
Free LittleDog!: Towards Completely Untethered

Operation of the LittleDog Quadruped

Michael N. Dille

CMU-CS-07-148

August 2007

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christopher G. Atkeson, Chair

J. Andrew Bagnell

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c© 2007 Michael N. Dille

This research was sponsored in part by the DARPA Learning Locomotion Program and a Siebel
Scholars Fellowship.

Keywords: Legged autonomy, Quadruped vision, Quadruped perception, Odom-
etry, Learning Locomotion, LittleDog

Abstract

The LittleDog robot is a 12 degree-of-freedom quadruped developed
by Boston Dynamics and selected for use in the DARPA Learning Lo-
comotion program, in which machine learning is applied to develop con-
trollers capable of navigating rocky terrain. Presently, it is typically con-
strained to operate within wireless range of a host desktop computer and
within a fixed workspace surrounded by a motion capture system that
globally localizes the robot and specially marked terrain boards with-
out the use of onboard sensing. In this thesis, we explore a variety of
strategies for expanding the capabilities of this platform in the theme of
relaxing these operational constraints and with the goal of allowing oper-
ation in arbitrary locations outside of the fixed workspace and without a
host computer. Towards this end, we start by addressing the straightfor-
ward technical issue of physical independence by demonstrating a viable
onboard controller in the form of a compact single-board computer. Next,
we attempt to resolve the lack of onboard sensing through computer vi-
sion by attaching a camera to the robot and developing the necessary
procedures for calibrating it, synchronizing its data stream with existing
state data, and compensating for the additional weight of the camera.
Using this, we demonstrate mapping and navigation of terrains outside
the motion capture system containing both planar and simple structured
three-dimensional obstacles. In conjunction with this, we develop and
implement several dead reckoning strategies, one including a complete
kinodynamic model of ground contact, to compute odometry informa-
tion enabling reasonably accurate continuous pose estimation. Finally,
we complete a brief exploration of alternatives for local sensing and rea-
son about extensions to more unstructured environments.

iv

Acknowledgments

I wish to express my sincere gratitude to the host of individuals who have made the
completion of this thesis possible, and just as importantly, fun. First and foremost, to
my advisor, Chris Atkeson, for his amazing sense of humor, his constant guidance,
and his unfailing patience with my perpetual desire to invent a better wheel; to
Drew Bagnell for taking the time from his impossible schedule to serve on my thesis
committee; to Sharon Burks, Deb Cavlovich, Catherine Copetas, and Mark Stehlik
for guiding me through the process and offering their encouragement along the way;
to the other members of the CMU LittleDog lab for always being around to offer
suggestions, especially Joel Chestnutt for graciously permitting me to use his footstep
planner; to my parents for their endless support; and finally to the fine folks at Boston
Dynamics for creating a very pleasant platform to work with and tolerating the abuse
our robot endured during its “extracurricular activities” at my hands.

v

vi

Contents

1 Introduction 1

1.1 Learning Locomotion Program . 1

1.2 LittleDog Architecture . 2

1.3 Thesis Goals and Contribution . 4

2 Related Work 7

2.1 Humanoids . 7

2.1.1 H6 and H7 . 7

2.1.2 HRP-2 . 8

2.1.3 Asimo . 9

2.1.4 QRIO . 10

2.2 Quadrupeds . 11

2.2.1 Aibo . 11

2.2.2 BigDog . 11

2.2.3 LittleDog . 12

3 Achieving Physical Independence 13

3.1 Existing Lack of Physical Independence 13

3.2 Development of Onboard Control Computer 14

3.3 Integration and Testing . 15

3.4 Conclusions . 17

vii

4 Computing Odometry 19
4.1 Odometry I: “Naive” Model . 19

4.1.1 Description . 19
4.1.2 Problems . 20

4.2 Odometry II: First Approximation of Rolling Contact 22
4.2.1 Description . 22
4.2.2 Analysis . 23

4.3 Odometry III: Kinodynamic Rolling Contact Model 24
4.3.1 Description . 24
4.3.2 The Model . 24
4.3.3 Applying the Model . 27
4.3.4 Analysis . 27

4.4 Implementation and Comparison . 27
4.5 Conclusions . 29

5 Mapping and Navigation with Vision 33
5.1 Design Philosophies . 33
5.2 Camera Integration . 34

5.2.1 Camera Selection and Attachment 34
5.2.2 Camera Calibration . 35
5.2.3 Latency Calibration and Compensation 39

5.3 Planar Obstacle Mapping and Avoidance 40
5.3.1 Mapping Planar Obstacles . 41
5.3.2 Navigation Avoiding Planar Obstacles 42

5.4 Three Dimensional Obstacle Mapping and Navigation 44
5.4.1 Fiducial Marker Tracking Algorithm 45
5.4.2 Three Dimensional Tracking and Mapping with Markers . . . 47
5.4.3 Three Dimensional Obstacle Navigation 48

5.5 Conclusions . 49

6 Conclusions and Future Work 51

Bibliography 54

viii

CHAPTER 1

Introduction

The LittleDog robot, shown in figure 1.1, is a quadrupedal (four-legged) walking
robot developed by Boston Dynamics Inc. (BDI). It has three degrees of freedom in
each leg – roll and pitch at the hip and a bend at the knee – for a total of 12 overall
(shown schematically as coordinate frames in figure 1.2), weighs approximately 3
kilograms, and stands about 30 centimeters tall. Available publicly as a research
robot, it has gained some fame for its use in the presently ongoing DARPA Learn-
ing Locomotion program. Both in its overall design and especially as used in this
program, it possesses little in the way of local onboard sensing and relies extremely
heavily on information provided by external sensors if not operating blindly.

In this thesis, we seek to extend the operational environment of the LittleDog
beyond the instrumented laboratory environment, ultimately to arbitrary environ-
ments, thereby opening great opportunities for autonomy. Towards this goal, we
tackle the issues of achieving physical independence from a stationary host computer
and the use of only onboard sensors for tracking the position of the robot and objects
in its environment.

1.1 Learning Locomotion Program

The Learning Locomotion program is an effort funded by the Defense Advanced Re-
search Projects Agency (DARPA) to accelerate the development of software utilizing
machine learning that allows a robot to navigate and traverse difficult terrain. Six

1

Figure 1.1: Front view of LittleDog robot. Copyright Boston Dynamics.

universities and research laboratories across the United States are participating by
simultaneously developing such software, the capabilities of which are then compared
against one another and evaluated against baseline metrics.

The LittleDog robot was the platform chosen for this program due, among other
factors, to its legged nature lending it the unique ability to step among rocky obsta-
cles as well as the simplicity stemming from its lack of onboard sensing. Indeed, for
the purposes of this program, the problem of terrain traversal is simplified by assum-
ing that the robot pose and world map (terrain topography and pose) are globally
known. This is achieved by data provided by a commercial motion capture system,
which tracks retroreflective markers attached to all objects of interest using a camera
array with which it triangulates three-dimensional marker positions. In order for this
to function, all objects must remain in the volume visible to at least several cam-
eras. For the Learning Locomotion program, markers were attached to the robot and
terrains, and all development and testing is performed within the frame of a truss
(shown in figure 1.3) to which the cameras are attached.

1.2 LittleDog Architecture

A schematic diagram of the operational architecture of the LittleDog platform is
given in figure 1.4. As this indicates, computation is divided in halves. The first,
comprising real-time low-level control tasks such as reading sensor inputs and com-
puting torque outputs, runs on an embedded computer running QNX colocated on
the dog. PD control loops run at 1kHz on this computer, which is treated by teams
as a closed, opaque module. This communicates via wireless 802.11b ethernet with

2

Figure 1.2: Schematic of coordinate frames at each joint degree of freedom. Copyright
Boston Dynamics.

a host desktop computer running Linux, on which teams develop and execute their
control code, which sends commands to the dog’s computer at 100Hz. The motion
capture system communicates directly with the host computer, delivering object pose
data at approximately 120Hz.

The simplifying assumptions of having a known world state are strongly reflected
in this architecture. Other than the optical encoders reporting the angle of each
joint and instruments measuring values such as battery voltage, few useful onboard
sensors are present. Single-axis force sensors which are located at the base of each
foot and measure force up the leg necessarily return values that depend on the angle
of contact with the ground. On top of this, they drift and are extremely noisy,
making it difficult to implement even a reliable ground contact detector. Likewise,
while the commodity infrared proximity sensor installed in the front of the robot
works reliably, its very limited range (approximately half a meter) and resolution
(just a single scalar value representing distance to the nearest object) allows it to do
little more than detect the presence of a large obstacle ahead or the edge of a table
on which the dog may be walking. Finally, there is an onboard inertial measurement
unit (IMU) built from a set of accelerometers and gyroscopes that together provide
estimates of body orientation, angular velocity, and linear acceleration. This sensor
is generally fairly accurate, though it too is subject to some amount of drift over
time. However, it naturally cannot provide information about the environment, and
using it to track the robot’s position (e.g., by twice integrating the acceleration it
reports) is simply not practical due to rapid error build-up.

3

Figure 1.3: The frame of the motion capture system within which the dog must
remain for it to operate. Copyright Boston Dynamics.

1.3 Thesis Goals and Contribution

The grand goal of this thesis is to extend the capabilities of the LittleDog robot to
environments outside the laboratory, ultimately to arbitrary environments. This can
be broken down into roughly two subgoals:

1. Completely untethered operation.

This is the task of making the robot physically independent, without reliance
upon a fixed host computer. In practical terms, this is the engineering challenge
of developing and attaching an onboard high level controller in its place. We
will describe how we accomplished exactly this in a succeeding chapter.

2. Completely local estimation of robot pose and environment state.

This is the task of attaching appropriate local sensors to the robot as well as
leveraging any existing or intrinsic sensing to acquire as much state informa-
tion as possible without the motion capture system. Towards this goal, we
will describe my efforts at computing odometry during walking and taking a
computer vision approach to the environment-sensing problem, each of which
we will also describe in a respective succeeding chapter.

4

��.E\s�¡¸¡Ïæ
ý�+ýs\

�BY

�s�
µEÌãú�
\�Ì�(Ï¡¸�
?s+Ï\s�

?s¸EúÏ�\

VsýÏ.m�
��Ì¸
?s+Ï\s�
?s²�

Éà÷�%%<SssÏ.js\?�
ý�+ýs\ý

��¯.Æs¡+Ï
Ì+���

�+?s²�\ý9�

Figure 1.4: Schematic of the LittleDog operational architecture.

5

6

CHAPTER 2

Related Work

The LittleDog robot is one of a number of legged robots that have been developed.
As can be seen from momentarily forthcoming descriptions of a number of these,
achieving a significant level of autonomy – requiring both physical independence and
local sensing – is a common goal.

As the design of each of these robots is typically rather complex, often propri-
etary, and different from the others, a discussion of the details of how each achieves
physical independence or might compute odometry is neither very practical nor en-
lightening. Instead, one may note that in most of these cases, vision-based sensing
was chosen to enhance autonomy as it was for this thesis. This is no doubt influenced
by the biomimetic desire to duplicate the primary sensing mechanism of the most
familiar and developed legged organisms such as humans and dogs. It is also surely
a pragmatic result of the fact that cameras are inexpensive, lightweight, and well
studied as a sensor for mobile robots.

2.1 Humanoids

2.1.1 H6 and H7

These two robots, of which H7 is shown navigating an obstacle field in figure 2.1,
are humanoid robots developed at the JSK Laboratory at the University of Tokyo,

7

Japan. It was designed to be self-contained with batteries and control computers
onboard, though it is often run tethered with a harness to protect against falls.

Figure 2.1: H7 navigating an obstacle field. Reprinted from [12].

This robot’s head is equipped with a stereo camera, which has been used for a
variety of applied vision research efforts. Among these are work on 3-D map building
using visual odometry [12] [15] and building height maps from stereo images for
navigation [5].

2.1.2 HRP-2

This robot, developed in Japan by the National Advanced Industrial Science and
Technology (AIST) and Kawada Industries, is also designed to be self-contained,
though it too is usually run tethered with a harness.

Its head contains a 3-camera stereo system that has been put to uses similar
to those performed on H7, and this has often been augmented by operating with
a motion capture system not unlike the one employed for the LittleDog robot. An
example (depicted in figure 2.2) of this includes [9] in which the robot’s internal
cameras as well as external cameras and rangefinders were tracked by the motion
capture system and used to build global planar maps and height maps (respectively)
of the terrain, which in turn were used by a footstep planner for navigation. This is
indeed roughly the very procedure we will later implement on the LittleDog robot,
though with an attempt at using locally-derived pose estimates rather than those
provided by a motion capture system.

Another vision-based use of HRP-2 [8] that builds on that work involves 3-D
tracking of known obstacles (whose geometric models are stored in a library) using

8

Figure 2.2: HRP-2 navigating a planar colored obstacle field. Reprinted from [9].

edge-fitting and using their tracked positions to build 3-D models of the world that
can then be navigated. An example of this includes step-climbing (also depicted in
that figure), in which objects are assumed to remain fixed and the body position is
tracked relative to them without a need for the motion capture system used in the
previous example.

Still other work has been done in an effort to grant HRP-2 autonomy using
local sensing, such as [14], which is a novel application of monocular Simultaneous
Localization and Mapping (SLAM) to a humanoid in which the vision data was
tightly integrated with the robot’s odometry and inertial sensing using an Extended
Kalman Filter (EKF).

2.1.3 Asimo

Asimo is another humanoid robot, famously developed by Honda which through vari-
ous arrangements is available for robotics research. Like the previous two humanoids,
it too contains a stereo camera in its head.

A variety of work, largely within Honda, has been done to use these cameras
for object recognition with the eventual goal of allowing Asimo to autonomously
sense and manipulate objects. In the realm of navigation, [10] (by the authors of the
similar publication on HRP-2) presents an application in which an overhead camera
tracks the pose of the robot in a field of planar obstacles (an example of which is
shown in figure 2.3) through which a footstep planner guides the robot. This is again
similar to a procedure we will implement on the LittleDog robot, though in our case
the camera is colocated on the robot providing more genuinely local sensing.

9

Figure 2.3: Asimo navigating a colored obstacle field. Reprinted from [10].

2.1.4 QRIO

QRIO, pictured in figure 2.4, is yet another humanoid robot, this one developed by
Sony. Like the others described so far, it also sports a stereo camera in its head.

Figure 2.4: The Sony QRIO robot. Copyright Sony.

During its development, some highly relevant work [13] [3] was completed to
allow it to autonomously navigate unknown environments. Specifically, odometry
was used to track the robot’s pose in a coarse occupancy grid while moving around
in an environment for which its stereo camera was used to continuously construct
a map. This is precisely the goal of the vision application described in this thesis,
though we use only a single camera.

10

2.2 Quadrupeds

2.2.1 Aibo

The Sony Aibo, displayed in figure 2.5 is a quadruped originally marketed as a toy
that has acquired much publicity for its use in the domain of robot soccer, in which
it uses a monocular camera built into its nose to track objects on the field. Through
this domain, it has spawned a vast body of work on multi-robot coordination, various
aspects of machine learning, and stochastic localization. Because of the limited image
resolution and computational power available, objects on the soccer field are colored
to make tracking them easier, and many additional advancements in robust color
segmentation (such as [17] on which an algorithm described later in this thesis is
roughly based) have been made as a result.

Figure 2.5: The Sony Aibo robot. Copyright Sony.

2.2.2 BigDog

The BigDog robot, shown in figure 2.6, is another quadruped developed by BDI, and
as its name suggests, it may be thought of as the LittleDog’s bigger sibling. It is
currently under development partially funded by DARPA with the goal of making
an effective pack mule for soldiers, which it could accomplish using person tracking
with its onboard stereo cameras. This is an active and somewhat secretive project,
and we are not aware of any publications that have yet stemmed from this work.

11

Figure 2.6: The BigDog robot. Copyright John B. Carnett, Popular Science.

2.2.3 LittleDog

The work in this thesis of course builds quite heavily on the development of the
LittleDog robot because it extends the platform.

For their part, DARPA and BDI have expressed essentially no interest in ex-
panding the autonomy of the robot by integrating additional local sensing given the
irrelevance of such an effort to the Learning Locomotion program. A number of other
teams, including Stanford University and the Massachusetts Institute of Technology
(MIT), have expressed interest in such ideas. To our knowledge, MIT has experi-
mented with attaching a 1-D laser rangefinder to the robot, and Stanford has worked
with a stereo camera. However, we are unaware of a dedicated effort similar to this
one in any other team or any publications therefrom.

12

CHAPTER 3

Achieving Physical Independence

A reasonable definition for physically independent operation of the LittleDog might
be that it does so with all computers controlling it and all sensors upon which it is
relying being colocated exclusively on the robot. Naturally this implies a significant
level of autonomy, but this thesis does not seek to achieve autonomous operation
per se since it is convenient to issue high level commands from a remote computer
to start, stop, or switch between behaviors. Essentially complete autonomy is then
only a very small step away.

3.1 Existing Lack of Physical Independence

As described in the preceding introduction to the LittleDog architecture, the robot
uses an internal onboard control computer for real-time low-level tasks such as state
data collection and joint-level control. This computer is inadequate for independent
operation for several reasons. First, it is designed to be closed to teams, who are
to treat it as an opaque module, and does not accept user-provided programs. Fur-
thermore, it has no exposed ports for additional sensors, so even if one could run
programs on it, these could make use of only the extremely limited existing onboard
sensing. Lastly, it is rather underpowered (roughly comparable to a higher-end Intel
Pentium 1), rendering it unsuitable for any significant additional sensor processing
such as manipulating images from an onboard camera. Thus, we seek to develop and

13

attach a second higher-level control computer that is able to communicate with the
internal one.

Admittedly, this is an engineering problem that is somewhat artificial in that it
seeks to overcome a constraint arbitrarily imposed by a third party (namely, the
closed nature of the internal computer). However, it is not a completely meaningless
one because the technical inadequacies rendering the internal computer inappropri-
ate for heavy additional sensor processing necessitate solving it even if the internal
computer were accessible. As such, it represents the development of something new
that augments the existing system.

3.2 Development of Onboard Control Computer

For the heart of the high-level control computer, it was quickly decided that it was
best to use one of the many existing embedded single-board computers on the com-
mercial market due, among other factors, to time, cost, and skill constraints. While
searching for one, the following criteria were developed:

x86 architecture The LittleDog control libraries are provided to each team pre-
compiled for this architecture.

Reasonably fast The computer must be fast enough to run the host control soft-
ware at 100Hz while processing any new sensor data.

Sensor inputs The computer must have ports to which a camera and possibly other
inertial, proximity, or force sensors can be attached.

Compact The computer, batteries, and any additional sensors must fit on the dog.

Lightweight All of these items must not weigh more than the robot can safely carry,
for which we established 1kg as a conservative limit.

Low cost The robot would inevitable fall during testing, potentially damaging the
computer, and replacing a highly expensive one is undesirable.

Given these constraints, the single-board computer chosen was the PCM-3350
manufactured by Advantech, shown in figure 3.1. This computer adheres to the
PC/104 form-factor (less than 10cm square) and boasts a 300MHz Cyrix GX1 pro-
cessor and 256MB of RAM. A CompactFlash port permits multiple gigabytes of
disk storage, enabling the use of a full-blown Linux operating system. Connectivity

14

Figure 3.1: PCM-3350 single-board computer chosen as second high-level controller.
Copyright Advantech.

proved quite adequate for attaching additional sensors, given two USB port and two
serial ports among others.

To power this computer, which requires 5 volts at up to 3 amps, we designed and
fabricated a custom power supply circuit board. It was our goal to be able to power
the computer using a commodity Nickel Metal Hydride or Lithium Polymer battery
pack providing as little as 7.2 volts, and no voltage regulator commonly available at
the time possessed these specifications.

In order for this computer to communicate with the internal LittleDog control
computer, we purchased a PCMCIA to PC/104 adapter into which we inserted a
Lucent Technologies 802.11b wireless ethernet card. By instructing the driver to act
in “Master” mode, the robot would see the second computer as a wireless access
point and associate with it without the need for an additional external access point.
Though this worked well, it later became unnecessary when BDI released a wired
ethernet cable that could directly connect the two computers.

3.3 Integration and Testing

To physically adhere the computer to the LittleDog, we built a small wooden saddle
that interfaced the curved top of the robot with the flat bottom of the plastic enclo-
sure used for the computer. This proved quite effective, and later efforts reused this
saddle for camera attachment.

As a thorough test and demonstration of the capabilities of this platform, we

15

entered the robot in the 2006 Carnegie Mellon Mobot Race [11]. This race is an
outdoor sidewalk navigation competition in which a robot must pass through a series
of waypoints, most of which are connected by a white line painted on the sidewalk
that grants a free (albeit deliberately suboptimal, so as to encourage alternative
strategies) path if followed through the waypoints.

In preparation for this application, we attached a commodity Logitech USB cam-
era to the dog and connected it to the high-level control computer. A picture of the
entire system is shown in figure 3.2. We also modified an existing trot gait written
for the Learning Locomotion program to accept a scalar “steering value,” the sign
and magnitude of which would cause the robot to turn left or right to varying degrees
during its walk. We then developed a simple image processing algorithm that de-
tected the line using adaptive color thresholding that sought pixels with an intensity
at least a fixed number of standard deviations above the average intensity of the
several preceding frames. This then computed an offset representing the distance of
the line from the vertical center of the image in a small band across the center of the
image and fed this as a steering value to the walking controller. Though simple, this
algorithm could successfully steer the robot around extremely sharp turns.

Figure 3.2: Self-contained system with integrated high-level control computer and
camera preparing to compete in Mobot race. Photograph by Debra Tobin, CMU.

On race-day, this system followed the line without any problems and passed
through course waypoints successfully, as depicted in figure 3.3. It was only tripped
up when, on a steep hill present in the course, the robot fell forward because no
balance controller was active at the time.

16

3.4 Conclusions

As described in this chapter, we have successfully achieved physical independence
by augmenting the existing robot with a second high-level control computer, and
we have also demonstrated a viable outdoor application. This suggests that the
LittleDog can indeed be run autonomously, and the rest of this thesis describes how
it might do so more effectively.

Unfortunately, even the additional computer we selected suffers from the signif-
icant limitation that it is also rather slow. To better quantify this, we ran a simple
experiment in which we tracked 10 points through a series of images using the well-
known Lucas-Kanade point tracker [16]. This is considered a primitive operation
in computer vision insofar as sets of tracked points are then used to determine in-
formation about three-dimensional geometry. Yet, on this computer, this operation
alone ran at only approximately 1Hz, which is vastly below the 20-30Hz frame rates
considered real-time.

The natural and obvious solution to this problem is to simply find a faster com-
puter, and to some extent this can be done given the rapid rate at which new ones
are developed. However, faster ones tend to be targeted at less mobile applications
and are thus bigger, heavier, and have still greater power requirements. This raises
a significant challenge given that the size and mass of the current design can be
increased little before it becomes highly unwieldy.

Thus, while we are confident we have demonstrated that physical independence
is quite possible, we openly admit that a fast (desktop-sized) host computer is very
convenient in practice and that nearly all succeeding work described in this thesis
was performed using a desktop host so as to reduce emphasis on optimization during
the development process.

17

Figure 3.3: Robot passing through a waypoint during Mobot race. Photographs by
Debra Tobin, CMU.

18

CHAPTER 4

Computing Odometry

One of the most fundamental strategies for determining one’s position, or localizing
oneself, at a given point in time is to track how one has moved from some initial
starting point. This process of performing such tracking is called odometry, or more
colloquially, dead reckoning. If the world of interest can be described relative to this
initial starting point without specific regard for locations in some global coordinate
system — as it can be in the case of mobile robots such as this one — then such
information can be vitally useful since it represents the complete robot pose state.

In this chapter, we introduce the most intuitive algorithm for computing robot
odometry while walking and then present two refinements that better model foot
contact with the ground in an effort to improve the accuracy of the tracking. We
then present some basic comparisons and conclude by reasoning about fundamental
limitations of such tracking and how these might be addressed.

4.1 Odometry I: “Naive” Model

4.1.1 Description

The simplest algorithm for computing odometry follows easily from some intuitive
reasoning about the robot’s motion. Suppose that at some point, the complete robot
pose Tbody = {Rbody, pbody} is known and that it is standing with at least three feet in

19

contact with the ground1. Using joint angles provided by each joint’s encoder and
the known kinematic model of the dog (link lengths and their spatial relationships
at each joint), forward kinematics can be applied to determine the relative pose
Tbody→footi = {Rbody→footi , pbody→footi} of each foot. The global position Tfooti is then
simply Tbody · Tfooti .

Next, we apply the critical assumption that the position pfooti of each foot on the
ground does not change as the dog moves until that foot is lifted (i.e., we assume
that stance feet are firmly planted on the ground and act as ball joints whose center
is the foot position). With at least three feet on the ground, we can always solve the
system Rbodypbody→footi +pbody = pfooti (which is uniquely determined for exactly three
feet on the ground and overconstrained for four) for Tbody = {Rbody, pbody}. Indeed,
this is an instance of seeking to solve for the rigid transform (here, the body pose)
between two coordinate systems given pairs of correspondences (here, foot positions).
In the case of three correspondences, straightforward vector geometry will grant an
explicit analytic solution. In the case of four (or more, in more general scenarios) the
problem is substantially harder, though again there exist well-understood algorithms,
an excellent survey of which may be found in [7].

Finally, given the body pose, the pose of the flight foot (if one is off the ground)
can again be determined by forward kinematics. Once this foot returns to the ground,
its position may be recorded and, now that it has become a stance foot, treated as
fixed until it again leaves the ground. This process may be iterated ad infinitum to
perpetually track the robot’s position.

4.1.2 Problems

The naive model, as its name suggests, suffers from several problems that reduce its
accuracy or otherwise limit its performance. These include:

1. Stance feet do not necessarily stay still, violating the critical assumption that
pfooti is fixed for each foot. These violations may stem from:

(a) Foot shape.
The robot’s feet are in fact spheres rather than infinitesimal points as the
assumption implicitly requires. As the radius (r ≈ 1cm) is nontrivial, roll
about the foot (rθ, which is a very non-negligible 1.6cm for a rotation of

1With less than three feet on the ground, the robot is generally not statically stable, and its
motion is then governed by additional dynamics that we do not seek to model. We believe that
most typical situations will involve at least three stationary feet, trot gaits excluded.

20

π
2
) is not accounted for and can lead to significant error-buildup across

multiple steps.

(b) Foot slip.
If friction between a foot and the ground is insufficient and any lateral
forces exist, the foot may slip along the ground. Such motion necessarily
moves the foot, again violating the critical assumption, and is not ac-
counted for by rolling around the surface of the spherical foot. Further,
since the frequency and magnitude of slip depends upon the thrusting
force applied by the rest of the leg, slip varies within and between gaits.

2. The estimate of Tbody→footi may be erroneous. Since the kinematic model of
the dog is very accurate as it is derived from the CAD model from which it
was manufactured, such errors are most likely from incorrect estimates of joint
angles. These errors in turn may be caused by:

(a) Encoder error and slip.
Joint angles are measured using optical encoders that output a pulse for
each small rotation increment, which are then counted to track aggre-
gate rotation. If any pulses are missed by the receiving electronics or if
the rotational axis mechanically slips without triggering pulses, untracked
rotation will occur.

(b) Gear train backlash.
The design of the LittleDog includes fairly significant gearing to allow rel-
atively small motors to exert comparatively high torques. Due to various
design considerations, joint encoders are located on the motor-side of the
gearing. This means that any play between gear teeth, which may be up
to several degrees, is not reported in the encoder readings.

3. As described, the body orientation is computed without any regard for data
provided by the IMU. Even if such data is of relatively low quality, this still
discards information. This may, however, be resolved somewhat readily by
taking a sensor fusion approach by combining independent estimates using, for
instance, a Kalman filter.

21

4.2 Odometry II: First Approximation of Rolling

Contact

4.2.1 Description

A logical extension to the odometry computation algorithm just presented is to more
accurately model foot contact as rolling around a sphere rather than as a ball joint.

As a first step, we must determine some information about the ground plane,
specifically its unit normal vector n̂ground. This can be done fairly readily any number
of ways, for instance by fitting a plane to the foot-center positions at some initial
point at which the body orientation is known and it is assumed that a given set of
feet (of which there must be at least three to uniquely determine the plane) are in
contact with the ground.

Given this, we may again start out by assuming that at some initial point, the
complete robot pose Tbody = {Rbody, pbody} (and thereby Tfootcenteri

for each foot via
forward kinematics) is known. Each spherical foot may be treated as an oriented
sphere whose axes are aligned with the local coordinate system at the center of the
foot, and the point on the foot in contact with the ground may be estimated to be
the point on the sphere having unit normal vector −n̂ground (a property of spheres is
that given any unit vector, there exists exactly one point on it whose unit normal is
that vector).

At a succeeding timestep after some slight motion, the orientation provided by
the IMU may be used to estimate the body orientation Rbody. Through the forward
kinematics, we may estimate each foot’s orientation Rfooti = Rbody ·Rbody→footi . Each
foot may again be treated as an oriented sphere (with this new orientation), and the
point in contact with the ground also may again be estimated as previously described.
As depicted in figure 4.1, this gives us two points on the sphere separated by some
angle θroll, the great circle arc through which is approximately the path along which
the foot rolled on the ground. The distanced rolled along the ground is then simply
the arc length drolli = rfootθrolli along this circle, and the line on the ground along
which this roll took place (with unit vector vrolli) is the intersection of the plane of
the great circle and the ground plane. This may be used to update the estimate of
the foot center position by computing pfootcenteri1

= pfootcenteri0
+ drollivrolli .

At this point, we need only solve the system Rbodypbody→footcenteri
+ pbody =

pfootcenteri
for the body position pbody. Methods such as those described in section

4.1 may be used, or it may be solved directly as a linear system given that only the
body’s position (rather than also its orientation) is unknown. Indeed, the updated
position estimate of only one foot center is required for this computation, but using

22

Figure 4.1: Diagram demonstrating how ground contact moves around a spherical
foot as it rolls.

the data provided by all stance feet and applying least-squares to the overconstrained
system will naturally increase robustness. Lastly, again as with the previous method,
the pose of any flight feet can be determined by forward kinematics, and once these
return to the ground, they may be treated as stance feet and the process iterated.

4.2.2 Analysis

This algorithm for computing odometry improves upon the previous one in sev-
eral important ways. First, it much more accurately models ground contact with
the robot’s feet because it correctly treats them as spheres rather than idealized
infinitesimal points. Additionally, it directly incorporates existing body orienta-
tion estimates provided by the IMU (or any filtered or otherwise processed version
thereof). Furthermore, this version possesses the interesting property that it requires
only one stance foot (rather than three) to function, potentially allowing odometry
computation during the execution of trot gaits or other fairly dynamic behaviors.

At the same time, however, it does make the assumption that foot contact with
each foot moved in a straight line along the great circle arc between the two observed
ground contact points on the spherical foot (rather than along some curve that just
contained those two points). The effects of this are lessened, though, with high
frequency updates (such as at every 100Hz control tick) that might allow for a high-
accuracy piecewise-linear approximation of arbitrary curves along the ground. Also,
this method relies quite heavily on the IMU (or some combination of other processes
to provide a body orientation estimate), without which it simply cannot operate.

23

Finally, it does not address the previously enumerated problems of foot slip or joint
angle errors.

4.3 Odometry III: Kinodynamic Rolling Contact

Model

4.3.1 Description

The preceding algorithm is somewhat weak in that it uses state measurements
(namely, Rbody possibly provided by the IMU) to track the execution of a physi-
cal process that can be modeled and about which state predictions can be made
given known inputs (here, joint motion). Specifically, when at least three feet are on
the ground, the robot with its ground contacts can be modeled as a closed kinematic
chain in which changes in positions are directly related to changes in joint angles,
and thus knowing changes in joint angles allows one to determine these changes in
positions. Tracking such position changes then allows one to track the robot’s pose.

4.3.2 The Model

We start by assuming that at least three feet are on the ground. We then instanta-
neously treat each foot as a ball joint centered at the foot center and whose angular
velocities correspond to those of the spherical foot. That is, each foot has asso-
ciated with it three angular velocities ωfxi

, ωfyi
, and ωfzi

. Then select any three
non-collinear points on the body (for simplicity, we selected three points in the plane
of the hips within the convex hull of the hips) with respective displacements rj from
the body center. For each pair comprised of a stance foot and one of these body
points, we treat the segment in between as an independent kinematic chain with 6
degrees of freedom: the three foot angular velocities, the knee angular velocity (ωki

),
and the two hip velocities (ωhxi

and ωhyi
). Schematic side- and top-views of this are

given in figures 4.2 and 4.3 respectively.

Taking inspiration from an example of decomposing a closed-loop chain in a
similar way as described in [20] (in which two cooperating arms were used for a
sawing task), we can compute a 3x6 Jacobian matrix for each independent kinematic
chain between foot i and body point j:

Ji,j = Ji(θhxi
, θhyi

, θki
, θfxi

, θfyi
, θfzi

).

24

Figure 4.2: Side-view of robot annotated with parameters of rolling contact model.

Figure 4.3: Top-view of robot annotated with parameters of rolling contact model.

Then, the body point velocities are given by

vj = Ji,j · [ωhxi
, ωhyi

, ωki
, ωfxi

, ωfyi
, ωfzi

]T = Ji,j · Ωi.

It is also convenient to define the linear velocity of the body center pc as vc =
[vcx , vcy , vcz]

T and the angular velocity vector of the body as ωc = [ωcx , ωcy , ωcz]
T .

Next, we may note that ωhxi
, ωhyi

, and ωki
are known quantities or can be es-

timated online (e.g., via an observer that acts as a velocity filter or possibly as
simply as computing ∆θ

∆T
at each timestep). We then seek to solve for the unknown

foot angular velocities. We can do this by constructing a system of linear equations
involving all these quantities.

25

Consider for now just the case of three feet on the ground. In this case, the
unknowns are three triplets of ωfooti = [ωfxi

, ωfyi
, ωfzi

]T for the feet on the ground
and three triplets of vj = [vxj

, vyj
, vzj

]T for the three body points, giving 18 unknowns
in total. For constraints, we can use three triplets of v1 = Ji,1 ·Ωi (separated so that
ωfooti and v1 are the unknown parameters) to ensure that the velocity of the first body
point is consistently predicted, two triplets v2 = Jh,2 ·Ωh and v3 = Jk,3 ·Ωk (where h
and k are the two feet respectively nearest to body points 2 and 3) for the velocities of
the two remaining body points, and three pairwise equations va·(pa−pb) = vb·(pa−pb)
(for all pairs (a,b) of body points) constraining the body points to move as a rigid
body, giving a matching 18 equations in total.

Having solved for the velocity of each body point, the velocity of the body center
may be estimated as vc = v1+v2+v3

3
and its angular velocity from the cross products

of the body point velocities relative to vc: for each, ωc× (pi−pc) = vi−vc. However,
for the purposes for which we used the model, only the foot angular velocities were
of actual interest to us.

If four feet were on the ground, three more unknowns (its foot angular velocities)
and three more constraints (relating these via the Jacobian to the linear velocity of
p1) would be added. Intuitively, it might then be desirable to add a fourth body
point (resolving excess constraints via least-squares as necessary) to smooth out
asymmetries, but it is unclear how to precisely quantify the effects of this.

This model thus provides a rather powerful ability: given joint velocities and
knowledge of which feet are on the ground, the body velocity and angular velocities
of the body and all stance feet are derived. Integrating these velocities forward allows
for the prediction of future foot and body positions, and precisely this may be done
to use this model for odometry purposes. Several frames from a simulation in which
this model is used to iteratively compute body and foot positions given only a series
of joint angles and the knowledge that all four feet were on the ground is shown in
figure 4.4.

Figure 4.4: Visualization showing model computing body and foot poses from joint
angle trajectory.

26

4.3.3 Applying the Model

To use this model for odometry purposes, we again assume that at least three feet
are on the ground and that at some initial point, the body pose Tbody (and thus
each foot pose Tfooti) is known. Further, we now assume that some estimate of
the joint velocities is available. Feeding all of this information to the model com-
putes, among other values, the angular velocities ωfooti of each stance foot. Un-
der the coordinate system shown in figures 4.2 and 4.3 and constraining stance
feet to only roll along the ground, we may then derive each stance foot’s velocity
vfooti = [vfootix

, vfootiy
, vfootiz

]T = [rfootωy,−rfootωx, 0]T . Integrating the foot posi-
tion using this velocity gives a new estimate of the foot position. Finally, as done in
the previous two methods, the body pose and the position of any flight leg may be
derived.

4.3.4 Analysis

Computing odometry using this model is technically superior to the previous methods
because it integrates an understanding of the actual physical process and functions
in a predictive rather than reactive way. Further, unlike the immediately preceding
algorithm, it does not rely on already having an accurate estimate of the body
orientation.

It remains imperfect, however, since it is still an approximation by virtue of
integrating potentially noisy joint velocities to derive succeeding estimates of foot
position. Also, it disregards any information provided by the IMU, though as pre-
viously noted, the two estimates of body orientation may be combined via optimal
estimation techniques. Lastly, it continues to fail to address errors introduced by
foot slip or joint angle errors.

4.4 Implementation and Comparison

All three strategies for odometry presented in this chapter were implemented on
the actual LittleDog robot and tested during a series of trials in which the dog was
instructed to walk forward in roughly a straight line using walking controllers with
slightly varying parameters.

Naturally, during the course of such trials, tracking error would accumulate, and
the pose estimate provided by the odometry computation would diverge somewhat
from ground-truth, which the data from the motion capture system was treated as
providing given its historic accuracy to within very sub-centimeter levels. During

27

our testing, we observed that the growth rate of such errors varied rather greatly
depending upon the terrain material and the many parameters of the walking gait
in use. We did not attempt a formal study of the relative effects of each of these
and their many subfactors, but the results displayed in figure 4.5 may be considered
quite typical.

0 5 10 15 20 25 30 35 40 45 50 55
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T
ra

ck
in

g
er

ro
r

(m
)

Naive Model
Rolling Contact First Approx (Mocap Orient)
Rolling Contact First Approx (IMU Orient)
Rolling Contact Model

0 5 10 15 20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

A
ct

ua
l d

is
ta

nc
e

tr
av

el
ed

 (
m

)

0 5 10 15 20 25 30 35 40 45 50 55
0
1
2
3
4

F
lig

ht
 fo

ot

Time elapsed (s)

Figure 4.5: Comparison of position tracking error of odometry algorithms during
40-step trial.

This plot depicts the position error (Euclidean distance between ground-truth
and the tracked estimate) of each of the three algorithms described in this chapter
as they executed during a 40-step sequence with an individual step length of 8cm.
Two variations of the second algorithm are presented: one which uses ground-truth
motion capture data to derive the body orientation used at each step, and another
which relied exclusively on the onboard IMU to provide this.

Our experiments provided a number of interesting results, most of which are
summarized in this plot. First, as we expected given its more realistic assumptions,

28

the second odometry model proved to be significantly more accurate than the first
model, typically exhibiting half the position error. In this given trial, the prior
had accumulated just over 6cm of position error after 40 steps, while the latter had
reached nearly 14cm.

As this plot also shows, dependence on the IMU did not represent a significant
source of error, since implementations respectively utilizing the IMU and motion-
capture-provided orientations had roughly comparable error magnitudes. Occasion-
ally, as is also the case in this plot, the version using the IMU accumulated error
less rapidly than the version using the motion capture data, suggesting (under the
assumption that the motion capture data is indeed strictly better) that other error
sources of a significantly greater magnitude are at work.

A somewhat unexpected result was that the third model proved even less accu-
rate than the first, decidedly naive, model, reaching over 19cm of position error after
40 steps. The reasons for this may be numerous (including, we concede errors in
its rather complex implementation, which we believe unlikely due to successful unit
testing of its individual modules and its performance in simulation), but the most
likely culprit we perceive is error buildup stemming from the constant integration
of fairly noisy velocity estimates — technically, Euler integration of a function with
high-magnitude derivatives. Though we believe that it may be possible to reduce the
impact of this somewhat by using a less numerically sensitive technique to update
the position estimate at each step, we have not explored such avenues and suspect
that the velocity-based nature of this model may represent a fundamentally serious
weakness. It bears mentioning, however, that for over 10 seconds of this trial (ap-
proximately 5 steps), the accumulated error from this model was generally below
that of any of the others. This suggests that this model may in fact be very useful
for applications requiring only short-term incremental tracking estimates.

4.5 Conclusions

This chapter described algorithms for computing odometry on the LittleDog while
walking, which we implemented and provided at least a rudimentary comparison
between in the previous section. We now reflect on fundamental issues surrounding
such estimation and attempt to reason about its true practicality.

First, tracking the robot’s pose through odometry is an inherently iterative pro-
cess. Thus, any errors that work their way into the estimate will only be compounded
with the passage of time and will never be corrected unless negated by other unmod-
eled effects. Therefore, whenever possible, short-term differential estimates should
be used as they will likely be more trustworthy. In order to reset or at least reduce

29

accumulated error, some form of filtering or other sort of optimal estimation should
be used to combine tracked posed estimates from odometry with data provided by
other sources such as the IMU or visual tracking from a camera. This was not done
in the work performed for this thesis, but it almost certainly should be in any serious
application.

Several obvious error sources remain untreated. The first of these is slippage
between an otherwise-stationary stance foot and the ground. As discussed in the
previous section, this appeared to have a very significant effect on the quality of
pose estimates. To make matters worse, it varies greatly depending on the terrain
(through its frictional coefficients with the foot material) and the walking gait in use
(depending upon its jerkiness and lateral forces applied). These are, however, the
two parameters often most easily changed: the material from which the terrain or
foot is made can be changed, and the gait can be reprogrammed to behave arbitrarily
differently. Ultimately, we would like to sense the occurrence of slip (which would at
least allow for a quantifiably reduced confidence in the tracking estimate thereafter)
and, if at all possible, to measure it. Sadly, it’s not clear that either of these can be
done well. Intuitively, simple heuristics can be applied to the problem of detecting
slip such as watching for rapid foot accelerations or velocities when none are expected
or sudden tilt that might indicate that a foot has given way. With better force sensors
at the feet and perhaps a more sensitive IMU, enough data might be available to make
progress towards reliably detecting slip and perhaps even modeling its magnitude.

The other primary error source previously mentioned was an erroneous estimate
of joint angles. While we have on occasion observed outright encoder error (some-
times possibly due to slip), especially after the robot has suffered a significant fall,
this is infrequent and its impact relatively minimal because recalibrating eliminates
it. Backlash, however, is a much more severe problem. It varies over time (especially,
increasing as the mechanism wears), differs between feet (probably due to slight con-
struction variation and asymmetric wear patterns), and can be completely different
across robots (again likely due to construction variation). To some extent, it can be
modeled (for instance, by inserting variable angle offsets depending on the estimated
direction and magnitude of force on the leg), but doing so accurately is extremely
challenging, and we did not attempt it for this thesis.

Overall, we have demonstrated several viable algorithms for at least roughly track-
ing the robot’s pose during motion. As we did not augment this with an additional
process that combined this estimate with any other to reduce uncertainty, the quality
of estimates provided was generally insufficient for the remainder of the work pre-
sented in the following chapter. Thus, ground-truth data from the motion capture
system was generally used for later development so as to better isolate sources of

30

error and evaluate the standalone quality of the results stemming therefrom. How-
ever, given the fairly high short-term accuracy of this tracking, we are exploring the
possibility of building it into the Kalman filter used to estimate the robot’s pose
during Learning Locomotion program trials.

31

32

CHAPTER 5

Mapping and Navigation with Vision

As indicated to earlier, we chose computer vision as our primary strategy for local
sensing. This was done for the same reason that many others do so: cameras are
compact yet can provide a huge amount of data. In this chapter, we describe the
process of integrating a camera as an additional sensor on the robot and our efforts
to use it to locally map and navigate the surrounding environment.

5.1 Design Philosophies

A primary understanding with which this problem was approached was that we would
not expect either to implement state-of-the-art vision techniques nor to attempt to
advance the field of computer vision in any significant way. As the goal of this thesis
is to more generally grant the robot greater autonomy, we instead merely sought to
apply vision to this platform towards this end.

As such, we made use of the very helpful Intel Open Source Computer Vision
(OpenCV) library [4] wherever possible rather than reimplementing many of the
standard algorithms, however instructive that might have been. Nevertheless, in
quite a few instances, its functionality proved lacking, and much often-laborious
reimplementation was required.

It should also be noted that early on in the development process, it was decided
that only a single camera (monocular rather than stereo vision) would be used.
This route was chosen because two cameras were simply too heavy and bulky to

33

be attached to the dog, and any reasonable combination of size, resolution, quality,
and affordability could not be found among commercial stereo cameras available at
the time. This somewhat limited the vision strategies available, but naturally much
remained possible.

5.2 Camera Integration

Even before anything interesting can be done with camera image data, the problems
of selecting an appropriate camera, attaching it, calibrating it (geometrically), and
merging the data it provides with the existing state stream must be solved. Though
such tasks are often considered uninteresting preparatory work, the significant time
invested in their completion and the somewhat unique way in which they apply to
this platform merit describing them in at least some detail.

5.2.1 Camera Selection and Attachment

The very first task was the selection of an appropriate camera. Much as with the
selection of an appropriate additional onboard control computer, the constraints
imposed by our specific scenario engendered several criteria:

Compact The camera and its mount must fit on the dog.

Lightweight The camera and its mount must not weigh more than the dog can
carry without significantly losing its agility.

Durable During testing, the dog would inevitably suffer occasional falls, and the
camera must neither break nor badly lose its calibration when this happens.

Low cost Good cameras can be arbitrarily expensive, and we chose several hundred
dollars as a reasonable limit.

Color We wanted to be able to simplify perception by using color cues in the envi-
ronment, so a color camera was necessary.

Specifically omitted from this list are requirements for very high framerate or
resolution, neither of which were necessary for this application.

Two cameras were selected that roughly fulfilled these criteria:

34

• Logitech Quickcam Pro 4000
This USB camera provides 640x480 color images at 15 frames per second (fps).
It used an only somewhat refocusable built-in lens.

• Imaging Source DFK21F04
This IEEE1394 (Firewire) camera provides 640x480 color images at 30 fps and
provides a standard CS-type lens mount. We attached a highly adjustable
varifocal lens for maximum flexibility.

The saddle constructed to support the additional control computer was reused
for attachment of a camera mount on a 14cm boom as shown in figure 5.1.

Figure 5.1: Firewire camera attached to LittleDog via boom on saddle.

5.2.2 Camera Calibration

The next step required calibration of the camera by solving for values of parameters
in an imaging model that would then allow relating positions of objects in an image
to positions in the world. The model used was the very typical pinhole camera model
(well described in standard textbooks on the subject such as [2]) with an additional
second order radial and tangential distortion model, which was necessary especially
when using the varifocal lens because it offered a wide angle at the expense of adding
distortions.

This model functions in the following way:

1. Points in the real world are transformed into a local camera coordinate frame:

35

 x
y
z


camera

= R ·

 X
Y
Z


world

+ T

The matrix R and vector T are commonly referred to as the extrinsic parame-
ters.

2. Points in the local camera frame are projected onto a virtual image plane unit
distance from the origin:[

x′

y′

]
=

[
x/z
y/z

]
3. Projected points on the virtual image plane are warped slightly (modeling lens

distortion):[
x′′

y′′

]
=

[
x′(1 + k1r

2 + k2r
4) + 2p1x

′y′ + p2(r
2 + 2x′2)

y′(1 + k1r
2 + k2r

4) + p1(r
2 + 2y′2) + 2p2x

′y′

]
where r2 = x′2 + y′2.

The parameters (k1, k2) are the radial distortion coefficients, and (p1, p2) are
the tangential distortion coefficients. These, with the additional parameters
below, are called the intrinsic parameters.

4. Distorted projected points are focused and centered to create the final image:[
x
y

]
image

=

[
fxx

′′ + cx

fyy
′′ + cy

]
The parameters (fx, fy) are the horizontal and vertical focal lengths (separate to
account for non-square pixels on the image sensor), and (cx, cy) simply translate
the pixels to place the origin at a corner of the image. These four parameters
along with the distortion coefficients constitute the intrinsic parameters.

The intrinsic parameters are so named because they result from internal proper-
ties of the camera and do not vary based on camera location. The extrinsic param-
eters, meanwhile, express the pose of the camera in the world and therefore change
with it.

To calibrate the intrinsic parameters, the standard technique of capturing frames
of a chessboard of known geometry (such as that depicted in figure 5.2) was used. The
corners of the chessboard represent a set of correspondences between image points
and world points, and feeding these to a camera calibration function, such as that
provided by OpenCV, allows one to solve for the complete projection parameters for

36

each frame and optimize for the best overall intrinsic parameters. When the world
points corresponding to the chessboard corners were reprojected using the model,
sub-pixel error was typical, demonstrating that the model fit well.

Figure 5.2: Example image captured during intrinsic parameter calibration of the
camera, with detected chessboard corners highlighted.

Calibration of extrinsic parameters was then needed to relate information pro-
vided by the camera to the coordinate frame local to the robot’s body. Specifically,
we needed to solve for Tbody→camera representing the pose of the camera relative to
the body. While in theory this could be measured physically, this was not deemed
practical as it could not be done with any great accuracy and would change slightly
each time the camera had to be removed from the robot for Learning Locomotion
program development.

Therefore, a somewhat novel technique taking advantage of the motion capture
system was developed. First, a custom calibration rig instrumented with motion
capture markers was built. This allowed a chessboard to be precisely tracked in
the motion capture frame in the same way as the robot. Then, a simple “exercise”
trajectory was written to command the robot to wiggle around while capturing a
series of typically 30 frames containing the chessboard while the motion capture
system tracked both the robot and calibration rig. A snapshot of this process is
shown in figure 5.3.

For each frame in the sequence captured, the motion capture system provided
(relative to its coordinate frame) a pose Tbodyi

for the body and a (constant, since it
remains stationary) pose Tboard for the chessboard. Given the previously determined
intrinsic camera parameters, applying a similar OpenCV calibration function to that
used for intrinsic calibration solves for Tboard→camerai

. The position of the camera

37

Figure 5.3: Snapshot of extrinsic calibration procedure.

relative to the motion capture system origin is then Tcamerai
= Tboard · Tboard→camerai

.
This provides a per-frame estimate of the body-relative camera pose Tbody→camera(i)

=

T−1
bodyi

· Tcamerai
.

To obtain the highest-possible accuracy estimate of Tbody→camera, each Tbody→camera(i)

was averaged1. Since occasionally not all the chessboard corners in a given frame
were correctly detected or the calibration function failed to converge on a solution,
causing some values of Tbody→camera(i)

to be erroneous, RANSAC [18] was applied
to provide outlier elimination. Specifically, three randomly chosen estimates were
chosen at a time, averaged, and the number of inliers (here, the number of other
estimates which, when used to recompute the positions of test set of world points,
agreed to within approximately a centimeter) computed. The set of three with the
most inliers from a large sampling was found, and the overall estimate computed as
the average among all those inliers. In case no set of three found at least 40% of the
other estimates to be inliers, failure was returned. Since the quality of the estimate
provided by each frame was rather binary (either very good or very poor), this al-
gorithm proved to work very well without any tuning of the RANSAC parameters
(such as the size of each sample, the threshold to be considered an inlier, etc.) and
allowed for easy calibration without manual intervention.

1In our case, this was performed in an ad-hoc way by separately geometrically averaging the
translation vectors and using Slerp [19] to average the rotations. This was adequate for us due to
the generally small difference in the transforms being averaged, but a better-reasoned method such
as the dual quaternion methods described in [6] could as well have been applied.

38

5.2.3 Latency Calibration and Compensation

The final step in camera preparation required synchronizing the flow of image data
with the rest of robot state provided by the internal control computer so that com-
putations involving values from each could be coherently performed. Specifically,
this meant solving for the relative latency between the streams so that any necessary
compensation could occur.

In the case of robot state data, some latency is introduced during processing on
the internal control computer, variable latency is added during wireless transmission
(during which packet delays and losses may occur), and then more variable latency
injected in the receiving software on the host computer. Fortunately, all state data
is marked with the timestamp on the robot at the time of its transmission, offering
immunity to this variability. On the host side, image frames must be captured by
the camera’s electronics, transferred over the USB or Firewire bus, and then pass
through several layers of software processing before being received by the control
software. Though most of this process is also subject to variability (mostly due
to the kernel scheduling the load imposed by the rest of the controller), here too
timestamps are available. In the case of USB cameras, the best that can be done
is generally a gettimeofday() system call in the lowest user-level capture code to
acquire a host timestamp. For Firewire cameras, the kernel is able to provide a host
timestamp at the time of the isochronous DMA transfer of the image frame, which
was found in our case to have jitter in the mere microseconds. Since both streams
provide timestamps, they can be synchronized despite variable latency if only the
offset between these timestamps can be determined.

The procedure we developed to compute this offset entails standing the robot
in front of a large chessboard (to provide a view rich with strong corner features)
as depicted in figure 5.4 and tracking a set of corners near the center of the image
across frames using the Lucas-Kanade point tracker provided by OpenCV. We then
command it to sway from side to side recording the centroid of foot positions relative
to the body (from the primary state stream), the centroid of the visually tracked
corner positions (from the image stream), and the timestamp from each stream. The
normalized square of the distance of both centroids from their respective starting
position is simultaneously plotted against the robot state timestamp on the same set
of axes, an example of which is shown in figure 5.5. Using an automatic procedure,
the phase offset between these two curves is found, giving the the timestamp offset
between the streams. For the USB camera we used, this procedure computed a lag
of approximately 60ms (or about one frame interval at 15fps) behind the robot state,
and a lead of approximately 30ms (or again about one frame interval at 30fps) for
the Firewire camera.

39

Figure 5.4: Snapshot of latency calibration procedure.

To make use of this offset to compensate for (variable) latency, the robot state
at each tick of the controller was saved in a state history array. Then, when a newly
processed image frame arrived, its timestamp (adjusted by the calibrated offset) could
be looked up in the history array, providing exactly the robot state corresponding to
the view presented in that image frame.

Somewhat amusingly, such compensation proved to be vital in our configuration
because of a bug in the Firewire driver in the particular kernel used on the host
system that caused duplicate frames up to as old as one second (properly tagged
with a timestamp as such) to occasionally be returned. Without compensation, this
could introduce near-catastrophic consistency errors in, for instance, environment
maps generated with these frames. More practically, in a test in which a fixed patch
of ground was continuously rectified using a method similar to that described in
section 5.3 so that the output would appear constant regardless of robot position so
long as it remained in view, consistent jittering was observed during robot motion
without compensation but was heavily damped with compensation enabled. Beyond
this, the effects of latency compensation (or the lack thereof) are hard to quantify
because the error introduced by latency is hard to isolate, as it varies heavily with
the robot’s pose and motion in the environment.

5.3 Planar Obstacle Mapping and Avoidance

As a first step applying vision as a local sensor for navigation, we created flat terrains
with colored patches of ground representing “no-step” zones. We then developed the

40

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

N
or

m
al

iz
ed

 s
qu

ar
e

of
 c

en
tr

oi
d

di
st

an
ce

 fr
om

 s
ta

rt
in

g
ce

nt
ro

id

Feet
Tracked image points

Figure 5.5: Example plot of latency calibration data for USB camera running at
10fps. Here, it exhibits a lag of about 100ms behind the robot state.

necessary control software capable of navigating the robot through such terrains
without stepping on these patches. Roughly, this sought to duplicate the results of
a similar effort described in section 2.1.3 but by using local sensing rather than a
globally-placed camera.

5.3.1 Mapping Planar Obstacles

Before it can navigate around any obstacles, the robot must develop a map containing
them. In this case, we developed a mapping procedure that continuously creates a
virtual overhead view of the obstacle field as the robot moves.

We start by assuming that when each image frame arrives, an estimate of the cam-
era pose Tcamerai

with respect to an arbitrarily placed map origin is known. Tcamerai

may be computed as Tbodyi
· Tbody→camera, the latter term of which was calibrated as

described in section 5.2.2 and the prior term of which represents the current best
estimate of the robot’s body position. This estimate in turn may be derived from
dead reckoning, some optimal estimation procedure combining that with any other
available information (e.g., visual odometry) not completed for this thesis, or (if very
high quality results are desired and operation within the motion capture volume is

41

tolerable) from data provided by the motion capture system.
Next, we may note that each point in the image corresponds to a ray in space

consisting of all 3-D points whose projection is that image point. The equation for
this ray may be found by simply inverting the projection equations given in section
5.2.2:

•
[

x′′

y′′

]
=

[
x−cx

fx
y−cy

fy

]

• (

[
x′

y′

]
may be derived from

[
x′′

y′′

]
most easily using a numeric equation

solver)

•

 X
Y
Z


world

= Rcamera

 tx′

ty′

t

 + Tcamera, for t ∈ R

Computing the intersection of the ray corresponding to each corner of the image
with the ground plane outlines a quadrilateral patch on the ground, representing
(modulo distortion) the area visible in the image. Because the terrain is planar, each
point in this area has a projection in the image, and computing its projection to find
its corresponding image point gives the ground color (in practice, due to distortion,
some points may not have a projection in the image and are disregarded). Repeating
this procedure for each point in the ground patch and plotting it in a new image
representing an orthographic projection of the ground gives a virtual overhead view
of the visible ground area.

To use this to build a map, we can perform this rectification procedure for each
incoming frame and overlay them on a virtual overhead image sized to cover the entire
ground area of interest. These may be blended to smooth slight inconsistencies, the
blending factor for which may be based on the previous pixel’s age or some confidence
measure (the latter of which was not attempted for this thesis). An example of a
map sequence generated by walking forward through a planar obstacle field is shown
in figure 5.6.

5.3.2 Navigation Avoiding Planar Obstacles

To navigate an environment containing planar obstacles, we can combine this map-
ping algorithm with a navigation planner. Conveniently, a high quality footstep
planner based on the A∗ algorithm written by another member of the Carnegie

42

Figure 5.6: Example sequence of map snapshots during planar obstacle mapping of
a colored obstacle field.

Mellon Learning Locomotion team was available from that separate effort and was
applied for this purpose.

The algorithm for combining the two for navigation purposes may be most con-
cisely described as follows:

• Create an environment map object readable by the footstep planner represent-
ing blocked pixels on the ground.

• With this map initially blank, run the planner to find a simple footstep trajec-
tory straight to the desired goal.

• While executing the trajectory, continuously run the mapping algorithm, ap-
plying color value thresholding to segment pixel regions corresponding to ob-
stacles.

• Each time the map is updated, retest the remaining footsteps and replan if any
land on an obstacle.

• Continue executing the trajectory until the goal is reached or it is determined
that no path is available to the goal.

We implemented this algorithm on the robot and demonstrated its successful
operation in environments containing a variety of planar obstacle configurations.
Several snapshots of one such execution are shown in figure 5.7, along with similar
snapshots from its corresponding map with detected obstacles and footstep trajec-
tory.

43

Figure 5.7: Example sequence of map snapshots and live execution during planar
obstacle navigation. In the map, red highlights detected obstacles, white represents
planned footsteps, blue indicates current foot projections, and green shows the cur-
rent body projection. Note that between the second and third map images, color
variations caused an obstacle to just barely overlap a step placed just adjacent to it,
and replanning occurred.

5.4 Three Dimensional Obstacle Mapping and Nav-

igation

The next logical step is of course to navigate fields of 3-D obstacles. Detecting
obstacles, perceiving their geometry, and tracking them is an extremely challenging
and very processor-intensive task in any generality that remains an active field of
research in the computer vision community.

We first noted that it is quite possible to perform sparse 3-D mapping with a
single camera by tracking individual points between frames and (given an estimate
of the robot’s motion between these frames) triangulate to solve for its 3-D location
by finding the intersection (or closest point thereto) of the two rays through the two
image points. More generally, techniques such as MonoSLAM (Monocular Simulta-

44

neous Localization and Mapping) as described in [1] may be applied, giving more
complete (but still generally sparse) maps as well as improved robot pose estimates.
Other techniques such as the fundamental principles behind stereoscopic vision can
be applied between two successive frames and (again given an estimate of the robot’s
motion) disparity and corresponding depth images formed.

To effectively navigate an obstacle field however, especially with a discrete foot-
step planner that operates best with contiguous obstacles, we sought a way to easily
perceive the complete geometry of obstacles detected in the environment. One of the
surest ways to do this is to build a library of geometric models of obstacles that one
may place in the environment and instrument physical instances of these with fidu-
cial markers that are easily detectable, trackable, and uniquely identify that obstacle
within the library.

A very practical fiducial marking system consists of rectangular markers made of
a series of bands of colors such as the one shown in figure 5.8. Though conceptually
very simple, detecting and tracking such markers proved somewhat tricky, and as
no commonly available software for doing so could be located, we implemented an
intuitive algorithm of our own design that proved quite effective.

5.4.1 Fiducial Marker Tracking Algorithm

As initial tests of obvious algorithms for detecting color patches using thresholding
demonstrated great weaknesses to even the smallest lighting variations, the algo-
rithm we developed for tracking colored markers representing a painstaking effort to
maximize invariance to both lighting conditions and camera color settings such as
white balance and saturation parameters.

Given an image believed to contain a marker, we start with a list of the marker
colors expected. For our development, only three colors — red, green, and blue
— proved necessary to create a well-sized library of markers given that different
orderings of these colors could represent different markers. Using this list, we perform
a very conservative color thresholding of the image for each color that neglects many
points that are of the target color but errs on the safe side by having a much lower
chance of highlighting pixels that are not of the target color. Another quick pass
is performed to eliminate relatively isolated points (e.g., all highlighted pixels with
fewer than 3 highlighted neighbors).

A technique called seeded region growing, inspired by [17] and based upon strate-
gies known to computer vision researchers for years that are essentially the same,
each highlighted pixel of a given color in the thresholded image is treated as a “seed”
around which a blob of color is grown. Roughly, that algorithm proceeds as follows:

45

For each color:

1. Put each thresholded pixel (a seed) in a queue and initialize a standard union-
find data structure to contain a singleton set (representing a color blob) for
each seed.

2. Pop a pixel from the queue, and for each surrounding pixel:

(a) If the pixel is not part of any blob and is “near enough” to the color of
the original seed starting the popped pixel’s blob, add it to the union-find
data structure in the same set as the popped pixel (e.g., its blob) and
push it onto the queue.

(b) If the pixel is part of a different blob of the same color as the popped
pixel, perform a union operation in the union-find data structure between
these two blobs (redundant unions are assumed to be harmless).

3. When the queue is empty, terminate.

Upon the completion of this algorithm, it provides a set of blobs containing
disjoint contiguous regions of pixels of each color. A minor detail is what is meant
by “near enough:” for our purposes, a threshold on the Euclidean distance in RGB
space proved sufficient, but fancier metrics possibly utilizing local color variances
might be used.

Next, we eliminate blobs that are too small (say, 10 pixels) or too large (say, more
than 1

k
of the entire image, where k is the number of colors expected in the marker

to be tracked) to rapidly weed out irrelevant blobs. Then, we select the k blobs
nearest in size and proximity to ensure that a set of blobs constituting a roughly
contiguous region of the image are chosen, further weeding out irrelevant blobs. To
track multiple markers, we may remove these k and repeat the selection process to
find the next-best k on which the rest of the algorithm may be repeated.

For each blob, we heuristically detect its edge pixels by highlighting only those
with fewer than some threshold of neighbors within the same blob and apply an algo-
rithm utilizing a Hough transform on this edge set to find the lines of the rectangle.
Various heuristics are applied to select the best two pairs of lines likely to surround
a rectangle, and the lines are intersected to find the rectangle corners. These corners
are then refined by performing a local search for the nearby pixel whose image gra-
dient covariance matrix has the largest minimum eigenvalue (the criterion applied in
the Sobel corner detection filter).

Finally, the corners are sorted to order the corners of each rectangle in a consistent
way and then matched with corners from adjacent blobs to produce a list of corners

46

found on the entire marker, again ordered consistently. An example of a marker
being tracked using this algorithm is shown in figure 5.8.

Figure 5.8: Example frame showing detected corners of a tracked colored marker.

This algorithm was implemented with a sharp eye towards performance, and it
can detect a single marker approximately 20ms on the desktop-class host computer,
which is well below the inter-frame interval of 33ms when operating at 30fps. This
may be sped up considerably if this algorithm is only used to initialize tracking and
then the corners tracked as features by a Lucas-Kanade point tracker, which can track
10 points in under 8ms. This algorithm would only need to be called infrequently to
reinitialize tracking if lost or when the corners no longer appear to frame a coherent
marker.

5.4.2 Three Dimensional Tracking and Mapping with Mark-
ers

Once a marker has been detected in an image, its known geometry (the sizes of the
colored rectangles making it up) gives us a set of point correspondences between the
image and the coordinate frame of the marker. With 7 such correspondences (more
providing redundancy that increases robustness), we can compute Tcamera→marker

using the same calibration function used with chessboard corners in section 5.2.2.
If these markers are affixed to engineered obstacles in a library, the known obstacle

models can have associated with them an offset Tmarker→object so that once calibrated
against a marker, we can compute Tcamera→object = Tcamera→marker · Tmarker→object.
Then, assuming that Tcamera is known as done for planar obstacle tracking, we may
derive Tobject = Tcamera · Tcamera→object.

47

A world containing such obstacles may then be mapped by using a unique marker
for each object, continuously seeking and localizing markers (and thus their attached
objects), and updating their position in a 3-D map. When tracking on a marker
is lost, the simplest assumption to make is that is that its pose remains the same.
Obvious extensions to this (that were not implemented for this thesis) include main-
taining degrading pose confidence values or iterating motion (e.g., constant velocity)
models for each obstacles. As a very simple example of such mapping in action,
figure 5.9 demonstrates localizing a rectangular obstacle in a 3-D map while walking
towards it.

Figure 5.9: Example sequence showing map snapshots and live execution in which a
box is tracked in a 3-D world map as the robot walks towards it.

5.4.3 Three Dimensional Obstacle Navigation

Although it was not implemented in the time available, we have reasoned through
a simple 3-D analogy to planar obstacle avoidance. We here simply sketch the key
structure of an algorithm capable of navigation obstacle fields containing engineered
obstacles with fiducial markers corresponding to geometric models in a library:

1. Create an environment map object (this time, in the form of a height map)
readable by the footstep planner representing the known 3-D world.

48

2. With this map initially blank, run the planner to find a simple footstep trajec-
tory straight to the desired goal.

3. While executing the trajectory, continuously run the mapping algorithm de-
scribed in the previous section.

4. Each time an obstacle appears for the first time or moves significantly, rerun
the planner. An improvement to this may include simulating the planned
trajectory testing for collisions with obstacles.

5. Continue executing the trajectory until the goal is reached or it is determined
that no path to the goal is available.

5.5 Conclusions

In this chapter, we provided a narrative of the process of applying vision as an
approach to local sensing. Starting with selecting and attaching a camera to the
robot, we stepped through the tasks of preparing it for use via intrinsic, extrinsic,
and latency calibration. We then illustrated our successful strategy for mapping
and navigation around (or over) planar obstacles. Lastly, we discussed the inherent
difficulty of general 3-D tracking, described our implementation of a colored fiducial
marker tracking algorithm, demonstrated its application to tracking 3-D obstacles,
and then outlined a strategy for extending planar obstacle navigation to 3-D by
applying this tracking.

49

50

CHAPTER 6

Conclusions and Future Work

In this thesis, we have set out to demonstrate that a great amount of independence
in the operation of the LittleDog robot is possible, and we have done just that. We
have shown that the robot can be run as a self-contained unit – even outdoors –
that is capable of sensing and navigating around its environment. We then described
implementations of pose estimation strategies using odometry that rely only on an
understanding of the intrinsic kinematic structure of the robot without use of the
motion capture system and also without, in the simplest case, any additional sensing.
Finally, we recounted our successful effort to use computer vision as a powerful
source of local sensing data and exhibited obstacle mapping and navigation in various
environments.

At the same time, we stoically acknowledge several fundamental limitations of any
effort to grant this robot autonomy. First, the computational power of a desktop-class
computer is dreadfully convenient, nay, necessary for any significant image processing
required for serious computer vision or real-time motion planning. At present, no rea-
sonably powerful computer is compact enough or has sufficiently manageable power
requirements to be practical as an attachable onboard control computer. Somewhat
fortunately, this is an artifact of the current state of the art in miniaturization, and
it is certain that an amply powerful computer fulfilling these criteria will be available
in the reasonably near future. Simultaneously, however, the computational hunger
of algorithms will likewise ceaselessly scale, forever perpetuating this conflict.

A second fundamental limitation we must acknowledge is that the extremely high

51

accuracy (sub-millimeter global localization of markers in the best case) provided by
the motion capture system is sure to be unmatched by any local sensing techniques,
as that system itself is a very expensive, carefully engineered, and globally fixed vision
system. Thus, when operation in an enclosed volume and instrumenting the robot
(and potentially aspects of its environment) is acceptable, using it is surely wisest.
Of course, the much wider “real world” in which we wish this and any other robot
to operate extends far beyond its view, and it is then that local sensing becomes
critical.

Naturally, the efforts enumerated in this thesis barely begin to scratch the surface
of what can be done to enable untethered operation in complex environments. To
begin with, a much improved pose tracking strategy could be designed that inte-
grates best estimates from odometry (which itself may be improved by attempting
to model backlash and foot slip) with any other information available such as IMU
accelerations or that which could be provided by visual odometry or SLAM). This
would then improve the fidelity of the vision strategies described in this thesis or any
others that require an estimate of the robot’s pose.

In terms of immediate extensions to the work depicted in this thesis that could
be attempted, the first would be to actually implement the algorithm described in
section 5.4.3 for navigation in 3-D terrains of marked engineered obstacles. A logical
step from that would then be to explore a 3-D tracking algorithm that does not
require fiducials, an example of which might include one that tracks edge features
of engineered but unmarked obstacles as described in [8]. From there, we would
like to make use of the MonoSLAM algorithm previously mentioned in an effort to
implement the improved pose tracking suggested in the previous paragraph.

Thinking further out, one might explore any of the many other alternative local
sensors. To start with, other cameras that might be smaller, lighter, wireless, or
stereoscopic may enable possibilities for more cameras, offboard processing, or better
3-D mapping. A wide range of range sensors such as an infrared time-of-flight camera
(e.g., the Swiss Ranger) or a laser rangefinder (e.g., a Hokuyo or miniature SICK
sensor) could be explored.

Additionally, one might give thought to how expected hardware improvements in
the next generation LittleDog might be exploited, or, indeed, how the design could
be altered arbitrarily to make it easier to achieve autonomy. An obvious start on
the latter would be to provide proper attachments for additional sensors rather than
forcing ad-hoc approaches such as the saddle we constructed. Better (for instance,
multi-axis) foot force sensors (anticipated in the next revision) should help immensely
with ground contact estimates, hopefully enabling both greatly improved ground

52

contact detection and perhaps even a better chance at detecting and measuring foot
slip, would greatly aid odometry estimation. A better (e.g., higher accuracy with
less drift) IMU could likewise aid in pose tracking. Likewise, a tighter gear train
or encoders placed closer to the actual joints would lessen the effects of backlash on
odometry. Finally, stronger motors would increase the performance and load-bearing
capacity of the dog, allowing for the attachment of more sensors and faster execution
of motions.

53

54

Bibliography

[1] A. Davison. Real-time simultaneous localisation and mapping with a single
camera. In Proceedings of the 2003 IEEE International Conference on Computer
Vision (ICCV ’03), pages 1403–1410, Cote d’Azur, France, 2003.

[2] D. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall,
2003.

[3] J.-S. Gutmann, M. Fukuchi, and M. Fujita. A floor and obstacle height map for
3D navigation of a humanoid robot. In Proceedings of the 2005 IEEE Interna-
tional Conference on Robotics and Automation (ICRA ’05), pages 1066–1071,
Barcelona, Spain, Apr. 2005.

[4] Intel Corporation. OpenCV: Intel Open Source Computer Vision Library
[online, cited August 16, 2007]. Available from: http://www.intel.com/

technology/computing/opencv/index.htm.

[5] S. Kagami, K. Nishiwaki, J. J. Kuffner, K. Okada, M. Inaba, and H. Inoue.
Vision-based 2.5D terrain modeling for humanoid locomotion. In Proceedings of
the 2003 IEEE International Conference on Robotics and Automation (ICRA
’03), pages 2141–2146, Taipei, Taiwan, Sept. 2003.

[6] L. Kavan, S. Collins, C. O’Sullivan, and J. Zara. Dual quaternions for rigid
transformation blending. Technical Report TCD-CS-2006-46, Trinity College
Dublin, 2006.

55

[7] A. Lorusso, D. Eggert, and R. Fisher. A comparison of four algorithms for
estimating 3-D rigid transformations. In Proceedings of the 1995 British Machine
Vision Conference, pages 237–246, Birmingham, England, 1995.

[8] P. Michel, J. Chestnutt, S. Kagami, , K. Nishiwaki, J. Kuffner, and T. Kanade.
GPU-accelerated real-time 3D tracking for humanoid locomotion and stair
climbing. In Proceedings of the 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS ’07), San Diego, CA, Oct. 2007. (Ac-
cepted for publication).

[9] P. Michel, J. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and T. Kanade.
Online environment reconstruction for biped navigation. In Proceedings of the
2006 IEEE International Conference on Robotics and Automation (ICRA ’06),
pages 3089–3094, Orlando, FL, May 2006.

[10] P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade. Vision-guided humanoid
footstep planning for dynamic environments. In Proceedings of the 2005 IEEE-
RAS International Conference on Humanoid Robotics (Humanoids ’05), pages
13–18, Dec. 2005.

[11] Mobot Committee. Carnegie Mellon Mobot Race [online, cited August 16, 2007].
Available from: http://www.cs.cmu.edu/∼mobot.

[12] R. Ozawa, Y. Takaoka, Y. Kida, K. Nishiwaki, J. Chestnutt, J. Kuffner,
S. Kagami, H. Mizoguch, and H. Inoue. Using visual odometry to create 3D
maps for online footstep planning. In Proceedings of the 2005 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC ’05), pages 2643–
2648, Waikoloa, HI, Oct. 2005.

[13] K. Sabe, M. Fukuchi, J.-S. Gutmann, T. Ohashi, K. Kawamoto, and T. Yoshi-
gahara. Obstacle avoidance and path planning for humanoid robots using stereo
vision. In Proceedings of the 2004 IEEE International Conference on Robotics
and Automation (ICRA ’04), pages 592–597, New Orleans, LA, Apr. 2004.

[14] O. Stasse, A. J. Davison, R. Sellaouti, and K. Yokoi. Real-time 3D slam for
humanoid robot considering pattern generator information. In Proceedings of
the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS ’06), pages 348–355, Beijing, China, Oct. 2006.

[15] Y. Takaoka, Y. Kida, S. Kagami, H. Mizoguchi, , and T. Kanade. 3D map
building for a humanoid robot by using visual odometry. In Proceedings of the

56

2004 IEEE International Conference on Systems, Man, and Cybernetics (SMC
’04), pages 4444–4449, The Hague, Netherlands, Oct. 2004.

[16] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical
Report CMU-CS-91-132, Carnegie Mellon University, Apr. 1991.

[17] Z. Wasik and A. Saffiotti. Robust color segmentation for the RoboCup do-
main. In Proceedings of the 2002 IEEE International Conference on Pattern
Recognition (ICPR ’02), pages 651–654, Quebec, Canada, Aug. 2002.

[18] Wikipedia. RANSAC — Wikipedia, the free encyclopedia [online]. 2007. Avail-
able from: http://en.wikipedia.org/w/index.php?title=RANSAC&oldid=

148465041. [Online; accessed 16-August-2007].

[19] Wikipedia. Slerp — Wikipedia, the free encyclopedia [online]. 2007. Avail-
able from: http://en.wikipedia.org/w/index.php?title=Slerp&oldid=

121543596. [Online; accessed 16-August-2007].

[20] H.-J. Yeo, I. H. Suh, B.-J. Yi, and S.-R. Oh. A single closed-loop kinematic chain
approach for a hybrid control of two cooperating arms with a passive joint: An
application to sawing task. IEEE Transactions on Robotics and Automation,
15(1):141–151, Feb. 1999.

57

