
Write Markers for
Probabilistic Quorum Systems

Michael G. Merideth and Michael K. Reiter
November 2007. Revised November 2008.

CMU-CS-07-165R

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Supersedes Technical Report CMU-CS-07-165.
Also appears as Institute for Software Research Technical Report CMU-ISRI-07-118R.

Abstract

Probabilistic quorum systems can tolerate a larger fraction of faults than can traditional (strict)
quorum systems, while guaranteeing consistency with an arbitrarily high probability for a system
with enough replicas. However, the masking and opaque typesof probabilistic quorum systems
are hampered in that their optimal load—a best-case measureof the work done by the busiest
replica, and an indicator of scalability—is little better than that of strict quorum systems. In this
paper we present a variant of probabilistic quorum systems that useswrite markersin order to limit
the extent to which Byzantine-faulty servers act together. Our masking and opaque probabilistic
quorum systems have asymptotically better load than the bounds proven for previous masking and
opaque quorum systems. Moreover, the new masking and opaqueprobabilistic quorum systems
can tolerate an additional24% and17% of faulty replicas, respectively, compared with probabilistic
quorum systems without write markers.

This work was partially supported by NSF grant CCF-0424422.

Keywords: Distributed systems, Byzantine fault tolerance, probabilistic quorum systems

1 Introduction

Given a universeU of servers, aquorum systemoverU is a collectionQ = {Q1, . . . , Qm} such
that eachQi ⊆ U and

|Q ∩ Q′| > 0 (1)

for all Q,Q′ ∈ Q. EachQi is called aquorum. The intersection property (1) makes quorums a
useful primitive for coordinating actions in a distributedsystem. For example, if clients perform
writes at a quorum of servers, then a client who reads from a quorum will observe the last written
value. Because of their utility in such applications, quorums have a long history in distributed
computing.

In systems that may suffer Byzantine faults [10], the intersection property (1) is typically not
adequate as a mechanism to enable consistent data access. Because (1) requires only that the
intersection of quorums be non-empty, it could be that two quorums intersect only in a single
server, for example. In a system in which up tob > 0 servers might suffer Byzantine faults, this
single server might be faulty and consequently, could fail to convey the last written value to a
reader, for example.

For this reason, Malkhi and Reiter [15] proposed various waysof strengthening the intersection
property (1) so as to enable quorums to be used in Byzantine environments. For example, an
alternative to (1) is

|Q ∩ Q′ \ B| > |Q′ ∩ B| (2)

for all Q,Q′ ∈ Q, whereB is the (unknown) set of all (up tob) servers that are faulty. In other
words, the intersection of any two quorums contains more non-faulty servers than the faulty ones
in either quorum. As such, the responses from these non-faulty servers will outnumber those from
faulty ones. These quorum systems are calledmaskingsystems.

Opaquequorum systems, have an even more stringent requirement as an alternative to (1):

|Q ∩ Q′ \ B| > |(Q′ ∩ B) ∪ (Q′ \ Q)| (3)

for all Q,Q′ ∈ Q. In other words, the number of correct servers in the intersection of Q andQ′

(i.e., |Q ∩ Q′ \ B|) exceeds the number of faulty servers inQ′ (i.e., |Q′ ∩ B|) together with the
number of servers inQ′ but notQ. The rationale for this property can be seen by considering the
servers inQ′ but notQ as “outdated”, in the sense that ifQ was used to perform an update to the
system, then those servers inQ′ \Q are unaware of the update. As such, if the faulty servers inQ′

behave as the outdated ones do, their behavior (i.e., their responses) will dominate that from the
correct servers in the intersection (Q ∩ Q′ \ B) unless (3) holds.

The increasingly stringent properties of Byzantine quorum systems come with costs in terms
of the smallest system sizes that can be supported while tolerating a numberb of faults [15]. This
implies that a system with a fixed number of servers can tolerate fewer faults when the property
is more stringent as seen in Table 1, which refers to the quorums just discussed asstrict. Table 1
also shows the negative impact on the ability of the system todisperse load amongst the replicas,
as discussed next.

Naor and Wool [24] introduced the notion of anaccess strategyby which clients select quorums
to access. An access strategyp : Q → [0, 1] is simply a probability distribution on quorums, i.e.,

1

∑

Q∈Q p(Q) = 1. Intuitively, when a client accesses the system, it does so at a quorum selected
randomly according to the distributionp.

The formalization of an access strategy is useful as a tool for discussing the load-dispersing
properties of quorums. Theload [24] of a quorum system,L(Q), is the probability with which the
busiest server is accessed in a client access, under the bestpossible access strategyp. As listed in
Table 1, tight lower bounds have been proven for the load of each type of strict Byzantine quorum
system. The load for opaque quorum systems is particularly unfortunate—systems that utilize
opaque quorum systems cannot effectively disperse processing load across more servers (i.e., by
increasingn) because the load is at least a constant. Byzantine quorum systems are used by many
modern Byzantine-fault-tolerant protocols, e.g., [1, 4, 6,9, 16, 19] in order to tolerate the arbitrary
failure of a subset of their replicas. As such, circumventing the bounds is an important topic.

One way to circumvent these bounds is withprobabilistic quorum systems. Probabilistic quo-
rum systems relax the quorum intersection properties, asking them to hold only with high prob-
ability. More specifically, they relax (2) or (3), for example, to hold only with probability1 − ǫ
(for ǫ, a small constant), where probabilities are taken with respect to the selection of quorums
according to an access strategyp [18, 21]. This technique yields masking quorum constructions
toleratingb < 2.62/n and opaque quorum constructions toleratingb < 3.15/n as seen in Table 1.
These bounds hold in the sense that for anyǫ > 0 there is ann0 such that for alln > n0, the
required intersection property ((2) or (3) for masking and opaque quorum systems, respectively)
holds with probability at least1 − ǫ. Unfortunately, probabilistic quorum systems alone do not
materially improve the load of Byzantine quorum systems.

In this paper, we present an additional modification,write markers, that improves on the bounds
further. Intuitively, in each update access to a quorum of servers, a write marker is placed at the
accessed servers in order to evidence the quorum used in thataccess. This write marker identifies
the quorum used; as such, faulty servers not in this quorum cannot respond to subsequent quorum
accesses as though they were.

As seen in Table 1, by using this method to constrain how faulty servers can collaborate, we
show that probabilistic masking quorum systems with loadO(1/

√
n) can be achieved, allowing

the systems to disperse load independently of the value ofb. Further, probabilistic opaque quorum
systems with loadO(b/n) can be achieved, breaking the constant lower bound on load for opaque
systems. Moreover, the resilience of probabilistic masking quorums can be improved an additional
24% to b < n/2, and the resilience of probabilistic opaque quorum systemscan be improved an
additional17% to b < n/2.62.

The probability of error in probabilistic quorums requiresmechanisms to ensure that accesses
are performed according to the required access strategyp if the clients cannot be trusted to do so.
Therefore, we adapt one such mechanism, the access-restriction protocol of probabilistic opaque
quorum systems [21], to accomodate write markers. Thus, as aside benefit, our implementation
forces faulty clients to follow the access strategy. With this, we provide a protocol to implement
write markers that tolerates Byzantine clients.

Our primary contributions are (i) the identification and analysis of the benefits of write markers;
and (ii) a proposed implementation of write markers that handles the complexities of tolerating
Byzantine clients. Our analysis yields the following results:

2

Masking Quorums: We show that the use of write markers allows probabilistic masking quo-
rum systems to tolerate up tob < n/2 faults when quorums are of sizeΩ(

√
n). Setting all quorums

Table 1: Improvements due to write markers. (Bold entries are
properties of particular constructions; others are lower bounds.)

Non-Byzantine: load faults
strict Ω(1/

√
n) [24] < n

Masking: load faults
strict Ω(

√

b/n) [15] < n/4.00 [17]
probabilistic Ω(b/n) [18] < n/2.62 [21]
write markers O(1/

√
n) [here] < n/2.00 [here]

Opaque: load faults
strict ≥ 1/2 [15] < n/5.00 [15]
probabilistic unproven < n/3.15 [21]
write markers O(b/n) [here] < n/2.62 [here]

to sizeρ
√

n for some constant
ρ, we achieve a load that is
asymptotically optimal for any
quorum system, i.e.,ρ

√
n/n =

O(1/
√

n) [24].
This represents an im-

provement in load and the
number of faults that can be
tolerated. Probabilistic mask-
ing quorums without write
markers can tolerate up to
b < n/2.62 faults [21] and
achieve load no better than
Ω(b/n) [18]. In addition,
the maximum number of faults
that can be tolerated is tied to
the size of quorums [18]. Thus, without write markers, achieving optimal load requires tolerating
fewer faults. Strict masking quorum systems can tolerate (only) up tob < n/4 faults [15] and can
achieve loadΩ(

√

b/n) [17].
Opaque Quorums:We show that the use of write markers allows probabilistic opaque quorum

systems to tolerate up tob < n/2.62 faults. We present a construction with loadO(b/n) when
b = Ω(

√
n), thereby breaking the constant lower bound of1/2 on the load of strict opaque quorum

systems [15]. Moreover, ifb = O(
√

n), we can set all quorums to sizeρ
√

n for some constantρ,
in order to achieve a load that is asymptotically optimal forany quorum system, i.e.,ρ

√
n/n =

O(1/
√

n) [24].
This represents an improvement in load and the number of faults that can be tolerated. Prob-

abilistic opaque quorum systems without write markers can tolerate (only) up tob < n/3.15
faults [21]. Strict opaque quorum systems can tolerate (only) up to b < n/5 faults [15]; these
quorum systems can do no better than constant load even ifb = 0 [15].

2 Definitions and System Model

We assume a system with a setU of servers,|U | = n, and an arbitrary but bounded number of
clients. Clients and servers can fail arbitrarily (i.e., Byzantine faults [10]). We assume that up tob
servers can fail, and denote the set of faulty servers byB, whereB ⊆ U . Any number of clients
can fail. Failures are permanent. Clients and servers that donot fail are said to benon-faulty.
We allow that faulty clients and servers may collude, and so we assume that faulty clients and
servers all know the membership ofB (although non-faulty clients and servers do not). However,
for our implementation of write markers, as is typical for many Byzantine-fault-tolerant protocols

3

(c.f., [1, 4, 6, 19]), we assume that faulty clients and servers are computationally bounded such that
they cannot subvert standard cryptographic primitives such as digital signatures.

Communication. Write markers require no communication assumptions beyond those of the
probabilistic quorums for which they are used. For completeness, we summarize the model of [21],
which is common to prior works in probabilistic [18] and signed [25] quorum systems: we assume
that each non-faulty client can successfully communicate with each non-faulty server with high
probability, and hence with all non-faulty servers with roughly equal probability. This assumption
is in place to ensure that the network does not significantly bias a non-faulty client’s interactions
with servers either toward faulty servers or toward different non-faulty servers than those with
which another non-faulty client can interact. Put another way, we treat a server that can be reliably
reached by none or only some non-faulty clients as a member ofB.

Access set; access strategy; operation.We abstractly describe client operations as either
writesthat alter the state of the service orreadsthat do not. Informally, a non-faulty client performs
a write to update the state of the service such that its value (or a later one) will be observed
with high probability by any subsequent operation; a write thus successfully performed is called
“established” (we define established more precisely below). A non-faulty client performs a read to
obtain the value of the latest established write, where “latest” refers to the value of the most recent
write preceding this read in a linearization [7] of the execution.

In the introduction, we discussedaccess strategiesas probability distributions on quorums used
for operations. For the remainder of the paper, we follow [21] in strictly generalizing the notion of
access strategy to apply instead toaccess setsfrom which quorums are chosen. An access set is a
set of servers from which the client selects a quorum. If the client is non-faulty, we assume that
this selection is done uniformly at random. We adopt the access strategy that all access sets are
chosen uniformly at random (even by faulty clients). In Section 4, we adapt a protocol to support
write markers from one in [21] that approximately ensures this access strategy. Our analysis allows
that access sets may be larger than quorums, though if accesssets and quorums are of the same
size, then our protocol effectively forces even faulty clients to select quorums uniformly at random
as discussed in the introduction. In our analysis, all access sets used for reads and writes are of
constant sizeard andawt, respectively. All quorums used for reads and writes are of constant size
qrd andqwt respectively.

Candidate; conflicting; error probability; established; p articipant; qualified; vote. Each
write yields a correspondingcandidateat some number of servers. A candidate is an abstraction
used in part to ensure that two distinct write operations aredistinguishable from each other, even
if the corresponding data values are the same. A candidate isestablishedonce it is accepted by
all of the non-faulty servers in some write quorum of sizeqwt within the write access set of size
awt. In opaque quorum systems, property (3) anticipates that different non-faulty servers each
may hold a different candidate due to concurrent writes. A candidate that is characterized by the
property that a non-faulty server would accept either it or agiven established candidate, but not
both, is called aconflictingcandidate. Two candidates may conflict because, e.g., they both bear
the same timestamp. In either masking or opaque quorum systems, a faulty server may try to forge
a conflicting candidate. No non-faulty server accepts two candidates that conflict with each other.

4

A server can try tovotefor some candidate (e.g., by responding to a read operation)if the server
is aparticipant in voting (i.e., if the server is a member of the client’s readaccess set). However,
a server becomesqualifiedto vote for a particular candidate only if the server is a member of the
client’s write access set selected for the write operation for which it votes. Non-faulty clients wait
for responses from a read quorum of sizeqrd contained in the read access set of sizeard. An error
is said to occur in a read operation when a non-faulty client fails to observe the latest value or a
faulty client obtains sufficiently many votes for a conflicting value.1 Theerror probability is the
probability of this occurring.

Behavior of faulty clients. We assume that faulty clients seek to maximize the error probability
by following specific strategies [21]. This is a conservative assumption; a client cannot increase—
but may decrease—the probability of error by failing to follow these strategies. At a high level, the
strategies are as follows: a faulty client, which may be completely restricted in its choices: (i) when
establishing a candidate, writes the candidate to as few non-faulty servers as possible to minimize
the probability that it is observed by a non-faulty client; and (ii) writes a conflicting candidate to
as many servers as will accept it (i.e., faulty servers plus,in the case of an opaque quorum system,
any non-faulty server that has not accepted the establishedcandidate) in order to maximize the
probability that it is observed. However, it is important tonote that a faulty client performing a
write does not have knowledge of the read access set used by a non-faulty client [21].

3 Analysis of Write Markers

Intuitively, when a client submits a write, the candidate isassociated with a write marker. We
require that the following three properties are guaranteedby an implementation of write markers:

W1. Every candidate has a write marker that identifies the access set chosen for the write;

W2. A verifiable write marker implies that the access set was selected uniformly at random (i.e.,
according to the access strategy);

W3. Every non-faulty client and server can verify a write marker.

When considering a candidate, non-faulty clients and servers verify the candidate’s write marker.
Because of this verification, no non-faulty node will accept avote for a candidate unless the issuing

Table 2: Ability of a server to vote for a given
candidate: • (traditional quorums);⋆ (write
markers).

Type of server Vote
Non-faulty qualified participant • ⋆
Faulty qualified participant • ⋆
Non-faulty non-qualified participant
Faulty non-qualified participant •

server is qualified to vote for the candidate.
Since each write access set is chosen uniformly
at random (W2), the faulty servers that can
vote for a candidate, i.e., the faulty qualified
servers, are therefore a random subset of the
faulty servers.

Thus, write markers remove the advantage
enjoyed by faulty servers in strict and traditional-
probabilistic masking and opaque quorum sys-
tems, where any faulty participant can vote for

1Faulty clients may be able to affect the system with such votes in some protocols [21].

5

any candidate—and therefore can collude to have a conflicting, potentially fabricated candidate
chosen instead of an established candidate. This aspect of write markers is summarized in Table 2,
which shows the impact of write markers in terms of the abilities of faulty and non-faulty servers
to vote for a given candidate.

3.1 Consistency Constraints

Probabilistic quorum systems must satisfy constraints similar to those of strict quorum systems
(e.g., (2), (3)), but only with probability1− ǫ. As with strict quorum systems, the purpose of these
constraints is to guarantee that operations can be observedconsistently in subsequent operations
by receiving enough votes.

First, the constraints must ensure in expectation that a non-faulty client can observe the latest
established candidate if such a candidate exists. LetQrd represent a read quorum chosen uniformly
at random, i.e., a random variable, from a read access set itself chosen uniformly at random. (Think
of this quorum as one used by a non-faulty client.) LetQwt represent a write quorum chosen by a
potentially faulty client;Qwt must be chosen fromAwt, an access set chosen uniformly at random.
(Think of Qwt as a quorum used for an established candidate.) Then the thresholdr number of
votes necessary to observe a value must be less than the expected number of non-faulty qualified
participants, which is

E [|(Qrd ∩ Qwt) \ B|] . (4)

The use of write markers has no impact here on (4) because(Qrd ∩ Qwt) \ B contains no faulty
servers. However, write markers do enable us to setr smaller, as the following shows.

Second, the constraints must ensure that a conflicting candidate (which is in conflict with an
established candidate as described in Section 2) is, in expectation, not observed by any client (non-
faulty or faulty). In general, it is important for all clients to observe only established candidates so
as to enable higher-level protocols (e.g., [1]) that employrepair phases that may affect the state of
the system within a read [21]. LetA′

rd andA′
wt represent read and write access sets, respectively,

chosen uniformly at random. (Think ofA′
wt as the access set used by a faulty client for a conflicting

candidate, and ofA′
rd as the access set used by a faulty client for a read operation.How faulty

clients can be forced to choose uniformly at random is described in Section 4.) We consider the
cases for masking and opaque quorums separately:

Probabilistic Masking Quorums. In a masking quorum system, (2) dictates that only faulty
servers may vote for a conflicting candidate. Using write markers, we require that the faulty quali-
fied participants alone cannot produce sufficient votes for acandidate to be observed in expectation.
Taking (4) into consideration, we require:

E [|(Qrd ∩ Qwt) \ B|] > E [|(A′
rd ∩ A′

wt) ∩ B|] . (5)

Contrast this with (2) and with the consistency requirement for traditional probabilistic masking
quorum systems [18] (adapted to consider access sets), which requires that the faulty participants

6

(qualified or not) cannot produce sufficient votes for a candidate to be observed in expectation:

E [|(Qrd ∩ Qwt) \ B|] > E [|A′
rd ∩ B|] . (6)

Intuitively, the intersection between access sets can be smaller with write markers because the
right-hand side of (5) is less than the right-hand side of (6)if awt < n.

Probabilistic Opaque Quorums. With write markers, we have the benefit, described above for
probabilistic masking quorums, in terms of the number of faulty participants that can vote for a
candidate in expectation. However, as shown in (3), opaque quorum systems must additionally
consider the maximum number of non-faulty qualified participants that vote for the same conflict-
ing candidate in expectation. As such, instead of (5), we have:

E [|(Qrd ∩ Qwt) \ B|] > E [|(A′
rd ∩ A′

wt) ∩ B|] + E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|] . (7)

Contrast this with the consistency requirement for traditional probabilistic opaque quorums [21]:

E [|(Qrd ∩ Qwt) \ B|] > E [|A′
rd ∩ B|] + E [| ((A′

rd ∩ A′
wt) \ B) \ Qwt|] . (8)

Again, intuitively, the intersection between access sets can be smaller with write markers because
the right-hand side of (7) is less than the right-hand side of(8) if awt < n.

3.2 Implied Bounds

In this subsection, we are concerned with quorum systems forwhich we can achieve error prob-
ability (as defined in Section 2) no greater than a givenǫ for any n sufficiently large. For such
quorum systems, there is an upper bound onb in terms ofn, akin to the bound for strict quorum
systems.

Intuitively, the maximum value ofb is limited by the relevant constraint (i.e., either (5) or (7)).
Of primary interest are Theorem 3.17 and its corollaries, which demonstrate the benefits of write
markers for probabilistic masking quorum systems, and Theorem 3.23 and its corollaries, which
demonstrate the benefits of write markers for probabilisticopaque quorum systems. They utilize
Lemmas 3.5 and 3.6, which together present basic requirements for the types of quorum systems
with which we are concerned.

The following theorem is a restatement of the Molloy and Reed statement [23, p. 172] of the
McDiarmid Inequality that can be used to show that a random variable computed on a series of
independent permutations is concentrated about its expectation.

Theorem 3.1([23]). Let Z = z(Π1, . . . , Πl) be a random variable that is a non-negative function
of a seriesΠ1, . . . , Πl of independent random variables, where eachΠi takes on a random per-
mutation (bijection)π : {1, . . . , |P |} → P of a finite non-empty setP . Also, for some positive
constantsδ andµ, let the following conditions hold (where ifΠj = πj then themapping〈i, j,m〉
indicates thatπj(i) = m):

7

M1. Swapping the mappings of any two elements in a single permutation πj (i.e., changing
{〈i, j,m〉,〈i′, j,m′〉} to {〈i′, j,m〉,〈i, j,m′〉}, wherei 6= i′ andm 6= m′) changes the value
of Z by at mostδ.

M2. If Z = z(π1, . . . , πl) = x, then there exists a set of at mostµx distinct mappings
{〈i1, j1,m1〉, . . . , 〈iµx, jµx,mµx〉} such thatz(π′

1, . . . , π
′
l) ≥ x for anyπ′

1, . . . , π
′
l sharing the

same set of mappings.

If 0 ≤ ∆ ≤ E [Z], then:

Pr(|Z − E [Z] | ≥ ∆ + 60δ
√

µE [Z] + 1) ≤ 4/e(∆2/8δ2µE[Z]).

We simplify Theorem 3.1 to create Corollary 3.2 that deals with asymptotic bounds.

Corollary 3.2. Let Z = z(Π1, . . . , Πl) be a random variable that is a non-negative function of a
seriesΠ1, . . . , Πl of independent random variables, where eachΠi takes on a random permutation
(bijection)π : {1, . . . , |P |} → P of a finite non-empty setP . Also, for some positive constantsδ
andµ, let the following conditions hold (where ifΠj = πj then themapping〈i, j,m〉 indicates that
πj(i) = m):

M1. Swapping the mappings of any two elements in a single permutation πj (i.e., changing
{〈i, j,m〉,〈i′, j,m′〉} to {〈i′, j,m〉,〈i, j,m′〉}, wherei 6= i′ andm 6= m′) changes the value
of Z by at mostδ.

M2. If Z = z(π1, . . . , πl) = x, then there exists a set of at mostµx distinct mappings
{〈i1, j1,m1〉, . . . , 〈iµx, jµx,mµx〉} such thatz(π′

1, . . . , π
′
l) ≥ x for anyπ′

1, . . . , π
′
l sharing the

same set of mappings.

If ∆ = ω(
√

E [Z]), then,2

Pr(|Z − E [Z] | ≥ ∆) = 2/e(ω(1)) as∆ → ∞.

Proof of Corollary 3.2.Since∆ = ω(
√

E [Z]), the60δ
√

µE [Z] + 1 term is negligible, and, for
any constantβ < 1/8δ2µ and large enough value ofE [Z], we have (c.f., [23, p. 81]),

Pr(|Z − E [Z] | ≥ ∆) ≤ 2/e(β∆2/E[Z]).

In other words, if∆ = ω(
√

E [Z]), then,

Pr(|Z − E [Z] | ≥ ∆) = 2/e(ω(1)) as∆ → ∞.

So that we can apply Corollary 3.2 to bound the error probability, we present a method for
definingQwt, A′

rd, Awt, A′
wt, andQrd (whereQrd represents a read quorum selected by a non-faulty

client) in terms of independent random variablesΠ1, Π2, Π3, andΠ4, each taking on a random
permutation{1, . . . , |U |} → U , whereU is the set of alln servers. Fix any set ofb servers to
constituteB. Then consider the following definitions:

2ω is the little-oh analog ofΩ, i.e.,f(n) = ω(g(n)) if f(n)/g(n) → ∞ asn → ∞.

8

• DefineAwt = {Π1(1), . . . , Π1(awt)}.

• DefineA′
wt = {Π2(1), . . . , Π2(awt)}.

• DefineA′
rd = {Π3(1), . . . , Π3(ard)}.

• DefineQrd = {Π4(1), . . . , Π4(qrd)}.

Because each permutation is randomly selected (independently of B), so too areAwt, A′
wt, A

′
rd, and

Qrd. We defineQwt in accordance with Section 2. Specifically, first we choose each Π1(i) such
thatΠ1(i) ∈ Awt ∩ B. Next, for eachj = 1..awt, we chooseΠ1(j) if we have not yet chosenqwt

servers andΠ1(j) ∈ Awt \ (A′
wt ∪ B). Finally, for eachk = 1..awt, we chooseΠ1(k) if we have

not yet chosenqwt servers andΠ1(k) ∈ Awt ∩ (A′
wt \ B).

Let r be the threshold, discussed in Section 3.1, for the number ofvotes necessary to observe
a candidate. DefineMinCorrect to be a random variable for the number of non-faulty servers with
the established candidate, i.e.,MinCorrect = |(Qrd ∩ Qwt) \ B| as indicated in (4).

Lemma 3.3. LetZ = MinCorrect. LetE [Z] > r andE [Z] − r = ω(
√

E [Z]). Then,

Pr(Z ≤ r) = 2/e(ω(1)) asE [Z] − r → ∞.

Proof of Lemma 3.3.For a fixedB, MinCorrect can be treated as a function of independent per-
mutations (i.e., usingQrd andQwt, as defined above). Consider this in relation to Corollary 3.2 as
follows. Swapping any two elements in eitherQrd or Qwt can change the value ofMinCorrect by
at most1; therefore,δ = 1 in Condition M1. Additionally, ifMinCorrect = x, then the mappings

⋃

u∈(Qrd∩Qwt)\B

{〈Π−1
1 (u), 1, u〉, 〈Π−1

4 (u), 4, u〉}

suffice to satisfy Condition M2; therefore,µ = 2.
Let ∆ = E [Z] − r; then, by assumption,∆ = ω(

√

E [Z]). We apply Corollary 3.2, yielding,

Pr(Z ≤ r)

= Pr(Z ≤ E [Z] − ∆)

= Pr(E [Z] − Z ≥ ∆)

≤ Pr(|Z − E [Z] | ≥ ∆)

= 2/e(ω(1)) as∆ → ∞
= 2/e(ω(1)) asE [Z] − r → ∞.

DefineMaxConflicting to be a random variable for the maximum number of servers thatvote
for a conflicting candidate. For example: due to (5), in masking quorums with write markers,
MaxConflicting = |(A′

rd ∩ A′
wt) ∩ B|; and due to (7), in opaque quorums with write markers,

MaxConflicting = |(A′
rd ∩ A′

wt) ∩ B| + | ((A′
rd ∩ A′

wt) \ B) \ Qwt|.

9

Lemma 3.4. LetZ′ = MaxConflicting. Letr > E [Z′] andr − E [Z′] = ω(
√

E [Z′]). Then,

Pr(Z′ ≥ r) = 2/e(ω(1)) asr − E [Z′] → ∞.

Proof of Lemma 3.4.As seen in Sections 3.1 and 3.2, depending on the type of quorum system,
MaxConflicting has a different definition. However, for each type of quorum system, for a fixed
B, MaxConflicting can be treated as a function of independent permutations from the set{A′

rd,
A′

wt, Qwt}. Consider this in relation to Corollary 3.2 as follows. Swapping any two elements in
one permutation can change the value ofMaxConflicting by at most1 because an additional server
added toArd cannot be both faulty and non-faulty; therefore,δ = 1 in Condition M1. Additionally,
for any value ofMaxConflicting considered in Section 3.1, ifMaxConflicting = |C| = x, then the
mappings

⋃

u∈C

{〈Π−1
1 (u), 1, u〉, 〈Π−1

2 (u), 2, u〉, 〈Π−1
3 (u), 3, u〉}

suffice to satisfy Condition M2; therefore,µ ≤ 3.
Let ∆ = r − E [Z′]; then, by assumption,∆ = ω(

√

E [Z′]). We apply Corollary 3.2, yielding,

Pr(Z′ ≥ r)

= Pr(Z′ ≥ ∆ + E [Z′])

= Pr(Z′ − E [Z′] ≥ ∆)

≤ Pr(|Z′ − E [Z′] | ≥ ∆)

= 2/e(ω(1)) as∆ → ∞
= 2/e(ω(1)) asr − E [Z′] → ∞.

Lemma 3.5. Let n − b = Ω(n). For all c > 0 there is a constantd > 1 such that for allqrd,
qwt whereqrdqwt > dn and qrdqwt − n = Ω(1), it is the case thatE [MinCorrect] > c for all n
sufficiently large.

Proof of Lemma 3.5.Note that,

E [MinCorrect] = qrdqwt

(

n − b

n2

)

> dn

(

n − b

n2

)

= d

(

n − b

n

)

= d

(

Ω(n)

n

)

= d (Ω(1)) .

10

Lemma 3.6. Let the following hold,

E [MinCorrect] − E [MaxConflicting] > 0,

E [MinCorrect] − E [MaxConflicting] = ω(
√

E [MinCorrect]).

Then it is possible to setr such that,

error probability→ 0 asE [MinCorrect] → ∞.

Proof of Lemma 3.6.Setr as follows,

r =
E [MinCorrect] + E [MaxConflicting]

2
.

Then we can apply Lemma 3.3 toPr(MinCorrect ≤ r) because,

E [MinCorrect] > r, and

E [MinCorrect] − r = ω(
√

E [MinCorrect]).

Next, note that by assumption and our setting ofr, r−E [MaxConflicting] = ω(
√

E [MinCorrect]).
But, sinceE [MinCorrect] − E [MaxConflicting] grows whenE [MinCorrect] grows, it must be
that E [MinCorrect] grows faster thanE [MaxConflicting]. Therefore,r − E [MaxConflicting] =
ω(

√

E [MaxConflicting]). As such, we can apply Lemma 3.4 toPr(MaxConflicting ≥ r) because

r > E [MaxConflicting] , and

r − E [MaxConflicting] = ω(
√

E [MaxConflicting]).

It is an error ifMinCorrect < r or MaxConflicting ≥ r. Therefore, the error probability is bounded
as follows:

error probability= Pr(MaxConflicting ≥ r ∨ MinCorrect < r)

= Pr(MaxConflicting ≥ r) + Pr(MinCorrect < r)−
Pr(MaxConflicting ≥ r ∧ MinCorrect < r)

≤ Pr(MaxConflicting ≥ r) + Pr(MinCorrect < r)

≤ Pr(MaxConflicting ≥ r) + Pr(MinCorrect ≤ r)

= 2/e(ω(1)) + 2/e(ω(1))

as(E [MinCorrect] − E [MaxConflicting])/2 → ∞
= 2/e(ω(1)) + 2/e(ω(1)) asE [MinCorrect] → ∞.

Where the second-to-last line follows because,

(E [MinCorrect] − E [MaxConflicting])/2 = E [MinCorrect] − r = r − E [MaxConflicting] .

And the final line follows because,

(E [MinCorrect] − E [MaxConflicting])/2 = ω(
√

E [MinCorrect]).

11

Here and below, a suitable setting ofr is one betweenE [MinCorrect] andE [MaxConflicting],
inclusive. The remainder of the section is focused on determining, for each type of probabilistic
quorum system, the upper bound onb and bounds on the load that Lemmas 3.5 and 3.6 imply.
Important expected values, derived below, are as follows,

E [|(Qrd ∩ Qwt) \ B|] =
qrd(nqwt − awtb)

n2
. (9)

E [|A′
rd ∩ B|] =

ardb

n
. (10)

E [|(A′
rd ∩ A′

wt) ∩ B|] =
ardawtb

n2
. (11)

E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|] ≤
ard

n3
(2awtn

2 − nawtb − qwtn
2 − a2

wtn + a2
wtb). (12)

Lemma 3.7.

E [|A′
rd ∩ B|] =

ardb

n
.

Proof. A′
rd is selected independently ofB. As such,|A′

rd∩B| is a hypergeometric random variable
characterized byard draws from a population ofn elements containingb successes. Therefore, we
use the formula for the expected value of a hypergeometric random variable.

Lemma 3.8.

E [|(A′
rd ∩ A′

wt) ∩ B|] =
ardawtb

n2
.

Proof. We calculateE [|(A′
rd ∩ A′

wt) ∩ B|] directly as follows. Consider an indicator random vari-
ableIndu, such thatIndu = 1 if u ∈ (Ard ∩ A′

wt) ∩ B, andIndu = 0 otherwise. For eachu ∈ B,
we havePr[Indu = 1] = ardawt

n2 , sinceArd andA′
wt are chosen independently. By linearity of

expectation:

E [|(A′
rd ∩ A′

wt) ∩ B|] =
∑

u∈B

Pr(Indu = 1) = b
(ardawt

n2

)

.

In the proofs of the following lemmas, we use rules of conditional expectation (c.f., [22, Section
2.3]). In particular, the following.

Definition 3.9 ([22]). The expressionE [X | Y] is a random variablef(Y) that takes on the value
E [X | Y = y] whenY = y.

BecauseE [X | Y] is a random variable, i.e., a function, it makes sense to consider its expectation.

Theorem 3.10([22, Theorem 2.7]).

E [X] = E [E [X | Y]] . (13)

12

Lemma 3.11.

E [|Qwt \ B|] =
qwtn − awtb

n
. (14)

Proof. Let MalWrite = |Awt ∩B|. SinceAwt is selected uniformly at random independently ofB,
MalWrite is a hypergeometric random variable, characterized byawt draws from a population ofn
elements containingb successes; therefore,

E [MalWrite] =
awtb

n
.

Recall from Section 2, that a write is established once all of the non-faulty servers in any write
quorum inAwt have accepted it. Therefore,

E [|Qwt \ B| | MalWrite = m] = qwt − m.

Applying Theorem 3.10 and linearity of expectation, we havethat,

E [|Qwt \ B|]
= E [E [|Qwt \ B| | MalWrite]]

= E [qwt − MalWrite]

= qwt − E [MalWrite]

= qwt −
awtb

n
.

Lemma 3.12.

E [|(Qrd ∩ Qwt) \ B|] =
qrd(nqwt − awtb)

n2
.

Proof. Qrd is independent ofQwt \ B; therefore,|(Qrd ∩ Qwt) \ B| | |Qwt \ B| = m is a
conditional hypergeometric random variable characterized by qrd draws from a population ofn
elements containingm successes, and,

E [|(Qrd ∩ Qwt) \ B| | |Qwt \ B| = m] =
qrdm

n
.

Applying Theorem 3.10, by linearity of expectation and Lemma 3.11 we have that,

E [|(Qrd ∩ Qwt) \ B|]
= E [E [|(Qrd ∩ Qwt) \ B| | |Qwt \ B|]]

= E

[qrd

n
(|Qwt \ B|)

]

=
qrd

n
E [|Qwt \ B|]

=
qrd(nqwt − awtb)

n2
.

13

Lemma 3.13.

E [|(A′
rd ∩ A′

wt) \ B|] = ard

(

awt

n
−

(awt

n

)

(

b

n

))

. (15)

Proof. We calculateE [|(A′
rd ∩ A′

wt) \ B|] directly as follows. Consider an indicator random vari-
ableIndu, such thatIndu = 1 if u ∈ (A′

rd ∩A′
wt) \B, andIndu = 0 otherwise. For eachu ∈ U \B,

we havePr[Indu = 1] = ardawt

n2 , sinceA′
rd andA′

wt are chosen independently. By linearity of
expectation:

E [|(A′
rd ∩ A′

wt) \ B|] =
∑

u∈U\B

Pr(Indu = 1)

= (n − b)
(ardawt

n2

)

= ard

(

awt

n
−

(awt

n

)

(

b

n

))

.

Lemma 3.14.

E [|(Ard ∩ A′
wt) ∩ (Qwt \ B)|] ≥ ard

n

(

qwt −
awt

n

(

b +
(n − awt)(n − b)

n

))

. (16)

Proof. In calculatingE [|(Ard ∩ A′
wt) ∩ (Qwt \ B)|], because a faulty client may performboth a

write that becomes established atQwt and another write atA′
wt that conflicts with the first write,

we cannot assume thatQwt is selected independently ofA′
wt. Let CI = A′

wt ∩ (Qwt \ B). Then,
in particular, as described in Section 2, such a client seeksto maximizeE [MaxConflicting], and
therefore minimizesE [|CI|] by choosing the servers forQwt \B from Awt \ (A′

wt ∪B) first. Thus,

E [|CI|] = max(0 , E [|Qwt \ B|] − E [|Awt \ (A′
wt ∪ B)|])

≥ E [|Qwt \ B|] − E [|Awt \ (A′
wt ∪ B)|] . (17)

We calculateE [|Awt \ (A′
wt ∪ B)|] directly as follows. For clarity, note thatAwt \ (A′

wt ∪ B) =
(Awt \ A′

wt) \ B. Consider an indicator random variableIndu, such thatIndu = 1 if u ∈ (Awt \
A′

wt) \ B, andIndu = 0 otherwise. For eachu ∈ U \ B, we havePr[Indu = 1] = awt(n−awt)
n2 , since

A′
wt andAwt are independent. By linearity of expectation:

E [|Awt \ (A′
wt ∪ B)|] =

∑

u∈U\B

Pr(Indu = 1) = (n − b)

(

awt(n − awt)

n2

)

=
awt

n2
(n − awt)(n − b).

(18)

By (17), (14), and (18), we have that,

E [|CI|] ≥
(

qwt −
awtb

n

)

− awt

n2
(n − awt)(n − b) = qwt −

awt

n

(

b +
(n − awt)(n − b)

n

)

. (19)

SinceArd is independent ofCI, we see that|(Ard ∩ A′
wt) ∩ (Qwt \ B)| | |CI| = c′ is a hypergeo-

metric random variable characterized byard draws from a population ofn elements containingc′

successes, and,

E [|(Ard ∩ A′
wt) ∩ (Qwt \ B)| | |CI| = c′] =

ardc
′

n
.

14

Applying Theorem 3.10, by linearity of expectation we have that,

E [|(Ard ∩ A′
wt) ∩ (Qwt \ B))|]

= E [E [|(Ard ∩ A′
wt) ∩ (Qwt \ B)| | |CI|]]

= E

[ard

n
|CI|

]

=
ard

n
E [|CI|] . (20)

Therefore, by (19) and (20) we have that,

E [|(Ard ∩ A′
wt) ∩ (Qwt \ B))|] ≥ ard

n

(

qwt −
awt

n

(

b +
(n − awt)(n − b)

n

))

.

Lemma 3.15.

E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|] ≤
ard

n3
(2awtn

2 − nawtb − qwtn
2 − a2

wtn + a2
wtb).

Proof. To calculateE [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|], first note that:

E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|]
= E [|(A′

rd ∩ A′
wt) \ B|] − E [|(A′

rd ∩ A′
wt) ∩ (Qwt \ B)|] . (21)

Combining and simplifying equations (15), (16), and (21), weobtain (12).

Lemma 3.16.For a probabilistic masking or opaque quorum system configuration with or without
write markers,3

E [MinCorrect] > E [MaxConflicting] ⇒
E [MinCorrect] − E [MaxConflicting] = ω(

√

E [MinCorrect]).

Proof of Lemma 3.16.Consider:

• Masking without write markers:E [MinCorrect] > E [MaxConflicting] implies
E [|(Qrd ∩ Qwt) \ B|]−E [|A′

rd ∩ B|] 6= 0, and so (9) and (10) show us thatE [MinCorrect]−
E [MaxConflicting] = ω(

√

E [MinCorrect]).

• Masking with write markers:E [MinCorrect] > E [MaxConflicting] implies
E [|(Qrd ∩ Qwt) \ B|] − E [|(A′

rd ∩ A′
wt) ∩ B|] 6= 0, and so (9) and (11) show us that

E [MinCorrect] − E [MaxConflicting] = ω(
√

E [MinCorrect]).

• Opaque without write markers:E [MinCorrect] > E [MaxConflicting] implies
E [|(Qrd ∩ Qwt) \ B|]−(E [|A′

rd ∩ B|]+E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|]) 6= 0, and so (9), (10),
and (12) show us thatE [MinCorrect] − E [MaxConflicting] = ω(

√

E [MinCorrect]).

3Though not shown here, Lemma 3.16 also applies trivially to dissemination quorum systems.

15

• Opaque with write markers:E [MinCorrect] > E [MaxConflicting] implies
E [|(Qrd ∩ Qwt) \ B|]− (E [|(A′

rd ∩ A′
wt) ∩ B|] + E [| ((A′

rd ∩ A′
wt) \ B) \ Qwt|]) 6= 0, and so

(9), (11), and (12) show us thatE [MinCorrect]−E [MaxConflicting] = ω(
√

E [MinCorrect]).

Theorem 3.17.For all ǫ there is a constantd > 1 such that for allqrd, qwt whereqrdqwt > dn,
qrdqwt − n = Ω(1), and

b <
qrdqwtn

qrdawt + ardawt

,

any such probabilistic masking quorum system employing write markers achieves error probability
no greater thanǫ given a suitable setting ofr for all n sufficiently large.

Proof of Theorem 3.17.We show that Lemmas 3.5 and 3.6 apply. By (9) and (11),

b <
qrdqwtn

qrdawt + ardawt

⇔ E [|(Qrd ∩ Qwt) \ B|] > E [|(A′
rd ∩ A′

wt) ∩ B|]
⇔ E [MinCorrect] > E [MaxConflicting] .

Therefore, we can apply Lemma 3.16 and, thus, Lemma 3.6. By therestriction onb and the
conditions of the Theorem, we can also apply Lemma 3.5.

Corollary 3.18. Let ard = qrd andawt = qwt. For all ǫ there is a constantd > 1 such that for all
qrd, qwt whereqrdqwt > dn, qrdqwt − n = Ω(1), and

b < n/2,

any such probabilistic masking quorum system employing write markers achieves error probability
no greater thanǫ given a suitable setting ofr for all n sufficiently large.

In other words, with write markers, the size of quorums does not impact the maximum fraction of
faults that can be tolerated when quorums are selected uniformly at random (i.e., whenard = qrd

andawt = qwt).

Corollary 3.19. Let ard = qrd, awt = qwt, andb < n/2. For all ǫ there is a constantρ > 1 such
that if qrd = qwt = ρ

√
n, any such probabilistic masking quorum system employing write markers

achieves error probability no greater thanǫ given a suitable setting ofr for all n sufficiently large,
and has load

ρ
√

n/n = O(1/
√

n).

Theorem 3.20.For all ǫ there is a constantd > 1 such that for allqrd, qwt whereqrdqwt > dn,
qrdqwt − n = Ω(1), and

b <
qrdqwtn

qrdawt + ardn
,

any such probabilistic masking quorum system without write markers achieves error probability
no greater thanǫ given a suitable setting ofr for all n sufficiently large.

16

Proof of Theorem 3.20.We show that Lemmas 3.5 and 3.6 apply. By (9) and (10),

b <
qrdqwtn

qrdawt + ardn

⇔ E [|(Qrd ∩ Qwt) \ B|] > E [|A′
rd ∩ B|]

⇔ E [MinCorrect] > E [MaxConflicting] .

Therefore, we can apply Lemma 3.16 and, thus, Lemma 3.6. By therestriction onb and the
conditions of the Theorem, we can also apply Lemma 3.5.

Corollary 3.21. Let ard = qrd andawt = qwt. For all ǫ there is a constantd > 1 such that for all
qrd, qwt whereqrdqwt > dn, qrdqwt − n = Ω(1), and

b <
qwtn

qwt + n
,

any such probabilistic masking quorum system without write markers achieves error probability
no greater thanǫ given a suitable setting ofr for all n sufficiently large.

Corollary 3.22. Letard = qrd andawt = qwt = n− b. For all ǫ there is a constantd > 1 such that
for all qrd, qwt whereqrdqwt > dn, qrdqwt − n = Ω(1), and

b < n/2.62,

any such probabilistic masking quorum system without write markers achieves error probability
no greater thanǫ given a suitable setting ofr for all n sufficiently large.

Theorem 3.23.For all ǫ there is a constantd > 1 such that for allqrd, qwt whereqrdqwt > dn,
qrdqwt − n = Ω(1), and

b <
n(arda

2
wt + ardqwtn + qrdqwtn − 2ardawtn)

awt(ardawt + qrdn)
,

any such probabilistic opaque quorum system employing writemarkers achieves error probability
no greater thanǫ given a suitable setting ofr for all n sufficiently large.

Proof of Theorem 3.23.We show that Lemmas 3.5 and 3.6 apply. By (9), (11), and (12),

b <
n(arda

2
wt + ardqwtn + qrdqwtn − 2ardawtn)

awt(ardawt + qrdn)

⇒ E [|(Qrd ∩ Qwt) \ B|] > E [|(A′
rd ∩ A′

wt) ∩ B|] + E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|]
⇔ E [MinCorrect] > E [MaxConflicting] .

Therefore, we can apply Lemma 3.16 and, thus, Lemma 3.6. By therestriction onb and the
conditions of the Theorem, we can also apply Lemma 3.5.

17

Corollary 3.24. Let ard = qrd andawt = qwt. For all ǫ there is a constantd > 1 such that for all
qrd, qwt whereqrdqwt > dn, qrdqwt − n = Ω(1), and

b <
qwtn

qwt + n
,

any such probabilistic opaque quorum system employing writemarkers achieves error probability
no greater thanǫ given a suitable setting ofr for all n sufficiently large.

Comparing Corollary 3.24 with Corollary 3.18, we see that in theopaque quorum caseqwt cannot
be set independently ofb.

Corollary 3.25. Letard = qrd, awt = qwt, andb < (qwtn)/(qwt + n). For all ǫ there is a constant
d > 1 such that for allqrd, qwt whereqrdqwt > dn andqrdqwt − n = Ω(1), any such probabilistic
opaque quorum system employing write markers achieves errorprobability no greater thanǫ given
a suitable setting ofr for all n sufficiently large, and has load

Ω(b/n).

Corollary 3.26. Let b = Ω(
√

n). For all ǫ there is a constantd > 1 such that for allard, awt, qrd,
qwt whereard = awt = qrd = qwt = lb for a valuel such thatc′ ≥ l > n/(n− b) for some constant
c′, (lb)2 > dn and (lb)2 − n = Ω(1), any such probabilistic opaque quorum system employing
write markers achieves error probability no greater thanǫ given a suitable setting ofr for all n
sufficiently large, and has load

O(b/n).

Corollary 3.27. Letard = qrd andawt = qwt = n− b. For all ǫ there is a constantd > 1 such that
for all qrd, qwt whereqrdqwt > dn, qrdqwt − n = Ω(1), and

b < n/2.62,

any such probabilistic opaque quorum system employing writemarkers achieves error probability
no greater thanǫ given a suitable setting ofr for all n sufficiently large.

Theorem 3.28.For all ǫ there is a constantd > 1 such that for allqrd, qwt whereqrdqwt > dn,
qrdqwt − n = Ω(1), and

b <
n(ardqwtn − 2ardawtn + a2

wtard + qrdqwtn)

n2ard − ardawtn + a2
wtard + qrdawtn

,

any such probabilistic opaque quorum system without write markers achieves error probability no
greater thanǫ given a suitable setting ofr for all n sufficiently large.

Proof of Theorem 3.28.We show that Lemmas 3.5 and 3.6 apply. By (9), (10), and (12),

b <
(ardqwtn − 2ardawtn + a2

wtard + qrdqwtn)n

n2ard − ardawtn + a2
wtard + qrdawtn

⇒ E [|(Qrd ∩ Qwt) \ B|] > E [|A′
rd ∩ B|] + E [| ((A′

rd ∩ A′
wt) \ B) \ Qwt|]

⇔ E [MinCorrect] > E [MaxConflicting] .

Therefore, we can apply Lemma 3.16 and, thus, Lemma 3.6. By therestriction onb and the
conditions of the Theorem, we can also apply Lemma 3.5.

18

Corollary 3.29. Let ard = qrd andawt = qwt. For all ǫ there is a constantd > 1 such that for all
qrd, qwt whereqrdqwt > dn, qrdqwt − n = Ω(1), and

b <
q2
wtn

q2
wt + n2

,

any such probabilistic opaque quorum system without write markers achieves error probability no
greater thanǫ given a suitable setting ofr for all n sufficiently large.

Corollary 3.30. Letard = qrd andawt = qwt = n− b. For all ǫ there is a constantd > 1 such that
for all qrd, qwt whereqrdqwt > dn, qrdqwt − n = Ω(1), and

b < n/3.15,

any such probabilistic opaque quorum system without write markers achieves error probability no
greater thanǫ given a suitable setting ofr for all n sufficiently large.

4 Implementation

In this section, we provide an implementation of write markers that achieves the behavior assumed
in Section 3, even with Byzantine clients. Specifically, it ensures properties W1–W3. (Though,
technically, it ensures W2 only approximately in the case of opaque quorum systems, in which,
as we explain below, a faulty server might be able to create a conflicting candidate using a write
marker for a stale, i.e., out-of-date, access set—but to no advantage.)

Because clients may be faulty, we cannot rely on, e.g., digital signatures issued by them to
implement write markers. Instead, we adapt mechanisms of our access-restriction protocol for
probabilistic opaque quorum systems [21]. The access-restriction protocol is designed to ensure
that all clients follow the access strategy. It already enables non-faultyserversto verify this before
accepting a write. And, since it is the only way of which we areaware for a probabilistic quorum
system to tolerate Byzantine clients when write markers are of benefit (i.e., when the sizes of write
access sets are restricted), its mechanisms are appropriate.

The relevant parts of the preexisting protocol work as follows [21]. From a pre-configured num-
ber of servers, a client obtains averifiable recent value(VRV), the value of which is unpredictable
to clients andb or fewer servers prior to its creation. This VRV is used to generate a pseudorandom
sequence of access sets. Since a VRV can be verified using onlypublic information, both it and
the sequence of access sets it induces can be verified by clients and servers. Non-faulty clients
choose the next unused access set for each operation. However, a faulty client is motivated to max-
imize the probability of error. If the use of the next access set in the sequence does not maximize
the probability of error given the current state of the system (i.e., the candidates accepted by the
servers), such a client may try to skip ahead some number of access sets. Alternatively, such a
client might try to wait to use the next access set until the state of the system changes. If allowed
to follow either strategy, such a client would circumvent the access strategy because its choice of
access set would not be independent from the state of the system.

19

Three mechanisms are used together to coerce a faulty clientto follow the access strategy. First,
the client must perform exponentially increasing work in expectation in order to use later access
sets. As such, a client requires exponentially increasing time in expectation in order to choose a

Client

S0

S1

S2

S3

Sn

…

i ii

V
er

ify
M

ar
ke

r

C
ho

os
e

A
cc

es
s

S
et

Figure 1: Read operation with write
markers: messages and stages of verifi-
cation of access set. (Changes in gray.)

access set. This is implemented by requiring that the
client solve a client puzzle [8] of the appropriate dif-
ficulty. The solution to the puzzle is, in expectation,
difficult to find but easy to verify. Second, the VRV
and sequence of access sets become invalid as the
non-faulty servers accept additional candidates, or as
the system otherwise progresses (e.g., as time passes).
Non-faulty servers verify that an access set is still
valid, i.e., not stale, before accepting it. Thus, system
progress forces the client to start its work anew, and,
as such, makes the work solving the puzzle for any un-
used access set wasted. Finally, during the time that
the client is working, the established candidate propa-
gates in the background to the non-faulty servers that are non-qualified (c.f., [14]). This decreases
the window of vulnerability in which a given access set in thesequence is useful for a conflicting
write by making non-qualified servers aware that (i) there isan established candidate (so that they
will not accept a conflicting candidate) and (ii) that the state of the system has progressed (so that
they will invalidate the current VRV if appropriate).

The impact of these three mechanisms is that a non-faultyservercan be confident that the
choice of write access set adheres (at least approximately)to the access strategy upon having
verified that the access set is valid, current, and is accompanied by an appropriate puzzle solution.

data value
solution

statusδcertificateγpromiseβaccess setα

data value
solution

statusbaccess seta

(masking)
(opaque)

certificate
access set, solution

data valueiiqueryi

Masking write

Opaque write

Read

Figure 2: Message types. (Write marker
emphasized with gray.)

For write markers, we extend the protocol so that,
as seen in Figure 1,clients can also perform verifi-
cation. This requires that information about the puz-
zle solution and access set (including the VRV used to
generate it) be returned by the servers to clients. (As
seen in Figure 2 and explained below, this information
varies across masking and opaque quorum systems.)
In the preexisting access-restriction protocol, this in-
formation is verified and discarded by each server. For
write markers, this information is instead stored by
each server in the verification stage as a write marker.
It is sent along with the data value as part of the candi-

date to the client during any read operation. If the server isnon-faulty—a fact of which a non-faulty
client cannot be certain—the access set used for the operation was indeed chosen according to the
access strategy because the server performed verification before accepting the candidate. How-
ever, because the server may be faulty, the client performs verification as well; it verifies the write
marker and that the server is a member of the access set. This allows us to guarantee points W1–

20

W3. As such, faulty non-qualified servers are unable to vote for the candidates for which qualified
servers can vote.

Figures 1, 2, 3, and 4 illustrate relevant pieces of the preexisting protocol and our modifications
for write markers in the context of read and write operationsin probabilistic masking and opaque
quorum systems. The figures highlight that the additions to the protocol for write markers involve
saving the write markers and returning them to clients so that clients can also verify them.

The differences in the structure of the write marker for probabilistic opaque and masking quo-
rum systems mentioned above results in subtly different guarantees. The remainder of the section
discusses these details.

4.1 Probabilistic Opaque Quorums

C
ho

os
e

A
cc

es
s

S
et

Client

S0

S1

S2

S3

Sn

…

a b

V
er

ify
 A

cc
es

s
S

et

Figure 3: Write operation in opaque
quorum systems: messages and
stages of verification of write marker.
(Changes in gray.)

As seen in Figure 2 (messageii), a write marker for a
probabilistic opaque quorum system consists of the write-
access-set identifier (including the VRV) and the solution
to the puzzle that unlocks the use of this access set. Unlike
a non-faulty server that verifies the access set at the time
of use, a non-faulty client cannot verify that an access set
was not already stale when the access set was accepted by
a faulty server. Initially, this may appear problematic be-
cause it is clear that, given sufficient time, a faulty client
will eventually be able to solve the puzzle for its preferred
access set to use for a conflicting write—this access set
may contain all of the servers inB. In addition, the faulty
client can delay the use of this access set because non-
faulty clients will be unable to verify whether it was al-
ready stale when it was used.

Fortunately, because non-faulty servers will not accept a stale candidate (i.e., a candidate ac-
companied by a stale access set), the fact that a stale accessset may be accepted by a faulty server
does not impact the benefit of write markers for opaque quorumsystems. In general, consistency
requires (7), i.e.,

E [|(Qrd ∩ Qwt) \ B|] > E [|(A′
rd ∩ A′

wt) ∩ B|] + E [| ((A′
rd ∩ A′

wt) \ B) \ Qwt|] .

However, only faulty servers will accept a stale candidate.Therefore, if the candidate was stale
when written toA′

wt, no non-faulty server would have accepted it. Thus, in this case, the consis-
tency constraint is equivalent to,

E [|(Qrd ∩ Qwt) \ B|] > E [|(A′
rd ∩ A′

wt) ∩ B|] .

Even if the access set contains all of the faulty servers, i.e., B ⊂ A′
wt, then this becomes,

E [|(Qrd ∩ Qwt) \ B|] > E [|A′
rd ∩ B|] .

21

However, this is (6), the constraint on probabilistic masking quorum systems without write mark-
ers. In effect, a faulty client must either: (i) use a recent access set that is therefore chosen approx-
imately uniformly at random, and be limited by (7); or (ii), use a stale access set and be limited
by (6). If quorums are the sizes of access sets, both inequalities have the same upper bound onb
as seen in Corollary 3.21 and Corollary 3.24; otherwise, a faulty client is disadvantaged by using
a stale access set because a system that satisfies (6) can tolerate more faults than one that satis-
fies (7), and is therefore less likely to result in error. (Compare the bounds in Theorem 3.20 and
Theorem 3.23.)

4.2 Probabilistic Masking Quorums

Protocols for masking quorum systems involve an additionalround of communication (an echo
phase, c.f., [16] or broadcast phase, c.f., [20]) during write operations in order to tolerate Byzan-
tine or concurrent clients. This round prevents non-faultyservers from accepting conflicting

C
ho

os
e

A
cc

es
s

S
et

V
er

ify
 A

cc
es

s
S

et

V
er

ify
 C

er
tif

ic
at

e

C
ol

le
ct

C
er

t.Client

S0

S1

S2

S3

Sn

…

α β γ δ

Figure 4: Write operation in masking quorum
systems: messages and stages of verification of
write marker. (Changes in gray.)

data values, as assumed by (2). In order to write
a data value, a client must first obtain awrite cer-
tificate (a quorum of replies that together attest
that the non-faulty servers will accept no con-
flicting data value). In contrast to optimistic pro-
tocols that use opaque quorum systems, these
protocols are pessimistic.

This additional round allows us to prevent
clients from using stale access sets. Specifically,
in the request to authorize a data value (message
α in Figure 2 and Figure 4), the client sends the
access set identifier (including the VRV), the so-
lution to the puzzle enabling use of this access
set, and the data value. We require that the cer-
tificate come from servers in the access set that is chosen forthe write operation. Each server
verifies the VRV and that the puzzle solution enables use of the indicated access set before return-
ing authorization (messageβ in Figure 2 and Figure 4). The non-faulty servers that contribute to
the certificate all implicitly agree that the access set is not stale, for otherwise they would not agree
to the write. This certificate (sent to each server in messageγ in Figure 2 and Figure 4) is stored
along with the data value as a write marker. Thus, unlike in probabilistic opaque quorum systems,
a verifiable write marker in a probabilistic masking quorum system implies that a stale access set
was not used. The reading client verifies the certificate (returned in messageii in Figure 1 and
Figure 2) before accepting a vote for a candidate. Because a writing client will be unable to obtain
a certificate for a stale access set, votes for such a candidate will be rejected by reading clients.
Therefore, the analysis in Section 3 applies without additional complications.

22

5 Additional Related Work

Probabilistic quorum systems were explored in the context of dynamic systems with non-uniform
access strategies by Abraham and Malkhi [2]. Recently, probabilistic quorum systems have been
used in the context of security for wireless sensor networks[5] as well as storage for mobile ad hoc
networks [13]. Lee and Welch make use of probabilistic quorum systems in randomized algorithms
for distributed read-write registers [11] and shared queuedata structures [12].

Signed quorum systems presented by Yu [25] also weaken the requirements of strict quorum
systems but use different techniques. However, signed quorum systems have not been analyzed in
the context of Byzantine faults, and so they are not presentlyaffected by write markers.

Another implementation of write markers was introduced by Alvisi et al. [3] for purposes
different than ours. We achieve the goals of (i) improving the load, and (ii) increasing the maximum
fraction of faults that the system can tolerate by using write markers to prevent some faulty servers
from colluding. In contrast to this, Alvisi et al. use write markers in order to increase accuracy in
estimating the number of faults present in Byzantine quorum systems, and for identifying faulty
servers that consistently return incorrect results. Because the implementation of Alvisi et al. does
not prevent faulty servers from lying about the write quorums of which they are members, it cannot
be used directly for our purposes. In addition, our implementation is designed to tolerate Byzantine
clients, unlike theirs.

6 Conclusion

We have presented write markers, a way to improve the load of masking and opaque quorum sys-
tems asymptotically. Moreover, our new masking and opaque probabilistic quorum systems with
write markers can tolerate an additional24% and17% of faulty replicas, respectively, compared
with the proven bounds of probabilistic quorum systems without write markers. Write markers
achieve this by limiting the extent to which Byzantine-faulty servers may cooperate to provide
incorrect values to clients. We have presented a proposed implementation of write markers that is
designed to be effective even while tolerating Byzantine-faulty clients and servers.

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie. Fault-scalable
Byzantine fault-tolerant services. InSymposium on Operating Systems Principles, October
2005.

[2] I. Abraham and D. Malkhi. Probabilistic quorums for dynamic systems.Distributed Com-
puting, 18(2):113 – 124, 2005.

[3] L. Alvisi, D. Malkhi, E. Pierce, and M. K. Reiter. Fault detection for Byzantine quorum
systems.IEEE Transactions on Parallel and Distributed Systems, 12(9):996–1007, 2001.

23

[4] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Symposium on Operating
Systems Design and Implementation, 1999.

[5] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, and A. Khalili. A pairwise key predistri-
bution scheme for wireless sensor networks.ACM Transactions on Information and System
Security, 8(2):228–258, 2005.

[6] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient Byzantine-tolerant
erasure-coded storage. InInternational Conference on Dependable Systems and Networks,
June 2004.

[7] M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

[8] A. Juels and J. Brainard. Client puzzles: A cryptographic countermeasure against connection
depletion attacks. InNetwork and Distributed Systems Security Symposium, pages 151–165,
1999.

[9] L. Kong, D. Manohar, A. Subbiah, M. Sun, M. Ahamad, and D. Blough. Agile store: Expe-
rience with quorum-based data replication techniques for adaptive Byzantine fault tolerance.
In IEEE Symposium on Reliable Distributed Systems, pages 143–154, 2005.

[10] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.ACM Transactions
on Programming Languages and Systems, 4(3):382–401, July 1982.

[11] H. Lee and J. L. Welch. Applications of probabilistic quorums to iterative algorithms. In
International Conference on Distributed Computing Systems, pages 21–30, April 2001.

[12] H. Lee and J. L. Welch. Randomized shared queues applied to distributed optimization algo-
rithms. InInternational Symposium on Algorithms and Computation, December 2001.

[13] J. Luo, J.-P. Hubaux, and P. T. Eugster. Pan: providing reliable storage in mobile ad hoc
networks with probabilistic quorum systems. InInternational symposium on mobile ad hoc
networking and computing, pages 1–12, 2003.

[14] D. Malkhi, Y. Mansour, and M. K. Reiter. Diffusion without false rumors: On propagat-
ing updates in a Byzantine environment.Theoretical Computer Science, 299(1–3):289–306,
2003.

[15] D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed Computing, 11(4):203–
213, 1998.

[16] D. Malkhi and M. K. Reiter. An architecture for survivable coordination in large distributed
systems.IEEE Transactions on Knowledge and Data Engineering, 12(2):187–202, 2000.

[17] D. Malkhi, M. K. Reiter, and A. Wool. The load and availability of Byzantine quorum sys-
tems.SIAM Journal of Computing, 29(6):1889–1906, 2000.

24

[18] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright. Probabilistic quorum systems.Infor-
mation and Computation, 170(2):184–206, 2001.

[19] J.-P. Martin and L. Alvisi. Fast Byzantine consensus.IEEE Transactions on Dependable and
Secure Computing, 3(3):202–215, 2006.

[20] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. InInternational Sympo-
sium on Distributed Computing, 2002.

[21] M. G. Merideth and M. K. Reiter. Probabilistic opaque quorum systems. InInternational
Symposium on Distributed Computing, 2007.

[22] M. Mitzenmacher and E. Upfal.Probability and Computing. Cambridge University Press,
2005.

[23] M. Molloy and B. Reed.Graph Colouring and the Probabilistic Method. Springer, 2002.

[24] M. Naor and A. Wool. The load, capacity, and availability of quorum systems.SIAM Journal
on Computing, 27(2):423–447, 1998.

[25] H. Yu. Signed quorum systems.Distributed Computing, 18(4):307–323, 2006.

25

