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Abstract

LENSis a neural network simulator designed for speed and ease of customization. On large neterosks deveral

times faster than most commonly used simulators. Although intended primarily for backpropagation networks, it also
currently supports deterministic Boltzmann machines and Kohonen networks and could easily be extended to other
Hebbian or Bayesian models.ENs is written entirely in the C and Tcl languages and operates on both Unix and
Windows platforms. This report gives a brief overview afNs and describes some of the interesting aspects of its

design.
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1 Introduction

Neural network simulators tend to be of two basic varieties: very simple, fast programs designed for a specific type
of network on the one hand, and large, graphically intensive systems targeted at diverse users on the other. Although
generally quite fast, the former suffer primarily from inflexibility. They are not easily extended to new network
architectures. This increases development time for new simulations and prevents multiple users from sharing a single
platform, which hinders collaboration and verification of results. Without a sufficient command language, simple
simulators are typically limited to a few command-line instructions and must be changed at the source code level and
recompiled to perform more complex experiments. Without adequate visualization tools, understanding and debugging
a network can be very difficult. A final drawback of simple simulators is that they are often less accesaitte to
programmers and are thus not good platforms for introductory courses or for broad publication of methods.

On the other end of the spectrum, large-scale systems attempt to provide enough flexibility to satisfy most user’s
needs. However, it is quite impossible to anticipate every feature that might be desired and, ultimately, sophisticated
users will need to modify the source code. This is not easy in most complex programs. Even if the code can be
understood and modified, without a convenient method of dissociating the original code from a user’s changes, those
changes will have to be reapplied by hand to any new releases.

LENs was designed to fill a middle ground between large and small simulators, with three primary goals in mind:

1. Speed The development of ever faster machines does not reduce the need for an efficient simulator. Speed
results from fast inner loops and conservative memory use, with particular attentiach® performance.

2. Flexibility : A scripting language and large command set allows most experiments to be performed without the
need to modify source code. Unit behaviors can be composed from several input, transfer, integration, and noise
functions, providing a wide variety of standard unit types.

3. Customizability: When it is necessary to make modifications to the source, it can be done with minimal inter-
action between generic and user code by registering new types and functions and creating new shell commands.

LENS is primarily a backpropagation simulator, designed for feed-forward, simple-recurrent, backprop-through-
time, and fully recurrent networks. However, the basic network framework can be easily adapted to other models and
deterministic Boltzmann machines and Kohonen networks have been implemented asenmsallofderates on most
Unix platforms and has recently been ported to Microsoft Windows. It wétsanrin C and uses the Tcl/Tk libraries
to support graphics and a shell intzcé.

Section 2 of this document compares the performanceeofslto several other popular backpropagation simu-
lators. Section 3 explains some of the optimizations that lead to its good performance. Section 4 briefly describes
facilities for training on multiple machines in parallel. Section 5 explains some of the principles that ease customiza-
tion of LENS and Section 6 talks a bit about its user insed.

2 Performance Benchmarks

LENS' has been benchmarked along with five other commonly used, non-commercial simulators?, SNNS
PDP++, RCS, and TLEARN®. The simulators performed backpropagation training using momentum descent on
a feed-forward network having two hidden layers. The input and output I@gefs contained four units. The two
hidden layers were approximately equal in size and were adjusted to control the total number of links in the network,
which ranged from 100 to 1 million. The training set consisted of 40 random patterns and, where possible, batch
learning was used. Thus, 40 forward and backward passes were performed before eachpdeatghtAll simulations

were run on an unloaded 450 MHz Pentium II.

1LENS, v. 2.02, was run in batch mode. It is availabléatip://www.cs.cmu.edu/~dr/Lens.

2SNNS, v. 4.2, is the Stuttgarter Neural Network Simulator from the University of Tuebingen, Germany. Run with the batchman program
using the BackpropMomentum learning function. It is availabletigt//www-ra.informatik.uni-tuebingen.de/SNNS.

3UTs, v. 4.1p1, is the sequel toBRION, and was developed at the University of Toronto. It is availabfgpafftp.cs.toronto.edu/pub/xerion.

4PDP++, v. 1.2, was developed at Carnegie Mellon University. bp++ was run in -nogui mode. It is available at
http://www.cnbc.cmu.edu/PDP++/PDP++.html.

5RCS, v. 4.2, is the Rochester Connectionist Simulator, developed at the University of Rochester. It was run using 6 settling steps and online
learning. It is available &tp://ftp.cs.rochester.edu/pub/packages/simulator.

STLEARN, v. 1.0, was developed at the University of California, San Diego. It is availabigpat'crl.ucsd.edu/innate/tlearn.html.
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Figure 1: Total memory usage with networks of varying size.

2.1 Memory Usage

With medium to large networks, simulators are memory-intensive applications and memory use is a critical factor in
their performance. Time spent on memory operations can dominate that spent on floating point operations. Although
small structures allow larger networks to fit into main memory, a reasonable simulator will not push the limits of
current machines even with a network having several million links. A more important result of conservative memory
use is its contribution to cache performance. Simulator speed is prirballyded by the rate at which the program

can cycle through the links. Using small link representations leads to fematre misses and greater speed. Due

to interactions between the network’s working set size, the sizes of primary and secoadagg, and the cache
replacement protocols, simulator speed is not a linear function of network size and is not easily predicted based on the
machine’s floating point performance.

Figure 1 shows the memory requirements of the six simulators. With small networks, the memory is almost entirely
due to simulator overhead. Next to PDP++, which has a very large profites has the second highest at just under
1.7 MB. Nevertheless, the overhead of most programs does not affect their working set size and memory usage is not
a critical factor on small networks.

As the networks grow, memory devoted to link structures dominates. Here the important differences between the
simulators becomes evidentelhs uses 3 (4-byte) words per link: one for its weight, one for its error derivative, and
one for the previous weight change, which contributes the momentun t8MNS and RCS each appear to use
6 words, which is reasonable. PDP++H,ERRN, and Urs, on the other hand, use roughly 10, 34, and 35 words,
respectively.

Although not a factor in these experiments, the amount of memory devoted to data sets can also be an important
issue. Experiments on language can involve corpora consisting of hundreds of thousands or millions of examples.
LENS is able to reduce the memory and time required for example sets by using a mixture of dense and sparse
representations, loading examples on-the-fly from a file or pipeline, and drawing examples from biased distributions.

“LeNscan also be compiled with flags that create a fourth field for each link, which allows the delta-bar-delta and quick-prop algorithms to be
used.
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Figure 2: Speed as measured in millions of link traversals per second during training of a feed-forward network.

2.2 Speed

Simulator speed was evaluated by training the networks for a number of weight updates equal to 10 million over the
number of links in the network. Ank traversaloccurred for each link once in the forward pass, once in the backward
pass, and once during a weight update. Thus, all networks were trained for 810 million link traversals. Training time
included starting and stopping the simulators. Three trials were rwgafdr simulator on each size of network and the
best of the three times was used. The results are shown in Figure 2.

On the smallest network,BNs performs only moderately well. Tlearn does as well and SNNS is nearly twice as
fast due to smaller overhead outside of the inner link-traversal loop. Howeses Was not designed for networks of
this size. On larger networks, which are increasingly used in connectionist modeling, it is the clear winner. At 300,000
links LENS is over three times faster than the competitors and at a million links it is over four times faster.

Each simulator tends to have a sweet spot at which the relatively lower overhead of a large network and the better
cache performance of a small network result in optimal link traversal rate. On this mackimgappears to have a
peak at around 10,000 weights, whilg&has a surprisingly strong sweet spot at 100,000 links. These are replicable
on similar machines but may shift significantly on other architectures



3 Optimizations

This section discusses some of the design principles and optimizations that result in the good performance of L

on medium to large networks. To begin with, units in a network are organized into groups. The groups tend to
correspond directly to layers of the network. All units in a group are of the same type, using the same input and
output functions. In most models, units calculate their input as the dot-product of the incoming weight vector and
the vector of corresponding unit activations and their output as the sigmoid of their input. In the backward pass the
reverse processes occur. The unit calculates its input derivative (the derivative of the error w.r.t. the unit's input) as the
product of its output derivative and the derivative of the input w.r.t. the output. It then sends error derivatives back to
its incoming links and to the output derivatives of the sending units. Computing the unit inputs and sending back the
input derivatives comprise the inner loops of backpropagation training and they will typically use around 99% of the
processing time on a large network.

In optimizing the inner loops, it is important to minimize the number of menaaesses they require by properly
structuring the link representations. There are two basic ways to organize the links: They could be controlled by their
sending unit (the one from which the link projects) and activation “pushed” over the link, or links could be controlled
by the receiving unit and activation “pulled”. BINS uses the latter method. Each unit maintains the arrays of its
incoming links but has no direct access to its outgoing links. During the forward pass, as a unit traverses its incoming
links it need only access the link weight and the sending unit activation from memory. The accumulptihgalue
can remain in a register. Thus, there are just two memory reads per link. If links were owned by the sender and the
values were pushed to the receivers, the output of the sending unit could remain in registempuittteethe eceiving
unit would have to be retrieved from memory, incremented, and then stored back, requiring an extra memory access.

Because the values propagated on the backward pass depend on the receivingputitembining function,
which need not be a dot-product, it is easier for theeiving unit to push the derivatives backward over its incoming
links. This involves six memory accesses: the link weight and the sending unit output are loaded and the link derivative
and sending unit output derivative are incremented. If one knew that all receiving units used thediimt-his could
be reduced to 5 accesses by having the sending unit pull values backward across its outgoing links, but this would likely
result in worse cache performance.

Although a eceiving unit could get projections from several differerugys or eceive sparsenputs, projections
tend to arise from a few blocks of consecutive unit€NEk uses this block structure to its advantage. Because we
know, by definition, that all sending units in a block are consecutive and belong to the same group, if those units are
allocated in a single array of memory we could simply walk down the array as we access the output or output derivative
of each unit.

The four critical values that must be retrieved in the backward pass are the links’ weights and derivatives and the
sending units’ outputs and output derivatives. To get good performance, we would like to be able taétbevith
as many of these values as possible. Therefore, the weights and derivatives of incoming links to each unit are stored
in a single array. The last weight change and any other less critical values for the link are stored in a separate array.
Rather than accessing the output and output derivative directly from the sending unit structures, which would involve
loading the entire sending unit array into the cache, we keep separate arrays for each group that just contain a copy of
the units’ outputs or output derivatives. This minimizes the amount of non-critical information that enteastiee

To further improve the speed, the inner loops are unrolled ten times by hand, whichcisatdtibetter than any
unrolling that may be performed by most optimizing compilers.

Finally, although unit-level costs are relatively insignificant for large networks, some improvement can be gained
by using a fast sigmoid function. In place of the straight-forward sigmoid, which requires an exponentiation and a
division, LENS uses a lookup table of 32K values and performs linear interpolation between values. ddusriste
to within2 x 10~7. Although the fast sigmoid can speed up small networks by 15-20%, its effect on large networks is
minimal.

4 Parallel Training

LENS provides utilities for training networks in parallel on multiple machines. Parallel training is at the batch-level.

That is, the network itself is not partitioned among machines. Each machine has a complete copy of the network and
its own example set. In order for parallel training to be effective, the batch size must be large enough that the work
can be partitioned among the clients without the overhead of communication dominating any benefits of parallelism.



Nevertheless, some networks do see a performance advantage. There are two different forms of parallel training:
synchronous and asynchronous.

Synchronous training is functionally equivalent to single-processor batch learning. At the gtachdfatch, the
server sends a copy of the network’s link weights to each of the clients and tells each client how many examples to
process. The clients run the network on the assigned examples, accumulating link derivatives, and then ship the link
derivatives back to the server. When the server has summed the derivatives from each of the clients, the weights are
updated and the process repeats. A potential drawback of synchronous training is that it is only as fast as the slowest
client. However, [ENS maintains a running estimate of the speeéadh client and adjusts the assignments so that all
machines complete in approximately the same amount of time. A more serious drawback is that the clients are idle for
the time it takes the server to update the weights and either seedeive from the other clients.

In the second form, asynchronous trainieggh client is given the same size batch of examples to run. When a
clientis done, it returns the derivatives and the server immediately updates the weights and sends back the new weight
information. The primary advantage is that clients need not wait for one another unless the server is really overloaded.
However, the drawback is that the clients are working with slightly different versions of the network and training can
be unstable at high learning rates or with large batch sizes.

Although parallel training is useful when a single network must be trained as quickly as possible and machines
are available, it is less useful than one might expect. It is typically the case when working with neural networks that a
range of network or training parameters must be searched to find the best performance. Therefore, users rarely want to
run just one network. In this case, it is more efficient to simply devote each machine to its own network, thus obtaining
perfect parallelism.

5 Customization

The novel way in which ENS organizes unit-level functions provides considerable flexibility without the need to
modify the program. Operations on units are divided into three main classes: procedures for computing the unit input,
for computing the unit output, and for attributing cost or error directly to the unit. For each of these operations, the
type of the unit's group defines a pipeline of simple procedures. The procedures can be combined to produce various
behaviors.

For example, most units will have a basic output procedure, such as linear, sigmoidal, or exponential, which
determines the output as a function of the input. Once that is computed, a secondary procedure in the output pipeline
might inject noise. Another procedure could then integrate the unit’s output over time or normalize the outputs across
a group. Each procedure has a corresponding inverse procedure which operates in the backward pass to compute the
unit’s input derivative from its output derivative. Without the ability to combine simple operations in this way, one
would have to create many more group types to handle all reasonable combinations of simple procedures.

However, no simulator can satisfy all users and many modelers will eventually need to get inside and make their
own changes. In most simulators, changes would need to be made in various placghaht the code, which
leads to problems whenever a new version is releaseoNshwas largely born out of frustration with the difficulty
of tracing and modifying the code in other simulators. To ease customizatEws provides arextensiormodule,
in which user modifications can be contained. Three main features of its design facilitate encapsulation of changes:
extension structures are provided to allow the user to augment the major structures, network behavior is controlled by
a modifiable hierarchy of function pointers, and new function types for controlling various aspects of the simulator
can be registered to make them easily accessible from the command interface.

The network maintains pointers to functions for such actions as training for a number of weight updates, training
on a single batch of examples, training on an example, training on an event within an example, and so forth. The
functions tend to become simpler as we descend the hierarchy and each function typically uses the pointer to the
one below it. Many changes to network behavior can be made by replacing a single network function, minimizing
the amount of new code that must be written and enabling the new code to remain in the extension module. Having
written a new function, the user might then create a shell command that causes the network to use the new function in
place of the old one.

However, to make new network or group types more naturally accessible from the shell interface, types can be
registered This creates a name by which the user will be able to refer to that type, making it equivalent to the
built-in types. Rather than creating a special shell command, a hew network type could be created and an initialization
procedure defined to configure any new networks of that type. Customizations that currently may be registered include



#define SINE_OUT ((mask) 1 << 20)

static void sineOutput(Group G, GroupProc P) {
FOR_EACH_UNIT(G, U->output = sin(U->input););

}

static void sineOutputBack(Group G, GroupProc P) {
FOR_EACH_UNIT(G, U->inputDeriv = U->outputDeriv * cos(U->input));

static void sineOutputlnit(Group G, GroupProc P) {
P->forwardProc = sineOutput;
P->backwardProc = sineOutputBack;
}
flag userlnit(void) {
registerGroupType("SINE_OUT", SINE_OUT, GROUP_OUTPUT, sineOutputlnit);
return TCL_OK;

}

Figure 3: The code to add a custom unit output function.

additions of basic network types, unit input, output, and cost functions, algorithms for updating the weights, for
selecting the next example, and for creating link projection patterns. Figure 3 contains all of the code necessary to
create and register a new unit output function that computes the sine of the input.

6 Interface

The primary interface to ENsis a Tcl/Tk-based command language. The user can either enter commands to a shell or
run programs out of script files. Over 120 commands are currently available allowing the user to, among other things,
build and lesion networks, save and load example and weight files, describe the network layout, and, of course, train
and test. New procedures can be written in Tcl, which are especially helpful in running experiments. Commands can
also be written in C and compiled if speed is an issue. Finally, the fields in the C structures of the network and example
sets can be accessed from the shell.

The design of ENS was guided by the philosophy that common things should be easy and difficult things should
be possible. One useful feature is the relative ease with which networks can be constructed. Most feed-forward and
simple-recurrent networks can be described with a single command. For example, the command:

addNet myNet 10 20 ELMAN 5 SOFT_MAX

would create a simple-recurrent network with 10 input units, a 20-unit hidden layer with corresponding context layer,
and a 5-unit output layer which uses a soft-max constraint and the appropriate divergence error measure. The input
and context groups project to the hidden layer which projects to the output layer. To build the same network, other
simulators might require that six or more commands be issued, a C program be written and compiled, or that the
network be constructed by pointing and clicking on a graphical interface. If more complicated networks are desired
in LENS, such as ones that use non-simple recurrence or sparse connectivity, the network can be partially built with
addNet and then extended piece-by-piece.

The script language makes it possible to parameterize aspects of network building. For example, a procedure
might be defined to create a network with a specified number of hidden units, thus making it easy to experiment with
different architectures. Some simulators require that a separate file be created for each architecture, which can be a
serious hindrance.

6.1 Displays

Although LENS can be operated using only the shell, graphical interfaces are convenient for providing better visu-
alization and quick access to common operations. Some of g displays are shown in Figure 4. By default, a

main window, which gives access to the most useful commands and training parameters, is opened. The eight panels
in the main window can be individually hidden to conserve screen space. A shell console window is also optional and
provides a nicer command-line environment than the basic Tcl shell, including the ability to edit commands, traverse
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Figure 4: A collection of IENS displays.




the command history, perform command- and file-name completion, and execute commandEwhile usy. The
object viewemllows the user to view and edit the C data structures which represent the networks and example sets and
their components. Where appropriate, fields in the C structures can be hidden or write-protected.

The unit vieweris perhaps the most useful display. It shows the training or testing examples and the activations,
inputs, derivatives, or other values associated with the units or the links projecting to or from a single unit. This
is helpful in observing the behavior of the network and quickly diagnosing problems. By default, the layout of the
network in this window will be created automatically, but commands are also provided for customizing the network
representation. Think viewer depicts the values associated with some or all of the links and calculates summary
statistics. Finally, any real-valued field, typically the network’s error, may be graphed over time.

7 Conclusion

LENS is a fast, flexible neural network simulator with the potential to satisfy the needs of a wide variety of users.
Although currently used mainly by experienced modelers, the relatively straightforwar@aggttie ease of creating

new simulations, and the ability to run on a variety of platforms make it well-suited for use in introductory courses.
LENS is available free-of-charge to those teaching @nducting research academic instutions. The complete
manual and installation instructions can be found on the web at

http://www.cs.cmu.edu/~dr/Lens



