Probabilistic Opaque Quorum Systems

Michael G. Merideth and Michael K. Reiter

March 2007
CMU-CS-07-117

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Also appears as Institute for Software Research
Technical Report CMU-ISRI-07-117

Abstract

Byzantine-fault-tolerant service protocols like Q/U andBHaaxos that optimistically order re-
guests can provide increased efficiency and fault scaiabiliowever, these protocols require
n > 5b + 1 servers (wheré is the maximum number of faults tolerated), owing to theie 0§
opaque Byzantine quorum systertiss is 2b more servers than required by some non-optimistic
protocols. In this paper, we present a familypsbbabilistic opaque Byzantine quorum systems
that require substantially fewer servers. Our analysi®ighin that it assumes Byzantine clients,
anticipating that a faulty client may seek quorums that méze the probability of error. Using this
as motivation, we present an optional, novel protocol thatva probabilistic quorum systems to
tolerate Byzantine clients. The protocol requires only aeiteonal round of interaction between
the client and the servers, and this round may be amortizedmultiple operations. We consider
actual error probabilities introduced by the probabiistpproach for concrete configurations of

opaque quorum systems, and prove that the probability of gamishes with as few as> 3.150
servers as andb grow.

This work was partially supported by NSF grant CCF-0424422.

Keywords: Distributed systems, Byzantine fault tolerance, probsiidiquorum systems

1 Introduction

For distributed systems consisting of a large number ofesena Byzantine-fault-tolerant replica-
tion algorithm that requires all servers to communicatéwach other for every client request can
be prohibitively expensive. Therefore, for large systeinis, critical that the protocol have good
fault scalability[1]—the property that performance does not (substanjididqgrade as the system
size is increased—>by avoiding this communication.

Byzantine-fault-tolerant service protocols must assigsta brder to requests to provide repli-
cated state machine semantics [23]. To minimize the amdwdramunication between servers,
protocols like Q/U [1] and FaB Paxos [19] use opaque quorustesys [17] to order requesipti-
mistically. That is, servers independently choose an ordering, witsteps that would be required
to reach agreement with other servers; the steps are pedfoomly if servers choose different
orderings. Under the assumption that servers indepenydepitcally choose the same ordering,
the optimistic approach can provide better fault scalghifi the common case than protocols like
BFT [9], which require that servers perform steps to agree@moorderingpeforechoosing it [1].
However, optimistic protocols have the disadvantage afirety at leasbb + 1 servers to tolerate
b server faults, instead of as few 3is+ 1 servers, and so they cannot tolerate as many faults for a
given number of servers.

In this paper, we preseptobabilistic opaque quorum systerflROQS), a new type of proba-
bilistic quorum system [18], in order to increase the frawctof faults that can be tolerated by an
optimistic approach from fewer thary5 to as many as/3.15. A POQS provides the same prop-
erties as the strict opaque quorum systems used by, e.g.a@FaB Paxos, but is probabilistic
in the sense that quorums are not guaranteed to overlap muthber of servers required to ensure
safety. However, we prove that this error probability isliggigle for large system sizes (for a given
ratio of b to n). Application domains that could give rise to systems ofhssicale include sensor
networks and edge services.

Byzantine clients are problematic for all probabilistic qum systems because the combination
of high fault tolerance and low probability of error that damachieved is based on the assumption
that clients choose quorums uniformly at random (and indeestly of other quorums and the
state of the system, e.g., the values held by each servethandentities of faulty servers). This
can be seen in our results that show: (i) that probabiligtegoie quorum systems can tolerate up
to n/3.15 faults (compared with less thary5 faults for strict opague quorum systems) assuming
that all quorums are selected uniformly at random, but t@imhaximum fault tolerance drops to
n/4.56 faults if Byzantine clients are allowed to choose quorumsating to their own goals; and
(if) that to achieve a specified error probability for a giveegree of fault tolerance, substantially
more servers are required if quorums are not selected omijat random.

Therefore, we present a protocol with which we constraiants to using pseudo-randomly
selected access sets (sets of servers contacted in orded tquiorums, c.f., [6]) of a prescribed
size. In the limit, we can set the sizes of access sets to b&zége of quorums, thereby dictating
that all clients use pseudo-randomly selected quorumspvitling a mechanism that guarantees,
in practice, the behavior of clients that is assumed by gibisaic quorum systems. However, as
shown in Section 4.4, the notion of restricted access sktwsls a range of options in trading
off the low error probability and high fault tolerance of cpletely random quorum selection, for

1

the guaranteed single-round access provided when theneagaglable quorum (one in which all
servers respond) in every access set.
Our contributions are as follows:

e We present the first family of probabilistic opaque quorurstssn constructions. For each
construction, we: (i) show that we are able to reduce the murmbservers below th& + 1
required by protocols that use strict opaque quorums, f@yethat it works with vanishing
error probability as the system size grows, and (iii) evi@uhe characteristics of its error
probability over a variety of specific system sizes and coméitions.

e We present the first analysis of a probabilistic quorum systeat accounts for the behavior
of Byzantine clients. We anticipate that a faulty client magase quorums with the goal of
maximizing the error probability, and show the effects thit may have.

¢ \We present an access-restriction protocol that allowsgidibtic quorum systems to tolerate
faulty clients with the same degree of fault tolerance adl ifleents were non-faulty. One
aspect of the protocol is that servers work to propagate ahees of established writes to
each other in the background. Therefore, we provide arsglysiique to opaque quorum
systems, of the number of servers that must propagate afealii¢éo be accepted by another
server.

The remainder of this paper is organized as follows. In $aj we frame our contributions
in the context of related work. Section 3 presents our assangpand system model. In Sec-
tion 4, we introduce probabilistic opague quorum systemd, @mpare and contrast them with
strict opaque quorums systems, highlighting the propettiat make opaque quorums useful for
optimistic protocols. We also compute upper bounds on trestoldb for each construction, and
prove that the error probability goes to zero as the numbeseofers (and) is increased. We
present our access-restriction protocol in Section 5. bii@e 6, we evaluate the error probability
for actual system sizes. Finally, Section 7 concludes tipepa

2 Related Work

Strict Opaque Quorum Systems. Opague Byzantine quorum systems were introduced by Ma-
Ikhi and Reiter [17], in two variants: one in which the numbé&non-faulty servers in a quorum
is at least half of the quorum, and the other in which the nurobaon-faulty servers represents a
strict majority of the quorum. The first construction makeasinecessary for the client to know the
sets of servers of which the system can tolerate failurecgéme term ‘opaque’), while the second
construction additionally makes it possible to create aqual that does not use timestamps. The
paper also proves thab is the lower bound on the number of servers for the first varsonply
changing the inequality to a strict inequality proviés+ 1 is the lower bound for the second. In
this paper, when we refer to strict (non-probabilistic) @pa quorum systems, we are concerned
with the second variant.

The constraints on strict opaque quorums have also beenlus the context of consensus
and state-machine-replication protocols, e.g., the QJafd FaB Paxos [19] protocols, though

2

not explicitly as opaque quorums. Abd-El-Malek et al. [1pyide generic (not just threshold)
opaque quorum system constraints that they prove suffitoemqroviding state-machine replica-
tion semantics where both writes and reads complete in des{pgelined) phase when there is
no write—write contention. Martin and Alvisi [19] use an gp@& quorum system of acceptors in
FaB Paxos, a two-phase consensus protocol (with a destjpadposer) and three-phase state-
machine-replication protocol requiring at le&st+ 1 servers.

Probabilistic Quorum Systems. A Probabilistic Quorum System (PQS), as presented by Malkhi
et al. [18], can provide better availability and fault t@lece than strict quorum systems can pro-
vided; Table 1 compares probabilistic quorums with theicstjuorum counterparts.Malkhi et

al. provide constructions for dissemination and maskingrguns, and prove properties of load and
availability for these constructions. They do not addrgssgoie quorum systems, or the effects of
concurrent or Byzantine writers; we address each of thesaddition, in Section 4, we borrow
analysis techniques from [18], but our analysis is more genie the sense that clients are not all
assumed to communicate only with quorums of servers. Weusls@ McDiarmid inequality [20]
for bounding the error probability; this provides a simpbeunding technique for our purposes
than do the Chernoff bounds used there. The technique thatesemt in Section 5 for restricting
access to limited numbers of servers should be applicableet@onstructions of Malkhi et al.
equally well.

Signed Quorum Systems. Signed Quorum Systems [25] are another attempt to weakemethe
quirements of strict quorum systems. A quorum in a signeduqucsystem (SQS) can include
both servers that respond and servers that are polled bubtd@spond (and are, therefore, be-
lieved by the client to have failed); if a server respondsrie quorum but is marked as failed in a
different quorum, the quorums are saidtgsmatctfor that server. A SQS is constructed such that
if any two quorums do not overlap in a server that respondstio uorum accesses, the quorums
must have at leasta mismatches (this is known as tkdeal-overlapproperty). Then, given the
assumptions that it is rare for any two clients to see a misimfatr a given server, i.e., that a mis-
match occurs with probability at mostand that the probability of a mismatch for a given server
is independent of that for any other server, the probahilftjwo quorums not overlapping (and

1The 2.62b lower bound for masking quorums is not shown in [18], but cargbickly derived using our results
from Section 4.

Table 1: Minimum servers needed for probabilistic and stiimrum variants.

prob. strict presented
Opaque 3.15b+1 5b+1 Here
Masking 2.62b+1 4b+1 [18]
Dissemination b+ 1 3b+1 [18]

hence mismatching in at leaxt servers) is at most — ¢2¢. While signed quorums are related to
probabilistic quorums, they have not been studied in théextof Byzantine faults. Here, in our
analysis of probabilistic quorums, we find that tolerancdptantine faults substantially alters
both the analysis techniques needed and the outcomes shit re

k-quorums. k-quorums [2] also weaken the requirements of strict quorystesns in an effort
to provide greater availability, but focus on offering a peaty calledbounded stalenegbat en-
sures (with certainty, as opposed to with high probabilibgt a read will receive one of the last
k writes, even if messages may be delivered according to thiee of an unconstrained adver-
sary. This is achieved by requiring that the union of the kastites intersects any read quorum.
k-quorums have recently been extended to support Byzantioes& of servers, and multi-writer
protocols [3]. However, as we are not concerned with the Hedrstaleness property that is central
to k-quorums, our results are orthogonal and different frons¢hdvioreover, our results include
treatment of Byzantine failures of clients.

Tolerating Byzantine Clients. No prior work on any of the three types of non-strict quorum
systems listed above considers Byzantine clients. Therbédms work on strict quorum systems

that can tolerate Byzantine clients (e.g., [15, 8]) but thifundamentally unconcerned with the

way in which quorums are chosen because such choices canpatt the correctness of strict

guorum systems.

3 System Model and Definitions

We assume a system with a €étof servers,|U| = n, and an arbitrary but bounded number of
clients. Clients and servers can fail arbitrarily (i.e., Bytae [14] faults). We assume that uptto
servers can fail, and denote the set of faulty server&pwhereB C U. Any number of clients
can fail. Failures are permanent. Clients and servers thaoti¢ail are said to b&on-faulty
We allow that faulty clients and servers may collude, and socagasume that faulty clients and
servers all know the membership Bf(although non-faulty clients and servers do not). We make
the standard assumption that nodes are computationallycbswch that they cannot subvert the
effectiveness of cryptographic primitives.

Throughout the paper, we uSan Serif font to denote random variables, uppercB&LICS
for set-valued constants, and lowerc#aécs for integer-valued constants. In the literaturan-
dom variablesare sometimes restricted only to functions that output meahbers; for clarity in
distinguishing between either fixed sets or permutatioisthose that are sampled from a proba-
bility distribution, we use the term random variable to redéso to a function on a sample space
that outputs either sets or permutations.

The remainder of this section is concerned with (i) our aggions on the behavior of clients,
which lead to a specification of the error probability; anyl Gur assumptions on the delivery of
messages.

3.1 Behavior of Clients

We abstractly describe client operations as eittétesthat alter the state of the servicereads
that do not. Informally, a non-faulty client performs a \ertb update the state of the service such
that its value (or a later one) will be observed with high @doibity by any subsequent operation;
a write thus successfully performed is called “establisife@ define established more precisely
below). A non-faulty client performs a read to obtain theueabf the latest established write,
where “latest” refers to the value of the most recent writcpding this read in a linearization [11]
of the execution. Therefore, we define tt@rectvalue for the read to return to be the value of
this latest established write; other values are cahedrrect We assume that the read and write
operations by non-faulty clients take the following forms:

e Writes: To perform a write, a non-faulty client selectsnaite access setl,, C U of
sizea,,; uniformly at random and attempts to inform all serversdiy of the write value.
Formally, the write isestablishednce all non-faulty servers in some ggt; C A, of size
gwt < aw: Servers havecceptedhis write. (Intuitively, an access set is a set of servers
contacted in order to find a live quorum, c.f., [6].) We refer{; as thewrite quorum sizg
to any @, C U of that size as arite quorum and t0Q; = {Qwt C U : |Qwt| = ¢wi} @S
thewrite quorum system

e Reads: To perform a read, a non-faulty client selectsead access sefl,; of sizea.q
uniformly at random and attempts to contact each servet.into learn the value that the
server last accepted. We denote the minimum number of sefn@n which a non-faulty
client must receive a response to complete the read suotledsf ¢.q < a,q. We refer
to ¢.q as theread quorum sizeto any @),q C U of that size as aead quorum and to
Qra = {Qra C U : |Q.a| = ¢a} as theread quorum system

In a read operation, we refer to each response received freener inA,, as avote for
a read value. We assume that votes for two read values thdt fiesn any two distinct write
operations are distinguishable from each other, even iftheesponding write values are the same
(this is discussed in Section 5). The read operation disdée correct value from these votes in
a protocol-specific way. It is possible in an optimistic il such as Q/U [1], for example, that
the (at least,q) votes may reflect a write operation but not provide enougtlesmce to determine
whether that write is established. In this case, the readsriteelf establish, orepair, the write
value before returning it, to ensure that a subsequent reatiens that value, as well (which is
necessary to achieve linearizability). In such a protab@ reader does so by copying its votes for
that value to servers, in order to convince them to acceptihtee.

For this reason, the correctness requirements for POQ8ssied in Section 4 treat not only
the number of votes that a non-faulty reader observes focdhect value, but also the number
of votes that a faulty client can gather forcanflictingvalue. A conflicting value is a specific
type of incorrect value characterized by the property thadfaulty server would accept either
it or the correct value, but not both. Two values may conflietduse, e.g., they both bear the
same timestamp, or are “conditioned on” the same estallisiniée in the sense used in Q/U. We
assume that this timestamp or similar information can bel tsealistinguish older (stale) values

from newer values. Enabling a faulty client to obtain suéfitly many votes for a conflicting value
would, e.g., enable it to convince other non-faulty serteraccept the conflicting value via the
repair protocol, a possibility that must be avoided for eotness.

Consequently, amrror is said to occur when a non-faulty client fails to return tlugrect
value or a faulty client obtains sufficiently many votes faramflicting value. This definition (or
specifically “sufficiently many”) will be made more preciseS$ection 4.5. Therror probability
then refers to the probability of an error when the clientn@fiaulty or faulty) reads from a read
access sefl,q chosen uniformly at random. While we cannot force a faultgrdlito choosed, 4
uniformly at random, in Section 5 we demonstrate an accedsqwl that enables a faulty client
to assemble votes for a value that can be verified by servedsh@nce, e.g., to perform a repair in
Q/U) only if A.q4 was selected uniformly at random, which is good enough forpouposes. So,
from here forward, we restrict our attention to read accessahosen in this way.

3.2 Communication

The communication assumptions we adopt are common to pooksan probabilistic [18] and
signed [25] quorum systems: we assume that each non-fdidtyt can successfully communi-
cate with each non-faulty server with high probability, d@hce with all non-faulty servers with
roughly equal probability. This assumption is in place tswe that the network does not signif-
icantly bias a non-faulty client’s interactions with sexweither toward faulty servers or toward
different non-faulty servers than those with which anotien-faulty client can interact. Put an-
other way, we treat a server that can be reliably reached bg noonly some non-faulty clients
as a member 0B.

This assumption enables us to refine the read protocol ofd®e®tl in a straightforward way
so that non-faulty clients choose read quorums from an acgetsuniformly at random. (More
precisely, a faulty server can bias quorum selection awamy fquorums containing it by not re-
sponding, but this decreases the error probability, andesocamservatively assume that non-faulty
clients select read quorums at random from their acces$ sletwever, because a write is, by defi-
nition, established once all of the non-faulty servers ynmarte quorum withinA,,; have accepted
it, the write quorum at which a write is established contathservers inA,,; N B; i.e., only the
the non-faulty servers within the write quorum are selecteiformly at random by a non-faulty
client.

The access-restriction protocol of Section 5 requires morsonication assumptions beyond
those of the probabilistic quorums it supports.

4 Probabilistic Opaque Quorum Systems

In this section, we present a family of probabilistic opaquerum systems. We begin by reviewing
the properties of strict opaque quorum systems (Sectigrafid modeling the worst-case behavior
of faulty clients (Section 4.2). Using this, we derive a dossit (PO-Consistency, Section 4.3)
that determines the maximum fraction of faulty servers tizat be tolerated (Section 4.4). We

prove that the error probability goes to zerora&@ndb) is increased if this constraint is satisfied
(Section 4.5).

4.1 Properties of Opaque Quorums

As an introduction to probabilistic opague quorum systemespegin by reviewing the concepts
of strict opaque quorum systems [17]. Define the followingcfions:

correct(Qra, Qwi) [(Qua N Qi) \ B (1)
conflicting(Q.a, Qwt) : [(Qra N B) U (Qra \ Qut)| (2)

correct(Q.q, Qwt) returns the number of non-faulty servers in the intersactiba pair of read
and write quorums, whileonflicting(Q.q4, Q) returns the other servers in the read quorum, all
of which may return a conflicting value in some protocol exggu Let a read operation return
a value that receives at leastvotes. Then, the consistency property for strict opaquelquo
systems is as follows:

O-Consistency: VQ.q € Qua, VQwt € Qs : COrrect(Q,q, Qwi) > r > conflicting(Qrq, Qwt)-
3)

The property states that the number of non-faulty servetsarnntersection of any read quorum
and write quorum must represent a majority of the read quoB®cause of this and the fact that
newer values can be distinguished from older values, threcovalue—which, by definition, is es-
tablished by being written to all of the non-faulty serversiwrite quorum—can be distinguished
from other values, even if some non-faulty servers (andaailty servers) present conflicting or
stale values. At a high level, O-Consistency guarantees:

P1 No two conflicting writes are both established.
P2 Every read observes sufficiently many votes for the cowadae to identify it as such.

P3 No (non-faulty or faulty) reader obtains votes for a cetifig value sufficient to repair it
successfully.

P1 ensures that there is a single correct value to returnnfzres that a read by a non-faulty
client always returns the correct value. Finally, P3 enstinat no faulty client is able to gather a
majority of votes for a conflicting value as a result of a reBldbte that the original statement of
O-Consistency [17] considers intersection of any two quaumot just a read quorum and a write
qguorum, as the original formulation did not consider migtiguorum types. Our revised statement
also implies constraints on the intersection of write quusisufficient to guarantee P1 (as shown
in Appendix A), as well as P2 and P3.

The minimum number of servers required by strict opaque wumystems is bounded by a
worst case scenario (Figure 1(a)), in whickervers are faulty, and all are in the intersection of a
given read quorum and write quorum. In this case, the minimumber of non-faulty servers in
the intersection ig,q + ¢wt —n — b. This means that, if all guorums are of size- b (the maximum

7

Correct value I:] Conflicting value[:]

AN e
o o

‘ Qrd Qrd Qrd

@) (b) (©)

Figure 1: Servers that return a given conflicting valu€ig: (a) Worst case; (b) Typical case; (c)
Restricted writers.

size that guarantees liveness in an asynchronous systen)(3) requires2(n — b) —n — b >
(n —b)/2, orn > 5b.

Given that the stated assumptions of a strict opaque quoystara hold, the system behaves
correctly. In contrast to this, probabilistic opaque quorsystems (POQS) allow for a (small)
possibility of error. Informally, this can be thought of adaxing O-Consistency so that a variant
of it holds for most—but not all—quorums. To ensure that trabpbility of an error happening is
small, POQS are designed so that P1, P2, and P3 hold with hopapility.

Figure 1(b) illustrates a more typical scenario, in whicé thulty servers are partly in the in-
tersection, partly in each quorum, and partly in neithergoo This is one feature upon which we
rely to reduce the total number of servers required by thestacase scenario and O-Consistency.
In addition, because the focus of POQS is the expected catsadof the worst case, we further
reduce the expected number of servers that return a comfligéilue by assuming that each write
request can be sent to only a limited number of servers (dmsbe enforced by the protocol of
Section 5). Figure 1(c) shows an example of this, in whichcth&flicting value is written t@)’, ,,
and therefore accepted only by the server@in \ (Qwt \ B).

4.2 Behavior of Faulty Clients

Because a faulty client can behave arbitrarily, we examieewhy that a faulty client should
choose quorums to maximize the chance of error. During awaitfaulty client seeks a write
qguorum that violates P1 or that maximizes the probabiliat #2 is violated on a subsequent read
by a non-faulty client or that P3 is violated on a subsequesd by any client. During a read, such
a client seeks a quorum that violates P3 to use for repair.

Throughout this section, let,,; denote a write access set from whigh, (a quorum used for
an established write) is selected by a faulty clientAgtbe a write access set used for a conflicting
write by a faulty client, and letl,4 be a read access set from whigh,, a read quorum, is selected
by a faulty client. Again, we assume that,, A ., andA,q are selected uniformly at random, an
assumption that can be enforced using the protocol of Sebtio

1.AwtN B
2 A\ (A'wt U B) Ot 1. Au N (B U (A'wt\ Qui))
3.(Awt N A'wi)\ B {B 2. A\ (B U (A'wt\ Qut))

DI ===

2 Ard

L —

@ (b)

Figure 2: The preference (1st, 2nd, 3rd) a faulty client giteea server when choosing @), or

(b) Qra-

Writes by a faulty client. A faulty client can increase the error probability with aterin one

of two ways: (i) by establishing a write at a write quorum tbahtains as many faulty servers as
possible, or (ii) by performing the write of a conflicting ualin a way that maximizes the number
of non-faulty servers that accept it, i.e., by writing toafllA] , \ Q... Since a faulty client may
performbothsuch writes, we assume that this client has knowledge,paind A’ , simultaneously.
However, it is important to note that a faulty client does Inate knowledge of the read access set
A!, used by a non-faulty client—or specifically the non-fauky\&rs within it, i.e. A, \ B—and
S0Qy: is chosen independently af , \ B.?

Figure 2(a) shows the preferences that a faulty client givegrvers when choosirg,,; to do
both (i) and (ii). Goal (i) requires maximizing),: N B| to maximize the probability that P1 or P2
is violated; hence, first preference is given to the servers,; N B in a write. Goal (ii) requires
minimizing |(Qw: N A%,) \ B| to maximize the probability that P1 or P3 is violated; heribe,
servers in Ay, N A’,) \ B are avoided to the extent possible.

Reads by a faulty clients. A faulty client can increase the probability that P3 is vieta by
choosing a read quorum with the most faulty servers and aolyfservers that share the same
conflicting value. Figure 2(b) shows the preferences thau#yf client gives to servers to do so.
Because a faulty client can collude with the server&jnt can obtain replies from all servers in
B that are also id,q, i.e., the servers il N B. It can also wait for responses from all of the
non-faulty servers id,q with the conflicting value, i.e., those .4 N (A%, \ Qwi). Only after
receiving all such responses, and only if these responsebernfewer thany,,, must it choose
responses from servers with other values.

4.3 Probabilistic Constraint

In this section, we present PO-Consistency, a constrainttakD-Consistency specified in terms
of expected values for POQS. As detailed below,N&tCorrect be a random variable for the

2More precisely, with the access protocol in Sectiom5, can be hidden unless, and until, that read access set
is used for repair, at which point it is too late for faultyesiis to choosé€),,; so as to induce an error in that read
operation.

minimum number of non-faulty servers that report the cdrvatue in a randomly chosen read
guorum taken by a non-faulty client. (Recall that an erroraissed byMinCorrect being too small
only for reads performed by a non-faulty client.) Also, M#&xConflicting be a random variable
for the maximum number of servers that report a conflictinge/én a read quorum taken from a
randomly chosen read access set by a faulty client that seekaximizeMaxConflicting. (Recall
that an error is caused bylaxConflicting being too large even if the client is faulty.) Then the
consistency property for POQS is:

PO-Consistency: E [MinCorrect] > E [MaxConflicting] . 4)

As shown in Section 4.5, PO-Consistency allows us to chookeeahold,-, for the number of
votes used to determine the result of a read operation, wehieiring that the error probability
vanishes as we increage(andb). While this does not guarantee O-Consistency, i.e., it may be
possible that P1, P2, or P3 does not hold, the probability@Gi€onsistency is violated goes to
zero asn (andb) is increased.

We now derive expressions fdtinCorrect andMaxConflicting. Recall thatB is the set of up
to b faulty servers. Letd,; be a randomly chosen write access set, andilgtbe a randomly
chosen read access set. As stated in the system model, aavrtg is established once it has
been accepted by all of the non-faulty servers in @gy, a write quorum withinA,,;. Therefore,
we conservatively assume that the number of faulty sermeis,i is:

MalWrite = |Ay: N B|. (5)

Here, A, is a random variable taking on a write access set chosenronyf@at random fromA,;.
Q¢ also contains,; — MalWrite non-faulty servers, not necessarily chosen at random, in
addition to theMalWrite faulty servers. LeC,,; represent these non-faulty servers:

th - th \ B7 (6)
|Cyt] = gwt — MalWrite, (7

whereQ, is a random variable taking on the write quorum at which thitgews established, and
Cyt Is arandom variable taking on the set of non-faulty servettsimvthis write quorum. Then, the
number of non-faulty servers that return the correct vaigeread quorum selected by a non-faulty
clientis,

MinCorrect = |Qpa N Cyl, (8)

whereQ,q is a random variable taking on a read quorum chosen unifoaintgndom fromA,,
itself chosen uniformly at random from,,.

A faulty client may select its read quorum, , to maximize the number of votes for a single
conflicting value in an attempt to invalidate P3. Theref@a®described in Section 4.2, the client
first chooses all faulty servers 4. The number of such servers is,

Malevolent = |A,q N B|. (9)

10

The faulty client also chooses the non-faulty servers tht for the conflicting value that is most
represented inl,q; these servers are a subset df, \ (Cy: U B)). This conflicting value has an
associated write access s&f, chosen uniformly at random from,,, and no vote from a non-
faulty server not inA,,, will be counted among those for this conflicting value (bessawotes for
any two write operations are distinguishable from eachrakaliscussed in Section 3.1). LAt,
be a random variable taking off,,. Then, the number of non-faulty serversAg, that vote for
this conflicting value is,

Conflicting = |A;q N (AL, \ (Cye U B)). (10)

A faulty client can choose all of these servers@py. Therefore, since the sets of servers measured
by Malevolent and Conflicting are disjoint (the former consists solely of faulty servehe latter
solely of non-faulty servers), the maximum number of ins&nof the same conflicting value that
a faulty client will select foiQ) 4 is,

MaxConflicting = Malevolent + Conflicting. (11)

4.4 Minimum System Sizes

In this section, we consider PO-Consistency under variossnagtions concerning the sizes of
access sets and quorums in order to derive the maximumdnacfifaults that can be tolerated
with decreasing error probability as a functionrofandb). Our primary result is Theorem 4.4
which provides an upper bound @nfor which PO-Consistency holds. It is derived using the
expectations oMinCorrect and MaxConflicting that are computed using the worst-case behavior
of faulty clients presented in Section 4.2; these expemtatare given in Lemmas 4.1, 4.2, and 4.3.

Lemma 4.1.

Qrd<n‘QWt - awtb)

E [MinCorrect| = e

(12)

Proof. We computét [MinCorrect| taking into consideration the potential behavior of faclignts
described in Section 4.2. To compuéMinCorrect|, we begin withE [MalWrite]. From the def-
inition of MalWrite (5), we see thallalWrite is a hypergeometric random variable, characterized
by a+ draws from a population of elements containingsuccesses. Therefore,

awtb

E [MalWrite] = o (13)

Then, considering the definition ®&finCorrect (8), we see thaf),q is selected independently of
Cyy; thereforeMinCorrect | MalWrite = m is a conditional hypergeometric random variable char-
acterized byy,q draws from a population of elements containing,; — m successes. Therefore,

11

by the rules of conditional expectation (e.g., see [21, Té®o2.7]) and linearity of expectation,
we have that,

[E [MinCorrect]
= ZE [MinCorrect | MalWrite = m| Pr[MalWrite = m)|

= E [E [MinCorrect | MalWrite| |
=B |2 (g — MalWrite)|

n
— Gt _ I (MalWrite]
n n
_ 4rd (nqwt 2_ awtb) . o
n
Lemma 4.2.
E [MaxConflicting] < % (7% + 2n*ayy — nawb — Nquy — agyn + alb) . (14)

Proof. We computeE [MaxConflicting] taking into consideration the potential behavior of faulty
clients described in Section 4.2. By applying linearity gbegtation to (11), we have that,

E [MaxConflicting] = E [Malevolent] + E [Conflicting] . (15)

A.q is selected independently @. As such, by (9), we have thdllalevolent is a hypergeo-
metric random variable characterized &y draws from a population ot elements containing
successes. Therefore,

rab
[E [Malevolent] = (rd? (16)

n

To calculatek [Conflicting], first note that:

E [Conflicting]

=E[[Au N (A \ (Gt U B))]

=E[[((Aa NAG) \ B) \ Cutl]

=E[[(A NAG) \ Bl — [(Ara N AL) N (Cue \ B)]

=E H(Ard N Aiwt) \ BH —E H(Ard N A(ivt) N thH (17)
Where the first line is due to (10), and the final line holds dum&arity of expectation and because
Cywt C U\ B by definition (6). We calculat& [|(A,q N A’,) \ Bl directly as follows. Consider an
indicator random variabled,,, such thatnd,, = 1if u € (A,gNA.,) \ B, andind,, = 0 otherwise.

For eachu € U \ B, we havePr[Ind, = 1] = “43, sinceA,q and A}, are chosen independently.
By linearity of expectation:

Ell(Aan A)\ Bl = 3 Pr(nd, = 1) = (n—b) (*99) = ay (7— (%) (%))

uecU\B

12

Because a faulty client may perforboth a write that becomes established and another write that
conflicts with the first write, we cannot assume that is selected independently df, .. There-
fore, we calculaté® [|(A.g N AL,) N Cyil] @SE [|Aa N (AL, N Cyi)|]. LetCl = |AL, N Cyt|. Since
Aq is selected independently !, N Cy,), we see that|A.q N (AL, N Cyi)| | Cl = ¢) is a hyper-
geometric random variable characterized:ydraws from a population of elements containing
c successes. Therefore, by the rules of conditional expectand linearity of expectation we have
that,

E HArd N (Aim N th)H

=Y E[JAwu N (A, N Cui)| | Cl = ¢ Pr[Cl = ¢]
= E[E[JA N (A N Cor)| | CI]]
arq
e[l
- %dE [Cl] (19)

As discussed in Section 4.2, to improve the chance that actomdl write is selected (incorrectly),
the client may minimiz&l by choosing the servers f6f,, from (A, \ (A%, U B)) first. Thus, we
conservatively calculate [Cl] as follows:

E[Cl = max(0, E[|Cyf] — E[JAw \ (AL, U B)|])
> E[|Cul] — E[JAwi \ (AL U B)| (20)

By the rules of conditional expectation and (7) we have that,

Ayt b

E(|Cutl] = E[E[|Cutl | MalWrite]] = E g — MalWrite] = g — E [MalWrite] = gy — ==,
(21)

We calculateE [|Ay: \ (AL, U B)|] directly as follows. First, note tha,; \ (AL, U B) = (Aut \
Al)\ B. Next, consider an indicator random variable,, such thaind, = 1if u € (Ay\AL,)\B,
andlnd, = 0 otherwise. For each € U \ B, we havePr[Ind, = 1] = 2% 'sinceA’ and
Ay are chosen independently. By linearity of expectation:

E[lAw\ (A UB)]= Y Pr(lnd, =1) = (n —b) (W) = %m — aw)(n —).
ueU\B

(22)

By (20), (21), and (22), we have that,

E[Cl] > (qwt - awtb) =) (1 — D) = Gt — % <b ;= aw)n = b)> . (23)

n n?

13

Therefore, by (19) and (23) we have that,
, ay Oy N — Qg)(n —b
E A N (AL, N Cyy)|] > 7‘3‘ (qwt - = (b+ (I >>) : (24)

n n

Combining and simplifying equations (17), (18), and (24),ok¢ain,
E [Conflicting] < %(Qawtng — N — gun® — aZen + a2b), (25)
and by (15), (16), and (25) we have,

[E [MaxConflicting] < %f (7% + 2an” — nawh — nque — agn + alb) . (26)

Lemma 4.3. If PO-Consistency holds, then
E [MaxConflicting] = rd N2b + 202 Ay — Nawih — N2y — aZn + a2 b) . (27)
wt wt
n?

Proof. The logic for the calculations follows that of the proof oframa 4.3, except that if PO-
Consistency holdsg [Cl] > 0. Assume the contrary, i.€E [ClI] < 0 and PO-Consistency holds.
Then by (19),E [|(A.a NAL,) N Cy|] < 0. Thus, because,q > ¢q anday, > gwi, by (15)
and (17) we have,

[E [MaxConflicting]

= E [Malevolent] 4 E [Conflicting]

Conflicting]

(At (AL \ BI] = E [(Arg 1 A) (1 ol
(Ara N AL) \ B]

(Qrd N th) \ BH

Qra N Cynl] -

= E [MinCorrect]

E
[
I
I
[

But this cannot be true because PO-Consistency holds. Asthigcimequalities in equations (20),
(23), (24), (25), and (26) all become equalities. O

Theorem 4.4. PO-Consistency holds iff

2
(a'rdQth - 26erawtn + Ayt Ard + Qrdq“/tn)n

b < 5 5
n=Grg — QrdAwtN + At Qrd + GrdAwtT

Proof. We set the value di [MinCorrect] given in Lemma 4.1 greater than and the largest possible
value of E [MaxConflicting] given in Lemma 4.2 and solve férto obtain the inequality in The-
orem 4.4, this inequality therefore implies PO-Consisterigyt by Lemma 4.3, PO-Consistency
in turn implies thatE [MaxConflicting] is equal to its maximum possible value and, as such, PO-
Consistency implies the inequality in Theorem 4.4. n

14

Benign clients (i.e., those that are non-faulty or that falydy crashing) are different because
they can be trusted to follow the read and write protocotedisn Section 3. In particular, we can
trust that a client will select a read quorum at random withrequiring that the client select the
quorum from a randomly-chosen access set; we reflect thigricadculations by not differentiating
between read quorums and read access sets (i.e., by sgftirg;.q). In addition, we can assume
that all quorums used in writes are chosen independently.

Theorem 4.5.If all clients are benign, then PO-Consistency holds iff

b < (thn - a;zvtn ‘z QWtawt)n.

n* + At
Proof. We can now assume that all servergip, are chosen uniformly at random from \ B
since writes are independent. L2t= |(A.a NAL,) N Cyy|. Instead of the calculations in (20)—(24),
we calculatel [D] by beginning withE [D | C,¢]. Consider an indicator random variabtel,,,
such thatnd,, = 1if u € (A,g N AL,) N Cyt, andind,, = 0 otherwise. For each € C,, we have

Pr[lnd, = 1] = “43, sinceA,q and A}, are chosen independently. By linearity of expectation:

Crd Qg ArdQwt | Cw
E[D|Cy) =) 5% == G| (28)

n? n?

u€Cwt

Then, by the rules of conditional expectation and (21),

Ard Ayt ’ th |

n2

E([(ha 1A, 1 Cul] = EEEDIC] - 5 | = =g

B ar(;c;m (gut — awtb) _ ardawt(q‘,:;;z — awtb). (29)
Therefore, by (17), (18), and (29),
E [Conflicting] = Gran (0 nl:l?)— it amb), (30)
and by (15), (16), and (30),
[E [MaxConflicting] = % (n2b + 12y — Nawb — Mg Gt + afvtb)) (31)

SolvingE [MinCorrect| > E [MaxConflicting] for b, we have the inequality in the theorem. [

As shown in Section 4.5, a construction exhibits decreasingy probability in the limit with
increasingn if PO-Consistency holds. Therefore, the remainder of thisize is concerned with
interpreting the inequalities in Theorems 4.4 and 4.5. @ahgsis (summarized in Table 2) shows
that the best bounds are provided when: (i) both types ofujusrare as large as possible (while
still ensuring an available quorum), i.e.q = ¢+ = n — b; and (ii), given (i), that access sets are
as small as possible.

We first consider scenarios in which a read or write can be tetegbwith a single access set
because.,.q = ¢.q + b (“single-phase reads”) and,;: = ¢, + b (“single-phase writes”). Then, we
derive the better bounds that can be achieved if we,get ¢.q + b Or ay < ¢« + b. Finally, we
consider scenarios pertaining only to clients that aregreni

15

Table 2: Lower bounds on for various configurations.

n > =n =n-—>0 =n—2b| eq. | Sec. 4.4.x
315b = Ard Grd Qwt Gwt - (40) 41 5
3.83b | ayq Grd Gt Gt - (38) 3,4
4.00b Ayt Ard qrd Gwt - (36) 21 41 S
4.08b - Urd Ayt Gt Gra (39) 3
4.56b | a.q G Grd Gt - (32)] 1,2,3,4
4.73b | ay rd Gt (rd (33) 1,3
5.49b - Ged Grd ot Gt (37) 2
6.07b Urg Qrd Owt Qwt (34) 1,2
6.19b - Qrd Ayt Grd Qwt (35) 1

4.4.1 Single-Phase Reads and Writes.

Figure 3(a) plots the results of solving the inequality iredlrem 4.4 fom wheng,; = aw — b,
¢-a = arq — b, and the sizes of access sets are varied betweehandn. We observe that the best
bound is found when,; = a,q = n andgy: = ¢.¢ = n — b. In this case, we require,

B <5+\/1_7
B 2

) ~ 4.561552813, n>c-b. (32)

We make the lower bound om progressively worse by decreasing the sizes of accessasals (
therefore quorums). If we sety = n — b anda,,; = n, we find,

c= (3 v \/5) ~ 4732050808, n > c-b. (33)

By decreasing, as a result of decreasing., we find that we soon fail to break the> 5b bound
of strict opaque quorum systems [17]. If we sgt = n anda,; = n — b, we require,

¢ ~ 6.065103370, n>c-b. (34)
Finally, if we seta,q = aw = n — b,

¢~ 6.186789391, n>c-b. (35)

4.4.2 Single-Phase Writes

Figure 3(b) plots the results of solving the inequality inebhem 4.4 fom whengy: = aw; — b,

¢4 = n — b, and the sizes of access sets are varied betweed andn. Because a read access
set might not contain an available quorum, we can achieverbbbunds than (32) by setting
a;q < ¢rq + b. The best bound, wheny = n — b anda,; = n, is,

n > 4b. (36)

16

6.2b 6.0b 58b 56b 54b 52b 50b 48b 4.6b 6.0b 5.5b 5.0b
n T T T T T T T n T T
o n /xj'” ®
_ n0.2b | ¢ = 4 _ no2bf o R
D i s D '
@ @ Xt] el s
1) B e] \ -
§ n-0.4b - ® Xl R § n-0.4b - Q X R
8 o X 8 9 g X
S noébf o e 4 S nosebf o & X .
N ! Py N o g
K2 ® X 8 o X
® nosbl o m< @ 1 nosol By Ao -
o K/ o’ w \Q /){l
n-b o ! ! ! ! ! ! n-b 1 v
6.2b 6.0b 58b 56b 54b 52b 5.0b 4.8b 4.6b 6.0b 5.5b 5.0b 4.5b 4.0b
n> n>
B Brg=N, 8uy=S --m- a4=n-b, a,=s B 8rg=N, 8uy=S --m- a4=n-b, a,=s
—+— a,g=S, ay=Nn ---- ag=s, a,=n-b —+— a,4=S, ay=Nn ---- ag=s, a,=n-b
——X-—- A, =Au=S ——X-—- A, =au~S
(a) single-phase reads and writes (b) single-phase writes
4.8b 4.6b 4.4b 4.2b 4.0b 3.8b 46b 44b 42b 40b 38b 36b 34b 32b
n T T T T & n T T T
b
—~ n-0.2b | [B —~ n-0.2b |- B
] "]
o X B, $ @
@ o) b
& n-0.4b | X @ 5} E ® n-0.4b - B
Q N\ . K o
& X E, o} e
o n-06b X m. o 4 S noébf . E
N AN N N
& X B8 & ®,
” nogb | k) 1 7 nosf e
ax @ m. *.mp
n-b ! ! oSNy ey n-b ! - ! TR
4.8b 4.6b 4.4b 4.2b 4.0b 3.8b 46b 44b 42b 40b 38b 36b 34b 32b
n> n>
B 8g=N, Q=S --m— a,4=n-b, a,=s B 8g=N, Q=S --m— a4=n-b,a,=s
—+— ,4=S, 8y=n --o- ag=Ss, ay=n-b —+— 8,4=S, ay=n --o- ag=Ss, ay=n-b
---x--- A= a, =S --x--- A= a,=S

(c) single-phase reads (d) best bounds

Figure 3: Sizes of access sets to achieve a given lower boondfor: (a) ¢.q = a,q — b and
Gwt = awt — b; (0) gra = n — b andgy = aw — b; (C) Ga = aa — b @ndgy, = n — b; (d)
Qrd:qwt:n_b-

However, as in Section 4.4.1, decreasing by decreasing:, results in worse bounds, again
quickly worse tham > 5b. If a,q = aw: = n — b we require,

¢~ 5.486416764, n>c-b. (37)

The worst bound is whet,y = n anda,; = n — b, i.e., (34).

4.4.3 Single-Phase Reads

Figure 3(c) plots the results of solving the inequality inedhem 4.4 form wheng,s = n — b,
¢a = arq — b, and the sizes of access sets are varied betweerd andn. All of the points in
the graph represent an improvement onsthe 56 bound of strict opaque quorum systems. As in
Section 4.4.2, we find that we can achieve better bounds 8&nlfere by decreasing the size of

17

awt. For example, iti,; = n — b anda,q = n, we require,

¢ ~ 3.831177208, n>c-b. (38)
And if ay = a,q = n — b, we require,

¢ ~ 4.079595625, n>c-b. (39)

The case where,; = n anda,q = n — b is bound by (33).

4.4.4 BestBounds

Now considek,: = ¢.a = n—b. This results in better bounds than the scenarios in whekittes
of quorums are smaller. Figure 3(d) plots the results ofieglthe inequality in Theorem 4.4 far
wheng,: = ¢.¢ = n — b, and the sizes of access sets are varied betweeh andn. Because the
sizes of quorums are fixed at— b, we can improve on (32) by decreasing the size.gfor a,q;
the best bound, achieved when = ayw = n — b, is,

¢~ 3.147899035, n>c-b. (40)

This represents the assumption in [18], in which all seragesaccessed via randomly selected
qguorums. Otherwise, ii,q = n anday; = n — b we have (38), and i, = n — b anda.; = n,
we have (36).

4.4.5 Benign Clients

Theorem 4.5 shows us that in this caseqjf = n, we require (36), and i, = n — b we
require (40). However, as seen in Figure 4, for valuesgfstrictly between: andn — b, we
achieve better maximum ratios &fn than would a system that can tolerate faulty clients.

4.5 Bounding the Error Probability

Our primary result in this section is Theorem 4.8, which shitiat the error probability goes to
zero asn grows, assuming that the ratio of eachbpfi,q, ¢4, awi, @andg, t0 n remains constant.
In this section, the symbol®9*, “w” and “Q2” are used as in standard asymptotic notation.

Lemma 4.6. LetE [MinCorrect] > E [MaxConflicting], and let the ratio of each df, a,q, ¢rd, awt,
andq, ton be fixed. Then,

E [MinCorrect] = 6(n)
E [MaxConflicting] = 0(n)
[E [MinCorrect] — E [MaxConflicting] = 6(n).
Proof. Given that the ratio of each &f a.q, ¢.q, awt, @aNdgy: t0 n is constant, we have by (12)
and (27) thaif [MinCorrect| = #(n) andE [MaxConflicting] = 6(n), and that ifE [MinCorrect] —

[E [MaxConflicting] is not identically zero thef [MinCorrect] — E [MaxConflicting] = 6(n). So,
the result follows from the stipulation th&t[MinCorrect] — E [MaxConflicting] > 0. O

18

4.0b 39b 3.8b 3.7b 3.6b 35b 3.4b 3.3b 3.2b

n Ly T T T T T T T T
\fi\‘
R

__ n02b [LR _
8 \.\\\“
I S~
S n-0.4b LN .
o SRS
& A
o n-0.6b - Cm e i
N N
& Tm A
n e

n-0.8b -,\}‘A\ -

Tmla
n-b I I I I I I I I TEe

4.0b 39b 3.8b 3.7b 3.6b 35b 3.4b 3.3b 3.2b
n>

| ——w - Tfaulty clients (a,=s, 4,g=a,g=n-b) |
----«---benign clients (a,,=s)

Figure 4: Benign clients vs. faulty clients—sizes of accasts-to achieve a given lower bound on
n for gu = n —b.

Suppose a read operation always returns a value that receme than votes, where
[E [MaxConflicting] < r < E [MinCorrect|. Then, the error probability, is

¢ = Pr(MaxConflicting > r V MinCorrect < r). (42)
Theorem 4.8 states thatifis chosen so that

E [MinCorrect] — r = #(n) and
r — E [MaxConflicting] = 6(n) (42)

thene decreases as a function.af For exampler can be set to
(E [MaxConflicting] + E [MinCorrect]) /2.

Our proof of Theorem 4.8 uses the following theorem, which ssmplification of the Molloy
and Reed statement [22, p. 172] (c.f., [22, p. 81]) of the Mclid Inequality.

Theorem 4.7([22]). LetZ = z(I,,...,M;) be a random variable that is a function of a series
My, ..., M, of independent random variables, where eélltakes on a random permutation (bi-
jection)r : {1,...,|P|} — P of afinite non-empty se&?. Also, for some positive constamtand
w, let the following conditions hold (wherelif; = 7, then themapping(s, j, m) indicates that

Wj(i) = m):

M1 Swapping the mappings of any two elements in a single petionta; (i.e., changing
{(,7,m),(@', 5,m') } to {(¢, j,m),(i, j,m") }, wherei # ¢ andm # m') changes the value
of Z by at mosb.

M2 If Z = z(my,...,m) = x, then there exists a set pf distinct mappings
{1, 31, ma), -, (s Jpws Myua) } SUCh thatz(ry, ..., ;) > a for any, ...« sharing the
same set of mappings.

19

If d = w(y/E[Z]) and0 < d < E [Z], then:
Pr(|Z —E[Z]| > d) = 2/ (/52), (43)

Theorem 4.8. Let MinCorrect, MaxConflicting, and r be defined as above (so PO-Consistency
holds) and let the ratio of each éf a.q, ¢.q, awt, @ndgy to n be fixed. Then,

€ =2/ 1 2/e0M)

Proof. Consider the following method for computiridinCorrect and MaxConflicting. Fix any
set of b servers to constitut®. Next, define random variablés,, ,, IM,, andTll;, each taking
on a random permutatiofi, ..., |U|} — U, whereU is the set of alln servers. LeQ,q be the
random variable used in (8), i.e., a random variable takmghe read quorum selected uniformly
at random. Then consider the following definitions:

e DefineA,; = {My(1),...,Mo(awt)}-
e DefineAl, = {Mi(1),...,Mi(aw)}-
e DefineA,q = {My(1),...,My(awq)}-
o DefineQ,q = {M3(1),...,M3(awq)}-

Because each permutation is randomly selected (indepéndémt), so too aré\, AL, A.q, and
Q.q. DefineC,; in accordance with Sections 4.3 and 4.4. Specifically, chitsg,,. — MalWrite
servers at random first froifd\, \ (AL, U B)) and only then from{A,; N (A%, \ B)). To do this,
select the servers according to the random order imposél kye., selectl,(:) beforelly(i + 1)

if both servers are in the relevant seA{; \ (AL, U B)) or (Aw: N (AL, \ B))). Random selection
is sufficient because a faulty client gains no advantage py#rer scheme.

Given that we have defingd,, A’ ,, Aq, Qua, Cwt, @andB, we can directly calculat®linCorrect
and MaxConflicting using definitions (8) and (11). Consider this in relation tedtem 4.7 as
follows. Swapping any two elements in one permutation camgk the value dilinCorrect by at
most1 (by adding or removing a server from the relevant interseotif the sets), and because an
additional server added #9.4 cannot be both faulty and non-faulty, swapping any two el@sm
one permutation can similarly change the valu&lakConflicting by at mostl. Thereforepy = 1

in Condition M1. Additionally, ifMinCorrect = x, then the mappings

U {5 (), 0,u), (M5 (u), 3, u)}

ueQrd mCWt

suffice to satisfy Condition M2, wher@,, andC,,; are the values taken on 1,4 andC,, re-
spectively. Thereforgy = 2 for MinCorrect, and similarlyu = 3 if Z = MaxConflicting.

20

To derive a bound oir(MinCorrect < r), we setd = E [MinCorrect] — r. Because of (42),
d = 6(n) and thereforel = w(/E [MinCorrect]). As such, by Theorem 4.7 and (43) we have,

Pr(MinCorrect < r)
= Pr(MinCorrect < E [MinCorrect| — d)
= Pr(E [MinCorrect] — MinCorrect > d)
Pr(|MinCorrect — [E [MinCorrect| | > d)
_)R (02 /o0m)
= 2/69(").

VAN

To derive a bound oPr(MaxConflicting > r), we setd’ = r — E [MaxConflicting] andd =
min(d’, E [MaxConflicting]), to ensurel < E [MaxConflicting]. Again, by Lemma 4.6 and (42),
d = 0(n), and sad = w(/E [MaxConflicting]). Therefore, by Theorem 4.7 and (43) we have,

Pr(MaxConflicting >)
< Pr(MaxConflicting >)
= Pr(MaxConflicting > d’' + E [MaxConflicting])
Pr(MaxConflicting — E [MaxConflicting] > d')
(
(

MaxConflicting — [E [MaxConflicting] > d)
|MaxConflicting — E [MaxConflicting] | > d)
9 /69(9<n>2/9<n>)

2/69(”).

Pr
Pr

VANVAN

Finally, note the following about (41):

Pr(MaxConflicting > r vV MinCorrect < r)
= Pr(MaxConflicting > r) + Pr(MinCorrect < r)—
Pr(MaxConflicting > r A MinCorrect < r)
< Pr(MaxConflicting > r) + Pr(MinCorrect < r). O

5 Access-Restriction Protocol

Our analysis in the previous sections assumes that all aise¢s are chosen uniformly at random
by all clients—even faulty clients. Therefore, here we présan access-restriction protocol that
is used to enforce this. Recall from Section 3.1 that the needefad access sets to be selected
uniformly at random is motivated by repair. As such, protse¢bat do not involve repair may not
require this access-restriction protocol for read openasti

Our protocol must balance conflicting constraints. Firstli@ant may be forced to discard a
randomly chosen access set—and choose another—becawes agtess set (of size less than
servers more than a quorum) might not contain an availatdeumo. However, in order to support

21

protocols like Q/U [1] that use opaque quorum systems fagleinound writes, we cannot require
additional rounds of communication for each operationsnecludes, for example, a protocol in
which the servers collectively choose an access set at maadd assign it to the client for every
operation. As such, a client must be able to choose from pheliccess sets without involving the
servers for each. Yet, a faulty client should be preventethfdiscarding access sets in order to
choose the one that has the highest probability of causiegrangiven the current system state. In
addition, we should ensure that a faulty client does not fiefn@m waiting for the system state to
change in order to use a previously chosen access set tlmhbsenore advantageous as a result
of the change.

In our protocol, the client obtains one or more random valaash called a Verifiable Random
Value (VRV), with the participation of non-faulty serveisach VRV determines a unique, verifi-
able, ordered sequence of random access sets that thecarense; the client has no control over
the sequence. To deter a client from discarding earliersscsets in the sequence for potentially
more favorable access sets later in the sequence, the grotganses an exponentially increasing
cost (in terms of computation) for the ability to use latecess sets. The cost is implemented
as aclient puzzld13]. We couple this with a facility for the propagation oftleorrect value in
the background so that any advantages for a faulty clieftenctirrent system state are reduced
if the client chooses to delay performing the operation &hikexplores later access sets. Finally,
to deter a client from waiting for the system state to chamgetie the validity of a VRV (and its
sequence of access sets) to the state of the system so tlkatat@n proceeds, any unused access
sets become invalid.

The remainder of this section is structured as follows: i8a&.1 discusses how a client obtains
a VRV; Section 5.2 discusses the client puzzle and how theeseg of access sets is computed
from the VRV, Section 5.3 outlines the responsibilities efvers concerning verification of the
validity of access sets; and Section 5.4 provides detaiteebackground propagation of correct
values.

5.1 Obtaining a VRV

In order to get an access set, the client first must obtain a Wét the servers. Servers implement
a metering policy, in which each server responds to a redaest VRV only after a delay. The
delay varies, such that it increases exponentially withréte at which the client has requested
VRVs during some recent interval of time—i.e., a client thas not requested a VRV recently
will receive a VRV with little or no delay, whereas a clienathhas recently requested many VRVs
will receive a VRV after a (potentially significant) delayo ©ffload work from servers to clients
(e.g., for scalability), the servers can make it relativelgre expensive (in terms of time) to ask
for and receive a new VRV than to compute a given number ofsaceets (potentially for multiple
operations) from a single VRV, using the mechanisms desgdizlow.
The VRV is characterized by the following properties:

e It can be created only with the consent of non-faulty setvers

o Its validity is tied to the state of the system, in the sense #3 the system state evolves
(possibly merely through the passage of time), eventuaéyMRYV is invalidated;

22

e While it is valid, any non-faulty server can verify its valigiand so will accept it.

The VRV must be created with the consent of non-faulty serdecause otherwise faulty servers
might collude to issue multiple VRVs to a faulty client witl delay. Thereford, the number of
servers required for the issuance of a VRV, must be at lejast However, of the non-faulty servers
in the system, only those among the (at Idastb) used to issue a VRV will impose additional
delay before issuing an additional VRV. Therefore, to miairthe time to get an additional VRV, a
faulty client avoids involving servers that have issued \6R¥cently. This strategy maximizes the
number of VRVs to which the non-faulty server contributinghe fewest VRVs has contributed.
Thus, once: VRVs have been issued, all- b non-faulty servers have contributed to the issuance
of at least| k(I — b)/(n — b)| of thesek. Since all non-faulty servers have contributed to at least
this many VRVs, and the delay is exponential in this numlhertime'(k) required for a client to

obtaink VRVs is:
=022

In practice,T'(k) for a client decays during periods in which that client doesraquest additional
VRVSs, so that a client that does not request VRVs for a peradabtain one with small delay.

The validity of the VRV (and its sequence of access setskei tib the state of the system
so that as execution proceeds, any unused access sets biewalite To implement this, the
replication protocol may provide some piece of data thaiegawith the state of the system—
the Object History Sein Q/U [1] is an example of this—with which the servers can poite a
VRV, but, in the absence of a suitable value from the protaba VRV can include a timestamp
(assuming that the non-faulty servers have roughly symehed clocks). The VRV consists of this
value together with a digital signature created usifiga)-threshold signature scheme (e.qg., [24]),
i.e., so that any set dfservers can together create the signature, but smallesfsggsvers cannot.
The signature scheme must &teongly unforgeabl¢4], meaning that an adversary, given a VRV,
is not able to find other valid VRVs. This is necessary becatiserwise a faulty client would be
able to generate variations of a valid VRV until finding onenfrwhich to select an access set that
causes an error (see below).

5.2 Choosing an Access Set

As motivated above: (i) the VRV determines a sequence otlvadicess sets; and (ii) a client
puzzle must make it exponentially harder to use later acg®tssn the sequence than earlier ones.
In addition, it is desirable for our protocol to satisfy tlwléwing requirements:

e Each VRV must determine only a single valid sequence of aceets. This is to prevent a
faulty client from choosing a preferred sequence.

e The puzzle solutions must be easy to verify, so that veriboatosts do not limit the scala-
bility of the system in terms of the number of requests.

e There must be a solution to each puzzle. Otherwise a notyfeligént might be unable to
use any access set.

23

e No server can know the solution to the puzzle beforehandaltieetByzantine fault model.
Otherwise, a faulty client could avoid the exponential wbykasking a faulty server for the
solution.

In our protocol, the sequence of access sets is determirfetlaass. Letv be a VRV, letg be a
hash function modeled as a random oracle [7], anddeesssetbe a deterministic operation that,
given a seed value, selects an access set of the specifiddosizthe set of all access sets of that
size in a uniform fashion. Let the first seed, beg(v), and thei'th seed,s;, beg(s;_;). Then the
i'th access set iaccessset(s;).

The functionaccesssetworks as follows for seed value Leth be a hash function modeled
as a random oracle that maps inputs uniformly to its outpugea Divide the output range of
into n equal sized intervals labelddhroughn, and letserver(r) return the server corresponding
to the range into which falls. Letr; beh(s) and letr; beh(r;_;). Then thei’th candidate server
chosen for the access sesmrver(r;), and candidate servers are added to the access set until the
access set contains the required number of unique serveraussh maps inputs uniformly to its
output range, each server is effectively selected at random

In order to use the’th access set, the client must solve a puzzle of suitabfecdlify. This
puzzle must be non-interactive [12] to avoid additionalndsiof communication. There are many
suitable candidate puzzle functions [12]; we use a simplanbof Hashcash [5]. Specifically, let
f be a hash function modeled as a random oracle. Then, to uséhtlaecess-set, the client must
find a valuew, such that the first: bits of f(v||w) equal zero, wherg|" represents concatenation
andc is a constant greater than or equal to one. The most efficrewik way to do so is a brute
force search. In general, the client will need to compit¢2 = 2~ evaluations of to find aw
such that the firsti bits of f(v||w) bits are zero. Larger values ofrequire more effort to obtain
each access set.

5.3 Server Verification

Upon receiving a write request for thgh access set, each non-faulty server in the chosen access
set must verify that it is a member of the access set; for airepguest it must verify that the
relevant votes are from servers in the access set of the pEdtomn that gave rise to the repair.

In addition, in either case, before accepting the valueh eaever must verify that the VRV is
valid, that the access set corresponds toittieaccess set of the sequence, and that the client has
provided a valid solution to a puzzle of difficulty. To validate the solutiony, the server need
only check that the first: bits of f(v||w) are zero.

While the client can obtain additional access sets from the, ¥Rch access set used is treated
as a different operation by servers as stated in Sectiore3)1;a write operation using one access
set, and then using another access set, is treated as tweediffvrites’ so that a faulty client
cannot “accumulate” more than,, servers for its operation through the use of multiple write
access sets.

3Typically, a Byzantine-fault-tolerant write protocol musready be resilient to partial writes, which is how these
writes using different access sets might appear to thecgervi

24

5.4 Background Propagation

As described above, servers work to propagate the valuestalblesshed writes to each other in
the background. Our main contribution in this area is ouryem of the threshold number of
servers that must propagate a value for it to be accepteddii@rserver. While related Byzantine
diffusion protocols (e.g., [16]) use the numlder 1, we require a larger number because opaque
guorum systems allow that some non-faulty servers may acoeflicting values. We assume an
appropriate propagation algorithm (e.g., a variant of adespic algorithm [10] such as [16]). At

a high level, a non-faulty server has two responsibilitiéisst, having accepted a write value and
returned a response to the client, it periodically infortieeo servers that it has accepted the value.
Second, if it has not yet accepted a value upon learning thiateshold numberp, of servers
have accepted the value, it accepts the value. Faulty seaverall assumed to have access to
any conflicting value directly without propagation, so wewase no additional constraints on their
behavior.

Lemmab5.1. Letn < 2¢y—2bandp = n—q,+b+ 1. Then an established value will be accepted
and propagated by at leagtnon-faulty servers, and no conflicting value can be propeddtyp
servers (faulty or non-faulty).

Proof. The established value is accepted by at lggast- b non-faulty servers by definition. If
we allow that all other servers may forward a conflicting ealthen the number of servers that
forward a conflicting value is — (g —). First, note thap > n — (¢ — b) by the lemma. In
addition,p < ¢, — b because,

n < 2q¢w; — 2b

Sn— (G —b) < qu— b

@n_(QWt_b)‘i‘].Sqwt—b

~ p S qwt — b D

For example, ify,; = n — b andn > 4b we setp = 2b + 1. Since the established value will be
accepted by at leaptnon-faulty servers, it will propagate. No conflicting valuél propagate.

If the conditions of Lemma 5.1 do not hold, we must allow foms&oprobability of error during
propagation. We set so that it is between the expectations of the minimum numbero-
faulty servers that accept an established wiit€dfrect), and the maximum number of servers
that propagate a conflicting valuBQonflicting). We now derive expressions f&*Correct and
PConflicting. First, note thaPCorrect = |C,|. Therefore, by (13), (7), and linearity of expectation
we have:

E [PCorrect] = E [|Cyt]]
= E [¢ws — MalWrite]
= qwt — E [MalWrite]

awtb
= Qwt —
n
nNQwt — awtb
= 44
_ (44)

25

PConflicting is the number of servers in the disjoint s&sand(A., \ (Cy: U B)). Therefore,
E [PConflicting] = b+ E [|AL, \ (Cyt U B)|] . (45)
Note that,

EfJAG\ (Cut U B)]]

=E[[(Aw \ B) \ Cun]

=E HA:wt \ B — |A<)vt N (Cwt \ B)|]

=EfJAG\ Bl = E[|AG N Cuel] - (46)

|Al .\ B|is a hypergeometric random variable with expectation,

E A, \ 5] = =Y (@7)
Combining and simplifying equations (46), (47), and (23),hage,
2 . 2 w bh— - 2 2 2 b
B A\ (Cor U B)]) = 2t et Z el — Bl 2, (48)
So by (45) and (48),
2 2 2 2 2
E [PConflicting] — "0 2wt~ nud T Gt — Gy T Gud (49)
n
Lemma 5.2. PO-Consistency: E [PCorrect] > E [PConflicting].
Proof. Recall that PO-Consistency holds&f{MinCorrect] > E [MaxConflicting]. Next,
E [MinCorrect] > E [MaxConflicting]
& —“F [MinCorrect] > —E [MaxConflicting]
qrd qrd
=g [MinCorrect] > "R [MaxConflicting]
qrd Qrd
< E [PCorrect] > E [PConflicting]
The final line follows from definitions (44) and (49), and Lems.1 and 4.3. n

Lemma 5.2 shows that we can gets described for any system in which PO-Consistency
holds.

26

6 Evaluation

In this section, we analyze error probabilities for conerggstem sizes. In addition to validating
our results from Section 4, this shows that an access rstrigrotocol like that of Section 5 can
provide significant advantages in terms of worst-case @nalabilities.

Figure 5 plots the total number of nodes required to achieg&en calculated error proba-
bility for each of the configurations that tolerate faultyeoks whereg,: = ¢.a = n — b. Since
the unrestrictedconfiguration ¢.q = n, aw = n) shown in Figure 5(d) does not require the
access-restriction protocol of Section 5, yet yields thet beaximum ratios ob to » of all the con-
figurations that provide single-phase reads and writegi(®e4.4.1), we do not evaluate the error
probabilities of those other configurations here. In alesashe error probabilities are worst-case
in that they reflect the situation in which @llhodes are in fact faulty. For each configuration, we
provide plots for different ratios of to b, ranging from the maximurh for a given configuration,
ton = 5b + 1, as a comparison with strict opaque quorum systems. Appdhgrovides details
of our calculations.

Overall, we find that our constructions can tolerate sigaiftty more tharb = n/5 faulty
servers, while providing error probabilities in the randelo2 to 10~* for systems with fewer
than 50 servers to hundreds of servers. Coupled with therdisaéion of correct values between
servers (off the critical path), as described in SectiorhB,drror probability decreases between
writes.

Within each figure, we see that to decrease the worst-casepeabability, we can either keep
the same function ob in terms ofn while increasingn, or hold »n fixed while decreasing the
number of faults the system can tolerate. For example, Eig(lr) shows that i = (n — 1)/4.66,
we decrease the worst-case error probability from0—2 to ~ 10~* by increasing the system size
from 48 servers to 141 servers. On the other hand, FiguresB@ys us that if we keep fixed at
~ 100 servers, we can provide order f 2 worst-case error probability witfn — 1)/4.10 faulty
servers, but provide only order df—2 worst-case error probability fgrn — 1) /3.93 faulty servers.

Considering two figures together, we see that configuratitaiddlerate a largéralso provide
better error probabilities for a given For example, Figure 5(a) shows that by restricting reads
and writes, a system of approximately 130 servers can teléra— 1)/4.10 faults with a worst-
case error probability on the order tf —3. By comparison, Figure 5(b) shows that, if we restrict
only writes, the same degree of fault tolerance and low grrobability requires more than 1000
servers. As such, an access restriction protocol like thaeotion 5 provides real benefits in terms
of worst-case error probabilities.

While a very large number of servers is required for any condition to tolerate its theoretical
limit on b with small error probability, each configuration can toteralose to its limit with far
fewer servers. For example, Figure 5(a) shows that, if weiceseads and writes, it requires more
than 10,000 servers to tolerdte— 1) /3.25 faults with worst-case error probability on the order of
1073, However, by decreasing the fraction of faults that can berated to(n — 1)/3.93, we can
achieve the same error probability with 200 servers— /50 of the servers. However, this is not
a linear function; if we again reduce the fraction of serweescan tolerate by a similar amount to
(n —1)/4.66, we reduce the minimum to approximately 50 servers—only by4.

27

-
I X
al o IV]
il n=3.25b+1 ———x--—-
n=3.93b+1 ---*---
n=4.10b+1 &
c 103 n=4.66b+1 - -m--
EWF n=5.00b+1 —-o - | -
[e
2 ek F— *5 T
10° | e]
-l
A Sy -
1 L L
10
10° 103 0

error probability

(a) restricted reads and writeg{ = ¢rd, Gwt = Gwt)

10° P S .
- n=4.10b+1 —&— |1
I n=4.66b+1 —-m—
¥ Nn=5.00b+1 --o -
10 | - :
I - =) &
e
c L
£ 10°F _-
E F
102 | e
E m—m T T
o e o
I L
10
102 e -
error probability

(c) restricted reads onlyify = ¢rd, awt = 1)

Figure 5: Number of servers required to achieve given catedlworst-case error probability.

7 Conclusion

First, we have presented probabilistic opaque quorum Es{@OQS), a new type of opaque
quorum system that we have shown can tolerate up/815 Byzantine servers (compared with
n/5 Byzantine servers for strict opaque quorum systems) with pigbability, while preserving
the properties that make opaque quorums useful for optorigstzantine-fault-tolerant service
protocols. Second, we have presented an optional, novesagestriction protocol for POQS that
provides the ability for servers to constrain clients sd thay use randomly selected access sets
for operations. With POQS, we expect to create probalulgtimistic Byzantine fault-tolerant
service protocols that tolerate substantially more fathigs current optimistic protocols. While
strict opaque quorums systems may be more appropriate fikesreystems that require no chance
of error, a POQS can provide increased fault tolerance favenghumber of nodes, with a worst-

n=3 E—
n=4.10b+1 &
n=4.66b+1 --=-
104 F n=5.00b+1 ---& - DI e .
c
3L s S = _
E 10 o =) =
el
102 | goommm L - P 1
by mm e o--
1 Ly Loy o0 0
10
1072 107 10

error probability

(b) restricted writes onlyd,q = n, awt = qwt)

10° p———————— e

10* b

min n

10°

N . -
10
107
error probability

(d) unrestrictedd;q = n, awt = n)

case error probability that is bounded and that decreasbe aystem scales.

28

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. ReiterdanJ. Wylie. Fault-scalable
Byzantine fault-tolerant services. Bymposium on Operating Systems Princip@stober
2005.

[2] A. S. Aiyer, L. Alvisi, and R. A. Bazzi. On the availabilityfmon-strict quorum systems. In
DISC 2005 pages 48—-62, 2005.

[3] A. S. Aiyer, L. Alvisi, and R. A. Bazzi. Byzantine and multiriter k-quorums. InDISC
2006 pages 443-458, 2006.

[4] J. H. An, Y. Dodis, and T. Rabin. On the security of jointrs&gure and encryption. In
EUROCRYPT 20Q%ages 83-107, London, UK, 2002.

[5] A. Back. Hashcash - a denial of service counter-meadurep: / / cypher space. or g/
hashcash/ hashcash. pdf , August 2002.

[6] R. A. Bazzi. Access cost for asynchronous Byzantine quorystesns.Distributed Comput-
ing, 14(1):41-48, 2001.

[7] M. Bellare and P. Rogaway. Random oracles are practical:rAdigm for designing efficient
protocols. InConference on Computer and Communications Secyréges 62—73, 1993.

[8] C.Cachinand S. Tessaro. Optimal resilience for erasaded Byzantine distributed storage.
In International Conference on Dependable Systems and Nety2&S.

[9] M. Castro and B. Liskov. Practical Byzantine fault tolerarand proactive recoveryACM
Transactions on Computer Syster28(4):398-461, 2002.

[10] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, &n&ér, H. Sturgis, D. Swinehart,
and D. Terry. Epidemic algorithms for replicated databasentenance. IrPrinciples of
Distributed Computingpages 1-12, August 1987.

[11] M. Herlihy and J. Wing. Linearizability: A correctnessndition for concurrent objects.
ACM Transactions on Programming Languages and Syst&(8):463-492, 1990.

[12] M. Jakobsson and A. Juels. Proofs of work and bread mgdatiotocols. IlCommunications
and Multimedia Securitypages 258-272, 1999.

[13] A. Juels and J. Brainard. Client puzzles: A cryptograoigntermeasure against connection
depletion attacks. INetwork and Distributed Systems Security Sympagiages 151-165,
1999.

[14] L. Lamport, R. Shostak, and M. Pease. The Byzantine gengrablem.ACM Transactions
on Programming Languages and Systed{8):382-401, July 1982.

29

[15] B. Liskov and R. Rodrigues. Tolerating Byzantine faultyeolis in a quorum system. In
International Conference on Distributed Computing Syst&1086.

[16] D. Malkhi, Y. Mansour, and M. K. Reiter. Diffusion withodalse rumors: On propagat-
ing updates in a Byzantine environmeiitieoretical Computer Scienc299(1-3):289-306,
2003.

[17] D. Malkhi and M. Reiter. Byzantine quorum systeniistributed Computing11(4):203—
213, 1998.

[18] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright. Probatstic quorum systemsnfor-
mation and Computatiqri70(2):184-206, 2001.

[19] J.-P. Martin and L. Alvisi. Fast Byzantine consend&EE Transactions on Dependable and
Secure Computing(3):202-215, 2006.

[20] C. McDiarmid. Concentration for independent permutatio Combinatorics, Probability
and Computing11(2):163—-178, 2002.

[21] M. Mitzenmacher and E. UpfalProbability and Computing Cambridge University Press,
2005.

[22] M. Molloy and B. ReedGraph Colouring and the Probabilistic Metho&pringer, 2002.

[23] F. B. Schneider. Implementing fault-tolerant servicsgg the state machine approach: a
tutorial. ACM Computing Survey22(4):299-319, 1990.

[24] V. Shoup and R. Gennaro. Securing threshold cryptosystgainst chosen ciphertext attack.
Journal of Cryptology15(2):75-96, 2002.

[25] H. Yu. Signed quorum systemBistributed Computingl18(4):307-323, 2006.

30

Appendix A Intersection of Two Write Quorums

We show in this section that O-Consistency (from Section, &although phrased in terms of in-
tersection between a read quorum and a write quorum, imglifient constraints in terms of
two write quorums in the threshold quorum system model tlreaagsume. In particular, as stated
in [1], the constraint on the intersection of two write qumisiin an opaque quorum system ensures
that if one write is established, no conflicting write is édihed or can be repaired successfully.
That is, let aepairable setR € R(Qyt), be any set of servers fromQ); then,

VQuwi, @y € Qui, VR € R(Qry) : Qui "R & B (50)

We demonstrate that O-Consistency provides the same gaarapshowing that it implies (50):

VQra € Qra, VQwt € Quy = 7 > conflicting(Qya, Qwt)

& VQra € Qid, VQuwt € Qi 7 > [(Qra N B) U (Qra \ Qut) |
& VQra € i, VQwt € Qut 17 > Grd — [(Qra N Qu) \ B
S 1> g — ((ga + qwe —n) + (n—b) —n)

ST >n+b— qut

Syt +r—n>0>b

& VQut, Q:zvt € Qw, VR € R(Q:Nt) QwNREB

Appendix B Calculating ¢

To perform our calculations, we use tRdanguageand a dynamic programming approach due to
numerous summations of terms. Here, we describe the candahat we perform.
First, in accordance with Section 4.5, we sets follows,

r = [(E [MinCorrect] 4+ E [MaxConflicting])/2].

Next, to determine the error probability accurately, wecakdte the error probabilities for non-
faulty clients ¢;) and faulty clients4;) independently. We determinreas,

€ = max(ey, €3).

To facilitate this, we define new random variables and fuumsti While, as described in Section 4.3,
a faulty client chooses votes for the incorrect value fromehtire read access set taken oriQy,

a non-faulty client uses only the randomly chosen read qudaken on byQ,4 for choosing such
votes. Therefore, for a non-faulty client, in placedéxConflicting we defineMaxConflicting’
(compare with (11)),

Malevolent’ = |Q,q N B]
Conflicting’ = |Qua N (AL, \ (Cyt U B))|
MaxConflicting’ = Malevolent’ + Conflicting’

31

Similarly, while the read quorum (taken on Ky,) that is used by a non-faulty client contains
at leastMinCorrect votes from non-faulty servers that return the correct value read access set
from which a faulty client selects votes (taken onAy) contains at leagtlinCorrect’ such votes
(compare with (8)),

MinCorrect’ = |A,q N Cy

Finally, let QStale andAStale be the maximum number of non-faulty servers with stale \&lne
Q.4 and A,q, respectively,

QStale = ¢.q — MinCorrect — MaxConflicting’
AStale = a,q — MinCorrect’ — MaxConflicting

Then, for a non-faulty client, we calculate the error praligias,

= Pr(MinCorrect < r VV MaxConflicting’ > r)

= Pr(MinCorrect < rV ¢,q — MinCorrect — QStale > r)
= Pr(MinCorrect < r V MinCorrect < ¢,q — r — QStale)
= Pr(MinCorrect < max(r, g.q — r — QStale — 1)))

= Z Pr(MinCorrect < max(r, g.q — r — QStale — 1)) Pr[QStale = z|

For a faulty client, we calculate the error probability as,

= Pr(MaxConflicting > r)

= Pr(a;q — MinCorrect’ — AStale > r)

= Pr(MinCorrect’ < a,q — r — AStale)

= Pr(MinCorrect’ < a,q — r — AStale — 1)

= ZPr(MinCorrect' < ayq — 1 — z — 1) Pr[AStale = Z]

For a hypergeometric random varialtle~ hyp(w, ¢, d) defined byd draws from a population
of t elements containing success elements, we can directly calculate the cumuldistgbution
function (Pr[H < []) and the probability mass functioi{[H = []).

Based on the description &finCorrect in Section 4.4, we have th@linCorrect | MalWrite =
m) ~ hyp(qws — m,n,qaq). Then,

Pr[MinCorrect < z] = ZPr[(MinCorrect | MalWrite = m) < x] Pr[MalWrite = m).

We calculateé’r[MinCorrect’ < z] in the same fashion.
In Section 4.4 when calculating [MaxConflicting] we assume the worst-case behavior of
faulty clients described in Section 4.2. Therefore, to aiale Pr[QStale = 2], we again assume

32

that A, \ (B U A.,) C Cy, that all of the servers i/, \ B have either the correct value or the
conflicting value, and that all of the servershnreturn the conflicting value if polled. Therefore,
the number of servers iQ,4 that return neither the correct value nor the conflictingigadre,

QStale = |Qq \ (Awt UAL, U B).
SinceQ.q \ (Awt UAL, U B) = (Qua \ Awt) \ AL,) \ B, we calculatePr[QStale = 2] as follows.
LetW = |(U\ A,,) \ Bl andV = |((U \ Aw) \ A.,,) \ B|. SinceQ.q, Ay, and A, are
chosen independentBy ~ hyp(n — b,n,n — ay), (V | W = w) ~ hyp(w,n,n — awt), and
(QStale | V = v) ~ hyp(v,n, g:a). As such,

PrlV =v] =Y Pr[(V|W =w) = 0] Pr[W = w].

and,

Pr[QStale = z] = » " Pr[(QStale | V = v) = 2| Pr[V = v].

We can calculat®r[AStale = z| in the same fashion.

33

