
Probabilistic Opaque Quorum Systems

Michael G. Merideth and Michael K. Reiter
March 2007

CMU-CS-07-117

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Also appears as Institute for Software Research
Technical Report CMU-ISRI-07-117

Abstract

Byzantine-fault-tolerant service protocols like Q/U and FaB Paxos that optimistically order re-
quests can provide increased efficiency and fault scalability. However, these protocols require
n ≥ 5b + 1 servers (whereb is the maximum number of faults tolerated), owing to their use of
opaque Byzantine quorum systems; this is2b more servers than required by some non-optimistic
protocols. In this paper, we present a family ofprobabilistic opaque Byzantine quorum systems
that require substantially fewer servers. Our analysis is novel in that it assumes Byzantine clients,
anticipating that a faulty client may seek quorums that maximize the probability of error. Using this
as motivation, we present an optional, novel protocol that allows probabilistic quorum systems to
tolerate Byzantine clients. The protocol requires only one additional round of interaction between
the client and the servers, and this round may be amortized over multiple operations. We consider
actual error probabilities introduced by the probabilistic approach for concrete configurations of
opaque quorum systems, and prove that the probability of error vanishes with as few asn > 3.15b
servers asn andb grow.

This work was partially supported by NSF grant CCF-0424422.

Keywords: Distributed systems, Byzantine fault tolerance, probabilistic quorum systems

1 Introduction

For distributed systems consisting of a large number of servers, a Byzantine-fault-tolerant replica-
tion algorithm that requires all servers to communicate with each other for every client request can
be prohibitively expensive. Therefore, for large systems,it is critical that the protocol have good
fault scalability[1]—the property that performance does not (substantially) degrade as the system
size is increased—by avoiding this communication.

Byzantine-fault-tolerant service protocols must assign a total order to requests to provide repli-
cated state machine semantics [23]. To minimize the amount of communication between servers,
protocols like Q/U [1] and FaB Paxos [19] use opaque quorum systems [17] to order requestsopti-
mistically. That is, servers independently choose an ordering, without steps that would be required
to reach agreement with other servers; the steps are performed only if servers choose different
orderings. Under the assumption that servers independently typically choose the same ordering,
the optimistic approach can provide better fault scalability in the common case than protocols like
BFT [9], which require that servers perform steps to agree upon an orderingbeforechoosing it [1].
However, optimistic protocols have the disadvantage of requiring at least5b + 1 servers to tolerate
b server faults, instead of as few as3b + 1 servers, and so they cannot tolerate as many faults for a
given number of servers.

In this paper, we presentprobabilistic opaque quorum systems(POQS), a new type of proba-
bilistic quorum system [18], in order to increase the fraction of faults that can be tolerated by an
optimistic approach from fewer thann/5 to as many asn/3.15. A POQS provides the same prop-
erties as the strict opaque quorum systems used by, e.g., Q/Uand FaB Paxos, but is probabilistic
in the sense that quorums are not guaranteed to overlap in thenumber of servers required to ensure
safety. However, we prove that this error probability is negligible for large system sizes (for a given
ratio of b to n). Application domains that could give rise to systems of such scale include sensor
networks and edge services.

Byzantine clients are problematic for all probabilistic quorum systems because the combination
of high fault tolerance and low probability of error that canbe achieved is based on the assumption
that clients choose quorums uniformly at random (and independently of other quorums and the
state of the system, e.g., the values held by each server, andthe identities of faulty servers). This
can be seen in our results that show: (i) that probabilistic opaque quorum systems can tolerate up
to n/3.15 faults (compared with less thann/5 faults for strict opaque quorum systems) assuming
that all quorums are selected uniformly at random, but that the maximum fault tolerance drops to
n/4.56 faults if Byzantine clients are allowed to choose quorums according to their own goals; and
(ii) that to achieve a specified error probability for a givendegree of fault tolerance, substantially
more servers are required if quorums are not selected uniformly at random.

Therefore, we present a protocol with which we constrain clients to using pseudo-randomly
selected access sets (sets of servers contacted in order to find quorums, c.f., [6]) of a prescribed
size. In the limit, we can set the sizes of access sets to be thesizes of quorums, thereby dictating
that all clients use pseudo-randomly selected quorums, andproviding a mechanism that guarantees,
in practice, the behavior of clients that is assumed by probabilistic quorum systems. However, as
shown in Section 4.4, the notion of restricted access sets allows us a range of options in trading
off the low error probability and high fault tolerance of completely random quorum selection, for

1

the guaranteed single-round access provided when there is an available quorum (one in which all
servers respond) in every access set.

Our contributions are as follows:

• We present the first family of probabilistic opaque quorum system constructions. For each
construction, we: (i) show that we are able to reduce the number of servers below the5b + 1
required by protocols that use strict opaque quorums, (ii) prove that it works with vanishing
error probability as the system size grows, and (iii) evaluate the characteristics of its error
probability over a variety of specific system sizes and configurations.

• We present the first analysis of a probabilistic quorum system that accounts for the behavior
of Byzantine clients. We anticipate that a faulty client may choose quorums with the goal of
maximizing the error probability, and show the effects thatthis may have.

• We present an access-restriction protocol that allows probabilistic quorum systems to tolerate
faulty clients with the same degree of fault tolerance as if all clients were non-faulty. One
aspect of the protocol is that servers work to propagate the values of established writes to
each other in the background. Therefore, we provide analysis, unique to opaque quorum
systems, of the number of servers that must propagate a valuefor it to be accepted by another
server.

The remainder of this paper is organized as follows. In Section 2, we frame our contributions
in the context of related work. Section 3 presents our assumptions and system model. In Sec-
tion 4, we introduce probabilistic opaque quorum systems, and compare and contrast them with
strict opaque quorums systems, highlighting the properties that make opaque quorums useful for
optimistic protocols. We also compute upper bounds on the thresholdb for each construction, and
prove that the error probability goes to zero as the number ofservers (andb) is increased. We
present our access-restriction protocol in Section 5. In Section 6, we evaluate the error probability
for actual system sizes. Finally, Section 7 concludes the paper.

2 Related Work

Strict Opaque Quorum Systems. Opaque Byzantine quorum systems were introduced by Ma-
lkhi and Reiter [17], in two variants: one in which the number of non-faulty servers in a quorum
is at least half of the quorum, and the other in which the number of non-faulty servers represents a
strict majority of the quorum. The first construction makes it unnecessary for the client to know the
sets of servers of which the system can tolerate failure (hence the term ‘opaque’), while the second
construction additionally makes it possible to create a protocol that does not use timestamps. The
paper also proves that5b is the lower bound on the number of servers for the first version; simply
changing the inequality to a strict inequality proves5b + 1 is the lower bound for the second. In
this paper, when we refer to strict (non-probabilistic) opaque quorum systems, we are concerned
with the second variant.

The constraints on strict opaque quorums have also been described in the context of consensus
and state-machine-replication protocols, e.g., the Q/U [1] and FaB Paxos [19] protocols, though

2

not explicitly as opaque quorums. Abd-El-Malek et al. [1] provide generic (not just threshold)
opaque quorum system constraints that they prove sufficientfor providing state-machine replica-
tion semantics where both writes and reads complete in a single (pipelined) phase when there is
no write–write contention. Martin and Alvisi [19] use an opaque quorum system of acceptors in
FaB Paxos, a two-phase consensus protocol (with a designated proposer) and three-phase state-
machine-replication protocol requiring at least5b + 1 servers.

Probabilistic Quorum Systems. A Probabilistic Quorum System (PQS), as presented by Malkhi
et al. [18], can provide better availability and fault tolerance than strict quorum systems can pro-
vided; Table 1 compares probabilistic quorums with their strict quorum counterparts.1 Malkhi et
al. provide constructions for dissemination and masking quorums, and prove properties of load and
availability for these constructions. They do not address opaque quorum systems, or the effects of
concurrent or Byzantine writers; we address each of these. Inaddition, in Section 4, we borrow
analysis techniques from [18], but our analysis is more general in the sense that clients are not all
assumed to communicate only with quorums of servers. We alsouse a McDiarmid inequality [20]
for bounding the error probability; this provides a simplerbounding technique for our purposes
than do the Chernoff bounds used there. The technique that we present in Section 5 for restricting
access to limited numbers of servers should be applicable tothe constructions of Malkhi et al.
equally well.

Signed Quorum Systems. Signed Quorum Systems [25] are another attempt to weaken there-
quirements of strict quorum systems. A quorum in a signed quorum system (SQS) can include
both servers that respond and servers that are polled but do not respond (and are, therefore, be-
lieved by the client to have failed); if a server responds in one quorum but is marked as failed in a
different quorum, the quorums are said tomismatchfor that server. A SQS is constructed such that
if any two quorums do not overlap in a server that responds to both quorum accesses, the quorums
must have at least2α mismatches (this is known as thedual-overlapproperty). Then, given the
assumptions that it is rare for any two clients to see a mismatch for a given server, i.e., that a mis-
match occurs with probability at mostǫ, and that the probability of a mismatch for a given server
is independent of that for any other server, the probabilityof two quorums not overlapping (and

1The2.62b lower bound for masking quorums is not shown in [18], but can be quickly derived using our results
from Section 4.

Table 1: Minimum servers needed for probabilistic and strict quorum variants.

prob. strict presented
Opaque 3.15b + 1 5b + 1 Here

Masking 2.62b + 1 4b + 1 [18]
Dissemination b + 1 3b + 1 [18]

3

hence mismatching in at least2α servers) is at most1 − ǫ2α. While signed quorums are related to
probabilistic quorums, they have not been studied in the context of Byzantine faults. Here, in our
analysis of probabilistic quorums, we find that tolerance ofByzantine faults substantially alters
both the analysis techniques needed and the outcomes that result.

k-quorums. k-quorums [2] also weaken the requirements of strict quorum systems in an effort
to provide greater availability, but focus on offering a property calledbounded stalenessthat en-
sures (with certainty, as opposed to with high probability)that a read will receive one of the last
k writes, even if messages may be delivered according to the choices of an unconstrained adver-
sary. This is achieved by requiring that the union of the lastk writes intersects any read quorum.
k-quorums have recently been extended to support Byzantine failures of servers, and multi-writer
protocols [3]. However, as we are not concerned with the bounded staleness property that is central
to k-quorums, our results are orthogonal and different from those. Moreover, our results include
treatment of Byzantine failures of clients.

Tolerating Byzantine Clients. No prior work on any of the three types of non-strict quorum
systems listed above considers Byzantine clients. There hasbeen work on strict quorum systems
that can tolerate Byzantine clients (e.g., [15, 8]) but this is fundamentally unconcerned with the
way in which quorums are chosen because such choices cannot impact the correctness of strict
quorum systems.

3 System Model and Definitions

We assume a system with a setU of servers,|U | = n, and an arbitrary but bounded number of
clients. Clients and servers can fail arbitrarily (i.e., Byzantine [14] faults). We assume that up tob
servers can fail, and denote the set of faulty servers byB, whereB ⊆ U . Any number of clients
can fail. Failures are permanent. Clients and servers that donot fail are said to benon-faulty.
We allow that faulty clients and servers may collude, and so we assume that faulty clients and
servers all know the membership ofB (although non-faulty clients and servers do not). We make
the standard assumption that nodes are computationally bound such that they cannot subvert the
effectiveness of cryptographic primitives.

Throughout the paper, we useSan Serif font to denote random variables, uppercaseITALICS
for set-valued constants, and lowercaseitalics for integer-valued constants. In the literature,ran-
dom variablesare sometimes restricted only to functions that output realnumbers; for clarity in
distinguishing between either fixed sets or permutations and those that are sampled from a proba-
bility distribution, we use the term random variable to refer also to a function on a sample space
that outputs either sets or permutations.

The remainder of this section is concerned with (i) our assumptions on the behavior of clients,
which lead to a specification of the error probability; and (ii), our assumptions on the delivery of
messages.

4

3.1 Behavior of Clients

We abstractly describe client operations as eitherwrites that alter the state of the service orreads
that do not. Informally, a non-faulty client performs a write to update the state of the service such
that its value (or a later one) will be observed with high probability by any subsequent operation;
a write thus successfully performed is called “established” (we define established more precisely
below). A non-faulty client performs a read to obtain the value of the latest established write,
where “latest” refers to the value of the most recent write preceding this read in a linearization [11]
of the execution. Therefore, we define thecorrect value for the read to return to be the value of
this latest established write; other values are calledincorrect. We assume that the read and write
operations by non-faulty clients take the following forms:

• Writes: To perform a write, a non-faulty client selects awrite access setAwt ⊆ U of
sizeawt uniformly at random and attempts to inform all servers inAwt of the write value.
Formally, the write isestablishedonce all non-faulty servers in some setQwt ⊆ Awt of size
qwt ≤ awt servers haveacceptedthis write. (Intuitively, an access set is a set of servers
contacted in order to find a live quorum, c.f., [6].) We refer to qwt as thewrite quorum size;
to anyQwt ⊆ U of that size as awrite quorum; and toQwt = {Qwt ⊆ U : |Qwt| = qwt} as
thewrite quorum system.

• Reads: To perform a read, a non-faulty client selects aread access setArd of sizeard

uniformly at random and attempts to contact each server inArd to learn the value that the
server last accepted. We denote the minimum number of servers from which a non-faulty
client must receive a response to complete the read successfully by qrd ≤ ard. We refer
to qrd as theread quorum size; to any Qrd ⊆ U of that size as aread quorum; and to
Qrd = {Qrd ⊆ U : |Qrd| = qrd} as theread quorum system.

In a read operation, we refer to each response received from aserver inArd as avote for
a read value. We assume that votes for two read values that result from any two distinct write
operations are distinguishable from each other, even if thecorresponding write values are the same
(this is discussed in Section 5). The read operation discerns the correct value from these votes in
a protocol-specific way. It is possible in an optimistic protocol such as Q/U [1], for example, that
the (at leastqrd) votes may reflect a write operation but not provide enough evidence to determine
whether that write is established. In this case, the reader may itself establish, orrepair, the write
value before returning it, to ensure that a subsequent reader returns that value, as well (which is
necessary to achieve linearizability). In such a protocol,the reader does so by copying its votes for
that value to servers, in order to convince them to accept that write.

For this reason, the correctness requirements for POQS discussed in Section 4 treat not only
the number of votes that a non-faulty reader observes for thecorrect value, but also the number
of votes that a faulty client can gather for aconflictingvalue. A conflicting value is a specific
type of incorrect value characterized by the property that anon-faulty server would accept either
it or the correct value, but not both. Two values may conflict because, e.g., they both bear the
same timestamp, or are “conditioned on” the same established write in the sense used in Q/U. We
assume that this timestamp or similar information can be used to distinguish older (stale) values

5

from newer values. Enabling a faulty client to obtain sufficiently many votes for a conflicting value
would, e.g., enable it to convince other non-faulty serversto accept the conflicting value via the
repair protocol, a possibility that must be avoided for correctness.

Consequently, anerror is said to occur when a non-faulty client fails to return the correct
value or a faulty client obtains sufficiently many votes for aconflicting value. This definition (or
specifically “sufficiently many”) will be made more precise in Section 4.5. Theerror probability
then refers to the probability of an error when the client (non-faulty or faulty) reads from a read
access setArd chosen uniformly at random. While we cannot force a faulty client to chooseArd

uniformly at random, in Section 5 we demonstrate an access protocol that enables a faulty client
to assemble votes for a value that can be verified by servers (and hence, e.g., to perform a repair in
Q/U) only if Ard was selected uniformly at random, which is good enough for our purposes. So,
from here forward, we restrict our attention to read access sets chosen in this way.

3.2 Communication

The communication assumptions we adopt are common to prior works in probabilistic [18] and
signed [25] quorum systems: we assume that each non-faulty client can successfully communi-
cate with each non-faulty server with high probability, andhence with all non-faulty servers with
roughly equal probability. This assumption is in place to ensure that the network does not signif-
icantly bias a non-faulty client’s interactions with servers either toward faulty servers or toward
different non-faulty servers than those with which anothernon-faulty client can interact. Put an-
other way, we treat a server that can be reliably reached by none or only some non-faulty clients
as a member ofB.

This assumption enables us to refine the read protocol of Section 3.1 in a straightforward way
so that non-faulty clients choose read quorums from an access set uniformly at random. (More
precisely, a faulty server can bias quorum selection away from quorums containing it by not re-
sponding, but this decreases the error probability, and so we conservatively assume that non-faulty
clients select read quorums at random from their access sets.) However, because a write is, by defi-
nition, established once all of the non-faulty servers in any write quorum withinAwt have accepted
it, the write quorum at which a write is established containsall servers inAwt ∩ B; i.e., only the
the non-faulty servers within the write quorum are selecteduniformly at random by a non-faulty
client.

The access-restriction protocol of Section 5 requires no communication assumptions beyond
those of the probabilistic quorums it supports.

4 Probabilistic Opaque Quorum Systems

In this section, we present a family of probabilistic opaquequorum systems. We begin by reviewing
the properties of strict opaque quorum systems (Section 4.1) and modeling the worst-case behavior
of faulty clients (Section 4.2). Using this, we derive a constraint (PO-Consistency, Section 4.3)
that determines the maximum fraction of faulty servers thatcan be tolerated (Section 4.4). We

6

prove that the error probability goes to zero asn (andb) is increased if this constraint is satisfied
(Section 4.5).

4.1 Properties of Opaque Quorums

As an introduction to probabilistic opaque quorum systems,we begin by reviewing the concepts
of strict opaque quorum systems [17]. Define the following functions:

correct(Qrd, Qwt) : |(Qrd ∩ Qwt) \ B| (1)

conflicting(Qrd, Qwt) : |(Qrd ∩ B) ∪ (Qrd \ Qwt)| (2)

correct(Qrd, Qwt) returns the number of non-faulty servers in the intersection of a pair of read
and write quorums, whileconflicting(Qrd, Qwt) returns the other servers in the read quorum, all
of which may return a conflicting value in some protocol execution. Let a read operation return
a value that receives at leastr votes. Then, the consistency property for strict opaque quorum
systems is as follows:

O-Consistency: ∀Qrd ∈ Qrd,∀Qwt ∈ Qwt : correct(Qrd, Qwt) ≥ r > conflicting(Qrd, Qwt).
(3)

The property states that the number of non-faulty servers inthe intersection of any read quorum
and write quorum must represent a majority of the read quorum. Because of this and the fact that
newer values can be distinguished from older values, the correct value—which, by definition, is es-
tablished by being written to all of the non-faulty servers in a write quorum—can be distinguished
from other values, even if some non-faulty servers (and all faulty servers) present conflicting or
stale values. At a high level, O-Consistency guarantees:

P1 No two conflicting writes are both established.

P2 Every read observes sufficiently many votes for the correct value to identify it as such.

P3 No (non-faulty or faulty) reader obtains votes for a conflicting value sufficient to repair it
successfully.

P1 ensures that there is a single correct value to return. P2 ensures that a read by a non-faulty
client always returns the correct value. Finally, P3 ensures that no faulty client is able to gather a
majority of votes for a conflicting value as a result of a read.Note that the original statement of
O-Consistency [17] considers intersection of any two quorums, not just a read quorum and a write
quorum, as the original formulation did not consider multiple quorum types. Our revised statement
also implies constraints on the intersection of write quorums sufficient to guarantee P1 (as shown
in Appendix A), as well as P2 and P3.

The minimum number of servers required by strict opaque quorum systems is bounded by a
worst case scenario (Figure 1(a)), in whichb servers are faulty, and all are in the intersection of a
given read quorum and write quorum. In this case, the minimumnumber of non-faulty servers in
the intersection isqrd +qwt−n−b. This means that, if all quorums are of sizen−b (the maximum

7

Qwt

B

Qrd

Qwt

Q'wt

Qrd

(b) (c)

Qwt

B

Qrd

(a)

B

Conflicting valueCorrect value

Figure 1: Servers that return a given conflicting value inQrd: (a) Worst case; (b) Typical case; (c)
Restricted writers.

size that guarantees liveness in an asynchronous system), then (3) requires:2(n − b) − n − b >
(n − b)/2, or n > 5b.

Given that the stated assumptions of a strict opaque quorum system hold, the system behaves
correctly. In contrast to this, probabilistic opaque quorum systems (POQS) allow for a (small)
possibility of error. Informally, this can be thought of as relaxing O-Consistency so that a variant
of it holds for most—but not all—quorums. To ensure that the probability of an error happening is
small, POQS are designed so that P1, P2, and P3 hold with high probability.

Figure 1(b) illustrates a more typical scenario, in which the faulty servers are partly in the in-
tersection, partly in each quorum, and partly in neither quorum. This is one feature upon which we
rely to reduce the total number of servers required by the worst-case scenario and O-Consistency.
In addition, because the focus of POQS is the expected case instead of the worst case, we further
reduce the expected number of servers that return a conflicting value by assuming that each write
request can be sent to only a limited number of servers (this can be enforced by the protocol of
Section 5). Figure 1(c) shows an example of this, in which theconflicting value is written toQ′

wt,
and therefore accepted only by the servers inQ′

wt \ (Qwt \ B).

4.2 Behavior of Faulty Clients

Because a faulty client can behave arbitrarily, we examine the way that a faulty client should
choose quorums to maximize the chance of error. During a write, a faulty client seeks a write
quorum that violates P1 or that maximizes the probability that P2 is violated on a subsequent read
by a non-faulty client or that P3 is violated on a subsequent read by any client. During a read, such
a client seeks a quorum that violates P3 to use for repair.

Throughout this section, letAwt denote a write access set from whichQwt (a quorum used for
an established write) is selected by a faulty client, letA′

wt be a write access set used for a conflicting
write by a faulty client, and letArd be a read access set from whichQrd, a read quorum, is selected
by a faulty client. Again, we assume thatAwt, A′

wt, andArd are selected uniformly at random, an
assumption that can be enforced using the protocol of Section 5.

8

(a)

Qwt

A'wt

Ard

B

1

2

Awt

A'wt

B2

13

(b)

1. Awt » B
2. Awt \ (A'wt « B)
3. (Awt » A'wt) \ B

1. Ard » (B « (A 'wt \ Qwt))

2. Ard \ (B « (A 'wt \ Qwt))

Figure 2: The preference (1st, 2nd, 3rd) a faulty client gives to a server when choosing (a)Qwt, or
(b) Qrd.

Writes by a faulty client. A faulty client can increase the error probability with a write in one
of two ways: (i) by establishing a write at a write quorum thatcontains as many faulty servers as
possible, or (ii) by performing the write of a conflicting value in a way that maximizes the number
of non-faulty servers that accept it, i.e., by writing to allof A′

wt \ Qwt. Since a faulty client may
performbothsuch writes, we assume that this client has knowledge ofAwt andA′

wt simultaneously.
However, it is important to note that a faulty client does nothave knowledge of the read access set
A′

rd used by a non-faulty client—or specifically the non-faulty servers within it, i.e.,A′
rd \B—and

soQwt is chosen independently ofA′
rd \ B.2

Figure 2(a) shows the preferences that a faulty client givesto servers when choosingQwt to do
both (i) and (ii). Goal (i) requires maximizing|Qwt ∩B| to maximize the probability that P1 or P2
is violated; hence, first preference is given to the servers in Awt ∩ B in a write. Goal (ii) requires
minimizing |(Qwt ∩ A′

wt) \ B| to maximize the probability that P1 or P3 is violated; hence,the
servers in(Awt ∩ A′

wt) \ B are avoided to the extent possible.

Reads by a faulty clients. A faulty client can increase the probability that P3 is violated by
choosing a read quorum with the most faulty servers and non-faulty servers that share the same
conflicting value. Figure 2(b) shows the preferences that a faulty client gives to servers to do so.
Because a faulty client can collude with the servers inB, it can obtain replies from all servers in
B that are also inArd, i.e., the servers inArd ∩ B. It can also wait for responses from all of the
non-faulty servers inArd with the conflicting value, i.e., those inArd ∩ (A′

wt \ Qwt). Only after
receiving all such responses, and only if these responses number fewer thanqrd, must it choose
responses from servers with other values.

4.3 Probabilistic Constraint

In this section, we present PO-Consistency, a constraint akin to O-Consistency specified in terms
of expected values for POQS. As detailed below, letMinCorrect be a random variable for the

2More precisely, with the access protocol in Section 5,A′

rd
can be hidden unless, and until, that read access set

is used for repair, at which point it is too late for faulty clients to chooseQwt so as to induce an error in that read
operation.

9

minimum number of non-faulty servers that report the correct value in a randomly chosen read
quorum taken by a non-faulty client. (Recall that an error is caused byMinCorrect being too small
only for reads performed by a non-faulty client.) Also, letMaxConflicting be a random variable
for the maximum number of servers that report a conflicting value in a read quorum taken from a
randomly chosen read access set by a faulty client that seeksto maximizeMaxConflicting. (Recall
that an error is caused byMaxConflicting being too large even if the client is faulty.) Then the
consistency property for POQS is:

PO-Consistency: E [MinCorrect] > E [MaxConflicting] . (4)

As shown in Section 4.5, PO-Consistency allows us to choose a threshold,r, for the number of
votes used to determine the result of a read operation, whileensuring that the error probability
vanishes as we increasen (andb). While this does not guarantee O-Consistency, i.e., it may be
possible that P1, P2, or P3 does not hold, the probability that O-Consistency is violated goes to
zero asn (andb) is increased.

We now derive expressions forMinCorrect andMaxConflicting. Recall thatB is the set of up
to b faulty servers. LetAwt be a randomly chosen write access set, and letArd be a randomly
chosen read access set. As stated in the system model, a writeto Awt is established once it has
been accepted by all of the non-faulty servers in anyQwt, a write quorum withinAwt. Therefore,
we conservatively assume that the number of faulty servers in Qwt is:

MalWrite = |Awt ∩ B|. (5)

Here,Awt is a random variable taking on a write access set chosen uniformly at random fromAwt.
Qwt also containsqwt − MalWrite non-faulty servers, not necessarily chosen at random, in

addition to theMalWrite faulty servers. LetCwt represent these non-faulty servers:

Cwt = Qwt \ B, (6)

|Cwt| = qwt − MalWrite, (7)

whereQwt is a random variable taking on the write quorum at which the write is established, and
Cwt is a random variable taking on the set of non-faulty servers within this write quorum. Then, the
number of non-faulty servers that return the correct value in a read quorum selected by a non-faulty
client is,

MinCorrect = |Qrd ∩ Cwt|, (8)

whereQrd is a random variable taking on a read quorum chosen uniformlyat random fromArd,
itself chosen uniformly at random fromArd.

A faulty client may select its read quorum,Qrd, to maximize the number of votes for a single
conflicting value in an attempt to invalidate P3. Therefore,as described in Section 4.2, the client
first chooses all faulty servers inArd. The number of such servers is,

Malevolent = |Ard ∩ B|. (9)

10

The faulty client also chooses the non-faulty servers that vote for the conflicting value that is most
represented inArd; these servers are a subset of(Ard \ (Cwt ∪ B)). This conflicting value has an
associated write access setA′

wt chosen uniformly at random fromAwt, and no vote from a non-
faulty server not inA′

wt will be counted among those for this conflicting value (because votes for
any two write operations are distinguishable from each other as discussed in Section 3.1). LetA′

wt

be a random variable taking onA′
wt. Then, the number of non-faulty servers inArd that vote for

this conflicting value is,

Conflicting = |Ard ∩ (A′
wt \ (Cwt ∪ B))|. (10)

A faulty client can choose all of these servers forQrd. Therefore, since the sets of servers measured
by Malevolent andConflicting are disjoint (the former consists solely of faulty servers;the latter
solely of non-faulty servers), the maximum number of instances of the same conflicting value that
a faulty client will select forQrd is,

MaxConflicting = Malevolent + Conflicting. (11)

4.4 Minimum System Sizes

In this section, we consider PO-Consistency under various assumptions concerning the sizes of
access sets and quorums in order to derive the maximum fraction of faults that can be tolerated
with decreasing error probability as a function ofn (andb). Our primary result is Theorem 4.4
which provides an upper bound onb for which PO-Consistency holds. It is derived using the
expectations ofMinCorrect andMaxConflicting that are computed using the worst-case behavior
of faulty clients presented in Section 4.2; these expectations are given in Lemmas 4.1, 4.2, and 4.3.

Lemma 4.1.

E [MinCorrect] =
qrd(nqwt − awtb)

n2
. (12)

Proof. We computeE [MinCorrect] taking into consideration the potential behavior of faultyclients
described in Section 4.2. To computeE [MinCorrect], we begin withE [MalWrite]. From the def-
inition of MalWrite (5), we see thatMalWrite is a hypergeometric random variable, characterized
by awt draws from a population ofn elements containingb successes. Therefore,

E [MalWrite] =
awtb

n
. (13)

Then, considering the definition ofMinCorrect (8), we see thatQrd is selected independently of
Cwt; therefore,MinCorrect | MalWrite = m is a conditional hypergeometric random variable char-
acterized byqrd draws from a population ofn elements containingqwt − m successes. Therefore,

11

by the rules of conditional expectation (e.g., see [21, Theorem 2.7]) and linearity of expectation,
we have that,

E [MinCorrect]

=
∑

m

E [MinCorrect | MalWrite = m] Pr[MalWrite = m]

= E [E [MinCorrect | MalWrite]]

= E

[qrd

n
(qwt − MalWrite)

]

=
qrdqwt

n
− qrd

n
E [MalWrite]

=
qrd(nqwt − awtb)

n2
.

Lemma 4.2.

E [MaxConflicting] ≤ ard

n3

(

n2b + 2n2awt − nawtb − n2qwt − a2
wtn + a2

wtb
)

. (14)

Proof. We computeE [MaxConflicting] taking into consideration the potential behavior of faulty
clients described in Section 4.2. By applying linearity of expectation to (11), we have that,

E [MaxConflicting] = E [Malevolent] + E [Conflicting] . (15)

Ard is selected independently ofB. As such, by (9), we have thatMalevolent is a hypergeo-
metric random variable characterized byard draws from a population ofn elements containingb
successes. Therefore,

E [Malevolent] =
ardb

n
. (16)

To calculateE [Conflicting], first note that:

E [Conflicting]

= E [|Ard ∩ (A′
wt \ (Cwt ∪ B))|]

= E [|((Ard ∩ A′
wt) \ B) \ Cwt|]

= E [|(Ard ∩ A′
wt) \ B| − |(Ard ∩ A′

wt) ∩ (Cwt \ B)|]
= E [|(Ard ∩ A′

wt) \ B|] − E [|(Ard ∩ A′
wt) ∩ Cwt|] (17)

Where the first line is due to (10), and the final line holds due tolinearity of expectation and because
Cwt ⊆ U \B by definition (6). We calculateE [|(Ard ∩ A′

wt) \ B|] directly as follows. Consider an
indicator random variableIndu, such thatIndu = 1 if u ∈ (Ard ∩A′

wt) \B, andIndu = 0 otherwise.
For eachu ∈ U \ B, we havePr[Indu = 1] = ardawt

n2 , sinceArd andA′
wt are chosen independently.

By linearity of expectation:

E [|(Ard ∩ A′
wt) \ B|] =

∑

u∈U\B

Pr(Indu = 1) = (n − b)
(ardawt

n2

)

= ard

(

awt

n
−
(awt

n

)

(

b

n

))

.

(18)

12

Because a faulty client may performbotha write that becomes established and another write that
conflicts with the first write, we cannot assume thatCwt is selected independently ofA′

wt. There-
fore, we calculateE [|(Ard ∩ A′

wt) ∩ Cwt|] asE [|Ard ∩ (A′
wt ∩ Cwt)|]. Let CI = |A′

wt ∩ Cwt|. Since
Ard is selected independently of(A′

wt ∩Cwt), we see that(|Ard ∩ (A′
wt ∩Cwt)| | CI = c) is a hyper-

geometric random variable characterized byard draws from a population ofn elements containing
c successes. Therefore, by the rules of conditional expectation and linearity of expectation we have
that,

E [|Ard ∩ (A′
wt ∩ Cwt)|]

=
∑

c

E [|Ard ∩ (A′
wt ∩ Cwt)| | CI = c] Pr[CI = c]

= E [E [|Ard ∩ (A′
wt ∩ Cwt)| | CI]]

= E

[ard

n
CI
]

=
ard

n
E [CI] (19)

As discussed in Section 4.2, to improve the chance that a conflicting write is selected (incorrectly),
the client may minimizeCI by choosing the servers forCwt from (Awt \ (A′

wt ∪B)) first. Thus, we
conservatively calculateE [CI] as follows:

E [CI] = max(0 , E [|Cwt|] − E [|Awt \ (A′
wt ∪ B)|])

≥ E [|Cwt|] − E [|Awt \ (A′
wt ∪ B)|] (20)

By the rules of conditional expectation and (7) we have that,

E [|Cwt|] = E [E [|Cwt| | MalWrite]] = E [qwt − MalWrite] = qwt − E [MalWrite] = qwt −
awtb

n
.

(21)

We calculateE [|Awt \ (A′
wt ∪ B)|] directly as follows. First, note thatAwt \ (A′

wt ∪ B) = (Awt \
A′

wt)\B. Next, consider an indicator random variableIndu, such thatIndu = 1 if u ∈ (Awt\A′
wt)\B,

andIndu = 0 otherwise. For eachu ∈ U \ B, we havePr[Indu = 1] = awt(n−awt)
n2 , sinceA′

wt and
Awt are chosen independently. By linearity of expectation:

E [|Awt \ (A′
wt ∪ B)|] =

∑

u∈U\B

Pr(Indu = 1) = (n − b)

(

awt(n − awt)

n2

)

=
awt

n2
(n − awt)(n − b).

(22)

By (20), (21), and (22), we have that,

E [CI] ≥
(

qwt −
awtb

n

)

− awt

n2
(n − awt)(n − b) = qwt −

awt

n

(

b +
(n − awt)(n − b)

n

)

. (23)

13

Therefore, by (19) and (23) we have that,

E [|Ard ∩ (A′
wt ∩ Cwt)|] ≥

ard

n

(

qwt −
awt

n

(

b +
(n − awt)(n − b)

n

))

. (24)

Combining and simplifying equations (17), (18), and (24), weobtain,

E [Conflicting] ≤ ard

n3
(2awtn

2 − nawtb − qwtn
2 − a2

wtn + a2
wtb), (25)

and by (15), (16), and (25) we have,

E [MaxConflicting] ≤ ard

n3

(

n2b + 2awtn
2 − nawtb − n2qwt − a2

wtn + a2
wtb
)

. (26)

Lemma 4.3. If PO-Consistency holds, then

E [MaxConflicting] =
ard

n3

(

n2b + 2n2awt − nawtb − n2qwt − a2
wtn + a2

wtb
)

. (27)

Proof. The logic for the calculations follows that of the proof of Lemma 4.3, except that if PO-
Consistency holds,E [CI] > 0. Assume the contrary, i.e.,E [CI] ≤ 0 and PO-Consistency holds.
Then by (19),E [|(Ard ∩ A′

wt) ∩ Cwt|] ≤ 0. Thus, becauseard ≥ qrd andawt ≥ qwt, by (15)
and (17) we have,

E [MaxConflicting]

= E [Malevolent] + E [Conflicting]

≥ E [Conflicting]

= E [|(Ard ∩ A′
wt) \ B|] − E [|(Ard ∩ A′

wt) ∩ Cwt|]
≥ E [|(Ard ∩ A′

wt) \ B|]
≥ E [|(Qrd ∩ Qwt) \ B|]
= E [|Qrd ∩ Cwt|] .
= E [MinCorrect]

But this cannot be true because PO-Consistency holds. As such,the inequalities in equations (20),
(23), (24), (25), and (26) all become equalities.

Theorem 4.4.PO-Consistency holds iff

b <
(ardqwtn − 2ardawtn + a2

wtard + qrdqwtn)n

n2ard − ardawtn + a2
wtard + qrdawtn

.

Proof. We set the value ofE [MinCorrect] given in Lemma 4.1 greater than and the largest possible
value ofE [MaxConflicting] given in Lemma 4.2 and solve forb to obtain the inequality in The-
orem 4.4; this inequality therefore implies PO-Consistency. But by Lemma 4.3, PO-Consistency
in turn implies thatE [MaxConflicting] is equal to its maximum possible value and, as such, PO-
Consistency implies the inequality in Theorem 4.4.

14

Benign clients (i.e., those that are non-faulty or that fail only by crashing) are different because
they can be trusted to follow the read and write protocols listed in Section 3. In particular, we can
trust that a client will select a read quorum at random without requiring that the client select the
quorum from a randomly-chosen access set; we reflect this in our calculations by not differentiating
between read quorums and read access sets (i.e., by settingard = qrd). In addition, we can assume
that all quorums used in writes are chosen independently.

Theorem 4.5. If all clients are benign, then PO-Consistency holds iff

b <
(qwtn − awtn + qwtawt)n

n2 + a2
wt

.

Proof. We can now assume that all servers inCwt are chosen uniformly at random fromU \ B
since writes are independent. LetD = |(Ard∩A′

wt)∩Cwt|. Instead of the calculations in (20)–(24),
we calculateE [D] by beginning withE [D | Cwt]. Consider an indicator random variableIndu,
such thatIndu = 1 if u ∈ (Ard ∩ A′

wt) ∩ Cwt, andIndu = 0 otherwise. For eachu ∈ Cwt, we have
Pr[Indu = 1] = ardawt

n2 , sinceArd andA′
wt are chosen independently. By linearity of expectation:

E [D|Cwt] =
∑

u∈Cwt

ardawt

n2
=

ardawt|Cwt|
n2

. (28)

Then, by the rules of conditional expectation and (21),

E [|(Ard ∩ A′
wt) ∩ Cwt||] = E [E [D|Cwt]] = E

[

ardawt|Cwt|
n2

]

=
ardawt

n2
E [|Cwt|]

=
ardawt

n2
(qwt −

awtb

n
) =

ardawt(qwtn − awtb)

n3
. (29)

Therefore, by (17), (18), and (29),

E [Conflicting] =
ardawt(n

2 − nb − qwtn + awtb)

n3
, (30)

and by (15), (16), and (30),

E [MaxConflicting] =
ard

n3

(

n2b + n2awt − nawtb − nawtqwt + a2
wtb
)

. (31)

SolvingE [MinCorrect] > E [MaxConflicting] for b, we have the inequality in the theorem.

As shown in Section 4.5, a construction exhibits decreasingerror probability in the limit with
increasingn if PO-Consistency holds. Therefore, the remainder of this section is concerned with
interpreting the inequalities in Theorems 4.4 and 4.5. Our analysis (summarized in Table 2) shows
that the best bounds are provided when: (i) both types of quorums are as large as possible (while
still ensuring an available quorum), i.e.,qrd = qwt = n − b; and (ii), given (i), that access sets are
as small as possible.

We first consider scenarios in which a read or write can be completed with a single access set
becauseard = qrd + b (“single-phase reads”) andawt = qwt + b (“single-phase writes”). Then, we
derive the better bounds that can be achieved if we setard < qrd + b or awt < qwt + b. Finally, we
consider scenarios pertaining only to clients that are benign.

15

Table 2: Lower bounds onn for various configurations.

n > = n = n − b = n − 2b eq. Sec. 4.4.x
3.15b - ard qrd awt qwt - (40) 4, 5
3.83b ard qrd awt qwt - (38) 3, 4
4.00b awt ard qrd qwt - (36) 2, 4, 5
4.08b - ard awt qwt qrd (39) 3
4.56b ard awt qrd qwt - (32) 1, 2, 3, 4
4.73b awt ard qwt qrd (33) 1, 3
5.49b - ard qrd awt qwt (37) 2
6.07b ard qrd awt qwt (34) 1, 2
6.19b - ard awt qrd qwt (35) 1

4.4.1 Single-Phase Reads and Writes.

Figure 3(a) plots the results of solving the inequality in Theorem 4.4 forn whenqwt = awt − b,
qrd = ard − b, and the sizes of access sets are varied betweenn− b andn. We observe that the best
bound is found whenawt = ard = n andqwt = qrd = n − b. In this case, we require,

c =

(

5 +
√

17

2

)

≈ 4.561552813, n > c · b. (32)

We make the lower bound onn progressively worse by decreasing the sizes of access sets (and
therefore quorums). If we setard = n − b andawt = n, we find,

c =
(

3 +
√

3
)

≈ 4.732050808, n > c · b. (33)

By decreasingqwt as a result of decreasingawt, we find that we soon fail to break then > 5b bound
of strict opaque quorum systems [17]. If we setard = n andawt = n − b, we require,

c ≈ 6.065103370, n > c · b. (34)

Finally, if we setard = awt = n − b,

c ≈ 6.186789391, n > c · b. (35)

4.4.2 Single-Phase Writes

Figure 3(b) plots the results of solving the inequality in Theorem 4.4 forn whenqwt = awt − b,
qrd = n − b, and the sizes of access sets are varied betweenn − b andn. Because a read access
set might not contain an available quorum, we can achieve better bounds than (32) by setting
ard < qrd + b. The best bound, whenard = n − b andawt = n, is,

n > 4b. (36)

16

n

n-0.2b

n-0.4b

n-0.6b

n-0.8b

n-b
4.6b4.8b5.0b5.2b5.4b5.6b5.8b6.0b6.2b

4.6b4.8b5.0b5.2b5.4b5.6b5.8b6.0b6.2b
s

(s
iz

e
of

 a
cc

es
s-

se
t)

n >

ard=n, awt=s
ard=s, awt=n
ard=awt=s

ard=n-b, awt=s
ard=s, awt=n-b

n

n-0.2b

n-0.4b

n-0.6b

n-0.8b

n-b
4.0b4.5b5.0b5.5b6.0b

4.0b4.5b5.0b5.5b6.0b

s
(s

iz
e

of
 a

cc
es

s-
se

t)

n >

ard=n, awt=s
ard=s, awt=n
ard=awt=s

ard=n-b, awt=s
ard=s, awt=n-b

(a) single-phase reads and writes (b) single-phase writes

n

n-0.2b

n-0.4b

n-0.6b

n-0.8b

n-b
3.8b4.0b4.2b4.4b4.6b4.8b

3.8b4.0b4.2b4.4b4.6b4.8b

s
(s

iz
e

of
 a

cc
es

s-
se

t)

n >

ard=n, awt=s
ard=s, awt=n
ard=awt=s

ard=n-b, awt=s
ard=s, awt=n-b

n

n-0.2b

n-0.4b

n-0.6b

n-0.8b

n-b
3.2b3.4b3.6b3.8b4.0b4.2b4.4b4.6b

3.2b3.4b3.6b3.8b4.0b4.2b4.4b4.6b

s
(s

iz
e

of
 a

cc
es

s-
se

t)

n >

ard=n, awt=s
ard=s, awt=n
ard=awt=s

ard=n-b, awt=s
ard=s, awt=n-b

(c) single-phase reads (d) best bounds

Figure 3: Sizes of access sets to achieve a given lower bound on n for: (a) qrd = ard − b and
qwt = awt − b; (b) qrd = n − b andqwt = awt − b; (c) qrd = ard − b andqwt = n − b; (d)
qrd = qwt = n − b.

However, as in Section 4.4.1, decreasingqwt by decreasingawt results in worse bounds, again
quickly worse thann > 5b. If ard = awt = n − b we require,

c ≈ 5.486416764, n > c · b. (37)

The worst bound is whenard = n andawt = n − b, i.e., (34).

4.4.3 Single-Phase Reads

Figure 3(c) plots the results of solving the inequality in Theorem 4.4 forn whenqwt = n − b,
qrd = ard − b, and the sizes of access sets are varied betweenn − b andn. All of the points in
the graph represent an improvement on then > 5b bound of strict opaque quorum systems. As in
Section 4.4.2, we find that we can achieve better bounds than (32), here by decreasing the size of

17

awt. For example, ifawt = n − b andard = n, we require,

c ≈ 3.831177208, n > c · b. (38)

And if awt = ard = n − b, we require,

c ≈ 4.079595625, n > c · b. (39)

The case whereawt = n andard = n − b is bound by (33).

4.4.4 Best Bounds

Now considerqwt = qrd = n−b. This results in better bounds than the scenarios in which the sizes
of quorums are smaller. Figure 3(d) plots the results of solving the inequality in Theorem 4.4 forn
whenqwt = qrd = n − b, and the sizes of access sets are varied betweenn − b andn. Because the
sizes of quorums are fixed atn − b, we can improve on (32) by decreasing the size ofawt or ard;
the best bound, achieved whenard = awt = n − b, is,

c ≈ 3.147899035, n > c · b. (40)

This represents the assumption in [18], in which all serversare accessed via randomly selected
quorums. Otherwise, ifard = n andawt = n − b we have (38), and ifard = n − b andawt = n,
we have (36).

4.4.5 Benign Clients

Theorem 4.5 shows us that in this case, ifawt = n, we require (36), and ifawt = n − b we
require (40). However, as seen in Figure 4, for values ofawt strictly betweenn andn − b, we
achieve better maximum ratios ofb/n than would a system that can tolerate faulty clients.

4.5 Bounding the Error Probability

Our primary result in this section is Theorem 4.8, which shows that the error probability goes to
zero asn grows, assuming that the ratio of each ofb, ard, qrd, awt, andqwt to n remains constant.
In this section, the symbols “θ”, “ ω” and “Ω” are used as in standard asymptotic notation.

Lemma 4.6. Let E [MinCorrect] > E [MaxConflicting], and let the ratio of each ofb, ard, qrd, awt,
andqwt to n be fixed. Then,

E [MinCorrect] = θ(n)

E [MaxConflicting] = θ(n)

E [MinCorrect] − E [MaxConflicting] = θ(n).

Proof. Given that the ratio of each ofb, ard, qrd, awt, andqwt to n is constant, we have by (12)
and (27) thatE [MinCorrect] = θ(n) andE [MaxConflicting] = θ(n), and that ifE [MinCorrect] −
E [MaxConflicting] is not identically zero thenE [MinCorrect] − E [MaxConflicting] = θ(n). So,
the result follows from the stipulation thatE [MinCorrect] − E [MaxConflicting] > 0.

18

n

n-0.2b

n-0.4b

n-0.6b

n-0.8b

n-b
3.2b3.3b3.4b3.5b3.6b3.7b3.8b3.9b4.0b

3.2b3.3b3.4b3.5b3.6b3.7b3.8b3.9b4.0b

s
(s

iz
e

of
 a

cc
es

s-
se

t)

n >

faulty clients (awt=s, qrd=ard=n-b)
benign clients (awt=s)

Figure 4: Benign clients vs. faulty clients—sizes of access-sets to achieve a given lower bound on
n for qwt = n − b.

Suppose a read operation always returns a value that receives more thanr votes, where
E [MaxConflicting] ≤ r < E [MinCorrect]. Then, the error probability,ǫ, is

ǫ = Pr(MaxConflicting > r ∨ MinCorrect ≤ r). (41)

Theorem 4.8 states that ifr is chosen so that

E [MinCorrect] − r = θ(n) and

r − E [MaxConflicting] = θ(n) (42)

thenǫ decreases as a function ofn. For example,r can be set to
(E [MaxConflicting] + E [MinCorrect])/2.

Our proof of Theorem 4.8 uses the following theorem, which isa simplification of the Molloy
and Reed statement [22, p. 172] (c.f., [22, p. 81]) of the McDiarmid Inequality.

Theorem 4.7([22]). Let Z = z(Π1, . . . , Πl) be a random variable that is a function of a series
Π1, . . . , Πl of independent random variables, where eachΠi takes on a random permutation (bi-
jection)π : {1, . . . , |P |} → P of a finite non-empty setP . Also, for some positive constantsδ and
µ, let the following conditions hold (where ifΠj = πj then themapping〈i, j,m〉 indicates that
πj(i) = m):

M1 Swapping the mappings of any two elements in a single permutation πj (i.e., changing
{〈i, j,m〉,〈i′, j,m′〉} to {〈i′, j,m〉,〈i, j,m′〉}, wherei 6= i′ andm 6= m′) changes the value
of Z by at mostδ.

M2 If Z = z(π1, . . . , πl) = x, then there exists a set ofµx distinct mappings
{〈i1, j1,m1〉, . . . , 〈iµx, jµx,mµx〉} such thatz(π′

1, . . . , π
′
l) ≥ x for anyπ′

1, . . . , π
′
l sharing the

same set of mappings.

19

If d = ω(
√

E [Z]) and0 ≤ d ≤ E [Z], then:

Pr(|Z − E [Z] | ≥ d) = 2/eΩ(d2/E[Z]). (43)

Theorem 4.8. Let MinCorrect, MaxConflicting, and r be defined as above (so PO-Consistency
holds) and let the ratio of each ofb, ard, qrd, awt, andqwt to n be fixed. Then,

ǫ = 2/eΩ(n) + 2/eΩ(n).

Proof. Consider the following method for computingMinCorrect andMaxConflicting. Fix any
set ofb servers to constituteB. Next, define random variablesΠ0, Π1, Π2, andΠ3, each taking
on a random permutation{1, . . . , |U |} → U , whereU is the set of alln servers. LetQrd be the
random variable used in (8), i.e., a random variable taking on the read quorum selected uniformly
at random. Then consider the following definitions:

• DefineAwt = {Π0(1), . . . , Π0(awt)}.

• DefineA′
wt = {Π1(1), . . . , Π1(awt)}.

• DefineArd = {Π2(1), . . . , Π2(ard)}.

• DefineQrd = {Π3(1), . . . , Π3(ard)}.

Because each permutation is randomly selected (independently of B), so too areAwt, A′
wt, Ard, and

Qrd. DefineCwt in accordance with Sections 4.3 and 4.4. Specifically, choose itsqwt − MalWrite

servers at random first from(Awt \ (A′
wt ∪ B)) and only then from(Awt ∩ (A′

wt \ B)). To do this,
select the servers according to the random order imposed byΠ0, i.e., selectΠ0(i) beforeΠ0(i + 1)
if both servers are in the relevant set ((Awt \ (A′

wt ∪ B)) or (Awt ∩ (A′
wt \ B))). Random selection

is sufficient because a faulty client gains no advantage by any other scheme.
Given that we have definedAwt, A′

wt, Ard, Qrd, Cwt, andB, we can directly calculateMinCorrect

andMaxConflicting using definitions (8) and (11). Consider this in relation to Theorem 4.7 as
follows. Swapping any two elements in one permutation can change the value ofMinCorrect by at
most1 (by adding or removing a server from the relevant intersection of the sets), and because an
additional server added toArd cannot be both faulty and non-faulty, swapping any two elements in
one permutation can similarly change the value ofMaxConflicting by at most1. Therefore,δ = 1
in Condition M1. Additionally, ifMinCorrect = x, then the mappings

⋃

u∈Qrd∩Cwt

{〈Π−1
0 (u), 0, u〉, 〈Π−1

3 (u), 3, u〉}

suffice to satisfy Condition M2, whereQrd andCwt are the values taken on byQrd andCwt, re-
spectively. Therefore,µ = 2 for MinCorrect, and similarlyµ = 3 if Z = MaxConflicting.

20

To derive a bound onPr(MinCorrect ≤ r), we setd = E [MinCorrect] − r. Because of (42),
d = θ(n) and therefored = ω(

√

E [MinCorrect]). As such, by Theorem 4.7 and (43) we have,

Pr(MinCorrect ≤ r)

= Pr(MinCorrect ≤ E [MinCorrect] − d)

= Pr(E [MinCorrect] − MinCorrect ≥ d)

≤ Pr(|MinCorrect − E [MinCorrect] | ≥ d)

= 2/eΩ(θ(n)2/θ(n))

= 2/eΩ(n).

To derive a bound onPr(MaxConflicting > r), we setd′ = r − E [MaxConflicting] andd =
min(d′, E [MaxConflicting]), to ensured ≤ E [MaxConflicting]. Again, by Lemma 4.6 and (42),
d = θ(n), and sod = ω(

√

E [MaxConflicting]). Therefore, by Theorem 4.7 and (43) we have,

Pr(MaxConflicting > r)

≤ Pr(MaxConflicting ≥ r)

= Pr(MaxConflicting ≥ d′ + E [MaxConflicting])

= Pr(MaxConflicting − E [MaxConflicting] ≥ d′)

≤ Pr(MaxConflicting − E [MaxConflicting] ≥ d)

≤ Pr(|MaxConflicting − E [MaxConflicting] | ≥ d)

= 2/eΩ(θ(n)2/θ(n))

= 2/eΩ(n).

Finally, note the following about (41):

Pr(MaxConflicting > r ∨ MinCorrect ≤ r)

= Pr(MaxConflicting > r) + Pr(MinCorrect ≤ r)−
Pr(MaxConflicting > r ∧ MinCorrect ≤ r)

≤ Pr(MaxConflicting > r) + Pr(MinCorrect ≤ r).

5 Access-Restriction Protocol

Our analysis in the previous sections assumes that all access sets are chosen uniformly at random
by all clients—even faulty clients. Therefore, here we present an access-restriction protocol that
is used to enforce this. Recall from Section 3.1 that the need for read access sets to be selected
uniformly at random is motivated by repair. As such, protocols that do not involve repair may not
require this access-restriction protocol for read operations.

Our protocol must balance conflicting constraints. First, aclient may be forced to discard a
randomly chosen access set—and choose another—because a given access set (of size less thanb
servers more than a quorum) might not contain an available quorum. However, in order to support

21

protocols like Q/U [1] that use opaque quorum systems for single-round writes, we cannot require
additional rounds of communication for each operation. This precludes, for example, a protocol in
which the servers collectively choose an access set at random and assign it to the client for every
operation. As such, a client must be able to choose from multiple access sets without involving the
servers for each. Yet, a faulty client should be prevented from discarding access sets in order to
choose the one that has the highest probability of causing anerror given the current system state. In
addition, we should ensure that a faulty client does not benefit from waiting for the system state to
change in order to use a previously chosen access set that becomes more advantageous as a result
of the change.

In our protocol, the client obtains one or more random values, each called a Verifiable Random
Value (VRV), with the participation of non-faulty servers.Each VRV determines a unique, verifi-
able, ordered sequence of random access sets that the clientcan use; the client has no control over
the sequence. To deter a client from discarding earlier access sets in the sequence for potentially
more favorable access sets later in the sequence, the protocol imposes an exponentially increasing
cost (in terms of computation) for the ability to use later access sets. The cost is implemented
as aclient puzzle[13]. We couple this with a facility for the propagation of the correct value in
the background so that any advantages for a faulty client in the current system state are reduced
if the client chooses to delay performing the operation while it explores later access sets. Finally,
to deter a client from waiting for the system state to change,we tie the validity of a VRV (and its
sequence of access sets) to the state of the system so that as execution proceeds, any unused access
sets become invalid.

The remainder of this section is structured as follows: Section 5.1 discusses how a client obtains
a VRV; Section 5.2 discusses the client puzzle and how the sequence of access sets is computed
from the VRV; Section 5.3 outlines the responsibilities of servers concerning verification of the
validity of access sets; and Section 5.4 provides details ofthe background propagation of correct
values.

5.1 Obtaining a VRV

In order to get an access set, the client first must obtain a VRVfrom the servers. Servers implement
a metering policy, in which each server responds to a requestfor a VRV only after a delay. The
delay varies, such that it increases exponentially with therate at which the client has requested
VRVs during some recent interval of time—i.e., a client thathas not requested a VRV recently
will receive a VRV with little or no delay, whereas a client that has recently requested many VRVs
will receive a VRV after a (potentially significant) delay. To offload work from servers to clients
(e.g., for scalability), the servers can make it relativelymore expensive (in terms of time) to ask
for and receive a new VRV than to compute a given number of access sets (potentially for multiple
operations) from a single VRV, using the mechanisms described below.

The VRV is characterized by the following properties:

• It can be created only with the consent of non-faulty servers;

• Its validity is tied to the state of the system, in the sense that as the system state evolves
(possibly merely through the passage of time), eventually the VRV is invalidated;

22

• While it is valid, any non-faulty server can verify its validity and so will accept it.

The VRV must be created with the consent of non-faulty servers because otherwise faulty servers
might collude to issue multiple VRVs to a faulty client with no delay. Therefore,l, the number of
servers required for the issuance of a VRV, must be at leastb+1. However, of the non-faulty servers
in the system, only those among the (at leastl − b) used to issue a VRV will impose additional
delay before issuing an additional VRV. Therefore, to minimize the time to get an additional VRV, a
faulty client avoids involving servers that have issued VRVs recently. This strategy maximizes the
number of VRVs to which the non-faulty server contributing to the fewest VRVs has contributed.
Thus, oncek VRVs have been issued, alln− b non-faulty servers have contributed to the issuance
of at least⌊k(l − b)/(n − b)⌋ of thesek. Since all non-faulty servers have contributed to at least
this many VRVs, and the delay is exponential in this number, the timeT (k) required for a client to
obtaink VRVs is:

T (k) = Ω

(

exp

⌊

k(l − b)

n − b

⌋)

In practice,T (k) for a client decays during periods in which that client does not request additional
VRVs, so that a client that does not request VRVs for a period can obtain one with small delay.

The validity of the VRV (and its sequence of access sets) is tied to the state of the system
so that as execution proceeds, any unused access sets becomeinvalid. To implement this, the
replication protocol may provide some piece of data that varies with the state of the system—
the Object History Setin Q/U [1] is an example of this—with which the servers can compute a
VRV, but, in the absence of a suitable value from the protocol, the VRV can include a timestamp
(assuming that the non-faulty servers have roughly synchronized clocks). The VRV consists of this
value together with a digital signature created using a(l, n)-threshold signature scheme (e.g., [24]),
i.e., so that any set ofl servers can together create the signature, but smaller setsof servers cannot.
The signature scheme must bestrongly unforgeable[4], meaning that an adversary, given a VRV,
is not able to find other valid VRVs. This is necessary becauseotherwise a faulty client would be
able to generate variations of a valid VRV until finding one from which to select an access set that
causes an error (see below).

5.2 Choosing an Access Set

As motivated above: (i) the VRV determines a sequence of valid access sets; and (ii) a client
puzzle must make it exponentially harder to use later accesssets in the sequence than earlier ones.
In addition, it is desirable for our protocol to satisfy the following requirements:

• Each VRV must determine only a single valid sequence of access sets. This is to prevent a
faulty client from choosing a preferred sequence.

• The puzzle solutions must be easy to verify, so that verification costs do not limit the scala-
bility of the system in terms of the number of requests.

• There must be a solution to each puzzle. Otherwise a non-faulty client might be unable to
use any access set.

23

• No server can know the solution to the puzzle beforehand due to the Byzantine fault model.
Otherwise, a faulty client could avoid the exponential workby asking a faulty server for the
solution.

In our protocol, the sequence of access sets is determined asfollows. Letv be a VRV, letg be a
hash function modeled as a random oracle [7], and letaccesssetbe a deterministic operation that,
given a seed value, selects an access set of the specified sizefrom the set of all access sets of that
size in a uniform fashion. Let the first seed,s1, beg(v), and thei’th seed,si, beg(si−1). Then the
i’th access set isaccessset(si).

The functionaccesssetworks as follows for seed values. Let h be a hash function modeled
as a random oracle that maps inputs uniformly to its output range. Divide the output range ofh
into n equal sized intervals labeled1 throughn, and letserver(r) return the server corresponding
to the range into whichr falls. Letr1 beh(s) and letri beh(ri−1). Then thei ’th candidate server
chosen for the access set isserver(ri), and candidate servers are added to the access set until the
access set contains the required number of unique servers. Becauseh maps inputs uniformly to its
output range, each server is effectively selected at random.

In order to use thei ’th access set, the client must solve a puzzle of suitable difficulty. This
puzzle must be non-interactive [12] to avoid additional rounds of communication. There are many
suitable candidate puzzle functions [12]; we use a simple variant of Hashcash [5]. Specifically, let
f be a hash function modeled as a random oracle. Then, to use thei ’th access-set, the client must
find a value,w, such that the firstci bits of f(v||w) equal zero, where ‘||’ represents concatenation
andc is a constant greater than or equal to one. The most efficient known way to do so is a brute
force search. In general, the client will need to compute2ci/2 = 2ci−1 evaluations off to find aw
such that the firstci bits of f(v||w) bits are zero. Larger values ofc require more effort to obtain
each access set.

5.3 Server Verification

Upon receiving a write request for thei ’th access set, each non-faulty server in the chosen access
set must verify that it is a member of the access set; for a repair request it must verify that the
relevant votes are from servers in the access set of the read operation that gave rise to the repair.
In addition, in either case, before accepting the value, each server must verify that the VRV is
valid, that the access set corresponds to thei ’th access set of the sequence, and that the client has
provided a valid solution to a puzzle of difficultyci . To validate the solution,w, the server need
only check that the firstci bits of f(v||w) are zero.

While the client can obtain additional access sets from the VRV, each access set used is treated
as a different operation by servers as stated in Section 3.1;e.g., a write operation using one access
set, and then using another access set, is treated as two different writes,3 so that a faulty client
cannot “accumulate” more thanawt servers for its operation through the use of multiple write
access sets.

3Typically, a Byzantine-fault-tolerant write protocol must already be resilient to partial writes, which is how these
writes using different access sets might appear to the service.

24

5.4 Background Propagation

As described above, servers work to propagate the values of established writes to each other in
the background. Our main contribution in this area is our analysis of the threshold number of
servers that must propagate a value for it to be accepted by another server. While related Byzantine
diffusion protocols (e.g., [16]) use the numberb + 1, we require a larger number because opaque
quorum systems allow that some non-faulty servers may accept conflicting values. We assume an
appropriate propagation algorithm (e.g., a variant of an epidemic algorithm [10] such as [16]). At
a high level, a non-faulty server has two responsibilities.First, having accepted a write value and
returned a response to the client, it periodically informs other servers that it has accepted the value.
Second, if it has not yet accepted a value upon learning that athreshold number,p, of servers
have accepted the value, it accepts the value. Faulty servers are all assumed to have access to
any conflicting value directly without propagation, so we assume no additional constraints on their
behavior.

Lemma 5.1. Letn < 2qwt−2b andp = n−qwt+b+1. Then an established value will be accepted
and propagated by at leastp non-faulty servers, and no conflicting value can be propagated byp
servers (faulty or non-faulty).

Proof. The established value is accepted by at leastqwt − b non-faulty servers by definition. If
we allow that all other servers may forward a conflicting value, then the number of servers that
forward a conflicting value isn − (qwt − b). First, note thatp > n − (qwt − b) by the lemma. In
addition,p ≤ qwt − b because,

n < 2qwt − 2b

⇔ n − (qwt − b) < qwt − b

⇔ n − (qwt − b) + 1 ≤ qwt − b

⇔ p ≤ qwt − b

For example, ifqwt = n − b andn > 4b we setp = 2b + 1. Since the established value will be
accepted by at leastp non-faulty servers, it will propagate. No conflicting valuewill propagate.

If the conditions of Lemma 5.1 do not hold, we must allow for some probability of error during
propagation. We setp so that it is between the expectations of the minimum number of non-
faulty servers that accept an established write (PCorrect), and the maximum number of servers
that propagate a conflicting value (PConflicting). We now derive expressions forPCorrect and
PConflicting. First, note thatPCorrect = |Cwt|. Therefore, by (13), (7), and linearity of expectation
we have:

E [PCorrect] = E [|Cwt|]
= E [qwt − MalWrite]

= qwt − E [MalWrite]

= qwt −
awtb

n

=
nqwt − awtb

n
. (44)

25

PConflicting is the number of servers in the disjoint setsB and(A′
wt \ (Cwt ∪ B)). Therefore,

E [PConflicting] = b + E [|A′
wt \ (Cwt ∪ B)|] . (45)

Note that,

E [|A′
wt \ (Cwt ∪ B)|]

= E [|(A′
wt \ B) \ Cwt|]

= E [|A′
wt \ B| − |A′

wt ∩ (Cwt \ B)|]
= E [|A′

wt \ B|] − E [|A′
wt ∩ Cwt|] . (46)

|A′
wt \ B| is a hypergeometric random variable with expectation,

E [|A′
wt \ B|] =

awt(n − b)

n
. (47)

Combining and simplifying equations (46), (47), and (23), wehave,

E [|A′
wt \ (Cwt ∪ B)|] =

2awtn
2 − nawtb − qwtn

2 − a2
wtn + a2

wtb

n2
. (48)

So by (45) and (48),

E [PConflicting] =
n2b + 2awtn

2 − nawtb − n2qwt − a2
wtn + a2

wtb

n2
. (49)

Lemma 5.2. PO-Consistency⇒ E [PCorrect] > E [PConflicting].

Proof. Recall that PO-Consistency holds iffE [MinCorrect] > E [MaxConflicting]. Next,

E [MinCorrect] > E [MaxConflicting]

⇔ n

qrd

E [MinCorrect] >
n

qrd

E [MaxConflicting]

⇒ n

qrd

E [MinCorrect] >
n

ard

E [MaxConflicting]

⇔ E [PCorrect] > E [PConflicting]

The final line follows from definitions (44) and (49), and Lemmas 4.1 and 4.3.

Lemma 5.2 shows that we can setp as described for any system in which PO-Consistency
holds.

26

6 Evaluation

In this section, we analyze error probabilities for concrete system sizes. In addition to validating
our results from Section 4, this shows that an access restriction protocol like that of Section 5 can
provide significant advantages in terms of worst-case errorprobabilities.

Figure 5 plots the total number of nodes required to achieve agiven calculated error proba-
bility for each of the configurations that tolerate faulty clients whereqwt = qrd = n − b. Since
the unrestrictedconfiguration (ard = n, awt = n) shown in Figure 5(d) does not require the
access-restriction protocol of Section 5, yet yields the best maximum ratios ofb to n of all the con-
figurations that provide single-phase reads and writes (Section 4.4.1), we do not evaluate the error
probabilities of those other configurations here. In all cases, the error probabilities are worst-case
in that they reflect the situation in which allb nodes are in fact faulty. For each configuration, we
provide plots for different ratios ofn to b, ranging from the maximumb for a given configuration,
to n = 5b + 1, as a comparison with strict opaque quorum systems. Appendix B provides details
of our calculations.

Overall, we find that our constructions can tolerate significantly more thanb = n/5 faulty
servers, while providing error probabilities in the range of 10−2 to 10−4 for systems with fewer
than 50 servers to hundreds of servers. Coupled with the dissemination of correct values between
servers (off the critical path), as described in Section 5, the error probability decreases between
writes.

Within each figure, we see that to decrease the worst-case error probability, we can either keep
the same function ofb in terms ofn while increasingn, or hold n fixed while decreasing the
number of faults the system can tolerate. For example, Figure 5(b) shows that ifb = (n− 1)/4.66,
we decrease the worst-case error probability from∼ 10−2 to∼ 10−4 by increasing the system size
from 48 servers to 141 servers. On the other hand, Figure 5(a)shows us that if we keepn fixed at
∼ 100 servers, we can provide order of10−3 worst-case error probability with(n− 1)/4.10 faulty
servers, but provide only order of10−2 worst-case error probability for(n−1)/3.93 faulty servers.

Considering two figures together, we see that configurations that tolerate a largerb also provide
better error probabilities for a givenb. For example, Figure 5(a) shows that by restricting reads
and writes, a system of approximately 130 servers can tolerate (n − 1)/4.10 faults with a worst-
case error probability on the order of10−3. By comparison, Figure 5(b) shows that, if we restrict
only writes, the same degree of fault tolerance and low errorprobability requires more than 1000
servers. As such, an access restriction protocol like that of Section 5 provides real benefits in terms
of worst-case error probabilities.

While a very large number of servers is required for any configuration to tolerate its theoretical
limit on b with small error probability, each configuration can tolerate close to its limit with far
fewer servers. For example, Figure 5(a) shows that, if we restrict reads and writes, it requires more
than 10,000 servers to tolerate(n−1)/3.25 faults with worst-case error probability on the order of
10−3. However, by decreasing the fraction of faults that can be tolerated to(n − 1)/3.93, we can
achieve the same error probability with∼ 200 servers—1/50 of the servers. However, this is not
a linear function; if we again reduce the fraction of serverswe can tolerate by a similar amount to
(n − 1)/4.66, we reduce the minimumn to approximately 50 servers—only by1/4.

27

101

102

103

104

105

10-410-310-2

m
in

 n

error probability

n=3.25b+1
n=3.93b+1
n=4.10b+1
n=4.66b+1
n=5.00b+1

101

102

103

104

105

10-410-310-2

m
in

 n

error probability

n=3.93b+1
n=4.10b+1
n=4.66b+1
n=5.00b+1

(a) restricted reads and writes (ard = qrd, awt = qwt) (b) restricted writes only (ard = n, awt = qwt)

101

102

103

104

105

10-410-310-2

m
in

 n

error probability

n=4.10b+1
n=4.66b+1
n=5.00b+1

101

102

103

104

105

10-410-310-2

m
in

 n

error probability

n=4.66b+1
n=5.00b+1

(c) restricted reads only (ard = qrd, awt = n) (d) unrestricted (ard = n, awt = n)

Figure 5: Number of servers required to achieve given calculated worst-case error probability.

7 Conclusion

First, we have presented probabilistic opaque quorum systems (POQS), a new type of opaque
quorum system that we have shown can tolerate up ton/3.15 Byzantine servers (compared with
n/5 Byzantine servers for strict opaque quorum systems) with high probability, while preserving
the properties that make opaque quorums useful for optimistic Byzantine-fault-tolerant service
protocols. Second, we have presented an optional, novel access-restriction protocol for POQS that
provides the ability for servers to constrain clients so that they use randomly selected access sets
for operations. With POQS, we expect to create probabilistic optimistic Byzantine fault-tolerant
service protocols that tolerate substantially more faultsthan current optimistic protocols. While
strict opaque quorums systems may be more appropriate for smaller systems that require no chance
of error, a POQS can provide increased fault tolerance for a given number of nodes, with a worst-
case error probability that is bounded and that decreases asthe system scales.

28

References

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie. Fault-scalable
Byzantine fault-tolerant services. InSymposium on Operating Systems Principles, October
2005.

[2] A. S. Aiyer, L. Alvisi, and R. A. Bazzi. On the availability of non-strict quorum systems. In
DISC 2005, pages 48–62, 2005.

[3] A. S. Aiyer, L. Alvisi, and R. A. Bazzi. Byzantine and multi-writer k-quorums. InDISC
2006, pages 443–458, 2006.

[4] J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In
EUROCRYPT 2002, pages 83–107, London, UK, 2002.

[5] A. Back. Hashcash - a denial of service counter-measure.http://cypherspace.org/
hashcash/hashcash.pdf, August 2002.

[6] R. A. Bazzi. Access cost for asynchronous Byzantine quorum systems.Distributed Comput-
ing, 14(1):41–48, 2001.

[7] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. InConference on Computer and Communications Security, pages 62–73, 1993.

[8] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded Byzantine distributed storage.
In International Conference on Dependable Systems and Networks, 2006.

[9] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery.ACM
Transactions on Computer Systems, 20(4):398–461, 2002.

[10] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry. Epidemic algorithms for replicated database maintenance. InPrinciples of
Distributed Computing, pages 1–12, August 1987.

[11] M. Herlihy and J. Wing. Linearizability: A correctnesscondition for concurrent objects.
ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

[12] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. InCommunications
and Multimedia Security, pages 258–272, 1999.

[13] A. Juels and J. Brainard. Client puzzles: A cryptographiccountermeasure against connection
depletion attacks. InNetwork and Distributed Systems Security Symposium, pages 151–165,
1999.

[14] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.ACM Transactions
on Programming Languages and Systems, 4(3):382–401, July 1982.

29

[15] B. Liskov and R. Rodrigues. Tolerating Byzantine faulty clients in a quorum system. In
International Conference on Distributed Computing Systems, 2006.

[16] D. Malkhi, Y. Mansour, and M. K. Reiter. Diffusion without false rumors: On propagat-
ing updates in a Byzantine environment.Theoretical Computer Science, 299(1–3):289–306,
2003.

[17] D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed Computing, 11(4):203–
213, 1998.

[18] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright. Probabilistic quorum systems.Infor-
mation and Computation, 170(2):184–206, 2001.

[19] J.-P. Martin and L. Alvisi. Fast Byzantine consensus.IEEE Transactions on Dependable and
Secure Computing, 3(3):202–215, 2006.

[20] C. McDiarmid. Concentration for independent permutations. Combinatorics, Probability
and Computing, 11(2):163–178, 2002.

[21] M. Mitzenmacher and E. Upfal.Probability and Computing. Cambridge University Press,
2005.

[22] M. Molloy and B. Reed.Graph Colouring and the Probabilistic Method. Springer, 2002.

[23] F. B. Schneider. Implementing fault-tolerant servicesusing the state machine approach: a
tutorial. ACM Computing Surveys, 22(4):299–319, 1990.

[24] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack.
Journal of Cryptology, 15(2):75–96, 2002.

[25] H. Yu. Signed quorum systems.Distributed Computing, 18(4):307–323, 2006.

30

Appendix A Intersection of Two Write Quorums

We show in this section that O-Consistency (from Section 4.1), although phrased in terms of in-
tersection between a read quorum and a write quorum, impliessufficient constraints in terms of
two write quorums in the threshold quorum system model that we assume. In particular, as stated
in [1], the constraint on the intersection of two write quorums in an opaque quorum system ensures
that if one write is established, no conflicting write is established or can be repaired successfully.
That is, let arepairable set, R ∈ R(Qwt), be any set ofr servers fromQwt; then,

∀Qwt, Q
′
wt ∈ Qwt,∀R ∈ R(Q′

wt) : Qwt ∩ R 6∈ B (50)

We demonstrate that O-Consistency provides the same guarantee by showing that it implies (50):

∀Qrd ∈ Qrd,∀Qwt ∈ Qwt : r > conflicting(Qrd, Qwt)

⇔ ∀Qrd ∈ Qrd,∀Qwt ∈ Qwt : r > |(Qrd ∩ B) ∪ (Qrd \ Qwt)|
⇔ ∀Qrd ∈ Qrd,∀Qwt ∈ Qwt : r > qrd − |(Qrd ∩ Qwt) \ B|
⇔ r > qrd − ((qrd + qwt − n) + (n − b) − n)

⇔ r > n + b − qwt

⇔ qwt + r − n > b

⇔ ∀Qwt, Q
′
wt ∈ Qwt,∀R ∈ R(Q′

wt) : Qwt ∩ R 6∈ B

Appendix B Calculating ǫ

To perform our calculations, we use theR language, and a dynamic programming approach due to
numerous summations of terms. Here, we describe the calculations that we perform.

First, in accordance with Section 4.5, we setr as follows,

r = ⌈(E [MinCorrect] + E [MaxConflicting])/2⌉.

Next, to determine the error probability accurately, we calculate the error probabilities for non-
faulty clients (ǫ1) and faulty clients (ǫ2) independently. We determineǫ as,

ǫ = max(ǫ1, ǫ2).

To facilitate this, we define new random variables and functions. While, as described in Section 4.3,
a faulty client chooses votes for the incorrect value from the entire read access set taken on byArd,
a non-faulty client uses only the randomly chosen read quorum taken on byQrd for choosing such
votes. Therefore, for a non-faulty client, in place ofMaxConflicting we defineMaxConflicting′

(compare with (11)),

Malevolent′ = |Qrd ∩ B|
Conflicting′ = |Qrd ∩ (A′

wt \ (Cwt ∪ B))|
MaxConflicting′ = Malevolent′ + Conflicting′

31

Similarly, while the read quorum (taken on byQrd) that is used by a non-faulty client contains
at leastMinCorrect votes from non-faulty servers that return the correct value, the read access set
from which a faulty client selects votes (taken on byArd) contains at leastMinCorrect′ such votes
(compare with (8)),

MinCorrect′ = |Ard ∩ Cwt|

Finally, letQStale andAStale be the maximum number of non-faulty servers with stale values in
Qrd andArd, respectively,

QStale = qrd − MinCorrect − MaxConflicting′

AStale = ard − MinCorrect′ − MaxConflicting

Then, for a non-faulty client, we calculate the error probability as,

ǫ1 = Pr(MinCorrect ≤ r ∨ MaxConflicting′ > r)

= Pr(MinCorrect ≤ r ∨ qrd − MinCorrect − QStale > r)

= Pr(MinCorrect ≤ r ∨ MinCorrect < qrd − r − QStale)

= Pr(MinCorrect ≤ max(r, qrd − r − QStale − 1)))

=
∑

z

Pr(MinCorrect ≤ max(r, qrd − r − QStale − 1)) Pr[QStale = z]

For a faulty client, we calculate the error probability as,

ǫ2 = Pr(MaxConflicting > r)

= Pr(ard − MinCorrect′ − AStale > r)

= Pr(MinCorrect′ < ard − r − AStale)

= Pr(MinCorrect′ ≤ ard − r − AStale − 1)

=
∑

z

Pr(MinCorrect′ ≤ ard − r − z − 1) Pr[AStale = z]

For a hypergeometric random variableH ∼ hyp(w, t, d) defined byd draws from a population
of t elements containingw success elements, we can directly calculate the cumulativedistribution
function (Pr[H ≤ l]) and the probability mass function (Pr[H = l]).

Based on the description ofMinCorrect in Section 4.4, we have that(MinCorrect | MalWrite =
m) ∼ hyp(qwt − m,n, qrd). Then,

Pr[MinCorrect ≤ x] =
∑

m

Pr[(MinCorrect | MalWrite = m) ≤ x] Pr[MalWrite = m].

We calculatePr[MinCorrect′ ≤ x] in the same fashion.
In Section 4.4 when calculatingE [MaxConflicting] we assume the worst-case behavior of

faulty clients described in Section 4.2. Therefore, to calculatePr[QStale = z], we again assume

32

thatAwt \ (B ∪ A′
wt) ⊆ Cwt, that all of the servers inA′

wt \ B have either the correct value or the
conflicting value, and that all of the servers inB return the conflicting value if polled. Therefore,
the number of servers inQrd that return neither the correct value nor the conflicting value are,

QStale = |Qrd \ (Awt ∪ A′
wt ∪ B)|.

SinceQrd \ (Awt ∪ A′
wt ∪ B) = (Qrd \ Awt) \ A′

wt) \ B, we calculatePr[QStale = z] as follows.
Let W = |(U \ A′

wt) \ B| and V = |((U \ Awt) \ A′
wt) \ B|. SinceQrd, Awt, andA′

wt are
chosen independently,W ∼ hyp(n − b, n, n − awt), (V | W = w) ∼ hyp(w, n, n − awt), and
(QStale | V = v) ∼ hyp(v, n, qrd). As such,

Pr[V = v] =
∑

w

Pr[(V | W = w) = v] Pr[W = w].

and,

Pr[QStale = z] =
∑

v

Pr[(QStale | V = v) = z] Pr[V = v].

We can calculatePr[AStale = z] in the same fashion.

33

