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Abstract

We present an asymptotically optimal algorithm for thaxvariant of thek-armed bandit problem.
Given a set oft slot machines, each yielding payoff from a fixed (but unknown) distribution, we
wish to allocate trials to the machines so as to maximize the expected maximum payoff received

over a series of trials. Subject to certain distributional assumptions, we show@i(ah(%)h‘i—’;)g>

trials are sufficient to identify, with probability at lealst- §, a machine whose expected maximum
payoff is withine of optimal. This result leads to a strategy for solving the problem that is asymp-
totically optimal in the following sense: the gap between the expected maximum payoff obtained
by using our strategy for trials and that obtained by pulling the single best arm fomatitials
approaches zero as— oo.
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1 Introduction

In the k-armed bandit problem one is faced with a set gfot machines, each having an arm that,
when pulled, yields a payoff from a fixed (but unknown) distribution. The goal is to allocate trials
to the arms so as to maximize the expected cumulative payoff obtained over a seriggats.
Solving the problem entails striking a balance between exploration (determining which arm yields
the highest mean payoff) and exploitation (repeatedly pulling this arm).

In the maxk-armed bandit problem, the goal is to maximize the expeotagimum(rather
than cumulative) payoff. This version of the problem arises in practice when tackling combina-
torial optimization problems for which a number of randomized search heuristics exist: igiven
heuristics, each yielding a stochastic outcome when applied to some particular problem instance,
we wish to allocate trials to the heuristics so as to maximize the maximum payoff (e.g., the maxi-
mum number of clauses satisfied by any sampled variable assignment, the minimum makespan of
any sampled schedule). Cicirello and Smith [3] show that a lsakmed bandit approach yields
good performance on the resource-constrained project scheduling problem with maximum time
lags (RCPSP/max).

1.1 Summary of Results

We consider a restricted version of the mazarmed bandit problem in which each arm yields
payoff drawn from ageneralized extreme value (GEV) distributifaefined in§2). This paper
presents the first provably asymptotically optimal algorithm for this problem.

Roughly speaking, the reason assuming a GEV distribution is the Extremal Types Theorem
(stated in§2), which states that the distribution of the sample maximum ofdependent iden-
tically distributed random variables approaches a GEV distributiom as co. A more formal
justification is given irg3. For reasons that will become clear, the nature of our results depend on
the shape parameted) (of the GEV distribution. Assuming all arms hage< 0, our results can be
summarized as follows.

e Leta be an arm that yields payoff drawn from a GEV distribution with unknown parameters;
let M,, denote the maximum payoff obtained after pulling times; and letn,, = E[M,,].

We provide an algorithm that, after pulling the a@r(ln(§)1“(§)2> times, produces an esti-
matem,, of m,, with the property thaP [|m,, — m,| <¢ >1—4.

e Letay,ay,...,a, bek arms, each yielding payoff from (distinct) GEV distributions with
unknown parameters. Let!, denote the expected maximum payoff obtained by pulling the
it" armn times, and lein’ = max;<;<; m’,. \We provide an algorithm that, when run for
pulls, obtains expected maximum payoff — o(1).

Our results for the casg > 0 are similar, except that our estimates and expected maximum
payoffs come within arbitrarily smalactors(rather than absolute distances) of optimality. Specif-
ically, our estimates have the property tHYaLLﬂ < zz—jx <1+ e} > 1 — ¢ for constanta,

independent of, while the expected maximum payoff obtained by using our algorithm fawlls
ism}(1—o(1)).



1.2 Related Work

The classicak-armed bandit problem was first studied by Robbins [7] and has since been the
subject of numerous papers; see Berry and Fristedt [1] and Kaelbling [6] for overviews. In a paper
similar in spirit to ours, Fong [5] showed that an initial exploration phase consisti@g;@ﬁn(g))

pulls is sufficient to identify, with probability at least-§, an arm whose mean payoff is withirof
optimal. Theorem 2 of this paper proves a bound similar to Fong’s on the number of pulls needed
to identify an arm whose expectetbximunmpayoff (over a series of trials) is near-optimal.

The max variant of thé-armed bandit problem was first studied by Cicirello and Smith [2, 3],
who successfully used a heuristic for the miaarmed bandit problem to select among priority
rules for the RCPSP/max. The design of Cicirello and Smith’s heuristic is motivated by an anal-
ysis of the special case in which each arm’s payoff distribution is a GEV distribution with shape
parametet = 0, but they do not rigorously analyze the heuristic’s behavior. Our paper is more
theoretical and less empirical: on the one hand we do not perform experiments on any practical
combinatorial problem, but on the other hand we provide stronger performance guarantees under
weaker distributional assumptions.

1.3 Notation

For an arbitrary cumulative distribution functid# let the random variablé/¢ be defined by
MY =max{Z,, Zs,...,Z,}
whereZ,, Z,, ..., Z, are independent random variables, each having distribGtidret

m& = E[MC].

n

2 Extreme Value Theory

This section provides a self-contained overview of results in extreme value theory that are relevant
to this work. Our presentation is based on the text by Coles [4].

The central result of extreme value theory is an analogue of the central limit theorem that
applies to extremely rare events. Recall that the central limit theorem states that (under certain
regularity conditions) the distribution of the sumfindependent, identically distributed (i.i.d)
random variables converges to a normal distributiomas> oo. The extremal types theorem
states that (under certain regularity conditions) the distribution of the maximun.iofl random
variables converges to a generalized extreme value (GEV) distribution.

Definition (GEV distribution). Arandom variableZ has ageneralized extreme value distribution
if, for constants:, o > 0, and¢, P[Z < z] = GEV{, ,¢)(2), Where

GEViyo6(2) = exp (— (1 4 M) 2)
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forz e {z:14+&(z—p)o! > 0},andGEV|, ,¢)(z) = 1 otherwise. The case= 0 is interpreted
as the limit

5llli% GE‘/(”,J,g’)(Z) = exp (— exp (N ; Z)) .

The following three propositions establish properties of the GEV distribution.

Proposition 1. Let Z be a random variable witl?[Z < 2] = GEV|, ,¢)(2). Then

p+gTI-=§-1) fF&<1,{#0
E[Z] =< pu+oy if&=0
00 if&>1

where

is Euler's constant.

Proposition 2. LetG = GEV|,, ,¢). ThenM{ has distributionG EV{,/ , ¢y, Where

! M+%(n§_1) |f£7£0
pu~+ oln(n) otherwise,
o' = onf, and

=€,

Substituting the parameters df¢ given by Proposition 2 into Proposition 1 gives an expres-
sion form¢.

Proposition 3. LetG' = GEV, ,¢) Where < 1. Then

. pt+g(nT(1—¢) —1) ifE#0
m, = .
p+oy+oln(n) otherwise.

n

It follows that
o for & > 0, m% is ©(nf);
o for ¢ =0, m¢ isO©(In(n)); and

o foré <0,mé =pu—2—0(n).
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Figure 1: The effect of the shape parametgon the expected maximum efindependent draws
from a GEV distribution.

Itis useful to have a visual picture of what Proposition 3 means. Figure Lipfpts a function
of n for three GEV distributions witlx = 0, 0 = 1, and¢ € {0.1,0, —0.1}.
The central result of extreme value theory is the following theorem.

The Extremal Types Theorem.Let G be an arbitrary cumulative distribution function, and sup-
pose there exist sequences of constaats> 0} and{b,,} such that

lim P

n—oo

M¢ —
{"—bn < z] =G*(z) (2.1)
an,
for any continuity point: of G*, whereG* is a not a point mass. Then there exist constants
o > 0, and¢ such thatG*(z) = GEV{, ¢ (%) Vz. Furthermore,

lim P[M, < 2] = GEViua,+b,,0an.)(2) -
Condition (2.1) holds for a variety of distributions including the normal, lognormal, uniform,
and Cauchy distributions.

3 The Max k-Armed Bandit Problem

Definition (max k-armed bandit instance). An instancel = (n,G) of the maxk-armed bandit
problem is an ordered pair whose first element is a positive integand whose second element
is asetG = {Gy,Gs,...,G} of k cumulative distribution functions, each thought of as an arm
on a slot machine. Thé&" arm, when pulled, returns a realization of a random variable with
distribution G;.

Definition (max k-armed bandit strategy). A maxk-armed bandit strategy is an algorithm
that, given an instancé = (n, G) of the maxt-armed bandit problem, performs a sequence of
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arm-pulls. For any strategy and integer’ < n, we denote by, (/) the expected maximum payoff
obtained by runnings on [ for / trials:

(1) = E |

0<j<e
wherep; is the payoff obtained from th@" pull, and we defing, = 0.

Our goal is to come up with a strategysuch thatS,,(7) is near-maximal.

Note that the problem is ill-posed (i.e., there is no clear criterion for preferring one strategy
over another) unless we make some assumptions about the distribGtioége will assume that
each arnt; = GEV|,, -, ¢ IS @ GEV distribution whose parameters satisfy

1. |Mz| < o

2.0<0,<0; <0y,
3.4 <& <6 <3

for known constantg,,, o/, 0., &, andg,,.

There are two arguments for assuming that each arm is a GEV distribution. First, in practice
the distribution of payoffs returned by a strong heuristic may be approximately GEV, even if the
conditions of the Extremal Type Theorem are not formally satisfied [2].

A second argument runs as follows. Suppédse (n,G) is an instance of the makarmed
bandit problem in which each distributi@r; € G satisfies condition (2.1) of the Extremal Types
Theorem. Consider the instanée= (%, G), whereG = {G1, G5, ...,Gx}, and armG; returns
the maximum payoff obtained by pulling the corresponding &mn times. Effectively,/ is a
restricted version of in which the arms must be pulled in batches of sizerather than in any
arbitrary order. Fom sufficiently large, the Extremal Types Theorem guarantees that for each
i, G; = GEV{,,.0,¢) for some constantg;, o;, and&;. Thus, the instancé’ = (,G’) with
G ={G},Gh,....G,} andG, = GEV|,, ,,¢, IS approximately equivalent tband satisfies our
distributional assumptions.

The purpose of the restrictions on the parametgrs;, and¢; is to ensure that each GEV
distribution has finite, bounded mean and variance.

4  An Asymptotically Optimal Algorithm

We will analyze the following max-armed bandit strategy.



StrategyS* (¢, d):
1. (Exploration)For each arntz; € G:

(@) Usingt = O (1 (5 )“‘(” )samples of7;, obtain an estimate.": of m¢:

Assuming that arnd/; has shape parametgr< 0, our estimate will have
the property that

P[|m& —mSi| <e] >1-4.

2. (Exploitation)Set; = arg maX1<Z<km , and pull armG; for the remaining
n — tk trials.

If an armG; has shape parametgr> 0, the estimate obtained in step 1 (a) will instead have
the property thaP [1—+6 < Mazy <1+ e] > 1 — ¢ for constanty; independent of..
The following theorem shows that with appropriate settings afidd, strategyS! is asymp-

totically optimal.

Theorem 1. Let I = (n,G) be an instance of the makxarmed bandit problem, wherg =
{Gl, GQ, ey Gk} andGi = GEVim,a,:,fi)- Let

o m} = max; << m<i,

® &g = Maxi<i<i &, and

+ 5=8"({/t ).

Then if&n., <0,
lim S,(I) =m,,
while if &,,,.. > 0,
lim —Sn(j)

*
n—oo
m,

=1.

Proof.

Casef,ae < 0. Letm, = mf (wherei is the arm selected for exploitation in step 2). Thien_.;,
is the expected maximum payoff obtained during the exploitation step, so

Sn([) 2 7/hnftk .

Claim 1. 7, — 11, is O().
Proof of Claim 1. Let i = 1;, 0 = 0;, and¢ = &; be the parameters of the arm selected for
exploitation. Suppos€ = 0. Then by Proposition 3, — m,_ = o (In(n) — In(n — tk)).



Expandingn(x + 3) in powers of3 about3 = 0 for |3| < 3, z > 0 yields

S (— 1)L (2)

()
=1\ =z

|Blz—*
1=[Blz=1

i
< 218l

In(z + §) —In(z)] =

IA
(]

so forn sufficiently largesi, — rfiv,—y, < 20% = O(%).
Now suppose < 0. By Proposition 3y, — 1i,—s = ¢I'(1 — - (n—1)% =0((n —
t)¢ —nf) where we have used the fact that(1 —¢) < 0. Expanding(n — t)¢ in powers oft about
= 0 gives

t2
(n— t)f =nf — &nt1t— 0O (an)
and so(n — 1)¢ —n < =&t < J&IE = O(L). .

With probability at least — k¢, all estimates obtained during the exploration phase are within
e of the correct values, so that, — m,, < 2e. Assumingm.;, — m,, < 2e, it follows that

m;kl - mnftk: = (m;; —n n) + (mn - mnftk)
<2+ O(%)
=2+ 20 <ln(§)“i—2)2>
=0(4)

whereA = In(nk) ln(n)zi”/%, and on the second line we have used Claim 1. Thus,

Sall) = (1= kd) (mj, — O (A)

Casef, . > 0. See Appendix A.
O

Theorem 1 completes our analysis of the performancg!ofit remains only to describe how
the estimates in step 1 (a) are obtained.

4.1 Estimatingm,,

We adopt the following notation:

o LetG = GEV, . denote a GEV distribution with (unknown) parameters, and¢ satis-
fying the conditions stated %8, and



G

i "

o letm; =m

To estimaten,,, we first obtain an accurate estimatecofThen

1. if £ = 0 (so that the growth ofn,, as a function otn n is linear), we estimate,, by first
estimatingn; andms, then performing linear interpolation;

2. otherwise we estimate,, by first estimatingn,, m., andm,, then performing a nonlinear
interpolation.

4.1.1 Estimatingm; for i € {1,2,4}

The following two lemmas use well-known ideas to efficiently estimatdor small values of.

Lemma 1. Let: be a positive integer and let> 0 be a real number. The@® (6%) draws fromG
suffice to obtain an estimate; of m,; such that

3
Proof. First consider the special case- 1. Let X denote the sum af draws fromG, for some
to-be-specified positive integerThenE[X] = m;t andVar[X]| = 6*t, wheres is the (unknown)
standard deviation afi. We takem; = % as our estimate of;. Then

]P)Hml — m1| 2 6] = ]P)Html — tm1| 2 tﬁ]
— P[lX —E[X]| > ¥ /Var[X]
< 2

~
)

€

where the last inequality is Chebyshev’s. Thus to guaraite®; — m;| > €] < 1 we must set

t =12 = 0 (L) (note that due to the assumptions8) & is O(1)).
For: > 1, we letX be the sum of block maxima (each the maximum oindependent draws
from (3), which increases the number of samples required by a factor of O

1
4

To boost the probability thgtn; — m,;| < e from 2 to 1 — 4, we use the “median of means”
method.

Lemma 2. Let: be a positive integer and let > 0 andJ € (0,1) be real numbers. Then
O (In(3)%) draws fromG suffice to obtain an estimate; of m; such that

Plmn, —m,| <€¢ >1-96.

Proof. We invoke Lemma 1 times (forr to be determined), yielding a sEt= {mgl), mz@, ce mg’")}
of estimates ofn;. Letm,; be the median element &f. Let A = {mgj) el |m§j) —my;| < €} be
the set of “accurate” estimatesof;; and letA = | A|. Then|m; —m;| > e impliesA < Z, while
E[A] > 2r. Using the standard Chernoff bound, we have

Plm; —m;| > € <P [A < g] < exp <—%)

for constanC' > 0. Thusr = O (In(3)) repetitions suffice to ensu®f|m; — m;| > ¢] <6. O
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4.1.2 Estimatingm, when¢ =0

Lemma 3. Assumé&~ has shape parametér= 0. Letn be a positive integer and let> 0 and
d € (0,1) be real numbers. Thef (1n(%)“1(€—’§)2) draws fromG suffice to obtain an estimate,,
of m,, such that
Pllm, —m,| <€ >1-9.
Proof. By Proposition 3yn; = i+ oy + o In(z). Thus
My, = my + (mg —my) logy(n) . (4.1)

Letm, andm, be estimates af,; andms, respectively, and let.,, be the estimate of.,, obtained
by pluggingm; andm, into (4.1). DefineA; = |m; — m;| fori € {1,2,n}. Then

Ay < (14 1logy(n)) (A1 + As) .

Thus to guarante®[A,, < ¢ > 1 — 4, it suffices thatP [Ai < 57 > 11— g for all

1+1c§g2(n)):|
i € {1,2}. By Lemma 2, this require® <ln(§)(1“3)2) draws fromG. O

€

4.1.3 Estimatingm, when¢ # 0

For the purpose of the proofs presented here, we will make a minor assumption concerning an
arm’s shape parametér. we assume that for some known constgnt- 0,

&l <& =& =0.

Removing this assumption does not fundamentally change the results, but it makes the proofs more
complicated.

Lemma 5 shows how to efficiently estimgteLemmas 6 and 7 show how to efficiently estimate
m, In the caseg < 0 and¢ > 0, respectively. We will use the following lemma.

Lemma 4.
o and

o .

my — My 2
mg —my >

00 | =k =

Proof. See Appendix A. O]

Lemma 5. For real numbers: > 0 andd € (0,1), O (In(§)%) draws fromG suffice to obtain an
estimatef of £ such that B
PE—¢l<e>1-0.

Proof. Using Proposition 3, it is straightforward to check that for gny 1,

¢ = log, (w) . (4.2)

mo — My
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Let 4, mo, andmy, be estimates ofy, mo, andmy, respectively, and let be the estimate of
¢ obtained by pluggingn,, m., andm, into (4.2). Define\,, = max;c(1 2.4} [m; —m;| and define
A¢ = |€ — £|. We wish to upper bound, as a function of\,,,.

In Claim 1 of Theorem 1 we showed thei(z + 8) — In(z)| < 22 for 8 < 2. Letting

N = my —myandD = my —my, and noting thag = log,(N) —log,(D) = 5 (In(N) —In(D)),

it follows that

1 [(202A,)  2(2A,)

5 ()

for A,,, < 3 min(N, D). Thus by Lemma 4 and the assumption that o, A¢ is O(A,,).
DefineA; = |m; — my|, so thatA,, = max;cq 2,43 A;. Then to guaranteB[A, < ¢/ > 1 -6,

it suffices thatP [A; < Q(e)] > 1 — & foralli € {1,2,4}. By Lemma 2, this require® (In(})%)
draws fromG.

A <
$=1n

]

Lemma 6. Assumé~ has shape parametér< —¢*. Letn be a positive integer and let> 0 and
§ € (0,1) be real numbers. The@ (In()=) draws fromG suffice to obtain an estimate,, of
m,, such that

Pllmn, —my| <€e >1-9.

Proof. By Proposition 3,
mi:,uvL%(igF(l—{)—l) .

Define
ap=p—o§t
ay =06 'T(1 =€)
3 = 25
so that 4
m; = oy + aga?gQ(z) . (4.3)

Plugging in the values = 1, i = 2, andi = 4 into (4.3) yields a system of three quadratic
equations. Solving this system faf, a,, andas yields

ay = (mymy —m3)(my — 2my +my) "
g = (=2mymo + m3 +m3)(my — 2my + my)~

g3 = (m4 — mQ)(mg — ml)’l .

1

Let mq, mo, andmy, be estimates ofny, ms, andmy, respectively. Pluggingn,, m., and
my INto the above equations yields estimates, @ay,, andas, of ay, as, andas, respectively.
DefineA,, = max;eq1 2,43 [ — m;| andA, = max;eq 2,3y |@; — a;]. To complete the proof, we
show thatjm,, — m,| is O(A,,). The argument consists of two parts: in claims 1 through 3 we
show that\,, is O(A,,,), then in Claim 4 we show thatn,, — m,,| is O(A,).

Claim 1. Each of the numerators in the expressionsifgras, andas has absolute value bounded
from above, while each of the denominators has absolute value bounded from below. (The bounds
are independent of the unknown parameter§ 9f
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Proof of claim 1. The numerators will have bounded absolute value as long, as:,, andms are
bounded. Upper bounds an,, m,, andms follow from the restrictions on the parameterso,
and¢. As for the denominators, by Lemma 4 we have

Imy — 2mg + my| |(mg —mq)(ag — 1)

AV

sog|27¢ —1].
OJ
Claim 2. Let N and D be fixed real numbers, and 18t; and 3, be real numbers withsp| < 'D‘
Then| 352~ — X is O(|6w] + |6pl).-
Proof of claim 2. First, using the Taylor series expansion¥;—,
15t — B = 1R (=) ()
S ‘DQ NBD -1 ’
(1-BpD~1)
=0 (|5D|) :
Then
e R
D+06p D — | D+Bp D+5D
= O (|Bn] + [Bp]) -
O

Claim 3. A, isO(A,,).

Proof of claim 3. We show thata; — ;| is O(A,,). Similar arguments show th&t, — a,| and
|ay — 4| areO(A,,), which proves the clalm Toseethat —a;| isO(A,,), letN = m1m4—m2,

and letD = m; — 2my + my, so thain; = &. Define N andD in the natural way so that, =
Becausen,,m», andmg are allO(1) (by Clalm 1), it follows that botiN — N| and|D — D| are
O(A,,). That|ay — aq| is O(A,,) follows by Claim 2. O

Claim 4. |m,, — m,|is O (A,).

Proof of claim 4. Because, < ¢ < —¢* it must be thab < 2% < a3 < 27¢ < 1. So forA,
sufficiently small0 < az < 1.

M —my| = |(a1 + 042041 g2(")) (a1 + agaz ® ("))|
< ’a _041‘ + |a alogz( n) —a agogz( )l
+ |OJ a10g2(”) agag‘)gz(n”
< |541 — 011| + |Oé2H043 — Oé3’ + |5é2 — 042’
= O(Aa)

where on the third line we have used the fact that batlanda; are between 0 and 1, and in the
last line we have used the fact that| is O(1). O

11



Putting claims 3 and 4 togethem,, — m,| is O(A,,). DefineA; = |m; — m;|, so thatA,,
max;e(1,2.4) ;. Thus to guarante®(|m,,—m,,| < ¢ > 1—4, it suffices thal’ [A; < Q(e)] > 1—
foralli € {1,2,4}. By Lemma 2, this require®(In(3) ) draws fromG.

[esrss |l

Lemma 7. Assumé= has shape parametér> ¢*. Letn be a positive integer and let> 0 and
5 € (0,1) be real numbers. Thef (ln@)l“i’;)Q) draws fromG suffice to obtain an estimate,,
of m,, such that

1 My, —
{ < a1<(1+e)]21—5
1+4e¢ m, —o

wherea; = p — %

Proof. See Appendix A. O]
Putting the results of lemmas 3, 5, 6, and 7 together, we obtain the following theorem.

Theorem 2. Let n be a positive integer and let > 0 andd € (0,1) be real numbers. Then
O <1n(§)“‘£—2‘)2> draws fromG suffice to obtain an estimate,, of m,, such that with probability at
leastl — 9, one of the following holds:

e (¢ <0Oand|m, —m,| <e or

e {>0and- < mazal < 1+ ¢, wherea; =y — ¢.

Proof. First, invoke Lemma 5 with parametei,% and2. Then invoke one of Lemmas 3, 6, or 7
(depending on the estimageobtained from Lemma 5) with parameterandg. O

Theorem 2 shows that step 1 (a) of straté&jycan be performed as described.

5 Conclusions

The maxk-armed bandit problem is a variant of the classicarmed bandit problem with prac-
tical applications to combinatorial optimization. Motivated by extreme value theory, we studied a
restricted version of this problem in which each arm yields payoff drawn from a GEV distribution.
We derived PAC bounds on the sample complexity of estimatipgthe expected maximum of

draws from a GEV distribution. Using these bounds, we showed that a simple algorithm for the
maxk-armed bandit problem is asymptotically optimal. Ours is the first algorithm for this problem
with rigorous asymptotic performance guarantees.
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Appendix A

Theorem 1. Let I = (n,G) be an instance of the makxarmed bandit problem, wherg =
{Gl, GQ, ce Gk} andGi = GEWui7gi7§i). Let

* G
® M, = Maxi<i<gM,",

® o = Max;<i<x &, and

Then if¢,q. <0,
lim S,(I) =m,,

n
n—oo

while if &,,,.. > 0,

lim Snll)

*
n—oo
m,

=1.

Proof. For¢,,.. < 0, the theorem was proved in the main text. It remains only to address the case

gmam > 0
Case, . > 0. We will prove the stronger claim that
J) —
M _1-0(A) (5.1)
m, — oy

whereA = In(nk) ln(n)2<’/% ando; = maxi<;<j o;, Wherea; = p; — Z—
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For the moment, let us assume th#itarms have shape parameger- 0. Let A be the event
(which occurs with probability at least— £6) that all estimates obtained in step 1 (a) satisfy the
inequality in Theorem 2.

Claim 1. To prove (5.1), it suffices to show thﬂimplies% =1+ 0(A).

Proof of claim 1. Becauses,, (1) > m,,_ and the eventd occurs with probability at least— &4,
it suffices to show thatl implies

(1 — 8K)1in_us — cu

my — o

—1-0(4).

Becausés%;’“) isO (%) = o(A), it suffices to show thatl implies

Ttk Z 01— 0(A).

m; — Qq
This can be rewritten as’ — «; = (M, — 041) 1(A) = (My_w — a1)(1 + O(A)) (we can
replace;—54y with 1 + O(A) because for < 3, i1, =1 O

—r

Claim 2. M =1+0(A).

—tk—G1

Proof of claim 2. Using Proposition 3,

= O(t)
=0(4)
The claim follows from the fact thatxp(3) < 1+ 23 for 3 < 1, so thatexp(O(A)) = 1 +
O(A). O
Claim 3. A implies that for all;, ‘
m; — Q1
— < 1l+e.
ml — oq

Proof of claim 3. By definition a1 = o' — 3 for somes > 0. The claim follows from the fact that
for positive N andD andg > 0, & < 1 + ¢ implies gig <l+e. O
Claim 4. Aimplies 72— — 1 + O(A).

Proof of claim 4.

* * = % =1 i
m) —a1 _ Mp—o1 My—a1 Mmp—on | M=o

mi_tk—m mp—o1  mb—ar  mi—a1 mi_,, —o1
<(I+4e€-1-(14€)-(14+0(A))
—1+0(A)

where in the second step we have used claims 2 and 3. O
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Putting claims 1 and 4 together completes the proof. To remove the assumption that all arms
have¢; > 0, we need to show thadl implies that forn sufficiently large, the armsand:* (the
only arms that play a role in the proof) will have shape parametdisThis follows from the fact
thatif & < 0, mi isO(In(n)), while if & > & > 0, m! is Q(n%).
O

Lemma 4.

mg — Mo > ia and

Moy — My > %0 .

Proof. If ¢ = 0, then by Proposition 31, —my = ms—my = In(2)c and we are done. Otherwise,

mg—mo = 0(25 = 1) (1 - €) and
my —my = o(45 = 25701 - €) .

It thus suffices to prove the following claim.

Claim 1. ‘
25 —1 1
min Fl—f}g—,and
<t { § ( ) 4
48 — 2§ 1
min{ F(l—f)}Z—.
3 8

Proof of claim 1. We state without proof the following properties of théunction:

[(z) > [2]! Vz>2
[(z) >3 Vz>0

Making the change of variable= —¢, it suffices to show

_ 9y
min {1 2’ —i—y)} > 1 and (5.2)
y>—3 Y 4’

v(1 —27)
min {2 (1=-2" ['(1+vy) } 1 . (5.3)
y>f% Yy 8

(5.2) holds because for; <y <1,

1—-27Y 1 1
Fl4+y) > -T'l+y) >—,
2 4
while fory > 1,
1—2v ly+1)1 _ 1
I'(1 > > =
(1+y) > TR
Similarly, (5.3) holds because ferl <y <1,
27Y(1 — 27Y) 1
—I(1 > -,
y (I+y) =g
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while fory > 1,
27Y(1 —27Y

O
]

Lemma 7. Assumé&~ has shape parametér> ¢*. Letn be a positive integer and let> 0 and

6 € (0,1) be real numbers. Thef (1 (6)ln 5 2) draws fromG' suffice to obtain an estimate,,
of m,, such that

1 Ny, —
{ <m O41<(1+e)}21—5
1+4e¢ m, —m

wherea; = p — %

Proof. We use the same estimation procedure as in the proof of Lemma 6; L&t, a3, A,, and
A,, be defined as they were in that proof.
The mequallty— < mm=fl < 1+ e is the same agln(;2=51)| < In(1 +¢€). Fore <

In(1+€) > Ze, so it suffices to guarantee that

N

| In(m,, — a1) — In(m, —aq)| < ge .

Claim 1. | In(m,, — a1) — In(m,, — a;)| iIs O(In(n)A,).

Proof of claim 1. BecauseIn(m,, — ;) —In(m, —a1)| isO(A,), it suffices to show thdtin(m,, —
a1) —In(m,, — ay)|is O(In(n)A,). This is true because

In(m, —a;) = <o‘42@§°g2(”)>
= logy(n) In(as) + ln( 2)
= log,(n) In ( 3) +In(az) £ O (In(n)Aq)
=In (agal ) + O (In(n)A,)
~ (i — 1) + O (n(n)A,)

O]

SettingA, < Q(In(n)"'e) then guaranteeSln(m,) — In(m,)| < Ie. By Claim 3 of the

proof of Lemma 6 (which did not depend on the assumptian0), A, is O (4A,,), SO we require
PlA,, < Q(In(n)"'e)] > 1 — 4. DefineA; = |m; — my|, so thatA,, = maxeq1 243 Ao It
suffices thaf [A; < Q (In(n)~'e)] > 1 — & fori € {1,2,4}. By Lemma 2, ensuring this requires
0, <1n(5)M> draws fromG.

0
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