
Fast Nonparametric Machine Learning
Algorithms for High-dimensional Massive

Data and Applications
Ting Liu

CMU-CS-06-124

March 2006

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Andrew W. Moore, Chair

Martial Hebert
Jeff Schneider

Trevor Darrell, MIT

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2006 Ting Liu

This research was sponsored by DARPA EAGLE 7775.1.1150023 and NSF High Dimensional Data Mining
10868.1.1040295.

Keywords: nearest-neighbor, k-nearest-neighbor, approximate-nearest-neighbor, metric-
trees, KNS2, KNS3, IOC, spill-tree, LSH

Abstract
Nonparametric methods have become increasingly popular in statistics and
probabilistic AI communities. One well-known nonparametric method is “nearest-
neighbor”. It uses the observations in the training setT closest in input space
to a queryq to form the prediction ofq. Specifically, whenk of the observa-
tions inT are considered, it is calledk-nearest-neighbor(or k-NN).

Despite its simplicity,k-NN and its variants have been successful in many
machine learning problems, including pattern recognition, text categorization,
information retrieval, computational statistics, database and data mining. It is
also used for estimating sample distributions and Bayes error.

However,k-NN and many related nonparametric methods remain hampered
by their computational complexity. Many spatial methods, such as metric-
trees, have been proposed to alleviate the computational cost, but the effec-
tiveness of these methods decreases as the number of dimensions of feature
vectors increases. From another direction, researchers are trying to develop
ways to findapproximateanswers. The premise of this research is that in
many cases it is not necessary to insist on the exact answers; instead, deter-
mining an approximate answer should be sufficient. In fact, some approximate
methods show good performance in a number of applications, and some meth-
ods enjoy very good theoretical soundness. However, when facing hundreds
or thousands dimensions, many algorithms do not work well in reality.

I propose four new spatial methods for fastk-NN and its variants, namely
KNS2, KNS3, IOC andspill-tree. The first three algorithms are designed
to speed upk-NN classification problems, and they all share the same insight
that finding the majority class among thek-NN of q need not to explicitly
find thosek-nearest-neighbors. Spill-tree is designed for approximatek-NN
search. By adapting metric-trees to a more flexible data structure, spill-tree is
able to adapt to the distribution of data and it scales well even for huge high-
dimensional data sets. Significant efficiency improvement has been observed
comparing to LSH (localify sensitive hashing), the state of art approximate
k-NN algorithm. We applied spill-tree to three real-world applications: shot
video segmentation, drug activity detection and image clustering, which I will
explain in the thesis.

iv

Acknowledgments

I owe a lot to my advisor, Andrew Moore, who first introduced me to the fascinating area
of Machine Learning, which I enjoy greatly ever since. Andrew taught me how to do re-
search: how to extract a problem from the real-world, how to understand a problem from
a fundamental level, how to refine the solutions relentlessly, and how to strike a balance
between being intuitive and being rigorous. An excellent speaker himself, Andrew also
taught me how to give good talks, which I found extremely useful. Andrew is more than
just an academic advisor to me, his nice personality, optimistic attitude and his encour-
agement to me whenever I met obstacles all become important factors that lead me to my
finishing of my Ph.D. degree.

I started to be interested in working on nearest-neighbor algorithms when I worked on a
phamathutical project, but the later applications I worked on are all computer vision re-
lated problems, which become a heavy part of my thesis. My knowledge of computer
vision would be impossible without Martial Hebert, who taught a course at CMU. Martial
is a very good teacher and very dedicated to the students. I got many ideas and sugges-
tions from him. It is an hornor to have him in my thesis committee. I met Trevor Darrel
in NIPS 2003. It was the first time I went to a conference. Trevor organized the workshop
on k-nearest-neighbor methods with its applications on Computer Vision. I learned a lot
from that workshop, and it broadened my eyes in this area. It is only appropriate to have
Trevor in my thesis committee, and I am very happy that he agrees. Jeff Schneider is an
important member of Auton lab, ever since I came to the group, Jeff has been offering a
great many help to me, from coding to research ideas, thanks to Jeff for agreeing to be-
come a commeettee member.

Paul Komarek is the first person in my group who I collaborated with. He helped me in
every aspect, and whenever I asked him a question, he always stopped his own work and
helped me. Alex Gray is unique in his own way. He has very broad knowledge and expe-
rience of machine learning and very good vision to look through a seemingly messy and
complicated problem. Every time I talked to him, I can always got a lot of inspirations,

v

and he helped me smoothed out the way towards conquering hard problems.

I thank all my collaborators, both inside CMU and out, for the advices and ideas they
contributed selflessly: Ke Yang, Yanjun Qi, Alex Hauptman, Daniel Huber, Andrea Frome
(Berkeley), Ke Yan and Chuang Lin (Tsinghua).

I remember that in year 2001, I spent a lot of time deciding which graduate school to
attend, and I finally chose CMU. Now, five years after, I feel only how lucky I was in mak-
ing the right choice. Indeed, CMU has the ideal atmosphere for me — nice and friendly
people, open and relaxing environment, tons of free food... People say CMU students are
so happy that they don’t want to graduate — well, they are right to some extent. People do
graduate, but yes, most of us are very, very happy here. I will surely miss this place, as well
as its people: Sharon Burks, Jeanette Wing, Catherine Copetas, Kristen Schrauder, Jean
Harpley, Minglong Shao, Changhao Jiang (at UIUC), Jeanie Komarek, Owen Cheng, Mu-
ralidhar Talupur, Weng-Keen Wong (at OSU), Daniel Neill, Anna Goldenberg, Purnamrita
Sarkar, Jiayu Pan, Kristen Stubbs, Kang Li, Alina Oprea, Xinghua An (at Google), Yan
Liu, Rong Yan, Yiheng Li, Bo Pang (at Cornell), Zhong Xiu and Hua Zhong, to name a
few. They are the ones responsible for my personal happiness at CMU.

I spent one summer at FXPAL and one summer at Google Inc. as an intern. These ex-
periences are eye-openers to me, offering to me a unique opportunity to see how people
outside universities do “real” work and do research. I enjoy all my intern experiences and I
thank my co-workers there that make it possible: Matthew Cooper, Eleanor Rieffle, Henry
Rowley and Chuck Rosenberg.

vi

Contents

1 Introduction 1
1.1 Nonparametric Methods .1
1.2 Nearest-neighbor Problem .2
1.3 Speeding up Nearest-neighbor .4
1.4 Approximate Nearest-neighbor Searching6
1.5 A Brief Summary of Results . 7

1.5.1 KNS2 and KNS3 . 7
1.5.2 IOC . 8
1.5.3 Spill-tree . 9
1.5.4 Applications . 9
1.5.5 Summary . 9

2 Metric-trees 11
2.1 Properties .11
2.2 Partitioning .11
2.3 Searching .13

3 Fast K-Nearest-Neighbor Classification 15
3.1 KNS2 .15
3.2 KNS3 .20
3.3 Experimental Results .26

3.3.1 Synthetic Data Sets .26
3.3.2 Real-world Data Sets .26
3.3.3 Methodology and Results .29

3.4 Comments and Related Work .29

4 IOC 31
4.1 The IOC Algorithm .31

vii

4.1.1 Previous Solutions and Problems31
4.1.2 IOC: High-level Descriptions32
4.1.3 The Actual Algorithm . 35
4.1.4 Theoretical Analysis .40

4.2 Making IOC Robust .44
4.2.1 The Simple IOC is Sensitive to Noise44
4.2.2 Pre-pruning: Filtering the Noise45

4.3 Experimental Results .46
4.3.1 Artificial Data Sets .47
4.3.2 Real-world Data with RIOC .49

5 Fast(1 + ε)-NN algorithm 55
5.1 LSH .55
5.2 Spill-tree .57
5.3 Spill-tree-basedk-NN Search . 58

5.3.1 Defeatist Search .58
5.3.2 Hybrid Spill-Tree Search .59
5.3.3 Further Efficiency Improvement Using Random Projection60

5.4 Experimental Results .62
5.5 Parameter Estimations .64
5.6 Theoretical Analysis .68

5.6.1 Backgrounds, Definitions, and Notations69
5.6.2 A Simple Probabilistic Problem70
5.6.3 The Proof .74

6 Applications 77
6.1 Video Segmentation .77

6.1.1 Feature Extraction .78
6.1.2 KNS2 Based Fastk-NN Classification 83
6.1.3 Information-theoretic Feature Selection84
6.1.4 Experimental Results .87
6.1.5 Feature Selection Experiments92

6.2 Classification for Drug Screening .96
6.2.1 Problem description .96
6.2.2 Experiments .97

6.3 Image Retrieval .102
6.3.1 Image Features .103
6.3.2 Parallel Computing Framework103

viii

6.3.3 Building Hybrid Spill-tree in Parallel103
6.3.4 Efficient Queries of Parallel Hybrid Spill-tree105
6.3.5 Experiments .107
6.3.6 Summary and Future Work .110

Bibliography 115

ix

x

List of Figures

2.1 Partitioning in a metric-tree. .12
2.2 An example of metric-tree structure .13

3.1 An example to illustrate how to computeDv
minp 17

3.2 An example ofDpos
t andDneg

t′ . 21
3.3 A configuration at the start of a stage.23
3.4 (a) The interval representation of a metric-tree node (b) The interval rep-

resentation of a set of metric-tree nodes24
3.5 Procedure PREDICT. .25
3.6 Synthetic data sets .27

4.1 The IOC-ideal algorithm. .34
4.2 Different predictions by IOC andk-NN. 35
4.3 The IOC algorithm. .38
4.4 Changek between rounds: intuitions.39
4.5 IOC with noise (k = 3). 44
4.6 TheGauss 5c data set. .48
4.7 CPU time speedup over naı̈vek-NN for artificial data sets(k = 5). 48
4.8 CPU time speed up over naı̈vek-NN for real-world data sets(k = 5). . . 50
4.9 CPU time vs. train data size (data set=Video,k = 1). 51
4.10 CPU time vs. train data size (data set=Video,k = 9). 51

5.1 The “bucketing” view of LSH. 56
5.2 Partitioning in a spill-tree. .57
5.3 Search on a hybrid spill-tree. .60
5.4 Influence of the random projection (Aerial,d = 60, n = 275, 476, k = 1). 65
5.5 Influence of the loopL (Aerial, d = 60, n = 275, 476, k = 1). 66
5.6 Influence of overlapping sizeτ (Aerial, d = 60, n = 275, 476, k = 1). . . 66
5.7 Probability density function. .71
5.8 Cumulative distribution function. .71

xi

5.9 I-am-feeling-lucky search in a spill-tree.75

6.1 Diagram of the similarity matrix embedding.80
6.2 (a) A block diagram of a typical video segmentation system. (b) Decom-

poses local inter-frame analysis step into two separate steps.81
6.3 Different kernels for segment boundary detection via kernel correlation

(L = 4). (a) scale-space kernel (b) diagonal cross-similarity (c) cross-
similarity (d) full-similarity (e) row-similarity. 82

6.4 The classification process. .84
6.5 (a) Cut detection using raw similarity features. (b) kernel correlation fea-

tures. .91
6.6 (a) Abrupt (cut) boundary detection (b)Gradual boundary detection. . . .92
6.7 (a) Cut boundary detection using feature selection. (b) Gradual boundary

detection using feature selection. .94
6.8 Mean performance for three-class shot boundary detection with feature

selection. .95
6.9 Example ROC curve. .98
6.10 ROC curves for ds1. .100
6.11 ROC curve for ds1.100pca. .100
6.12 ROC curve for ds1.10pca. .101
6.13 The three phases which make up an operation in the MapReduce frame-

work. All steps run in parallel on many machines.104
6.14 The parallel steps to build a distributed hybrid spill-tree.106
6.15 Batchk-NN search in two MapReduce operations.107
6.16 Algorithm for initial clustering of data.109
6.17 ROC curve for the small labeled test set.110
6.18 Histogram of cluster sizes for the 1.5B image set. Note the logarithmic

scale on both axes. .111
6.19 Selection of clusters found by the algorithm. Note the many different sizes

of the object in B, and the different words on the same pattern in F and G.112

xii

List of Tables

3.1 Synthetic data sets .28
3.2 Real-world data sets .28
3.3 Number of distance computations and CPU time for Naı̈vek-NN classifi-

cation (2nd column). Speed-ups of MT-DFS, KNS2 and KNS3 over Naı̈ve. 30

4.1 The artificial data sets. .47
4.2 The real-world data sets .49
4.3 CPU time(s) of näıvek-NN and the Speed-up of 4 others methods over it.53
4.4 Speed-up for real-world data set. .53
4.5 Pre-processing time and error rates. .54

5.1 Five real-world data sets. .62
5.2 CPU time of exact SR-tree, MT-DFS, and Naı̈ve search 63
5.3 CPU time(s) of Spill-tree and its speed-up (in parentheses) over LSH. . .63
5.4 CPU time speed-up of a spill-tree over MT-DFS.64

6.1 Various systems tested for three class shot boundary detection.93
6.2 The ds1 data set and its variants. .97
6.3 Classifier performance for each data set.99

xiii

xiv

Chapter 1

Introduction

In this chapter, we introduce nonparametric methods and their problems. In particular, we
focus on one important nonparametric method — thek-NN algorithm and its related work.

1.1 Nonparametric Methods

A statistical modelΦ can be viewed as a set of distributions. Aparametric model(Wasser-
man [2004]) refers to a setΦ that can be described using a finite number of parameters.
For instance, if we draw data from a Normal distribution, we get a two-parameter model,
which can be formalized as

Φ = {f(x; µ, σ) =
1

σ
√

2π
exp{− 1

2σ2
(x− µ)2}, µ ∈ R, σ > 0}. (1.1)

We have written the density asf(x; µ, σ) to show thatx is a value of the random variable
whereasµ andσ are parameters. In general, a parametric model takes the form

Φ = {f(x, θ) : θ ∈ Θ} (1.2)

whereθ is the parameter (or a set of parameters) in the parameter spaceΘ.

A nonparametric model(Wasserman [2004]) is a setΦ that cannot be parameterized by a
finite number of parameters. For instance,Φ = {all CDF ′s} is nonparametric.

When we know the underlying distribution of the data set, aparametric methodcan be
used to estimate the parameters of the model, and further inference (prediction, regression,
classification, etc.) can be done when the model is built. The advantage of a parametric

1

method is obvious: after the training process during which the parameters are learned, fur-
ther computations become very efficient, and since all future computations are made based
on the learned model, there is no need to store previous data, so a parametric method is also
storage efficient. However, utilizing a parametric model has its own risk. Sometimes a bad
model (due to lack of data or over-fitting) could cost huge mistakes in future prediction.
Furthermore, for a large fraction of the real world problems, it is usually very hard to use
a simple parametric model to represent the data. To name a few reasons: the data could be
very noisy; the underlying distribution could be too complicated to represent; there are not
enough well studied parametric models at hand to fit the data, etc. A parametric method
may fail for these cases.

A nonparametric method, on the other hand does not depend on knowing the form of the
distribution from which the data are drawing. The inference can be made directly from the
observed data. These properties alleviate the complexity for building the models, and make
nonparametric methods very attractive. In fact, they have become more and more popular
in numerous problems in a variety of areas. Despite their good performance, nonparamet-
ric methods, however, have not been employed as widely in applications where very large
sets of high-dimensional data are involved. One main reason is the computational com-
plexity of distance computation in high-dimensional spaces, often seen as prohibitive. The
main focus of this work is on advances in computational geometry and machine learning
that may alleviate these problems. We also show experimental results of a variety of appli-
cations ranging from computer vision to pharmaceutical drug discovery in which dramatic
efficiency improvements have been observed. To be more specific, throughout this work,
we only focus on a particular nonparametric model, namelyk-NN model and its variants.
The reason will become clear in section 1.2.

1.2 Nearest-neighbor Problem

The first formulation of a rule of thenearest-neighbortype was proposed in 1951 by Fix
and Hodges (Fix and Hodges [1951, 1952]), where they also gave a preliminary analysis
of its properties. The inception of the method opened a rich field of research, with ap-
plications in a broad spectrum of areas. Cover and Hart further strengthened the idea of
k-nearest-neighbor, ork-NN by showing that asymptotically the error rate of the 1-nearest-
neighbor classifier is never more than twice the Bayes rate (Cover and Hart [1967]). This
result makesk-NN methods very appealing and widely accepted. Some examples of the
applications ofk-NN are: pattern recognition (Duda and Hart [1973], Draper and Smith
[1981]), text categorization (Hamamoto et al. [1997]), database and data mining (Guttman

2

[1984], Hastie and Tibshirani [1996]), information retrieval (Deerwester et al. [1990],
Faloutsos and Oard [1995], Salton and McGill [1983]), image and multimedia search
(Faloutsos et al. [1994], Pentland et al. [1994], Flickner et al. [1995], Smeulders and Jain
[eds]), machine learning (Cost and Salzberg [1993a]), and statistics and data analysis (De-
vroye and Wagner [1982], Koivune and Kassam [1995]).

The nearest-neighbor methodis depicted as follows. Assume the data set consists of
points in ad-dimensional Euclidean space. LetT = {x1, x2, . . . , xn} be the set of training
data, andq be a query. The nearest-neighbor algorithm is to find the closest point inT
to q. It can be extended to the k-nearest-neighbor (k-NN) case, in whichk closest points
{w1, w2, . . . , wk} are returned by the algorithm. More formally, we can denote the proce-
dure byN = kNN(q, k, T) = {w1, w2, . . . , wk}.

Nearest-neighbor is a nonparametric method, and has been widely used in solving clas-
sification problems. In this case, each pointxi in the training setT also comes with a
labelyi ∈ L, where we definem = |L| to be the total number of classes. In particular,
whenm = 2, we call the problembinary k-NN classification. Fork-NN classification,
one first finds thek-NN of q from T , denoted byN , and then labelsq with the class that
appears most frequently inN . As a notational convention, we call the most frequent class
the “winner” and all other classes the “losers”. Thus, thek-NN classification amounts to
finding the winner class and assigning it to the query pointq.

Many researchers have done work to make variations ofk-NN algorithms improve their
classification accuracy for different applications (Hamamoto et al. [1997], Hastie and Tib-
shirani [1996]) or to combine it with other methods (Woods et al. [1997]). We will not go
into detail on all these variants ofk-NN methods, since it is not the focus of this work.

Thek-NN model has many attractive properties. First of all, it is a useful sanity check or
baseline against which to check more sophisticated algorithmsprovidedk-NN is tractable.
It is often the first line of attack in a new complex problem due to its simplicity and flex-
ibility. The user need only provide a sensible distance metric. The method is easy to
interpret once this distance metric is understood. Secondly, it has theoretical soundness.
A famous result of Cover and Hart (1967) show that asymptotically, the error rate of the
1-nearest-neighbor classifier is never more than twice the Bayes rate. This compelling
property explains its surprisingly good performance in practice in many cases. For these
reasons and others,k-NN is still very popular and we have mentioned many of its applica-
tion areas. Furthermore, we believe makingk-NN tractable is the first step towards solving
the computational efficiency problem for other more complicated nonparametric models,

3

and similar insights can be shared for other methods, such as nonparametric kernel density
estimation and the prediction phase of support vector machine.

Here we list some major successes fork-NN over the years.

• k-NN has been widely used as a basic algorithm for text categorization (Aas and
Eikvil [1999]) (Han et al. [2001]). In (Bergo [2001]), it shows that although not
perfect,k-NN is the best overall performing system on diverse sets (Yang [1999]).

• In bioinformatics and drug discovery area,k-NN is one of the favorate approaches.
In (Y et al. [2001]), it is used to classify tumor types for cancer diagnosis. In (Yao
and Ruzzo [2006]),k-NN is used as a general framework for gene function pre-
diction. (Komarek [2004]) usedk-NN as a comparison approach in drug activity
discovery.

• In computer vision area,k-NN turns out to be quite successful, and it has nu-
merous applications, such as pose estimation (Shakhnarovich et al. [2006]), con-
tour matching and scene recognition (Grauman and Darrell [2006]), image cluster-
ing (Shimshoni et al. [2006]) and object recognition (Frome and Malik [2006]).

• In learning and robotics,k-NN plays an important role. In (Aha et al. [1994]),k-NN
is used for dynamic control tasks. In (Cost and Salzberg [1993b]), a weightedk-NN
algorithm is used for learning with symbolic features. Further more,k-NN can be
used to create adaptive on-line learning system (Shih and Lee) as well.

1.3 Speeding up Nearest-neighbor

As described earlier,k-NN is expensive. Given a training setT with n points, and each
point in ad-dimensional space, a naivek-NN search needs to do a linear scan ofT for
every single queryq, and thus the computational time isO(dn) per query. When bothn
andd are large, the algorithm becomes very slow, and sometimes even impractical. There
exist many high-dimensional massive problems in real-world applications. For instance,
in multimedia applications such as IBM’s QBIC (Query by Image Content), the number
of features could be several hundreds (Faloutsos et al. [1994], Pentland et al. [1994]).
In information retrieval for text documents, vector-space representations involve several
thousand dimensions. In drug activity detection, the fingerprints of each compound can
go up to106 dimensions. All these problems require one to search in a huge database
containing hundreds of thousands of points. Thus, a naive linear search ofk-NN is unreal-
istic, and an effective nearest-neighbor searching algorithm with sub-linear running time

4

is needed.

Several effective methods exist for this problem when the dimensiond is small, such as
Voronoi diagrams (Preparata and Shamos [1985]), which work for 1 or 2 dimensions.
Djouadi and Bouktache (Djouadi and Bouktache [1997]) proposed a method to decrease
the number of training samples that are needed for distance calculation by dividing space.
However this method is not effective when the number of dimensions is greater than seven.
Other methods are designed to work for the problem when the dimension is moderate (i.e.,
up to the 10’s), such askd− trees (Friedman et al. [1977], Preparata and Shamos [1985]),
R-tree (Guttman [1984]), and metric-trees (Omohundro [1991], Uhlmann [1991], Ciaccia
et al. [1997]). Among these tree structures, metric-trees, or ball-trees (Uhlmann [1991]) so
far represent the practical state of the art for achieving efficiency in the largest dimension-
alities possible (Moore [2000], Clarkson [To appear]) without resorting to approximate
answers. They have been used in many different ways, and a variety of tree search algo-
rithms and with a variety of “cached sufficient statistics” decorating the internal leaves,
for example in Omohundro [1987], Deng and Moore [1995], Zhang et al. [1996], Pelleg
and Moore [1999], Gray and Moore [2001]. Fast searches are achieved by skipping un-
necessary sub-searches. However, many real-world problems are posed with very large
dimensionalities that are beyond the capability of such search structures to achieve sub-
linear efficiency, this is known as “the curse of dimensionality”. In fact, for large enough
d, in theory or in practice, all these spatial algorithms provide little improvement over the
naive linear search. Thus, the high-dimensional case is the long-standing frontier of the
nearest-neighbor problem.

So far, we have considered the generick-NN problem, not that ofk-NN classification
specifically. In fact, many algorithms designed specifically fork-NN classification have
been proposed, virtually most of them pursuing the idea of reducing the number of training
points. A few training set reduction methods have the capability of yielding exact classifi-
cations, while others yielding only approximate classifications (Fisher and Patrick [1970],
Gates [1972], Chang [1974], Ritter et al. [1975], Sethi [1981], Palau and Snapp [1998]).
Lee and Chae [1998] achieves exact classifications, but only obtained a speedup over naive
search of about 1.7. Both approximate and exact methods are described in Djouadi and
Bouktache [1997], however a speedup of only about a factor of two over naive search was
reported for the exact case. It is in fact common among the results reported for training
set reduction methods that only 40-60% of the training points can be discarded,i.e. no im-
portant speedups are possible with these approaches. For the approximate classifications,
such as in (Hart [1968]), although the run time is reduced, so is the classification accuracy.
Zhang and Srihari [2004] pursued a combination of training set reduction and a tree data

5

structure, but its speedup over naı̈ve search is limited.

1.4 Approximate Nearest-neighbor Searching

Since thek-NN problem is very difficult to solve exactly in high dimensions, another av-
enue of research focuses on investigating the approximate-nearest-neighbor problem. The
premise of this research is that in many cases it is not necessary to insist on the exact
answer. Instead, determining an approximate answer should suffice. This observation un-
derlies a large body of recent research, including using random sampling for histogram
estimation (Chaudhuri et al. [1998]) median approximation (Manku et al. [1998]), using
wavelets for selectivity estimation (Matias et al. [1998]) and approximate SVD (Kanth
et al. [1998]).

Many researchers work on designing approximate algorithms with a certificate property.
Here we define an approximate-nearest-neighbor problem formally: given an error bound
ε > 0, we say that a pointwε ∈ T is a(1+ε)-NN of q if ||wε−q|| ≤ (1+ε)||w−q||, where
w is the true nearest-neighbor ofq. Fork-NN thekth point returned by the algorithm is no
more than(1+ ε) times the distance of the truekth nearest-neighbor. Again, we can repre-
sent the procedure byN ε = akNN(q, k, ε, T) = {wε

1, w
ε
2, ..., w

ε
k}. Further, the problem is

often relaxed to only do this with high probability. Most of these approximate algorithms
are still based on space partitioning (similar to the spatial-tree methods) with some flex-
ibility, and people studied the problem from a theoretical perspective (Arya et al. [2002,
1998], Kushilevitz et al. [1998]). For instance, Arya and Fu [2003] studied an expected-
case complexity of an algorithm based on partition trees with priority search, and give an
expected query timeO((1/ε)d log n). But the constant in theO((1/ε)d log n) contains a
term as large as(1 + 2

√
d/ε)d, which is huge whend is large. Therefore, although these

algorithms have very nice logarithmic dependence onn, they tend to be rather inefficient
in practice.

Indyk and Motwani [1998] proposed a new(1+ε)-NN algorithm in 1998. Instead of using
space partitioning, their algorithm relies on a new method calledlocality sensitive hashing
(LSH). The key idea is to hash the points using several hash functions so as to ensure that,
for each function, the probability of collision is much higher for objects which are close
to each other than for those which are far apart. Then, one can determine near neighbors
by hashing the query point and retrieving elements stored in buckets containing that point
(refer to Section 5.1 for a detailed description). LSH turns out to be very successful both

6

theoretically (Indyk and Motwani [1998]) and practically (Gionis et al. [1999], Buhler
[2001]). However, notice that LSH is designed with very simple data structure and with
the goal of achieving competitive results even in the worst case, which rarely happens in
practice. This leaves space for improvement of efficiency by using more sophisticated
data structures for “practical”, namely more “benign” scenarios. See Section 5.1 for more
details.

1.5 A Brief Summary of Results

This work shows four newk-NN-related algorithms: KNS2, KNS3, IOC and Spill-tree.
All these four algorithms are based on a space partitioning tree structure: metric-trees
(Omohundro [1991], Uhlmann [1991], Ciaccia et al. [1997]). We observe that metric-trees
have the advantage in their flexibility, and thus it is easy to capture the intrinsic distribution
of the data set. Also, the triangle inequality can be used for metric-trees search to prune
away nodes which are far away from the query. The problem with metric-trees is that, in
general, like all other spatial tree structures, it is hurt by the “curse of dimensionality”. In
other words, withd increasing, the speedup achieved by metric-trees deminishes, and in
the worst case, metric-trees basedk-NN search can be even slower than linear scan.

To circumvent the curse of dimensionality, we do not use metric-trees to perform exact
k-NN search. Rather, we examine the precise statistical question to find additional oppor-
tunities for saving computation.

1.5.1 KNS2 and KNS3

We call the first two algorithms KNS2 and KNS3 (Liu et al. [2003]). In fact, they are both
designed for binaryk-NN classification. Here binary denotes the case where the output
labelyi only has two possible values:{+1,−1}. KNS2 and KNS3 share the same insight
that the task ofk-NN classification of a queryq need not require us to explicitly find those
k-nearest-neighbors. To be more specific, there are three similar but in fact different ques-
tions:

(a) What are thek-nearest-neighbors ofq?
(b) How many of thek-nearest-neighbors ofq are from the positive class?
(c) Are at leastt of thek-nearest-neighbors from the positive class?

Obviously, the answer to question (a) can be used to answer question (b), and (b) does
to (c). However the reverse direction is not true. In other words, (b) and (c) are simpler

7

questions to answer. People have been focusing on question (a), but uses of proximity
queries in statistics far more frequently require (b) and (c) types of computations. In fact,
for k-NN classification problem, when the thresholdt is set, it is sufficient to just answer
the much simpler question (c). The triangle inequality of metric-trees has the advantage
of bounding the distances between data points, and thus can help us estimate the nearest-
neighbors without explicitly finding them. Omachi and Aso [2000] proposed a fastk-NN
classifier based on the branch and bound method. The algorithm shares a similar idea with
KNS2, but it did not fully explore the idea of doingk-NN classification without explicitly
finding thek-nearest-neighbor set, and the speedup the algorithm achieved is limited. In
section 3.1, we address Omachi’s method in more detail. We test our algorithms on 17
synthetic and real-world data sets, with dimensions ranging from 2 to1.1×106 and number
of data points ranging from104 to 4.9 × 105. We observed up to a 100-fold speedup as
compared to highly optimized traditional metric-trees-basedk-NN.

1.5.2 IOC

KNS2 and KNS3 can only deal with the binary class case. Our third method, IOC (stand-
ing for theInternationalOlympic Committee), can apply to the case ofm classes where
m, the number of classes, is greater than2 (Liu et al. [2004b]). IOC assumes a slightly
different processing of the data points in the neighborhood of the query. This allows it to
search a set of metric-trees, one for each class. During the searches it is possible to quickly
prune away classes that cannot possibly be the majority. IOC takes the same leverage point
as KNS2 and KNS3 thatk-NN classification had, but which the more general problem of
k-NN does not have: all we need to do is to find the majority class of thek nearest neigh-
bors – not the neighbors themselves. In section 4.1, we show why it is hard to exploit
this leverage point for the case of conventionalk-NN. We therefore introduce a modified
form of k-NN called IOC (explained later in section 4.1) that selects the predicted class
by a kind of elimination tournament instead of a direct majority vote. Interestingly, this
alternative scheme exhibits no general degradation in empirical performance, and we also
prove that the asymptotic behavior of IOC must be very close to that of conventionalk-
NN. We give experimental results on data sets of up to5.8 × 103 records and1.5 × 103

attributes, frequently showing an order of magnitude acceleration compared with each
of (i) conventional linear scan, (ii) a well-known independent SR-tree implementation of
conventionalk-NN and (iii) a highly optimized conventionalk-NN metric-trees search.

8

1.5.3 Spill-tree

In this algorithm (Liu et al. [2004a]), we introduce a new data structure, namely spill-tree.
It is a variant of metric-trees. For metric-trees, the point sets contained by two children
nodes must be disjoint, while a spill-tree does not have this restriction. Furthermore, we
deliberately allow certain data points in a spill-tree to be shared between children nodes.
We show a new approximatek-NN search algorithm based on spill-tree, the algorithm
exploits a random-projection-based approximation, and it achieves very good efficiency
and scales very well. In section 5.2, we provide a detailed empirical evaluation on five
large, high-dimensional data sets and compare spill-tree with three other populark-NN
algorithms. We observe consistent speedup of spill-tree over all the other algorithms.

1.5.4 Applications

We use our new algorithms as tools to conquer hard real-world problems. Our first target
is video segmentation, which is a basic problem in multimedia analysis.k-NN can not
be used directly to this problem, and the data set is usually very large, on whichk-NN is
usually out of question. We first transformed the video segmentation problem to a class-
fication problem, and then we applied KNS2 to it. We observed great performance and
efficiency in the same time. Our second problem is on classification for drug screening.
Althoughk-NN is not the best classifier for this problem, but without much tuning, its per-
formance is comparable with many more sophisticated algorithms. Our last application
solves a more complicated problem. We extended the spill-tree algorithm to a parallel ver-
sion, and it is applied to an image clustering problem. The algorithm succesfully classified
1.5 billion images. All detailed descriptions of the applications can be found in section 6.

1.5.5 Summary

One key ingredient ofk-NN is the distance metric. In fact, different distance metric could
affect the searching result and classification accuracy quite a lot. However, since this is not
the main focus of this work, for the rest of the paper, we use the most common distance
metric, i.e.,L2 distance. Notice that this does not mean the algorithms can only be used
for L2 distance. In fact, all four algorithms can work on distance metric that satisfies
triangle inequality, and the implementation can be easily adapted fromL2. The detailed
descriptions of our new algorithms can be found in the following three papers: KNS2 and
KNS3 is introduced in Liu et al. [2003], IOC comes from Liu et al. [2004b], and spill-tree
is from Liu et al. [2004a].

9

10

Chapter 2

Metric-trees

We review the metric-tree data structure, which is the basic data structure our algorithms
rely on. For simplicity, throughout this work, we useL2 as the distance metric. In fact,
the metric-tree structure is general enough to support any metrics that satisfy the triangle
inequality.

2.1 Properties

A metric-tree(Omohundro [1991], Uhlmann [1991], Ciaccia et al. [1997], Moore [2000])
is a data structure that supports efficientk-NN search. We briefly review some of its
properties: a metric-tree organizes a set of points in a spatial hierarchical manner. It is a
binary tree whose nodes represent a set of points. The root node represents all points, and
the points represented by an internal nodev is partitioned into two subsets, represented by
its two children. Formally, if we useN(v) to denote the set of points represented by node
v, and usev.lc andv.rc to denote the left child and the right child of nodev, then we have

N(v) = N(v.lc) ∪N(v.rc) (2.1)

∅ = N(v.lc) ∩N(v.rc) (2.2)

for all the non-leaf nodes. At the lowest level, each leaf node contains only a few points.

2.2 Partitioning

The key to building a metric-tree is how to partition a nodev. One typical way is as
follows: We first choose twopivot points fromN(v), denoted asv.lpv andv.rpv. Ideally,
v.lpv and v.rpv are chosen so that the distance between them is the largest of all-pair

11

distances withinN(v). More specifically,||v.lpv − v.rpv|| = maxp1,p2∈N(v) ||p1 − p2||.
However, it takesO(n2) time to find the optimalv.lpv andv.rpv. In practice, we resort to
a linear-time heuristic that is still able to find reasonable pivot points. Basically, we first
randomly pick a pointp from v. Then we search for the point that is the farthest fromp
and set it to bev.lpv. Next we find a third point that is farthest fromv.lpv and set it as
v.rpv. After v.lpv andv.rpv are found, we can partition nodev.

� �� � �
� � ��

� ��

� �	

�

� �

� ��� �� �

��

� ��

� �� � � �� �
� �� �

� �� �

� �� �A

u

L

v.rpvv.lpv

Figure 2.1: Partitioning in a metric-tree.

There are many ways to partitionv, and we focus on a particular strategy. We first project
all the points down to the vector~u = ~v.rpv − ~v.lpv, and then find the median pointA
along~u. Next, we assign all the points projected to the left ofA to v.lc, and all the points
projected to the right ofA to v.rc. We useL to denote thed− 1 dimensional plane that is
orthogonal to~u and passes throughA. L is known as thedecision boundarysince all points
to the left ofL belong tov.lc and all points to the right ofL belong tov.rc (see Fig. (2.1)).
By using a median point to split the data points, we can ensure an even partitioning and that
the depth of a metric-tree islog n. However, in our implementation, we use a mid-point
(i.e. the point at1

2
(~v.lpv + ~v.rpv)) instead for the following reasons. First of all, it is more

efficient to compute, and in practice, we can still have a metric-tree of depthO(log n); also
it can lead to smaller nodes. For instance, suppose there are two well-separated clusters
where one cluster has 5 times as many points as the other. A median partition gives us one
large child node and one small child node, whereas a mid-point partition returns two well
seperated small children nodes.
Each nodev also has a hyper-sphereB, such that all points represented byv fall in the ball
centered atv.center with radiusv.r, i.e. we have

N(v) ⊆ B(v.center, v.r). (2.3)

Notice that the balls of the two children nodes are not necessarily disjoint.

12

Depending on the implementation,v.center may be one of the data points inN(v), or it
may be the centroid ofN(v). v.r is chosen to be the minimal value satisfying (2.3). As a
consequence, we know that the radius of any node is always greater than the radius of any
of its children nodes. The leaf nodes have very small radii. Fig. (2.2) shows an example
of a2-dimensional data set and the first few levels of a metric-tree.

1a. A dataset

A

1b. Root node

B

C

1c. The 2 children

D

G

E

F

1d. The 4 grandchildren

A

B
 C

D
 E
 F
 G

1e. The internal tree

structure

Figure 2.2: An example of metric-tree structure

2.3 Searching

A search on a metric-tree is simply a guided DFS (for simplicity, we assume thatk = 1).
The decision boundaryL is used to decide which child node to search first. If the queryq
is on the left ofL, thenv.lc is searched first, otherwise,v.rc is searched first. At all times,
the algorithm maintains a “candidate NN”, which is the nearest-neighbor it has found so
far while traversing the tree. We call this pointx, and denote the distance betweenq andx
by r. If DFS is about to exploit a nodev, but discovers that no member ofv can be within
distancer of q, then itprunesthis node (i.e., skips searching on this node, along with all its
descendants). This happens whenever‖v.center − q‖ − v.r ≥ r. We call this DFS search

13

algorithm MT-DFS hereafter.

metric-trees have some advantages. First, they can easily capture the clustering property
of the data set and automatically adapt to the local resolution of the data points. Second,
since the partitioning plane (i.e. decision boundaryL) of a metric-tree can be along any
direction, they are generated according to the distribution of data points. This flexibility
makes metric-trees more efficient thankd-trees.

In practice, the MT-DFS algorithm is very efficient fork-NN search, and particularly when
the dimensionality of a data set is low (say, less than30). In the best case, the complexity
of MT-DFS can be as good asO(d log n) per query, whered is the dimensions andn is
the number of points. Typically for MT-DFS we observe an order of magnitude speed-up
over näıve linear scan and other popular data structures such as SR-trees.

However, MT-DFS starts to slow down as the dimensionality of the data sets increases. In
the worst case, the complexity of MT-DFS can be as bad asO(dn) per query. Sometimes
it is even slower than naı̈vek-NN search.

14

Chapter 3

Fast K-Nearest-Neighbor Classification

In this section, we describe our first two new algorithms KNS2 and KNS3. Both algo-
rithms are based on the metric-tree structure, but use different searching strategies.

3.1 KNS2

In many binary classification domains, one class is much more frequent than the other. For
example, in High Throughput Screening data sets, it is far more common for the result of
an experiment to be negative than positive. In detection of fraud telephone calls (Fawcett
and Provost [1997]) or credit card transactions (Stolfo et al. [1997]), the number of le-
gitimate transactions is far more common than fraudulent ones. In insurance risk model-
ing (Pednault et al. [2000]), a very small percentage of the policy holders file one or more
claims in a given time period. There are many other examples of domains with similar
intrinsic imbalance, and therefore, classification with a skewed distribution is important.
Various researchers have focused on designing clever methods to solve this type of prob-
lem (Cardie and Howe [1997], Monard and Batista [2002]). The new algorithm introduced
in this section, KNS2, is designed to acceleratek-NN based classification in such skewed
data scenarios.

We rely on the fact that the following two problems are not the same: (a)“Find thek-
nearest-neighbors.” and (b) “How many of thek-nearest-neighbors are in the positive
class?” Answering (b) exactly does not necessarily require us to answer (a), and in fact
it is an easier question to answer. Here, we explicitly investigate whether this fact can be
exploited computationally.

KNS2 attacks the problem by building two metric-trees. APostreefor the points from

15

the positive (small) class, aNegtreefor the points from the negative (large) class. Since
the number of points from the positive class is so small, it is quite cheap to find the exact
k-nearest positive points ofq by using MT-DFS. Generally speaking, the idea of KNS2 is
as follows: First searchPostreeusing MT-DFS to find thek-nearest positive neighbors set
Possetk. Then searchNegtreeusingPossetk as the initialk-NN candidates. We can esti-
mate the number of negative points within thek-NN set and prune away unrelated nodes
at the same time. The search can be stopped as soon as we get the answer to question (b).
Empirically, much more pruning can be achieved by KNS2 than MT-DFS. The concrete
description of the algorithm is as follows:

Let Rootpos be the root ofPostree, andRootneg be the root ofNegtree. Then, we classify
a new query pointq in the following fashion

• Step 1 —“ Find positive” : Find thek nearest positive class neighbors ofq (and
their distances toq) using MT-DFS.

• Step 2 —“Insert negative” : Do sufficient search on the negative tree to prove that
the number of positive data points among thek-NN is p for some value ofp.

Step 2 is achieved using a new recursive search calledNegCount. In order to describe
NegCountwe introduce a set of quantities.

• Dists.

Dists is an array of elementsDists1, . . . , Distsk consisting of the distances to thek
nearest positive neighbors found so far ofq, sorted in increasing order of distance.
For notational convenience we will also writeDists0 = 0 andDistsk+1 =∞.

• N(v).

N(v) is the set of points in a negative nodev visited so far in the search.

• (n, C), (n ≤ k + 1).

C is an array of counts containing p+1 array elementsC0, C1, . . . , Cn. Say (n, C)
summarize interesting negative points forN(v) if and only if

1. ∀i = 0, 1, . . . , n,

Ci =| v ∩ {x :| x− q |< Distsi} | (3.1)

Intuitively Ci is the number of points inv whose distances toq are closer than
Distsi. In other words,Ci is the number of negative points inv closer than the
ith positive neighbor toq.

16

2. {
Ci + i ≤ k ∀i = 0, 1, . . . , n− 1
Ci + i > k i = n

(3.2)

This simply declares that the lengthn of the C array is as short as possible
while accounting for thek members ofv that are nearest toq. Such ann
exists sinceC0 = 0 andCk+1 = Total number of negative points. To make
the problem interesting, we assume that the number of negative points and the
number of positive points are both greater thank.

• Dv
minp andDv

maxp

Here we define two quantitiesDv
minp andDv

maxp to represent the minimum and max-
imum possible distance fromq to a current nodev.

Let Dv
minp =

{
max(||q− v.center|| − v.r, Dv.parent

minp) if v 6= root
||q− v.center|| − v.r if v == root

(3.3)

Let Dv
maxp =

{
min(||q− v.center||+ v.r, Dv.parent

maxp) if v 6= root
||q− v.center||+ v.r if v == root

(3.4)

Dv
minp andDv

maxp are computed using the triangle inequality and the property of a
metric-tree that all the points covered by a node must be covered by its parent. This
property implies thatDv

minp will never be smaller than the minimum possible dis-
tance of its ancestors. Symmetrically,Dv

maxp will never be greater than the maximum
possible distance of its ancestors.

Dminp
c1

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

p

c2

c1

q

Figure 3.1: An example to illustrate how to computeDv
minp

17

Fig. (3.1) gives a good example. There are 3 nodesp, c1 andc2, wherec1 andc2
arep’s children, andq is the query point. In order to computeDc1

minp, first we com-
pute|q − c1.center| − c1.r, which is the length of the dotted line in the figure, but
Dc1

minp can be also bounded byDp
minp, since it is impossible for any point to be in

the shaded area. Similarly, we get the equation forDc1
maxp.

Dv
minp andDv

maxp are used to estimate the counts array(n,C). Again we take ad-
vantage of the triangle inequality of metric-tree. For any nodev, if there exists
an i (i ∈ [1, n]), such thatDistsi−1 ≤ Dv

maxp < Distsi, then for∀x ∈ N(v),
Distsi−1 ≤| x−q |< Distsi. According to the definition ofC, we can add| N(v) |
to Ci, Ci+1, . . . Cn. The function ofDv

minp similar to MT-DFS, is used to help prune
uninteresting nodes.

Step 2 of KNS2 is implemented by the recursive function below:

(nout, Cout) = NegCount(nin, Cin, Node, jparent, Dists)

Assume that on entry(nin, Cin) summarize interesting negative points forN(v), wherev
is the set of points visited so far during the search. This algorithm efficiently ensures that
on exit(nout, Cout) summarize interesting negative points forv∪N(v). In addition,jparent

is a temporary variable used to prevent multiple counts for the same point. This variable
relates to the implementation of KNS2, and we do not want to go into the details here.

———————————————————————————–
ProcedureNegCount (nin, Cin, v, jparent, Dists)
begin

nout := nin; Cout := Cin

ComputeDv
minp andDv

maxp

Search fori, j ∈ [1, nout], such that
Distsi−1 ≤ Dv

minp < Distsi

Distsj−1 ≤ Dv
maxp < Distsj

For all index∈ [j, jparent) /* Re-estimateCout */
UpdateCout

index := Cout
index+ | N(v) | /* We only update the count less thanjparent

Updatenout, such that to avoid counting twice for each point*/
Cout

nout−1 + (nout − 1) ≤ k, Cout
nout + nout > k

SetDistsnout := ∞

18

(1) if (nout == 1) return (1, Cout) /* At leastk negative points closer toq
than the closest positive one */

(2) if (i == j) return (nout, Cout) /* v is located between two adjacent
positive points, no need to split */

(3) if (v is a leaf)
Forallx ∈ N(v), compute| x− q |
Update and return (nout, Cout)

(4) else
v1 := child of v closest toq
v2 := child of v furthest fromq
(ntemp, Ctemp) := NegCount(nin, Cin, v1, j, Dists)
if (ntemp == 1) return (1, Cout)
else

(nout, Cout) := NegCount(ntemp, Ctemp, v2, j, Dists)
end
—————————————————————————————–

We can stop the procedure whennout becomes 1 (which means all thek-nearest-neighbors
of q are in the negative class) or when we run out of nodes.nout represents the number of
positive points in thek-nearest-neighbors ofq. The top-level call is

NegCount(k, C0, NegTree.Root, k + 1, Dists)

whereC0 is an array of zeroes andDists are defined in step 2 and obtained by applying
MT-DFS to thePostree.

There are at least two situations in which KNS2 can run faster than MT-DFS. First, when
we have found at leastk negative points closer than the nearest positive point toq, we can
stop. Notice that thek negative points we found are not necessarily the exactk-nearest-
neighbors toq, in this case, MT-DFS will continue on, but this will not change the answer
to our question. This situation happens frequently for skewed data sets. The second situa-
tion is as follows: A node can also be pruned if it is located exactly between two adjacent
positive points, or it is farther away than thenth positive point. This is because in these
situations, there is no need to figure out which negative point is closer within the Node.
Especially asn gets smaller, we have more chance to prune a node, becauseDistsnin de-
creases asnin decreases.

Omachi and Aso [2000] proposed ak-NN method based on branch and bound. For sim-
plicity, we call their algorithm KNSV. KNSV shares a similar idea of KNS2. For the

19

binary class case, it also builds two trees, one for each class. For consistency, let’s still
call themPostreeandNegtree. KNSV first searches the tree whose center of gravity is
closer toq. Without lose of generality, we assumeNegtreeis closer, so KNSV will search
Negtreefirst. Instead of fully exploring the tree, it does a greedy depth first search only to
find k candidate points. Then KNSV moves on to searchPostree. The search is the same
as conventional metric-tree search (KNS1), except that it uses thekth candidate negative
point to bound the distance. After the search ofPostreeis done. KNSV counts how many
of thek-nearest-neighbors so far are from the negative class. If the number is more than
k/2, the algorithm stops. Otherwise, KNSV will go back to searchNegtreefor the second
time, this time fully search the tree. KNSV has advantages and disadvantages. The first
advantage is that it is simple, and thus it is easy to extend to many-class case. Also if the
first guess of KNSV is correct and thek candidate points are good enough to prune away
many nodes, it will be faster than conventional metric-tree search. But there are some
obvious drawbacks of the algorithm. First, the guess of the winner class is only based on
which classes’ center of gravity is the closest toq. Notice that this is a pure heuristic, and
the probability of making a mistake is high. Second, using a greedy search to find thek
candidate nearest neighbors has a high risk, since these candidates might not even be close
to the true nearest neighbors. In that case, the chance for pruning away nodes from other
class becomes much smaller. We can imagine that in many situations, KNSV will end
up searching the first tree for yet another time. Finally, we want to point out that KNSV
claims it can perform well for many-class nearest neighbors, but this is based on the as-
sumption that the winner class contains at leastk/2 points within the nearest neighbors,
which is often not true for the many-class case. Comparing to KNSV, KNS2’s advantages
are (i) it uses the skewedness property of a data set, which can be robustly detected before
the search. And (ii) more careful design gives KNS2 more chance to speedup the search.

3.2 KNS3

In our second new algorithm KNS3, we remove KNS2’s constraint of an assumed skewedness
in the class distribution, and we answer an even weaker question: “are at leastt of thek-
nearest-neighbors positive?” (wheret, a “threshold” value, is supplied by the questioner).
This is often the most statistically relevant question, for example during classification with
known false positive and false negative costs.

In KNS3, we define two important quantities:

Dpos
t = distance of the tth nearest positive neighbor of q (3.5)

Dneg
t′ = distance of the (t′)th nearest negative neighbor of q (3.6)

20

wheret + t′ = k + 1.

Before introducing the algorithm, we state and prove an important proposition, which re-
lates the two quantitiesDpos

t andDneg
t′ with the answer to KNS3.

Proposition 1 Dpos
t ≤ Dneg

t′ if and only if at leastt of thek nearest neighbors ofq are
from the positive class.

Proof:

If Dpos
t ≤ Dneg

t′ , then there are at leastt positive points closer than thet′th negative point to
q. This also implies that if we draw a ball centered atq, and with its radius equal toDneg

t′ ,
then there are exactlyt′ negative points and at leastt positive points within the ball. Since
t + t′ = k + 1, if we useDk to denote the distance of thekth nearest neighbor, we get
Dk ≤ Dneg

t′ , which means that there are at mostt′− 1 of thek-NNs ofq from the negative
class. It is equivalent to say that there are at leastt of thek nearest neighbors ofq are from
the positive class. On the other hand, if there are at leastt of thek-NNs from the positive
class, thenDpos

t ≤ Dk, the number of negative points is at mostk− t < t′, soDk ≤ Dneg
t′ .

This implies thatDpos
t ≤ Dneg

t′ is true.

D3
neg

D3
pos

q

A

B

Figure 3.2: An example ofDpos
t andDneg

t′

Fig. (3.2) provides an illustration. In this example,k = 5, t = 3. We use black dots
to denote positive points, and white dots to denote negative points. We first compute
t′ = k − t + 1 = 3, then computeDpos

t andDneg
t′ . In the given example,Dpos

t = ||q−A||,
Dneg

t′ = ||q − B||, and it is obvious thatDpos
t ≤ Dneg

t′ . So within the circle centered atq,

21

with radius equals to||q − B||, there are exactly three negative points and at least three
positive points. In other words, at least 3 of the 5 nearest neighbors ofq are from the
positive class.

The reason to redefine the problem of KNS3 is to transform ak-NN searching problem
to a much simpler counting problem. In fact, in order to answer the question, we do not
even have to compute the exact value ofDpos

t andDneg
t′ , instead, we can estimate them.

We defineLo(Dpos
t) andUp(Dpos

t) as the lower and upper bounds ofDpos
t ; and similarly

we defineLo(Dneg
t′) andUp(Dneg

t′) as the lower and upper bounds ofDneg
t′ . If at any point,

we knowUp(Dpos
t) ≤ Lo(Dneg

t′)), then we can conclude thatDpos
t ≤ Dneg

t′ . On the other
hand, ifUp(Dneg

t′) ≤ Lo(Dpos
t), we knowDneg

t′ ≤ Dpos
t . Now our computational task is to

efficiently estimateLo(Dpos
t), Up(Dpos

t), Lo(Dneg
t′) andUp(Dneg

t′). And it is very conve-
nient for a metric-tree to do so. Below is the detailed description:

At each stage of KNS3 we have two sets of nodes in use calledP andN , whereP is a
set of nodes fromPostreebuilt from positive data points, andN consists of nodes from
Negtreebuilt from negative data points.

Both sets have the property that if a node is in the set, then neither its metric-tree ances-
tors nor descendants are in the set, so that each point in the training set is a member of
one or zero nodes inP ∪ N . Initially, P = Rootpos andN = Rootneg. Each stage of
KNS3 analyzesP to estimateLo(Dpos

t), Up(Dpos
t), and analyzesN to estimateLo(Dneg

t′),
Up(Dneg

t′). If possible, KNS3 terminates with the answer, else it chooses an appropriate
node fromP or N , and replaces that node with its two children, and repeats the iteration.
Fig. (3.3) shows one stage of KNS3. The nodes involved are labeleda throughg and we
have

P = {a, b, c, d}

N = {e, f, g}

Notice that although c and d are inside b, they are not descendants of b. This is possible
because when a nodev is splitted, we only requireN(v.lc) andN(v.rc) be disjoint, but
B(v.lc.center, v.lc.r) andB(v.rc.center, v.rc.r) may be overlapped.

In order to computeLo(Dpos
t), we need to sort the nodesu ∈ P , such that

∀ui, uj ∈ P, i < j ⇒ Di
minp ≤ Dj

minp

22

a

b

c

d

f

g

e

q

Figure 3.3: A configuration at the start of a stage.

Then

Lo(Dpos
t) = D

uj

minp, where
j−1∑
i=1

| N(()ui) |< t and
j∑

i=1

| N(()ui) |≥ t

Symmetrically, in order to computeUp(Dpos
t), we sortu ∈ P , such that

∀ui, uj ∈ P, i < j ⇒ Di
maxp ≤ Dj

maxp.

Then

Up(Dpos
t) = D

uj
maxp, where

j−1∑
i=1

| N(()ui) |< t and
j∑

i=1

| N(()ui) |≥ t

Similarly, we can computeLo(Dneg
t′) andUp(Dneg

t′).

To illustrate this, it is useful to depict a node as an interval, where the two ends of the in-
terval denote the minimum and maximum possible distances of a point owned by the node
to the query. Fig. (3.4)(a) shows an example. Notice, we also mark “+5” above the interval
to denote the number of points owned by the nodeB. After we have this representation,
bothP andN can be represented as a set of intervals, each interval corresponds to a node.
This is shown in Fig (3.4)(b). For example, the second horizontal line denotes the fact that
nodeb contains four positive points, and that the distance from any location inb to q lies in
the range[0, 5]. The value ofLo(Dpos

t) can be understood as the answer to the following
question: what if we tried to slide all the positive points within their bounds as far to the

23

Dist

0 1 2 3 4 5

Dist

0 1 2 3 4 5

Up(D6

neg
)

Lo(D)7

pos

Lo(D6

neg
)

Up(D)7

pos

q

+5

a +2

b
+4

+4
c

d

e

f

g

−3

+3

−5

−5

B

(a) (b)

Figure 3.4: (a) The interval representation of a metric-tree node (b) The interval represen-
tation of a set of metric-tree nodes

left as possible, where would thetth closest positive point lie? Similarly, we can estimate
Up(Dpos

t) by sliding all the positive points to the right ends within their bounds.

For example, in Fig. (3.3), letk = 12 andt = 7. Thent′ = 12 − 7 + 1 = 6. We can
estimate (Lo(Dpos

7), Up(Dpos
7)) and (Lo(Dneg

6), Up(Dneg
6)), and the results are shown in

Fig. (3.4). Since the two intervals (Lo(Dpos
7), Up(Dpos

7)) and (Lo(Dneg
6),Up(Dneg

6)) have
overlap now, no conclusion can be made at this stage. Further splitting needs to be done
to refine the estimation.

Below is the pseudo code of KNS3 algorithm: We define a loop procedure calledPRE-
DICT with the following input and output.

Answer = PREDICT (P, N, t, t′)

TheAnswer, a boolean value, is TRUE, if there are at leastt of thek-NNs from the posi-
tive class; and False otherwise. Initially, P =Rootpos and N =Rootneg. The thresholdt is
given, andt′ = k − t + 1.

Before we describe the algorithm, we first introduce two definitions.
Define:

(Lo(DS
i), Up(DS

i)) = Estimate bound(S, i) (3.7)

Here S is either setP or N , and we are interested in theith nearest neighbor ofq from set
S. The output is the lower and upper bounds on the distance of this i’th nearest neighbor

24

from the query. The concrete procedure for estimating the bounds was just described.

Notice that the estimation of the upper and lower bounds could be very loose in the be-
ginning, and will not give us enough information to answer the question. In this case,
we will need to split a metric-tree node and re-estimate the bounds. With more and more
nodes being split, our estimation becomes more and more precise, and the procedure can
be stopped as soon asUp(Dpos

t) ≤ Lo(Dneg
t′) or Up(Dneg

t′) ≤ Lo(Dpos
t). The function of

Pick(P, N) below is to choose one node either fromP or N to split. There are different
strategies for picking a node, for simplicity, our implementation only randomly picks a
node to split.

Define:
split node = Pick(P, N) (3.8)

Here splitnode is the node chosen to be split. See Fig. (3.5).

———————————————————————————–
ProcedurePREDICT (P, N, t, m)
begin

Repeat
(Lo(Dpos

t), Up(Dpos
t)) = Estimatebound(P, t) /* See Definition 3.7. */

(Lo(Dneg
t′), Up(Dneg

t′)) = Estimatebound(N, t’)
if (Up(Dpos

t) ≤ Lo(Dneg
t′)) then

Return TRUE
if (Up(Dneg

t′) ≤ Lo(Dneg
t′)) then

Return FALSE

split node = Pick(P, N)
remove splitnode from P or N
insertsplit node.lc andsplit node.rc to P or N

end
———————————————————————————–

Figure 3.5: Procedure PREDICT.
Our explanation of KNS3 was simplified for clarity. In order to avoid frequent searches
over the full lengths of setsN andP , they are represented as priority queues. Each set in
fact uses two queues: one prioritized byDu

maxp and the other byDu
minp.This ensures that

the costs of all argmins, deletions and splits are logarithmic in the queue size.

25

Some people may ask the question: “It seems that KNS3 has more strengths than KNS2:
it removes the assumption of skewedness of the dataset. In general, it has more chances to
prune away nodes, etc. Why do we still need KNS2?” The answer is KNS2 does have its
own advantages. It answers a more difficult question than KNS3. To know exactly how
many of the nearest neighbors are from the positive class can be especially useful when
the threshold for deciding a class is not known. In that case, KNS3 doesn’t work at all
since we can not provide a statict for answering the question (c). But KNS2 can still work
very well. On the other hand, the implementation of KNS2 is much simpler than KNS3.
For instance, it does not need the priority queues we just described. So there does exist
some cases where KNS2 is faster than KNS3.

3.3 Experimental Results

To evaluate our algorithms, we used both real data sets (from UCI and KDD repositories)
and also synthetic data sets designed to exercise the algorithms in various ways.

3.3.1 Synthetic Data Sets

We have six synthetic data sets. The first synthetic data set we have is calledIdeal, as
illustrated in Fig. (3.3.1)(a). All the data in the left upper area are assigned to the positive
class, and all the data in the right lower area are assigned to the negative class. The second
data set we have is calledDiag2d, as illustrated in Fig. (3.3.1)(b). The data are uniformly
distributed in a 10 by 10 square. The data above the diagonal are assigned to the positive
class, below diagonal are assigned to the negative class. We made several variants of
Diag2d to test the robustness of KNS3.Diag2d(10%)has 10% data ofDiag2d. Diag3d is
a cube with uniformly distributed data and classified by a diagonal-plane.Diag10dis a 10
dimensional hypercube with uniformly distributed data and classified by a hyper-diagonal-
plane.Noise-diag2dhas the same data asDiag2d(10%), but 1% of the data was assigned
to the wrong class. Table (3.1) is a summary of the data sets in the empirical analysis.

3.3.2 Real-world Data Sets

We used UCI & KDD data (listed in Table (3.2), but we also experimented with data sets
of particular current interest within our laboratory.

Life Sciences. These were proprietary data sets (ds1 and ds2) similar to the publicly
available Open Compound Database provided by the National Cancer Institute (NCI Open

26

(10, 0)

(0, 0) (0, 10)

(10, 10)

(b) Diag2d (100,000 data−points)(a) Ideal

Figure 3.6: Synthetic data sets

Compound Database, 2000). The two data sets are sparse. We also present results on data
sets derived fromds1, denotedds1.10pca, ds1.100pcaandds2.100anchorby linear pro-
jection using principal component analysis (PCA).

Link Detection. The first, Citeseer, is derived from the Citeseer web site (Citeseer,2002)
and lists the names of collaborators on published materials. The goal is to predict whether
J Lee (the most common name) was a collaborator for each work based on who else is
listed for that work. We useJ Lee.100pcato represent the linear projection of the data to
100 dimensions using PCA. The second link detection data set is derived from the Internet
Movie Database (IMDB, 2002) and is denotedimdbusing a similar approach, but to pre-
dict the participation of Mel Blanc (again the most common participant).

UCI/KDD data. We use four large data sets from KDD/UCI repository. The data sets
can be identified from their names. They were converted to binary classification prob-
lems. Each categorical input attribute was converted inton binary attributes by a 1-of-n
encoding (wheren is the number of possible values of the attribute).

1. Letteroriginally had 26 classes: A-Z. We performed binary classification using the
letter A as the positive class and “Not A” as negative.

2. Ipums(from ipums.la.97). We predictfarm status, which is binary.

3. Movieis a data set from informedia digital video library project [2001]. The TREC-
2001 Video Track organized by NIST shot boundary Task. 4 hours of video or 13

27

Table 3.1: Synthetic data sets

Dataset Num. of Num. of Num. of Num.pos/Num.neg
records Dimensions positive

Ideal 10000 2 5000 1
Diag2d(10%) 10000 2 5000 1
Diag2d 100000 2 50000 1
Diag3d 100000 3 50000 1
Diag10d 100000 10 50000 1
Noise2d 10000 2 5000 1

MPEG-1 video files at slightly over 2GB of data.

4. Kdd99(10%)has a binary prediction: Normal vs. Attack.

Table 3.2: Real-world data sets

Dataset Num. of Num. of Num.of Num.pos/Num.neg
records Dimensions positive

ds1 26733 6348 804 0.03
ds1.10pca 26733 10 804 0.03
ds1.100pca 26733 100 804 0.03
ds2 88358 1.1× 106 211 0.002
ds2.100anchor88358 100 211 0.002
J Lee.100pca 181395 100 299 0.0017
Blanc Mel 186414 10 824 0.004

Dataset Num. Num. of Num.of Num.pos/Num.neg
records Dimensions positive

Letter 20000 16 790 0.04
Ipums 70187 60 119 0.0017
Movie 38943 62 7620 0.24
Kdd99(10%) 494021 176 97278 0.24

28

3.3.3 Methodology and Results

For each data set, we testedk = 9 andk = 101. For KNS3, we usedt = dk/2e: a
data point is classified as positive if and only if the majority of itsk-NNs are positive.
Each experiment performed 10-fold cross-validation. Thus, each experiment requiredn
k-NN classification queries (wheren is the total number of points in the data set) and each
query involved thek-NN among0.9n records. A näıve implementation with no metric-
tree would thus require0.9n2 distance computations.

Table (3.3) shows the computational cost of naı̈ve k-NN both in terms of the number of
distance computations and the wall-clock time on an unloaded 2GHz Pentium. We then
examine the speedups of MT-DFS and our two new methods (KNS2 and KNS3). It is no-
table that for some high dimensional data sets, MT-DFS does not produce an acceleration
over näıve. On the other hand, KNS2 and KNS3 do, however, and in some cases they are
hundreds of times faster than MT-DFS.

3.4 Comments and Related Work

Applicability of other proximity query work. For the problem of “find thek nearest
data points” (as opposed to our question of “performk-NN or Kernel classification”) in
high dimensions, the frequent failure of traditional metric-tree to beat naı̈ve has lead to
some very ingenious and innovative alternatives, based on random projections, hashing
discretized cubes, and acceptance of approximate answers. We will discuss these ap-
proaches in detail in chapter (5.1). However, these approaches are based on the notion that
any points falling within a factor of(1 + ε) times the true nearest neighbor distance are
acceptable substitutes for the true nearest neighbor. Noting in particular that distances in
high-dimensional spaces tend to occupy a decreasing range of continuous values (Ham-
mersley [1950]), it remains unclear whether schemes based upon the absolute values of
the distances rather than theirranksare relevant to the classification task. Our approach
(KNS2 and KNS3), because it needs not find thek-NN to answer the relevant statistical
question, finds an answer without approximation. The fact that our methods are easily
modified to allow(1 + ε) approximation in the manner of (Arya et al. [1998]) suggests an
obvious avenue for future research.

No free lunch. For uniform high dimensional data no amount of trickery can save us
without persuing approximation. The explanation for the promising empirical results is
that all the interdependencies in the data mean we are working in a space of much lower
intrinsic dimensionality (Maneewongvatana and Mount [2001]). Note though, that in ex-

29

Table 3.3: Number of distance computations and CPU time for Naı̈vek-NN classification
(2nd column). Speed-ups of MT-DFS, KNS2 and KNS3 over Naı̈ve.

Näıve MT-DFS KNS2 KNS3
dists time dists time dists time dists time

(secs) speedup speedup speedup speedup speedup speedup
ideal k=9 9.0× 107 30 96.7 56.5 112.9 78.5 4500 486

k=101 23.0 10.2 24.7 14.7 4500 432
Diag2d(10%)k=9 9.0× 107 30 91 51.1 88.2 52.4 282 27.1

k=101 22.3 8.7 21.3 9.3 167.9 15.9
Diag2d k=9 9.0× 109 3440 738 366 664 372 2593 287

k=101 202.9 104 191 107.5 2062 287
Diag3d k=9 9.0× 109 4060 361 184.5 296 184.5 1049 176.5

k=101 111 56.4 95.6 48.9 585 78.1
Diag10d k=9 9.0× 109 6080 7.1 5.3 7.3 5.2 12.7 2.2

k=101 3.3 2.5 3.1 1.9 6.1 0.7
Noise2d k=9 9.0× 107 40 91.8 20.1 79.6 30.1 142 42.7

k=101 22.3 4 16.7 4.5 94.7 43.5
ds1 k=9 6.4× 108 4830 1.6 1.0 4.7 3.1 12.8 5.8

k=101 1.0 0.7 1.6 1.1 10 4.2
ds1.10pca k=9 6.4× 108 420 11.8 11.0 33.6 21.4 71 20

k=101 4.6 3.4 6.5 4.0 40 6.1
ds1.100pca k=9 6.4× 108 2190 1.7 1.8 7.6 7.4 23.7 29.6

k=101 0.97 1.0 1.6 1.6 16.4 6.8
ds2 k=9 8.5× 109 105500 0.64 0.24 14.0 2.8 25.6 3.0

k=101 0.61 0.24 2.4 0.83 28.7 3.3
ds2.100- k=9 7.0× 109 24210 15.8 14.3 185.3 144 580 311

k=101 10.9 14.3 23.0 19.4 612 248
J Lee.100- k=9 3.6× 1010 142000 2.6 2.4 28.4 27.2 15.6 12.6

k=101 2.2 1.9 12.6 11.6 37.4 27.2
Blanc Mel k=9 3.8× 1010 44300 3.0 3.0 47.5 60.8 51.9 60.7

k=101 2.9 3.1 7.1 33 203 134.0
Letter k=9 3.6× 108 290 8.5 7.1 42.9 26.4 94.2 25.5

k=101 3.5 2.6 9.0 5.7 45.9 9.4
Ipums k=9 4.4× 109 9520 195 136 665 501 1003 515

k=101 69.1 50.4 144.6 121 5264 544
Movie k=9 1.4× 109 3100 16.1 13.8 29.8 24.8 50.5 22.4

k=101 9.1 7.7 10.5 8.1 33.3 11.6
Kdd99 k=9 2.7× 1011 1670000 4.2 4.2 574 702 4 4.1
(10%) k=101 4.2 4.2 187.7 226.2 3.9 3.9

periments not reported here,k-NN classifiers give better performance on the original data
than on PCA-projected low dimensional data, indicating that some of these dependencies
are non-linear.

30

Chapter 4

IOC

KNS2 and KNS3 work well for binaryk-NN classification. Unfortunately, the insight
used in these algorithms does not work directly in the many-class case. Consider a query
point q and itsk-nearest-neighbor setN . For binary classification,q is classified as class
i, if and only ifN contains more thanbk/2c points of classi. Thus the task of finding
the winner (majority class) is reduced to a counting problem. In the case of many-classes,
where there arem classes in total, the situation is very different. We no longer have a fixed
threshold that allows us to reduce the search-for-winner problem to a counting problem.
We know that for a class to be the winner, it is necessary to contain more thanbk/mc
points inN , and it is sufficient to contain more thanbk/2c points. However, for numbers
betweenbk/mc andbk/2c, we cannot prove anything. Therefore, we cannot reduce the
k-NN search problem to a simple counting problem. This is the reason why the previous
techniques do not extend directly to the many-class case.

4.1 The IOC Algorithm

In this section we discuss the IOC (standing for “International Olympic Committee,” ex-
plained later) algorithm for approximating thek-NN classification for many-class setting.
We first describe the problem with existing solutions using a metric-tree.

4.1.1 Previous Solutions and Problems

In chapter 3, we discussed KNS2 and KNS3 to speed upk-NN classification for binary
classification problem, the techniques rely on the insight that ink-NN classification, one
does not need to find the actualk-NNs. Rather, it is often sufficient to answer simpler,
counting-related problems. As demonstrated in chapter 3, these questions can often be

31

answered much more efficiently. To illustrate this point more clearly, we introduce a new
concept, namely the “threshold nearest neighbor” function.

Definition 4.1.1 The threshold nearest neighborfunction, denoted bytNN, is defined as
follows.

tNN(q, T , T, k, `) :=

{
1 if |T ∩ kNN(q, k, T)| ≤ `
0 otherwise

(4.1)

Here,kNN(q, k, T) denotes thek-NN set ofq in training dataT which is defined in chap-
ter (1). Intuitively,tNN(q, T , T, k, `) checks whether of thek-NNs of q in T , the subset
T contains at most̀ points. In fact, this function answers exactly the second type of the
counting question discussed in KNS3.

Roughly speaking, the evaluation oftNN(q, T , T, k, `) is done by finding a “threshold
bound”t, such that either
1. B(q, t) contains at most̀ points inT and at least(k − `) points inT \T , or

2. B(q, t) contains more thaǹpoints inT and less than(k − `) points inT \T .
In the first case, we havetNN(q, T , T, k, `) = 1; in the second case, we havetNN(q, T , T, k, `) =
0. In Section 4.1.3, we review the evaluation oftNN in more details.

Unfortunately, the insight in chapter 3 does not work in the many-class case. Consider
a query pointq and itsk-NN setN . For binary classification,q is classified as classi,
if and only if N contains more thanbk/2c points of classi.1 Thus the task of finding
the winner is reduced to a counting problem, or more specifically, evaluating the function
tNN(q, T , Ti, k, bk/2c). In the case of many-classes, the situation is very different. We
no longer have a fixed threshold that allows us to reduce the search-for-winner problem to
a counting problem. We know that for a class to be the winner, it is necessary to contain
more thanbk/mc points inN ,2 and it is sufficient to contain more thanbk/2c points.
However, for numbers betweenbk/mc andbk/2c, we cannot prove anything. Therefore,
we cannot reduce thek-NN search problem to a simple counting problem. This is the
reason why the techniques in chapter 3 do not extend to the many-class case.

4.1.2 IOC: High-level Descriptions

The IOC algorithm is a variant to thek-NN algorithm that allows speed-up using a metric-
tree. The motivation behind IOC is to modifyk-NN in such a way that it can be reduced

1This is assuming thatk is odd.
2This is assuming thatk is not a multiple ofm.

32

to a sequenceof counting problems. One important observation is that despite the fact
that the necessary condition and the sufficient condition combined cannot determine if an
arbitrary class is the winner in general, one can always use the necessary condition to find
someclass that is not a winner. This is simply because by the pigeonhole principle, there
exists at least one class containing at mostbk/mc points, and this class is not the winner.

This algorithm is inspired by the procedure used by the International Olympic Commit-
tee (IOC [1999]) to select the host city for summer Olympic games (which also explains
its name). In the procedure, instead of having a single round of ballot and selecting the
favorite city as the winner (which would correspond to the “standard”k-NN algorithm),
multiple rounds of ballots are cast. In each round, if a city gets a majority of the votes,
then it is declared the winner and the procedure finishes. Otherwise, the city that gets the
least votes is eliminated and a new round of ballots is cast. This continues until only one
city is left, and this city is declared the winner.

We now describe the IOC algorithm at a high level. IOC starts by building a metric-tree
for each class respectively, and then proceeds inrounds. In each round, either a winner is
selected, or some losers are eliminated. More precisely, in each round, if a classi contains
more thanbk/2c points in thek-NNs of q, this class is declared a winner and the algo-
rithm terminates, labelingq with classi. Otherwise, the algorithm finds all the classes that
contains at mostbk/mc points in thek-NNs of q, and declares these classes the losers.
All the “loser” classes will be removed from consideration. The number of classes,m, is
reduced accordingly. This process continues until a winner is selected or there is only one
class remaining, in which case the only remaining class is declared a winner.

To highlight the mathematics behind the algorithm, we present an “ideal” version of IOC,
called the “IOC-ideal,” in Fig. (4.1). As a convention, we useT1, T2, ..., Tm to denote the
collection of training data, partitioned according to their labels, i.e.,Ti contains all training
data labeled as classi. In this version of the IOC algorithm, we assume that there exists
a very efficient procedure to evaluate thetNN function. In Section 4.1.3, we show a more
practical (and more efficient) version of IOC that does not need this assumption.

There is a clear resemblance between the IOC city-picking procedure and the IOC classi-
fication algorithm: one can simply view each city as a “class,” and each ballot as a point
in the nearest neighbors of the query point. However, there are also differences. We point
out the main ones for clarification.

Voting vs. classification.In the IOC city-picking procedure, the ballots across rounds can

33

———————————————————————————–
ProcedureIOC-ideal(k, q, T , T1, T2, ..., Tm)
/* q is the query point */
/* T contains all training data */
/* m is the number of classes */
/* Ti ⊆ T contains training data of class i */
begin
A← {1, 2, ...,m}
begin repeat
/* check for winners */

if ∃i ∈ A, s.t.,tNN(q, T , Ti, k, bk/2c) = 0, then
return i;

else
/* check for losers */
∀i ∈ A,

if tNN(q, T , Ti, k, bk/mc) = 1, then
/* found a loser, remove it */
A← A\{i}, T ← T \Ti, m← m− 1;

end if
/* terminate if only one class remaining */
if m = 1 andA = {i}, return i

end if
end repeat

end
———————————————————————————–

Figure 4.1: The IOC-ideal algorithm.

be completely unrelated, i.e., a voting member is free to change his/her mind in different
rounds, and thus the number of votes a city receives in different rounds can vary signifi-
cantly. In the IOC classification algorithm, however, the labels of the points are fixed for
all rounds. On the other hand, since classes are eliminated in rounds, the nearest neighbors
of q may change from round to round, and this implies that the number of points each class
has in thek nearest neighbors will differ from round to round as well.

Eliminating losers. In the IOC city-picking procedure, exactly one loser is identified and
eliminated. In the IOC classification algorithm, multiple losers can be eliminated in one
round.

34

class 1

class 2

class 3

q

9−NN in round 1

9−NN in round 2

Figure 4.2: Different predictions by IOC andk-NN.

We notice that the IOC algorithm does not always behave identically to the standardk-NN
algorithms, and in particular, the prediction made by the IOC algorithm may differ from
that by the standardk-NN. See Fig. (4.2) for an example. In this example, there are3
classes andk = 9. The9 nearest neighbors of the query pointq contains4 points of class
1, 3 points of class2, and2 points of class3. Therefore, standardk-NN algorithm would
select class1 as the winner. However, in the IOC algorithm, class3 would be identified as
a loser and removed in the first round. In the second round, the9 nearest neighbors ofq
includes two additional points of class2. Now we have4 points of class1 and5 points of
class2 in this round, and IOC will choose class2 as the winner.

Incidentally, a similar example occurred in the procedure for picking the host city for the
2000 Olympics game by IOC. The process proceeded in multiple rounds, and Beijing was
the favorite city in all but the last round, but never won more than half of the votes. In the
last round, Beijing lost to Sydney, and the IOC chose Sydney as the winner. If the standard
k-NN algorithm had been used, Beijing would have been chosen.

4.1.3 The Actual Algorithm

We describe the actual IOC algorithm, which differs slightly from the IOC-ideal algorithm
described in Section 4.1.2.

35

Evaluating the tNN Function

Recall that the IOC-ideal algorithm assumes that there exists an efficient procedure to
evaluate the threshold nearest neighbor functiontNN. Here, we describe the algorithm,
denoted asMTtNN, that use metric-trees to evaluatetNN. This algorithm is adapted
from (3.5).

To begin with,MTtNN builds one metric-tree forTi, the set of training points of classi.
Then, to evaluate functiontNN(q, T , Ti, k, `), MTtNN needs to:
1. Find an appropriate thresholdt, and

2. Prove that either:
(a) B(q, t) contains at most̀ points inTi and at least(k− `) points inT \Ti (so that

tNN(q, T , Ti, k, `) = 1), or

(b) B(q, t) contains more thaǹpoints inTi and less than(k− `) points inT \Ti (so
thattNN(q, T , Ti, k, `) = 0).

First, let us assume thatt is known. We see how one can prove statement (2.a) or (2.b) us-
ing the metric-tree. Consider a nodev in the metric-tree for classj. Supposev represents
s points, and the distance betweenv.center andq is x. By the triangle inequality, we know
that if t < x−v.r, we know none of thes points represented byv is in B(q, t); if t > x+v.r,
then all thes points are inB(q, t). In both cases, nodev contributes information about the
number of points inB(q, t) and we sayv is “useful.” However, ift ∈ [x − v.r, x + v.r],
nodev does not tell us anything, and we say nodev is “useless.” ThenMTtNN sums up all
the information from the useful nodes and checks if this information can be used to prove
(2.a) or (2.b).

In case there is not sufficient information,MTtNN selects a useless nodev to split, i.e.,
to replace nodev by its two childrenv.lc andv.rc. Since child nodes have smaller radii,
they provide more “refined” information that might be useful. Ultimately, the leaf nodes
provide very accurate information since they have very small radii.3 However, splitting a
node is an expensive operation, as one needs to compute the distance betweenq and the
centers of the children nodes, and distance computations are the dominant operations in
terms of time complexity. Therefore, to achieve optimal efficiency, one needs to minimize
the number of splits.

Next, if we drop the assumption thatt is known,MTtNN needs to search fort as well.

3As a matter of fact, it is typical to enforce each leaf node to contain a single point, in which case a leaf
node has radius 0.

36

To do so, it maintains a list of “known” nodes from the metric-tree, i.e., the nodes where
the distance betweenq and their pivots are computed and known, and searches for an
appropriatet. If no sucht is found due to insufficient information, the algorithm selects
a node to split according to a certain splitting policy and tries again. As demonstrated in
Fig. (3.5), with a carefully designed policy, one can indeed minimize the number of splits
and make the algorithm very efficient.

Implementing IOC with Partial Functions

One could plug in theMTtNN algorithm directly into IOC-ideal, and we have an imple-
mentation of the IOC algorithm. However, this is not very efficient, sinceMTtNN may
need to do a lot of splits in order to find the answer. In fact, observe that in each round,
many instances of thetNN functions are evaluated — for each classi, we need to eval-
uate bothtNN(q, T , Ti, k, bk/2c) and tNN(q, T , Ti, k, bk/mc). We can make progress
whenever we find one winner or one loser. This observation allows us to improve the
efficiency bydove-tailing, i.e., evaluating all thetNN functions simultaneously, and ter-
minating whenever a winner or a loser is found. More precisely, we modify theMTtNN
algorithm so that it may also output⊥, standing for “unknown.” Then we only do a split
if all evaluations return⊥.

The actual algorithm, IOC, is described in Fig. (4.3). We denote byMTtNN′ the algorithm
that partially computestNN. In other words,MTtNN may return⊥ when it does not have
sufficient information. On the other hand,MTtNN does not do any split. The splitting of
the trees is now handled explicitly by the proceduredo split, which picks a particular class
i and performs one split on the metric-tree ofTi. Effectively, the IOC algorithm minimizes
the number of splits by aggressively attempting to evaluate all thetNN functions after each
split.

We emphasize that the IOC algorithm is presented in a way to maximize clarity. In par-
ticular, we omit all optimizations, some of which are obvious. For example, after splitting
classj, one only needs to update the information related to classj and there is no need
to re-compute allxi andyi for all i’s. Furthermore, many invocations of theMTtNN can
be merged to improve efficiency. We choose not to mention these techniques in Fig. (4.3)
since they are straightforward and are unnecessary to our discussion.

Picking the Right k

In k-NN classification, the choice ofk has always been rather heuristic. Typically, one
fixesk to be a constant (e.g.,k = 1 or k = 9), or adaptively finds an optimalk using cross

37

———————————————————————————–
ProcedureIOC(k, q, T , T1, T2, ..., Tm)
/* q is the query point */
/* T contains all training data */
/* m is the number of classes */
/* Ti ⊆ T contains training data of class i */

begin
A← {1, 2, ...,m}
begin repeat
/* partially evaluate the tNN functions */

foreach i ∈ A do
xi ← MTtNN′(q, T , Ti, k, bk/2c)
yi ← MTtNN′(q, T , Ti, k, bk/mc)

end foreach
progress← 0
/* check for winners and losers */
if ∃i ∈ A, s.t.,xi = 0, then return i
else
∀i ∈ A,

if yi = 1 then
/* found a loser, remove it */
A← A\{i}, T ← T \Ti, m← m− 1;
progress← 1;

end if
/* terminate if only one class remaining */
if m = 1 andA = {i}, then return i

end if
/* need to split if no winner/loser can be found */
if progress = 0 then

do split(T , T1, T2, ..., Tm)
end if

end repeat
end
———————————————————————————–

Figure 4.3: The IOC algorithm.

38

validation. The situation for the IOC algorithm is more complicated, in that it proceeds in
multiple rounds, and one could use a differentk for different rounds. The IOC algorithms
in Fig. (4.1) and Fig. (4.3) use the samek for all rounds, but one can easily modify this
without compromising the results in the theoretical analysis. Obviously there can exist
many different policies for changingk.

Intuitively, if the data set is dense so that thek-NNs ofq remain sufficiently “local” toq, a
largerk tends to yield more accurate prediction, as implied by Theorem (4.1.5). However,
if the data is sparse, a largek will lead to a “non-local” neighbor set, which will decrease
the prediction accuracy. On the other hand, in terms of efficiency, a smallk typically im-
plies faster prediction.

We use a differentk in each round in the IOC algorithm, and our policy for pickingk is
as follows. Each time a loser classi is identified and removed, we estimate the number
of points of this class inN , thek-NNs of q, and we denote this byti. Then we changek
to k − ti in the next round (if multiple classes are removed in one round, we reducek for
each of the loser class). The intuition behind this policy is that if we assume the training
data points are well-clustered, then the points of a loser classi tend to be at the “outskirts”
ofN . Therefore, the set consisting of the(k− ti) nearest neighbors ofq excluding classi
is about the same as the set consisting of the points that are thek-NNs ofq but not in class
i. More mathematically, we have

kNN(q, (k − ti), T \Ti) ≈ kNN(q, k, T)\Ti.

See Fig. (4.4).

(k−t)−NN

k−NN

class i (loser)

t=2
q

Figure 4.4: Changek between rounds: intuitions.

39

4.1.4 Theoretical Analysis

We analyze the behavior of the IOC algorithm from the theoretical perspective. First, we
note that IOC always terminates and it is efficient even in the worst case.

Theorem 4.1.2 IOC terminates in at most(m− 1) rounds.

Proof: If during a round IOC finds a winner, then it terminates. Otherwise, notice that by
the pigeonhole principle, there exists at least one classTi that contains less thanbk/mc
points in thek-NNs. Therefore, at least one class is eliminated in each round, and IOC
runs for at mostm− 1 rounds.

Next, we show that in many cases, IOC behaves identically to standardk-NN.

Theorem 4.1.3 IOC behaves identically to the standardk-NN algorithm whenk = 1 and
whenm = 2.

Proof: For k = 1, we havebk/mc = 1 for anym. In this case,tNN(q, T , T, k, 1) = 0 if
and only if the nearest neighbor ofq in T is in T . In other words, IOC returns the same
class as the standardk-NN algorithm.

Whenm = 2, a class is a winner for IOC, if and only if it contains a majority of the points
in thek-NNs. The standardk-NN algorithm uses exactly the same criterion.

In the case of many-class classification andk > 1, IOC can behave differently from the
standardk-NN algorithm. However, the next theorem shows that if a class is not chosen
as the winner by IOC, then it will be a loser ink′-NN, for a properly chosenk′.

Theorem 4.1.4 If class i is not chosen by the IOC algorithm as the winner, then there
exists ak′ such that classi is not the majority class inkNN(q, k′, T).

Proof: If classi is not chosen as the winner, then either it is eliminated as a loser at some
round, or another class is chosen as a winner at some round. In both cases, there exists a
classj, such that there are more points of classj than that of classi in thek-NNs of q in
some round̀. We focus on this round̀.

We denote thek-NNs of q byN , and we user to denote the maximum distance between
q and points inN . We assume that there arexi points of classi andxj points of classj in
N . Naturally we havexi < xj.

40

Now, consider all points inT that are within distancer of q — we assume that there are a
total ofk′ points. Notice thatk′ can be greater thank since they may include points of the
loser classes eliminated in rounds prior to round`. Nevertheless, in thesek′ points, there
are stillxi points from classi andxj points from classj, since none of these two classes
are eliminated before. Therefore, classi is not the favorite inkNN(q, k′, T).

Intuitively, if the training data are well-clustered so that the standardk-NN algorithm is
accurate, then we expect the algorithm to be “stable” in terms ofk. In other words, the
k-NN algorithm should output the same prediction for a range ofk’s. If this is indeed the
case, then IOC will behave identically to the standardk-NN.

Remark: We stress here that IOC aims at solving theexactk-NN problem forsomek —
the only relaxation is that it might use a differentk. This is in contrast to theapproximate
k-NN approach that finds points that are within(1 + ε) of the nearest distance toq.

Finally, we show that asymptotically (i.e. when the size of the training set increases to
infinity), IOC behaves identically tok-NN, provided thatk is chosen appropriately. The
proof is along the line of Cover and Hart (Cover and Hart [1967]), who proved that asymp-
totic error rate for1-NN is at most twice of the optimal Bayes error rate. For larger values
of k, the error rate ofk-NN can be further reduced to approach1− p1 (see Duda and Hart
[1973]).

We follow the convention in Duda and Hart [1973]. We denote the Bayes conditional
probability for classi at q by pi, and we assume thatp1 ≥ p2 ≥ · · · ≥ pm. Thus we
assume (without loss of generality) that class1 is the winner (as chosen by the optimal
Bayes predictor). The Bayes error rate is thus1 − p1. Next, we defineδ = p1 − p2,
and we call it the “error margin.” Intuitively, for the Bayes prediction (as well as the
k-NN algorithm) to perform well, we need to have adominant class, which implies a
largeδ. In fact, if δ is small, then class1 and class2 are equally likely in conditional
probability, and one cannot have an accurate prediction. From now on, we assume thatδ is
“reasonably large.” Further notice that as the IOC algorithm eliminates the loser classes,
the error margin increases monotonically, since bothp1 andp2 increases as conditional
probabilities with the same rate.

Theorem 4.1.5 Let q be the query point,m be the number of classes,n be the size of
training set. Letp1 ≥ p2 ≥ · · · ≥ pm be the Bayes conditional probability for classi
at q, and letδ = p1 − p2. Then, with probability at least1 − ε, the behavior of the IOC
algorithm with

k ≥ 12

δ2
log

(
2m

ε

)
41

is identical to the behavior ofk-NN asn→∞.

Proof: First, We prove two useful inequalities:

p1 −
1

m
≥ δ

2
(4.2)

1

2
− p2 ≥

δ

2
(4.3)

The proof of (4.2) is straightforward: we havep1 − pi ≥ δ for i = 2, 3, ...,m. Summing
these(m− 1) inequalities together and we have

(m− 1)p1 −
m∑

i=2

pi ≥ (m− 1)δ,

or m · p1 − 1 ≥ (m− 1)δ. Thus we havep1 − 1
m
≥ m−1

m
δ ≥ δ

2
.

To prove (4.3), we definex = 1
2
− p2. Then we havex = 1

2
− p1 + δ as well. Thus we

have2x = 1− p1 − p2 + δ ≥ δ, or x ≥ δ
2
.

Now we focus on a specific round in IOC, and we compute the probability that class1 is
chosen as a loser (we call it a“type I unlucky event”) or a class other than1 is chosen as a
winner (we call it a “type II unlucky event”). Obviously, if no unlucky event ever happens
in any of the rounds, class1 will not be eliminated and will become the winner.

As n → ∞, when thek-NNs of q are chosen, the expected number of points of classi
contained in them isk · pi.

If a type I event happens, that means that the number of class1 points is less thank/m,
whereas the expected number ofk · p1. By the Chernoff bound, we know that the proba-
bility of this event is at most

q1 ≤ e
−(p1− 1

m
)2 k

2p1 ≤ e−
δ2

8
k.

If a type II event happens, then a classj, which would have expectedk · pj number of
points, has at leastk/2 points. Again by the Chernoff bound, we know that the probability
of this event is at most

q2 ≤ e
−(1

2
−pj)

2 k
3pj ≤ e−

δ2

12
k.

42

Therefore, if we setk ≥ 12
δ2 log

(
2m
ε

)
, then the probability that any of the unlucky events

happens in any of the rounds is bounded by

2m · e−
δ2

12
k ≤ ε.

In this case, the IOC algorithm behaves exactly the same as the standardk-NN algorithm.

Remarks
1. IOC vs. k-NN vs. Bayes

Theorem 4.1.5 relates the behavior of IOC to that ofk-NN. However, since asymptoti-
cally,k-NN has accuracy comparable to the (optimal) Bayes prediction (following the
result by Cover and Hart [1967]), we can relate IOC and the optimal Bayes prediction
by simply combining these two results. For example, by settingε = (1−p1)/100, we
will have that the error rate of IOC is at most2.01(1− p1).

2. Asymptotic results.
We stress that the result of Theorem 4.1.5 is about theasymptoticbehaviors of IOC
andk-NN. In other words, the resultant behavior is guaranteed only as the size of
the training set approaches infinity. In real-world experiments, we would naturally
expect deviations of IOC fromk-NN. Nevertheless, the theorem still provides insight
into how IOC is related tok-NN.

3. Worst-case guarantee.
One should view Theorem 4.1.5 as aworst-caseanalysis of the IOC algorithm. It
guarantees that with appropriately chosen parameters, IOC performsat leastalmost
as well as standardk-NN. One should not, however, interpret this result as evidence
that IOC is inferior tok-NN in actual performance. From the perspective of Bayes in-
ference, bothk-NN and IOC are approximations of the optimal Bayes prediction, and
their performances are not directly comparable. In fact, as we show in Section 4.3,
empirical results suggest that the IOC algorithm typically has the same accuracy as
the standardk-NN algorithm, and sometimes even outperformsk-NN.

As before, letq be a query point and letm be the number of classes. We denote the condi-
tional probability for classi atq by pi, and we assume thatp1 ≥ p2 ≥ · · · ≥ pm. Thus we
assume (without loss of generality) that class1 is the winner (as chosen by the standard
k-NN algorithm). The Bayes error rate is thus1− p1. A result by Cover and Hart [1967]
shows that the asymptotic error rate for1-NN is at most2(1 − p1), namely twice of the
Bayes error rate. For larger values ofk, the error rate ofk-NN can be further reduced to
approach1− p1 (see Duda and Hart [1973]).

43

Here we show that the IOC algorithm can do at least almost as well ask-NN, givenk is
reasonably large. We stress that one should view Theorem 4.1.5 as aworst-caseanalysis
of the IOC algorithm. It guarantees that the appropriately chosen parameter, IOC performs
at leastalmost as well as standardk-NN. One should not, however, interpret this result as
an evidence that IOC is inferior tok-NN in actual performance. From the perspective of
Bayes inference, bothk-NN and IOC are approximations of the optimal Bayes prediction,
and their performances are not directly comparable. In fact, as we show in Section 4.3,
empirical results suggests that the IOC algorithm typically has the same accuracy as the
standardk-NN algorithm, and often outperformsk-NN in terms of both accuracy and
efficiency.

4.2 Making IOC Robust

We implemented the IOC algorithm described in the previous section and tested it on both
artificially generated data and real-world data. It performs very well on simple artificial
data, exhibiting significant speed up, both in number of distance computations and CPU
time, over the näıvek-NN algorithm, as well as over ones using SR-trees and metric-trees.

Unfortunately, the speed-up of the IOC algorithm degrades when the complexity of the
train set increases. For both complex artificial data and real-world data, and in particular,
ones with large numbers of attributes, we typically only observe about2–3 fold speed-
up. In this section, we investigate this problem and propose a solution known as RIOC,
standing for “Robust IOC.” Our solution is validated by experiments.

4.2.1 The Simple IOC is Sensitive to Noise

The efficiency of the IOC algorithm in the previous section, which we call the “simple
IOC” thereafter, is sensitive to noise in the training set. Consider an (simplified) example
shown in Fig. (4.5).

r3

r

r5 class 1

class 2
qB

r

r

1

2 4

A

C

D

E

Figure 4.5: IOC with noise (k = 3).

44

In the figure,q is the query point and also the center of the circle.A, B, C,D, E are the
training points, with distancesr1, r2, ..., r5 from q, respectively, wherer1 < r2 < r3 <
r4 < r5. Of the five points,A, B, C are all of class1, whileD andE are of class2. Notice
that the3 nearest neighbors ofq, namely,N = {A, B, C} consist solely of points from
class1. For well-clustered training data, it is in fact a typical scenario to have one class
dominating the nearest neighbor set. However, for real-world data, and especially when
the number of classes is large, it is also common to have points from other classes in the
vicinity of q — in the example, there areD andE. We call these points the “noisy points.”

Since the3-NN set ofq consists solely of points from class1, k-NN would classifyq as
class1, and naturally we would expect IOC to do the same. However, if the noisy points
are close toq, IOC would need to do many splits. To see this, recall that to prove that class
1 is the winner, IOC needs to prove thattNN(q, T , T1, 3, 1) = 0. To do so, IOC needs to
find a threshold boundt such thatB(q, t) contains at least2 points of class1 and at most
1 point of all the other classes. Therefore, we must haver2 < t < r5. If r2 andr5 are
close (which is also typical, especially in high dimensions), then the “margin” for picking
the appropriate threshold boundt is very small. This means that the IOC algorithm has to
split many nodes to get to the lower level of the metric-tree, so that the nodes have small
radii. As a result, the IOC algorithm is not very efficient because of these splits.

4.2.2 Pre-pruning: Filtering the Noise

We use a technique called “pre-pruning” to filter out the noisy points and speed up the
simple IOC algorithm. The technique is based on the observation that typically the winner
class is dominant in the nearest neighbors and that the greedy search on the metric-tree
has reasonably good accuracy. Therefore, we can use the greedy search (which is very ef-
ficient) to do a “pre-pruning” to “filter out” many of the loser classes. This works because
the winner class is robust and is unlikely to be filtered out.

We describe our new algorithm, which we call RIOC standing for “Robust IOC.” RIOC
starts by building a metric-treeT for all the points. As a pre-processing step, RIOC finds
the exactk-NNs for each point in the training setT . We say leaf nodev1 is relatedanother
leaf nodev2, if there existx1 ∈ N(v1) andx2 ∈ N(v2), such thatx1 ∈ kNN(x2, k, T).
RIOC records all of the related nodes for each leaf node.

Then, upon a query pointq, RIOC performs a greedy NN search forq on T to find a leaf
nodev. Thenv and all the leaf nodes related tov are searched to find thek-NNs of q
within them. We denote the resulting set byN ′. Notice that since the greedy search does

45

not backtrack,N ′ might not be the actualk-NNs, but is close. Next, all classes that do not
have points inN ′ are removed. This finishes the pre-pruning procedure. After this, RIOC
switches to IOC and runs with the remaining classes.

We analyze the pre-pruning process. First, we note that it will effectively remove many
classes — consider a typical setting wherek = 9. After the pre-pruning, at most9 classes
will remain. In practice, for well-clustered data, we often observe that only1 or 2 classes
remain after this process. Therefore, the pre-pruning process improves efficiency of IOC
substantially (the pre-pruning itself is very efficient, since the greedy search does not back-
track).

Next, we show that the pre-pruning has a very low error rate, i.e., the probability that the
winner class is removed by pre-pruning process is very small. Intuitively, this is because
a winner class is typically very robust, in that it contains many points among the nearest
neighbors ofq, and it is unlikely that none of these points are selected by the greedy search
algorithm. As an illustration, consider the following simple analysis. We assume that for
each “true” nearest neighborx ∈ N , the greedy search algorithm finds it with probability
at leastp. Empiricallyp is quite large (at least0.7). For a winner classi, it typically has
many points inN , and we assume that at leastk/2 points inN are labeled as classi. Then,
the probability that classi is not included inN ′ is at mostq = (1 − p)k/2 — this is the
probability that classi is removed. Substituting inp = 0.7 andk = 9, we haveq = 0.008,
which is quite small. Therefore, the pre-pruning process has a very limited negative effects
on the accuracy, and thus RIOC has very good performance.

4.3 Experimental Results

In this section, we tested the IOC algorithm on both artificial and real-world data sets and
compared the results with three other algorithms:

1. Näıve: a conventionalk-NN algorithm, using linear scan to find thek-NN.

2. SR-tree: an implementation by (Katayama and Satoh [1997]).

3. MT-DFS: a highly optimizedk-NN search based on metric trees (Uhlmann [1991]).

We estimate two performance measures:

1. Speed: this is the primary concern of this paper. We considered accelerations both
in terms of number of distance computations and CPU time. For all the experiments

46

below, we first show the computational cost of naı̈ve k-NN. We then examine the
speed-ups of SR-tree, MT-DFS and RIOC. (Notice that for SR-tree, we omit the
distance computations speedup, since the SR-tree implementation does not report
this term.)

2. Accuracy: we compare the (empirical) classification accuracy betweenk-NN and
RIOC. We emphasis that since our goal is to accelerate multi-class classification in
high dimensions, we do not try to improve accuracy (though we should expect no
decline). We consider it acceptable to have bothk-NN and RIOC perform badly on
some data sets as long as their performance is comparable.

4.3.1 Artificial Data Sets

Before we look at real-world examples, we first test our algorithms on artificial data sets.
The results will help us get a clear idea of how the IOC and the RIOC algorithms perform.
Table 4.1 is a summary of the synthetic data sets:Gauss 5c contains 5 classes, each class
has 5,000 2-dimensional points generated from Gaussian distribution. We chose different
mean for each class so that the data are well separated. Fig. (4.6) shows the distribution of
Gauss 5c . similarly we generatedGauss 10c andGauss 50c with varying dimen-
sions and number of classes.

Dataset Num. Num. Di- Num.
Data mensions classes

Gauss 5c 25,000 2 5
Gauss 10c 50,000 5 10
Gauss 50c 250,000 10 50

Table 4.1: The artificial data sets.

For each of the data sets, we randomly select10% of the data as the training set and use
the remaining90% as the test set. We ran our experiments withk = 1, 5, and9.

The efficiency of various algorithms over these data sets are summarized in Table 4.3. We
also plot the speed-up of various algorithm over naı̈vek-NN (CPU time) for the casek = 5
in Fig. (4.7). We do not report the classification accuracy, since nearly all algorithms have
near perfect performance.

47

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

15

20

Figure 4.6: TheGauss 5c data set.

Notice that the IOC algorithm exhibits significant speed-up over all other algorithms (up
to 3, 900-fold for näıve, and17-fold for MT-DFS in terms of distance operation; up to
43-fold for näıve, 150-fold for SR-tree, and7.8-fold for MT-DFS in terms of CPU time).
But the speed-up degrades as the number of classes and the size of the data set increases.
On the other hand, the RIOC algorithm scales much better than IOC with the number of
classes and the data set size. For small data sets (e.g.Gauss 5c), IOC is more efficient
than RIOC, but when the complexity of the data set increase, RIOC outperforms IOC. This
serves as an evidence that RIOC is more robust than IOC.

Figure 4.7: CPU time speedup over naı̈vek-NN for artificial data sets(k = 5).

48

4.3.2 Real-world Data with RIOC

We tested our algorithm on a variety of real-world data sets (listed in Table 4.2) with multi-
class classification tasks. The data sets are all publicly available.

Dataset Train Test Num. Di- Num.
size size mensions classes

Letter 16000 4000 16 26
Isolet 6238 1555 617 26
Cov type 58101 522911 54 7
Video 35049 3894 62 3
Internetads 2952 327 1555 2

Table 4.2: The real-world data sets

1. Letter (Letter Recognition Database (Slate)). This data set is from UCI Machine
Learning repository, and contains 20,000 instances with 26 classes. Each instance
represents a bitmap image of a character as one of the 26 capital letters in the English
alphabet. The objective is to identify the letter category from the images.

2. Isolet (Isolet Spoken Letter Recognition Database (Cole and Fanty)) This data set
contains 6238+1559 instances with 26 classes. The data set was derived from 150
people spoke the name of each letter of the alphabet twice, 3 examples are miss-
ing. Each instance has 617 attributes. The goal is to predict which letter-name was
spoken.

3. Cov type (Forest CoverType Database) This data set is originally from UCI/KDD
Archive. The data set contains 581012 datapoints with 7 classes. Detailed descrip-
tion can be found at (Blackard).

4. Video(TREC-2001 Video Data set (informedia digital video library project [2001]))
It contains a 5.8 hours of MPEG-1 video files. The task is to detect the shot bound-
aries within the video files. The corpus contain 2 types of transition frames: cuts and
gradual transitions, so we can see this problem as a 3 class classification problem, no
transition, cut and gradual transition. After preprocessing, the final data set contains
38943 frames, each frame has 62 attributes (Qi et al. [2003]).

5. Internetads(Internet Advertisements Kushmerick) This data set represents a set of
possible advertisements on Internet pages. The task is to predict whether an image

49

is an advertisement (“ad”) or not (“non-ad”). After we remove the three continuous
attributes, the final data set contains 3279 instances, and 1555 attributes for each
instance.

For each data set, we manual partitioned them into a training set and a test set, and we
ran our experiments withk = 1, 5, and9. We report the average predict time per query
(see Table 4.4), as well as the pre-processing time and the error rates (see Table 4.5) for
all algorithms over these data sets. We also plot the speed-up of various algorithms over
näıve k-NN (CPU time) for the casek = 5 in Fig. (4.8). Furthermore, we report how the
CPU time of various algorithms scales with the size of the training data (see Fig. (4.9) for
the casek = 1 and Fig. (4.10) for the casek = 9). We do not report the results for the
simple IOC algorithm since RIOC essentially dominates it.

Figure 4.8: CPU time speed up over naı̈vek-NN for real-world data sets(k = 5).

Error rate : The error rate of the naı̈ve k-NN, the SR-tree, and the MT-DFS algorithms
are the same, since they are all exactk-NN algorithms. For the RIOC algorithm, the error
rate is slightly different. ForLetterwith k=1, the accuracy for RIOC is worse thank-NN,
while for all the other data sets and other settings ofk, the error rates are comparable.
In some cases RIOC has even better accuracy thank-NN. This validates our claim that
both k-NN and IOC (and hence RIOC) are approximate versions of the optimal Bayes
prediction, and none generally outperforms the other. We also want to mention that, the
error rate for the simple IOC algorithm is often slightly smaller than RIOC, but as we
have stated before, this is at a cost of mediocre speed up. Again, this matches our intuition
that the aggressive pre-pruning done by RIOC does not affect its performance significantly.

The data setInternetadsis particularly interesting and merits special mention. Notice that
it is a two-class data set, and KNS3 can be directly applied here. In particular, one can

50

use the KNS3 algorithm to speed up thek-NN prediction. However, our RIOC algorithm,
which is designed for many-class prediction, shows about2-fold speed-up over KNS3,
and has about the same accuracy. This fact suggests that the pre-pruning technique used
by RIOC might have much wider applicability.

Figure 4.9: CPU time vs. train data size (data set=Video,k = 1).

Figure 4.10: CPU time vs. train data size (data set=Video,k = 9).

Scaling: We performed the simulations for scaling over data setVideo. We fixed 3500
points as a test set and trained on 5 training sets with sizes 7000, 14000, 21000 and 28000.
To achieve better understanding of the scalability of our algorithms, we ran the experi-
ments for bothk = 1 andk = 9.The results are presented on Fig. (4.9) and Fig. (4.10).
Notice that RIOC scales much better than all other algorithms.

51

Pre-processing time: One might notice that RIOC takes much longer preprocessing time
compared with MT-DFS. For the purposes of this paper, we are not concerned with this,
for two reasons. First, the pre-processing time is a one-time effort which can be amortized
if there is a stream of many queries. The large pre-processing time can be misleading
since in the experiments, because we chose to use a very large training set (compared to
the testing set) in order to exercise the algorithms with large amounts of training data. The
reason to do so is that we only have limited training data. We believe that the majority of
real-world prediction situations involve very large numbers of predictions in comparison
with the amount of training data (this is best exemplified by examples such as credit card
fraud detection, vision-based security-screening, handwritten digit scanning and so on).
The test set is thus usually much greater than the training set. In such a scenario, RIOC
shall have very good efficiency as compared to other algorithms, even if we factor in the
pre-processing time.

The second reason that we are prepared to tolerate RIOC’s increased preprocessing time is
that we have developed and tested another version of RIOC that eliminates almost all the
pre-processing time at the cost of slightly worse accuracy (but still comparable to other
algorithms as näıve k-NN and MT-DFS). This version of the RIOC would be appropriate
when we indeed have a limited testing set. We will not discuss the new variation of the
RIOC algorithm due to space limitations.

Discussions on pre-pruning: With the success of the pre-pruning technique in RIOC,
it is tempting to speculate how aggressively one can use it. In particular, one may be
tempted to try to use the pre-pruningonly and completely skip the IOC process. It would
yield extremely efficient classification algorithms. Unfortunately, this does not work since
the pre-pruning is still imperfect in that the “nearest neighbor set”N ′ returned by the
greedy search (which does not backtrack) can in fact bias significantly from the true nearest
neighbor setN . Notice that our analysis in Section 4.2.2 only shows that the winner class
(one that dominatesN) is very likely to bein N ′, but not necessarilydominateN ′. Thus,
if one bases the classification solely onN ′, the accuracy is unsatisfactory. This is validated
by our empirical results.

52

Näıve(s) SR-tree MT-DFS IOC RIOC
Gauss5c k=1 4.77 0.31 17.7 43.36 24.46

k=5 4.78 0.29 7.68 39.10 10.9
k=9 4.77 0.27 5.18 40.42 8.22

Gauss10c k=1 66.87 1.46 11.69 25.72 77.76
k=5 66.90 1.0 6.48 19.01 30.5
k=9 66.92 0.85 5.1 14.02 22.2

Gauss50c k=1 2430 4.39 13.45 30.08 154.85
k=5 2430 3.54 9.78 24.65 84.38
k=9 2430 3.34 8.65 19.19 59.94

Table 4.3: CPU time(s) of naı̈vek-NN and the Speed-up of 4 others methods over it.

Näıve SR-tree MT-DFS RIOC
Letter k=1 26.79 1.3 6.47 16.4

k=5 — 0.88 3.97 10.4
k=9 — 0.79 3.29 7.4

Isolet k=1 111.72 n/a 1.1 16.6
k=5 — — 0.93 8.9
k=9 — — 0.88 6.3

Cov type k=1 40776 7.31 26.05 38.43
k=5 — 4.46 14.56 25.07
k=9 — 3.62 11.57 14.01

Video k=1 177.4 3.7 19.8 663.6
k=5 — 2.89 14.8 43.1
k=9 — 2.63 13.2 30.2

Internet k=1 28.02 n/a 2.4 58.4
k=5 — — 1.7 14.7
k=9 — — 1.4 9.8

Table 4.4: Speed-up for real-world data set.

53

Näıve SR-tree MT-DFS RIOC
error pre-pro error pre-pro error pre-pro error

(secs) (secs) (secs)
Letter k=1 0.043 53.77 0.043 0.46 0.043 6.68 0.112

k=5 0.054 53.77 0.054 0.46 0.054 6.68 0.088
k=9 0.056 53.77 0.056 0.46 0.056 6.68 0.077

Isolet k=1 0.114 n/a n/a 4.43 0.114 68.8 0.119
k=5 0.077 — — 4.43 0.077 68.8 0.085
k=9 0.08 — — 4.43 0.08 68.8 0.08

Cov type k=1 0.136 311.32 0.136 5.10 0.136 101 0.117
k=5 0.165 311.32 0.165 5.10 0.165 101 0.165
k=9 0.176 311.32 0.176 5.10 0.176 101 0.172

Video k=1 0.15 239.63 0.15 3.49 0.15 52.3 0.16
k=5 1.127 239.63 0.127 3.49 0.127 52.3 0.127
k=9 0.125 239.63 0.125 3.49 0.125 52.3 0.126

Internet k=1 0.040 n/a n/a 6.42 0.040 79.9 0.049
k=5 0.052 — — 6.42 0.052 79.9 0.052
k=9 0.062 — — 6.42 0.062 79.9 0.064

Table 4.5: Pre-processing time and error rates.

54

Chapter 5

Fast (1 + ε)-NN algorithm

Now, let us step out of classification problems and come back to the generalk-NN search
problem. To our knowledge, exactk-NN searching in high-dimension is still a tough
problem and no technique can solve it in sublinear time. Our fourth new algorithm is an
approximate-nearest-neighbork-NN algorithm, i.e.,(1 + ε)-NN. Formally: given an error
boundε > 0, we say that a pointwε ∈ T is a(1 + ε)-NN of q if ||wε − q|| ≤ (1 + ε)||w−
q||, wherew is the true nearest-neighbor ofq. For k-NN the kth point returned by the
algorithm is no more than(1+ ε) times the distance of the truekth nearest-neighbor. Since
our new(1+ε)-NN algorithm is partially motivated by the locality sensitive hashing (LSH)
algorithm. Before we describe the algorithm, we brifely summarize LSH and discuss its
advantages and drawbacks.

5.1 LSH

Roughly speaking, a locality sensitive hashing function has the property that if two points
are “close,” then they hash to same bucket with “high” probability; if they are “far apart,”
then they hash to same bucket with “low” probability. See Indyk and Motwani [1998],
Indyk [2000] for a formal definition and detailed discussion. We stress that there exists a
large family of LSH algorithms, and here we only focus on a very simple hash function
used in Gionis et al. [1999]. From a very high level, we interpret the algorithm from a ge-
ometric point of view: We call it the “bucketing view.” Then we can use ad-dimensional
cube with its side sizeC (the maximum distance between points in alld-dimensions) to
bound all the points. Then the hash function simply partitions the space[0, C]d into sub-
rectangles usingK randomlygenerated partition planes. Fig. (5.1) shows an example
whered = 2, and there are four partition planes:T1 andT2 are along they-axis;T3 andT4

are along thex-axis. These planes split the space[0, C]d into 3 × 3 = 9 “buckets.” Since

55

0

A B

C

x

y

T1 T2

T3

T4

C

C

Figure 5.1: The “bucketing” view of LSH.

these partition planes are randomly chosen, if two points are “close” (inL1 norm), then the
probability that they are mapped into the same bucket is “large.” As in the example, point
B is closer to pointC than to pointA, and thus it is more likely thatB andC are mapped
into the same bucket than thatA andB are mapped into the same bucket. Equipped with
such a hash function, one simply needs to search within the bucket a query pointq falls
into in order to find a neighbor that is “close enough” toq.

One very attractive feature of the LSH algorithm is that it enjoys a rigorous, theoretical
performance guarantee. Indyk and Motwani [1998] prove that even in the worst case, the
LSH algorithm finds an(1+ε)-NN of any query point with high probability in a reasonable
amount of time. It is also demonstrated in Gionis et al. [1999], Indyk and Thaper [2003]
that LSH can be useful in practice.

On the other hand, we observe that LSH has its own limitations. Since LSH is designed
to guarantee the worst-case behavior, it might not be as efficient on real-world data, which
normally exhibit a rather “benign” behavior. For example, the data points typically form
clusters, rather than being uniformly distributed in the space. But since the LSH algorithm
partitions the space uniformly, it does not exploit the clustering property of the data. In
fact, the theoretical correctness of LSH stipulates that one must “guess” a correct asymp-
totic value ofd(q, X), the nearest distance betweenq and points inX. Therefore, in the
worst case, many instances of the LSH algorithm need to be run in order to guarantee

56

correctness. Another issue with LSH is if you cannot find enough nearest-neighbors in the
bins examined, there is no way to expand the set.

5.2 Spill-tree

A spill-tree is a variant of a metric-tree in which the children of a node can “spill over”
onto each other, and contain shared data points.

The partitioning procedure of a metric-tree (See section 2.2) implies thatN(v.lc) and
N(v.rc) are disjoint: these two sets are separated by the decision boundaryL. In spill-
trees, we change the splitting criteria to allow overlaps between two children. In other
words, some data points may belong to bothv.lc andv.rc.

� �� � �
� � �� � �

�

� �	

� �

� �

� ��
� �� � ��� �� �

A

overlapping buffer

L LRLL

v.lpv v.rpv

u

τ τ

Figure 5.2: Partitioning in a spill-tree.

We first explain how to split an internal nodev. See Fig. (5.2) as an example. As in
metric-tree, we first choose two pivotsv.lpv andv.rpv, and find the decision boundaryL
that passes through the mid-pointA. Next, we define two new separating planes,LL and
LR, both of which are parallel toL and at distanceτ from L. Then, all the points to the
right of planeLL belong to the childv.rc, and all the points to theleft of planeLR belong
to the childv.lc. Mathematically, we have

N(v.lc) = {x | x ∈ N(v), d(x, LR) + 2τ > d(x, LL)} (5.1)

N(v.rc) = {x | x ∈ N(v), d(x, LL) + 2τ > d(x, LR)} (5.2)

Notice that points which fall in the region betweenLL andLR are shared byv.lc andv.rc.
We call this region theoverlapping buffer, and we callτ theoverlapping size. Forv.lc and
v.rc, we can repeat the splitting procedure, until the number of points within a node is less
than a specific threshold, at which point we stop.

57

5.3 Spill-tree-basedk-NN Search

It may seem strange that we allow overlapping in spill-trees. The overlapping obviously
makes both the construction and the MT-DFS less efficient than regular metric-trees, since
the points in the overlapping buffer may be searched twice. Nonetheless, the advantage
of spill-trees over metric-trees becomes clear when we perform thedefeatist search, an
(1 + ε)-NN search algorithm based on spill-trees.

5.3.1 Defeatist Search

As we have stated, the MT-DFS algorithm typically spends a large fraction of time back-
tracking to prove a candidate point is the true NN. Based on this observation, a quick
revision would be to descend the metric-tree using the decision boundaries at each level
without backtracking, and then output the pointx in the first leaf node it visits as thek-NN
of queryq. We call this thedefeatistsearch on a metric-tree. Since the depth of a metric-
tree isO(log n), the complexity of defeatist search isO(log n) per query.

The problem with this approach is very low accuracy. Consider the case whereq is very
close to a decision boundaryL, then it is almost equally likely that the NN ofq is on the
same side ofL as on the opposite side ofL, and the defeatist search can make a mistake
with probability close to1/2. In practice, we observe that there exists a non-negligible
fraction of the query points that are close to one of the decision boundaries. Thus the
average accuracy of the defeatist search algorithm is typically unacceptably low, even for
approximatek-NN search.

This is precisely the place where a spill-tree can help: the defeatist search on a spill-tree
has much higher accuracy and remains very fast. We first describe the algorithm. For
simplicity, we continue to use the example shown in Figure (5.2). As before, thedecision
boundaryat nodev is planeL. If a queryq is to the left ofL, we decide that its nearest
neighbor is inv.lc. In this case, we only search points withinN(v.lc), i.e., the points to
the left ofLR. Conversely, ifq is to the right ofL, we only search nodev.rc, i.e. points
to the right ofLL. Notice that in either case, points in the overlapping buffer are always
searched. By introducing this buffer of sizeτ , we can greatly reduce the probability of
making a wrong decision. To see this, suppose thatq is to the left ofL, then the only
points eliminated are the one to the right of planeLR, all of which are at least distanceτ
away fromq.

So immediately, ifτ is greater than the distance betweenq and its nearest neighbor, then

58

we nevermake a mistake. In practice, however,τ can be much smaller and the defeatist
search still have a very high accuracy.

In a nutshell, spill-tree gains more accuracy by introducing redundancy to a metric-tree.
Naturally, an alternative of building a spill-tree is to explicitly scheduling a limited amount
of backtracking on a metric-tree. For instance, we can say that we only allow to do 10
backtrackings. The advantage of this approach is we don’t need to change the tree struc-
ture, the problem is the algorithm is not very flexible, since we might make mistakes at
any level of the tree, it is really hard to use a single threshold to bound the number of
backtrackings to get reasonable results.

5.3.2 Hybrid Spill-Tree Search

One problem with spill-tree is that their depth varies considerably depending on the over-
lapping sizeτ . When τ is relativelly small, there are not many duplicate data points
between children nodes, so the depth of the spill-tree is close toO(log n). With τ in-
creasing, there are more and more shared data points between children nodes, and the
depth of the spill-tree increasing. In two extreme cases, ifτ = 0, a spill-tree turns back
to a metric-tree with depthO(log n). On the other hand, ifτ ≥ ||v.rpv − v.lpv||/2, then
N(v.lc) = N(v.rc) = N(v). In other words, both children of nodev containall points of
v. In this case, the construction of a spill-tree does not even terminate and the depth of the
spill-tree is∞.

To solve this problem, we introducehybrid spill-treesand actually use them in practice.
First we define abalance thresholdρ < 1, which is usually set to70%. The constructions
of a hybrid spill-tree is similar to that of a spill-tree except the following. For each node
v, we first split the points using the overlapping buffer. However, if either of its children
contains more thanρ fraction of the total points inv, we undo the overlapping splitting.
Instead, a conventional metric-tree partition (without overlapping) is used, and we markv
as anon-overlappingnode. In contrast, all other nodes are marked asoverlapping nodes.
In this way, we can ensure that each split reduces the number of points of a node by at
least a constant factor and thus we can maintain the logarithmic depth of the tree.

The k-NN search on a hybrid spill-tree also becomes a hybrid of the MT-DFS search
and the defeatist search. We only do defeatist search on overlapping nodes, for non-
overlapping nodes, we still do backtracking as MT-DFS search.

59

Figure 5.3: Search on a hybrid spill-tree.

An example of the hybrid search is shown in Fig. (5.3). The white nodes representover-
lapping nodes, while black nodes arenon-overlappingnodes. When the hybrid search
algorithm hits a white node, it will either go left or right, depending on which side the
query point is at, but will not backtrack. On the other hand, when the algorithm hits a
black node, no matter which child node it searches first, it will also backtrack to search
the other child. In Figure 5.3, the arrows indicates one possible route the hybrid search
algorithm takes. As we can see, if the nodes at the top-levels are overlapping nodes, the
hybrid search remains very efficient compared to MT-DFS.

Notice that we can control the hybrid by varyingτ . If τ = 0, we have a pure spill-tree with
defeatist search — very efficient but not accurate enough; ifτ ≥ ||v.rpv − v.lpv||/2, then
every node is a non-overlapping node (due to the balance threshold mechanism) — in this
way we get back to the traditional metric-tree with MT-DFS, which is perfectly accurate
but inefficient. By settingτ to be somewhere in between, we can achieve a balance of
efficiency and accuracy. As a general rule, the greaterτ is, the more accurate and the
slower the search algorithm becomes.

5.3.3 Further Efficiency Improvement Using Random Projection

By doing Hybrid search on a spill-tree, we can achieve very good efficiency as well as
accuracy. In the best case, all nodes in a spill-tree arenon-overlappingnodes, thus we can
do defeatistsearch all the way down to a leaf node for any query, and the complexity per
query isO(log n). With the increasing of the number ofnon-overlappingnodes, the speed
of a spill-tree decreases. In the worst case, most of the nodes arenon-overlappingnodes,
then we need to do lots of backtracking, and the speed-up becomes marginal. Empirically,
spill-tree performs the best when the dimension of the data points is relatively low (say
less than30), when the dimension increases, the advantage of spill-trees becomes less pro-
nounced.

60

The hybrid spill-tree search algorithm is much more efficient than the traditional MT-DFS
algorithm. However, this speed-up becomes less pronounced when the dimension of a data
set becomes high (say, over30). In some sense, the hybrid spill-tree search algorithm also
suffer from the curse of dimensionality, only much less severely than MT-DFS.

However, a well-known technique, namely,random projectionis readily available to deal
with the high-dimensional datasets. In particular, the Johnson-Lindenstrauss Lemma (Das-
gupta and Gupta [1999]) states that one can embed a dataset ofn points in a subspace of
dimensionO(log n) with little distortion on the pair-wise distances. Furthermore, the em-
bedding is extremely simple: one simply picks arandom subspaceS and project all points
to S. More mathematically, we state the Johnson-Lindenstrauss Lemma as the following.
We use the version from Dasgupta and Gupta [1999].

Theorem 5.3.1 (Johnson-Lindenstrauss Lemma)For any 0 < τ < 1 and any integer
n, let k be a positive integer such that

k ≥ 4

(
τ 2

2
− τ 3

3

)−1

log n. (5.3)

For any setV of n points inRd, there is a mapf : Rd → Rk such that for allu, v ∈ V ,

(1− τ)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + τ)‖u− v‖2. (5.4)

Further this map can be found in randomized polynomial time.

In fact, the proof in (Dasgupta and Gupta [1999] gives a slightly stronger (and more use-
ful) result:

Given a pointx and a point setY , we usedist(x, Y) to denote the minimal distance be-
tweenx and elements inY . In other words,dist(x, Y) = miny∈Y ‖x− y‖.

Theorem 5.3.2 (Random Projection)Let T = {x1, x2, ..., xn} be a set of points inRd

and letq be a query point inRd. Let f be a random projection of these points to ak-
dimensional space, wherek ≥ 12

τ2 log
(

2n
δ

)
.

We denotẽxi = f(xi), T̃ = {x̃1, ..., x̃n}, andq̃ = f(q). Letxi be the nearest neighbor of
q in T and x̃j be the nearest neighbor ofq̃ in T̃ . Then with probability at least1 − δ, we
have

‖q− xj‖ ≤ (1 + τ)‖q− xi‖ (5.5)

61

Proof: We apply the stronger version of the Johnson-Lindenstrauss lemma to each pair
(q, xi), for i = 1, 2, ..., n. We know that for everyi, the probability that‖q̃, x̃i‖ is within
(1 ± τ) of

(
k
d

)
‖q, x̃i‖ is at least1 − δ

n
. Using the union bound, we know that with

probability at least1− δ, we have

1

1 + τ

(
k

d

)
‖q− xi‖2 ≤ ‖q̃− x̃i‖2 ≤ (1 + τ)

(
k

d

)
‖q− xi‖2.

We assume that this is the case. But then, we have

‖q− xj‖ ≤
√

1 + τ‖q̃− x̃j‖ ≤
√

1 + τ‖q̃− x̃i‖ ≤ (1 + τ)‖q− xi‖.

In our (1 + ε)-NN search algorithm, we use random projection as apre-processingstep:
project the data points to a subspace of lower dimension, and then do the hybrid spill-
tree search. Both the construction of sp-tree and the search are conducted in the low-
dimensional subspace. Naturally, by doing random projection, we will lose some accuracy.
But we can easily fix this problem by doingmultiple roundsof random projections and
doing one hybrid sp-tree search for each round. Assume the failure probability of each
round isδ, then by doingL rounds, we drive down this probability toδL.

5.4 Experimental Results

We report our experimental results based on spill-trees search on a variety of real-world
data sets, with the number of data points ranging from 20,000 to 275,465, and dimensions
from 60 to 3,838. The first two data sets are same as the ones used in Gionis et al. [1999],
where it is demonstrated that LSH can have a significant speed-up over SR-trees.

Table 5.1: Five real-world data sets.

Data Set Num.Data Num.Dim
Aerial 275,465 60
Corel small 20,000 64
Corel uci 68,040 64
Disk 40,000 1024
Galaxy 40,000 3838

We also summarize the data sets in Table (5.4).

62

We perform 10-fold cross-validation on all data sets. We measure theCPU timeandaccu-
racy of each algorithm. To measure accuracy, we use theeffective distance error(Gionis

et al. [1999]), which is defined asE = 1
Q

∑
q∈Q

(
dalg

d∗
− 1
)

, wheredalg is the distance

from a queryq to the NN found by the algorithm, andd∗ is the distance fromq to the true
NN. The sum is taken over all queries. For thek-NN case where(k > 1), we measure
separately the distance ratios between the closest points found to the nearest neighbor, the
2nd closest one to the 2nd nearest neighbor and so on, and then take the average. Obvi-
ously, for all exactk-NN algorithms,E = 0, and for all approximate algorithms,E ≥ 0.
First, as a benchmark, we run the Naı̈ve, SR-tree, and the MT-DFS. All of them find exact
NN. The results are summarized in Table (5.2).

Table 5.2: CPU time of exact SR-tree, MT-DFS, and Naı̈ve search
Algorithm Aerial Corel hist Corel uci Disk trace Galaxy

(%) (k = 1) (k = 10)
Naive 43620 462 465 5460 27050 46760

SR-tree 23450 184 330 3230 n/a n/a
MT-DFS 3650 58.4 91.2 791 19860 6600

Then, for approximatek-NN search, we compare spill-trees with three other algorithms:
LSH, MT-DFS and SR-tree. For each algorithm, we measure the CPU time needed for the
errorE to be1%, 2%, 5%, 10% and20%, respectively. Since metric-tree and SR-tree are
both designed for exact NN search, we also run them on randomly chosen subsets of the
whole data set to produce approximate answers. We also examine the speed-up of spill-
trees over other algorithms. In particular, the CPU time and the speed-up of spill-trees
searches over LSH and metric-tree are summarized in Table (5.3) and (5.4) separately.

Table 5.3: CPU time(s) of Spill-tree and its speed-up (in parentheses) over LSH.
Error Aerial Corel hist Corel uci Disk trace Galaxy
(%) (k = 1) (k = 10)
20 33.5 (31) 1.67 (8.3) 3.27 (6.3) 8.7 (8.0) 13.2 (5.3) 24.9 (5.5)
10 73.2 (27) 2.79 (9.8) 5.83 (7.0) 19.1 (4.9) 43.1 (2.9) 44.2 (7.8)
5 138 (31) 4.5 (11) 9.58 (6.8) 33.1 (4.8) 123 (3.7) 76.9 (11)
2 286 (26) 8 (9.5) 20.6 (4.2) 61.9 (4.4) 502 (2.5) 110 (14)
1 426 (23) 13.5 (6.4) 27.9 (4.1) 105 (4.1) 1590 (3.2) 170 (12)

63

Table 5.4: CPU time speed-up of a spill-tree over MT-DFS.
Error Aerial Corel hist Corel uci Disk trace Galaxy
(%) (k = 1) (k = 10)
20 25 20 16 45 706 25
10 26 15.3 12 30 335 28
5 21 10 7.4 20 131 36
2 12 7.0 4.2 12 37.2 46
1 8.6 4.3 3.3 7.5 12.4 39

5.5 Parameter Estimations

The performance of a spill-tree algorithm highly depends on the following three factors:

• Random Projection d′: As stated earlier, one crucial pre-processing step of the
spill-trees algorithm israndom projection. Althoughd′ has a theoretical value, a
practically usefuld′ can vary a lot depending on different data sets. One needs to
test a sequence of differentd′ and use cross-validation to determine a best value.

• Loops L: The random projection used in spill-tree algorithms performs a similar
function to the random partition used in LSH. For LSH, it repeats the processL
times. Each time, a random hash function is independently generated and all the
points within the bucketq falls into are searched. Similarly, spill-tree algorithms
perform independent random projectionsL times and then do the search onL dif-
ferent projected data sets. By increasingL, we can easily boost the probability that
the algorithm finds a(1 + ε)-NN successfully. On the other hand, it makes the algo-
rithm L times slower. So we need to choose a goodL for the accuracy and efficiency
trade-off.

• Overlapping Sizeτ : As we have described in the previous section, the major differ-
ence between spill-tree and metric-tree is that spill-trees contain overlapping buffers.
At each level, all the points in the overlap buffer belong to bothv.lc andv.rc. By
decreasingτ (the overlap buffer size), one can speed up the spill-trees search. In the
extreme case, whenτ = 0, the search for each query takes exactlylog n steps, but
this gives us very low accuracy. On the other hand, increasingτ boosts the proba-
bility of finding a (1 + ε)-NN successfully, but many more points will be searched.

Now we pick one data set “Aerial” from section 5.4, and we test{d′, L, τ} separately to
understand the behavior of spill-trees in more detail.

64

Random Projection The first batch of experiments are aimed at understanding the ef-
fectiveness of the random projection, used as a pre-processing step of our algorithm. We
fix the overlapping sizeτ to be∞, effectively turning the algorithm into the traditional
MT-DFS algorithm. We fix the number of loopsL to be1. We vary theprojected di-
mensiond′ from 5 to 60, and then measure the distance errorE, the CPU time, and the
number of distance computations (which accounts for most of the CPU time). The results
are shown in Fig. (5.4).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 30 40 50 60

E
rr

or
 (

%
)

Dimension

Error vs. Dimension

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 5 10 15 20 30 40 50 60

C
PU

 ti
m

e
(s

)

Dimension

CPU time vs. Dimension

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000

 5 10 15 20 30 40 50 60

D
is

ta
nc

e
C

om
pu

ta
tio

n

Dimension

Dist. Comp. vs. Dimension

Figure 5.4: Influence of the random projection (Aerial,d = 60, n = 275, 476, k = 1).

As expected, the errorE is large when the dimension is low: it exceeds30% whend = 5.
However,E decreases very fast asd′ increases: whend′ = 30, E is less than0.2%, which
is more than acceptable for most applications. This also suggests that theintrinsic dimen-
sionof Aerial can be quite small (at least smaller than30).

The CPU time decreases almost linearly withd′. However, the slope becomes slightly
steeper whend < 30, indicating sub-linear dependence of CPU time ond′. This is more
clearly illustrated in the number of distance computations: a sharp drop afterd < 30.
Interestingly, we observe the same behavior (that the CPU time becomes sub-linear and the
number of distance computation drops dramatically whend < 30) in all five data sets used
in section 5.3. This observation suggests that for metric-tree, the “curse of dimensionality”
occurs whend′ exceeds30. As a consequence, searching algorithms based on metric-tree
(including the spill-trees search) performs much better whend < 30. Empirically, for all
five data sets we tested, our algorithm achieves optimal performance almost always when
d < 30.

Loops We investigate the influence of the number of loopsL. We fix τ = ∞ and we
test three projected dimensions:d = 5, 10, 15. See Fig. (5.5). As expected, in all cases,
the CPU time scales linearly withL, and the distance errorE decreases withL. However,
the rate thatE decreases slows down asL increases. Therefore, for the trade-off between

65

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 3 4 5

C
PU

 ti
m

e
(s

)

Loop

CPU time vs. Loop

Dim = 5
Dim = 10
Dim = 15

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5

E
rr

or
 (

%
)

Loop

Error vs. Loop

Dim = 5
Dim = 10
Dim = 15

Figure 5.5: Influence of the loopL (Aerial, d = 60, n = 275, 476, k = 1).

L andd′, it is typically more economical to have a single loop with a larged′ than having
a largerL and a smallerd′, unlessd′ is very small. Very roughly speaking, one would
expect about the same accuracy if we keepL · d a constant — if we project to a random
d′-dimensional subspace forL times, it is roughly equivalent to projecting to a random
(L·d)-dimensional subspace, whenL·d is much smaller than the dimension of the original
space. Notice that whend > 30, the CPU time scales linearly with bothL andd′, butE
decreases much faster withd′ increasing than withL. However, for very low dimensions
(d < 10), since CPU time scales sub-linearly withd′, it might be worthwhile to choose a
smalld′ andL > 1.

Overlapping Sizeτ We test the influence of overlapping sizeτ . Again, we fixL = 1
and test three projected dimension:d′ = 5, 10, 15. The results are shown in Fig. (5.6).

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 0.5 1 2 3 4

C
PU

 ti
m

e
(s

)

τ

CPU time vs. τ

Dim = 5
Dim = 10
Dim = 15

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 0.5 1 2 3 4

E
rr

or
 (

%
)

τ

Error vs. τ

Dim = 5
Dim = 10
Dim = 15

Figure 5.6: Influence of overlapping sizeτ (Aerial, d = 60, n = 275, 476, k = 1).

66

As we have mentioned before, both the accuracy and the CPU time increases withτ . When
τ = 0, we have pure defeatist search; whenτ is large enough (in this case, whenτ > 3),
the search becomes MT-DFS, which is slow but perfectly accurate.1 In the “interesting”
range where0 < τ < 1, we see dramatic decrease in CPU time and modest increase in
E. These observations tell us there exist some intrinsic patterns of the parameters. By
fully exploring them, we should be able to come up with an automatic or semi-automatic
parameter tuning system. And moreover, going though this whole procedure may help us
gain more insight into the approximate-nearest-neighbor problem.

Parameter estimation from data set
Below we describe an algorithm to estimate the ideal random projection dimensiond′ and
overlap buffer sizeτ , which is then relaxed in practice (by making the buffer smaller) to
improve speed. For the rest of this section, we fix the number of loopL to 1.

Now let’s focus ond′ andτ . Ideally,d′ should be close to the effective(intrinsic) dimension
of the data set, and it is usually much smaller than the original dimension of the data set.
Let RS denote the average distance (averaged over the objects in setS) to their nearest
neighbors. Following the heuristic described in (Clarkson [To appear]), if we make the
approximation that points are uniformly distributed, we expect that the number of objects
falling within a certain radius of a given object is proportional to the density of the objects
(which is in turn proportional to the number of samplesNS), raised to the power of the
dimensionality of the manifoldd′ on which the points are distributed. In particular, if
we fix the expected number of points to 1, then the radius of interest isRS, giving the
following equation:

1 ∝ NS ·RS
d′ (5.6)

IsolatingRS gives the following relationship, introducing a proportionality constantc:

RS =
c

NS
1/d′

(5.7)

Now we can estimate the constantc and the effective dimensionalityd′ via random sam-
pling. First we generate a number of different sized subsets of the data. In our experiments,
our sample size ranges from 10 to 1000. For each of these sets, we can find the nearest
neighbor of each point by computing allNS

2 distances, and recording the average distance
to the nearest neighbor of each point. By taking the log of both sides of Eq. (5.7), we get

log RS = log c− 1

d
log Ns (5.8)

1The “residue” errors in Fig. (5.6) in the caseτ = 4 come from random projection (c.f. Fig. (5.4)).

67

From Eq. (5.8), it becomes obvious thatc andd′ can be estimated through standard linear
regression methods.

Plugging these values along with the full sample set size into Eq. (5.7), we arrive at an
estimate of the average nearest neighbor distance over the whole set.

At first it might appear that we should setτ to RS. However, we need to take into account
that the partition hyper planes are unlikely to be perpendicular to the vector between ob-
jects which areRS apart. According to the Johnson-Lindenstrauss lemma (Johnson and
Lindenstrauss. [1984]), after randomly projecting a point from the effective dimensional-
ity d′ of the samples down to the one dimensional space normal to the partitioning hyper
plane, the expected distance will be as follows:

2τ =
RS√

d′
(5.9)

This yields an estimate ofτ . As mentioned earlier, we usually use a smaller value forτ
than what is computed above for greater efficiency, but the above procedure provides an
efficient method to get close to the right value.

Eq. (5.9) also implies thatτ only depends onRS andd′, so it should be a fixed value for
a given data set, the idea of changingτ for each partition does not work very well for this
reason.

5.6 Theoretical Analysis

As we stated in section 5.1, one very attractive feature of the LSH algorithm is that it en-
joys a rigorous, theoretical performance guarantee. Although the spill-tree algorithm has
better performance over LSH in many real-world settings, there is as yet no theory about
spill-trees that can guarantee its good performance. Unlike LSH, a spill-tree is a more
sophisticated data structure, and this makes a theoretical analysis more challenging. There
are theoretical analyses on tree-based(1 + ε)-NN algorithms (Arya et al. [2002, 1998],
Kushilevitz et al. [1998]), but these results are not applicable to our case. Above all, it is a
challenge to develop a provable statistical guarantee for the spill-tree algorithm.

Here we give some theoretical justification on the defeatist (i-am-feeling-lucky) search. In
particular, towards the end of this section, we prove the following theorem:

68

Theorem 1 Assuming that the training set containsN points drawn independently from
the normal distributionN(0, σ2). Let 0 < ε < 1/2 be a real number. Letq be a query
point, also drawn randomly from the same normal distribution. IfN > 192 · Γ

(
d−1
2

)
e8d ·

log
(

4
ε

)
, then the probability that i-am-feeling-lucky search algorithm makes a mistake in

the first round is at mostε.

Some comments about the result.

1. The choice of the normal distribution is mostly for the convenience of analysis. In
a high dimensional Euclidean space, A normal distribution isn’t too different from
a uniform distribution over a ball of appropriate size, but makes the analysis easier
since it is continuous everywhere.

2. The coefficients are chosen in such a way to simplify the analysis as much as possi-
ble, and no attempts are made to optimize any of them.

3. The theorem only analyzes one step of the i-am-feeling-lucky search, for simplic-
ity. However, due to the recursive nature of the search algorithm, one can easily
extend the theorem to multiple steps, although at the expense of more complicated
statements.

5.6.1 Backgrounds, Definitions, and Notations

We sayX has a Normal (or Gaussian) distribution with parametersµ andσ, denoted by
X ∼ N(µ, σ2), if

f(x) =
1

σ
√

2π
e−

1
2σ2 (x−µ)2 (5.10)

The distribution of a sum of two normally distributed independent variablesX andY with
means and variance(µx, σ

2
x) and(µy, σ

2
y), respectively is another normal distribution

fX+Y (u) =
1√

2π(σ2
x + σ2

y)
e
−(u−(µx+µy))2

2(σ2
x+σ2

y) (5.11)

The χ2 distribution. X has aχ2 distribution withd degrees of freedom – writtenX ∼ χ2
d,

if

f(x) =
1

Γ(d/2)2d/2
x(d/2)−1e−x/2, x > 0 (5.12)

If Z1, . . . , Zd are independent standard Normal random variables then
∑d

i=1 Z2
i ∼ χ2

d.

69

Multivariate Normal. The univariate Normal has two parameters,µ andσ. In the mul-
tivariate version,µ is a vector andσ is replaced by a positive matrix

∑
. Here, we only

consider a very simple case. LetZ = (Z1, . . . , Zd)
T , whereZ1, . . . , Zd ∼ N(0, 1) are

independent. The density ofZ is

f(z) =
d∏

i=1

f(zi) =
1

(2π)d/2
exp{−1

2

d∑
j=1

z2
j } (5.13)

=
1

(2π)d/2
exp{−1

2
zT z} (5.14)

(5.15)

We say thatZ has a standard multivariate Normal distribution, written asZ ∼ N(0, I)
where it is understood that 0 represents a vector ofd zeroes andI is thed × d identity
matrix.
Further more, we haveX = (Z−µ)T

∑−1(Z−µ) ∼ χ2
d. In our case,X = ZT ·Z ∼ χ2

d.

5.6.2 A Simple Probabilistic Problem

Here we consider a simple probabilistic problem that will help us prove the theorem.
Say there areN d-dimensional vectorsV = {V1, V2, ..., VN}, each independently chosen
from normal distributionN(0, σ2 · I). For computational convenience, we further assume
the varianceσ2 = 0.5. Let q be the query point, independently drawn from the same dis-
tribution as well. We are interested in the probabilityP of q′s nearest neighbor having a
distance advantage of at leastξ (ξ is a positive constant number) over all other data points
to q, and the reason will become clear in the next section. Generally speaking,P is hard
to compute since it is difficult to compute the distribution ofq′s nearest neighbor directly,
but we can approximateP via computing the probability of eachVi ∈ V having a distance
advantageξ over other data points inV, and the union of allPi provides a pretty good
upper bound ofP . Furthermore, since allVi ∈ V has equal probability to become the
nearest neighbor orq, we only need to focus on any one data point inV , sayV1, andP1

can be formalized as the following probability.

‖V1 − q‖2 < ‖V2 − q‖2 − ξ

∧ ‖V1 − q‖2 < ‖V3 − q‖2 − ξ

∧ · · ·
∧ ‖V1 − q‖2 < ‖VN − q‖2 − ξ

70

ξ is a positive constant number.

We can rewriteP1 asPd,q(N, ξ), then our task is to estimatePd,q(N, ξ). We define a new
set of random variableZ = {Z1, . . . , ZN}, whereZi = Vi − q, 0 ≤ i ≤ N . It is easy to
know from Eq. (5.11) thatZ1, . . . , ZN ∼ N(0, I), soXi = ZT

i · Zi ∼ χ2
d, 1 ≤ i ≤ N .

And we know the p.d.f.f(x) of the chi-square distribution from Eq. (5.12).
Further more, we useF (x) to denote the c.d.f. ofχ2

d.

Figure 5.7: Probability density function. Figure 5.8: Cumulative distribution func-
tion.

Now we can write the probabilityPd,q(V1, N, ξ) as

Pd,q(N, ξ) =

∫ ∞

0

(1− F (x + ξ))N−1f(x)dx (5.16)

The intuition is that if the square distance ofV1 andq is x, wherex ≥ 0, then the square
distance ofV1,. . . , VN to q all have to be at leastx + ξ, which happens with probability
(1− F (x + ξ))N−1.

Now, let’s estimatePd,q(N, ξ) in Eq. (5.16). First, it is easy to see that

Pd,q(N, 0) =

∫ ∞

0

(1− F (x))N−1f(x)dx =
1

N
(5.17)

Next, we assume d is large, and we estimate

R(x, ξ) = F (x + ξ)− F (x) =

∫ x+ξ

x

f(u)du 0 ≤ x ≤ d

Lemma 1 Whend > 10, and0 ≤ x ≤ d, we have

Rd,q(x, ξ) ≥ e−
ξ
4 · ξ d

2

2dΓ(d
2
)

(5.18)

71

Proof: If we take the derivative off(x), we can see that

f ′(x) =
−1

2
e−

x
2 · x d

2
−1 + (d

2
− 1)e−

x
2 · x d

2
−2

2
d
2 Γ(d

2
)

settingf ′(x) = 0, we know thatf(x) achieves its maximum atx = d− 2. So, it is easy to
see thatR(x, ξ) is minimized atx = 0. Now the problem boils down to boundingR(0, ξ)
from below. By standard calculus, we have

R(0, ξ) =

∫ ξ

0

f(u)du

≥ ξ

2
· f(

ξ

2
), for 0 ≤ x < d

=
ξ

2
·
e
−ξ
4 (ξ

2
)

d
2
−1

2
d
2 Γ(d

2
)

=
e−

ξ
4 · ξ d

2

2dΓ(d
2
)

The lemma is proved.

Now we are ready to bound the probabilityPd,q(N, ξ).

Lemma 2 Assuming thatd is large,ε < 1/2, andN >
2de

ξ
4 Γ(d

2
)

ξ
d
2
· log(d

ε
)

Pd,q(V1, N, ξ) <
2ε

N
. (5.19)

Proof: Notice that

Pd,q(N, ξ) =

∫ ∞

0

(1− F (x + ξ))N−1f(x)dx

=

∫ d

0

(1− F (x + ξ))N−1f(x)dx +

∫ ∞

d

(1− F (x + ξ))N−1f(x)dx

Notice that we split the sum into two parts withd as a threshold. Let’s focus on the first part

72

∫ d

0

(1− F (x + ξ))N−1f(x)dx =

∫ d

0

(1− F (x))N−1 ·
(

1− F (x + ξ)

1− F (x)

)N−1

· f(x)dx

=

∫ d

0

(1− F (x))N−1 ·
(

1− F (x + ξ)− Fd,q(x)

1− F (x)

)N−1

· f(x)dx

≤
∫ d

0

(1− F (x))N−1 · (1−R(x, ξ))N−1 · f(x)dx

By Lemma 1, we have

∫ d

0

(1− F (x))N−1 · (1−R(x, ξ))N−1 · f(x)dx

≤
∫ d

0

(
1− e−

ξ
4 · ξ d

2

2dΓ(d
2
)

)N−1

· (1− F (x))N−1 · f(x)dx

≤

(
1− e−

ξ
4 · ξ d

2

2dΓ(d
2
)

)N−1

·
∫ d

0

(1− F (x))N−1 · f(x)dx

≤ 1

N
·

(
1− e−

ξ
4 · ξ d

2

2dΓ(d
2
)

)N−1

So if we letN >
2de

ξ
4 Γ(d

2
)

ξ
d
2
· log(d

ε
), we have

∫ d

0

(1− F (x))N−1 · (1−R(x, ξ))N−1 · f(x)dx <
ε

N
. (5.20)

Then, for the second part, we use a property ofχ2 distribution, namely the median ofF (x)
is approximatelyd − 2

3
whend > 0. So we have1 − F (x) < 1/2, for x > d. Now we

73

have ∫ ∞

d

(1− F (x + ξ))N−1 · f(x)dx

≤
∫ ∞

d

(
1

2
)N−1 · f(x)dx

= (
1

2
)N−1)

∫ ∞

d

f(x)dx

≤ (
1

2
)N

So we have ∫ ∞

d

(1− F (x + ξ))N−1 · f(x)dx <
1

2N
<

ε

N
(5.21)

ForN > 4 log(1/ε) andε < 1/2.

Combining Eq.(5.20) and Eq.(5.21) gives us the proof.

5.6.3 The Proof

Now we are ready to prove Theorem 1.

Proof: (to Theorem 1).

Suppose we use the spill-tree to do the i-am-feeling-lucky search. Let’s just focus on one
step of the decision.

See Fig. (5.6.3). It shows the situation for one step of the search. Suppose the algorithm
is investigating nodev and the hyper planeL is the decision boundary. Without loss of
generosity, we assume that it is perpendicular to thex1 axis2; the hyper planesLL andLR
are parallel toL and distanceτ from L. WLOG we assume thatq is to the right ofL. We
say that the algorithm makes a mistake, if it prunes the true NN ofq in this step. Notice
that this can only happen if the true NN ofq (denote it byY) is to the left of planeLL.
Now consider the area betweenL andLR that are of distance at mostτ/2 to L (the shaded
area in Fig. (5.6.3)).

Let’s assume that there areM points in this region, denoted byX1, X2, ..., XM . An
easy application of the Chernoff bound Motwani and Raghavan [1995] shows that when

2Notice thatL2 norm is invariant under rotation.

74

��

� �� �

� �� �

� �� �

A

LLL

τ τ

LR

q

Y

� �	 	

x1

Figure 5.9: I-am-feeling-lucky search in a spill-tree.

N > 192 ·Γ
(

d−1
2

)
e8d · log

(
4
ε

)
, thenM > N/8 > 24 ·Γ

(
d−1
2

)
e8d · log

(
4
ε

)
with probability

at least1− e−
τN
9 > 1− ε

4
. From now on we assume that this is indeed the case.

Let’s compare the distances betweenq andY andq and theXi’s, we see that

‖q− Y ‖2 − ‖q−Xk‖2 =
d∑

i=1

(
(qi − yi)2 − (qi − xi

k)
2
)

Notice thatx1
i − y1 > τ , q1 − y1 > τ , andq1 − x1

i > −τ/2. Thus, we have

(q1 − y1)2 − (q1 − x1
i)

2 = (x1
i − y1)(q1 − y1 + q1 − x1

i) ≥ τ · (τ − τ/2) = τ 2/2.

In other words,Y has a “disadvantage” ofτ 2/2 against pointsX1, X2, ..., XM on the
dimensionx1.

In all other dimensions, however,Y andX1, X2, ...,XM are independently and identically
distributed. This is because that the distribution is invariant under rotation and also per-
fectly separable along different coordinates.

Therefore, forY to be the true NN ofq, it must have an “advantage” of at leastτ 2/2 in
the otherd − 1 dimensions over pointsX1, X2, ..., XM . But we know the probability of
that from Lemma 2. Using the union bound, we know that for any queryq, the probability
that i-am-feeling-lucky search algorithm makes a mistake in the first round is at mostε/2.
Putting everything together and the theorem is proved.

75

76

Chapter 6

Applications

In this section we discuss some real-world applications of our efficient algorithms. The
applications expand in distinct areas from multimedia and image clustering to pharmaceu-
tical drug discovery.

6.1 Video Segmentation

Video segmentation is an extensively studied problem in multimedia analysis, as shots are
the most natural organizational unit for video content above the frame. Managing large-
scale video repositories often necessitates processing at the shot-level to reduce computa-
tion and storage requirements. Hence, shot segmentation is a common first step in auto-
matic and semi-automatic video management tools. The need for effective and efficient
multimedia management tools has been exacerbated by recent trends. The confluence
of decreasing storage costs, increasing processing power, and the growing availability of
broadband data connections is producing rapid growth in both the size and number of per-
sonal and institutional video repositories.

A great deal of current video analysis research focuses on information retrieval within
video databases. Web search companies are extending their text-based search capabilities
to video assets. Video retrieval has also been the focus of the highly successful TRECVID
workshops (Smeaton and Over [2002], Smeaton et al. [2003], Kraaij et al. [2004]). Within
TRECVID, shot boundary detection is the most basic task in the evaluation, and shots
serve as the units for both higher-level semantic annotation and retrieval tasks.

Good overviews of existing techniques in video segmentation operating on both uncom-
pressed and compressed video streams can be found in (Koprinska and Carrato [2001],

77

Lienhart [2001], Hanjalic [2002]). For uncompressed data, basically, most algorithms
are based on frame differences for pixel, block-based or histogram comparisons. Most
existing methods rely on suitable thresholding of differences between successive frames.
However, these thresholds are typically highly sensitive to the specific type of video. There
have only been a few machine learning approaches that tried to overcome this drawback.
Gunsel et al. [1998a] views temporal video segmentation as a2-class clustering problem
(“scene change” and “no scene change”) and usesK-means to cluster frame differences.
Boreczky and Wilcox [1998] applies HMMs with separate states to model shot cuts, fades,
dissolves, pans and zooms. Lienhart [2001] proposes a reliable dissolve detector. Hanjalic
[2002] provides a statistical detector based on minimization of the average detection-error
probability for cuts and dissolves.

As pioneered by the above methods, classification methods appear promising for video
segmentation. However, most existing shot detection algorithms just use ad hoc frame
classification with arbitrary thresholding rules. In our work, we employ an analytical
framework encompassing a number of techniques that can perform reliable and efficient
shot boundary detection. The key components to our algorithms can be summarized as
following:

• Intermediate features extraction: transforms a time series problem to a supervised
classification problem.

• KNS2: an efficientk-NN classification algorithm.

• Information-theoretic feature selection: exploits the discriminative power of differ-
ent features, further improve algorithm performance.

In the following section, we will discuss the three key components in detail and show ex-
periment results after that.

6.1.1 Feature Extraction

A. Low-level feature extraction There are numerous choices of low-level features that
can be extracted to represent each time sample. One major distinction is between methods
that model global (entire frame) pixel intensities directly, or those that operate on image
sub-blocks. Most often, in either case, statistical measures or histograms are used to sum-
marize the pixel values. Many color spaces have been used. Motion compensated features
have been proposed, as well as more specialized features from the computer vision litera-
ture including edge or texture features, and estimates of object or camera motion. Finally,

78

specialized features may include detectors of specific objects or phenomena such as faces
or camera flashes.

B. Similarity analysis and kernel correlation After low-level features are extracted to
represent each frame, shot boundary detection systems can be built based on quantifying
local novelty with a longer source stream. Neighboring frames that are sufficiently differ-
ent are declared to form a shot boundary. More generally, various pairs of frames within
a local temporal neighborhood may be compared. This processing is readily visualized
using matrices. First, an affinity or similarity matrix is generated, as in Fig. (6.1). We
represent each framen with a low-level feature vectorVn. Given a similarity measured
quantifying the similarity between pairs of feature vectors, we embed the similarity be-
tween every possible pair of frames features in the similarity matrix:S(i, j) = d(Vi, Vj).
Thus, the number of rows and columns ofS is the total number of frames,N , in the source
video. Abrupt shot boundaries exhibit a distinct pattern in the similarity matrix. Frames in
visually coherent shots have high (low) intra-shot (dis)similarity. Frames from two such
shots that are adjacent in time generally show low (high) inter-shot (dis)similarity. This
produces a checkerboard along the main diagonal of the similarity matrix whose crux is
the diagonal element corresponding to the boundary frame.

This observation has motivated matched filter approaches to boundary detection. We refer
to this method as kernel correlation. The matched filter is a square kernel matrix,K, that
represents the appearance of an ideal boundary inS. To produce a quantitative frame-
indexed novelty score, correlateK along the main diagonal ofS:

ν(n) =
L−1∑
l=−L

L−1∑
m=−L

K(l,m)S(n + l, n + m) . (6.1)

Here,K is 2L × 2L. By varying the maximal lagL, the novelty score can be tuned to
detect boundaries between segments of a specific minimum length. The correlationν can
be processed to detect segment boundaries. Maxima in this score correspond to locally
novel frames, and are good candidate shot boundaries.

For the sake of brevity, we limit our review to systems that share elements in common with
our approach. Here, we review several algorithms that are each characterized by a specific
kernel used to generate a novelty score perν(n). We emphasize the differences between
the kernels in terms of their relative weighting of the elements ofS. Fig. (6.3) graphically
depicts the kernels considered as square matrices. In each panel, a blank element does not
contribute to the corresponding novelty score (i.e.K(l,m) = 0 in Eq. (6.1). The elements

79

j

D(i, j)

n

 n

2L

similarity matrix S

T

T

 0

i

stream

0

v(n)

Figure 6.1: Diagram of the similarity matrix embedding.

containing solid circles contribute positively to the novelty score (K(l,m) > 0). The ele-
ments containing unfilled circles contribute negatively to the novelty score (K(l,m) < 0).
Notice that the elements along the main diagonal ofK align with the main diagonal ele-
ments ofS in the correlation, whereS(n, n) = d(Vn, Vn) = 0.

The results of comparing adjacent video frames appear in the first diagonal above (and
below) the main diagonal, i.e. the elementsS(n, n ± 1). Scale space analysis (Witkin
[1981]) is based on applying a kernel of the form shown in Fig. (6.3)(a). It uses a family
of Gaussian kernels of varying standard deviation to calculate a corresponding family of
novelty scores. Define the scale space (SS) kernel as:

K
(σ)
SS (l,m) =

{
1

Z(σ)
exp

(
− l2

2σ2

)
|l −m| = 1

0 otherwise
. (6.2)

whereZ(σ) is a normalizing factor1. Scale-space kernel was used in Slaney et al. [2001]
for video segmentation.

Pye et al. [1998] presented an alternative approach using kernels of the form of Fig. (6.3)(b).

1The SS and DCS kernels are easily defined using a single variable, i.e.l, but we use the two variables
(l, m) for consistency.

80

Figure 6.2: (a) A block diagram of a typical video segmentation system. (b) Decomposes
local inter-frame analysis step into two separate steps.

When centered on a segment boundary, this kernel weights only elements ofS that com-
pare frames from different segments. This kernel is defined:

K
(L)
DCS(l,m) =

{
1

2L
|l −m| = L

0 otherwise
. (6.3)

We refer to this kernel as the diagonal cross-similarity (DCS) kernel. In the correlation
calculation, the elements ofS for which KDCS > 0 lie on theLth diagonal above (and
below) the main diagonal ofS. KDCS has been used in the segmentation systems by Pick-
ering et al. [2002].

Weightingall the inter-segment elements implies the kernel of Fig. (6.3)(c). This kernel
“includes” the DCS kernel, and adds the remaining between-segment (cross-similarity)
terms within the kernel’s temporal extent. The cross-similarity (CS) kernel is defined:

KCS(l,m) =


1

2L2 l ≥ 0 andm < 0
1

2L2 m ≥ 0 andl < 0

0 otherwise

. (6.4)

This kernel is precisely the matched filter for an ideal cut boundary inS. Ideally, the inter-
segment terms are maximally dissimilar, while the intra-segment terms will exhibit zero
dissimilarity.

The kernel in Fig. (6.3)(d) is the full similarity (FS) kernel used in Cooper and Foote
[2001], and it includes both between-segment and within-segment terms. This kernel re-
places the zero elements inKCS with negative weights. The negative weights penalize

81

(a) (b)

(c) (d) (e)

Figure 6.3: Different kernels for segment boundary detection via kernel correlation
(L = 4). (a) scale-space kernel (b) diagonal cross-similarity (c) cross-similarity (d) full-
similarity (e) row-similarity.

high within-segment dissimilarity:

KFS(l,m) =


1

2L2 l ≥ 0 andm < 0
1

2L2 m ≥ 0 andl < 0

− 1
2L2 otherwise

. (6.5)

Fig. (6.3)(3) shows the row (ROW) kernel used by (Qi et al. [2003]). This kernel weights
only comparisons between the current frame and previous frames:S(n, n− l):

KROW (l,m) =


1

2L
l = 0 andm < 0

1
2L

m = 0 andl < 0

0 otherwise

. (6.6)

C. Using intermediate featuresIn the previous section, we have seen numerous re-
searches focused on designing different kernels, and relied on suitable thresholding of
the novelty score for boundary detection. However, these thresholds are typically highly
sensitive to the specific type of video. Now, instead of using a single scoreν(n), we
construct a frame-indexed intermediate feature vectorXn for each framen, such thatXn

effectively represents the local temporal structure aroundn. Corresponds to each kernel

82

K, we can construct a vectorXn that contains the elements ofS which are multiplied
by non-zero weightsK(l,m) in the calculation ofν(n) in Eq. (6.1). For example, corre-
sponds to kernelKFS andL = 5, we can create a2L× 2L dimensional feature vectorXn

as:

Xn =

[
S(n− 5, n− 5) · · · S(n− 5, n + 4)

S(n− 4, n− 5) · · · S(n− 4, n + 4)

· · ·

S(n + 4, n− 5) · · · S(n + 4, n + 4)

]T

6.1.2 KNS2 Based Fastk-NN Classification

The second key component of our system is the use of supervised classification for bound-
ary detection. As we have described in the previous paragraph, we used similarity matrix
to generate intermediate features to reduce shot boundary detection to temporal pattern
classification. In our experiments, we consider detection of two types of transitions: cut
(abrupt) and gradual. So the combination of rich intermediate features and statistical clas-
sification averts the need for unduly complex low-level frame features or processing, and
we only need to do a very simple task as to classify each frame as one of the three classes:
“normal”, “cut” or “gradual”. Since there exist many powerful binary classification tools,
we can fit this three classes classification problem to a two stage binary classification prob-
lem. In the first stage, we classify each frame as either “cut” or “non-cut”. In the second
stage, we take all the classified “non-cut” frames, and further classify them as “normal” or
“gradual”. This procedure is depicted in Fig. (6.4).

Among all classification algorithms, we chosek-NNṪhe advantage ofk-NN has been
stated in early chapters. More specifically, here we use KNS2, since it is designed for
problems in which one class is more frequent than the rest. In our case, the number of
frames that are not part of a transition is substantially greater than the number of transition
frames. In experimental testing using video data, speedups between a factor of 20 and 30
in run time over the näıve implementation ofk-NN have been observed. This acceleration
is crucial in the present context.

83

Figure 6.4: The classification process.

6.1.3 Information-theoretic Feature Selection

Since the two type of transitions (cut and gradual) appear to have different classification
patterns, intuitively, we expect that specific inter-frame comparisons will be of differing
relevance to detecting these two classes. Numerous existing systems that use solely ad-
jacent frame comparisons of the formS(n, n ± 1) achieve good cut transition detection.
On the other hand, these features are not sufficient for robust gradual transition detection.
Gradual detection requires analysis of frames over a greater temporal neighborhood, i.e.
S(n, n ± l), l > 1. We greedily select the subsets of the elements of our intermediate
feature vectorsX that best discriminate among the transition classes. To determine these
feature subsets, we calculate mutual information measures between the elements of the
intermediate feature vectors and the corresponding class labels from our training sets.

The mutual information between two random variables quantifies the information that they
share about one another. For discrete random variables, the mutual information is:

I(X(i); Y) =
∑
Y

P (Y)
∑
X(i)

P (X(i)|Y) log

(
P (X(i)|Y)

P (X(i))

)
(6.7)

= 〈DKL(P (X(i)|Y)‖P (X(i)))〉Y .

Here,X(i) is theith element of the intermediate feature vectorsX, andY denotes the class
label as before.2 The measure in Eq. (6.7) is referred to as marginal diversity and used for
greedy feature selection in Vasconcelos [2003]. The latter form shows mutual information
is the expected value of a Kullback-Leibler (KL) distance. The intuition is that informative

2To make the notation explicit,Xn(i) is the ith element of the feature vector associated with thenth

labeled frame in the training set. IfX is aP × n matrix, then1 ≤ i ≤ P andX(i) appears in theith row of
the matrixX of training data. We can also think of its observations as an1×N vector.

84

features will exhibit high KL distance between the class-conditional distributions and the
marginal distribution. The disadvantage of the greedy approach of Vasconcelos [2003] is
that Eq. (6.7) does not account for inter-feature redundancies. Thus the resulting feature
subset will not generally be maximally informative.

To account for inter-feature dependencies, more complicated mutual information forms
must be calculated. Although mutual information is naturally extended to this case, its di-
rect application can be computationally intractable. Denote the currently selected features
by the setXC . Then, the next feature selected is

X(a) = ArgMax
X(i)/∈XC

I(X(i); Y |XC) (6.8)

Combinatorially, these forms of the mutual information are difficult to calculate as the
cardinality ofXC increases. The main difficulty is estimation of quantities such as

P (X(i)|X(1), · · · , X(a−1))

Such density estimation quickly becomes computationally daunting, and is unreliable
without massive amounts of training data. As a result, we seek approximations, and focus
on second order terms of the formI(X(i); Y |X(c)).

The approximation problem is studied in Vasconcelos and Vasconcelos [2004]. We ap-
proximate the relevant forms of the mutual information by neglecting higher order terms.
To illustrate, consider the selection of the third feature given thatXC = {X(1), X(2)} is
known:

X(3) = ArgMax
X(a)

I(X(a), X(1), X(2); Y) (6.9)

= ArgMax
X(a)

(
I(X(1); Y) + I(X(2); Y |X(1)) + I(X(a); Y |X(1), X(2))

)
(6.10)

Already third order dependencies appear inI(X(a); Y |X(1), X(2)). The complexity of
the required mutual information forms grows with the size ofXC . To simplify matters,
we follow the assumption of̀-decomposability(Vasconcelos and Vasconcelos [2004]) for
` = 1. This assumption states that:

I(X(a); Y |XC) = I(X(a); Y) +
∑

X(c)∈XC

[
I(X(a); X(c)|Y)− I(X(a); X(c))

]
. (6.11)

85

Neglecting terms with no dependence onX(a) in Eq. (6.10), this implies that

X(3) = ArgMax
X(a) 6=X(1),X(2)

(
I(X(a); Y) +

[
I(X(a); X(1)|Y)− I(X(a); X(1))

]
+

[
I(X(a); X(2)|Y)− I(X(a); X(2))

])
. (6.12)

More generally, we select a featureX(a) to add to a previously selected setXC such that,

X(a) = ArgMax
X(i)/∈XC

(
I(X(i); Y) +

∑
X(c)∈XC

[
I(X(i); X(c)|Y)− I(X(i); X(c))

])
. (6.13)

The approximation states that the only critical feature interdependencies are pairwise.
While this may not be wholly accurate in our context, it does significantly improve our
resulting feature set by reducing inter-feature redundancy. The general framework of Vas-
concelos and Vasconcelos [2004] can be used to systematically study the tradeoff between
the computational complexity of assemblingXC and the corresponding performance gains
in boundary detection. We focus here on the approximation of Eq. (6.13) which underlies
the following greedy procedure for feature selection.

Algorithm 1 [Feature selection from Vasconcelos and Vasconcelos [2004]]

1. Assume the availability of labeled training data{X,Y} with binary labelsY and
the desired size of the feature subset,R.

2. Select the first feature,X(1) by maximizing Eq. (6.7) over the elements ofX:

X(1) = ArgMax
X(a)

I(X(a); Y) .

LetXC = {X(1)}.

3. Select the second feature,X(2) as

X(2) = ArgMax
X(a) 6=X(1)

(
I(X(a); Y) +

[
I(X(a); X(1)|Y)− I(X(a); X(1))

])
.

LetXC = XC ∪ {X(2)}, setr ← 3.

86

4. Select therth feature,X(r) as

X(r) = ArgMax
X(a)/∈XC

(
I(X(a); Y) +

∑
X(c)∈XC

[
I(X(a); X(c)|Y)− I(X(a); X(c))

])
.

] Let XC = XC ∪ {X(r)}, r ← r + 1.

5. Repeat step 4, terminating whenXC has the desired cardinalityR.

We apply KNS2 in two steps. In each step, we use different training sets. Thus, we apply
Algorithm 1 separately to the two training sets, producing a feature subset optimized for
each classification step. The training and test data sets are then projected to the appropriate
lower-dimensional subspace prior to classification.

6.1.4 Experimental Results

In this section we present experimental results to validate the general approach and com-
pare several specific system configurations.

Data Description

As noted in Bescos et al. [2005] and elsewhere, a longstanding obstacle to assessing
progress in shot boundary detection has been the fact that most systems are validated
on different data sets. Furthermore, many research groups do not wish to invest resources
in generating ground truth segmentations for large test data sets. The TRECVID work-
shops (Kraaij et al. [2004]) represent a significant advance towards surmounting these
issues. The 2004 workshop was the fourth annual open, metrics-based, large-scale evalu-
ation of video analysis systems. Shot boundary detection is one of four tasks, and systems
are evaluated on a common test set comprised of about six hours of broadcast news footage
with manually labeled frame-level ground truth.

The TRECVID shot boundary detection task requires the detection of both abrupt and
gradual transitions. Gradual transitions, such as fades, wipes, or dissolves, are exceed-
ingly common in broadcast video, and substantially complicate shot boundary detection.

For testing, we use the data and evaluation protocol of TRECVID 2004 shot boundary de-
termination task (Kraaij et al. [2004]). The test data is approximately 6 hours of broadcast

87

news data produced by CNN and ABC from 1998. A manual ground truth segmentation is
also provided in which shot boundaries are labeled as either cut or gradual transitions. The
test data contained 618,409 total video frames with 2,774 cut transitions and 2,031 grad-
ual transitions of various types. For the training data, we use the 2003 test set (Smeaton
et al. [2003]) and ground truth segmentation. The 2003 data is news from CNN, ABC,
and CSPAN from earlier in 1998. We removed 90% of the non-transition frames, and
got a resulting training set with 63,822 labeled samples, among which, 2,489 frames are
“cut” transitions, 22,074 frames are “gradual” transitions, and the rest are non-transition
frames. The labeled training data is used to create two separate training sets correspond-
ing to our two step classification process. In the first set, cuts are labeled positively and
all other frames are labeled negatively. In the second training set, cuts are discarded, and
gradual transition frames are labeled positively, while the non-transition frames are labeled
negatively.

Feature Extraction

First, low-level features are computed from each frame. We use YUV color histograms,
which are a simple and common feature parameterization (Gunsel et al. [1998b]). We
compute 32-bin global frame histograms, and (sixteen) 8-bin block histograms using a
4× 4 uniform spatial grid for each channel.

To construct intermediate features, we need to build the similarity matrixS, where each
elementS(i, j) is the similarity between framei andj. Denote the frame-indexed his-
togram feature data byV = {Vn : n = 1, . . . , N}. We use theχ2 distance as the similarity
measures. Formally,

S(i, j) = d(Vi, Vj) =
1

2

∑
k

(Vi(k)− Vj(k))2

Vi(k) + Vj(k)
. (6.14)

In practice, there is no need to calculate the whole similarity matrix. As shown in Eq. (6.1),
when a kernel is applied to the matrix, for each framen, we only care about its neighboring
frames. A Lag parameterL determines the size of the kernelK, andL << N . Addition-
ally, because bothS andK are typically symmetric, many computations are redundant.
For these reasons, we compute only a small portion ofS near the main diagonal, and store
the data in “lag domain” according to:

Slag(n, l) = S(n, n + l) n = 1, . . . , N l = 1, . . . , L. (6.15)

The algorithmic complexity for calculating the required portion ofS is O(N). We gen-
erate two similarity matricesS(G) andS(B) corresponding to the global and block color

88

histogram features respectively, and the final intermediate features for classification is
formed by concatenating elements ofS(G) andS(B).

Classification and Evaluation

We use KNS2 fork-NN classification. We control the sensitivity of the classifier using an
integer parameterκ : 1 ≤ κ ≤ K. If at leastκ out of thek nearest neighbors of the test
vectorXn in the training data are from the “transition” class, we label framen as a tran-
sition and otherwise label it as a non-transition.κ is varied to produce the performance
curves trading off false-positive versus false-negative classification errors. Throughout,
k = 11. The only post-processing is the application of simple temporal heuristics. We
require detected transitions to be separated by at least 60 frames (2 seconds). In the event
that multiple transitions are detected within a 60 frame interval, we retain the transition
with the most positively labeled frames among its nearest neighbors breaking ties arbitrar-
ily. We also require gradual transitions to have a minimum duration of 11 frames. For
evaluation, we use the common figures of merit of precision and recall (Boreczky and
Rowe [1996]):

Precision =
#(Boundaries correctly detected)

#(Total boundaries detected)
, (6.16)

Recall =
#(Boundaries correctly detected)

#(Total ground truth boundaries)
. (6.17)

These measures are computed over the test data sets using the TRECVID protocol and
evaluation software (Smeaton and Over [2002]).

During the testing, we have also monitored the required computation time. The systems
below all process 90 dimensional intermediate features (L = 5) for classification and
training sets with cardinality between 55,000 and 65,000 frames, so that the run time of
the various systems below are all similar. The bulk of the computation time is almost
evenly divided between decoding the MPEG stream to extract individual frames and their
corresponding histogram features, and the twok-NN classification steps. End to end, our
system operates at about twice real-time. That is, the segmentation requires compute time
equal to twice the duration of the input video3.

3More details appear in Adcock et al. [2004], the machine used for testing has an Athlon 64 3500+
processor.

89

Similarity Feature Vector versus Novelty Scores

The goal of the first set of experiments is to compare choices for intermediate features
based on different kernels, as described in Section 6.1.1. First, we setL = 5, and examine
performance using the intermediate feature vectorXn as input to thek-NN classifier.

The results appear in the solid curves in Fig. (6.5)(a) shows FS SIM (X, “FS SIM”), the
CS SIM (�, “CS SIM”), the SS SIM (+, “SS SIM”), the ROW SIM (4, “ROW SIM”),
and the DCS SIM (◦, “DCS SIM”). The additional information in the FS features produce
the best performance. Similarly, the CS features show the second best performance. The
results exhibit a clear tradeoff between the dimensionality of the intermediate features and
segmentation performance. The kernels with lower dimensionality (i.e. fewer non-zero
terms inK, and hence lower dimensionalXn), perform worse.

For comparison, we produce novelty features by concatenating different novelty scores
across a set of LagsL = 2, 3, 4, 5. For eachL, we compute a frame-indexed kernel
correlation score separately usingS(G) andS(B), so that we have four scores for each
frame for both the global and the block histogram features. We combine this data into a
single8× 1 vectorXn to represent each framen:

Xn =

[
ν

(G)
2 (n) ν

(G)
3 (n) ν

(G)
4 (n) ν

(G)
5 (n) ν

(B)
2 (n) ν

(B)
3 (n) ν

(B)
4 (n) ν

(B)
5 (n)

]T

.

whereν
(G)
L denotes the novelty score computed usingS(G) with kernel widthL, andν

(B)
L

denotes the novelty score computed usingS(B). In this case, the size of the intermediate
vectorsXn is the same for all kernels (1× 8, as in the equation above). However, varying
numbers of inter-frame comparisons fromS are used to compute the elements comprising
Xn.

The results appear as dashed curves for the FS kernel (X, “FS KC”), the CS kernel(�,
“CS KC”), the SS kernel(+, “SS KC”), the ROW kernel(4, “ROW KC”), and the DCS
kernel (◦, “DCS KC”). The best performance is achieved by the CS and the DCS kernels.
As noted previously, the CS kernel is the matched filter for the expected pattern produced
by cut segment boundaries inS. Both the CS and DCS kernels emphasize dissimilarity
between segments at multiple time scales. The FS kernel performs somewhat worse, we
believe due to the choice of theχ2 dissimilarity measure. The FS kernel may be better
suited to dissimilarity measures that take both positive and negative values such as the
cosine similarity measure. Further details of system performance appear in Table (6.1),
where we useP andR to denote precision and recall, respectively. The F1 is defined as

90

F1 = (2 ·P ·R)/(P +R). Each row shows the results using the value ofκ that maximizes
the overall F-score for the corresponding system, the last row shows the mean results for
all systems participating at TRECVID 2004 (TV MEAN).

0.75 0.8 0.85 0.9 0.95 1
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Recall

P
re

ci
si

on

SB02 Cut Detection − Pairwise Similarity Features

Full Similarity
Cross Similarity
Scale Space
DCS
Row

0.75 0.8 0.85 0.9 0.95 1
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Recall

P
re

ci
si

on

SB02 Cut Detection − Kernel Features

Full Similarity
Cross Similarity
Scale Space
DCS

(a) (b)

Figure 6.5: (a) Cut detection using raw similarity features. (b) kernel correlation features.

Fig. (6.6)(a) shows performance for abrupt and gradual boundary detection, providing fur-
ther insights into the relative performance of these systems. We can see that systems using
similarity feature performance better than using novelty scores in general. In particular,
kernels that emphasize similarity comparisons between adjacent frames,S(n, n ± 1), de-
tect abrupt transitions well. For this reason, the SS SIM system outperforms the CS SIM
system. However, the SS KC system performs poorly, because the critical comparisons
between adjacent frames at a boundary are smoothed in the correlation. The DCS SIM
system performs poorly as well, as it neglects terms comparing adjacent frames. Here,
the FS SIM system performs best of all variations. Fig. (6.6)(b) shows gradual transition
detection performance. Recall is generally lower than for abrupt transitions, which is a
reflection of the relative difficulty of this task. In contrast to abrupt transitions, kernels
which emphasize larger lag comparisons of the formS(n ± l, n ± m) for l,m > 1 per-
form best. These include the CS SIM and FS SIM systems, as well as the CS KC, DCS
KC, and FS KC systems. The use of kernel correlation to smooth the pairwise similarity
comparisons does not significantly hurt resolution as the transitions occur over a frame in-
terval. Again, the FS SIM systems provides the best performance, due to its more complete
representation of local temporal structure.

91

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

ci
si

on

Abrupt Shot Boundary Detection Results, SB04 Test Data

FS KC
CS KC
DCS KC
SS KC
FS SIM
CS SIM
DCS SIM
SS SIM
ROW SIM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Gradual Shot Boundary Detection Results, SB04 Test Data

FS KC
CS KC
DCS KC
SS KC
FS SIM
CS SIM
DCS SIM
SS SIM
ROW SIM

(a) (b)

Figure 6.6: (a) Abrupt (cut) boundary detection (b)Gradual boundary detection.

6.1.5 Feature Selection Experiments

We can conclude from the experiments in the previous section that building intermediate
features for classification from the inter-frame comparisons corresponding to the FS kernel
provides excellent performance. The relative performance of the various systems demon-
strate that including additional comparisons in the intermediate features generally benefits
performance. At the same time, increasing the dimensionality of the intermediate feature
vectors increases the computation required for classification. The goal of this section is
to explore this tradeoff between performance and complexity using feature selection. We
focus on the FS SIM system with intermediate featuresX defined in Eq. (6.7). We first
increase the lag parameter toL = 10, producing 380 inter-frame comparisons. While
we expect that the performance would again improve with these additional intermediate
features, the computational requirements are too great. We use feature selection to reduce
dimensionality, while attempting to retain performance gains associated with the larger
lag,L.

We compare two approaches to feature selection using the “FS SIM” system of the previ-
ous section as a baseline. For the baseline, the intermediate featuresX are generated using
Eq. (6.7) withL = 5. Results appear in the curves of Fig. (6.7). The curves for this basic
system are denoted (X “L=5”). Fig. (6.7)(a) and (b) shows performance in the detection
of abrupt and gradual boundaries, respectively.

92

Table 6.1: Various systems tested for three class shot boundary detection.
Experimental results (best runs for each)
MEAN ABRUPT GRADUAL

SYS R P F1 R P F1 R P F1

ROW SIM 0.82 0.81 0.81 0.94 0.81 0.87 0.59 0.81 0.69
SS KC 0.74 0.72 0.73 0.87 0.77 0.82 0.47 0.59 0.52
SS SIM 0.76 0.90 0.83 0.86 0.95 0.91 0.55 0.77 0.64
DCS KC 0.85 0.83 0.84 0.93 0.84 0.88 0.6828 0.8172 0.7440
DCS SIM 0.731 0.7941 0.76 0.79 0.80 0.79 0.61 0.78 0.68
CS KC 0.85 0.83 0.84 0.93 0.83 0.88 0.68 0.83 0.75
CS SIM 0.85 0.85 0.85 0.94 0.85 0.89 0.65 0.85 0.74
FS KC 0.84 0.83 0.83 0.92 0.83 0.87 0.66 0.80 0.73

L=5 0.87 0.88 0.88 0.94 0.91 0.93 0.73 0.81 0.77

L=10 RP90 0.87 0.89 0.88 0.91 0.93 0.92 0.78 0.80 0.79
L=10 MD90 0.86 0.84 0.85 0.94 0.84 0.89 0.69 0.84 0.76
L=10 MI25 0.84 0.89 0.87 0.92 0.92 0.92 0.68 0.82 0.74
L=10 MI45 0.86 0.90 0.88 0.92 0.93 0.92 0.72 0.83 0.77
L=10 MI90 0.87 0.90 0.89 0.93 0.93 0.93 0.75 0.84 0.79

TV MEAN 0.73 0.73 0.71 0.83 0.76 0.78 0.50 0.58 0.57

93

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98
0.86

0.88

0.9

0.92

0.94

0.96

0.98

Recall

P
re

ci
si

on

Cut Boundary Detection Results, SB04 Test Data

L = 5
L = 10 RP90
L = 10 MI90

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0.7

0.75

0.8

0.85

0.9

Recall

P
re

ci
si

on

Gradual Shot Boundary Detection Results, SB04 Test Data

L = 5
L = 10 RP90
L = 10 MI90

(a) (b)

Figure 6.7: (a) Cut boundary detection using feature selection. (b) Gradual boundary
detection using feature selection.

We select feature subsets from FS similarity featuresX generated using Eq. (6.7) with
L = 10, producing vectors of dimensionality of380. The first feature selection method
is random projection (RP) (Fradkin and Madigan [2003]). This approach generates a sub-
space for projection randomly with the constraint that it be orthogonal. The method is
proven to preserve distances in the original high-dimensional space, and thus naturally
complements nearest-neighbor methods. The second set of results with feature selection
uses Algorithm 1 to select 90 dimensions from the same 380-dimensional intermediate
features (◦ “L=10 MI90”). Performance results also appear in Table (6.1).

Both the systems using feature selection do better than the original L=5 system overall,
even though the dimensionality of the features used for classification is the same in all
three cases (90). The system using information-theoretic feature selection performs best
of the three. Fig. (6.7) reveals further differences among the systems. The L=5 system
outperforms L=10 RP90 in cut boundary detection, while the opposite is true for gradual
boundary detection. This reaffirms our intuitions. First, information critical to cut bound-
ary detection is in the pairwise similarities closest to the boundary frame, while the extra
information in the L=10 features is superfluous. Random projection mixes these features
together which reduces the informativeness of the most valuable features for cut detection.
In the gradual case, the additional features are crucial, and mixing them does not hurt ac-
curacy, since gradual boundaries extend over a set of frames. Thus Fig. (6.7)(b) shows
improved performance with random projection.

94

The L=10 MI90 systems exploits the discriminative power of the L=10 features. It selects
the important features for cut detection by design, and demonstrates superior performance.
For gradual boundary detection, it selects combinations of complementary features from
the L=10 feature set. In this way, it is able to generally outperform the random projection
system, although the random projection system performs best in the high recall and low
precision region. We believe this is because random projection linearly combines all the
features in the L=10 data, whereas Algorithm 1 only selects 90 of the features. Gradual
transitions routinely extend over 20-40 frames, so it is likely that all the L=10 features
contain useful information for gradual transition detection.

We further examine the results using information theoretic feature selection in Fig. (6.8).
The plots compare the performance of L=10 MI90 and L=10 RP90 to three additional
variations of the system. L=10 MD90 (x) shows performance using greedy feature selec-
tion based on the mutual information measure of Eq. (6.7), as in Vasconcelos [2003]. This
approach ignores any redundancies in the feature data, and we see the resulting overall
performance is poor. L=10 MI25 (�) and L=10 MI45 (*) show the results of applying
Algorithm 1 to greedily build feature subsets of size 25 and 45, respectively. All the
curves based on information-theoretic feature selection show gradual improvement with
additional features. The L=10 MI90 system performs best. Table (6.1) also indicates that
the L=10 MI45 system approximately matches the overall performance of the L=10 RP90
system using half as many features.

0.7 0.75 0.8 0.85 0.9 0.95
0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

ci
si

on

Mean Shot Boundary Detection Results, SB04 Test Data

L = 10 MD90
L = 10 MI25
L = 10 MI45
L = 10 MI90
L=10 RP90

Figure 6.8: Mean performance for three-class shot boundary detection with feature selec-
tion.

95

6.2 Classification for Drug Screening

6.2.1 Problem description

Virtual screeningrefers to the use of statistical and computational methods for prioritiz-
ing candidate molecules for biological testing for their possible use as drugs. Because
these assay are time-consuming and expensive, accurate “virtual” assay, or prioritization
for molecules by computer, has direct impact in cost savings and more rapid drug develop-
ment. Virtual screening, part of the more general enterprise ofhigh-throughput screening,
has thus become an increasingly pressing new component of modern drug development
research.

The classification problem.We are concerned with the scenario of a large pharmaceutical
research and development laboratory, which is as follows: We assume there is a single
target molecule. There are multiple molecules which are known to interact in the desired
fashion with the target molecule, i.e. are active with respect to the target, and a generally
larger number of molecules known to be inactive with respect to the target. The task is to
predict whether a previously unseen molecule will be active with respect to the target.

The features.The structure of a molecule determines its interaction with a target molecule
- whether and how it will interlock, or “dock” with complete characterization remains an
outstanding problem of science. Thus, thousands of binary (0/1) features, collecting all
manner of both generic and target-specific properties which might be relevant to the clas-
sification task. Typical binary features record the absence or presence of a certain kind of
atom or substructure, proximity relationship, and so on.

The goal.Our goal is to design a classifier with the best possible prediction performance
based on a proprietary commercial training set of 26,733 molecules, 6,348 binary features,
and one output variable (“active” or not).

Recent work in virtual screening.Most of the well-known classification methods have
been proposed for the virtual screening problem, including logistic regression, naive Bayes
classifiers, and support vector machines (SVM) (Vapnik [1995]), which are currently con-
sidered to be one of the most empirically successful in general.

96

Table 6.2: The ds1 data set and its variants.
Name Attributes Rows Sparsity Num Nonzero Num Pos Rows

ds1 6,348 26,733 0.02199 3,732,607 804
ds1.100pca 100 26,733 1.00000 2,673,300 804
ds1.10.pca 10 26,733 1.00000 267,330 804

6.2.2 Experiments

We perform our experiments on a data set similar to the publicly available Open Com-
pound Database and associated biological test data, as provided by the National Cancer
Institute (Database [2000]). To make it consistent with Komarek [2004], we call the data
setds1, it contains 26,733 records and 6,348 attributes, and is sparse. It has 804 posi-
tive output values (“active” class). For comparison, we generate two variations of ds1.
We perform PCA, keeping only 100 and 10 of these dimensions. In particular, the value
100 was chosen to correspond roughly to the inflection point of the eigenspectrum, as per
common practice, and captured97% of the variance in this case. We call the two variation
ds1.100pcaandds1.10pcarespectively. The dimensions and sparsity of the data sets are
shown in Table (6.2).

All experiments were performed using 10-fold cross-validation, in which the data is per-
formed on one of them while training is performed on the other 9 put together. The pre-
dictive performance of the experiments is measured using the Area Under Curve (AUC)
metric, which is described below.

Before we describeAUC scores, we must first describe Receiver Operating Characteristic
(ROC) curves (Duda and Hart [1973]). To construct anROC curve, the data set rows are
sorted according to the probability a row is in the positive class under the learned logistic
model. Starting at the graph origin, we examine the most probable row. If that row is
positive, we move up. If it is negative, we move right. In either case we move one unit.
This is repeated for the remaining rows, in decreasing order of probability. Every point
(x, y) on anROC curve represents the learners “favorite”x + y rows from the data set.
Out of these favorite rows,x are actually positive, andy are negative.

Fig. (6.9) shows an exampleROC curve. Six predictions are made, taking values between
0.89 down to 0.17, and are listed in the first column of the table in the lower-left of the
graph. The actual outcomes are listed in the second column. The row with highest predic-
tion, 0.89, belongs to the positive class. Therefore we move up from the origin, as written

97

 0

 1

 2

 3

 4

 0 1 2

Score Class Move
0.89 pos up
0.72 pos up
0.61 neg right
0.47 pos up
0.31 neg right
0.17 pos up

perfect auc = 1
actual auc = 5 / 8

perfect
actual

Figure 6.9: Example ROC curve.

in the third column and shown by the dotted line in the graph moving from (0,0) to (1,0).
The second favorite row was positive, and the dotted line moves up again to (2,0). The
third row, however, was negative and the dotted line moves to the right one unit to (2,1).
This continues until all six predictions have been examined.

Suppose a data set hadP positive rows andR−P negative rows. A perfect learner on this
data set would have anROC curve starting at the origin, moving straight up to(0, P), and
then straight right to end at(R−P, P). The solid line in Fig. (6.9) illustrates the path of a
perfect learner in our example with six predictions. Random guessing would produce, on
average, anROC curve which started at the origin and moved directly to the termination
point (R− P, P). Note that allROC curves will start at the origin and end at(R− P, P)
becauseR steps up or right must be taken, one for each row.

As a summary of anROC curve, we measure the area under the curve relative to area un-
der a perfect learners curve. The result is denotedAUC. A perfect learner has anAUC of
1.0, while random guessing produces anAUC of 0.5. In the example shown in Fig. (6.9),
the dotted line representing the real learner encloses an area of 5. The solid line for the
perfect learner has an area of 8. Therefore theAUC for the real learner in our example is
5/8.

98

Table 6.3: Classifier performance for each data set.
ds1 ds1.100pca ds1.10pca

Classifier Time AUC Time AUC Time AUC
KNN K=1 424 0.790±0.029 74 0.785±0.024 9 0.753±0.028
KNN K=9 782 0.909±0.016 166 0.894±0.016 14 0.859±0.019
KNN K=129 2381 0.938±0.010 819 0.938±0.010 89 0.909±0.013
LR-CGEPS 86 0.949±0.009 44 0.918±0.011 8 0.846±0.013
LR-CGDEVEPS 59 0.948±0.009 35 0.913±0.011 9 0.842±0.015
CG-MLE 151 0.946±0.008 364 0.916±0.012 48 0.844±0.014
SVM LINEAR 188 0.918±0.012 130 0.874±0.012 68 0.582±0.048
SVM RBF 1850 0.924±0.012 1036 0.897±0.010 490 0.856±0.017
BC 4 0.884±0.011 8 0.890±0.012 2 0.863±0.015

Whereas metrics such as precision and recall measure true positives and negatives, the
AUC measures the ability of the classifier to correctly rank test points. This is very im-
portant for data mining. We often want to discover the most interesting galaxies, or the
most promising drugs, or the products most likely to fail. When presenting results be-
tween several classification algorithms, we will compute confidence intervals onAUC
scores. For this we compute oneAUC score for each fold of our 10-fold cross-validation,
and report the mean and a 95% confidence interval using a T distribution.

We reuse the result from Paul Komarek’s thesis (Komarek [2004]), where he compared
four different algorithms:k-NN, logistic regressions, SVM and naive Bayes classifier.
For k-NN, because of the high-dimensionality issue, and the obvious unbalanced classes,
he used KNS2, and there are three different settings for the number of nearest-neighbors:
k=1, k=9 and k=129. We also showed some brief observations of theROC curves for these
experiments. We have organized these curves by data set. Fig. (6.10), (6.11) and (6.12)
correspond to ds1, ds1.100pca and ds1.10pca respectively. Each figure has two graphs.
The graph to the left has a linear “False positives” axis, while the graph to the right has
a logarithmic “False positives” axis. Each plot is built from as many data points as there
are rows in the corresponding data set. For technical reasons these points are interpolated
with cubic splines, and the splines are re-sampled where the bullets appear in the plots.
One should not associate the bullets with the individual steps of theROC curve.

The most interesting part of these figures is the left corner of the logarithmic plot. It is here
that we see how accurate the classifiers are for the first few predictions. In the ds1 graphs,

99

we see LR and SVM close together for their top five predictions, but SVM appears to have
an edge over LR for initial accuracy. In the long run, we know that LR outperforms SVM
as indicated by theAUC scores, and careful observation of the graphs confirms this. The
ds1.100pca and ds1.10pca linearROC curves showk-NN outperforming the other algo-
rithms, though the initial segment does not show any clear leaders. The most important
conclusion from theROC curves is that the classifier with the best initial ranking perfor-
mance might not be the most consistent classifier. In terms of running time,k-NN is not
the fastest algorithm, however, its running time is acceptable comparing with other meth-
ods, except for the ds1 data set with k=129. Due to its simplicity and good performance
for some cases, it can be used as a building block of a more sophisticated classifier, where
a prediction is made based on the vote of a number of different classifiers.

Figure 6.10: ROC curves for ds1.

Figure 6.11: ROC curve for ds1.100pca.

100

Figure 6.12: ROC curve for ds1.10pca.

More detailed discussion about Drug Screening and experiments can be found in (Gray
et al. [2004]) and (Komarek [2004]).

101

6.3 Image Retrieval

The proliferation of the web and digital photography have made large scale image col-
lections containing billions of images a reality. Image collections on this scale make
performing even the most common and simple computer vision, image processing, and
machine learning tasks non-trivial. An example is thek-NN search, which not only serves
as a fundamental subproblem in many more sophisticated algorithms, but also has direct
applications, such as image retrieval and image clustering. In this paper, we address the
k-NN problem as the first step towards scalable image processing. We describe a parallel
version of the spill-tree algorithm and discuss how it can be used to find near duplicates
among over a billion images.

Very large scale image collections are difficult to organize and navigate. One operation
which can facilitate this task is the identification of near duplicate images in the col-
lection. Near duplicate images of popular items, such as book covers, CD covers, and
movie posters, appear frequently on the web. This is because they are often scanned or
photographed multiple times with varying resolutions and color balances. To tackle this
problem at the scale of the whole web, one needs efficient, scalable, and parallelizable
algorithms for locating nearest neighbors in the image feature space, and clustering them
together.

We have showed that spill-tree is able to locate approximate nearest neighbors in high-
dimensional spaces with high accuracy and speed. However the algorithms for this data
structure are designed for a single machine. The current work attempts to extend the spill-
tree algorithm by making the tree building parallel, ande performing efficientk-NN search
in such trees. To evaluate this work in a practical setting, we generated feature vectors
for over a billion4 images, built an efficient search tree for these feature vectors, and per-
formed clustering based on these results.

All algorithms, including our new algorithms, we discussed so far are serial algorithms,
running in a single machine and requiring random access to the entire set of objects to be
placed in the tree. This work focuses on two extensions to the spill-tree work: making the
tree building algorithms work in parallel to handle large data sets which cannot fit into a
single computer’s memory, and doing a large number of queries efficiently in parallel.

4Throughout this paper we follow the convention that a billion =109.

102

6.3.1 Image Features

Before building a search tree of images, we need to define how the images will be rep-
resented as feature vectors. We first normalize the image by scaling the maximum value
of each color channel to cover the full range of intensities, and then scale the image to a
fixed size of64 × 64 pixels. From here, one obvious representation might be the image
pixels themselves, however this would likely be quite sensitive to noise and other small im-
age variations. Instead we used an adaptation of the technique presented by (Jacobs et al.
[1995]), in which the image is converted to a Haar wavelet domain, the wavelet coefficients
are quantized to±1, and all but the largest60 magnitude coefficients are simply set to0.
The feature vector as described is quite large,64 × 64 × 3, so random projection is used
to reduce the dimensionality of the feature vector to100 dimensions (Kleinberg [1997]).
The average of each color channel and the aspect ratiow/(w + h) are appended to this
feature vector for a total of 104 dimensions. The parallel spill-tree algorithm described
later is designed to handle generic feature vectors, and is not restricted to this particular
representation.

6.3.2 Parallel Computing Framework

All of the parallel algorithms described will be expressed in terms of the MapReduce oper-
ations (Dean and Ghemawat [2004]), which provide a convenient framework hiding many
of the details necessary to coordinate processing on a large number of machines. An op-
eration in the MapReduce framework takes as input a collection of items in the form of
key-value pairs, and produces a collection of output in the same format. It has three basic
phases, which are described in Fig. (6.13).

In essence, an operation in the MapReduce framework is completely described by themap
operation, theshuffle operation, and thereduce operation. The algorithms below will be
described in terms of these operations, however this should not be taken as the only way
to implement these algorithms.

6.3.3 Building Hybrid Spill-tree in Parallel

The main challenge in scaling up the hybrid spill-tree generation algorithm is that it re-
quires all the objects’ feature vectors to be in memory, and random access to this data.
When the number of objects becomes large enough, it is no longer possible to store ev-
erything in memory. For our domain, with 104 floating point numbers to represent each
object, or around 416 bytes, this means we could typically fit two million points comfort-
ably on a machine with 1GB of memory. In a collection of over a billion images, there are

103

Map in which a user-definedMap Operationis performed on each input key-value pair,
optionally one or more key-value pairs can be generated. This phase works in par-
allel, with the input pairs being arbitrarily distributed across machines.

Shuffle in which each key-value pair generated by the Map phase is distributed to a col-
lection of machines, based on a user-definedShuffle Operationof their keys. In
addition, within each machine the key-value pairs are grouped by their keys.

Reduce in which a user-definedReduce Operationis applied to the collection of all
key-value pairs having the same key, optionally producing one or more output
key-value pairs.

Figure 6.13: The three phases which make up an operation in the MapReduce framework.
All steps run in parallel on many machines.

nearly a thousand times as many as can fit on one machine.

The first question then is how to partition the data. One suggestion might be to randomly
partition the data, building a separate hybrid spill-tree for each partition. However, at
query time, this would require each query be run through all the trees. While this could be
done in parallel, the overall query throughput would be limited.

Another alternative would be to make a more intelligent partition of the data. We propose
to do this through the use of metric trees structure. We first create a random sample of the
data small enough to fit on a single machine, say1/M of the data, and build a metric-tree
for this data. Each of the leaf nodes in thistop treethen defines a partition, for which a
hybrid spill-tree can be built on a separate machine. The overall tree consisting of the top
tree along with all theleaf subtreescan be viewed conceptually as a single hybrid spill-
tree, spanning a large number of machines. Here, we use random sampling to generate
a top tree just for simplicity. A more sophisticated method can be applied to get better
sampled data.

At first glance it might appear that the top tree should also be a spill-tree, because one of
their benefits is removing the need to backtrack during search (which would mean having
to search multiple leaf subtrees). However, a negative aspect of spill-trees is that objects
appear in multiple leaf subtrees. In practice however we found this lead to an unacceptable
increase in the total storage required by the system. The resolution was to force the top

104

tree to be a metric-tree, and to make modifications to the search procedure which will be
described in the next subsection. Here, we used an even simlified version of metric-tree.
We eliminate the procedure for looking for centroid of each node and generating the balls.
To estimate the minimum possible distance from a queryq to a node, we use the distance
from q to the partition plane plusτ/2. This simplified version reduces the time for build-
ing metric-trees and provides even better speed fork-NN search in many high-dimensional
data case. Another advantage of this approach is that it can be easily extended to other dis-
tance metric besides L2 distance.

The metric trees building procedure needs a stopping condition for its leaves. Typically
the condition is an upper bound on the leaf size. In order for each partition to fit on a
machine, we set the upper boundU such that the expected number of objectsU ·M which
will fall into a single leaf subtree can fit on a single machine. We typically setU ·M a
factor of two or more smaller than the actual limit, to allow for variability in the actual
number of objects going into each leaf. In addition we set a lower bound on the number
of nodes. The lower boundL is set empirically to prevent individual partitions from being
too small, typically we use a value of five.

The algorithm as described so far is implemented in a sequence of three MapReduce op-
erations and one sequential operation in Fig. (6.14).

6.3.4 Efficient Queries of Parallel Hybrid Spill-tree

After the trees have been built, they can be queried. As mentioned earlier, the top tree to-
gether with the leaf subtrees can be viewed as one large hybrid spill-tree. The normal way
to query such a tree allows for backtracking through non-overlapping nodes, such as those
which appear in the top tree. However such an approach would be expensive to implement
since the entire tree is not stored on a single machine. Instead, we speculatively send each
query object to multiple leaf subtrees when the query appears to be too close to the bound-
ary. This is effectively a run-time version of the overlap buffer which was previously only
applied at tree building time. The benefit of this is that fewer machines are required to hold
the leaf subtrees (because there is no duplication of objects across the subtrees), but with
the expense that each query may be sent to several leaf trees during search. In practice we
can adjust the overlap buffer size to control the amount of computation done at query time.

For clustering, we actually need thek-NN lists for every object, so we organize the search
as a batch process, which takes as input a list of queries (which will be every image), and
produces theirk-NN lists. The process is described in Fig. (6.15), using two MapReduce

105

Sample Data Input is all the objects, output is a sampled subset for building the top tree.

Map Operation For each input object, output it with probability1/M .

Shuffle Operation All objects map to a single machine.

Reduce Operation Copy all objects to the output.

Build Top Tree On a single machine, build the top tree using the standard metric tree
building algorithm as described in chapter 2, with the additional restriction on the
upper boundU and lower boundL on the number of objects in each leaf node.

Partition Data and Create Leaf Subtrees Input is all the objects, output is the set of leaf
subtrees

Map Operation For each object, find which leaf subtree number it falls into, and
output this number as the key along with the object.

Shuffle Operation Each distinct key is mapped to a different machine, to collect
the data for each leaf subtree.

Reduce Operation For all the objects in the leaf subtree, use the serial hybrid spill-
tree algorithm to create the leaf subtrees.

Figure 6.14: The parallel steps to build a distributed hybrid spill-tree.

106

Find Neighbors in Each Leaf Subtree Input is the set of query objects, output is thek-
NN lists for each query object for each subtree the query was routed to.

Map Operation For each input query, compute which leaf subtree numbers it falls
into. At each node, the query may be sent down both sides of the tree if it falls
within the overlap buffer width of the decision plane. Generate one key-value
pair for each leaf subtree that should be searched.

Shuffle Operation Each distinct key is mapped to a different machine, to search
the leaf subtrees in parallel.

Reduce Operation The standard hybrid spill-tree search procedure is used for each
object that is routed to each leaf subtree, and thek-NN lists for each query
object are generated.

Combinek-NN Lists Input is thek-NN lists for each object in each leaf subtree, output
is a singlek-NN list for each query object.

Map Operation Copy each query,k-NN list pair to the output.

Shuffle Operation The queries (image numbers) are partitioned randomly by their
numerical value.

Reduce Operation The k-NN lists for each query are merged together, keeping
only thek objects closest to the query.

Figure 6.15: Batchk-NN search in two MapReduce operations.

operations.

The overall parallel hybrid spill-tree is a batch system. We send the queries in batch, all
queries go check the top tree first and be sent to corresponding subtrees, then all subtrees
process their own queries simultaneously and generate thek-NN lists.

6.3.5 Experiments

Below we describe the experiments used to evaluate hybrid spill-trees by using them to
assist with clustering a large collection of images. We begin with a description of the
image sets, then outline the clustering procedure, and finally describe the results.

107

Data Sets

There were two main data sets used for these experiments, one in which the clusters were
hand labeled for setting various algorithm parameters, and the second larger set which is
our target for clustering.

The labeled set was generated by performing text-based image search queries on several
large search engines and collecting the first60 results for each query. The queries were
chosen to provide a large number of near duplicate images. Queries for movie posters,
CDs, and popular novels worked well for this. The duplicate sets within the results of
each query were manually labeled. In addition, 1000 images were chosen at random to
represent non-duplicate images. The full collection consisted of 3385 images, in which
each pair of images is labeled as either a duplicate or non-duplicate.

The second much larger set of images consisted of nearly 1.5 billion images from the web
(hereafter the 1.5B image set). This was our target for clustering. We have no way of
knowing in advance how many of these images are duplicates of one another.

Clustering Procedure

Although most of the work described so far was on efficiently finding thek nearest neigh-
bors of points, either for single points or in a batch mode. In order to adapt this for
clustering, we compute thek-NN for all images in the set, applying a threshold to drop
images which are considered too far apart. This can be done as a MapReduce operation as
shown in Fig. (6.16).

The result of this algorithm is a set of prototype clusters, which further need to be com-
bined. Once singleton images are dropped in the 1.5B image set, we are left with fewer
than 200 million images, which is a small enough set to run the final union-find algorithm
on a single machine.

Clustering Results

To evaluate the image features, we first performed clustering on the smaller labeled data
set. For each pair of images, we compute the distance between their feature vectors (since
this is a small enough data set this is practical). As the distance threshold is varied, we
compute clusters by joining all pairs of images which are within the distance threshold
of one another. Each image pair within these clusters is then checked against the manual
labeling. The results are shown in Fig. (6.17). This figure plots the error rate on duplicate

108

Map Operation Input is thek-NN list for each image, along with the distances to each
of those other images. We first apply a threshold to the distances, shortening the
neighbor list. The list is then treated as a prototype cluster, and reordered so that the
lowest image number is first. The generated output consists of this lowest number as
the key, and value is the full set. Any images with no neighbors within the distance
threshold are dropped.

Shuffle Operation The keys (image numbers) are partitioned randomly by their numeri-
cal value.

Reduce Operation Within a single set of results, the standard union-find algorithm (Cor-
men et al. [2001]) is used to combine the prototype clusters.

Figure 6.16: Algorithm for initial clustering of data.

image pairs vs. the error rate on non-duplicate image pairs. As can be seen, a distance
threshold of 0.45 is a good compromise at reducing the number of false matches, while
detecting as many duplicates as possible. We do admit here that 0.45 is an empirical value,
and it depends on the image representation. However, for a different task, we can do simi-
lar test on a relative small data set and estimate a different threshold. Note that using the 10
nearest neighbors produced by spill-trees and hybrid spill-trees gives equivalent accuracy,
but with 20 times less computation. The reason that manual examination of the clusters
was necessary is because there were some labeling errors in this set, and manual exami-
nation revealed which groupings were in fact errors and which were correct. The graph
also shows the result of using at most 10 nearest neighbors (instead of all within the dis-
tance threshold), and the approximate 10 nearest neighbor lists generated by the spill-tree
algorithm and hybrid spill-tree algorithms. All of these results are quite close in accuracy,
although the spill tree-based algorithms are almost 20 times faster for this smaller set. This
difference in speed will grow as the size of the set grows.

We then applied the parallel nearest neighbor finder and clustering procedure to the 1.5B
image set. The entire processing time from start to finish was less than 10 hours on the
equivalent of 2000 CPU’s. Much of that time was spent with just a few machines running,
as the sizes of the leaf subtrees was not be controlled directly (but see Section 6.3.6 for
ideas about how to improve this). Although not discussed here, the computation of the
features themselves was also done using the MapReduce framework, and took roughly the
same amount of time as the clustering (but with fewer machines). The resulting distribu-
tion of cluster sizes is shown in Fig. (6.18). Around fifty million clusters are found, con-

109

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.0002 0.0004 0.0006 0.0008 0.001

A
cc

ur
ac

y
on

 D
up

lic
at

e
Im

ag
es

Error on Nonduplicate Images

ROC vs. Distance Threshold

 distance = 0.45

All Neighbors
Naive 10-NN

Spill Tree 10-NN
Hybrid tree 10-NN

Figure 6.17: ROC curve for the small labeled test set.

taining nearly two hundred million images. The most common cluster size is two, which
is perhaps not surprising given the number of thumbnail-full-size image pairs which exist
on the web.

As there is no ground truth labeling for clusters in this larger set, it is hard to objectively
evaluate the accuracy of the clustering. For a subjective evaluation, we show some of the
actual clusters in Fig. (6.19).

As can be seen the images tend to be quite similar to one another, although in some cases
images which are quite far apart are grouped together. It is expected that by combining
these results with the results of a text query, it will be possible to get more precise clusters
when displaying results to users. Another alternative will be to apply a post-processing
step to cut clusters which are “long and thin” into smaller clusters.

6.3.6 Summary and Future Work

We have described an algorithm for the building of parallel distributed hybrid spill-trees
which can be used for efficient online or batch searches for nearest neighbors of points in
high dimensions spaces. This algorithm has enabled us to perform clustering on a set of
over a billion images with the goal of finding near duplicates. To our knowledge, this is
the largest image set that has been processed in this way.

The algorithm does not depend on the types of objects or the application; all it requires
is that the objects be described by a feature vector. Because of this, we look forward to

110

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 C

lu
st

er
s

Number of Images in Cluster

Number of Clusters vs. Number of Images in Cluster

Figure 6.18: Histogram of cluster sizes for the 1.5B image set. Note the logarithmic scale
on both axes.

seeing its application in a wide variety of domains, for instance face recognition, OCR,
searching through SIFT descriptors (Lowe [2004]), and machine learning and classifica-
tion problems. All of these applications could have online versions, in which a query
object is presented and we want to find the nearest neighbor, or in an offline or batch set-
ting in which we want to find the nearest neighbors of every point in our collection.

There are several directions for future work. One of the simplest is remove the arbitrary 10-
nearest neighbor restriction, and attempt to find all neighbors within the distance threshold
to create the clusters.

One of the main bottlenecks in the algorithm is caused by the fact that the number of im-
ages in each leaf subtree is not controlled precisely. Currently we approximately control
this by setting lower boundL and upper boundU on the number of nodes in each leaf
when building the top tree. However since the top tree is built with a small sample of the
data, this approximation will have errors. An alternative procedure would be to build the
top tree with a stopping condition of a single object per leaf node. After doing this, all
objects can be run through the tree, and counts can be recorded for how many times an
object reaches each leaf node. With this information, we can prune back the top tree until
the nodes are within a desired size range, more precisely controlling the subproblem.

Since many machines are required to hold the entire search tree for efficient querying, the
query system could be arranged as a “nearest neighbor service”, which accepts a query
and returns the closest neighbors. One machine would contain the top tree, and direct the
query to one or more leaf machines. The top tree may be located on a different machine

111

a: 2 images

b: 59 images

c: 860 images

d: 79 images

e: 77009 images

f: 144 images

g: 1115 images

Figure 6.19: Selection of clusters found by the algorithm. Note the many different sizes
of the object in B, and the different words on the same pattern in F and G.

112

from the client (as is typical of services), or may be located on the same machine (or even
in the same process). One application of such a service might be an image retrieval appli-
cation.

Finally, a basic step of our clustering method was to solve the all-nearest-neighbor prob-
lem by performing a large batch of individual nearest neighbor searches. Work on dual
trees (Gray and Moore [2001]) provides an alternative to such a batch approach, which
may be applicable to our parallel hybrid spill-trees.

113

114

Bibliography

K. Aas and L. Eikvil. Text categorisation: A survey, 1999. URLciteseer.ist.psu.
edu/aas99text.html . 1.2

J. Adcock, A. Girgensohn, M. Cooper, T. Liu, L. Wilcox, and E. Rieffel. Fxpal experiments
for trecvid 2004. InProceedings of the TREC Video Retrieval Evaluation (TRECVID).
NIST, 2004. 3

D. W. Aha, S. L. Salzberg, and Ling. Learning to catch: Applying nearest neigh-
bor algorithms to dynamic control tasks. InProceedings of the 11th International
Conference on Machine Learning, pages 12–18. Morgan Kaufmann, 1994. URL
citeseer.ist.psu.edu/article/aha94learning.html . 1.2

S. Arya and H. A. Fu. Expected-case complexity of approximate nearest neighbor search-
ing. In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algo-
rithms, pages 379–388, 2003. 1.4

S. Arya, T. Malamatos, and D. M. Mount. Space-efficient approximate voronoi diagrams,
2002. URLciteseer.ist.psu.edu/624368.html . 1.4, 5.6

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal al-
gorithm for approximate nearest neighbor searching fixed dimensions.Journal of the
ACM, 45(6):891–923, 1998. URLciteseer.ist.psu.edu/arya94optimal.
html . 1.4, 3.4, 5.6

A. Bergo. Text categorization and prototypes, 2001. URLciteseer.ifi.unizh.
ch/bergo01text.html . 1.2

J. Bescos, G. Cisneros, J. M. Martinez, J. Menendez, and J. Cabrera. A unified model
for techniques on video-shot transition detection.IEEE Trans. on Multimedia, 7(2):
293–307, 2005. 6.1.4

115

citeseer.ist.psu.edu/aas99text.html
citeseer.ist.psu.edu/aas99text.html
citeseer.ist.psu.edu/article/aha94learning.html
citeseer.ist.psu.edu/624368.html
citeseer.ist.psu.edu/arya94optimal.html
citeseer.ist.psu.edu/arya94optimal.html
citeseer.ifi.unizh.ch/bergo01text.html
citeseer.ifi.unizh.ch/bergo01text.html

J. A. Blackard. Forest covertype database. URLhttp://kdd.ics.uci.edu/
databases/covertype/covertype.data.html . 3

J. S. Boreczky and L. A. Rowe. Comparison of video shot boundary detection techniques.
In Storage and Retrieval for Image and Video Databases (SPIE), pages 170–179, 1996.
URL citeseer.ist.psu.edu/boreczky96comparison.html . 6.1.4

J. S. Boreczky and L. D. Wilcox. A hidden markov model frame work for video segmen-
tation using audio and image features. InProceedings of ICASSP’98, pages 3741–3744,
1998. 6.1

J. Buhler. Efficient large-scale sequence comparison by locality-sensitive hashing.
BIOINF: Bioinformatics, 17:419–428, 2001. URLciteseer.ist.psu.edu/
buhler01efficient.html . 1.4

C. Cardie and N. Howe. Improving minority class prediction using case-specific fea-
ture weights. InProceedings of the 14th International Conference on Machine Learn-
ing, pages 57–65, 1997. URLciteseer.nj.nec.com/cardie97improving.
html . 3.1

C. L. Chang. Finding prototypes for nearest neighbor classifiers.IEEE Trans. Computers,
C-23(11):1179–1184, November 1974. 1.3

S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for histogram construc-
tion: how much is enough? InProceedings of ACM SIGMOD, pages 436–447, 1998.
URL citeseer.ist.psu.edu/chaudhuri98random.html . 1.4

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity
search in metric spaces. InProceedings of the 23rd VLDB International Conference,
1997. 1.3, 1.5, 2.1

K. L. Clarkson.Nearest-Neighbor Methods for Learning and Vision: Theory and Practice.
To appear. URLhttp://cm.bell-labes.com/cm/cs/who/clarkson/nn_
survey/b.pdf. 1.3, 5.5

R. Cole and M. Fanty. Isolet spoken letter recognition database. URLftp://ftp.
ics.uci.edu/pub/machine-learning-databases/isolet/ . 2

M. Cooper and J. Foote. Scene boundary detection via video self-similarity analysis. In
IEEE Intl. Conf. on Image Processing (3), pages 378–381, 2001. 6.1.1

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. stein. The MIT Press, 2001. 6.3.5

116

http://kdd.ics.uci.edu/databases/covertype/covertype.data.html
http://kdd.ics.uci.edu/databases/covertype/covertype.data.html
citeseer.ist.psu.edu/boreczky96comparison.html
citeseer.ist.psu.edu/buhler01efficient.html
citeseer.ist.psu.edu/buhler01efficient.html
citeseer.nj.nec.com/cardie97improving.html
citeseer.nj.nec.com/cardie97improving.html
citeseer.ist.psu.edu/chaudhuri98random.html
http://cm.bell-labes.com/cm/cs/who/clarkson/nn_survey/b.pdf.
http://cm.bell-labes.com/cm/cs/who/clarkson/nn_survey/b.pdf.
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/isolet/
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/isolet/

S. Cost and S. Salzberg. A Weighted Nearest Neighbour Algorithm for Learning with
Symbolic Features.Machine Learning, 10:57–67, 1993a. 1.2

S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with symbolic
features. Machine Learning, 10:57–78, 1993b. URLciteseer.ist.psu.edu/
cost93weighted.html . 1.2

T. M. Cover and P. E. Hart. Nearest neighbor pattern classification.IEEE Trans. Informa-
tion Theory, IT-13(1):21–27, 1967. 1.2, 4.1.4, 1, 4.1.4

S. Dasgupta and A. Gupta. An elementary proof of the johnson-lindenstrauss lemma.
Technical Report ICSI Technical Report TR-99-006, MIT, 1999. 5.3.3, 5.3.3

NCI Open Compound Database. National cancer institute open compound database, 2000.
URL http://cactus.nci.nih.gov/ncidb2. 6.2.2

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In
Symposium on Operating System Design and Implementation, 2004. 6.3.2

S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman.
Indexing by latent semantic analysis.Journal of the American Society of Information
Science, 41(6):391–407, 1990. 1.2

K. Deng and A. W. Moore. Multiresolution Instance-based Learning. InProceedings
of the 12th International Joint Conference on Artificial Intelligence, pages 1233–1239,
1995. 1.3

L. Devroye and T. J. Wagner.Nearest neighbor methods in discrimination, volume 2. P.R.
Krishnaiah and L. N. Kanal, eds., North-Holland, 1982. 1.2

A. Djouadi and E. Bouktache. A fast algorithm for the nearest-neighbor classifier.IEEE
Trans. Pattern Analysis and Machine Intelligence, 19(3):277–282, 1997. 1.3

N. R. Draper and H. Smith.Applied Regression Analysis, 2nd ed.John Wiley, New York,
1981. 1.2

R. O. Duda and P. E. Hart.Pattern Classification and Scene Analysis. John Wiley & Sons,
1973. 1.2, 4.1.4, 4.1.4, 6.2.2

C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and W. Equitz.
Efficient and effective querying by image content.Journal of Intelligent Information
Systems, 3(3/4):231–262, 1994. 1.2, 1.3

117

citeseer.ist.psu.edu/cost93weighted.html
citeseer.ist.psu.edu/cost93weighted.html
http://cactus.nci.nih.gov/ncidb2.

C. Faloutsos and D. W. Oard. A survey of information retrieval and filtering methods.
Technical Report CS-TR-3514, Carnegie Mellon University, 1995. 1.2

T. Fawcett and F. J. Provost. Adaptive fraud detection.Data Mining and
Knowledge Discovery, 1(3):291–316, 1997. URLciteseer.nj.nec.com/
fawcett97adaptive.html . 3.1

F. P. Fisher and E. A. Patrick. A preprocessing algorithm for nearest neighbor decision
rules.Proc. Nat’l Electronic Conf., 26:481–485, December 1970. 1.3

E. Fix and J. L. Hodges. Discriminatory analysis, Nonparametric discrimination: con-
sistency properties. Technical report, USAF School of Aviation Medicine, Randolph
Field, Texas, 1951. 1.2

E. Fix and J. L. Hodges. Discriminatory analysis: small sample performance. Technical
report, USAF School of Aviation Medicine, Randolph Field, Texas, 1952. 1.2

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video
content: the qbic system.IEEE Computer, 28:23–32, 1995. 1.2

D. Fradkin and D. Madigan. Experiments with random projections for machine learning.
In Proc. 9th ACM international conference on Knowledge discovery and data mining,
pages 517–522, 2003. 6.1.5

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches
in logarithmic expected time.ACM Transactions on Mathematical Software, 3(3):209–
226, September 1977. 1.3

A. Frome and J. Malik. Object recognition using locality sensitive hashing of shape con-
texts. 2006. 1.2

G. W. Gates. The reduced nearest neighbor rule.IEEE Trans. Information Theory, IT-18
(5):431–433, May 1972. 1.3

A. Gionis, P. Indyk, and R. Motwani. Similarity Search in High Dimensions via Hashing.
In Proceedings of the 25th VLDB Conference, 1999. 1.4, 5.1, 5.1, 5.4, 5.4

K. Grauman and T. Darrell. Contour matching and scene recognition using approximate
earth mover’s distance. 2006. 1.2

A. Gray, P. Komarek, T. Liu, and A. W. Moore. High-dimensional probabilistic classifica-
tion for drug discovery. InProceedings of the Computational Statistics, 2004. 6.2.2

118

citeseer.nj.nec.com/fawcett97adaptive.html
citeseer.nj.nec.com/fawcett97adaptive.html

A. Gray and A. W. Moore. N-Body Problems in Statistical Learning. In Todd K. Leen,
Thomas G. Dietterich, and Volker Tresp, editors,Advances in Neural Information Pro-
cessing Systems 13. MIT Press, 2001. 1.3, 6.3.6

B. Gunsel, A. M. Ferman, and A. M. Tekalp. Temporal video segmentation using unsu-
pervised clustering and semantic object tracking.Journal of Electronic Imaging, 7(3):
592–604, 1998a. URLciteseer.ist.psu.edu/gunsel98temporal.html .
6.1

B. Gunsel, M. Ferman, and A. M. Tekalp. Temporal video segmentation using unsu-
pervised clustering and semantic object tracking.Journal of Electronic Imaging, 7:
592–604, 1998b. 6.1.4

A. Guttman. R-trees: A dynamic index structure for spatial searching. InProceedings of
the Third ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. Assn
for Computing Machinery, April 1984. 1.2, 1.3

Y. Hamamoto, S. Uchimura, and S. Tomita. A bootstrap technique for nearest neighbor
classifier design.IEEE Trans. Pattern Analysis and Machine Intelligence, 19(1):73–79,
1997. 1.2

J. M. Hammersley. The distribution of distances in a hypersphere.Annals of Mathematical
Statistics, 2:447–452, 1950. 3.4

S. Han, G. Karypis, and V. Kumar. Text categorization using weight adjusted k -nearest
neighbor classification.Lecture Notes in Computer Science, 2035:53–??, 2001. URL
citeseer.ist.psu.edu/han99text.html . 1.2

A. Hanjalic. Shot boundary detection: Unraveled and resolved.IEEE Trans. on Circuits
and Systems for Video Technology, 12(2):90–105, 2002. 6.1

P. E. Hart. The condensed nearest neighbor rule.IEEE Trans. Information Theory, IT-14
(5):515–516, May 1968. 1.3

T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor classification.IEEE
Trans. Pattern Analysis and Machine Intelligence, 18(6):607–615, June 1996. 1.2

P. Indyk. High Dimensional Computational Geometry. Phd. thesis, Stanford University,
Department of Computer Science, 2000. 5.1

P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. InSTOC, pages 604–613, 1998. 1.4, 5.1, 5.1

119

citeseer.ist.psu.edu/gunsel98temporal.html
citeseer.ist.psu.edu/han99text.html

P. Indyk and N. Thaper. Fast image retrieval via embeddings. Inthe 3rd International
Workshop on Statistical and Computational Theories of Vision (SCTV 2003), 2003. 5.1

CMU informedia digital video library project. The trec-2001 video trackorganized by nist
shot boundary task, 2001. 3, 4

IOC. International olympic committee: Candidature acceptance procedure, 1999. URL
http://multimedia.olympic.org/pdf/en_report_711.pdf . 4.1.2

C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast multiresolution image querying. In
Proceedings of SIGGRAPH, pages 227–286, 1995. 6.3.1

W. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a hilbert space.Con-
temporary Mathematics, 26:189–206, 1984. 5.5

K. V. Ravi Kanth, D. Agrawal, and A. Singh. Dimensionality reduction for similarity
searching in dynamic databases. InProceedings of SIGMOD, pages 166–176, 1998.
1.4

N. Katayama and S. Satoh. The SR-tree: an index structure for high-dimensional near-
est neighbor queries. InProceedings of ACM SIGMOD, pages 369–380, 1997. URL
citeseer.ist.psu.edu/katayama97srtree.html . 2

J. Kleinberg. Two algorithms for nearest neighbor search in high dimension. InACM
Symposium on the Theory of Computing, pages 599–608, 1997. 6.3.1

V. Koivune and S. Kassam. Nearest neighbor filters for multivariate data. InIEEE Work-
shop on Nonlinear Signal and Image Processing, 1995. 1.2

P. Komarek.Logistic Regression for Data Mining and High-Dimensional Classification.
PhD. Thesis, Carnegie Mellon University, Department of Math Science, 2004. 1.2,
6.2.2, 6.2.2, 6.2.2

I. Koprinska and S. Carrato. Temporal video segmentation: a survey. InSignal Processing:
Image Communication, volume 16, pages 477–500, 2001. 6.1

W. Kraaij, A. Smeaton, P. Over, and J. Arlandis. Trecvid 2004 - an introduction. In
Proceedings of the TREC Video Retrieval Evaluation (TRECVID), Washington D.C.,
2004. NIST. 6.1, 6.1.4

E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest
neighbor in high dimensional spaces. InProceedings of the 30th Annual ACM Sympo-
sium on Theory of Computing, pages 614–623, 1998. 1.4, 5.6

120

http://multimedia.olympic.org/pdf/en_report_711.pdf
citeseer.ist.psu.edu/katayama97srtree.html

N. Kushmerick. Internet advertisements. URLftp://ftp.ics.uci.edu/pub/
machine-learning-databases/internet_ads/ . 5

E. Lee and S. Chae. Fast design of reduced-complexity nearest-neighbor classifiers using
triangular inequality. IEEE Trans. Pattern Analysis and Machine Intelligence, 20(5):
562–566, May 1998. 1.3

R. Lienhart. Reliable transition detection in videos: A survey and practitioner’s guide.
International Journal of Image and Graphics (IJIG), 1(3):469–486, 2001. 6.1

T. Liu, A. W. Moore, and A. Gray. Efficient exact k-nn and nonparametric classification
in high dimensions. InProceedings of Neural Information Processing Systems, 2003.
1.5.1, 1.5.5

T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation of practical approximate
nearest neighbor algorithms. InProceedings of Neural Information Processing Systems,
2004a. 1.5.3, 1.5.5

T. Liu, K. Yang, and A. W. Moore. The ioc algorithm: Efficient many-class non-parametric
classification for high-dimensional data. InProceedings of the conference on Knowl-
edge Discovery in Databases (KDD), 2004b. 1.5.2, 1.5.5

D. G. Lowe. Distinctive image features from scale-invariant keypoints,.International
Journal of Computer Vision, 60:91–110, 2 2004. URLhttp://cm.bell-labes.
com/cm/cs/who/clarkson/nn_survey/b.pdf. 6.3.6

S. Maneewongvatana and D. M. Mount. The analysis of a probabilistic approach to nearest
neighbor searching. InWADS, 2001. 3.4

G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate medians and other quan-
tiles in one pass and with limited memory. InProceedings of SIGMOD, pages 426–435,
1998. 1.4

Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for selectivity estima-
tion. In Proceedings of SIGMOD, pages 448–459, 1998. URLciteseer.ist.
psu.edu/matias98waveletbased.html . 1.4

M. C. Monard and G. E. A. P. A. Batista.Learning with Skewed Class Distribution. IOS
Press, 2002. URLciteseer.nj.nec.com/monard02learning.html . 3.1

A. W. Moore. The Anchors Hierarchy: Using the Triangle Inequality to Survive High-
Dimensional Data. InTwelfth Conference on Uncertainty in Artificial Intelligence.
AAAI Press, 2000. 1.3, 2.1

121

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/internet_ads/
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/internet_ads/
http://cm.bell-labes.com/cm/cs/who/clarkson/nn_survey/b.pdf.
http://cm.bell-labes.com/cm/cs/who/clarkson/nn_survey/b.pdf.
citeseer.ist.psu.edu/matias98waveletbased.html
citeseer.ist.psu.edu/matias98waveletbased.html
citeseer.nj.nec.com/monard02learning.html

R. Motwani and P. Raghavan. Cambridge University Press, 1995. 5.6.3

S. Omachi and H. Aso. A fast algorithm for a k-nn classifier based on branch and bound
method and computational quantity estimation.Systems and Computers in Japan, 31
(6):1–9, 2000. 1.5.1, 3.1

S. M. Omohundro. Efficient Algorithms with Neural Network Behaviour.Journal of
Complex Systems, 1(2):273–347, 1987. 1.3

S. M. Omohundro. Bumptrees for efficient function, constraint, and classification learning.
In Advances in Neural Information Processing Systems 3, 1991. 1.3, 1.5, 2.1

A. M. Palau and R. R. Snapp. The labeled cell classifier: A fast approximation to k nearest
neighbors. InProceedings of the 14th International Conference on Pattern Recognition,
1998. 1.3

E. P. D. Pednault, B. K. Rosen, and C. Apte. Handling imbalanced data sets in insurance
risk modeling, 2000. 3.1

D. Pelleg and A. W. Moore. Accelerating Exactk-means Algorithms with Geometric Rea-
soning. InProceedings of the Fifth International Conference on Knowledge Discovery
and Data Mining. ACM, 1999. 1.3

A. Pentland, R. Picard, and S. Sclaroff. Photobook: Content-based manipulation of image
databases, 1994. URLciteseer.ist.psu.edu/pentland95photobook.
html . 1.2, 1.3

M. J. Pickering, D. Heesch, R O’Callaghan, S Rger, and D Bull. Video retrieval using
global features in keyframes. InProc. TREC Video Track. NIST, 2002. 6.1.1

F. P. Preparata and M. Shamos.Computational Geometry. Springer-Verlag, 1985. 1.3

D. Pye, N. Hollinghurst, T. Mills, and K. Wood. Audio-visual segmentation for content-
based retrieval. InProc. Intl. Conf on Spoken Language Processing, 1998. 6.1.1

Y. Qi, A. G. Hauptmann, and T. Liu. Supervised classification for video shot segmentation.
In Proceedings of 2003 IEEE International Conference on Multimedia & Expo, 2003.
4, 6.1.1

G. L. Ritter, H. B. Woodruff, S. R. Lowry, and T. L. Isenhour. An algorithm for a selective
nearest neighbor decision rule.IEEE Trans. Information Theory, IT-21(11):665–669,
November 1975. 1.3

122

citeseer.ist.psu.edu/pentland95photobook.html
citeseer.ist.psu.edu/pentland95photobook.html

G. Salton and M. McGill.Introduction to Modern Information Retrieval.McGraw-Hill
Book Company, New York, NY, 1983. 1.2

I. K. Sethi. A fast algorithm for recognizing nearest neighbors.IEEE Trans. Systems,
Man, and Cybernetics, SMC-11(3):245–248, March 1981. 1.3

G. Shakhnarovich, P. Viola, and T. Darrell. Parameter-sensitive hashing for fast pose
estimation. 2006. 1.2

B. Y. Shih and W. I. Lee. The application of nearest neighbor algorithmon creating
an adaptive on-line learning system. URLciteseer.ist.psu.edu/507043.
html . 1.2

I. Shimshoni, B. georgescu, and P. Meer. Adaptive mean shift based clustering in high
dimensions. 2006. 1.2

M. Slaney, D. Ponceleon, and J. Kaufman. Multimedia edges: finding hierarchy in all
dimensions. InMULTIMEDIA ’01: Proceedings of the ninth ACM international con-
ference on Multimedia, pages 29–40. ACM Press, 2001. 6.1.1

D. J. Slate. Letter recognition database. URLftp://ftp.ics.uci.edu/pub/
machine-learning-databases/letter-recognition/ . 1

A. Smeaton, W. Kraaij, and P. Over. The trec 2003 video track report. InProceedings of
the TREC Video Retrieval Evaluation (TRECVID), Washington D.C., 2003. NIST. 6.1,
6.1.4

A. F. Smeaton and P. Over. The trec-2002 video track report. InTREC. NIST, 2002. 6.1,
6.1.4

A.W.M. Smeulders and R. Jain(eds). Image databases and multi-media search. InProc.
1st Workshop on Image Databases and Multi-Media Search, 1996. 1.2

S. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. Chan. Credit card fraud detection us-
ing meta-learning: Issues and initial results, 1997. URLciteseer.nj.nec.com/
stolfo97credit.html . 3.1

J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees.Infor-
mation Processing Letters, 40:175–179, 1991. 1.3, 1.5, 2.1, 3

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995. 6.2.1

123

citeseer.ist.psu.edu/507043.html
citeseer.ist.psu.edu/507043.html
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/letter-recognition/
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/letter-recognition/
citeseer.nj.nec.com/stolfo97credit.html
citeseer.nj.nec.com/stolfo97credit.html

N. Vasconcelos. Feature selection by maximum marginal diversity: optimality and impli-
cations for visual recognition. InCVPR (1), pages 762–772, 2003. 6.1.3, 6.1.5

N. Vasconcelos and M. Vasconcelos. Scalable discriminant feature selection for image
retrieval and recognition. InProc. IEEE Conf. on CVPR (2), pages 770–775, 2004.
6.1.3, 6.1.3, 6.1.3, 1

L. A. Wasserman.All of Statistics: A Concise Course in Statistical Inference. Springer,
2004. 1.1, 1.1

A. Witkin. Scale-space filtering: A new approach to multi-scale description. InProc.
IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, pages 39A.1.1–39A.1.4,
March 1981. 6.1.1

K. Woods, K. Bowyer, and W. P. Kegelmeyer Jr. Combination of multiple classifiers using
local accuracy estimates.IEEE Trans. Pattern Analysis and Machine Intelligence, 19
(4):405–410, 1997. 1.2

C-H Y, S. R, P. Tamayo, S. Mukherjee, R. M. Rifkin, M. Angelo, M. Reich, E. Lander,
J. Mesirov, and T. Golub. InBioinformatics, 2001. 1.2

Y. Yang. An evaluation of statistical approaches to text categorization.Journal of Infor-
mation Retrieval, 1:67–88, 1999. 1.2

Z. Yao and W. L. Ruzzo. A regression-based k nearest neighbor algorithm for gene func-
tion prediction from heterogeneous data. InBMC Bioinofrmatics, 2006. 1.2

B. Zhang and S. Srihari. Fast k-nearest neighbor classification using cluster-based trees.
IEEE Trans. Pattern Analysis and Machine Intelligence, 26(4):525–528, April 2004.
1.3

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering Method
for Very Large Databases. InProc. 5th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, 1996. 1.3

124

	1 Introduction
	1.1 Nonparametric Methods
	1.2 Nearest-neighbor Problem
	1.3 Speeding up Nearest-neighbor
	1.4 Approximate Nearest-neighbor Searching
	1.5 A Brief Summary of Results
	1.5.1 KNS2 and KNS3
	1.5.2 IOC
	1.5.3 Spill-tree
	1.5.4 Applications
	1.5.5 Summary

	2 Metric-trees
	2.1 Properties
	2.2 Partitioning
	2.3 Searching

	3 Fast K-Nearest-Neighbor Classification
	3.1 KNS2
	3.2 KNS3
	3.3 Experimental Results
	3.3.1 Synthetic Data Sets
	3.3.2 Real-world Data Sets
	3.3.3 Methodology and Results

	3.4 Comments and Related Work

	4 IOC
	4.1 The IOC Algorithm
	4.1.1 Previous Solutions and Problems
	4.1.2 IOC: High-level Descriptions
	4.1.3 The Actual Algorithm
	4.1.4 Theoretical Analysis

	4.2 Making IOC Robust
	4.2.1 The Simple IOC is Sensitive to Noise
	4.2.2 Pre-pruning: Filtering the Noise

	4.3 Experimental Results
	4.3.1 Artificial Data Sets
	4.3.2 Real-world Data with RIOC

	5 Fast (1+)-NN algorithm
	5.1 LSH
	5.2 Spill-tree
	5.3 Spill-tree-based k-NN Search
	5.3.1 Defeatist Search
	5.3.2 Hybrid Spill-Tree Search
	5.3.3 Further Efficiency Improvement Using Random Projection

	5.4 Experimental Results
	5.5 Parameter Estimations
	5.6 Theoretical Analysis
	5.6.1 Backgrounds, Definitions, and Notations
	5.6.2 A Simple Probabilistic Problem
	5.6.3 The Proof

	6 Applications
	6.1 Video Segmentation
	6.1.1 Feature Extraction
	6.1.2 KNS2 Based Fast k-NN Classification
	6.1.3 Information-theoretic Feature Selection
	6.1.4 Experimental Results
	6.1.5 Feature Selection Experiments

	6.2 Classification for Drug Screening
	6.2.1 Problem description
	6.2.2 Experiments

	6.3 Image Retrieval
	6.3.1 Image Features
	6.3.2 Parallel Computing Framework
	6.3.3 Building Hybrid Spill-tree in Parallel
	6.3.4 Efficient Queries of Parallel Hybrid Spill-tree
	6.3.5 Experiments
	6.3.6 Summary and Future Work

	Bibliography

