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Abstract

Probabilistic quorum systems can tolerate a larger fraatibfaults than can traditional (strict)
guorum systems, while guaranteeing consistency with atranity high probability for a system
with enough replicas. However, the masking and opaque typpsobabilistic quorum systems
are hampered in that their optimal load—a best-case measuhe work done by the busiest
replica, and an indicator of scalability—is little bett@ah that of strict quorum systems. In this
paper we present a variant of probabilistic quorum systéatsusesvrite markeran order to limit
the extent to which Byzantine-faulty servers act togethamr @asking and opaque probabilistic
guorum systems have asymptotically better load than thedsproven for previous masking and
opaque quorum systems. Moreover, the new masking and ogagbabilistic quorum systems
can tolerate an addition2d% and17% of faulty replicas, respectively, compared with probaidi
guorum systems without write markers.
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1 Introduction

Given a universé/ of servers, ajuorum systemver U is a collectionQ = {Q1,...,Q,,} such
that eachy; C U and

QNQ>0 (1)
forall Q,Q’ € Q. Each(); is called aguorum The intersection property (1) makes quorums a
useful primitive for coordinating actions in a distributegstem. For example, if clients perform
writes at a quorum of servers, then a client who reads fromoaLop will observe the last written
value. Because of their utility in such applications, quosumave a long history in distributed
computing.

In systems that may suffer Byzantine faults [10], the intetise property (1) is typically not
adequate as a mechanism to enable consistent data accessis®¢t) requires only that the
intersection of quorums be non-empty, it could be that tworgms intersect only in a single
server, for example. In a system in which uphto- 0 servers might suffer Byzantine faults, this
single server might be faulty and consequently, could faitdnvey the last written value to a
reader, for example.

For this reason, Malkhi and Reiter [15] proposed various vedigsrengthening the intersection
property (1) so as to enable quorums to be used in Byzantineoanwents. For example, an
alternative to (1) is

QNQ\B|>|QnB| )
forall Q, Q" € Q, whereB is the (unknown) set of all (up tb) servers that are faulty. In other
words, the intersection of any two quorums contains morefaalty servers than the faulty ones
in either quorum. As such, the responses from these notyfseivers will outnumber those from

faulty ones. These quorum systems are cathedkingsystems.
Opaqueguorum systems, have an even more stringent requirementaeanative to (1):

RNQ\B|> (@ NB)U(Q\Q) 3)

forall Q,Q" € Q. In other words, the number of correct servers in the intgiwe of () and ()’
(i.e., |Q N Q" \ BJ|) exceeds the number of faulty serversih(i.e., |Q' N B|) together with the
number of servers iy’ but not@. The rationale for this property can be seen by considehiag t
servers inR’ but not@ as “outdated”, in the sense that)fwas used to perform an update to the
system, then those serversih\ @ are unaware of the update. As such, if the faulty serve€g in
behave as the outdated ones do, their behavior (i.e., tgmonses) will dominate that from the
correct servers in the intersectiaf (0 Q' \ B) unless (3) holds.

The increasingly stringent properties of Byzantine quorystesns come with costs in terms
of the smallest system sizes that can be supported whiletwlg a numbeb of faults [15]. This
implies that a system with a fixed number of servers can ttddeaver faults when the property
is more stringent as seen in Table 1, which refers to the aqu®ijust discussed adrict. Table 1
also shows the negative impact on the ability of the systetidperse load amongst the replicas,
as discussed next.

Naor and Wool [24] introduced the notion of aocess strategyy which clients select quorums
to access. An access strategy Q — [0, 1] is simply a probability distribution on quorums, i.e.,
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ZQer(Q) = 1. Intuitively, when a client accesses the system, it doed sogaiorum selected
randomly according to the distributign

The formalization of an access strategy is useful as a toaiszussing the load-dispersing
properties of quorums. THead [24] of a quorum systent;(Q), is the probability with which the
busiest server is accessed in a client access, under thpdssgble access strategyAs listed in
Table 1, tight lower bounds have been proven for the load df &gpe of strict Byzantine quorum
system. The load for opaque quorum systems is particularfgrtunate—systems that utilize
opague quorum systems cannot effectively disperse progelesd across more servers (i.e., by
increasing:) because the load is at least a constant. Byzantine quoruensysre used by many
modern Byzantine-fault-tolerant protocols, e.g., [1, 8,616, 19] in order to tolerate the arbitrary
failure of a subset of their replicas. As such, circumventime bounds is an important topic.

One way to circumvent these bounds is witlobabilistic quorum system#&robabilistic quo-
rum systems relax the quorum intersection propertiesngskiem to hold only with high prob-
ability. More specifically, they relax (2) or (3), for examepito hold only with probabilityl — ¢
(for ¢, a small constant), where probabilities are taken witheesfo the selection of quorums
according to an access strategy18, 21]. This technique yields masking quorum construngio
toleratingb < 2.62/n and opaque quorum constructions tolerating 3.15/n as seen in Table 1.
These bounds hold in the sense that for any 0 there is ann, such that for alln > ng, the
required intersection property ((2) or (3) for masking apaeque quorum systems, respectively)
holds with probability at least — e. Unfortunately, probabilistic quorum systems alone do not
materially improve the load of Byzantine quorum systems.

In this paper, we present an additional modificationte markersthat improves on the bounds
further. Intuitively, in each update access to a quorum ofess, a write marker is placed at the
accessed servers in order to evidence the quorum used iactegs. This write marker identifies
the quorum used; as such, faulty servers not in this quorumataespond to subsequent quorum
accesses as though they were.

As seen in Table 1, by using this method to constrain howyeasdtvers can collaborate, we
show that probabilistic masking quorum systems with I64d//n) can be achieved, allowing
the systems to disperse load independently of the valuekairther, probabilistic opaque quorum
systems with load)(b/n) can be achieved, breaking the constant lower bound on loazpfmue
systems. Moreover, the resilience of probabilistic magkjnorums can be improved an additional
24% to b < n/2, and the resilience of probabilistic opaque quorum systeansbe improved an
additionall7% to b < n/2.62.

The probability of error in probabilistic quorums requiraechanisms to ensure that accesses
are performed according to the required access stratéghe clients cannot be trusted to do so.
Therefore, we adapt one such mechanism, the access-iestpcotocol of probabilistic opaque
guorum systems [21], to accomodate write markers. Thus,sadeadbenefit, our implementation
forces faulty clients to follow the access strategy. Witis,thve provide a protocol to implement
write markers that tolerates Byzantine clients.

Our primary contributions are (i) the identification and lges of the benefits of write markers;
and (ii) a proposed implementation of write markers thatdfes the complexities of tolerating
Byzantine clients. Our analysis yields the following result



Masking Quorums: We show that the use of write markers allows probabilistiskirag quo-
rum systems to tolerate up ko< n /2 faults when quorums are of sigk/n). Setting all quorums
to sizep+/n for some constant
p, we achieve a load that isTable 1: Improvements due to write marker&old entries are
asymptotically optimal for any properties of particular constructions; others are lovaentals.)

quorum system, i.epn/n/n = Non-Byzantine: load faults
O(1/y/n) [24]. strict Q(1/y/n) [24] <n

This represents an im-
provement in load and the Masking: load faults
number of faults that can be | strict Q(y/b/n) [15] < n/4.00 [17]
tolerated. Probabilistic mask- probabilistic Q(b/n) [18] < n/2.62 [21]
ing quorums without write write markers  O(1/y/n) [here] < n/2.00 [here]
markers can tolerate up to
b < n/2.62 faults [21] and Opaque: load faults
achieve load no better than strict >1/2 [15] < n/5.00 [15]
Q(b/n) [18]. In addition, probabilistic unproven <n/3.15 [21]
the maximum number of faults | Write markers  O(b/n)  [here] <n/2.62 [here]

that can be tolerated is tied to

the size of quorums [18]. Thus, without write markers, aginig optimal load requires tolerating
fewer faults. Strict masking quorum systems can tolerat®/faip tob < n/4 faults [15] and can
achieve load2(y/b/n) [17].

Opague Quorums: We show that the use of write markers allows probabilistizoqppe quorum
systems to tolerate up o < n/2.62 faults. We present a construction with loédb/n) when
b = Q(y/n), thereby breaking the constant lower bound Gf on the load of strict opaque quorum
systems [15]. Moreover, if = O(y/n), we can set all quorums to sizg/n for some constan,
in order to achieve a load that is asymptotically optimalday quorum system, i.eoy/n/n =
O(1/v/n) [24].

This represents an improvement in load and the number alféhat can be tolerated. Prob-
abilistic opaque quorum systems without write markers cd@rate (only) up tob < n/3.15
faults [21]. Strict opaque quorum systems can tolerateyfamb tob < n/5 faults [15]; these
quorum systems can do no better than constant load even if [15].

2 Definitions and System Model

We assume a system with a $étof servers,|U| = n, and an arbitrary but bounded number of
clients. Clients and servers can fail arbitrarily (i.e., Bymae faults [10]). We assume that uptto
servers can fail, and denote the set of faulty serverpwhereB C U. Any number of clients
can fail. Failures are permanent. Clients and servers thaiotifail are said to b&on-faulty

We allow that faulty clients and servers may collude, and socagasume that faulty clients and
servers all know the membership Bf(although non-faulty clients and servers do not). However,
for our implementation of write markers, as is typical formpd@yzantine-fault-tolerant protocols



(c.f.,[1, 4,6, 19]), we assume that faulty clients and seraee computationally bounded such that
they cannot subvert standard cryptographic primitives siscdigital signatures.

Communication. Write markers require no communication assumptions beylooskt of the
probabilistic quorums for which they are used. For compless, we summarize the model of [21],
which is common to prior works in probabilistic [18] and sagh[25] quorum systems: we assume
that each non-faulty client can successfully communicatk sach non-faulty server with high
probability, and hence with all non-faulty servers with gbly equal probability. This assumption
is in place to ensure that the network does not significandg b non-faulty client’s interactions
with servers either toward faulty servers or toward différeon-faulty servers than those with
which another non-faulty client can interact. Put anothay,wve treat a server that can be reliably
reached by none or only some non-faulty clients as a memhgr of

Access set; access strategy; operationVe abstractly describe client operations as either
writesthat alter the state of the servicereadsthat do not. Informally, a non-faulty client performs
a write to update the state of the service such that its value (later one) will be observed
with high probability by any subsequent operation; a wiitest successfully performed is called
“established” (we define established more precisely beldwjon-faulty client performs a read to
obtain the value of the latest established write, whereStitrefers to the value of the most recent
write preceding this read in a linearization [7] of the exemu

In the introduction, we discussagcess strategiess probability distributions on quorums used
for operations. For the remainder of the paper, we follow [2Ftrictly generalizing the notion of
access strategy to apply insteadatizess setBom which quorums are chosen. An access setis a
set of servers from which the client selects a quorum. If tlentis non-faulty, we assume that
this selection is done uniformly at random. We adopt the s&strategy that all access sets are
chosen uniformly at random (even by faulty clients). In 8ect, we adapt a protocol to support
write markers from one in [21] that approximately ensurésalecess strategy. Our analysis allows
that access sets may be larger than quorums, though if asetssand quorums are of the same
size, then our protocol effectively forces even faulty migeto select quorums uniformly at random
as discussed in the introduction. In our analysis, all axsess used for reads and writes are of
constant size,.; anda,,, respectively. All quorums used for reads and writes areoastant size
qrq @andq,,; respectively.

Candidate; conflicting; error probability; established; p articipant; qualified; vote. Each
write yields a correspondingandidateat some number of servers. A candidate is an abstraction
used in part to ensure that two distinct write operationsdastnguishable from each other, even
if the corresponding data values are the same. A candidasablishednce it is accepted by
all of the non-faulty servers in some write quorum of sjzg within the write access set of size
a.:. 1N opague quorum systems, property (3) anticipates tHgreint non-faulty servers each
may hold a different candidate due to concurrent writes. Adadate that is characterized by the
property that a non-faulty server would accept either it given established candidate, but not
both, is called aonflictingcandidate. Two candidates may conflict because, e.g., thtylear
the same timestamp. In either masking or opaque quorummsgstefaulty server may try to forge
a conflicting candidate. No non-faulty server accepts twaltates that conflict with each other.



A server can try tzwotefor some candidate (e.g., by responding to a read operatite)server
is aparticipantin voting (i.e., if the server is a member of the client’s reamdess set). However,
a server becomeagualifiedto vote for a particular candidate only if the server is a mends the
client’'s write access set selected for the write operatwmhich it votes. Non-faulty clients wait
for responses from a read quorum of sjzgcontained in the read access set of size An error
is said to occur in a read operation when a non-faulty cliait to observe the latest value or a
faulty client obtains sufficiently many votes for a confligfivalue! The error probability is the
probability of this occurring.

Behavior of faulty clients. We assume that faulty clients seek to maximize the errorgiitiby
by following specific strategies [21]. This is a consenat@ssumption; a client cannot increase—
but may decrease—the probability of error by failing todalithese strategies. At a high level, the
strategies are as follows: a faulty client, which may be cletay restricted in its choices: (i) when
establishing a candidate, writes the candidate to as fewfandty servers as possible to minimize
the probability that it is observed by a non-faulty cliemidg(ii) writes a conflicting candidate to
as many servers as will accept it (i.e., faulty servers piugie case of an opaque quorum system,
any non-faulty server that has not accepted the establishiedidate) in order to maximize the
probability that it is observed. However, it is importantriote that a faulty client performing a
write does not have knowledge of the read access set useddyyfauity client [21].

3 Analysis of Write Markers

Intuitively, when a client submits a write, the candidateagssociated with a write marker. We
require that the following three properties are guaranbgeah implementation of write markers:

W1. Every candidate has a write marker that identifies thessceet chosen for the write;

W?2. A verifiable write marker implies that the access set wéctsd uniformly at random (i.e.,
according to the access strategy);

W3. Every non-faulty client and server can verify a write ngark

When considering a candidate, non-faulty clients and semegify the candidate’s write marker.
Because of this verification, no non-faulty node will accepote for a candidate unless the issuing
server is qualified to vote for the candidate.

Since each write access set is chosen unifornigble 2: Ability of a server to vote for a given
at random (W2), the faulty servers that carandidate: e (traditional quorums);x (write
vote for a candidate, i.e., the faulty qualifietharkers).

servers, are therefore a random subset of the Type of server Vote
faulty servers. Non-faulty qualified participant °x
Thus, write markers remove the advantage| Faulty qualified participant °*
enjoyed by faulty servers in strict and traditional- | Non-faulty non-qualified participant
probabilistic masking and opaque quorum sys-| Faulty non-qualified participant .

tems, where any faulty participant can vote for

IFaulty clients may be able to affect the system with suchsviltsome protocols [21].
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any candidate—and therefore can collude to have a confjiciotentially fabricated candidate
chosen instead of an established candidate. This aspecitefmarkers is summarized in Table 2,
which shows the impact of write markers in terms of the abgiof faulty and non-faulty servers
to vote for a given candidate.

3.1 Consistency Constraints

Probabilistic quorum systems must satisfy constraintslaino those of strict quorum systems
(e.g., (2), (3)), but only with probability — e. As with strict quorum systems, the purpose of these
constraints is to guarantee that operations can be obseoreistently in subsequent operations
by receiving enough votes.

First, the constraints must ensure in expectation that afauty client can observe the latest
established candidate if such a candidate existsQlgtepresent a read quorum chosen uniformly
atrandom, i.e., arandom variable, from a read accesssktit®sen uniformly at random. (Think
of this quorum as one used by a non-faulty client.) Qet represent a write quorum chosen by a
potentially faulty clientQ, must be chosen frorA,;, an access set chosen uniformly at random.
(Think of Q. as a quorum used for an established candidate.) Then trehtiide number of
votes necessary to observe a value must be less than theéexkpeemnber of non-faulty qualified
participants, which is

E[[(QuaNQw) \ Bl]. (4)

The use of write markers has no impact here on (4) becgiseN Q) \ B contains no faulty
servers. However, write markers do enable us to setaller, as the following shows.

Second, the constraints must ensure that a conflicting dated{which is in conflict with an
established candidate as described in Section 2) is, ircéadpen, not observed by any client (non-
faulty or faulty). In general, it is important for all cliemto observe only established candidates so
as to enable higher-level protocols (e.g., [1]) that empépair phases that may affect the state of
the system within a read [21]. L&, andA’,, represent read and write access sets, respectively,
chosen uniformly at random. (Think 8f , as the access set used by a faulty client for a conflicting
candidate, and ol as the access set used by a faulty client for a read operatlown. faulty
clients can be forced to choose uniformly at random is deedrin Section 4.) We consider the
cases for masking and opaque quorums separately:

Probabilistic Masking Quorums. In a masking quorum system, (2) dictates that only faulty
servers may vote for a conflicting candidate. Using writekaes, we require that the faulty quali-
fied participants alone cannot produce sufficient votes éaralidate to be observed in expectation.
Taking (4) into consideration, we require:

E[[(Qua N Que) \ Bl] > E[[(Alg N AL) N B ()

Contrast this with (2) and with the consistency requirementraditional probabilistic masking
guorum systems [18] (adapted to consider access setsh wdgaires that the faulty participants



(qualified or not) cannot produce sufficient votes for a cdatdi to be observed in expectation:
E[[(Qu N Quw:) \ Bl] > E[[A,, N B]. (6)

Intuitively, the intersection between access sets can kalemwith write markers because the
right-hand side of (5) is less than the right-hand side off(@),; < n.

Probabilistic Opaque Quorums. With write markers, we have the benefit, described above for
probabilistic masking quorums, in terms of the number oftfaparticipants that can vote for a
candidate in expectation. However, as shown in (3), opagweugn systems must additionally
consider the maximum number of non-faulty qualified pgpacits that vote for the same conflict-
ing candidate in expectation. As such, instead of (5), wehav

Ef[(Qra N Que) \ Bl > E[[(Alg NAG) N Bl + E[] ((Alg N AG) \ B) \ Qual] - (7)
Contrast this with the consistency requirement for traddigrobabilistic opaque quorums [21]:
E(Qua N Que) \ Bll > E[|A,y N B[] + E[] (Ala NAG) \ B) \ Quall - (8)

Again, intuitively, the intersection between access satsle smaller with write markers because
the right-hand side of (7) is less than the right-hand sid@pif a,; < n.

3.2 Implied Bounds

In this subsection, we are concerned with quorum systemwtiazth we can achieve error prob-
ability (as defined in Section 2) no greater than a givdar any n sufficiently large. For such
guorum systems, there is an upper bound amterms ofn, akin to the bound for strict quorum
systems.

Intuitively, the maximum value df is limited by the relevant constraint (i.e., either (5) oy)(7
Of primary interest are Theorem 3.17 and its corollariescividemonstrate the benefits of write
markers for probabilistic masking quorum systems, and fidgrad.23 and its corollaries, which
demonstrate the benefits of write markers for probabiligtiaque quorum systems. They utilize
Lemmas 3.5 and 3.6, which together present basic requirtsrf@nthe types of quorum systems
with which we are concerned.

The following theorem is a restatement of the Molloy and Reatement [23, p. 172] of the
McDiarmid Inequality that can be used to show that a randorrabke computed on a series of
independent permutations is concentrated about its exijp@ct

Theorem 3.1([23]). LetZ = z(I14, ..., ;) be a random variable that is a non-negative function
of a seriedl1y, ..., I, of independent random variables, where edthakes on a random per-
mutation (bijection)r : {1,...,|P|} — P of a finite non-empty s&?. Also, for some positive

constants) and 4, let the following conditions hold (wherelif; = 7; then themapping(i, j, m)
indicates thatr; (i) = m):



M1. Swapping the mappings of any two elements in a single patiowtr; (i.e., changing
{(i, j,m),(@', 5,m")} to {{(i’, j,m),(i, j,m’) }, wherei # " andm # m') changes the value
of Z by at mosb.

M2. If Z = z(m,...,m) = z, then there exists a set of at m@ast distinct mappings
{1, 31, ma), -, (s Jpws Myua) } SUCh thatz(ry, ..., ;) > o for anyn, ..., m; sharing the
same set of mappings.

If 0 < A <E|[Z], then:
Pr(|Z —E[Z]| > A+ 606/iE [Z] + 1) < 4/e(8°/55° k),

We simplify Theorem 3.1 to create Corollary 3.2 that deal$\agymptotic bounds.

Corollary 3.2. LetZ = z(y,..., ;) be a random variable that is a non-negative function of a
seriedly, ..., N, of independent random variables, where e8gltakes on a random permutation
(bijection)r : {1,...,|P|} — P of a finite non-empty se?. Also, for some positive constarits

andy, let the following conditions hold (wherelif; = 7, then themapping(i, j, m) indicates that
T (’l) = m):
M1. Swapping the mappings of any two elements in a single patiowtr; (i.e., changing
{(@, 4, m), (@', j,m") } to {(i’, j, m),(i, j,m") }, wherei # i andm # m' ) changes the value
of Z by at mosb.

M2. If Z = z(my, ..., m) = z, then there exists a set of at mgst distinct mappings
{1, 31, m1), -, (s Jpws Myua) } SUCh thatz(wy, ..., ;) > o for any, ...« sharing the
same set of mappings.

If A = w(\/E|[Z]), then?
Pr(|Z—E[Z]| > A) =2/e“D)  asA - .

Proof of Corollary 3.2.SinceA = w(/E [Z]), the600+/uE [Z] + 1 term is negligible, and, for
any constan® < 1/8u and large enough value &f[Z], we have (c.f., [23, p. 81)),

Pr(|Z —E[Z]| > A) < 2/e(PAY/ED),
In other words, ifA = w(/E [Z]), then,
Pr(|Z—E[Z]| > A) =2/e“D)  asA — . O

So that we can apply Corollary 3.2 to bound the error proligipive present a method for
definingQut, ALy, Awt, Al andQ,q (WhereQ,q represents a read quorum selected by a non-faulty
client) in terms of independent random variablgs Iy, I3, andl,, each taking on a random
permutation{1, ..., |U|} — U, whereU is the set of alln servers. Fix any set df servers to

constituteB3. Then consider the following definitions:

2, is the little-oh analog o2, i.e., f(n) = w(g(n)) if f(n)/g(n) — oo asn — oo.
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e DefineA,; = {M(1),...,Mi(aw)}

e DefineAl, = {MNx(1),...,My(aw)}-

e DefineAl; = {M5(1),...,M3(amq)}
(1)

e DefineQ.q = {M4(1),...,M4(qa)}-

Because each permutation is randomly selected (indepdynoémt), so too aré\¢, A, ,, AL, and
Q.a- We defineQ, in accordance with Section 2. Specifically, first we choosehé€h (i) such
that, (i) € Ay N B. Next, for eachj = 1..a,, Wwe choosdl, (j) if we have not yet chosef,,
servers andl,(j) € Ay \ (AL, U B). Finally, for eachk = 1..a,,:, we choosédl, (k) if we have
not yet chosen,, servers andll, (k) € Ay N (AL, \ B).

Let r be the threshold, discussed in Section 3.1, for the numbestet necessary to observe
a candidate. Defin®linCorrect to be a random variable for the number of non-faulty servetis w

the established candidate, i.BlinCorrect = |(Q.a N Qut) \ B| as indicated in (4).

Lemma 3.3. LetZ = MinCorrect. LetE [Z] > r andE [Z] — r = w(/E [Z]). Then,
Pr(Z <r)=2/e“W) askE[Z] —r — oo.

Proof of Lemma 3.3For a fixedB, MinCorrect can be treated as a function of independent per-
mutations (i.e., usin@.q andQ,;, as defined above). Consider this in relation to Corollary 8.2 a
follows. Swapping any two elements in eiti@y; or Q. can change the value dinCorrect by
at mostl; thereforey = 1 in Condition M1. Additionally, ifMinCorrect = x, then the mappings

U {07 @), L), (N (), 4,u)}

ue(Qrdewt)\B

suffice to satisfy Condition M2; thereforg,= 2.
Let A = E [Z] — r; then, by assumption) = w(/E [Z]). We apply Corollary 3.2, yielding,

Pr(Z <r)

=Pr(Z<E[Z] - A)

=Pr(E[Z]-Z>A)

<Pr|Z-E[Z]| > A)

=2/e“W) asA — oo

=2/eM) asE([Z] —r — oo. O

Define MaxConflicting to be a random variable for the maximum number of serversvibiat
for a conflicting candidate. For example: due to (5), in maglkjuorums with write markers,
MaxConflicting = |(Al; N AL,) N B|; and due to (7), in opaque quorums with write markers,
MaxConflicting = [(Al; NAL) N B| + | (AlgNAL) \ B) \ Qutl-



Lemma 3.4. LetZ' = MaxConflicting. Letr > E[Z'] andr — E [Z'] = w(\/E[Z]). Then,
Pr(Z' >r)=2/e“M)  asr—E[Z] — .

Proof of Lemma 3.4As seen in Sections 3.1 and 3.2, depending on the type of queystem,
MaxConflicting has a different definition. However, for each type of quorwystam, for a fixed
B, MaxConflicting can be treated as a function of independent permutations fine set{A’,,

Al., Qut}. Consider this in relation to Corollary 3.2 as follows. Swaygpany two elements in

wt?

one permutation can change the valudakConflicting by at mostl because an additional server
added tdA,4 cannot be both faulty and non-faulty; therefare; 1 in Condition M1. Additionally,
for any value oMaxConflicting considered in Section 3.1, MaxConflicting = |C| = z, then the
mappings

AN (), 1), (M5 (), 2, u), (M5 (), 3, )}

ueC

suffice to satisfy Condition M2; therefore,< 3.
Let A = r — E[Z]; then, by assumption) = w(/E [Z']). We apply Corollary 3.2, yielding,

Pr(Z' > r)

=Pr(Z’ > A+E[Z])

=Pr(Z' —E[Z] > A)

<Pr(|Z -E[Z]] = A)

=2/e@M) asA — oo

=2/e“W) asr —E[Z] — . O
Lemma 3.5. Letn — b = Q(n). For all ¢ > 0 there is a constand > 1 such that for allg,,

Gut Whereg,qq,e > dn and g.qq.: —n = Q(1), it is the case thaE [MinCorrect] > ¢ for all n
sufficiently large.

Proof of Lemma 3.5Note that,
. n—=ob
E [MinCorrect] = ¢,qqu: <—2)
n
n—>b
> dn< > )

n

n

= d(Q(1)). O

10



Lemma 3.6. Let the following hold,
E [MinCorrect] — E [MaxConflicting] > 0,
E [MinCorrect] — E [MaxConflicting] = w(1/E [MinCorrect]).

Then it is possible to setsuch that,
error probability — 0 asE [MinCorrect] — oo.

Proof of Lemma 3.6Setr as follows,
E [MinCorrect| 4+ E [MaxConflicting]

r= :

2
Then we can apply Lemma 3.3 Ry(MinCorrect < r) because,

E [MinCorrect| > r, and
E [MinCorrect] — r = w(+/E [MinCorrect]).

Next, note that by assumption and our setting,of— E [MaxConflicting] = w(1/E [MinCorrect]).
But, sinceE [MinCorrect] — E [MaxConflicting] grows whenkE [MinCorrect] grows, it must be
that E [MinCorrect] grows faster thari [MaxConflicting]. Therefore,r — E [MaxConflicting] =
w(y/E [MaxConflicting]). As such, we can apply Lemma 3.4Ro(MaxConflicting > r) because

r > [E [MaxConflicting] , and
7 — E [MaxConflicting] = w(+/E [MaxConflicting]).

It is an error ifMinCorrect < r or MaxConflicting > r. Therefore, the error probability is bounded
as follows:

error probability= Pr(MaxConflicting > r VV MinCorrect < )

= Pr(MaxConflicting > r) 4+ Pr(MinCorrect < r)—
Pr(MaxConflicting > r A MinCorrect < r)

< Pr(MaxConflicting > r) 4+ Pr(MinCorrect < r)

< Pr(MaxConflicting > r) 4+ Pr(MinCorrect < r)

— 2/e(w(1)) + 2/6(w(1))
as(E [MinCorrect] — E [MaxConflicting]) /2 — oo

—=2/e@W) 4 9/¢@M)  asE [MinCorrect] — oco.

Where the second-to-last line follows because,
(E [MinCorrect] — E [MaxConflicting]) /2 = E [MinCorrect| — r = r — E [MaxConflicting] .
And the final line follows because,

(E [MinCorrect] — E [MaxConflicting]) /2 = w(y/E [MinCorrect]). O

11



Here and below, a suitable settingrois one betweef [MinCorrect] andE [MaxConflicting],
inclusive. The remainder of the section is focused on detengp, for each type of probabilistic
guorum system, the upper bound band bounds on the load that Lemmas 3.5 and 3.6 imply.
Important expected values, derived below, are as follows,

B ([(Qua 1 Que) \ B = et~ ) ©
E[A, N Bl = 2 (10)
E[|(Aly N AL 0 Bl = 2ot (11)

n2
Efl(Alg MAL) \ B) \ Quil] < _;(zawth — Ny — quin® — agyn + agb). (12)
Lemma 3.7.

rdb
E[|A, N Bl = .

Proof. Al, is selected independently 8. As such|A!,N B|is a hypergeometric random variable
characterized by, , draws from a population of elements containingsuccesses. Therefore, we
use the formula for the expected value of a hypergeometnigdaia variable. n

Lemma 3.8.

ardawtb
E[|(Arg NAL,) N BJ| = Z5,

Proof. We calculatet [|(A/, N AL,) N B|] directly as follows. Consider an indicator random vari-
ablelnd,, such thatnd, = 1if u € (A,g N AL,) N B, andind,, = 0 otherwise. For each € B,
we havePr[Ind, = 1] = *3», sinceA,, and 4, are chosen independently. By linearity of
expectation:

]

E[|(A,NA.)N B[] = E:Pergfl—b<

uEB

Ay d Qo )

In the proofs of the following lemmas, we use rules of coditil expectation (c.f., [22, Section
2.3]). In particular, the following.

Definition 3.9 ([22]). The expressiofi [X | Y] is a random variablef (Y) that takes on the value
E[X | Y =y|whenY = y.

Becausét [X | Y]is arandom variable, i.e., a function, it makes sense toidengs expectation.

Theorem 3.10([22, Theorem 2.7])

EX]=EEX [ Y]. (13)

12



Lemma 3.11.
will — Qb
E[|Qui \ BJj = 5=, (14)

Proof. Let MalWrite = |A,; N B|. SinceA,, is selected uniformly at random independentlyf
MalWrite is a hypergeometric random variable, characterized, pylraws from a population of
elements containing successes; therefore,
wth
E [MalWrite] = Gwt?

n

Recall from Section 2, that a write is established once alhefrion-faulty servers in any write
guorum inA,; have accepted it. Therefore,

E[|Qwt \ B| | MalWrite = m] = g,y — m.
Applying Theorem 3.10 and linearity of expectation, we hénad,

E Hth \ BH
=E[E[|Quw \ B| | MalWrite]]
= E [qut — MalWrite]
= Qut — E [MaIWrite]
oth

= qut —

Lemma 3.12.
(TLth - awtb>
n? ’
Proof. Q,q is independent of),; \ B; therefore,|(Q.qa N Quwi) \ B| | |Qws \ B = mis a

conditional hypergeometric random variable charactdrizg ., draws from a population of
elements containing: successes, and,

E [|(Qu N Qu) \ B = ¢

qrdm

Ef(QuNQu) \ Bl | [Que\ Bl =m] = = —.

Applying Theorem 3.10, by linearity of expectation and Leangal1l we have that,

E[|(Qra N Qws) \ Bl]
=E[E[[(QuNQu) \ Bl [1Qu: \ Bl ]

=E |7 (1Qu: \ B)
= IR [|Qu \ B]]

n
. QTd(nQU)t - awtb) ]
= n2 X

13



Lemma 3.13.
A A b
B8 0 A\ Bl = s (2 - (21) (2)) (15)
Proof. We calculateE [|(AL, N AL,) \ BJ| directly as follows. Consider an indicator random vari-
ablelnd,, such thatnd, = 1if uw € (A/;NAL,) \ B, andind, = 0 otherwise. For each € U \ B,
we havePr[Ind, = 1] = #32t sinceA;, and A), are chosen independently. By linearity of
expectation:

E[|(AqNA)\Bll= Y Pr(ind, =1)

ueU\B

=0 () = (B () (7)) -
Lemma 3.14.

1A 0 AL) N (@ B 2 % (g = 22 (5 P00 ) g

n

Proof. In calculatingE [|(A.q N A%,) N (Qwt \ B)|], because a faulty client may perforooth a
write that becomes established@t; and another write aA, that conflicts with the first write,
we cannot assume th&X,. is selected independently &f .. LetCl = AL, N (Qwt \ B). Then,
in particular, as described in Section 2, such a client seeksaximizeE [MaxConflicting], and
therefore minimize& [|Cl|] by choosing the servers @, \ B from Ay \ (AL, U B) first. Thus,

E[|Cl] = max( 0, E[|Qu: \ Bl = E[[Aw \ (Al U B)|])
> E[|Qui \ B = E[[Aw \ (AL U B)I].- (17)

We calculateE [|Ay: \ (AL, U B)|] directly as follows. For clarity, note that, \ (AL, U B) =
(Awt \ AL,) \ B. Consider an indicator random variabiel,, such thaind, = 1if v € (Ay \

AL)\ B, andind, = 0 otherwise. For each € U \ B, we havePr|Ind, = 1] = %% since
Al . andA,. are independent. By linearity of expectation:

A\ (A UB)] = 3 Prlind, = 1) = (n =) (220000 ) Dot )0 ),
ueU\B

(18)
By (17), (14), and (18), we have that,

BIICH 2 (g0~ 222 ) = 20— aw)n 8) = g — 22 (04 P20 - ag)

n

SinceA,q is independent ofl, we see that(A.q N AL,) N (Qwt \ B)| | |Cl] = ¢ is a hypergeo-
metric random variable characterized @y draws from a population of elements containing
successes, and,

argC

Efl(Ara N AL) N (Qui \ B[ | [Cl] = ¢] =

14



Applying Theorem 3.10, by linearity of expectation we hdvatt
Ef[(Ara N AL) N (Que \ B))l]
=E[E[[(Aa NAL) N (Quwe \ B)[ | [CI]] ]
—E [“”ycu} = TEqc). (20)

n n

Therefore, by (19) and (20) we have that,

E[[(Aw N AL) N (Que\ B > 2 (qwt o <b+ (n = aw)(n - b>)) @

n

Lemma 3.15.

a,
E[l (A NAG) \ B) \ Quiel] < n—f@awth — Nyh = quin® — ag,n + a,b).

Proof. To calculateE [| (Al N AL,) \ B) \ Qu:|], first note that:

E [ ((Ata NAG) \ B) \ Quel]

= E[[(Ala N AL\ BIl = E[[(Ala N AG) N (Que \ B)].- (21)
Combining and simplifying equations (15), (16), and (21),ok¢ain (12). ]

Lemma 3.16. For a probabilistic masking or opaque quorum system conégan with or without
write markers?

E [MinCorrect] > E [MaxConflicting] =
E [MinCorrect] — E [MaxConflicting] = w(1/E [MinCorrect]).
Proof of Lemma 3.16Consider:

e Masking without write markerdE [MinCorrect] > E [MaxConflicting] implies
E[(QaNQuwt) \ B|]—E[|AL; N BJ] # 0, and so (9) and (10) show us tfaiMinCorrect| —
[E [MaxConflicting] = w(1/E [MinCorrect]).

e Masking with write markersE [MinCorrect] > E [MaxConflicting] implies
E(QuNQwt) \ Bl] —E[|(Al;NAL,) N B|] # 0, and so (9) and (11) show us that

E [MinCorrect] — E [MaxConflicting] = w(y/E [MinCorrect]).

e Opaque without write marker& [MinCorrect| > E [MaxConflicting] implies
E[[(Qra N Qut) \ Bl = (E [[Ag N BII+E[| ((Arg N AG) \ B) \ Qual]) # 0, and so (9), (10),
and (12) show us théd [MinCorrect] — E [MaxConflicting] = w(y/E [MinCorrect]).

3Though not shown here, Lemma 3.16 also applies triviallyigs@mination quorum systems.
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e Opaque with write markers [MinCorrect] > [E [MaxConflicting] implies

E{](Qra N Que) \ Bl = (E[[(Alg NAL) N BIJ+E[| (Alg N Ay) \ B) \ Quil]) # 0, and so
(9), (11), and (12) show us th&t/MinCorrect] — E [MaxConflicting] = w(1/E [MinCorrect]).
O

Theorem 3.17.For all € there is a constard > 1 such that for allg,4, ¢.; whereq,q4q.; > dn,
Gragwe —n = (1), and

QrdquwtT
qrdGwt + Ard Ayt ’
any such probabilistic masking quorum system employingewrdrkers achieves error probability
no greater thare given a suitable setting offor all n sufficiently large.
Proof of Theorem 3.17We show that Lemmas 3.5 and 3.6 apply. By (9) and (11),

qrdquwtT
qrdQuwt + Qpd
& Ef[(Qua N Quwe) \ Bl] > E[|(Alg NA,) N BJ]

< [ [MinCorrect] > E [MaxConflicting] .

b <

b<

Therefore, we can apply Lemma 3.16 and, thus, Lemma 3.6. Byet$teiction onb and the
conditions of the Theorem, we can also apply Lemma 3.5. m

Corollary 3.18. Leta,q = ¢,q anda,; = q.;. For all e there is a constani > 1 such that for all
Qrds Qut WhereQTdet > dn) QrdQuwt — 10 = Q(l), and

b<n/2,

any such probabilistic masking quorum system employingewrérkers achieves error probability
no greater thare given a suitable setting offor all n sufficiently large.

In other words, with write markers, the size of quorums da#smpact the maximum fraction of
faults that can be tolerated when quorums are selectedromiyf@t random (i.e., when,; = ¢,4
anda,; = Gue)-

Corollary 3.19. Leta,q = Gra, Guwt = Gut, aNdb < n/2. For all e there is a constant > 1 such
that if ¢.¢ = q.: = p+/n, any such probabilistic masking quorum system employinggwmarkers
achieves error probability no greater thargiven a suitable setting offor all n sufficiently large,
and has load

pvn/n = O(1/V/n).
Theorem 3.20. For all ¢ there is a constard > 1 such that for allg,4, ¢.; whereg,q4q.; > dn,
GrdQut — N = Q(l), and

QrdquwtT

b< —
qrdGwt + Argh

any such probabilistic masking quorum system without writekara achieves error probability
no greater thare given a suitable setting offor all n sufficiently large.
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Proof of Theorem 3.20We show that Lemmas 3.5 and 3.6 apply. By (9) and (10),

GrdQut
GrdGuwt + Ardnt
< Ef[(QuNQu)\ Bl > E[|A;; N B]
< E [MinCorrect] > E [MaxConflicting] .

b <

Therefore, we can apply Lemma 3.16 and, thus, Lemma 3.6. Byetteiction onb and the
conditions of the Theorem, we can also apply Lemma 3.5. O

Corollary 3.21. Leta,q = ¢, anda,; = q.:. For all e there is a constan{ > 1 such that for all
Ards Quwt Whereqrdet > dn! QrdQuwt — N = Q(l)1 and

GuitT

b < ,
th—l_n

any such probabilistic masking quorum system without writekera achieves error probability
no greater thare given a suitable setting offor all n sufficiently large.

Corollary 3.22. Leta,q = ¢, anda,; = q., = n—b. For all e there is a constan{ > 1 such that
for all Qrds Gt WhereQTdet > dn, Qrdquwt — N = Q(]-); and

b < n/2.62,

any such probabilistic masking quorum system without writekera achieves error probability
no greater thare given a suitable setting offor all n sufficiently large.

Theorem 3.23.For all € there is a constant > 1 such that for allg,q, ¢.; whereg,qq.; > dn,
Gragwt —n = (1), and

2
n(aratn,; + GraQut + GraQut™ — 20rqQyn)

b <
At (QraQut + Gran)

)

any such probabilistic opaque quorum system employing wrétekers achieves error probability
no greater thare given a suitable setting offor all n sufficiently large.

Proof of Theorem 3.23We show that Lemmas 3.5 and 3.6 apply. By (9), (11), and (12),

n(araasy + araguin + Gradue — 2ariun)

At (Ard@ut + Gran)
= E[[(Qua N Quwe) \ Bl > E[[(Ara N AG) N B+ E [ (Ala N AG) \ B) \ Qual]
< E [MinCorrect] > E [MaxConflicting] .

b <

Therefore, we can apply Lemma 3.16 and, thus, Lemma 3.6. Byetteiction onb and the
conditions of the Theorem, we can also apply Lemma 3.5. O
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Corollary 3.24. Leta,q = g, anda,; = q.:. For all e there is a constan{ > 1 such that for all
Qrds Qut Whereg,qqu: > dn, g-qaque —n = (1), and
< Lt
Qut t 1
any such probabilistic opaque quorum system employing wrétekers achieves error probability
no greater thare given a suitable setting offor all n sufficiently large.

Comparing Corollary 3.24 with Corollary 3.18, we see that indhaque quorum casgg,; cannot
be set independently of

Corollary 3.25. Leta,q = Gray Guwt = Gut, aNAb < (quin)/(quwe + ). For all e there is a constant
d > 1 such that for allg,q, ¢... wheregq,q4q,; > dn andg,.qq... —n = (1), any such probabilistic
opaque quorum system employing write markers achieves@obebility no greater tham given
a suitable setting of for all n sufficiently large, and has load

Corollary 3.26. Letb = Q(y/n). For all e there is a constand > 1 such that for alla,4, ., Grd,
quwt Wherea,q = ay = g-a = qur = b for avaluel such that’ > [ > n/(n — b) for some constant
d, (Ib)*> > dn and (i) — n = Q(1), any such probabilistic opaque quorum system employing
write markers achieves error probability no greater thagiven a suitable setting of for all »
sufficiently large, and has load
O(b/n).

Corollary 3.27. Leta,q = ¢,q anda,; = g, = n — b. For all e there is a constan{ > 1 such that
for all ¢,4, qu: Whereq,qqu: > dn, graque — n = (1), and

b<n/2.62,

any such probabilistic opaque quorum system employing wréekers achieves error probability
no greater thare given a suitable setting affor all n sufficiently large.

Theorem 3.28.For all € there is a constard > 1 such that for allg,4, ¢.; whereq,q4q.; > dn,
QrdqQuwe — N = Q(1)1 and
(A Guot — 20rq@uptn + Aoy lrd + Gradui™)

N20rq = Qralut + Qoylrd + GraGun
any such probabilistic opaque quorum system without writekerarachieves error probability no
greater thare given a suitable setting offor all n sufficiently large.
Proof of Theorem 3.28We show that Lemmas 3.5 and 3.6 apply. By (9), (10), and (12),

(rdGuin — 20,q0un + 03y 0rd + GraGun)n

N20rg — Arguyn + a240rq + GraGuin
= E[[(Qu N Que) \ Bl] > E[JAig N B+ E[| (Alg N AG) \ B) \ Quel]
< E [MinCorrect] > E [MaxConflicting] .

b <

b <

Therefore, we can apply Lemma 3.16 and, thus, Lemma 3.6. Byetteiction onb and the
conditions of the Theorem, we can also apply Lemma 3.5. n
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Corollary 3.29. Leta,q = g,q anda,; = q.:. For all e there is a constard > 1 such that for all
qrds Qut WhereQTdet > dna QrdQuwt — 1 = Q(l)a and

2
qwt n

b < ———,
qit—i—nQ

any such probabilistic opaque quorum system without writekerarachieves error probability no
greater thare given a suitable setting offor all n sufficiently large.

Corollary 3.30. Leta,q = ¢.q anda,; = g, = n —b. For all e there is a constan{ > 1 such that
for all ¢,4, qu: Whereq,qqu: > dn, graque —n = (1), and

b<n/3.15,

any such probabilistic opaque quorum system without writekerarachieves error probability no
greater thare given a suitable setting offor all n sufficiently large.

4 Implementation

In this section, we provide an implementation of write maskéat achieves the behavior assumed
in Section 3, even with Byzantine clients. Specifically, iseres properties W1-W3. (Though,
technically, it ensures W2 only approximately in the casepEcue quorum systems, in which,
as we explain below, a faulty server might be able to creatndlicting candidate using a write
marker for a stale, i.e., out-of-date, access set—but talmardage.)

Because clients may be faulty, we cannot rely on, e.g., digigaatures issued by them to
implement write markers. Instead, we adapt mechanisms oaotess-restriction protocol for
probabilistic opaque quorum systems [21]. The accessgtsh protocol is designed to ensure
that all clients follow the access strategy. It already éssmbon-faultyserverdo verify this before
accepting a write. And, since it is the only way of which we awere for a probabilistic quorum
system to tolerate Byzantine clients when write markers Bloewefit (i.e., when the sizes of write
access sets are restricted), its mechanisms are appeopriat

The relevant parts of the preexisting protocol work as fefi¢21]. From a pre-configured num-
ber of servers, a client obtainwarifiable recent valu¢V/RV), the value of which is unpredictable
to clients and or fewer servers prior to its creation. This VRV is used toegate a pseudorandom
sequence of access sets. Since a VRV can be verified usingobliz information, both it and
the sequence of access sets it induces can be verified bysciied servers. Non-faulty clients
choose the next unused access set for each operation. Hpaéaelty client is motivated to max-
imize the probability of error. If the use of the next accestsiis the sequence does not maximize
the probability of error given the current state of the sys{ee., the candidates accepted by the
servers), such a client may try to skip ahead some numbercesacsets. Alternatively, such a
client might try to wait to use the next access set until téesdf the system changes. If allowed
to follow either strategy, such a client would circumverd #tcess strategy because its choice of
access set would not be independent from the state of thensyst
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Three mechanisms are used together to coerce a faulty witailow the access strategy. First,
the client must perform exponentially increasing work ipestation in order to use later access
sets. As such, a client requires exponentially increasimg tn expectation in order to choose a
access set. This is implemented by requiring that the
client solve a client puzzle [8] of the appropriate dif-
ficulty. The solution to the puzzle is, in expectation,
difficult to find but easy to verify. Second, the VRV
and sequence of access sets become invalid as the =
non-faulty servers accept additional candidates, or as %2
the system otherwise progresses (e.g., as time passes). Ss
Non-faulty servers verify that an access set is still
valid, i.e., not stale, before accepting it. Thus, system
progress forces the client to start its work anew, and, i _ _
as such, makes the work solving the puzzle for any (9ure 1: Read operation with write
used access set wasted. Finally, during the time tm&rkers: messages and stage_s of verifi-
the client is working, the established candidate proﬁz?—t'on of access set. (Changes in gray.)
gates in the background to the non-faulty servers that anegualified (c.f., [14]). This decreases
the window of vulnerability in which a given access set in sleguence is useful for a conflicting
write by making non-qualified servers aware that (i) thernigstablished candidate (so that they
will not accept a conflicting candidate) and (ii) that thetstaf the system has progressed (so that
they will invalidate the current VRV if appropriate).

The impact of these three mechanisms is that a non-fagltyercan be confident that the
choice of write access set adheres (at least approximatelfhe access strategy upon having
verified that the access set is valid, current, and is accore@dy an appropriate puzzle solution.

For write markers, we extend the protocol so that,

Verify
Marker

N
N\

\

Choose Access Set

Masking write as seen in Figure ILlients can also perform verifi-
A accessset 8 promise |V cericate 5 status cation. This requires that information about the puz-
data value zle solution and access set (including the VRV used to
0 i . .
apaque write 5 generate it) be returned by the servers to clients. (As
acces_s set status . . . . . .
soluon seen in Figure 2 and explained below, this information
Read varies across masking and opaque quorum systems.)
| auery Il datavalue . In the preexisting access-restriction protocol, this in-
certificate ‘ (masking) h . oo .
access set, solution _(opaque) formation is verified and discarded by each server. For

_ _ write markers, this information is instead stored by
Figure 2.: Mes_sage types. (Write markegach server in the verification stage as a write marker.
emphasized with gray.) It is sent along with the data value as part of the candi-
date to the client during any read operation. If the serveoisfaulty—a fact of which a non-faulty
client cannot be certain—the access set used for the operatis indeed chosen according to the
access strategy because the server performed verificafonebaccepting the candidate. How-
ever, because the server may be faulty, the client perfoemBoation as well; it verifies the write
marker and that the server is a member of the access set. llows as to guarantee points W1—
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Wa3. As such, faulty non-qualified servers are unable to vatéi® candidates for which qualified
servers can vote.

Figures 1, 2, 3, and 4 illustrate relevant pieces of the pséiag protocol and our modifications
for write markers in the context of read and write operationgrobabilistic masking and opaque
guorum systems. The figures highlight that the additionkégorotocol for write markers involve
saving the write markers and returning them to clients sbdifents can also verify them.

The differences in the structure of the write marker for @tmbstic opague and masking quo-
rum systems mentioned above results in subtly differentaniaes. The remainder of the section
discusses these detalils.

4.1 Probabilistic Opaque Quorums

As seen in Figure 2 (messagg, a write marker for a
probabilistic opaque quorum system consists of the write- Client
access-set identifier (including the VRV) and the solution ] M
to the puzzle that unlocks the use of this access set. Unlike

a non-faulty server that verifies the access set at the time
of use, a non-faulty client cannot verify that an access set =2
was not already stale when the access set was accepted by sz
a faulty server. Initially, this may appear problematic be-
cause it is clear that, given sufficient time, a faulty client
will eventually be able to solve the puzzle for its preferred . o
access set to use for a conflicting write—this access igure 3: Write operation in opague
may contain all of the servers i8. In addition, the faulty quorum syngmg: messages and
client can delay the use of this access set because ifaes of yer|f|cat|on of write marker.
faulty clients will be unable to verify whether it was al(Changes in gray.)

ready stale when it was used.

Fortunately, because non-faulty servers will not accepbake £andidate (i.e., a candidate ac-
companied by a stale access set), the fact that a stale astesay be accepted by a faulty server
does not impact the benefit of write markers for opaque quaystems. In general, consistency
requires (7), i.e.,

\
\\

S1

Choose Access Set

/
‘ Verify Access Set

E[[(Qra N Qui) \ Bl] > E[[(Alg N AL) N Bl +E [ (Al N AL\ B) \ Quetl] -

However, only faulty servers will accept a stale candid&teerefore, if the candidate was stale
when written toA! ,, no non-faulty server would have accepted it. Thus, in tse¢the consis-

wt?

tency constraint is equivalent to,
E[[(Qua N Qwi) \ Bl > E[|[(AlgNAL) N B
Even if the access set contains all of the faulty servers,B.ec A/ ., then this becomes,

wt?

E[[(Qra N Qui) \ BI] > E[|A,; N BI].
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However, this is (6), the constraint on probabilistic magkguorum systems without write mark-
ers. In effect, a faulty client must either: (i) use a recaess set that is therefore chosen approx-
imately uniformly at random, and be limited by (7); or (ii)selia stale access set and be limited
by (6). If quorums are the sizes of access sets, both ingigsatiave the same upper boundion
as seen in Corollary 3.21 and Corollary 3.24; otherwise, ayfalient is disadvantaged by using
a stale access set because a system that satisfies (6) catetob@re faults than one that satis-
fies (7), and is therefore less likely to result in error. (Cangpthe bounds in Theorem 3.20 and
Theorem 3.23.)

4.2 Probabilistic Masking Quorums

Protocols for masking quorum systems involve an additisoahd of communication (an echo
phase, c.f., [16] or broadcast phase, c.f., [20]) duringenoperations in order to tolerate Byzan-
tine or concurrent clients. This round prevents non-fagkyvers from accepting conflicting
data values, as assumed by (2). In order to write
a data value, a client must first obtaiwste cer- Cient || @ B
tificate (a quorum of replies that together attest Mi A
that the non-faulty servers will accept no con- . \
flicting data value). In contrast to optimistic pro-

\

N,

\
\

Collect
Cert

S1

tocols that use opagque quorum systems, these =

protocols are pessimistic. Ss
This additional round allows us to prevent

clients from using stale access sets. Specifically,

in the request to authorize a data value (message 40 Wri L ki
o in Figure 2 and Figure 4), the client sends t{d9Ur® 4: Write operation in masking quorum

access set identifier (including the VRV), the s§YSteMS: messages and stages of verification of
lution to the puzzle enabling use of this acceld'te marker. (Changes in gray.)

set, and the data value. We require that the cer-

tificate come from servers in the access set that is chosethdowrite operation. Each server
verifies the VRV and that the puzzle solution enables useeirttlicated access set before return-
ing authorization (messagein Figure 2 and Figure 4). The non-faulty servers that cbats to
the certificate all implicitly agree that the access set tstade, for otherwise they would not agree
to the write. This certificate (sent to each server in message-igure 2 and Figure 4) is stored
along with the data value as a write marker. Thus, unlike abpbilistic opaque quorum systems,
a verifiable write marker in a probabilistic masking quoruystem implies that a stale access set
was not used. The reading client verifies the certificatei(netd in messagé in Figure 1 and
Figure 2) before accepting a vote for a candidate. Becauséiagwlient will be unable to obtain

a certificate for a stale access set, votes for such a caadidthtoe rejected by reading clients.
Therefore, the analysis in Section 3 applies without aolditi complications.

Choose Access Set

‘ Verify Certificate ‘

‘ Verify Access Set
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5 Additional Related Work

Probabilistic quorum systems were explored in the contegdiypamic systems with non-uniform
access strategies by Abraham and Malkhi [2]. Recently, gombbc quorum systems have been
used in the context of security for wireless sensor netwjikas well as storage for mobile ad hoc
networks [13]. Lee and Welch make use of probabilistic qoosystems in randomized algorithms
for distributed read-write registers [11] and shared qudaita structures [12].

Signed quorum systems presented by Yu [25] also weaken théreenents of strict quorum
systems but use different techniques. However, signedugusystems have not been analyzed in
the context of Byzantine faults, and so they are not preseffégted by write markers.

Another implementation of write markers was introduced Hyig\ et al. [3] for purposes
different than ours. We achieve the goals of (i) improvingltdad, and (ii) increasing the maximum
fraction of faults that the system can tolerate by usingeamtrkers to prevent some faulty servers
from colluding. In contrast to this, Alvisi et al. use writeankers in order to increase accuracy in
estimating the number of faults present in Byzantine quorystesns, and for identifying faulty
servers that consistently return incorrect results. Bexhessimplementation of Alvisi et al. does
not prevent faulty servers from lying about the write quoswhwhich they are members, it cannot
be used directly for our purposes. In addition, our impletagon is designed to tolerate Byzantine
clients, unlike theirs.

6 Conclusion

We have presented write markers, a way to improve the loadagkimg and opaque quorum sys-
tems asymptotically. Moreover, our new masking and opagakgbilistic quorum systems with

write markers can tolerate an additiordl, and17% of faulty replicas, respectively, compared
with the proven bounds of probabilistic quorum systems aithwrite markers. Write markers

achieve this by limiting the extent to which Byzantine-fgusiervers may cooperate to provide
incorrect values to clients. We have presented a proposglémentation of write markers that is
designed to be effective even while tolerating Byzantindtyaclients and servers.
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