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Abstract

We present a novel approach to combating web spam. In the spirit of Luis von Ahn’s games with
a purpose, we propose using a two player game to identify spampages within search results. Our
game asks users to classify a page as either highly relevant to a query or not relevant to a query,
with the option of passing. We use data from the game as the input to a simple voting algorithm
which determines whether a page is spam. We show that the beststrategy for users playing the
game for fun is to answer truthfully, and that spammers have difficulty obstructing the game.

∗ This research was sponsored by the Henry Luce Foundation through a Clare Booth Luce Graduate Fellowship
and by National Science Foundation (NSF) grant no. CCR-0122581. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either expressed or
implied, of the Henry Luce Foundation, the NSF or the US government.



Keywords: Web spam, Games with a purpose, Algorithms



1 Introduction

Web site owners can profit greatly if their pages achieve highrankings for popular search queries
[7, 19]. Users tend to click pages that are ranked highly, andare unlikely to look far past the first
page; instead, they will refine their query [19]. For this, and many other reasons, search engines try
to provide the most relevant pages for queries at the top of the results page. Webmasters want to
be ranked as highly as possible [19, 7].Web spamoccurs when webmasters manipulate their sites
to take advantage of search engines’ ranking algorithms. Their goal is to make their sites appear
higher in results than their relevancy to a query merits. Webspam is abundant, even among the top
query results: an example for query “nokia motorola” follows at the end of this section.1

Current methodologies for combating web spam results in an arms race: researchers race to
create new algorithms to detect web spam, whilespammers[webmasters engaging in deceptive
practices to affect their pages’ rank] work on ways to get by these techniques [7]. Little work has
been done to provide theoretical performance guarantees for a web spam detection scheme. Our
spam detection scheme uses a (hopefully) fun game to detect web spam, and uses the information
gathered as votes for whether a page is spam or not. Even though a simpler scheme would be to
directly collect data by letting users vote as they search, we will demonstrate that such a voting
scheme is problematic. Our game will allow us to gain the benefits of voting without its problems.

This paper provides a brief overview of current research, explains some of the issues sur-
rounding web spam detection, and illustrates one possible spam detection scheme with provable
performance guarantees. In Section 2, a detailed overview of the spam detection problem is pro-
vided. Related work, and a comparison of terminology, occur in Section 3. An overview of our
spam detection scheme, an interactive game, appears in Section 4. In Sections 5 and 6, we provide
proofs that the game is strategy-proof for players desiringhigh scores and that we can detect and
prevent all others from interfering with the scheme.

FREE RINGTONES - FREE RINGTONES
... FREE SANTO RINGTONES LOGOS NOKIA
MOTOROLA FREE RINGTONES RING TONES
FREE ... POLYPHONIC RINGTONES ON MY
MOTOROLA T FREE SEAN PAUL RINGTONES
FOR NOKIA ...

2 Overview of the problem

Most search engines (e.g. Google, MSN and Yahoo) already have good algorithms for ranking
pages. However, these algorithms occasionally make mistakes, such as ranking a page higher than
the average user would want it to be. Much research is devotedto improving page ranking and
spam detection, with much of the focus onlink spam. Link spam is a type of spam where a target
page’s rank is increased by creating many other pages that point to each other and to the target.
Less time is spent oncontent analysis, where an algorithm evaluates the actual content of a page

1Sixth Google result on 2/6/07, from www.directory. lmc.edu/public facilities viewindividual-52.php
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to determine whether it is spam or not. Most algorithms, eventhose that analyze page content, are
designed to be used to create a ranking. Little work is done onhow to modify a ranking that has
already been generated. Our goal is, given an already prepared ranking of webpages, to identify
pages that are likely spam and remove them from the ranking. Our approach involves collecting
votes from a sample of individuals. These votes should tell us whether a particular page is spam
or not with respect to a query. When a sufficient number of people have responded (e.g. 100) and
enough have voted the page spam (e.g.99% of the voters), we decide that the page must be spam
and remove it from the ranking.

We begin with some definitions and notation.

Definition 2.1. Let Q be a fixed query, and letN represent the number of search results forQ.
DefineRQ as theN × 1 vector representing a ranking of result pages forQ.

Alternatively,RQ is a permutation of theN pages produced by a search engine’s ranking algo-
rithm.

Definition 2.2. LetCQ be a nonnegativeN ×2 matrix such thatCQ[P, 0] represents votes for page
P as relevant with respect to queryQ, andCQ[P, 1] is the number of votes forP as irrelevant with
respect to queryQ.

Our goal is to create a new rankingR′

Q
by removing some pages fromRQ using information

from CQ. R′

Q
has the property that with high probability, no pageP in R′

Q
is ranked highly but

has a large number of web spam votes inCQ. In a more algorithmic sense, for each queryQ, our
input isCQ andRQ and our output isR′

Q
, where we impose a post-condition onR′

Q
. To clarify this

post-condition, we will review and introduce some terminology.

Definition 2.3. A trusted agentis a person who tries to truthfully classify page-query pairsand
passes when unsure.

This is analogous to a truth-revealing strategy in mechanism design [16]. Given a set of possible
outcomes, a truth-revealing strategy for a player is to report true preferences for each outcome.
We can interpret preferences as classifications of page-query pairs. We will use the termstruth-
revealing andhonest interchangeably in this paper. By definition, a trustedagent cannot have a
stake in any page-query pair; for example, a trusted agent cannot be a spammer. Other adversarial
criteria are set out in Section 6.

Definition 2.4. We will consider agreement among at least 90% of users to be anoverwhelming
majority of users.

Remark 1. A page isranked highly if it is among the top10% of the results for a query.

Definition 2.5. A web pageP is considered to beweb spamif it is ranked highly inRQ but an
overwhelming majority of trusted agents believe it is not relevant toQ.

Definition 2.6. Let R̂Q be the ranking generated by deleting fromRQ those pages that are voted
irrelevant by an overwhelming majority inCQ, where only feedback from trusted agents is used in
the formation ofCQ.
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We now present a definition forR′

Q
and refine our post-condition for our algorithm.

Definition 2.7. Let R′

Q
be the ranking generated by deleting fromRQ those pages that are voted

irrelevant by an overwhelming majority inCQ.

We will show in Section 5 that the strategy with the most gain is to provide our game with
honest answers, which leads us to expect thatR′ and R̂ will be similar, since non-adversarial
players can be expected to play truthfully.

3 Related Work

To motivate our definition, we will compare several other definitions from the literature. As this is
still an emerging field of study, there are several definitions currently in use for web spam, with no
single established version.

Definitions from the literature
• Gyongyi and Garcia Molina [10] define web spam as “deliberatehuman action...meant to trigger
an unjustifiably favorable relevance...for some web page”.In another work, Gyongyi, Garcia-
Molina and Pedersen [12] define web spam as “hyperlinked pages on the World Wide Web that
are created with the intention of misleading search engines.” The authors present an algorithm
named TrustRank. Similar in methodology to PageRank [15], a commonly used ranking algorithm
in web search that propagates the popularity of a page using the link graph, TrustRank works
by propagating trust through the web graph by following links. The only component of human
feedback is the initialseed set evaluation; after that, their algorithm is automated. In their technical
report on link spam alliances, Gyongyi and Garcia-Molina [9] focus on web spam as the result of
creating content “with the main purpose of misleading search engines and obtaining higher-than-
deserved ranking in search results.” Gyongyi et al. [11] usea similar definition when definingspam
mass, a metric of how much the PageRank of a pageP is affected by inlinks from spam pages.
• Da Costa Carvalho et al. [6] describe spam pages as those pages which benefit from inlinks
made intentionally in order to artificially inflate the importance of pages. This restricts the defi-
nition of spam to link spam. Their paper focuses on the link graph model of the web, but at the
(internet) domain name level instead of at the page level. Itattempts to detect suspicious links so
that PageRank [15] can ignore these links.
• Fetterly, Manasse and Najork [7] designate web spam as “pages that exist only to mislead
search engines into (mis)leading users to certain web sites....the SEO[search engine optimization]-
generated pages are intended only for the search engine, andare completely useless to human
visitors.” Statistical ways of analyzing URLs, host names, the web graph and individual page con-
tent are examined here, each as a different automated technique for detecting web spam. Ntoulas,
Najork, Manasse and Fetterley [14] define web spam as “the injection of artificially-created pages
into the web in order to influence the results from search engines, to drive traffic to certain pages
for fun or profit”. They focus on different automated methodsof web spam detection based solely
on page content.
• Wu, Goel and Davidson [18] define web spam as “behavior that attempts to deceive search
engine ranking algorithms”. They further specify that the behavior involves “manipulating web
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page features on which search engines’ ranking algorithms are based”. This behavior results in
spam pages. Their algorithm is a modified version of TrustRank. Krishnan and Raj [13] propose a
link-based system that propagates distrust.

Some of these papers define web spam in terms of actions by a webmaster, and spam pages as
the result of those actions; other definitions merely describe web spam as the results of webmas-
ters’ behavior. The distinction is minute; it is sufficient to restrict ourselves to one or the other.
Each of these papers, then, relies at some point on measurable criteria, since the original behavior
and intent of the webmaster is not available. However, theircriteria cannot match their original
definition, meaning that they cannot measure what they defined to be spam. Our definition differs
by immediately offering measurable criteria as it relates to user feedback.

In all cases, the algorithms previously proposed are automated. If human feedback is solicited
at all, it is in the early seed set stage [12, 18, 3, 4]. Also, without provable performance guarantees,
nothing prevents spammers from adapting. Spammers’ adaptations require algorithm designers to
change their algorithms, leading to the “arms race”As an example, Topical Trustrank is an attempt
to improve TrustRank and make it more spam-resistant.

Our work differs from previous work in several ways. First, we solicit user feedback at several
points. By collecting data from people, we can use statistical sampling theory to derive whether
most people think a page is likely spam. Our algorithm thus suceeds in detecting web spam, as
defined above in terms of public opinion. We can use statistical sampling theory to achieve a good
approximation of global opinion of a page’s relevance to a query.

Secondly, just because an automated algorithm decides a page is relevant to a query does not
mean a human will agree; there may be factors visible to the human eye that a computer cannot
easily pick up on that allows a human to (correctly) classifya page as spam where a program
cannot. The only adaptation we offer an adversary is to make apage’s content more relevant to a
query.

4 A web spam detection scheme

Motivated by the work of [17] in using two player games to solve interesting AI problems, we
investigate a similar approach for web spam. Von Ahn and Dabbish created the ESP Game, a fun
two player game that induces users to label images. They not only help researchers working on
computer vision, currently a hard AI problem, but also improve image search. Our aim is to also
employ a fun two player game. We will collect votes from the population on whether a webpage
is spam with respect to a query. Our ultimate goal is to use a simple voting algorithm to decide
whether to move a page down in the rankings. Note that our scheme can be deployed together with
any of the previously mentioned automated web spam detection techniques.

There are easier ways to collect votes. For example, we couldlet users classify search results as
highly relevant or not highly relevant while searching. This approach has some major drawbacks.
It is relatively easy for spammers to keep a page in the ranking by repeating the search with the
same query and voting it relevant. The largest vulnerability is that the user is in charge of picking
the query and the page, and then gets to classify the page-query pair. This allows spammers to vote
their pages as highly relevant, and for adversaries to try tovote legitimate pages as irrelevant. We
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cannot produce any meaningful performance guarantees in such a scheme, because the adversaries
are simply too powerful. By using our game to generate the votes, we show how to avoid such
vulnerabilities and achieve provable performance guarantees.

In the following sections we introduce our game, show how to process the votes obtained from
it, prove that the game is is strategy-proof, and that under some assumptions it is immune to attacks.

4.1 A web spam game

Before we present the actual web spam game we modify the original problem statement from
Section 2 to fit the game setting.

Recall the vote matrixCQ from Section 2.CQ represents cumulative feedback about a given
query, without specifying how this feedback is gathered. There are two columns, andN rows. As
before,N is the number of pages inRQ. CQ[P][0] contains the number of users who voted pageP

as highly relevant to queryQ; similarly, CQ[P][1] stores the votes forP as not highly relevant toQ.
We assume that the page rankingRQ obtained from an external source is approximately opti-

mal. The rankingR′

Q
we want to obtain from our spam detection game is supposed to be a “better”

version ofRQ. However, while there may be errors scattered throughout the entire original ranking,
we only care about results that the user will actually see (say, the first 10, 20, 30 or 40) per query.
Therefore,R′

Q
only needs to be more accurate for highly ranked items.

The goal is to construct the new rankingR′

Q
by removing items fromRQ that are ranked highly

but most people rate as spam. If we could trust user feedback,then we could simply allow users
to chooseQ and vote on pagesP in RQ, filling in CQ. Once we relax the assumption that users are
trusted, this methodology becomes open to attacks as described previously in Section 4.

The attack mentioned in the beginning of the section relies on the ability of an untrusted user
to choose the page-query pair that they want to affect. To avoid this, we would like to controlQ
andP so that an adversary cannot greatly affect the vote count forany particular page-query pair
(P,Q). In the two player game, we randomly select a queryQ, and pageP indexed at a random
point inRQ unknown to the user. Let a snippetsp be defined as a small, representative piece of text
from P. [For an example of a query-snippet pair, see Figure 1]. We present two users withsp and
then ask them: isP highly relevant toQ or not? If the two users match on their answer, we can use
that match as a vote, where a vote for high relevance corresponds to a vote for not web spam, and
a vote for not highly relevant corresponds to a vote for web spam. A key assumption for the game
is thatsp represents the page well and that the algorithm for the creation of sp is hidden from the
users. Suppose it was the same snippet used by search engines. Then there is an immediate attack
for any adversary. The adversary searches for the query whose result page they wish to affect,
and finds their page in the ranking; then, the adversary examines the snippet from his page that
is shown in the search results, finds the relevant text in his actual page, and tweaks his page. He
repeats this procedure until the snippet from his page shownin the search results looks relevant
to the query, even if the page does not. This immediately leads to the following requirement: a
snippet that a search engine employs cannot be used for a page-query pair, as this exposes elements
of the algorithm to a potential spammer [see Section 6 for further details].
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Query: ice age 2

Snippet:

Ice Age 2

Official site. Help the Scrat find enough acorns to survive the

Ice Age. Meet the Sub Zero Heroes, view a trailer, download

desktop wallpaper, ...

Highly relevant Not Relevant Pass

Figure 1: A potential highly relevant (test) question, withquery ice age 2 and snippet text from the
first Google result for “ice age 2” on 11/10/06

4.2 Game description

We design the game as a series ofs independent questions. For each question, the pair of usersis
alloted at mostt units of time, andT units of time to complete the entire game. User pairings are
assigned at random at the beginning of the game, and change with each iteration. Each question
to a pair consists of a queryQ, a short snippetsp from a randomly drawn pageP in RQ, and three
options: “Highly relevant”, “Not highly relevant”, and “Pass”. Players only get one attempt to
answer the question; once they choose an option, they cannotchange their minds. Users cannot
see what rankP has inRQ currently, or the web page URL. A visualization of the game appears in
Figure 1.

We assignm points for a match, and subtractn points for a mismatch; 0 points are allotted
for a pass. Without loss of generality, setm = 1 andn = 1 + ε. We shall see later thatε > 0
is a necessary condition for a game where the dominant strategy is to play honestly. In each
round of the game, we incorporateK test questions(divided among relevant and non-relevant
page-query pairs) for which we know the correct answer. These test questions are designed to be
indistinguishable from the other questions. Any time an individual user answers some of their test
questions correctly and none incorrectly, they are awardeda bonusB according to the number of
test questions answered correctly, but are not told whichK of the questions were test questions.
The outcome from an example game is given in Table 1. Player 1 disagrees with a test question
(question 2) and so her score is the sum of the match points, here,1 − ε. Player 2 never disagrees
with a test question and answers at least one test question, meaning her score is1−ε+B(1), where
B(1) is the value a user gets for answering exactly one test question correctly and none incorrectly.

4.3 Generating test questions

Many of the results we achieve depend on the availability of many test questions distributed
roughly equally among highly relevant and not highly relevant pages. Generating not highly rele-
vant test questions can be done rather simply. The method used to generate the query-snippet pair
in Figure 2 involves permuting the words in a queryQ together with 3 random words to formQ′. To
create the test question, we present a result from the searchfor Q′, together withQ. Experimentally,
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Q1 Q2 Q3 Q4 Q5
Test(X/R/N) X R X X NR

Player 1 R NR NR P NR
Player 2 R R NR NR P

Match Points +1 −(1 + ε) +1 0 0

Table 1: A simple scoring example. There are five questions. If a question is a test question, it has
its solution (either R for relevant, or NR for not relevant) in the appropriate column; otherwise, it
has an X. Player 1 and Player 2 answer either R for relevant, NRfor not relevant, or P for pass.

Query: ice age 2

Snippet:

Strange Horizons Articles: Interview: Glen Cook, by Donald

Mead

DM: Why do you think the Black Company series is so popular

among soldiers? ... There’s also an ice age encroaching, which

is making world sea levels drop ...

Highly relevant Not Relevant Pass

Figure 2: A potential not relevant test question, with presented query “ice age 2” and real query
“company cook 2 over age ice”. Snippet text from the first Google result for “company cook 2
over age ice” on 11/10/06

our implementation of this procedure created results that often containQ, but are also not highly
relevant toQ, as long as the original query was not a celebrity’s name. We pulled the random words
from a list of basic English words [1]. Figures 2 contains an example of a possible test question
created with this method. The queries used were taken from the Google Zeitgeist archive [8], a
collection of popular queries and trends made available by Google. We used the Google API to
retrieve the snippets [2]. The snippet shown is a combination of the link text and the snippet from a
standard Google search, on the first result returned. Figure2 shows queries where we can generate
test questions that are not relevant–just present the original queryQ with the snippet for the query
Q′. In the case where this method fails to produce a clear answer, the user can still pass and get a
bonus.

In addition, once we have collected a sufficient quantity of votes, we can also use questions that
have a large majority (say 60-70%) of the population voting one way or another as test questions.
Since we anticipate that many results taken from the top of a queryQ’s result page will be highly
relevant, this should allow us to quickly amass many highly relevant test questions.

4.4 Processing the votes

The spam detection game we described provides us with relatively trustworthy votes for various
page-query pairs. Here we present a simple algorithm to process these votes and decide for each
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given page-query pair whether the page is spam with respect to the query.
The algorithm takes as input a matrix of votes, and removes those pages that have more than

100 votes and where 100 times as many people vote a page spam asnot spam. While requiring
more than 100 votes is an arbitrary threshold, the criterionof 100 times as many people voting a
page spam as not is actually rooted in our definitions. Recall that we only wish to eliminate those
pages which an overwhelming majority (90−99% of the population) deemed irrelevant. Requiring
100 times as many people to vote a page irrelevant achieves anoverwhelming majority. Since we
are only concerned with the top few rankings(10, 20, 30, 40), we can optimize to only return a
subranking of the topk items. We start at a beginning index value, and are given a valuek. The
loop continues untilk pages have made it through the loop without being removed from R′. To
make sure that each page is considered at most once, we use thevariableindex, which refers to
which page we are examining in the original rankingRQ for queryQ. This procedure is presented
in Algorithm 1.

The algorithm has some very attractive features. Firstly, its simplicity makes it easy to under-
stand. Furthermore, it is very conservative; if fifty percent of the population feel one way and fifty
percent another, we will leave the page in, erring on the sideof keeping spam rather than eliminat-
ing legitimate content. One potential problem is our reliance on receiving many trustworthy votes
for each page-query pair, which implies a need to collect a lot of trustworthy data from the game.
In the next few sections we show that the data will be trustworthy. The quantity of data we collect
will largely depend on how much fun the game is. We motivate our belief that our game is fun in
the next section.

4.5 The fun factor

For our scheme to succeed, people must want to play the game, which means the game must be
fun. There are many reasons to believe our game will be fun in practice. First, we plan to use
queries from Google Zeitgeist [8], which is a source of popular and surprising queries. By playing
the game, players will be exposed to queries that other people think are interesting and fun, and
thus we expect the players to enjoy them as well. Secondly, byplaying the game, people will know
that they are helping search engines determine what is and isnot spam. In addition, there is some
amusement in being paired with a stranger and trying to decide how they will view a query-snippet
pair.

In the cases where the queries seem relevant to the snippet, players will also have an opportunity
to learn trivia, and many trivia games are considered popular. Irrelevant snippets, though, can also
be amusing depending on what ways they differ from the query;see Figure 2 for an example.

5 The game is strategy-proof

In this section we analyze the game and show that the players whose goal is to maximize the
number of points, when playing optimally, provide us with their honest opinions.

We borrow terminology from game theory and mechanism designin analyzing our spam de-
tection scheme. For further definitions, see Parkes’ work [16].
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Algorithm 1 Variable query, returning top k elements
Require: start index ≥ 0 andk ≥ 0
Ensure: end index ≥ k + start index

index = start index
On queryQ
RQ = the initial ranking associated with queryQ

CQ = the vote count vector associated with queryQ

Initialize R′ as an array of sizek {Assume zero-based array}
numPassed = 0
while numPassed < k do

count pos = CQ[index + numPassed][0]
count neg = CQ[index + numPassed][1]
p = RQ[index + numPassed]
if (count neg > 100(count pos + 1)) then

removeP from R′ {Algorithm ratesP as spam}
else

R′[numPassed] = P {Algorithm ratesP as not spam, so it is placed inR′}
numPassed + +

end if
index + +

end while
end index = index {In case we need another page for this query, track location relative to R’s
index}
return R′ andend index

Definition 5.1. A strategyrepresents the plan a user has for making choices in any possible situa-
tion within the game.

Definition 5.2. A dominant strategyis a strategy that maximizes the utility (here, points awarded
to a user) when the strategies of other players within the game are unknown.

Definition 5.3. A game isstrategy-proofif the dominant strategy is to play honestly.

We would like to state that our game is strategy-proof, and show the necessary conditions for
the parametersm,n, ε andB from Section 4.2.

5.1 Simple example

We begin with a small motivating example. Suppose that two users are paired. Player 2 knows all
the answers, and plays honestly. Player1 votes “relevant” with probability =1/2 and “not relevant”
with probability =1/2. This implies Player1 never passes. In this scenario, we can restrict our
attention to Player 1’s actions as they uniquely determine the score. For this example, we shall
ignore the bonusB.
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Lemma 1. Assume Player 1 believes Player 2 is honest and omniscient. Guessing uniformly at
random is never a dominant strategy whenε > 0.

Proof. Supposem = 1 andn = 1 + ε. E[pass] = 0 butE[random guess] = 1/2(s) − 1/2(s)(1 +
ε) = −sε/2 < 0 ⇔ ε > 0. SinceE[pass]> E[random guess], guessing uniformly at random is
never a dominant strategy.

Definition 5.4. We defineconfidenceas the probability a user thinks their answer will match an
omniscient, honest partner.

Remark 2. Throughout this paper, we will assume that the probability a user assigns to matching
his or her partner and the true probability of a match are approximately equal, and will use these
definitions interchangeably.

The dominant strategy for a user should be to play honestly when they feel confident in their
answer, and to pass when they do not. To ensure this, we show the correct bounds for parameters
B andε.

5.2 Playing honestly, or passing, is a dominant strategy

The goal of this section is to prove our main theorem, that playing honestly when a player knows
the answer, and passing otherwise, is the dominant strategy.

5.2.1 The game with no bonus when the opponent is honest

We assume Player2 is omniscient and honest and again ignore the bonusB. We restrict our
analysis to Player 1’s actions, since these determine the score for both players.

Lemma 2. When Player 2 is honest and omniscient, the dominant strategy of Player 1 is to answer
honestly when the probability that he knows the answer is≥ (1+ε)

(2+ε)
, and to pass otherwise.

Proof. Let p be the confidence Player 1 has in his answer. Now, since the opponent is playing
honestly, the expected score on any question isp(1) − (1 − p)(1 + ε). We want to discover
when this strategy is better than simply passing (which has expected value of 0). By linearity of
expectation, we can restrict our analysis to the expectation of points for one question:

p(1) − (1 − p)(1 + ε) > 0

⇔ p(2 + ε) − (1 + ε) > 0

⇔ p >
(1 + ε)

(2 + ε)
, ∀ε > 0
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Remark 3. This indicates that Player 1 should answer the questions whenp > (1+ε)
(2+ε)

, and pass
otherwise for a positive expected utility. Note that once a choice ofε is made there is a concrete
threshold for when Player 1 should answer questions. By choosing ε, we can alter the thresholdp
for when Player 1 should answer or pass.

Definition 5.5. Definepc = (1+ε)
(2+ε)

as thethreshold confidence.

Claim 1. pc is the minimum probability such that for allp > pc, the expectation of points obtained
for answering a single question honestly is positive (ignoring the bonus).

Remark 4. Note sinceε > 0 by Lemma 1,pc is always greater than1/2.

Whenp > pc this yields a positive expectation for the entire game. Any other strategy performs
no better, as it involves more passing (which lowers the expectation), or requires guessing on
questions wherep ≤ pc. Sincepc is the minimum threshold yielding a positive expectation, any
strategy involving answering with confidence≤ pc will have non-positive expectation.

5.2.2 The game with a bonus

We now consider the game with a bonus, redefiningB as a function of the number of test questions
answered correctly if none are answered incorrectly.

Lemma 3. Let pc be the confidence threshold. Suppose an honest user answersk test questions.
Let B(k) be the bonus for answeringk bonus questions correctly and none incorrectly. Then for
answering honestly whenp > pc and passing otherwise to be a dominant strategy, it must be the
case that∀k′ ≥ k, B(k)

B(k′)
≥ (1/2)k′

−k.

Proof. Assume the contrary. Fix a player, and consider thosek of the test questions that a player
knows with confidencep > pc. Suppose, on the remaining questions, the player guessed. Then
his expectation ispk(1/2)k′

−kB(k′). On the other hand, the expectation of just answering the
k test questions, and passing on the others, ispkB(k). If B(k)

B(k′)
< (1/2)k′

−k then pkB(k) <

pk(1/2)k′
−kB(k′), which implies honesty is not a dominant strategy. Contradiction.

Lemma 3 shows the necessary conditions for our game to be strategy-proof. We now present a
sufficient condition.

Lemma 4. If B(i) = β/pi
c ∀i ∈ Z+ for some fixedβ > 0, then Lemma 3 is satisfied.

Proof. Recall thatpc > 1/2 by definition. If we can showpk
cB(k) ≥ pk

cB(k′)(1/2)k′
−k, then we

will have shown that guessing randomly on an extrak′ − k questions will not give an advantage
over an honest player who passes on those questions. We knowB(i) = β/pi

c, k′ ≥ k, and
1/2 < pc ⇒ 1 < 2pc ⇒ 1 > 1/(2pc). Then,
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1 ≥ (1/(2pc))
k′
−k

(1/(2pc))
k′
−k =

pk
c (1/2)k′

−k

pk′

c

pk
cβ

pk
c

≥
pk

cβ(1/2)k′
−k

pk′

c

pk
cB(k) ≥ pk

cB(k′)(1/2)k′
−k

B(k)

B(k′)
≥ (1/2)k′

−k ∀k′ ≥ k.

Remark 5. B(i) = β/pi
c implies that a player never increases his expectation of a bonus by

guessing randomly on questions where the honest player would pass.

Note that W.L.O.G.p ≥ 1/2, since otherwise the confidence in the other answer is≥ 1/2. We
can now prove our main theorem.

Theorem 5.1.LetB(i) = β/pi
c be the bonus a player receives for answeringi > 0 test questions,

all correctly. Then playing honestly whenp ≥ pc and passing otherwise is a dominant strategy

Proof. Fix any game. Letk represent the number of test questions the honest player would answer.
Any dishonest strategy must employ some linear combinationof three strategies over the game:
answering questions the honest player passed on, changing the answer of the honest player, and
playing some questions honestly. By linearity of expectation, we can consider the points earned
due to the bonus and points from matching separately.

In the following lemma, we demonstrate that the expectationof a bonus employing any com-
bination of these strategies must be less than that in the honest case.

Lemma 5. Suppose the honest player answersk test questions honestly, and passes on the rest.
Suppose the dishonest players answersm test questions honestly, changes the answer onn, and
answersl that the honest player skipped,m,n, l ≥ 0 andm + n ≤ k. Then honesty maximizes the
expected number of points due to the bonus.

Proof. Notice that other thanm+n ≤ k, we do not restrict whetherm+n+l ≥ k or k ≥ m+n+l
– this can vary, and allows the dishonest player full flexibility. Furthermore, answeringl questions
that the honest player skipped could also mean flipping the answer of the honest player. To analyze
the best case for the adversary, letp̃ be the minimum confidence the dishonest player has, andp̂
the maximum confidence the dishonest player has over all questions he answers. Divide thel
questions the dishonest player answered that the honest player skipped into two categories, such
that the dishonest player answersh honestly with maximum confidencêp andj dishonestly with
probability 1 − p̃. By definition,h + j = l andh, j ≥ 0. Clearly,pc > p̂ ≥ p̃ ≥ 1/2, as well
aspc > 1/2 ≥ 1 − p̃ ≥ 1 − p̂. Also, pc > p̂ ≥ 1/2, since the honest player did not answer the
question.

12



We are given the following set of inequalities.

m,n, j, k, l, h ≥ 0 (1)

j + h = l (2)

k ≥ m + n (3)

k ≥ m (4)

p ≥ pc > 1/2 (5)

pc > p̂ ≥ p̃ ≥ 1/2 (6)

pc > 1/2 > 1 − p̃ ≥ 1 − p̂ (7)

pc ≥ 1 − p (8)

From line 5 and the fact thatk − m ≥ 0 we get

p/pc ≥ 1 (9)

(p/pc)
k−m ≥ 1 (10)

Combining lines 5, 6, 7, and using the result from above, we get:

(pc)
n+j+h ≥ (1 − p)np̂h(1 − p̃)j

(p/pc)
k−m(pc)

n+l ≥ (1 − p)np̂h(1 − p̃)j

We rearrange terms and eventually multiply byβ to get the final result.

pkpm+n+l
c

pmpk
c

≥ (1 − p)np̂h(1 − p̃)j

pk

(pc)k
≥

pm(1 − p)np̂h(1 − p̃)j

pm+n+l
c

pkβ

(pc)k
≥

pm(1 − p)np̂h(1 − p̃)jβ

pm+n+l
c

pkB(k) ≥ pm(1 − p)np̂l(1 − p̃)j
B(m + n + l)

Finally, E[bonus for honest players]≥ E[bonus for dishonest players under any strategy].

The dominant strategy to maximize points from the bonus is toplay honestly. The dominant
strategy over the entire game is the strategy that maximizesthe sum of points from the bonus and
points from matching. We can adjustβ so that the sum is dominated by the bonus points, thus
ensuring that the game is strategy-proof.

We now show that, assuming users play honestly, the probability of a match between two
randomly paired players exceeds the probability of a randomvote.

Lemma 6. The probability of two rational users matching and generating a vote withinCQ exceeds
the probability of a random vote.
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Proof. Let p denote the probability Player 1 is right (Player 1’s confidence) andq denote the
probability that Player 2 is right (Player 2’s confidence). Assuming that both players are rational
and choose to answer the question, the probability that theymatch ispq + (1 − p)(1 − q), which
accounts for the fact that either they are both right on the same answer, or they are both wrong on
the same answer. We know thatp, q > 1/2 sincep > pc > 1/2; the same argument holds for q.
Without loss of generality, supposeq ≥ p. We can rewrite this asq = p + δ for someδ ≥ 0.

pq + (1 − p)(1 − q) = p(p + δ) + (1 − p)(1 − p − δ)

= (2p2 − 2p + 1) + δ(2p − 1)

We can now break this into pieces:2p2 − 2p + 1 has a minimum at preciselyp = 1/2. Also,
∀p > 1/2, 2p2 − 2p + 1 > 1/2. Likewise, forp > 1/2, 2p− 1 > 0 ⇒ δ(2p− 1) > 0 whenδ > 0.
Putting this together, we get that(2p2 − 2p + 1) + δ(2p − 1) > 1/2 + 0 = 1/2.

We have shown that a match between two honest players within our game is likelier than a
random vote. Theorem 5.1 allows us to assume that rational players behave honestly. Therefore,
our game produces data that is more likely than votes cast uniformly at random.

6 Adversaries

We now now show that adversaries encounter difficulty affecting search rankings through our
game. We will define three adversaries to make the analysis clearer. Let Sam be a spammer who
wishes to move a non-relevant, spam pageP up in the rankings for a queryQ. As a subproblem,
Sam must first maintainP’s location within the rankings for queryQ. Let Mallory be an adversary
who wants to move a relevant, non-spam pageP′ down in the rankings for a queryQ′. Finally, we
consider Gene to be a generic attacker, who is not interestedin any specific page, but wishes to
corrupt all rankings.

6.1 Sam

To boost the ranking of his page, Sam must persuade users (either bots or humans) that agree with
him to play the game multiple times. In doing so, Sam (and his agents) must wait for a query
to come up that is relevant to his pageP. Also, Sam must decide whether the best strategy is
for him to vote the page up or down. We assume that the time restriction of t units per question
prevents Sam from searching for the query, and finding what page and ranking value the snippet is
associated with. Sam can check the page to see if it is his own snippet, and vote it up. However,
this requires several other things to occur in tandem:

The first problem ispartner agreement–if his page is truly spam, Sam must hope that the partner
he is playing against is either his agent or an honest player who thinksP is relevant. Otherwise,
the vote would not count and he would not affect our algorithm.

14



Lemma 7. Let P be the page Sam wants to raise in the rankings, and let0 ≤ ps ≪ 1/2 be the
fraction of the honest population who believe thatP is not spam. Letpm be the probability thatP
emerges within one game. Then the expected number of games Sammust play to accumulate one
vote in the algorithm is 1

pspm

, assuming that Sam does not have enough agents to affectps.

Proof. This follows by linearity of expectation. The number of people who believe a page is
spam or not is independent of whether a snippet of that page occurs within a game, and thus the
probability of Sam both encountering someone who he agrees with and encountering a question he
cares about ispspm, so he must expect to play1

pspm

games to get one match.

Consider what would happen if Sam decided to employ agents to help achieve matches. As we
are matching players at random, Sam needs many agents. LetH be the number of honest users in
the game. Even if we assume a uniform distribution for how players are matched, for Sam to even
have a1/2 chance of matching his own agent, he must introduce(1/2 − ps)H agents. SinceH is
a hidden parameter, as long asH is sufficiently large orps is sufficiently low, it is difficult for Sam
to add enough agents to affect any page’s score. Also, Sam is never aware of having enough agents
within the game becauseH is a hidden parameter. Assumingps is low is reasonable; otherwise the
page would not be identified as spam under our scheme. We will say that Sam has aninsufficient
numberof agents to affect the ranking.

Another problem Sam faces is that while Sam’s strategy is effective if a page-query pair comes
up often enough, Sam has to play a large number of times to get the same pair.

Lemma 8. Let ns = 1
pspm

be the expected number of games Sam must play to achieve one match
onP, and100nP be the number of current votes for pageP as spam, withnP ∈ R+. LetmP denote
the number of users who think thatP is not spam without Sam’s votes. Then Sam must expect to
need to playns(nP − mP) times to affect the ranking.

Proof. Without loss of generality, assumenP ≥ 1, otherwise there are not enough votes to throw
out P anyway. As a preliminary attempt, assuming no one other thanSam believes his page is
not spam, he must expect to play(nP)ns games by linearity of expectation. Now, remove the
assumption that no one other than Sam believes his page is notspam. LetG be a random variable
representing the total number of games Sam must play to keep his page within the rankings. For
his page not to be removed, he needs:

100np < 100(mP + G) ⇒ nP < mP + G ⇒ G > nP − mP

By linearity of expectation, since it takesns games for Sam to expect one match, it takes
ns(G) > ns(nP − mP) games to amass enough votes to keep his page in the ranking.

It is reasonable to expect that as long as we have many page-query pairs,ns will be a large
number and thus Sam will have a hard time exceeding it. Also, if nP is large, which might occur
in the case that many people have strong opinions, this can only make Sam’s work harder.

The final problem Sam encounters is the difficulty of recognizing and comparing the snippet.
We can embed either the snippet, query, or both, within an image (possibly using a CAPTCHA) to
make such comparisons difficult for computers. Then, the attacker needs to know the snippet. If the
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game uses a separate snippet from a conventional search engine, it can be difficult to discover what
the snippet associated with the game is. Sam’s job is very difficult: he has to play1

pm

times just
to encounter a snippet related to a page he is interested in, and even if that snippet is encountered,
recognizing it as relevant is hard for a bot.

6.2 Mallory

Mallory’s attack is the opposite of Sam’s attack, since she is trying to lower the rank of a legitimate
page. Like Sam, Mallory faces a partner agreement problem, where she must agree with her partner
for the vote to count.

Lemma 9. LetP′ be the page Mallory is interested in lowering in the rankings,and0 ≤ p′s << 1/2
denote the fraction of the honest population who believe thatthis page is spam. Letp′m represent
the probability that a snippet fromP′ constitutes a question within one game. Thenn′

s, the expected
number of games Mallory must play to accumulate one vote in the algorithm, is 1

p′
s
p′

m

, assuming
she does not have enough agents to affectp′s.

Proof. Equivalent to Lemma 7.

Just like with Sam, Mallory must employ a large number of agents to affect the outcome, and
has the problem of partner agreement. She must introduce(1/2 − p′s)H agents. Once more, we
assumep′s is sufficiently low as otherwise the page would not likely be classified as spam under
our algorithm. She also is expected to have insufficient number of agents.

Mallory also has a difficult time throwing a page out of the ranking since our algorithm is set
up conservatively and keeps a spam page in than remove a good one.

Lemma 10. Let n′

s be the expected number of games Mallory must play in order to achieve one
match onP′, and100n′

P
be the number of current votes for pageP′ as spam, withn′

P
∈ R+. Letm′

P

denote the number of users who think thatP′ is not spam without Mallory’s votes. Then Mallory
must expect to need to play100(m′

P
− n′

P
)n′

s times to affect the algorithm.

Proof. We use a similar derivation to the one in Section 6.1. Once more, let G′ be a random
variable representing the number of games Mallory must playto affect our algorithm. In order for
a page to be thrown out,100n′

P
+G′ > 100m′

P
⇒ G′ > 100(m′

P
−n′

P
). By linearity of expectation,

Mallory must playn′

sG
′ > 100n′

s(m
′

P
− n′

P
) games in order to affect the game.

If m′

P
is fairly large andn′

P
fairly small in comparison, which is to be expected if the page is

truly not spam, then Mallory has many obstacles to overcome.She also faces the same issues of
recognizing and comparing the snippet that Sam faces.

6.3 Gene

Gene’s attack is to corrupt the ranking. For this, Gene should be always voting dishonestly, in
an attempt to promote or preserve web spam pages within the rankings, and to remove legitimate
pages from the ranking. Gene faces many problems as well.
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Anytime Gene attempts to vote a page up, he encounters all theproblems Sam does; likewise,
whenever Gene tries to vote a page down, he encounters all theproblems Mallory does. In essence,
by protecting against Sam and Mallory, we also protect against Gene, since Gene simply has their
combined interests. With respect to any one question, Gene can be classified as a Sam or a Mallory,
and is subject to the guarantees we provide.

In addition to all other roadblocks that Gene inherits from Sam and Mallory, since he is at-
tempting to disagree with rational players, Gene will also disagree with the test questions. Since
we assume that humans cannot differentiate between the testand non-test questions, then surely
neither can bots without a large advance in natural languageprocessing techniques. Therefore,
Gene should have a history of doing extraordinarily poorly on the test questions. We can adapt
our algorithm to not count any of Gene’s votes after a sufficiently bad history on test questions has
been amassed, as he will be considered a rogue player.

6.4 Key assumptions

Any attack the adversaries use must exploit one of the key assumptions.
Users cannot quickly find answers outside of the gameWe could imagine players launching

searches on the shown query to brute force search for the snippet. This is unlikely to succeed
though. First, each question is allocated a maximum amount of time t, with the entire game
allocated only timeT , so the user can be assumed to not have enough time to search every page
returned by a search engine. Also, by varying where we question people about pages for the entire
API [in the case of Google, this is the first 1000 results] it isalso harder for the user to guess where
the snippet is pulled from.

Using a different snippet from a standard search engine is another important aspect of the
game. By doing so, a user cannot simply launch 100 searches forthe query for each of the 10
intervals [assuming 1000 results maximum on an API] and thendo a brute force search for the
snippet. Instead, they would have to open each page, at the cost of 1000 requests versus 100, and
on average, we can time it so that there is not enough time to dothis.

A user’s confidence well approximates the true probability of two players matching. We
define confidence in terms of a user’s belief about the state ofthe game. While this is a valid
game theoretic definition, it does require assuming that users are aware of what they know, and can
approximate how accurate they believe their guess to be. Nevertheless, this assumption is not fatal
to our game because users who play honestly but are poor judges of the relevance of web pages are
expected to get large negative scores, and their matches canbe regarded as not trustworthy.

Bots perform poorly at natural language processing [NLP].This assumption is necessary
to prevent all the attackers.

The snippet is representative of the page.If this is not true, then Sam could have an indirect
attack. If we are not careful in the way we choose the snippetsP, Sam can try to alter his web page
so thatsP looks highly relevant to queries but the page is still web spam. This can be fixed easily
by not using the same snippet as a normal search engine. By doing this, the expectation that Sam
is able to easily discover his game snippet is low, and thus hecannot easily modify his snippet to
cheat the game. This does not affect Mallory or Gene.
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The test questions are indistinguishable from the rest of thegame, and many are available.
This is necessary to motivate the bonus calculations and expectation, and to ensure that the game
is strategy-proof for players who care about points. Assuming that there are a smaller set of test
questions as compared to non-test, a smart adversary who is hoping that we naively use the uniform
distribution could write a bot that simply plays many games and scrapes the screen as it goes. Any
query-snippet pair that repeats would be a test question.

This can be rectified in many ways. One way is to use a non-uniform distribution on the non-
test questions, possibly biasing a small set so that repeatsdo not necessarily indicate test questions.
Another way is to gradually have questions move into the testcategory when we have enough
feedback to know what the “right answer” is, and have questions leave the test category when they
have been shown a large amount of time. Finally, we can createa rule that each user can only see
a query-snippet pair once as a test question; subsequent views are non-test. All of these strategies
make it more difficult for adversaries to try to determine thetest set. Alongside these strategies is
the fact thatB is individual and not group based, so we can present different test sets to different
users [this may make it easier, for example, to allow each user to see each query-snippet pair only
once as a test, by keeping a precalculated list of “next test”that is combined to form a game for the
users]. Of our adversaries, this primarily affects Gene, since it would allow Gene to vote honestly
on test questions and dishonestly on all others.

The query and page are out of the adversaries control.There is no way around this without
manipulating the actual game.

The users are paired at random.The only thing the adversaries can do is flood the game with
bots, and hope that they add enough bots so that, with high probability, the bots will be paired and
can collude. However, bots should play poorly against the test questions, since one key assumption
behind this game is that bots cannot process natural language well. We can therefore identify likely
bots by looking at their history versus the test questions. This assumption is important for Mallory,
Gene and Sam.

The players do not have enough time to research the URL of the page or its location within
the ranking. We can fortify this assumption by placing text within imagesor even CAPTCHAS
(especially short, easier to read elements like queries). Also, by drawing from even further down
the ranking than we care about, using all 1000 pages [assuming the Google API] inRQ, it becomes
time consuming for the adversary to determine where a page islocated–they might have to perform
100 searches to find a page. Even then, if we are using a snippetthat is separate from the snippet
used in web search, it is non-trivial to discover the rank. This mostly matters for Mallory and Sam.

People enjoy playing the gameIn order for the game to be useful, people have to like playing
it and enough people have to play it so that we can extract meaningful data. As described in
Section 4.5, we do not anticipate this being a problem.

7 Conclusions and further work

In this paper we presented a two-player game approach to combating web spam. We showed it
is strategy-proof and that the information obtained from itcan be used to find spam pages. We
provided one of the first schemes we are aware of with provableperformance guarantees.
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There are many advantages to our game. First of all, the likelihood of an attack by an adversary
is quite low. Because of this, the votes we do gather from the game are trustworthy. As long as the
game is secure, the votes themselves can be considered to come from trusted sources, and a simple
voting algorithm that compares quantities of votes for and against a page being spam can be used.
As we only ask players to vote a binary choice between spam andnot spam, we do not encounter
any voting paradoxes.

One major drawback to the game is its dependence on a secret test set. If an adversary can
detect which questions are test, and which are not, he can break the game by behaving honestly
on test questions, and dishonestly on all others. Some ideasto prevent this were explored in
Section 6.4. Also, as described in Section 4.3, we believe itis easy to generate new test questions
which an adversary would not have already classified. Further work will focus on implementing
the game, testing our assumptions and assessing our successin removing spam from the rankings.
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