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Abstract

This survey covers rollback-recovery techniques that do not require special language constructs.
In the first part of the survey we classify rollback-recovery protocolsdnézkpoint-basednd
log-based. Checkpoint-basegrotocols rely solely on checkpointing for system state restoration.
Checkpointing can be coordinated, uncoordinated, or communication-induted-based
protocols combine checkpointing with logging of nondeterministic events, encoded in tuples
called determinants Depending on how determinants are logged, log-based protocols can be
pessimistic, optimistic, or causal. Throughout the survey, we highlight the research issues that are
at the core of rollback recovery and present the solutions that currently address them. We also
compare the performance of different rollback-recovery protocols with respect to a series of
desirable properties and discuss the issues that arise in the practical implementations of these
protocols.






1 Introduction

Distributed systems today are ubiquitous and enable many applications, including client-server systems, transaction
processing, World Wide Web, and scientific computing, among many others. The vast computing potential of these
systems is often hampered by their susceptibility to failures. Therefore, many techniques have been developed to
add reliability and high availability to distributed systems. These techniques include transactions, group
communications and rollback recovery, and have different tradeoffs and focuses. For example, transactions focus
on data-oriented applications, while group communications offer an abstraction of an ideal communication system
on top of which programmers can develop reliable applications. This survey covers transparent rollback recovery,
which focuses on long-running applications such as scientific computing and telecommunication applications
[26][43].

Rollback recovery treats a distributed system as a collection of application processes that communicate
through a network. Fault tolerance is achieved by periodically using stable storage to save the processes’ states
during failure-free execution. Upon a failure, a failed process restarts from one of its saved states, thereby reducing
the amount of lost computation. Each of the saved states is cahedlgpoint

Rollback recovery has many flavors. For example, a system may rely on the application to decide when and
what to save on stable storage. Or, it may provide the application programmer with linguistic constructs to structure
the application [47]. We focus in this survey toansparenttechniques, which do not require any intervention on
the part of the application or the programmer. The system automatically takes checkpoints according to some
specified policy, and recovers automatically from failures if they occur. This approach has the advantages of
relieving the application programmers from the complex and error-prone chores of implementing fault tolerance and
of offering fault tolerance to existing applications written without consideration to reliability concerns.

Rollback recovery has been studied in various forms and in connection with many fields of research. Thus, it
is perhaps impossible to provide an extensive coverage of all the issues related to rollback recovery within the scope
of one article. This survey concentrates on the definitions, fundamental concepts, and implementation issues of
rollback-recovery protocols in distributed systems. The coverage excludes the use of rollback recovery in many
related fields such hardware-level instruction retry, distributed shared memory [38], real-time systems, and
debugging [37]. The coverage also excludes the issues of using rollback recovery when failures could include
Byzantine modes or are not restricted to the fail-stop model [51]. Also excluded are rollback-recovery techniques
that rely on special language constructs such as recovery blocks [47] and transactions. Finally, the section on
implementation exposes many relevant issues related to implementing checkpointing on uniprocessors, although the
coverage is by no means an exhaustive one because of the large number of issues involved.

Message-passing systems complicate rollback recovery because messages induce inter-process dependencies
during failure-free operation. Upon a failure of one or more processes in a system, these dependencies may force
some of the processes that did not fail to roll back, creating what is commonlyrodbadk propagation To see
why rollback propagation occurs, consider the situation where a sender of a nmgsdigeback to a state that
precedes the sendingmf The receiver ofn must also roll back to a state that precedssreceipt; otherwise, the
states of the two processes wouldibeonsistentbecause they would show that messageas received without
being sent, which is impossible in any correct failure-free execution. Under some scenarios, rollback propagation
may extend back to the initial state of the computation, losing all the work performed before a failure. This situation
is known as theomino effecf47].

The domino effect may occur if each process takes its checkpoints independently—an approach known as
independenbr uncoordinated checkpointinglt is obviously desirable to avoid the domino effect and therefore
several techniques have been developed to prevent it. One such technique is toqoerdimated checkpointing
in which processes coordinate their checkpoints in order to save a system-wide consistent state [16]. This consistent
set of checkpoints can then be used to bound rollback propagation. Alternativelmunication-induced
checkpointingforces each process to take checkpoints based on information piggybacked on the application
messages it receives from other processes [50]. Checkpoints are taken such that a system-wide consistent state
always exists on stable storage, thereby avoiding the domino effect.

The approaches discussed so far implenwr@ckpoint-basedollback recovery, which relies only on
checkpoints to achieve fault-tolerance. In contraxi;basedrollback recovery combines checkpointing with



logging of nondeterministic events.Log-based rollback recovery relies on thiecewise deterministi¢PWD)
assumption [56], which postulates that all nondeterministic events that a process executes can be identified and that
the information necessary to replay each event during recovery can be logged in thedetemtisant[1]. By
logging and replaying the nondeterministic events in their exact original order, a process can deterministically
recreate its pre-failure state even if this state has not been checkpointed. Log-based rollback recovery in general
enables a system to recover beyond the most recent set of consistent checkpoints. It is therefore particularly
attractive for applications that frequently interact with theside world which consists of all input and output
devices that cannot roll back. Log-based rollback recovery has three flavors, depending on how the determinants are
logged to stable storage. pessimistic loggingthe application has to block waiting for the determinant of each
nondeterministic event to be stored on stable storage before the effects of that event can be seen by other processes
or the outside world. Pessimistic logging simplifies recovery but hurts failure-free performanagtimistic
logging the application does not block, and determinants are spooled to stable storage asynchronously. Optimistic
logging reduces the failure-free overhead, but complicates recovery. Finatlgusal logging low failure-free
overhead and simpler recovery are combined by striking a balance between optimistic and pessimistic logging. The
three flavors also differ in their requirements for garbage collection and their interactions with the outside world, as
will be explained later.

The outline of the rest of the survey is as follows:

e Section 2: system model, terminology and generic issues in rollback recovery.
« Section 3: checkpoint-based rollback-recovery protocols.

e Section 4: log-based rollback-recovery protocols.

e Section 5: implementation issues.

e Section 6: conclusions.

2 Background and Definitions

2.1 System Model

A message-passing system consists of a fixed number of processes that communicate only through messages.
Throughout this survey, we u$¢to denote the total number of processes in a system. Processes cooperate to
execute a distributed application program and interact with the outside world by receiving and sending input and
output messages, respectively. Figure 1 shows a sample system consisting of three processes, where horizontal lines
extending toward the right-hand side represent the execution of each process, and arrows between processes
represent messages.

Rollback-recovery protocols generally assume that the communication network is immune to partitioning but
differ in the assumptions they make about network reliability. Some protocols assume that the communication
subsystem delivers messages reliably, in First-In-First-Out (FIFO) order [16], while other protocols assume that the
communication subsystem can lose, duplicate, or reorder messages [28]. The choice between these two assumptions
usually affects the complexity of recovery and its implementation in different ways. Generally, assuming a reliable
network simplifies the design of the recovery protocol but introduces implementation complexities that will be
described in Section 2.4 and Section 5.4.2.

A process execution is a sequencestate intervals each started by a nondeterministic event. Execution
during each state interval is deterministic, such that if a process starts from the same state and is subjected to the
same nondeterministic events at the same locations within the execution, it will always yield the same output. A
process may fail, in which case it loses its volatile state and stops execution according to the fail-stop model [51].
Processes have access to a stable storage device that survives failures, such that state information saved on this
device during failure-free execution can be used for recovery. The number of tolerated process failures may vary
from 1 toN, and the recovery protocol needs to be designed accordingly. Furthermore, some protocols may not
tolerate failures that occur during recovery.

! Earlier papers in this area have assumed a model in which the occurrence of a nondeterministic event is modeled as a message
receipt. In this modehondeterministic-event logging reducesnessage loggingin this paper, we use the terms event logging
and message logging interchangeably.
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Figure 1. An example of a message-passing system with three processes.

2.2 Consistent System States

A global state of a message-passing system is a collection of the individual states of all participating processes and
of the states of the communication channels. Intuitively, a consistent global state is one that may occur during a
failure-free, correct execution of a distributed computation. More precis@gnsistent system staie one in

which if a process’s state reflects a message receipt, then the state of the corresponding sender reflects sending that
message [16]. For example, Figure 2 shows two examples of global states—a consistent state in Figure 2(a), and an
inconsistent state in Figure 2(b). Note that the consistent state in Figure 2(a) shows metsdgee been sent

but not yet received. This state is consistent, because it represents a situation in which the message has left the
sender and is still traveling across the network. On the other hand, the state in Figure 2(b) is inconsistent because
processP, is shown to have receivad, but the state of proce$y does not reflect sending it. Such a state is
impossible in any failure-free, correct computation.

Inconsistent states occur because of failures. For example, the situation shown in part (b) of Figure 2 may
occur if proces®; fails after sending messageg to P, and then restarts at the state shown in the figure.

A fundamental goal of any rollback-recovery protocol is to bring the system into a consistent state when
inconsistencies occur because of a failure. The reconstructed consistent state is not necessarily one that has occurred
before the failure. It is sufficient that the reconstructed state be oneotlidthave occurred before the failure in a
failure-free, correct execution.

Consistent state Inconsistent state
Pq >
an
P, >
\‘2‘
P, >
() (b)

Figure 2. An example of a consistent and inconsistent state.



2.3 Z-Paths and Z-Cycles

A Z-path (zigzag path) is a special sequence of messages that connects two checkpoints [43]. ddreite
Lamport’'s happen-before relation [34]. L& denote thec" checkpoint of procesB,. Also, define the execution

portion between two consecutive checkpoints on the same process to be the checkpoint interval starting with the
earlier checkpoint. Given two checkpoinfg andc,, a Z-path exists betweey) andgc;, if and only if one of the
following two conditions holds:

1. x<yandi=j;or
2. There exists a sequence of messaggsi,..., my, n> 0, such that:

*  Cix— sengimy);

« V< n, eitherdeliver(m) andseng(m.) are in the same checkpoint intervaldetivef(m) —
seng(m.1); and

+ delives(m,) — G

wheresend anddeliver are communication events executed by pro€gsdn Figure 3, fn, mp] and [ms, my] are
examples of Z-paths between checkpotgtsandc; ».

A Z-cycleis a Z-path that begins and ends with the same checkpoint. In Figure 3, the @xpath fny] is a
Z-cycle that starts and ends at checkpoiat

The Z-cycle theory was first introduced as a framework for reasoning about consistent system states.
Recently, the theory has proved a powerful tool for reasoning about a class of protocols known as communication-
induced checkpointing [5][24]. In particular, it has been proven that a checkpoint involved in a Z-cycle cannot
become part of a consistent state in a system that uses only checkpoints.

2.4 In-Transit Messages

In Figure 2(a), the global state shows that messadm@s been sent but not yet received. We call such a message an
in-transit message. When in-transit messages are part of a global system state, these messages do not cause any
inconsistency. However, depending on whether the system model assumes reliable communication channels,
rollback-recovery protocols may have to guarantee the delivery of in-transit messages when failures occur. For
example, the rollback-recovery protocol in Figure 4(a) assumes reliable communications, and therefore it must be
implemented on top of a reliable communication protocol layer. In contrast, the rollback-recovery protocol in
Figure 4(b) does not assume reliable communications.

Reliable communication protocols ensure the reliability of message delivery during failure-free executions.
They cannot, however, ensure by themselves the reliability of message delivery in the presence of process failures.
For instance, if an in-transit message is lost because the intended receiver has failed, conventional communication
protocols will generate a timeout and inform the sender that the message cannot be delivered. In a rollback-recovery
system, however, the receiver will eventually recova@herefore, the system must mask the timeout from the
application program at the sender process and must make in-transit messages available to the intended receiver
process after it recovers, in order to ensure a consistent view of the reliable s@stetre other hand, if a system
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Figure 3. An example execution and Z-paths.
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Figure 4.Implementation of rollback-recovery (a) on top of a reliable communication protocol;
(b) directly on top of unreliable communication channels.

model assumes unreliable communication channels, as in Figure 4(b), then the recovery protocol need not handle in-
transit messages in any special way. Indeed, lost in-transit messages because of process failures cannot be
distinguished from those caused by communication failures in an unreliable communication channel. Therefore, the
loss of in-transit messages due to either communication or process failure is an event that can occur in any failure-
free, correct execution of the system.

2.5 Checkpointing Protocols and the Domino Effect

In checkpointing protocols, each process periodically saves its state on stable storage. The saved state contains
sufficient information to restart process execution.colisistent global checkpoiig a set oN local checkpoints,

one from each process, forming a consistent system state. Any consistent global checkpoint can be used to restart
process execution upon a failure. Nevertheless, it is desirable to minimize the amount of lost work by restoring the
system to the most recent consistent global checkpoint, which is callexttivery lind47].

Processes may coordinate their checkpoints to form consistent states, or may take checkpoints independently
and search for a consistent state during recovery out of the set of saved individual checkpoints. The second style,
however, can lead to tteomino effec{47]. For example, Figure 5 shows an execution in which processes take
their checkpoints—represented by black bars—without coordinating with each other. Each process starts its
execution with an initial checkpoint. Suppose prodesdails and rolls back to checkpoi@ The rollback
“invalidates” the sending of messagg, and sdP; must roll back to checkpoifi to “invalidate” the receipt of that
message. Thus, the invalidation of messageropagates the rollback of procd3sto process;, which in turn
“invalidates” messagey, and forced, to roll back as well.

Recovery line
Checkpoint

i i i >

mp A ms my

My

mg
"} | | >
SN
> |\ ] ] Xpanure

Figure 5. Rollback propagation, recovery line and the domino effect.
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This cascaded rollback may continue and eventually may lead to the domino effect, which causes the system
to roll back to the beginning of the computation, in spite of all the saved checkpoints. In the example shown in
Figure 5, cascading rollbacks due to the single failure of prétasay result in a recovery line that consists of the
initial set of checkpoints, effectively causing the loss of all the work done by all processes. To avoid the domino
effect, processes need either to coordinate their checkpoints so that the recovery line is advanced as new checkpoints
are taken, or to combine checkpointing with event logging.

2.6 Interactions with the Outside World

A message-passing system often interacts with the outside world to receive input data or show the outcome of a
computation. If a failure occurs, the outside world cannot be relied on to roll back [42]. For example, a printer
cannot roll back the effects of printing a character, and an automatic teller machine cannot recover the money that it
dispensed to a customer. It is therefore necessary that the outside world perceive a consistent behavior of the system
despite failures. Thus, before sending output to the outside world, the system must ensure that the state from which
the output is sent will be recovered despite any future failure. This is commonly caltagpgbhecommiproblem

[56]. Similarly, input messages that a system receives from the outside world may not be reproducible during
recovery, because it may not be possible for the outside world to regenerate them. Thus, recovery protocols must
arrange to save these input messages so that they can be retrieved when needed for execution replay after a failure.
A common approach is to save each input message on stable storage before allowing the application program to
process it.

Rollback-recovery protocols, therefore, must provide special treatment for interactions with the outside
world. There are two metrics that express the impact of this special treatment, namely the latency of input/output
and the resulting slowdown of system’s execution during input/output. The first metric represents the time it takes
for an output message to be released to the outside world after it has been issued by the system, or the time it takes a
process to consume an input message after it has been posted to the system. The second metric represents the
overhead that the system incurs to ensure that input and output actions will have a persistent effect despite future
failures.

2.7 Logging Protocols

Log-based rollback recovery uses checkpointing and logging to enable processes to replay their execution after a
failure beyond the most recent checkpoint. This is useful when interactions with the outside world are frequent,
since it enables a process to repeat its execution and be consistent with output sent to the outside world without
having to take expensive checkpoints before sending such output. Additionally, log-based recovery generally is not
susceptible to the domino effect, thereby allowing processes to use uncoordinated checkpointing if desired.

Log-based recovery relies on theecewise deterministiPWD) assumption [56]. Under this assumption,
the rollback recovery protocol can identify all the nondeterministic events executed by each process, and for each
such event, logs determinantthat contains all information necessary to replay the event should it be necessary
during recovery. If the PWD assumption holds, log-based rollback-recovery protocols can recover a failed process
and replay its execution as it occurred before the failure.

Examples of nondeterministic events include receiving messages, receiving input from the outside world, or
undergoing an internal state transfer within a process based on some nondeterministic action such as the receipt of
an interrupt. Rollback-recovery implementations differ in the range of actual nondeterministic events that are
covered under this model. For instance, a particular implementation may only cover message receipts from other
processes under the PWD assumption. Such an implementation cannot replay an execution that is subjected to other
forms of nondeterministic events such as asynchronous interrupts. The range of events covered under the PWD
assumption is an implementation issue and is covered in Section 5.7.

A state interval isecoverabléf there is sufficient information to replay the execution up to that state interval
despite any future failures in the system. Also, a state intergtlideif the determinant of the nondeterministic
event that started it is logged on stable storage [30]. A recoverable state interval is always stable, but the opposite is
not always true [28].

Figure 6 shows an execution in which the only nondeterministic events are message deliveries. Suppose that
processe®; andP, fail before logging the determinants corresponding to the deliveries aridms, respectively,
while all other determinants survive the failure. Messagleecomes anrphan messagbecause proce$s cannot
guarantee the regeneration of the sameéuring recovery, an®, cannot guarantee the regeneration of the same
without the originalmg. As a result, the surviving proceBgbecomes anrphan processnd is forced to roll back
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Figure 6. Message logging for deterministic replay.

as well. State¥, Y andZ form themaximum recoverable staf28], i.e., the most recent recoverable consistent
system state. Processeg and P, roll back to checkpoint®\ and C, respectively, and replay the deliveries of
messagesy and my,, respectively, to reach stat¥sandZ. Procesd; rolls back to checkpoirB and replays the
deliveries ofm; andmgin their original order to reach state

During recovery, log-based rollback-recovery protocols force the execution of the system to be identical to
the one that occurred before the failure, up to the maximum recoverable state. Therefore, the system always
recovers to a state that is consistent with the input and output interactions that occurred up to the maximum
recoverable state.

2.8 Stable Storage

Rollback recovery uses stable storage to save checkpoints, event logs, and other recovery-related information.
Stable storage in rollback recovery is only an abstraction, although it is often confused with the disk storage used to
implement it. Stable storage must ensure that the recovery data persist through the tolerated failures and their
corresponding recoveries. This requirement can lead to different implementation styles of stable storage:

« In a system that tolerates only a single failure, stable storage may consist of the volatile memory of another
process [11][29].

* In a system that wishes to tolerate an arbitrary numbigaadientfailures, stable storage may consist of a local
disk in each host.

* In a system that tolerates non-transient failures, stable storage must consist of a persistent medium outside the
host on which a process is running. A replicated file system is a possible implementation in such systems [35].

2.9 Garbage Collection

Checkpoints and event logs consume storage resources. As the application progresses and more recovery
information is collected, a subset of the stored information may become useless for reGarbage collection is

the deletion of such useless recovery informatidn.common approach to garbage collection is to identify the
recovery line and discard all information relating to events that occurred before that line. For example, processes
that coordinate their checkpoints to form consistent states will always restart from the most recent checkpoint of
each process, and so all previous checkpoints can be discarded. While it has received little attention in the literature,
garbage collection is an important pragmatic issue in rollback-recovery protocols, because running a special
algorithm to discard useless information incurs overhead. Furthermore, recovery-protocols differ in the amount and
nature of the recovery information they need to store on stable storage, and therefore differ in the complexity and
invocation frequency of their garbage collection algorithms.



3 Checkpoint-Based Rollback Recovery

Upon a failure, checkpoint-based rollback recovery restores the system state to the most recent consistent set of
checkpoints, i.e. the recovery line [47]. It does not rely on the PWD assumption, and so does not need to detect, log,
or replay nondeterministic events. Checkpoint-based protocols are therefore less restrictive and simpler to
implement than log-based rollback recovery. But checkpoint-based rollback recovery does not guarantee that pre-
failure execution can be deterministically regenerated after a rollback. Therefore, checkpoint-based rollback
recovery is ill suited for applications that require frequent interactions with the outside world, since such interactions
require that the observable behavior of the system during recovery be the same as during failure-free operation.
Checkpoint-based rollback-recovery techniques can be classified into three categoc®stdinated
checkpointingcoordinated checkpointingandcommunication-induced checkpointingVe examine each category
in detail.

3.1 Uncoordinated Checkpointing

3.1.1 Overview

Uncoordinated checkpointing allows each process maximum autonomy in deciding when to take checkpoints. The
main advantage of this autonomy is that each process may take a checkpoint when it is most convenient. For
example, a process may reduce the overhead by taking checkpoints when the amount of state information to be
saved is small [59]. But there are several disadvantages. First, there is the possibility of the domino effect, which
may cause the loss of a large amount of useful work, possibly all the way back to the beginning of the computation.
Second, a process may takeuselesscheckpoint that will never be part of a global consistent state. Useless
checkpoints are undesirable because they incur overhead and do not contribute to advancing the recovery line.
Third, uncoordinated checkpointing forces each process to maintain multiple checkpoints, and to invoke periodically
a garbage collection algorithm to reclaim the checkpoints that are no longer useful. Fourth, it is not suitable for
applications with frequent output commits because these require global coordination to compute the recovery line,
negating much of the advantage of autonomy.

In order to determine a consistent global checkpoint during recovery, the processes record the dependencies
among their checkpoints during failure-free operation using the following technique [9].c ke the x"
checkpoint of process,. We callx the checkpoint index Let|;, denote thecheckpoint intervabr simplyinterval
between checkpointg,; andcx. As illustrated in Figure 7, if proceBsat intervall;, sends a messageto P;, it
will piggyback the pairi(x) onm. WhenP; receiveam during intervall;,, it records the dependency frdmto I;,,
which is later saved onto stable storage wRenkes checkpoirg;,.

If a failure occurs, the recovering process initiates rollback by broadcastegeadency requestessage to
collect all the dependency information maintained by each process. When a process receives this message, it stops
its execution and replies with the dependency information saved on stable storage as well as with the dependency
information, if any, which is associated with its current state. The initiator then calculates the recovery line based on
the global dependency information and broadcastdllzack requesimessage containing the recovery line. Upon
receiving this message, a process whose current state belongs to the recovery line simply resumes execution,
otherwise it rolls back to an earlier checkpoint as indicated by the recovery line.

Gi.o G Giy-1 Ciy

" 1 1 i
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Figure 7. Checkpoint index and checkpoint interval.



3.1.2 Dependency Graphs and Recovery Line Calculation

There are two approaches proposed in the literature to determine the recovery line in checkpoint-based recovery.
The first approach is based ondalback-dependency grapl®] in which each node represents a checkpoint and a
directed edge is drawn frog) to ¢, if either:

(1) i#j, and a messageis sent from; cand received i, or
(2) i=jandy=x+ 1.

The name “rollback-dependency graph” comes from the observation that if there is an edgg fooryy,
and a failure forceky to be rolled back, thely, must also be rolled back.

Figure 8(b) shows the rollback dependency graph for the execution in Figure 8(a). The algorithm used to
compute the recovery line first marks the graph nodes corresponding to the states of prgcasd®s at the
failure point (shown in figure in dark ellipses). It then uses reachability analysis [9] to mark all reachable nodes
from any of the initially marked nodes. The union of i unmarked nodes over the entire system forms the
recovery line, as shown in Figure 8(b).

The second approach is based on ¢heckpoint grapH59]. Checkpoint graphs are similar to rollback-
dependency graphs except that, when a message is serit,feom received in;,, a directed edge is drawn from
Cix1 to G (instead ok to ¢;,), as shown in Figure 8(c). The recovery line can be calculated by first removing both
the nodes corresponding to the states of the failed processes at the point of failures and the edges incident on them,
and then applying thellback propagation algorithnf59] on the checkpoint graph as shown in Figure 9. Both the
rollback-dependency graph and the checkpoint graph approaches are equivalent, in that they always produce the
same recovery line (as indeed they do in the example).
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Figure 8. (a) Example execution; (b) rollback-dependency graph; (c) checkpoint graph.



3.1.3 Garbage Collection

Any checkpoint that precedes the recovery lines for all possible combinations of process failures can be garbage-
collected. The garbage collection algorithm based on a rollback dependency graph works by identifying the
obsolete checkpoints as follows. First, it marks all volatile checkpoints and removes all edges ending in a marked
checkpoint, producing aon-volatile rollback dependency gragb3]. Then, it uses reachability analysis to
determine the worst-case recovery line for this graph, called the global recovery line. Figure 10 shows the non-
volatile rollback-dependency graph and the global recovery line of Figure 8(a). In this case, only the first
checkpoint of each process is obsolete and can be garbage-collected. As the figure illustrates, when the global
recovery line is unable to advance because of rollback propagation, a large number of non-obsolete checkpoints may
need to be retained.

By deriving the necessary and sufficient conditions for a checkpoint to be useful for any future recovery, it is
possible to derive an optimal garbage collection algorithm that reduces the number of retained checkpoints [62].
The algorithm determines a setMfecovery lines, the union of which contains all useful checkpoints. Each of the
N recovery lines is obtained by initially marking one volatile checkpoint in the non-volatile rollback-dependency
graph. For the graph in Figure 10, the optimal algorithm identifies the four checkpd@n@andD as well as the
four obsolete checkpoints as garbage checkpoints. The number of useful checkpoints has a tight upper bound
of N(N+1)/2 [62].

3.2 Coordinated Checkpointing

3.2.1 Overview

Coordinated checkpointing requires processes to orchestrate their checkpoints in order to form a consistent global
state. Coordinated checkpointing simplifies recovery and is not susceptible to the domino effect, since every
process always restarts from its most recent checkpoint. Also, coordinated checkpointing requires each process to
maintain only one permanent checkpoint on stable storage, reducing storage overhead and eliminating the need for
garbage collection. Its main disadvantage, however, is the large latency involved in committing output, since a
global checkpoint is needed before output can be committed to the outside world.

A straightforward approach to coordinated checkpointing is to block communications while the
checkpointing protocol executes [57]. A coordinator takes a checkpoint and broadcasts a request message to all
processes, asking them to take a checkpoint. When a process receives this message, it stops its execution, flushes all
the communication channels, takedeatative checkpoint, and sends an acknowledgment message back to the
coordinator. After the coordinator receives acknowledgments from all processes, it broadcasts a commit message
that completes the two-phase checkpointing protocol. After receiving the commit message, each process removes
the old permanent checkpoint and atomically makeset@tivecheckpoint permanent. The process is then free to
resume execution and exchange messages with other processes. This straightforward approach, however, can result
in large overhead, and therefore non-blocking checkpointing schemes are preferable [20].

include last checkpoint of each failed process as an element in set RootSet
include current state of each surviving process as an element in RootSet
mark all checkpoints reachable by following at least one edge from any member of RootSet
while (at least one member of RootSets marked)
replace each marked element in RootSeby the last unmarked checkpoint of the
same process;
mark all checkpoints reachable by following at least one edge from any member
of RootSet
endwhile
RootSetis the recovery line.

Figure 9. The rollback propagation algorithm.
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3.2.2 Non-blocking Checkpoint Coordination

A fundamental problem in coordinated checkpointing is to prevent a process from receiving application messages
that could make the checkpoint inconsistent. Consider the example in Figure 11(a), in which messsge by

P, afterreceiving a checkpoint request from the checkpoint coordinator. Now, assumerdzthed; beforethe

checkpoint request. This situation results in an inconsistent checkpoint since checkpsiws the receipt of
messagen from Py, while checkpoint,, does not show it being sent frdPg. If channels are FIFO, this problem

can be avoided by preceding the first post-checkpoint message on each channel by a checkpoint request, and forcing
each process to take a checkpoint upon receiving the first checkpoint-request message, as illustrated in Figure 11(b).
An example of a non-blocking checkpoint coordination protocol using this idea désthibuted snapshdtL6], in

which markersplay the role of the checkpoint-request messages. In this protocol, the initiator takes a checkpoint
and broadcasts a marker (a checkpoint request) to all processes. Each process takes a checkpoint upon receiving the
first marker and rebroadcasts the marker to all processes before sending any application message. The protocol
works assuming the channels are reliable and FIFO. If the channels are non-FIFO, the marker can be piggybacked
on every post-checkpoint message as in Figure 11(c) [33]. Alternatively, checkpoint indices can serve the same role
as markers, where a checkpoint is triggered when the receiver's local checkpoint index is lower than the
piggybacked checkpoint index [20][52].

3.2.3 Synchronized Checkpoint Clocks

Loosely synchronized clocks can facilitate checkpoint coordination [58]. More specifically, loosely synchronized

clocks can trigger the local checkpointing actions of all participating processes at approximately the same time
without a checkpoint initiator. A process takes a checkpoint and waits for a period that equals the sum of the
maximum deviation between clocks and the maximum time to detect a failure in another process in the system. The

Initiator Initiator Initiator

b - checkpoint request

.A..;a.n_‘lcheckpoint request

Py

P1 P1
Cix Cix

(a) (b)

..;u,_ngheckpoint request

Figure 11. Non-blocking coordinated checkpointing: (a) checkpoint inconsistency; (b) with FIFO
channels; (c) non-FIFO channels (the short dashed line represents a piggybeckedint requekst
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process can be assured that all checkpoints belonging to the same coordination session have been taken without the
need of exchanging any messages. If a failure occurs, it is detected within the specified time and the protocol is
aborted. To guarantee checkpoint consistency, either the sending of messages is blocked for the duration of the
protocol, or checkpoint indices are piggybacked to avoid blocking as explained above.

3.2.4 Minimal Checkpoint Coordination

Coordinated checkpointing requires all processes to participate in every checkpoint. This requirement generates
valid concerns about its scalability. It is desirable to reduce the number of processes involved in a coordinated
checkpointing session. This can be done since only those processes that have communicated with the checkpoint
initiator either directly or indirectly since the last checkpoint need to take new checkpoints [32].

The following two-phase protocol achieves minimal checkpoint coordination [32]. During the first phase,
the checkpoint initiator identifies all processes with which it has communicated since the last checkpoint and sends
them a request. Upon receiving the request, each process in turn identifies all processes it has communicated with
since the last checkpoints and sends them a request, and so on, until no more processes can be identified. During the
second phase, all processes identified in the first phase take a checkpoint. The result is a consistent checkpoint that
involves only the participating processes. In this protocol, after a process takes a checkpoint, it cannot send any
message until the second phase terminates successfully, although receiving a message after the checkpoint has been
taken is allowable.

3.3 Communication-induced Checkpointing

3.3.1 Overview

Communication-induced checkpointimyoids the domino effect while allowing processes to take some of their
checkpoints independently [14]. However, process independence is constrained to guarantee the eventual progress
of the recovery line, and therefore processes may be forced to take additional checkpoints. The checkpoints that a
process takes independently are callschl checkpoints, while those that a process is forced to take are called
forced checkpoints. Communication-induced checkpointing piggybacks protocol-related information on each
application message. The receiver of each application message uses the piggybacked information to determine if it
has to take a forced checkpoint to advance the global recovery line. The forced checkpoint must be taken before the
application may process the contents of the message, possibly incurring high latency and overhead. It is therefore
desirable in these systems to reduce the number of forced checkpoints to the extent possible. In contrast with
coordinated checkpointing, no special coordination messages are exchanged.

We distinguish two types of communication-induced checkpointing.madel-based checkpointinghe
system maintains checkpoint and communication structures that prevent the domino effect or achieve some even
stronger properties [60]. limdex-based coordinatigrihe system uses an indexing scheme for the local and forced
checkpoints, such that the checkpoints of the same index at all processes form a consistent state. Recently, it has
been proved that the two types are fundamentally equivalent [25], although in practice, there may be some evidence
that index-based coordination results in fewer forced checkpoints [2]. Other practical issues concerning these
protocols will be discussed in Section 5.

3.3.2 Model-based Checkpointing

Model-based checkpointing relies on preventing patterns of communications and checkpoints that could result in
inconsistent states among the existing checkpoints. A model is set up to detect the possibility that such patterns
could be forming within the system, according to some heuristic. A checkpoint is usually forced to prevent the
undesirable patterns from occurring. Model-based checkpointing works with the restriction that no control (out-of-
band) messages are exchanged among the processes during normal operation. All information necessary to execute
the protocol is piggybacked on top of application messages. The decision to force a checkpoint is done locally using
the information available. Therefore, under this style of checkpointing it is possible that two processes detect the
potential for inconsistent checkpoints and independently force local checkpoints to prevent the formation of
undesirable patterns that may never actually materialize or that could be prevented by a single forced checkpoint.
Thus, this style of checkpointing always errs on the conservative side by taking more forced checkpoints than is
probably necessary, because without explicit coordination, no process has complete information about the global
system state.
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The literature contains several domino-effect-free checkpoint and communication modelgIRS hedel
[50] avoids the domino effect by ensuring that within every checkpoint interval all message-receiving events
precede all message-sending events. This model can be maintained by taking an additional checkpoint before every
message-receiving event that is not separated from its previous message-sending event by a checkpoint [60].
Another way to prevent the domino effect is to avoid rollback propagation completely by taking a checkpoint
immediately after every message-sending event [7]. Recent work has focused on ensuring that every checkpoint can
belong to a consistent global checkpoint and therefore is not useless [5][24][25][41].

3.3.3 Index-based Communication-Induced Checkpointing

Index-based communication-induced checkpointing works by assigning monotonically increasing indexes to
checkpoints, such that the checkpoints having the same index at different processes form a consistent state [14]. The
indexes are piggybacked on application messages to help receivers decide when they should force a checkpoint. For
instance, the protocol by Briatico et al forces a process to take a checkpoint upon receiving a message with a
piggybacked index greater than the local index [14]. More sophisticated protocols piggyback more information on
top of application messages to minimize the number of forced checkpoints [24].

4 Log-Based Rollback Recovery

As opposed to checkpoint-based rollback recovery, log-based rollback recovery makes explicit use of the fact that a
process execution can be modeled as a sequence of deterministic state intervals, each starting with the execution of a
nondeterministic event [56]. Such an event can be the receipt of a message from another process or an event internal
to the process. Sending a message, howeverpti@ nondeterministic event. For example, in Figure 5, the
execution of procesBy is a sequence of four deterministic intervals. The first one starts with the creation of the
process, while the remaining three start with the receipt of messgges andmy, respectively. Sending message

m, is uniquely determined by the initial state Rf and by the receipt of message, and is therefore not a
nondeterministic event.

Log-based rollback recovery assumes that all nondeterministic events can be identified and their
corresponding determinants can be logged to stable storage. During failure-free operation, each process logs the
determinants of all the nondeterministic events that it observes onto stable storage. Additionally, each process also
takes checkpoints to reduce the extent of rollback during recovery. After a failure occurs, the failed processes
recover by using the checkpoints and logged determinants to replay the corresponding nondeterministic events
precisely as they occurred during the pre-failure execution. Because execution within each deterministic interval
depends only on the sequence of nondeterministic events that preceded the interval’'s beginning, the pre-failure
execution of a failed process can be reconstructed during recovery up to the first nondeterministic event whose
determinant is not logged.

Log-based rollback-recovery protocols have been traditionally called “message logging protocols.” The
association of nondeterministic events with messages is rooted in the earliest systems that proposed and
implemented this style of recovery [7][11][56]. These systems translated nondeterministic events into deterministic
message receipt events.

Log-based rollback-recovery protocols guarantee that upon recovery of all failed processes, the system does
not contain any orphan process, i.e., a process whose state depends on a nondeterministic event that cannot be
reproduced during recovery. The way in which a specific protocol implements this condition affects the protocol’s
failure-free performance overhead, latency of output commit, and simplicity of recovery and garbage collection, as
well as its potential for rolling back correct processes. There are three flavors of these protocols:

« Pessimistic log-based rollback-recovery protocols guarantee that orphans are never created due to a failure.
These protocols simplify recovery, garbage collection and output commit, at the expense of higher failure-free
performance overhead.

e Optimistic log-based rollback-recovery protocols reduce the failure-free performance overhead, but allow
orphans to be created due to failures. The possibility of having orphans complicates recovery, garbage
collection and output commit.

« Causal log-based rollback-recovery protocols attempt to combine the advantages of low performance overhead
and fast output commit, but they may require complex recovery and garbage collection.
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We present log-based rollback-recovery protocols by first specifying a property that guarantees that no
orphans are created during an execution, and then by discussing how the three major classes of log-based rollback-
recovery protocols implement this consistency condition

4.1 The No-Orphans Consistency Condition
Let e be a nondeterministic event that occurs at progesag define:

« Depende), the set of processes that are affected by a nondeterministiceevVEhis set consists qf, and any
process whose state depends on the evaaotording to Lamport'eappened beforeelation [34].

« Log(e), the set of processes that have logged a copyg dieterminant in their volatile memory.

e Stablde), a predicate that is truedk determinant is logged on stable storage.

Now, suppose that a set of procespagashes. A procegsin |y becomes an orphan wheritself does not
fail and p's state depends on the execution of a nondeterministic ewshbse determinant cannot be recovered
from stable storage or from the volatile memory of a surviving process. Formally [1]:

¥ e: - Stable(e) = Depend(e)=Log(e)

We call this property thalways-no-orphansondition. It stipulates that if any surviving process depends on
an eveng, that either the event is logged on stable storage, or the process has a copy of the determinaet of event
If neither condition is true, then the process is an orphan because it depends on athavesnnot be generated
during recovery since its determinant has been lost.

4.2 Pessimistic Logging

421 Overview

Pessimistic logging protocols are designed under the assumption that a failure can occur after any nondeterministic
event in the computation. This assumption is “pessimistic” since in reality failures are rare. In their most
straightforward form, pessimistic protocols log to stable storage the determinant of each nondeterministic event
before the event is allowed to affect the computation. These pessimistic protocols implement the following
property, often referred to agnchronous loggingvhich is a strengthening of the always-no-orphans condition:

¥ e: - Stable(e)= /Depend(e) =0

This property stipulates that if an event has not been logged on stable storage, then no process can depend
on it.

In addition to logging determinants, processes also take periodic checkpoints to limit the amount of work that
has to be repeated in execution replay during recovery. Should a failure occur, the application program is restarted
from the most recent checkpoint and the logged determinants are used during recovery to recreate the pre-failure
execution.

Consider the example in Figure 12. During failure-free operation the logs of proeg93eandP, contain
the determinants needed to replay messaggs fu, m;}, {my, ms, mg} and {m,, mg}, respectively. Suppose
processe®; andP, fail as shown, restart from checkpoiB®ndC, and roll forward using their determinant logs to
deliver again the same sequence of messages as in the pre-failure execution. This guaraRiemsdtRatwill
repeat exactly their pre-failure execution and re-send the same messages. Hence, once recovery is complete, both
processes will be consistent with the statBghat includes the receipt of messagerom P;.

In a pessimistic logging system, the observable state of each process is always recoverable. This property
has four advantages:

1. Processes can commit output to the outside world without running a special protocol.

2. Processes restart from their most recent checkpoint upon a failure, therefore limiting the extent of execution that
has to be replayed. Thus, the frequency of checkpoints can be determined by trading off the desired runtime
performance with the desired protection of the on-going execution.

3. Recovery is simplified because the effects of a failure are confined only to the processes that fail. Functioning
processes continue to operate and never become orphans because a process always recovers to the state that
included its most recent interaction with any other process or with the outside world. This is highly desirable in
practical systems [27].
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Figure 12. Pessimistic logging.

4. Recovery information can be garbage-collected easily. Older checkpoints and determinants of nondeterministic
events that occurred before the most recent checkpoint can be reclaimed because they will never be needed for
recovery.

The price to be paid for these advantages is a performance penalty incurred by synchronous logging.
Implementations of pessimistic logging must therefore resort to special techniques to reduce the effects of
synchronous logging on performance. Some protocols rely on special hardware to facilitate logging [11], while
others may limit the number of tolerated failures to improve performance [29][31].

4.2.2 Techniques for Reducing Performance Overhead

Synchronous logging [11] can potentially result in a high performance overhead. This overhead can be lowered
using special hardware. For example, fast non-volatile semiconductor memory can be used to implement stable
storage [6]. Synchronous logging in such an implementation is orders of magnitude cheaper than with a traditional
implementation of stable storage that uses magnetic disk devices. Another form of hardware support uses a special
bus to guarantee atomic logging of all messages exchanged in the system [11]. Such hardware support ensures that
the log of one machine is automatically stored on a designated backup without blocking the execution of the
application program. This scheme, however, requires that all nondeterministic events be conveeteerimab
messages [7][11].

Some pessimistic logging systems reduce the overhead of synchronous logging without relying on hardware.
For example, th&sender-Based Message Loggf®BML) protocol keeps the determinants corresponding to the
delivery of each message in the volatile memory of its sender [29]. The determinamh,ofvhich consists of its
content and the order in which it was delivered, is logged in two steps. First, before senti@gender logs its
content in volatile memory. Then, when the receivenoésponds with an acknowledgment that includes the order
in which the message was delivered, the sender adds to the determinant the ordering information. SBML avoids the
overhead of accessing stable storage but tolerates only one failure and cannot handle nondeterministic events
internal to a process. Extensions to this technique can tolerate more than one failure in special network
topologies [31].

4.2.3 Relaxing Logging Atomicity

The performance overhead of pessimistic logging can be reduced by delivering a message or an event and deferring
its logging until the host communicates with another host or with the outside world [28][29]. In the example of
Figure 12, procesB, may defer the logging of messagaesandm; until it communicates with another process or

the outside world. Proce$% implements the following weaker property, which still guarantees the always-no-
orphans condition:

v e: - Stable(e)= /Depend(e) <1

This property relaxes the condition of pessimistic logging by allowing a single process to be affected by an
event that has yet to be logged, provided that the process does not externalize the effect of this dependency to other
processes or the outside world. Thus, messagandm; are allowed to affect proceBg, but this effect is local —
no other process or the outside world can see it until the messages are logged.
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The observedbehavior of each process is the same as with an implementation that logs events before
delivering them to applications. Event logging and delivery are not performed in one atomic operation in this
variation of pessimistic logging. This scheme reduces overhead because several events can be logged in one
operation, reducing the frequency of synchronous access to stable storage. Latency of interprocess communication
and output commit are not reduced since a logging operation may often be needed before sending a message.

Systems that separate logging of an event from its delivery may lose the last messages delivered before a
failure. This may be a problem for applications that assume that processes communicate through reliable channels.
Consider one of these applications going through the execution shown in Figure 12, and assume thgg faitcess
after delivering messages, andm; but before the corresponding determinants—containing the content and order of
receipt of the messages—are logged. Protocols in which the receiver logs the message content cannot guarantee that
the recoveredP, will ever deliverm, andmy, violating the assumption about reliable channels. This problem does
not arise in protocols that log messages at the sender or do not assume reliable communication channels
[18][28][29][30].

4.3 Optimistic Logging

4.3.1 Overview

In optimistic logging protocols, processes log determinasysichronouslyo stable storage [56]. These protocols

make the optimistic assumption that logging will complete before a failure occurs. Determinants are kept in a
volatile log, which is periodically flushed to stable storage. Thus, optimistic logging does not require the application

to block waiting for the determinants to be actually written to stable storage, and therefore incurs little overhead
during failure-free execution. However, this advantage comes at the expense of more complicated recovery,
garbage collection, and slower output commit than in pessimistic logging. If a process fails, the determinants in its
volatile log will be lost, and the state intervals that were started by the nondeterministic events corresponding to
these determinants cannot be recovered. Furthermore, if the failed process sent a message during any of the state
intervals that cannot be recovered, the receiver of the message becomes an orphan process and must roll back to
undo the effects of receiving the message. Optimistic protocols do not implemalwals-no-orphansondition,

and therefore permit the temporary creation of orphan processes. However, they require that the property holds by
the time recovery is complete. This is achieved during recovery by rolling back orphan processes until their states
do not depend on any message whose determinant has been lost. For example, suppoBgiprbapse 13 fails

before the determinant fons is logged to stable storage. Prodesshen becomes an orphan process and must roll

back to undo the effects of receiving the orphan messggerThe rollback ofP; further forcesP, to roll back to

undo the effects of receiving message

To perform these rollbacks correctly, optimistic logging protocols track causal dependencies during failure-
free execution. Upon a failure, the dependency information is used to calculate and recover the latest global state of
the pre-failure execution in which no process is in an orphan.

The above example also illustrates why optimistic logging protocols require a nontrivial garbage collection
algorithm. While pessimistic protocols need only keep the most recent checkpoint of each process, optimistic
protocols may need to keep multiple checkpoints. In the example, the faillte fofces P, to restart from
checkpoinB instead of its most recent checkpdint

Finally, since determinants are logged asynchronously, output commit in optimistic logging protocols
generally requires multi-host coordination to ensure that no failure scenario can revoke the output. For example, if
processP, needs to commit output at stafeit must log messages, andm, to stable storage and aBkto logm,
andms.

4.3.2 Synchronous vs. Asynchronous Recovery

Recovery in optimistic logging protocols can be eitignchronousor asynchronous In synchronous recovery
[28][30][53], all processes run a recovery protocol to compute the maximum recoverable system state based on
dependency and logged information, and then perform the actual rollbacks. During failure-free execution, each
process incrementsstate interval indexat the beginning of each state interval. Dependency tracking can be either
direct or transitive

In direct dependency tracking [28][53], the state interval index of the sender is piggybacked on each outgoing
message to allow the receiver to record the dependency directly caused by the message. These direct dependencies
can then be assembled at recovery time to obtain complete dependency information. Alternatively, transitive
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dependency tracking [53][56] can be used: each proeesmintains a siz& vector TD;, whereTDj[i] is P/'s

current state interval index, anj[j], j # i, records the highest index of any state intervaP,0bn which P,
depends. Transitive dependency tracking generally incurs a higher failure-free overhead for piggybacking and
maintaining the dependency vectors, but allows faster output commit and recovery.

In asynchronous recovery, a failed process restarts by sending a rollback announcement broadcast or a
recovery message broadcast to start ainearnation[55][56]. Upon receiving a rollback announcement, a process
rolls back if it detects that it has become an orphan with respect to that announcement, and then broadcasts its own
rollback announcement. Since rollback announcements from multiple incarnations of the same process may coexist
in the system, each process in general needs to track the dependency of its state on every incarnation of all processes
to correctly detect orphaned states. A way to limit dependency tracking to only one incarnation of each process is to
force a process to delay its delivery of certain messages. That is, before a prazasgeliver any message
carrying a dependency on an unknown incarnation of prdeBs must first receive rollback announcements from
P; to verify thatP;’s current state does not depend on any invalid stalsoprevious incarnations. Piggybacking
all rollback announcements known to a process on every outgoing message can eliminate blocking, and the amount
of piggybacked information can be further reduced to a provable minimum [55].

Another issue in asynchronous recovery protocols is the possibilitgxpbnential rollbacks. This
phenomenon occurs if a single failure causes a process to roll back an exponential number of times [53]. Figure 14
gives an example, where each integer piait fepresents the" state interval of thé" incarnation of a process.
SupposeP, fails and loses its interval [1,2]. Wheqg's rollback announcemeng reache$;, the latter rolls back to
interval [2,3] and broadcasts another rollback announcemettitr, reache$, beforer, does,P, will first roll back
to [4,5] in response to;, and later roll back again to [4,4] upon receivipg By generalizing this example, we can
construct scenarios in which proc&si > 0, rolls back 2" times in response ®y’s failure.

Several approaches have been proposed to ensure that any process will roll back at most once in response to a
single failure. By distinguishing failure announcements from rollback announcements and broadcasting only the
former, the source of the exponential-rollbacks problem is eliminated [53]. Another possibility is to piggyback the
original rollback announcement from the failed process on every subsequent rollback announcement that it triggers.
For example, in Figure 14, procd3spiggybacks, onr,. Exponential rollbacks can be avoided by piggybacking all
rollback announcements on every application message [55].

4.4 Causal Logging

441 Overview

Causal logging has the failure-free performance advantages of optimistic logging while retaining most of the
advantages of pessimistic logging [1][18]. Like optimistic logging, it avoids synchronous access to stable storage
except during output commit. Like pessimistic logging, it allows each process to commit output independently and
never creates orphans, thereby isolating processes from the effects of failures that occur in other processes.
Furthermore, causal logging limits the rollback of any failed process to the most recent checkpoint on stable storage.
This reduces the storage overhead and the amount of work at risk. These advantages come at the expense of a more
complex recovery protocol.
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Causal logging protocols ensure thlevays-no-orphans propertyy ensuring that the determinant of each
nondeterministic event that causally precedes the state of a process is either stable or it is available locally to that
process. Consider the example in Figure 15(a). While messggeglms may be lost upon the failure, procé%s
at stateX will have logged the determinants of the nondeterministic events that causally precede its state according
to Lamport'shappened-beforeelation [34]. These events consist of the delivery of messages, m,, ms andm,.

The determinant of each of these nondeterministic events is either logged on stable storage or is available in the
volatile log of proces®,. The determinant of each of these events contains the order in which its original receiver
delivered the corresponding message. The message sender, as in sender-based message logging, logs the message
content. Thus, proces$% will be able to “guide” the recovery &f; andP, since it knows the order in whidPy

should replay messages andms to reach the state from whi€h sends messagm,. Similarly, Py has the order in

which P, should replay message to be consistent with bot®, andP;. The content of these messages is obtained

from the sender log d¥, or regenerated deterministically during the recovery,aindP,. Notice that information
aboutmsandmgis not available anywhere. These messages may be replayed after recovery in a different order, if at
all. However, since they had no effect on a surviving process or the outside world, the resulting state is consistent.
The determinant log kept by each process acts as an insurance to protect it from the failures that occur in other
processes. It also allows the process to make its state recoverable by simply logging the information available
locally. Thus, a process does not need to run a multi-host protocol to commit output.

4.4.2 Tracking Causality

Causal logging protocols implements takvays-no-orphansondition by having processes piggyback the non-

stable determinants in their volatile log on the messages they send to other processes. On receiving a message, a
process first adds any piggybacked determinant to its volatile determinant log and then delivers the message to the
application.

The Manethosystem propagates the causal information iraatecedence grapfl8]. The antecedence
graph provides every process in the system with a complete history of the nondeterministic events that have causal
effects on its state. The graph has a node representing each nondeterministic event that precedes the state of a
process, and the edges correspond tdmpened-beforeelation [34]. Figure 15(b) shows the antecedence graph
of proces®, of Figure 15(a) at stabé. During failure-free operation, each process piggybacks on each application
message the determinants that contain the receipt orders of its direct and transitive antecedents, i.e., its local
antecedence graph. The receiver of the message records these receipt orders in its volatile log.

In practice, carrying the entire graph on each application message may lead to an unacceptable overhead.
Fortunately, each message carries a graph that is a superset of the one piggybacked on the previous message sent
from the same host. This fact can be used in practical implementations to reduce the amount of information carried
on application messages. Thus, any message between prqressbg carries only the difference between the
graphs piggybacked on the previous message exchanged between these two hosts. Furthermasreedently
received a message fraqnit can exclude the graph portions that have been piggybacked on that message. Process
g already has the information in these excluded portions, and therefore transmitting them serves no purpose. Other
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optimizations are also possible but depend on the semantics of the communication protocol [18]. An
implementation of this technique shows that it has very low overhead in practice [18].

Further reduction of the overhead is possible if the system is willing to tolerate a number of failures that is
less than the total number of processes in the system. This observation is the basis of Family Based Logging
protocols (FBL) that are parameterized by the number of tolerated failures [1]. The basis of these protocols is that to
toleratef process failures, it is sufficient to log each nondeterministic event in the volatile stoteloflifferent
hosts. Hence, the predic&tabl€e) holds as soon alsdg(e)| >f. Sender-based logging is used to support message
replay during recovery and determinants are piggybacked on application messages. However, unlike Manetho,
propagation of information about an event stops when it has been recordedlirprocesses. Fdr< N, FBL
protocols do not access stable storage except for checkpointing. Reducing access to stable storage in turn reduces
performance overhead and implementation complexity. Applications pay only the overhead that corresponds to the
number of failures they are willing to tolerate. An implementation for the protocolfwithh confirms that the
performance overhead is very small [1]. The Manetho protocol is an FBL protocol corresponding to the case
of f=N.

4.5 Comparison

Different rollback-recovery protocols offer different tradeoffs with respect to properties such as performance
overhead, latency of output commit, storage overhead, ease of garbage collection, simplicity of recovery, freedom
from domino effect, freedom from orphan processes, and the extent of rollback. Table 1 provides a brief
comparison between the different styles of rollback-recovery protocols.

Since garbage collection and recovery both involve calculating a recovery line, they can be performed by
simple procedures under coordinated checkpointing and pessimistic logging, both of which have a predetermined
recovery line during failure-free execution. The extent of any potential rollback determines the maximum number
of checkpoints each process needs to retain. Uncoordinated checkpointing can have unbounded rollbacks, and a
process may need to retain upNocheckpoints if the optimal garbage collection algorithm is used [62]. Also,
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Figure 15. Causal logging. (a) Maximum recoverable states, and (b) antecedence dpgpih sthtex.
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Uncoordinated| Coordinated COT;::Z::“O“ Pessimistic Optimistic Causal Loaain
Checkpointing | Checkpointing o Logging Logging gging
Checkpointing
PWD
assumed? No No No Yes Yes Yes
Garbage ] )
collection Complex Simple Complex Simple Complex Complex
Checkpoints
per process Several 1 Several 1 Several 1
Domino )
effect? Possible No No No No No
Orphan ) . )
processes? Possible No Possible No Possible No
Rollback Last global Possiblyseveral .| Possiblyseveral .
extent Unbounded checkpoint checkpoints Lastcheckpoint checkpoints Lastcheckpoint
Complex
recovery? Yes No Yes No Yes Yes
Output )
commit Not possible Very slow Very slow Fastest Slow Fast

Table 1. Comparison between different styles of rollback-recovery protocols.

several checkpoints may need to be kept under optimistic logging, depending on the specifics of the logging scheme.
Note that we do not include failure-free overhead as a factor in the comparison. Several studies have shown that
these protocols perform reasonably well in practice, and that several factors such as checkpointing frequency,
machine speed, and stable storage bandwidth play more important roles than the fundamental aspects of a particular
protocol [1][18][20][26][28][39][43][44][48][49][52].

5 Implementation Issues

5.1 Overview

While there is a rich body of research on the algorithmic aspects of rollback-recovery protocols, reports on
experimental prototypes or commercial implementations are relatively scarce. The few experimental studies
available have shown that building rollback-recovery protocols with low failure-free overhead is feasible. These
studies also provide ample evidence that the main difficulty in implementing these protocols lies in the complexity
of handling recovery [18]. It is interesting that all commercial implementations of message logging use pessimistic
logging because it simplifies recovery [11][27].

Several recent studies have also challenged some premises on which many rollback-recovery protocols rely.
Many of these protocols have been incepted in the 1980’s, when processor speed and network bandwidth were such
that communication overhead was deemed too high, especially when compared to the cost of stable storage access
[10]. In such platforms, multi-host coordination incurs a large overhead because of the necessary control messages.
A protocol that does not require such communication overhead at the expense of more stable storage access
performs better in such platforms. Recently, processor speed and network bandwidth have increased dramatically,
while the speed of stable storage access has remained relatively the $himechange in the equation suggests a

1 While semiconductor-based stable storage is becoming more widely available, the size-cost ratio is too low compared to disk-
based stable storage. It appears that for some time to come, disk-based systems will continue to be the medium of choice for
storing the large files that are needed in checkpointing and logging systems.
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fresh look at the premises of many rollback-recovery protocols and recent results have shown that
[1][18][28][39][43][52][54]:

e Stable storage access is now the major source of overhead in checkpointing or message logging systems.
Communication overhead is much lower in comparison. Such changes favor coordinated checkpointing
schemes over message logging or uncoordinated checkpointing systems, as they require less access to stable
storage and are simpler to implement.

* The case for message logging has become the ability to interact with the outside world, instead of reducing the
overhead of multi-process coordination [21]. Message logging systems can implement efficient protocols for
committing output and logging input that are not possible in checkpoint-only systems.

* Recent advances have shown that arbitrary forms of nondeterminism can be supported at a very low overhead in
logging systems. Nondeterminism was deemed one of the complexities inherent in message logging systems.

In the remainder of this section, we address these and other issues in some detail.

5.2 Checkpointing Implementation

All available studies have shown that writing the state of a process to stable storage is the largest contributor to the
performance overhead [43]. The simplest way to save the state of a process is to suspend execution, save the
process’s address space on stable storage, and then resume execution [57]. This scheme can be costly for programs
with large address spaces if stable storage is implemented using magnetic disks, as it is the custom. Several
techniques exist to reduce this overhead.

5.2.1 Concurrent Checkpointing

All available studies show that concurrent checkpointing greatly reduces the overhead of saving the state of a
process [23][43]. Concurrent checkpointing relies on the memory protection hardware available in modern
computer architectures to continue the execution of the process while its checkpoint is being saved on stable storage.
The address space is protected from further modification at the start of a checkpoint and the memory pages are saved
to disk concurrently with the program execution. If the program attempts to modify a page, it incurs a protection
violation. The checkpointing system copies the page into a separate buffer from which it is saved on stable storage.
The original page is unprotected and the application program is allowed to resume. Implementations that do not
incorporate concurrent checkpointing may pay a heavy performance overhead unless the checkpointing interval is
set to a large value, which in turn would increase the time for rollback.

5.2.2 Incremental Checkpointing

Adding incremental checkpointing [22] to concurrent checkpointing can further reduce the overhead [20].
Incremental checkpointing avoids rewriting portions of the process states that do not change between consecutive
checkpoints. It can be implemented by using the dirty-bit of the memory protection hardware or by emulating a
dirty-bit in software [4]. A public domain package implementing this technique along with concurrent
checkpointing is available [44].

Incremental checkpointing can also be extended over several processes. In this technique, the system saves
the computed parity or some function of the memory pages that are modified across several processes [45]. This
technique is very similar to parity computation in RAID disk systems. The parity pages can be saved in volatile
memory of some other processes thereby avoiding the need to access stable storage. The storage overhead of this
method is very low, and it can be adjusted depending on how many failures the system is willing to tolerate.

Another technique for implementing incremental checkpointing is to directly compare the program’s state
with the previous checkpoint in software, and writing the difference in a new checkpoint [46]. The required storage
and computation overhead to perform such a comparison may waste the benefit of incremental checkpointing.
Another variation on this technique is to use probabilistic checkpointing [40]. The unit of checkpointing in this
scheme is a memory block that is typically much smaller than a memory page. Changes to a memory block are
detected by computing a signature and comparing it to the corresponding signature in the previous checkpoint.
Probabilistic checkpointing is portable, and has lower storage and computation requirements than required by
comparing the checkpoints directly. On the downside, computing a signature to detect changes opens the door for
aliasing. This problem occurs when the computed signature does not differ from the corresponding one in the
previous checkpoint, even though the associated memory block has changed. In such a situation, the memory block
is excluded from the new checkpoint, which therefore becomes erroneous. A probabilistic analysis has shown that
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the likelihood of aliasing in practice is negligible, but an experimental evaluation has shown that probabilistic
checkpointing is unsafe in practice [19].

5.2.3 System-level versus User-level Implementations

Support for checkpointing can be implemented in the kernel [7][11][18][28], or it can be implemented by a library
linked with the user program [1][23][26][44]. Kernel-level implementations are more powerful because they can
also capture kernel data structures that support the user process. However, these implementations are necessarily
not portable.

Checkpointing can also be implemented in user level. System calls that manipulate memory protection such
as mprotectof UNIX can emulate concurrent and incremental checkpointing. farkesystem call of UNIX can
implement concurrent checkpointing if the operating system implenfietitsising copy-on-write protection [23].
User-level implementations, however, cannot access kernel's data structures that belong to the process, such as open
file descriptors and message buffers, but these data structures can be emulated at user level [26].

5.2.4 Compiler Support

A compiler can be instrumented to generate code that supports checkpointing [36]. A compiled program would
contain code that decides when and what to checkpoint. The advantage of this technique is that the compiler can
decide on the variables that must be saved, therefore avoiding unnecessary data. For example, dead variables within
a program are not saved in a checkpoint though they have been modified. Furthermore, the compiler may decide the
points during program execution where the amount of state to be saved is small.

Despite these promising advantages, there are difficulties with this approach. It is generally undecidable to find the
point in program execution most suitable to take a checkpoint. There are, however, several heuristics that can be
used. The programmer can provide hints to the compiler about where checkpoints should be inserted or what data
variables should be stored [8][44]. The compiler may also be trained by running the application in an iterative
manner and observing its behavior [36]. The observed behavior could help decide the execution points where it
would be appropriate to insert checkpoints. Compiler support could also be simplifiedjuadas that gyport

automatic garbage collection [3]. The execution point after each major garbage collection provides a convenient
place to take a checkpoint at a minimum cost.

5.2.5 Checkpoint Placement

A large amount of work has been devoted to analyzing and deriving the optimal checkpointing frequency and
placement [15]. The problem is usually formulated as an optimization problem subject to constraints. For instance,
a system may attempt to reduce the number of checkpoints taken subject to a certain limit on the amount of expected
rollback. Generally, it has been observed in practice that the overhead of checkpointing is usually negligible unless
the checkpointing interval is relatively small, and therefore the optimality f checkpoint placement is rarely an issue
in practical systems [20].

5.3 Checkpointing Protocols in Comparison

Many checkpointing protocols were incepted at a time where the communication overhead far exceeded the
overhead of accessing stable storage. Furthermore, the memory available to run processes tended to be small.
These tradeoffs naturally favored uncoordinated checkpointing schemes over coordinated checkpointing schemes.
Current technological trends however have reversed this tradeoff.

In modern systems, the overhead of coordinating checkpoints is negligible compared to the overhead of
saving the states [1][18][28][39][43][52]. Using concurrent and incremental checkpointing, the overhead of either
coordinated or uncoordinated checkpointingssentially the sameTherefore, uncoordinated checkpointing is not
likely to be an attractive technique in practice given the negligible performance gains. These gains do not justify the
complexities of finding a consistent recovery line after the failure, the susceptibility to the domino effect, the high
storage overhead of saving multiple checkpoints of each process, and the overhead of garbage collection. It follows
that coordinated checkpointing is superior to uncoordinated checkpointing when all aspects are considered on the
balance.

A recent study has also shed some light on the behavior of communication-induced checkpointing [2]. It
presents an analysis of these protocols based on a prototype implementation and validated simulations, showing that
communication-induced checkpointing does not scale well as the number of processes increases. The occurrence of
forced checkpoints at random points within the execution due to communication messages makes it very difficult to
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predict the required amount of stable storage for a particular application run. Also, this unpredictability affects the
policy for placing local checkpoints and makes CIC protocols cumbersome to use in practice. Furthermore, the
study shows that the benefit of autonomy in allowing processes to take local checkpoints at their convenience does
not seem to hold. In all experiments, a process takes at least twice as many forced checkpoints as local, autonomous
ones.

5.4 Communication Protocols

Rollback recovery complicates the implementation of protocols used for inter-process communications. Some

protocols offer the abstraction of reliable communication channels such as connection-based protocols (e.g., TCP,
RPC). Alternatively, other protocols offer the abstraction of an unreliable datagram service (e.g., UDP). Each type

of abstraction requires additional support to operate properly across failures and recoveries.

5.4.1 Location-Independent Identities and Redirection

For all communication protocols, a rollback-recovery system must mask the actual identity and location of processes
or remote ports from the application program. This masking is necessary to prevent any application program from
acquiring a dependency on the location of a certain process, making it impossible to restart the process on a different
machine after a failure. A solution to this problem is to assign a logical, location-independent identifier to each
process in the system. This scheme also allows the system to redirect communication appropriately to a restarting
process after a failure [18].

5.4.2 Reliable Channel Protocols

After a failure, identity masking and communication redirection are sufficient for communication protocols that
offer the abstraction of an unreliable channel. Protocols that offer the abstraction of reliable channels require
additional support. These protocols usually generate a timeout upcall to the application program if the process at the
other end of the channel has failed. These timeouts should be masked since the failed program will soon restart and
resume computation. If such upcalls are allowed to affect the application, then the abstraction of a reliable system is
no longer upheld. The application will have to encode the necessary support to communicate with the failed process
after it recovers.

Masking timeouts should also be coupled with the ability of the protocol implementation to reestablish the
connection with the restarting process (possibly restarting on a different machine). This support includes the ability
to clean up the old connection in an orderly manner, and to establish a new connection with the restarting host.
Furthermore, messages retransmitted as part of the execution replay of the remote host must be identified and, if
necessary, suppressed. This requires the protocol implementation to include a form of sequence number that is only
used for this purpose.

Recovering in-transit messages that are lost because of a failure is another problem for reliable
communication protocols. In TCP/IP communication style, for instance, a message is considered delivered once an
acknowledgment is received from the remote host. The message itself may linger in the kernel's buffer for a while
before the receiving process consumes it. If this process fails, the in-transit messages must be resent to preserve the
semantics of the reliable communication channel. Messages must be saved at the sender side for possible
retransmission during recovery. This step can be combined in a system that performs sender-based message logging
as part of the log maintenance. In other systems that do not log messages or log messages at the receiver, the
copying of each message at the sender side introduces overhead and complexity. The complexity is due to the need
for executing some garbage collection algorithm with other sites to reclaim the volatile storage.

5.5 Log-based Recovery

5.5.1 Message Logging Overhead

Message logging introduces three sources of overhead. First, each message must in general be copied to the local
memory of the process. Second, the volatile log is regularly flushed on stable storage to free up space. Third,
message logging nearly doubles the communication bandwidth required to run the application for systems that
implement stable storage via a highly-available file system accessible through the network. The first source of
overhead may directly affect communication throughput and latency. This is especially true if the copying occurs in
the critical path of the inter-process communication protocol. In this respect, sender-based logging is considered
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more efficient than receiver-based logging because the copying can take place after sending the message over the
network. Additionally, the system may combine the logging of messages with the implementation of the
communication protocol and share the message log with the transmission buffers. This scheme avoids the extra
copying of the message. Logging at the receiver is more expensive because it is in the critical path of the
communication protocol.

Another optimization for sender-based logging systems is to use copy-on-write to avoid making extra-
copying [21]. This scheme works well in systems where broadcast messages are implemented using several point-
to-point messages. In this case, copy-on-write will allow the system to have one copy for identical messages and
thus reduce the storage and performance overhead of logging. No similar optimization can be performed in
receiver-based systems [21].

5.5.2 Combining Log-Based Recovery with Coordinated Checkpointing

Log-based recovery has been traditionally presented as a mechanism to allow the wsmbonflinated
checkpointing with no domino effect. But a system may also combine event logging with coordinated
checkpointing, yielding several benefits with respect to performance and simplicity [21]. These benefits include
those of coordinated checkpointing—such as the simplicity of recovery and garbage collection—and those of log-
based recovery—such as fast output commit. Most prominently, this combination obviates the need for flushing the
volatile message logs to stable storage in a sender-based logging implementation. Thus, there is no need for
maintaining large logs on stable storage, resulting lower performance overhead and simpler implementations. The
combination of coordinated checkpointing and message logging has been shown to outperform one with
uncoordinated checkpointing and message logging [21]. Therefore, the purpose of logging should no longer be to
allow uncoordinated checkpointing. Rather, it should be the desire for enabling fast output commit for those
applications that need this feature.

5.6 Stable Storage

Magnetic disks have been the medium of choice for implementing stable storage [35]. Although they are slow, their
storage capacity and low cost combination cannot be matched with other alternatives. An implementation of a
stable storage abstraction on top of a conventional file system may not be the best choice, however. Such an
implementation will not generally give the performance or reliability needed to implement stable storage
[6][18][49]. Modern file systems tend to be optimized for the pattern of access expected in workstation or personal
computing environments. Furthermore, these file systems are often accessed through a network via a protocol that is
optimized for small file accesses and not for the large file accesses that are more common in checkpointing and
logging.

An implementation of stable storage should bypass the file system layer and access the disk directly. One
such implementation is the KitLog package, which offers a log abstraction that can support checkpointing and
message logging [49]. The package runs in conventional UNIX systems and bypasses the UNIX file system by
accessing the disk in raw mode. There have been also several attempts at implementing stable storage using non-
volatile semiconductor memory [6]. Such implementations do not have the performance problems associated with
disks. The price and the small storage capacity remain two problems that limit their wide acceptance.

5.7 Support for Nondeterminism

Nondeterminism occurs when the application program interacts with the operating system through system calls and
upcalls. ThePWD assumption inherent in log-based recovery systems stipulates that these nondeterministic events
be logged on stable storage so that they can be replayed during recovery. Log-based recovery systems differ in the
range of actual events that can be covered underPWW® assumption. There are two main sources of
nondeterminism in actual systems, namely system calls and asynchronous events.

5.7.1 System Calls

System calls in general can be classified into three types [11][18][23]. Idempotent system calls are those that return
deterministic values whenever executed. Examples include calls that return the user identifier of the process owner.
These calls do not need to be logged. A second class of calls consists of those that must be logged during failure-
free operation but should not be re-executed during execution replay. The result from these calls should simply be
replayed to the application program. These calls include those that inquire about the environment, such as getting
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the current time of day. Re-executing these calls during recovery might return a different value that is inconsistent
with the pre-failure execution. The last type of system calls are those that must be logged during failure-free
operation and re-executed during execution replay. These calls generally modify the environment and therefore they
must be re-executed to re-establish the environment changes. Examples include calls that allocate memory or create
processes. Ensuring that these calls return the same values and generate the same effect during re-execution can be
very complex.

5.7.2 Asynchronous Signals

Nondeterminism results from asynchronous signals available in the form of software interrupts under various
operating systems. Such signals must be applied at the same execution points during replay to reproduce the same
result. Log-based rollback recovery can cover this form of nondeterminism by taking a checkpoint after the
occurrence of each signal, which can be very expensive [7]. Alternatively, the system may convert these
asynchronous signals to synchronous messages such as in Targon/32 [11], or it may queue the signals until the
application polls for them. Both alternatives convert asynchronous event notifications into synchronous ones, which
may not be suitable or efficient for many applications. Such solutions also require substantial modifications to the
operating system or the application program.

Another example of nondeterminism that is difficult to track is shared memory manipulation in multi-
threaded applications. Reconstructing the same execution during replay requires the same interleaving of shared
memory accesses by the various threads as in the pre-failure execution. Systems that support this form of
nondeterminism supply their own sets of locking primitives, and require applications to use them for protecting
access to shared memory [23]. The primitives are instrumented to insert an entry in the log identifying the calling
thread and the nature of the synchronization operation. However, this technique has several problems. It makes
shared memory access expensive, and may generate a large volume of data in the log. Furthermore, if the
application does not adhere to the synchronization model (because of a programmer’s error, for instance), execution
replay may not be possible.

A technique for tracking nondeterminism due to asynchronous signals and interleaved memory access on
single processor systems is to usgruction countergl3]. An instruction counter is a register that decrements by
one upon the execution of each instruction, leading the hardware to generate an exception when the register contents
become 0. An instruction counter can thus be used in two modes. In one mode, the register is loaded with the
number of instructions to be executed before a breakpoint occurs. After the CPU executes the specified number of
instructions, the counter reaches 0 and the hardware generates an exception. The operating system fields the
exception and executes a pre-specified handler. This mode is useful in setting breakpoints efficiently, such as during
debugging. In the second mode, the instruction counter is loaded with the maximum value it can hold. Execution
proceeds until an event of interest occurs, at which time the content of the counter is sampled, and the number of
instructions executed since the time the counter was set is computed and logged. The use of instruction counters has
been suggested for debugging shared memory parallel programs [37].

Instruction counters can be used in rollback recovery to track the number of instructions that occur between
asynchronous interrupts [54]. These instruction counts are logged as part of the log that describes the
nondeterministic events. During recovery, the system recovers the instruction counts from the log and uses them to
regenerate the software interrupts at the same execution points within the application as before the failure. The
application therefore goes through the same set of asynchronous events precisely as it did before the failure, and
therefore it can reconstruct its execution.

An instruction counter can be implemented in hardware, as in the PA-RISC precision architecture where it
has been used to augment the hypervisor of a virtual-machine manager and coordinate a primary virtual machine
with its backup [13]. It also can be emulated in software [37]. An implementation study shows that the overhead of
program instrumentation and tracking nondeterminism is less than 6% for a variety of user programs and synthetic
benchmarks [54].

5.8 Dependency Tracking

Rollback-recovery protocols vary in the ways they track inter-process dependencies. Some protocols require
tagging only an index or a sequence number on every application messages [14], while some require the propagation
of a vector of timestamps [56]. At an extreme, some protocols require the propagation of a graph describing the
history of the computation [18], or matrices containing bit or timestamp vectors [5].
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Tagging a message with an index or a sequence number on an application message is simple and does not
cause any measurable overhead. When dependency tracking, however, requires more complex structures, there are
techniques for reducing the amount of actual data that need to be transferred on top of each message. All these
techniques revolve around two themes. First, only incremental changes need to be sent. If some elements of a
vector or a graph haven't changed since propdsas sent a message to proagsthenp need only include those
elements that have changed. Implementation of this optimization is straightforward in systems that assume FIFO
communication channels. When lossy channels are assumed, this optimization is still possible, but at the expense of
more processing overhead [18].

The other technique for reducing the overhead of dependency tracking exploits the semantics of the
applications and the communication patterns [18]. For instance, if it can be inferred from the dependency
information available to procegsthat process already knows parts of the information that is to be piggybacked on
a message outgoing tp then procesp can exclude this information. Surprisingly, implementing this optimization
is simple and yields good performance [18]. Regardless of the particular method used to track inter-process
dependencies, various prototype implementations have shown that the overhead resulting from tracking is negligible
compared to the overhead of checkpointing or logging [1][2][9][11][18][23][28][48][52].

5.9 Recovery

Handling execution restart and replay is a difficult part of implementing a rollback-recovery system [11]. The major
challenge is reintegrating the recovered process in a computation environment that may or may not be the same as
the one in which the process was executing before failure.

5.9.1 Reinstating a Process in its Environment

Implanting a process in a different environment during recovery can create difficulties if its state depends on the pre-
failure environment. For example, the process may need to access files that exist on the local disk of the machine.
The simplest solution to this problem is to attempt to restart the program on the same host. If this is not feasible,
then the system must insulate the process from environment-specific variables [18]. This can be done for instance
by intercepting system calls that return environment-specific results and replacing them with abstract values under
the control of the recovery system. Also, file access could be made highly available by placing all files in network-
wide highly available file servers or by using dual-ported disks.

Another problem in implementing recovery is the need to reconstruct the auxiliary state within the operating
system kernel that supports the recovering process [18][26][28][43]. This state is usually outside of the recovery
protocol’s control during failure-free operation, unless the protocol is implemented inside the operating system. For
protocols implemented outside the operating system, the rollback-recovery system must emulate these data
structures and log sufficient information to be able to recreate them during recovery. For example, the recovery
system may imitate the open file table of a particular process by intercepting all file manipulation calls from the
process itself. Then, the recovery system records some information that would enable it to issue requests to the
operating system during recovery in order to force the operating system to recreate these data structure indirectly.
Obviously, not all state within the operating system kernel can be emulated this way, and therefore, out-of-kernel
implementations will have to have stricter coverage of the system’s state that need to be emulated. Since most of the
applications that benefit from rollback recovery seem to be in the realm of scientific computing where no
sophisticated state is maintained by the kernel on behalf of the processes, this problem does not seem to be severe in
that particular context [44].

5.9.2 Behavior During Recovery

Previous studies have outlined several characteristics of rollback-recovery systems during recovery [18][48]. For
example, it has been observed that for log-based recovery systems, the messages and determinants available in the
logs are replayed at a considerably higher speed during recovery than during normal execution. This is because
during normal execution a process may have to block waiting for messages or synchronization events, while during
recovery these messages or events can be immediately replayed.

Also, it has been observed that sender-based logging protocols typically slow down recovery if there are
multiple failures, because of the need to re-execute some of the processes under control to regenerate the messages.
Moreover, some of these protocols may require sympathetic rollbacks [56], which increase the overhead of
synchronizing the processes during recovery.
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This experimental evidence seems to confirm the tradeoff between protocols that perform well during failure-
free executions, such as causal and optimistic logging, and protocols that perform well during recovery, such as
pessimistic logging [48]. It is possible to address this tradeoff by performing logging both at the sender and
receivers [56], such that the sender log is volatile and is kept only until the receiver flushes its volatile logs to stable
storage.

5.10 Rollback Recovery in Practice

Despite the wealth of research in the area of rollback recovery in distributed systems, very few commercial systems
actually have adopted them. Difficulties in implementing recovery perhaps are the main reason why these protocols
have not been widely adopted. Additionally, the range of applications that benefit from these protocols tend to be in
the realm of long-running, scientific programs, which are relatively few. Many of these, in fact, are written to run
on supercomputers where some facility exists for checkpointing the entire system’s state. For the few that run in a
distributed system, public domain libraries that implement checkpointing have proved adequate [44].

Log-based recovery seemed to have less success than checkpoint-only systems. A commercial
implementation of pessimistic logging did not fare well, although the reasons are not clear [11]. One could
conjecture that the complex modifications made to the operating system and the special-purpose hardware that was
used to mitigate performance overhead made the machine expensive. Some other usage of log-based recovery has
been reported in telecommunication applications [26], although there are no reports on how they fared.
Interestingly, both commercial implementations used pessimistic logging, and were used for applications where the
performance overhead of this form of logging could be tolerated. We are not aware, however, of any use of
optimistic or causal logging rollback-recovery protocols in commercial systems.

6 Concluding Remarks

We have reviewed and compared different approaches to rollback recovery with respect to a set of properties
including the assumption of piecewise determinism, performance overhead, storage overhead, ease of output
commit, ease of garbage collection, ease of recovery, freedom from domino effect, freedom from orphan processes,
and the extent of rollback. These approaches fall into two broad categories: checkpointing protocols and log-based
recovery protocols.

Checkpointing protocols require the processes to take periodic checkpoints with varying degrees of
coordination. At one end of the spectrum, coordinated checkpointing requires the processes to coordinate their
checkpoints to form global consistent system states. Coordinated checkpointing generally simplifies recovery and
garbage collection, and yields good performance in practice. At the other end of the spectrum, uncoordinated
checkpointing does not require the processes to coordinate their checkpoints, but it suffers from potential domino
effect, complicates recovery, and still requires coordination to perform output commit or garbage collection.
Between these two ends are communication-induced checkpointing schemes that depend on the communication
patterns of the applications to trigger checkpoints. These schemes do not suffer from the domino effect and do not
require coordination. Recent studies, however, have shown that the nondeterministic nature of these protocols
complicates garbage collection and degrades performance.

Log-based rollback recovery based on BA&D assumption is often a natural choice for applications that
frequently interact with the outside world. Log-based recovery allows efficient output commit, and has three
flavors, pessimistic, optimistic, and causal. The simplicity of pessimistic logging makes it attractive for practical
applications if a high failure-free overhead can be tolerated. This form of logging simplifies recovery, output
commit, and protect surviving processes from having to roll back. These advantages have made pessimistic logging
attractive in commercial environment where simplicity and robustness are necessary. Causal logging can be
employed to reduce the overhead while still preserving the properties of fast output commit and orphan-free
recovery. Alternatively, optimistic logging reduces the overhead further at the expense of complicating recovery
and increasing the extent of rollback upon a failure.
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