
Abstract

As storage interconnects evolve from single-host small-scale systems, such as traditional SCSI, to the
multi-host Internet-based systems of Network-attached Secure Disks (NASD), protecting the integrity of
data transfers between client and storage becomes essential. However, it is also computationally expensive
and can impose significant performance penalties on storage systems. This paper explores several tech-
niques that can protect the communications integrity of storage requests and data transfers, imposing very
little performance penalty and significantly reducing the amount of required cryptography.

Central to this work is an alternative cryptographic approach, called “Hash and MAC”, that reduces the
cost of protecting the integrity of read traffic in storage devices that are unable to generate a message
authentication code at full data transfers rates. Hash and MAC does this by precomputing security informa-
tion, using and reusing the precomputed information on subsequent read requests. We also present a refined
“Hash and MAC” approach that uses incremental hash functions to improve the performance of small read
and write operations as well as non-block-aligned operations.

Embedded Security for Network-Attached
Storage

Howard Gobioff1, David Nagle2, Garth Gibson1

June 1999
CMU-CS-99-154

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

Contact: David Nagle (bassoon@cs.cmu.edu)
Office: 412-268-3898

Fax: 412-268-6353

1. School of Computer Science, can be reached via email at {hgobioff,garth}@cs.cmu.edu
2. Department of Electrical and Computer Engineering, can be reached via email at bassoon@cs.cmu.edu

This research is sponsored by DARPA/ITO through DARPA Order D306, and issued by Indian Head Division, NSWC
under contract N00174-96-0002. Additional support was provided by the member companies of the Parallel Data
Consortium, including: Hewlett-Packard Laboratories, Hitachi, IBM, Intel, Quantum, Seagate Technology, Siemens,
Storage Technology, Wind River Systems, 3Com Corporation, Compaq, Data General/Clariion, and LSI Logic.

ACM Computing Reviews Keywords: D.4.3 File systems management, C.3.0 Special-purpose and
application-based systems, C.4 Design study, D.4.6 Cryptographic controls. D.4.4 Network communication

2

1 Introduction

Traditionally, disk drives and storage systems have been bound to single server machines that assume responsi-

bility for most aspects of data integrity and security. However, the demand for greater scalability has forced storage to

adopt a decentralized architecture where either: 1) multiple servers manage a shared set of disk drives [Soltis96]] or;

2) clients communicate directly with storage [Gibson97]. These systems achieve their scalability by eliminating the

single-server bottleneck, possibly providing multiple access paths between storage and servers/clients, and by requir-

ing storage to help manage the integrity of its data.

This storage-based integrity requirement is a fundamental change to storage systems and poses a number of sys-

tem-level issues focused on how to efficiently implement integrity in storage. The most obvious issue is the computa-

tional cost of integrity, especially for the cost-constrained embedded environments of storage systems (i.e., disk

drives or RAID controllers). Software solutions cannot support integrity, completely saturating a drive’s CPU before

reaching storage’s 1-Gigabit/sec network transfer rate. Hardware solutions could provide 1-Gigabit/sec bandwidth,

but are not available in low-cost commodity implementations [Eberle92].

To address these issues, this paper examines how to efficiently implement drive-embedded security. Our focus is

on integrity because integrity is essential to the correct functioning in storage systems while applications are able to

provide privacy without support from storage. We perform this study in the context of the Network-attached Secure

Disk (NASD) architecture, using both a NASD prototype and simulation to understand the needs of security.

Section 2 begins with a description of our Network-attached Secure Disk (NASD) architecture and prototype, mea-

suring the performance impact traditional integrity mechanisms can have on storage’s bandwidth and latency. In

Section 3 we explore several approaches to minimizing the cost of integrity. By exploiting storage characteristics we

develop two schemes that reduce integrity’s computational cost, allowing a drive to provide only 33% of the peak

cryptographic bandwidth while increasing latency by less than 10%. Finally, we study how these schemes interact

with real distributed file system workloads, uncovering several potential problems and presenting solutions that allow

storage to cost-effectively deliver drive-embedded security.

While this study focuses on embedded-security for the Network-attached Secure Disk architecture, many of the

behaviors and results in this study are applicable to other storage systems including traditional single-server based

systems running NFS or the WWW. For example, distributed file systems implemented on top of IPsec can signifi-

cantly improve the scalability and performance of IPsec by providing using a similar MAC structure based on pre-

computed hash function as described in Section 3. This is not only important, but essential to server machines that

will quickly bottleneck under the load of data movement and cryptography. Of course, this does require some integra-

tion of security and the file system, but many of the most important performance improvements have come from

these types of integration.

2 Network-attached Storage

In traditional distributed filesystems (Figure 1a), storage is protected behind a fileserver that screens all requests

and transfers data between an internal I/O bus and a general-purpose network. Often, the fileserver becomes the sys-

tem bottleneck because of the store and forward copying through the fileserver’s memory. One solution is to avoid

the server bottleneck by using clusters of trusted clients that issue unchecked commands to shared storage. However,

few environments can tolerate such weak integrity and security guarantees. Even if only for accident prevention, file

3

protections and data/metadata boundaries should be checked by a small number of administrator-controlled file man-

ager machines.

Another solution, Network Attached Secure Disks (NASD) (Figure 1b) avoids both the bottleneck and security

problems by promoting simple storage devices (e.g. disk drives) to first-class network entities and enabling secure

communication directly with clients [Gibson97]. Using NASD’s high-level command interface, clients and drives

communicate directly for common operations (e.g., reads and writes), while infrequent operations which depend on

application specific semantics (e.g., namespace and access control manipulations) go to a file manager. Essential to

the scalability of NASD is the division of authorization, which is performed asynchronously by a file manager, from

enforcement, which is performed synchronously by the drive. Authorization, in the form of a time-limited access cre-

dential applicable to a given file (or set of files) is provided by the file manager upon an initial client request. Then,

when the client makes a request to the drive, the drive enforces the access control decision previously specified by the

file manager and encoded in the access credential. This allows the application specific semantics to reside in the file-

manager. The filemanager encodes policy decisions in NASD-specific terms within the access credential that is

passed to the drive via the client.

To experiment with the performance and scalability of NASD, we designed and implemented a prototype NASD

storage interface, ported two popular distributed file systems (AFS and NFS) to use this interface, and implemented a

striped version of NFS on top of this interface [Gibson97b]. The NASD interface offers variable length objects with

size, time, security, clustering, cloning, and uninterpreted attributes. Access control is enforced by cryptographic

access credentials authenticating the arguments of each request to a file manager/drive secret through the use of a

digest. Using our implementations1, we compared NASD/NFS performance against the traditional Server-Attached

Disk (SAD) implementations of NFS. Our load-balanced large-read benchmark (512K chunks) showed that NASD is

1. The experimental testbed contained four NASD drives, each one a DEC Alpha 3000/400 (133MHz, 64 MB, Digital UNIX
3.2g-3) with a single 1.0 GB HP C2247 disk. We used four Alpha 3000/400’s as clients. All were connected by a 155 Mb/s
OC-3 ATM network (DEC Gigaswitch/ATM).

Figure 1: SAD vs. NASD. Server Attached Disks (SAD) interpose a server between the storage and the network that copies
data from the peripheral network onto the client network. In the SAD case, a client wanting data from storage sends a
message to the file server (1), which sends a message to storage (2), which accesses the data and sends it back to the file
server (3), which finally sends the requested data back to the client (4). In the NASD case, prior to reading a file, the client
requests access to a file from the file manager (1), which delivers access credentials to the authorized client (2). So equipped,
the client makes repeated accesses to the different regions of the file (3,4) without contacting the file manager again unless the
filemanager choose to revoke the clients rights (5).The server also protects communication with the storage. NASD removes
the fileserver from the data path. NASD clients infrequently consult a filemanager and, in the common case, go directly to the
storage device thus avoiding the store-and-forward through the fileserver.

Disk
Controller

Network File System Protocol

Network Protocol

Network Device
Driver

Local Filesystem

Disk Driver

Network
Interface

System
Memory

Backplane Bus

Network

(Packetized) SCSI

NASD File Manager

Network Protocol
Network Device

Driver

Access Control,

Network
Interface

Backplane Bus

Network

NASD Object Storage

Network Protocol

Network Device

Disk Cache

Disk Hardware
Namespace, and

Consistency

(A) (B)

1

4

1

4 44
2

3

2

3

5

1 4

5

4

able to scale linearly, up to the drive’s aggregate transfer bandwidth, while SAD NFS and a parallelized version of

NFS are limited by the data throughput of the server to just three drives [Gibson98].

2.1 Security Costs for Storage

Implementing efficient and cost-effect cryptography in a NASD is a challenging problem. Current processors

cannot support software-based cryptography due to insufficient CPU cycles while hardware-based solutions are

costly, especially for commodity storage. Figure 2 shows the performance of our NASD prototype across a range of

software-implemented security options. With no security, raw performance peaks at ~6 MB/second. Activating integ-

rity on a command’s arguments (IntegrityArgs), which protects nonces and request arguments (e.g., object identi-

fier, byte-range, operation-specific fields, return codes) using HMAC-SHA1 [Bellare96a], lowers performance by a

fixed number of cycles, reducing 1-KB read performance by 30% and 128-KB read performance by 7%. By also pro-

tecting the data (IntegrityAll), the system provides improved protection but imposes a high overhead per byte.

Figure 2 shows the maximum throughput is reduced by 46% for 1-KB reads and over 65% for 8-KB reads, where the

CPU saturates due to cryptography. Finally, providing privacy for all of the data, PrivacyData, reduces performance

by an even larger margin, to 126-KB/sec regardless whether or not any integrity protection is used.

These results demonstrate that software-based security on a low-cost microprocessor cannot meet the demands

of storage. Other algorithms may be faster, but not by the factor of 240 necessary to meet modern 30 MB/sec disk

drive media rates, nor the Gigabit/second storage network rates. Hardware-based cryptography would provide higher

performance, but at significant cost, especially for 1-Gbit/sec security necessary for FibreChannel-based disk drives.

Therefore, we turn to other approaches that enable high-performance and security from a low-cost storage device.

Figure 2: NASD Prototype Performance with and without Security. Protecting the integrity of arguments and return
codes imposes a small performance penalty over a system with no security while protecting all data quickly saturates the CPU.
Each point represents read throughput over 3+ seconds of continuous read requests and a minimum of 100 requests by a single
client reading data from an in-memory object This eliminates media access time from the measurements. The large
irregularities in the graph are an artifact of the DCE/RPC communications layer. The data was taken from our NASD
prototype, using DEC Alpha workstations (133 MHz 21064 processors) for NASD drives [Gibson98], 233 MHz Alpha
workstations for clients and an OC-3 ATM DEC Gigaswitch for networking. HMAC-SHA1 implemented integrity and 3DES
implemented privacy, with all security algorithms implemented in software.

32 64 96 128
Client Request Size (KB)

0

1000

2000

3000

4000

5000

6000

B
an

dw
id

th
 (

K
B

/s
ec

)

NASD Prototype Performance
SHA-1, HMAC-SHA1, 3DES

No Security

HMAC All (IntegrityAll)

HMAC (IntegrityArgs)

HMAC Data (IntegrityData)

3DES (PrivacyData)

5

3 Optimizing Security Performance for Storage

3.1 Storage Characteristics

Storage has numerous characteristics that can be exploited to better optimize the performance of security. These

include:

• repeated reading of the same data
• storage is non-volatile
• long access latencies (1 - 20 msecs)

• storage transfer rates (30 MBytes/sec) << interconnect transfer rates (100+-Mbytes/sec)
• relatively slow CPUs << server class or workstation CPUs
• applications/operating systems allow many writes to happen lazily (e.g., Unix file cache sync)
• most data moved in large (bulk) transfers)
• most messages are small (i.e., commands)

Moreover, many applications read more data than they write [Baker91]. Good examples are executable files,

data mining databases, mail files, directories, and news files with Berkeley NFS traces [Dahlin94] showing a read to

write request ratio of 4.8 to 1. These infrequent changes enable resuse of both the raw data and any computation done

over the data. For example, storing the network checksum with a set of data blocks allows subsequent reads to reuse

the checksum, avoiding the repeated cost of on-the-fly checksum computation. Previous research has shown that web

server support that stores the network checksum can improve throughput by more than 2X [Kaashoek96]. In the fol-

lowing section we discuss how to apply this technique and other storage characteristics to efficiently embed integrity

in a disk drive.

3.2 Precomputing Security with Hash and MAC

Precomputation can be used to improve the performance of security. However, if data is shared using different

keys, perhaps one per user, precomputation requires significantly more storage space to store the different MACs or

does not benefit read requests from different users. However, it is possible to decouple MAC calculation into a keyed

and an unkeyed component and explicitly delaying the binding of the key to the computation. Based on existing mes-

sage authentication code and message digest algorithms, this approach, called Hash and MAC, does the following:

• When a drive object is written, the drive precomputes a sequence of unkeyed message
digests over each of the object’s data blocks,

• For each read request, the drive generates a MAC of the concatenation of the unkeyed
message digests corresponding to the requested data blocks.

Normal MAC algorithms (Figure 3a) involve the key throughout the entire computation of the message authenti-

cation code. In contrast, Hash and MAC removes the key from the per-byte calculation, only using the key in the final

step of the calculation (Figure 3b). Because the key is not involved in the per-byte calculations, the results of the

per-byte calculation, a set of message digests, can be stored and used for multiple read requests to the same disk block

from different clients. Additionally, since no key needs to be identified before a message digest can begin, message

digest processing may be simpler for high speed hardware than MAC processing which must delay until the proper

key is identified.

6

The Hash and MAC approach is very similar to encrypting or signing a message digest. However, it does not

provide the non-repudiation that a public key system provides. In this sense, it is more like a normal MAC or encrypt-

ing a message digest with a symmetric key system. In contrast to encrypting a digest, a MAC has better defined prop-

erties to protect against modification and is not subject to U.S. export restrictions. See Appendix A for a discussion of

the security of Hash and MAC.

3.2.1 Performance of Hash and MAC

NASD’s implementation of “Hash and MAC” uses SHA-1 to compute each disk block’s message digest and

HMAC-SHA1 for the overall message authentication code. We refer to this specific instantiation of Hash and MAC

as HierMAC. On a data read command, the pre-computed message digests are read from the drive and used as input to

the HMAC-SHA1. If only a partial disk block is read, which only occurs in the first or last disk blocks of a request, a

message digest of the partial disk block is computed on the fly.

With a normal MAC, the cryptographic costs are directly proportional to the number of bytes being transmitted.

HierMAC reduces the cost to:

where (PrefixBytes + SuffixBytes) are the bytes in the partial data blocks. In our implementation, a disk block is

8KBytes while a message digest is 20 bytes. Thus, HierMAC performs a MAC operations on 20 bytes per full disk

block (8KBytes) transferred, reducing in the asymptotic case the request time to 0.2% of over a normal MAC. This

does not change the total number of bytes processed by the MAC algorithm. Instead, we are reordering the work in

time and sharing work across multiple commands to reduce the on-the-fly cryptographic load.

Figure 3: MAC Structures. The Hash and MAC approach reduces the amount of computation that involves the secret
key. Each message consists of a sequence of full disk blocks which may be preceded and/or followed by a partial disk
block. On the left, most MAC algorithms involve the key in the computation over all the bytes of data and process the data
linearly. On the right, Hash and MAC does not involve the key until late in the computation. This enables parallelization
and precomputation for increased performance. The labeled dotted lines indicate the amount of data that passes in and out
of the message digest or MAC algorithms at that different stages of computation. In the Hash and MAC approach, a
calculation over only 20 bytes per disk block involves the key while the rest of the computation can potentially be
precomputed without knowledge of the key.

Data

MAC

Secret Key

Data
PB DB DB DB DB PB

MD
Alg

MD
Alg

MD
Alg

MD
Alg

MD
Alg

MD
Alg

MDMDMD MDMDMDMAC Algorithm

MAC Output

DB - disk block of n bytes
PB - partial disk block of less than n bytes
MD - message digest

Secret Key

MAC Output

20 bytes

N bytes

N bytes

20 bytes

20 *(N/M) bytes
M = size of disk

block

PB DB DB DB DB PB

Normal MAC Hash and MAC
(A) (B)

RequestHdr PrefixBytes SuffixBytes+() NumOfFullDiskBlocks DigestSize×+ +

7

Figure 4 shows that reducing on-the-fly cryptography significantly increases read throughput, allowing perfor-

mance to closely follow the no-security performance curve. Reuse of stored message digests reduces the total crypto-

graphic costs so much that the cost of protecting the arguments in addition to the data is a noticeable performance

difference. Between 8Kbyte block boundaries, performance declines because the drive spends more time processing

the prefix and suffix bytes from the partial disk blocks. On 8KByte boundaries, the drive only uses only stored

digest (prefix + suffix length returns to zero) and the cost of protecting integrity is minimize. This behavior results in

the saw-tooth curve. For a uniform distribution of starting and ending bytes within a file, the average number of prefix

+ suffix bytes will be the size of one data block. Thus, the performance at the lowest points of the saw-tooth, 1 byte

before hitting a disk block boundary, will represent the expected average performance for a randomly selected read

request. Many filesystems attempt to make requests that are aligned on disk block or VM page boundaries which will

result in significantly better performance.

3.2.2 Hash and MAC for Attributes

Filesystem attributes can also benefit from the pre-compute optimization. NASD supports both standard

attributes1 (e.g., modification time) and filesystem specific fields that are fairly large (256 bytes). Also, attributes

change less frequently than data — our AFS workload shows a ratio of 22:1 of attribute retrieving operations versus

attribute modifying operations while NFS shows a ratio of 6:1.

The relatively large size of NASD attributes coupled with their static nature makes them suitable for the same

“Hash and MAC” optimization. This reduces the cost of protecting NASD attributes from 336 bytes to its 20 byte

digest.

3.3 Efficient Support for Small Requests using an Incremental Hash

Small requests are very common in both distributed file systems [Baker91, Riedel96], databases and persistent

object systems [Stamos84]. Therefore, small access and large transfers are important to consider.

1. We can apply this optimization to NASD attributes because, unlike tradition unix attributes, NASD does not maintain a last
access time. If NASD maintained a last access time then the attribute would change on every operation and storing pre-com-
puted digests with the attributes would not be advantageous because the digests would need to be updated on every request.

Figure 4: HierMAC Performance. Using HierMAC,
based on SHA-1 and HMAC-SHA1, the drive delivers
integrity-protected bandwidth close to the prototype’s
maximum bandwidth. Reuse of stored message digests has
substantially improved the read bandwidth for large
requests. The saw-tooth behavior occurs as the drive
generates an on-the-fly message digest of the partial final
data block.
The x-axis is the size of requests, which start at the begin-
ning of an object, while the y-axis is the average read band-
width seen at the client. Each point represents read
throughput for a minimum of 3 seconds of continuous
requests and a minimum of 100 requests. Each request is a
single client reading data from an in-memory object at the
drive beginning at byte 0. HierMAC stores an SHA-1 digest
on each 8 KB disk block.

HierMAC All

HierMAC Data
HMAC Args& Return Code

0

1000

2000

3000

4000

5000

6000
B

an
dw

id
th

 (
K

B
/s

)

32 64 96 128
Request Size (KB)

HMAC All

No Security

HMAC Data

NASD Prototype with HierMAC
SHA-1, HMAC-SHA1, 3DES

8

One optimization for small writes is to defer the updates of the stored digest and perhaps amortize the update cost

across multiple small writes. However, deferring the update until the next read request can create unpredictable per-

formance. As long as the stored digest is up to date, the client can make reasonable assumptions about expected

request service time based on the request size, request alignment, and overall application state. If the digest may need

to be recomputed, this introduces another variable that the client can not predict because it depends on the history of

a given disk block.

A more promising solution is the incremental hashing paradigm developed by Bellare et al [Bellare94,

Bellare97], which describes several hash functions for which the amount of work necessary to update a previously

computed digest is proportional to the size of the change. For network attached storage, this enables small writes to be

implemented much more efficiently.

3.3.1 Incremental Hashing

Incremental hashing divides a message into a sequence of fixed sized blocks of size b, called

incremental blocks. This is the base data unit for a hash function. Each incremental block is concatenated with its

block number to generate an augmented block, . For each augmented block xi’, a compression function h

is applied to xi’, generating the hash value . Combining using a combining

operator () generates the final hash value.

More clearly we can express this as:

To replace an incremental block xi with a new incremental block xi
† in a stored digest, we compute h(i.xi) and

take an inverse of the stored hash and then combine in h(i.xi
†) with the stored hash. This is less work than recalculat-

ing the entire stored digest.

Another benefit of the incremental digest is the ability to compute the digest of a partial disk block without com-

puting over all the data. Observe that

In English, if we read only part of the data covered by a stored digest, the hash for the partial data read is com-

puted by taking the inverse of the stored hash and the hash of the complement of the portion being requested or com-

puted it directly from the data being requested. Using this complementary property, we must compute over, at more,

only half of the data to calculate a correct hash.

Bellare et al present two classes of incremental hash functions: MuHash and AdHash where the combining oper-

ators are modular multiplication and modular addition, respectively. For NASD, AdHash is more appealing than

MuHash for two reasons: the size of digests and computational cost. Since the size of the modulos is equivalent to the

size of the digest we must store with each disk block, MuHASH modulos of 512 to 1024 bits is too large, where-as

x1 x2 … xm, , ,

xi’ i.xi=
yi h xi’()= y1 y2 … ym, , ,

∇

HASH x1 …,xn,() ∇i 0 n,= h i.xi()=

HASH xr …,xs,() ∇i 0 n,= h i.xi() 〈 〉∇ 1–
 ∇i 0… r 1–() s 1+()…m,= h i.xi()〈 〉 = =

∇i r s,= h i.xi()

9

AdHASH requires ~200 bits1. This provides a factor of 2 to 4 space reduction for each disk block in NASD. Further,

AdHash’s addition operation is faster, enabling faster software and hardware implementations.

3.3.2 Integrating Incremental Digests in NASD

NASD can implement an incremental digest using AdHASH built on SHA-1 by applying the SHA-1 compres-

sion function to two sequential message blocks, and , pro-

ducing two 160-bit digests which are combined by shifting the first one left 96 bytes and xoring the values together to

produce a 256-bit hash:

This provides all the collision resistance of the original SHA-1 compression function. An obvious alternative is to

simply concatenate the results of the two calls to the compression function and generate a 320 bit output. However, a

320-bit digest requires the drive store 320-bits per disk block which is a larger overhead than storing only 256-bits. If

subset sum attacks improve significantly, combining the output of two compression function calls can easily be

adapted to produce a 320 bit subset sum problem.

The incremental hash functions described by Bellare et al concatenates the block number i onto data block xi

before hashing in order to prevent reordering of data blocks which can double the number of invocations of the com-

pression function. If the incremental blocks are the same size as the basic block of the compression function, which

allows fine grain changes to be done most efficiently, then we need to invoke the compression function twice, once

for the data and once for the block id, which doubles the amount of hashing. The obvious solution is to increase the

incremental block size to amortize the cost of appending the block number. However, increasing the incremental

block size reduces our potential gains from using incremental cryptography because all up dates of a stored digest

occur on the granularity of an incremental block.

We propose incorporating the block number into the IV of the compression function to eliminate the extra hash

invocation. In an iterated hash function, of which SHA-1 is an example, the IV is used as an initial seed value for the

first iteration and a chaining variable between iterations. By placing a value in the IV, the final result of the hash

function is dependent on the value. If this were not true, the final output of an iterated hash function would not be

dependent on the results of previous iterations.

Does changing the IV make it easier to find a collision? Although the SHA-1 design criteria are not public, we

believe it unlikely that changing the IV will make collisions more likely. SHA-1’s IV is a simple sequence of bytes

with a very regular pattern thus provides little evidence of being a particularly special value. Additionally, SHA-1 is

directly derived from MD4 [Rivest91] which was developed openly and has no publicly stated special design criteria

for the IV. In the initial MD4 paper, Rivest suggests changing the IV, along with the other constants, and running

two-MD4 functions in parallel to generate longer digest values which indicates some flexibility in the IV value.

Preneel and Oorschot also modify the IV of arbitrary hash functions in their MDx-MAC construction [Preneel95].

Together, these facts make it unlikely that there is something special about the values employed in SHA-1’s IV and it

should be safe to effectively incorporate the block id into the message digest using the IV. Furthermore, this tech-

nique is applicable to any hash function that does not use special values in the IV.

1. Daniele Micciancio, one of the researchers working on incremental cryptography, recommends at least 256 bits for longer term
security [Micciancio99].

ci compress xi()= ci 1+ compress xi 1+()=

h xixi 1+() compress xi() 96«() compress xi 1+()⊕=

10

3.4 Comparison of Cryptographic Cost

To determine the impact of providing integrity at the drive, this section compares the cost of three approaches:

Basic MAC: The basic MAC scheme where all bytes are MAC’d using HMAC-SHA1.

Stored Digest: The “Hash and MAC” approach using precomputed SHA-1 digests stored with disk blocks as

described in Section 3.2.

Incremental Stored Digest: The “Hash and MAC” approach using precomputed digests that are generated

using AdHash built on SHA-1 and addition modulo 2256 with the block number placed in the IV. The precomputed

digests are bound to a key using HMAC-SHA1.

The comparison is in terms of the number of invocations of the SHA-1 compression function which is the “com-

mon currency” of cost in the three approaches. The cost of padding out the messages to message digests or message

authentication code block sizes is assumed to be zero. This is the cost of filling a buffer with up to 64 bytes of zeros

and perhaps the message length which is a inexpensive operation relative to the compression function calls and will

only occur once or twice per request. In contrast, the modular addition and subtraction used in the incremental stored

digest approach will be used many times in a single request so must be modeled more accurately. The cost of modular

addition and subtraction are modeled as 0.10 and 0.07 the cost of an invocation of the SHA-1 compression function.

These values are the relative execution cycle counts, measured using DEC’s ATOM profiling tools on a 233 MHz

Alpha 21064, of simple C-language compiler-optimized implementations of 256 bit addition and subtraction using

only 32 bit variables compared to our SHA-1 compression function implementation. The costs are likely higher than

a hand optimized assembly implementation but provide a conservative estimate of the cost of the combine and

uncombine operations. These costs as well as equations describing the costs of all three approaches were modeled in

Mathematica to generate the data presented in Section 3.3.

3.4.1 Integrity Overhead Costs at the Client

Precomputation reduces the drive’s work on reads, but forces the client to perform a small amount of extra work

to MAC the message digests. Figure 5 shows that both stored digests solutions increase the client’s overhead slightly

for either a read or a write. The additional computational overhead is due to the combine operator (i.e., modular addi-

Figure 5: Client Overhead for Integrity. Using the
precomputed digest optimizations requires clients to do a
small amount of extra work for each disk block transferred.
Based on a model of what computation the clients must
perform, each line shows how many times a client must call
the compression function, or equivalent work in the combine
and uncombine operators, for a given amount of data being
transferred. The x-axis is the size of the request and the y-axis
is the number of invocations of the SHA-1 compression
function, the core of SHA-1. The first two lines are
approximations of the cost when using incremental
cryptography on 256 byte and 128 byte incremental blocks
respectively. HMAC-SHA1 is both the baseline for
comparison and the minimal achievable amount of
computation. Stored digest is the cost for the “Hash and
MAC” approach with SHA-1 described in Section 3.2.

8KB 16KB 24KB 32KB

Request Size

100

200

300

400

500

600

700

C
om

pu
ta

tio
n

C
os

t (
M

D
co

m
pr

es
s

C
al

ls
)

Client Cost

Incremental (128 byte i-block)

Stored Digest
HMAC-SHA1

Incremental (256 byte i-block)

0

11

tion) that is applied to generate a single digest for an entire disk block from the results of the compression function on

each incremental block. For example, the smallest possible block size (e.g. 128 bytes) requries the addition of 64

256-bit values per 8K disk block in additional overhead. while 256 byte incremental blocks requires half the over-

head. We use 256 byte incremental blocks for the remainder of the evaluation.

3.4.2 Integrity Cost at the Drive for Reads

Figure 6a shows both the stored digests and incremental stored digests approaches perform significantly less

cryptographic work for large block aligned reads because they can reuse stored digests. For smaller requests, the

complementary property of incremental digests smooths out the saw-tooth curve. In a system where small requests

were efficient, we expect this reduction to smooth the saw tooth behavior.

For non-aligned reads (Figure 6b), precomputed digests do not provide any benefit until the drive reads almost

2 full disk blocks. Here, the drive must always compute a digest on all the data in the first partial disk-block because

the drive only stores a digest of the entire disk-block. In contrast, the incremental stored digest has a much smaller

penalty because the complementary property is largely independent of the offsets. However, both Figure 6a and

Figure 6b show a small saw-tooth behavior for the incremental stored digests because the drive may still compute

over up to half a disk block before the complementary property is helpful. Just as the stored digest approach must

on-the-fly calculate a hash of all bytes in a partially read disk block, the incremental stored approach must on-the-fly

calculate a hash of all bytes in a partially read incremental block which creates the fine grained saw-tooth which over-

lays the coarser saw-tooth from the partial disk blocks. For smaller incremental block sizes, the tooth size will shrink

while larger incremental block sizes will increase the size of the teeth. However, reducing the incremental block size

increases the overhead.

3.4.3 Integrity Cost for Writes at the Drive

For writes, incremental digests and stored digests increase work by up to one disk block for small or misaligned

operations. The drive must verify the received MAC and then update the stored message digest in both the stored and

incremental stored approaches. For the stored digest approach, the drive must generate an entire new stored digest for

a disk block even if only a single byte is written and this is a substantial penalty for small writes. If a write starts on a

disk block boundary then computing of the new stored digest can simply continue from the calculation necessary to

verify the digest on the data received from the client because recomputing the hash of the common prefix would be

redundant. In this case, the cost is a function of the number of disk blocks touched by the write operation which cre-

ates the step-function effect shown in Figure 7a.

If a write begins at some offset into the disk block, shown in Figure 7b, the stored digest approach pays a larger

penalty than the incremental stored approach. With the basic stored digest scheme, the drive can no longer continue

the calculation used to verify the data received from the client because the received data is no longer a prefix of the

disk block. Instead, the drive must first verify the received MAC and then start from scratch to generate the stored

digest for the updated disk block which makes small, miss-aligned writes extremely expensive. The incremental

approach is largely independent of offset and does not pay these penalties on small writes.

12

(b)(a)

0 8KB 16KB 24KB 32KB

Request Size

100

200

300

400

500

600

700

C
om

pu
ta

tio
n

C
os

t (
M

D
co

m
pr

es
s

C
al

ls
)

Disk Block Aligned

0
8KB 16KB 24KB 32KB

Request Size

100

200

300

400

500

600

700

Single Byte Offset

Incremental Stored
Stored Digest
HMAC-SHA1

Incremental Stored
Stored Digest
HMAC-SHA1

Figure 6: Drive Cryptographic Cost for Integrity on Reads. Both incremental stored and simple stored approaches
significantly reduce amount of cryptographic work the drive must perform on a large read request compared to HMAC-SHA1.
For misaligned reads, the complementary property of incremental digests allows the digests to be calculated more easily than
normal digests. Based on a model of what computation the clients must perform, each line shows how many times a client
must call the compression function, or equivalent work in the combine and uncombine operators, for a given amount of data
being read from a given offsets. The x-axis is the size of the request and the y-axis is the number of invocations of the SHA-1
compression function, the core of SHA-1. Incremental stored is the incremental scheme described in Section 3.3.2 using 256
byte incremental blocks. Stored digest is the cost for the “Hash and MAC” approach with SHA-1 as described in Section 3.2.
HMAC-SHA1 is the most standard way of providing communication integrity and is used as a basis for comparison.

(b)(a)

8KB 16KB 24KB 32KB

Request Size

0

100

200

300

400

500

600

700

Single Byte Offset

0 8KB 16KB 24KB 32KB

Request Size

100

200

300

400

500

600

700

C
om

pu
ta

tio
n

C
os

t (
M

D
co

m
pr

es
s

C
al

ls
)

Disk Block Aligned

Incremental Stored
Stored Digest
HMAC-SHA1

Incremental Stored
Stored Digest
HMAC-SHA1

Figure 7: Drive Cryptographic Cost for Integrity on Writes. For write operations, both stored digest approaches pay a
penalty for updating partially modified disk blocks. For misaligned operations, this penalty is reduced when incremental
digests are used. Based on a model of what computation the clients must perform, each line shows how many times a client
must call the compression function, or equivalent work in the combine and uncombine operators, for a given amount of data
being written to a given offsets.The x-axis is the size of the request and the y-axis is the number of invocations of the SHA-1
compression function, the core of SHA-1. Incremental stored is the incremental scheme using 256 byte incremental blocks.
Stored digest is the cost for the “Hash and MAC” approach with SHA-1.

13

4 Integrating Security Hardware into Network-attached Storage

4.1 Overview

Cryptography capable of sustaining network data rates is the ideal solution for any storage workload that requires

security. However, cost considerations can make this difficult to achieve. Optimizations, such as the HierMAC or

HierMAC with incremental digests reduce the amount of cryptography required for read traffic, but do not signifi-

cantly improve small transfers or write-traffic bandwidth — both essential to achieving acceptable storage perfor-

mance. Fortunately, acceptable storage performance at sub-network cryptographic speeds is possible because: 1)

media data rates are significantly lower than high-speed network data rates; 2) storage workloads have periods of

idleness. These characteristics provide a range of performance, between network and media data rates, that enables an

unique set of trade-offs involving cost, throughput, and latency.

This section explores how this performance range can be exploited to achieve good system performance without

implementing full network-speed cryptography. To ground the discussion, we begin with an overview of drive elec-

tronics and examine the performance of current software and hardware solutions. Next, we show how integrating

security into a NASD impacts the system’s latency and discuss the performance issues involved in providing integ-

rity, privacy, or both. The analysis is quantified using real file system traces reveals that a drive, using HierMAC and

providing only 33% of a network’s full-duplex bandwidth, can successfully services file system requests with less

than a 10% increase in latency (over a system with no security).

4.1.1 Integrating Hardware-based Security into Network Attached Secure Disk

The electronics on a modern SCSI disk drive are very similar to a modern computer, and include a microproces-

sor (~60 MIPS), a SCSI interface, and several megabytes of RAM. In addition, there are numerous very small func-

tional units that manage the drive, including a motor controller, R/W channel, preamp & write driver, error correcting

code engine, sequencer, buffer controller, servo controller — most of which are migrating into a single ASIC solu-

tion. A network-attached disk requires the same core function as a SCSI drive, replacing the physical SCSI interface

with a high-performance network (e.g., Gigabit Ethernet, FibreChannel) while increasing the microprocessor’s per-

formance to support NASD’s in-drive file system. Adding hardware-based security requires four new functional

Figure 8: Quantum Trident ASIC. Modern drive
ASICs integrate a large amount of functionality onto
a single chip. The SCSI controller, servo controller,
sequencer, motor controller, error correcting code,
and a small amount of SRAM provide the core
device functionality while a CPU and DRAM are on
other chips. The primary ASIC in the Trident
consumes approximately 110 thousand gates and
22 KByte of SRAM in a 74 sq. mm package using
0.68 micron chip technology.

14

blocks: key memory, encryption/decryption, message authentication code (which uses SHA-1 in the prototype), and

key management logic. Software-based security would require fewer functional blocks, with the encryption/decryp-

tion and key management blocks handled by the microprocessor and keys stored on the disk media. However soft-

ware-based security demands a significantly more powerful processor. Further, because the microprocessor must

touch all bytes that are either sent or received, the ASIC’s internal datapath, which is currently optimized for minimal

data movement through the microprocessor, would also require a fundamental change.

4.1.2 Current Software and Hardware Cryptography

Most cryptographic algorithms are not designed with efficient software implementation as a primary design cri-

teria. For example, current workhorse encryption algorithms such as Triple-DES1 (3DES), requires 108 clock cycles

per byte on a Pentium processor [Schneier97], yielding about ~9MBytes/second on a Gigahertz Pentium Pro. Likely

successors to Triple-DES, the Advanced Encryption Standard (AES) candidates [NIST98], all improve on the perfor-

mance of Triple-DES, but still require 20-69 clock cycles per byte for 8 KB requests with an average penalty of an

additional 3 cycles per byte a smaller, 1 KB request [Schneier99].

Hash functions have significantly better software performance than encryption. For example, SHA-1 on a 200

MHz Pentium requires 13 clock cycles per byte (15 MB/second) while RIPE-MD160 hashes at 16 clock cycles per

byte (12.5MB/second) [Preneel98]. While better than the fastest AES algorithms, they will still consume most of a

200 MHz Pentium’s cycles supporting the media rates of current disk drives. These numbers show that a NASD-class

processor, ~200 MIPS (e.g. 200 MHz StrongARM), will be unable to support software-based cryptography, thus

requiring hardware-based cryptography.

There are a wide range of hardware cryptographic accelerators. Eberlee at Digital’s System Research Center

demonstrated an experimental DES chip in 1992 that delivered 1 Gb/s performance [Eberle92]. Currently, you can

purchase chips such as the Hi/Fn 7751 [HiFn99] or VLSI’s VMS115 [VLSI99] running at 80 MHz which deliver

approximately 100 Mb/s and 200 Mb/s performance for both SHA-1 and Triple-DES. These chips, primarily

designed to enable IPsec-based virtual private networks in 100Mb/second routers, may not be priced aggressively for

commodity devices. Pijinburg Custom Chips’ next generation ASIC (500k gates, 0.18 micron) will implement

SHA-1, Triple-DES, Safer SK64, and RIPEMD-160 [vanPelt99] and is expected to deliver up to 500 Mb/s perfor-

mance from each functional unit. Cognitive Designs next generation ASIC, the CDI 3000, will perform Triple-DES

at 172 Mb/s and concurrent SHA-1 at 204 Mb/s, priced at approximately $20 in volume [Finley99]. While these cost

and performance numbers are difficult to map directly into a NASD, they do provide an intuition of the performance

and cost of readily available hardware support.

4.2 Security and the Drive Datapath

Integrating cryptographic hardware into a storage device reduces latency and increase throughput over soft-

ware-only solutions. Minimizing latency is very important because additional latency increases request service times,

which clients are sensitive to on small requests, and increases a drive’s internal memory requirements (i.e., larger

queues). Similarly, guaranteeing (at least) media-rate bandwidth is important because without sufficient crypto-

graphic throughput, the drive cannot deliver its raw bandwidth to clients.

1. Triple-DES was recently proposed as an updated U.S. government Data Encryption Standard (FIPS 46-3), replacing single
DES, so we can expect it to be very relevant for many years to come [NIST99].

15

At a functional level, integrating security into a drive architecture adds another stage to request processing,

increasing latency and potentially throttling system throughput (Figure 9). Without security, requests arrive on the

drive’s network interface then they are processed by various levels of communication protocols. Next, they are placed

on a work queue and then either serviced from the cache or scheduled for media access. For cached (or buffered)

accesses, cryptography slower than the network will force commands or data to queue up between the network inter-

face and crypto unit (buffer1) on incoming datapath and between the crypto unit and the drive electronics (buffer2) on

the outgoing datapath. However, for cache misses or large writes, the drive’s data rate is ultimately determined by the

media.

4.3 Latency

Cryptographic operations impose several ordering dependencies that impact latency. In both directions, the first

step is to determine which key should process a request. Because decryption cannot begin before the appropriate key

is supplied, key management directly impacts the latency of decryption and/or integrity (using a standard MAC algo-

rithm). Worse, integrity with privacy requires that the MAC wait until decryption is complete. However, the Hash

and MAC parallelizes the key access with hash calculations, hiding the key management latency for most requests.

Unfortunately, no such optimization is possible for privacy, which must always wait for the proper key.

Cryptographic primitives are the next component of latency. Encryption algorithms normally process 64-bit

blocks, for 3DES, or 128-bit blocks for more modern ciphers. These small blocks allow encryption to form a

fine-grained pipeline, producing results every 64 or 128 bits. An OceanLogic DES core processing one 64-bit block

every 16 clock cycles [OceanLogic99], would implement 3-DES with a 48 cycle latency (buffer1 and buffer2 in

Figure 9).

Integrity algorithms employ a much larger chunk size, creating a courser-grained pipeline and significantly

increasing the latency of requests. For example, our prototype’s MAC uses a 64 KB chunk size. With completely

serialized operations, a 64KB chunk must be MAC’ed before transmission, then transmitted to the receiver, and

finally verified by the receiver by performing another MAC. The process can be parallelized, but the receiver cannot

verify the data until the corresponding MAC is received. With drives likely to send data faster than they perform a

MAC operation, the time to compute a MAC will determine the minimum latency of an operation.

Network
Interface

Media
Queue/
CacheCryptography

Figure 9: Model of a NASD’s internal functional pipeline. When security is introduced into a disk drive, the drive may
need to buffer requests both before or after the cryptography in order to maintain correctness or perform speed-matching. The
Queue/Cache holds requests queued up at the media and the drive’s data cache. The buffers and the media queue/cache may
allocated from a single memory pool and illustrate a logical distinction rather than a physical one. If the network runs faster
than the security but security is faster than the media, buffer1 will fill on a writes and buffer 2 on a cache read cache hit but
both buffers will empty faster than media can drain the queue. If the security is slower than the media rates, buffer1 will fill
on every write and buffer2 on every read.

DCE, VIA,
TCP/IP, etc.TCP/IP, etc.

B
u
f
f
e
r
1

B
u
f
f
e
r
2

Input Link

Output Link

16

Integrity latency varies by a factor of 20 or more depending on type of MAC and the size/type of request. Both

HierMAC and HierMAC w/incremental digests, improve latency over HMAC-SHA1 by enabling early data process-

ing and both use precomputed digests, reducing latency to a few iterations of the message digest calculation. On

writes, both HMAC-SHA1 and HierMAC have longer latencies than HierMAC w/incremental digests. HMAC-SHA1

latency is a function of chunk size while HierMAC depends on digest block size. HierMAC with incremental digests

optimization reduces latency by enabling parallel computation over 256 B blocks, followed by the modular

256 B

S bytes S S bytes S bytes

S bytes

S bytes MAC

MD

S bytes MD

S bytes MD

 20B 20B ... 20B

+256

MD

256 B MD

256 B MD

+256

+256

 32B 32B ... 32B

R blocks of S bytes

R
 b

lo
ck

s
of

 S
 b

yt
es

MAC

(S
/2

56
)

in
cr

em
en

ta
l b

lk
s

Repeat R times

R
bl

oc
ks

 o
f S

 b
yt

es

MAC

Depth of Log(S/256)

(a) HMAC-SHA1

(b) HierMAC

(c) HierMAC w/ incremental digests

Read Write
Latency in Cycles

15.9k 15.9k

400 16k

400 700+
adder
tree

Figure 10: Comparison of latency for different MAC approaches. HierMAC has uses precomputation and it has lower
latency than HMAC-SHA1 on a read request. On a write request, incremental stored digests also reduce latency because it
introduces more parallelism. This figure illustrates the critical path length, i.e. latency, for the three MAC approaches. All
three approaches are parameterized by S, the size of the disk block, and R, the maximum number of disk blocks sent before a
MAC is inserted. HMAC-SHA1 simply computes over R*S bytes then it produces a result. HierMAC can use precomputed
digests on the read and it can compute the digests in parallel on a write (which is the same as HMAC-SHA1 when R=1).
HierMAC with incremental digests has more parallelism which benefits small requests and writes as well having the benefits
of stored digests.
On the right side of the figure, we list the latency to process a read and write of disk block, ignoring header and key costs. we
assume S = 8192 bytes an R=1, which makes HierMAC and HMAC-SHA1 comparable on the write path. For per message
digest latency, we estimate 123 cycles, which is the amount of time required per message digest block in an FPGA implemen-
tation of the SHA-1 core by built by our research group [Schlosser98].

17

arithmetic (combining operators), and a final MAC. This parallelism does, however, require more hardware to pro-

cess 256 B blocks in parallel.

For small requests, HMAC-SHA1’s key generation dependency can create a long critical path. HierMAC avoids

this critical path, allowing data computation to proceed without the key, but at the cost of an additional step, one extra

iteration of the message digest calculation,

Finally, in addition to the cryptographic operations, the drive must also verify the nonce on a request and check

that the an access credentials appropriate for the request. Checking the nonce requires searching for the nonce, proba-

bly in a hash table, to confirm that it has not already been received. For capabilities, a simple form of access creden-

tials, the check requires only a few cycles to perform some simple comparisons. These checks can be performed in

parallel with the cryptographic processing as long as the request is not irreversibly committed until all checks are

completed.

4.4 Throughput

Storage throughput varies widely. Interconnects, such as Fibrechannel provide 2-Gb/sec full duplex while media

transfer rates are currently only 28 MB/sec peak (increasing at 40% per year) [Grochowski96]. Clearly, crypto-

graphic throughput at networking data rates provides optimal performance, especially for requests that hit in the

on-drive RAM cache. However, limited amounts of drive cache significantly reduces the hit rate, except for sequen-

tial accesses that benefit from read-a-head. If cryptography performance exactly matches media rates, the maximum

throughput will be media data rates. Cryptographic throughput exceeding media rates reduces cache hit latency and

provides greater peak performance when cache hits do occur even though the sustained rate may be substantially

lower. Additionally, exceeding the media rate allows requests to queue after cryptography, providing the drive with

an opportunity to reorder requests and maximize its use of the media (although it can not exceed media data rates).

The exact amount by which cryptographic data rates should exceed media rates will depend on the costs of increasing

the data rates, the emphasis on peak bandwidth, and the probability of a cache hit. If a drive were to have a much

larger data cache, optimizing for cache hits would be more compelling than the case for a drive with a few megabytes

of cache.

We have designed the security of NASD to maximize the parallelism available to the drive in order to improve

its throughput. Encryption is highly parallelized because it uses counter-mode rather than more standard modes

which have dependencies between encryption blocks. The message authentication code can also be parallelized at the

granularity of disk blocks when using HierMAC and at the granularity of incremental blocks when using incremental

hashing. The same features that make the computations parallelizable also enable the system to tolerate out-of-order

reception while still performing the security processing in stream-like manner.

There is nothing fundamentally preventing a drive from performing its cryptographic operations at full line rate.

However, engineering a drive’s cryptographic support to meet the peak data rates of the system implies that the drive

is over-engineered for most of its workload.

5 Simulation Study of the Impact of Underprovisioned Digest Throughput on Cli-
ent Latency when Protecting Integrity

The previous section argued that drives need not provide full network bandwidth cryptography. To quantify this

hypothesis, we use file system traces to measure the impact of reduced message digest cryptography throughput on

the latency of filesystem operations. Because drive-based integrity is necessary for correctness, while applications

18

can provide privacy, we focus on full integrity by exploring the minimal amount of cryptography necessary to deliver

good performance to the client. The results show that a message digest unit that provides cryptographic bandwidth at

only 30% of a full-duplex network link (e.g., Gigabit Ethernet) increases average latency by less than 10% over a sys-

tem with no security.

5.1 Simulation Environment

Our trace driven simulator uses two sets of traces from: 1) University of California, Berkeley Auspex NFS

fileserver [Dahlin94] and; 2) Carnegie Mellon University Parallel Data Lab AFS server traces collected in early

1999 [Gobioff99]. Both the AFS and NFS workloads are an approximation of the workloads offered to a NASD

drive.

The simulator maps each NFS or AFS request to one or more NASD requests. Each NASD operation has a fixed

NASD header as well as arguments and a result structure), which the simulator models in addition to the networking

cost (32 byte header approximating a small UDP/RPC header). Message digest costs are modeled using

HMAC-SHA1 to provide integrity.

The simulator uses queuing model of three classes of drive resources: network (Gigabit input and output links),

message digest unit (SHA-1), and the drive electronics as shown in Figure 11. Drive requests have a fixed service

time and media time is ignored, making the base service time 0.12 milliseconds (the time a Seagate Ultra Wide

ST34371W drive takes to process a prefetch hit minus the time spent on the SCSI bus, i.e. the request “think

time” [Riedel98]). This limits the drive to a maximum of 8,333 requests per second. By eliminating seek time and

internal data transfer times, we bias heavily against reducing message digest capacity because the delay due to slower

cryptography is more significant when the slowest portion of the drive is ignored. In some sense, we are modeling a

solid-state disk while, for the foreseeable future, most NASD will use magnetic media as the backing store.

When request is serviced

Drive
Electronics

Input Link

Output Link

SHA-1
Unit

After 512 bits arrive
When MAC is verified

When MAC is generated

Start time is time inserted on input link queue

Completion time is when the MAC is done
being sent over the output link

Figure 11: Simulation Queueing Model. These are the four resources modeled in the simulation and the transitions of
requests between the queues.When a client sends a request to the drive, the request is first placed on the drive’s input link
queue. After 512 bits of data have been transferred over the link, the drive has enough data to begin SHA-1 and the request is
placed on the SHA-1 queue. When all the required SHA-1 work is complete, the request’s MAC has been verified and the
request is queue on the drive electronics. After the request is serviced, the result is queue on both the SHA-1 unit and output
link to concurrent send and generate the reply MAC. If the data is completely sent to the client before the reply MAC is
generated, the MAC will be enqueued separately on the output link when it is complete.

19

5.2 Results

Figure 12 shows the impact of underprovisioned SHA-1 bandwidth, and the impact of precomputing hashing

over nothing, disk blocks, and disk block and attributes. Without any optimizations, 600 Mbit/sec SHA-1 only

increases latency 20% over a request with no security. Precomputing stored digests and using HierMAC reduces the

added latency to about 15% for a 600 Mb/sec MD while precomputation for attributes reduces it by another 1%.

Therefore, a NASD system that provides cryptography at only 33% of peak bandwidth will incur a very modest

(<20%) increase in latency. Moreover, this is for a drive where all accesses hit in the drive’s cache; a drive with

accesses to the platters will see an much smaller increase.

Unfortunately, reducing SHA-1 throughput introduces a bottleneck in the drive’s queuing system, translating

into wider variability in client service time. Figure 13 show that when SHA-1 throughput is badly mismatched to the

workload, a large percentage of requests take more than twice as long to service. However, service time quickly con-

verges to less than 1% as security bandwidth increases; for 600 Mb/sec of SHA-1 throughput, less than 0.03% of the

requests are outlyers

For each workload, performance can degrade substantially in the worst case (Figure 14). Partially caused when a

large request prevents small requests from making progress, the worst case does not change as quickly as the average

case because there are brief periods when the entire system is near saturation and substantial queueing can occur.

Since the initial simulation processed requests in-order and to completion, one solution is to time slice the SHA-1

resources and prioritize small requests. We simulated this priority scheme using two queues: a high priority queue for

Figure 12: Average additional latency seen by clients. For all workloads, a drive with only 700 Mb/sec of message digest
bandwidth adds less than an average of less than 10% additional latency to filesystem requests compared to their latency
without security. These simulation result show the impact of having less message digest bandwidth than the full duplex
network bandwidth(2Gb/s) for the three sample workloads. The x-axis is the throughput of the SHA-1 unit and the y-axis is
the average percentage increase in latency of a filesystem request in comparison to the same request running without security.
The additional impact of applying the precompute optimizations is also shown. P0 is using no precompute i.e. all bytes are
MAC’d using HMAC-SHA1. P1 is using stored message for each 8K disk block to reduce the computation on a read
operation. P2 adds a stored message digest for attributes to reduce computation on GetAttr operations.

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

0.0

20.0

40.0

60.0

80.0

100.0

A
vg

 A
dd

ed
 P

er
ce

nt
ag

e
La

te
nc

y

AFS Week 1 - P0
AFS Week 2 - P0
NFS -P0
AFS Week 1 -P1
AFS Week 2 -P1
NFS -P1
AFS Week 1 -P2
AFS Week 2 -P2
NFS -P2

20

all operations requiring SHA-1 processing on N bytes or less and a low priority queue for the rest of the requests.

Figure 15 shows that the priority scheme significantly curtails the maximum wait a request may have due to being

backed up behind a larger request and reduces the outliers (Figure 16). For AFS workloads, with their larger opera-

tions, the time slicing approach significantly improves the worst case since a small request will spend less time stalled

behind a large request. However, if the time slicing interval is too small, large requests become starved during periods

of heavy activity and the worst case degrades. Time-slicing of the SHA-1 resource does not improve the number of

outlyers significantly. In the slow cases, some write operations are now being starved into becoming outlyers. In the

fast cases, there are already very few outlyers to the improvement is not very significant.

Another solution is for the drive to control its data movement by implementing pulling the data from the client on

a data write. Logically, pull semantics place the more resource poor drive in control of bandwidth allocation deci-

sions, allowing the drive to schedule data arrivals to meet its buffering constraints and the throughput and availability

of its SHA-1 resource. To simulate pull semantics, the drive synchronously handles only the control portion of the

write by mapping all writes to 0-byte writes. The drive then pulls the data at its own schedule. Figure 17 shows that

for all workloads, employing pull semantics reduced the number of outliers by at least a factor of 4 with 400 Mb/s of

SHA-1 bandwidth or more and reduced it to zero for 600 Mb/s or faster systems. This confirms that idea that writes

are a major issue for a drive.

6 Summary

This work has shown that by carefully tailoring security to exploit storage’s characteristics (e.g., non-volatility,

the reuse of data, the wide variation in transfer rates, and the size/types of requests), it is possible to provide high-per-

Figure 13: Percentage Outlyers. If message digest bandwidth is less
than 500 Mb/s, a large number of requests take twice as long, i.e.
outlyers. However, this quickly converges to almost no requests being
outlyers. The x-axis is the throughput of the SHA-1 unit and the y-axis
the percentage of filesystem level requests where the request service
time was twice as long as the time with no-security i.e. requests where
the added latency was at least 100%. These are the periods when clients
are most likely to noticed the added latency. These simulations are for
the full integrity case using HierMAC and precomputed SHA-1 digests
on disk blocks and attributes.

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

P
er

ce
nt

ag
e

of
 O

ut
ly

er
s

AFS Week 1
AFS Week 2
NFS

Figure 14: Maximum additional latency seen by clients. Since
SHA-1 bandwidth introduces another potential bottleneck, there will
always be cases where it introduces queuing and some request takes
much longer than normal. The x-axis is the throughput of the SHA-1
unit and the y-axis is the worst case added percentage latencies for each
trace in comparison to the non-security version of each request. The
worst case is significantly better in NFS because transfers are smaller.
The AFS maximums illustrate that the worst scale can vary substantially
from trace to trace even in a single filesystem and single user
environment.These simulations are for the full integrity case using
HierMAC and precomputed SHA-1 digests on disk blocks and
attributes.

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

100

101

102

103

104

105

106

107

M
ax

 A
dd

ed
 P

er
ce

nt
ag

e
La

te
nc

y

Maximum additional latency

AFS Week 1
AFS Week 2
NFS

21

Figure 15: Impact of time slicing SHA-1 unit on
maximum additional latency seen by clients. The simple
time slicing approach significantly improves the worst case
for AFS workloads. For each of the workloads, we compared
the non-slicing case against preempting every 16K, 8K, and
2K bytes to allow smaller jobs to be processed and using the
same cutoffs to distinguish between low and high priority
operations.The x-axis is the throughput of the SHA-1 unit and
the y-axis is the worst case added percentage latencies for
each trace in comparison to the non-security version of each
request.These simulations are for the full integrity case using
HierMAC and precomputed SHA-1 digests on disk blocks
and attributes.

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

10

100

1000

10000

100000

1000000

M
ax

im
um

 a
dd

iti
on

al
 p

er
ce

nt
ag

e
la

te
nc

y

AFS Week 2

AFS Week 1
AFS Week 1 - 16KB
AFS Week 1 - 8KB
AFS Week 1 - 2KB
AFS Week 1 - 1KB
AFS Week 1 - 512B
AFS Week 1 - 256B

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

10

100

1000

10000

100000

M
ax

im
um

 a
dd

iti
on

al
 p

er
ce

nt
ag

e
la

te
nc

y

AFS Week 1

AFS Week 1
AFS Week 1 - 16KB
AFS Week 1 - 8KB
AFS Week 1 - 2KB
AFS Week 1 - 1KB
AFS Week 1 - 512B
AFS Week 1 - 256B

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

10

100

1000

10000

M
ax

im
um

 a
dd

iti
on

al
 p

er
ce

nt
ag

e
la

te
nc

y

NFS

NFS
NFS - 4KB
NFS - 2KB
NFS - 1KB
NFS - 512B

Figure 16: Impact of time slicing SHA-1 unit on percentage of
outlyers. Time slicing has a negligible impact on the percentage of
outlyers. Note, in contrast to earlier graphs, the Y-axis is in log scale.
The x-axis is the throughput of the SHA-1 unit and the y-axis the
percentage of filesystem level requests where the request service
time was twice as long as the time with no-security i.e. requests
where the added latency was at least 100%. For each of the
workloads, we compared the non-slicing case against preempting
every 16K, 8K, and 2K bytes to allow smaller jobs to be processed
and using the same cutoffs to distinguish between low and high
priority operations.For each of the workloads, we compared the
non-slicing case against at fixed byte intervals to allow smaller jobs
to be processed. These simulations are for the full integrity case
using HierMAC and precomputed SHA-1 digests on disk blocks and
attributes.

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

10-4

10-3

10-2

10-1

1

10

100

P
er

ce
nt

ag
e

ba
d

re
qu

es
ts

AFS Week 1

AFS Week 1
AFS Week 1 - 16KB
AFS Week 1 - 8KB
AFS Week 1 - 2KB
AFS Week 1 - 1KB
AFS Week 1 - 512B
AFS Week 1 - 256B

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

10-4

10-3

10-2

10-1

1

10

100

P
er

ce
nt

ag
e

O
ut

ly
er

s

AFS Week 2

AFS Week 2
AFS Week 2 - 16KB
AFS Week 2 - 8KB
AFS Week 2 - 2KB
AFS Week 2 - 1KB
AFS Week 2 - 512B
AFS Week 2 - 256B

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

10-4

10-3

10-2

10-1

1

10

100

P
er

ce
nt

ag
e

ba
d

re
qu

es
ts

NFS

NFS
NFS - 4KB
NFS - 2KB
NFS - 1KB

22

formance embedded security at only a fraction of full-speed hardware. Central to this work is the stored digest which

allows the drive to precompute and store integrity information that multiple clients can reuse. For aligned, 8-KByte

blocks, this reduces the amount of redundant cryptography from 8-KBytes down to only 20 bytes per block. For

smaller or unaligned accesses, incremental stored digests can reduce the small-read security penalty by as much as

50% over Hash and MAC.

Modeling these integrity algorithms and the 3DES encryption algorithm reveals how providing integrity, pri-

vacy, or both increases storage access latency. Encryption operates on a fine grain pipeline and it has a small impact

on latency while message authentication codes produce results at course-grained intervals, significantly increasing

latency. HMAC-SHA1 has a very long critical path while HierMAC imposes a much small latency increase on large

disk-block aligned reads. Coupling HierMAC with incremental digests allows it to operate on 256 byte blocks in par-

allel, further reducing the critical path and corresponding latency. Finally, we showed that blind scheduling of data

transfers significantly increases worst-case latency by placing small requests behind large, data- and security-inten-

sive commands. By allowing the drive to coordinate data transfers, it is possible to greatly reduce the worst-case

latency.

Clearly, faster security hardware is better but faster is also more expensive. These results demonstrate that

high-performance drive embedded security can be achieved at a fraction of the peak storage bandwidth, greatly

reducing cost while providing a high degree of integrity. While studied in the context of NASD, many of these results

are applicable to a wide range of storage architectures, including the popular server-based NFS and WWW. For

example, distributed file systems implemented on top of IPsec can significantly improve the scalability and perfor-

mance of IPsec by using a Hash and MAC style message authentication code. This is not only important, but essential

to server machines that will quickly bottleneck under the load of data movement and cryptography. Of course, this

does require some integration of the security and file system, but many of the most important performance improve-

ments have come from these types of integration.

Figure 17: Impact of pull semantics on added latency. Pull semantics reduce the percentage of outlyers and improve the
worst case for all three workloads. All write operations are mapped to 0-byte writes to approximate the drive synchronously
handling the control portion of a write but being able to schedule the data processing to minimize the impact on other requests
and efficiently utilize its buffers and limited media bandwidth. On the left, the x-axis is the throughput of the SHA-1 unit and
the y-axis the percentage of filesystem level requests where the request service time was twice as long as the time with
no-security i.e. requests where the added latency was at least 100%. On the right, the x-axis is the throughput of the SHA-1
unit and the y-axis is the worst case added percentage latencies for each trace in comparison to the non-security version of
each request.These simulations are for the full integrity case using HierMAC and precomputed SHA-1 digests on disk blocks
and attributes.

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

0.0

5.0

10.0
P

er
ce

nt
ag

e
O

ut
ly

er
s

Percentage of Requests take 2 times as long or worse

AFS Week 1
AFS Week 2
NFS
AFS Week 1 - Pull
AFS Week 2 - Pull
NFS -Pull

0.0 200.0 400.0 600.0 800.0 1000.0
Megabits of MD Bandwidth

100

101

102

103

104

105

106

107

M
ax

 A
dd

ed
 P

er
ce

nt
ag

e
La

te
nc

y

Maximum additional latency

AFS Week 1
AFS Week 2
NFS
AFS Week 1 - Pull
AFS Week 2 - Pull
NFS -Pull

23

Bibliography

[Baker91] Baker, M. G., Hartman, J. H., Kupfer, M. D., Shirriff, K. W., Ousterhout, J. K., “Measurements
of a Distributed File System”, 13th Symposium on Operating Systems Principles, October 1991,
pp. 198-212.

[Bellare94] Bellare, M., Goldreich, O., and Goldwasser, S., “Incremental cryptography: the case of hashing
and signing”, Advances in Cryptology - Proceedings of Crypto 94, Lecture Notes in Computer
Science Vol. 839, Springer-Verlag, 1994.

[Bellare96a] Bellare, M., Canetti, R., and Krawczyk, H., “Keying Hash Functions for Message Authentica-
tion”, Advances in Cryptology: Crypto ‘96 Proceedings, 1996.

[Bellare97] Bellare, M., and Micciancio, D., “A New Paradigm for collision-free hashing: Icrementality at
reduced cost,”, Advances in Cryptology - Proceedings of Eurocrypt 97, Lecture Notes in Com-
puter Science Vol. 1233, Springer-Verlag, 1997

[Dahlin94] Dahlin, M. et al., “Cooperative Caching: Using Remote Client Memory to Improve File System
Performance,” Proceedings of the First USENIX Symposium on Operating Systems Design and
Implementation, pages 267-280, November 1994.

[Eberle92] Eberle, H., “A High-Speed DES Implementation for Network Applications,” Advances in Cryp-
tology -- Proceedings of Crypto ‘92, Lecture Notes in Computer Science, Springer Verlag, pp.
521-539.

[Finley99] Scott Finley, Cognitive Designs, Inc., Personal Communication, January 1999.
[Gibson97] Gibson, G., Nagle, D., Amiri, K., Chang, F., Feinberg, E., Gobioff, H., Lee, C., Ozceri, B.,

Riedel, E., Rochberg, D., and Zelenka, J., File Server Scaling with Network-Attached Secure
Disks, Proceedings of the ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Seattle, Washington, June 1997.

[Gibson97b] Gibson, G., Nagle, D., Amiri, K., Chang, F., Gobioff, H., Riedel, E., Rochberg, D., and Zelenka,
J., Filesystems for Network-Attached Secure Disks, School of Computer Science, Carnegie Mel-
lon University, Technical Report CMU-CS-97-118, 1997.

[Gibson98] Gibson, G., Nagle, D., Amiri, K., Butler, J., Chang, F., Gobioff, H., Hardin, C., Riedel, E., Roch-
berg, D., Zelenka, J. “A Cost-Effective, High-Bandwidth Storage Architecture”, Proceedings of
the 8th Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 1998.

[Gobioff99] Gobioff, H., “Security for a high-performance commodity storage subsystem”, Forthcoming,
1999.

[Grochowski96] Grochowski, E., Hoyt, R. F., “Future Trends in Hard Disk Drives”, IEEE Transactions on Mag-
netics, Vol. 32, No 3., May, 1996.

[HiFn99] Hi/fn, Inc. HiFn, 7751 Encryption Processor Data Sheet, 1999.
[NIST98] National Institute of Standards and Technology, Advance Encryption Standard Development

Effort Webpage, http://csrc.nist.gov/encryption/aes/aes_home.htm
[OceanLogic99] Ocean Logic Pty Ltd, DES core, www.users.bigpond.com/oceanlogic/des.htm, January 1999.
[Preneel95] Preneel, B. and van Oorschot, P. C., “MDx-MAC and building MACs from hash functions”,

Advances in Cryptology - Crypto ‘95 LNCS 963, Springer-Verlage, 1995, pp. 1-14.
[Preneel98] Preneel, B., Rijmen, V., and Boosselaers, A., “Principles and performance of cryptographic algo-

rithms,” Dr. Dobb’s Journal, Vol. 23, No., 12, December 1998, pp. 126-131.
[Riedel98] Riedel, E., van Ingen, Catharaine, and Gray, J., “A Performance Study of Sequental I/O on Win-

dows NT”, Proceedings of the Second Usenix Windows NT Symposium. Seattle, WA, August
1998.

[Riedel96] Riedel, E., and Gibson, G., “Understanding Customer Dissatisfaction with Underutilized Distrib-
uted File Servers”, Proceedings of the Fifth NASA Goddard Space Flight Center Conference on
Mass Storage Systems and Technologies. College Park, MD. September 1996.

[Rivest91] Rivest, R. “The MD4 Message Digest Algorithm”, Proceedings of Crypto 90, Lecture Notes in
Computer Science Vol. 537, Springer Verlag, 1991, pp. 303-311.

[Schneier97] Schneier, and Whiting, D., Fast Software Encryption: Designing Encryption Algorithms for
Optimal Software Speed on the Intel Pentium Processor, Fast Software Encryption, Fourth Inter-
national Workshop Proceedings, Springer-Verlag, 1997, pp. 242-259.

24

[Schlosser98] Schlosser, S., and Schmidt, B., Personal Communication, 12/98
[Soltis96] Soltis, S. et al., “The Global File System”, Proceedings of the Fifth NASA Goddard Space Flight

Center Conference on Mass Storage Systems and Technologies. College Park, MD. September
1996.

[Stamos84] Stamos, J. W., “Static Grouping of Small Objects to Enhance Performance of a Paged Virtual
Memory. ACM Transactions on Computer Systems 2(2), page 155-180, 1984.

[vanPelt99] van Pelt, P., Marketing Manager, Pijinenburg Custom Chips B.V., Personal Communication,
January 1999.

[VLSI99] VLSI Technology,VLSI 115 Datasheet Version 2.0, January 1999.

Appendix

A Security of Hash and MAC

How does the “Hash and MAC” approach effect the security of the system? MACing the concatenation of hash

values is very similar to signing them with a public key except it is much faster and does not provide the non-repudi-

abilty property associated with public key signatures.

 If we assume the basic MAC function is secure, is the MAC of hash values secure? When something is consid-

ered “secure”, it is normally secure for an arbitrary input. If there was a class of inputs for which it was insecure then

the MAC function as a whole would not be secure. An adversary breaks a MAC if they can recover the key or gener-

ate a MAC value for a message which they has not seen before. Concretely, if you break “Hash and MAC” by attack-

ing the MAC function then you have defined a set of inputs, the concatenation of hash values, that you can use as an

input to the MAC to break the original MAC. By our initial assumption, the MAC is secure so this can not be true.

An adversary could attack “Hash and MAC” through the message digest. “Hash and MAC” trades off some secu-

rity in exchange for increased performance. An adversary can mount an off-line, essentially computing with no infor-

mation about the message being attacked, attack against the message digest function. With a normal MAC, an

adversary could not start an attack until they were given a message to attack because the result of the key dependent

computation was essential to the attack. An adversary can apply arbitrary computational power to precompute two

data blocks that generate the same digest (i.e., a collision). Alternately, an adversary who observes a series of requests

and their associated message digests can attempt to find a second data block that generates the same digest as a given

message block (i.e., a second pre-image). The difference is between the adversary being allowed to select both blocks

in the collision as opposed to being given one of the blocks, which can be viewed as a challenge, and trying to find a

second block which generates the same MAC. As long as NASD uses a strong message digest with a large output,

such as SHA-1 or RIPEMD-160 which produce 160 bit outputs, the off-line attack is a small risk. The best current

attacks against these message digests requires a brute force search of the input space. In order to find a second

pre-image of a given message digest, an adversary expects to compute digests of on average 2160 data blocks. A far

simpler task, given large amounts of memory, is to find a pair of data blocks which generate the same hash by

exploiting the birthday paradox1 but this attack still expected to require 280 digest calculations.

1. The birthday paradox is a standard statistical problem and a good explanation can be found in [Menzenes98]. The paradox is
that the probability of two people in a room having the same birthday is substantially about the square root of the probability of
someone in a room having the same birthday as you. This is similar to the relationship between a collision and a second
pre-image.

25

Assuming an adversary is able to find a collision, they can exploit the collision if one of the colliding blocks is

already within the storage system and the adversary can replace the in-system block with the out-of-system colliding

block in a message exchange. An adversary can potentially tabulate a large number of digests and watch message

traffic to the drive for an opportunity but the odds of such an opportunity presenting itself is:

An adversary will have an easier task if they can insert one half of a collision into the storage system and then

replace it with the other half. In this case, they could have already written the second of the two blocks to the storage

rather than swapping the blocks while they were being read. Thus, an adversary can primarily exploit a collision in a

multi-tier system, such as a database system, where write operations are filtered through another host which decides if

a writes should be forwarded to the storage. If a collision is found, the adversary can swap a bad data block for the

forwarded data block. Because the filtering host is making a decision based on the contents of the initial write request,

it is implicitly enforcing some structure on the writes it forwards on to storage. Since one half of the collision must fit

the required structure to the filtering host will forward it on, this structure improves security by constraining the set of

useful collisions an adversary can theoretically generate.

Because “Hash and MAC” generates multiple independent digests which are used to create the final MAC, an

adversary can parallelize an attempt to find a second pre-image of the digests. If the request is divided into r different

data blocks, an adversary can attack r different values when trying to find the second per-image of a digest. In con-

trast, a normal MAC algorithm has a single MAC value that can be attacked because all partially computed values are

key dependent and hidden in the MACs internal state. Even for extremely large requests and heavily used storage

devices, r will not be large enough substantially reduce the 2160 computations required to find a second pre-image.

For example, if a client transferred a terabyte of data and the digests were generated on 8K disk blocks then an adver-

sary could attack 222 unique messages digests. This only reduces the work factor from 2160 down to 2138. In order for

parallelism to reduce the work of finding a second pre-image down to the work of finding a simple collision, the

adversary would need to observe 280 disk blocks and attack them in parallel.

2
NumOfCollisions NumOfBlocksSeen×

2
160

--×

