
On Consistency of Encrypted Files

Alina Oprea∗ Michael K. Reiter†

March 2005
CMU-CS-06-113

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA; alina@cs.cmu.edu
†Electrical and Computer Engineering Department and Computer Science Department, Carnegie
Mellon University, Pittsburgh, PA, USA; reiter@cmu.edu

Keywords: cryptographic file systems, shared objects, consistency models, linearizability, fork
consistency.

Abstract

In this paper we address the problem of consistency for cryptographic file systems. A crypto-
graphic file system protects the users’ data from the file server, which is possibly untrusted and
might exhibit Byzantine behavior, by encrypting the data before sending it to the server. The
consistency of the encrypted file objects that implement a cryptographic file system relies on the
consistency of the two components used to implement them: the file storage protocol and the key
distribution protocol.
We first formally define consistency for encrypted file objects in a generic way: for any consistency
conditions for the key and file objects belonging to one of the two classes of consistency condi-
tions considered, we define a corresponding consistency condition for encrypted file objects. We
then provide, in our main result, necessary and sufficient conditions for the consistency of the key
distribution and file storage protocols under which the encrypted storage is consistent. Lastly, we
give an example implementation of a consistent encrypted file object, utilizing a fork consistent file
access protocol and a sequentially consistent key distribution protocol. The proof of consistency
of the implementation builds from our main theorem.

1 Introduction
Consistency for a file system that supports data sharing specifies the semantics of multiple users
accessing files simultaneously. Intuitively, the ideal model of consistency would respect the real-
time ordering of file operations, i.e., a read would return the last written version of that file. This
intuition is captured in the model of consistency known as linearizability [17], though in practice,
such ideal consistency models can have high performance penalties. It is well known that there is a
tradeoff between performance and consistency. As such, numerous consistency conditions weaker
than linearizability, and that can be implemented more efficiently in various contexts, have been
explored. Sequential consistency [20], causal consistency [3], PRAM consistency [23] and more
recently, fork consistency [25], are several examples.

In this paper we address the problem of consistency for encrypted file objects used to implement
a cryptographic file system. A cryptographic file system protects the users’ data from the file
server, which is possibly untrusted and might exhibit Byzantine behavior, by encrypting the data
before sending it to the server. When a file can be shared, the decryption key must be made
available to authorized readers, and similarly authorized writers of the file must be able to retrieve
the encryption key or else create one of their own. In this sense, a key is an object that, like a file,
is read and/or written in the course of implementing the abstraction of an encrypted file.

Thus, an encrypted file object is implemented through two main components: the key object that
stores the encryption key, and the file object that stores (encrypted) file contents. We emphasize that
the key and file objects may be implemented via completely different protocols and infrastructures.
Our concern is the impact of the consistency of each on the encrypted file object that they are used
to implement. The consistency of the file object is obviously essential to the consistency of the
encrypted data retrieved. At the same time, the encryption key is used to protect the confidentiality
of the data and to control access to the file. So, if consistency of the key object is violated, this
could interfere with authorized users decrypting the data retrieved from the file object, or it might
result in a stale key being used indefinitely, enabling revoked users to continue accessing the data.
We thus argue that the consistency of both the key and file objects affects the consistency of the
encrypted file object. Knowing the consistency of a key distribution and a file access protocol, our
goal is to find necessary and sufficient conditions that ensure the consistency of the encrypted file
that the key object and the file object are utilized to implement.

The problem that we consider is related to the locality problem. A consistency condition is
local if a history of operations on multiple objects satisfies the consistency condition if the restric-
tion of the history to each object does so. However, locality is a very restrictive condition and,
to our knowledge, only very powerful consistency conditions, such as linearizability, satisfy it. In
contrast, the combined history of key and file operations can satisfy weaker conditions and still
yield a consistent encrypted file. We give a generic definition of consistency (C1, C2)

enc for an en-
crypted file object, starting from any consistency conditions C1 and C2 for the key and file objects
that belong to one of the two classes of generic conditions we define. Intuitively, our consistency
definition requires that there is an arrangement of key and file operations such that the most recent
key write operation before each file operation seen by each client is the write of the key value used
to encrypt the file contents. In addition, the arrangement of key and file operations should respect
the desired consistency for the key and file operations.

1

Rather than investigate consistency for a single implementation of an encrypted file, we con-
sider a collection of implementations that are all key-monotonic. Intuitively, if a client uses a key
version to perform an operation on a file, then in a key-monotonic history all the future operations
on the file object will use this or a later version of the key. We formally define this property that
depends on the consistency of the key and file objects. We prove in our main result (Theorem 2)
that ensuring that an implementation is key-monotonic is a necessary and sufficient condition for
obtaining consistency for the encrypted file object, given several restrictions on the consistency
of the key and file objects. Our main result provides a framework to analyze the consistency of
a given implementation of an encrypted file object: if the key object and file object satisfy con-
sistency conditions C1 and C2, respectively, and the given implementation is key-monotonic with
respect to C1 and C2, then the encrypted file object is (C1, C2)

enc-consistent. We give an example
implementation that uses a sequentially consistent key distribution protocol and a fork consistent
file access protocol [25], and prove its consistency using our framework.

In this context, we summarize our contributions as follows:

• We define two generic classes of consistency conditions. The class of orderable consistency
conditions includes and generalizes well-known conditions such as linearizability, causal
consistency and PRAM consistency. The class of forking consistency conditions is particu-
larly tailored to systems with untrusted shared storage and it extends fork consistency [25]
to other new, unexplored consistency conditions.

• We define consistency for encrypted files: for any consistency conditions C1 and C2 of the
key and file objects that belong to these two classes, we define a corresponding consistency
condition (C1, C2)

enc for encrypted files. To our knowledge, our paper is the first to rigor-
ously formalize consistency conditions for encrypted files.

• Our main result provides necessary and sufficient conditions that enable an encrypted file to
satisfy our definition of consistency. Given a key object that satisfies a consistency property
C1, and a file object with consistency C2 from one of the classes we define, our main theorem
states that it is enough to ensure the key-monotonicity property in order to obtain consistency
for the encrypted file object. This result is subject to certain restrictions on the consistency
conditions C1 and C2.

• Lastly, we give an example implementation of a consistent encrypted file from a sequentially
consistent key object and a fork consistent file object. The proof of consistency of the im-
plementation follows immediately from our main theorem. This demonstrates that complex
proofs for showing consistency of encrypted files are simplified using our framework.

The rest of the paper is organized as follows: we survey related work in Section 2, and give the
basic definitions, notation and system model in Section 3. We define the two classes of consistency
conditions in Section 4 and give the definition of consistency for encrypted files in Section 5. Our
main result, a necessary and sufficient condition for constructing consistent encrypted files, is
presented in Section 6. Finally, we describe a consistent encrypted file object implementation
from a sequentially consistent key distribution protocol and a fork consistent file access protocol
in Section 7.

2

2 Related Work
Initial research on secure file systems (CFS [7], TCFS [10]) considered file systems with limited
sharing of information among their users. More recently, research in this area focused more on
network file systems. In these systems, users can share files and access them concurrently.

SUNDR [22] is the first file system that provides consistency guarantees (fork consistency [25])
in a model with a Byzantine storage server and benign clients. In SUNDR, the storage server keeps
a signed version structure for each user of the file system. The version structures are modified at
each read or write operation and are totally ordered as long as the server respects the protocol.
A misbehaving server might conceal users’ operations from each other and break the total order
among version structures, with the effect that users get divided into groups that will never see the
same system state again. SUNDR only provides data integrity, but not data confidentiality. In
contrast, we are interested in providing consistency guarantees in encrypted storage systems in
which keys may change, and so we must consider distribution of the encryption keys, as well.

For obtaining stronger consistency conditions than fork consistency (e.g., linearizability) in the
face of Byzantine servers, one solution is to distribute the file server across n replicas, and use
this replication to mask the behavior of faulty servers. Modern efficient implementations based
on state machine replication (see the survey of Schneider [29]) include BFT [9] and SINTRA [8].
There exist distributed implementations of storage servers that guarantee weaker semantics than
linearizability. Lakshmanan et al. [19] provide causal consistent implementations for a distributed
storage system. While they discuss encrypted data, they do not treat the impact of encryption on
the consistency of the system.

Several network encrypted file systems, such as SiRiUS [15] and Plutus [18], develop interest-
ing ideas for access control and user revocation, but they both leave the key distribution problem
to be handled by clients through out-of-band communication. Since the key distribution protocol
is not specified, neither of the systems makes any claims about consistency. Other file systems
address key management: e.g., SFS [24] separates key management from file system security and
gives multiple schemes for key management; Cepheus [13] relies on a trusted server for key dis-
tribution; and SNAD [27] uses separate key and file objects to secure network attached storage.
However, none of these systems addresses consistency. We refer the reader to the survey by Riedel
et al. [28] for an extensive comparison of the security properties of the existing file systems.

Another area related to our work is that of consistency semantics. Different applications have
different consistency and performance requirements. For this reason, many different consistency
conditions for shared objects have been defined and implemented, ranging from strong conditions
such as linearizability [17], sequential consistency [20], and timed consistency [30] to loose con-
sistency guarantees such as causal consistency [3], PRAM [23], coherence [16, 14], processor
consistency [16, 14, 2], weak consistency [11], entry consistency [6], and release consistency [21].
A generic, continuous consistency model for wide-area replication that generalizes the notion of
serializability [5] for transactions on replicated objects has been introduced by Yu and Vahdat [32].
We construct two generic classes of consistency conditions that include and extend some of the ex-
isting conditions for shared objects.

Different properties of generic consistency conditions for shared objects have been analyzed in
previous work, such as locality [31] and composability [12]. Locality analyzes for which consis-

3

tency conditions a history of operations is consistent, given that the restriction of the history to each
individual object satisfies the same consistency property. Composability refers to the combination
of two consistency conditions for a history into a stronger, more restrictive condition. In contrast,
we are interested in the consistency of the combined history of key and file operations, given that
the individual operations on keys and files satisfy possibly different consistency properties. We
also define generic models of consistency for histories of operations on encrypted file objects that
consist of operations on key and file objects.

Generic consistency conditions for shared objects have been restricted previously only to con-
ditions that satisfy a property called eventual propagation [12]. Intuitively, eventual propagation
guarantees that all the write operations are eventually seen by all processes. This assumption is no
longer true when the storage server is potentially faulty and we relax this requirement for the class
of forking consistency conditions we define.

3 Preliminaries

3.1 Basic Definitions and System Model
Most of our definitions are taken from Herlihy and Wing [17]. We consider a system to be a set
of processes p1, . . . , pn that invoke operations on a collection of shared objects. Each operation o
consists of an invocation inv(o) and a response res(o). We only consider read and write operations
on single objects. A write of value v to object X is denoted X.write(v) and a read of value v from
object X is denoted v ← X.read().

A history H is a sequence of invocations and responses of read and write operations on the
shared objects. We consider only well-formed histories, in which every invocation of an operation
in a history has a matching response. We say that an operation belongs to a history H if its
invocation and response are in H . A sequential history is a history in which every invocation of an
operation is immediately followed by the corresponding response. A serialization S of a history
H is a sequential history containing all the operations of H and no others. An important concept
for consistency is the notion of a legal sequential history, defined as a sequential history in which
read operations return the values of the most recent write operations.

Notation For a history H and a process pi, we denote by H|pi the operations in H done by
process pi (this is a sequential history). For a history H and objects X, X1, . . . , Xn, we denote
by H|X the restriction of H to operations on object X and by H|(X1, . . . , Xn) the restriction of
H to operations on objects X1, . . . , Xn. We denote H|w all the write operations in history H and
H|pi + w the operations done by process pi and all the write operations done by all processes in
history H .

3.2 Eventual Propagation
A history satisfies eventual propagation [12] if, intuitively, all the write operations done by the
processes in the system are eventually seen by all processes. However, the order in which processes
see the operations might be different. More formally, eventual propagation is defined below:

4

Definition 1 (Eventual Propagation and Serialization Set). A history H satisfies eventual propa-
gation if for every process pi, there exists a legal serialization Spi

of H|pi + w. The set of legal
serializations for all processes S = {Spi

}i is called a serialization set [12] for history H .

If a history H admits a legal serialization S, then a serialization set {Spi
}i with Spi

= S|pi +w
can be constructed and it follows immediately that H satisfies eventual propagation.

3.3 Ordering Relations on Operations
There are several natural partial ordering relations that can be defined on the operations in a history
H . Here we describe three of them: the local (or process order), the causal order and the real-time
order.

Definition 2 (Ordering Relations). Two operations o1 and o2 in a history H are ordered by local
order (denoted o1

lo−→ o2) if there exists a process pi that executes o1 before o2.
The causal order extends the local order relation. We say that an operation o1 directly precedes

o2 in history H if either o1
lo−→ o2, or o1 is a write operation, o2 is a read operation and o2 reads

the result written by o1. The causal order (denoted ∗−→) is the transitive closure of the direct
precedence relation.

Two operations o1 and o2 in a history H are ordered by the real-time order (denoted o1 <H o2)
if res(o1) precedes inv(o2) in history H .

A serialization S of a history H induces a total order relation on the operations of H , denoted
S−→ . Two operations o1 and o2 in H are ordered by S−→ if o1 precedes o2 in the serialization S.

On the other hand, a serialization set S = {Spi
}i of a history H induces a partial order relation

on the operations of H , denoted S−→ . For two operations o1 and o2 in H , o1
S−→ o2 if and

only if (i) o1 and o2 both appear in at least one serialization Spi
and (ii) o1 precedes o2 in all the

serializations Spi
in which both o1 and o2 appear. If o1 precedes o2 in one serialization, but o2

precedes o1 in a different serialization, then the operations are concurrent with respect to S−→ .

4 Classes of Consistency Conditions
The goal of this paper is to analyze the consistency of encrypted file systems generically and give
necessary and sufficient conditions for its realization. A consistency condition is a set of histories.
We say that a history H is C-consistent if H ∈ C (this is also denoted by C(H)). Given consistency
conditions C and C′, C is stronger than C′ if C ⊆ C′.

As the space of consistency conditions is very large, we need to restrict ourselves to certain
particular and meaningful classes for our analysis. One of the challenges we faced was to define
interesting classes of consistency conditions that include some of the well known conditions de-
fined in previous work (i.e., linearizability, causal consistency, PRAM consistency), and are also
meaningful for encrypted file objects over untrusted storage. Generic consistency conditions have
been analyzed previously (e.g., [12]), but the class of consistency conditions considered was re-
stricted to conditions with histories that satisfy eventual propagation. Given our system model

5

with a potentially faulty shared storage, we can not impose this restriction on all the consistency
conditions we consider in this work.

We define two classes of consistency conditions, differentiated mainly by the eventual propa-
gation property. The histories that belong to conditions from the first class satisfy eventual prop-
agation and are orderable, a property we define below. The histories that belong to conditions
from the second class do not necessarily satisfy eventual propagation, but the legal serializations
of all processes can be arranged into a tree (denoted forking tree). This class includes fork consis-
tency [25], and extends that definition to other new, unexplored consistency conditions. The two
classes do not cover all the existing (or possible) consistency conditions.

4.1 Orderable Conditions
Intuitively, a consistency condition C is orderable if it contains only histories for which there
exists a serialization set that respects a certain partial order relation. Consider the example of
causal consistency [3] defined as follows: a history H is causally consistent if and only if there
exists a serialization set S of H that respects the causal order relation, i.e., ∗−→ ⊆ S−→ . We
generalize the requirement that the serialization set respects the causal order to more general partial
order relations. A subtle point in this definition is the specification of the partial order relation.
First, it is clear that the partial order needs to be different for every condition C. But, analyzing
carefully the definition of the causal order relation, we notice that it depends on the history H . We
can thus view the causal order relation as a family of relations, one for each possible history H .
Generalizing, in the definition of an orderable consistency condition C, we require the existence of
a family of partial order relations, indexed by the set of all possible histories, denoted by { C,H−→}H .
Additionally, we require that each relation C,H−→ respects the local order of operations in H .

Definition 3 (Orderable Consistency Conditions). A consistency condition C is orderable if there
exists a family of partial order relations { C,H−→}H , indexed by the set of all possible histories, with

lo−→⊆ C,H−→ for all histories H such that:

H ∈ C ⇔ there exists a serialization set S of H with C,H−→⊆ S−→ .

Given a history H from class C, a serialization set S of H that respects the order relation C,H−→ is
called a C-consistent serialization set of H .

We define class CO to be the set of all orderable consistency conditions. A subclass of interest
is formed by those consistency conditions in CO that contain only histories for which there exists
a legal serialization of their operations. We denote C+

O this subclass of CO. For a consistency
condition C from class C+

O , a serialization S of a history H that respects the order relation C,H−→ ,
i.e., C,H−→⊆ S−→ , is called a C-consistent serialization of H .

Linearizability [17] and sequential consistency [20] belong to C+
O , and PRAM [23] and causal

consistency [3] to CO \ C+
O . The partial ordering relations corresponding to each of these condi-

tions, as well as other examples of consistency conditions and consistent histories, are given in
Section 4.3.

6

4.2 Forking Conditions
To model encrypted file systems over untrusted storage, we need to consider consistency conditions
that might not satisfy the eventual propagation property. In a model with potentially faulty storage,
it might be the case that a process views only a subset of the writes of the other processes, besides
the operations it performs. For this purpose, we need to extend the notion of serialization set.

Definition 4 (Extended and Forking Serialization Sets). An extended serialization set of a history
H is a set S = {Spi

}i with Spi
a legal serialization of a subset of operations from H , that includes

(at least) all the operations done by process pi.
A forking serialization set of a history H is an extended serialization set S = {Spi

}i such that
for all i, j, (i 6= j), any o ∈ Spi

∩ Spj
, and any o′ ∈ Spi

:

o′
Spi−→ o ⇒ (o′ ∈ Spj

∧ o′
Spj−→ o)

A forking serialization set is an extended serialization set with the property that its serializations
can be arranged into a “forking tree”. Intuitively, arranging the serializations in a tree means that
any two serializations might have a common prefix of identical operations, but once they diverge,
they do not contain any of the same operation. Thus, the operations that belong to a subset of
serializations must be ordered the same in all those serializations. A forking consistency condition
includes only histories for which a forking serialization set can be constructed. Moreover, each
serialization Spi

in the forking tree is a C-consistent serialization of the operations seen by pi, for
C a consistency condition from C+

O .

Definition 5 (Forking Consistency Conditions). A consistency condition FORK-C is forking if:

1. C is a consistency condition from C+
O ;

2. H ∈ FORK-C if and only if there exists a forking serialization set S = {Spi
}i for history H

with the property that each Spi
is C-consistent.

We define class CF to be the set of all forking consistency conditions FORK-C. It is immediate
that for consistency conditions C, C1 and C2 in C+

O , (i) C is stronger than FORK-C, and (ii) if C1 is
stronger than C2, then FORK-C1 is stronger than FORK-C2.

We can prove that fork consistency, as defined by Mazieres and Shasha [25], belongs to class CF
and, in fact, is equivalent to FORK-Linearizability. We omit the proof here due to space limitations.

4.3 Examples
A table summarizing the type of serialization required for histories of each class of consistency
conditions defined, as well as several examples of existing and new consistency conditions from
each class and their partial order relations is given in Figure 1.

Examples of a linearizable and a causally consistent history are given in Figures 2 and 3, re-
spectively. The history from Figure 2 admits the total ordering X.write(1); X.write(2); X.write(3);
3 ← X.read(), which respects the real-time ordering, and is thus linearizable. The history from

7

Class Type of Serialization Example of Condition Partial Order
C+
O Serialization Linearizability [17] <H

Sequential Consistency [20] lo−→
CO \ C+

O Serialization set Causal Consistency [3] ∗−→
PRAM Consistency [23] lo−→

CF Forking Serialization Set FORK-Linearizability <H

FORK-Sequential Consistency lo−→

Figure 1: Classes of Consistency Conditions

Figure 3 does not admit a legal sequential ordering of its operations, but it admits a serialization
for each process that respects the causal order. The serialization for process p1 is X.write(1);
X.write(2); 2 ← X.read() and that for process p2 is X.write(2); X.write(1); 1 ← X.read().

p1 : X.write(1) 3←X.read()

p2 : X.write(2) X.write(3)

Figure 2: Linearizable history.

p1 : X.write(1) 2←X.read()

p2 : X.write(2) 1←X.read()

Figure 3: Causal consistent history.

We give an example of a history in Figure 4 that is not linearizable, but that accepts a forking tree
shown in Figure 5 with each branch in the tree linearizable. Processes p1 and p2 do not see any
operations performed by process p3. Process p3 sees only the writes on object X done by p1 and p2,
respectively, but no other operations done by p1 or p2. Each path in the forking tree from the root
to a leaf corresponds to a serialization for a process. Each branch in the tree respects the real-time
ordering relation, and as such the history is FORK-Linearizable.

p1 : X.write(1) 2←X.read() Y.write(1) 1←Y.read()

p2 : X.write(2) Y.write(2) 2←Y.read()

p3 : X.write(3) 3←X.read()

Figure 4: FORK-Linearizable history.

X.write(1)

X.write(2)

2← X.read() X.write(3)

3← X.read()

Y.write(1) Y.write(2)

1← Y.read()

p1
p2

p3

2← Y.read()

Figure 5: A forking tree for the history.

8

5 Definition of Consistency for Encrypted Files
We can construct an encrypted file object using two components, the file object and the key object
whose values are used to encrypt file contents. File and key objects might be implemented via
different protocols and infrastructures. For the purpose of this paper, we consider each file to be
associated with a distinct encryption key. We could easily extend this model to accommodate
different granularity levels for the encryption keys (e.g., a key for a group of files).

Users perform operations on an encrypted file object that involve operations on both the file
and the key objects. For example, a read of an encrypted file might require a read of the encryption
key first, then a read of the file and finally a decryption of the file with the key read. We refer to the
operations exported by the storage interface (i.e., operations on encrypted file objects) to its users
as “high-level” operations and the operations on the file and key objects as “low-level” operations.

We model a cryptographic file system as a collection of encrypted file objects. Different cryp-
tographic file systems export different interfaces of high-level operations to their users. We can
define consistency for encrypted file objects offering a wide range of high-level operation inter-
faces, as long as the high-level operations consist of low-level write and read operations on key
and file objects. We do assume that a process that creates an encryption key writes this to the
relevant key object before writing any files encrypted with that key.

The encryption key for a file is changed most probably when some users are revoked access
to the file, and thus, for security reasons, we require that clients use the most recent key they have
seen to write new file contents. However, it is possible to use older versions of the encryption key
to decrypt a file read. For example, in a lazy revocation model [13, 18], the re-encryption of a file
is not performed immediately when a user is revoked access to the file and the encryption key for
that file is changed, but it is delayed until the next write to that file. Thus, in the lazy revocation
model older versions of the key might be used to decrypt files, but new file contents are encrypted
with the most recent key. In our model, we can accommodate both the lazy revocation method
and the active revocation method in which a file is immediately re-encrypted with the most recent
encryption key at the moment of revocation.

For completeness, here we give an example of a high-level operation interface for an encrypted
file object ENCF, which will be used in the example implementation given in Section 7:

1. Create a file, denoted as ENCF.create file(f). This operation generates a new encryption key
k for the file, writes the file content f encrypted with key k to the file object, and writes k to
the key object.

2. Encrypt and write a file, denoted as ENCF.write encfile(f). This operation writes an encryp-
tion of file contents f to the file object, using the most recent encryption key that the client
read.

3. Read and decrypt a file, denoted as f ← ENCF.read encfile(). This operation reads an
encrypted file from the file object and then decrypts it to f .

4. Write an encryption key, denoted as ENCF.write key(k). This operation changes the encryp-
tion key for the file to a new value k. Optionally, it re-encrypts the file contents with the
newly generated encryption key if active revocation is used.

9

Consider a fixed implementation of high-level operations from low-level read and write operations.
Each execution of a history H of high-level operations naturally induces a history Hl of low-level
operations by replacing each completed high-level operation with the corresponding sequence of
invocations and responses of the low-level operations. In the following, we define consistency
(C1, C2)

enc for encrypted file objects, for any consistency properties C1 and C2 of the key distribu-
tion and file access protocols that belong to classes CO or CF .

Definition 6. (Consistency of Encrypted File Objects) Let H be a history of completed high-level
operations on an encrypted file object ENCF and C1 and C2 two consistency properties from CO.
Let Hl be the corresponding history of low-level operations on key object KEY and file object FILE
induced by an execution of high-level operations. We say that H is (C1, C2)

enc-consistent if there
exists a serialization set S = {Spi

}i of Hl such that:

1. S is enc-legal, i.e.: For every file write operation o = FILE.write(c), there is an operation
KEY.write(k) such that: c was generated through encryption with key k, KEY.write(k)

Spi−→
o and there is no KEY.write(k′) with KEY.write(k)

Spi−→ KEY.write(k′)
Spi−→ o for all i;

2. S|KEY = {Spi
|KEY}i is a C1-consistent serialization set of Hl|KEY;

3. S|FILE = {Spi
|FILE}i is a C2-consistent serialization set of Hl|FILE;

4. S respects the local ordering of each process.

Intuitively, our definition requires that there is an arrangement (i.e., serialization set) of key
and file operations such that the most recent key write operation before each file operation seen by
each client is the write of the key used to encrypt or decrypt that file. In addition, the serialization
set should respect the desired consistency of the key distribution and file access protocols.

If both C1 and C2 belong to C+
O , then the definition should be changed to require the existence

of a serialization S of Hl instead of a serialization set. Similarly, if both C1 and C2 belong to CF ,
we change the definition to require the existence of an extended serialization set {Spi

}i of Hl. In
the latter case, the serialization Spi

for each process might not contain all the key write operations,
but it has to include all the key operations that write key values used in subsequent file operations
in the same serialization. Conditions (1), (2), (3) and (4) remain unchanged.

Generalization to multiple encrypted file objects. Our definition can be generalized to en-
crypted file systems that consist of multiple encrypted file objects ENCF1, . . . , ENCFn. We assume
that there is a different key object KEYi for each file object FILEi, for i = 1, . . . , n.

Definition 7. (Consistency of Encrypted File Systems) Let H be a history of completed high-
level operations on encrypted file objects ENCF1, . . . , ENCFn and C1 and C2 two consistency
properties from CO. Let Hl be the corresponding history of low-level operations on key objects
KEY1, . . . , KEYn and file objects FILE1, . . . , FILEn induced by an execution of high-level opera-
tions. We say that H is (C1, C2)

enc-consistent if there exists a serialization set S = {Spi
}i of Hl

such that:

10

1. S is enc-legal, i.e.: For every file write operation o = FILEj.write(c), there is an operation

KEYj.write(k) such that: c is encrypted with key value k, KEYj.write(k)
Spi−→ o and there

is no KEYj.write(k′) with KEYj.write(k)
Spi−→ KEYj.write(k′)

Spi−→ o for all i;

2. For all j, S|KEYj is a C1-consistent serialization set of Hl|KEYj;

3. S|(FILE1, . . . , FILEn) is a C2-consistent serialization set of Hl|(FILE1, . . . , FILEn);

4. S respects the local ordering of each process.

The reason for condition 3 in the above definition is that a consistency property for a file system
(as defined in the literature) refers to the consistency of operations on all file objects. In contrast,
we are not interested in the consistency of all the operations on the key objects, as different key
objects are used to encrypt values of different files, and are thus independent. We only require in
condition (2) consistency for individual key objects.

6 A Necessary and Sufficient Condition for the Consistency of
Encrypted File Objects

After defining consistency for encrypted file objects, here we give necessary and sufficient condi-
tions for the realization of the definition. We first outline the dependency among encryption keys
and file objects, and then define a property of histories that ensures that file operations are exe-
cuted in increasing order of their encryption keys. Histories that satisfy this property are called
key-monotonic. Our main result, Theorem 2, states that, provided that the key distribution and
the file access protocols satisfy some consistency properties C1 and C2 with some restrictions,
the key-monotonicity property of the history of low-level operations is necessary and sufficient to
implement (C1, C2)

enc consistency for the encrypted file object.

6.1 Dependency among Values of Key and File Objects
Each write and read low-level operation is associated with a value. The value of a write operation
is its input argument and that of a read operation its returned value. There is a causal order relation
in the history of low-level operations between a file operation and the key operation that writes the
key used to encrypt that file. More precisely, if o is a file operation with value f done by process
pi, k is the value of the key that encrypts f and w = KEY.write(k) is the operation that writes the
key value k, then either: (1) in process pi there is a read operation r = (k ← KEY.read()) such
that w

∗−→ r
lo−→ o, which implies w

∗−→ o; or (2) w is done by process pi, in which case
w

lo−→ o, which implies w
∗−→ o. In either case, the file operation o is causally dependent on the

key operation w that writes the value of the key used in o. We denote this dependency between file
operation o and key write operation w by R(w, o) and say that file operation o is associated with
key operation w.

11

6.2 Key-Monotonic Histories
A history of key and file operations is key-monotonic if, intuitively, it admits a consistent serializa-
tion for each process in which the file operations use monotonic (for a given partial order) keys for
encryption and decryption of their values. Intuitively, if a client uses a key version to perform an
operation on a file, then all the future operations on the file object by all the clients will use this or
later versions of the key.

We give an example in Figure 6 of a history that is not key-monotonic for sequential consistent
key operations and linearizable file operations. Here c1 and c2 are file values encrypted with key
values k1 and k2, respectively. k1 is ordered before k2 with respect to the local order. FILE.write(c1)
is after FILE.write(c2) with respect to the real-time ordering, and, thus, in any linearizable serial-
ization of file operations, c2 is written before c1.

p1 : KEY.write(k1) KEY.write(k2)

p2 : k1←KEY.read() FILE.write(c1)

p3 : k2←KEY.read() FILE.write(c2)

Figure 6: A history that is not key-monotonic.

We are interested in finding the minimal conditions that make a low-level history key-monotonic,
given that the key operations in the history satisfy consistency condition C1 and the file operations
satisfy consistency condition C2. We assume that the consistency C1 of the key operations is or-
derable. Two conditions have to hold in order for a history to be key-monotonic: (1) the key
write operations cannot be ordered in opposite order of the file write operations that use them; (2)
file write operations that use the same keys are not interleaved with file write operations using a
different key.

Definition 8 (Key-Monotonic History). Consider a history H with two objects, key KEY and file
FILE, such that C1(H|KEY) and C2(H|FILE), where C1 is an orderable consistency condition. H
is a key-monotonic history with respect to C1 and C2, denoted KMC1,C2(H), if there exists a C2-
consistent serialization (or serialization set or forking serialization set) S of H|FILE such that the
following conditions holds:

(KM1) for any two file write operations f1
S−→ f2 with associated key write operations k1 and k2

(i.e., R(k1, f1), R(k2, f2)), it cannot happen that k2
C1,H|KEY−→ k1.

(KM2) for any three file write operations f1
S−→ f2

S−→ f3, and key write operation k with R(k, f1)
and R(k, f3), it follows that R(k, f2).

The example we gave in Figure 6 violates the first condition. If we consider f2 = FILE.write(c2),
f1 = FILE.write(c1), then f2 is ordered before f1 in any linearizable serialization and k1 is ordered

12

before k2 with respect to the local order. But condition (KM1) states that it is not possible to order
key write k1 before key write k2.

The first condition (KM1) is enough to guarantee key-monotonicity when the key write op-
erations are uniquely ordered. To handle concurrent key writes, we need to enforce the second
condition (KM2) for key-monotonicity. Condition (KM2) rules out the case in which uses of the
values written by two concurrent key writes are interleaved in file operations in a consistent seri-
alization. Consider the example from Figure 7 that is not key-monotonic for sequential consistent
key operations and linearizable file operations. In this example c1 and c′1 are encrypted with key
value k1, and c2 is encrypted with key value k2. A linearizable serialization of the file operations
is: FILE.write(c1); FILE.write(c2); FILE.read(c2); FILE.write(c′1), and this is not key-monotonic. k1

and k2 are not ordered with respect to the local order, and as such the history does not violate con-
dition (KM1). However, condition (KM2) is not satisfied by this history.

p1 : KEY.write(k1) FILE.write(c′1)

p2 : KEY.write(k2) c2←FILE.read()

p3 : k1←KEY.read() FILE.write(c1) k2←KEY.read() FILE.write(c2)

Figure 7: A history that does not satisfy condition (KM2).

Sequentially Consistent Key Objects with a Single Writer In cryptographic file system imple-
mentations, keys are usually changed only by one process, who might be the owner of the file or
a trusted entity. For single-writer objects, it can be proved that sequential consistency, causal con-
sistency and PRAM consistency are equivalent. Since we require the consistency of key objects
to be orderable and all orderable conditions are at least PRAM consistent (i.e., admit serializa-
tion sets that respect the local order), the weakest consistency condition in the class of orderable
conditions for single writer objects is equivalent to sequential consistency. If the key distribution
protocol is sequential consistent, the key-monotonicity condition defined previously can be simpli-
fied. We present below the simplified condition and the proof of equivalence with the conditions
from Definition 8.

Proposition 1. Let H be a history of operations on the single-writer key object KEY and file object
FILE such that H|KEY is sequential consistent. H is key-monotonic if and only if the following
condition is true:

(SW-KM) There exists a C2-consistent serialization S (or serialization set or forking serializa-
tion set) of H|FILE such that for any two file write operations f1

S−→ f2 with associated key write
operations k1 and k2 (i.e., R(k1, f1), R(k2, f2)), it follows that k1

lo−→ k2 or k1 = k2.

Proof. Suppose first that the conditions from Definition 8 are true. For a single-writer key object,
all the key write operations are performed by a single process, and are thus ordered by local order.
Then, for any two file write operations f1 and f2 with associated key write operations k1 and k2, it

13

is true that either k1
lo−→ k2 or k2

lo−→ k1 or k1 = k2. Condition (KM1) from Definition 8 implies
that k1

lo−→ k2 or k1 = k2, which proves condition (SW-KM).
In the reverse direction, suppose that condition (SW-KM) is true. This immediately implies

condition (KM1) from Definition 8. To prove condition (KM2), consider three file write operations
f1

S−→ f2
S−→ f3 and key write operation k such that R(k, f1) and R(k, f3). Let k2 be the key

write operation associated with file operation f2, i.e., R(k2, f2). By condition (SW-KM), it follows
that k

lo−→ k2
lo−→ k, which implies k = k2 and R(k, f2).

If all the key writes are performed by a single process, key write operations are totally ordered
and they can be given increasing sequence numbers. Intuitively, condition (SW-KM) requires that
the file write operations are ordered in increasing order of the encryption key sequence numbers.

6.3 Obtaining Consistency for Encrypted File Objects
We give here the main result of our paper, a necessary and sufficient condition for implementing
consistent encrypted file objects, as defined in Section 5. Given a key distribution protocol with
orderable consistency C1 and a file access protocol that satisfies a generic consistency property C2

from classes CO or CF , the theorem states that key-monotonicity is a necessary and sufficient con-
dition to obtain consistency (C1, C2)

enc for the encrypted file object. Some additional restrictions
need to be satisfied.

In order for the encrypted file object to be (C1, C2)
enc-consistent, we need to construct an (ex-

tended) serialization set S that is enc-legal (see Definition 6). In the proof of the theorem, we need
to separate the case when C2 belongs to CO from the case when C2 belongs to CF . For C2 in CO we
need to construct an enc-legal serialization set of the history of low-level operations, whereas for
C2 in CF an enc-legal extended serialization set is required.

Furthermore, we need to distinguish the case of file access protocols with consistency in class
C+
O , when there exists a legal serialization of the file operations. From Definition 6, in order to

prove enc-consistency of Hl, we need to construct an enc-legal serialization with all the key and
write operations. This implies that there must be a serialization for the key operations, as well.
Thus, if the consistency of the file access protocol is in class C+

O , we require that the consistency
of the key distribution protocol belongs to C+

O , as well.

Theorem 2. Consider a fixed implementation of high-level operations from low-level operations.
Let H be a history of operations on an encrypted file object ENCF and Hl the induced history
of low-level operations on key object KEY and file object FILE by a given execution of high-level
operations. Suppose that the following conditions are satisfied:

1. C1(Hl|KEY);

2. C2(Hl|FILE);

3. C1 is orderable;

4. if C2 belongs to C+
O , then C1 belongs to C+

O;

14

Then H is (C1, C2)
enc-consistent if and only if Hl is a key-monotonic history, i.e., KMC1,C2(H).

Proof. First we assume that H is (C1, C2)
enc-consistent. From Definition 6, it follows that there

exists an enc-legal serialization (or serialization set or extended serialization set) S of Hl such
that S|KEY is C1-consistent and S|FILE is C2-consistent. Consider SF = S|FILE, which is a C2-
consistent serialization (or serialization set or extended serialization set) of Hl|FILE. We prove that
conditions (KM1) and (KM2) are satisfied for SF .

1. Let f1 and f2 be two file write operations such that f1
SF−→ f2, and let k1 and k2 be their

associated key write operations. As S is enc-legal, it follows that k1
S−→ k2. S|KEY is C1-

consistent, and the fact that k1
S|KEY−→ k2 implies that it is not possible to have k2

C1,Hl|KEY−→ k1.
This proves condition (KM1).

2. Let f1, f2 and f3 be three file write operations and k a key write operation such that f1
S−→

f2
S−→ f3, R(k, f1) and R(k, f3). It follows that key write k is the closest key write operation

before f2 in S. The fact that S is enc-legal implies that the value of operation k is used to
encrypt the file content written in f2, and thus R(k, f2). This proves condition (KM2).

In the reverse direction, we distinguish three cases, depending on the class the consistency C2

belongs to:

1. Both C1, C2 belong to C+
O . We construct an enc-legal serialization of Hl that respects the four

conditions from Definition 6 in four steps. We construct first a serialization S of Hl that contains
all the file operations and that respects C2-consistency. Then, we include the key writes into this
serialization in an order consistent with C1. Thirdly, we include the key read operations into S to
preserve the legality of key operations and the local ordering with the file operations. Finally, we
also need to prove that S is enc-legal.

First step. As Hl is a key-monotonic history, it follows from Definition 8 that there exists a C2-
consistent serialization SF of Hl|FILE that respects conditions (KM1) and (KM2). We include into
serialization S all the file operations ordered in the same order as in SF .

Second step. From condition (KM2) in the definition of KMC1,C2 , the file write operations in
serialization SF that are dependent on different keys are not interleaved. We can thus insert a key
write operation in serialization S before the first file write operation that is associated with that key
write (if such a file operation exists).

From the first condition in KMC1,C2 , we can prove that S|KEY (that contains only key writes
used in the file operations from S) is C1-consistent. Assume, by contradiction, that S|KEY is not
C1-consistent. Since C1 is orderable, there exist two key write operations, k1 and k2, such that
k1

S−→ k2 and k2
C1,Hl|KEY−→ k1. From the way we included the key writes into S, there exists two

file write operations f1 and f2 such that k1
S−→ f1

S−→ k2
S−→ f2. But f1

S−→ f2 and (KM1)
imply that it is not possible to have k2

C1,Hl|KEY−→ k1, which is a contradiction.

15

We have omitted from S all the key writes that are not used in file operations from S, but we
need to insert those key write operations in S. We include the key writes that are not used in
any file operations in S to preserve the

C1,Hl|KEY−→ order of key operations. If an unused key write
operation needs to be added between key writes k1 and k2, then it is included immediately before
k2, so that it does not break the enc-legality of serialization S. This is possible as the key writes
that we insert are not related by any constraints to the file operations in S.

Third step. We need to insert the key read operations to preserve the legality of key operations
and the local ordering with the file operations in S. Let k1, . . . , ks be all the key write operations
in the order they appear in the serialization S constructed in the first two steps. We include a key
read that returns the value written by key write operation kl between kl and kl+1 (if kl = ks is the
last key write operation, then we include the key read after ks in S). For key read operations and
file operations that are in the same interval with respect to key writes, we preserve local ordering
of operations. Assume, by contradiction, that this arrangement violates local ordering between
operations in different key intervals. Only two cases are possible:

S

k1 r1 k2 f2

Figure 8: First case in which read r1 can not
be inserted into S

S

k0 f0 k1 r1

Figure 9: Second case in which read r1 can
not be inserted into S

• There exists a key read r1 such that: the value returned by r1 is written by key write operation
k1, r1 is after file operation f2 in local order, and f2 belongs to a later key write interval than
r1, i.e., k1

S−→ r1
S−→ k2

S−→ f2 (see Figure 8). If f2 is a file read operation, then from the
legality of file operations and the way we inserted the key write operations into S, it follows
that there exists a file write operation f ′2 such that k1

S−→ r1
S−→ k2

S−→ f ′2
S−→ f2 and

R(k2, f
′
2).

We can thus assume, w.l.o.g., that f2 is a file write operation and R(k2, f2). From R(k2, f2)

it follows that either k2
lo−→ f2 or there exists a key read operation r2 that returns the value

written by k2 and r2
lo−→ f2.

In the first case, k2
lo−→ f2 and f2

lo−→ r1 imply k2
lo−→ r1. We inserted the key read

operations into S to preserve the local order of key operations. Then, in serialization S, k2

should be ordered before r1. But k1
S−→ r1

S−→ k2 and this represents a contradiction.

In the second case, r2
lo−→ f2 and f2

lo−→ r1 imply r2
lo−→ r1. For the same reason

as above, r2 should be ordered before r1 in S. But k1
S−→ r1

S−→ k2
S−→ r2 and this

represents a contradiction.

• A file operation f0 that belongs to an earlier key write interval than key read r1 follows r1 in
the local order, i.e., k0

S−→ f0
S−→ k1

S−→ r1 (see Figure 9). If f0 is a file read operation, then
from the legality of file operations and the way we inserted the key write operations into S, it

16

follows that there exists a file write operation f ′0 such that k0
S−→ f ′0

S−→ f0
S−→ k1

S−→ r1

and R(k0, f
′
0).

We can thus assume, w.l.o.g., that f0 is a file write operation and R(k0, f0). From R(k0, f0)

it follows that either k0
lo−→ f0 or there exists a key read operation r0 that returns the value

written by k0 and r0
lo−→ f0.

In the first case, k0
lo−→ f0, r1

lo−→ f0 and R(k0, f0) imply that r1
lo−→ k0

lo−→ f0 (operation
f0 uses the latest key value read or written to encrypt the file value). Because S preserves the
local order among key operations, r1 should be ordered before k0 in S. But this contradicts
k0

S−→ k1
S−→ r1.

In the second case, r0
lo−→ f0, r1

lo−→ f0 and R(k0, f0) imply that r1
lo−→ r0

lo−→ f0.
Because S preserves the local order among key operations, r1 should be ordered before r0

in S. On the other hand, the legality of S implies that k0
S−→ r0

S−→ k1
S−→ r1, but this

contradicts the fact that r1 should be ordered before r0.

Fourth step. We need to prove that serialization S is enc-legal. From the way we included the
key write operations into S in the second step, it follows that for any file write operation fw, there
exists a key write operation k(fw) such that k(fw)

S−→ fw and there does not exist another file
operation k′ with k(fw)

S−→ k′ S−→ fw. Moreover the key value written by k(fw) is used to
encrypt the value written by fw. This proves the enc-legality of S.

Summary. The serialization S respects the conditions from Definition 6 for Cenc
2 -consistency:

1. S is enc-legal as proved in the fourth step;

2. S|KEY is C1-consistent as proved in the second and third step;

3. S|FILE = SF is C2-consistent.

4. S respects local ordering between operations on the same object, as S|KEY and S|FILE
respect local ordering. S respects local ordering between key writes and file operations from
the construction of S. Additionally, the key reads are inserted to respect local ordering with
file operations.

2. C2 belongs to CO, but not to C+
O . The proof for this case proceeds similarly to the proof of the

previous case with the difference that a serialization set S = {Spi
}i needs to be constructed. We

do not give here the full proof, but we only highlight the differences from the previous proof:

1. In the first step, from Definition 8, there exists a serialization set SF = {SF
pi
}i that respects

conditions (KM1) and (KM2). File operations from each SF
pi

are included in the same order
in Spi

.

2. In the second step, we need to insert the key write operations in all serializations Spi
. We

can similarly prove that Spi
|KEY is C1-consistent for all i.

17

3. In the third step, we only need to insert in serialization Spi
the key reads done by process pi.

4. In the fourth step, we can prove that in each serialization Spi
the closest key write before

a file write is writing the key value used to encrypt the file value written by the file write
operation.

3. C2 belongs to CF . The proof for the third case is similar to the proofs of the previous two
cases, with the difference that an extended serialization set S = {Spi

}i including the key and
file operations needs to be constructed from a forking serialization set SF = {SF

pi
}i of the file

operations.

Discussion. Theorem 2 gives necessary and sufficient conditions for an encrypted file object to
be (C1, C2)

enc-consistent. We can easily generalize the theorem to give necessary and sufficient
conditions for a collection of encrypted file objects or an encrypted file system to be (C1, C2)

enc-
consistent. The necessary and sufficient condition in this case for a history of high-level operations
to be consistent is that the history of low-level operations restricted to each file object is key-
monotonic with respect to its corresponding encryption key.

Our theorem recommends two main conditions to file system developers in order to guarantee
(C1, C2)

enc-consistency of encrypted file objects:

1. The consistency of the key distribution protocol needs to satisfy eventual propagation (as it
belongs to class CO) to apply our theorem. This suggests that using the untrusted storage
server for the distribution of the keys, as implemented in several cryptographic file systems,
e.g., Farsite [1], SNAD [27] and SiRiUS [15], might not give an acceptable level of consis-
tency. For eventual propagation, the encryption keys have to be distributed either directly
by file owners or by using a trusted key server. It is an interesting open problem to analyze
the enc-consistency of the history of high-level operations if both the key distribution and
file-access protocols have consistency in class CF .

2. The key-monotonicity property requires, intuitively, that file writes are ordered not to conflict
with the consistency of the key operations. To implement this condition, one solution is to
modify the file access protocol to take into account the version of the encryption key used in
a file operation when ordering that file operation. We give an example of modifying the fork
consistent protocol given by Mazieres and Shasha [25] in the next section. An interesting
problem is to design implementations of consistent encrypted file objects that do not require
the file operations to keep track of the corresponding key operations.

Moreover, the framework offered by Theorem 2 simplifies complex proofs for showing consistency
of encrypted files. In order to apply Definition 6 directly for such proofs, we need to construct a
serialization of the history of low-level operations on both the file and key objects and prove that
the file and key operations are correctly interleaved in this serialization and respect the appropriate
consistency conditions. By Theorem 2, given a key distribution and file access protocol that is
each known to be consistent, verifying the consistency of the encrypted file object is equivalent to

18

verifying key monotonicity. To prove that a history of key and file operations is key monotonic,
it is enough to construct a serialization of the file operations and prove that it does not violate
the ordering of the key operations. The simple proof of consistency of the example encrypted file
object presented in the next section demonstrates the usability of our framework.

7 A Fork-Consistent Encrypted File Object
In this section, we apply our techniques to give an example of an encrypted file system that is fork
consistent. It has been shown [25] that it is possible to construct a fork consistent file system even
when the file server is potentially Byzantine. We use the SUNDR protocol [25] together with our
main result, Theorem 2, to construct a fork consistent encrypted file system. For simplicity, we
present the protocol for only one encrypted file object, but our protocols can be easily adapted to
encrypted file systems.

System model. Users interact with the storage server to perform read and write operations on file
objects. A file owner performs write operations on the key object associated with the file it owns,
and users that have access permissions to the file can read the key object to obtain the cryptographic
key for the file. There is, thus, a single writer to any key object, but multiple readers. Each key
write operation can be assigned a unique sequence number, which is the total number of writes
performed to that key object.

In our model, we store in a key object the key value and the key sequence number. For a file
object, we also store the sequence number of the key used to encrypt the file value. We modify the
write operation for both the FILE and KEY objects to take as an additional input the key sequence
number. Similarly, the read operation for both the FILE and KEY objects returns the key sequence
number (in addition to the object content).

Several cryptographic primitives are used in our example application:

1. For confidentiality, a symmetric encryption scheme E is used to encrypt files. E consists of
three algorithms: a randomized key generation algorithm GEN(·) that outputs an encryption
key, a randomized encryption algorithm Enck(m) that outputs the encryption of a given
message m with key k, and a deterministic decryption algorithm Deck(c) that decrypts a
ciphertext c with key k. The correctness property requires that Deck(Enck(m)) = m, for all
keys k generated with the GEN algorithm and all messages m from the encryption domain.

2. Signature schemes are used for integrity. A signature scheme consists of three algorithms: a
randomized key generation algorithm GEN(·) that outputs a public key/secret key pair (PK, SK),
a randomized or deterministic signing algorithm σ ← SignSK(m) that outputs a signature of
a given message m using the signing key SK, and a deterministic verification algorithm
VerPK(m,σ) that outputs a bit. A signature σ is valid on a message m if VerPK(m,σ) = 1.
The correctness property requires that VerPK(m, SignSK(m)) = 1, for all key pairs (PK, SK)
generated with the GEN algorithm and all messages m from the signature domain.

19

We assume that each user u of the file system has its own signing and verification keys, SKu

and PKu, and there exists a public-key infrastructure that enables users to find the public
keys for all other users of the file system.

In the description of our protocol, we distinguish three separate components: the implementation
of high-level operations provided by the storage interface, the file access protocol and the key dis-
tribution protocol. We give the details about the implementation of the high-level operations and
the file access protocol. For key distribution, any single-writer protocol that implements a sequen-
tial consistent shared object can be used (e.g., [4]), and we leave here the protocol unspecified.
Finally, we prove the consistency of the protocol using our main result.

7.1 Implementation of High-Level Operations
The storage interface consists of four high-level operations similar to those presented in Section 5.
Their implementation is detailed in Figure 10.

1. In create file(f), an encryption key for the file is generated using the GEN algorithm of the
encryption scheme. At the same time, the key sequence number stored locally by the file
owner in variable seq is incremented (the variable seq needs to be initialized to 0). The user
encrypts the file content f with the newly generated key and, finally, writes both the KEY
and FILE objects.

2. In write encfile(f), the encryption key k and its sequence number seq are read first. Then
the user encrypts the file content f with the key value read and writes the encrypted file and
the key sequence number to the file object.

3. In f ← read encfile(), the values of the key and file objects and their sequence numbers are
read in variables (k, seq) and (c, seq′), respectively. The user checks that c is encrypted with
the key that has the same sequence number to the key read, and retries if it did not read the
correct key value. Finally, ciphertext c is decrypted with key k, resulting in file content f .

4. In write key, the file object is read and decrypted using read encfile. Then, the file is re-
encrypted with a newly generated key using create file. In order to guarantee that the latest
version of a file is encrypted with the latest encryption key and that the repeat loop in the
implementation of the procedure read encfile terminates, this procedure needs to be executed
atomically (i.e., in isolation from all other clients’ operations).

The create file and write key procedures can only be executed by file owners upon file creation
and the change of the file encryption key, respectively. The write encfile and read encfile proce-
dures are executed by writers and readers of the file when they perform a write or read operation,
respectively.

20

1. procedure create file(f):
2. k ← GEN()
3. seq ← seq + 1
4. c ← Enck(f)
5. KEY.write(k, seq)
6. FILE.write(c, seq)

7. procedure write encfile(f):
8. (k, seq) ← KEY.read()
9. c ← Enck(f)
10. FILE.write(c, seq)

11. procedure read encfile():
12. repeat
13. (k, seq) ← KEY.read()
14. (c, seq′) ← FILE.read()
15. until seq = seq′

16. f ← Deck(c)
17. return f

18. procedure write key():
19. f ← read encfile()
20. create file(f)

/* generate a new key */
/* increment the key sequence number stored locally */
/* encrypt the file with the new key */
/* invoke write operation on key object */
/* invoke write operation on file object */

/* invoke read operation on key object*/
/* encrypt the file with the key read */
/* invoke write operation on file object */

/* invoke read operation on file object */
/* invoke read operation on key object */
/* check that the key read matches the key used to encrypt the file */
/* decrypt the file with the key read */

/* read and decrypt file content */
/* generate a new key and encrypt the file with it */

Figure 10: The encrypted file protocol for client u

7.2 The File Access Protocol
We first describe the original SUNDR protocol [25] that constructs a fork consistent file system.
We then present our modifications to the protocol for guaranteeing consistency of an encrypted file
object implemented with the high-level operations given in the previous subsection.

The SUNDR protocol. In the SUNDR protocol, the storage server can be split into two compo-
nents: a block store (denoted SBS) on which clients can invoke read and write operations on blocks
and a consistency server SCONS that is responsible for ordering the read and write operations to the
block store in order to maintain fork consistency.

Both the client and the consistency server in the SUNDR protocol need to keep state. SCONS

keeps a version structure for each client, signed by the client, and each client keeps a local copy of
its own version structure. In more detail, the consistency server’s state includes a version structure
list or VSL consisting of one signed version structure per user, denoted v[u], u = 1, . . . , U (U is the
total number of users). Each version structure v[u] is an array of version numbers for each client
in the system: v[u][j] is the version number of user j, as seen by user u. Version numbers for a
user are defined as the total number of read and write operations performed by that user. There is
a natural ordering relation on version structures: v ≤ w if v[i] ≤ w[i] for all i = 1, . . . , U .

21

1. FILE.write(c, seq):
2. last op ← write
3. last seq ← seq
4. last file ← c
5. vmax ← check cons()
6. SBS.write(c)

7. FILE.read():
8. last op ← read
9. vmax ← check cons()
10. c ← SBS.read()
11. if not check int(c, vmax) then abort
12. return (c, vmax.seq)

13. check cons():
14. (v[1], . . . , v[U]) ← SCONS.vs request()
15. verify the signatures on all v[i]
16. if v[u] 6= vs, then abort
17. x[u] ← vs[u] + 1; x[j] ← v[j][j], ∀j 6= u
18. x.int ← vs.int
19. if last op = write then
20. update int(last file, x)
21. x.seq ← last seq
22. if (v[1], . . . , v[U]) are not totally ordered or

∃i = 1, . . . , U : x ≤ v[i]
23. then abort
24. vs ← x
25. SCONS.vs update(SignKu

(x))
26. return vmax = max(v[1], . . . , v[U])

/* store locally the type of the operation */
/* store locally the key sequence number */
/* store locally the encrypted file c */
/* execute the version update protocol with SCONS */
/* write the encrypted file to the block store */

/* store locally the type of the operation */
/* execute the version update protocol with SCONS*/
/* read the encrypted file from the block store */
/* check the integrity of the encrypted file */

/* receive version structures of all users from SCONS */
/* abort if any of the signatures does not verify */
/* check its own version structure */
/* create a new version structure and initialize it */

/* for a write operation: */
/* update the integrity information in x */
/* update the key sequence number in x */
/* ensures that VSL is totally ordered and x is
greater than all the version structures from VSL */

/* store x locally */
/* send version structure to SCONS */
/* return the maximum version structure of all users */

Figure 11: The file access protocol for client u

Each version structure v also contains some integrity information denoted v.int. In the SUNDR
protocol, the integrity information is the root of a Merkle hash tree [26] of all the files the user owns
and has access to. The integrity information is updated by every client that writes a file. At every
read operation, the integrity information in the most recent version structure is checked against
the file read from SBS. We assume that there exists two functions for checking and updating the
integrity information for a file: check int(c, v) that given an encrypted file c and a version structure
v checks the integrity of c using the integrity information in v, and update int(c, v) that updates
the integrity information v.int using the new encrypted file c. We do not give here the details of
implementing these two functions.

A user u has to keep locally the latest version structure vs that it signed. The code for user u is
in Figure 11. At each read or write operation, u first performs the check cons protocol (lines 5 and
9) with the consistency server, followed by the corresponding read or write operation to the block
store. SUNDR uses a mechanism to ensure that the check cons protocol is executed atomically,

22

1. SBS.write(c) from u:
2. FILE ← c

3. SBS.read() from u:
4. return FILE to u

/* store c to the file object FILE*/

/* return content of file object FILE to u */

Figure 12: The code for the block store SBS

1. SCONS.vs request() from u:
2. return (msg vsl, v[1], . . . , v[U]) to u

3. SCONS.vs update(SignKu
(x)) from u:

4. verify the signature on x
5. if ∃i = 1, . . . , U : x ≤ v[i] then abort
6. else v[u] ← x

/* send the signed VSL to u */

/* abort if the signature does not verify */
/* check that x is greater than all version structures */
/* update the version structure for u */

Figure 13: The code for the consistency server SCONS

but we skipped this for clarity of presentation. The code for the block store and the consistency
server is in Figures 12 and 13, respectively.

In the check cons protocol, the client first performs the vs request RPC with the consistency
server to receive the list of version structures of all users. The client first checks the signatures on
the version structures and checks that its own version structure matches the one stored locally (lines
15-16). Then, the client creates a new version structure x that contains the latest version number
for each user (lines 17-20). In the new version structure, the client’s version number is incremented
by 1, and the integrity information is updated only for write operations. Finally, the client checks
that the version structures are totally ordered and the new version structure created is the maximum
of all (lines 21-22). This last check guarantees that the version structures for successive operations
seen by each client are strictly increasing (with respect to the ordering relation defined for version
structures). If any of the checks performed by the client fails, then the client detected misbehavior
of SCONS and it aborts the protocol. The client sends the newly created signed version structure to
the consistency server through the vs update RPC. SCONS checks that this version structure is the
maximum of all existing version structures (line 5 in Figure 13) to protect against faulty clients.

For more details and a proof of fork-consistency of this protocol, see [25].

Modifications to the SUNDR protocol. We include in the version structure v of user u a key
sequence number v.seq, which is the most recent version of the key used by user u in a file oper-
ation. We extend the total order relation on version structures so that v ≤ w if v[i] ≤ w[i] for all
i = 1, . . . , U and v.seq ≤ w.seq. For each write operation, we need to update the key sequence
number in the newly created version structure (line 20 in Figure 11). The key sequence numbers in

23

the version structures guarantee that the file operations are serialized according to increasing key
sequence numbers.

7.3 Consistency Analysis
The file access protocol guarantees a forking serialization set for the file operations. Intuitively,
the operations in a serialization for a process (which form a branch in the forking tree) have totally
ordered version structures (by line 21 in Figure 11 and line 5 in Figure 13). We extend the version
structures to include the key sequence numbers. The total order of the version structures implies
that the file operations in a serialization for a process have increasing key sequence numbers. This
will allow us to prove that a history of low-level operations resulting from an execution of the
protocol is key-monotonic.

Proposition 3. Let Hl be a history of low-level read and write operations on the key object KEY
and file object FILE that is obtained from an execution of the protocol in Figure 10. If Hl|KEY is
sequential consistent and the file access protocol is implemented with the protocol in Figure 11,
then the execution of the protocol is enc-consistent.

Proof. Conditions (1), (2), (3) and (4) from Theorem 2 are satisfied. To apply the theorem, we only
need to prove that Hl is key-monotonic with respect to sequential consistency and fork consistency.
In particular, it is enough to prove condition (SW-KM).

Let S be any fork consistent forking serialization set of Hl|FILE and f1 and f2 two file write
operations such that f1

S−→ f2. Let v1
max and v2

max be the two version structures returned by the
check cons protocol when f1 and f2 are executed. These are the version structures denoted by x
created in lines 17-20 of the protocol in Figure 11.

The protocol guarantees that v1
max ≤ v2

max, which implies that v1
max.seq ≤ v2

max.seq. Line
20 in the protocol from Figure 11 guarantees that v1

max.seq contains the sequence number of the
key with which the encrypted file content written in operation f1 is encrypted. Similarly, v2

max.seq
contains the sequence number of the key with which the value written in operation f2 is encrypted.

Let k1 and k2 be the key write operations such that R(k1, f1) and R(k2, f2). v1
max.seq ≤

v2
max.seq implies that k1

lo−→ k2 or k1 = k2, which is exactly what condition (SW-KM) de-
mands. From Theorem 2, it follows that the execution of the protocol is (C1, C2)

enc-consistent,
where C1 is sequential consistency and C2 is fork consistency.

8 Conclusions
We have addressed the problem of consistency in encrypted file systems. An encrypted file system
consists of two main components: a file access protocol and a key distribution protocol, which
might be implemented via different protocols and infrastructures. We formally define generic con-
sistency in encrypted file systems: for any consistency conditions C1 and C2 belonging to the
classes we consider, we define a corresponding consistency condition for encrypted file systems,

24

(C1, C2)
enc. The main result of our paper states that if each of the two protocols has some con-

sistency guarantees with some restrictions, then ensuring that the history of low-level operation is
key-monotonic is necessary and sufficient to obtain consistency for an encrypted file object. We
also demonstrate how to implement a consistent encrypted file object from a sequential consis-
tent key distribution protocol and the fork consistent file access protocol from the SUNDR file
system [25, 22].

Another contribution of this paper is to define two classes of consistency conditions that are
meaningful for encrypted file systems over untrusted storage: the first class includes classical con-
sistency conditions such as linearizability, causal consistency, PRAM consistency and the second
one extends fork consistency. An interesting problem is to find efficient implementations of the
new forking consistency conditions from the second class and their relation with existing consis-
tency conditions. The two classes do not cover all the existing (or possible) consistency conditions,
and another challenge raised by this work is to define additional classes that are meaningful for
consistency in encrypted file systems.

References
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R.

Lorch, M. Theimer, and R. P. Wattenhofer. FARSITE: Federated, available, and reliable stor-
age for an incompletely trusted environment. In Proc. 5th Symposium on Operating System
Design and Implementation (OSDI). Usenix, 2002.

[2] M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The power of processor consistency.
Technical Report GIT-CC-92/34, Georgia Institute of Technology, 1992.

[3] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto. Causal memory: Definitions, imple-
mentation and programming. Distributed Computing, 1(9):37–49, 1995.

[4] H. Attiya and J. L. Welch. Sequential consistency versus linearizability. ACM Transactions
on Computer Systems, 12(2):91–122, 1994.

[5] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[6] B. Bershad, M. Zekauskas, and W. Sawdon. The Midway distributed shared-memory system.
In Proc. IEEE COMPCON Conference, pages 528–537. IEEE, 1993.

[7] M. Blaze. A cryptographic file system for Unix. In Proc. First ACM Conference on Computer
and Communication Security (CCS), pages 9–16. ACM, 1993.

[8] C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on the internet. In Proc. In-
ternational Conference on Dependable Systems and Networks (DSN), pages 167–176. IEEE,
2002.

25

[9] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In Proc. 3rd Symposium on
Operating System Design and Implementation (OSDI), pages 173–186. Usenix, 1999.

[10] G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano. The design and implementation
of a transparent cryptographic file system for Unix. In Proc. USENIX Annual Technical
Conference 2001, Freenix Track, pages 199–212, 2001.

[11] M. Dubois, C. Scheurich, and F.A. Briggs. Synchronization, coherence and event ordering in
multiprocessors. IEEE Computer, 21(2):9–21, 1988.

[12] R. Friedman, R. Vitenberg, and G. Chockler. On the composability of consistency conditions.
Information Processing Letters, 86:169–176, 2002.

[13] K. Fu. Group sharing and random access in cryptographic storage file systems. Master’s
thesis, Massachusetts Institute of Technology, 1999.

[14] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J.Hennessy. Memory
consistency and event ordering in scalable shared-memory multiprocessors. In Proc. 17th
Annual International Symposium on Computer Architecture, pages 15–26, 1990.

[15] E. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiRiUS: Securing remote untrusted
storage. In Proc. Network and Distributed Systems Security (NDSS) Symposium 2003, pages
131–145. ISOC, 2003.

[16] J. Goodman. Cache consistency and sequential consistency. Technical Report 61, SCI Com-
mittee, 1989.

[17] M. Herlihy and J. Wing. Linearizability: A corretness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463–492, 1990.

[18] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scalable secure
file sharing on untrusted storage. In Proc. 2nd USENIX Conference on File and Storage
Technologies (FAST), 2003.

[19] S. Lakshmanan, M. Ahamad, and H. Venkateswaran:. A secure and highly available dis-
tributed store for meeting diverse data storage needs. In Proc. International Conference on
Dependable Systems and Networks (DSN), pages 251–260. IEEE, 2001.

[20] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, 28(9):690–691, 1979.

[21] D. Lenoski, J. Laudon, K. Gharachorloo, W. D. Weber, A. Gupta, J. Hennessy, M. Horowitz,
and M. S. Lam. The Stanford Dash multiprocessor. IEEE Computer, 25(3):63–79, 1992.

[22] J. Li, M. Krohn, D. Mazieres, and D. Shasha. Secure untrusted data repository. In Proc.
6th Symposium on Operating System Design and Implementation (OSDI), pages 121–136.
Usenix, 2004.

26

[23] R. Lipton and J. Sandberg. Pram: A scalable shared memory. Technical Report CS-TR-180-
88, Princeton University, Department of Computer Science, 1988.

[24] D. Mazieres, M. Kaminsky, M. Kaashoek, and E. Witchel. Separating key management from
file system security. In Proc. 17th ACM Symposium on Operating Systems (SOSP), pages
124–139. ACM, 1999.

[25] D. Mazieres and D. Shasha. Building secure file systems out of Byzantine storage. In
Proc. 21st ACM Symposium on Principles of Distributed Computing (PODC), pages 108–
117. ACM, 2002.

[26] R. Merkle. A cerified digital signature. In Proc. Crypto 1989, volume 435 of Lecture Notes
in Computer Science, pages 218–238. Springer-Verlag, 1989.

[27] E. Miller, D. Long, W. Freeman, and B. Reed. Strong security for distributed file systems. In
Proc. First USENIX Conference on File and Storage Technologies (FAST), pages 1–13, 2002.

[28] E. Riedel, M. Kallahalla, and R. Swaminathan. A framework for evaluating storage system
security. In Proc. First USENIX Conference on File and Storage Technologies (FAST), pages
15–30, 2002.

[29] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys, 22(4):299–319, 1990.

[30] F. J. Torres-Rojas, M. Ahamad, and M. Raynal. Timed consistency for shared distributed
objects. In Proc. 18th ACM Symposium on Principles of Distributed Computing (PODC),
pages 163–172. ACM, 1999.

[31] R. Vitenberg and R. Friedman. On the locality of consistency conditions. In Proc. 17th
International Symposium on Distributed Computing (DISC)), pages 92–105, 2003.

[32] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consistency model
for replicated services. ACM Transactions on Computer Systems, 20(3):239–282, 2002.

27

