding of eachA(j). We show that the critical points are uniform

random variables and thus are dispersed.
For an IQP instance A and its SDP embedding {u1, . . . ,un}, since each ui is a unit vector,

we know that −〈ui,Z[1, . . . , n]〉 is a standard normal random variable. Therefore, − 〈ui,Z[1,...,n]〉
Z[n+i]

is a Cauchy random variable and tan−1
(
− 〈ui,Z[1,...,n]〉

Z[n+i]

)
is a uniform random variable in the range

[
−π

2 ,
π
2

]
[139, 30].

Define

γ
(j)
i = tan−1


−

〈
u

(j)
i ,Z(j)[1, . . . , n]

〉

Z(j)[n+ i]


 .

For any two vectors u(j)
i and u(k)

i from different SDP embeddings, the random variables γ(j)
i and γ(k)

i

are independent uniform random variables in [−π/2, π/2]. Therefore, we define the sets B1, . . . ,Bn
such that Bi =

{
γ

(1)
i , . . . , γ

(T)
i

}
. Within each Bi, the variables are independent. Therefore, by

Lemma 3.1 with P = n, M = max |Bi| = T , and κ = π, the theorem statement holds.

Theorem B.14 (Differential privacy). Given a set of samples S =
{(
A(1),Z(1)

)
, . . . ,

(
A(T),Z(T)

)}
∼

(D ×N2n)T , suppose Algorithm 14 takes as input the function
∑T

t=1 uowr

(
A(t),Z(t), ·

)
and the set

of intervals over which this function is piecewise constant. Algorithm 14 returns a parameter γ̂ such
that with probability at least 1− ζ over the draw of S,

E
A,Z∼d×N2n

[uowr (A,Z, γ̂)] ≥ max
γ∈[−π2 ,

π
2]

E
A,Z∼d×N2n

[uowr (A,Z, γ)]−O
(
H

Tε
log

T

ζ
+Hn

√
1

T
log

n

ζ

)
.

Proof. The theorem statement follows from Theorems 3.4 and 3.7 and Lemma B.22.

129

Theorem B.15 (Full information online optimization). Let uowr

(
A(1),Z(1), ·

)
, . . . , uowr

(
A(T),Z(T), ·

)

be the set of functions observed by Algorithm 16, where each vector Z(t) is drawn from N2n. Algo-

rithm 16 with input parameter λ = 1
H

√
ln(π
√
T)

T has regret bounded by Õ
(
Hn
√
T
)
.

Proof. In Theorem 3.6, we show that with probability 1 − ζ over Z(1), . . . ,Z(T) ∼ N2n, uowr is(
1√
T
, O
(
n
√
T log(n/ζ)

))
-dispersed with respect to S = {(A(t),Z(t))}Tt=1. Therefore, by Theo-

rem 3.1, with probability at least 1−ζ, the expected regret of Algorithm 16 is at most Õ
(
Hn
√
T
)
. If

this regret bound does not hold, then the regret is at most HT , but this only happens with probability
ζ. Setting ζ = 1/

√
T gives the result.

Theorem B.16 (Differentially private online optimization in the full information setting). Let

uowr

(
A(1),Z(1), ·

)
, . . . , uowr

(
A(T),Z(T), ·

)

be the set of functions observed by Algorithm 16, where each vector Z(t) is drawn from N2n. Al-
gorithm 16 with input parameter λ = ε

4H
√

2T ln(1/δ)
is (ε, δ)-differentially private and has regret

bounded by Õ
(
H
√
T (1/ε+ n)

)
.

Proof. The proof is exactly the same as the proof of Theorem B.15, except we rely on Theorem B.3
instead of Theorem 3.1 to obtain the regret bound.

Theorem B.17 (Bandit feedback). Let uowr

(
A(1),Z(1), ·

)
, . . . , uowr

(
A(T),Z(T), ·

)
be a sequence

of functions where each vector Z(t) is drawn from N2n. There is a bandit-feedback online optimiza-
tion algorithm with regret bounded by Õ

(
HnT 2/3

)
.

Proof. The proof is exactly the same as the proof of Theorem B.15, except we rely on Theorem 3.3
instead of Theorem 3.1 to obtain the regret bound. In this case, C = [0, π/2] and we take ζ = 1/T 1/3.

In Theorem 3.7 with α = 2/3, over Z(1), . . . ,Z(T) ∼ N2n, for any A(1), . . . , A(T) ∈ Rn×n,
uowr is

(
1

T 1/3 , O
(
nT 1/3

√
log(n/ζ)

))
-dispersed with respect to S = {(A(t),Z(t))}Tt=1. Therefore,

by Theorem 3.3 with R = π/2, with probability at least 1 − ζ, there is a bandit-feedback algorithm
with expected regret at most Õ

(
HnT 2/3

)
. If this regret bound does not hold, then the regret is at

most HT , but this only happens with probability ζ. Setting ζ = 1/T 1/3 gives the result.

Lemma B.22. [[18]] Let S =
{(
A(1),Z(1)

)
, . . . ,

(
A(T),Z(T)

)}
be T tuples sampled from d×N2n.

With probability at least 1− ζ, for all γ ∈ [−π/2, π/2],
∣∣∣∣∣
1

T

T∑

t=1

uowr

(
A(t),Z(t), γ

)
− E
A,Z∼d×N2n

[uowr (A,Z, γ)]

∣∣∣∣∣ < O

(
H

√
log (n/ζ)

T

)
.

s-linear rounding algorithms

We make the following assumption, which is without loss of generality up to scaling, on the input
matrices A(1), . . . , A(T).

Assumption B.1. There exists a constant H ∈ R such that for any matrices A(1), . . . , A(T) given as
input to the algorithms in this chapter,

∑
i,j

∣∣∣a(t)
ij

∣∣∣ ∈ [1, H] for all t ∈ [T].

130

Figure B.1: A graph of the 2-linear function φ2.

Theorem 3.8. With probability 1−ζ overZ(1), . . . ,Z(T) ∼ Nn, for any matricesA(1), . . . , A(T) and
any α ≥ 1/2, the functions uslin

(
Z(1), A(1), ·

)
, . . . , uslin

(
Z(T), A(T), ·

)
are piecewise L-Lipschitz

with L = Õ
(
MT 3n5/ζ3

)
, where M = maxi,j∈[n],t∈[T] |a(t)

ij |, and uslin is

(
Tα−1, O

(
nTα

√
log

n

ζ

))
-dispersed

with respect to S =
{(
A(t),Z(t)

)}T
t=1

.

Proof. Balcan et al. [18] proved that
∑T

t=1 uslin

(
A(t),Z(t), s

)
has the form

T∑

t=1

uslin

(
A(t),Z(t), s

)
=

T∑

t=1




n∑

i=1

(
a

(t)
ii

)2
+
∑

i 6=j
a

(t)
ij φs

(〈
Z(t),u

(t)
i

〉)
· φs

(〈
Z(t),u

(t)
j

〉)



and the function
∑T

t=1 uslin

(
A(t),Z(t), ·

)
is made up of Tn + 1 piecewise components of the form

a
s2

+ b
s + c for some constants a, b, c ∈ R. Let B1, . . . ,Bn be n sets of random variables such that

Bi =
{∣∣∣
〈
u

(t)
i ,Z

(t)
〉∣∣∣ : t ∈ [T]

}
. Balcan et al. [18] proved that

⋃n
t=1 Bt are all of the boundaries

dividing the domain of
∑T

t=1 uslin

(
A(t),Z(t), ·

)
into pieces over which the function is differentiable.

Also, within each Bi, the variables are all absolute values of independent standard Gaussians, since
for any unit vector u and anyZ ∼ Nn, 〈u,Z〉 is a standard Gaussian. When Z is a Gaussian random
variable, |Z| is drawn from a (4/5)-bounded distribution. Therefore, the dispersion bound follows
from Lemma 3.1 with P = n and M = max |Bi| = T .

The main challenge in this proof is showing that for any t ∈ [T], uslin

(
A(t),Z(t), ·

)
is Lips-

chitz even when s approaches zero. We show that with probability at least 1 − ζ, for all t ∈ [T],
uslin

(
A(t),Z(t), ·

)
is constant on the interval

(
0, 16MT 3n5/ζ3

)
. This way, we know that the deriva-

tive of uslin

(
A(t),Z(t), ·

)
is zero as s goes to zero, not infinity.

Let s0 be the smallest boundary between piecewise components of any function uslin

(
A(t),Z(t), ·

)
.

In other words, for all t ∈ [T], when s ∈ (0, s0), uslin

(
A(t),Z(t), s

)
is differentiable and uslin

(
A(t),Z(t), ·

)

is not differentiable at s0. For all s ∈ (0, s0), all i ∈ [n], and all t ∈ [T],
∣∣∣
〈
u

(t)
i ,Z

(t)
〉∣∣∣ > s. This

means that φs
(〈
u

(t)
i ,Z

(t)
〉)

= ±1. Therefore, for any t ∈ [T], the derivative of uslin

(
A(t),Z(t), ·

)

is zero on the interval (0, s0). In Lemma B.25, we prove that with probability 1− ζ/2, s0 ≥ ζ
4nT .

131

We now bound the maximum absolute value of the derivative of any uslin

(
A(t),Z(t), ·

)
for any

s > s0 where uslin

(
A(t),Z(t), ·

)
is differentiable. We know that

d

ds
uslin

(
A(t),Z(t), s

)
=

d

ds




n∑

i=1

(
a

(t)
ii

)2
+
∑

i 6=j
a

(t)
ij φs

(〈
Z(t),u

(t)
i

〉)
· φs

(〈
Z(t),u

(t)
j

〉)



=
∑

i 6=j
a

(t)
ij

d

ds

(
φs

(〈
Z(t),u

(t)
i

〉)
· φs

(〈
Z(t),u

(t)
j

〉))
.

Therefore, we only need to bound
∣∣∣ dds
(
φs

(〈
Z(t),u

(t)
i

〉)
· φs

(〈
Z(t),u

(t)
j

〉))∣∣∣ for all i, j ∈ [n] and
t ∈ [T]. We assume that

max
{∣∣∣
〈
Z(t),u

(t)
i

〉∣∣∣ : i ∈ [n], t ∈ [T]
}
≤

√√√√2 ln

(√
8

π

2nT

ζ

)
,

which we know from Lemma B.28 happens with probability at least 1 − ζ/2. We also assume that
s0 ≥ ζ

4nT , which we know from Lemma B.25 also happens with probability at least 1− ζ/2.
To this end, there are only three possible cases:

• Case 1: φs
(〈
Z(t),u

(t)
i

〉)
· φs

(〈
Z(t),u

(t)
j

〉)
= ±1

• Case 2: φs
(〈
Z(t),u

(t)
i

〉)
· φs

(〈
Z(t),u

(t)
j

〉)
=

〈
Z(t),u

(t)
i

〉
s

• Case 3: φs
(〈
Z(t),u

(t)
i

〉)
· φs

(〈
Z(t),u

(t)
j

〉)
=

〈
Z(t),u

(t)
i

〉〈
Z(t),u

(t)
j

〉
s2

.

In the first case,
∣∣∣ dds
(
φs

(〈
Z(t),u

(t)
i

〉)
· φs

(〈
Z(t),u

(t)
j

〉))∣∣∣ =
∣∣ d
ds ± 1

∣∣ = 0. In the second case,

∣∣∣∣
d

ds

(
φs

(〈
Z(t),u

(t)
i

〉)
· φs

(〈
Z(t),u

(t)
j

〉))∣∣∣∣ =

∣∣∣∣∣∣
d

ds

〈
Z(t),u

(t)
i

〉

s

∣∣∣∣∣∣

=

∣∣∣∣∣∣

〈
Z(t),u

(t)
i

〉

s2

∣∣∣∣∣∣

≤ 1

s2

√√√√2 ln

(√
8

π

2nT

ζ

)
(Lemma B.28)

≤ 16n2T 2

ζ2

√√√√2 ln

(√
8

π

2nT

ζ

)
. (Lemma B.25)

132

In the third case,

∣∣∣∣
d

ds

(
φs

(〈
Z(t),u

(t)
i

〉)
· φs

(〈
Z(t),u

(t)
j

〉))∣∣∣∣ =

∣∣∣∣∣∣
d

ds

〈
Z(t),u

(t)
i

〉〈
Z(t),u

(t)
j

〉

s2

∣∣∣∣∣∣

=

∣∣∣∣∣∣

2
〈
Z(t),u

(t)
i

〉〈
Z(t),u

(t)
j

〉

s3

∣∣∣∣∣∣

≤ 2

s3
· 2 ln

(√
8

π

2nT

ζ

)
(Lemma B.28)

≤ 256n3T 3

ζ3
ln

(√
8

π

2nT

ζ

)
. (Lemma B.25)

Since 16n2T 2

ζ2

√
2 ln

(√
8
π

2nT
ζ

)
< 256n3T 3

ζ3
ln
(√

8
π

2nT
ζ

)
, this derivative is maximized in the third

case. Noting that M = max
∣∣∣a(t)
ij

∣∣∣, we have that for s > s0,

∣∣∣∣
d

ds
uslin

(
A(t),Z(t), s

)∣∣∣∣ ≤ n2M · 256n3T 3

ζ3
ln

(√
8

π

2nT

ζ

)
=

256Mn5T 3

ζ3
ln

(√
8

π

2nT

ζ

)
.

Theorem B.18 (Differential privacy). Given a set of samples S =
{(
A(1),Z(1)

)
, . . . ,

(
A(T),Z(T)

)}
∼

(D ×Nn)T with T ≥ 8H2n2 ln 8
ζ , suppose Algorithm 14 takes as input the function

∑T
t=1 u

(
A(t),Z(t), ·

)

and the set of intervals intersecting
(

0,

√
2 ln

(√
8/π (8nT/ζ)

))
over which this function is piece-

wise constant. Algorithm 14 returns a parameter ŝ such that with probability at least 1 − ζ over the
draw of S,

E
A,Z∼d×Nn

[uslin (A,Z, ŝ)] ≥ max
s>0

E
A,Z∼d×Nn

[uslin (A,Z, s)]− Õ
(
H

Tε
+
Hn√
T

)
.

Proof. First, in Theorem 3.8, we prove that with probability 1− ζ/4, the functions

uslin(Z(1), A(1), ·), . . . , uslin(Z(T), A(T), ·)

are piecewiseL-Lipschitz withL = 16384Mn5T 3

ζ3
ln
(√

8
π

8nT
ζ

)
and uslin is

(
1/
√
T ,O

(
n
√
T log(n/ζ)

))
-

dispersed with respect to S.
In Lemma B.29, we show that with probability 1− ζ/4, the values of s that maximize

T∑

t=1

uslin

(
A(t),Z(t), ·

)

lie within the interval
(

0,

√
2 ln

(√
8/π (8nT/ζ)

))
. Thus, we can restrict Algorithm 14 to search-

ing for a parameter in this range.

133

We next show that with probability 1− 3ζ/4,

1

T

(
T∑

t=1

uslin

(
Z(t), A(t), ŝ

)
−max

s>0
uslin

(
Z(t), A(t), s

))
= Õ

(
H

Tε
+
Hn√
T

)
(B.8)

If L < H , then this follows from Theorem 3.4. Otherwise, if L ≥ H , it follows from Corollary B.5,
assuming, as we can with probability 1 − ζ/4, that log(L) = Õ(1). Corollary B.5 only holds if
T ≥ 2H

weL , which is the case when L ≥ H because 2H
weL <

1
w =

√
T ≤ T .

In the last step of this proof, we show that since ŝ is nearly optimal over the sample, it is
nearly optimal over d as well. To do this, we call upon a result by Balcan et al. [18], which we
include here as Lemma B.30. It guarantees that with probability at least 1 − ζ/4, for all s > 0,∣∣∣ 1
T

∑T
t=1 uslin

(
A(t),Z(t), s

)
− EA,Z∼D×Nn [uslin (A,Z, s)]

∣∣∣ < O
(
H
√

log (n/ζ) /T
)

. Putting this
together with Equation (B.8), the theorem statement holds.

Theorem B.19 (Full information online optimization). Let uslin

(
A(1),Z(1), ·

)
, . . . , uslin

(
A(T),Z(T), ·

)

be the set of functions observed by Algorithm 16, where T ≥ 8H2n2 ln 6
ζ and each vector Z(t) is

drawn from Nn. Further, suppose we limit the parameter search space of Algorithm 16 to (0, s̄),

where s̄ =

√
2 ln

(√
8
π (6nT/ζ)

)
. Algorithm 16 with input parameter λ = 1

H

√
ln(s̄
√
T)

T has regret

bounded by Õ
(
Hn
√
T
)
.

Proof. First, in Theorem 3.8, we prove that with probability 1− ζ/3, the functions

uslin(Z(1), A(1), ·), . . . , uslin(Z(T), A(T), ·)

are piecewiseL-Lipschitz withL = O
(
Mn5T 3

ζ3
ln
(
nT
ζ

))
and uslin is

(
1/
√
T ,O

(
n
√
T log(n/ζ)

))
-

dispersed with respect to S =
{(
A(1),Z(1)

)
, . . . ,

(
A(T),Z(T)

)}
.

In Lemma B.29, we show that with probability 1− ζ/3, the values of s that maximize

T∑

t=1

uslin

(
A(t),Z(t), ·

)

lie within the interval
(

0,

√
2 ln

(√
8/π (6nT/ζ)

))
. Thus, we can restrict Algorithm 14 to search-

ing for a parameter in this range.
We now show that the expected regret of Algorithm 16 is at most Õ

(
Hn
√
T
)
. If L < 1, Theo-

rem 3.1 guarantees that with probability at least 1− ζ, the expected regret of Algorithm 16 is at most
Õ
(
Hn
√
T
)
.Otherwise, if L ≥ 1, we can apply Corollary B.2, which gives the same expected regret

bound assuming log(L) = Õ(1), which we can assume with probability 1− ζ/3. Corollary B.2 only

holds when T ≥ 1
Lw , which is indeed with probability 1− ζ/3 the case when L ≥ 1 since w =

√
1
T .

If this regret bound does not hold, then the regret is at most HT , but this only happens with
probability ζ. Setting ζ = 1/

√
T gives the result.

134

Theorem B.20 (Differentially private online optimization in the full information setting). Let

uslin

(
A(1),Z(1), ·

)
, . . . , uslin

(
A(T),Z(T), ·

)

be the set of functions observed by Algorithm 16, where T ≥ 8H2n2 ln 6
ζ and each vector Z(t) is

drawn from Nn. Let ε, δ > 0 be privacy parameters. Further, suppose we limit the parameter search

space of Algorithm 16 to (0, s̄), where s̄ =

√
2 ln

(√
8
π (6nT/ζ)

)
. Algorithm 16 with input parame-

ter λ = ε

4H
√

2T ln(1/δ)
is (ε, δ)-differentially private and has regret bounded by Õ

(
H
√
T (1/ε+ n)

)
.

Proof. The proof is exactly the same as the proof of Theorem B.19, except we rely on Corollary B.4
instead of Corollary B.2 to obtain the regret bound.

Lemma B.23 (Anthony and Bartlett [3]). If Z is a standard normal random variable and x > 0, then
Pr[Z ≥ x] ≥ 1

2

(
1−

√
1− e−x2

)
.

Corollary B.7. If Z is a standard normal random variable and x > 0, then Pr[|Z| ≥ x] ≥ 1− x.

Proof.

Pr[|Z| ≤ x] ≤
√

1− e−x2 (Lemma B.23)

≤
√
x2 = x

(
1− e−γ ≤ γ for all γ ∈ R

)

Lemma B.24. Suppose Z1, . . . , Zτ are τ independent standard normal random variables. Then

Pr

[
min
i∈[τ]
|Zi| ≤

ζ

2τ

]
≤ ζ.

Proof. From Corollary B.7, we know that

Pr

[
min
i∈[τ]
|Zi| ≥

ζ

2τ

]
=

τ∏

i=1

Pr

[
|Zi| ≥

ζ

2τ

]
≥
(

1− ζ

2τ

)τ
≥ e−ζ .

The last inequality holds because for γ ∈ [0, 3/4], we have that 1 − γ ≥ e−2γ , which is applicable
because ζ

2τ <
3
4 . Therefore,

Pr

[
min
i∈[τ]
|Zi| ≤

ζ

2τ

]
< 1− e−ζ ≤ ζ.

Lemma B.25. With probability at least 1− ζ, min
{∣∣∣
〈
Z(t),u

(t)
i

〉∣∣∣ : i ∈ [n], t ∈ [T]
}
≥ ζ

2nT .

135

Proof. Let S1, . . . , Sn be n sets of random variables such that Si =
{∣∣∣
〈
u

(t)
i ,Z

(t)
〉∣∣∣ : t ∈ [T]

}
.

Notice that ∪ni=1Si are all of the boundaries dividing the domain of
∑T

t=1 uslin

(
A(t),Z(t), ·

)
into

intervals over which the function is differentiable. Also, within each Si, the variables are all absolute
values of independent Gaussians, since for any unit vector u and any Z ∼ Nn, u · Z is a standard
Gaussian. Lemma B.24 guarantees that for all i ∈ [n], Pr

[
mint∈[T]

{∣∣∣
〈
u

(t)
i ,Z

(t)
〉∣∣∣
}
≤ ζ

2nT

]
≤ ζ

n .

By a union bound, this means that with probability at least 1 − ζ, mini∈[n],t∈[T]

{∣∣∣
〈
u

(t)
i ,Z

(t)
〉∣∣∣
}
≥

ζ
2nT . By definition of the sets S1, . . . , Sn and the value s0, this means that with probability at least
1− ζ, s0 ≥ ζ

2nT .

Lemma B.26. If T ≥ 8H2n2 ln 1
ζ , with probability at least 1− ζ, there exists s > 0 such that

T∑

t=1

uslin

(
A(t),Z(t), s

)
≥ 0.

Proof. We will prove that with probability 1− ζ over the draw of Z(1), . . . ,Z(T) ∼ Nn,

T∑

t=1

uslin

(
A(t),Z(t), s̃

)
≥ 0,

where s̃ = 3
2nT (10n+8) . From Lemma B.25, we know that with probability at least 1 − 3

10n+8 ,

min
{∣∣∣
〈
Z(t),u

(t)
i

〉∣∣∣ : i ∈ [n], t ∈ [T]
}
> s̃. Recall that

φs(y) =

{
sign(y) if |y| ≥ s
y/s if |y| < s.

Therefore, when s̃ < min
{∣∣∣
〈
Z(t),u

(t)
i

〉∣∣∣ : i ∈ [n], t ∈ [T]
}

, for all t ∈ [T],

uslin

(
A(t),Z(t), s̃

)
=

n∑

i=1

a2
ii +

∑

i 6=j
aij sign

(〈
Z(t),u

(t)
i

〉)
sign

(〈
Z(t),u

(t)
j

〉)
. (B.9)

Recall that the GW algorithm uses the rounding function r(y) = sign(y). In other words,
when the matrix A(t) is the input to Algorithm 18 and Z(t) is the hyperplane drawn in Step 2, it
sets zi = 1 with probability 1

2

(
1 + sign

(〈
Z(t),u

(t)
i

〉))
and it sets zi = −1 with probability

1
2

(
1− sign

(〈
Z(t),u

(t)
i

〉))
. In other words, it sets zi = sign

(〈
Z(t),u

(t)
i

〉)
. Therefore, Equa-

tion (B.9) is the objective value of the GW algorithm given the input matrix A(t) and hyperplane
Z(t). Since the GW algorithm has an expected approximation ratio of 0.878 (in expectation over the
draw of the hyperplane),

E
Z(t)∼Nn

[
uslin

(
A(t),Z(t), s̃

) ∣∣∣ s̃ < min
{∣∣∣
〈
Z(t),u

(t)
i

〉∣∣∣ : i ∈ [n], t ∈ [T]
}]

≥ 0.878 max
z∈{0,1}n




∑

i,j

a
(t)
ij zizj



 .

136

Charikar and Wirth [43] prove that maxz∈{0,1}n
{∑

i,j a
(t)
ij zizj

}
≥ 1

n

∑
i,j

∣∣∣a(t)
ij

∣∣∣ . Therefore,

using the notationE to denote the event where s̃ < min
{∣∣∣
〈
Z(t),u

(t)
i

〉∣∣∣ : i ∈ [n], t ∈ [T]
}

, we know
that

E
Z(t)∼Nn

[
uslin

(
A(t),Z(t), s̃

) ∣∣∣ E
]
≥ 0.878

n

∑

i,j

∣∣∣a(t)
ij

∣∣∣ ≥ 4

5n

∑

i,j

∣∣∣a(t)
ij

∣∣∣ . (B.10)

By the law of total expectation,

E
Z(t)∼Nn

[
uslin

(
A(t),Z(t), s̃

)]

= E
Z(t)∼Nn

[
uslin

(
A(t),Z(t), s̃

) ∣∣∣ E
]
· Pr[E] + E

Z(t)∼Nn

[
uslin

(
A(t),Z(t), s̃

) ∣∣∣ ¬E
]
· (1− Pr[E])

≥ 4

5n

∑

i,j

∣∣∣a(t)
ij

∣∣∣ · Pr[E] + E
Z(t)∼Nn

[
uslin

(
A(t),Z(t), s̃

) ∣∣∣ ¬E
]
· (1− Pr[E])

≥ 4

5n

∑

i,j

∣∣∣a(t)
ij

∣∣∣ · Pr[E]−
∑

i,j

∣∣∣a(t)
ij

∣∣∣ · (1− Pr[E])

=
∑

i,j

∣∣∣a(t)
ij

∣∣∣
(

Pr[E]

(
4

5n
+ 1

)
− 1

)

where the second-to-last inequality follows from Equation (B.10) and the final inequality follows
from the fact that with probability 1,

∣∣uslin

(
A(t),Z(t), s̃

)∣∣ ≤∑i,j

∣∣∣a(t)
ij

∣∣∣ .
Since Pr[E] ≥ 1 − 3

10n+8 , we have that EZ(t)∼Nn
[
uslin

(
A(t),Z(t), s̃

)]
≥ 1

2n

∑
i,j

∣∣∣a(t)
ij

∣∣∣ ≥ 1
2n .

We now apply Hoeffding’s to prove the result:

Pr

[
T∑

t=1

uslin

(
A(t),Z(t), s̃

)
≤ 0

]

= Pr

[
E

[
1

T

T∑

t=1

uslin

(
A(t),Z(t), s̃

)]
− 1

T

T∑

t=1

uslin

(
A(t),Z(t), s̃

)
≥ E

[
1

T

T∑

t=1

uslin

(
A(t),Z(t), s̃

)]]

≤ Pr

[
E

[
1

T

T∑

t=1

uslin

(
A(t),Z(t), s̃

)]
− 1

T

T∑

t=1

uslin

(
A(t),Z(t), s̃

)
≥ 1

2n

]

≤ exp


− 2T 2

16n2
∑T

t=1

(∑
i,j

∣∣∣a(t)
ij

∣∣∣
)2




≤ exp

(
− T 2

8n2 · TH2

)

≤ ζ

where the second-to-last inequality followsfrom the fact that with probability 1, for all t ∈ [T],∣∣uslin

(
A(t),Z(t), s̃

)∣∣ ≤ ∑
i,j

∣∣∣a(t)
ij

∣∣∣ ≤ H . The final inequality follows from the fact that T ≥
8H2n2 ln 1

ζ .

137

Lemma B.27 (Gordon [75]). Let Z be a standard normal random variable. Then Pr[|Z| ≥ z] ≤
2

z
√

2π
e−z

2/2.

Lemma B.28. With probability at least 1−ζ, max
{∣∣∣
〈
Z(t),u

(t)
i

〉∣∣∣ : i ∈ [n], t ∈ [T]
}
≤
√

2 ln
(√

8
π
nT
ζ

)
.

Proof. Let z =

√
2 ln

(√
8
π
nT
ζ

)
. We may assume that n ≥ 2, which means that z ≥ 1. Therefore, if

Z is a standard Gaussian, by Lemma B.27, we know that Pr[|Z| ≥ z] ≤ 2
z
√

2π
e−z

2/2 ≤
√

2
πe
−z2/2.

Let S1, . . . , Sn be n sets of random variables such that Si =
{∣∣∣
〈
u

(t)
i ,Z

(t)
〉∣∣∣ : t ∈ [T]

}
. Notice that

∪ni=1Si are all of the boundaries dividing the domain of
∑T

t=1 uslin

(
A(t),Z(t), ·

)
into intervals over

which the function is differentiable. Also, within each Si, the variables are all absolute values of
independent Gaussians, since for any unit vector u and any Z ∼ Nn, u · Z is a standard Gaussian.

Therefore, for all i ∈ [n], Pr
[
maxt∈[T]

{∣∣∣
〈
Z(t),u

(t)
i

〉∣∣∣
}
≤ z
]
≥
(

1−
√

2
πe
−z2/2

)T
. By a union

bound, this means that

Pr

[
max

i∈[n],t∈[T]

{∣∣∣
〈
Z(t),u

(t)
i

〉∣∣∣
}
≥ z
]
≤ n


1−

(
1−

√
2

π
e−z

2/2

)T


= n

(
1−

(
1− ζ

2nT

)T)

≤ n
(

1− e−ζ/n
) (

∀x ∈ (0, 3/4) , e−2x ≤ 1− x
)

≤ ζ.
(
∀x ∈ R, 1− e−x ≤ x

)

Lemma B.29. If T ≥ 8H2n2 ln 2
ζ , with probability at least 1−ζ, argmaxs>0

∑T
t=1 uslin

(
A(t),Z(t), s

)
≤√

2 ln
(√

8
π

2nT
ζ

)
.

Proof. Let s̄ = max
{∣∣∣
〈
Z(t),u

(t)
i

〉∣∣∣ : i ∈ [n], t ∈ [T]
}

. From Lemma B.28, we know that with

probability at least 1−ζ/2, s̄ ≤
√

2 ln
(√

8
π

2nT
ζ

)
. By definition of φs, when s > s̄,

∑T
t=1 uslin

(
A(t),Z(t), s

)
=

a/s2 for some a ∈ R. If a ≥ 0, then
∑T

t=1 uslin

(
A(t),Z(t), s

)
is non-increasing as s grows beyond

s̄, so the claim holds. If a < 0, then
∑T

t=1 uslin

(
A(t),Z(t), s

)
< 0 for all s > s̄. However,

by Lemma B.26, we know that with probability at least 1 − ζ/2, there exists some s > 0 such that∑T
t=1 uslin

(
A(t),Z(t), s

)
≥ 0. Therefore, with probability 1−ζ, argmaxs>0

∑T
t=1 uslin

(
A(t),Z(t), s

)
≤

s̄.

Lemma B.30. [Balcan et al. [18]] Let
(
A(1),Z(1)

)
, . . . ,

(
A(T),Z(T)

)
be T tuples sampled from

d×Nn. With probability at least 1− ζ, for all s > 0,
∣∣∣∣∣
1

T

T∑

t=1

uslin

(
A(t),Z(t), s

)
− E
A,Z∼D×Nn

[uslin (A,Z, s)]

∣∣∣∣∣ = O

(
H

√
log (n/ζ)

T

)
.

138

B.1.7 Proofs for distributional learning (Section 3.1.6)

We begin by recalling the definition of the pseudo-dimension of a class F = {f : Π → R} of real-
valued functions. We say that the set F P-shatters a set S = {x1, . . . , xN} if there exist thresholds
s1, . . . , sN ∈ R such that for all subsets E ⊆ S there exists f ∈ F such that f(xi) ≥ si if xi ∈ E
and f(xi) < si if i 6∈ E. The Pseudo-dimension of a class F , denoted by Pdim(F) is the cardinality
of the largest set S that is P-shattered by F .

Theorem 3.9. Let F = {fρ : Π → [0, 1] : ρ ∈ C} be parameterized by C ⊂ Rd, where C lies in a
ball of radius R. For any set S = {x1, . . . , xT }, suppose the functions uxi(ρ) = fρ(xi) for i ∈ [T]
are piecewise L-Lipschitz and (w, k)-dispersed. Then

R̂(F ,S) ≤ O
(

min

{√
d

T
log

R

w
+ Lw +

k

T
,

√
Pdim(F)

T

})
.

Proof. The key idea is that whenever the functions ux1 , . . . , uxN are (w, k)-dispersed, we know that
any pair of parameters ρ and ρ′ with ‖ρ−ρ′‖2 ≤ w satisfy |fρ(xi)−fρ′(xi)| = |uxi(ρ)−uxi(ρ′)| ≤
Lw for all but at most k of the elements in S. Therefore, we can approximate the functions in F on
the set S with a finite subset F̂w = {fρ̂ : ρ̂ ∈ Ĉw}, where Ĉw is a w-net for C. Since F̂w is
finite, its empirical Rademacher complexity is O((log |F̂w|/N)1/2). We then argue that the empirical
Rademacher complexity of F is not much larger, since all functions in F are approximated by some
function in F̂w.

In particular, we know that there exists a subset Ĉw ⊂ C of size |Ĉw| ≤ (3R/w)d (see Lemma B.13)
such that for every ρ ∈ C there exists ρ̂ ∈ Ĉw satisfying ‖ρ − ρ̂‖2 ≤ w. For any point ρ ∈ C, let
NN(ρ) denote a point in Ĉw with ‖ρ − NN(ρ)‖2 ≤ w. Let F̂w = {uρ : Π → [0, 1] | ρ ∈ Ĉ − w} be
the corresponding finite subset of F .

Since F̂w is finite and the function range is [0, 1], we know that its empirical Rademacher com-
plexity is at most

O

(√
log |F̂w|
N

)
= O

(√
d log(R/w)

N

)
.

Next, fix any fρ ∈ F and any vector σ ∈ {±1}N of signs. We use (w, k)-dispersion to show that
the correlation of (fρ(x1), . . . , fρ(xN)) with σ cannot be substantially greater than the correlation of

139

(fNN(ρ)(x1), . . . , fNN(ρ)(xN)) with σ.

1

N

N∑

i=1

σifρ(xi) =
1

N

N∑

i=1

σiuxi(ρ)

=
1

N

N∑

i=1

σiuxi(NN(ρ)) +
N∑

i=1

σi(uxi(ρ)− uxi(NN(ρ)))

≤ 1

N

N∑

i=1

σiuxi(NN(ρ)) +

N∑

i=1

|uxi(ρ)− uxi(NN(ρ))|

≤ 1

N

N∑

i=1

σiuxi(NN(ρ)) + Lw +
k

N

=
1

N

N∑

i=1

σifNN(ρ)(xi) + Lw +
k

N

Finally, we have

R̂(F , S) = E
σ∼{±1}N

[
sup
fρ∈F

1

N

N∑

i=1

σifρ(xi)

]

≤ E
σ∼{±1}N

[
sup
fρ∈F

1

N

N∑

i=1

σifNN(ρ)(xi)

]
+ Lw +

k

N

= E
σ∼{±1}N

[
sup
fρ̂∈F̂w

1

N

N∑

i=1

σifρ̂(xi)

]
+ Lw +

k

N

= O

(√
d log(R/w)

N
+ Lw +

k

N

)
,

as required.
The bound on R̂(F ,S) in terms of the pseudo-dimension can be found in [117, 61].

B.1.8 Discretization-based algorithm

In this section we provide an implementation of the exponential mechanism achieving (ε, 0)-differential
privacy. It applies to multi-dimensional parameter spaces. First, we discretize the parameter space
C using a regular grid (or any other net). We then apply the exponential mechanism to the resulting
finite set of outcomes. Let ρ̂ be the resulting parameter. Standard guarantees for the exponential
mechanism ensure that ρ̂ is neraly optimal over the discretized set. Therefore, the main challenge is
showing that the net contains a parameter competitive with the optimal parameter in C.

Theorem B.21. Let S = {x1, . . . , xN} ∈ Π be a collection of problem instances such that u is
piecewise L-Lipschitz and (w, k)-disperse. Let ρ1, . . . , ρK be a w-net for the parameter space C.
Let ρ̂ be set to ρi with probability proportional to fS,εexp(ρi). Outputting ρ̂ satisfies (ε, 0)-differential
privacy and with probability at least 1− δ we have

1

N

N∑

i=1

u(xi, ρ̂) ≥ 1

N

N∑

i=1

u(xi,ρ
∗)− 2H

Nε
log

K

δ
− Lw − Hk

N
.

140

Proof sketch. Since ρ1, . . . ,ρK is a w-net for the parameter space C, we know there is some ρj
within distance w of ρ∗. Also, since B(ρ∗, w) ⊂ C, we know that ρj is a valid parameter vector. As
in the proof of Theorem 3.4 we know that 1

N

∑N
i=1 u(xi,ρj) ≥ 1

N

∑N
i=1 u(xi,ρ

∗)− Hk
N − Lw. The

result then follows from the standard analysis of the exponential mechanism, which guarantees that
ρ̂ is competitive with the best ρj for j ∈ {1, . . . ,K}.

This algorithm has strengths and weaknesses when compared to Algorithm 15. Recall, Algo-
rithm 15 also applies to the multi-dimensional setting. The main strength is that this algorithm pre-
serves pure (ε, 0)-differential privacy. However, there are two significant disadvantages. First, it has
running time exponential in the dimension since a w-net for C typically grows exponentially with
dimension. Second, it requires knowledge of an upper bound on the dispersion parameter w in order
to choose the granularity of the net. This prevents us from optimizing the utility guarantee over w
as we did in Corollary B.5. Moreover, decreasing the parameter w increases the running time of the
algorithm. This forces us to trade between computational cost and accuracy.

B.2 Appendix for Section 3.2

B.2.1 Online Optimization

Theorem 3.11. Let C ⊂ Rd be contained in a ball of radiusR and `1, `2, · · · : C → [0, 1] be piecewise
L-Lipschitz functions that are f -dispersed with an r0-interior minimizer. Moreover, suppose the
learner gets semi-bandit feedback and, on each round t, the feedback system A

(t)
1 , . . . , A

(t)
M has M

feedback sets. For any r ∈ (0, r0], running Algorithm 5 with λ =
√
d log(R/r)/(TM) satisfies the

following regret bound:

E
[T∑

t=1

`t(ρt)− `t(ρ∗)
]
≤ O

(√
dTM log(R/r) + f(T, r) + TLr

)
.

Proof of Theorem 3.11. For the majority of the proof we consider an arbitrary sequence of piecewise
Lipschitz loss functions `1, . . . , `T with an r0-interior minimizer. We will only suppose they are
f -dispersed in the final steps of the proof.

Following the proof of the Exp3-Set algorithm of Alon et al. [2], we will upper and lower bound
the quantity E[log(WT+1/W1)]. Our upper bound will be in terms of the learner’s total expected
loss, while the lower bound will be in terms of the expected total loss of the optimal parameter in
hindsight. Dispersion plays a crucial role in the lower bound, since it allows us to guarantee that a set
of parameters with non-trivial volume has nearly optimal total loss. Combining these bounds and then
finally taking the expectation of the bound for a sequence of losses `1, . . . , `T that are f -dispersed
will give the final bound.

Upper Bound. Consider the ratio of consecutive normalizing constants Wt+1/Wt. Using the defini-
tion of wt+1 and pt, we have

Wt+1

Wt
=

∫

C

wt(ρ)

Wt
exp(−λˆ̀

t(ρ)) dρ =

∫

C
pt(ρ) exp(−λˆ̀

t(ρ)) dρ.

Next, using that e−z ≤ 1− z + z2/2 for all z ≥ 0, we have

Wt+1

Wt
≤
∫

C
pt(ρ)

(
1− λˆ̀

t(ρ) +
λ2

2
ˆ̀
t(ρ)

)
dρ = 1− λ

∫

C
pt(ρ)ˆ̀

t(ρ) dρ+
λ2

2

∫

C
pt(ρ)ˆ̀

t(ρ)2 dρ.

141

Using the fact that 1− z ≤ exp(−z) for all z ≥ 0 and taking the product over t = 1, . . . , T , we have

WT+1

W1
≤ exp

(
−λ

T∑

t=1

∫

C
pt(ρ)ˆ̀

t(ρ) dρ+
λ2

2

T∑

t=1

∫

C
pt(ρ)ˆ̀

t(ρ)2 dρ

)
.

Taking logs, we have

log(
WT+1

W1
) ≤ −λ

T∑

t=1

∫

C
pt(ρ)ˆ̀

t(ρ) dρ+
λ2

2

T∑

t=1

∫

C
pt(ρ)ˆ̀

t(ρ)2 dρ. (B.11)

Next, we will take the expectation of the above bound to simplify the two integrals. Recall that
for each time t, we let A(t)

1 , . . . , A
(t)
M be the feedback system and for any ρ ∈ C and let A(t)(ρ) denote

the set A(t)
i such that ρ ∈ A

(t)
i . Recall that the importance-weighted losses ˆ̀

t were constructed to
ensure that for any time t and any fixed ρ ∈ C, we have Et[ˆ̀t(ρ)] = `t(ρ). Therefore,

E
[∫

C
pt(ρ)ˆ̀

t(ρ) dρ

]
= E

<t

[
E
t

[∫

C
pt(ρ)ˆ̀

t(ρ) dρ

]]
= E

<t

[∫

C
pt(ρ)`t(ρ) dρ

]
.

The integral in the final expectation is the definition of Et[`t(ρt)], which gives E
[∫
C pt(ρ)ˆ̀

t(ρ) dρ
]

=

E<t[Et[`t(ρt)]] = E[`t(ρt)]. Therefore, we have

E

[
T∑

t=1

∫

C
pt(ρ)ˆ̀

t(ρ) dρ

]
= E

[
T∑

t=1

`t(ρt)

]
, (B.12)

which is the total expected loss of the algorithm on the first T rounds.
Now we turn to simplifying the expectation of the second integral in (B.11). For any ρ ∈ C and

any time t, we have

E
t
[ˆ̀t(ρ)2] =

∫

C
pt(ρ

′)

(
I{ρ ∈ A(t)(ρ′)}
pt(A(t)(ρ′))

`t(ρ)

)2

dρ.

Using the fact that ρ ∈ A(t)(ρ′) if and only if ρ′ ∈ A(t)(ρ), we can upper bound the integral as
follows:

∫

C
pt(ρ

′)

(
I{ρ ∈ A(t)(ρ′)}
pt(A(t)(ρ′))

`t(ρ)

)2

dρ =

(
`t(ρ)

pt(A(t)(ρ))

)2

·
∫

A(t)(ρ)
pt(ρ

′) dρ =
`t(ρ)2

pt(A(t)(ρ))
≤ 1

pt(A(t)(ρ))
.

This implies that

E
[∫

C
pt(ρ)ˆ̀

t(ρ)2 dρ

]
= E

<t

[
E
t

[∫

C
pt(ρ)ˆ̀

t(ρ)2 dρ

]]
≤ E

[∫

C
pt(ρ)

1

pt(A(t)(ρ))
dρ

]

Finally, we evaluate the integral by writing it as the sum of integrals over the feedback setsA(t)
1 , . . . , A

(t)
M ,

which is justified since these sets partition C. In particular, we have

∫

C
pt(ρ)

1

pt(A(t)(ρ))
dρ =

M∑

i=1

1

pt(A
(t)
i)
·
∫

A
(t)
i

pt(ρ) dρ = M.

142

Putting it together, we have

E

[
T∑

t=1

∫

C
pt(ρ)ˆ̀

t(ρ)2 dρ

]
≤ TM. (B.13)

Taking the expectation of (B.11) and using the calculations given by (B.12) and (B.13), we have

E
[
log

WT+1

W1

]
≤ −λE

[
T∑

t=1

`t(ρt)

]
+
λ2

2
TM.

Lower Bound. Next, let ρ∗ ∈ argminρ∈C
∑T

t=1 `t(ρ) be such that B(ρ∗, r0) ⊂ C and fix any radius
r ≤ r0. Using the fact that W1 =

∫
C 1 dρ = Vol(C) and the weights wT+1(ρ) are positive, we have

WT+1

W1
=

1

Vol(C)

∫

C
wT+1(ρ) dρ ≥ 1

Vol(C)

∫

B(ρ∗,r)
exp

(
−λ

T∑

t=1

ˆ̀
t(ρ)

)
dρ.

Taking the log of this bounds gives

log
WT+1

W1
≥ log

1

Vol(C) + log

(∫

B(ρ∗,r)
exp

(
−λ

T∑

t=1

ˆ̀
t(ρ)

)
dρ

)
.

At this point it is tempting to apply dispersion to lower bound the term exp
(
−λ∑t

ˆ̀
t(ρ)

)
in terms of

exp
(
−λ∑t

ˆ̀
t(ρ
∗)
)
. In particular, if at each time t the feedback system A

(t)
1 , . . . , A

(t)
M corresponds to

the piecewise Lispchitz partitioning of C for the loss function `t, then the estimated loss function ˆ̀
t has

a subset of the discontinuities of `t. In this case, the estimated losses ˆ̀
1, ˆ̀

2, . . . are also f -dispersed
for the same function f as the true losses. However, when the feedback system at around t does
not match the piecewise Lipschitz partition, we would require a separate dispersion analysis for the
sequence of estimated losses ˆ̀

1, ˆ̀
2, The more serious challenge, however, is that the importance

weight 1/pt(A
(t)(ρt)) in the definition of ˆ̀

t causes it to take values in the range [0, 1/pt(A
(t)(ρt))],

which is much larger than the true losses which take values in [0, 1]. Moreover, the Lipschitz parame-
ter of the estimated loss `t is L′ = L/pt(A

(t)(ρt)). This larger loss range and Lipschitz constant lead
to a worse final regret bound. Instead, we defer applying dispersion until after taking expectations so
that we can use the dispersion properties of the true losses `1, `2, . . . directly.

Towards this end, we first use Jensen’s inequality to simplify the above bound. Let h : C → R
be any function and S ⊂ C be any subset of the parameter space. Then, using the fact that log is
concave, we can apply Jensen’s inequality to obtain the following bound:

log

(∫

S
exp(h(ρ)) dρ

)
= log

(
Vol(S)

∫

S

1

Vol(S)
exp(h(ρ)) dρ

)

= log(Vol(S)) + log

(∫

S

1

Vol(S)
exp(h(ρ)) dρ

)

≥ log(Vol(S)) +

∫

S

1

Vol(S)
log(exp(h(ρ))) dρ

= log(Vol(S)) +

∫

S

1

Vol(S)
h(ρ) dρ,

143

Applying this inequality to our lower bound on log
WT+1

W1
with h(ρ) = −λ∑T

t=1
ˆ̀
t(ρ) and S =

B(ρ∗, r) gives

log
WT+1

W1
≥ log

Vol(B(ρ∗, r))

Vol(C) − λ
∫

B(ρ∗,r)

1

Vol(B(ρ∗, r))

T∑

t=1

ˆ̀
t(ρ) dρ.

Next, since C is contained in a ball of radius R and the volume of a ball of radius R in Rd is propor-
tional to Rd, it follows that the volume ratio is at least (r/R)d. Taking expectations, we have

E
[
log

WT+1

W1

]
≥ d log

r

R
− λ

∫

B(ρ∗,r)

1

Vol(B(ρ∗, r))

T∑

t=1

`t(ρ) dρ,

where we used the fact that for any fixed ρ ∈ C, we have E[ˆ̀t(ρ)] = E<t[Et[ˆ̀t(ρ)]] = `t(ρ). Finally,
we will upper bound the sum of losses

∑T
t=1 `t(ρ) for points in the ball B(ρ∗, r) in terms of the num-

ber of non-Lipschitz functions on that ball. letD =
∣∣{1 ≤ t ≤ T | `t is not L-Lipschitz on B(ρ∗, r)}

∣∣
be the number of functions among `1, . . . , `T that are not L-Lipschitz on the ball B(ρ∗, r). Then for
any ρ ∈ B(ρ∗, r), we have

T∑

t=1

`t(ρ) ≤
t∑

t=1

`t(ρ
∗) + TLr +D.

The integral
∫
B(ρ∗,r)

1
Vol(B(ρ∗,r))

∑T
t=1 `t(ρ) dρ is the average total loss of the parameters ρ ∈ B(ρ∗, r),

which is at most
∑t

t=1 `t(ρ
∗) + TLr +D. Substituting this into our bound gives

E
[
log

WT+1

W1

]
≥ d log

r

R
− λ

T∑

t=1

`t(ρ
∗)− TLr −D.

Combined bound. Combining the upper and lower bounds and rearranging, we have

T∑

t=1

E[`t(ρt)]− `t(ρ∗) ≤
λ

2
TM +

d

λ
log

R

r
+ TLr +D.

Finally, now suppose that the functions `1, . . . , `T are a random sequence that satisfy f -dispersion.
To bound E[D], let `1, . . . , `T be f -dispersed and ρ∗ be any r0-interior minimizer. Then we have

E[D] = E[
∣∣{1 ≤ t ≤ T | `t is not L-Lipschitz on B(ρ∗, r)}

∣∣]
≤ E[sup

ρ∈C

∣∣{1 ≤ t ≤ T | `t is not L-Lipschitz on B(ρ, r)}
∣∣]

≤ f(T, ε),

where this expectation is taken over the draw of the loss functions `1, . . . , `T . This leads to the bound

E

[
T∑

t=1

`t(ρt)− `t(ρ∗)
]
≤ λ

2
TM +

d

λ
log

R

r
+ TLr + f(T, r),

where now the expectation is taken over both the algorithm’s randomness and the random sampling
of the loss functions `t. The specific bounds given in the theorem statement follow by substituting
the chosen value of λ.

144

Optimizing Utilities and H-Bounded Losses

We note that the regret bound obtained in Theorem 3.11 for Algorithm 5 can also be used to obtain
similar results in two closely related settings. First, if we instead have piecewise Lipschitz utility
functions u1, u2, · · · : C → [0, 1] and our goal is to maximize utility rather than minimize loss, we can
transform this into a loss-minimization problem by minimizing the losses given by `t(ρ) = 1−ut(ρ).
This transformation preserves the regret of any algorithm, the feedback system at each round, and the
piecewise Lipschitz and dispersion properties of the functions. Similarly, if the losses take values in
[0, H] for some known maximum loss H , instead of [0, 1], the learner can preprocess the losses to
fall in [0, 1] by dividing them by H . The rescaled functions take values in [0, 1] and have Lipschitz
constant L′ = L/H . Then expected regret of Algorithm 5 with respect to the unscaled loss functions
is O(H

√
TMd log(R/r) +Hf(T, r) + TLr).

Lemma B.31. Let u1, u2, · · · : C → [0, H] be a sequence of utility functions that are each piecewise
L-Lipschitz and f -dispersed. Define a corresponding sequence of losses `1, `2, · · · : C → [0, H] given
by `t(ρ) = H − ut(ρ). The functions `1, `2, . . . are also piecewise L-Lispchitz and f -dispersed.

Proof. First, consider any time t. Since ut : C → [0, H] is piecewise L Lipschitz, by definition we
know that there is a partition C1, . . . , CM of C so that for each i ∈ [M] and any ρ, ρ′ ∈ Ci, we have
|ut(ρ)−ut(ρ′)| ≤ L · ‖ρ− ρ′‖2. We will argue that the loss function `t is also piecewise L-lispschitz
on the same partition. Fix any i ∈ [M] and any pair of points ρ, ρ′ ∈ Ci. Then we have that

|`t(ρ)− `t(ρ′)| =
∣∣(H − ut(ρ))− (H − ut(ρ′))

∣∣ = |ut(ρ′)− ut(ρ)| ≤ L · ‖ρ− ρ′‖2,

where the last inequality follows from the fact that ut is L-Lipschitz restricted to Ci. It follows that `t
is also piecewise L-Lipschitz and has the same piecewise Lipschitz partition. This holds for all times
t.

Next, we argue that whenever the utility functions u1, u2, . . . are f -dispersed, so are the loss
functions `1, `2, For any time horizon T , radius ε > 0, and parameter ρ ∈ C, define

Du(T, ε, ρ) =
∣∣{1 ≤ t ≤ T : ut is not L-Lipschitz on B(ρ, ε)}

∣∣

and
D`(T, ε, ρ) =

∣∣{1 ≤ t ≤ T : `t is not L-Lipschitz on B(ρ, ε)}
∣∣.

Following an identical argument as in the first part, with probability 1, whenever ut is L-Lipschitz
on the ball B(ρ, ε), so is the function `t. From this, it follows that Du(T, ε, ρ) = D`(T, ε, ρ) for all
T ∈ N, ε > 0, and ρ ∈ C. Finally, since the functions u1, u2, . . . were f -dispersed, we have that for
all T ∈ N and all radiuses ε > 0, we have

E[sup
ρ∈C

Du(T, ε, ρ)] ≤ f(T, ε).

It follows that
E[sup
ρ∈C

D`(T, ε, ρ)] = E[sup
ρ∈C

Du(T, ε, ρ)] ≤ f(T, ε),

and the loss functions `1, `2, . . . are also f -dispersed.

145

Efficient Implementations via Interval Trees

In this section we show how to use the modified interval tree data structure of Cohen-Addad and
Kanade [46] to implement the continuous Exp3-SET algorithm efficiently for one-dimensional prob-
lems with piecewise constant loss functions. In particular, the per-round cost of updating the algo-
rithm weights and sampling from them at time t is only O(log(t)), while a direct implementation
has running time given by O(t) instead. We also show how to use interval trees to implement the
Exp3 algorithm on a set of N arms with per-round running time that is O(logN), which implies
that a discretization-based algorithm in the bandit setting can be efficiently implemented even in high
dimensions.

Interval Tree Summary. Cohen-Addad and Kanade [46] introduce a modified interval tree data
structure used for representing piecewise constant functions mapping R to R. Their data structure
represents the function as a balanced tree with one leaf corresponding to each constant interval of the
function. It supports two main operations called DRAW and UPDATE:

• The DRAW procedure returns a sample from the density function that is proportional to the
represented piecewise constant function f .

• The UPDATE procedure takes an interval [a, b) and an update u, and updates the represented
piecewise function by multiplying the function values in [a, b) by u. That is, if the represented
function was originally f : R → R, after executing UPDATE with interval [a, b) and update u,
the resulting function is

f ′(x) =

{
f(x) if x 6∈ [a, b)

u · f(x) if x ∈ [a, b).

Cohen-Addad and Kanade [46] show that the operations DRAW and UPDATE can be implemented
in O(logP) time, where P is the number of constant pieces in the represented function. The data
structure also makes it possible to implement a third procedure INTEGRATE in O(logP) time, which
takes an interval [a, b) and returns the integral of the represented represented function on the interval
[a, b).

Exp3-Set for Piecewise Constant One Dimensional Problems. First, we show how to efficiently
implement Algorithm 5 efficiently for one-dimensional optimization problems with piecewise con-
stant loss functions. We simply use the interval tree datastructure of Cohen-Addad and Kanade [46]
to represent the weight function at each round. Pseudocode is given in Algorithm 20.

Lemma B.32. Consider an online optimization problem with loss functions `1, `2 : [0, 1] → [0, 1]
that are piecewise constant. Moreover, suppose that on each round t, the loss `t is constant on each of
the feedback sets A(t)

i . For such a problem, Algorithm 20 is equivalent to Algorithm 5. The overhead
of sampling and updating the weights on round t takes O(log t) time.

Proof. On each round we run UPDATE once to update the interval tree. This at most increases the
number of constant intervals in the weights by 2, since the only constant intervals that might get
split are the two containing the end points of the feedback set At. Therefore, on round t, the weight
function is piecewise constant with at most O(2t) intervals. It follows that the sampling, integration,
and update operations all take O(log t) time, giving a total per-round cost of O(log t).

146

Algorithm 20 Continuous Exp3-SET for Piecwise Constant One Dimensional Problems
Parameter: Step size λ ∈ [0, 1]
1. Initialize W to be the interval tree representing w(ρ) = I{ρ ∈ [0, 1]}.
2. For t = 1, . . . , T

(a) Let ρt ← DRAW(W) and play ρt.
(b) Observe feedback interval At = A(t)(ρ) and loss `t(ρt).
(c) Let ˆ̀

t ← `t(ρt)
pt(At)

, where pt(At)← INTEGRATE(W,At)
INTEGRATE(W,[0,1]) .

(d) Call UPDATE(W,At, ˆ̀
t).

B.2.2 Dispersion Tools

Theorem 3.12. Let `1, `2, · · · : R→ R be independent piecewise L-Lipschitz functions, each having
at most K discontinuities. Let D(T, ε, ρ) =

∣∣{1 ≤ t ≤ T | `t is not L-Lipschitz on [ρ− ε, ρ+ ε]}
∣∣ be

the number of functions in `1, . . . , `T that are not L-Lipschitz on the ball [ρ− ε, ρ+ ε]. Then we have

E[sup
ρ∈R

D(T, ε, ρ)] ≤ sup
ρ∈R

E[D(T, ε, ρ)] +O(
√
T log(TK)).

Proof of Theorem 3.12. For simplicity, we assume that every function has exactly K discontinuities.
For each function `t, let α(t) ∈ RK denote the vector whose entries are the discontinuity locations of
`t. That is, `t has discontinuities at α(t)

1 , . . . , α
(t)
K , but is otherwise L-Lispchitz. Since the functions

`1, `2, . . . are independent, the vectors α(1), α(2), . . . are also independent.
For any interval I ⊂ R, define the function fI : RK → {0, 1} by

fI(α) =

{
1 if for some i ∈ [K] we have αi ∈ I , where α = (α1, . . . , αK) ∈ RK

0 otherwise

The sum
∑T

t=1 fI(α
(t)) counts the number of vectors α(1), . . . , α(T) that have a component in the

interval I or, equivalently, the number of functions `1, . . . , `T that are not L-Lipschitz on I . We will
apply VC-dimension uniform convergence arguments to the class F = {fI : RK → {0, 1} | I ⊂
R is an interval}. In particular, we will show that for an independent set of vectors α(1), . . . , α(T),
with high probability we have that 1

T

∑T
t=1 fI(α

(t)) is close to E
[

1
T

∑T
t=1 fI(α

(t)
]

for all intervals I .
This uniform convergence argument will lead to the desired bounds.

We begin by bounding the VC-dimension ofF byO(logK). The key observation is the following
connection between F and the class of indicator functions for intervals: let S = {x(1), . . . , x(n)} ⊂
RK be any collection of n vectors in RK and let P = {x(1)

1 , . . . , x
(1)
K , . . . , x

(n)
1 , . . . , x

(n)
K } ⊂ R

denote the set containing the union of their combined nK component values. Now consider any
pair of intervals I and I ′. If the indicator functions for I and I ′ agree on all the points in P (i.e.,
the intervals contain exactly the same subset of P), then we must have that fI and fI′ agree on
every vector in S. This is because if I and I ′ contain exactly the same subset of P , then for each
vector x(i), both intervals contain the same subset of its component values. In particular, either they
both contain none of the components, or they both contain at least one. In either case, we have that
fI(x

(i)) = fI′(x
(i)). This shows that the number of distinct ways that functions from the class F can

label the set of vectors S is at most the number of ways that indicator functions for intervals can label
the set of points P .

147

Now suppose that the VC-dimension of F is V . Then there exists a set S ⊂ RK of vectors
of size V that is shattered by F . Let P ⊂ R be the set containing the union of their combined
V K components (as above). From Sauer’s Lemma together with the fact that the VC-dimension of
intervals is 2, we are guaranteed that indicator functions for intervals can label the set P of points in
at most (eV K)2 distinct ways. By the above reasoning, it follows thatF can label the set S of vectors
in at most (eV K)2 distinct ways. On the other hand, since F shatters S, we know that it can label S
in all 2V possible ways, and it follows that 2V ≤ (eV K)2. Taking logs on both sides and rearranging,
we have V ≤ 2

ln 2 ln(V) + 2 ln(eK)
ln 2 . Using the fact that for any a ≥ 1 and b ≥ 0, the inequality

y ≤ a ln(y) + b implies that y ≤ 4a ln(2a) + 2b, we further have that V ≤ 8 ln(4/ ln 2)
ln 2 + 4 ln(eK)

ln 2 =
O(logK), as required.

Applying VC-dimension uniform convergence arguments for the class F , for any failure proba-
bility δ > 0, if x(1), . . . , x(T) ∈ RK are independent random vectors (but not necessarily identically
distributed), then following holds with probability at least 1− δ simultaneously for all fI ∈ F :
∣∣∣∣∣
1

T

T∑

t=1

`I(x
(t))− E

[
1

T

T∑

t=1

`I(x
(t))

]∣∣∣∣∣ ≤ O
(√

VCDim(F) + log(1/δ)

T

)
= O

(√
log(K/δ)

T

)
.

In particular, for any point ρ and any radius ε, we have that D(T, ε, ρ) =
∑T

t=1 fI(α
(t)), where

I = [ρ − ε, ρ + ε]. Therefore, uniform convergence for F implies that for all T ∈ N and all ε > 0,
and any failure probability δ > 0, we have that with probability at least 1− δ the following holds for
all ρ ∈ R: ∣∣∣∣

1

T
D(T, ε, ρ)− E

[
1

T
D(T, ε, ρ)

]∣∣∣∣ ≤ O
(√

log(K/δ)

T

)
.

Multiplying both sides by T and rearranging gives

D(T, ε, ρ) ≤ E[D(T, ε, ρ)] +O(
√
T log(K/δ)).

Taking the supremum of both sides over ρ ∈ R, we have

sup
ρ∈R

D(T, ε, ρ) ≤ sup
ρ∈R

E[D(T, ε, ρ)] +O(
√
T log(K/δ)).

This is a high probability bound on the maximum number of non-Lipschitz functions among `1, . . . , `T
for any interval of radius ε. All that remains is to convert this into a bound in expectation. Let
δ = 1/

√
T and let G denote the high-probability uniform convergence event above. Then we have

E[sup
ρ∈R

D(T, ε, ρ)] = E[sup
ρ∈R

D(T, ε, ρ) |G] Pr(G) + E[sup
ρ∈R

D(T, ε, ρ) |G] Pr(G)

≤ sup
ρ∈R

E[D(T, ε, ρ)] +O(
√
T log(TK)) +

√
T

= sup
ρ∈R

E[D(T, ε, ρ)] +O(
√
T log(TK)),

where the last inequality uses the facts that Pr(G) ≤ 1 and E[supρ∈RD(T, ε, ρ) |G] Pr(G) ≤ Tδ =√
T . This argument holds for all T and ε, proving the claim.

Next, we prove a weaker bound that follows from the analysis techniques of Balcan et al. [22].

148

Lemma B.33. Let `1, `2, · · · : R → R be independent piecewise L-Lipschitz functions, each having
at most K discontinuities. Let D(T, ε, ρ) =

∣∣{1 ≤ t ≤ T | `t is not L-Lipschitz on [ρ− ε, ρ+ ε]}
∣∣

be the (random) number of functions in `1, . . . , `T that are not L-Lipschitz on the ball [ρ− ε, ρ+ ε].
Moreover, let D̃(T, ε, ρ) =

∣∣{(t, i) ∈ [T]× [K] |α(t)
i ∈ [ρ− ε, ρ+ ε]}

∣∣, where α(t) ∈ RK is the vector
of discontinuities of the loss `t. That is, D̃(T, ε, ρ) is the number of discontinuities of the functions
`1, . . . , `T in the ball [ρ− ε, ρ+ ε]. Then we have

E[sup
ρ∈R

D(T, ε, ρ)] ≤ sup
ρ∈R

E[D̃(T, ε, ρ)] +K
√
T log(TK).

Note that, using the notation of Lemma B.33, we always have D(T, ε, ρ) ≤ D̃(T, ε, ρ) ≤
KD(T, ε, ρ). It follows that Lemma B.33 is looser than Theorem 3.12 in two ways: first, the er-
ror term is a factor K larger. Second, the upper bound of Lemma B.33 multiply-counts functions that
have repeated discontinuities in the same ball, while our sharper bound does not.

Proof. For simplicity, we assume that every function `t has exactly K discontinuities. The proof
techniques can be generalized to the case where each functions has at most K discontinuities.

For each time t, let α(t) ∈ RK be the vector of discontinuities of `t. That is, `t has discontinuities
at the points α(t)

1 , . . . , α
(t)
K and is otherwise L-Lipschitz. The key challenge is that the discontinuity

locations α(t)
1 , . . . , α

(t)
K are not independent.

Fix any discontinuity index i ∈ [K] and define D̃i(T, ε, ρ) =
∣∣{1 ≤ t ≤ T |α(t)

i ∈ [ρ−ε, ρ+ε]}
∣∣.

That is, D̃i(T, ε, ρ) counts the number of times t for which the ith discontinuity α(t)
i of `t lands in

the interval of radius ε centered on ρ. Then we have that D̃(T, ε, ρ) =
∑

i D̃i(T, ε, ρ) counts the total
number of discontinuities that belong to the interval of radius ε centered on ρ. Since the function `t
is not L-Lipschitz on an interval I only when I contains some discontinuity for `t, we have

D(T, ε, ρ) ≤
K∑

i=1

D̃i(T, ε, ρ) = D̃(T, ε, ρ).

Next we will apply uniform convergence arguments to obtain high probability bounds on each
D̃i(T, ε, ρ) in terms of their expectations. Fix a discontinuity index i ∈ [K]. The set of discontinuity
locations α(1)

i , . . . , α
(T)
i are independent and, since intervals have VC-dimension 2, applying stan-

dard uniform convergence guarantees implies that for any δ > 0, with probability at least 1 − δ the
following holds for all ρ:

D̃i(T, ε, ρ) ≤ E[D̃i(T, ε, ρ)] +O(
√
T log(1/δ)).

Setting the failure probability to be 1/(K
√
T), taking the union bound over allK discontinuities, and

summing the resulting bounds, the following holds with probability at least 1− 1/
√
T for all ρ:

D̃(T, ε, ρ) =
K∑

i=1

D̃i(T, ε, ρ)

≤ E

[
K∑

i=1

D̃i(T, ε, ρ)

]
+K ·O(

√
T log(KT))

= E[D̃(T, ε, ρ)] +O(K
√
T log(KT)).

149

Using the fact that D(T, ε, ρ) ≤ D̃(T, ε, ρ) and taking the supremum over ρ, the following holds with
probability at elast 1− 1/

√
T .

sup
ρ∈R

D(T, ε, ρ) ≤ sup
ρ∈R

E[D̃(T, ε, ρ)] +O(K
√
T log(KT)).

Let G denote the high-probility uniform convergence event above. Then we have

E[sup
ρ∈R

D(T, ε, ρ)] = E[sup
ρ∈R

D(T, ε, ρ) |G] Pr(G) + E[sup
ρ∈R

D(T, ε, ρ) |G] Pr(G)

≤ sup
ρ∈R

E[D̃(T, ε, ρ)] +O(K
√
T log(TK)) +

√
T

= sup
ρ∈R

E[D̃(T, ε, ρ)] +O(K
√
T log(TK)),

as required.

B.2.3 Appendix for Applications

Lemma 3.5. Consider an adversary choosing clustering instances where the tth instance has sym-
metric distance matrix D(t) ∈ [0, B]n×n and for all i ≤ j, d(t)

ij is κ-smooth. The loss functions
`1, `2, . . . defined above are piecewise constant and f -dispersed for f(T, ε) = 32Tεn8κ2M2 +
O(
√
T log(Tn)) and β-dispersed for β = 1/2.

Proof. The key insight of Balcan et al. [18] for this family of algorithms is that for a fixed distance
matrix D, the function ρ 7→ Aρ(D) is piecewise constant with at most O(n8) pieces. That is, the
algorithm will only output at mostO(n8) different cluster trees, and each is produced for some subin-
terval of the parameter space. Their argument is as follows: for any pair of candidate cluster merges,
say merging clusters C1 and C2 versus C ′1 and C ′2, we can determine the values of the parameter
ρ ∈ [0, 1] for which the algorithm would prefer to merge (C1, C2) instead of merging (C ′1, C

′
2) (i.e.,

the values of ρ so that the dρ distance between C1 and C2 is smaller than between C ′1 and C ′2). In par-
ticular, the algorithm will merge clustersC1 andC2 instead ofC ′1 andC ′2 if dρ(C1, C2) ≤ dρ(C

′
1, C

′
2)

or, equivalently, when

(1− ρ) dmin(C1, C2) + ρdmax(C1, C2) ≤ (1− ρ) dmin(C ′1, C
′
2) + ρ dmax(C ′1, C

′
2).

Since the above inequality is linear in ρ, there is a single critical value of the parameter, given by

c =
dmin(C ′1, C

′
2)− dmin(C1, C2)

dmax(C1, C2)− dmin(C1, C2) + dmin(C ′1, C
′
2)− dmax(C ′1, C

′
2)

such that the relative preference of mergingC1 andC2 orC ′1 andC ′2 changes only at ρ = c. Moreover,
the definition of c only depends on a collection of 8 points: the closest and farthest pair between C1

and C2 and between C ′1 and C ′2. In particular, every such critical parameter value c is given by

c =
d

(t)
rr′ − d

(t)
ii′

d
(t)
jj′ − d

(t)
ii′ + d

(t)
rr′ − d

(t)
ss′

(B.14)

where i, i′, j, j′, r, r′, s, s′ ∈ [n] are the indices of 8 points. Similarly to the knapsack example, we
show that each critical parameter value is random and has a density function bounded by 16(κB)2.

150

From this, it follows that for any interval I of radius ε, the expected total number of critical values
summing over all instances t = 1, . . . , T that land in interval I is at most 32Tε(κB)2. This also
bounds the expected number of functions `1, . . . , `T that are not constant on I . By Theorem 3.12, the
functions are f -dispersed for f(T, ε) = 32Tε(κB)2 +

√
T log(Tn) = Õ(Tε+

√
T), also implying

1
2 -dispersion.

When the four distances present in the equation for c are distinct entries of the distance matrix D,
then they are independent. However, it is possible that the closest and furthest pair of points between
a pair of clusters can be the same, for example, when both clusters consist of just a single point. In this
case, the corresponding distances are no longer independent, and we will need to modify our analysis
slightly. Note a critical parameter c only arises for competing pairs of merges (C1, C2) and (C ′1, C

′
2)

that differ on at least one cluster (since otherwise both merges are identical). Moreover, since the set
of clusters at any given round of the algorithm partition the data, any pair of clusters the algorithm
encounters are either equal or disjoint. From this it follows that there are only four cases to consider
depending on whether the closest and farthest pairs of points between C1 and C2 are the same, and
whether the closest and farthest pairs of points between C ′1 and C ′2 are the same. That is, whether
(i, i′) = (j, j′) and whether (s, s′) = (r, r′).

Case 1: (i, i′) 6= (j, j′) and (r, r′) 6= (s, s′). Let X = drr′ − dii′ and Y = djj′ − dss′ . Rewriting
expression for c given in (B.14), we have that c = X/(X+Y). Moreover, both X and Y are the sum
of two independent random variables having κ-bounded densities, so from Lemma B.37, it follows
that X and Y also have densities bounded by κ. Next, since X and Y are independent, take values in
[−2M, 2M], and have κ-bounded densities, Lemma B.39 ensures that the ratio X/(X + Y) has an
16(κM)2 bounded density.

Case 2: (i, i′) = (j, j′) and (r, r′) 6= (s, s′). In this case, we are guaranteed that dii′ = djj′ , and the
expression for c simplifies to

c =
drr′ − dii′
drr′ − dss′

Defining X = −dii′ , Y = −dss′ , and Z = drr′ , we have that β = (X + Z)/(Y + Z). The variables
X , Y , and Z are independent, each have κ-bounded densities, and |Y | ≤ M and |Z| ≤ M with
probability 1. Applying Lemma B.40 to these random variables guarantees that the density function
for β is 4(κM)2-bounded.

Case 3: (i, i′) 6= (j, j′) and (r, r′) = (s, s′). This case is symmetric to case 2 and an identical
argument applies.

Case 4: (i, i′) = (j, j′) and (r, r′) = (s, s′). In this case, the dρ distance between C1 and C2 is
constant, as is the dρ distance between C ′1 and C ′2. Therefore, for all values of ρ we will prefer to
merge the same pair of clusters and there is no critical parameter value where we switch from one
merge to the other.

In every case, the density of the critical parameter value β is upper bounded by 16κ2M2, com-
pleting the proof.

Single Parameter Piecewise Unique Algorithms.

Next we provide a general approach for obtaining semi-bandit feedback that applies to many single-
parameter algorithms. This enables semi-bandit feedback, but we still rely on problem-specific dis-

151

][

Figure B.2: Relationship between the binary search intervals [a, b] and [c, d] and the true interval
[ρ∗min, ρ

∗
max] on which A(x, ρ′) outputs yρ.

persion analysis. This approach applies to any algorithm with a single real-valued parameter whose
output is both a piecewise constant function of the parameter for any instance, and such that no output
value is repeated across any distinct intervals in the piecewise decomposition. We call such an algo-
rithm single-parameter piecewise-unique. Without loss of generality, we assume that the parameter
space is given by C = [0, 1]. Let A : Π × [0, 1] → Y be an algorithm mapping problem instances
x ∈ Π and parameters ρ ∈ [0, 1] to outputs in some space Y . Given a parameter ρ ∈ [0, 1] and a
problem instance x, and an accuracy parameter ε > 0, we will return both A(x, ρ), together with an
interval I = [ρmin, ρmax] such that for all ρ′ ∈ I we have A(x, ρ′) = A(x, ρ). Moreover, for any
point ρ′ 6∈ [ρmin − ε, ρmin + ε], we have A(x, ρ′) 6= A(x, ρ). In other words, the interval I output
by the algorithm is nearly the largest piecewise constant interval containing ρ. The high level idea
of our approach is to run binary search twice to determine the upper and lower bounds ρmax and
ρmin, respectively. Each search will require that we run the algorithm A at most O(log 1/ε) times.
In cases where the algorithm parameters are specified using b bits of precision, then this procedure
exactly determines the interval using O(b) invocations of the base algorithm. Pseudocode is given in
Algorithm 21. Steps 3 and 4 perform binary search to find the upper bound on the constant interval,
while steps 5 and 6 perform binary search to find the lower bound.

Lemma B.34. Let A : Π × [0, 1] → Y be any single-parameter piecewise-unique algorithm and
suppose yρ and I = [ρmin, ρmax] is output by Algorithm 21 when run on A with problem instance
x ∈ Π, parameter ρ ∈ [0, 1], and target accuracy ε. Then Algorithm 21 runs the base algorithm
A at most O(log 1/ε) times and we have that A(x, ρ′) = yρ for all ρ′ ∈ I , ρ ∈ I , and for all
ρ′ 6∈ [ρmin − ε, ρmax + ε] we have A(x, ρ′) 6= yρ.

Proof. From step 1 of the algorithm, we know that A(x, ρ) = yρ, by definition. Since the algorithm
is single-parameter and piecewise-unique, we know that A(x, ρ′) will output yρ for all ρ′ belonging
to some interval [ρ∗min, ρ

∗
max] containing ρ, and it will not output yρ for any point outside that interval.

In particular, restricted to the interval [ρ, 1], there is exactly one critical parameter value, namely
ρ∗max below which the algorithm always outputs yρ and above which the algorithm always outputs
something different. The binary search performed in step 3 guarantees that ρ∗max is always contained
in the interval [a, b], yet on each iteration the length of the interval is halved. Similarly, each iteration
of the binary search in step 6 guarantees that ρ∗min ∈ [c, d], and the width of the interval halves on
each iteration. Each iteration of both binary search instances requires us to run the base algorithm A
once, and we will require O(log 1/ε) iterations to guarantee the width of both intervals is less than ε.

Since a ≤ ρ∗max and d ≥ ρ∗min, we have [a, d] ⊂ [ρ∗min, ρ
∗
max] and it follows that A(x, ρ′) = yρ

for all ρ′ ∈ [a, d], as required. Moreover, we know that a + ε ≥ b ≥ ρ∗max and d − ε ≤ c ≤ ρ∗min,
implying that A(x, ρ′) 6= yρ for all ρ′ 6∈ [a − ε, d + ε], as required. Figure B.2 depicts the relation
between [a, b], [c, d], and [ρ∗min, ρ

∗
max] at the end of the algorithm.

152

Algorithm 21 Blackbox Bandit Feedback for Single-parameter Algorithms
Input: Algorithm A : Π× [0, 1]→ Y , parameter ρ ∈ [0, 1], problem instance x ∈ Π.
1. Let yρ ← A(x, ρ) be the output of A run on x with parameter ρ.
2. Let a← 0 and b← ρ.
3. While b− a > ε:

(a) Set m← (a+ b)/2.
(b) If A(x,m) = yρ then set b← m
(c) Otherwise set a← m.

4. Let ρmin ← b.
5. Let c← ρ and d← 1.
6. While d− c > ε:

(a) Set m← (c+ d)/2.
(b) If A(x,m) = yρ then set c← m
(c) Otherwise set d← m.

7. Let ρmin ← c
8. Output yρ and interval I = (ρmin, ρmax).

B.2.4 Transformations of Bounded Densities

In this section we summarize several useful results that provide upper bounds on the density of ran-
dom variables that are obtained as functions of other random variables with bounded density func-
tions. These results allow us to reason about the distribution of discontinuity locations that arise as
transformations of random problem parameters in algorithm configuration instances.

In many cases, we make use of the following result:

Theorem B.22 (Density Function Change of Variables). Let X ∈ Rd be a random vector with joint
probability density function fX : Rd → [0,∞) and let φ : Rd → Rn be any bijective differentiable
function. Then the random vector Y = φ(X) also has a density function fY : Rn → [0,∞) given by
fY (y) = |det(Jφ−1(y))|fX(φ−1(y)), where Jφ−1(y) denotes the Jacobian of φ−1 evaluated at y.

Lemma B.35 (Lemma 6 from [22]). Suppose X and Y are random variables taking values in (0, 1]
and suppose that their joint distribution is κ-bounded. Then the distribution of Z = ln(X/Y) is
κ/2-bounded.

Lemma B.36 (Lemma 8 from [22]). Suppose X is a random variable with a κ-bounded density and
suppose c is a constant. Then Z = X/c has a cκ-bounded density

Lemma B.37. Let X and Y be two independent random variables each having densities upper
bounded by κ. The random variable U = X + Y has density fU satisfying fU (u) ≤ κ for all
u.

Proof. Let fX and fY be the density functions for X and Y , respectively. The density for U is the
convolution of fX and fY . With this, we have

fU (u) =

∫ ∞

−∞
fX(u− y)fY (y) dy ≤

∫ ∞

−∞
κfY (y) dy = κ.

It follows that U = X + Y has a density that is upper bounded by κ.

153

Lemma B.38. Let X and Y be random variables with joint density fXY that is κ-bounded and such
that |Y | ≤M with probability 1 and let U = X/Y . Then the density function fU is κM2-bounded.

Proof. Consider the change of variables given by U = X/Y and V = Y . This corresponds to the
transformation function φ(x, y) = (x/y, y). The inverse of φ is given by φ−1(u, v) = (uv, v). The
Jacobian of φ−1 is

Jφ−1(u, v) =

[
v u
0 1

]
,

whose determinant is always equal to v. Therefore, the joint density of U and V is given by

fUV (u, v) = |v|fXY (uv, v).

To get the marginal density for U , we integrate over v and use the fact that the density fXY (x, y) = 0
whenever |y| > M . This gives

fU (u) =

∫ M

−M
|v|fXY (uv, v) dv ≤ κ

∫ M

−M
|v| dv = κM2.

It follows that the density for U satisfies fU (u) ≤ κM2 for all u, as required.

Lemma B.39. Let X and Y be independent random variables with κ-bounded densities so that
|X| ≤ M and |Y | ≤ M with probability one and define Z = X/(X + Y). The random variable Z
has a density function fZ that is 4κ2M2-bounded.

Proof. Consider the change of variables given by U = X and V = X + Y . We will argue that
the joint density fUV is κ2-bounded. Then, since |X + Y | ≤ 2M with probability 1, we can apply
Lemma B.38 to ensure that the density of Z = U/V is bounded by κ2(2M)2 = 4κ2M2, as required.

It remains to bound the joint density of U = X and V = X + Y . This change of vari-
ables corresponds to the transformation function φ(x, y) = (x, x + y), whose inverse is given by
φ−1(u, v) = (u, v − u). The Jacobian of φ−1 is given by

Jφ−1(u, v) =

[
1 0
−1 1

]
,

whose determinant is always 1. It follows that the joint density for (U, V) is given by fUV (u, v) =
fXY (u, v − u) = fX(u)fY (v − u) ≤ κ2, as required.

Lemma B.40. LetX , Y , and Z be independent random variables with κ-bounded densities such that
|Y | ≤M , and |Z| ≤M with probability one. Then the random variable R = X+Y

Z+Y has a density fR
that satisfies fR(u) ≤ 4κ2M2.

Proof. Consider the change of variables given by U = X + Y , V = Z + Y . We will argue that the
joint density fUV for U and V is κ2-bounded. Then, since |V | = |Z + Y | ≤ 2M with probability 1,
we can apply Lemma B.38 to ensure that the density ofR = U/V is bounded by 4κ2M2, as required.

It remains to bound the joint density of U = X + Y and V = Z + Y . Consider the change of
variables given by U = X + Y , V = Z + Y , and W = Y . This corresponds to the transformation

154

function φ(x, y, z) = (x + y, z + y, y), and has inverse φ−1(u, v, w) = (u − w,w, v − w). The
Jacobian of φ−1 is given by

Jφ−1(u, v, w) =




1 0 −1
0 0 1
0 1 −1


 ,

which always has determinant given by −1. It follows that the joint density for (U, V,W) is given by

fUVW (u, v, w) = fXY Z(u− w,w, v − w) = fX(u− w)fY (w)fZ(v − w).

To get the joint density over only U and V we integrate over w:

fUV (u, v) =

∫ ∞

−∞
fX(u− w)fY (w)fZ(v − w) dw ≤ κ2

∫ ∞

−∞
fY (w) dw = κ2,

as required.

B.2.5 Discretization-based Algorithm

In this section we provide a single algorithm that has regret bounds for the full-information, semi-
bandit feedback, and bandit-feedback settings. The high level idea is to reduce the problem to a
finite-armed bandit and apply the Exp3-SET algorithm of Alon et al. [2], which enjoys regret bounds
in all three of these settings. In particular, we choose a value of r > 0 and construct a r-net for the
parameter space C (which can be done using at most (3R/r)d points when C is contained in a ball of
radius R in d dimensions. Then we run the Exp3-SET algorithm over this finite set). Exp3-SET is
guaranteed to have bounded regret compared to the best point from the r-net, and we use f -dispersion
to bound the expected difference in total loss between the best discretized point and the best point in
all of C by TLr + f(T, r). We then get bounds for each of the three feedback regimes by tuning the
parameters r and λ of this single algorithm.

On each round, we assume that the learner observes a feedback set At, together with the loss
`t(ρ) for all points ρ ∈ At. In the full information setting, we take At = C to be the entire parameter
space. In the bandit feedback setting, we take At = {ρt}, where ρt is the point played by the learner
in round t. And in the semi-bandit feedback setting, we take At to be the piece of `t that contains the
point ρt played by the learner. Using this notation, pseudocode is given in Algorithm 22.

Algorithm 22 Discretized Exp3-SET
Parameters: Granularity r > 0, step size λ ∈ [0, 1]

1. Let ρ̂1, . . . ρ̂N be an r-net for C of size N ≤
(

3R
r

)d.
2. Let wi,1 = 1 for all i = 1, . . . , N .
3. For t = 1, . . . , T

(a) Let pi,t = wi,t/Wt, where Wt =
∑

iwi,t.
(b) Let ρt = ρ̂i with probability pi,t and play ρt.
(c) Observe feedback set At and `t(ρ̂i) for all ρ̂i ∈ At.
(d) Let ˆ̀

i,t = I{ρ̂i∈At}
qt

`t(ρ̂i), where qt =
∑

i:ρ̂i∈At pi,t.

(e) Let wi,t+1 = wi,t exp(−λˆ̀
i,t) for all i = 1, . . . , N .

155

Theorem B.23. Let C ⊂ Rd be contained in a ball of radius R and `1, . . . , `T be possibly random
piecewise L-Lipschitz functions that are f -dispersed and have an r0-interior optimum. Then running
Algorithm 22 with discretization parameter r ≤ r0, the following claims hold:

1. Under full information, setting r = 1/(L
√
T) and λ =

√
ln(RL

√
T)/T gives expected regret

bounded by O(
√
dT log(RLT) + f(T, 1/(L

√
T)).

2. Under semi-bandit feedback, if each function `t has at most M pieces, setting r = 1/(L
√
T)

and λ =
√
d ln(RL

√
T)/(MT) gives expected regret bounded by O(

√
dTM log(RLT) +

f(T, 1/(L
√
T)).

3. Under bandit feedback, setting r = T
d+1
d+2

/2 = T−1/(d+2) and λ =

√
d ln(3RT

1
d+2)/((3R)dT

2(d+1)
d+2)

gives expected regret bounded by O
(
T
d+1
d+2 (d(3R)d ln(RT) + L) + f(T, 1

T 1/(d+2))
)

.

In each of the above bounds, the role of the dispersion parameter f is clean. For both the full-
information and semi-bandit feedback settings, the only term in the bound that depends on f is the
f(T, 1/(L

√
T)) term. Similarly, for bandit feedback, the bound depends on f only through the

f(T, 1/T 1/(d−2)) term. In either case, it is clear that the regret bound after T rounds depends on
the dispersion properties in neighborhoods of radius 1/(L

√
T) and 1/T 1/(d−2), respectively. We

know that the function f(T, ε) should be non-decreasing in the parameter ε, so this also shows that
in one sense we require “less” dispersion in the bandit setting, since the bandit bounds depend on
f(T, 1/T 1/(d+2)) ≤ f(T, 1/

√
T)).

Proof. Let `1, . . . , `T be the sequence of loss functions. By assumption, with probability one there
is an optimal parameter in hindsight ρ∗ such that B(ρ∗, r) ⊂ C. It follows that at least one of the
discretization points ρ̂1, . . . , ρ̂N must belong to this ball. Let ρ̂∗ be such a point. We use f -dispersion
to argue that the total loss of ρ̂∗ is not much more than the total loss of ρ∗ in expectation over the loss
functions `t. Let

D =
∣∣{1 ≤ t ≤ T : `t is not L-Lipschitz on B(ρ∗, r)}

∣∣

be the number of loss functions that are not L-Lipschitz on B(ρ∗, r). We know that
∑T

t=1 `t(ρ̂
∗) −

`t(ρ
∗) ≤ TLr +D, since D of the functions have discontinuities and the remaining T −D < T are

L-Lipschitz. Taking the expectation over `1, . . . , `T and using the fact that E[D] ≤ f(T, r), we have
that

E

[
T∑

t=1

`t(ρ̂
∗)− `t(ρ∗)

]
≤ TLr + f(T, r). (B.15)

Therefore, it is sufficient to show that Algorithm 22 is competitive with ρ∗ in expectation over the
algorithm randomness.

Algorithm 22 runs a special case of the Exp3-SET algorithm of Alon et al. [2] over the discretized
set of parameters ρ̂1, . . . , ρ̂N . In particular, we have assumed that the feedback system takes a par-
ticular form: on each round the arms are partitioned into sets such that playing any arm from one set
reveals the loss for all arms in the same set. Alon et al. [2] bound the regret of this algorithm for a
broader class of feedback systems, where on every round there is an undirected graphs defined over
the arms fo the bandit and playing an arm reveals not only its loss, but also the loss of all adjacent
arms in the feedback graph Gt. Our special case corresponds to the setting where Gt is the union of

156

several cliques (in the full-information setting, Gt is the complete graph, in the semi-bandit setting,
Gt is the union of M cliques, where M is the number of pieces, and in the bandit setting, Gt is the
union of N cliques, each consisting of a single node). Corollary 3 of [2] bound the regret of the
algorithm by

E

[
T∑

t=1

`t(ρt)

]
−

T∑

t=1

`t(ρ̂
∗) ≤ 1

λ
ln(N) +

λ

2

T∑

t=1

α(Gt),

where α(Gt) is the size of the largest independent set in the feedback graph Gt at round t and the
expectation is over the randomness of the algorithm, and holds for any oblivious choice of loss func-
tions `1, . . . , `T and feedback graphs G1, . . . , GT . In particular, if α(Gt) ≤ α for some number α on
all time steps, then setting λ =

√
ln(N)/(Tα) gives

E

[
T∑

t=1

`t(ρt)

]
−

T∑

t=1

`t(ρ̂
∗) ≤ O(

√
ln(N)Tα).

Finally, taking expectations over the randomness in the loss functions `1, . . . , `T , using (B.15), the
above choice of λ, and the fact that N ≤ (3R/r)d, we have

E

[
T∑

t=1

`t(ρt)− `t(ρ∗)
]
≤ O

(√
dTα ln(R/r) + TLr + f(T, r)

)

Full information. In the full information setting, the feedback graph Gt is the complete graph, for
which the largest independent set is of size α = 1. In this case, choosing r = 1/(L

√
T) leads to

λ =
√

ln(RL
√
T)/T and gives expected regret bounded by O(

√
dT log(RLT) + f(T, 1/(L

√
T)).

Semi-bandit feedback. Next suppose that each function `t is piecewise defined with at most M and
when the learner plays a point ρt, they learn the loss for all points belonging to the same piece. In
this case, the feedback graph Gt consists of the union of M cliques, and the largest independent set

has size at most α = M . Again, choosing r = 1/(L
√
T) leads to λ =

√
d ln(RL

√
T)/(MT) and

gives expected regret bound by O(
√
dTM log(RLT) + f(T, 1/(L

√
T)).

Bandit feedback. Finally, consider the bandit feedback setting. In this case, the feedback graph Gt
has the empty edge-set and therefore the largest independent set is of size α = N ≤ (3R/r)d (the
total number of arms). Choosing r = T

d−1
d−2
−1 leads to

λ =

√√√√d ln(3RT
1
d+2)

(3R)dT
2(d+1)
d+2

and expected regret bounded by O
(
T
d+1
d+2 (d(3R)d ln(RT) + L) + f(T, 1

T 1/(d+2))
)

.

Note, the condition that B(ρ∗, r0) ⊂ C with probability one is only for technical convenience.
We can always modify the optimization problem so that this condition is satisfied. In particular, we
define an enlarged parameter space C′ =

⋃
ρ∈C B(ρ, r0) and replace the utility function ut with its

Lipschitz extension to C′. On this modified problem we are guaranteed that there exists an optimal
parameter in the r0-interior of C′, and the Lipschitz-extended functions are still piecewise Lipschitz
and f -dispersed for the same f .

157

Appendix C

Appendix for Chapter 4

In this section we prove the sample complexity guarantee for learning the best algorithm from the
familyAmetric(d0, d1), which corresponds to learning the best convex combination of the two metrics
d0 and d1 to use for a given clustering application. The main step of the argument is proved in
Theorem 4.1, which shows that for any given clustering instance S with target clustering Y , the
function β 7→ Ametric

β (S) is a piecewise constant function of β with at most O(|S|4) pieces. That
is, we can find M = O(|S|4) intervals I1, . . . , IM that partition [0, 1] such that for any interval Ii
and any β, β′ ∈ Ii, we have Ametric

β (S) = Ametric
β′ (S). From this if also follows that the loss function

β 7→ `(Ametric
β (S),Y) is piecewise constant with the same partition. Next, we show how to use this

structure in the loss functions to prove sample complexity guarantees for learning the best value of β.

Theorem 4.2. Consider the familyAmetric(d0,d1) and let (S1,Y1), . . . , (SN ,YN) be an i.i.d. sample
of clustering instances with target clusterings of size N = O

(
1
ε2

(log n+ log 1
δ)
)
, where n is a bound

on the number of points per instance. With probability at least 1 − δ, the following holds for all
β ∈ [0, 1] ∣∣∣∣∣

1

N

N∑

i=1

`(Ametric
β (Si),Yi)− E

(S,Y)∼D
[`(Ametric

β (S),Y)]

∣∣∣∣∣ ≤ ε.

Proof. For each parameter β ∈ [0, 1], define a function fβ that takes as arguments a clustering in-
stance S and a target clustering Y for S and outputs the loss of Ametric

β evaluated on S. That is,
fβ(S,Y) = `(Ametric

β (S),Y). We will bound the pseudo-dimension of the class F = {fβ |β ∈ [0, 1]}
by O(log n), after which standard uniform-convergence arguments imply the claim. Throughout the
proof we assume that all clustering instances have at most n points.

First, suppose that the Pseudo-dimension of the class F is D. Then there exists a collection of
clustering instances with target clusterings (S1,Y1), . . . , (SD,YD) that is shattered by F . In other
words, there are witness thresholds z1, . . . , zD ∈ R such that for every subset T ⊂ [D], there exists a
parameter βT ∈ [0, 1] so that fβT (Si,Yi) ≥ zi if and only if i ∈ T . In particular, this guarantees that
the set of vectors {(

fβ(S1,Y1), . . . , fβ(SD,YD)
)
∈ RD |β ∈ [0, 1]

}

contains at least 2D distinct elements.
Next, we argue that this set also contains at most O(Dn4) elements. For each instance (Si,Yi),

Theorem 4.1 guarantees that we can find Mi = O(n4) critical parameter values 0 = c1 < · · · <
cMi = 1 such that for any β, β′ ∈ [ci−1, ci), we have fβ(Si,Yi) = fβ′(Si,Yi). Taking the union of

158

these critical parameter values across all D instances, we get a partition of [0, 1] into M = O(Dn4)
intervals I1, . . . , IM with the following property: For every β, β′ ∈ Ij and every instance (Si,Yi), we
have fβ(Si,Yi) = fβ′(Si,Yi). Let β1, . . . , βM be a collection of parameter values with βj ∈ Ij for all
j ∈ [M]. Now let β ∈ [0, 1] be any parameter value. Since I1, . . . , IM partition [0, 1], we know that
there is exactly one index, say j, such that β ∈ Ij . Therefore, we have that fβ(Si,Yi) = fβj (Si,Yi)
for all i ∈ [D]. From this, it follows that

∣∣{(fβ(S1,Y1), . . . , fβ(SD,YD)
)
∈ RD |β ∈ [0, 1]

}∣∣ ≤M = O(Dn4),

since every parameter β has the same loss on all instances (S1,Y1), . . . , (SD,YD) as one of the
parameters βj .

Combining the above arguments, we have that 2D ≤ O(Dn4), which implies that D = O(log n).
The final result follows by applying standard Pseudo-dimension uniform convergence results [117].

159

Appendix D

Appendix for Chapter 5

Theorem 5.1. Let d be a metric on X , P be a distribution on X , and u be an L-Lipschitz utility
function. Let S be a set of individuals such that there exists X̂ ⊂ X with P (X̂) ≥ 1 − α and
supx∈X̂ (d(x,NNS(x)) ≤ β/(2L). Then for any classifier h : S → ∆(Y) that is EF on S, the
extension h : X → ∆(Y) given by h(x) = h(NNS(x)) is (α, β)-EF on P .

Proof. Let h : S → ∆(Y) be any EF classifier on S and h : X → ∆(Y) be the nearest neighbor
extension. Sample x and x′ from P . Then, x belongs to the subset X̂ with probability at least
1−α. When this occurs, x has a neighbor within distance β/(2L) in the sample. Using the Lipschitz
continuity of u, we have |u(x, h(x)) − u(NNS(x), h(NNS(x)))| ≤ β/2. Similarly, |u(x, h(x′)) −
u(NNS(x), h(NNS(x′)))| ≤ β/2. Finally, since NNS(x) does not envy NNS(x′) under h, it follows
that x does not envy x′ by more than β under h.

Lemma D.1. SupposeX ⊂ Rq, d(x, x′) = ‖x−x′‖2, and letD = supx,x′∈X d(x, x′) be the diameter
of X . For any distribution P over X , β > 0, α > 0, and δ > 0 there exists X̂ ⊂ X such that P (X̂) ≥
1 − α and, if S is an i.i.d. sample drawn from P of size |S| = O(1

α(
LD
√
q

β)q(d log
LD
√
q

β + log 1
δ)),

then with probability at least 1− δ, supx∈X̂ d(x,NNS(x)) ≤ β/(2L).

Proof. Let C be the smallest cube containing X . Since the diameter of X is D, the side-length of C
is at most D. Let s = β/(2L

√
q) be the side-length such that a cube with side-length s has diameter

β/(2L). It takes at most m = dD/seq cubes of side-length s to cover C. Let C1, . . . , Cm be such a
covering, where each Ci has side-length s.

Let Ci be any cube in the cover for which P (Ci) > α/m. The probability that a sample of
size n drawn from P does not contain a sample in Ci is at most (1 − α/m)n ≤ e−nα/m. Let
I = {i ∈ [m] : P (Ci) ≥ α/m}. By the union bound, the probability that there exists i ∈ I such that
Ci does not contain a sample is at most me−nα/m. Setting

n =
m

α
ln
m

δ

= O

(
1

α

(
LD
√
q

β

)q(
q log

LD
√
q

β
+ log

1

δ

))

results in this upper bound being δ. For the remainder of the proof, assume this high probability event
occurs.

Now let X̂ =
⋃
i∈I Ci. For each j 6∈ I , we know that P (Cj) < α/m. Since there at most m

such cubes, their total probability mass is at most α. It follows that P (X̂) ≥ 1− α. Moreover, every

160

point x ∈ X̂ belongs to one of the cubes Ci with i ∈ I , which also contains a sample point. Since
the diameter of the cubes in our cover is β/(2L), it follows that d(x,NNS(x)) ≤ β/(2L) for every
x ∈ X̂ , as required.

Lemma D.2. Let G = {g : X → Y} have Natarajan dimension d. For g1, g2 ∈ G, let (g1, g2) : X →
Y2 denote the function given by (g1, g2)(x) = (g1(x), g2(x)) and let G2 = {(g1, g2) : g1, g2 ∈ G}.
Then the Natarajan dimension of G2 is at most 2d.

Proof. LetD be the Natarajan dimension of G2. Then we know that there exists a collection of points
x1, . . . , xD ∈ X that is shattered by G2, which means there are two sequences q1, . . . , qn ∈ Y2 and
q′1, . . . , q

′
n ∈ Y2 such that for all i we have qi 6= q′i and for any subset C ⊂ [D] of indices, there exists

(g1, g2) ∈ G2 such that (g1, g2)(xi) = qi if i ∈ C and (g1, g2)(xi) = q′i otherwise.
Let n1 =

∑D
i=1 I{qi1 6= q′i1} and n2 =

∑D
i=1 I{qi2 6= q′i2} be the number of pairs on which the

first and second labels of qi and q′i disagree, respectively. Since none of the n pairs are equal, we
know that n1 + n2 ≥ D, which implies that at at least one of n1 or n2 must be ≥ D/2. Assume
without loss of generality that n1 ≥ D/2 and that qi1 6= q′i1 for i = 1, . . . , n1. Now consider any
subset of indices C ⊂ [n1]. We know there exists a pair of functions (g1, g2) ∈ G2 with (g1, g2)(xi)
evaluating to qi if i ∈ C and q′i if i 6∈ C. But then we have g1(xi) = qi1 if i ∈ C and g1(xi) = q′i1 if
i 6∈ C, and qi1 6= q′i1 for all i ∈ [n1]. It follows that G shatters x1, . . . , xn1 , which consists of at least
D/2 points. Therefore, the Natarajan dimension of G2 is at most 2d, as required.

The following example demonstrates that the optimal randomized envy-free classifier can be ar-
bitrarily better than the best deterministic classifier.

Example D.1. Let S = {x1, x2} and Y = {y1, y2, y3}. Let the loss function be such that

`(x1, y1) = 0 `(x1, y2) = 1 `(x1, y3) = 1

`(x2, y1) = 1 `(x2, y2) = 1 `(x2, y3) = 0

And let the utility function be such that

u(x1, y1) = 0 u(x1, y2) = 1 u(x1, y3) =
1

γ

u(x2, y1) = 0 u(x2, y2) = 0 u(x2, y3) = 1

where γ > 1. Now, the only deterministic classifier with a loss of 0 is h0 such that h0(x1) = y1 and
h0(x2) = y3. But, this is not EF, since u(x1, y1) < u(x1, y3). Furthermore, every other deterministic
classifier has a total loss of at least 1, causing the optimal deterministic EF classifier to have loss of
at least 1.

To show that randomized classifiers can do much better, consider the randomized classifier h∗
such that h∗(x1) = (1− 1/γ, 1/γ, 0) and h∗(x2) = (0, 0, 1). This classifier can be seen as a mixture
of the classifier h0 of 0 loss, and the deterministic classifier he, where he(x1) = y2 and he(x2) = y3,
which has high “negative envy”. One can observe that this classifier h∗ is EF, and has a loss of just
1/γ. Hence, the loss of the optimal randomized EF classifier is γ times smaller than the loss of the
optimal deterministic one, for any γ > 1.

Theorem 5.2. There exists a space of individuals X ⊂ Rq, and a distribution P over X such that,
for every randomized algorithm A that extends classifiers on a sample to X , there exists an L-
Lipschitz utility function u such that, when a sample of individuals S of size n = 4q/2 is drawn

161

from P without replacement, there exists an EF classifier on S for which, with probability at least
1− 2 exp(−4q/100)− exp(−4q/200) jointly over the randomness of A and S, its extension by A is
not (α, β)-EF with respect to P for any α < 1/25 and β < L/8.

Proof. Let the space of individuals be X = [0, 1]q and the outcomes be Y = {0, 1}. We partition the
space X into cubes of side length s = 1/4. So, the total number of cubes is m = (1/s)q = 4q. Let
these cubes be denoted by c1, c2, . . . cm, and let their centers be denoted by µ1, µ2, . . . µm. Next, let
P be the uniform distribution over the centers µ1, µ2, . . . µm. For brevity, whenever we say “utility
function” in the rest of the proof, we mean “L-Lipschitz utility function.”

To prove the theorem, we use Yao’s minimax principle [148]. Specifically, consider the following
two-player zero sum game. Player 1 chooses a deterministic algorithm D that extends classifiers on
a sample to X , and player 2 chooses a utility function u on X . For any subset S ⊂ X , define the
classifier hu,S : S → Y by assigning each individual in S to his favorite outcome with respect to the
utility function u, i.e. hu,S(x) = arg maxy∈Yu(x, y) for each x ∈ S, breaking ties lexicographically.
Define the cost of playing algorithm D against utility function u as the probability over the sample
S (of size m/2 drawn from P without replacement) that the extension of hu,S by D is not (α, β)-
EF with respect to P for any α < 1/25 and β < L/8. Yao’s minimax principle implies that for
any randomized algorithm A, its expected cost with respect to the worst-case utility function u is
at least as high as the expected cost of any distribution over utility functions that is played against
the best deterministic algorithm D (which is tailored for that distribution). Therefore, we establish
the desired lower bound by choosing a specific distribution over utility functions, and showing that
the best deterministic algorithm against it has an expected cost of at least 1 − 2 exp(−m/100) −
exp(−m/200).

To define this distribution over utility functions, we first sample outcomes y1, y2, . . . , ym i.i.d.
from Bernoulli(1/2). Then, we associate each cube center µi with the outcome yi, and refer to this
outcome as the favorite of µi. For brevity, let ¬y denote the outcome other than y, i.e. ¬y = (1− y).
For any x ∈ X , we define the utility function as follows. Letting cj be the cube that x belongs to,

u(x, yj) = L
[s

2
− ‖x− µj‖∞

]
; u(x,¬yj) = 0. (D.1)

See Figure D.1 for an illustration.
We claim that the utility function of Equation (D.1) is indeed L-Lipschitz with respect to any Lp

norm. This is because for any cube ci, and for any x, x′ ∈ ci, we have
∣∣u(x, yi)− u(x′, yi)

∣∣ = L
∣∣‖x− µi‖∞ − ‖x′ − µi‖∞

∣∣
≤ L‖x− x′‖∞ ≤ L‖x− x′‖p.

Moreover, for the other outcome, we have u(x,¬yi) = u(x′,¬yi) = 0. It follows that u is L-
Lipschitz within every cube. At the boundary of the cubes, the utility for any outcome is 0, and hence
u is also continuous throughout X . Because it is piecewise Lipschitz and continuous, u must be
L-Lipschitz throughout X , with respect to any Lp norm.

Next, let D be an arbitrary deterministic algorithm that extends classifiers on a sample to X .
We draw the sample S of size m/2 from P without replacement. Consider the distribution over
favorites of individuals in S. Each individual in S has a favorite that is sampled independently from
Bernoulli(1/2). Hence, by Hoeffding’s inequality, the fraction of individuals in S with a favorite of 0
is between 1

2−ε and 1
2 +ε with probability at least 1−2 exp(−mε2). The same holds simultaneously

for the fraction of individuals with favorite 1.

162

Figure D.1: Illustration of X and an example utility function u for d = 2. Red shows preference
for 1, blue shows preference for 0, and darker shades correspond to more intense preference. (The
gradients are rectangular to match the L∞ norm, so, strangely enough, the misleading X pattern is an
optical illusion.)

Given the sample S and the utility function u on the sample (defined by the instantiation of their
favorites), consider the classifier hu,S , which maps each individual µi in the sample S to his favorite
yi. This classifier is clearly EF on the sample. Consider the extension hDu,S of hu,S to the whole of X
as defined by algorithm D. Define two sets Z0 and Z1 by letting Zy = {µj /∈ S | hDu,S(µj) = y}, and
let y∗ denote an outcome that is assigned to at least half of the out-of-sample centers, i.e., an outcome
for which |Zy∗ | ≥ |Z¬y∗ |. Furthermore, let θ denote the fraction of out-of-sample centers assigned to
y∗. Note that, since |S| = m/2, the number of out-of-sample centers is also exactly m/2. This gives
us |Zy∗ | = θm2 , where θ ≥ 1

2 .
Consider the distribution of favorites in Zy∗ (these are independent from the ones in the sample

since Zy∗ is disjoint from S). Each individual in this set has a favorite sampled independently from
Bernoulli(1/2). Hence, by Hoeffding’s inequality, the fraction of individuals in Zy∗ whose favorite is
¬y∗ is at least 1

2 − ε with probability at least 1− exp(−m
2 ε

2). We conclude that with a probability at
least 1 − 2 exp(−mε2) − exp(−m

2 ε
2), the sample S and favorites (which define the utility function

u) are such that: (i) the fraction of individuals in S whose favorite is y ∈ {0, 1} is between 1
2 − ε and

1
2 + ε, and (ii) the fraction of individuals in Zy∗ whose favorite is ¬y∗ is at least 1

2 − ε.
We now show that for such a sample S and utility function u, hDu,S cannot be (α, β)-EF with

respect to P for any α < 1/25 and β < L/8. To this end, sample x and x′ from P . One scenario
where x envies x′ occurs when (i) the favorite of x is ¬y∗, (ii) x is assigned to y∗, and (iii) x′ is
assigned to ¬y∗. Conditions (i) and (ii) are satisfied when x is in Zy∗ and his favorite is ¬y∗. We know
that at least a 1

2 − ε fraction of the individuals in Zy∗ have the favorite ¬y∗. Hence, the probability
that conditions (i) and (ii) are satisfied by x is at least (1

2 − ε)|Zy∗ | 1
m = (1

2 − ε) θ2 . Condition (iii) is
satisfied when x′ is in S and has favorite ¬y∗ (and hence assigned ¬y∗), or, if x′ is in Z¬y∗ . We know
that at least a

(
1
2 − ε

)
fraction of the individuals in S have the favorite ¬y∗. Moreover, the size of

Z¬y∗ is (1− θ)m2 . So, the probability that condition (iii) is satisfied by x′ is at least
(

1
2 − ε

)
|S|+ |Z¬y∗ |
m

=
1

2

(
1

2
− ε
)

+
1

2
(1− θ).

Since x and x′ are sampled independently, the probability that all three conditions are satisfied is

163

at least (
1

2
− ε
)
θ

2
·
[

1

2

(
1

2
− ε
)

+
1

2
(1− θ)

]
.

This expression is a quadratic function in θ, that attains its minimum at θ = 1 irrespective of the
value of ε. Hence, irrespective of D, this probability is at least

[
1
2

(
1
2 − ε

)]2. For concreteness, let us
choose ε to be 1/10 (although it can be set to be much smaller). On doing so, we have that the three
conditions are satisfied with probability at least 1/25. And when these conditions are satisfied, we
have u(x, hDu,S(x)) = 0 and u(x, hDu,S(x′)) = Ls/2, i.e., x envies x′ by Ls/2 = L/8. This shows
that, when x and x′ are sampled from P , with probability at least 1/25, x envies x′ by L/8. We
conclude that with probability at least 1−2 exp(−m/100)−exp(−m/200) jointly over the selection
of the utility function u and the sample S, the extension of hu,S by D is not (α, β)-EF with respect to
P for any α < 1/25 and β < L/8.

To convert the joint probability into expected cost in the game, note that for two discrete, inde-
pendent random variables X and Y , and for a Boolean function E(X,Y), it holds that

PrX,Y (E(X,Y) = 1) = EX [PrY (E(X,Y) = 1)] . (D.2)

Given sample S and utility function u, let E(u, S) be the Boolean function that equals 1 if and only
if the extension of hu,S by D is not (α, β)-EF with respect to P for any α < 1/25 and β < L/8.
From Equation (D.2), Pru,S(E(u, S) = 1) is equal to Eu [PrS(E(u, S) = 1)]. The latter term is
exactly the expected value of the cost, where the expectation is taken over the randomness of u. It
follows that the expected cost of (any) D with respect to the chosen distribution over utilities is at
least 1− 2 exp(−m/100)− exp(−m/200).

164

	1 Introduction
	2 Label Efficient Learning by Exploiting Multi-class Output Codes
	2.1 Introduction
	2.2 Related Work
	2.3 Preliminaries
	2.4 Error Correcting Output Codes
	2.5 One-Versus-All on the Unit Ball
	2.6 The Boundary Features Condition
	2.7 Extensions to the Agnostic Setting
	2.8 Conclusion and Discussion

	3 Online and Private Algorithm Configuration
	3.1 Private and Online Algorithm Configuration from Dispersion
	3.1.1 Introduction
	3.1.2 Dispersion Condition
	3.1.3 Online Optimization
	3.1.4 Differentially Private Optimization
	3.1.5 Dispersion in application-specific algorithm selection
	3.1.6 Generalization guarantees for distributional learning
	3.1.7 Conclusion

	3.2 Semi-bandit Optimization in the Dispersed Setting
	3.2.1 Introduction
	3.2.2 Semi-bandit Optimization of Piecewise Lispchitz Functions
	3.2.3 General Tools for Verifying Dispersion
	3.2.4 Online Algorithm Selection with Semi-bandit Feedback

	4 Data-driven Algorithm Configuration and Metric Learning for Clustering
	4.1 Introduction
	4.2 Learning Clustering Metrics
	4.3 Learning Merge Functions
	4.4 Efficient Algorithm Selection
	4.4.1 Optimizing the Merge Function
	4.4.2 Optimizing the Metric

	4.5 Experiments

	5 A New Approach to Individual Fairness: Envy-free Classification
	5.1 Introduction
	5.1.1 Our Results
	5.1.2 Related Work

	5.2 The Model
	5.2.1 Envy-Freeness
	5.2.2 Optimization and Learning

	5.3 Arbitrary Classifiers
	5.4 Low-Complexity Families of Classifiers
	5.4.1 Natarajan Dimension Primer
	5.4.2 Main Result

	A Appendix for Chapter 2
	A.1 Appendix for Error Correcting Output Codes
	A.2 Appendix For One-vs-all on the Unit Ball
	A.3 Appendix for Boundary Features Condition

	B Appendix for Chapter 3
	B.1 Appendix for sec:dispersion
	B.1.1 Generic lemmas for dispersion
	B.1.2 Properties of -bounded distributions
	B.1.3 Efficient sampling
	B.1.4 Proofs for online learning (sec:dispersionOnline)
	B.1.5 Proofs for differential privacy (sec:dispersionPrivacy)
	B.1.6 Proofs for algorithm configuration (sec:dispersionApplications)
	B.1.7 Proofs for distributional learning (sec:dispersionRademacher)
	B.1.8 Discretization-based algorithm

	B.2 Appendix for sec:semibandit
	B.2.1 Online Optimization
	B.2.2 Dispersion Tools
	B.2.3 Appendix for Applications
	B.2.4 Transformations of Bounded Densities
	B.2.5 Discretization-based Algorithm

	C Appendix for Chapter 4
	D Appendix for Chapter 5

