—
Computer Science

’ A methodology and software environment
for testing process model’s sequential predictions
with protocols

Frank E. Ritter
21 December 1992
CMU-CS-93-101

A methodology and software environment
for testing process model’s sequential predictions
with protocols

Frank E. Ritter
21 December 1992
CMU-CS-93-101

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted to the Carnegie Mellon University Department of Psychology in
partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Psychology in the Al and Psychology program

Copyright © 1992 Frank E. Ritter. All rights reserved.

This research was partially sponsored by a training grant from the Air Force Office of Scientific
Research, Bolling AFB, DC; in part by the Avionics Laboratory, Wright Research and Development
Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543
under Contract F33615-90-C-1465, ARPA Order No. 7597; in part by the School of Computer Science,
Carnegie Mellon University; and in part by Digital Equipment Corporation through an equipment grant.

The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of DEC or the U.S.
Government.

The document was printed -in 11.25 pt Times Roman. It was composed with the Scribe (v. 7)
document preparation system. All the tables were laid out with the Dismal spreadsheet developed as

part of this work. All graphs except where noted were prepared using the S interactive, graphical
statistics package.

Keywords: Spreadsheets; programmer workbench; program editors; tracing; display algorithms;
training, help, and documentation; simulation support systems; expert system tools and techniques;
model development; model validation and analysis; cognitive simulation; relations among models;
protocol analysis; Soar.

Abstract

Getting the most out of information processing models requires that testing and refining them be
straightforward. This requires that (a) large amounts of data be easily compared with the model’s
performance, (b) descriptions of how and where the model mismatches are readily available and easy
to interpret, and (c) the models themselves can be refined in a straightforward way. Current methods
for testing the sequential predictions of process models provides none of these. It is a difficult, time
consuming, boring task, requiring the full attention of a skilled analyst. Despite the importance and
difficulty of testing process models against protocol data; and in contrast to the rich methodology for
analyzing samples of numerical data, there is no explicit methodology or set of tools for automatically
or semi-automatically doing this task.

This thesis specifies a methodology for testing process models sequential predictions through
comparison with verbal and non-verbal protocols. Each of its steps are delineated, and the
requirements to perform these steps developed. An environment required by and based on the needs in
this specification is built to support these needs and move towards automating them. These needs are
primarily to judge the model’s predictions by using them to interpret and align the data with respect to
the model, to understand the comparison in terms of the model’s strengths and weaknesses, and to then
modify the model to improve its perforrance. Although not limited to symbolic models, the focus of
this work has been models in the Soar architecture.

SPA-mode, a spreadsheet-type tool developed for this environment supports interpreting the model’s
predictions with the data. Its tabular display also supports simple visual analyses of the fit. Several
graphic displays are developed as ways to summarize the model’s performance. One shows which
model actions are supported, and the others show the relative processing rate between subject and
model. Both can provide suggestions for improving the model.

Process models in Soar exist implicitly in their production rules. By making the structure of these
models explicit and allowing the user to directly manipulate the appropriate theoretical objects, the
Developmental Soar Interface provides an improved ability to understand and manipulate process
models built within Soar, the ability to use their theoretical components to summarize their support,
and to use them in further analyses. .

The complete Soar/MT environment is demonstrated and developed through use on the Browser-Soar
model and its data set developed by Peck and John (1992). The analyses were produced far more
rapidly than those used by the original developers, and extend further. Additionally, the verbal
sequentiality assumption of Erikson & Simon’s (1984) verbal protocol theory was tested, and found to
hold. The sequentiality assumption is then extended to apply to motor actions as well. Sequentiality,
however, does not appear to hold between modalities for this data set.

Soar/MT - 21 December 1992

Acknowledgements

I first heard Allen Newell speak at the William James Lectures at Harvard in the Spring of 1987. I was
impressed with his style, his intellectual honesty, and the direction he was headed. It was a pleasure to
work with and learn from him the past five years. Herb Simon gave these lectures too, but I was too
young and not yet in Boston to hear him. Together they shaped the departments of Psychology and
Computer Science as themselves, and made them excellent places to get work done. Because the Soar
project is interdisciplinary, I had the pleasure of working with both departments. Anne Fay called this
environment "Cognitive Heaven", and it is. - :

My interests and Jill Larkin’s interests slowly merged until she became my co-advisor. Upon Allen’s
death she seamlessly took over. With that I was blessed with a wonderful advisor again. I always will
remember some unsolicited help on writing she offered my first year. I hope it made her job easier
over the last few months and two hundred pages.

Lynne Reder was the co-advisor on my masters degree and project on meta-memory. She was very
patient in helping transform me into a psychologist. John Anderson provided sage advise upon

request.

Virginia "Gin" Peck and Bonnie John graciously provided Browser-Soar and their data to me, and took
the time to explain them. Gin was the most adventuresome user of the DSI and Soar/MT, and was the
first to find many bugs. Bonnie provided the diagrams included here as noted.

The Air Force Office of Scientific Research provided a generous fellowship that allowed me to
concentrate on my studies. I thank them. I also must thank the U. of Nottingham for encouraging me
and then waiting for me.

The guys who went out for wings, to eat hot food and talk science answered a lot of my questions.
Erik Altmann, Uli Bodenhousen, Fernand Gobet, Joe Mertz, Akira Miyake, and Chris Schunn. The R
crowd my first year helped me settle into being a graduate student, R. Mary Hegarty, R. Jon King,
R. Clare McDonald, R. Leigh Nystrom and R. Norm Vinson. R. Paul Reber was added at a later date.

The role of the Internet must also be noted here (which Allen had a hand in too). It has contributed
over ten colleagues, many that I have never met, and in most cases have not even talked to. But we
correspond, build and share software. I must thank Doug Bates, David Fox, Ed Kademan, Chris
McConnell, Brad Myers, Ed Pervin, Andrew Mickish and the Gamet project, Olin Shivers, David
Smith, Richard Stallman, Johan Vromans, and Chris Ward. In particular, the GNU software
developers and its user community have been very helpful.

I also thank the Soar group in general, and in particular Erik Altmann, our British visitors Richard
Young and Andrew Howes, and the users of preliminary versions of the environment who gave me
feedback and responded to my survey. In every case where a Soar model is mentioned, the authors
have provided me with the source code and usually some assistance in using and understanding it. In
addition to the previous authors of interfaces for Soar, several people in the Soar group have provided
detailed comments on previous drafts of chapters and at demos. Currently I need to thank Arie
Covrigaru, Jill Larkin, Allen Newell, the NL-Soar group, and Paul Rosenbloom. Mike Hucka has
traded Emacs code and hints on numerous occasions. He rewrote my initial GNU-Emacs package for
Soar enough to be a co-author. Tom McGinnis has capably helped maintain the DSI for the last year.

Finally, I thank my Colleen, for waiting for me. Now I can come out and "play softball" (Groening,
1987).

Soar/MT - 21 December 1992

Table of Contents

Table of Contents
I Introduction to TBPA

1. Testing process models through protocol analysis
1.1 The need for routinely testing process models’ sequential predlctlons
1.1.1 The potential benefits of routinely testing process models’ sequential
predictions
1.1.2 The difficulty of testing sequential predictions
1.2 The steps of testing process models’ sequential predictions with protocol
data
1.3 Developing a methodology for routinely testing process models’ sequential
predictions
1.3.1 A detailed specification of what is necessary for routine testing of process
models with protocol data
1.3.2 An environment to support the needs of routine testing of process models
1.3.2.1 A tool supporting the interpretation and alignment of the data with
respect to the model’s predictions
1.3.2.2 A measurement system for telling where a model needs improvement
1.3.2.3 An interface for tracing, understanding, and modifying models
1.3.3 Documentation of the utility of the environment and methodology
1.3.4 Testing and extending the sequentiality assumption of verbal protocol
generation
2. Testing process models with protocol data: Review of past work
2.1 The possible relationships between process models and protocols
2.2 Review of creating and testing models with protocol data
2.2.1 Exploratory analysis leading to process models
2.2.2 General testing of process models
2.2.3 Trace based protocol analysis
2.2.4 Summary of important data features
2.3 Tools related to process model testing
2.3.1 Tools for building models from protocols
~ 2.3.1.1 Declarative knowledge coding tools
2.3.1.2 Exploratory protocol analysis tools
2.3.2 Model testing tools
2.3.2.1 Strategy classification tools based on process models
2.3.2.2 Model tracing modules within intelligent tutoring systems
2.3.2.3 Tools for aligning the sequential predictions with data
2.3.3 Tools for building and understanding models
2.3.3.1 Process model induction tools
2.3.3.2 Tools for understanding and building symbolic cognitive models
2.3.3.3 Knowledge acquisition tools
2.3.4 Summary of useful tool features
2.4 Measures of model to data comparison
2.4.1 Using criteria to develop a set of measurements
2.4.2 Description of measurement inputs
2.4.3 Non-numeric descriptive measures
2.4.4 Simple numeric measures
2.4.5 Measures of component utility
2.4.6 Inferential measures
2.4.7 A unified view: Criterion based model evaluation
2.4.8 Summary of measures
2.5 Previous models of process model testing

2.6 Summary of lessons for process model testing methodology and tools

Soar/MT - 21 December 1992

~ At hh

L-A-N- X] o0 o0 ~2

o
AR RASAYRELRERRERRRRRENEBERERAG =R

Table of Contents

Appendix to Chapter 2: Review of the Card model alignment algorithm
3. Requirements for testing process models using trace based protocol
analysis :
3.1 Definition of trace based protocol analysis (TBPA)
3.1.1 The inputs to TBPA :
3.1.1.1 A 0*® order functional model
3.1.1.2 Transcribed protocol data
3.1.2 The TBPA loop and its requirements
3.1.2.1 Step 1: Run the model to create predictions
3.1.2.2 Step 2: Use the predictions to interpret the data
3.1.2.3 Step 3: Analyze the results of the comparison
3.1.2.4 Step 4: Revise the model to reduce the discrepancies
3.2 Supporting TBPA with an integrated computer environment
3.2.1 Why an integrated environment is needed
3.2.2 The environment must automate what it can
3.2.3 The environment must support the user for the rest
3.3 The role of an intelligent architecture in the testing process
3.3.1 Soar: The architecture used in this environment
3.3.2 Making functional models examinable
3.3.3 Using the architecture to automate the analysis
3.4 Summary of requirements and description of the environment’s design

II Supporting the TBPA _methodology: A description of the Soar/MT
environment

4. A spreadsheet for comparing the model’s predictions with the data
4.1 Displaying and editing the correspondences
4.2 Automatically aligning unambiguous segments
4.3 Interpreting ambiguous actions
4.4 Supporting the global requirements
4.4.1 Providing an integrated system
4.4.2 Automating what it can
4.4.3 Providing a uniform interface including a path to expertise
4.4.4 Providing general tools and a macro language
4.4.5 Displaying and manipulating large amounts of data
4.5 Summary

S. Visual, analytic measures of the predictions’ fit to the data
5.1 Creating the operator support display automatically
5.2 Understanding the relative processing rate
5.2.1 A display for comparing the relative processing rate
5.2.2 Using the relative processing display to test the sequentiality assumption of
verbal protocol production
5.3 Creating additional displays
5.3.1 S: An architecture for creating displays
5.3.2 S-mode: An integrated, structured editor for S
5.4 Supporting the global requirements
5.4.1 Providing an integrated system
5.4.2 Automating what it can -
5.4.3 Providing a uniform interface including a path to expertise
5.4.4 Providing general tools and a macro language
5.4.5 Displaying and manipulating large amounts of data
5.5 Summary of measures and recommendations for use
6. The model manipulation tool -- the Developmental Soar Interface (DSI)
6.1 Providing the model’s predictions in forms useful for later comparisons and

Soar/MT - 21 December 1992

98

100
101
101
101
101
101
102
102
105
106

Table of Contents

analysis
6.1.1 Providing predictions for comparison with the data
6.1.2 Aggregating the model’s performance
6.2 Displaying the model so that it can be understood
6.2.1 Normative displays of the model
6.2.2 Descriptive displays of the model’s performance
6.2.3 The working memory walker
6.2.4 A pop-up menu and dialeg boxes to drive the display
6.3 Creating and modifying the model
6.3.1 Soar-mode: An integrated, structured editor for Soar
6.3.2 Tagl-mode: An integrated, structured editor for TAQL
6.33 The Soar Command Interpreter

6.4 Supporting the requirements based on the whole process and its size

6.4.1 Providing consistent representations and functionality
6.4.2 Automating what it can: Keystroke savings
6.4.3 Providing a uniform interface including a path to expertise
6.4.4 Providing a set of general tools and a macro language
6.4.5 Displaying and manipulating large amounts of information
6.5 Lessons learned from the DSI
6.5.1 The relatively large size of the TAQL grammar
6.5.2 Behavior in Soar models is not just search in problem spaces
6.5.3 Soar models do not have explicit operators
6.6 Summary

II1 Performance demonstrations of Soar/MT and Conclusions

7. Performance demonstration I: Analyzing the Browser-Soar model faster

and more deeply
7.1 Description of Browser-Soar and its data
7.2 Producing richer analyses more quickly

7.2.1 The interpretation of data wuth respect to the model trace done faster and

tighter

7.2.2 Operator support dlsplays created automatically -- as a set they highlight

periodicity in behavior

7.3 Where the model and subject process at different rates shown clearly
7.3.1 Processing rate display based on dec:snon cycles shows that the quality of fit is

high

7.3.2 The processing rate display can be based on other measures of the model’s

effort
7.4 High level features of the Browser-Soar model made apparent
7.4.1 Browser-Soar as routine behavior is made directly visible
7.4.2 Noting Browser-Soar’s large goal depth
7.4.3 Modifying Browser-Soar
7.4.4 Testing the modified Browser-Soar

7.5 Testing and extending the sequentiality assumptions of protocol generation

theory
7.5.1 Are verbalizations generated sequentially?
7.5.2 Are mouse actions generated sequentially?

7.5.3 Does the sequentiality assumption hold across verbalizations and mouse

actions?
7.6 Conclusions about Browser-Soar and the TBPA methodology
7.6.1 Some conclusions about Browser-Soar
7.6.2 Some conclusions about the methodology
Appendixes to Chapter 7

Soar/MT - 21 December 1992

111

141

144
14

147
148

149
149
150
151

155
155
155

157
157
158
159

Table of Contents iv

1 Alignment of the Write episode of Browser-Soar 159
2 Displays of each analytical measure for each episode of Browser-Soar 165
8. Performance demonstration II: Use of Soar/MT components by others 171
8.1 Usage of the Developmental Soar Interface to develop Soar models 171
8.2 Usage of S-mode to create functions in S 173
Appendix to Chapter 8: Survey distributed to Soar users 175
9. Contributions and steps toward the vision of routine automatic model 179
testing
9.1 A methodology for testing the sequential predictions of process models 180
9.2 Each step in the methodology was supported in a software environment 181
9.2.1 Interpreting and aligning the model’s predictions and the data 181
9.2.2 Analyzing the results of the testing process ' 182
9.23 Steps related to manipulating the model: Prediction generation and 182
modification
9.2.4 The synergy from integration 183
9.3 Validated and extended the sequentiality assumption of protocol generation 183
theory '
9.4 Progress toward the vision of routine applied theoretically guided protocol 184
analysis
9.5 Concluding remarks 185
References 187
L. How to obtain the software described in this thesis 201

Soar/MT - 21 December 1992

List of Figures

List of Figures
Figure 1-1: Schematic of trace based protocol analysis.
Figure 2-2: Information streams of subject and model used in testing process
theories. .
Figure 2-3: Schematic of possible levels of comparison between model and
data. (Numbers are referred to in the text.)
Figure 2-4: How theory level influences comparison with data.
Figure 2.5: Example output of TAQL space graph.
Figure 2-6: Example displays for comparing the model’s predictions with the
data.
Figure 2-7: Example operator application support graph, from Peck and
John, 1992,
Figure 2-8: Example match over time display, taken from Sakoe and Chiba
(1978).
Figure 2-9: (a) Example cumulative hit curve (right). (b) Redesigned
cumulative hit curve (left).
Figure 2-10: Example criterion table taken from Ritter (1989)
Figure 11: Example alignment by the Card1 algorithm. The two strings being
aligned are "DUC" and "DUDUDU".
Figure 3-12: Diagram showing the inputs (in bold) to trace based protocol
analysis (TBPA): A computational model and transcribed and
- segmented protocol data.
Figure 3-13: Diagram of the steps in testing process models with TBPA.
Figure 3-14: Diagram illustrating direct trace modification as a form. of
pseudo-model revision. _
Figure 3-15: Grand design for an intelligently automatic protocol analyzer.
Figure 3-16: Requirements for an environment for testing process models and
overview of the Soar/MT environment to support these
requirements.
Figure 4-17:
Example display of a model trace aligned with data (taken from the Write episode
of Browser-Soar). Left-hand columns "T" (time of subject’s actions) through
"MDC" (matched decision cycle) are one meta-column, and columns "DC" and
“Soar trace" on the right are another meta-column. The right-most simple
column of the left meta-column (in this case the H column) is indicated to uses in
the editor’s mode line (the bottom line of the figure) as "<H]".
Figure 4-18: Types of correspondences that can be represented in Spa-mode.
Figure 4-19: A simple fix is applied to the original Card1 algorithm to return
the edit sequences in the correct order without explicitly
reversing the returned list.
Figure 5-20: _
Example operator prediction support display taken from the Unit episode of
Browser-Soar. The model’s operators are shown on the left-hand side, indented
according to their depth in the problem space hierarchy. The connected black
squares represent the model’s performance. Corresponding data are represented
by overlapping symbols. Unmatched data are placed at the bottom of the display
as if it matched the Not matched operator.
Figure 5-21:
Depiction of Sakoe and Chiba’s (1978) correspondence diagram from their speech
recognition task. The A axis represents the times of the subjects utterances, and

Soar/MT - 21 December 1992

12
13

16
29

45
47

50
58

61
62
69
73

82

&E

92

94

List of Figures vi

the B axis represents the times of the model’s predictions. The places where they
correspond are represented by the C terms. The relationship of all the
correspondences is seen as a warping function between the axis.
Figure 5-22: 95
Example relative processing rate display based on decision cycles taken from the
Unit episode of Browser-Soar. The straight, solid line is a least-squares regression
line through all the correspondences. Its slope is the relative rate between
decision cycles and seconds. The dashed lines indicate the expected range for this
measure. The location and type of the correspondences are marked on the
connected line.
Figure 5-23: Example relative processing rate display based on operator 97
applications taken from the Unit episode of Browser-Soar.
Figure 6-24: Original and modified Soar trace. 107
Figure 6-25: PSCM level statistics for approximately 100 decision cycles of the 110
Sched-Soar model (which is shown in Figure 6-27).
Figure 6-26: 112
The problem space structure of MFS-Soar (picture taken by David Steier).
Learned chunks (small bricks) shown on chunk walls to right of each problem
space (triangles). Lines between problem spaces labeled "OP NC" stands for
operator no-change impasses in the higher space that are resolved by lower level
spaces. The grey fill in the problem space on the right-hand side,
Output-Constraints, indicates that it has recently been selected to be moved or to
have its contents displayed in an examiner window.
Figure 6-27: Normative display of Sched-Soar showing the productions in 113
each problem space as chunks on the chunk wall to the right of
each problem space. '
Figure 6-28: 115
Example descriptive display of Sched-Soar at decision cycle 27. The chunks
reported as belonging to each space are not learned chunks, but are the model’s
own productions loaded as chunks and assigned to spaces based on the algorithm
presented in Chapter 6 on the graphic display.
Figure 6-29: 117
Example display of examiner windows of Rail-Soar (Altmann, 1992). The Switch
problem space has been opened, and the impasse goal g/15 has been opened from
it. From within that examiner window (labeled ""g115") the m104 operator was
opened, and then the desired attribute of that, Car ¢32, has been opened from
within the operator examiner by clicking on it. A Soar-mode editor is on the
right.
Figure 6-30: : 118
The pop-up menu and dialog boxes within the SX graphic display. Moving
clockwise, the pop-up menu is followed by a GNU-Emacs window, which has the
Soar process buffer as one of its windows. The DSI help window is below that,
partially obscured. This help window is accessible from the pop-up menu, and
provides general guidance for how to get help, mostly through Soar-mode. At the
bottom right is the static display menu that allows the user to create static views of
a model on the problem space level. To its left is a dialog box for modifying some
of the Soar parameters, and some of the graphic display’s parameters. Next to
that, on the bottom and left, is a dialog box for setting the Soar learning
algorithm. Finally, there is a dialog box for setting the macro-cycle.
Figure 6-31: TAQL-mode templates menu. 120

Soar/MT - 21 December 1992

List of Figures
Figure 6-32:
Figure 7-33:
Figure 7-34:

Figure 7-35:
Figure 7-36:

Figure 7-37:

Example TAQL-construct template.

The problem space organization of the 19 problem spaces in
Browser-Soar generated with the SX graphic display.

The problem space organization of Browser-Soar taken from
Peck and John (1992).

Browser-Soar during a run.

Browser-Soar problem space organization with productions
shown by their problem space.

vii

121
135

136

139
140

142

Portion of the alignment of the protocol and model trace from the Axis episode. On each row: T is
time of subject’s actions in seconds. MOUSE ACTIONS is any mouse action. WINDOW ACTIONS
are any responses from the actual cT system that the subject saw. ST is the segment type. VERBAL
is any verbal utterances by the subject. # is the segment number. MTYPE is type of match, MDC is
the decision cycle matched, DC is corresponding Soar decision cycle. Soar Trace holds the model’s

predictions.
Figure 7-38:

Figure 7-39:

Figure 7-40:
Figure 7-41:
Figure 7-42:

Figure 7-43:

Figure 7-44:

Figure 7-45:

Operator support display for the Write episode.

Relative processing rates display in decision cycles for the Write
episode. :
Operator applications vs. subject time display for the Write
episode.

The nine problem spaces in the modified Browser-Soar (see
Figure 7-33 for the original structure).

Operator support displays for the Array episode. The original
Browser-Soar predictions are on the top, and the modified
version on the bottom.

DC time based plots for the Array episode. The original
Browser-Soar predictions are on the top, and the modified
version on the bottom.

Relative processing rates displays based on operator applications
for the Array episode. The original Browser-Soar predictions are
on the top, and the modified version on the bottom.

Histogram of the lags (in decision cycles) of the verbal utterances.

Figure 46: The operator support displays for each of the episodes.

Figure 47: The relative processing rates displays based on decision cycles for
each of the episodes.

Figure 48: The relative processing rates displays based on operator
applications for each of the episodes.

Soar/MT - 21 December 1992

143
145

148
150
152

153

154

156
165
167

169

List of Tables

Soar/MT - 21 December 1992

viii

List of Tables

Table 2-1:

Table 2-2:
Table 2-3:
Table 2-4:
Table 2-5:
Table 2-6:
Table 2-7:
Table 2-8:
Table 3-9:
Table 3-10:
- Table 3-11:
Table 3-12:

Table 3-13:
Table 3-14:

Table 3-15:

‘Table 4-16:
Table 5-17:

Table 5-18:
Table 5-19:
Table 5-20:
Table 6-21:
Table 6-22:
Table 6-23:
Table 6-24:

Table 6-25:

Table 6-26:
Table 6-27:

Table 6-28:

List of Tables
Examples of protocol datasets, their sizes and ways they can be
used to build and test process models, with example experimental
studies for comparison.
Summary of previous uses of protocol data to test process models.
Types of protocol analysis tools and their features.
The five major types of measures of model fit and the criteria
supporting them.
Types of correspondences between the model’s predictions and the
data
Ways to deal with mismatches
Types of data that have been used to test process models.
Steps in protocol analysis method (Newell, 1968).
Requirements for the process model’s trace.
Requirements for using the model’s predictions to interpret the
data.
Requirements for analyzing the comparison of the data with the
model’s predictions.
Some of the model modification clues based on the types of
matches in Table 2-5 and their aggregation.
‘Requirements for modifying the model.
Requirements based on integrating the steps and supporting
TBPA with a computational environment.
The features that all parts of the Soar/MT environment share as
aids for ease of use and learnability.
Requirements supported by Spa-mode
Requirements supported by the graphic comparison displays and
S-mode.
Signature correspondence patterns indicating types of model
mismatches.
Further displays for summarizing the fit of data to model
predictions
Functionality supported by S-mode.
Requirements supported by the Developmental Soar Interface.
Requirements for the working memory graph examiner.
Overview of the functionality offered by Soar-mode.
Most important commands in the Soar Command interpreter
(SCI).
Keystroke savings for Soar-mode accelerator keys, the Soar-mode
menu, the SCI, and the SX graphic display compared with the
default Soar process. (All measures in keystrokes unless otherwise
indicated.) ,
The size of the TAQL grammars within TAQL-mode and the
programming languages supplied with the underlying template-
mode.
Descriptions of Soar and Soar model’s behavior as search in
problem spaces, presented in chronological order except for the
final quote (All italics in original).
The number of operators, problem spaces, and instantiations of
these per run for several Soar models.

Soar/MT - 21 December 1992

100
105
116
119
121

123

125

125

127

List of Tables x

Table 7-29: 137

Problem space level statistics for the '"Write" episode. The top block presents the

problem spaces and operators represented in the graphic display. The selection

counts for each goal, problem space, state, and opeator are presented in their

hierarchical calling order.

Table 7-30: Summary of raw measures for each episode and regression 146
results.

Table 7-31: Problem spaces and operators removed from the Browser-Soar 149
model simulating the effects of learning. ‘

Table 7-32: Suggested changes to Browser-Soar based on analyses performed. 158

Table 8-33: Survey responses categorized by usage pattern. Each row 172
represents a user. Totals do not include "tried" users.

Table 9-34: The ease of use and learnability design features met by each tool 182
in the environment.

Soar/MT - 21 December 1992

I Introduction to TBPA

Soar/MT - 21 December 1992

Acknowledgements

Soar/MT - 21 December 1992

Chapter 1
Testing process models through protocol analysis

"... our confidence in a theoretical explanation of phenomena will be greater the more points of contact
there are between theory and empirical observations and the more detailed are the components of the
theory that can be confronted directly with data. There is a great deal to be gained, therefore, in the
testing of process theories if we can increase the temporal density of our data points so as to increase
the number of testable predictions of the theory relative to the number of its degrees of freedom.”

Simon (1979, p. 373)

Beginning with Newell, Shaw & Simon (1958; Newell & Simon, 1972) psychologists have examined
human performance using information processing models that perform the task being studied. That is,
these models predict the sequence of steps a human executes while performing the task. Such models
intrinsically demonstrate that the information they use and the way they process it is sufficient to do
the task. Both their overt behavior sequences and descriptions of their internal states provide
predictions of what subjects will do, what processes and data structures they use, and the order in
which they use them. In order to keep the details straight, they have almost exclusively been
implemented as computer programs. I shall refer to such cognitive models as "process models”, or
when the context is clear, simply models.

The process models that I will generally reference in this work will be symbolic cognitive models
based on problem spaces and operators (Newell, 1980b), and providing knowledge for an architecture
to manipulate (Newell, 1982). In this framework, a model is the necessary knowledge to perform a
task along with an architecture to interpret it. In particular, Soar (Newell, 1991) is used to ground this
work in an actual architecture. The details of Soar will be deferred until they are actually needed.
Other types of cognitive models can also provide process information (van Gelder, 1991), and could be
tested in a similar manner — there is nothing known that precludes this, but they will not be directly
addressed here.

While small in absolute numbers, process models have been quite influential. Efforts to produce and
test such models have lead to the field of information processing psychology, characterized by such
successes as models of general problem solving (GPS: Newell & Simon, 1972; LT: Newell, Shaw &
Simon, 1958), long term memory (EPAM: Feigenbaum & Simon, 1984; HAM: Anderson & Bower,
1973), learning to program (Anderson, Conrad, & Corbett, 1989) and scientific discovery (Bacon:
Langley, Bradshaw, & Simon, 1983; Kicada: Kulkami & Simon, 1988). The utility of process models
is now an established position, and has been extended to other fields (e.g., sociology, Heise, 1989).
The reader is referred to other sources for a complete and full rationale of using information processing
models to understand human behavior (Greeno & Simon, 1988; Simon & Newell, 1956; Simon, 1990;
Neches (1982) notes that they are not a panacea and presents some useful caveats).

In order to test process models’ predictions of subjects’ internal and external action sequences,
corresponding types and amounts of data are needed. Subjects’ final responses and total reaction times
do not provide enough information to test these predictions. Protocol data are needed, data made up of
sequentially ordered (and preferably time stamped) measurements taken while the subject performs the
task. These measurements can be motor actions, such as keyboard presses. Verbal protocols, talk-
aloud verbal utterances (Ericsson & Simon, 1980; Ericsson & Simon, 1984), are particularly needed to
provide a view of the contents of working memory that would otherwise not be accessible.

A few process models have been tested directly against subjects’ protocols, and some have been tested
against aggregated data, such as reaction times and relative rates of strategy choice. The difficulty of
current testing methods has forced most process models to be presented only as sufficiency arguments
for the cognitive mechanisms proposed. Their numerous and specific action sequence predictions are
not tested against data (e.g., Hegarty, 1988; Klahr & Dunbar, 1988), and are, in a certain sense,
ignored.

Soar/MT - 21 December 1992

4 Testing process models through protocol analysis

Getting more out of process models, by reclaiming their sequential actions as theoretical predictions,
requires that testing and refining these predictions be more straightforward. This requires that (a) large
amounts of data be easily compared with the model’s predictions, (b) descriptions of matches and
mismatches between the model’s predictions and the data are readily available and easy to interpret,
and (c) the models themselves can be refined in a reasonably straightforward way.

These three capabilities needed for routinely testing the sequential predictions of process models are
not currently available. Interpreting and aligning the data with respect to the predictions must be done
by hand; there are no widely used methods to analyze where the model’s predictions and data
mismatch; and understanding and manipulating the models is difficult because the structures of these
models are often only available implicitly in the production rules or other structures in which they are
implemented. Thus testing and refining process models using sequential predictions is a difficult, time
consuming task that requires a skilled analyst to perform it, and that requires huge amounts of tedious
bookkeeping.

This thesis describes a methodology for routine testing of process models through comparison with
protocols. Based on the requirements developed through a complete description of the methodology, a
computer based environment was designed and implemented: It automates and facilitates the
comparison, analysis, and refinement processes. The environment’s analysis tools were demonstrated
and extended through use on a sample model, and through application by others to subtasks of model
testing. The remainder of Chapter 1 provides an overview of the topics addressed in creating this
methodology. These include (a) a discussion of the scientific need for the routine testing of process
models’ sequential predictions; (b) a description of a methodology for routine process model testing
through trace based protocol analysis (TBPA) and the requirements for supporting this methodology
with a computational environment; (c) a summary of the computer environment developed to support
this methodology; and (d) a description of how this methodology and environment were tested on an
example data set and model. As part of this testing process, the verbal sequentiality assumption of
Ericsson and Simon’s (1984) verbal protocol theory (that memory elements are reported in the order
that they enter working memory) was also tested, and extended to non-verbal data.

1.1 The need for routinel¥ testing process models’
sequential predictions

Process theories need to be easily compared with data on a detailed level in order to completely test
them. The more detailed predictions the model makes, the more power and potential utility the model
has. Process models make detailed predictions of action sequences. Thus testing them requires
detailed comparison with the data they explain, sequences of human actions. The ability to rapidly test
theories is a hallmark of a strong, progressive science (Platt, 1964). The inability to do this
comparison easily has held back the development of psychology models that can make predictions on
the individual action level.

1.1.1 The potential benefits of routinely testing process models’ sequential predictions

Making the testing of the sequential predictions of process models straightforward enough to do
routinely offers several benefits. Five of the most direct benefits are:

More rapid development of process models. The application of the sequential predictions of process
models, in HCI, human factors, and automated testing, to name just a few example areas, has been
retarded by the lack of a fast way of testing these predictions. Making the testing routine would allow
them to be applied to new areas more easily.

More detailed categorization of human performance. If process models could be compared routinely
with data, the comparison could be used as part of model based achievement testing (Ohlsson, 1990),
or general computerized testing (Embretson, 1992). This routine use would amortize the effort
required to build an initial model, which remains difficult, over larger amounts of data, and provide a

Soar/MT - 21 December 1992

The need for routinely testing process models’
sequential predictions 5

more detailed description of human performance and achievement than is currently available.

More generalizable models. The ability to compare process models with data from multiple subjects
would make the tested process models more believable because their generality would have better
support. Single subject studies can be appropriate and useful when between subject differences are
assumed to be small (Dukes, 1968), but we cannot use them exclusively. Critics have questioned, and
rightfully so, the generality of process models when they are only validated against one subject, and
the inter-subject variability has not been proven to be small (Kiearas, 1992). _

The ability to examine the human cognitive architecture. Models that predict behavior down to
sequences of actions are also needed for verifying the details of the human cognitive architecture
(Newell, 1973; Newell, 1990). Some architectural details will hide in aggregated non-sequential
means. For example, we must know when structures enter working memory if we wish to test whether
verbal utterances are always reported in the order that their corresponding structures enter working
memory (WM) or if they are based on structures chosen randomly. A model that predicts when
information appears in working memory is one way to do this. Each utterance, not an aggregate, will
have to be tested. :

A step towards automatic analysis of behavior. Facilitating the testing of process models’ sequential
predictions to the point where it becomes a routine will require a deeper understanding of the testing
process. This level of understanding is a necessary step towards the goal of automatic modeling of
human behavior. Some of the steps towards making the analysis routine will provide useful lessons for
automating all of process model development and testing.

1.1.2 The difficulty of testing sequential predictions

Despite the importance of testing process models against protocol data, it is not often done. The
central difficulty of testing process theories appears to be the lack of a well-developed methodology
and associated tools for automatically or semi-automatically performing this analysis. The extent of
these difficulties, as well as descriptions of applications where it has been done, and tools related to
automating it are discussed in more detail in Chapter 2. An outline of the problems is presented here.

If model creation was the only significant cost to developing process models, one would expect the
model developers to amortize this cost by testing many subjects and using large amounts of data per
subject. While process models are now routinely developed, they are not yet often tested (Kaplan,
1987), and when they are, the number of subjects and measures used is small. The discomfort analysts
report in doing this task may be a sign of its undefined character.

The problem is the primitive state of the current methodology and technology used to support it. The
method used in early studies (Newell & Simon, 1972; Ohlsson, 1980) was to align the traces by hand,
usually on paper. It is still the default approach (Peck & John, 1992). Comparing any model, even
informal ones, to verbal protocols, is seen as tedious and dangerously boring by its practitioners,
offering plenty of opportunities for mistakes (Newell, P. Reber, Simon, personal communications;
Ericsson & Simon, 1984, p. 271). The current methods are too difficult to be done routinely and
become unwieldy for large data sets and large models. There have been a few small attempts to assist
this process, and there are numerous related tools, but no extant software to comprehensively assist this
process. The lack of an explicit methodology may have held back automating it. Having a full
description of the methodology is necessary in order to provide automation or facilitation. It is also
necessary to teach it to others and move a technique from its originating lab (Hall, 1992).
Sociologically, testing the sequential predictions of process theories has not become widespread.

Poor measures of fit. An additional problem in testing process theories is that there are no adequate
measures for characterizing the degrees of correspondence between model and data. These are
necessary for comparing and improving models. Although a few measures have been put forward, as
discussed in the review in Chapter 2, they all have deficiencies. Some attempt to prove that the model
matches the data better than chance; others attempt to prove that the model and data do not appear to

Soar/MT - 21 December 1992

6 Testing process models through protocol analysis

be different. Both questions are unreasonable statistically (Grant, 1962; Gregg & Simon, 1967). In all
cases the measures indicate only weakly where the model could be improved, which is the most
important aspect of these measures.

Lack of shared methodology with other sciences. The problems with testing process models can be
contrasted with testing linear equation models. Linear equations are used by nearly every scientific
field. For linear equations there exist well-developed statistics and computer packages for describing,
manipulating, and analyzing them. With a few exceptions, symbolic process models are unique to
psychology, and cannot draw on other areas of science for methodology or tools. We are on our own
in this area. .

1.2 The steps of testing proceés models’ sequential predictions
with protocol data

Figure 1-1 diagrams the development and testing of a process model. The development process starts
on the left with the first input to this process, a 0! order model — a model that can perform the task
and is a reasonable candidate for accounting for the data. This initial model can be based on an
analysis of the task, informal examinations of the protocols generated by a subject (or several subjects)
performing the task, or a combination of these two information sources. Protocols can provide
informal insights into how subjects do the task and on what they focus their attention. Verbal
protocols, because of their information density and access to internal states (Ericsson & Simon,
1984) are often used for this purpose, particularly for pre-theoretical inquiries (e.g., Fisher, 1987). The
modeler is not limited to verbal protocols. Eye-traces can provide similar information on the subject’s
attention and information input (e.g., Hegarty, 1988).

In addition to a O order model, the routine steps of model testing require a detailed record of the
subject’s behavior. Verbal protocols are often used as data because they provide a principled
description of the subject’s internal mental state (Ericsson & Simon 1984). Multiple data streams can
also be used, such as the motor actions performed to do the task along with the concurrent verbal
protocol.

With these inputs in hand the testing loop of trace based protocol analysis (TBPA) can be approached.
The first step is to run the model on the task, generating a trace of its external task actions and
intermediate internal states and actions. The trace of the model’s actions are predictions of the subject
actions and the contents of their utterances.

The second step is to compare the predictions to the data. This is done by aligning the two action
sequences, interpreting the subject’s actions with respect to the model’s actions. Aligning and
interpreting the two information streams is often a difficult task when done by hand. Even with a good
model, the actions may not directly correspond. The model may perform additional task actions that
the subject does not, and vice versa. The model may include items in its trace that are not visible in the
subject’s data, such as initializations related to being a computer program, and the subject’s protocol
may include non-task utterances (yawns, jokes, and so on).

The results of the low level comparisons of the predictions with the data need to be aggregated and
summarized with respect to the model that generated the predictions to be understood. These analyses

can be used for two primary purposes, and the final processing steps depend on the desired result from
testing,

If the model is considered mutable (an open analysis, Ohlsson, 1990), the results of the comparison
will be used to evaluate, validate and improve the model. For this process, one needs to know the
locations where the two sequences do not correspond. These locations are used as leads to improve the

model, and the loop of running the model and comparing its output with the subject’s performance is
repeated.

If the model is considered fixed (a closed analysis, Ohisson, 1990), the resuits of comparing the

Soar/MT - 21 December 1992

The steps of testing process models’ sequential predictions
with protocol data 7

Revise

Subject 1 ,°*
Task] o *
analysis \ Mappings Subjecta
Process | ; Subject1
Initial Model Action 1 Data 1
version
creati
7/ Action 2
Informal analysis
of protocols — Data 2
Action M pata N |H
Action sequence Action sequences
predicted by model produced by sabjects
Interpret
& Align

Figure 1-1: Schematic of trace based protocol analysis.

subject’s and model’s actions are used to evaluate how closely the subject’s perforrnance matches the
model, and if the comparison is to be used to diagnose the subject’s behavior, where the model fits and
where it does not (Brown & Burton, 1980). If there are several similar models, the results can also be
used to assign an interpretation to the subject’s behavior. This thesis concentrates on the first
approach, evaluating and improving the model.

1.3 Developing a methodology for routinely testing process models’
sequential predictions

This thesis describes a methodology, called trace based protocol analysis (TBPA), for routinely testing
process models with both verbal and non-verbal protocols. The requirements for each step in the
process are noted in a detailed manner, so that a computer environment to support this methodology
can be designed and created. Finally, the methodology and the environment are demonstrated and
improved through application to a sample process model. This demonstration example included
testing the sequentiality assumption of Ericsson and Simon’s (1984) protocol theory, and extending the
assumption to non-verbal protocols as well. These four main accomplishments are briefly described in
this section, and also serve as an introduction to the rest of the thesis and an outline of its contents.

1.3.1 A detailed specification of what is necessary for routine testing of process models
with protocol data

Chapter 3 presents a detailed description of trace based protocol analysis, a methodology to test
process models using protocol data that can be made routine. Testing process models this way is not
new or unique, but specifying how it is done in a detailed manner is. The major steps of this method
are (1) running the model to generate a sequence of behavior, (2) aligning this with the subject’s action
sequence, (3) analyzing this fit to generate suggestions of where the fit could be improved, and (4)
modifying the model. As each step of the methodology is defined, the requirements to support it in a

Soar/MT - 21 December 1992

8 Testing process models through protocol analysis

computation environment are noted. Where appropriate these requirements are illustrated by examples
drawn from the review of previous analyses and tools presented in Chapter 2. Taken together, the
requirements form a specification for a computer environment and analytic measures to support and
help automate the testing of the sequential predictions of process models.

Creating a specification of this methodology is a necessary step for automation, but it may have two
other direct effects: (a) It will remove some of the guess work in the analysis, which may make the
process less difficult and more pleasant to do by hand. (b) The specification will allow it to be more
easily taught.

1.3.2 An environment to support the needs of routine testing of process models

A computer environment called Soar/MT is built to support the requirements noted in the specification
of TBPA. This environment is a direct step toward automatic model testing with TBPA. It has three
main systems. They are described separately, but they are integrated with each other. By using the
model and its predictions as common data structures, data can be passed between the separate tools,
and analyses may draw from more than one system’s representations and functionality. This supports
more powerful analyses than can be provided by any single tool. Each system can be menu driven, and
a pathway to expertise is provided through providing help and keystroke accelerators on the menus.
This simple learning approach is backed up by complete manuals and on-line help.

1.3.2.1 A tool supporting the interpretation and alignment of the data with respect to the model’s

predictions .
Spa-mode (Chapter 4) is a tool that helps the analyst do the initial interpretation and alignment. Spa-
mode can automatically align simple, unambiguous portions of the model’s actions with the subject’s
actions, and tools are provided for aligning the remainder semi-automatically. By displaying the
actions and their correspondences in a tabular format, direct visual examination of the comparisons are
possible. Spa-mode is based on a spreadsheet, so the spreadsheet’s commands can be used to perform
simple aggregations such as the number of data points matched by the model, or the average number of
words matched. As an extension to the GNU-Emacs editor environment, it includes all the GNU-
Emacs text editing commands, and a macro language for creating temporary analyses and for adding
permanent extensions.

1.3.2.2 A measurement system for telling where a model needs improvement

The most important output of the testing process is a description of the model’s predictions fit the data.
So that the model’s fit can be improved, the descriptions should indicate, in terms of the model, where
and how the predictions do not match the data. A set of measures designed to show the
correspondences and misfits with respect to the model is implemented as two families of displays in
the S statistics package (Chapter 5). One set shows the subject’s actions with respect to the model’s
actions and structures, and the other set shows the relative processing rates based on the
correspondences in seconds and simulation cycles. Information about each point on these graphs is
available by clicking on them.

These analyses are only a subset of a large number of similar displays. An example of modifying a
display by changing the unit of model time from simulation cycles to operator applications is
presented. Additional graphs and modifications will be required as additional users analyze more
models, so an environment for designing and manipulating these types of displays is also provided.

1.3.2.3 An interface for tracing, understanding, and modifying models

The Developmental Soar Interface (Chapter 6) is a tool that supports the needs associated with running
and manipulating models within the Soar architecture (Laird, Congdon, Altmann, & Swedlow, 1990;
Laird, Newell, & Rosenbloom, 1987; Newell, 1990), starting with the very first step of producing

Soar/MT - 21 December 1992

Developing a methodology for routinely testing process models’
sequential predictions 9

predictions that can be used in an automatic interpretation and alignment system. It.makes the implicit
structure of the Soar models available graphically for inspection by the analyst and in an internal
format for use in analyses by the other tools. Integrated, structured editors provide the ability to
directly edit, examine, and load the building blocks of Soar models.

1.3.3 Documentation of the utility of the environment and methodology

As a new methodology for routinely testing process models’ sequential predictions, the methodology
and the environment supporting it are demonstrated and developed through an example of its use.
Performing a sample analysis also provides feedback to develop the methodology and environment
further. As this methodology is of routine testing and not a theory of scientific abduction and initial
creation of models, the applications of the environment starts with a previously created model and
previously gathered data. The testing methodology and environment are first validated by duplicating
existing analyses. Then, with the increased power and capabilities of the environment, some new
analyses are performed that further indicate where to modify the model, and provide new descriptions
of the Soar architecture.

Browser-Soar (Peck & John, 1992) and its data are often used as examples, and Soar/MT was used to
duplicate and extend the tests of the Browser-Soar model against its data. Browser-Soar is a model of
how a user interacts with an on-line help system. It has been tested with ten, approximately one
minute episodes from a single subject. The reanalysis showed where to improve Browser-Soar, often
validating problems previously known to the model’s authors, but unknown to the current analyst. In
addition, the nature of Browser-Soar and the data supported initial measurements of the Soar
architecture’s speed, finding it to be approximately as predicted at 10 decision cycles per second. The
environment and its parts have been used by other users, and a survey of their evaluations is included
(Chapter 8).

1.3.4 Testing and extending the sequentiality assumption of verbal protocol generation

By putting the Browser-Soar model into closer contact with the data than its developers had been able
to do by hand, the sequentiality hypothesis of Ericsson and Simon’s (1984) theory of verbal protocol
generation was tested (Chapter 7). The sequentiality assumption specifies that structures in working
memory are reported in the order that they enter. There are two ways to test this, one is to have an
empirical measure of when structures enter working memory, and the other is to use a theory to predict
when structures enter.

Browser-Soar was used to predict the entrance of information into working memory. As predicted by
Ericsson and Simon’s (1984) theory, verbal utterances were produced in the order that their underlying
structures appeared in working memory. This was true across the ten episodes and 630 seconds
modeled by Browser-Soar. The analysis also suggested three extensions to Ericsson and Simon’s
theory: (a) that verbal utterances were not often prospective, and tended to be retrospective by 1-3 s.
(b) The sequentiality assumption holds for non-verbal task actions with respect to other non-verbal task
actions, but (c) Sequentiality should also hold across the two modalities, with the non-verbal motor
actions serving as useful reference points for measuring the lag of verbal utterances. These are not
predicted by Ericsson and Simon’s theory, but are consistent with it.

Soar/MT - 21 December 1992

10

Testing process models through protocol analysis

Soar/MT - 21 December 1992

11

Chapter 2
Testing process models with protocol data: Review of past work

This chapter reviews the previous uses of protocol data for building models and testing them, the
various tools that have been built to assist in this, and the measures of model fit to sequential data that
have either been computed by hand or incorporated into tools. The lessons noted here will be useful
guides for the methodology for testing process models developed in the next chapter.

Process model testing does not live alone, but on a continuum along with data analysis, model
generation, and model refinement. These activities can be viewed as manipulating two information
streams, the subject’s action sequences and the model’s action sequences. The various uses of protocol
data can be compared with respect to the strength of the model being developed, and how it uses the
two information streams. With a more detailed description of this process we can explain the apparent
difficulty of using protocols in general, and for testing process models in particular.

Surveying the previous tools for manipulating and comparing protocols to a model indicates several
general needs. On the data side, these include the ability to edit the protocols on the segment level, to
view large numbers of segments simultaneously, and to compute aggregate measures of them. Similar
tools are required of the model, but are less often provnded The structure of the model must be -
available, and its performance must be aggregated if it is to be compared with aggregate subject
measures. The correspondence between the model’s predictions and the data must be computed and
viewable. It is very enlightening to be able to directly compare these aggregate measures with the
model. Similar tools are required for gathering and manipulating the model’s behavior, but they are
less often available.

Examining the previous measures of model fit indicates several measures that should be included in
any future tool. Being able to aggregate the model’s behavior in order to describe it and compare it
with the subjects behavior is also important. This cannot be dlrectly incorporated into any tool, but
must be indirectly supported.

2.1 The possible relationships between process models and protocols

This section creates a framework for organizing most uses of protocol data with respect to process
models. The use of protocols are shown to exist on a continuum from model building to model testing.
The comparison between the model’s predictions and the protocol data can be described as comparing
two information streams at various levels of resolution. Examining these previous uses of protocol
data provides several guidelines for creating tools for testing process models with protocol data.

Figure 2-2 shows an information stream description of the sequential data structures, analysis, and
possible data comparisons between process models and subject data. These operations and information
streams are a superset of the data and operations for less predxctxve models so they provide a
conceptual framework for all analyses of action sequences in terms of the information being
manipulated, its transformation and losses, and aggregation processes. While only a single stream is
represented in the diagram, each virtual stream can be made up of several streams. For example, the

human information stream may contain separate streams for verbal protocols, eye movement protocols,
and key presses.

The desired end of architecture + knowledge. When developing a process model the analyst starts in
the upper left corner of Figure 2-2 with a mind + knowledge. We believe that the most desirable
analysis is to find out what is in that box, that is, what is necessary to recreate the mind’s behavior?
What is the architecture of the mind, and what knowledge must it have to do a particular task? We
attempt to duplicate this box by creating a process model that is also broken up into an architecture to
interpret and apply specific knowledge to perform the given task (Newell, 1990; Newell, 1992). The
knowledge represents the information required to perform the particular task, and the architecture

Soar/MT - 21 December 1992

12 Testing process models with protocol data: Review of past work

MIND + ARCHITECTURE
KNOWLEDGE + KNOWLEDGE

ranscribe {an example level to
& do interpretation)

[PROTOCOL | < oot e [TRAGE]
| ¢
T T
< .g,{,ge <

aggregate COMPARISON aggregate
l SUMMARY 1
DATA
SUBJECT : MODEL
SUMMARY| << < |sUMMARY|
DATA DATA

Figure 2-2: Information streams of subject and model used in testing process theories.

represents the fixed structure between tasks. Therefore, the model being tested consists of task
knowledge and perhaps some general knowledge, within an architecture to apply it. Creating the
model can be viewed as a type of programming task, of putting knowledge (programs) into the
architecture (interpreter), except that testing the models is more difficult than testing programs because
it is based on conforming to various non-obvious and indirect constraints, such as learning rates. If we
choose the right architecture, we should be able to handle all situations. Modeling a situation then
consists of specifying what knowledge is used in that situation.

The human _information streams. The mapping between mind+knowledge and
architecture+knowledge is not straightforward. We cannot open up a mind and examine its contents,
we are only allowed to observe it behave. Protocol data are transcriptions of behavior that retains their
sequential nature — data that remain ordered with and can be understood only with respect to other
temporally contiguous actions. The data can include all types of human behavior: verbal utterances,
key presses, and mouse movements. This data inherently occurs in time, and can have time stamps
associated with it. This time stamp must be applied when it is transcribed, that is, recorded from the
environment into a format that can be processed.

The sequential nature of the data can also be discarded. This results in non-sequential data that can be
more easily aggregated and analyzed because it can be directly aggregated. Much of classical
experimental psychology uses only behaviors’ time stamps as non-sequential data, and while it is a
valid subset, it is one with less information.

Soar/MT - 21 December 1992

The possible relationships between process models and protocols _ 13

As a small example of how much information is lost when the time stamp is discarded, consider how
much information is recorded when 64 subject actions are recorded, with these actions coming from 64
equally likely categories, and measured (time stamped) with 100 ms accuracy over a range 0 and 100 s.
It takes 22 bits to record each measurement (6 for sequential position, 10 for reaction time, 6 for
category). Discarding the sequential position of the measurement removes 6 of the 22 bits necessary to
record each action.

Any transcription process will introduce noise and remove information. These losses may be small
and systematic (e.g., most button presses can be recorded accurately to within 1 ms). The losses can
also be large and disruptive. .In particular, verbal protocols can lose information where the speaker did
not speak distinctly, and noise (in the sense of erroneous information) can be added by
misunderstandings of the transcriber. Information is also lost from the original protocol because such
things as pauses, inflections, and environmental context are often not transcribed. Anything not
transcribed is gone. :

That is not to say that the protocol should not be transcribed, coded to create local summaries, or
aggregated to create global summary statistics. In its original form the data may be unwieldy and the
signal to noise ratio may be large. By condensing it one often ends up much better off; although less
information remains further down the information stream, it is in a more understandable form.

The coding process can also be influenced by the level of the model and its stage of development.
Models on the knowledge level (Newell, 1982) predict the knowledge applied. Lower level models
may predict symbolic actions. The interpretation and comparison of the subject’s actions with the
model’s would vary in each case. In each case the subject’s behavior must be interpreted with respect
to the model’s predictions. Initially, when a model is being built, the codes may be derived from the
data. When a model is being tested the categories are taken strictly from the model. Subject actions
that cannot be interpreted this way are indicators where the model could be improved.

|
behave simulate
[MENTAL ACTIONS | [PBG | lmssmmmmmmssmmnssel | MODEL TRACE |
/ @ ,..-::::'-:“g"“::fmn I
?g:dedtr;g;ocfv;ffon) code e et spas;ghmlargegass
/ s @ “ f
I VERBAL PROTOCOL I -:::::: ::-u::l. lMODEL UTTERANCES l

Figure 2-3: Schematic of possible levels of comparison between model and data.
(Numbers are referred to in the text.)

The simulation information stream. Running the simulation architecture+knowledge (on the top left of
Figure 2-2) produces the simulation’s behavior. While this process should be completely accurate, the
model traces never describe all the model’s internal functions. The model builder often has a choice of
how much information to make available in the trace. Like the mind information stream, the analyst

Soar/MT - 21 December 1992

14 Testing process models with protocol data: Review of past work

may further code and aggregate the information for subsequent analyses.

Comparing the information streams. After subject data have been collected and summarized to the
desired level, and the simulation has been created based on task analysis and/or inspection of the
behavior, the two information streams are ready to be compared. This will be done not only to indicate
how similar they are, but also to provide information on how to improve the model. Figure 2-2 shows
that there are several possible levels of comparison between the information streams as indicated by
the arrows pointing in. A comparison consists of interpreting the protocol data with respect to the
predictions of the model, to produce correspondences. Finally, these correspondences that can
themselves be aggregated to produce summary statistics of the comparison, or displays indicating the
major features of the model and how its predictions interpret the data. Although they will have a
different form, the correspondences and summary statistics here serve the same role as residuals in
linear regression, indicating the quality of fit locally and the direction of actions that must be taken to
improve it. '

The single most information-intensive approach is to compare the two information streams at the level
of the protocol and trace. If the information in each information stream is coded before comparison,
there is less information compared, but the comparisons may require less effort. If the model does not
completely predict all the subject’s actions on the protocol level, understanding the regularities that it
does not match and where it needs to be improved can only come from comparing aggregate measures.

Some notes about verbal reports as data. For the most direct theoretical support, equivalent model and
data constructs should be matched. If the process theories we are testing are about linguistic
production, then verbal protocols are data on the most fundamental level. However, process models
are usually not about linguistic production, so the verbal protocols must be interpreted in some way.

Figure 2-3 diagrams the relationship between verbal utterances and the process model’s trace. If we
are strictly to compare only equivalent iterns, we must compare the subject’s overt task actions with
the model’s task actions, and the subject’s verbal utterances with utterances generated by the model.
This strict interpretation is depicted by the comparison arrow between verbal protocol box and the
model utterances box (number 1). This approach has rarely been tried, but in a singular example
Ohilsson (1980) showed that a simple model of utterance produced reasonable prose in a limited
domain.

Fortunately, we do not have to add a speech process to our models. There is a theory of verbal .
protocol production (Ericsson & Simon, 1984) that under most conditions allows us to directly
interpret the subject’s verbal utterances as representing a subset of their mental representation of state
information or operator application. This allows us to use the more direct comparison drawn between
the verbal protocol box, and the model trace box (number 2), representing the comparison between the
model’s predictions of what could have been said, and what was said.

If the verbal utterances are difficult to decipher, we may choose to explicitly apply this theory of verbal
production and create a coded representation of the subject’s mental state (number 3) as a problem
behavior graph, but we will take the approach in this work of using direct comparison wherever
possible. It is simpler and subjects the data to one less transformation. Similarly, task actions are
assumed to follow directly from their mental representation. The implementation of motor outputs is a
separate process, but by definition cognitive models are not models of motor output. The effects of
motor processing are usually kept small and ignored.

Predictions of actions should be matched by procedural data, and predictions of declarative mental
structures should be matched by data representing declarative mental facts. Most verbal (and non-
verbal) protocols in cognitive science are procedural data, a trace of an ongoing procedural task, which
should be compared to the trace of a process model. When analyzing a protocol for declarative
information, for example, content analysis (Stone, Dunphy, Smith, & Ogilvie with associates, 1966;
Carley, 1988), matching verbal descriptions of declarative information to static declarative
relationships is just the right thing to do.

Soar/MT - 21 December 1992

The possible relationships between process models and protocols _ 15

We can now note the distinction between overt and verbal behavior as support for a cognitive model.
Different aspects of the model match different data streams, that of verbal goals and states, and those
of overt, motor actions. Both are support for the model, showing that it did predict mental or overt
subject actions. The biggest difference is that the verbal utterances include an additional layer of
theory specifying how they match, that of verbal protocol production.

Some analyses, typically those developing expert systems (Brueker & Wielinga, 1989; Shadbolt &
Wielinga, 1990), compare procedural data to their static model. In this case, they are comparing
disparate object, verbal utterances generated while performing the task to long-term knowledge
structures or the static elements of a process model. Presumably this works well enough because they
are using this to develop a model, which will not be tested on a fine grain level, and the rules are
correct enough that they would fire in such a situation. Given a complicated enough model, the
emergent properties of the model will prevent matching the procedural data to a description of a
procedural model. For example, new operators could be created from existing knowledge or from new
knowledge learned from the environment.

This view of protocols as data to test models suggests that the analyst is not just trying to "assign" a
trace element to a subject segment, with that accounting as the sole result. It is not. The assignment of
segments is a way to test a model, finding support for its components in the protocol. This approach
equally includes the desire to know where the predictions fail to match the protocol so that the model
may be improved.

2.2 Review of creating and testing models with protocol data

The framework shown in Figure 2-2 supports the comparison of research approaches based on which
information streams they use, the processes they use to transform data, and any tools used to
automatize the transformations or aggregations. Consider as a straightforward initial example under
this framework, experimental psychology. It generally lives only on the left hand side information
stream of human data, and as mentioned above, on a subset of that data even. Reaction choices and
times are taken, often automatically coded by computer-based apparatus into categories and aggregated
into means and other numeric measures by common statistical software.

As a more complete example, consider Qin and Simon’s (1990) work examining the process of
scientific discovery. Subjects (mind+knowledge) talked aloud (producing a protocol) while they
attempted to find Kepler’s laws of planetary motion based on Kepler’'s data. The subject’s utterances
were recorded on audio tape and transcribed into text (protocol). The subject data was coded and
aggregated by hand into the functions examined, showing that the subjects’ work appeared to be done
as search in problem spaces (summary data). On the model side, they gave Bacon, a scientific
discovery system, the same task. They took a trace of its operations while it solved the problem. The
trace was coded and summarized by hand. The aggregations summarized Bacon’s behavior as search
in problem spaces (summary data). Qin and Simon then informally compared the summary of the
subjects’ behavior with that of Bacon, and were able to conclude that the mechanisms in Bacon are
sufficient to account for the subjects’ ability to perform the task, and the style in which they did it.
(interpret and code). Their comparison (as briefly explained in this simplification) is easy to follow
partially because it used only summary data.

2.2.1 Exploratory analysis leading to process models

Figure 2-4 depicts several of the levels of theory that are built and tested with protocol data. Levels
near the top represent exploratory analyses necessary for creating models that can later make more
concrete predictions of behavior. Analysis of the data creates the model. As the model becomes more
predictive (middle line), it is derived less from the data at hand and attempts to interpret the data.
When a model makes predictions of actions sequences (bottom line), it becomes a process model. It is
no longer directly influenced by the data during analysis. Its predictions are first compared to the data,
and the areas where they mismatch may suggest where to modify the model.

Soar/MT - 21 December 1992

16 Testing process models with protocol data: Review of past work

~ ~)
Semi-cbjective comparison of mostly
Qumss Subjective derivation of codes. Jestsren S object!

sl Objective comparison of fixed codes. ==) Objective derivation by running theory.

General x,_ {,T:.
Jescription (.......... Codes oo Data
’\/ ,\I
Qualitative . 7 ’ L)
g::::adgthngf simulation === Codes wumun! Data

;] Computational = Elements

model czum Data

of trace ol

Figure 2-4: How theory level influences comparison with data.

It is worth noting how process models are developed, for many of the same subtasks will be used in
refining them after testing. The first line in Figure 2-4 refers to coding that starts out without a model
of the subject’s processing or knowledge and leads to at least a mental simulation of the subject’s
structures. The coding process is data driven and is done to derive the underlying actions and the
process generating them. This work can be characterized by categories that are general and that may
change during the analysis. The first analyses of the data provide only aggregate measures of the
human behavior. This exploratory coding works primarily with the human information stream. There
is little formal or direct comparison with a model. The aggregate measures produced by the analyses
create constraints and hints for creating a model that can be mentally simulated.

Table 2-1 shows several examples of each types of analyses, including two experimental psychology
studies for comparison. From left to right, its columns are Citation, a citation for the study; Domain,
the task domain studied; N, the number of subjects used in the analysis; Data Points, the total number
of data points as defined by the experimenter or protocol segments, analyzed or compared to a model;
Total time, the total subject time in seconds included in the analysis; Data types, the data types taken,
in the first subcolumn S is sequential data where each action is ordered in time, N is non-sequential
data where the subject makes a single response, like an answer to an arithmetic problem, O is overt
task actions, I is eye data, and V is verbal data; Codes, the type of codes derived from the data for the
analysis, as in Figure 2-2; How, how the codes were assigned to the data, by hand, semi-automatically
with a tool, or automatically by a tool; Model compared, how the model was compared with the data or
what analyses were performed; Model, the type of model tested with the data.

Examining the data in this way is necessary when a model is not available or not yet developed, when
a complete understanding is not necessary, or when time is not available to derive it. For example, fast
user testing of computer interfaces (Kennedy, 1989) by categorizing user’s actions into errors and
correct keystrokes does not require a complete model to indicate where they may need improvement.
This style of work particularly exists in areas that are trying to create initial models (such as computer
supported cooperative work; Olson, Olson, Storrosten, & Carter, 1992) and knowledge rich areas that
are still difficult to model (for example, computer programming, Fisher, 1987, and process control,
Sanderson, Verhage, & Fuld, 1989). Taken as a group, these types of studies (shown in Figure 2-1)
require relatively larger data sets than are used for testing process models, and verbal data are always
used, and sometimes overt task actions are also collected.

Soar/MT - 21 December 1992

17

Review of creating and testing models with protocol data

"uostredwod 10j sarprus ejuswrnadxe ojdurexa Wim ‘sfopout ssa001d
159) pue p[mq 0} pasn 9q ued Aoy} sAem pue SIZIs I ‘s1aserep [00010ad Jo sopdurexy :y-z dqel

*81000303d TVqISA FOJEDIPUT A
*81000301d Suiyowi] ©Ae SewOTPUT I

suou gy8sAIvue JUe3UOD o3ne
g30u wWes 09U O3Uul 3JIesUT Jwes
uojIeInuUTe w3 Uo uojeFexfex ojnw
egepoad ®AT3v3TIUeNDd ¥ Tend puey

TojIeTNWIe s3jebeabie puey
uof3djIosep uostIRdWOD TeWIOFUT pueq
gog3eThwle uosjIRdmoD TYWIOJUT ojnw
AOXIV B WIS SO3WI 931VIF SATIVTEI O3nw
ACYIVH 938X 9338 SATIRISI puwyq
UoFIvTnNUIe vosjieduoo sejwbexSfe puey
SATIWITIUND [wvmIOZUT pueyq

UOFIRINMUTS OTnI/emy) uUo HeIUFT O3Inw
gogpaevINUTe uwoefIvdmod [WWIOFU} puey
TeIN3IONI® §9POD O3 yYovw puey

Tenuew pexi3 Tepour 03 JuswubjEse Twes
seInx T,usS e3v3s 03 Yojvw eINnI puey

TenNUW®E POXTJF SOPOD 03 Yojwm e
gediy ejevls SUOTITEUVIY e ”
suou 83Unod pueyq
eATIRITIWND sepod /J Ddd Oanw puey
sewmeu do UOFI0NIep eTIAD jmes
Beyuil aojesexdex ojne
Beyuyzbon gyojssexdex ojne

+81000303d FUOTION XEV] 3IGAO FBIRIIDUT O
‘waep Teiuenbdes §83WOTPUT §
‘w3vp [vIIUSNDes-UOU #O3IWOIPUT N :tumyod edA3 wivp eyi uy

(petava)
gdiqesuoyeIey

9961 'T® 38 ‘®UO3]S
8861 AeTIwD

X00T< 00T«
ea 97

¢ (geTdweX®) ©3UEWOIVIE [VJIBA BATIRIVIOSD jJo Bujpoo Xiofejed

3deouod A°°N 8Y 09¢
AoTMouwy A°°N 8 S1T
LY *I'N 8Y ([

XLz~ V1 Buypwey Z86T 1% 39 neepuqiyqy

t (syduexe) wiwp esuodgel Terluenbdeg-uou ‘suocsjavdmod peswqg edwI3 TINg

goebeabsy

gof3taevInbeax 62

puydiy 8861 uqor

(eTdwexe) se3w31E 3IDG[QNS *SA §IVIE BUTY Tepow ejebeilsy

Aopmouy A0S oY ¥PT

o3els A°O8 8Y 8V~
welw @A "I°S &Y 9¢
o3ulg ‘o8 wa
®3wag A°°S wu
e3uas A°O8 ®Y Tt
044 A°D oY LT
e3u3s c*0o8 8 9~
e3u3s A°O8 &Y §

1 (soTdurexe) (epouwt
Io03vaedo 0§ wa
I03e30d0 A°OS °u
o3uwlg A°°8 8Y L

AeIMOUY A°°S vu

83w3s A0S &Y 80T
ToT3Iov A°O8 8Y T¢E
ABejexig A'°S 8Y 1V
203viedo A0S SY 81

Ly ""ON SH 6
€Ly ""ON 8Y 97T

'EA S 4 *3uepl 3desuo)d TL6T PeIsMeN

wu o¢ KA18A0081Q ' 1°8 8861 IvquUng ¥ IYeTN
X8°'y oY esn uwibeiq 8861 A3Iebey
AS° €T 62T sonf lejep 9L6T UOSTOJ I POOMIY

00SZ 00T S1q,ueD/&x,8IR
vx 9 KAxeno008Tq ° JO8
IS°T OT wgfBoITAs -uyn
Jot T6T TOUWH JO I6MO] T861 Imawy
1444 T FOURH JO IBMO(6L6T UOWIS I FRzUY
Teinpesoxd Y3tm suostavdwod [eIeusd puvw JUeWIOTBAS(]

9L6T pesY I uouryg
0667 uouwryg 3 ud
IT - 086T UORTITYO

€ESTT €€ uogaetaesg 9L6T uodewd
08C T *Bbug TeoTWRYD LL6T TUOWys 3 IeYFRUH
LT z 880D TL6T yeaanog 3 Ieubum
1124 € Puyjunoooy TBET °"Tw® 39 pPaeITId

: (soTduruxe) suosfIVdWOD BOVI] POSRI-8E9D01J

A6°T~ TZT TOIUOD ®¥88D0Id 6867 °Iv 18 UOSILPURS

vu 9 MOS8D /M ubiseq T66T "T® 1@ ‘UCEBTO
Xy~ 1 puipuey 8961 eeaxg
va ¢ Bujmmeapoxq LO6T I94s8Td

(soTduwexe) :10o030xd TuqieA Jo Bujpoo KXiojwrordxy

KE'T TOL "ateTnbow 11T 6861 Z3ITOM
Jov 14 OFISWITIV I - T66T1 I9ATH ¥ aepey
(seTdurexe) :sejpnie AbBorousAed Twiuswiiedxe [wOoTAAJ

P EN S S SN E S A R N R R E R EE R NN A S RN E ¢ E R EE |} T E R | R R AN RN N EE I S N E SN EE N RSN EEEE N E R

TepPON

pouIOIIed STSATVUY IO DPOPOD
pexedwod TOPOX MOH wieq

gopo) sedA] euy]

8Ujod N ayemoq UOoTI®ITO

Te3ol weawg

Soar/MT - 21 December 1992

18 Testing process models with protocol data: Review of past work

As a final analysis, exploratory coding has several drawbacks compared to one done with a model in
hand. By creating the codes from the data, it decreases the degrees of freedom in the analysis
(Ericsson & Simon, 1984). Without a functional model in hand, the codes may be unequal sizes, and
aren’t defined operationally. As new ideas are explored the comparison between predictions and
observations can end up being informal. Unless rigorous coding schemes are put in place for the
coders, the codes may be difficult to keep in focus as they will change as more data are coded, and the
model is further developed.

As the analyst forms a mental model of how the subject performs the task, the coding task changes to
semi-theoretical coding (Figure 24, line 2). The derivation will be incomplete, but will be better
motivated than those with no model in mind at all. Analysts with a mental model in mind may be
informally comparing the subject’s action sequence with the action sequence or its components that the
mental model might produce. The codes will have more meaning, corresponding more directly to
mental operations or mental state information, but are not yet completely formalized. Typically the
aggregate measures taken are the number of codes in each category. Detection of behavior cycles
through such measures as sequential lag analysis (Gottman & Roy, 1990) becomes more important
because they are used to suggest action orderings for the model. As a step towards process models,
users may also create problem behavior graphs of subjects (Bree, 1968).

When the process model is not yet implemented as a simulation, but its actions are fairly well defined,
the subjects sequential behavior can still be examined by comparison with something other than a
trace. Bhaskar and his colleagues (1978; Bhaskar & Simon, 1977; Dillard, Bhaskar, & Stephens,
1982) compare actions in the subject’s sequential behavior to the steps in a block diagram of the
process. The coded protocol can also be examined by a pattern matching program to find strategies
based on their signature patterns (Gascon76, 1976), or some of the rules for behavior can be tested by
hand against the data (Wagner & Scurrah, 1971). As shown in Table 2-1, these studies typically use
less data than more exploratory ones.

2.2.2 General testing of process models

The last line of Figure 2-3 represents testing the sequential predictions of a process model with data.
Once a process model has been created, it can be run on the studied task, generating a trace of its
implicit and overt behaviors. This is the model information stream in Figure 2-2. The model’s actions
are no longer being derived from the data, but the model is attempting to predict the data. This is a
more powerful result than the transition probabilities that sequential lag analysis provides.

There are many degrees of freedom in these models, which correspondingly require large amounts data
to test them. Each production (or subprocedure specifier) is like a parameter in a regression, in that it
is included to explain or account for some of the data. Therefore, proportional to the degrees of
freedom in the model, large amounts of data are needed to create and test process models. This data
has been found in verbal and non-verbal protocols, and sometimes from aggregate measures taken
from other studies.

Process models are more difficult to build and manipulate than verbal theories because they are more
detailed and make more direct predictions of the subject’s action sequences. We can also take
additional measures from them as they perform the task. These measures have included the time to do
the task (Carpenter, Just & Shell, 1990; Dansereau, 1969) and information attended to in the
environment (Hegarty, 1988).

Most often these models have been tested against the data through aggregate measures. In the terms of
the diagram depicted in Figure 2-2, the model is run and its behavior is summarized into aggregate
measures, which are then compared with the aggregate measures taken from several subjects. These
aggregate measures have included state transitions (Atwood & Poulson, 1976; Simon & Reed, 1976),
time to make state transitions or apply operators as indicated by overt task actions (John, 1988; Karat,
1968), and eye movements (Hegarty, 1988; Just & Carpenter, 1980). More often just general
regularities that subjects exhibit are compared with general descriptions of the model’s behavior, such

Soar/MT - 21 December 1992

Review of creating and testing models with protocol data 19

as strategy preferences (Hegarty, 1988; Klahr & Dmﬁar, 1988; Qin & Simon, 1990; John, 1988).
These studies use more data than those that statt to test process-like models, partially because the data
set is also used to create the model.

2.2.3 Trace based protocol analysis

The third line of Figure 2-4 depicts directly comparing the process model’s trace with the subject’s
actions and verbal utterances without aggregation of either information stream. This is called model-
trace based protocol analysis by Ohlsson (1990), and trace based protocol analysis in this thesis.

When subject actions are assigned to match a trace segment of the model, the codes assigned have a
deeper meaning; segments of data are not being grouped into general categories, but are being assigned
as supporting a specific, formal prediction from an IP model about the type and order of the action
sequences used to perform a task. The organization of the model determines which actions and codes
are similar and can be aggregated.

Process models have been primarily tested on this level with three types of data: verbal protocols, overt
task action protocols, and eye movement protocols. Verbal protocols were the first to be developed as
a way to test process theories. As specifications of working memory and operator applications
(Ericsson & Simon, 1984) they provide the most detailed data points to match. The top section of
Table 2-2 presents a list of studies that have tested process models with verbal protocols. It is nearly a
complete list, and there are probably no more than ten more models tested with verbal protocols. In
sharp comparison, consider the position of another, much simpler modeling technique, multivariate
analysis. In 1980 it was estimated that there was over 10,000 papers in the literature (Bentler, 1980).

As a group these studies are fairly homogeneous. They nearly all deal with problem solving on a
puzzle type task and studied a small number of subjects. There are four studies that then stand out.
Three do so because of their size. The original Newell & Simon (1972) work, Ohlsson’s (1980)
second study, and Larkin, McDermott, Simon, & Simon (1980), all used more than one subject, and
examined relatively large amounts of data. Peck & John’s (1992) work stands out because it is not of
problem solving, but of performing what is claimed to be routine behavior, that of using an on-line
help system. In all cases, the number of verbal segments that have been used to directly test the
sequential predictions of a process model are relatively small.

Overt task actions have been used most often to test process models, so often that it is not possible or
interesting to enumerate all of them. They have been taken for a variety of tasks and a variety of
methods.. The most common types that have been used are mouse and other computer input devices
(see Table 2-2 for examples). The protocols are often directly taken by computer, but don’t have to be.
Transcribed or actual pen actions have been used to model subtraction. Young and O’Shea (1981)
used marks generated on paper as byproducts of the task of subtraction to test their theory of
subtraction bugs, and VanLehn and Ball (1987) used ones transcribed by an electric pen. While eye
movements are fairly routinely used to develop informal models (Hansen, 1991) and process models
(Reader: Just & Carpenter, 1980), they are probably the least used to test process theories directly, and
are rarely as the only data source. Table 2-1 indicates that when the overt task responses can be treated
non-sequentially, relatively large amounts of data can be compared with the model’s predictions (e.g.,
Thibadeau Just, & Carpenter, 1982).

Some models have been tested with more than one type of data, and doing this appears to be useful.
Young (1972) used primarily task actions (moving blocks) along with some eye movements to build
and test a model of children solving seriation tasks. Peck & John (1992) used verbal utterances and
task actions (mouse movements and clicks) to build and test a model of a user searching for help in an
on-line browser. Newell and Simon (1972, pp. 310-327) report on Winikoff’s work (Winikoff,
1967) using eye movements as an adjunct to verbal protocols.

Soar/MT - 21 December 1992

V Testing process models with protocol data: Review of past work

"Sropou §s9001d 1531 03 eIRp [090301d JO Sasn snojaald Jo Areunung :7-z dqeL

(*87000302d TeqISA SOIDIPUT A
*87020302d Supyovay eLe Se3COIPUT I

UOTIRINUTH
uoijzeInUle
uofeTNUTS
wofIeTNWIe
uofIeINWIS
ToFIeInWIe
uofIeTNMTS
uofjeTnTS

UOTIRINWES
TOTINTNUTE
‘wye puey
gojIeInWEe
wogIeTnUTe
uotIeTNWTe
uotIvTNWES
UOTINTIWTS
uorIeTNUTE
uopIvTNULS
‘wis puey
uotIeTNULE

. uop3IeINUTE

uot RTINS
uoTIvIMME
uoTIvInNHNle
uoTINTNUTS
uot3eTMle
oINS

39691 + edwvl]
®ouI)

#3UTRIISUOD Io03jwiedo
ORIy

sow1)

eoRvigy

sovIy

SUOTION 3I8AO

[J-1 >4
eDwx) eTnx

eouIl eIn1

*Dw3] eInl

[11 34

o0wI3 I03viedo
eDw313 uotIonpoxd

[1) F§

[F-1 b3 3 &1

[I-1 > &

odex] eInx

T0I3T0D YOIVSs-00uIX3
L1 > 5

[1 > &

oowI) TewIeuess

[T-1 >4

[J-) > &9

[I-] + ¢

[1] > 5

o3ne
ojne

419
puey
puey
puey

puey

puey

puey
puey
puey
puey
puey
puey
puey
puey
puey
puey
puey
puey
puey

. puey

puey
puey
puey
puey
puey

*9#7000303d SUOT3IOW YBW] JIBGAC #93IVOIPUT O -
‘wjup Tefjuenbdes se3VOTDPUT §
*wlvp Ter3Uendbes-uUoU FeIVOTPUT N

poxgd

J03vxed0
x03vxedo
poag

poxd » do
J03v1ed0
J03030d0
xo3vaedo

Aenmouy
o1 (- ¢

DEd

od4d
do/e3e3g
Jo3wxedo
pad

odd
e3e3s
Aemotry
odd

ogd
L)}
sowx],
AoTmouy
I03ex0d0
AoTmMouy
0dd

Lg) 2t

**08 O 0T<
*:08 X 798
**08 wa
**08 °a
*I08 ® 09L~
**08 °u
**08 ® LT

* 08 L-114
A°°S va
A8 va
A ‘8 X 0T
AI'S ® 018
A8 oY T°1
A0S ® 009~
A8 ® LTL
A '8 ®X T~
A''S L 1
A0S ©X B~
A''S e
A8 ® 00Z
A°O8 oY §
A 'S X T~
A°08 wu
A°08 v
A°O8 ®u
A"°8S ® 0ZT
Acg »u

Y00S5< 00€E< Butaoang

wa 0¢ Axj3eu00H
e~ 9T uogIowIzqns
AT < €€ uoglovIqng
0LS~ 1T uogjeviaes
96~ [TOURH JO IBMOJ
€L T OpPuU®luIN
91 T 880D

(seTdurexs)
Xe'y 6 #o18iugd
XL°E O ofbo1
X0°T S or3euwq3TIR3IdAID
¥6°T 1 oj3eur3yIwidAID
959 1 ButBbewy TensIA
»Z9 T snuew ATeH
€zy 1 erzznd TensIA
00?~ § usyfoTTA® Uiy
1 424 ZT s7soubeyp 3aweH
1 414 134 8o>184Aqd
TYT T 8seyy
8ET 1 oFjeu3TIRVIALID
ree 1 TOU®H JO IeMOL
00T 1 eotoyo Axvuld
TOoT S go1eiqq
86] K138woepd
TL 9 Ax3jeuceyp
9s 1 wusfboTTA8 ‘U]
6 T S ‘uuwd 3 ‘@SN

tumyoo edX3 wjep eyl ul

dnoaxfl pue uosxepuy
066T Iefutpecy

L86T TTv%d 3 uysquep
1861 weqs,0 3 Sunox
€L6T Bunox

686T TTOMBN 3 zZTNY
T66T ‘1% 3@ uyop
TL6T uTowig % TIOMGN

118qIBA-UOU Y3 TA UosTIRAWOD 8dv1y TINd

T661 UYSTURA 3 SeuOL
TLET uUouwys 3 TremeyN
TLET uomis 3 TlemeN
TL6T uowys » JTemeN

€L6T UWIOKR

TE66T UyqoL I Yoed
IL61 IoTAwg

II - 0861 UOSTIYO
T86T °T® 238 ‘mosuyor
086T °"T% 38 Uyae]
TL6T uwomis 3 TI1emeN
+79€d 0661 TT8MON
1661 U{eTURA

6561 uvupTed

T96T IeBNT

0661 Iebutpecy

8L61 ocueaxd

I - 086T TOETIHO

I - 6861 uyeuep

Soar/MT - 21 December 1992

20

(®307dWOD PeASTT9Q) WIVD SNONUTIUCD ‘sUosiIvdwWoD peseq eowll TINJ
..".Il.'l.'.'l'.l..'.'.l'..l'.l.'.......'..l...l..ll.lI.........."..ll...."..l'...'..I.."l...'...l'l'.l.ll..lll
T®PON psuwiojieg sysATvuy pepoD Bulpod eedAl ewyl e3jujed N ugewoq uotplIeIFOd

10 peawdmod TOpPON MOH wvaedg %30l waed

Review of creating and testing models with protocol data 21

2.2.4 Summary of important data features

With the studies reported in Tables 2-1 and 2-2 spread before us, we can examine what general
patterns characterize the testing of process models, particularly testing with protocol data.

1. Verbal reports are not yet treated as data. The amount of protocol data used to test the
model is often not directly reported, as indicated by the relatively large number of not
available (na) or approximated (indicated with a ~) measures in Tables 2-1 and 2-2.
Researchers appear to routinely obtain more protocol data then they use to test the model.
Sometimes this is explained by subjects performing too randomly to code, but often it
appears that they lacked the resources to take advantage of the data. In either case the
fail to report its amount and disposition as carefully as reaction time data are treated.

2. Testing process models with verbal protocol data appears to take a lot of effort. The
testing is seen as tedious and dangerously boring, offering plenty of opportunities for
mistakes (Ericsson & Simon, 1984, p. 271). Generating and testing process based
theories by hand takes a lot of time and is tedious. The total analysis time to subject
behavior time may be greater as 3600:1 if you base the measures on reported lengths of
studies (Ohlsson, 1980). The testing of a model may account for perhaps 1/4 to 1/2 of
the total time to develop a process model (Ohlsson, 1992). The number of categories that
are used to code that data is the number of operators or trace elements. Each of the trace
elements will require a rule for coding it. If the analyst is someone experienced with
simulations they may get by with fewer rules. Later steps of modifying the model
require someone who is both experienced with simulations so that they can create and
modify the process model, familiar with psychology so that they can understand
additional behavior constraints, and patient enough to do the alignment and realignment
to get the best fit between data and model.

3. When process models are tested they are not tested with a lot of data. The difficulty of
testing is also supported by how often process theories are created versus how often their
sequential predictions are tested. While process models are now routinely developed,
they are not often tested. Testing may become semi-routine within a single study (e.g.,
Peck & John, 1992), but there appears to be no routine use of protocol data to test
process theories. Only four of the 27 process models designed or implemented as
computer programs that appeared in Cognitive Science between 1980 and 1986
compared the model’s behavior with a subject’s action sequence, although several more
compared the aggregate performance of subjects and the model (Kaplan, 1987). If model
creation was the only significant cost to developing process models, one would also
expect the developers to amortize this cost by testing additional subjects, or using more
data per subject. As shown in Figure 2-2, the number of subjects and measures used to
test these theories is small. Often papers compare a model with the actions of just 1
subject. Sometimes models are compared with up to 5 subjects, but rarely, if ever, are
the action sequences of 30 to 100 subjects compared with the model’s actions. In
addition to a small number of subjects, the total amount of subject actions included in the
comparison is often quite low. It is not particularly uncommon to see less than 1000 s
(16 minutes) of subject data, and the largest amount of subject data compared with a
single model’s actions is on the order of several thousand seconds. Sometimes process
models are compared with large numbers of subjects over hour-long time periods, but
then they are only tested against aggregate measures. Testing process models with the
amount of data in the example experimental psychology subject numbers and contact
times per study shown in Table 2-1 (20 subjects by I hour) is out of reach. Large
experimental studies with 700 subjects for 3.5 hours are inconceivable. This comparison
process appears so difficult to some, that only general requmements are referenced (see
Kaplan (1987) for further citations), or anecdotal evidence is used without reference to
subjects at all (Schank, 1982). -

Soar/MT - 21 December 1992

Testing process models with protocol data: Review of past work

4. Testing process models with verbal protocol is limited to a few scientific_centers.
Sociologically, the methodology of trace based verbal protocol analysis has not become
widespread. All of the researchers using verbal protocol to test process models (with a
few exceptions) started using it while students or associates of Newell or Simon. If we
include researchers that use non-verbal protocols we find that they are more widely
dispersed, but still centered around Camegie-Mellon and the University of Colorado at
Boulder, and that few investigators have done more than one such study.

5. Sequential data are more difficult to use. Based on the number of task actions per task,
subjects’ actions can be categorized into two groups, sequential and non-sequential.
Sequential data represent ongoing activity, are ordered in time, and are contingent on
previous actions. For example, the actions taken to solve a cryptarithmetic problem
represent an ongoing process, and the verbal protocol generated must be understood with
respect to what has gone before it. Solitary data are subject actions that represent unitary
responses to the task. Simple responses to subtraction problems are an example. There
is a continuum. The number of segments in a protocol can be one, like in subtraction, or
number four or so, as in solving physics textbook problems (Larkin, et al., 1980; Luger,
1981), or number in the hundreds, as in cryptarithmetic. As long as there is more than
one of them, they are sequential. If learning is included (which is rare), then even the
single responses are no longer non-sequential. Longer groups of sequential data are used
less often, appear to be more difficult to model, and should be more difficult than solitary
data because the model must fit for longer periods of time.

6. Discrete data are easy to interpret and helps interpret other data. Discrete data are taken
to mean data points that are individually distinct, unconnected elements, taking on a
finite (or countably infinite) number of values. The transformation from data to codes in
Figure 2-2 is straightforward because the data already represent actions on the task level.
If the data are fully discrete, then the testing can be more easily automated, and the full
power of visual display and human mediated analysis is not needed. Having directly
interpretable data included in the protocol helps to tie down with respect to the model
trace less directly codable data, such as verbal protocols. Mouse clicks are presumably
discrete; mouse movements in x,y coordinates are not. Eye movements once interpreted
as regions of a diagram or as words in a text are discrete (before that they are not).
Verbal protocol is not discrete, it can take on many values that map to the same
representation, all of which require interpretation. Producing discrete data requires an
interface (usually on a computer) that dictates the subject’s interactions. This limits the
types of tasks it can be collect from, and the actions subjects can use to perform the task.

7. The level of the model affects the amount of data required. The grain-size of the process
model and its stage of development affects the amount of data that can be used and the
size of the task that can be approached. Initial development of a model usually requires
more information than is used to test it. Theories done on a larger grain-size will have a
process trace that matches larger lengths of subjects protocols than more fine grained
analyses. Models of actions on the knowledge level (Newell, 1982), such as Able
(Larkin, et al., 1980), will match large portions of data (perhaps 20 seconds), and models
of actions on the keystroke level, such as Browser-Soar (Peck & John, 1992), will match
small portions of data (taking seconds or several hundred milliseconds). There are
classical tradeoffs here. Higher level models account for more data. More detailed
models use less data, but account for it in a more detailed way. The success of closer
encoding to a model comes at the price of more comparisons for a given stretch of time.
The very direct lesson then, is to model only the appropriate results, not any unnecessary
details.

Soar/MT - 21 December 1992

Review of creating and testing models with protocol data 23

2.3 Tools related to process model testing

There are numerous processes and capabilities required for building and testing process models. The
tools to do this can be grouped by primary capability. Examining them will highlight useful features
for testing, understanding, and manipulating process theories. There are no tools for routinely testing
process models, but there are often tools to perform many of the subtasks. Process theories are often
started from simply examining protocol data, and that is the first tool type we examine. A shorter, and
slightly different view of available tools is available in Sanderson, James, Watanabe, & Holden (1990).

2.3.1 Tools for building models from protocols

23.1.1 Declarative knowledge coding tools

The simplest way to code a verbal protocols or texts is to note the concepts or declarative knowledge
that make up each segment. The sequential nature of the protocol is ignored, and the coding is done in
a straightforward manner. While the tools for coding declarative knowledge differ fundamentally in
function, they hold a direct lesson for process model testing tools. They show how successful semi-
automatic and automatic tools can be. The first of these was the General Inquirer (Stone, et al., 1966).
It routinely took in a 100s of thousands of data points (as words from texts), and automatically
categorized them into semantic types based on a database of words it understood. It was widely and
apparently easily used to do content analysis. More recently, Carley (1988) has built a less automatic,
but more theory guided set of tools to code knowledge in texts into semantic networks. Segments are
presented automatically to be coded, and there are tools to check to make sure the networks are built
correctly and consistently. The major analyses she supports are how much knowledge is shared
between subjects or within a subject across time. These tools are related to all simple text processing
tools, such as automatic indexers (Waltz, 1987).

2.3.1.2 Exploratery protocol analysis tools

Tools that support the levels of exploratory analysis and qualitative simulation (lines 1 and 2 in Figure
2-4) share many of the same features and are best discussed together. The success of these simple
tools establishes a baseline of manipulation requirements and shows that computer assisted coding and
tabular displays of data are useful.

Simple coding tools. Simple coding tools are defined by the limit of the aggregate measures that they
provide. The only aggregation method that they support is the ability to sum the number of times each
code has been used. At a minimum, simple coding tools assist the coding process by (a) presenting
menus of codes, (b) support treating the text as a set of segments so that the analyst can manipulate and
move between segments directly, and (c) support aggregating the codes. In addition to these direct
needs, enough editing of strings goes on that a full word processor ends up being generally required.
There are numerous tools running on a variety of platforms that provide no more than this (e.g., VPA:
Brown, 1986, Lueke, Pagerey & Brown, 1987; PAP: Poltrock & Nasr, 1989; Cref: Pitman, 1985; and
others presented in Fielding & Lee, 1991). This level of tool may also assist by automatically
presenting segments to the analyst to code, such as MPAS (Erikson & Simon, 1984) was explicitly
designed to do.

Recently analysts have started coding the protocol on the video tape directly to represent the protocol
(Kennedy, 1989; Mackay, 1989; SigChi, 1989). Video is more compelling data representation because
it is more complete, but it is more unwieldy. When the protocol exists on video, more specialized tools
are necessary and available. Sometimes the video based tools are just simple coding tools, and some
of them include additional features making them exploratory data analysis tools.

General purpose tools have also been appropriated to the task of coding. Analysts have used
spreadsheets (Excel: Peck & John, 1992; Lotus 1-2-3: Cohen, Payne, & Pastore, 1991), databases
(Filemaker, Mac-Allegro and DataDesk: Larkin, personal communication, July 1992), and even multi-

Soar/MT - 21 December 1992

24 Testing process models with protocol data: Review of past work

column text editors (Prep: Neuwirth, Kaufer, Chandhok, & Morris, 1990). These tools offer a level of
polish that the research tools don’t, but they fail to be integrated into other programs, or be extendable
to directly interact with specialized analyses.

Table 2-3: Types of protocol analysis tools and their features.

Trace Model
QGeneral Features Aligument Incorporated

+ +

CODING COUNT TABULAR MACROS PLAIN AUTO- INTE- PROCRSS FLEX- AUTO-
TOOL TYPR AIDS CODRS DISPL /EXTEND MATIC GRATED BASED IBLE MATIC

DACLARATIVE - X - . . . +/- . x
(eg, Carley 1988)

SIMPLE CODING */- X
(eg, VPA: Brown 1966)

EXPLORATORY
(eg, SHAPA: James et al. 1990)

]

CENERAL PURPOSE
(eg, Bxcel)

]

KNOWLEDGE ACQUISITION +/- . . p 4 - . +/- X X +/-
(eg, Keats: Motta et al. 1988)

INDUCTION TOOLS Hand . . X . p 4 b 4 X X P 4
(eg, Cirrus: Vanlehn & Garlick 1967)

. PROCESE BASED Semi X . . X . X
(SAPA: Bhaskar & Simon 1977)

GENERAL PROCRSS BASED Auto . . X X - X X X
(Pas~1II: Waterman & Newell 1973)

INTELLIGENT TUTORING SYSTRMS Auto X . . . P & X X . +/-
(eg, Angle: Koedinger 1990) :

GRNERAL TRACE-BASED Semi X X X X . . X X
(Trace&Transcription, John 1990)

S8oar/PA Semi X X X X b & X X X

Legend: . Pesature not provided.
+/- Varies between tools in this category.
b 4 Feature provided.
X’ but pot generally avallable to analyst.
X" based on keyword matches only.
Man Done manually.
-oa Could be added.

ESDA tools. Exploratory sequential data analysis tools represent a slightly higher level of
functionality (e.g., Paw: Fisher, 1991; Shapa: Sanderson, 1990). They tend to support more detailed
coding schemes, more closely tied to theoretical constructs, and more sophisticated aggregating
measures. They typically directly support a method for detecting loops in behavior, such as sequential
lag analysis (Shapa, Paw), or maximum repeating pattern (Siochi & Hix, 1991). These tools are not
useful for testing process models because (a) they don’t include a process model, (b) they do not
generally provide tabular displays, and (c) they lack an automatic interpretation and alignment routine
and the facilities to easily incorporate one.

Soar/MT - 21 December 1992

Tools related to process model testing 25

Childes-Clan (MacWhinney, 1991; MacWhinney & Snow, 1990) is the most sophisticated of these
programs, perhaps because it was developed for working with children’s utterances, which have a
greater variety of styles of speaking than problem solving protocols. It is probably the most widely
used, with approximately 250 users (MacWhinney, personal communication, October 1992). It
includes a structured editor for semi-automatic coding, a language for creating hierarchical codes, the
ability to perform numerous types of counts, and to compute context sensitive measures. It comes with
several hundred megabytes of transcribed and annotated protocols.

Programs to summarize the data can also exist on their own. Bree (1968) wrote an analysis program
that took in coded protocols, and created a type of problem behavior graph that highlighted the cycles
in the subject’s behavior.

2.3.2 Model testing tools

2.3.2.1 Strategy classification tools based on process models

Tools have been developed that test process models, but they do not directly compare the protocol with
a process model trace. These include tools that set model parameters based on the protocol (ASPM:
Polk, 1992), that compute the order of unit tasks (SAPA: Bhaskar & Simon, 1977) or knowledge
applications (KO: Dillard et al., 1982) in the protocol, or that characterize the protocol as matching one
out of a set of strategies (Gascon76, 1976).

Given a model that performs the task, a list of model parameters and how they vary its performance,
and behavior to model, ASPM (Polk, 1992) will find the optimal setting of parameters. Its strength is
that finds an optimal setting by searching efficiently over huge combinatorial spaces. Its drawback is
that it requires a lot from the model and modeler. The model must be expressed in a set form, a
complete specification of parameters is required, and a way to derive the models outputs automatically
for each input must be provided. Each step in a process must be treated individually, testing a process
model thus consists of numerous individual tests. '

SAPA (Bhaskar & Simon, 1977) starts out with a fixed flow diagram model that predicts the subjects
unit tasks, their possible orderings, and the decision points that subjects will use to solve a general
class of problems. In Bhaskar & Simon (1977) the model is for solving thermodynamics problems. .
Analyzing a protocol consists of assigning each segment to a task. When segments match, the model
moves ahead and proposes the next step to match the next segment. On mismatches, the analyst is
expected to reset the model appropriately. No provision is made for modifying the model under test.
Segments can be presented to the analyst automatically for coding. Accounting, thermodynamics and
business policy problems have also been used with SAPA (Bhaskar, 1978), and Dillard et al. (1982)
develop a similar system called KO that works for declarative knowledge in accounting.

Gascon (1976) in his thesis wrote a program in Conniver and Lisp to recognize a fixed set of strategies
(ten in all) for a weight seriation task. Based on codes assigned by hand to the subject’s actions, his

system recognizes the global strategy and assigns the individual actions to particular steps of the
strategy chosen. ,

2.3.2.2 Model tracing modules within intelligent tutoring systems

There are at least a few examples that show that the action sequences generated by process models can
be compared automatically with human behavior. Some intelligent tutoring systems (particularly
Anderson and his group’s tutors (Anderson, Farrell, & Sauers, 1981; Anderson, Greeno, Kline, &
Neves, 1981; Reiser, Anderson, & Farrell, 1985; Singley, 1987; Singley & Anderson, 1989; but also
Sleeman, Hirsh, Ellery, & Kim, 1990, and VanLehn, 1983) provide these exceptions. Subjects as
students now routinely work with Anderson’s tutors, and have their actions compared with a process
model of geometry proof construction (Koedinger & Anderson, 1990) or lisp programming (Anderson,
Farrell, & Sauers, 1981). The process models used in the tutors come from previous non-automatic

Soar/MT - 21 December 1992

26 Testing prm models with protocol data: Review of past work

analysis (Singley & Anderson, 1989), but sometimes they are able to make use of the tutor format to
refine existing theories (Koedinger & Anderson, 1990). :

Closer examination reveals that this extreme level of automation requires several constraints that are
not always available or acceptable: (a) The domain is not open ended, there are fixed operations and
responses. (b) All subject actions are readily interpretable because they must come from a fixed set
available on menus, and no verbal protocols are taken. (c) The subject model is a well developed one,
so that when the match is done automatically it will be a close fit that is easier to do. (d) The nature of
the tutoring task and mature models allows the analyses to be done in a closed manner — when the
subject’s protocol mismatches the model, the subject as a student is reset and told to start over.

2.3.2.3 Tools for aligning the sequential predictions with data

A necessary step in analyzing the predictions of a process model is to bring the predictions into -
correspondence with the sequential actions of the subject. The model and subject have to be initially
synchronized, and then after each time they lose step with each other. This discussion assumes that

both sequences are in already in hand, and that the alignment does not have to be computed
dynamically.

Two general systems have been created to test unrestricted process models by aligning their
predictions to the data either semi-automatically (Pas-IT) or by hand (Trace&Transcription). In both
cases they do not directly incorporate the model being tested, but provide a framework for comparing
the model’s predictions with protocol data.

Aligning the model’s predictions with the subject’s actions and verbal utterances would be particularly
nice to automate. The alignment has mostly been done by hand; performing this automatically would
remove a tedious task for the analyst. Performing the comparison automatically will require that the
process is fully specified, which will also make the prediction testing more reliable. No extant
cognitive modeling system or protocol analysis systems supports this, although it has been done
automatically on a small scale to explicitly test small models (Card, Moran, & Newell, 1983).

PAS-I and II. Pas-I (Waterman & Newell, 1971) was a system to automatically analyze verbal
protocols on cryptarithmetic. Pas-II (Waterman, 1973; Waterman & Newell, 1973) was a generalized
version of Pas-I. They provide a complete model of how to code verbal protocol into problem
behavior graphs. Their strengths were: (a) They made the analysis process very objective and explicit.
(b) They were complete and integrated. One could use them to code verbal protocols from transcript to
problem behavior graph. (c) They were both flexible. Pas-I could be modified to deal with any
cryptarithmetic protocol, and Pas-II could be modified to work with any domain.

Despite their strengths, they appear to have been applied only to their initial test data. Their
weaknesses may be even more enlightening than their strengths:

¢ They appear to have been complicated and hard to use. Pas-II, the general system,
required the user to represent all the knowledge for each of the analysis steps as
productions. Facilities for creating, editing, and testing these productions do not appear to
have been provided.

* The number of steps may have seemed daunting. There were 21 steps implemented out of

28 steps in the complete design. Each step required it own mini-production system for
coding the protocol.

* They did not directly include the process model they were attempting to match. This

means that the same information for interpreting the data with respect to the model had to
be represented in several locations.

e The output of the analysis was not in a directly interpretable form. Pas-I provided the

Soar/MT - 21 December 1992

Tools related to process model testing 27

PBG as straight text that had to be reformated into a PBG.

e They did not directly test the model. While the design included comparing the subject’s
PBG to a trace of a process model, this appears not to have been implemented (Waterman,
1973). In the end, the test was whether the rules based on the model could parse the data
with the assistance of a analyst.

e They suffered from poor displays. The intermediate representations in the processing
- were not directly visible, but were displayed only on command.

o They were naive about the difficulty of parsing natural language. They attempted to do a
complete parse without a theory of parsing, using only rewrite rules, and without tying it
to a model of the task. ’

Trace&Transcription. The Trace&Transcription system (John, 1990) was the first and (until Soar/MT)
only system explicitly created to analyze protocols with respect to a running process model. It took as
input a trace of the transcribed protocol, which could include multiple behavior streams, and a trace
from a running cognitive model. In its one and only application these were verbal utterances, mouse
button actions, and mouse movements of a user using an on-line help system, and a trace of the
Browser-Soar model. These two information streams were semi-automatically aligned; the user would
click on the two segments (data and trace) to be aligned, and Trace&Transcribe would add additional
cells in one or the other columns to bring them into correspondence.

Trace& Transcription included two innovative ideas that simplify the analysis task and provide more
power to the analyst. (a) Treating as a database the data, the model trace, and their comparison. The
underlying database system of Trace&Transcription (Oracle) supported queries of where the model
matched and mismatched, making available groups such as all unmatched mouse clicks, or all verbal
utterances with the word "draw”. The database approach also allowed the analyst to group columns of
data together, so that they stay aligned as blank cells are inserted to align the model columns with the
data columns. (b) Tabular presentation of the data. Each field (e.g., the model trace, the verbal
protocol data, the mouse movement data) was represented as a separate column, as were the
comparison, comment and time stamp fields. This allowed more data segments to be displayed per
given screen size. .It also created a visual representation of the alignment of the model trace to the
protocol. Rows that are filled all the way across represented correspondences. Blank spaces in the
data column while the model column was full represented the model doing more than the subject, and
vice versa.

The Cardl algorithm. Card, Moran, and Newell (1983, Appendix to Ch. 5) present an algorithm for
finding the longest common subsequence (Hirschberg, 1975) that can be used for aligning two
behavior sequences. In their case the two sequences are subject actions from a non-verbal protocol,
and actions predicted by a simulation model. In the general case, the sequences can be (a) subject
actions from a verbal or non-verbal protocol, and (b) actions predicted by a simulation model, and
there can be more than one subject sequence (however we assume in this work that these will always
be aligned pair-wise). This algorithm finds the longest common subsequence, that is to say, it finds the
largest sequence of tokens (representing matches between tokens in the two streams), such that the
tokens in the result have the same order in each sequence.

Other alignment algorithms. Hirschberg presents some additional algorithms (some recursive) for
computing the maximum common subsequence that take up less space. The gravest flaw in using
these more elegant algorithms is that they do not provide control over which subsequence is returned
out of the (possibly) many maximally common subsequences. They may indeed prefer the same one
that Card does. They are also more complicated, and speed and space is not of the essence in this
application, clarity, readability, and modifiability is. Cardl, which uses N2 space, generally performs
the match quickly enough.

Ci.ll'd’s algorithm is also based on work by Sakoe and Chiba (1978), which represents the task of
aligning a model of speech recognition with the speech signals presented for recognition. This is a

Soar/MT - 21 December 1992

28 Testing process models with protocol data: Review of past work

similar task, and can be represented as search with productions (Newell, 1980a). Pas-I (Waterman &
Newell, 1971) and Pas-II (Waterman, 1973) proposed (but did not implement) an incremental approach
to the match that included backtracking and partial matching. They proposed (Waterman & Newell,
1971) to move both traces ahead by a line, attempt a match, and incrementally advance the counters on
the model trace until a match was found. Backtracking was reserved for continued mismatches.
Ohlsson (1990) appears to have successfully used this algorithm by hand. A neural net has learned to
match a Markov model’s predictions to computer interactions in real time (Finlay & Harrison, 1990).

2.3.3 Tools for building and understanding models

2.3.3.1 Process model induction tools

Most process models induced from protocols are created by hand. There has been some work to do
this automatically or semi-automatically with machine leaming techniques. Semi-automatic
generation is done in the event structure modeling domain (a sociological level of social events) by a
program called Ethno (Heise, 1991; Heise & Lewis, 1991). It iterates though a database of known
events finding those without known precursors. It presents these to the analyst, querying for their
precursors. As it runs it asks the analyst to create simple qualitative, non-variablized token matching
rules representing the events causal relationships based on social and scientific processes. The result at
the end of an analysis is a rule set of 10 to 20 rules that shape sociological behavior in that area. In a
sense, the analyst is doing impasse driven programming (i.e., what is the next precursor for an
uncovered event not provided by an already existing rule?). After this step, or in place of it, the analyst
can compare the model’s predictions with a series of actions on a sociological level (a protocol in the
formal sense of the word). The tool will note which actions could follow, and query the analyst based
on this. Where mismatches occur, Ethno can present several possible fixes for configuration. By
incorporating the model with the analyses tool in an integrated environment it provides a powerful
tool. It would be a short extension to see the social events as cognitive events in a protocol.

Stronger methods for building models from a protocol are also available. Cirrus (VanLehn & Garlick,
1987) and ACM (Langley & Ohisson, 1989) will induce decision trees for transitions between states
that could be turned into production rules given a description of the problem space, including its
elements, and the coded actions in the protocol. Cirrus and ACM uses the ID3 learning algorithm a
variant of it (Quinlan, 1983).

Why is automatic creation of process model not done more? These tools look like a useful way (o
refine process models. These systems do not actually create process models. They take a generalized
version of an operator that must be specified as part of a process model. It could be that finding the
conditions of operators isn’t the hard problem, but that creating the initial process model and operators
is. It could also be that it is harder to write process models that can be used by these machine learning
algorithms, but these methods should be explored further.

Their lack of use could be simply related to being new software systems. As new systems, they are
probably difficult for people other than their developers to use, and they will have to go through
several iterations of improvement (like most pieces of software) before they are ready for outsiders to
use them. Future work should consider including a machine learning component, for they can help
summarize knowledge level information. ,

2.3.3.2 Tools for understanding and building symbolic cognitive models

While there have been numerous attempts to create general cognitive modeling languages (e.g., Ops,
OpsS, Ops83, IPS, Prism, reviewed in Neches, Langley & Klahr, 1987), there has not been many
attempts to develop tools for manipulating and understanding the models created for these
architectures. When models were small and simple, an additional level of interface was not needed.
This is not true anymore. Cognitive models now often contain hundreds of rules (e.g., Browser-soar,
Peck & John, 1992) to tens of thousands of rules (Doorenbos, Tambe, & Newell, 1992).

Soar/MT - 21 December 1992

Tools related to process model testing

P: top-space

O: browse
us>@1 (0P (J no-change)
P: browsing

Ot tlud-mmrhu-holp

Qs (op tor no

P !M—mrhto-lnlp

03 ohange-search-criterion

-7} d‘thu-cvdutlen-odhdon

s=>@t (op)
P do!tm-mlmtion—critorlon
O: evaluate-evaluation-criterion

O: ¢ € Juation-coriterion
Os Mm—m-ortudon
su>@1 (op)
Ps btiu-mnh-crimion
O: evaluat h iterion
O3 (- h-criterion
[23 m].uto-h.l.p-tct
=a>@: (op €)

41 mlmto-ho:l.p-uxe
0: change-current-window
wa>@: (op t no-ch
2] m-mhod.-tor-ohnco-mmt-wim
O1 ccht-pM-lM.x
sa>3s (op h)
P: mac-method-of-click-prev-index
01 olick-button
O: move-mouse
O: drag
=a>@: (operator no-change)
P: mac-method-of-drag
O: move-mouse
O: press-button
0: release-button
O: page
«w>@: (0P t no-change)
P: mmo-method-of-page
Ot oclick-button
01 move-mouse
O: scroll
==>3: (operator no-change)
P: mac-method-of-scroll
01 move-mouse
O: note-saw-criterion
O: press-button
0: release-button
0: evaluate-current-window
==>@s; (operator no-change)
P: evaluate-prose-in-window
Ot compare-to-oriteria
01 comprehend
01 read-input
P: evaluate-items-in-window
O: attempt-match
0: read-input
O: focus-on-help-text
0: modify-search-criterion
O: search-for-help
=u>@t (operator no-change)
P: search-for-help
01 access-itea
==>@: (operator no-change)
P: mac-methods-for-access-item
O: click-on-item
=w>@: (operator no-change)
P: mac-method-of-click-on-item
0: click-button
O: move-mouse
Os doubl.-cl.iek-on-ito-
wu>@: (P no)}
P no-nthod-o!-doublo-elick-on—it-
0: double-click-button
O: move-mouse
0: find-oriterion
mu>@: (operator no-change)
P: find-criterion
0: change-current-window [...]
O: evaluate-current-window [...}
0: focus-on-current-window

Figure 2-5: Example output of TAQL space graph.

-~ Soar/MT - 21 December 1992

29

30 Testing process models with protocol data: Review of past work

There have been several disjoint attempts to provide a better interface for Soar on the level of
production manipulation and understanding of the goal stack. The two previous graphical interfaces
(Milnes, 1988; Unruh, 1986) provided an augmented description of the goal stack that let users click
on objects to examine them. These systems did not retain any explicit model of the problem spaces
and operators. There have also been three text editors extensions (by Ward, Shivers, and Milnes,
respectively) designed for manipulating Soar on the production level. Each included simple
commands for starting up a Soar process, editing productions, and loading them. These interfaces
were not developed for very long, and were not widely distributed.

There has been only one tool for Soar that attempted to describe Soar’s emergent behaviors on the
problem space level. Version 3.1.4 of the TAQL macro language for Soar (Yost, 1992; Yost &
Altmann, 1991) provides a textual description of the problem spaces and operators that it could
recognize from the TAQL constructs making up the Soar model. It did not guarantee that they would
be selected, or that the set it found was complete. An‘example of its output is shown in Figure 2-5.

Other typical cognitive modeling tools based on production systems, such as ACT% (Anderson, 1983),
and Ops5 (Forgy, 1981) come with only a command line interface for loading files and running the
system. They do include debugging commands, such as which rules will fire next, but this must be
explicitly requested by the user, and a match set is generally not available in a separate display. These
systems are viewed as just an inference engine for a cognitive architecture. The production rules that
implement the models are created and edited using a general purpose editor, which usually lacks the
ability to directly add a new production to the interpreter, and to edit the production in a structured
way. All of these production systems lack the ability to describe and manipulate the models on higher
levels of organization, such as the problem space or knowledge level.

2.3.3.3 Knowledge acquisition tools

Many types of expert systems are designed to be process models of expert behavior in areas where
algorithmic solutions are not available. Expert system development shells (KEE) are designed to build
these process models of expertise. Their cousins, knowledge based knowledge acquisition (KBKA)
tools, attempt to use an expert system recursively to monitor the process of model building and suggest
places that need attention (KADS: Brueker & Wielinga, 1989; KEW: Shadbolt & Wielinga, 1990;
Keats: Motta, Eisenstadt, Pitman, & West, 1988; Kriton: Diederich, Ruhmann, & May, 1987; Shelley:
Anjewierden, Wielemaker, & Toussaint, 1990; an overview of the field is provided by the Fall 1989
SIGART Bulletin). KBKA tools include many of the features that a tool for testing models would
need because their task, to build a process model that produces expert behavior starting with an
analysis of the task and verbal protocols, is very similar to testing process models with protocols.
Their strength is that they include in their environment, often in a highly integrated way, a process
model. In these tools, the process model is the expert system that is being developed. They provide
tools to manipulate the expert system, modify it, and run it on the task. They often include graphic
depictions of their declarative knowledge (e.g., Keats: Motta et al., 1988), but they rarely, if at all,
provide visual descriptions of the processes and the process knowledge.

Knowledge acquisition environments sometimes include the ability to tie verbal protocols or other
texts to various facets of the model, showing where a feature came from, and serving as a note that a
segment has had its knowledge extracted. Their task is only to create a model that performs the task,
not to validate the model’s performance against the input, so they all completely lack the ability to
measure the comparison. As a group, when coding protocols they also make a fundamental
misunderstanding about the comparison of similar levels in the protocol and model. They always code
the protocol in terms of the static structure of the model, either as rules or data structures. When an
expert is talking about rules to apply, that is appropriate. When the same tool is used to code verbal
protocols given by an expert while they are performing the task, this coding is inappropriate. In terms
of Figure 2-2, they are comparing the knowledge of the model to the process data of the subject. Like
many cross-level comparisons, it is incorrect and only approximate, but in practice it serves them well.
One system, Kriton (Diederich et al., 1987), claims to be able to do this automatically. How well it

Soar/MT - 21 December 1992

Tools related to process model testing 31

does this is not clear from the short technical report.

2.3.4 Summary of useful tool features

Reviewing these tools for performing various subsets of testing process models with protocol data
suggests several guidelines for future integrated tools.

1. Current automatic testing approaches carry too many constraints for general use. While
it is possible to automatically compare a process model with data, several intelligent
tutoring systems do so with non-verbal data, it does not appear to be currently possible
with verbal data because of the difficulty of doing general natural language parsing.
Natural language parsing is necessary to match verbal protocols to the process trace.
Only two systems attempt to compare verbal protocols to models automatically. It is not
clear that the parser in Pas-II is powerful enough to be applied in a truly automatic sense.
The details provided on how the Kriton system does its parsing are not adequate to judge
its performance.

Systems that otherwise do automatic analyses must limit their general applicability by
taking on one or more constraints to avoid natural language, such as using only well
tested models and simple tasks that use a limited subset of language, or working with
discrete data. Future general tools can only provide semi-automatic analyses until
parsing technologies are further developed.

The task of testing process theories with verbal protocols may present a unique
opportunity to push natural language parsing forward. Unlike general parsing situations,
the model being tested provides a strong theory of what will be said. The directly
relevant knowledge structures needed for parsing, presumably the data structures used to
perform the task, are available and updated by the process model as the task unfolds.
Using multiple behavior streams to fit to the model would further restrain the parsing
task.

2. Automatic and semi-automatic features aid reliability and speed. Tools that provide
assistance doing the analysis that are automatic (completely autonomous) or semi-
automatic (small user initiated analyses, or semi-correct analyses checked by the user)
are highly praised by users, even if they are not always tied to the theoretical constructs
being tested. People, even dedicated ones, do not like doing this type of work. Analyses
done without tools that provide assistance are not repeated as often. The most automatic
systems, the General Inquirer (Stone, et al., 1966) and the Anderson tutors, truly make
the analyses they do routine.

Semi-automatic tools may actually have been used more often because fully-automatic
analysis requires the theoretical model of the analysis to be complete. The system can do
this by having a weak but quite general model, such as the General Inquirer (Stone, et al.,
1966), or by having a well developed model such as the Anderson tutors have. If the
system does not provide all the specifications for the analysis, then the user must create
them. If too much specification is required from the user, the system might not be used,
which may be what happened to Pas-IL.

3. An_extendable word processor and a database facility are required. Most tools
incorporate word processor functions to do such things as annote segments, correct
transcription errors, and enter and edit labels. Systems that do not incorporate a word
processor (such as PAW, Fisher, 1991), assume that one is available in the environment.

While the broad approach to protocol analysis and model testing can be specified, in the
end these are fluid tasks. A set of analyses must be provided, but additional, similar

Soar/MT - 21 December 1992

Testing process models with protocol data: Review of past work

analyses will be necessary. Systems should provide a macro language and interface to
help automate repeated actions, to create modifications and extensions, and to integrate
with other tools.

Simple database facilities are also required. These facilities need not be extensive, but
the basics must be provided. Only Trace&Transcription (John, 1990) and some general
tools appropriated to the task incorporate a complete database system (Oracle). Most
tools provide some support in this area. Nearly all the systems support adding additional
data fields to segment records. Those who do not suffer for it. For example, those that
do can be expanded to include their verbal protocol as a separate field, even if their initial
configuration does not. Simple aggregations by types is another very desirable database
feature. These simple analyses appears useful for checking the ongoing analysis for
correctness. More sophisticated systems include more extensive analyses built in, such as
sequential lag analysis. The more advanced database functionality of listing segments by
queries appears useful, although few systems currently support this.

4, Tabular_displays present more data. Figure 2-6a shows a record based display,
implemented as part of an initial version of Soar/MT. It is representative of the record
based displays of most tools. Figure 2-6b shows a tabular based representation of the
same data. The tabular approach represents a segment as a row, with its fields placed in
separate columns, like a spreadsheet. This approach better supports the appropriate
visual operators (Larkin & Simon, 1987) for finding the context of a segment and its
associated fields. By only using one line per segment, and putting the labels only once at
the top, more data can be displayed than in a multi-line record approach. This tabular
format also supports the approach analysts have used when working on paper (Newell &
Simon, 1972; Ohlsson, 1980; Young, 1973). Trace&Transcription and some of the
general purpose tools support a tabular based visual layout. For a telling (and atypical)
supporting example, see Newell and Simon (1972), Appendix 6.1 and its notes two pages
later. The distribution of information across several pages makes this protocol hard to
read.

5. Integrating the model support analysis. Tools should keep the models being tested close
at hand. If a tool does, its manipulations can be directly based on the model being tested
or built. This includes automatic analyses based on the model (such as features
supported by data, features unconnected to other features). Having knowledge of the
model is required for helping the analyst through automating the tasks or by providing
smart features that partially do the task. This representation must be explicit. Several
systems that use models (e.g., Pas-I and Pas-II) include them only implicitly in
production rules. This precludes the tool from using the model codes the rules represent
without running the model to find them.

Systems that can automatically offer codes to assign to data points represent the weakest
form of this ability. They know the names of the model components, but that is all.
Most systems, including general purpose ones, either directly provide this low level of
model manipulation or can be modified to do so.

Pas-II represents an unfortunate position with respect to incorporating a model. It did not
directly include a model that could be used to do an analysis. The model being analyzed
was only available implicitly in the productions that users added to do the analysis, and
not directly available. Pas-II could manipulate the data with respect to the model, but
only if the user supplied these manipulations as additional productions based on a model
external to Pas-II. It did not check directly to see that all the operations in a model had
been supported by data, or suggest operators to code with.

The model induction tools (ACM, Cirrus), and most knowledge acquisition tools can

Soar/MT - 21 December 1992

Tools related to process model testing 33

directly access their model as a knowledge source for analysis. Indeed, in expert system
development knowledge-based knowledge acquisition (KBKA) can base the analysis
directly in terms of the model. Tools that include declarative model structures (e.g.,
Kriton and Keats) can reference the model directly. Having the model directly at hand
provides KBKA with strong support for coding and data aggregation, but these tools do
not completely incorporate comparisons because they have been designed for building
models, not for testing them.

In many ways Trace&Transcribe is the best extant tool for testing process theories. Its
major drawback is that it cannot reason about the model it is testing. Trace&Transcribe
also does not explicitly represent the Soar models being tested, and the models are also
not available from the current Soar implementation (5.2). After the alignment of the
subject protocol with the trace, there are no further analyses that it can carry out on its
own based on the model, such as noting which operators were supported, or where
operators were not supported.

6. An interface is required for manipulating and understanding the model. The lack of .
development of interfaces and display representations for manipulating and
understanding symbolic models can be contrasting with the development of tools for
PDP models (McClelland, Rumelhart and the PDP research group, 1986; Rumelhart,
McClelland and the PDP research group, 1986). PDP models can be difficult to interpret
directly; their structure is implemented as an array filled with real numbers representing
the connections between nodes. PDP software has mitigated this problem by letting
modelers manipulate systems on the level that they think of them. Nearly all systems
now allow the user to create models by drawing their nodes and connections (O’Reilly,
1991). The diagrams created this way are also used to describe the model’s performance
over time, such as the changes in the connections from learning are often visually
displayed during a run (McClelland & Rumelhart, 1988). Displays to illustrate the
importance and meaning of the connections have also been developed (Hinton &
Sejnowski, 1986; Kolen & Pollack, 1988; McClelland et al., 1986; Rumelhart, et al.,
1986; Touretzky, 1986).

2.4 Measures of model to data comparison

This section reviews the measures that have been used by analysts to improve and describe to others
the fit of process models to data. Measures for comparing sequential data will primarily be examined,
‘but measures for comparing aggregate data will be included when appropriate. A shorter, and slightly
different view of measures useful for model building is available in Sanderson et al. (1990).

The review starts off by deriving what is needed from previously published and newly presented
criteria for evaluating these measures. Taken together the criteria indicate that four different types of
measures are necessary. These four types of measures include (a) a global measure of where the model
mismatches the data, (b) a simple measure of fit to provide local guidance for improving the model, (c)
a measure indicating how well the model will perform in the future, and (d) a measure indicating the
degrees of freedom in the model. Some of these measures must also be persuasive to others, so this is
listed as the fifth criteria. The ability to describe the behavior of the model in general terms also turns
out to be important in comparing models to data, even though it is not itself a measure of fit. The most

influential need, for measures to indicate where the model does not fit the data, particularly makes
strong recommendations about which measures are useful.

The measures that have been used to evaluate the fit of process models can be categorized into four
types: (a) non-numeric descriptive measures of the general fit, (b) numeric descriptive measures of the
general fit, (c) measures of rule (or component) utility, and (d) measures based on inferential statistics.
Previous uses of each of these types will be described, and they will be evaluated with respect to how

Soar/MT - 21 December 1992

34 Testing process models with protocol data: Review of past work

2-6(a) Example record-based display of model trace to data comparison.

1 eccccmmmnccarane

TINR: 12400 vig: TYPE: too-short

VHUM: 1 DURATION: 725 VERBAL>: I believe

MO MBANUM MOUSE> ¢

DCs B EVID FOR:
V EVID FOR:
M EVID POR:
N REQUIRED:

Comments

2 wecvsvcorcrcccns

TIME: 12406 VIS: TYPE: v-coded

VEOM: 2 DURATION: 351 VERBAL>: write

MO ¢ MBANOM WOUSE> s

DC: 1S B BVID FOR: O: 082 (g t h-criterioan)
V BVID POR: O: 082 (g t h iterion)
M EVID POR:
M REQUIRED:

Comments:

Y,

TIME: 12409 vis: TYPE: v-coded

VNUM: 3 DURATION: 2210 VERBAL>: write

MIOM MBANUM MOUSR> s

DC: 21 B EVID POR: O: 082 (g ate h-criterion)
V BVID FOR: O: 082 (g t h-criterion)
M RVID FOR:
M REQUIRED:

2-6(b) Example tabular display of model trace to data
comparison.

T Mouse actions Window actions Verbal ST # Mtype MDC DC Soar trace
C L e demmrcccccccneen $emmcnnne bopmpmmmna L e *
[] I believe v 1 short
’ 0 Gt gl
1 P: pd (top-space)
2 8: &S

3 O: browse ()

4 =>G: gl9 (operator no-change)
H Ps p26 (browsing)

[8: 239 ((unk) (unk))
7

]

9

O: tind-appropriate-help

=>@: g43 (op {J no-ch)
P: p50 (find-appropriate-help
10 8: 259 ((unknowmn) (unknown))
11 0: define-search-criterion
12 =>3: g65 (operator no-change)
13 P: p72 (define-search-criterion)
14 8: 879 ((unknowm))
[write v v 15 15 O: generate-search-criterion ((write))
9 write v3 v 15
13 write v 4 v 1S
M(+x) (R of prog win) B4
mouse line to pointer
16 0: evaluate-search-criterion
17 O: define-evaluation-criterion
18 =>GQ: gl03 (operator no-change)
~-**-—emacs [SHAMO.S0AR]: example-types.spa A36 ManUp <H] (BPA) ~v<~TOp-=mevecccccccccvncancmnscnancan

Figure 2-6: Example displays for comparing the model’s predictions with the data.

Soar/MT - 21 December 1992

Measures of model to data comparison 35

they serve the identified measurement needs. This section ends with a summary of the most useful
measures.

2.4.1 Using criteria to develop a set of measurements

What are we trying to find out with these measures of models? Listing a set of criteria for each
measure is a way to answer that question. Table 2-4 displays the eight most important criteria that
have been put forward for desirable model measures. Taken together the criteria determine which
measures to use. So, what are the questions that are typically asked about the data and the model?
These can be grouped into five basic requirements discussed in order of importance. There appears to
be two general questions that people ask: How well does a given model fit a given set of data?, and
How can we tell if this is significant match? These questions will bas1cally be rejected in the following
sections and replaced with two others.

Table 2-4: The five major types of measures of model fit and the criteria supporting them.
(Criteria in {]’s are later rejected.)

1. Globally showing where the model mismatches.
o The analytic testing criterion. The measure should indicate where the model does not
fit the data (Grant, 1962).
2. Locally showing where the model mismatches.
¢ The inaccuracy criterion I. The measure should decrease for every false prediction (Grant, 1962).
* The accuracy criterion L. The measure should increase every time the model fits the data (Priest & Young, 1988).

* The inaccuracy criterion II. The measure should decrease each time the model does not fit
the data (Priest & Young, 1988).

o [The accuracy criterion I. The measure should increase for every correct rejection (Ritter, this thesis).]

3. Knowing how the model will perform in the future.

¢ The prediction criterion. The value of the measure obtained from the data sample should provide
an unbiased estimate of the value to be obtained from a larger sample (Priest & Young, 1988; Grant, 1962).

4. Representing the Fit vs. complexity tradeoff.

¢ The parsimony criterion. The measure should decrease for each additional
variant procedure added to the system to account for the data (Priest & Young, 1988).

5. Being persuasive.
o [The numeric value criterion. The measure should return a single number falling in a predetermined
range (Priest & Young, 1988).]

Globally showing in terms of the model where the predictions mismatch. In his seminal paper, Grant
(1962) notes that scientists are not really in the business of testing theories just to put a stamp of
approval on them, which is often presented as the questions of how well does the model match, and is
it significant? Scientists are more like a parachute maker who wants to make a better parachute. The
parachute maker tests parachutes to find out their weaknesses, and where to make them better. As
scientists conducting ongoing research “[the theoretical scientist] is not accepting or rejecting a
finished theory; he is in the long-term business of constructing better versions of the theory." Grant
calls this approach analytic testing, it is "designed to tell me as much as possible about the locus and
cause of any failure in order that I may improve my product.” Analytic testing is then computed to tell
where to improve the model, and not merely to provide a stamp of approval.

Usually the mismatches pointed out will be small errors, such as the order of performance of subtasks.
Sometimes they will be big errors, such as completely different approaches to tasks or whole
competencies not provided in the model. In either case we need to know the location and extent of
both sizes of mismatches, and a way to see any systematic patterns in the errors so that we can fix the

Soar/MT - 21 December 1992

36 ‘Testing process models with protocol data: Review of past work

model. Comparing the model with the data is thus two tasks, noting where the model is consonant
with the data, but more importantly, noting where it is not consonant and needs to be improved.

In striving to predict more of the data, process models become more falsifiable, generally considered a
good thing for a model. Popper (1959) argues that it is better to be falsifiable so that it can be more
easily discarded if it is wrong, as it will be. -What Popper should have meant, and what being
falsifiable means for us as theory builders and improvers, is that theories should be falsifiable so that
you can see where to improve them! Being falsifiable for us means not only that the predictions be
concrete, but that the model make many of them, and that they be as detailed as possible, even
including sequential information, so that where the model is wrong we can more easily and often tell
where we need to improve it (Newell, 1990, p. 14).

Least we forget though, we also need to be able to characterize where the model performs well, so that
we can know where to use it. In the parachute maker’s terms, we need to know what objects and at
what heights are the best places to use our parachute. Knowing the tasks where the model performs
well is also useful for focusing attention on and characterizing tasks where it performs poorly. Finally,
knowing where a model performs well will also be necessary for comparing the model with other
models. :

Locally showing where the model mismatches. In addition to global measures of how well the model
fits the data, a local description of where the model mismatches is necessary to implement local
improvements. This need not be a separate measure, but could be incorporated into a global measure if”
the global measure was sufficiently convenient.

The four accuracy and inaccuracy criteria essentially represent.the four measures in signal detection,
those of hits (subject matches model’s prediction), misses (subject action not predicted), false alarms
(model’s prediction not matched), and correct rejections (model and subject correspond on inaction).
These measures are not global measures of where to improve the model for they are only a count of
places that could be improved. Strict numerosity is not required, merely that the measure gets "better"
somehow for matches, and not only gets worse on mismatches, but points out where they occur.

Fit versus model complexity trade-off criteria. The final two criteria for measures are related to
parsimony. The first is that the measures take into account parsimony, how many degrees of freedom
were used to account for the data? Strictly speaking, this is not necessary for finding out where to
improve a model, but for knowing when to stop improving its fit to a given data set. Degrees of
freedom are normally reported separately (e.g., Chi-squared tests, T-tests, F-tests), and we will
encourage that here as well. How many variant procedures have been added to the system to account
for the data should be indicated, but other measures need not incorporate this directly.

Knowing how the model will perform in the future. Given this view of scientists as model builders
and users rather than as model certifiers, the other important criterion for measuring a model is "How
well does the model make predictions for the future?" This will be the main measure used for public
display.

Being persuasive. One of the problems that has plagued researchers in this area is that they want to be
able to persuade other scientists through their measures that their model fits the data well. This is a
real need, and has distorted the choice of measures. In the past, various statistics from experimental
psychology have been incorrectly applied in an attempt to do this by proving the models different from
chance or not different from the data. These were never convincing, and rightfully so for they are,
respectively, weak and incorrectly applied tests. The real need is to show how well the model will fit
other data, not how likely it was to fit the current data as well as it did.

The numeric value criterion put forward by Priest and Young (1988), that the measure should return a
single number falling within a predetermined range was to ensure that different micro-theories could
be ordered for a particular technique. And it expresses the desire to provide a stamp of approval that
Grant (1962) notes exists. This has to be rejected as an absolute requirement, for it assumes that

Soar/MT - 21 December 1992

Measures of model to data comparison 37

process model fits should be an ordinal number. And they cannot. Ordinal numbers cannot indicate
multiple places where a model needs to be improved. Rejecting this also frees us from trying to find a
way to combine all the accuracy and inaccuracy criteria into one measure.

If one was interested in incrementing a single numeric measure whenever the model fits the data,
strictly speaking, the measure must also be incremented when the subject does nothing and the model
does nothing as well. Correct rejections make sense when there are fixed items for responses, but it
makes less sense when modeling a continuous process. It would be a difficult problem to decide on a
reasonable method for enumerating all the places where the subject and model did nothing and to
increment a measure based on this. This criterion can be rejected because the requirement of only
needing to know where models mismatch frees the measure from including all the places where it does
match.

Summary of required measures. The ability to show where the model globally and locally mismatches,
and the ability to predict the quality of future performance based on where the model performs well are
the three most important measures. We would prefer a unified measure, but will have to use several to
cover the ground, particularly since different models can mismatch the data many different and subtle
ways. Using multiple measures is acceptable because there are many compatible ways to improve
something — we are not trying to put a stamp of approval on the model, where a single standardized
test would be preferable. These measures do not have to result in a single number, and the numeric
criteria of increasing the measure for every hit and so on, is taken loosely to mean to influence the
measure appropriately in each case.

Presenting the measures that are used to improve the model and one that is a measure of the degrees of
freedom in the model, if presented clearly, will hopefully convince others. These alone do not have to.
The analyst also has the predictive power to report (which has been computed as the analysis has gone
along), or to take home and use in applications that may also prove the model.

2.4.2 Description of measurement inputs

This subsection describes the possible inputs to the measures, including the two information streams,
and the types of results of comparisons on the data level.

The two traces. As diagrammed in Figure 2-2, when a process model is run, it generates a trace of its
external task actions and internal states and operators. These can be labelled M, through M Each M
is a trace of model actions on the appropriate level. It can be the rules that fire, or workmg memory
elements, operator applications, or knowledge that has been applied. The choice depends on the theory
level committed to and on the level of subject behavior available. If the model is based on rules rather
than operators, then the trace could also include or consist solely of rule firings. In Soar models in
general, and particularly the ones examined here, it is operator applications. Each model action has a
simulation time associated with it. The model stream will include a fixed number of token types,
specified ahead of time as part of the model.

On the other information stream, the subject generates a series of actions, S; through S,. Each action
should have a time stamp (in seconds or ms) associated with it. Not having a time stamp will preclude
some of the analyses. As they are sequentially ordered data, they are a protocol. Different modalities,
such as verbal utterances and eye movements, each represents a different information stream, but order
across modalities is preserved. These information streams may contain an essentially unlimited
number of different types of words. .

The measures will be computed after the subject’s actions (S, to S,) are interpreted and aligned with
respect to the model’s predictions, (M, to M,). As a simplifying assumption, each correspondence
will be a full one; partial matches on the segment level will not be allowed. Measures may take into
account muitiple episodes for a subject, or multiple subjects, but the emphasis will be on fitting a
single episode. Each measure or representation must represent each of the types of matches shown in

Soar/MT - 21 December 1992

38 Testing process models with protocol data: Review of past work

Table 2-5.

Table 2-5: Types of correspondences between the model’s predictions and the data

1. Uncodable subject action. There may exist subject utterances too short to code or outside
of the model being tested ("Hmm", "nice day"). If they are clearly outside the model, the
analyst may wish to discard them from later analysis. Sometimes it will be useful to
carry them along as comments because they serve as way posts, or they may be found to
be data with respect to a more complete model. Measures and displays should be able to
handle them as null points.

2. Uncodable model action. There may exist objects in the model’s trace that represent
internal state and operations. Not all model actions can or will be matched in a verbal
protocol. Measures and displays should be able be able to handle these too as null points.

3. Simple hit. A subject’s action and a model’s action correspond one-to-one.

4. Multiple subject action hit. A single action in the trace may match multiple subject
actions. This could be caused by a high level operator in the trace that represents actions
larger than a typical segment, or else takes multiple descriptions or matches data in
multiple modalities ("I'm pressing the space bar" and the keystroke action <space-bar>).

5. Multiple model action hit. A single subject action may correspond to multiple actions in
the model. This is possible if the model performs the task on a finer level of detail than
the data provides, or if the segment is incomectly segmented. The analyst should
consider splitting the segment when this occurs.

6. Miss. The subject action is not matched by a corresponding model action.

7. False alarm. The model produces an action that the subject does not perform. Overt task
actions represent the most egregious example of this, and must be penalized.
Unsupported internal actions of the model should not be penalized, but must be
supported some other way. This can be done through appeals to necessity, or aggregate
data. It may also be the case that portions of the model cannot be directly supported, but
are required by the architecture.

8. Crossed in time. The model and subject actions would match, but are performed out of
order with respect to other actions within the same modality, or across modalities.
Actions matched out of order between the two streams will pose a dilemma of how to
score them. A strict position is possible, that of only allowing monotonically increasing
matches within a single information stream. This will be assumed within each behavior
stream of a subject. Task actions, for example, clearly have an important ordering to
themselves. Ericsson and Simon’s (1984) theory of verbal protocol production asserts
that verbal utterances are produced in the order that they enter working memory, and we
will assume this for other protocols that report on internal state as well. This
sequentiality matching requirement cannot be applied between multiple information
streams until it can be supported theoretically or empirically.

When the model does not match the data. -Process models will fail, they will make predictions that are
not supported, and the subject will do things that the model did not predict. There will be subjects that
the model cannot be said to model at all. That this will happen has been noted since their first use
(Newell & Simon, 1972, p. 197). Itis not the end of the world. No model gets all the data all of the
time. - Not getting verbal utterances (categorical data) matched may seem worse, but that is only
because it does not look like the noise in numeric measures that we are used to seeing. '

Soar/MT - 21 December 1992

Measures of model to data comparison 39

Table 2-6 notes the several approaches that have been used to deal with mismatches. Which approach
to use will depend on the desired result of the analysis and the tractability of the model and subject.
One approach adds new requirements to the modeling tools, and one suggests a useful constraint for
the subject’s experimental situation. A combination will often be required. It may be appropriate to
minimizing the effect of mismatches in different areas in different ways. For example, the
experimenter may choose a novel task domain in order to keep the effect of previous knowledge low,
so that the mismatches are caused solely by the model in the area of interest, say problem solving.

Table 2-6: Ways to deal with mismatches
¢ Avoid mismatches (if you can).
¢ Reset the model: Conditional Prediction.
¢ Reset the subject.
e Reset the data.
® Reset the interpretatiqn assumptions.

¢ Do nothing.

Avoid this (if you can). The cleanest and most desirable way to deal with mismatches is to avoid them
(and this is the way your mother would tell you do deal with this, at least mine would).

e Choose regular task domains, where a model is available and it already predicts that the
subject will be well behaved or driven by the task. The tasks must also be those where the
subject’s behavior does not depend on previously learned knowledge invisible to you. The
common choice of novel problem solving domains reflects this constraint (e.g., the Tower
of Hanoi). The drawback of this approach is that it encourages the models to stay close to
home, to not attempt to model the unmodeled.

¢ Do small tasks at a time. By defining the starting state for the subject more often through
the task definition, it is intrinsically easier synchronize subject’s actions with the model’s
predictions, and it provides a greater number of tests of the predictions (although shorter
sequences are tested). For example, studies of subtraction problems have benefited from
this data set feature.

¢ Provide a good simulation of the environment. Providing a realistic model of the
environment will allow model to come back on track. If the environment provides fixed
responses to any model action (e.g., on the 1st mouse action, display the first menu), the
model must match the subject to go on with comparison (Kieras, personal communication,
May 1992).

* Repair the model. The mismatch often tells you something; so go and fix the model so it
mismatches no more.

* Reexamine your interpretation of the model and its predictions if its predictions are not
automatically derived. The interpretation of the data with respect to the predictions should
also be examined.

Reset the model: Conditional Prediction. The most common approach for dealing with mismatches that
start truly divergent behavior is to perform condition prediction (Feldman, 1962). Upon divergence in
behavior, condition prediction specifies that the model’s prediction that went awry gets noted as a
mistake, and then the model gets reset to the state of the subject at that point, and the model makes a
prediction from that point. The summary measures must then include the number of mismatches as a
reported result. The errors a model makes result from either an incorrect model, or an incorrect

Soar/MT - 21 December 1992

40 Testing process models with protocol data; Review of past work

specification of the initial state. Conditional prediction allows these two types of errors to be treated
separately (it does assume that the subject’s state can be determined so that the model can be set to it).
This approach has been used quite often in teaching programs that learn (Samual, 1959) and testing
cognitive models (Feldman, 1962; Newell, 1972; Newell & Simon, 1961; Newell & Simon, 1972, Ch.
12; Newell, Shaw, & Simon, 1959; Samuel, 1959; Young, 1973).

This approach is theoretically justified. The actions mismatching after the first mismatch are
consistent with it, given a different starting state (the state that results from the subject and model
applying different operators), the subject and model will often end up in a different state, and choose
different paths after that. There will be areas where this assumption is not desirable, where the length
of the sequence of correct predictions is important, but this work does not take up that assumption.
This makes the most sense when the model provides a set of equally likely actions or a sét of actions
by likelihood (Anderson, Conrad, & Corbett, 1989).

As noted by Feldman (1962), conditional prediction has many advantages: (a) It ensures that the errors
at any point are caused by new mistakes rather than carrying on from old ones. (b) By reconsidering
after each mismatch, conditional predictions provides a framework for testing each component of the
model. By resetting the model at mismatched intermediate states, later parts of the model can be tested
even if the initial performance is not perfected yet. (c) By removing the number of errors caused by
previous errors, the model’s predictions can be tested more often.

In a production system model, the model can simply be reset (e.g., Feldman, 1962; Newell & Simon,
1972), or it can be modified by inserting simple productions that correspond to each divergence (e.g.,
“if cycle = 3 then set operator to be add-3"). If the mismatches are truly fixed points of departure, and
are represented as such, they will never be used again, and it is not worth attempting to generalize
them. If several mismatches appear similar, it may be worth attempting to generalize them, providing
a real fix if the problem occurs across subjects. (e.g., "if environment-attribute = valuel then set
operator to be add-3"). This is the process that ACM (Langley & Ohlsson, 1989) and Cirrus (Kowalski
& VanLehn, 1988; VanLehn & Garlick, 1987) attempt to automate. If the mismatches are the result of
individual differences between subjects, then the system becomes a basic-model plus an individual
difference modification (Miwa & Simon, 1992). One cannot necessarily tell when the attempted fixes
are inserted which they will turn out to be. That they are correctly general can only be found out with
more data, particularly, data representing the same situation.

Reset the subject. Given a suitable domain and social environment, the subject can be reset instead of
the model. This ensures that the subject does not stray far from model. This is not generally
applicable because it requires special domains where a task environment has license to reset the
subject’s state (e.g., tutoring). Therefore it is mostly used for closed analysis with well developed
models. Anderson and his group, for example, do this in their tutors. The subjects are actually taught
by resetting them.

Reset the data. Sometimes the mismatch will be so gross, and the model so persuasive, that data itself
must be questioned. In areas outside psychology, doing this can be quite common (Heise, 1987; Heise,
1989). There are a few examples showing that this is possible (e.g., Feldman, 1962). And in the
analyses reported in Chapter 7 we found two transcription errors and one interpretation error based on
the model’s predictions. They were noted as wrong, and reset. While it is possible, it must be applied
selectively and carefully. Over-belief in the theory is a mark of zealots, and a theory can end up
untested.

Reset the interpretation assumptions. In testing the predictions of any theory, assumptions are made-
about the mapping between the theory’s predictions and the real world. In this relatively young area,
how to map the predictions of cognitive actions to real world events such as verbal protocols and hand
movements, is not yet well developed.

Do nothing. There will be areas where the model will not match, and the final approach is not to do
anything about the mismatch except note it, and continue the analysis from the n+/' segment

Soar/MT - 21 December 1992

Measures of model to data comparison 41

(Ohlsson, 1990). This is, of course, the least desirable approach. There are two types of unmatched
data that could be ignored. The most natural to ignore are actions that are outside of the scope of the
model’s coverage. Nose scratching, laughter, and meta-comments should not count against the model,
but the amount of this noise should be included in summaries. The other type of unmatched data are
subject behaviors that should be predicted by the model. These are more dangerous to ignore. The
sequential and dependent nature of the actions will lead this approach to very poor performance,
particularly if it is used exclusively. This is done for whole subjects when their data are not used
because it is "too chaotic to analyze."

A note on resetting the model. Each of the measures that will be discussed are based on the raw
comparison between the model’s actions and the subject’s actions. The model and the subject will
mismatch, that is what the measures are there to measure. However, if the two traces completely
diverge, the comparison stops being useful. Without local adjustments to reset the model or tutoring
instructions to reset the subject to bring them back into correspondence, all of the measures will
provide less information on how to improve the model. The model will start the next action with a
different initial state than the subject does. After a divergence, the model ends up being tested with
less of the data because the model’s actions are based on a different set of initial conditions after the
time of the divergence than the subject’s are based on. All the measures, but for measures of
parsimony, will assume that the model can be resynchronized with the data when needed.

Initial measures. In addition to the aligned traces, there are several simple building blocks based on
the model’s actions or the subject’s actions that are used by more elaborate measures. The measures of
the subject’s data include the number of segments, the length of the protocol in words and seconds, and
thus the word rate, as a check on the quality of the protocol. Similar measures are required from the
model, including the number of model actions, a measure of the internal time of the model, such as the
number of production firings, operator applications, or other constructs. Taken together, these two sets
of measures show the temporal density of actions for support. Additionally, analyses of parsimony
will require the number of rules or separable components in the model. -

2.4.3 Non-numeric descriptive measures

The first set of measures examined are those that provide direct, non-numeric descriptions of the
model’s performance with respect to the data. They do not provide predictions of the model’s future
performance, but are used to tell globally where the model mismatches the data and could be
improved.

Informal qualitative comparisons. The test can be performed in several ways. The most
straightforward measure that has been used is to present the model’s predictions and the subject’s
actions together but not necessarily aligned (Feldman, 1962; Newell & Simon, 1961). The analyst asks
himself (or others), Do the two information streams appear to be different? When it was first
proposed, it was put forward as a type of Turing (1956) test.!

After the subject trace and model trace have been aligned, it is possible to simply display the
correspondences in a table or diagram. This comparison also has some bearing on the utility of each
operator or rule that generates the actions, but this is limited by the viewer’s memory.

The simplest way to present the correspondences is to just present the two information streams aligned
side-by-side. It is often used by analysts in their work (e.g., Appendix I of Chapter 7 in this document,
Appendix 6.1 in Newell and Simon (1972), and Appendix B of Young, 1973). Portions of the
alignment are sometimes used when reporting results (Young & O’Shea, 1981). The model’s trace is
often compared to protocols in a simple, informal way (e.g., "This trace is remarkably similar to

1Tt actually is the popularized form and name of the Turing test. In the original Imitation Game, Turing calls for the test to
be between a man imitating a women and a machine imitating a woman.

Soar/MT - 21 December 1992

42 Testing process models with protocol data: Review of past work

protocol D", Luger, 1981, p. 70). If the comparison is done on a high enough level, all the
correspondences can be presented (Johnson, et al., 1981). This level of detail is necessary for local
_improvements. By presenting a sufficient number of rows together, some context and flavor of the
match can be obtained.

Process models are not normally implemented to the level of producing verbal output, but in an
interesting extension in the direction of the popularized Turing test, Ohlsson (1980) added to his model
of linear syllogisms the capability of producing talk aloud trace. The model’s output appeared nearly
human when compared side by side with a subject’s verbal utterances. Seeing them together and being
able to note the similarities made the model more believable. In this case, it was interesting to note
how mechanistic the subject’s speech was.

This measure weakly supports showing where the model can be improved. Where model actions were
and were not matched can be found through visual search, but a more global view is often needed of
which model actions or knowledge structures were matched and how often they were matched.

Informal comparisons are most often applied by reporting aggregate descriptions of the subjects’ and
model’s qualitative (e.g., Larkin & Simon, 1981, Simon & Simon, 1978) or quantitative (e.g.,
Carpenter, Just, & Shell, 1990) behaviors. No formal comparison is made, the two behaviors are just
described, and the reader is left to judge on their own the significance of the match.

This can be a useful measure, because in addition to being able to test that the model can perform the
task on a basic level, it also brings to bear all kinds of unspoken constraints on the task performance. It
almost always can tell an observer something about where the model could be improved, particularly
the global ways in which the model does not fit the data. In a certain sense, it is used informally by all
researchers when examining a model’s initial performance. It will indicate global and local places
where the model mismatches. It will probably not provide a reliable measure of future applicability. If
being fooled as part of a Turing test convinces, then it is also one way to be persuasive.

While this measure does not commit any errors, this type of Turing test fails to be complete enough to
serve as the only measure of a model. Knowing more than it can tell about the fit is generally required.
It also fails on its own to highlight where the model fails to match; it requires an intelligent observer.
The observer also has weaknesses, and will not be able to bring all the constraints in the data to bear.
Finally, it fails to make predictions about how well the model will perform in other situations.

Contingency tables. The simplest way to summarize the comparison is to aggregate the
correspondences by model action in a table. The model actions that would match subject’s actions and
the actions that actually occurred in the model can be compared with an N-way contingency tables
(e.g.. Newell & Simon, 72, Figure 6.8). In this type of table, the row headings are rules or operators
that would match the subject’s actions, that is, could fire, and the column headings are rules that did
fire. The firings and possible firings are totaled up from each segment, and the totals placed as counts
in each cell. This is a useful diagnostic aid. Cell counts on the diagonal indicate that model
components could and did match the subjects behaviors. Otherwise the cell counts represent misses
for the rows and false alarms for the operator represented by the column. The counts can be
aggregated over subjects (Larkin, 1981; Larkin, et al., 1980) or over episodes of a single subject
(Newell & Simon, 1972).

They are useful diagnostic aids because they start to summarize the model’s behavior with respect to
the subject’s, and start to suggest which parts of the model could be improved. It major drawback has
been that it is difficult to compute by hand. It also does not directly indicate where the mismatches

occurred. It would be more useful if the comparisons making up the cell counts were accessible as a
set.

Visual displays of the correspondences. There are two particularly interesting displays for presenting
the match between the model and data. This type of analysis (without a graphical display) is also
supported in some knowledge acquisition tools (e.g., Kriton: Diederich et al., 1987; Keats: Motta et al.,

Soar/MT - 21 December 1992

Measures of model to data comparison 43

1988). They allow the analyst to manually (or automatically) indicate by showing for each knowledge
structure the matching subject segments. No cumulative measures or complete listings are provided
however.

Figure 2-7 shows the first display. Peck and John (1992) created a display that graphically depicts the
correspondences between the model’s structure and predictions, and the subject’s actions. It is an
operator application support graph that depicts the operator application order of a process model and a
visual description of which actions of the model were successfully matched by the data, and which
parts are either unused or are not supported by the present data set. This diagram helps the analyst
answer several questions: What actions of the model were supported? At what portions of the episodes
do these appear? What proportion of the time does the subject give verbal support when they could?
If there is an order to where the model does and does not fit, this diagram may be able to suggest where
it is occurring, and what model elements might be involved.

This graph has two shortcomings. The largest shortcoming by far is that it currently must be generated
by hand for each episode and each time the model changes. This makes it too expensive to use
routinely. The other problem is that while it tells us directly where the model is wrong, that is, what
protocol segments are not predicted by the model, it could indicate more clearly how the model is
wrong.

Figure 2-8 shows the second interesting display. In this display, Sakoe and Chiba (1978) present the
match between the predictions of a speech recognition algorithm and the actual speech. The time
course of the correspondence is given as a warping function, which can be used to directly compare the
time course of the subject and the time course of the model. This graph is used to compare sequential,
time dependent predictions, except they are working in a model of simple speech production instead of
a cognitive model. The time scales used here are relatively smaller, 100s of milliseconds, than most of
cognitive models that operate in the 10 to 100 s domain. This will be used to build a display in a later
chapter. :

This graph is related to one by Just and Carpenter (1992, p. 140) where they compare the time course
of the match between the cognitive model of reading versus the subject’s actions. The difference is
that they put each time course on different graphs, which makes the comparison more difficult.

Summary. The general performance of a process model must be described in order for it to be
understood, so the qualitative descriptions that make up the popularized Turing Test must be
performed for every model, while both building and testing the model, and when describing it to
others. This test requires a skilled observer, so it will be the last measure to be automated, when we
can create machines not only intelligent enough to pass the Turing Test, but to judge others.

Graphic displays of correspondences are necessary and useful, as well as the summary tables showing
how much of the model is used and matched by the data. They constitute theoretical predictions of the
importance of the various model parts.

2.4.4 Simple numeric measures

Simple descriptive measures of the model’s correspondence to the data can be computed. They are
often the first step in an analysis. They are useful for measuring local improvements while developing
the model, and as simple summaries of more detailed comparisons. The number of subject actions
matched to model actions can be stated in signal detection terms as noted earlier. Hits are places
where the model and the subject perform the same action; misses are situations where the model does
not perform an action that the subject performs, and false alarms are actions that the model performs
that the subject does not. These simple measures are often reported in model descriptions, They have
included the number of actions to do the task for both subject and model (Simon & Reed, 1976), the
percentage of subject actions matched (e.g., Larkin, et al., 1980; Larkin, 1981, Young & O’Shea,
1981), and the percentage of model actions matched (Larkin, 1981; Larkin, et al., 1980; Peck & John,
1992; Young & O’Shea, 1981).

Soar/MT - 21 December 1992

Testing process models with protocol data: Review of past work

Macintosh skillspace
method and motor
operators

Geuneric browsing operators

uo3INg-YOITO-STANCT "

uo33nd=¥3¥t3

uol3ng-agR2.I2Y..
uol3ngq~88algd

SINOW-—-BAOW -

CEENSPEMERT CUL i

UOTIS3TIO-YdIeas-AJ TPOR"
UOTISITIO-YOIRa 8- bURY:
MOPUTM-JUBIAND - 2BURYD

MOPUTM-JUSIIND-3VNTRAT

I%93-dToY-Uo-aNd0d..cocrirnrnenne,

x93 -dray-s3entex
wa3T- NUSW-888ODY"
MOpUTM-JUSIIND-afuRy)

MOPUTM- JUSIAND - DICNTRAT
MOPUTM- JUSIAND-UO-8ND03
UOTIS3TIO-pUTS

d1sy-103-yoIeag-
UOTAB] TID-UOTIRNTRAS-IIRNTRAT™
UOTISITID-UOTIVATRAS-3IVIBUSY)

UOTIDITAD-UOT IONTVAS-BU

START
oP
BROWSER-

Key

Il(hnnmxappﬁauhnobsuvedh\pnumd

lll&nuxnlpnwkkseﬁduweﬁxﬂﬂsundmznmbh(mnmﬁxpnxﬁdzdhynndd

ﬁgiNoevidencefoundinlhepmw-colt'otthi.v.opeu'al.orpre(licmedI:ymodel

Figure 4. Representation of fit between observed behavior during the "write” browsing behavior excerpt

(see transcription in Figure 2) and behavior predicted by the Browser-Soar model

Example operator application support graph, from Peck and John, 1992.

Figure 2-7

Soar/MT - 21 December 1992

Measures of model to data comparison 45

by
A g (1D
Warping function _,""

j ',' C= (‘uj)
® e
C
. , / cq
2 9 —e .
3
b1 L = (1.1)
a, L .y ay
—~
A

Figure 2-8: Example match over time display, taken from Sakoe and Chiba (1978).

More complex measures have been built from these building blocks in an attempt to combine them into
a better summary measure. These measures include the error fit measure (fit = (Hits - FA)/(number of
data points)) (Priest & Young, 1988; Young & O’Shea, 1981); and the micro-theory evaluation
measure (u = (Hits - number of variant procedures)/(number of data points)) (Priest & Young, 1988).
The raw numbers could also be combined in any two-way table of association that allows a missing
cell, such as Signal Detection Theory (Swets, 1973; Swets, 1986) (more complete lists have been put
together by Nelson (1984) and Reynolds, (1984)).

Simple aggregates and combinations of the match types are easy to compute. They often serve as
useful summaries of the fit, and may be persuasive because they can be directly interpreted. If a
general evaluation of the model is desired, all the component measures should be reported. Combining
them requires additional assumptions about what the measure will be used for, and the relative costs of
each type. Combinations cannot serve as measures for improving the model because they do not
indicate where to improve the model, only a global measure of its correspondence. The raw

components of these measures tell the analyst more about where to improve the model than their
combination.

Any of the simple measure of the total numbers and percentages of hits, misses, and false alarms are
useful measures for an analyst, it does not appear to matter which one is used, as long as it is readily
available and helps indicate where to improve the model. By aiding others in understanding the global
quality of the fit, they can also add to the persuasiveness, and should be reported when available. They
must be augmented with other measures because on their own they cannot describe where to improve
the model or predict how it will do in the future.

Soar/MT - 21 December 1992

46 Testing process models with protocol data: Review of past work

2.4.5 Measures of component utility

Measures of rule or component utility are used for measuring how much each additional component of
the model adds to the model’s performance. These measures are particularly designed to answer the
question of the marginal utility of the last piece added. Did adding the last rule make the model fit
much better or is it over-fitting the data, picking up just one action? This measure tells the analyst
when to stop improving the model based solely on the current set of data.

For process models based on production systems, the most natural measure of the degrees of freedom
in the model is the number of rules. In the extreme, it takes a single rule to do each action, and rules
could be made for each data point. If fewer rules are required, the model would have less degrees of
freedom. Nearly all of the measures included have used rules as their unit of model size, so we will
just speak about rules. The only other apparent possibility is number of clauses, which would correlate
with the number of rules, and their specificity: more specific rules would have more clauses. Different
people may implement essentially the same model using different numbers of productions. These
productions will also vary in generality. The number of productions has to be taken then as an upper
bound on the degrees of freedom used (i.e., one might be able to create the model with less rules, but
need not write more).

Simple counts. The raw number of firings per rule or instantiations per operator, without comparison
to the data, is also worth using. As the number of applications per construct goes up, the importance of
the rule presumably increases (e.g., Newell & Simon, 1972, Figure 7.29). As a measure of the model
alone, it will help the analyst understand the model for later modification, and pointing out rules that
have not fired and are perhaps incorrect. It can also be considered as a possible degrees of freedom
measure.

Jackknife measures. The most difficult approach is to do a jackknife analysis based on the rules. In
this analysis, each rule is taken out individually, the model is run and matched to the data, and a
goodness of fit measure is computed, such as number of subject actions matched. By averaging the
result and computing the sample variance, the difference in percentage of fit for each rule could be
translated into the amount of variance that it accounts for. The significance of any rule could be tested
with a plain F-test. Doing this for a process model with hundreds of rules (e.g., Browser-Soar) would
be prohibitively expensive, even with tools to automatically do the task. A variant has been used on
smaller models generating fixed responses, and they help illustrate the contribution of each sub-model
(Young & O’Shea, 1981).

The cumulative hit curve. The cumulative hit curve (e.g., Newell & Simon, 1972, Figure 6.10;
Ohlsson, 1980, Figure 6:8; Priest & Young, 1988) is a more specialized graph than a listing of how
many times each model component was matched by data. It too depicts the number of data segments
accounted for by each rule (or sets of rules), but the rules are sorted in decreasing order of data
covered. Figure 2-9a depicts an example diagram. The curve will only reach 100% if all of the data
are covered. Generating this curve simply requires keeping a list of rules and being able to aggregate
the number of times they are supported by the data. It visually depicts the contribution each rule
makes to fitting the data.

The diagram could be made better by more directly showing the measure this graph is actually
designed to show, the incremental rule utility. In Figure 2-9a, computing the contribution of a rule
requires a relative judgement between two unknown lines. Figure 2-9b shows a graph that shows the
incremental amounts as an absolute measurement between a known line (the baseline) and top of a
second bar for each rule.

Summary. Providing rule (or operator) counts, firing rates and the frequency of their support in the
protocols appear to be useful measures. In addition to providing measures of the utility of the rules,
the measures of fit can also serve as debugging aids for process models; rules that don’t fire at all, or
that fire all the time, are probably wrong in some way and need to be changed. A graphical display of
what they match in the protocol is a way of visually displaying this information in a clearer form.

Soar/MT - 21 December 1992

Measures of model to data comparison 47

g 5 g 1
8 8-
g z
13 {3
»]
B 2
i §
.. .
i {
& 2
[I
o - o
Ruset Ruded Rutes Rule2 Ruded Rulet Auled Rutes Fude2 Ruled
fuies in decreasing order of hite thd;amuﬁdhb

Figure 2-9: (a) Example cumulative hit curve (right). (b) Redesigned cumulative hit
curve (left).

These measures have much in common with model based visual displays of the match, and summaries
might better start there.

2.4.6 Inferential measures

A common form of persuasion in experimental psychology is reporting for effects the significance
levels from inferential statistics. So researchers often looked there first for measures of the quality of
model fit. These measures were designed to be a simple test of simple models, for example, that the
numbers making up two means were sampled from different distributions. As process models are
extreme hypotheses, inferential statistics do not apply. However, the measures that are computed for
use in inferential statistics may prove helpful for highlighting where the model could be improved.
There is also a general inferential statistic, the variance accounted for, that we can use to make
predictions of future performance given multiple subjects.

Is the match better than chance? Examining the general questions of statistical significance first will
simplify the remaining discussion. Can we tell if this model is significant?, that is, does it fit better
than one might predict would happen by chance? Process models make a large number of predictions,
that the multiple sequential responses of the model will match the multipie responses in the data. We
are thus testing an extreme hypothesis. What chance is, in this case, is an impossibly rare event. The
model will always (or nearly always) match many more tokens in the token sequence than chance
would predict (Grant, 1962; Gregg & Simon, 1967). On the other hand, the models will often make
predictions that turn out to be wrong, indicating that the model and data are distinctly different, and
making the model’s probability of being correct be zero. When sampling from different, overlapping
distributions this result is not possible. So the answer to this question tells us little, and we must reject
the measures of the probability of a model being correct. We can however, increase our belief that the
model is more or less correct (the probability of the model) after it has been applied to more data, and
the ability to move this informal belief, being persuasion, is one of the criteria for evaluating measures.

Soar/MT - 21 December 1992

43 Testing process models with protocol data: Review of past work

Do the model and subject appear not different? Perhaps the question of statistical significance can be
redeemed by posing the opposite statistical question of does the model appear to be different from the
subject. The two information streams could be compared to see if they are different, and an inferential
measure used to determine if the difference is significant. We must dismiss this question too as
irrelevant. Failing to reject a hypothesis is a weak claim, and is not a proof of similarity. The model
will always (or nearly always will) be different than the behavior in some sense. This will be
particularly true given a good data and large amounts of it. Poor experiments with small amounts of
noisy data will be unfairly rewarded (this is why the data quality measure was first introduced). Most
importantly though, the probability measures provided by the inferential measure does not tell us
where to improve the model, nor do they tell how well the model will perform in the future. While we
will not find these tests in themselves a useful measure, some of themn may highlight useful things
about the comparison in any case. The only use they have, is noting that the model is close to
performing like the subject (but how close cannot be told).

Frequencies and transition rates. Two measures have been used to test the frequencies of action types
and their transition rates. The Chi-squared measure has been misused in at least two different ways as
an inferential statistic, but it could provide useful information. The most natural way to misapply it is
to test whether the aggregate measures of the model’s action types are different than the subject’s.
This would be an attempt to show that they are do not use the operators in different amounts (or
similarly, a different number of items, using an F-test (Karat, 1968)). By accepting the null hypothesis
it attempts to prove that they are the same. This measure has also been used to prove that the
distribution of action types for a process model "could not have occurred by chance" (e.g., Koedinger
& Anderson, 1990, p. 530). The second test makes more sense statistically, but doesn’t tell us
anything about the model, presumably, the model would not randomly apply its actions, but that is the
point of a process model as opposed to a Markov model.

While it fails to be able to prove the model correct, the Chi-squared measure can be used to improve it.
The analyst can examine the cell differences between subject and model, choosing to pay attention to
the action types that are used in different proportions. This is not a complete measure, but it provides a
summary, which is always helpful.

Sequential lag analysis (SLA) (Gottman & Roy, 1990) is also often used as a summary statistic that is
useful for building process models as a way to find the major transitions or behavior loops. It can,
however, be correctly used in a way similar to Chi-squared. It can note where the transition rates are
different between the model and subject, and suggest areas of sequential behavior of the model to
improve. It could be misused in ways similar to Chi-squared to test and improve process theories.

Variance accounted for. An inferential measure that can be appropriately applied is testing the
significance of the correlation between the subject’s actions and the model’s actions (Grant, 1962).
Tests are available for computing the significance of most types of correlations. Testing correlation
rewards good theories by making their fit be significant. Significance is positively related to model
quality, data quality, and data quantity. The partial measures contributing to the correlation that are
low will indicate where the model could be improved. They will not indicate individual actions, but a
category type, providing a global indication of where to improve the model. This is sometimes useful.
As correlation can also be expressed as the variance accounted for by the theory, it makes predictions
of how well future models will fit.

There are multiple features of a model that can be tested to see that they correlate with the subject’s
behaviors. Significance tests have been applied to correlations of reaction times on individual item
tasks (Card, et al., 1983; John, 1988), to incremental reaction times (e.g., Just & Thibadeau, 1984), and
to correlations of state transitions (e.g., Simon & Reed, 1976). There are special regressions available
to account for the dependency of sequential measurements (Kadane, Larkin, & Mayer, 1981; Larkin,
Mayer, & Kadane, 1986). Cautious modelers might test multiple facets of the model.

Individual subject and model differences. Given multiple subjects or multiple episodes per subject,
standard statistical tests can be properly applied to the distribution of measures of fit are being sampled

Soar/MT - 21 December 1992

Measures of model to data comparison 49

from a presumably normal distribution. These measures would have to be numeric, and would include
the variance accounted for and percentage of the subject’s actions predicted, Standard tests (e.g., T-
tests) are available to tell if a subject or model was matched significantly more poorly than others.
Doing this would be useful to indicate which data set to pay attention to first, but not where in that data
set. Visual inspection of the data might also be enough to tell which subject to start with.

In cases where the model is pliable enough to be over-fit, it may be useful to fit the model to one-half
of the subjects, and then compare the model’s fit to the second half of the data. Non-numeric measures
would point out the differences in behavior and in fit between the two halves. In addition to telling
more about the model, it may be especially persuasive to other scientists, who could recognize this
schema from linear regression.

The differences in fit between two models could be tested in a statistical sense. The test results cannot
be accepted as directly as they are when testing linear models however. The question of parsimony
and other constraints on the models (if they differ) could greatly influence the final choice. How to
weight the correspondence of a model to aggregate data like "human memory shows priming" is
unclear.

Summary. Some inferential statistics have interesting submeasures that could be used to highlight
where the match could be improved. But they must be used with caution. Checking to see if the
model does not appear to be different from the subject may be useful to the analyst as an initial sanity
check. Itis not even a condition that all models must or can meet. In reporting this number as a result,
it is accepting the null hypothesis, which is clearly wrong.

The model can be checked for significance with inferential statistics by testing the correlation between
the subject’s and the model’s performance, through such measures as processing time, state selection,
and strategy choices. As a stamp of approval, it is a weak test, most models of some merit will pass it.
It is a good measure however, because it both provides help in finding where to improve the model,
and given several subjects and a numeric measure of fit, they can give you estimates of how well, in
numeric terms, the model will fit in the future. It will also be seen as persuasive.

2.4.7 A unified view: Criterion based model evaluation

A unified approach is also possible towards testing process models. What is actually desired is a
model that is consistent with all that is known about human behavior, not merely the results of a small
task, or a single subject’s actual performance (Newell, 1991). The analyst and their audience need to
know how well the model fits the data and what data it fits so that the model can be improved by
adding more regularities and so that it can be compared with competing models, including variants of
itself. When testing process models this suggests that in addition to fitting sequential data, it can be
further constrained by having the model match aggregate data from other experiments. I will label this
listing of the regularities accounted for as criterion-based model evaluation. In addition to matching
the sequential predictions of a model to data, criterion-based model evaluation compares the model’s
performance with additional aggregate measures that would also apply to the task being modeled.

In criterion based model evaluation the data regularities and the model’s correspondence are laid out in
a listing or table. Figure 2-10 shows the type of format of regularities and the model’s match for an
example set of regularities modeled by FOKIBOFIT-Soar (Ritter, 1989) in the area of feeling of
knowing for arithmetic problems. All kinds of regularities are possibilities, nominal performance,
error rates and types, and of course the sequential behavior of particular subjects. Table 2-7 shows the
five types of regularities that models have been asked to account for. The larger the number of
regularities, the better. Various levels of fit, such as qualitative, quantitative, and not-at-all are allowed
to describe the quality of fit. How well the model fits each regularity is included in the discussion of
the quality of the model.

This approach is not new, but is merely being noted as an actual testing method that is particularly
useful. Soar modelers often start with a list of criterion to model, and provide a scorecard of their

Soar/MT - 21 December 1992

50 Testing process models with protocol data: Review of past work

model’s performance. For example, John (1988) provided a list of 29 regularities modeled by her
typing model, Polk (1992) provides a list of 14 regularities accounted for by his syllogism model, and
Newell’s (1990) book is filled with lists of regularities that a unified theory of cognition must account
for (e.g., Figures 1-7 and 5-14).

The FOK 8 — Model #6
Level of

Qualitative

Match

XXXX L Strategy choice accuracy is pretty good.

XXXX 2 Only operator affects choice time.

X 3. Power law learning for answer time.

X 4. Power law strategy change.

XXXX 5. Linear relationship between learning and strategy choice.

XXXX 6. Frequency of the co-occurrence of the operands
best predictor of strategy choice.

— 7. Abrupt changes in multiplication times.

— 8. Retrieving an answer does not guarantee later retrieval.

Figure 2-10: Example criterion table taken from Ritter (1989)

Rarely are lists of criterion used outside of the Soar community (for a counter example see Feldman,
Tonge, & Kanter, 1963). For example, the development of Actk (Anderson, 1983) has such lists
implicitly in it, but no where does it include an explicit list of regularities that it covers, or of problem
areas remaining to be addressed. For example, none of the 17 papers in the twelfth volume of
Cognitive Science (1988) provide a list of regularities covered by their model. More typical tests of a
model is to fit a single curve, a single data point, or even to informally exhibit similar behavior
(Kaplan, 1987). Why this discrepancy? Are other scientists modeling simpler things? Are they doing
it less well? Are the Soar researchers pedantic or irrelevant, or not communicating their methodology
and more complex models? It appears that the Soar researchers are headed after more (but certainly
not complete) unified theories (Newell, 1990), and with more data laid out in front of them need better
ways to keep track of their fit to the multiple regularities. As other psychologists attempt to create
larger models, they too will go towards more explicit listing of the regularities covered by their model.

2.4.8 Summary of measures

There are two basic results that the measure of model fit must provide. They must show where to
improve the mode! and they must help predict how well the model will do in the future. There does
not appear to be a single measure that will meet both criteria. Models can need improvement in lots of
ways and make various types of predictions, so having several measures to do these tasks is acceptable
and appropriate.

The analyst appears to end up needing three types of measures. First, a simple local measure to guide
the improvement. While not providing the measure, signal detection provides useful terms for creating
it. Some weighting of the relative importance of doing what the model does (hits and misses), while
not doing what the model does not do (false alarms) is necessary. The degrees of freedom in the
model, the number of rules or model resets, should also be kept in mind. These two measures should

Soar/MT - 21 December 1992

Measures of model to data comparison 51

Table 2-7: Types of data that have been used to test process models.

1. Sufficiency tests. The model is checked to see that it can perform the task in question in
terms of the information it processes and its results, that is, be a functional model (e.g.,
the Logic Theorist (Newell et al., 1958) creating logic proofs).

2. General behaviors The general types of behaviors can be listed as regularities required in
a model. These can include knowledge representations (e.g., visual schemas in
geometry, Koedinger & Anderson, 1990), strategies (e.g, scientific discovery, Qin &
Simon, 1990), operators and the problem spaces that they work in (the Logic Theorist:
Newell et al., 1958). Leaming and developmental effects are also powerful constraints
(Anzi & Simon, 1979; Newell & Rosenbloom, 1981; Shrager, Hogg & Huberman, 1988;
Simon, et al., 1991).

3. Qualitative effects of task stimuli The regularities can provide rather weak requirements
for a model to meet. That different sets of problems be found hard or easy (Polk, 1992),
and that dependent measures take on different values based on the task stimuli (e.g.,
typing non-words is not as fast as words, John, 1988)).

4. Quantitative behaviors (can be times or counts) The regularities can be that the model
performs tasks at a set speed, or that task must be performed not only at relatively
different speeds, but that the relationship in time be a given ratio (John, 1988). Similar
constraints are available in relative response rates as well (e.g., Polk, 1992).

5. Sequential action correspondence The perhaps the strongest constraint available is that of
sequential behavior — that the model performs a set of actions in a set order (e.g., Peck
& John, 1992; Newell & Simon, 1972; Larkin, 1981). Currently, this constraint has only
been taken to predict the order, but it could easily be extended to include time between
predicted steps as well.

be directly combined. If the subject is being tested and not the model, then some measure combining
the relative costs of hits, misses and false alarms is all that is required.

Second, for larger data sets, diagrams and graphs would be useful addition. They are often very
compelling ways to display large amounts of information (Larkin & Simon, 1987; Tufte, 1990). They
present more information than a single number, and can provide a more global description of the
model’s performance with respect to the data, helping to find where to improve the model. No visual
cliches are available yet to describe the fit of process models’ predictions, but there is no reason to
believe that they are impossible to obtain.

Third, the analyst needs a measure of how well the model will fare on future data sets. The form this
question has often taken is to prove that the model performed better than chance. Process models are
extreme hypotheses, and there are no inferential measures for proving them. The only answer is that
we end up like all other science, with arguments and evidence and no neat statistical proof. For
example, we cannot "prove" special relativity with statistics, just provide arguments for it (which may
include the odds of certain measures appearing by chance, but these are just part of the argument, not
the argument itself), and show how well it fits the data (Jefferys & Berger, 1992). We can however,
test how well the model’s performance correlates with the data. This measure’s virtue does not lie in
providing a stamp of approval — it is a very weak test, that most models will pass. Its virtue lies in
that it predicts how well the model will perform in the future, and by examining its constituent parts, it
tells where the model could be improved.

The answer to being persuasive now appears to be simple. The model’s strengths and weaknesses can

Soar/MT - 21 December 1992

52 Testing process models with protocol data: Review of past work

be explained to others with what is used to study and improve the model by their author. This
approach may be convincing because of its disarming honesty, but if the measures do work as designed
to tell the modeler where the model fits, doesn’t fit, and how will it will fit in the future, they should
equally well communicate these features to others. Finally, it is worth listing all the data regularities
that the model accounts for.

2.5 Previous models of process model testing

This section reviews previous methods for testing process models as put forward in method sections of
papers and books, or as implemented as computer programs. These have often been presented as
methods for using process models as a way for doing protocol analysis, but are in reality ways of
testing process models with protocol data.

The methodology presented in Newell and Simon (1972). Newell and Simon (1972; Newell, 1968)
presented a method that has often been misclassified as merely protocol analysis. Its actual goals were
to create and test rule-based process theories. Table 2-7 notes the steps in their testing methodology.
Ohlsson (1990) presents model-based trace analysis as an interpretation and more explicit description
of this methodology. Ohlsson’s interpretation emphasizes the subject’s behavior as a path through the
problem space.

In this methodology, the protocols (verbal and non-verbal) are first summarized into states in a
problem-behavior graph (PBG). An initial problem space for solving the task is created based on the
task description alone. The rules making up the problem space are compared with the PBGs by hand.
Tallies are kept of such measures as when the rules should have fired and when they did. This
methodology (e.g., Newell & Simon 1972, p. 165) did not use timing data except for the order of the
segments.

Table 2-8: Steps in protocol analysis method (Newell, 1968).
1. Divide the protocol into phrases.
2. Construct a problem space.
3. Plot the Problem Behavior Graph (PBG).
4. Create a production system.
5. Conjecture individual productions.
6. Consolidate the production system.
7. Plot the production system against the PBG.

8. Determine a conflict resolution rule.

Newell and Simon’s methodology is incomplete, and does not focus on creating a running program and
testing it. The emphasis of their methodology is on "improving the technology for developing theory,
rather than for validating theory." (Newell, 1968, p. 183). Although Newell and Simon do not
emphasize the routine aspects of testing process theories and protocol analysis, it is inherent in their
work. They often use multiple subjects and multiple episodes. But it also takes huge amounts of time
(Simon or Newell comment somewhere?). This methodology, based on detailed comparisons by hand,
is not realistically set up for large amounts of data and more complicated models.

The theory implemented in Pas-I and Pas-II. Pas-I (Waterman & Newell, 1971) and Pas-II (Waterman, -
1973; Waterman & Newell, 1973) specified a theory of building and testing process models as

Soar/MT - 21 December 1992

Previous models of process model testing 53

software systems for automatically performing protocol analysis. The analyst created a series of rule
sets that would rewrite the verbal protocol into codes, aggregate the codes into problem behavior
graphs, and then these graphs could be displayed, or used to test process theories.

Pas-II supported many of the requirements to be noted in the next chapter. It attempted to automate
the complete process, from segmentation through model building. It was designed for routine use, and
emphasized automating the analysis. It supported the idea of semi-automatic analysis. But Pas-II
failed to support several other requirements that can now be pointed out as important. The reasons for
its lack of success, as noted earlier in the review, were equally related to its implementation and testing
methodology. The simple parser could probably not provide automatic parsing if it was applied to
additional domains. It did not closely incorporate the model and its constructs; this required the
analyst to enter similar analysis rules in several steps. It lacked a visual interface and displays are now
seen as central to this process. The numerous steps proved tedious. The proposed alignment algorithm
between the predictions of a production system and the PBG was based on an incremental and
continuous match with backtracking when the correspondence was provably wrong.

Competitive argumentation. VanLehn, Brown, & Greeno (1984) put forth a technique for testing and
presenting computation theories of cognition that directly applies to process models. The technique
primarily consists of noting how the fundamental. principles underlying a model (and not just the
implementation details) account for the data, and how similar principles would fail to account for the
data. By presenting the principles in this manner, it may be possible to note which model components
are necessary. They also call for the establishment of critical facts for cognition, facts that models
must account for in order to be considered. The set of these critical facts can be used to compare
different variants of a theory, showing why the best one is the one that is necessary because it accounts
for the largest number of critical facts. This approach is consonant with the idea that unified theories
of cognition should play the "anything you can do I can do better" game (Newell, 1990, p. 507). They
present an example argument in their (1984) paper, and apply it elsewhere (VanLehn, 1983; VanLehn,
Jones, & Chi, 1991).

Competitive argumentation consists of six components (Vanlehn, 1989):

1. A learning model.
2. Data from human learning.
3. A comparison of the model’s predictions to the data.

4. A set of hypothesis (specifications for the model’s performance, such as "Students [as
realized by a model] expect a lesson to introduce at most one new "chunk" of
procedure™).

5. A demonstration that the model generates all and only the predictions allowed by the
hypotheses. :

6. A set of arguments, one for each hypothesis, that shows why the hypothesis should be in
the theory, and what would happen if it were replaced by a competing hypothesis. -

These are laudable goals that good summaries of models will provide whether or not the models are
presented through competitive argumentation. In order to explain which parts of a model accounted
for the data, the model must be understandable to the analyst, and when data are accounted for, the
model components responsible should be noted. In problem solving behavior, it is probable that much
of the critical data will be sequential in nature, and until we deal with process models and their
predictions routinely, we will not see the critical data as clearly as we need to. In the end this can be
seen as higher level presentation technique, not a testing technique for routine use, although gathering
this information does test a model. The methods of competitive argumentation are completely
worthwhile, but don’t directly address how to test the sequential predictions.

Soar/MT - 21 December 1992

54 Testing process models with protocol data: Review of past work

ACM and Cinrus. ACM (Langley & Ohlsson, 1989) and Cirrus (Garlick & VanLehn, 1987; VanLehn
& Garlick, 1987) start with a problem space of operators and their effects. They use the coded data to
create a process model by specifying the application conditions for the operators. The operator
application conditions are added based on information measures, so the model is undergoing a type of
test as it is built. This testing process is not one that can necessarily be followed by hand, and appears
to assume complete coverage of the subject’s actions with operators in the problem space. The output
is a decision tree of when each operator will be applied. The subject’s actions that are covered by
operator actions are presumably ignored, although if they are it would be simple enough to flag them
as uncovered. It is not clear how they combine the models over multiple episodes or over multiple
subjects.

Given a declarative representation of the problem space including an explicit description of the
operators and a description of the environment’s features, ACM and Cirrus’s aggregate the operator
application conditions. This is a feature worthy to include in any tool. They show that machine
learning techniques can help summarize the subject’s performance, in a form that can be turned into
useful model components. The application rules that are leamed can provide useful summaries;
sometimes these rules will be incorrect reflecting a small sample size. The machine learning
algorithms can do some of the abduction task of creating a model, but it is not clear where the
difficulty lies, in creating the operators, or in defining the constraints on their application.

ASPM. Analysis of symbolic parameter models (ASPM) takes a process model realized as
input/output tables, with a given finite set of parameters, and attempts to fit the model by finding the
best set of parameters (Polk, 1992). It is possible to test a model against sequential data (as a series of
responses), but it is much easier to test a model against single responses. ASPM can test only well
developed models. Model fitting is done with known parameters. The input/output tables must be
complete; all operator interactions must be noted there. Exhaustive search of all the sets of parameters
is avoided by taking advantage of the structures implicit in the operator tables. ASPM assumes that the
model is fixed, and it is the parameters that change. For sufficiently developed models, ASPM
guarantees the best fit, but no direct indications of where the fit is poor. So it fails to provide a direct
way to improve the model through testing.

Summary. With the description of the other methods now complete and with the short description of
TBPA in mind from the introduction, I can note a few interesting similarities and differences between
it and previous methods for testing process model’s sequential predictions.

The major difference between TBPA and model-based trace analysis (Newell & Simon, 1972:
Ohlsson, 1990) is that TBPA compares a full and actual trace of the cognitive model with the protocol,
not just productions that could apply, and it works on a higher conceptual level than productions. In
addition, model-based trace analysis sees the trace more as a way to analyze the protocols; the
segments are hand coded to correspond to one or more of the model’s operations (this is a type of
analysis that we may wish to support as a preliminary or partial analysis). TBPA sees the trace
primarily as predictions to be tested against the protocol data. Because TBPA incorporates an
architecture (Soar) that can make time based predictions, it can also compare the model’s speed with
the subject’s speed in doing the task, potentially an important source of constraints on models.

Unlike Pas-Il (Waterman, 1973; Waterman & Newell, 1973), TBPA does not attempt to be fully
automatic. TBPA directly and explicitly includes the process model and a declarative representation of
it that can be used to assist and summarize the comparison. Most importantly, the analyst is not
expected to modify the analyses by writing additional production systems, but to string together
completed tools.

The presentation techniques of competitive argumentation (Vanlehn, 1989), and the model building
techniques of ACM (Langley & Ohlsson, 1989) and Cirrus (Kowalski & VanLehn, 1988; Vanlehn &
Garlick, 1987) are just that, ways to present and build models. They include and indicate some useful

functionalities for any environment that manipulates process models, but none that we must require in
order to test them.

Soar/MT - 21 December 1992

Previous models of process model testing 55

The earliest methods for testing process theories were implemented by hand. Although they were
often used on large data sets, they were not designed for routine use, that is, applying the same model
to multiple data sets, or in sufficient detail to automate them. The later, more automatic systems have
generally specified a method that can only be applied to well developed models, and ones that have an
excruciatingly detailed specification. TBPA is unique in presenting a method for improving an initial
weak model to a stronger model through routine testing, which is what Grant (1962) believes is the
basic process in science, -

2.6 Summary of lessons for process model testing methodology and tools

Based on this survey of the previous uses of protocol data, the tools for manipulating protocols,
cognitive process models, and comparing them, and the measures of model fit, we can enumerate
several guidelines for a methodology for routinely testing process models with protocol data.

1. Graphic or tabular displays are required. The amount of information studied, generated,
and manipulated when dealing with process models and protocols requires that a
graphical presentation can be available. The presentation can done in tables or in
diagrams. This requirement applies to the model, the model’s behavior, both verbal and
non-verbal protocol data, the cormrespondence between the model and data, and the
residuals of any measurement.

2. Automate what you can, avoiding known pitfalls. There is a lot of bookkeeping and
analysis tasks that are often done by hand in manipulating protocols, models, and their
correspondences. Many of these tasks can be automated in a straightforward way, and
they should be, such as the alignment of unambiguous actions. There are other tasks
which look similar to these that cannot be easily automated. These will require separate
research endeavors. Attempts to automate them will derail work on model testing or
even general environment building.

Parsing, that is, attempting to automatically interpret ambiguous data, particularly verbal
data, in terms of a model, is perhaps the largest pitfall. Natural language parsing is not a
solved problem. Attempts to include it in model testing have failed and taken much
effort to do so. Simpler parses are possible though. Eye movements are now routinely
translated into attended areas, and menu clicks by definition translate mouse movements
into task actions.

3. The environment must be flexible. The environment the analyst works in must be
flexible. A structured process and tool set can be presented, but many analyses will not
be supported. Simple support for this starts with the ability to add fields to a display, and
ends with the ability to create new analyses within the environment through a macro
language. When the environment breaks down, the analysis is either not done, or the
analyst must move the data to another environmeént.

4. Keep the original verbal data available. Verbal data contain a lot of information for
model building and for model testing. The original data should be kept around for
reference even after they has been coded; the model’s performance may force them to be
reinterpreted. It is a secret weapon — to gain new inspiration, "clear away an evening,
and sit down and reread some protocols” (Newell, 1991).

5. Incorporate the model being tested. Analysis environments must explicitly incorporate
the model they are building or testing if they wish to specifically test the model. PAW
(Fisher, 1987; Fisher, 1991) only includes operator names, so it can only do tests based
on operator names and their pattern of occurrences. Pas-II does not explicitly include a
model, but allows the user to put pieces of it in various places, so the tests must be
created by the user. SAPA includes the model directly, and thus can test the model

Soar/MT - 21 December 1992

36

Testing process models with protocol data: Review of past work

directly.

6. Know where the model is wrong so that you can improve it. Grant's (1962) position of
scientists as model builders and improvers is persuasive. Improving the model requires
knowing where the model is wrong, not if it is significant. Finding out where it is wrong
requires generating the model’s predictions, bringing them into close alignment with the
data, and keeping the model around so that you can find what components are leading to
difficulties (and conversely, which components should be left as is), and modifying the
appropriate ones. This is basically the approach that is presented as trace based protocol
analysis, presented in the next chapter.

Soar/MT - 21 December 1992

57

Appendix to Chapter 2: Review of the Card model alignment algorithm

In algorithm theory the task of aligning the model’s predictions with the subject’s actions is equivalent
to the longest common subsequence task. In its most general terms it is an NP-complete problem
(Garey & Johnson, 1979). For a fixed language (which exists in this case, the types of behavior
actions are fixed), or for a fixed number of sequences (which is also the case, there are two, the
subject’s and the model’s behaviors), the problem is solvable in polynomial time (Wagner & Fisher,
1974) and polynomial space (Hirschberg, 1975). The task specification assumes that the globally best
match is required, that there are no special correspondences that must be tied together, and that all
subject data are used (and there are not any bits discarded as noise). These could, of course, be
handled through simple extensions.

How the alignment is produced must be clear. The final alignment must be editable; even if the
alignment is done completely and automatically, the analyst may have to jump in and redo parts by
hand, either to correct the alignment because the specification of alignable objects was wrong, or to
play what-if games. Our main interest in finding this subsequence is to use it to actually align the
model’s predictions with the appropriate data, rather than as a measure of similarity as it is often used.
This gives us slightly different interests and needs. There are several that are simple and direct.

A potential problem is that the maximally common subsequence may not be unique — there may be
several possible — and that we may have preferences about which one is returned. If we are just
interested in the length of the maximally common subsequence, or the percentage of each sequence
matched, which subsequence returned doesn’t make any difference. For this task we have two
preferences. First, we would like the longest subsequence that starts from the front. Since both the
model and the subject move forward in time, the match must begin there. We believe that a priori the
model’s earlier predictions will be more accurate, and as modelers, we most often and most easily
adjust the model’s behavior starting with its initial actions. As we iterate through the cycle of match,
modify the model, match, the earlier matches will be more stable, and require less modifications over
time.

Second, the model’s actions should guide the match. It represents the theoretical terms of the task, and
in most cases there will be less model actions than subject actions, and these actions are less noisy, for
our models don’t have additional processes to add noise to their behavior like subjects have. Since the
actions must actually match each other, and earlier actions are preferred to be included in the
subsequence over later actions that also match, this constraint is also satisfied, although no additional
changes will be required to the common implementations of the algorithm.

There are also requirements on the two types of data streams to be aligned. They cannot be ambiguous
if the alignment is to be done automatically. This is a known problem of verbal utterances, but can
also be found in a model trace if the token "add" is used to refer to two different types of constructs.
Partial coding of the verbal data may be desirable here; coding polysemous words to a specific
meaning. Having multiple data streams will also help; non-verbal discrete actions surrounding verbal
utterances will help constrain the match of the verbal utterances.

The algorithm presented by Card, Moran, and Newell implements this algorithm by computing a
matrix of possible matches, and then walks through this matrix generating the longest subsequence that
matches. The initial step creates a matrix of counters, called SCORE, of size NUMBER-OF-
OBSERVED by NUMBER-OF-PREDICTED. It then compares in order each token in the observed
sequence against each token in the predicted sequence. Where there are matches, the counters are
incremented to represent the longest possible sequence starting from Matrix(Observed-token,
predicted-token). The final value of SCORE (SCORE[NUMBER-OF-OBSERVED, NUMBER-OF-
PREDICTED)) is the size of the longest possible common subsequence. The second and final step
traverses the matrix backward, starting at its most extreme point, generating one of the possible
maximum length subsequences. Consider the example in Figure 11 matching DUC and DUDUDU.

Soar/MT - 21 December 1992

58 Appendix to Chapter 2: Review of the Card model alignment algorithm

Matching predicted: D U C
and observed: DUDUDU
would generate the score matrix:

DUDUDU
012346568

0 0000000
D1 0111111

U2 01 2222

2
|
c3 01 2-2-2-2-2

Alignment returned by Cardil:

Predicted sequence:

- ---c
Observed sequence: UDUD -

U D
UD

Figure 11: Example alignment by the Card1 algorithm. The two strings being
aligned are "DUC" and "DUDUDU".

How well the match was performed, the percentage matched, may be scored with Card’s formula

Length(common-subsequence) / Max(length(observed), length(predicted)))

This may be a bit pessimistic, in that it assumes that the longer sequence should be completely
matched. An alternative formula 2 divides by the length of the shorter sequence, telling how many
actions were matched that could be matched, taking the sequences as givens. The subsequences will
be used for editing, so each of these measures are only used to inform the analyst how much editing by
hand may remain to be done.

Length(common-subsequence) / Min(length(observed), length(predicted)) 2)

Soar/MT - 21 December 1992

59

Chapter 3

Requirements for testing process models using
trace based protocol analysis

This chapter first defines trace based protocol analysis (TBPA), a methodology for testing and revising
process models with protocol data. This an attempt to specify and formalize the techniques used by
Newell and Simon (1972) and Peck and John (1992) to analyze and validate their models. As noted in
Chapter 1, the steps in the TBPA testing loop are (a) deriving the model’s predictions, (b) testing the
model’s predictions by interpreting and aligning protocol data with respect to them, (c) understanding
the results of the interpretations in terms of the model, and finally (d) modifying the model based on
the test results. -

The second goal of this chapter is to include the requirements for supporting TBPA within a software
environment. The requirements based on the individual steps are supplemented by requirements based
on the need to integrate these steps, to support this methodology computationally, and to test process
models in general.

“The most important requirement arising this way is to provide an integrated environment based on the
model being tested, so that results from each step of TBPA can influence and summarize the other
steps. In order to make TBPA more routine it will also be important to automate as many tasks for the
analyst as possible.

It will not be possible to automate all the tasks, so the analyst must be supported in performing the
remaining tasks. The environment should have a uniform interface. The environment will also have to
be general, for all of the sub-tasks and their order cannot be specified in advanced. The environment
must provide a path to expertise. The user must be able to use the environment and learn how to use it.
And, perhaps the central problem in this task, the analyst must understand, manage, and manipulate
large amounts of information, so they should be provided tools that assist with these tasks.

The role of integrating an intelligent architecture is also discussed. Because process models are
implemented as knowledge within an architecture, an intelligent architecture will be incorporated
within the testing environment. The architecture will provide the terms for aggregating model support.
It is also worth considering if the architecture could be applied to the task at hand, and be used to
automate all or parts of the testing process.

3.1 Definition of trace based protocol analysis (TBPA)
3.1.1 The inputs to TBPA

Routine trace based protocol analysis begins with a functional process model and protocol data to test
it already in hand. Creating the initial model and gathering the data are by definition outside the scope
of a methodology for testing process models. There are, however, minimum requirements that the
inputs must meet.

3.1.1.1 A 0t? order functional model

The first requirement for testing a functional process model is the model itself, a 0 order model that
can perform the task. The model may be a preliminary model based solely on task analysis, and the
task at hand is to test and improve the model (open analysis). Alternatively, the model may be a well
developed and previously tested model, in which case the task may be to determine how well the
subject matches each of several models (closed analysis). The model must provide predictions for
each type of data to be used in testing it (e.g., verbal utterances and motor actions). The model may
also have an associated simulated or real environment that responds to the actions of the model. TBPA
assumes the model is in hand, but it is worth noting that the requirements for testing will also support

Soar/MT - 21 December 1992

60 Requirements for testing process models using
trace based protocol analysis

some of the processes for creating an initial model noted in Chapter 2, such as informally examining
protocols.

3.1.1.2 Transcribed protocol data

The other required input to TBPA is previously transcribed and segmented protocols (such as video or
audio tape, keystroke logs, eye-movement records). These must be put in a form that can be compared
to the trace produced by the model. It must be transcribed and at least roughly segmented. Automatic
analysis programs or the analyst may resegment it, but in routine analysis some initial segmentation is
a necessary prerequisite. Marginally relevant segments, such as experimenter remarks, utterances too
short to compare, and other extraneous material should be included and annotated as such; these items
can provide context for understanding the segments. As two of the lessons noted in the review, it is
desirable to include both the verbal and motor sub-streams, and time stamps are necessary for certain
analyses.

3.1.2 The TBPA loop and its requirements

Process models built within symbolic cognitive architectures must be improved with a testing loop,
they cannot be improved with closed form or automatic iterative analyses. Automatic iterative fitting
methods are available when the direction and type of modifications to a model can be directly specified
by fitting it to data (e.g., linear and logistic models (Afifi & Clark, 1984)). Improving a process
model’s fit is currently only possible by having the model generate predictions by performing the task,
interpreting the data with respect to these predictions, then modifying the model, and then repeating
the loop. The interpretation cannot be completely automated yet, nor can modifications to consider be
completely prescribed based on the fit to the data, both of which are required for automated analysis.

What are the elements of the loop of testing process models with protocol data? How is this type of
model validation specifically done? Figure 3-12 shows the relationship between process models and
the protocol data used to test them. The analyst starts with a functional process model in hand and
protocol data to test it. '

The testing steps implicit in Figure 3-12 are shown explicitly in Figure 3-13. (1) As the model
performs the task its actions are recorded and its internal states and operations traced. These actions
are predictions of what will be in the protocol data. (2) The protocol data must be interpreted and
aligned with the model’s predictions, generating a sequence of correspondences made up of sets of the
model actions and their corresponding data. These correspondences may contain a variety of
mappings. A full list was presented in Table 2-5. (3) These comparison results must be analyzed to
summarize where the model mismatched the data, and how to improve the fit. The summary may
directly or indirectly indicate how the model can be modified to more closely match the data. (4) If the
results are clear enough, they can be used to modify the model to more closely represent the behavior.
The modifications will not necessarily correct all of the problems, so they must be tested through
comparison with the data by going back to step 1.

Constraining the mode! with additional sources of data. TBPA tests only the sequential predictions of
the model for a given task and subject. This represents only one level of comparison of the two
information streams of model and subject noted in Figure 2-2, that of comparing actions on the
protocol and trace level. In addition to testing the sequential predictions of a model, it will often be
desirable and natural to bring the model’s behavior into contact with additional data from other
sources. For example, this can be done by comparing the model’s aggregate performance with
aggregate data from other studies, creating a less local model, one that is consistent with more data
(Newell, 1990). If the aggregate measures can be related directly to the model, they may appear
directly as constraints on the model’s construction, such as incorporating a learning mechanism.

S0ar/MT - 21 December 1992

Definition of trace based protocol analysis (TBPA) 61

Revise

Mappings

Computational =) Action 1
model

Action 2

Action M >’-"-=='-=> Data N

Interpret
& Align

Figure 3-12: Diagram showing the inputs (in bold) to trace based protocol analysis (TBPA):
A computational model and transcribed and segmented protocol data.

3.1.2.1 Step 1: Run the model to create predictions

As the model is run, a complete trace of its actions must be produced in a form that can be used to
interpret the subject’s actions. The trace is not an input to the testing loop because revising the model
and reproducing the trace is part of the loop.

The trace should include all of the items in Table 3-9. The trace must be interpretable by both the
analyst and the machine because at various times the comparison will be done manually and
automatically.

(a) The trace should include unambiguous predictions for the content and timing in each information
stream. The trace elements must be unambiguous. Automatic interpretation and alignment algorithms
must be able to use the trace to automatically interpret the data. Within a computational environment
the initial interpretation and alignment will be performed automatically for unambiguous comparisons,
and it may be possible to perform a rough cut at interpretation on slightly unclear data points. The
elements must also be easy for humans to interpret. Until the process is completely automated, a
human analyst will need to be able to understand the trace to correct any errors and to do the final
interpretation of ambiguous subject actions using the trace.

The trace must also include predictions for each protocol stream. The terms of these predictions will
be dictated by the architecture and the data interpretation theory used (such as verbal protocol theory).
Given the Soar architecture these will be terms of states and the operators to modify and create those
states. Given a different architecture, such as Ops5 (Forgy, 1981), the model’s actions used to interpret

the data would be production applications, and the rules that fired would take the place of operators
and must be included in the trace.

Including the model’s simulated external actions (or actual, external actions, such as drawing on the

Soar/MT - 21 December 1992

62 Requirements for testing process models using
trace based protocol analysis '

Figure 3-13: Diagram of the steps in testing process models with TBPA.

Table 3-9: Requirements for the process model’s trace.

(a) Include:
(i) Unambiguous predictions for each subject information stream (external and intemal actions)
(ii) Time stamps for each action.

(b) Be readable by the analyst.

(c) Provide various levels of detail.

(d) Provide aggregate measures of performance.

(e) Be deterministic even if the model is not.

screen) and the environment’s responses to the model’s actions provides information about the external
task state and provides the context of the model’s actions, so they should be kept in another
synchronous data stream for reference.

The trace must include a simulation time stamp for each action if the speed of the model or architecture
is to be tested. These time stamps, if unique, can also serve as identifiers.

It used to be believed that for problem space models, the trace did not have to include both the states
and the operator applications because they are equivalent (Newell & Simon, 1972, p. 157). A listing
of operators will indicate how the state gets modified, and a listing of states will indicate which
operators have been applied. Since then our operators and states have grown up. Operators are less
declarative, they are now context specific, they can be learned and their results can be modified
through leaming. The operators that are applied are actually instantiations of a semantic operator type,
so the theoretically relevant instantiated features must also be included. For example, the trace of the
add operator must include the value of the two addends.

(b) Be readable by humans. Analysts will also need to read the trace, both as predictions of behaviors

Soar/MT - 21 December 1992

Definition of trace based protocol analysis (TBPA) 63

to be found in the subject’s data, for debugging as a description of the model’s performance. For
example, the trace should support finding the context object’s name and the goal depth. .

Many cognitive modeling architectures are also implemented as Al programming languages. Soar is,
for example. A trace useful for model building, especially debugging, is not the same as that needed
for interpreting data. Programmers can handle more ambiguity and prefer a terser trace. A trace used
for interpreting data may require considerably more detail than is used in a trace for model
development.

(c) Provide various levels of detail. The trace must be able to present all the structures required to
interpret the subject’s actions. As a model is developed, and for different models, representations may
differ and different levels of detail may be modeled. For some analyses and interpretation tasks one
should be able to hide both whole streams of predictions and selected portions or levels of detail within
a stream. How tightly the predictions are compared may also change as the model is developed.
Initially the model may only match the subject’s actions by operator name, such as add. Further
development may allow the addition of operands that match. This will require an adjustable and
flexible trace to provide in the simulation information stream an appropriate level of detail at a
comparable behavior size.

(d) Provide aggregate measures of performance. The sequential data used to directly test the model’s
sequential predictions could completely test the model if all the sequences are perfectly matched. If
they do not, comparing aggregate measures of the model with aggregate data measures may help
characterize which types of actions are contributing most to the mismatch and where the model could
be improved. Comparisons of the aggregate data may require additional displays to display aggregate .
aspects of both the subjects’ and the model’s behavior.

Subjects’ aggregate measures are provided by standard analyses, and any tools for manipulating
models should support aggregating the model’s performances directly from the model as well. The
right place to put these measuring devices, such as operator application counts, production firing
counts, and cumulative simulation cycles, is in the architecture. It should not be necessary to hook up
to experimental apparatus, or additional simulated experimental apparatus to take the measures.

(e) The trace must be deterministic even if the model is not. If the model might take multiple actions
at a given point, the trace should indicate this. Often human behavior appears to be non-deterministic,
and many architectures explicitly incorporate components to add stochastic behavior. Just because the
system being modeled (the subject) appears to incorporate noise does not mean that the model must
include noise as part of its process. So a necessary simplifying assumption is that of determinism, at
least for this work.

It would be quite reasonable to make the trace sensitive to the data in a principled way, such as
preferring the subject’s choice when choosing between equal alternatives.

If the model incorporates a random component the best alternative to a deterministic trace appears to
be a trace that indicates the range of possibilities at each step, with the trace summarizing the possible
behaviors as options not taken along with their probabilities. This would complicate the interpretation
process, requiring any dependencies in operations or states to be represented explicitly. If the model
really was stochasticly implemented, it would probably be best to base the interpretation on a running
model that could be reset at each choice point. Analyzing this type of correspondence is not attempted
in this thesis, but may be an easy extension to this work.

There are several reasons for not incorporating a random component. In addition to having to modify
our current architecture to add a noisy component: (a) A model that performs randomly is more
difficult to represent and manipulate. The analyst must keep in mind not only the current trace, but
what other traces could have appeared. (b) With a stochastic model in hand, there may be no way to
see that a more deterministic model is possible, and no way to implement it. (c) When the model
performs stochasticly, an additional layer of complexity is required either in the analysis or in the

Soar/MT - 21 December 1992 -

64 Requirements for testing process models using
trace based protocol analysis

model to aggregate the model’s possible action sequences. The model actions must be represented
aggregations of sets of behaviors; comparisons between the model’s predictions and the data must be
based on convolutions of probabilities rather than on direct comparison of actions. (d) The analyst
ends up testing an even more extreme hypothesis: "This particular performance of the model matches
this set of actions, and both are sampled from larger pools."

Determinism is an assumption many can believe in (Newell, 1990; Newell & Simon, 1972). The
subject’s actions may appear to be random, but it is just as likely that our models are incomplete.
There are at least four ways to explain apparent non-determinism: (a) unincluded initial mental state
information, (b) unmodeled environmental cues that are used in the task, (c) individual differences in
previously learned information, (d) finer grained behavior rules than modeled (e.g., if A > B
sometimes, and A -> C sometimes, then perhaps what is required is if A.before-lunch -> B, and if
A after-lunch -> C). '

3.1.2.2 Step 2: Use the predictions to interpret the data

Protocol analysis really is about model building and testing, not simply annotating sequentially ordered
data. The core step in TBPA then is testing the model’s predictions by using them to interpret data.
Table 3-10 lists the requirements to perform this step. As theoretical constructs, the predictions
provide a language for interpreting the data. The interpretation process may not be straightforward.
When there are multiple interpretations of each action, finding which data segments are predicted by
which model actions may involve problem solving. Where the interpretation is difficult or breaks
down indicates where the model must be revised or extended.

The alignment process must handle concurrently all of the relevant information streams, including: (a)
Each information stream of data collected from the subject (e.g., motor actions, verbal statements,
eye-movements), (b) Corresponding predictions for each mode from the model, (c) Responses of the
subject’s environment, (d) Responses from the model’s environment or simulated environment. Some
of these, because they will be unambiguous, will help constrain the comparison. Others, like verbal
protocols, will be ambiguous, and require more effort. At times the analyst may wish to hid some of
these streams, and may desire to collapse several into each other. But they all must be available.

Table 3-10: Requirements for using the model’s predictions to interpret the data.

(a) Display and support editing the correspondences.
(b) Automatic alignment of unambiguous actions.
(c) Support matching ambiguous actions.

Display and support editing the correspondences. The alignment does not do any good if it only exists
inside a data structure and cannot be examined by the analyst. After any alignment automatic or
manual, the analyst must be able to view the correspondences and the information streams that the
correspondences are made of. As noted in the review, there are many small annotations and analyses
done by hand with the protocols, the model’s trace, and their correspondences.

As noted in the review of protocol analysis tools, most tools only display a few segments and their
accompanying fields at a time. An example of this type of limited display was shown in Figure 2-6a.
In order to understand each mapping, more context is needed than a record-based display can provide.

The analyst may also want to play what-if games with the alignment not supported by the automatic
aligner. Upon occasion it may be necessary to add whole new fields, and to hide existing ones. For
example, the verbal data must be kept available after coding. If the data do not get condensed by
coding, it serves us little to pitch the raw data. If the data are greatly compressed, we may find that we
are losing information as the model changes. After the data are coded however, the display may be
more easily interpreted with the verbal information temporarily hidden.

Soar/MT - 21 December 1992

Definition of trace based protocol analysis (TBPA) 65

A tabular display, as shown in Figure 2-6b, with its much larger content, is required in order to see the
context of the model’s fit, and to start to see how it varies across the episode. In all, the analyst will
need a full visual editor to manipulate these data structures.

Interpret and align the data with respect to the predictions. This is the basic task in the loop, that of
interpreting the protocol segments in terms of the model’s predictions. Generally, the subject’s overt
task actions are compared with the task actions of the model, and the subject’s verbal reports while
performing the task about their mental structures and operations are compared with the trace of the
internal states and operators of the model. For unambiguous data, such as mouse clicks or key presses
it may appear as just a matching process. For verbal protocol, it will be a challenge to interpret the
utterances in terms of the model’s actions and states.

The transcription of the subject’s actions may not use the same terms as the simulation, so an
interpretation function will have to be provided as part of the model to support automatic alignment
algorithms. Unambiguous actions (such as external task actions) may be directly comparable through
something simple like, "the operator Click-mouse is equivalent to the transcribed mouse action "C’".

The less ambiguous data, most often overt, task-based motor actions, should be aligned with respect to
the model’s predictions first. Once aligned, the less ambiguous data will help constrain the
interpretation of the more ambiguous data. Even though the predicted actions and the actual action
sequences may have different lengths, and will often not map one-to-one, this should be a
straightforward matching process with unambiguous data. The types of behaviors that can be aligned
with each other, the types of matches that are possible, and an algorithm for performing this alignment
task were described in Chapter 2.

Support interpreting ambiguous actions. A simple interpretation function cannot in general align the
subject’s verbal protocols (describing internal mental states) with a trace of the model’s internal states.
This is a general parsing problem, albeit one with the knowledge structures in hand, but a parsing
problem none-the-less. More ambitious interpretation functions are required, and this close
juxtaposition of knowledge structures and verbal utterances represents a unique opportunity for natural
language parsing, but taking advantage of this is not possible as part of this effort. By providing a
semi-automatic and partial alignment that can later be cleaned up by hand a simple interpretation
process may still be useful to the analyst with more ambiguous data streams. The analyst may also.
need to edit the correspondences generated automatically; the automatic alignment algorithm may be
faulty, or called with incorrect comparison descriptions.

3.1.2.3 Step 3: Analyze the results of the comparison

Once the model’s predictions have been used to interpret the data, it will be necessary to have a global
view of all the places where the predictions fared poorly and where they fared well. The
correspondences must be summarized in terms of the model if they are to be used to improve the
model. The requirements for performing all of the levels of this analysis are shown in Table 3-11.

A scientist is interested in what varies to make an episode and what remains the same across episodes.
The model being tested (as the architecture plus knowledge) is what holds the analyses together. The
subject’s actions cannot hold the analysis together, they are fixed for a given episode and cannot
change, and across episodes they vary. The model’s trace can serve as a summary for a single episode,
but across episodes it too varies. The structures in the model, the objects that generated the trace, are
what must serve as the summary of the invariant relationships found in the data.

Table 3-11: Requirements for analyzing the comparison of the data with the model’s predictions.

(a) Show where the data does not match the predictions.
(b) Aggregate the results of the comparison in terms of the model.
(c) Interpret the test results as clues for modifying the model.

Soar/MT - 21 December 1992

66 Requirements for testing process models using
trace based protocol analysis

Show where the data does not match the predictions. One of the first measures an analyst needs to
know is which subject actions have not been matched by the model’s predictions. In order to quickly
test simple modifications analysts need a simple, direct measure that allows these data points to be
picked out and summarized. These simple, local measures of fit for immediate use should be provided
automatically. Despite the often expressed desire for such a measure, as noted in the review section,
this cannot be a global measure of model fit that can be used to compare two (or more) models so that
one can be definitely preferred. The choice of model will, in general, be dictated by other factors, such
as parsimony, expected usage, and fit to other constraints.

Aggregate the results of the comparison in terms of the model. The analyst needs to see a model-based
description and summary of the comparison. As noted in the review of measures, failures in the
interpretation process are particularly interesting. These can be initially identified by looking at the
two information streams and noting holes in their correspondences, but several different summary
views are also required. The analyst will need to be able to summarize globally which types of model
actions got matched and which did not, to view the relationship of the matched actions to the model, to
view the matched predictions with respect to time, and still be able to directly examine the matched
(and unmatched) trace items after they have been aggregated into sets of summaries. As the models
get larger and the data sets used to test them become larger as well, more efficient and useful displays
will have to be developed. Graphic displays of model support, like the one used by Peck and John
(1992) (shown in Figure 2-7), will be needed.

Support interpreting the correspondences as clues for modifying the model. Given a listing of the
correspondences, the next task is to interpret these as clues about where and how to modify the model.
In many ways this is an abduction task, rather like creating the initial model, but finer grained. This
task will require seeing the context of the unpredicted mismatches to aid in their interpretation, and to
recheck the match to avoid breaking other model components that are currently supported.

The discrepancies are a new source of data; task analysis represents a type of mean of behavior, the
differences are the deviations from that, giving us access to higher order components of the qualitative
data. The mismatches, if summarized, can provide an indication of how the model can be improved.
For example, Newell and Rosenbloom (1981) showed that plotting learning data against different
learning curves provides sets of signature differences.

There will be many fairly obvious ways to interpret the mismatches themselves. Examining the types
of mismatches from Table 2-5 suggests the interpretations shown in Table 3-12. Additional types of
mismatches and patches are also available from more specific descriptions of the model and its
implementation as a production system (Corsaro & Heise, 1990). The non-obvious problems and the
ability to combine the changes in the most parsimonious way will continue to make this an abduction
task and real science. The environment should assist in this task by providing useful summary displays
of the comparison, including the mismatches, their types, and related model components and
behaviors.

Interpreting the subject in terms of the model. The analysis stops at this point if it is a closed analysis.
The result is an interpretation of the subject’s behavior with respect to the model’s predictions or a
classification of the subject behavior as belonging to a particular model chosen from a set of models.

3.1.2.4 Step 4: Revise the model to reduce the discrepancies

The final step in this testing loop is to use the results of testing the predictions with data to modify the
model. As listed in Table 3-13, this step can be broken down into two requirements, first, to
understand the model, and then second, to modify it based on understanding the model and knowing
where its predictions do not fit the data.

Supporting understanding the model. Before modifying a model, the analyst must first understand it.
Tl:nis understanding may be supported in several ways. Users may gain understanding from playing
with the model, running it and watching its actual performance. Viewing the model’s structure may

Soar/MT - 21 December 1992

Definition of trace based protocol analysis (TBPA) 67

Table 3-12: Some of the model modification clues based on the types of matches in
Table 2-5 and their aggregation.

¢ Verbal utterances may reference knowledge structures and operations not yet incorporated
in the model (misses). If the verbal utterances are sufficiently clear, it may be possible to
simply add the representations and actions to the model.

* The order (crossed in time) and existence (misses and false alarms) of non-verbal actions
may differ between the predictions and subject actions. These differences may be
reconciled as different strategies to perform the task. Individual differences in subjects’
knowledge and strategies may have to be included in each model as Miwa and Simon
(1992) suggest.

e Actions the model performs more often than the subject performs them (misses) may
indicate operations that need to be specialized and applied to more specialized situations.

¢ Model predictions that are not matched at all (false alarms) must always be considered for
removal. Certain non-verbal structures will be difficult to report (Ericsson & Simon,
1984), or the predictions may be a non-reportable aspect of the architecture, such as goals
in Soar. They may simply just not be observable. Or they may simply be not necessary.

e Slips and irrelevancies in the subject’s data stream outside of the scope of the model
(uncodable) may be ignored. When they clutter a display, the analyst and system must be
able to ignore them.

Table 3-13: Requirements for modifying the model.

(a) Display the model so it can be understood.

(b) Modify the model based on the comparison.

also be useful. Both of these activities will require that the information be presented in terms of the
model and underlying architecture. ’

As noted in Chapter 2, most cognitive modeling tools are research systems designed to show that a
given architecture is sufficient for modeling intelligent behavior, not for routine application. Most do
not yet provide good interfaces for running and viewing models, and this is true for Soar in particular.
Established metaphors have not been developed for explaining models automatically yet, so one will
have to be developed for them.

Modify the model based on comparison. The final task of testing process models is to incorporate the
modifications that are suggested. The model must not only be generally ductile, but must also be
modifiable based on the prescriptions found through the testing process. A partial list of abilities to
modify the model on this level would include adding, modifying, and removing components, running
the model, and examining its internal state. These abilities are essentially the same set of tools
required to write new models, and could be used to help provide the initial model.

Process models perform the task by adding knowledge to an architecture for intelligence. Soar itself is
built upon production systems, a type of Al programming language. Therefore, these cognitive models
can and should be viewed as Al programs. Manipulating and modifying them should be viewed as an
Al programming task requiring an Al programming environment.

Soar/MT - 21 December 1992

it
i
i
Ay

68 Requirements for testing process models using
trace based protocol analysis

3.2 Supporting TBPA with an integrated computer environment

This section notes the requirements that arise from integrating these steps, and the requirements
necessary to support the methodology with a computer environment. The aids must be integrated, easy
to use, extendable, and learnable. Automation of the most routine tasks and pathways to expertise are
the primary ways to reduce the difficulty and extend the power of this environment. The analysts have
limited processing power, working memory, and time, and large amounts of data to examine. They
may not use this environment all day, every day, so even the advanced users will need assistance.
Table 3-14 lists the requirements directly based on supporting TBPA with a computer environment.
These requirements apply to each part of the environment, and to the environment as a whole. -

Table 3-14: Requirements based on integrating the steps and supporting TBPA
with a computational environment.

(a) Provide consistent representations and functionality based on the architecture.
(b) The environment must automate what it can.

To support the user for the rest of the task:

(c) Provide a uniform interface including a path to expertise.

(d) Provide general tools and a macro language.

(e) Provide tools for displaying and manipulating large amounts of data.

3.2.1 Why an integrated environment is needed

There are two orthogonal reasons why an integrated environment is required. The first is the desire to
represent the results in terms of the model and its predictions. This will directly support using the
results of previous steps to perform later steps. As noted in the review, it is useful to integrate the data
and the model in various analyses. The component systems will be able to pull information from all
the environment’s programs using their data formats and functionality. This is required if the analyses
are to present the results with respect to the model, and display the model with respect to its structure.

The second reason an integrated environment is required is that the analyst will not complete each step
before moving on to the next. A normative description of this methodology has been presented so far
as performing step 1 to step 4 completely and in order. The actual analyses may be less ordered. The
analyst will not simply run the model (taskl), then do the complete alignment (task2), and so on.
There will be multiple cycles and partial cycles through the different sub-tasks. Often the analyst will
end up performing part of the loop, only to find that a previous analysis was incomplete or wrong, or
that another facet of the model could be changed without completing the testing loop. In the end this

story will appear true, but initially the steps are just tasks to be achieved rather than a plan (Suchman,
1983).

In this vein, all the sub-tools should live in the same environment to encourage small exploratory
analyses, and examination of the multiple data types and paths. Any macros the analyst creates must
be able to call the other tools and reference their data. As an example of the flexibility and integration
required, in addition to complete analyses, the environment should support pseudo-revision of models,
trying out simple partial changes to the model’s trace, such as changing the grain size of the analysis,
without requiring a complete functional implementation in the process model. Figure 3-14 diagrams
this. In this form of pseudo-model revision, the environment should support generating a new model
trace by hand, inserting or deleting an operator not yet in the model in the trace, and testing it as any
other model trace against the data. The analyst will need to perform tasks like this in general, inserting
constructs into the model before there is functional code to support them and comparing proposed but
not yet implemented operators with the subject’s data.

Soar/MT - 21 December 1992

Supporting TBPA with an integrated computer environment 69

Revise

/

Pseudo-revision

A4 Mappings‘

C?nnéggational =) Action1' | Yo==x) |Data 1

Action 2’

Data 2

Action M’):::::::}

Data N

Interpret
& Align

Figure 3-14: Diagram illustrating direct trace modification as a form
of pseudo-model revision.

3.2.2 The environment must automate what it can

There are several aspects of the testing environment that will make it difficult to use. The amount of
data and the allowed manipulations are large. The environment will be made up of several different
systems, for modeling, matching, manipulating, and graphing. The users. will not be novices at the
task, but will be novices with respect to the environment. They will need assistance, but of a very
different kind than typical novice users, who are novices at both the task and the supporting
environment.

As noted in the review, it is not currently possible to automate the whole testing process in its general
form. However, performing the analysis quickly will require that the system automatically assists in
some ways in performing each of the steps. This assistance is also required to reduce the cognitive
load and remove repetitive actions. Automatic actions will make the task less tedious, and is a
necessary step towards making the testing automatic. This level of assistance will be achievable.

3.2.3 The environment must support the user for the rest

Although we may dream the dream of intelligently automated analysis, currently and in the foreseeable
future, not every action can be automated. The analyst will end up cleaning up the automatic analyses,
and performing those too difficult to automate.

General tools and a macro language. While a general methodology for testing process models with
protocol data can be laid out, the examination of the previous examples of analysis presented in
Chapter 2 shows that many different submethods and techniques are used. The general and fluid needs
of this task require general tools, supporting many different analyses. A macro language must also be

Soar/MT - 21 December 1992

70 Requirements for testing process models using
trace based protocol analysis

provided. Within a given analysis, there will often be unanticipated subtasks that must be applied
numerous times. These may be simple changes, such as replacing one word with another, or more
complicated tasks such as conditionally reinterpreting and realigning subsequences of the predictions
with the data.

Providing uniform interface and a path to expertise. The testing process is a difficult task itself. The
computer environment to support it should not add to this burden, but lighten it. The first step is to
provide an interface that is uniform across the tools. The second step is to provide a path to expertise.
This path starts with making the environment menu driven for novices. Experts will want to perform
more rapidly by using keystroke accelerators and the basic commands for macro creation. Novices
will progress to experts through on-line copies of manuals, and help on the menu item, keystroke, and
function level. '

Display and support manipulating large amounts of data. As noted in the review chapter, fully testing
process models will require better displays of data than are currently used. The analyst has on hand
too much data, and cannot understand it when it is presented only as text. If the interface is done well
enough, the raw amount of data that has to be manipulated will become the limiting factor in
performing the analysis.

The data that have to be manipulated includes (a) the protocol statements and any preliminary analyses
or coding of the segments, (b) the trace from the model, (c) the basic content of the model, including a
snapshot of all short-term knowledge for any given time, and all long-term knowledge, (d) the
correspondences between the protocol and the trace. The analyst will also need the ability to
characterize the essential features of all of the above data sets. The environment must also contain
information on itself, such as which analysis is being run, and which files are open. Each data type
will need its own display, but several of these data sets are made up of elements from the model and
the subject’s actions, and the displays must incorporate their relationship.

The displays for two of the data sets must receive particular attention. First, the analyst must be able to
understand how well the model fits. They must be able to examine and understand the comparison
between the model’s predictions and the subject’s actions. Where and how to improve the fit between
the model’s predictions and data are difficult to see without a special "looking glass". Second, the
analyst needs to understand the model, its structure and behavior so that they can modify it.

3.3 The role of an intelligent architecture in the testing process

There are three roles the architecture can play in creating an integrated environment for performing
TBPA. The first is providing an interpreter for the knowledge that makes up the model. The second is
providing a language for summarizing data supporting the model being tested. If the architecture deals
with problem spaces, states, and operators, like Soar does, then the support must be in terms of
problem spaces, states, and operators. If the architecture is based solely on rules, then the support must
be in those terms. The third role that an intelligent architecture can provide is the promise of more
extensive automatic analysis. The analysis task is also intelligent behavior, and is susceptible to being
modeled with a functional model. Once modeled, the model can be used to perform the task.

3.3.1 Soar: The architecture used in this environment

Be;low a particular level of detail, which we are now at, the specific architecture that will be used in
Qus work must be specified. It will be integrated within the environment, and to a certain extent
influence the methodology through the types of tasks that can be approached.

General requirements for a cognitive architecture could be noted here, but this has already been done
in some detail by Newell (1990). However, it is worth noting that the requircments for the
architecture, even the general requirements, get highlighted through testing. For example, the general
requirement that the architecture support learning applies to models of behavior as short as several

Soar/MT - 21 December 1992

The role of an intelligent architecture in the testing process 71

hundred seconds. Ohlsson’s (1980, p. 184) attempt to model solving linear syllogisms was held back
by his model’s inability to learn between and during problem solving episodes.

Soar, an architecture for implementing process models. Soar (Laird et al., 1990; Laird, et al., 1987;
Newell, 1990) is used as the architecture in this work. Soar is a proposed unified theory of cognition
realized as a relatively well developed software system. For the purpose of this paper, Soar is not so
different from previous architectures for cognition (e.g., Newell & Simon, 1972, Ch. 14; Simon’s
architecture (Simon (1979; 1989) or Erikson & Simon (1984)). Soar is just created with more
constraints from psychology in mind, with additional abilities and improvements from Al algorithms.

There are other candidate architectures. The primary ones include ActR (Anderson, in press), CAPS
(Just & Carpenter, 1987; Thibadeau, et al., 1982), the family of PDP models (McClelland et al., 1986;
Rumelhart, et al,, 1986), and numerous less developed architectures (SigArt, 1991). Most of the
techniques covered here are not theoretically limited to Soar; any cognitive architecture that can
produce a trace of predicted actions or mental states could have been used. Soar is a particularly good
one to start with; most proposed architectures are less developed as computer systems, less
psychologically oriented, or both. However, whichever one is chosen, its features will get embedded
in the environment, in many places and in many ways.

The key points of Soar that the reader must understand to follow this thesis are simple and few. Soar
uses knowledge represented as productions (Newell, 1980a; Young, 1979) to formulate behavior as
goal directed search in and through problem spaces, so all long-term knowledge, such as knowledge
for operator application and selection, is realized as production rules.

By their application operators move the system from one knowledge state to the next. When progress
is stopped by lack of knowledge or conflicts in the available knowledge, a situation-based impasse is
declared, and the architecture takes that as its next goal to solve. This goal in turn is approached by
selection of a problem space to solve it, an initial state of knowledge, and an initial operator to apply.
The selected items are known as context elements. If progress is again impeded by lack of available
knowledge, another goal is created, a problem space is selected and so on. A subgoal hierarchy,
representing working memory, is created this way. When an impasse is resolved, a new production (a
chunk) is learned. It represents the knowledge used to solve the problem (the condition of the new
production) and the information needed to avoid the impasse (the action). This chunk will prevent
similar impasses from occurring in the future.

Each object in Soar is represented as a set of attribute-value pairs. Object names are also represented
with attributes. Many objects will be created with the name attribute filled, but they need not. When
an attribute is not provided, this can also be tested. Each object is unique though, and at the time of its
creation, it is given a unique ID, such as G23.

The choice of which object to select for a given slot, when there are multiple choices, is decided with a
preference calculus. The object must first be acceptable. If there is a single object also with a best
preference or an object that is better then the all the other selections, then it is selected. More
complicated combinations are possible. Full details are given in the Soar description and manual
(Laird et al., 1990; Laird, et al., 1987; Newell, 1990).

A macro language has been created to manipulate Soar on the problem space level. TAQL (Yost,
1992; Yost & Altmann, 1991) consists of a set of constructs that correspond to the natural actions on
the problem space level, such as operator proposal and comparison between two objects. The
constructs are compiled into Soar productions by the TAQL compiler at load time. The TAQL

compiler includes the ability to provide predictions of the problem space calling order based on the
TAQL constructs loaded.

The Soar architecture has a basically deterministic implementation. The selection between problem
spaces, states, and operators may be stochastic when the choices are equivalent, but upon their
selection they are implemented deterministicly in a context sensitive manner (e.g., the operator add

Soar/MT - 21 December 1992

72 Requirements for testing process models using
trace based protocol analysis

does different things with different numbers, but always the same thing with the same numbers). This
assumption simplifies any comparison with data.

3.3.2 Making functional models examinable

But where is the Soar model so that we might know it, and support it with data, and later automatically
modify it? How does one get at a Soar model? Soar, as it comes out of the box, does not have explicit
problem space level structures; operators and other problem space level objects are only implicitly
available in the productions. The problem space level structure appears as emergent behavior when the
system is run, and disappears after that. Attempts to derive them from any process other than running
them are only approximate.

In general terms, keeping track of what the model exists in the productions is an agent tracking
problem (Ward, 1991). In his thesis, Ward proposed that the agent tracking system would predict the
agent’s behavior by applying the same knowledge as the agent being modeled has. In Ward’s domain
of intelligent tutoring systems, this approach performed well, perhaps because the expert knowledge
(the presumed knowledge of the agent) was fixed, and the model was complete or nearly so.

In general, there appear to be problems with this approach. The agent tracking system cannot examine
all the possible behaviors currently available in the model because they have to be evoked within a
functional model. The agent tracking methodology suggested by Ward provides a mechanism to evoke
them, but the agent tracker is not guaranteed to find all of the model’s behaviors. Near misses, where
subject actions were close to being evoked in the model but were not, are particularly important to find
because they represent the parts of the model that will need to be modified. Also, when the agent
tracker does not predict the agents behavior correctly, only a locally driven backtracking mechanism is
available to resynchronize the agent tracker. The Ward system was based solely on external actions
required to perform the task matched to the model’s external task actions. The match of the
predictions to the data was one-to-one and onto, which is not often available, certainly not when verbal
protocols are matched to internal states, or when the task allows multiple ways to perform a task.

This same problem has been seen by developers of expert systems (e.g., Brueker & Wielinga, 1989).
The expert cannot elicit all of their behaviors upon demand. Creating a model of an expert involves
some direct €licitation, augmented through observing them perform a variety of tasks.

The problems extending the agent tracking approach may be indicative of a general problem with
functional models. Their knowledge used to perform a task is not inspectable until it is brought to bear
to perform the task. When all of their knowledge is made examinable, it can no longer be used to
perform the task because it is no longer directly in the architecture’s terms, but in another language
such as English — the classic declarative/procedural tradeoff. This provides an explanation for why
external predictions and modifications of behavior will often be better than the system can perform on
its own, and that in order to use functional models the user will need a non-functional, declarative
model of them.

Figure 3-15 presents a schematic of an intelligent protocol analyzer. This indicates that if we want
information about the model available in complete form and without running the model, we have to
have a system to watch, cumulate the model’s response and action history and summarize it. This
information could be summarized by a separate, more declarative Soar model itself, or more simply, by
a bookkeeping system just for keeping track of what problem spaces, operators (and so on) have
appeared. The result, a list of operators applied perhaps, will itself also be a model. It still must get
run (queried) to produce some output, only the necessary inferences are available much faster and in
more complete form, and it may be a simpler model, one that is not functional, merely descriptive.

These simpler descriptive, non-functional models, of what operators are available and what features
will be seen in a state, must be ubiquitous in intelligent agents. They are necessary to know which
button to press on a VCR, and they are also necessary for understanding other agents, when a full
process model is not available, or too expensive to be applied. Normally the models are simpler than

Soar/MT - 21 December 1992

The role of an intelligent architecture in the testing process 73

Agent 3: Intelligent agent tracker
1. Tracks and matches behavior of agents 1 & 2.
2. Detects discrepancies.
3. Coustructs declarative representation of
knowledge in agent 2.
4. Characterizes and implements changes needed
in agent 2. .
Agent 2: process model of Agent 1: Human subject
human behavior

Figure 3-15: Grand design for an intelligently automatic protocol analyzer.

the process being modeled, but that is not always the case. Superstitious behavior is an example where
the model includes extra rules that do not exist in the process being modeled, such as having to throw
salt if you spill it. ‘

Summarizing empirical support for the model. The declarative version of the procedural model created
by running it is also used to summarize support for the procedural model. The individual rules are not
the appropriate level. In Soar at least, they are the implementation, not the theory itself. The
operators, because they represent objects in the architecture, are one of the appropriate levels. The
knowledge level (Newell, 1980b) is probably the best, it represents the results in the most general
terms, but it will also be the hardest to find automatically, and since it is presented completely without
reference to an architecture, it is completely declarative.

The appropriate terms for accumulating empirical support are based on the architecture. In Soar, the
architecture is the Problem Space Computation Model (PSCM) (Newell, Yost, Laird, Rosenbloom, &
Altmann, 1990), and the terms will be of problem space level object’s (e.g., operators) creation,
proposal, selection, and application. These objects, the role they played in the current behavior, and
the portions that were observed in the data must be identified by more than just name. It would appear
that the most natural representation for this may end up being a production language, but probably a
different, more inspectable one than the original model was implemented within.

So to sumimarize, the agent tracking system that wants to modify its agent model will need an
additional, simpler, declarative model of the agent it wants to modify, and the declarative
representation must be in terms of the architecture. As a declarative model, it will not be able to
perform the task, but describe the procedural model in terms of the architecture. This simpler model

can be used to suggest ways to manipulate the full functional model, and aggregates support for the
procedural version.

Soar/MT - 21 December 1992

74 Requirements for testing process models using
trace based protocol analysis

3.3.3 Using the architecture to automate the analysis

An environment to support TBPA will include an architecture to implement the model that is capable
of genuinely intelligent behavior. Why not put it to work to help do the analyses? It could learn by
watching or be programmed. This thesis is only a small step in defining how model building and
testing (in general, agent modeling) could be automated. But by working within a functional, unified
architecture, it is possible to spin a story of how it could work all the way down — to completely
automatic cognitive modeling.

The first step towards this vision was to define the operations required to do this task, which this
chapter proposes to have done for TBPA. Next, the knowledge to perform this task must be put into an
intelligent architecture. Soar could also serve as the architecture, and the knowledge to test and build
models could be gathered like that for any cognitive model or expert system. Finally, the analyses
environment should be made available to the architecture and the modeling knowledge. Soar learns.
So perhaps an easier way to automate this task is through learning, by watching a series of analyses.
As the more automatic Soar/MT watched a series of routine analyses over similar episodes be
performed, it could follow along, learning how to run the analyses, and then driving the analysis
programs itself (Newell & Steier, 1992).

This approach appears to be close, the next thesis, or at least then the one after that — the basic
requirements have been identified, some of the simpler details have been automated, and a prototype of
the environment that must be manipulated is in place. The most immediate step towards this would be
to get a model to perform some of the simpler subtasks.

3.4 Summary of requirements and description of the environment’s design

All the requirements for an environment to assist in testing process models are collected into Figure
3-16. These requirements are incorporated in the design of the Soar/MT environment, Model Testing
capabilities in Soar. Figure 3-16 shows a schematic of the three major subcomponents of Soar/MT and
the systems they are built on. Soar/MT consists of systems for testing the predictions with data,
mterpretmg the correspondences with respect to the model, and manipulating the model. In addition to
the overview provided here, each of the three main tools are described separately in the next three
chapters.

Interpretation_and alignment of the data with respect to the predictions. Spa-mode provides a
structured editor within GNU-Emacs for editing protocols and their correspondence with a running
Soar model of the task. It is based on the Dismal spreadsheet (Ritter & Fox, 1992), which provides a
tabular display, and direct support for manipulating the two information streams (the trace and the
protocol) as separate sets of columns. The basic spreadsheet has been extended to incorporate the
ability to semi-automatically align the predictions with the data based on a simple regular expression
;quilvalence parser. Additional commands let the analyst change and correct this simple alignment by
and.

Graphic _display of the comparison. Two graphic displays of the comparison can be created
automatically from the alignment data. The first display, based on Peck and John's (1992) model
support graph, displays the data with respect to the model predictions that are matched. The second,
new display graphically presents the relatmnshxp between the predictions and the data with respect to
time. Signature phenomena of various ways the predlctlons can mismatch the data have been
identified. They can be used as direct indicators of how to improve the model.

These displays are only examples of the types of displays that can be used to highlight how the
model’s predlctxons mismatch the data, and where it can be improved. A structured editor (S-mode) is

provided to assist in creating additional graphs in S, the underlying graphic language. The S-mode
editor is now joint work (Bates, Kademan, & Ritter, 1990).

Soar/MT - 21 December 1992

Summary of requirements

Supported by

and description of the environment’s design

Requirements for the process model’s trace.

New trace

New trace
New & old trace
SX graphic dieplay
na

Spa-mode

Spa-mode

Spa-mode/Fit graphs
Fit graphs
Spa-mode/Fit graphs

SX graphic display &
Model fit graph
DSI

All parts
of the
Soar/MT environment

(a) Include: A
(1) Unambiguous predictions for each subject information
stream (external and internal actions), and
(ii) Time stamps for each action.
(b) Be readable by humans.
(c) Provide various levels of detail.
(d) Provide aggregate measures of performance.
(e) Be deterministic even if the model is not.

Requirenments for directly testing the model‘s
predictions with protocol data.
(a) Interpret and align the data with respect
to the model’s predictions.
(b) Display and edit the protocol, predictions, and environment
response streams and the correspondences.

Requirements for analyzing the comparison of the data with
the model’s predictions.

(a) Show where the data does not match the predictionms.
(b) Aggregate the results of the comparison in terms of the model.
(c) Interpret the test results as clues for modifying the model.

Requirements for modifying the model. .
(a) Display the model so it can be understood.

(b) Modify the model based on comparison.

Requirements based on integrating the steps and supporting TBPA
with.a computational environment.
(a) Provide interchangable representations and
functionality based on the model being tested.
(b) The environment must automate what it can.
To support the user for the rest of the task:

(c) Provide a uniform interface including a path to expertise.
(d) Provide general tools and a macro language.
(e) Provide tools for displaying and

manipulating large amounts of data.

Soar/MT

Functional level pregiction Trace Interpret & Align Analytic measures of fit.

(€. 6) (Ch. 4 (Cb.5) (<|:h.6)
Software level Spa-mode Fit displays Dsl
Soar-mode Tagl-mode SX graphic display &

Supporting levels command interpreter

et loped as part Dismal spreadsheet S-mode (v.3.45)

of this work | |
Supporting level(s) Soar GNU-Emacs S-mode S llisp-mode lemi)hte Soars Garnet

(K&B, 1990) support
GNU-Emacs Common Lisp X

Figure 3-16: Requirements for an environment for testing process models and
overview of the Soar/MT environment to support these requirements.

Soar/MT - 21 December 1992

76 Requirements for testing process models using
trace based protocol analysis :

Model tracing and manipulation. The Developmental Soar Interface (DSI)2 provides an interactive
graphic and textual interface for running and manipulating process models in Soar. The DSI consists
of three integrated yet independent pieces of software. They are designed to provide multiple entry
points for users so that they may manipulate and examine Soar models in a natural and consistent way.
For example, while examining the graphic display of Soar’s working memory, users can run the model
ahead a simulation cycle by typing a single character on the graphic display, and while editing the
model in the accompanying editor, they can run the model though similar editor commands.

The largest module is the Soar in X (SX) graphic display. By displaying and storing the problem space
organization over time, it adds to Soar in a real way the concepts of problem space level statistics,
macrocycles, and user specified hooks. Problem space level objects and their working memory
components can be examined by clicking on them. The models effect on working memory can be
monitored in examination windows. An associated command interpreter and pop-up menu provide
keystroke and keyword commands to manipulate Soar. The SX display also includes a modified trace
designed for automatic interpretation and alignment with data.

The second module is Soar-mode, a structured editor and debugger written within GNU-Emacs, the
latest version of the Emacs editor (Free Software Foundation, 1988; Stallman, 1984). It provides an
integrated structured editor for editing, running, and debugging Soar on the production level.
Descriptions of the productions that are firing or are going to fire can be automatically displayed. It
includes for the first time complete on-line documentation on Soar and a simple browser to access it.

The third module, TAQL-mode, is a structured editor for editing and debugging programs written in
the TAQL macro language. By providing TAQL constructs as templates to complete rather than
syntactic structures to be recalled it decreases syntactic and semantic errors. After inserting templates
users can complete them in a flexible manner by filling them in completely or only partially, escaping
to the resident editor to work on something else or to edit them more directly. This leaves general
editor commands available throughout the editing session. At any point in the process users can
complete any partial expansions or add additional top level clauses, choosing from a menu appropriate
to the construct being modified.

A shared design. The requirements based on providing a computational environment to support TBPA
require a shared design. Some must be met by the environment as a whole and require a uniform
design (a - interaction between the environment’s components, and ¢ - a consistent interface). The
others end up being met in each tool individually and in different ways (b - automation, d - general
tools, and e - support for dealing with lots of data).

The first requirement influencing the design is that the environment must be integrated — the tools
must work together, sharing common data structures, and the analyst must be able to switch between
them as needed. The glue that will bind them together will be that their data structures will all
reference the same Soar model. Their communication link-ups will be straightforward because they
will all be processes in Emacs. The tools can use these two features to pass data structures between
themselves, and to let these functionalities incorporated in each tool be called by the other tools.

The second requirement, that of automating analyses, is supported in different ways in each tool. The
interpretation and alignment tool includes a simple interpretation and alignment algorithm. The system
charged with explaining the comparison creates graphs automatically from the alignment data. The
model manipulation tool supports the user in keeping track of files and in loading and running the
model.

To support the third requirement of providing a uniform, learnable interface, each tool is designed to
be driven by similar menus, use similar keybindings, and have a consistent style. The tools that make
up Soar/MT all provide a similar path to expertise by including the features presented in Table 3-15.

2Pronounced Dee Ess Eye.

Soar/MT - 21 December 1992

Summary of requirements and description of the envirohment's design . 77

Novices and casual users can start out using a menu to perform the analyses, and graduate to using the
keystroke accelerators provided on the menus. When they need additional information, on-line help is
available for each command, as well as a complete manual that is available on-line or as hardcopy.

Table 3-15: The features that all parts of the Soar/MT environment share as aids
for ease of use and learnability.

(a) Menus to drive the interface.
(b) Keystroke accelerators available and automatically placed on menus.
(c) Help provided for each command on request.

(d) Hardcopy manuals also available on-line through the menu.

To support the fourth requitemexit of providing general tools, each system provides general building
blocks, and includes an open software architecture that can be used to create macros and new analyses.

The final requirement of providing tools for displaying and manipulating large amounts of data is
supported in the environment through a combination of approaches based on graphic and textual
displays. Diagrams are taken as the basic building block because they offer the ability to explicitly and
directly display large amounts of data (Tufte, 1990). They also provide the ability to group related
information, and to perceptually support necessary inferences and operations in performing a task,
which are effort-full and require additional time when the information is presented as text (Larkin &
Simon, 1987). Text is also used where there are not perceptually operators and representations
available, or the information consists primarily of propositions (and one must remember text can be
considered as graphics, particularly when it is manipulated with a mouse). This means choosing
graphics for inforrnation that is well represented graphicly, and text for information that is well
represented textually. Both will be useful.

An organization scheme that will be used to display large amounts of data is to provide a recursive
interactive display. High level structures (top-nodes) are directly displayed. They can be unpacked
interactively and recursnvely to get details upon request. The display must display all levels well so
that the structure is apparent. By providing the ability to let users directly mampulate the data points

and model bits, the displays can also serve as an interface to the data. This is the central feature of
outline processors.

The relevant theoretical objects will also be directly manipulable. The environment will allow the
analyst to directly manipulate and examine the appropriate objects on the theoretical level. In each
step of the analysis they are different, in the trace they are the model’s actions, in the match and

analyses they are the correspondences, and when modifying the Soar model they are productions and
problem space level objects.

Soar/MT - 21 December 1992

Soar/MT - 21 December 1992

78

II Supporting the TBPA methodology:

A description of the Soar/MT environment

Soar/MT - 21 December 1992

79

Requirements for testing process models using
trace based protocol analysis

Soar/MT - 21 December 1992

80

A spreadsheet for comparing the model’s predictions with the data 81

Chapter 4
A spreadsheet for comparing the model’s predictions with the data

Spa-mode is a spreadsheet facility to support the model-testing requirements related to interpreting and
aligning a process model’s sequential predictions with protocol data. These specific requirements are
shown in Table 4-16 along with the global requirements of integration, automation, and support for
non-automated tasks that must also be satisfied. Some of Spa-mode’s initial design and iconography
comes from Trace&Transcribe (John, 1990), but it goes significantly fucther in its representations and
in the tools it provides for interpreting and aligning the transcribed protocol data with. respect to the
predictions. Spa-mode provides a simple alignment algorithm that can automatically align trace-
elements with unambiguous protocol segments. There are several other commands that can be used to
clean up the alignment, and to align the model’s predictions with less clear protocols (e.g., verbal
protocols). Spa-mode also includes the ability to code protocols with operator names taken directly
from a running Soar model, a loaded TAQL program, or from a saved file of previously used operator
names.

Spa-mode is built on the Dismal spreadsheet (Ritter & Fox, 1992), which is implemented as a set of
extensions (a major-mode in Emacs terms) to the- GNU-Emacs editor (Free Software Foundation,
1988). Dismal includes most of the major functions that one now expects from a spreadsheet, such as
(a) the addition, deletion, clearing, and yanking of cells, rows, columns, and range; (b) formula entry
and evaluation; (c) movement within the spreadsheet with keystrokes and mouse movements; and (d)
the ability to format each cell’s display. The difference is that Dismal lives within the GNU-Emacs
environment. The GNU-Emacs environment provides the ability to cut and paste between files, a
complete text editor, a language for writing user functions (GNU Emacs-Lisp), and complete on-line
help.

Table 4-16: Requirements supported by Spa-mode

Requirements for using the model’s predictions to interpret the data
(a) Display and support editing the correspondences.
(b) Automatic alignment of unambiguous actions.
(c) Support matching ambiguous actions.
Requirements for analyzing the comparison of the data with the model’s predictions
(a) Show where the data does not match the predictions.
Requirements based on integrating the steps and supporting TBPA
with a computational environment
(a) Provide consistent representations and functionality based on the architecture.
(b) The environment must automate what it can.
To support the user for the rest of the task:
(c) Provide a uniform interface including a path to expertise.
(d) Provide general tools and a macro language.
(e) Provide tools for displaying and manipulating large amounts of data.

The largest need addressed by Spa-mode is to interpret and align the protocol data with respect to the
model’s sequential predictions. Aligning predictions to data by hand is tedious and error prone, so
some assistance is warranted for unambiguous data such as motor actions. Providing alignment
automatically and completely is beyond current natural language parsing technology. However, other
data (e.g., mouse clicks) are discrete and relatively unambiguous. These data can be automatically
aligned with process models’ predictions.

Providing assistance through automatic alignment of discrete protocols along with a semi-automatic
tool for aligning verbal protocols appears to be a good compromise. There are several data streams
that would be well suited for this. The model’s overt motor interactions with the world can be directly
aligned to overt world interactions of the subject, as well as codes built from verbal utterances to the
model’s operations or states. Verbal utterances may be partially aligned to model operations, and their

Soar/MT - 21 December 1992

A spreadsheet for comparing the model’s predictions with the data 82

T Mouse actions Window actiocns Verbal &T # Mtype MDC DC Soar trace
-+ + + L R -=4+
0 I believe v 1 short
0 G: g1
1 P: pé (top-space)
2 8: oS
3 O: browse ()
4 =>G: gl9 (operator no-change)
S P: p26 (browsing)
[8: 839 ((unkoown) (unknown))
7 01 find-appropriate-help
] =>@: g43 (operator no-change)
9 P: p50 (find-appropriate-help
10 8: 859 ((unknown) (unknown))
11 O: define-search-criterion
12 =>G@: g65 (operator no-change)
13 P+ p73 (define-search-criterion)
14 8: 879 ((unknown))
[write v 2 v 15 18 Os generate-search-criterion ((write))
9 write v.3 v 15
13 write v 4 v 15
M(+x) (R of prog win) Bd
mouse line to pointer
: 16 O: evaluate-search-criterion
17 O: define-evaluation-criterion
18 =>@: gl03 (operator no-change)
--¢%.emacs [SHAMO.S0AR]: example-types.spa A36 ManUp <H] (8PA) ~=--TOp-——wcreccemencecccccrccvcacnaaa
Figure 4-17:

Example display of a model trace aligned with data (taken from the Write episode of Browser-
Soar). Left-hand columns "T" (time of subject’s actions) through "MDC" (matched decision
cycle) are one meta-column, and columns "DC" and "Soar trace" on the right are another meta-
column. The right-most simple column of the left meta-column (in this case the H column) is
indicated to uses in the editor’s mode line (the bottom line of the figure) as "<H]".

alignment will often be constrained by the less ambiguous data streams.

4.1 Displaying and editing the correspondences

Most importantly, the analyst needs to view the correspondences, and annotate and edit them as
appropriate. Providing all the capabilities normally associated with a spreadsheet takes care of most of
these requirements. This includes the ability to resegment by adding additional cells and breaking a
segment into several segments. This set of capabilities provides the bookkeeping abilities mentioned
in the review.

Spa-mode uses a tabular display, noted as necessary in the review. The tabular display helps the
analyst see how to line up the predictions and to understand the alignment by providing the context of
each match, along with a visual operation (scanning a row) to identify the prediction and data that are
paired. The tabular display also shows how much of the model is matched and unmatched, and it starts
to show patterns in the alignment by sheer ink usage. This tabular display, with the field names shown
as column headings, also allows more data (Context) to be displayed on the screen. Typical users can
now see up to 60 lines of the comparison. The tabular display reflects the underlying matrix
organization of the data into rows of segments that each include several fields displayed as columns.
Automatic alignment programs and semi-automatic tools have a uniform and appropriate data structure
holding the segments and protocols to manipulate.

Spa-mode adds to Dismal the idea of meta-columns. During alignment operations there are two sets of
columns that need to stay aligned with respect to each other. A meta-column ties these columns
together so that cells within a meta-column remain aligned. This is necessary when the model’s
predictions or the data span more than one simple spreadsheet column. For example, most models will
use two columns to hold the model’s predictions and their simulation cycle. These two simple
columns would be placed in a meta-column. In the example analysis in this thesis the columns on the

Soar/MT - 21 December 1992

A spreadsheet for comparing the model’s predictions with the data 83

right are the data columns, and the columns on the left are associated with the trace, but this need not
be the case.

Making the most of the visual space. In addition to using a tabular display, clever screen design within
the spreadsheet can take further advantage of the tabular display to make more of the visual space.
Additional information can be presented through overlapping use of columns (i.e., since the mouse
movement and verbal utterance columns will never both be filled within the same segment (row), they
can be placed so that long values of each run over into the other). Keeping all columns flush right
saves adding an extra blank column between filled columns from running together. Space can also be
used more efficiently by removing leading digits on numbers3, removing extraneous whitespace in
strings, and abbreviating mouse movement codes. Taken together, these improvements allow
approximately 40% more information to be displayed on the spreadsheets used in Chapter 7 than an
initial design based on the Excel versions used by Peck and John (1992).

The types of alignments. Once the predictions have been aligned with the data, either automatically,
semi-automatically, or completely by hand, they must be presented in an interpretable manner. Figure -
4-17 shows an Spa-mode display with fictitious data and model predictions. The simple columns A
through H are a meta-column of subject data, and the simple columns I and J are another meta-column
used to represent the model’s predictions. In this display, lines O through 10 are used as a header, but
like any other spreadsheet, these rows are not fixed as header rows. Line 11 holds a ruler, which
names the columns. This too can be adjusted to any row, or omitted. When the user scrolls, the
contents of the ruler row are redrawn as the top line of the display.

This example includes all of the ways Spa-mode can display how the model’s predictions are matched
by the data. The display should be capable of representing the types of correspondences noted in Table
2-5, and we will find that it can represent all but one. The way Spa-mode represents each type of
match is noted in Figure 4-17.

There is one type of correspondence mentioned in Table 2-5 that cannot currently be represented in
Spa-mode, a subject action that is matched by multiple model actions. The current representation
assumes that what matches a given data segment is a single action of the model. This lack of
representation serves as a useful constraint — segments that match more than one model action

probably are not segments. Either the model is more fine grained than the data, or the segment should
be considered for resegmenting.

Simple measures of fit and simple analyses. Another requirement Spa-mode starts to address is
interpreting the alignment. This includes summary statistics of the comparisons, the time course of the
match, and the ability to display the types of matches previously noted in Table 2-5. (A more global,
model-based view will also be necessary, and this is covered in the next chapter.)

Formulas in Spa-mode can directly support some low level analyses of the comparison, such as
counting the matches and numbers of operators matched. All of the simple measures presented in
Section 2.4.4, such' as goodness = hits - false-alarms, are directly supported. Additional measures,
such as the number of model actions matched and number of words in a protocol have been added as
Formulas or special functions as well.

A data-base facility (somewhat similar to the database facilities in Excel) comes with GNU-Emacs.
list-matching-lines (a function) shows in a buffer all segments that match a given regular expression.
A specifiable number of lines surrounding each matched line can also be included. Once the contents
of an Spa-mode buffer are copied into a scratch buffer, there are additional functions provided within
GNU-Emacs for manipulating the resulting buffer, such as delete-non-matching-lines, which deletes
all lines except those containing matches for a regular expression, and delete-matching-lines, which

3This suggests that a currently unavailable but useful format for number series in spreadsheets where the leading digits are
repeated would be to present just their trailing digits.

Soar/MT - 21 December 1992

A spreadsheet for comparing the model’s predictions with the data

A B [D Br a g I J K
L R 4o mmcemmccoccans b P P e e et h S T +

¢ Rxample spa-mode file prepared for the thesis.

1 Last edited 14-0ct-92

2

3 ? is timestamp of action in s.

4 MOUSR EVENTS is the user’s mouse movemsnts. MTYPE ia type of match

S WINDOW EVENTS are responses from the sy MDC is tched DC.

6 VERBAL is verbal protocols. DC is decision cycle in Scar model.

7 87 is Segment Type SOAR TRACE is the literal Soar Trace

0 # is segment number

9 [T™his is a fabricated example trace and behavior.])

10

11 T MOUSE EVENTS WINDOW EVENTS VERBAL ST # MTYPE MDC DC MODEL TRACE

12 0 I believe v 1 short Uncodable 8
13

14 ¢ write v 2 v 1515 . O: generate-search-criterion {(write)) Multiple hit
15 9 write v 3 v 15 Multiple hit
16 13 write v 4 v 15 Multiple hit
17

18 45 . O: change-search-cariterion ((draw))

19

20 S6¢ . . O: scroll (keyword)

21 ST . . =>0: g451 (op no-ch }

a2 88 . . . P: pd56 (mac-scroll-method)

23 $9 . . . 8: 8467 ((to-be-found write})

24 17 M{(+x) to {keyword dn arrow) - 7 mr 60 60 . . . O: move-mouse (keyword downm) Hit

a5 .

36 17 ¢ keyword menu scrolls mb ¢ wmuc Miss

27

as fa 71T . . . O: move-mouse (keyword down) False alarm
29

30 21 perhaps I should draw instead v 9 v 45 Crossed

31

32 83 . . O: change-current-window () Uncodable
33 84 . . =>3: g696 (operator no-change) model

3¢ 85 . . . P: p703 (change-window) actions
a5 98 . . . 8: 8711 ((to-be-found write)

36 87 . . . O: scroll (keyword)

37 88 . . . =>G: g724 (operator no-change)

38

39 --**-emacs{SHAMO.SOAR]: example-types.spa A36 ManUp <H] (BPA) ----TOp--=v-=-c-mcccceon

¢ An uncodable subject action, one that cannot be interpreted with respect to the model, is shown on line
12 (as numbered on the left-hand side) — a verbal utterance that is t00 short to code. It is indicated by
the lack of a matching model trace and the code "short” in the match type (MTYPE) column.

e Uncoded model actions are shown in lines 18, 20 to 23, and 32 to 37. They are indicated by model
traces without corresponding subject actions.

o Hits are shown in lines 14, 24, and 30. The match is indicated in columns E through H. Column E notes
the type of the match of the segment (ST), which in this case is mouse movement, or mm. The type of
correspondence (column G, MTYPE) is of a matched mouse movement. The simulation cycle that is
matched by the mouse movement is shown in Column H as the matched decision cycle (MDC).

¢ A multiple subject action hit occurs on lines 14 through 16. In this case, the MDC and DC columns are
not always the same. The Matched decision cycle column ends up with multiple entries for the decision
cycle 15.

* A miss is shown on line 26. The subject has clicked the mouse, and there is no corresponding action in
the model’s trace.

¢ A false alarm is shown on line 28. In this case, the model has performed an overt action that has to be
coded, but there is no corresponding subject action.

* A pair of actions that are crossed in time is shown in Lines 30 and 24. The comresponding behaviors
cannot be directly aligned while keeping them both in order, so the matched decision cycle column is
used as a reference for the last subject action matched.

Figure 4-18: Types of correspondences that can be represented in Spa-mode.

Soar/MT - 21 December 1992

A spreadsheet for comparing the model’s predictions with the data 85

does the opposite.

Taken alone, the spreadsheet approach only starts to provide a vehicle for understanding the
comparison between the model’s predictions and the data. More global, even more informationally
dense model based displays will be necessary to understand the comparison at a higher level. Potential
solutions to this requirement, diagrams and other measures, are presented in the next chapter.

4.2 Automatically aligning unambiguous segments

In order to align the two meta-columns, the user specifies which tokens in each information stream
match through a list of regular expressions. For example, in the data shown in Figure 4-17, in the
transcribed mouse actions "AC$" matches in the Soar trace "O: click-button". ("AC$" is a beginning of
string (%), a "C", and an end of string ($).) The trace matching pattern could also have the beginning
and end marked, but it is not necessary. The alignment algorithm is then called either directly as a
command, or from a menu, and an initial match is computed. The alignment algorithm then displays
the matches one-by-one to the user for verification. After viewing each proposed match, the user can
accept it, decline it, or escape to the next step by accepting all the remaining matches. After the set of
matches has been approved, the alignments are passed off to a program to actually align the meta-
columns in the spreadsheet.

The algorithm used by Spa-mode to compute the alignment is based on the Cardl algorithm (Card,
Moran, & Newell, 1983, Appendix to Chapter 5) explained in Chapter 2, and presented in more detail
in that chapter’s appendix. Cardl is a straightforward implementation to solve the maximum common
subsequence problem (Hirschberg, 1975; Wagner & Fisher, 1974), except the output will not just be
the maximum length, but the actual matched subsequences that will be used to align the two meta
columns kept in the spreadsheet. Because the two information streams may use different tokens
(sometimes even verbal utterances), the extensions must include the ability to specify what constitutes
a match. The extensions to the algorithm presented here are labeled as the Card2 algorithm.

The alignment starts at the first prediction and subject action matched, not at the first action in either
information stream. The relationships of unmatched items at the beginning or end cannot be specified
because they are not aligned. Various later displays and analyses have to adjust their analyses not from
the first time stamp, but from the first matched time stamp.

The Card2 algorithm. The output of the Cardl algorithm suffers from a simple error that can be
simply fixed. The small error is that the sequence Cardl returns is reversed. This is not normally a
problem. However, Spa-mode uses the returned sequence (and its internal references to the original
sequences) to align a protocol and the predictions. This is easily remedied by changing the pointers
used to create the list. Figure 4-19 shows the first improvement to the algorithm, now called Card2.

Potential problems avoided: Multiple possible match sets. There may be several possible "best"
alignments. Since we are interested not just in how much could be aligned, but in using the alignment
to understand how it could be improved, which possible match set gets chosen is a real concern. Card2
satisfies the requirement of starting the match at the front by returning the subsequence that starts
closest to the front of the two input sequences. That is, if sequence (a) is APA, and sequence (b) is A,
then the common subsequence that is returned matches the first A. As a longer exemplar, consider
aligning the two simple strings DUC and DUDUDU. Card2 would return an edit list (referenced by
position) that would call for aligning the first D’s together. This results in aligning the initial
predictions, which is a more stable alignment if changes to the strings tend to come at the rear: If
additional D tokens were later added to the shorter list, the alignment will change less.

Incorporating additional constraints in the Card2 algorithm. Finally, we find in some data, that while
we would like the match to favor the front in general, that there may be additional conditions on the
match, or on the choice of which possible maximum common subsequence we prefer. For example,
when analyzing the Browser-Soar data covered in Chapter 7, we prefer to have the last possible item in

Soar/MT - 21 December 1992

A spreadsheet for comparing the model’s predictions with the data 86

Modified version of algorithm on P. 191, Card, Moran & Newell (1983):
New elements are now inserted at the end of the output array rather
than the beginning.

i1 «<- predlength; j <- obslength;
k <- predlength + obslength - Score([PredlLength, ObsLength] + K sat to last
: element
until (4 = 0) and (J = 0) do
1f (1<>0 and (J=0 or (score{i-1, 3J] > scorel[i-1, J-1]1})) ;+ NB. missing)

; in original
then
PredSeqgResult (k] <- PredSeq(i]
ObsSeqResult [k] <~ nil
k<«<-k-1; 1 <-1-1;
elseif (J<>0 and (i=0 or (score[i, 3-1] > score{i-1, j-11))) ; NB. missing)
s in original
PredSeqResult{k] <- nil
ObsSeqResult (k] <- ObsSeq(]]
k<-k -1; J <- 3 - 1;
else -
ObsSeqResult {k] <- ObsSeq(3l}
PredSeqResult{k] <- PredSeq(1i]
Kk<-k~-1; 4 <- 1 -1; J «<- 3 - 1;

Figure 4-19: A simple fix is applied to the original Card! algorithm to return the edit
sequences in the correct order without explicitly reversing the returned list.

a series of equal tokens to be used in the alignment. In that case, the earlier M’s (mouse movements)
represent mistaken applications of the M (mouse move) operator, while the final one more closely
matches the subject’s behavior. For example, in matching XMDU to YMMMDU, Card2 would
provide the sequence:

XM--DU
YMMMDU

One might prefer (and in analyzing Browser-Soar we do prefer) that we get the following match:

X--MDU
YMMMDU

Doing this directly within Card2 would require a relatively large extension to the algorithm. The
structure of the current algorithm would require either look-ahead search and access to the sequence
values or else a new data structure.

We are able to remedy this with a clever manipulation directly based on manipulating the edit list
returned by the Card2 algorithm. Instead of taking the items on the list as absolute, a separate function
applied after the initial alignment extracts the value in the cell to be edited, and searches between the
two edit references on either side for the last occurrence of the matched item’s value before another

match. If there are multiple identical items in a row, we can find the last one this way and use it in the
alignment list instead. ‘

Possible extensions to Card2 and other matching algorithms. Implementing the interpretation and

alignment algorithm with a dynamic programming approach would allow more flexibility by
separating the system into a generator and tester that would be easier to modify. - The choice of objects
to align could be modified to prefer to match more salient events first, or to avoid more than a given

Soar/MT - 21 December 1992

A spreadsheet for comparing the model’s predictions with the data 87

amount of offset between the two information streams, or to give up if that limit was exceeded. It
might provide a more natural algorithm to modify to prefer to match certain tokens next to each other
if possible, and so on. Finally, one might actually prefer a locally driven match, where the system
offers the user the choices incrementally. Incorporating this type of match should be explored in future
work.

More_complicated token comparison _processes. In the original maximum common subsequence
problem, the comparison between the two information streams is that of unity: are the tokens the same
tokens? In the applications in which Spa-mode will be used, the information streams will often have
equivalent tokens, but they will perhaps go by different names in each information stream. The
mouse-move operator may be called just that, but the transcription system may note the user’s
movement as "M(+x23-y23)" to indicate a mouse movement down and to the right. The comparison
step in the Card algorithm has been modified to do a more flexible comparison based on pairs of
regular expressions, such as "mouse-move” matches "M(*)", where * represents "matches anything”.
The basic functionality of matching regular expressions was available directly from GNU-Emacs.
With regular expressions, the analyst can also start to compare in a simple way keywords expressions
with verbal utterances. The matching process also serves as the location to incorporate a more robust
natural language matching process.

More ambitious functions to interpret the data using the model’s predictions can be imagined. The
model’s predictions represent the actions and knowledge structures that one expects to find in the
subject’s actions and verbal utterances. Because there already exists a strong model of what will be
said and done, the knowledge structures for a general parser are available — this is a much more
restricted case of natural language parsing than those that start out with no preconceptions of what will
be said and attempt to parse one sentence. The point of this work was just to get to this point. It will
be the pleasure of the next project to take advantage of this possibility.

The scope of the natural language parsing problem makes it clear that a simple keyword parser will not
be adequate to interpret the data with respect to the predictions completely automatically even in this
restricted form. However, the parser need not be perfect in this application to make it worthwhile. If
the parse is only approximate, as long as it does not go completely off track, it will make the testing
more routine and repeatable. :

4.3 Interpreting ambiguous actions

Additional capabilities are needed when the results of the automatic alignment tool need to be cleaned
up, or the model’s predictions have to be aligned with ambiguous protocols. In addition to the
standard capabilities of a spreadsheet, the analyst will also need to manipulate the two meta-columns.
Spa-mode provides two functions for aligning the meta-columns by hand. The most powerful function
aligns the line the cursor is on with the line that is marked.* The analyst can also insert blank rows
into each meta-column individually. This allows offsetting meta-columns while maintaining alignment
within each meta-column.

Simple coding of the protocol. The review noted that most tools for manipulating protocols include
the ability to assign codes to protocol segments as a step in model formation. Spa-mode includes this
ability as well. Through a menu or keystroke command, a segment can be assigned one of a set of
preselected codes. These codes can be entered by the user, taken directly from a loaded, but perhaps
incomplete, Soar model (using a variety of tools in the graphic display), a loaded TAQL program
(using its inherent facilities), or from a saved file of previously used operator names. The set can be
accumulated from several of these sources and saved out for later use. A protocol interpreted this way

“Mark is an Emacs term for a previous selected location. The user can also toggle between the two locations, point, the
location where the cursor is now, and mark, a previously selected location, with a command bound to a keystroke called
exchange-point-and-mark.

Soar/MT - 21 December 1992

A spreadsheet for comparing the model’s predictions with the data 88

can be analyzed like any other, including the ability to count matched segments and to perform the
analyses presented in later sections and chapters.

4.4 Supporting the global requirements

In addition to the direct requirements of aligning the predictions with the data and starting to interpret
their comparison, there are five requirements that Spa-mode must also support that arise from
integrating the steps of TBPA and supporting them with a computer environment.

4.4.1 Providing an integrated system

Spa-mode supports multiple entry points to its own functions and to those of the other modules within
the Soar/MT environment. Users can interact with the spreadsheet through keystrokes commands, the
menu, and with the mouse. Users can also manipulate the model while in the environment. Through
the menu or through keystroke commands users can run the model while viewing the correspondences
in the alignment, jump to the running model, and cut and paste its trace directly into the spreadsheet.
The segments can be coded with operator names taken directly from the model. Once the data has
been interpreted and aligned, the correspondences can be used to create displays within S and S-mode,
as discussed in Chapter 5 on the analytical measures of model fit.

The source code for all these systems is publicly available and runs within the same environment as
Soar, Soar-mode, TAQL-mode, and the graphic display functions, so further integration would be
straightforward.

4.4.2 Automating what it can

Spa-mode begins to automate the interpretation of subject’s actions with respect to the model’s
predictions through the Card2 alignment algorithm. In addition to this, there are several minor
functions for which Spa-mode provides automation. These include the ability to renumber segments,
and to count the total number of words in a range and just those that match a regular expression.

4.4.3 Providing a uniform interface including a path to expertise

By keeping its design similar to popular spreadsheets, Spa-mode is able to take advantage of users’
familiarity with spreadsheets in general. In addition to this inherent aid to being usable, a path to
expertise is provided that is uniformly applied to each part of the Soar/MT environment. Table 3-15
displays the features that all parts of the Soar/MT environment share as aids for ease of use and
learnability.

This approach starts with menus to make information available to recognition memory. Users can
query the menus (by typing a "?" or a space) to display the available keystroke accelerators that are
automatically placed on the menus’ help displays. Exploration is further supported through help on
individual functions, and on-line copies of manuals available through the menu.

State information is displayed to the user. This is not complete, and there is much more state
information than can be displayed, but a conscious effort has been applied to display more than has
been done in the past. The bottom line of Figure 4-17 includes the following mode line that
accompanies each Spa-mode file.

~-**-emacs [SHAMO.SOAR] : example-types.spa A36 ManUp <H] (SPA) ----TOp---——=meemmaa-

The leading two asterisks indicate that the buffer includes changes that have not been saved.
"emacs[SHAMO.SOAR]:" indicates which computer Spa-mode is currently running on. The file name
comes next. A36 is the current cell, and ManUp indicates that updates of changed cells are now only
done upon the users request. "<H]" indicates that the H column is the last column of the first meta-

Soar/MT - 21 December 1992

A spreadsheet for comparing the model’s predictions with the data 89

column. SPA indicates that an actual Spa-mode buffer is being examined, and not, for example, a
dump of its text into a plain text file. Finally, "Top" indicates that the cursor is at the top of the buffer.

4.4.4 Providing general tools and a macro language

As a spreadsheet, Spa-mode is a general tool. The layout of the information streams and their
components are reconfigurable by adjusting the location, width, and alignment of columns. The ability
to put formulas into cells allows many analyses to be performed directly. Spa-mode exists within
GNU-Emacs, and has access to simple commands to create temporary keyboard macros, and has direct
access to the more powerful GNU-Emacs lisp, which Spa-mode itself is written in. This Lisp can be
run interpreted or compiled, and the source code for Spa-mode is available for modification or
interaction. Others have found developing extensions and macros straightforward. , '

Hooks are places to customize a system’s behavior by calling a user supplied function at a set point,
such as at startup, or after a file has been loaded. The standard set for GNU-Emacs modes have been
included with Spa-mode. The user supplied function, if any, is called when Spa-mode is loaded or
initialized. T

4.4.5 Displaying and manipulating large amounts of data

The tabular display of the information streams, their arrangement side-by-side, and the ability to print
out the correspondences, provides an unparalleled ability to view the model’s performance with respect
to the data it is attempting to model. In order to keep the columns’ contents clear, as the user scrolls
through the alignment, a ruler displaying the associated labels of column is placed at the top of the
display. When the file is printed out, this ruler is placed at the top of each page.

The requirements for manipulating the information are fairly well met by the standard spreadsheet
actions that are supported. Cell values are displayed in the spreadsheet. The user can click and point
or use keystrokes to move between cells. When the user moves to a cell, the expression generating that
value is displayed.

Support direct manipulation of the relevant theoretical objects. In the case of the interpretation and

alignment task, the relevant theoretical objects are the actions in the two information streams and their
correspondences. The individual actions can be manipulated in a natural way as cells in a spreadsheet.
The correspondences are represented less well. Simple correspondences made up of single actions
matching other single actions that can be aligned on the same row, are easy to manipulate. Rows are
spreadsheet’s atomic data type. Finding their component structures is easy, and they are automatically
kept aligned through the various transformations that Spa-mode provides. More complicated
correspondences, made up either of multiple actions or that are crossed with respect to other actions
are harder to interpret and manipulate. In the current implementation they too are kept aligned, but
finding their component structure is not automated, and sometimes requires visual search. Part of the
problem is that there currently is not a well worked-out representation for these correspondences.

4.5 Summary

Spa-mode supports the initial requirements for testing a model by providing an algorithm for
automatically interpreting and aligning protocol data with respect to the model’s predictions. When
the simple alignment tool fails, which it will, there are additional features that support the analyst in
aligning the two sequences by hand. When the process model is still being developed and its trace is
not yet available, the analyst can semi-automatically code segments separately using the operator (or
state) names that will later appear in the trace.

Spa-mode provides a tabular display of the comparison that supports simple, initial visual inspection of
the comparison. A visual pattern for describing each type of comparison is developing, but it is
probably not in its final form. The underlying spreadsheet provides formulas for computing simple

Soar/MT - 21 December 1992

A spreadsheet for comparing the model’s predictions with the data 90

aggregate measures on the comparison. As a system, it is becoming more robust daily, and has been
used for all analyses and tables in this report.

Comparison with similar tools. Compared with Excel or other commercial tools, Spa-mode includes
some new commands not supported in other spreadsheets, such as better movement commands (e.g., to
the next filled cell, last filled cell in column), and a (presumably) better macro language (GNU-Elisp
Lisp). More importantly, however, Spa-mode is integrated with the rest of the tools for testing process
models, and the source code of Spa-mode is available so it can be integrated further. Finally, no extra
hardware or software license is required to use it. In every other way, Spa-mode is a weaker
spreadsheet; it is slower, less robust, and lacks many of the built-in features of other spreadsheets.

Future work. Spa-mode is adeqdate for a prototype, but further work will be required before it is of
general use. There is a potentially very large user community for it (anyone who uses GNU-Emacs),
and a large cadre of developers who might pick it up and improve it. :

The missing features related to testing process models includes rather general features, such as the
ability to split a buffer in two, better math functions, faster operation, and the ability to cut and paste
ranges of cells with the mouse (in addition to being able to perform this with keystroke and menu
commands). Spa-mode should also include more functionality specific to testing process models, such
as a better way to choose sets of items to align and faster alignment of the cells through faster row and
cell insertion and deletion.

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data _ 91

Chapter 5
Visual, analytic measures of the predictions’ fit to the data

This chapter describes a family of graphic displays for analyzing the interpretation of the data with
respect to the model. These displays are designed to support the requirements listed in Table 5-17.
While many measures presented in Chapter 2 provide useful starting points for analyses, they fail to be
completely adequate for analyzing models and data the size we wish to consider, and they fail to
summarize the comparison in terms of the model. Because it can present a large amount of
information clearly, a graphical approach is better. Three approaches are used.

First, a version of the operator support display invented by Peck and John (1992) is automated. It
shows which model actions were supported by data, and their position within the model. Given the
aligned data and model actions in the Spa-mode spreadsheet, this display of the support for each
operator can be created automatically by the analyst. The analyst can click on the correspondences in
the display to learn more about them.

Second, a graphic display that presents the relative processing rate of the model and the subject is
provided. Given the aligned data and model actions in the Spa-mode spreadsheet, it too can be created
automatically to show the time course of where the model’s predictions and the data do and do not
correspond because the two have performed different amounts of processing. Here too the analyst is
provided with associated information by clicking on the data points, and can find the actions that take
disproportionate time and, presumably, effort.

Finally, an environment is provided to assist in editing and designing additional versions of these
displays. More displays will be necessary. What is an appropriate display may vary with the model,
and there are many ways for the data to not match the model. Several other approaches can now be
imagined for displaying the interpretation of the data with respect to the model.

Table 5-17: Requirements supported by the graphic comparison displays
and S-mode.

Requirements for analyzing the comparison of the data with the model’s predictions.
(a) Show where the data does not match the predictions.
(b) Aggregate the results of the comparison in terms of the model.
(©) Interpret the test results as clues for modifying the model.
Requirements based on integrating the steps and supporting TBPA
with a computational environment.
(a) Provide consistent representations and functionality based on the architecture.
(b) The environment must automate what it can.
To support the user for the rest of the task:
() Provide a uniform interface including a path to expertise.
(d) Provide general tools and a macro language.
(e) Provide tools for displaying and manipulating large amounts of data.

5.1 Creating the operator support display automatically

The operator support display of Peck and John (1992), previously presented in Figure 2-7, provides a
display relating the model’s trace to the problem spaces and their hierarchical organization. The
indentation of the operators are ordered hierarchically and in order of use during a typical episode.
This display, while it was not designed to do so, also supports the requirement to understand the
model. The line connecting each trace element begins to show some of the regularities and
periodicities in the model. More importantly, however, it shows which model actions are supported by
data, and the type of data they are supported by. It also shows where the model’s predictions are not

So0ar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data _ 92

matched by data and data that are not predicted. Note, however, that the sequential order of the data is
not shown in this display.

The original version of the operator support display took an 8-hour day to construct by hand (Peck,
1992). Figure 5-20 shows the automated version that can be created in minutes from the alignment
data in the alignment spreadsheet. There have been a few additions and deletions between Peck and
John’s display and this version. The automated version presents the course of behavior from left to
right, rather than top to bottom. This lets the operator names that are matched to the data to be
presented in a more readable form, with complete names, and there is room to indent them to represent
their organization by problem space. The automatically created version, when it is presented on-line,
is interactive: the analyst can click on each data point or model action to see the other fields of data
(such as the verbal utterance) of the actions making up the correspondence. Peck and John (1992)
included a summary of the support for each model action and data segment in a column on the margin;
the current version does not yet, but should.

Browee ..Ihﬂ-*l

. o c
X C
V' Caneapondng verhal ullerance

il

Search-for-heip

Lo

Y S T T O N U S S O Y O T e Y |

ogE 8

. Operator lpp‘le.nlbm
Browser-Soar episode 2 :unit

Fo Qe 4 21 4839 EST 1902

Figure 5-20:
Example operator prediction support display taken from the Unit episode of Browser-Soar.
The model’s operators are shown on the left-hand side, indented according to their depth in the
problem space hierarchy. The connected black squares represent the model’s performance.
Corresponding data are represented by overlapping symbols. Unmatched data are placed at the
bottom of the display as if it matched the Not matched operator.

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data 93

5.2 Understanding the relative processing rate

In order to improve the model the analyst needs to see the global patterns of where the model’s
predictions do and do not match the data. One way to further understand the sequential predictions of
the model would be to view the interpretation of the data with respect to time. A display showing the
types of the correspondences (taken from Table 2-5) and the time each action occurred in their
respective information streams would emphasize the sequential nature of the model’s predictions and
the data, the relative processing rate of each, and highlight sections of behavior that could be brought
into closer correspondence. This display was initially motivated by the difficulty of understanding the
relative rate of actions between the model and subject as they were depicted in the spreadsheet, but
seeing that this relationship existed and could perhaps be more clearly displayed.

The order and temporal location of the correspondences between the model’s actions and the data can
be presented in a display showing their relationship to each other through time. Sakoe and Chiba
(1978) first did this for doing speech recognition, matching a model of speech production against the
actual recorded speech. - Figure 5-21 shows an interpretation of their figure. Their display (and the
matching process that generated it) required that each model prediction match a data point, and while it
could admit noise, the process did not permit fundamentally wrong actions to be excluded, or an out-
of-order match to be included. Cognitive models are usually not yet accurate enough to assume that
every action in the model will have a one-to-one match to the data like they assume; multiple subject’s
actions may match a single model action, and some model actions may not be supported by data. But
their display inspires a similar display with a warping function with loosened requirements on the
match and with an augmented representation.

5.2.1 A display for comparing the relative processing rate

Figure 5-22 shows a chronometric fit display similar to Sakoe and Chiba’s (1978) that presents the
warping function for a cognitive process model. Each graphical element (shown in a legend in the
upper left) represents a pair of corresponding model and subject actions. The current display presents
the correspondences in order that the subject’s actions occurred. A similar display presenting them in
order of the model’s actions could also be created. This display does not include the restriction of
one-to-one matches, but allows model actions to match multiple subject actions (it would even support
matching muitiple model actions to a single data point, but as noted in the review, subject segments
should match only one model action, or else they may not be segments).

This display presents the time of the corresponding subject actions on the x-axis in seconds, and the
time of the corresponding model actions on the y-axis in terms of decision cycles. The time for both
model and subject begin with the first match. Their relationship before the first correspondence cannot
be computed. It is possible for later subject actions to match earlier model actions if the subject does
not report all actions in order, or if different modalities are reported with different amounts of lag.
Unmatched subject actions are unconnected, and put at the bottom of the display along with a label
indicating the type of information that was not matched. They are positioned on the subject’s time axis
with the time they occurred. Overt actions of the model, such as mouse movements, that are not
matched, are represented in a similar manner. Unmatched, non-overt model actions, such as internal
state transitions, are not displayed. They will not necessarily be matched, so their lack of
correspondence with data tells us less according to our theory of measurement (Ericsson & Simon,
1984), and it is best viewed with Peck and John’s display of operator support.

This display provides many of the criteria for measures of model fit noted in Chapter 2. Better
experiments are favored, for they provide a larger or more informationally dense display of the
model’s predictions fit to the data set. These denser displays provide more information on how to
improve the model, and should be more persuasive. Typical mismatches produce signature patterns on
this display; these are noted below.

Identifying outliers: Computing a linear regression on the match. In Figure 5-22 a least squares

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data 94

by
¥ Cg= (I, J)
Warping function ",.-"'
B
b ’
b | Nea= (1.3
<,
Y [
c c
b 2 / s
2 ™ °*c
3
b1 e C;= (1,1)
a, a, a, ay
" »
A

Figure 5-21:
Depiction of Sakoe and Chiba’s (1978) correspondence diagram from their speech recognition
task. The A axis represents the times of the subjects utterances, and the B axis represents the
times of the model’s predictions. The places where they correspond are represented by the C
terms. The relationship of all the correspondences is seen as a warping function between the
axis.

regression based on the correspondences, representing the warping function between the data and the
model’s predictions is drawn as a solid black line. While in each episode the correspondences may not
be well fit by a linear relationship, theoretically the correspondences between the model and data
should be a linear relationship. This line can be used in several interesting ways. The regression line
helps to show where the fit is poor, highlights outliers, and gives a standard statistic, variance
accounted for or r2, that could be compared on a per subject and per model basis (e.g., Thibadeau, Just,
& Carpenter 1982; Just & Carpenter, 1985). It also summarizes the relative processing rate of the
model to the data, providing an empirical measure of the theoretical model processing cycle rate in
seconds that should be more robust than simply dividing total model time by total subject time.

The regression line also makes several predictions. It can be used to find the mean percentage
deviation from predicted for each subject action matched, mean absolute deviation (MAD), and root
mean square deviation (RMSD). Measures like these can be used as part of engineering models of
human performance to predict human performance (John, 1988), and to predict how accurately the
model’s predictions will be in the future.

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data 95

d d rates

Model time in Decision Cycles

Moddloda!asge 11.299 dc/s
AMSD = 53.163 dc

MAD = 41.279 dc
2= 0.687
N= 40 maiched behaviors

T T T T T T
0 20 40 60 80 100

Subject time in seconds
Browser-Soar episode 2 :unit Wen Oae 7022030 5T 1002

Figure 5-22:
Example relative processing rate display based on decision cycles taken from the Unit episode
of Browser-Soar. The straight, solid line is a least-squares regression line through all the
correspondences. Its slope is the relative rate between decision cycles and seconds. The
dashed lines indicate the expected range for this measure. The location and type of the
correspondences are marked on the connected line.

The model’s processing rate as measured could also be compared to the theoretical decision cycle rate,
but this is not completely known for the architecture used here. The Soar theory predicts the decision
cycle rate only within an order of magnitude (Newell, 1990), that the rate of decision cycles will be
between 3 and 30 cycles per second. To facilitate comparison with the empirically derived rates, these
theoretical rates are presented as dashed lines on the display. Particularly if the regression is redone
taking into account the dependent nature of the measurements, the regression results can serve as
useful initial measure of the decision cycle rate. Just and Carpenter (1985) perform this analysis for
the CAPS architecture, finding a 200 ms cycle rate.

The main use of the regression line, however, is for highlighting the systematic deviations. The rate of
match between the two action streams should be a linear relationship, with the slope determined by the
relative relationship between the model’s cycle time and the actual time in seconds. Points that fall
above or below the line indicate sets of behaviors that are not being performed with commensurate
effort (or that follow such situations). These outlying points indicate where the model’s behavior
could be improved. Grant (1962) suggests three ways to use the regression line to find outliers: (a)
examine the curve and points as they stand, noticing outliers, (b) draw error (95% confidence)
regression lines, and look for points outside them, and (c) draw error bars for each point. In general,
examining the plain line for outliers appears to be sufficient.

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data 96

Signature patterns of model modifications. Table 5-18 lists the signature visual patterns that can
appear on this display, and the indications they provide for how the model should be improved. How,
or whether to remove them through modifying the model will be based on the purpose of the analysis
and other factors. While the analyst can find out information about these outliers by clicking on them,
the indication of how to modify the model is indirect. There is not an equation or set of complete rules
for prescribing how to modify the model based on the correspondences, or what will happen based on
the modifications. The model must be modified and refit. If there are prescriptions that can be drawn
from these displays, they are not yet discovered, they will only come from further use and validation
through experience with these visual displays. :

Table 5-18: Signature correspondence patterns indicating types of model
mismatches.

¢ Horizontal regions in the correspondences line indicate sequences of actions where the
model performs the task too quickly relative to the subject. The model’s performance may
need to be expanded, or it needs to be done in a more cognitively plausible way.
Alternatively, the subject may be performing more slowly than the subjects used to
develop the model. This may be seen as a limitation of processing capacity of the subject,
that the subject’s full attention has not been paid to the task, or that the subject is less
practiced at that portion of the task.

¢ Vertical regions in the correspondences line indicate sequences of actions where the model
is performing slowly compared with the subject. The model is performing too much work.

¢ Downward right diagonal lines, indicate sequences (or pairs of actions) where the model
and subject may be performing subtasks in different orders. This may indicate an
individual difference in the subject in preference order for two operators, or if the actions
are of different modalities, it may reflect reporting lag between different subsystems.

¢ Verbal statements that appear substantially separated to the right of their corresponding
overt behaviors, indicate a lag in protocol generation, sometimes making protocols locally
retrospective.

¢ Unmatched subject actions indicate that the model may not be performing the task
completely or correctly. They may also indicate that the subject performs the task in an
inefficient manner. :

¢ Unmatched model actions indicate unnecessary actions, particularly if the subject
performed the task correctly.

Examining learning within an episode. The linear regression line also supports a simple, initial
examination of leaming within an episode. If the Soar model is run with learning off, and if the
subject learns information that transfers within the episode, then the fit of the data to the model’s
predictions would be concave upwards (the subject’s performance speeds up relative to the model’s
performance). If the fit is concave only at the start of the episode, that indicates unmodeled startup
effects.

Limits to the regression line. There are three problems with this regression line and its use. First, and
most importantly, while it can point out outliers, it does so in a history dependent manner. If a series
of actions represent a poor match, subsequent actions will also appear to be outliers with respect to the
regression line. For example, in Figure 5-22, the actions from approximately 20 seconds to 40 seconds
follow the same slope as the regression line, but are visibly offset.

Seconq, while the interpretation and alignment process results in an interpretation that forces the
regression through the origin, this distorts the regression assumptions (e.g., Neter, Wasserman, &

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data | 97

- Kutner, 1985, Ch. 4). The residuals no longer necessarily sum to zero, and the fit of the later data
points is not as good as those near the origin.

Third, the value of 12 returned by this regression is suspect because the data violate the independent
measures assumption. Linear regressions assume that each data point is independent, and in this case,
they are not. The regression is fit to a time-series, and the high values of 2 may not hold when a
regression that corrects for the dependencies is performed (Kadane et al., 1981; Larkin, et al., 1986).

Computation of relative processing rate using operator applications as the model’s unit of time. In
addition to decision cycles, there are other possible theoretically interesting measures of the model’s
effort. It is possible to modify the time-based comparison display to use a different time unit for the
model. Soar models will have at least three main units of model time available to them, decision
cycles, elaboration cycles, and operator applications. This is not an exclusive list, the selection of new
states and problem spaces, and the rate of chunk creation and application could also be considered as
possible units of model time. Figure 5-23 shows an example of using operator applications as the unit
of model time. This time measure abstracts away some of the time information. The ratio of decision
cycles to operator applications is not specified, and may not in the end be a useful measure. If the
effects of decisions to select goals, problem spaces, and states, are relatively minor or correlate highly
with operator selections, then the displays will appear to be very similar. If they are divergent, this
may have indications for the architecture, or this may merely indicate that operator application rates
vary between subjects or tasks. In either case, it tells us more about how to improve the model and
illustrates the flexibility of the environment to explore new measures of model fit.

Q

n -~

\ O Overt mouse behavias

X wplick mouse behevior
7] V Verbal uterance
.§ Unmatched behavia
8
¥ s
Q A od
:
K]
P}
&
3
T o
g @
£
§ Model to data slope 2.402
= AMSD = 8,928 opam
MAD = 6.909 ops
y 2« 0,808
o - 5 N = 40 matched behaviors
L [oRG] a

1 T T I T
0 20 40 60 80
Subject time in seconds
Browser-Soar episode 2 :unit son Deo 7022820 5T 102

Figure 5-23: Example relative processing rate display based on operator
applications taken from the Unit episode of Browser-Soar.

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions; fit to the data 98

5.2.2 Using the relative processing display to test the sequentiality assumption of verbal
protocol production

The relative processing display supports evaluating two features of Ericsson and Simon’s (1984)
theory of verbal protocol production. The first is the sequentiality assumption, that structures are
reported verbally in the order that they enter working memory, and that "Information required as input
to some process or operation will be verbalized before the output of that operation is verbalized"
(Ericsson & Simon, 1984, p. 233). If the two parts of this assumption hold, subjects are not going to
provide a verbal report of something that has sat around in WM for a long time and then delivered, like
a letter stuck in a wall in the post-office. This assumption might also be extended to non-verbal
protocols. ‘

The second feature that can be examined with the model’s predictions of working memory contents is
whether the utterances are retrospective or prospective, and the time lag (or lead) of the utterances.
Matched overt non-verbal task actions (e.g., clicking a button that has to be clicked to perform the
task) can provide fixed data points for computing the offset of the verbal utterances.

In testing both of these features, we are also testing our models. If these reasonable assumptions are
consistently violated by the models, in addition to calling into question the assumptions, we must also
question the models.

The sequentiality assumption. There are two ways to test the sequentiality assumption. The most
direct way is to examine working memory contents directly with neurophysiological tools. This is not
yet possible. The other way is to use a model to predict what is appearing in WM. The model’s goal
stack is a model of what is in working memory, and can be used to test the sequentiality assumption.

The relative processing rates display supports this analysis visually. They represent the
correspondences of the protocol segment to the model’s predictions as temporally ordered connected
symbols. The sequentiality constraint can be quickly checked by examining a display and finding only
positive or zero sloped connections between all the protocol segments. Negatively sloped connections
between two segments indicate a pair of verbal utterances that violate this assumption.

In addition to verbal protocols, this assumption can be extended to other data streams from the subject,
for example, such non-verbal protocols as mouse movements or key presses. The testing process will
be the same, except different symbols representing different data streams will be examined.

The cross-modal sequentiality assumption. One might also expect to see a difference in
correspondence between verbal utterances and overt task actions. The Ericsson and Simon (1984)
theory says that subjects report on information in WM (Ericsson & Simon, 1985, p. 264) along with
reporting on inputs before outputs. In valid protocol (their talk-aloud vs. think-aloud utterances), only
working memory items used in the task will be reported, and objects with verbal representations will
be more easily reported than those that must be translated first (Ericsson & Simon, 1984, pp. 95-100).
Therefore, the overt task actions and reports of mental actions may not occur in order. The overt
actions (mouse clicks, moves) might not be verbally reported at all, they may not exist in WM or they
may not exist in a form that is easily reported verbally. If the overt actions are not reportable verbally,
they will still occur as overt actions, while verbalizable information in WM may have to be buffered,
or may be reported as the overt actions pre-conditions or post-conditions.

It is not clear what the direction and size of this offset between verbal and non-verbal protocols should
be. If the items reported truly are only operator inputs and outputs, then verbal utterances will be
presented in order with overt actions, or with a lag, where an overt action occurred while information
had not been told yet. If the utterances include goal statements about overt actions to be done, then the
utterances may be prospective of the overt behavior.

The amount and direction of lag may be an indicator of protocol quality. If the lag between structures
entering working memory and being reported is too long, the protocols are retrospective. The analyst
must postulate the uses of long term memory processes that are actually producing the utterances,

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data 99

particularly if the working memory elements reported on have also left the working memory by the
time of the report. If the lag is positive the protocols are prospective, and may be including
introspective comments. The lag may also indicate tasks (or subtasks) that have a non-verbal
representation. The subject’s utterances will include covert activity to translate the structure into a
verbal representation.

5.3 Creating additional displays

One might now imagine creating numerous types of displays like these, sequential displays based on
other time measures of the model and displays that presented the correspondences in a data dependent
order. A more extensive sample list is presented in Table 5-19. It is not quite clear in each case what
the display will look like, but some of them surely will be interesting and useful. More importantly, it
is now possible to consider creating them automatically from the data.) :

The idea of a single description that shows how the model could be improved now seems small-
minded. An analyst trying to understand and improve their model will want many types of displays.
In order to create such-displays, the analyst will require an underlying system that provides the
functions to make them, and an environment for creating and modifying them. S provides the
functionality to create the displays. S-mode provides an interface for creating additional displays as
functions to be called on a dataset. :

Table 5-19: Further displays for summarizing the fit of data to model predictions
e Cumulative model predictions matched over time.
e Scatter plot of correspondence times (rise and run in the relative processing rates display).

¢ Correspondences with primary order coming from the data instead of the model’s
predictions. '

¢ Correspondences presented over time with respect to problem spaces or elaboration cycles
(instead of operators or DCs) vs. subject time.

¢ Problem behavior graphs (depictions of states rather than operators).

* A matrix showing production conflicts.

5.3.1 S: An architecture for creating displays

These displays have been implemented as functions in S (Becker, Chambers, & Wilks, 1988;
Chambers & Hastie, 1992), an interactive, exploratory, statistics and graphing package. S provides a
set of general and easy-to-use facilities for organizing, storing, and retrieving data structures such as
matrices. In addition to the numerous built-in numeric and graphing functions, libraries of advanced
data analysis routines (such as ANOVAs and logistic regressions) are available from a fairly large and
friendly user community. S is programmable, and users can create functions to perform set analyses,
to combine smaller analyses, and to create interactive graphic displays. Other flexible, programmable
graphing packages, such as GNU-Plot, could also have been used, but S is perhaps the most powerful
and appears to have the largest user community.

While S provides all this functionality, it suffers from two disadvantages. First, it does not so much
have an awkward interface, but a primitive one: a simple TTY command line. There is no facility to
edit the functions in a structured way, treating them as first class objects to be loaded, edited, and run’

5S does provide a command that will call a plain editor on a single, named function.

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data 100

Secondly, S is the only piece of software in the testing environment that is not freely available. This
problem is attenuated by the wide distribution of S.

5.3.2 S-mode: An integrated, structured editor for S

In order to create these displays that are functions in S, a structured editor created within GNU-Emacs
is provided, called S-mode (Bates et al.,, 1990; Smith, 1992a). S-mode has been joint work with
Kademan, and Bates over the last three years, and Smith for the last nine months. S-mode provides a
structured editor to write, load, and edit S programs, and an improved command line interface.

Most analysts will use S to create displays in an edit-test-revise cycle. When programming S
functions, S-mode provides for editing S functions in GNU-Emacs edit buffers. Unlike the default use
of S, where the editor is restarted every time an object is edited, S-mode uses the current Emacs
process for editing. In practical terms, this means that one can edit more than a single function at once,
and that the S process is still available for use while editing. Error checking is performed on functions
loaded back into S, and a mechanism to jump directly to the error is provided.

S-mode also provides mechanisms for maintaining text versions of S functions in specified source
directories. These objects can be manipulated by the user as first class objects, and be examined,
edited, and loaded. S-mode provides an interactive command history mechanism, including a quick
prefix-search of the history list. To reduce typing, command-line completion is provided for all S
objects and keybindings are provided for common functions. Help on individual S functions and on
S-mode itself are easily accessible, and a paging mechanism is provided to view them. Finally, an
incidental (but very useful) side-effect of S-mode is that a less literal transcript of the session is kept
for later saving or editing than S provides by default. A complete listing is available in the manual
(Smith, 1992a), and a summary is available in Table 5-20.

Table 5-20: Functionality supported by S-mode.
¢ Edit S object in a buffer.
e Display help on a function or variable.
¢ Jump to the S process.
* Load a single line.
e Load the current function.
¢ Load the current function and go to the S process.
¢ Load a file of S functions.
e Reformat the current function.
. Cdmplete an object name by querying-the S process.
e Move to the beginning (or end) of a function.
¢ Execute the previous command.
¢ Insert a function template.

e Automatic matching of parentheses and braces.

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data 101

5.4 Supporting the global requirements

In addition to the direct requirements of aligning the predictions with the data and starting to interpret
their comparison, there are five global requirements that the displays and S-mode also support.

5.4.1 Providing an integrated system

The S-mode and the graphing functions are integrated with the other portions of Soar/MT
environment. The data for the displays can be dumped from the spreadsheet into text files and read
into S data structures for creating the displays. This step of transferring the data could be more
automated, but the path for passing this information is well wom and can be performed relatively
quickly. Although the interaction is on the level of files, because of the file manipulation facilities
GNU-Emacs provides, it is easier than it sounds.

The functions for creating the displays were designed using S-mode, and S-mode provides a fine
environment for routinely calling the functions to make the displays. If at some point an order of
magnitude more data is used, on the order of hundreds of subjects, it may be useful to use the batch
processing facilities of S to create these displays, where the commands are not executed interactively
but as part of a file of commands. . .

5.4.2 Automating what it can

The graphing functions have automated the display and global analysis to a great extent. What used to
take a day to display can now be performed in minutes. Once created, a display can be called with
nearly no cost to the analyst, so using many displays to understand a model is possible. S-mode
automates many of the actions necessary to create additional displays as S functions. A table similar to
Table 6-25 could be created for S-mode.

5.4.3 Providing a uniform interface including a path to expertise

The initial set of displays provided do not require any expertise beyond knowing their inputs, and this
is provided with their definitions. As a prototype, this has been an adequate level of documentation. If
more users start to use them, the documentation will have to be improved.

S-mode, like Spa-mode, provides a path to expertise similar to that provided by other components in
the Soar/MT. S-mode can be menu or keystroke driven. The keystroke bindings of the menu
commands are available to the user, and are displayed to him or her after they have been completed.

Documentation is also available as hardcopy. The S-mode manual (Smith, 1992a) and a reference card
(Smith, 1992b) are available through the S-mode menus, and obtaining on-line documentation on
functions takes only two keystrokes.

5.4.4 Providing general tools and a macro language

S and S-mode provide a very general set of capabilities for performing exploratory analyses and
creating new displays for model testing. S commands can be combined to create functions to draw
nearly any display imaginable. The creation of these displays is supported through S-mode, as well as
applying them to each data set.

Hooks are places to customize a system’s behavior by calling a user supplied function at a set point,
such as at startup, or after a file has been loaded. The standard set for GNU-Emacs modes have been
included with S-mode. The user supplied function, if any, is called when S-mode is loaded or
initialized.

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data 102

5.4.5 Displaying and manipulating large amounts of data

These graphic displays directly support examining a large amount of the model’s performance and
examining the relationship between the model’s predictions and the data. The displays include the
ability to examine individual data points based on their location. The displays are based on the model,
and can use their representation of the model to make clear which model objects have generated
predictions found in the data, and which have not.

Supporting_direct manipulation. The displays and S-mode directly support manipulating the main
objects of interest on this level, the data points within the displays, and the displays themselves. The
functions to create new displays (and their components) are first class objects in S-mode, and allow the
analyst to load and manipulate them directly.

On a lower level, the points on the displays are inspectable; clicking on them (after an appropriate
function call) will print out the Soar trace, the verbal utterances, their time stamps, and other
information, known about that point. Selected sets of points could even get thrown into spreadsheet
for further analyses (but currently this is not supported). These interactive displays also serve as a way
to understand large data sets by hiding irrelevant fields, but allowing them to be recalled on demand.

5.5 Summary of measures and recommendations for use

The two measures presented here (the operator support display and the relative processing rate display)
provide the analyst with ways to view the correspondences between the data and predictions with
respect to the model and the time course of the correspondences. Both types of displays provide visual
patterns indicating where to improve the model and where the model is consistent with the data.

These displays do not primarily provide local, immediate information about the comparison, but this
too are included as a separate block of text on the displays, and the local comparison is also available
in the matching tool, Spa-mode.

These displays are not the only ones possible for depicting the comparison, the model’s predictions,
the data, or various combinations of these, they are only a starting point. There are many ways the
model can fail to predict the data, and there are many facets to the relationship between models and the
data, so many different types displays will be required by an analyst wishing to improve their model.
Further displays can be created using S and the S-mode interface, and several new displays can already
be suggested as potentially useful.

Problems with these displays. There remain at least three problems that apply to both types of these
displays. When interpreting and using these displays analysts will have to keep in mind: (a) While the
architecture treats all operators the same, the modeler and model may have different sized operators
(with respect to correspondence to the subject’s actions) and different levels of theoretical commitment
to particular operators. Some operators may be represent placeholders for complicated operators, such
as read. These differences are not currently represented. The relative processing rate could vary quite
a bit when the grain size changes between operators in this way. (b) Not all analysts will be committed
to time based comparisons. They may be interested in other facets of their models, which will need
additional displays. (c) Before they are learned, Soar operators are implemented hierarchically. It is

not clear how to represent in the displays when hierarchical operators are in effect, and their calling
order.

What do these displays have to say about comparing two models? Given these displays, comparing
how well the data fits the two models does not come down to comparing two numbers, but can now be
based on more analytical (but less straightforward) process of comparing the models’ performances in
more meaningful ways. As indicated by the displays, the models will have regularities associated with
them, places where each model’s predictions match the data more closely than the other, but only a
metric outside of the comparison can order these comparisons. The models’ proponents, however, can
now point to diagrams showing the comparison, and describe more clearly and fully how and where

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data , 103

their models match the data.

Future work. While these displays use the models and its structures to help in the analysis, the
question remains of how to extend them. It may be possible and desirable to incorporate additional
components, such as the number of rule firings, the number of matches per ruleS, and to aggregate
across subjects or episodes. It would also be desirable to incorporate measures of rule and operator
utility more directly, and to understand, display, and manipulate the degrees of freedom in the models.

6Although generally Soar models are not described on the level of rules and rule firings, but the higher level cognitive
structures, such as operators, that the rules are creating.

Soar/MT - 21 December 1992

Visual, analytic measures of the predictions’ fit to the data

Soar/MT - 21 December 1992

104

The model manipulation tool -- the Developmental Soar Interface (DSI) 105

Chapter 6
The model manipulation tool -- the Developmental Soar Interface (DSI)

"Realizing programs with GPS on a computer is a major programming task. Much of our research
effort has gone into the design of programming languages (information processing languages) that
make the writing of such programs practicable.”

Newell, Shaw, & Simon, 1960

In the past, the implementation of Soar as a program has failed to fully support many of the
requirements noted in Table 6-21 as necessary for testing the sequential predictions of cognitive
models. The basic Soar interface was only a command line, and the commands were simple. Most
commands did not provide default values. A default editor, GNU-Emacs, was perhaps assumed, but
the editor was not tailored to Soar and no help was provided for manipulating productions or higher
level objects in the model. The emergent structure of the model, such as problem spaces and operators
was ephemeral, and only existed in the trace. After the goal stack exited a problem space, it did not
exist until it was entered again. The trace itself was flat, it was printed out, and that was that.

Table 6-21: Requirements supported by the Developmental Soar Interface.

Requirements for the process model’s trace
(a) Include: :
(i) Unambiguous predictions for each subject information stream (external and internal actions)
(ii) Time stamps for each action.
(b) Be readable by the analyst.
(c) Provide various levels of detail.
(d) Provide aggregate measures of performance.
(e) Be deterministic even if the model is not.
Requirements for modifying the model
(a) Display the model so it can be understood.
(b) Modify the model based on the comparison.
Requirements based on integrating the steps and supporting TBPA
with a computational environment
(a) Provide consistent representations and functionality based on the architecture.
(b) The environment must automate what it can.
To support the user for the rest of the task:
(¢) Provide a uniform interface including a path to expertise.
(d) Provide general tools and a macro language.
(e) Provide tools for displaying and manipulating large amounts of data.

The Developmental Soar Interface (DSI) provides an interactive graphic and textual interface to
support the requirements shown in Table 6-21 related to using, understanding, and manipulating the
Soar model being tested. The DSI consists of three integrated yet independent pieces of software.
They are designed to provide multiple entry points for users so that users can manipulate and examine
the models in a natural and consistent way, no matter which module of the DSI they are working with.
For example, while examining the graphic display users can run Soar ahead a simulation cycle by
typing on the display, and while editing productions they also can run Soar ahead a simulation cycle
though similar commands in the editor. Novices and casual users can interact with each tool through a
menu. Experts will learn common commands from the menus because the keystroke equivalents are
displayed there. Further details will come out as how the requirements are taken up in turn.

The Developmental Soar Interface (DSI) adds several new concepts to Soar: the idea of interlocking
tools, each component can use the other tools’ representations and capabilities; problem space
statistics, keeping track of how often problem space objects are selected; a macrocycle, the ability to
run the model not in terms of decision cycles, but in terms of the architecture, such as to the next

So0ar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 106

problem space selection or the third operator to be applied; and hooks, the ability to modify Soar’s
behavior at set points such as initialization or to trace actions, such as at the end of the elaboration
cycle.

The Soar in X (SX) graphic display. While displaying the Soar goal stack the SX graphic display
creates a representation of the model. This new representation of the running model (in itself a model)
is used to represent the problem space level objects and kegep statistics on their use. This representation
allows the analyst to directly manipulate problem space level objects. Clicking on problem spaces and
their subcomponents allows their working memory components to be displayed in an examination
window. These windows can exist during a run and the model’s working memory can be monitored in
examination windows as it performns a task. An associated command interpreter and pop-up menu
provide keystroke and keyword commands to manipulate the model. A special command line
interpreter, tailored for running Soar, is also provided. A complete description of the functionality is
provided in the SX manual (Ritter & McGinnis, 1992). While the new graphic display copies little of
the code directly from previous instantiations of the DSI (Milnes, 1988; Unruh, 1986), it copies some
of their ideas, particularly that a graphical interface is doable and desirable.

A trace of the Soar model designed for use with automatic interpretation and alignment systems is also
. provided, either with the SX graphic display or with Soar-mode. Its most important feature is that it
provides the models actions in an unambiguous format, putting each selected object’s name and
attributes in fixed fields. It also includes features that make it more compact to fit on a limited width
screen, and more easily read by other programs (subfields separated by tabs). The improved trace is
also more interpretable by human analysts because it indicates the goal depth of each element of the
trace with a number of dots separated by spaces instead of just with the number of spaces.

Soar-mode. The second module is a structured editor and debugger written within GNU-Emacs, called
Soar-mode. It provides an integrated, structured editor for editing, running, and debugging Soar
models on the production level. Productions are treated as first class objects. With keystroke (or
menu) commands productions can be directly loaded, examined, and queried about their current match
status. Listings of the productions that have fired or are about to fire can be automatically displayed.
Soar-mode includes and organizes, for the first time, complete on-line documentation on Soar and a
simple browser to examine this information. A complete description of the functionality is provided in
the Soar-mode manual (Ritter, et al., 1992).

TAQL-mode. The third module, TAQL-mode, is a structured editor for editing and debugging TAQL
programs written as an extension to GNU-Emacs. TAQL is a macro language for writing models in
Soar on the problem space level. By providing TAQL constructs as templates to complete rather than
as syntactic structures to be recalled, it decreases syntactic and semantic errors. After inserting
templates users can complete them in a flexible manner by filling them in completely or only partially,
escaping to the resident GNU-Emacs editor to work on something else or to edit them more directly.
This leaves general editor commands available throughout the editing session. At any point in the
process users can complete any partial expansions or add additional top level clauses, choosing from a
menu appropriate to the construct being modified. A complete description of the functionality is
provided in the TAQL-mode manual (Ritter, 1991).

6.1 Providing the model’s predictions in f;)rms useful for later comparisons and
analysis

The first set of requirements that the model manipulation tool must support is related to deriving the
sequential predictions of the model in a usable form. It must provide two versions of this, the first is
the direct predictions used to interpret the protocol data. These predictions primarily need to be
machine and human readable, but there are other requirements discussed below. The second version is
an aggregation of the predictions in order to understand the model’s general performance, and for
comparison with aggregations of the subject’s data.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 107

6.1.1 Providing predictions for comparison with the data

The requirements for the model’s trace are listed in Table 6-21. The improved trace, initially provided
with the graphic display and now available separately, substantially improves several of the
requirements, but several remain a problem. Aggregate measures are taken up in the next subsection.
Figure 6-24 shows how these requirements have been met. The original Soar trace is shown in
6-24(a). This version is slightly ambiguous. In decision cycle 3, the name of the problem space
(SOME-SPACE) and its traced feature (VALUE]) are not distinct. If the problem space did not have a
name, the value would appear in the first position. The bottom of the figure lists the improvements to
the trace shown in Figure 6-24(b).

6-24(a) Original Soar 5 trace:

[+] G: G1 .

‘1 P: P2 (TOP-PS)

2 8: S4 (TOP-STATE)

3 O: 06 (WAIT)

4 ==> G: G2 (OPERATOR NO-CHANGE)
5 P: P3 (SOME-SPACE VALUEl)
6 S: S6 (VALUE2)

6-24(b) Modified Soar 5 trace:

0/ G: 61 ()

1/ P: TOP-SPACE ()

2/ S: 84 ()

3/ O0: WAIT () _
4/ => G: G2 (OPERATOR NO-CHANGE)
5/ . P: SOMEB-SPACE (VALUEl)

6/ . 8: 86 (VALUE2)

(tabs are indicated with a /)

Improvements to the Soar trace for use in TBPA

¢ An unambiguous name reference is placed at the front of each line in the trace. The
object’s id is used if there is none. Now only the traced fields are in the parentheses,
which, as an option, can be removed if there are no traced fields for a given object.

¢ A leading tab or spaces (user selectable) is inserted after the decision cycle number, so that
trace is parsable by spreadsheet programs.

¢ A period (.) is placed in the indentation for each impasse level down to directly indicate
the goal level.

e The goal stack indentation width and symbol are adjustable to aid where compact

presentations are needed. The goal indicator is initially "==>", but it also can be changed
t() "=>" or "~~>".

¢ The generated id of the object has been moved to the back of the trace, and as an option it
can be removed entirely (except it is used as the name on nameless objects).

Figure 6-24: Original and modified Soar trace.

(a.i) Be unambiguous. The new trace removes several ambiguities and retains the decision cycle
number of the original trace. The name and traced attributes of the selected object have fixed
positions. The use of the object’s ID when a name is not available may not turn out to be the best

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 108

choice; it may be better to insert "no-name" or some other distinct marker that can be more eésily
interpreted than the ID as the lack of a name.

(a.ii) Include a simulation time stamp for each action. Both the new and old trace include a time stamp
for each action in the architecture’s own terms of decision cycles. The only difference is that the time
stamp in the new trace, because it can be separated with a tab, can be read directly into spreadsheets.

(b) Be readable by the analyst. The addition of the dots for every level down in the goal hierarchy
should make the trace more readable. Besides making the trace less ambiguous for machine use,
presenting the name and traced attributes in a less ambiguous way should also make the trace more
readable for the analyst. There have been proposals for putting the traced attribute names in the trace
in addition to displaying the values. This might clutter the trace, but it should be provided as an
option.

(c) Provide various levels of detail. Plain Soar provides most of the necessary variations in the level of
trace detail. As noted in Figure 6-24, several additional ways to modify the trace have now been
provided. These modifications were necessary to create a narrow enough trace to fit the predictions
into the spreadsheet. There will be other ways to manipulate the trace so this task is not complete.
How to represent the environment’s responses and when to include them was not touched by this
improvement. ' |

One specific level of detail that can be manipulated is whether operators, states, or both are included in
the trace. Newell and Simon (1972, p. 157) believe that problem spaces can be characterized by the
states that are seen or the operators that transform the states, one can be derived from the other. Both
the old and the new trace primarily display objects only at the time they are selected. Because
operators are nearly always clear if not complete at the time of their selection, both traces provide
rather complete pictures of the operators. At the time of their selection, states are almost always
empty, and undergo further transformations as operators are applied to them. Adequate depictions of -
states remains a problem for both the new and old traces.

(e) Be deterministic even if the model is not. The new and old traces are only as deterministic as Soar
is. A small, clear improvement would be to design a simple way to display the alternative selections in
the trace when one item is chosen from many indifferent selections. The graphic display already
provides this for objects with examiner windows.

6.1.2 Aggregating the model’s performance

The behavior of a model can be aggregated by an external system that examines the model’s external
actions, or, in the case of computer programs, by inserting instrumentation into the system itself. The
method used in the DSI is to aggregate the behaviors with an internal system, based on the data used to
create the display.

The primary level for aggregating Soar model’s performances is the problem-space computational
model (PSCM) (Newell, et al.,, 1991). Additional measures could be (and are) taken at other
theoretical levels, such as rule firings. The aggregations on the PSCM level are counts of object
selection on that level, of goals, problem-spaces, states, operators, and chunks created, although,
strictly speaking, chunks are on the symbolic level.

Figure 6-25 displays an example output of these aggregate counts. It is not clear that the way chosen is
the best way to present this information, but it serves as a starting point for discussions and further
design. After a time stamp, the initial block provides a listing of all the problem spaces found so far,
and the number of operators in each of them. In this example, the problem spaces are taken from a set
loaded into the graphic display besides those that have been selected.

The second block of information provides the complete selection counts for each PSCM level object
known, even if it has not been selected since the last restart of Soar or call of reset-PSCM-stats. On
each line is shown (a) the count of the selections, (b) the type of object, (c) its name or first selected

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 109

ID, (d) in parentheses, the actual name or "no-name" if one was never provided. Problem spaces also
have the number of chunks that have been assigned to them. This can happen through the normal
course of learning while running, or by placing previous learned chunked (or plain productions) on the
list of chunks. The update function then assigns the productions to a problem space based on the
problem space’s name in their condition or other means (this assignment process is covered in more
detail in a later section). An indentation of a single space occurs after goals and problem spaces to
indicate a choice point. A similar level also could be created for states, but most problem spaces use
only one initial state so it has never been found necessary. Objects with the same indentation, such as
the operators in the Compare-positive-integer problem space, have all been selected for the same
context slot.

The objects in the SX graphic display are primarily identified by their name. Objects without names
are essentially identified by their relationship to the most recently selected object at the time of their
creation. This implicit naming process will break down given sufficiently complicated goal stack
constructions, but none have been observed so far.

This identification scheme raises several interesting questions about the architecture and what counts
as a unique object in it. The current counting system relies on the name attribute of objects to be
. provided and on the names being unique. In this representation, if objects of the same type and
relationship to the goal stack (e.g., two operators in a given problem space) do not have names, then
they cannot be differentiated. The underlying structures are also available, so a more complete
algorithm could be used to differentiate them.

This counting scheme breaks down when keeping track of goals. The system assumes that all goals
that have the same goal type (e.g., tie or no-change), impasse object (e.g., operator), and the most
recently selected context element (e.g., the top-space problem space), are the same goal. They may be
different, for example, the number of tied operators in a tied impasse. Whether this represents a real
difference in the architecture and a problem in the representation is not clear.

The problem of tracing embedded structures is highlighted in this display. For example, it is clear that
the first less-than-or-equal operator in Figure 6-25 is testing two numbers. How the actual numbers
are represented in the operator is obfuscated by the large number of parentheses.

Implementing pscm-stats suggests that counting objects on the problem space level is not yet clear.
How many operators are there in a system? Sometimes a given name can occur in multiple problem
spaces, but it represents different operators, and sometimes the same name can occur in multiple
problem spaces and really be the same operator. Other systems avoid this problem by deciding how to
name objects and then enforcing the distinction or lack of it. A position on this has not been taken
within the Soar community. pscm-stats currently assumes that an operator cannot occur in more than
one problem space. How to reliablely represent operators that appear in more than one space remains a
problem both conceptually and in the software.

When printing out the calling tree and the counts of each problem space, pscm-stats will print out the
operators used in the space and their counts each time. If a problem space is used to solve two
different impasses (as defined by the higher level problem space and goal type), its selection count and
its operators selection count will get printed twice. When this occurs it is misleading for two reasons.
The first reason is that it implies that all of the problem space is used to resolve each impasse. This
may not be the case. The second problem is that the total number of selections printed out can easily
become two to three times the actual selection count.

6.2 Displaying the model so that it can be understood

The SX graphic display (Ritter & McGinnis, 1992) makes visual representations of Soar models real in
a sense not available before, actual triangles get drawn for problem spaces’, circles for operators, and

Unless the user hides them, which they can do.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI)

110

PSCM Level statistics on November 22, 1992

22 problem spaces, with a total of 11 operators.

AMALYSE
AMALYSE
COMPARE-POSITIVE-INTEGER

Problem space
EVERY-SPACE

STRIP-LEADING-ZRROS
CUMULATE

ﬂﬁng

.
.
.
.
.
.

R S S S S S S S
e e & o e & s s e o s » »

-

o« s e e

HWwewihhbeoaannnaN~NWwebddada

ooooooaoccoooaouocmauos

G
.P: analyse (analyse) (6 chunks)

e actual selection counts and calling orders:
G: gl (g1)
.P1 johnson (johnson) (0 chunks)

. 8: 88 (no name)
G: (operator tie) (g372)
.P: analyse (analyse) (13 chunks)
. S: 38 (no name)

(operator no-change) (g377)

« + Ot analyse-op (analyse-op)

8: 88 (no name)
G: (state no-change) (g362)
O: less-than-or-equal ({({((7) ((1)))) ((((5) ((0)))) none))) (less-than-or-equal)
G: (operator no-change) (g390)
.P: compare-positive-integer (compare-positive-integer) (0 chunks)

. 83
. Ot
. 01
. O3
. O3

O:

compare-positive-integer (s8320)

nove-left (move-left)

direction-right (direction-right)
less-than(((((3))) ({(((2))) none))) (less-than)
equal(((((3))) ((((2))) none))) (equal)
move-right (move-right)

. Ot croatn -glot((J12 no)) (create-slot)

0: count-objects-smaller (count-objects-smaller)
O: memory (memory)

. O0: count-objects-greater {(count-objects-greater)
.@t (goal no-change) (g7)

Figure 6-25: PSCM level statistics for approximately 100 decision cycles of

the Sched-Soar model (which is shown in Figure 6-27).

so on. While our initial hope and many viewers’ first reaction is that this standardizes the visual
representation of Soar, this is not so. One should not view the current display as canonical, but as an
approximation. Further work and suggestions from others have and will shape it, as well as its own
inherent successes and failures. As a graphic display, it can be driven by a menu or keystrokes from its
As part of an integrated environment, it also can be driven by keystrokes in the

display windows.

editors.

The graphic display can be used in two ways, as a normative display of what problem spaces may exist
in the model and their relationships to each other, and as a descriptive display of the goal stack

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 111

contents while the model is running. Both types of information can be displayed simultaneously (the
display can get a bit complicated) to see if the model normative behavior is correct.

Garnet. The graphic display, the Soar Command Interpreter, the dialog boxes, and the pop-up menu
are built out of components provided by the Garnet user interface development environment (Myers et
al,, 1990). Garnet is "a comprehensive set of tools ... for implement[ing] highly-interactive, graphical,
direct manipulation user interfaces” (Myers, Guise, Dannenberg, Vander Zanden, Kosbie, Marchal,
Pervin, Mickish, & Kolojejchick, 1991). It stands singularly above (egregious) other graphic interface
toolkits because every feature needed (or nearly every) is provided, and it is built correctly to be
extendable on the right levels. Garnet provides object-oriented, constraint-based representation that
allows graphical objects to be specified declaratively, and then maintained automatically by the
system. The iterative behavior of objects is specified separately. The Garnet group, headed by Brad
Myers and located at CMU, provides excellent support. They intend to continue extending Gamet for
the next three to five years.

It is hard to imagine building a graphical interface like the SX graphic display without a powerful and
well-supported interface design toolkit such as Garnet. It substantially contributed to the ease of
programming of this work. Its modular design allowed it to be modified to run four times faster. Its
only drawback is its size, and perhaps its speed (the problem may be with the SX code, not Garnet, or
inherent to graphical interfaces). The Soar image nearly doubles when Garnet and the graphic display
are loaded.

6.2.1 Normative displays of the model

Figure 6-26 provides an example display showing the problem spaces, their normative calling order,
and some of the chunks that are learned in MFS-Soar (Krishan et al., 1992), a system for formulating
mathematical programming models from a problem definition. The arrows indicate the nominal
calling order, and the type of relationship between the two spaces. This is often a simplification, for
often the relationships are not between two problem spaces, but between a problem space and an
operator or other objects.

Problem spaces can be placed on the screen before a run by explicitly creating them. This can be done
with functions in an initialization file or as a menu command. Problem spaces also can be placed on
the screen through running the model. The default is that problem spaces remain on the display after
they have been created. Most often it is desirable for problem spaces to stay in the same place on the
screen across and during runs. This can be done by "anchoring” them. This means that they will
appear in the same place each time they are entered. Anchored problem spaces are indicated by an
asterisk (*) on their bottom left comer. However, this can be overridden when they are created by
modifying the initialization file, or by removing the anchored indicator in an examiner window. If an
initialization file is not loaded, problem spaces appear in a series of straight lines, but can be moved
around if desired, and their configuration can be written out to a file for later reloading.

Displaying the amount of knowledge in each problem space. The SX graphic display also can depict
an approximation to the amount of knowledge in each problem space. Just as the learned productions
(chunks) can be associated and displayed with their problem spaces, so can the original productions.
By displaying the productions associated with each problem space, the graphic display is also
displaying the amount of knowledge in each space.

Figure 6-27 shows a normative display of the problem spaces and initial productions for Sched-Soar
(Nerb & Krems, 1992). It was drawn by loading in a set of previously found and arranged problem
spaces and their connections. Then Sched-Soar was loaded. All its productions were set to be chunks,
and were assigned by the system to a problem space. If a problem space did not already exist to hold,
the SX graphic display would create one. Not all problem spaces are connected. The problem spaces
shown were derived from the productions loaded. The unconnected problem spaces are part of the
function package and are not actually used by Sched-Soar.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 112

Soar Graphic m.xa 2,2 8 SPIMG

Figure 6-26:
The problem space structure of MFS-Soar (picture taken by David Steier). Learned chunks
(small bricks) shown on chunk walls to right of each problem space (triangles). Lines between
problem spaces labeled "OP NC" stands for operator no-change impasses in the higher space
that are resolved by lower level spaces. The grey fill in the problem space on the right-hand
side, Output-Constraints, indicates that it has recently been selected to be moved or to have its
contents displayed in an examiner window.

Shown at the top of the display, the space Every-Space holds the productions that potentially can apply
in every space because they do not contain explicit references to any single problem space. Sched-
Soar is unusual in that it has so many. Upon inspection of the productions (by clicking on them), the
productions are found to be predominately those that support the Soar function operator package
(Rosenbloom & Lee, 1989) that Sched-Soar uses. Several problem space selection productions are
also placed here, as well as several productions that would live in the Johnson space, but appear to
have had their problem space name accidentally left out, and a few for state tracing. Most spaces
contain the productions that could apply in them. For example, Compare-positive-integer and Memory
contain a fair number of productions. The large number of Johnson problem spaces are used for
look-ahead search.

The knowledge that can be applied in each space is not always displayed. Knowledge can migrate
through learning, and this is represented by lines of connectivity, and later through chunks. Not all the
knowledge that can be used by re-entrant problem spaces is shown. Only the highest version of each
problem space is used to hold the knowledge for all of the instantiations that might be created. In some
problem spaces, when an impasse incurs, an instantiation of the original problem space may be

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 113

STRIP-LEADING-ZBROS

[=]

CUMULATE

Figure 6-27: Normative display of Sched-Soar showing the productions in each problem space
as chunks on the chunk wall to the right of each problem space.

instantiated and selected again as a problem space to resolve the original impasse. These are re-entrant
problem spaces. In Sched-Soar the Johnson problem space (named after the original algorithm’s
designer) is re-entrant, and several, but not all, of the concurrent instantiations that would exist during
problem solving are shown.

The knowledge in each problem space has to be measured in terms of productions. Although this
certainly appears to be an imperfect measure, there is no other coherent metric. The generality of the

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 114

productions might be measurable through the number of clauses, but in- the quest for accuracy, even
that should be adjusted for the frequency of the features tested in the environment. The number of
operators is another possible metric, but they vary even more than productions in size and generality.

Assigning chunks to problem spaces. The algorithm that assigns productions to problem spaces is a
simple one that uses heuristics to classify which problem space to place a production in. It is used
when new chunks are leamned, and when both previously leamed productions (chunks) and hand-
written productions are loaded at a later time and are noted for display as on the chunk wall. The SX
display first attempts to find a problem space name in their condition. If one is found, then the
chunk/production is assigned to that problem space. If one does not exist, the addition algorithm next
checks for an operator name in the conditions. If one is found, SX checks each problem space in the
order they were created. The first problem space that has an operator by the same name is used. Next,
if there is an active goal stack, then the lowest active problem space is used, which is where a learned
chunk would have placed its results. If a problem space cannot be found by any of these means, then
the production is placed in a dummy graphic problem space called Every-Space, indicating that
presumably (and this is an assumption) the production could fire in any space. In practice, the
production will often have conditions that can only be matched in a subset of the problem spaces.

6.2.2 Descriptive displays of the model’s performance

Although most figures in this document are normative descriptions, for most users, the SX graphic
display primarily serves as a descriptive display of the models’ behavior by graphically displaying the
goal stack and its contents. Starting with the top goal, each context level element that is selected gets
displayed as a graphic element, and they can be examined with the working memory walker described
in the next section.

Because the problem space level objects persist over time in the SX graphic display, a declarative
model of the structures in the productions is created. This can support simple discoveries about
models. Until Soar and then TAQL were run with the same graphic display, a mistake really, the
developers of TAQL and Soar did not know that they used different top level problem spaces. TAQL
uses Top-space and Soar uses Top-PS. In the graphic display, they appeared as two different problem
spaces — in a textual display this difference went unnoticed for a year.

Figure 6-28 shows Sched-Soar during a run. The problem space names and locations have been loaded
from a previously created description. If the problem spaces were not preloaded, they would appear in
several columns top to bottom starting in the upper left comer. The black lines connecting problem
space level objects in the display indicates their selection order in the stack. :

Selected context item. The context element last added to the stack, such as a state or problem space, is
treated as the "selected” context element and is shaded. Clicking on a context element that is not the
latest one added (i.e., not "selected") also will select it and display its name if it is not displayed.
When Soar is running, the graphic window will scroll to make the selected context object visible if
auto-scroll is turned on. Figure 6-26 includes a selected problem space. In Figure 6-28 the selected
context item is the Less-than-or-equal operator in the Analyze problem space.

Problem spaces. Problem spaces are displayed as triangles. Their names are displayed at their upper
left hand corner. Any traced attributes are displayed after the name separated by a colon. Problem
spaces can be moved around with the mouse, and when double clicked upon, a problem space
examiner window will be created. The bold text in their examiner windows can be moused to create
further examination windows of goals, operators, and states, and of their substructures.

Goals, states and operators. Goals are displayed as large circles. Their ID is displayed by default.
Their type (impasse and attribute, e.g., operator no-change) is displayed on their creation, and it gets
smaller when a problem space is selected to make room for the problem space triangle. States are
displayed as squares. Their name is not displayed by default. Operators are displayed as small circles.
Their name is displayed by default. These types of objects, when double-clicked, will display their

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 115

SooS0ar Graphac Display 5.4 0 SARCO

TER

307 dshisarta
o+ =06 G7 (OPERATOR MO-CHANCE) €7
o o o P: CONPRRE-POSITIVE-INTEGER () P8O
1 o « o S CONPARE-POSITIVE-INTECRR O $89
14 . . . O: MOVE-LEFT (MOVE-LEFT) 090
o o 0: PIRECTION-RIGHT (BDIRECTION-RIGHT) Q31
1 o o 02 LESS-THAN L(LU(D)) ((LL5))) NOME)Y) LESS-THAN) Q92
[Butld:P101
! o o 03 LESS-THA-OR-EQUAL C(<((3) C(2)))) ({{(3) ((3)))) NOME)) LESS-THA\
GE1S (OPERATOR NO-CHAMGE) G115
COMPARE-POSITIVE-INTECER) P116
COMPARE-POSITIVE-INTEGER ¢) S117
LEFT (MOVE-LEFT) Q118

MOVE:
. « 0: BIRECTION-RIGHT (DIRECTION-RIGHT) 0119
o o o O LESS-THAN (CC{(3))) (({(3))) NONE)) LESS-THAN) Q120
. 0 BAL CCCCED D) ((((3))) NONEY) EQUAL) Q128
o o 0 MVE-RIGHT (MOVE-RIGHT) Q135
o 02 LESS-THRN C((())) ((({3))) NONE)) LESS-THAN) 0137
smuacro-oycle breakess

L]

.

o ANALYSE
less-than—or—aqual (({{(3) ((22,)))

- <

COMPARE-POSITIVE-INTECERyS

A (b Lk Tcomr o nE I

[27 SARCO: > anapshot ~/spassched-soer/sched-soer . xps

2 Jafs/cs.cmu. edu/user/ritter/spa/eched-soar/sched-sosr . xps nonexistent
]

g

uc: 1 Decision (S demax)

Figure 6-28:
Example descriptive display of Sched-Soar at decision cycle 27. The chunks reported as
belonging to each space are not learned chunks, but are the model’s own productions loaded as
chunks and assigned to spaces based on the algorithm presented in Chapter 6 on the graphic
display. .

contents in a simple examiner window as shown in Figure 6-29.

Chunks. Chunks are displayed to the right of the problem space that the SX display believes that they
will apply in. They are displayed as a dark black box on the decision cycle that they are created and
later as a hollow box. When chunks fire, they explode visually, and, optionally, beep. They also can
be set to display their ID when they fire or are created. To make it clear which chunks fired, the
exploded chunk remains until the beginning of the next decision cycle. Similarly, newly created
chunks remain dark after their creation until the beginning of the next decision cycle. The small block
in black next to the Analyze problem space in Figure 6-28 is a newly created chunk, and the white
filled block is an old chunk.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 116

6.2.3 The working memory walker

Besides examining the global structure of the models, users will need to examine the structure of the
components. Table 6-22 lists the requirements that users need from this type of display to examine
working memory. This display task is similar to displaying other graph and structure examiners.
Often graphs like this are examined by displaying the whole graph on a sheet. The user can open and
close leaf nodes, and if the graph is too large to display all at once, the user is provided with a window
on the graph that can be scrolled around.

Table 6-22: Requirements for the working memory graph examiner.
¢ Click on objects to examine them.
¢ Hide objects.
¢ Do not require lots of scrolling.
¢ Examine memory all the way down.
¢ Look at multiple objects at once, perhaps from various levels.
e Hide sibling subtrees.
¢ Hide parent links that are not informative.
¢ Update structures as Soar runs.
¢ Run quickly enough not to significantly degrade performance.

¢ Be relatively easy to implement.

A design to meet these needs does not appear to require a single large window to display the graph.
Actually, a single window design cannot meet these requirements, so a different design was tried here.
The global display was extended so that users could click on the objects that represent the global
structure and have them open up into similar windows, all the way down. This design appears to
satisfy all the requirements in Table 6-22. Figure 6-29 provides an example display examining a tied
operator and its substructure in Rail-Soar (Altmann, 1992).

A window displaying the selected item can be created by typing "e" for examine on the display (also :e
or e in the Command Interpreter), by selecting the "Examine selected item" option on the pop-up
menu, or by double-clicking on the desired object. Items in bold text in problem space examiners and
all objects in other examiner windows can be clicked on to create further examination windows, all the
way down. If a constant value is selected to be examined, the examiner beeps when the constant is
selected to be opened. The traced attribute values that would normally be displayed in a trace are
displayed as the object’s name when it is created, and used as the window title when the object is
examined.

Since this display has been implemented, a few users but not many, have noted that it would be useful
to be able to modify Soar’s working memory directly with this tool. This has not yet been
implemented, it is not crucial for few users have noticed it, but this capability might support new
debugging methods, and should be added in the future.

The examiner windows during a run. Examination windows contents are always updated after every
macrocycle and by default after every decision cycle and elaboration cycle. They can also be updated
by calling update or up in the Soar Command Interpreter. There is no such thing as a free update, so if
a user wishes to update less often, they can do two things. For a single modeling session or part of one,
they can select that as an option from the DSI and Soar parameters dialog box. For a long term

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 117

Soar Grapiuc Display 32 0 SHAMG

TOP-BPACE

o oswateh (p5o)

R=5w
WY g
‘it—n 106 u

SW oo i et Wea el tE
cro-cucle breakess
=)G: 940 {operstor no-changs)

aro—tycle breskees
E Ps pBS (switch-1)

“name s} v
“outside trus : lo breakses
“position p28

F-ex

- i e om T R EOET

Figure 6-29:
Example display of examiner windows of Rail-Soar (Altmann, 1992). The Switch problem
space has been opened, and the impasse goal g/15 has been opened from it. From within that
examiner window (labeled "g115") the mI04 operator was opened, and then the desired
attribute of that, Car c32, has been opened from within the operator examiner by clicking on it.
A Soar-mode editor is on the right.

change they can modify their initialization file.

Providing -a visual display of the contents of working memory while the model is running can be very
informative. For example, during a demo of NL-Soar with an examiner open on the top goal, it was
observed that the top goal had two top-level problem spaces to choose between. This was not known
to the NL-Soar implementors, and was caused by a duplicate production creating acceptable,
indifferent problem spaces.

6.2.4 A pop-up menu and dialog boxes to drive the display

Figure 6-30 shows all the dialog boxes and the pop-up menu that can be used to run and modify Soar
and the SX graphic interface. The SX graphic display is in the upper right. Moving clockwise, the
first object is the pop-up menu that the user obtains by clicking on the graphic display. By default the
menu will stay up until it is iconified or exited, but the user can set the menu to be a true pop-up only

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) A 118

menu.

Each item consists of a "menu label” followed by the keystroke accelerator equivalents (if any)
available for typing on the graphic window, or typing to the new Soar Command Interpreter. If
multiple commands are available, they are separated by a "I" between types and by commas within a
type. The menu support running the model in a variety of ways, including a new unit called a
macrocycle. A macrocycle is a user set-able amount thai can be measured in decision cycles and in
problem space level units such as "until the 3rd operator has been selected”. This menu is also used to
access all the dialog boxes. The menu also includes some general graphic commands, such as
examining a graphic object or taking a snapshot.

SHU: Yanepshot “/rx/newnetes/graphica/al 1-the-vindovs.o8
2 Jefs/cs.comiaduAmar/rittar/sx/newnotes/or aphice/el 1-the-windowe .pe nonexi\

) you heipt

W types/MC: MC type:

HAIDE Qmeacin

% ror help on the scarX display, see the manual available as
hardcopy, or on-line (see below).

% For help on soar-mode,

Mex dc/MC: Ow-r-m type "C-h m" in soar-mode buffers in Emacs.

G Osae help on taql-mode,

de” in taql-mode buffers in Emacs.

Use BT0 fonte Y draphic dieplay?
Sour syntax Show Ide of:
Ooal
Problen-Space
State

Opagator

Chnk

Shew static Lirks
Shov static text
Merme be static

manuals are available in Emacs in
rs under the menu "C-c Ca",
on”, or "TAQL Documentation” sub-mer

n or type CR to continue)

E N o) Build Static Henss

Create & preblan space

@ print @ all-gosls @ trace
Ouptinf. Obott-—q On.ntxuo

© full-print Q full-trace Alvays wpdate windows Tie tve spaces teguthec
Ramwvs & cevmecter
dute acroll
Wite a fils of Pliis out
[Abect] Put amey sewm

Figure 6-30: _

The pop-up menu and dialog boxes within the SX graphic display. Moving clockwise, the
pop-up menu is followed by a GNU-Emacs window, which has the Soar process buffer as one
of its windows. The DSI help window is below that, partially obscured. This help window is
accessible from the pop-up menu, and provides general guidance for how to get help, mostly
through Soar-mode. At the bottom right is the static display menu that allows the user to create
static views of a model on the problem space level. To its left is a dialog box for modifying
some of the Soar parameters, and some of the graphic display’s parameters. Next to that, on
the bottom and left, is a dialog box for setting the Soar leaming algorithm. Finally, there is a
dialog box for setting the macro-cycle.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 119

6.3 Creating and modifying the model

The analyst needs to create and modify the cognitive model by writing knowledge as productions or
TAQL constructs. The ability to informally test the models for functional performance even before
comparing it with behavior must be included in this requirement. As structured, integrated editors for
Soar and TAQL programs, Soar-mode and TAQL-mode support these needs. They are integrated with
Soar — they provide a facility to start up a Soar process and can communicate directly with it. In
particular, Soar-mode provides a command line interface that augments the Soar Command Interpreter
when it is available and replaces it when it is not. They are structured because they are designed to
treat the structures in Soar programs, productions, and the structures in TAQL programs, TAQL
constructs, like other structures within the editor. Users can move between them, cut and paste them,
directly load them, and examine these structures as they appear to the Soar process.

6.3.1 Soar-mode: An integrated, stl_'uctured editor for Soar

Soar-mode (Ritter, et al., 1992) provides a set of commands to manipulate Soar objects more directly
and allows the user to start a Soar process. The user is provided menu items and keystroke commands
that can qmckly pass various sized portions of Soar tasks to the connected Soar process. Table 6-23
lists the major functionalities provided by Soar-mode.

Novice users can drive Soar-mode (and TAQL-mode) with a menu. After each command is executed a
description of any equivalent keystroke accelerators is displayed to the user, providing a path to
expertise. The user can also query a menu (select the "?" item that is provided or type a space) for a
list of the keybindings of the menu items. -

Soar-mode is built on top of a Lisp editing mode for GNU-Emacs called ILISP (McConnell, 1992),
which is similar to, and emulates many of the functions in the Lisp machine programming environment
(Greenblatt, Knight, Holloway, Moon, & Weinreb, 1984). The under]ymg functionality of that mode
and GNU-Emacs are also available.

Table 6-23: Overview of the functionality offered by Soar-mode.

¢ A structured editor for Soar productions and for loading productions, regions, and files
directly into a running Soar interpreter.

¢ The ability to treat Soar problem spaces and operators as levels in an outline, performing
the usual outline processing functions on them.

e Commands to test and examine productions bound to keys and mouse buttons that are
smart enough to tell which productions they are in or over.

e Complete on-line documentation for Soar, Soar-mode, the Soar default productions, and
the Soar source code.

» Functions to generate and maintain informative source code file headers.

¢ Tags file support for Soar productions (i.e., find-production-source-code) to enable fast
and easy retrieval of production’s source code.

e Support for running one or more Soar processes in separate buffers, and commands for
interacting with these subprocesses.

¢ Support for Common Lisp programming (this is the system underlying the current
implementation of Soar 5, and may disappear in later releases when Soar moves to C).

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 120

6.3.2 Taql-mode: An integrated, structured editor for TAQL

Taql-mode (Ritter, 1991) builds upon the basic capabilities in the GNU-Emacs editor and a template
system extension (Ardis, 1987) to provide users with the ability to enter TAQL constructs by filling in
a template. When users execute the command to insert a template, they are offered the menu of
templates shown in Figure 6-31. Figure 6-32 shows an example template as it would initially appear in
a buffer. During expansion, commands to expand the current TC are explained in the mode line (the
reverse video line at the bottom of each buffer) or the message line (the line at the very bottom of an
GNU-Emacs display). Often the user is simply queried with yes/no questions about inclusion of
optional clauses and expansion of clauses. At other times, they are presented with a menu similar to
the selection menu. The heart of the templates is entered as text. The ability to auto-complete names
upon a keystroke command, already extent in Emacs, is highlighted through display on the Tagl-mode
menu, and by rebinding it to a new key. Encouraging the use of auto-completion helps keep variables
spelled the same way each time, and cuts down on the number of keystrokes to enter a TAQL
construct.

PROBLENM-SPACE-PROPOSAL-AND-INITIALIZATION:
propose-space:
propose-initial-state:
propose-task-state:

OPERATOR-PROPOSAL:
propose~task-operator:
propose-operator:

OPERATOR-SELECTION-and-EVALUATION:
prefer:
compare:
evaluate-cbject:
evaluation-properties:
operator-control:

OPERATOR-APPLICATION:
apply-operator:

GOAL-TESTING-and-RESULT-RETURNING:
goal-test-group:
result-superstate:
propose-superobjects:

ELABORATION:
augment :

OTHER-TEMPLATES :
the-0SU-production-templates:
8ps ; the simple sp
TAQL-program-template: ; Yost’s outline

Figure 6-31: TAQL-mode templates menu.

6.3.3 The Soar Command Interpreter

The SX display is run with the new Soar Command Interpreter (SCI). It provides a better command
interpreter, one tailored to Soar. The prompt of the Soar Command Interpreter has three fields: a Soar
Command Interpreter title ("SCI"), characters indicating the current reader syntax, and the current lisp
package. This prompt is easily changed. The read table in Soar interprets commas as preference
syntax; Lisp normally interprets them as part of the backquote macro. In the prompt, "Is" indicates that
the Lisp interpretation is used, while "ss" indicates that the Soar syntax is used. For example, the
prompt "<SCI Is:user>" indicates that the user is running the Soar Command Interpreter, the Soar
reader is set to Lisp syntax, and the current lisp package is the user package. The SCI accepts
keywords that specify an action for the graphic display or Soar. These commands can begin with or

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 121

(propose-space (propose-space-name}
{space-proposed)
{subspace~-function-clause)
{?when-conditions)

{?copy-clauses)

{?rename-clauses}

{?new-actions-specs)
{?use-superspace-top-space-or-id-clause)

? indicates optiocnal clauses, .
! indicates mandatory expansion (usually user doesn’t see this)
plurals indicate multiple copies may appear, e.g. when-conditions.

Figure 6-32: Example TAQL-construct template.

without a colon. Table 6-24 lists the most important commands in the SCL

Table 6-24: Most important commands in the Soar Command interpreter (SCI).
¢ The ability to run ahead based on the problem space level, such as next operator.
e Short cuts for toggling the reader syntax and the lisp package.
e Pop up an examination window on the currently selected PSCM level object.

¢ Run ahead one macrocycle. The default value for a macrocycle is 1 decision cycle. Any
open windows on PSCM items are updated each macrocycle.

¢ Any number runs the model N macrocycles.

e Type the initial letter of any problem space level object (goal, problem space, state,
operator, chunk) to run to the next new occurrence of that object.

¢ Redo the last successful command.
¢ Take a snapshot of the display for inclusion in documents like this one.

e When the user types "help"” or "?", help is provided as a listing of the keywords and their
effects. The help message is automatically generated from the commands.

¢ Anything else gets read, evaluated, and printed.

6.4 Supporting the requirements based on the whole process and its size

Besides the direct requirements of aligning the predictions with the data and starting to interpret their
comparison, the DSI supports the five global requirements based on the whole process and its size.

6.4.1 Providing consistent representations and functionality

In the DSI, while each of the tools can stand alone, they also know about the others, and can interact
appropriately with them. For example, commands executed from the menu on the graphic display
window can request buffers to appear in Emacs. (In the best of all possible worlds, if the other tool is
not present, something appropriate still happens.) Similarly, commands in Soar-mode can run
commands in Soar directly. In each tool and across tools, some care has been taken to provide

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 122

multiple entry points. That is, each command is available in each tool and often in a variety of
appropriate and similar ways. For example, there are several ways to run the init-soar command; one
can type (init-soar), :init, or init to the Soar Command Interpreter, choose Init on the graphic display
menu, or type an "i" on the graphic display window. Help is provided with each tool to facilitate
learning the other entry points. For example, the graphic menu item for init-soar includes a listing of
the other expressions of this command in the other modules.

Because they can communicate, the various modules in the DSI are also able to use each others
display. Users can request objects be displayed graphically from the Soar Command Interpreter, and
the graphic display, when chunks are clicked on, can display them in Emacs buffers. As an additional
example, Soar has been augmented with a command called continuous-match-set. This command sets
up machinery so that after every elaboration cycle Soar prints out which productions will fire on the
elaboration cycle (the match set). If Soar-mode is available, they get displayed at the top of a separate,
scroll-able buffer. If Soar-mode is not available, they merely get put in the trace.

The components of the DSI also interact with Spa-mode and the measures of fit. Upon the user’s
request, Spa-mode can query the graphic display to obtain a listing of the operators in the current
model, and the trace can be inserted in the spreadsheet. Spa-mode can then use these for exploratory
coding of data. The displays of fit organize their data using the names of the operators obtained from
the graphic display as labels on the display.

6.4.2 Automating what it can: Keystroke savings

The model manipulation interface does not offer any large pieces of automation such as automatic
alignment or display creation. What it offers is a large number of small automations. Models can be
loaded more quickly, some pieces of functionality are directly accessible. The largest small
improvement has been to create functions to perform frequent tasks, and bind them to keystrokes and
command names in Soar-mode, the Soar Command Interpreter, and the SX graphic display.

The keystroke model of Card, Moran, and Newell (1981; 1983) predicts that as a first order effect, the
amount of time performing a task will be proportional to the number of keystrokes needed to perform
the task. Table 6-25 shows the savings for several common tasks that Soar-mode provides over

interacting with a plain Soar process. ‘

The savings appear to be considerable. The measures in this table are only an approximation of the
true savings because they include many simplifying assumptions. The measures do not include the
time to plan, but it should be small for most of these actions, and the interactions with Soar-mode are
more direct and should require less planning. Some of the more complicated commands not shown in
Table 6-25, such as running the model to the next problem space, would offer further savings because
they would require many more keystrokes and would include several mental operators.

6.4.3 Providing a uniform interface including a path to expertise

The DSI has been designed to accept multiple entry points and names for commands. Many
commands can be executed in a variety of windows, with a variety of names. You can choose the way
that best suits you, and the work that you are currently doing. For example, you can init-soar by typing
to the command interpreter ":init", "init" (as long as the variable init is unbound), or (init-soar), by
selecting init-soar on the graphic display pop-up menu, by typing "i" on the graphic display window
itself, or by typing in Emacs, ESC-x init-soar.

Each command across the multiple possible entry points is consistent: they share the same name, or
when appropriate, they use (so far) single letter abbreviations. While several toolkits are used, only
one designer has integrated them, so while perhaps screwy, a method to the madness also should be
observable (Brooks, 1975).

Menu driven for novices, keystrokes for experts. Each component of the DSI (SX graphic display,

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) ' 123

Table 6-25: Keystroke savings for Soar-mode accelerator keys, the Soar-mode menu,
the SCI, and the SX graphic display compared with the default Soar process.
(All measures in keystrokes unless otherwise indicated.)

PLAIN SOAR PROCESS SOAR-MODE
COMMAND Keys Keys Speedup Menu Speedup
Load file 24 3 8.00 7 3.42
(using 7 char long name)
Excise production 25 3 8.33 7 3.57
Load production
with keys 14 3 4.66 7 2.00
with mouse 7 3 2.33 7 1.00
Trace production 24 4 6.00 7 3.42
Production matches? 31 4 7.75 7 4.42
Continuous match set 8 1 8.00 1 8.00
(Just look for Soar-mode)
Run Soar 1 DC 9 3 3.00 na na
Open on-line Soar manual 49 7 8.00 7 7.00
FPind out reader syntax 14 9 1.55 na na
View function documentation 35 3 11.66 7 7.00
PLAIN SOAR PROCESS 8SCI SX Display
COMMAND Keys Keys Speedup Keys Speedup
Run model 1 decision cycle S 2 2.50 1 5.00
Find out reader syntax 14 1 14.00 na na
(Just look for SCI)
Examine an object (spr) 9 2 4.50 2 4.50
Initialize Soar 12 2 6.00 1 12.00

Soar-mode, and TAQL-mode) can be menu driven and keystroke driven. Menus lay the commands
out for the user, users need not memorize them. Each menu also displays the equivalent keystroke
shortcuts. If the user does not know how to do something, they can check the menus. The graphic
display menu is available by clicking the middle mouse button, and then selecting an item with any
mouse button. In Soar-mode and TAQL-mode, Control-C Control-M will bring up a menu of
commands and sub-menus, and in later releases of GNU-Emacs this will be saved to provide menu
functionality. Menu items can be selected by typing their first letter. Further explanations and key

binding information can be obtained by typing a "?" or a space. After the command is executed, the
keybinding is echoed in the message area.

Previously there was little documentation for Soar on-line, including the manual ("someone might take
it and improve it"!), and the documentation for individual functions were awkward to obtain; the user
had to type the cumbersome command "(documentation ’<function-desired> ’function)”. This is not
uncommon for modeling systems, Lisp often comes that way out of the box. We consider on-line
documentation to be a useful adjunct to hardcopy versions, so Soar-mode includes a uniform
documentation accessing mechanism available as a menu item. Users can now obtain the main Soar
manual and other manuals (such as the editor manuals and release notes) via the main menu.,

6.4.4 Providing a set of general tools and a macro language

The DSI is designed to support a general activity, inserting knowledge into a Soar model, and is itself
general. It can be used to create any Soar model, and is designed to be able to display any Soar model.
Macro-languages and an interpreter are available for each component. Common Lisp is available with

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) ‘ 124

the graphic display, and GNU-Emacs Lisp is available with the structured editors, Soar- and TAQL-
mode. The source code is provided for each component, so what is poorly documented or not
documented in sufficient detail can be found in the source code.

Hooks are places to customize a system’s behavior by calling a user-supplied function at a set point,
such as at startup, or after a file has been loaded. Several have been added to Soar5, and the standard
set (loading and initialization) for Emacs modes have also been included. The appropriate user-
supplied functions, if any, are called after Soar is initialized, after each decision cycle, and after a
macrocycle. _

6.4.5 Displaying and manipulating large amounts of information

Objects that the programmer (or Knowledge Engineer if you prefer) has in mind, such as productions,
TAQL constructs, emergent objects in Soar that appear as members of the goal stack or attached to a
subpart of it, are treated as first class objects that can be directly loaded, excised, run, and examined.

The SX graphic display uses a new, node-based algorithm for browsing the working memory
structures in the goal stack in a natural manner, and for displaying how the contents change while the
model runs. The structures inherent in a model, most notably the problem spaces (states and operators
too, but they are not shown as nicely), are examinable after a run in the graphic display, and their
names and frequency of appearance are available from the pscm-stats command. Which structures are
in the stack is graphically depicted.

The structured editors provide support for manipulating the productions and TAQL constructs directly.
Direct manipulation of Soar models on the appropriate level provides a significant drop in the number
of keystrokes required.

6.5 Lessons learned from the DSI

In addition to providing an environment to support manipulating the model, its initial use unrelated to
testing process models provided several lessons about the usability of Soar software and the behavior
of Soar models in general.

6.5.1 The relatively large size of the TAQL grammar

Codifying and supporting the creation of TAQL constructs in a structured, template driven editor
required enumerating them in a formal grammar. Table 6-26 displays the sizes of each version of the
TAQL grammar with respect to several other languages that template-mode provides. Included for
comparison purposes are set of templates used at The Ohio State as part of Tagl-mode. These
templates are based on the problem space level operation templates that were included in the Soar 5.2
manual (Laird et al., 1990) as plain text. From left to right, the columns display the raw size of the
templates, the total number of nodes in the grammar, and the number of grammar nodes automatically
expanded for the user as the templates were completed, and the size of each set of templates in nodes
relative to the smallest template set, excluding any auto-expanded nodes.

This table shows the relatively large size of the TAQL grammar. It is quite possible that the coding of
the TAQL grammar is more thorough than the coding of the other grammars, and an examination of
the grammar for Emacs Lisp confirms that it is missing perhaps half of the special forms. However,
the TAQL 3.1.4 grammar itself is not complete, with approximately 90% of its constructs represented
in the templates. The size of its grammar may have impeded TAQL’s acceptability and learnability.

6.5.2 Behavior in Soar models is not just search in problem spaces

Models of human behavior in Soar have often been described exclusively as search in problem spaces.
Table 6-27 lists several places where the behavior of Soar models have been described this way (and

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 125

Table 6-26: The size of the TAQL grammars within TAQL-mode and the
programming languages supplied with the underlying template-mode.

Raw size Relative size Total Auto-expand Relative size
in char. to elisp Nodes Nodes to elisp
(in chars) (in nodes)
TAQL (3.1.2) 29.40 k 10.50 238 . - 99 5.34
TAQL (3.1.3) 31.10 k 11.10 287 93 7.46
TAQL (3.1.4) 35.80 k 12.78 306 98 8.00
Soar (SPs) 11.60 k 4.14 31 o 1.19
c 2.70 k 0.96 k¥ 0 1.30
Pascal 3.40 k 1.21 44 0 1.69
Blisp 2.80 k 1.00 26 0 1.00

yet there are other descriptions where the relationships between problem spaces and search in Soar
models includes other alternative formulations, e.g., Yost & Newell, 1989; Newell, 1991; Waldrop,
1988). Even the cover of Unified theories of cognition (Newell, 1990) presents a schematic of this
type of search. If the behavior of the models is viewed this way by their authors, it will color their
thinking, and percolate out to other audiences, as indicated by the last quotation.

Table 6-27: Descriptions of Soar and Soar model’s behavior as search in problem spaces,
presented in chronological order except for the final quote (All italics in original).

e "Soar is organized around the Problem Space Hypothesis (Newell, 1980b), that all goal-
oriented behavior is based on search in problem spaces.” Rosenbloom, Laird, & Newell,
1988, p. 229

e "The Soar architecture is based on formulating all goal-directed behavior as search in
problem spaces.”” (The Soar group, 1990) '

e "The search through the [problem] space can be made in any fashion", Newell, 1990, p.
98.

e "Soar formulates all tasks in problem spaces, in which operators are selectively applied to
the current state to attain desired states." Lewis, Huffrnan, John, Laird, Lehman, Newell,
Rosenbloom, Simon, & Tessler, 1990, p. 1035.

e "All tasks are formulated in Soar as search in problem spaces, where operators are applied
to states”, Simon, Newell & Klahr 1991, p. 435.

¢ "One of the most unique characteristics of Soar is its view of all goal-directed cognitive
behavior as search in problem spaces. Each problem space consists of a set of states and a
number of operators to move from state to state. Given a goal to achieve, Soar first selects
an appropriate problem space, then selects an initial state, and then selects an operator that
it applies to that state to get a new state. This process continues until a state that satisfies
the goal is reached." Ward, 1991, p. 13.

¢ "The basic premises [of Soar] are these: ... 4: That all intelligent activity can be
characterized as search through a problem space;" (Norman, 1990)

What is search in a problem space? Search in Soar would appear to describe primarily two types of
behavior. The first is the application of numerous operators in a single space. Backup, when

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 126

necessary, would be performed by other operators to modify the state. Soar4 models often used this
technique when they performed search. These operators could also use other knowledge sources
through impasses to other problem spaces. If the operators were all indifferent, there would not have
to be a conflict leading to a tie between operators and the associated impasse. Search in this instance
would have a large number of operators applied per problem space, and a large number of states.

The other way that search could be performed would be to have several available operators in a
problem space, but not have them indifferent to each other. An impasse would arise of which operator
to apply, and a goal stack of problem spaces used in look -ahead search would be created, like the one
in Sched-Soar shown in Figure 6-27. This type of behavior would also result in numerous operators in
the lookahead space, and a large number of instantiations of the lookahead space.

Types of behavior that are probably not best described as search in problem spaces are situations where
there is a series of operators applied, and each operator is the only possible operator and where the
operator is readily available. That is, where there is no uncertainty involved in the creation, selection,
and application of the operator. That is not to say that such situations will not arise in problem spaces,
or that it cannot be represented in terms of the problem spaces, just that these are not situations best
characterized as search in problem spaces.

Visual displays of search. With the graphic display having provided dynamic pictures of several
model’s goal stacks and counts of how many operators the models use and how many operators are
used in each problem space, we can now make the argument that search within a single problem space
does occur, but it is not the only mode of activity and is too weak of a description of how current
models in Soar use knowledge. The graphic display’s representation of the goal stack shows that the
models are not just performing search in a problem space. Observing the goal stack for Browser-Soar
(Peck & John, 1992), Seibel-Soar (Ritter, 1988), Sched-Soar (Nerb & Krems, 1992), MFS-Soar
(Krishan et al., 1992), NTD-Soar (John, et al., 1991), NL-Soar (Lehman, Lewis, & Newell, 1991) and
Rail-Soar (Altmann, 1992; Newell, P., Lehman, Altmann, Ritter, & McGinnis, forthcoming) indicates
that most of the time these models do not apply many operators in a row before subgoaling, and
instantiate nearly as many problem spaces as they do operators. After much worry and concern about
how what happens when operators walk out the rear of problem spaces, it does not seem to happen all
that often. Indeed, only two systems (Red-Soar: (Johnson & Smith, 1991), Able-Soar, Jr.: (Levy,
1991; Ritter, 1992)) have seriously overrun the current limitation of being able to display four or five
operators in a problem space before they are no longer graphically in the triangle.

Several models do perform explicit search as part of their behavior. Sched-Soar, Rail-Soar, NL-Soar,
and Groundworld, at least, sometimes do it. For example, part of the structure of Sched-Soar’s search
can be seen in Table 6-25 and Figure 6-27. Other models do not perform any search on the problem
space level. If the operator support displays for Browser-Soar are examined (the Appendix to Chapter
7), one can conclude that Browser-Soar’s behavior is routine (and this is indeed what Peck and John
intended and claim). The operators are applied in a very orderly way. A system that was performing
search that depended on the information it found would presumably be less regular.

Table 6-28 presents other possible measures for characterizing behavior as search: the number of
operators, the number problem spaces, and instantiations of operators and problem spaces over a
typical task episode (as defined by their authors) for several Soar models. In each case, the number of
different operator types in each problem space is relatively small (the largest average ratio is
approximately 4 operators per problem space in Red-Soar), and the average number of instantiated
operators per instantiated problem space is small too.

The proportion of goals that are operator no-changes are shown for each of the programs in Table 6-28.
Several of these programs do use lookahead search, but the ratio of operator no-change impasses

suggests that these programs are not spending a substantial amount of their effort performing
lookahead search.

There are also some unusual, very non-search-line behaviors exhibited by the models in Table 6-28.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 127

Table 6-28: The number of operators, problem spaces, and instantiations of these
per run for several Soar models.

Descriptive Instantiations
Model Oops Spaces Ratio OP nc Ops Spaces Ratlo Max
(ops/ps) goal (ops/ps) (ops/ps) Space
ratio i
Browser-Soar 31 18 1.72 0.87 238 52 4.57 7.223 Evaluate-items-~in-window
Groundworld 33 15 2.20 0.92 531 74 7.17 179.50 Wait-external
Liver-soar 5§ 20 3.75 0.72 208 [Y] 4.72 15.66 Check-features
MFS-8oar 69 23 3.00 0.96 347 92 3.77 6.33 Input-variable
NL-8ocar 18 8 2.325 0.56 122 52 2.3¢ 6.33 Check-constraints
all learned 18 8 2.25 0.50 3s8. 2 19.00 37.00 Comprehension
NTD-Soar 42 11 3.81 0.93 779 73 10.67 24.40 Sqagr
Rail-socar as 13 1.92 0.73 233 48 4.85 8.00 Eval-state
Red-Soar
plain episode 107 27 3.96 0.94 1258 130 9.67 154.00 Rule-out
“Searchy” episode 109 - 29 3.7% 0.86 923 126 7.32 81.50 Match-hyp-to-antigram
Sched-8oar 11 4 2.75 0.69 866 187 4.63 3.35 Analyze

Red-Soar uses 154 operators in the rule-out space to check constraints when typing blood. The goal
stack and pscm-stats in the SX graphic display indicate that Groundworld (Stobie et al,
1992) performs one 9-step look ahead search, and then waits for approximately 270 operators. It is a
program designed for a continued existence, and can keep running after its initial task is finished.
NL-Soar, after it has learned a sentence, performs rather differently from its initial behavior. The
"expert" behavior has no search whatsoever, and directly applies a series of 37 operators to understand
the 10 words used in the example sentence. :

Examination of the visual displays of these models suggests that they can best be characterized as a set
of behaviors, including search through problem spaces, hierarchical decomposition of problem solving,
as migrating and combining knowledge sources, and as search within a single problem space. In a
fully learned Soar model, actions just happen automatically in the top space, which is not a search
space at all then. The problem spaces used for search have disappeared. Search may remain on other
levels. There may be the results of previous searches guiding behavior that can be seen as degenerate
search; there may be search going in the external environment; there may be search being performed in
the Rete net to find which productions to fire. But in many cases there is not search being performed

on the problem space level. These other searches are not wrong, but they must be included in the
explanation of behavior of Soar models.

6.5.3 Soar models do not have explicit operators

Problem spaces and their objects, such as operators, do not exist in Soar models in an explicit sense.
Within a running Soar model, neither the model nor the modeler can obtain a list of all the problem
spaces and operators that exist. They are only available to an observer (including the model itself) by
watching the system perform over time, and a history of their appearance and use is not saved
automatically (except by the SX graphic display).

The "operators" (or any problem space level object) that are selected for application are not Operators
(capital O). A chain of the same operator in the graphic display, all in a row, illustrates that the
Operator is not being applied, but instantiations of it are being created and applied. If the same
operator was being applied, then a chain would not be an appropriate metaphor, but a moving dot
would be. Operator preferences may really be preferences for a given operator, but perhaps they
should be seen as operator instantiation preferences. Or how else could you prefer add(3 4) over add(5
6)? Both appear to be the add operator.

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 128

What is selected then? The objects selected are instantiations of a semantic object, or object instances
generated by an implicit generator. Both the semantic operator and the operator generator are not
available for inspection on the symbol level. They are knowledge level objects, and can only be
manipulated on that level. The symbol level, which the Soar architecture provides, can only
approximate them, and can only obtain them through effort and observation.

This difference between operators and operator instantiations may seem small, but it is necessary to
disambiguate these differences for automatic model testing. When aggregating the results of testing
the model the objects that are supported must first be identified, and represented across runs of the .
model. The instantiations are not the theoretical level objects they are often mistaken to be, and cannot
aggregate support. Identifying architectural objects is also necessary to display them.

6.6 Summary

The Developmental Soar Interface supports creating models in Soar by treating model building more
like an Al programming task. Users can load and run code more directly, manipulating productions as
productions, rather than as portions of plain text. By integrating a Soar process within the editor, the
textual representation of productions can be quickly augmented with features found only in the
process, such as how well a production matches the current goal stack and its contents.

The DSI has added several key ideas to building models in Soar. The first is that the theoretical
constructs of Soar models should be displayed. The SX graphic display provides a visual description
of the model’s structure and behavior over time, and the improved trace provides a better linear
description. By aggregating the ephemeral trace over time, the SX graphic display can infer the
structure of the problem spaces.

The second is that the user should be able to directly manipulate the theoretical structures. The two
structured, integrated editors provide commands for creating, evaluating, and examining models in
various ways on the production or TAQL construct level. The SX graphic display provides the ability
to examine objects on the PSCM level, but not the ability to create them.

Implementing and using the DSI has provided some lessons on Soar programming languages on the
behavior of Soar models. Implementing an aid for TAQL programming pointed out the relatively large
size of the TAQL language. Using the graphic display has pointed out two features of Soar models
that are more accessible with a graphic display of Soar model’s behavior. First, that Soar models
include other types of behavior than just search in problem spaces. Second, that within a Soar model,
its basic structures, problem spaces level objects, do not exist in an explicit form. Users and systems
that want to manipulate Soar models will have to create their own representations of them.

Remaining problems with the DSI. The main components of the DSI represented different levels of
support for the user and had different levels of success. The two editors, Soar-mode and TAQL-mode,
are well received, and will continue to be used by a large part of the community given normal software
maintenance. The curmrent version of the graphic display of the model’s behavior and structure has
several problerns that will have to be fixed for it (or by future systems) to truly useful.

States remain essentially untraced. This is a problem both for testing predictions against protocols and
for basic model building. What the necessary information is, how to let the user represent it, and how

to provide it succinctly, remains a high priority design issue. Implementing the trace once it has been
designed is probably straightforward.

Users have requested several extensions to SX display. These include the ability to remove working
memory elements and to show how a single production matches over time, but the largest problem
with the SX graphic display has been speed. This is the largest acceptability issue that the graphic
display has faced. People who do not use it, do not use it because it unacceptably slows down Soar. It
has only been truly acceptable where speed is not an issue, such as for teaching novices and for demos,
but the lack of later acceptability has even encouraged some novices to not start to use it. As the Soar

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 129

architecture gets implemented in C, this system should get duplicated in C, but it is unclear that the
relative slow down will not also occur there. Any display, but particularly graphic ones, may always
offer at best a two-to-one slow down compared with the underlying application (Myers & Rossen,
1992).

Several graphic design issues remain. The dynamic structures of Soar in the goal stack are all
represented fairly well. How to represent several of the static structures remains a problem, for
example, how to nicely display the operators in a space; we use a simple way for chunks, can we find a
similar one for operators? Representing the states that exist in a problem space suffers from a similar
problem. ' :

Finally, can we tie creating and editing productions to the graphic display? The ability to click on
chunks and examine them has proved useful in exploring the types of chunks that end being assigned
to Every-Space. Being able to go between a graphic and textual representation is appealing.

Soar/MT - 21 December 1992

130

Soar/MT - 21 December 1992

131

III Performance demonstrations of Soar/MT and Conclusions

Soar/MT - 21 December 1992

The model manipulation tool -- the Developmental Soar Interface (DSI) 132

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 133

Chapter 7

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply

Browser-Soar (Peck & John, 1992) is a model of a user using an on-line help system. Ten episodes
totalling approximately ten minutes of a single subject’s behavior have been used to test it. This
chapter examines Browser-Soar in detail, duplicating and extending the previous set of analyses. By
choosing to duplicate and extend an existing analysis, it includes a set of analyses known to be useful,
and provides a reference point for measuring its speed and discrimination.

Soar/MT allows the sequential predictions of Browser-Soar to be tested more quickly and at a finer
level than can be performed by hand using sheets of paper and a plain spreadsheet (Excel) to hold the
correspondences. Displays showing the fit of the data to the predictions can be easily created, and
provide additional insight for characterizing the model and how to improve its predictions.

Browser-Soar provides predictions of when structures enter working memory. This allows testing the
sequentiality assumption of verbal protocol theory, that mental structures are reported on in the order
that they appear in working memory. This assumption is found to hold for verbal utterances.
Sequentiality can also be tested for mouse actions and they too are performed in order. However the
verbal utterance and mouse action information streams do not initially appear to be sequential with
respect to each other. The most likely cause for this discrepancy is that an approximation in the
interpretation and alignment process was used. The data in the two information streams should be
considered sequential. When this is done, the overt actions provide fixed reference points for
computing the lag of the verbal utterances.

With a measure of the model’s performance and fit in hand, a small modification of Browser-Soar
suggested by the measures of fit is attempted, removing some problem spaces that might be redundant.
This change does not drastically improve the fit, and this is shown clearly in the analytic displays. The
resulting model, however, is more parsimonious with the effects of learning.

In nearly every case the results reported here duplicate what Peck and John already know about
Browser-Soar, but they come at less expense and can be shown more compellingly with Soar/MT’s
displays.

7.1 Description of Browser-Soar and its data

While Browser-Soar and its data are explained fully elsewhere (Peck & John, 1992), an overview is
presented here with particular emphasis on the aspects of the data and model that receive attention in
this reanalysis. Because Peck and John have generously allowed me access to their original data, I am
able to include additional descriptions of the data here.

Description of the data. The Browser-Soar data used to test Browser-Soar was gathered from a single
user interacting with the cT programming environment on the Macintosh computer (Sherwood &
Sherwood, 1984; Sherwood & Sherwood, 1992) to perform her own task arising out of her work,
creating a graphing program for her own use. She was a non-professional but experienced computer
programmer who had never used cT before the experiment. The episodes of interest occurred when
she used the on-line help system to learn about cT. The data that Browser-Soar is tested with
represents only a portion of the 85 episodes using the help browser that occurred during the three and
one-half hours of behavior that was videotaped. A portion of the remaining data was used informally
to help create the model.

The first four episodes were chosen to cover a wide variety of browsing behavior, and the remaining
six were chosen randomly from all the browsing episodes that were videotaped. Each episode
represents a different environment and goals.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 134

As noted in Table 7-30, the ten episodes averaged 56 s in length and included a total of 58 verbal and
non-verbal segments. Each episode included a mean of 126 words. This was not reported in the
original analysis because computing the number of words ger episode is something that is not easy to
do, at least given a journeyman’s familiarity with Excel.® The subject’s behavior provided a high
density of data, on average, over an action or utterance every second, and a relatively high
verbalizations rate of 146 words per minute.

Three information streams from the subject were transcribed by hand into Excel spreadsheets, the
verbal utterances, the mouse movements, and the mouse clicks. Verbal utterances were broken into
separate segments when pauses of more than 100 ms occurred.

There are three special features of the Browser-Soar data worth noting. The first is that the types of
mental information reported is small. The user generally only mentions search criteria, evaluation
criteria, and the words that she is reading. Second, this is not a hard problem. In contrast to many
tasks that have been modeled, using the computer interface is routine behavior for the subject and their
intemal representation of the task is not changing. Finally, there is what will turn out to be a useful
mix of overt, necessary task actions (mouse actions) with verbal staternents. The overt, motor actions
will help disambiguate the verbal, and vice-versa. :

Description of the Browser-Soar model. Figure 7-33 depicts the problem spaces in Browser-Soar and
their relation to each other as drawn with the SX graphic display. Figure 7-34 presents the problem
spaces as depicted by Peck and John (1992). All the problem spaces are related by operator no-change
impasses except the Selection problem space, which is used to resolve operator ties in the
Find-criterion space. Browser-Soar does not reuse any problem spaces, so the maximum goal depth
will be six, not counting the top-goal.

The Soar learning mechanism is not turned on in the Browser-Soar model. Peck and John (1992)
argued that there will be little learning observable in this set of tasks. The user is either performing as
an expert, that is, will not be learning how to move the mouse, or is learning items that will not transfer
between trials, such as how to print out a variable’s value.

Based on a sample run (the "Write" episode, the subject was seeking information about writing
information onto the cT screen) and assigning the productions to problem spaces graphically, the
problem space level statistics function in the SX graphic display reports that there are a total of 18
problem spaces and at least 31 operators. The statistics based on a complete run are shown in Table
7-29.

Browser-Soar is actually a short progression of models based on testing and modify it with the ten
episodes. During this progression Browser-Soar remained rather stable. Between the first and the
tenth episode, two operators were added to Browser-Soar, and four operators application conditions
were changed. Because there are so few adjustments, in this analysis Browser-Soar can be treated as a
single program.

Comparing the listing of problem spaces in Table 7-29 with Peck and John’s (1992) listing, it appears
that either they do not include all the Macintosh method problem spaces, or the organization of
Browser-Soar has changed since it was reported. Table 7-29 includes an additional operator more than
reported by Peck and John (1992) (probably several more, because four of the Mac-method-* problem
spaces also would have operators). This missing operator could be the Browsing-task operator itself,
or it could be an operator used in two spaces, which the SX graphic display would count twice. The
difference in object counts is compounded by Peck and John’s treatment of the model. They knew that
they did not have an adequate model of reading, and did not attempt to match the model’s behavior
below reading the whole screen.

8Macros can, however, be created to perform this task (Schroeder, 1992).

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 135

TOP-8PACE

] EVERY -8SPACE j BROWSING
' Op MC

" FIND-APPROPRIATE-HELP

EFINE-SEARCH-CRITERION

p NC
4 /Op [e — POR-HRLP EVALUATE-HELP-TEXT
rnzn-:vu.uuml-curmou
e
mmmemmen====0D Tie MAC-METHODS-POR-ACC L

Tow /9 nc EVALUATE-PROSE-IN-WINDOW
IND-CRITERION

NC
MAC~METHOD-OP-CLICK-PREV-INDEX
/09 nC p NC
UATE-ITEMB~-,.
NINDOW

MAC-METHOD-OP-CLICK-ON-ITEM

-METHODS -~ POR-CHAM

MAC-METHOD-OF-DOUBLR-CLICK-ON-ITEM

NC

e\ WS
-H“HOD-O?-DM(_I&D D MC
~METHOD-Or - OLL
MAC-METHOD-OF-PAGR

- Figure 7-33: The problem space organization of the 19 problem spéces in
Browser-Soar generated with the SX graphic display.

The static structure depicted in Figure 7-33 shows the normal dynamic selection and use of the
problem spaces. It was created by loading Browser-Soar and running an episode. The problem spaces
that were created were then rearranged from their location on a grid to the tree structure shown in the
figure, connected together by hand, and annotated. Their organization was written out so that this
structure could be used again.

Figure 7-35 shows the goal stack in Browser-Soar at decision cycle 17 of the Write episode. The
selection and use of problem spaces moves roughly from top to bottom and left to right. At the start of
the browsing episode, the Browsing space is selected and the Find-appropriate-help operator is
applied. This cannot be directly implemented, so the Find-appropriate-help problem space is selected.
Within this problem space, the operators Define-search-criterion, Define-evaluation-criterion are
called to initialize the search. Both of these operators cannot be directly applied, and similarly named
problem spaces are used to implement them.

The Search-for-help operator is applied once the search and evaluation criteria are defined. This
operator also cannot be directly implemented, and the Search-for-help problem space is selected.
Within this problem space, operators (and corresponding problem space to implement them) are
applied to search the help screen (Find-criterion), and to select an interesting item to read about if it is
found (Mac-methods-for-accessing-item). When searching for interesting items, the Find-criterion
problem space uses two operators, one to evaluate items in the window, and one to scroll the screen

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 136

Skill spaces used throughout
Browser-Soar model

e %o, e,
.....

...............
...........

...................

., . .
...................

........
............

.....

...........................

£ Problem spaces modeling knowledge of browsing in general
[Problem spaces modeling knowledge of the cT help browser

Figure 7-34: The problem space organization of Browser-Soar taken from Peck and John (1992).

when the end of the screen of items is reached (Mac-methods-for-changing-window). Both operators
are implemented in their own space.

Once an item has been found and selected by clicking on it, the Evaluate-help-text operator is selected
in the Find-appropriate-help problem space. This operator is implemented in its own space using two
operators. The first operator selected will be to evaluate the help text by reading it. The other operator
is the same scroll used to scroll the window of items to select from.

When they did their analyses, Peck and John grouped two of the Soar operators in
Evaluate-items-in-window problem space that implement reading the computer screen into a higher
level operator, Evaluate-current-window, not shown in the automatically derived figures. In Peck and
John’s operator support displays, the low-level operators, such as Read-input, do not appear, for all the
coding was based on the higher level operator. This coding scheme was duplicated in the later
analyses that are reported here, except that the lower level operators and problem spaces do appear in -
the automatic display and aggregate model statistics.

Figure 7-36 shows the number of productions used to implement each problem space. Approximately
430 productions are generated from the 193 TAQL constructs used to create these problem spaces.
The exact numbers varied slightly between episodes. When the productions were sorted into problem
spaces, a problem space was found for most productions. Productions and TAQL constructs that are
included as part of Soar’s default knowledge are not included in the counts or the display.

Productions without a problem space name directly in their condition were assigned to Every-space, 29
in all. Every-space is used to display productions that could fire in every space. Examining these with
the graphic display indicated that 15 of them are for proposing new problem spaces based solely on the
goal and its superstate, 12 are internal TAQL productions, one is used to note that all search-for-help
operators are equivalent, and one prints out the search criteria whenever it changes.

The number of productions associated with each problem space is an approximate measure of the
amount of knowledge in each problem space. One of the reasons this measure is approximate is
because TAQL uses a production for each of its state edits. Only the user’s productions are included in
this display, so the lack of productions associated with the Selection space means that it only uses the

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 137

Table 7-29:
Problem space level statistics for the "Write" episode. The top block presents the problem
spaces and operators represented in the graphic display. The selection counts for each goal,
problem space, state, and opeator are presented in their hierarchical calling order.

PSCM Level statistics on November 27, 1992

16 prodblem spaces, with a total of 31 operators.
Ops Problem space

top-space

browsing

find-appropriate-help
define-search-criterion
define-evaluation-criterion
search-for-help ’
find-oriterion
evaluate-items-in-window

mac-methods -for-change-curreat-window
mac-method-of -scroll
mac-methods-for-access-item
mac-method-of -click-on-item
evaluate-help-text
evaluate-prose-in-window
mac-method-of ~drag

mac-method-of -page

mac-method-otf -click-prev-index
mac-method-of ~double-click-on-item

COOCOUWWNKFHFWFNWNNWNWMMM

The actual selection counts and calling orders:
1 6: g1 (g1)
.P: top-sp (top-sp)} (3 chunks)
. 8t 85 (no name)
. O: browse (browse)
Q: (operator no-change) (gl9)
.P: browsing (browsing) (16 chunks)
. 8: 839 (no name) -
G: (state no-change) (g3145)
.@1 (goal no-change) (g3152)
. @1 (goal no-change) (g3159)
G: (goal no-change) (g3166)
.@:1 (goal no-change) (g3173)
. . G: (goal no-change) (g3180)
. O: find-appropriate-help (find-appropriate-help)
G: (op tor no-change) (gd3)
.P1 find-appropriate-help (find-appropriate-help) (55 chunks)
. 8: 859 (no name)
. Ot define-search-criterion (define-search-criterion)
G: (operator no-change) (g65)
.P: define-search-criterion (define-search-criterion) (30 chunks)
. 81 879 (Do name)
. 0t g te-search iterion((write)) (generate-search-criterion)
.« 01 svaluate-search-oriterion (evaluate-search-criterion)

PR

P b e e e b e e e e e e e

(continued on next page)

default productions provided with Soar. It appears that it takes a minimum of three user productions to
create a usable problem space.

Browser-Soar interacts with a simulation of the cT help browser. The simulation provides Browser-
Soar with the contents of each window in the browser. The simulation does not take into account the
length of time a mouse is held down; on each mouse click it scrolls to the same place the subject
scrolled to in the same situation. If the model were to scroll in the wrong direction (which it no longer
does, and perhaps never did), it would be up to the analyst to catch this.

Description of original Browser-Soar analyses. Peck and John’s (1992) originally performed the
alignment by hand, aggregating the correspondences into summary measures for each episode and for
each operator. They used limited graphic displays of the alignment, relying mostly on a tabular
representation. Their analysis also included a picture of the Browser-Soar problem spaces drawn by
hand in MacDraw (their Figure 3).

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 138

Table 7-29: Problem space level statistics for the "Write" episode (concl.).

« 01 define-evaluation-oriterion (define-evaluation-criterion)
. @ (op no-ch) (g103)
+« <P define-evaluation-oriterion (define-evaluation-oriterion) (17 chunks)
. 8t 8117 (0o name) :
. Ot gensrate-evaluation-criterion((value-of-something)) (generate-evaluation-criteriomn)
. 01 evaluate-evaluation-oriterion (evaluate-evaluation-criteriom)
O: search-for-help (search-for-help)
Q: (op & no-ch) (g1025)
.F:1 search-for-help (search-for-help) (17 chunks)
« 8: 31043 (Do name)
. 01 find-criterion(keyword) (find-criterion)
e+ o+ @ (op & no-ch } (91049)
e + « P find-oriterion (find-criterion) (27 chunks)
B « 831 31066 (no name)
. 01 foous-on-current-window (focus-on-current-window)

L N T

« & e o o s s e s s

. . O evaluate-current-window (evaluate-current-window)
e e s Gt (op t ao-ch) (g2415)
« + s« o P evaluate-items-in-window (evaluate-items-in-window) (85 chunks)
« e . « « 81 82432 (no name)
. . « 01 read-input (read-input)

Qﬂaao&&’””“ﬂ“”“”ﬂﬂﬂﬂﬁﬁﬁ

. . « o« 01 attempt-match(12504) (attempt-match)
« + + . 01 change-ocurrent-window (ochange-current-window)

e s e« . @1 (op hange) (g2339) .
1. . . . -P: mac-methods-for-change-current-window (mac-methods-for-ch urrent -window) (34 chunks)
11 . « o+ 8t 83042 (no name)

11 . . « O3 scroll(help-text) (scroll)

i1 . . s (op or no-ch) (g30S¢)

11 . +P1 mac-method-of- 11 (mac-method-of-scroll) (21 chunks)
i1 . . . 8: 83070 (no name)

4. . - 0: move-mouse(help-text down) (move-mouse)

11 . . O: press-button (press-button)

¢« ¢ « + + o« 01 release-button (release-button)
« « « 01 access-item(keyword) (access-item)
G: (op t no~ch) (92527)
.P1 mac-methods~-for- item (mac-methods-for item) (4 chunks)
. 8: 82542 (no name)
. 0t olick-on-item(12537) (click-on-item)
. . @t (op ¢ no-ch) (g2548)

« + + «P: mac-method-of-click-on-item (mac-method-of-click-on-item) (5 chunks)
. . . 8: 82562 (no name)
e« s+« + .+ . 01 move-mouse(keyword unspecified) (move-mouse)

e« + + .« 0t click-button (click-button)
« + 01 evaluate-help-text (evaluate-help-text)

« « <« Gi (operator no-change) (g2576)

«+ « + .P1 evaluate-help-text (evaluate-help-text) (26 chunks)

- 8: 82592 (no name)

. 01 focus-on-help-text (focus-on-help-text)

. + 01 evaluate-current-window (evaluate-curreat-window)

« + « o Gt (operator no-change) (g3104)

e« ¢+ « « .P: evaluate-prose-in-window (evaluate-prose-in-window) (69 chunks)

« e« + o 8: 83122 (no name)

« < + . 01 read-input (read-input)

. . Ot comp d (comprehend)

e e e« . . Ox =p to: iteria (compare-t riteria)

+ + =« . 01 change-current-window (change-current-window)

. G: (operator no-change) (g3027)

-
B hRAAARAAARANNINIRNOMNDORIDNNND G
. .« “ . F T T TS Y

11 Pt mac-methods-tfor-change-current-window (mac-methods-for-change-current-window) (34 chunks)
11 . . 81 83042 (no name)

11 . . 01 scroll(help-text) (scroll)

11 . G: (op t no-change) (g3054)

11 . . -P: mac-method-of-scroll (mac-method-of-scroll) (21 chunks)

11 < 81 83070 (no name) .

4 . 0t move-mouse(help-text down) (move-mouse)

11 . . 0: press-button (press-button)

11 . . . 0: release-button (release-button)

1 « 0: change-search-criterion (change-search-criterion)

The model trace and protocol were first printed out and interpreted and aligned by hand, with the
correspondences and annotations entered into an Excel spreadsheet. Over the course of testing
Browser-Soar with the ten episodes, few changes to the model were required. The first episode was
used to create the initial model, and during testing of the next three episodes four additional operators
were added and two were modified. During the analyses of the last six, the only changes required of
the model were modifying two of the operators.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 139

= TOP-SPACE

o BROWSING
find-appropriate-help

s TIND-APPROPRIATE-HEBLP
earch-for-help

. SRARCH-POR-HELP BVALUATR-HRLP-TEXT)
tiind-etltcrion(xcmzd)

MAC~-METEODS-POR-ACCESS-ITEM

BVALUATE-PROSE-IN-WINDOW
7 PIMD-CRITERION . '

hange-curreat -window

RVALUATE-TI 8- IN-WINDOW <

s MAC-METHODS - FOR-CHANGE -CURRENT -WINDOW
scroll (keyword) MAC-METBOD-OP-CLICK~ON-ITEM

MAC-NBTHOD-OF-CLICK-PREV-INDEX

MAC~NBTHOD-OP-DOUBLE-CLICK-ON-ITEN

Bove-mouse (keyword down) MAC-METHOD-OP-PAGE

MAC -METHOD-Q, <
= MAC-METBOD-OP-SCROLL
g451

Figure 7-35: Browser-Soar during a run.

All the interpretation was done with respect to operator applications. This included overt, task actions
necessary to perform the task, and internal mental actions necessary for deciding what to do and for
understanding. The verbal utterances were interpreted with respect to internal operators or their
results. Mouse clicks were always interpreted with respect to overt task actions. Mouse movements
could correspond to either. When the model predicted that they were required to perform the task and
they were used in a task specific way, they were interpreted as overt task actions. When the model did
not predict their use, and the mouse pointer could be interpreted as over some part of the display
currently being used or read, they were treated like eye-movements and interpreted with respect to an
internal operator.

Peck and John’s major analyses were to aggregate how many of the subject’s behaviors were predicted
by the model’s actions, aggregating separate measures for directly observable operations, such as
mouse clicks, and mental operators that are only observable through verbal protocols or movements of
the mouse over words on the screen. Over 90% of the subject’s actions and utterances were accounted
for by the model’s predictions, and the fit between data and predictions was judged to be very tight.
These computations were computed by hand for each episode.

The percentage of operator predictions supported by the data were also computed. At 15% this
initially appears to be a low rate. One must keep in mind that the trace of the Browser-Soar model
provides more predictions than can be tested, even given the rich verbal and non-verbal data streams
used to test it. Across all episodes they found indirect evidence for 57% of the operators that could not
be directly observed.

An operator support display drawn by hand in MacDraw (their Figure 4, our figure 2-7) illustrated the

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 140

mxo--cumm ' ;"" FrALOATE-S T

MAC -MRTHODS-POR -ACCRNQ-TTEX
WVALUATR-PROGE-IN-WINDOW

Figure 7-36: Browser-Soar problem space organization with productions shown by
their problem space.

tightness of fit, but this was not done for all episodes because it took approximately a day to produce
(Peck, 1992).

7.2 Producing richer analyses more quickly

This demonstration of the Soar/MT environment must show that it is possible to duplicate the previous
tests of Browser-Soar, and that new, more useful analyses can be performed as fast or faster than have
been done in the past. Supporting the analyses is the most important though, speed can come from
faster machines or revisions of the software.

This demonstration will not include all the possible analyses that could be or were done by hand for
Browser-Soar or for other process models, but it should be clear from this example that the analyses

that were not performed are no harder, and are quite likely more easily performed with Soar/MT than
by hand.

The emphasis of the analyses will be Grant’s (1962) emphasis, finding out where to improve the
Browser-Soar, not that all the improvements will be incorporated in this demonstration.

7.2.1 The interpretation of data with respect to the model trace done faster and tighter

Using the Soar/MT environment allowed the interpretation and alignment step to be performed more
quickly. The first four episodes were used to debug the Soar/MT system. For later episodes, either
analyst (FER or VAP) could go once through the TBPA loop, deriving the predictions, aligning them,
and creating the global displays in 20 minutes to 2.5 hours, depending on the pre-existing degree of

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 141

alignment, length of the episode, and desired level of detail. The amount of time to analyze another
episode is now much less than the initial ten hours needed to understand one.

In each episode the unambiguous data was aligned first. This took on average a minute to set up.
During the 30 minutes it would take to rearrange the cells the analyst did not need to be present. The
verbal protocols would then be partially interpreted, their locality would be bounded by the matched
non-verbal actions near them. A complete listing of the analyses’ results are shown in Table 7-30, and
the visual, analytic measures created for each display are included as the Appendix to this chapter.

After two episodes of observing me work and working jointly, Virginia Peck (VAP), analyzed three
episodes on her own except for creating the displays of model fit. She took approximately 100 minutes
to perform these analyses from producing the trace to interpreting the data. Her time was a limited
resource, and the software I was most interested in testing was the alignment capabilities, so I created
the displays based on her alignments. She also attempted to analyze the last data set, Zcommand, but
the unusual size (it is the largest episode by approximately a factor of two) disclosed some bugs in the
Spa-mode.

The Card2 algorithm worked admirably. Across the ten episodes it correctly aligned all of the 296
predicted unambiguous mouse actions (mouse clicks and mouse movements). The ability of the
algorithm to adjust the edit-list to align a predicted action with the last action in a series of similar
subject actions substantially contributed to this performance. Without that modification the results
would have been less, around 90%. For each episode the edit list used to align the two meta-columns
was generated in under a minute. The alignment of the data with the predictions then took
approximately 30 minutes for the Write episode. This alignment process does not require intervention
of the analyst. If the two information streams were partially aligned this took less time. A single trial
with a single subject on the Write episode, an average sized episode, took approximately 45 minutes to
align by hand with Excel. Longer episodes take more than proportionally longer in Excel (Peck,
1992), up to several hours.

After the Card2 auto-alignment algorithm was run, the analyst (FER, VAP, or both) would go through
the Spa-mode spreadsheet interpreting the remaining data with respect to the model’s predictions.
Because both data streams were completely included in Spa-mode, this resulted in a tighter match
between the two information streams. Each correspondence included a line of Soar trace (including
the decision cycle, the context element selected, and any traced substructures), instead of a coded
operator name. These alignments included in the display Soar actions not matched. Figure 7-37
provides a partial example, and the appendix to this chapter includes a complete example for the Write
episode.

These alignments generated in Spa-mode provide a more telling comparison of the predictions with the
data. Including both data streams in a tabular display shows gaps where the model performed more or
less actions (and thus took more or less time) than the subject. When we viewed the first episode
aligned this way, we were somewhat surprised by the amount of Soar trace not aligned with subject
data. It is also easy to find mismatched actions in this display. False alarms, actions by the model not
matched by the subject’s actions, which are not representable when the model’s predictions are not
directly included, can also be represented in Spa-mode. It remains slightly difficult to compare and
aggregate the comparisons between episodes with this spreadsheet representation because of the large
number of sheets of paper and dispersion of information across them.

7.2.2 Operator support displays created automatically -- as a set they highlight
periodicity in behavior

An operator support display for each episode was generated automatically from the alignmeﬁt data in
the spreadsheets. These displays are shown in the appendix to this chapter as Figure 46, along with the
displays for a modified model and episode called Better-array, which is explained later in this chapter.

These displays originally took approximately a day to produce, so only four were created in the initial
analysis (Peck, 1992).

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model

faster and more deeply 142
T MOUSE ACTIONS WINDOW ACTIONS VEEBAL ST § MEYPR MDC DT Scar Trace Comments
180 R 2 S Ot attempt-match ()
181 92 01 read-input (scalax)
02 2 O¢ attempt-matoh ()
10 94 . . .00 item (bi ical)
104 95 . . . =»G: g€76 (operator mo-change)
188 96 P mao hods-for it 4]
186 97 B 091 ()
167 98 01 click~ca-item (1486)
108 % =301 gé97 (opsrator no-change)
109 100 ?: mac-method-of-click-on~-ites ()
120 1M 8 8711 ()
191 30 M{-y} 1 line to ‘scalex’ in “scalex Setting the So = 19 mr 182 102 Os (hi loal wmspecified)
192 58 C("soalezx Setting the Scales”) P3¢ mbe 183 103 O: click-buttoma ()
19 mouse polater to watch
194 104 . . O« evaluate-help-text ()
198 39 ‘ecalex’ help temt appears 108 . . =»Gs g725 (operetor ao-change)
196 S9 Let’s lock at ‘scele-a‘. v 11 v
197 “scalex Setting the Scales” to bold
198 . wouse watch to poiater
199 106 . . . Pt evaluate-help-text ()
200 187 . . . 81 8741 ((acosssed scalaxz) (mark-and-label-azes))
201 60 T 108 . . . 01 foous-om-help-text (}
M
Figure 7-37:

Portion of the alignment of the protocol and model trace from the Axis episode. On each row: T is time of
subject’s actions in seconds. MOUSE ACTIONS is any mouse action. WINDOW ACTIONS are any
responses from the actual cT system that the subject saw. ST is the segment type. VERBAL is any verbal
utterances by the subject. # is the segment number. MTYPE is type of match, MDC is the decision cycle
matched, DC is corresponding Soar decision cycle. Soar Trace holds the model’s predictions.

Each display provides a visual depiction of the operator applications for the episode modeled, along
with the support each operator received, if any, from corresponding verbal utterances, move actions
necessary to perform the task, and mouse movements over screen items that were read. The
indentation of the operator names corresponds to their problem space level, and roughly to which
problem space they belong to.

For each episode. Individually the operator support displays indicate for each episode the level of
support for the model’s operators in that episode. Figure 7-38 shows the operator support display for
the Write episode. It shows that most of the subject’s actions could be interpreted by the model’s
actions. The verbal utterances mostly match the Evaluate-current-window operator, as do the mouse
movements that are not required to perform the task.

We also can start to see that the subject’s performance shows a definite periodicity. The cycle of
evaluating a window, changing it through scrolling by moving the mouse and then clicking on the
scroll bar occurs 13 times, with some variations. On the third cycle of examining help topics, the
subject sees something that changes her search criteria. On the ninth cycle, she finds a topic that
matches the criteria she was looking for, and selects an item for examination. On the remaining cycles
she examines the help window. So the main loop is based on menu interaction, and there may be a
secondary loop of revision of the search criteria. Just this episode is not enough to tell.

Ohlsson (1980) noted that he could find regularities in protocols that covered a shorter period of time
than Newell and Simon (1972) used (200 s versus 1,000 s). This display shows that regularities can
occur over shorter time periods. The point is getting enough data, not time. In this domain, in addition
to verbal utterances, the mouse movements and mouse button presses help provide the required data
density.

A few of the subject’s actions could not be interpreted, and they are shown on the bottom as
corresponding to the NOT MATCHED operator. Just examining the surface of this display does
provide any insight into why they were unmatched, although two of the mouse movements appear to
come after a click button operator. When the points and their context are examined by clicking on
them (or by finding them in the original spreadsheet, but this is more work), the first is found to be a
random mouse movement to a position that is not over something being read or in anticipation of a
later click or move, the second the subject laughing, the third another random mouse movement, and’

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model

faster and more deeply 143
OPERATOR .
Browse _ # Modsl action
Fnd-appropriste-help o O Corvespanding overt mouse behavior
Define-ssarch-crit -— X Conespendng implicl mouse behavior
Genesrmte-ssarchcit v orling verbel ullerance
Evaluste-search-crit —
Oefine-evakmtion-crit -
Generste-evalustion-crit | \
Evaluste-evaluation-crit
Change-esarch-crit -
Modily-ssarch-crit -
Search-lor-help -
Find-crit -
Focus-on-cument-win
Eveluste-holp-text -
Focus-an-help-text —
Eveluste-cumentwin b) A A
Chenge-currentwin |
Access-tem - l
Scroll -
Page -
Orag .
Click-on-item -
Double-click-on-tem
Move-mouse -
Press-button -
Release-button -
Note-saw-crit —
Click-button - ® ®
Double-click-button —
wT“ATCHE - i 1 1 i H ml 1 Il 1 ' '] A 1 I 1 A 1 i A 1 ' ' 1 1 A 1 L L
Operator applications

Browser-Soar episode 1 :write

Fri Dec 421:48:30 EST 1992

Figure 7-38: Operator support display for the Write episode.

finally, a movement that is interpreted as a mistake. The last mouse uncoded action is a mouse
movement that falls short of a scroll bar, and is soon followed by a mouse movement to the position
the model predicts.

~ Across episodes. As a group the ten operator support displays (included as Figure 46 in the appendix
- to this chapter) tell us even more, and the reader is encouraged to examine them before proceeding.
The largest effect visible when viewing these en masse is the periodicity. The longest episode, Zwrite,
looks like the display of an oscilloscope indeed.

When viewed together we also can start to characterize what operators are supported and with what
types of evidence. We can see that the subject did not talk about every operation. (Many operators
have no mark (V) indicating a corresponding verbal utterance.) This is predicted by Ericsson and

- Simon’s (1984) theory of verbal protocol production, so this is as expected, and the rate, in quantitative
terms is probably acceptable as well. However, it is slightly surprising to see what this looks like, see
just how little is said and supported in each single episode. Based on these displays, Browser-Soar
appears too small grained indeed, much more detail is provided than in Newell & Simon’s models
where nearly every production firing could be matched against a verbal segment.

Across the ten episodes, the subject talked about operators that she should have talked about, and did
not describe operators that she should not have. Higher level operators, such as setting up the search
criteria and evaluating the window contents were often talked about. These operators manipulate
verbal representations, so they should appear in the verbal protocol stream. The motor operators for
actually scrolling the windows were never mentioned in the verbal protocol, and this is appropriate

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 144

given our measurement theory (Ericsson & Simon, 1984), for they would include non-verbalizable
operators or information.

What is not verbalized? The Change-current-window and its implementation operators Scroll, Page,
Drag, and Click-on-item, were never supported by verbal utterances, nor could they be directly
supported by mouse movements or mouse button actions for they are themselves implemented with
lower level primitives such as Click-button and Move-mouse. In the future, they must be considered
for removal, unless other evidence, perhaps timing evidence, can be provided for them.

The mouse clicks also appear not to be in working memory. In no episode did the subject report that
they were using the mouse. Based on the Soar architecture we would believe that they are motor
operations, so we would not expect them to be directly represented. The external motor actions need
to be set up, however, and the operator that does this remains unsupported.

New questions these displays raise. In each episode at least one of the operators that set up the search
in the cT help browser, the first seven operators below the Browse operator, is mentioned at the
beginning of an episode. Never are they all mentioned, and eight different combinations appear across
the ten episodes. It may be possible to combine or rearrange these operators to provide more
consistent support for a single operator or set of operators. .

During both the Zwrite and Vars episodes, there is a long period of behavior where nothing is said.
Similar periods exist in other episodes but there are verbal utterances and mouse movements to support
the intermediate operators of reading the topic lists. Characterizing these periods in some way remains
an open problem.

Several problems remain with this display. The indentation of the operator names hints at their
hierarchical relationship to each other. The implementation of their relationship remains poorly
specified and awkward. Operators can come from different problem spaces, and still appear at the
same level in the hierarchy.

7.3 Where the model and subject process at different rates shown clearly

Relative processing rate displays were created automatically from the alignment data for each episode.
A complete set of these displays is included in the Appendix to this chapter as Figure 47.

7.3.1 Processing rate display based on decision cycles shows that the quality of fit is high

The relative processing rate display can provide hints about how to improve the model within a single
episode. Across episodes it can provide additional hints, and measures of the architecture can start to
be taken.

For each episode. As an example, consider Figure 7-39, which shows the relative processing rate
display (developed in Chapter 5) for the Write episode of Browser-Soar. Each correspondence
between the model’s predictions and the subject’s actions is noted with a connected symbol. Each
correspondence shows the relative times when the model and the subject performed the same action.
The time that the subject performed the matched actions is represented in seconds on the x axis, and
the time that the prediction occurred in the model’s behavior is represented in model cycles on the y
axis.

The number and relative linearity of the line of correspondences indicates that the predictions
generated by Browser-Soar are relatively well matched by the subject’s behavior. The number of
unmatched subject segments, placed on the bottom of the display at the time they occurred is a
relatively low amount, and there are no overt task actions performed by the model that were not
observed in the subject. If there were any, these would go near the y-axis.

The squiggles and sections with extremely high or low slopes show where the fit could be better.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 145

When the line becomes more vertical, it means that the subject has started to perform faster than the
model, and when the line becomes more horizontal, it means that the model is performing faster than
the subject. In Figure 7-39 both occur.

A regression line is provided to help judge the rate of correspondences, and it is used to provide some
additional information as well. -Its slope is the relative processing rate for that episode in decision
cycles per second. The correlation it computes may be a prediction of how well the model can predict
the time course of processing in an episode, but it is likely to show a falsely high correlation. Note that
the relationship of decision cycles to seconds (the slope) is well within the range (indicated by the
dashed lines at 3 DC/s and 30 DC/s) predicted by the Soar theory.

In each episode the correlation between the subject actions and predictions (measured in decision
cycles and operator applications) is fairly high. The values of the slope and 12 value for each episode
are shown in Table 7-30. These values for r* values are comparable to well developed single response
models (e.g., 12 = 0.79: Thibadeau, et al., 1982; r2 = 0.94: Just & Carpenter, 1985). Browser-Soar is
near to making engineering level predictions of human behavior, as has been called for by John (1988).

Dashed Sines are range of th Ny exp pond. rates
§ B !
O Ovetmoume wm/
X impicit mouse behavibe
V' Verbal ulterance /]
§ A | | MM
i
" /
5 /
e} o i
] —
‘us) 3 7] .’/ _/“/
g II - -~
= / T
s / ~
i -
g §] ',1: /’/’/
3 "
8 II - //
= ! S
/ -
3 / =
. il /// Model to data slope 5.322 dc/!
i - AMSD = 36061 do
f - MAD = 29.455 dc
& Nz, 62 malched behavi
o+, & a8 52 mat aviors
T T T T T T
V] 20 40 60 80 100
Subiject time in seconds
Browser-Soar episode 1 :write Mon Deo 7022947 EST 1982

Figure 7-39: Relative processing rates display in decision cycles for the Write episode.

The first parts of display that give specific recommendations on ways to improve the model are the
relatively vertical and horizontal sections of the line of correspondences. These sections represent
periods where the model and the subject are processing information at relatively disproportionate rates.
When the points on the horizontal section between 20 and 40 s are examined by clicking on them, one
finds that they all matched to Evaluate-current-window operator. This operator is taking much longer
for the subject to perform than it does for the model (this operator essentially reads at 100 words/s).

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 146

The model could be improved by incorporating a more complete operator to evaluate the current
window, that is, read the help text.

The second part of the display to examine is the near vertical line at around 40 seconds. In this section
the model is reading every word on a menu while the subject must be skimming the menu’s contents,
as suggested by the relative rates of processing. Here the model must be smarter about what it is
doing, and do less processing than it currently does.

Table 7-30: Summary of raw measures for each episode and regression results.

Bpisode Tine Words Raw Slope 8lope
Segments (s) | Rate DCs de/s DC-x2 op/s op-r2 DCs/op
w/min

1 write 62 66 113 102 399 5.32 0.90 1.18 0.93 4.50
2 unic 40 39 91 140 331 11.29 0.68 2.40 0.80 4.70
3 array 96 68 151 133 517 9.48 0.69 2.26 0.78 4.19
3’ array’ 96 68 151 133 346 6.37 0.59 1.49 0.75 4.27
4 precision 21 25 58 139 146 6.82 0.19 1.95 0.34 3.49
S marker 32 47 162 206 116 2.58 0.43 0.91 0.33 2.83
6 axis 46 83 245 177 173 1.53 0.80 0.45 0.70 3.40
7 labelx 23 34 52 91 77 2.04 0.51 0.61 0.53 3.34
8 circle 52 (11 136 125 395 7.32 0.79 1.74 0.78 4.20
9 vars 69 27 44 97 805 35.21 0.90 6.21 0.90 5.66
10 zcommand 140 108 213 118 1529 16.62 0.58 2.76 0.66 6.02

Sum: 581 562 1265
Mean: 58 56 126 146 449 6.92 0.65 2.08 0.67 4.23
8D: 37 27 68 36 439 4.65 0.22 1.66 0.31 1.32
Normalized SD: 0.63 0.47 0.54 0.27 0.98 0.67 0.35 g.81 0.31 0.35

From left to right the columns display for each episode the total number of subject data segments, the time of the
subject data being modeled, the number of words uttered during the segment and the rate in words per minute, the slope
of the least squares regression line on the correspondences in decision cycles per second, the 1 for that line, the slope
of the regression line in operators per second, the 12 for that line, and the relative rates in the episode of decision cycles
per operator. Aggregate measures do not include the Array’ episode. Each episode is equally weighted.

Across episodes. Several known problems of Browser-Soar are shown in these displays. Seeing the
problems occur in ten episodes is more believable than seeing it in just one episode. Over individual
episodes the regression line matched to the correspondences provides a good prediction of the subject’s
search time. The results of the regression for each episode are shown in Table 7-30.

The rate of the architecture, in decision cycles per second, is slightly slower in Browser-Soar than the
Soar theory predicts. Across all the episodes, as shown in Table 7-30, the average rate of decision
cycles is six per second. The Soar theory predicts ten per second, plus or minus half an order of
magnitude. As this is an average, the actual rate on a single episode can be much lower. This implies
that the model is still slightly lean, performing less of the task than the subject is, or that the theoretical
analysis of decision cycle rate is slightly high. The first explanation, that the model performing more
efficiently or doing less of the task is consistent with but not as far off as other model results (John &
Vera, 1992; Newell, 1972; Ritter, 1988; Ritter, 1989; Rosenbloom & Newell, 1982). The large
variance in the rate may be cause for some concern, or may just be artifact of the known problems in
the Evaluate-current-window operator, the Read-menu operator, and their ratio in each episode.

In none of the episodes do we find that the line of correspondences is concave upwards, indicating that
the subject’s relative rate of performance is increasing relative to the model. The displays tend to
display the opposite effect, that the line of correspondences is concave downwards. In general, this
would suggest that the model was learning and using what it learned (intra-trial transfer) more than the
subject was. I believe, however, that in these analyses, this is caused by the order of menu reading and

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 147

text reading in this task and the relative performance of the model with respect to the subject. In each
episode the basic task units are first to read a menu and then to read some help text, and this sequence
may be repeated. The model is slower than the subject at reading menus (causing the line to become
more vertical) and faster at reading help texts (causing the line to become more horizontal). This is
probably what is causing the curve of correspondences to be concave downwards. Any within episode
learning effects will not be visible until these larger problems are ameliorated.

There is often an initial horizontal segment in the first 5 to 10 seconds where the subject is taking
much longer than the model. The Write episode, for example, displays this effect. We can find out
from the operator support display that this region is exclusively where the selection and evaluation
criteria are decided upon. It appears that these operators are too simple, at least in terms of the amount
of processing that they perform. This mismatch is smaller than the text and menu reading rates, but
probably does reflect a basic problem.

We also can note some problems interpreting this display. The verbal utterances have durations, and
currently only their starting point is taken into account. All operators are treated as taking the same
amount of time. If substructure will be added at a later point to an operator, the analyst can not
currently represent that it should take longer than a simple operator.

7.3.2 The processing rate display can be based on other measures of the model’s effort

The relative processing rate display can represent the model’s rate of processing in measures other than
the decision cycle rate. In this subsection a version using operator applications is used to test Browser-
Soar. This display is the same display as the display based on decision cycles, except the model’s
performance is viewed with a different metric.

Figure 7-40 provides an example display of the relative processing rates of the model (in operator
applications) and the subject (in seconds). A complete set, one per episode, is included in the appendix
to this chapter. A regression line is still fit to the line of correspondences to indicate outliers, but an
expected range is not provided because the Soar theory does not provide one — it will depend on how
often problem spaces are entered and exited, which is based on the task at hand and the knowledge that
can be brought to bear.

The results of computing the relative performance of the model in terms of operator applications are
reported in Table 7-30. The operator application rate (in seconds) has a wider relative range and varies
more than the decision cycle rate does; the normalized standard deviation of the operator rate is higher.
The number of operator applications the model took to perform the task correlated as highly with the
subject’s performance as did decision cycles. The correlation is slightly higher, but it is not significant
(t(9) = 1.05), nor does it appear to a large enough difference to be important. This is not too surprising,
operator applications are caused by and correlate highly with decision cycles.

The known problems with the two Read-text and Read-menu operators can again be seen in these
displays. Relative learning rates within an episode can also be examined, but again, any relationships
found probably are due to the big bad Read operator.

This display does not appear to tell us anything new about Browser-Soar, but other models may see an
effect here if operators are less directly used, or more behavior occurs in each problem space.
Similarly, it does not imply that other measures of the model’s effort, such as rule applications,
elaboration cycles, or problem space selections, will not prove useful in some way. It is, however, the
most likely measure after decision cycles to prove useful.

We can note a constant relationship within Browser-Soar with this display that appears constant across
episodes: the number of decision cycles per operator as computed from the two regression slopes. It is

not clear yet what this really means, it may mean nothing, but if a relationship appears constant, there
may be reason for it.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 148

O Overt mouse behavior
X wplicit mause behevior

@ ¥V Veral ulerance
§] Ursnaiched behavior
3
a
g g
§'
K-}
E
LR
g .
=
g Model to data slope 1.182 opa/s
g AMSD = 6.175 ops
MAD = 4.958 ops
2= 0.037
o - - N= 62 matched behaviors
] (u]]
T T T T T
] 20 40 60 80

Subject time in seconds
Browser-Soar episode 1 :write Men Dae 7022028 €51 102
Figure 7-40: Operator applications vs. subject time display for the Write episode.

7.4 High level features of the Browser-Soar model made apparent

Examining Browser-Soar in the SX graphic display suggests further modifications based on how it
models routine behavior. Performing a pseudo-model revision to incorporate the effects of learning
suggests that Browser-Soar might be improved by using less problem spaces.

7.4.1 Browser-Soar as routine behavior is made directly visible

Search in a problem space means lacking knowledge about how to proceed, and search between
alternatives where the solution path is unknown. The solution path in Browser-Soar is not unknown,
or at least not substantially unknown. Most operators are the only one proposed, and most problem
space impasses are resolved directly. We can see this in the graphic display while Browser-Soar runs.
Figure 7-35, which shows Browser-Soar during a run, shows that there are not many operators applied
in any one problem space. This is also visible in the problem space level statistics, few states are
visited, and not many operators are applied.

Search, in Browser-Soar, when it occurs, also occurs as much as search through problem spaées for
knowledge external to the initiating space. The name of "solution space” (Ohlsson, 1990) particularly
here, makes more sense, with Browser-Soar more like a task (Ohlsson, 1990) than a problem. This

result is noted by Peck and John (1992), but appears more clearly in these pictures and aggregate
statistics than in the textual trace alone.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser;Soar model
faster and more deeply 149

7.4.2 Noting Browser-Soar’s large goal depth

The goal stack depth is relatively deep in Browser-Soar. As noted in Figures 7-33, 7-35, and 7-36, the
goal stack often grows to be between four and six levels down from the top problem space. This
appears to be a large number for what is described as routine behavior (but we have no real metric). In
addition to the question of the depth of the goal stack, all the lower problem spaces for manipulating
the mouse and screen represent expert level behavior in the subject, that is, behavior that does not
significantly improve with practice. In Browser-Soar impasses still occur, and if leaming was turned
on, knowledge would migrate between them. In expert behavior, the lowest level of operators and
problem spaces in Browser-Soar should not be visible because they have been learned by the problem
spaces that use them.

7.4.3 Modifying Browser-Soar

With the learning constraint in mind, a modified version of Browser-Soar was created and tested using
the pseudo-model revision method mentioned in Chapter 3. The modified version does not contain the
lower level problem spaces that would have been learned. The actual output operators were migrated
to higher level problem spaces, and intermediate operators and problem spaces that did not receive
support from the data, such as the operators in the Access-item problem space. A complete listing of
the modifications is provided in Table 7-31.

Table 7-31: Problem spaces and operators removed from the Browser-Soar model
simulating the effects of learning.

¢ Browsing PS and OP,

¢ Find-criterion OP and PS,

* Mac-methods-for-change-current-window PS,
* Change-current-window OP,

¢ Drag OP,

e Scroll OP,

¢ Mac-method-of-scroll PS,

¢ Mac-method-of-drag PS,

* Mac-method-of-page PS,

» Access-item OP,

e Mac-methods-for-access-item PS,

¢ Click-on-item OP,

¢ Mac-method-of-click-on-item PS,

¢ Evaluate-help-text OP,

» Evaluate-help-text PS,

¢ Double-click-on-item OP,

* Mac-method-of-double-click-on-item PS, and
¢ All associated goals and states.

Figure 7-31 shows the problem space organization of this modified version of Browser-Soar. The
organization can be compared with the original version shown in Figure 7-33. The new version has
fewer problem spaces, and is flatter. The maximum goal stack depth of this version is four, with final

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 150

depths of two and three. It has 8 problem spaces compared with 17 problem spaces in the ongmal
Browser-Soar, 22 operators compared with 31 in the original, and a corresponding decrease in the
number of intermediate states and impasses.

TOP-SPACK

FIND-APPROPRIATR-HRLP

INE-SRARCH-CRITERION

j 8| - FOR-HELP
Ill EVALOATION-CRITERI
p NC
p Tie
EVALUATE-PROSE- IN-WINDOW
]‘vIID-cRITSRIOI

/p
<rvnmﬂ- ITEMS-IN-WINDOW

Figure 7-41: The nine problem spaces in the modified Browser-Soar
(see Figure 7-33 for the original structure).

The revised model was not implemented on the production level, but was created using a more
lightweight technique of trace revision. All the operator and problem spaces that were removed, were
simply deleted from the trace for the Array episode, the second largest episode, and the trace was
renumbered. This took approximately 20 minutes. These changes also could have been implemented
by modifying the model, and rerunning it. Theoretically there would be no differences, in reality,
actually editing the code instead of the trace probably represents an order of magnitude more work.

As the actual model was not modified, this represents an instance of pseudo-model based revision,
where an aspect of the analysis changed in terms of the model, without the expense of completely
implementing the changes on the production level.

7.4.4 Testing the modified Browser-Soar

After the revised trace was made, the two information streams were realigned from scratch. Because
no model actions with support were removed, the realignment was essentially the same. It would have
been faster to use the old alignment and modify it slightly, removing the empty cells, for no
correspondences were cut, but I wanted to see what the total process could look like, and see how long
a more modified model would take to test. The total time to perform the model manipulation,
realignment, and generate the analyses was 2.5 hours.

Figure 7-42 shows the operator support displays for the two versions of Browser-Soar. The displays
are essentially the same, the shape is the same, and the subject actions and the operators that they
correspond to are all represented. The only difference is that the modified version is more compact; it

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 151

has less operator applications.

Figures 7-43 and 7-44 show the model fit displays for the modified version of Browser-Soar next to
the original versions. These two displays show that the revised model has a denser level of support,
the lines connecting the corresponding model and subject actions are closer together, and the RMSD
and mean average deviation are lower. The rate of decision cycles to seconds ratio is also closer to the
predicted mean, and visually the fit appears to be better. The modified version has slightly worse 2,
more so when the model time unit is decision cycles (.69 versus .59) than for operator applications (.78
versus .75). The correspondence rates in decision cycles and operator applications per second for the
modified model also go down, as less is done.

It is hard to tell if these differences are important. It would perhaps become easier to tell after further
revisions of the Evaluate-current-window operator, and with a more proper regression line (Kadane et
al., 1981; Larkin et al., 1986). These results do point out that it is hard to distinguish learning on the
single problem space level at this time grain. In order to clearly distinguish these two problem space
representations we would have to look at more episodes, more subjects, or further constraints from
data. Given the lack of real difference, parsimony would argue for using the simpler, modified version
of Browser-Soar.

This analysis also calls into question the strict interpretation used. The subject must decide to move
the mouse. The operators that were removed originally represented this choice. With a different
interpretation function, these operators would have been supported and would not have been
removable. As noted in the list of comrections available when the model’s predictions mismatch the
data (Table 2-6), the interpretation function can also change. This case raises the question of how to
interpret data given Soar’s hierarchical operators and state representation. This may remain a problem
for some time.

7.5 Testing and extending the sequentiality assumptions of protocol
generation theory

As noted in their initial description, the relative processing rate displays allow the sequentiality
assumption of Ericsson and Simon’s (1984) theory of verbal protocol production to be tested. That is,
if verbalizations are produced in the order that the corresponding data structures appear in working
memory. There is another aspect to this assumption, that inputs to operators will be reported before
their outputs, but is a more specific form that will not be directly tested unless we run into problems.
A model of what appears in working memory is currently necessary to test this assumption. There are
no other ways to tell when information enters working memory, and thus that it is reported in order.
Having a model of the contents of working memory also allows use to judge if the verbalizations are
retrospective or prospective.

Browser-Soar provides predictions of the contents of working memory while using a specific on-line
help system. By examining the relationship of these predictions with the subject’s verbal utterances in
the ten Browser-Soar episodes, the sequentiality assumption can be tested.

The predictions of the external task actions (mouse movements and button presses) can also be
compared with the contents of working memory, but because getting the order of the external actions
the same for both model and subject is essential for performing the task, in a well developed model
like Browser-Soar there is not likely to be many mismatches. What will be interesting though, is using
the external actions to compute how later (or early) the verbal utterances are.

Finding that this holds will not be an iron-clad proof that this assumption holds. If it is an assumption,
then it cannot be proven, only shown that we meet it. If it is treated more as part of the theory of
verbal protocol production, then there may be similar models of browsing behavior where the
information is reported in a different order, and that the current set of verbal protocols would not match
sequentially. '

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 152

OPERATOR)
Browes B Moded sction
Find-approprete-help
Define-ssercivcit
Genomie-search-cit
Evaluste-search-crit

O« - Seheior

X Conesponding implich mouse bahavior
V' Covesponding verbel wieance

Define-evehamfion-csit
Genersie-ovahmion-cit

[T S OO VO Y Y T A T T O Y0 V0 25 T N O T I O O |
N

Browser-Soar episode 3 :array

.

Foi Doc 4214047 EST 1902

OPERATOR
Hl Modet action

o« tahand
\ X Comenparsding ivpiici mouse bahavior

V' Comeaponding verbel ullersnce

i

Focus-on-current-win

!

g

§
s

g.
| N N SN Y N O O T T N N U O [T N T O Y 0 O Y
N
<
[+] i o
,#l
X
I

NOT MATCHED

Operator applications
Browser-Soar episode 11 :better-array

FriDee 421:4942 EST 1992

Figure 7-42: Operator support displays for the Array episode.
The original Browser-Soar predictions are on the top, and the modified version
on the bottom.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 153

’ Oomun—hﬂrl
X wplicdl anme

Model time in Decision Cydles
300
]

§ .
Model to data slope 9.482 dc/s
AMSD = 81.258 dc
MAD = 60.602 dc
"2= 0.007
o 43 . N = 96 maiched behaviors
T T T T T T
[4) 20 40 60 80 100
Subject time in seconds
Browser-Soar episode 3 :arrav on Dee 702784 EST 102
Dashed ines are range of t ically exp d -p: ratee

8 4
-
2
S S
'6)
3 —
rs T
g §-
=
8_ _.
Model to data slope 6.372 dc/s
AMSD = 60.254 dc
MAD = 50.665 dc
"2a 0504
o N = 96 matched behaviors
T T T T T T
(4] 20 40 60 80 100

Subject time in seconds
Browser-Soar episode 11 :better-array Uon Des 702041 E5T 1962

Figure 7-43: DC time based plots for the Array episode. The original Browser-Soar
predictions are on the top, and the modified version on the bottom.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model

faster and more deeply
§ _
§ s
g -
|
s 3
g
g Modoltod-u_d;) ,é‘ﬁ”‘"
MAD = 15.16 ope
e 0.792
o N = 968 matched behaviors
88
I T T I T
1] 20 40 60 80
Subject time in seconds
Browser-Soar episode 3 :arrav Mon Ons 702282 65T 1902
3 4
. Q Overt mouse behavics
X mpiicil mouse behewior
n V Vabel isecuce
3
3
o
F g
5 -
g
o
K|
:
£ 37
3
£
B
'S Model to data slope 1.491 ops/s
= AMSD = 11.576 ops
MAD = 10.179 ops
2= 0.767
© N = 96 matched behaviors

{ | - 1 1 1
0 20 40 60 80
Subject time in seconds

Browser-Soar episode 11 :better-arrav o Do 1 02zm 00 ST 1982
Figure 7-44: Relative processing rates displays based on operator applications
for the Array episode. The original Browser-Soar
predictions are on the top, and the modified version on the bottom.

Soar/MT - 21 December 1992

154

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 155

7.5.1 Are verbalizations generated sequentially?

Of the 220 verbal utterances in the ten episodes, 195 can be aligned with the model’s predictions. The
remaining 25 are mostly too short to compare. The remaining segments make up 210 pairs of
immediately sequential utterances that can be tested against the sequentiality assumption. This test can
be performed by eye with the displays, and the initial analyses did this because it was so easy and
direct. The final counts were taken from the data structure used to create the displays.

All 210 pairs follow the sequentiality assumption; for all the pairs, the later segment in each pair either
matches the same model trace action as the first segment matches or a later model trace action. So this
appears to be another constraint that Browser-Soar meets. ’

7.5.2 Are mouse actions generated sequentially?

In a similar way the mouse movements and mouse button actions can be tested for sequentially.
Because these actions were used as fixed points to automatically align the subject’s protocol and the
model’s trace, in order to match out of sequence they would had to have been moved by hand out of
sequence, or items that could not be automatically aligned would have had to be aligned by hand.

Of the 404 mouse actions in the ten episodes, 373 can be aligned with the model’s predictions.® These
373 actions make up 363 pairs of sequentially contiguous actions. Again, a preliminary examination
of the displays showed that none matched the model out of order, and an analysis of the data base
confirmed that.

7.5.3 Does the sequentiality assumption hold across verbalizations and mouse actions?

All the subject’s actions can be tested for sequentiality. As explained in Chapter 5, this can be done by
examining the connected correspondences in the relative processing rate displays. Starting from the
first correspondence and moving along the line of comespondences, a connecting segment with a
negative slope indicates that the second correspondence matched earlier in the model than the first
correspondence, violating the sequentiality assumption. Simply examining the displays shows that
several verbal utterances lag the mouse movements noticeably. Of the 624 total segments, 568 are
aligned with the model’s actions in the ten episodes.]® These 568 actions make up 558 pairs of
sequentially contiguous actions, and 21 pairs do not meet the sequentially assumption, that is, in these
pairs, the second subject action is a verbal utterance that matches an earlier prediction than the first
action that is a mouse action.

The lag of verbal utterances was computed by comparing the decision cycle number of the model
prediction corresponding to the verbal utterance with the decision cycle of the previously matched
mouse action. Figure 7-45 shows the distribution of these times. Across all verbal utterances in all
episodes the average lag was 9 decision cycles, or roughly 1 second. This is an acceptable number,
indicating that while some verbal utterances appear to have been produced quite late compared to the
mouse movements, overall the subject was not providing retrospective reports.

Most of the verbal statements (144 out of 195) match the model’s predictions sequentiaily, not
matching earlier portions of the model than their proceeding segment. Based on their starting points
these utterances can be considered as truly concurrent protocol — it is generated as the subject doing
the task and it matched the predictions of the contents of working memory. The ends of the utterances
~ have not been included in these analyses, although Peck and John included this length in their data set.

9An astute reader may note that there are five more mouse movements matched by subject actions in this analysis than in
the original analysis reported by Peck and John. One of these discrepancies has been found so far, and it was a typo.

10A 1 astute reader may again note that there are five more predictions matched by subject actions in this analysis than in
the original by Peck and John. Even with a semi-automatic tool, analysts will make mistakes.

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply - 156

o o Il

T T T T T T 1
-400 -300 -200 -100 0 100 200
Length of lag in decision cycles

Figure 7-45: Histogram of the lags (in decision cycles) of the verbal utterances.

While these segments are not long generally, it is possible that their tail end ceases to be concurrent.

There are two prospective utterances, one in the axis episode, which upon inspection was an typo in
alignment. The segment was properly concurrent, but misaligned by four decision cycles in the
spreadsheet. The other utterance occurred in the Vars episode and is more interesting. It has a positive
offset of 111 decision cycles (nominally 11 seconds). It is hard to see on the relative processing rate
display because it is surrounded by several mouse movements, which is the cause of it being
interpreted as early. When the segment is examined, it turns out that the verbal utterance is not so
much prospective, but that the model’s menu reading ability falls behind the subjects at that point, and
the model has to perform an extra 100 cycles of work before it can match the verbal utterance.

The remaining 49 utterances all lag their previous segment, matching an earlier prediction. When an
utterance lags, it lags on average 38 decision cycles, or roughly 4 seconds. Again this remains a
modest amount. This amount of time is consistent with the amount of time items can exist in working
memory. A very small number, three, lag over 300 decision cycles.

Characterizing the long lags Many short lags of the verbal utterances appear to be partly (but not
completely) an artifact of the Browser-Soar model. The model does not read individual words but
whole screens at a time, which leads to many of the short lags that occur late in an episode when the

subject is reading a help text. Including predictions of reading individual words would remove this
cause.

~ The three longest lags, however, are worrisome. They lag over three hundred decision cycles, and
represent a mismatch on the order of 20 to 40 seconds. The problem space of the operator they match

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 157

has long been removed from the goal stack, and several other problem spaces on that level have been
used as well. When these segments are examined they are found to be statements of the search or
evaluation criteria that occur after the search has started and numerous items have been examined.
While an operator put them on the state, at the point they are uttered, they clearly represent state
information that has been guiding the search for some time. Other operators could be refreshing them,
but if that is what lead to these utterances, then the operator used to interpret them is still the wrong
one.

Finding this lag in the literature. The actual lag of verbal protocols has not been computed in this way
to my knowledge. It requires an architecture that makes predictions about the time to perform a task,
external actions to provide fixed points of reference, and the predictions must be aligned to this detail.
We can see a lag in other data sets, however. The verbal data used to develop HI-Soar (John & Vera,
1992; John, et al., 1990) can be fixed relative to the performance of external actions. The verbal
protocols lagged behind the external actions so much that they were ignored when testing the model.

7.6 Conclusions about Browser-Soar and the TBPA methodology

Having performed these analyses, we can summarize the results into several suggested changes to
Browser-Soar, which is the point of testing a process model. In general, Browser-Soar performed very
well. The operators in the model that performed best were the ones that are essential to browsing
on-line help systems: manipulating the mouse, choosing windows, and evaluating text items. On a
higher level, testing Browser-Soar also generated some lessons for the methodology and for the
environment that should be incorporated into the environment.

This methodology was stretched in a particular direction through testing Browser-Soar. Browser-Soar
and the data used to test it have some very particular characteristics: (a) very close matches, (b) very
routine behavior and typical problem solving by the subject, (c) a highly interactive task, (d) mostly a
mental task (the perception and motor actions were routine). This example application did not deal
with every type of data. It is easy to name several data features that have not been touched: (a) very
bad matches between data and model, (b) perceptually based reasoning, (¢) how to create a model in
the first place, or drastically revise it, (d) tasks that cannot be modeled as search through or in problem
spaces, and (¢) extremely long or short protocols. Adding any of these features to the data and task is
likely to add further lessons and stretch the methodology in a new way.

7.6.1 Some conclusions about Browser-Soar

The analyses performed suggest several ways to improve Browser-Soar. Most, if not all, are known to
the authors of Browser-Soar, but the importance and location of the changes should be clearer after
these analyses. These changes are presented in Table 7-32.

Browser-Soar’s ability to predict large amounts of the data should also be clearer as well. Chapter 2
put forward the idea that analytic testing would not only point out where to improve a model, but it
also would make it more believable by presenting it more clearly. Several diagrams and tables were
created in performing these analyses that should make the model more believable. There are more
visual descriptions of the model (Figure 7-33), its performance (Figure 7-35), a rough measure of the
‘amount of knowledge in each problem space (Figure 7-36), and a picture of the calling order of its
operators (Figure 7-38). Aggregated measures of which operators and problem spaces are used and
how often have been presented (Table 7-29). The analytic displays show when operators are
supported, and by which type of data (Figure 7-38 and the Appendix to this chapter), and the relative
processing rates of the model and subject over time (Figures 7-39 and 7-40, and the appendix to this
chapter). '

Soar/MT - 21 December 1992

Performance demonstration I: Analyzing the Browser-Soar model
faster and more deeply 158

Table 7-32: Suggested changes to Browser-Soar based on analyses performed.

e Operators without evidence, Scroll, Page, Drag, and Click-on-item, must be considered
for removal from the model, or be supported with non-protocol data such as aggregate
timing results.

o Fitt’s law should be included in the model of moving the mouse.
¢ A more complete Read operator for reading text that takes longer.
o A less complete Read operator for reading menus faster, more like scanning.

¢ Qverall, the model’s performance is slightly lean, but this must be reevaluated after some
other problems, most importantly the reading operator, have been improved.

¢ Include learning, and decrease the goal stack depth.
¢ Include state information in the trace and match to it.

7.6.2 Some conclusions about the methodology

Performing these analyses pointed out that it is nearly always good to have context, and sometimes it is
required. Just providing information on a single item is often not enough to understand the item. The
item’s context is also needed. In several places, particularly in examining the model fit displays, users
can now click on a data point and get a segment and a selectable amount of its context displayed.

Different grain sized operators and different commitments to operators lead to problems in the
analysis, and should be avoided if possible. Soar in particular, as a general architecture for
intelligence, provides the ability to model every action. As a unified theory of cognition it highlights
the desire to provide a complete model, covering all the data. By definition, some portions of each
model will be weaker than others.

Soar models are much finer in their grain size than Newell and Simon’s (1972) systems; more actions
occur that cannot be tested, such as goals and many problem spaces. Other items might be found, but
are not found in every episode. It may be desirable to omit these items automatically and appropriately
when performing an analysis.

While Newell and Simon (1972, p. 179) propose that states and operators are equivalent, the reanalysis
of Browser-Soar shows that they are only equivalent for information purposes. When the timing of the
correspondences is included, they are not equivalent. States, and the information they contain, last
much longer. It may be possible to continue to match verbal utterances primarily to operators, but
when this breaks down, one must match to the state. Using the state properly is not a trivial task, and
will require designing and extending the trace. It will require further mechanations in the
interpretation algorithms to find the appropriate items to support in the model when this does occur.

No problem spaces or goals are used to interpret the subject’s behavior. Together their creation and
selection make up a substantial portion of the model’s behavior. What it would mean to match their
- prediction is not clear, problem spaces may be supported by their operators and states, goals by the
indication of a lack of knowledge in some way. If they will not be directly supported, the cognitive
modeler may desire to removal them from the trace if not the model.

Finally, we see that testing the model points out that the model is not complete without rules describing
how to interpret the data with respect to the predictions. For example, the Page, Scroll, Drag, and
Click-on-item, were considered for removal because they were not supported. A more generous
interpretation of the mouse actions might have included the decision to click (e.g., to Page) as being
supported as well.

Soar/MT - 21 December 1992

Appendixes to Chapter 7

Appendixes to Chapter 7

159

1 Alignment of the Write episode of Browser-Soar

Wod Sov 25 14135142 1993 - Dismal (0.83) repoct for weer ritter
Poc file /afe/es.emu.odn /o9 i -ope
To prist wse “enscript ~r -¢ -@ -fCouries? 166 /afs/es.emu.edu/wsar/ritter/spa/brouses/write/writel. .dp”
A] []] L] L I J L1
4 vapesk 25-Sep-91 revised 13-Jen~932 -FER PeJun~-93 To de:
1 Prem origisal by der, 16-M and verbal trasseription by s.esch, Jun-91
3 Treascription of the 15-Jus-0# ¢f browser tage 2
3
L3 for abeut the values of varisbles te the soreea.
3 Proviows Gsal: dsfine the 'lesp’ ceantrzust that will label the x-axia
€ Onzzeat Gsal: te figure out how te write the valwe of ‘EmpCondilemss’ ia
7 oxdas to label the w-amis with aperimestal ccaditics memes
[} o window out frest, right side aad bettom of help wia.,
’ ealy the laft odge of the commands wia., right side of emeution viadew
10 Pregumaa Wadew 1iee 1 "eeeccsevees Jige 3 “wmit Draweregh® 1ine 3 “gorigia 1107, 34er”
11 Bessution Windew: error bem with mussage st the tap
12 Selp Temt Wiadew: line 1 “sserse ‘Typiag-fepec’ Ceoecdinates”
13 Ceywerd Meau lise 1 “scerse” {(selested)”
14 Riecarchiel Meam: lise I .k Pesiticning o Displey” (se lises selected)
15 Commends Window: (net wsed)
16 Cucsoe: pesitioned a2 the end of the ‘gut’ eommend lise withia the ‘loop’ ceatrwet
17 Mouge: losated (+x) -3/4 in. from the ead of the ‘gut’ command lime
1 {mouwse is ewsTeatly s lime}
19 Ses alse /afs/as/preject/. /episcdea/write/01-11 . write.complete.loy
30 §9 total bebaviors
31 11 distimct & d ia behavi Loaded from: .
2 {afs/cs, /: & /b /LOAD-vEdte.1iep
23 235 total vecbals Loadisg /afs/os.eus.edu { spasbe -p 1dep.
E L)
38
26 lest time verbal/mouse matches iaformation wsed by an opexator.
27 31 total mowse moveasats WTYPE is typa of match:
2 that give evid 87 TYotal
29 ¢ pecessary movements
30
31 24 Total msuse buttos ectiocns L} 34 is astiocas before medel coverage.
3 3 SHORT is toe ahort to sode.
33 TIME is timestanp of actioce im . 14 CONT 1is segmest coatiswed frow previocws lise.
34 DUBATION is leagth ia ms of bedavior.
3% VEBRBAL is verbal protocol. az ¥ 1is vesbal coded.
3¢ Mouwse Astica is the wsar’'s mowse Bovemeuts. 1 MR is souse required {thess are just movemeats).
37 OT is Seguest Type 11 MI is wouse inferred.
38 § {s segmnent wwmber e WA is mouse buttoa astions {(necessary by defamlt).
3% WTYPR is type of match
40 MDC ia matohed DC. 3 MC is meuse wancoded.
41 DC is decisiom cycle ia Soar model. 1 VOC is verbal Os Coded.
42 SOAML TRACE 1s the literal Soar Trace
L2]
“ 0.94 11 data bed
43 [N 1) perceat model matched
o .10 seconds/decision cyele
47
40 total wosds 113
4
30 Time starts at 12400
S1 T WMouwse actioas Wisdow actions VYexbal T 4 Mype MDC DC Soar trace Canmeats
52 e I believe v 1
53 o LTI From: rew-treced.tut, 17-Mer-93
4 1 P: pe (top-space Opereteoc namas cleaned wp by hand,
ss 2 81 o8 6-July-93 rem
58 3 01 browss (}
57 4 =>8: g19 (opavator ac-change
se 3 ?: 93¢ (browsing
L1 s 1 » {(enkoown) (waknowa}
L1 7 0: fiad-appropciate-help
[$3 1 «»@: gé3 (operetor ao-chaage
(£} » ?: 9S8 (find-sppropriate-help
(2] 16 §: 233 ((wakaowm) (wakaowa)
(1} 1 0: defime-search-criterioa
s 13 «>@: gé3 (oparator so-change
(13 13 ?c p72 (defime-search-oritexion
7 14 $: 879 ({ushwowa)
¢ write v v 1% 18 oz L {fwed)
©® 9 write v v 13 .
70 13 write v v 13
7 U({sx) (A of prog wim) [2} B-Soar doesa’t modal briogingup the
T2 msuse line to poimter healp win.
3 16 0: Auat h e d search ori 4 ‘weite’ v
¢ 17 o dafd
s 18 =>4t ¢193 (operator mo-ol
T4 1 Pr pile (defi 1
” a0 8¢ 8117 {(wnknown)
78 14 Cam I write v v a1 2 Ot 1 4 4 ({wal €. %)
79 18 M(+y} (top of sareea)} B4 wanodeled (before the taski mouse moveseat
09 1S M(-x-y)} (portiom of help wis below prog wia) [1]
o 16 C belp win comas forward e

Soar/MT - 21 December 1992

Appendixes to Chapter 7

160

$1 T Howse estions Windew actions Veghal o 4 Mype MDC OC Sear trase Commeats
22 16 H{smey) (R of ‘onarse’ ot top of hoywerd mesnlin ¢ ame
" we{sm~y) (Just L of heyword dova arzow) soat
[22 0 hind
” 3 0: search-for-help valwe-ef~soasthing’ **
L 1§ e =>8: @137 (opesatox
7 as P: pldé (search-fec-help
[1] 3¢ $: al$S ((te-ba-found write) (valwe-of-something)
1] n 0: fisd-eriterion (heyweed)
2 e *»@: g161 (opereter ne-changs
” a» #1 pise (fied-exiterion
” 30 8 8170 ((te-ba-found wxite} (valus-eof-samething)
” n 01 fosus-om-euzrent-wiadow
e 32 01 evaluate-survest-vindow
” 3 ax@: g3l (opewrsten se-shange
e k1Y 71 9344 (evaluwate-iteme-in-window
” 38 81 8286 {{te-be-found write} (velwe-of-something)
-8 36 0 zead-inpwt (ecarse)
” »” Or attempt-mated
108 3 0: read-iaget (oemment)
101 » 01 aktespt-sateh
102 4 0: read-isput (ecmp_x)
163 4@ 01 ektempt-astch
184 @ 0: read-ingut (ecmpute)
108 [t Ot attempt-ssteh
188 “ 0: read-isgut (ccmsteat)
i 43 0: attempt-matoh
189 4 Ot read-inguk (ses_x)
109 L3 ©1 aktempt-aateh
110 4 01 vead-lapet (eureec)
1 4 01 attempt-mateh
12 50 O¢ resd-laput (detain)
13 1 2% 01 akttempt-mateh
114 3 01 change-current ~wisdew
118 3 =>@: 9433 (mc l.-clu'-
116 4 P: pade { wiad
137 119 8t 9438 {(to-be-found wtto)
110 ¢ Os serell (heywesd)
119 57 «>@: @451 {opexetor ae-change
120 e P: pise (wen-methed-of-seroll
121 5 8: 2467 ((to-be-found write}
122 17 M{ex} to (hayword dn arvow} - 7 = €0 €0 01 msve-nvuse (keyword dowa}
123171 0 keywoed asau sezclls wb ¢ mba 61 61 O¢ press-button .
124 18 kaywesd meaw serells
128 19 Reyword s scrxells
126 39 kayword menn sezells
1271 21 write v s v 3
128 23 ¢ serolliag stops wh 10 aba 62 62 0: velease-betton
129 22 M(-mey) (A of itamd, keywd msau:weony {write imm 11 =l O 01 evaluate-curreat ~-wiadow
13¢ 23 wseag? v 12 v
131 «>»@: ¢g807 (opexrator so-change
132 2t 9514 (evaluate-itess-is-wisdow
133 01 a5 {(te-be-fownd write) (velwe-of-somethiag)
‘134 (1] 0t read-iaput (wroag)
138 4 ° 01 ettempt-mateh
136 [} 01 read-ingut (wroagv)
137 70 Ot attenpt-sateh
138 " 0: read-iapet (xis}
139 72 91 sttempt-satoh e are left matchiag operators
140 ™ Ot read-iapet (mowt) for we have not states.
141 T4 01 stteampt-matoh
142 78 01 tend-ingut (saltexed)
143 T¢ 0: attempt-matoh
144 7 01 resd-lapet {samsent}
148 19 01 sktemgt-matoh
146 T 01 zead-iapet (sarvowm)
147 (1) 01 attempt-mateh
140 (1Y 01 zead-inpet (Comptomptomp}
149 2 01 sttempt-matsh
180 (13 0: change~curreat ~viadow
151 [23 =>@: g696 (opexator m
152 ;s P pT83 (i hang wind
153 [1] 81 8718 ((to-be-fouad write)
154 7 01 serzell {keywocd)
158 () =»4: ¢g734 (operator wo-chbange
156 (1] ?1 9731 (mec-method-of-asroll
157 ” 81 9748 ((te-bu-found write)
130 23 M(+x=-y} (keyword wp arzow} - 13 a 91 91 01 move-scuse (keyword wp)
159 33 D ®esu serclls mb 14 wmba 97 92 Ot press-button
168 23 ¥ serclling stogpe ab 1S mba 93 9 01 release-betton
168 4 »o v 16 v &
163 34 M{-x-y) (2nd keyword from bottom, xis} - 17 mi 94 2 0: evaluate-curreat-window
183 4 Ha ha besa v I8 wvwo
164 28 write. v i v %4
168 % =>@: ¢g777 (oparator mo-chamge
166 ” P: p784 (ovaluate-items-ls-wiedew
167 »” 81 8794 ((te-be-fouad weite) {velwe-of-something)
160 ” Ot read-inpet (weer-vars)
169 ” 0t attempt-meteh
178 109 O: read-inpwt (vhar)
Y 2Y in 0: attempt-match
172 10 Ot real-inget (vestor)
173 103 Ot attempt-watoh
174 104 0: read-iagat (write)
178 198 01 attempt-astoh
176 196 01 aseese-item (keywoed)
177 107 w8t go7e (“ntot .o-chm
179 109 P: poOS (; 4
179 109 8t a89d
160 110 0: click-oca-item (1069) 1088 ie an uasemed item
161 111 wrd: gi#S (oparstor .o-.l-'-
103 112 P poes {, bod-of-alt 1t
193 113 £ o913
184 38 M{sy} (3 items wp to ‘write’) - 20 e 114 134 'Y £1ed)

Soar/MT - 21 December 1992

Appendixes to Chapter 7

161

31 T Mouse asticas Wiadew astions Vecbal T & ype WDC ODC Sear trese Camments
168 18 ¢ msuse peister te wateh ab 31 sha 118 118 0: elick-butten

106 3¢ ‘write’ help temt sppears i N

197 27 ‘weite’ bacemes bold & moves ieo

108 16 01 evaluate-help-test

109 17 =@t g937 (epaseter no-change

190 110 ?: 9934 (ovaluate-belp-tomt

11 119 6: 8943 d wecite) (wal 13

192 120 01 fecus-ca-belp-tamt

193 28 ceaveaieat way te v 12 v 131 122 Ot evaluste-eurvent -wiadow

194 29 write out shest oeat

198 3¢ of tamt thet lee eent

196 31 is your peogxen oent

197 32 the temt cemmend oont

198 32 M(-x-y} (3/4 dn bolp tamt sovellbar helew slewam 23 sl 131

199 33 o oe v 34 shest

288 33 M({-um-y] (bottom R guad of belp temt wia} == 28 ad 131

301 3 show commen v 36 v 331

202 3¢ awe used v v 131

203 39 to displey v 20 v i1

204 42 se thats what I seat

208 3122 =>8¢ g#é¢ (operator ne-change

206 123 ?s pP?Y (ovaluste-prese-ia-wiadow

ae7 134 o 8984 (4 weite) (vel 2

a0 138 0: vead-ingut

ae9 12¢ 01 cengeehend

aie 137 0: sumpare~te-eritecia

331 43 M{smey) (nid of Reywd sesollbar, over slowvl wm 2% ome

312 43 i show eem v 3¢ v 128 126 01 ehang h-erd 4 { 4 write}) *e¢ ghanged search ariterica ‘write’ *¢
213 ¢¢¢ changud searsh eriteriea ’'show’ *°
214 13 Ot seaseh-fer-help

218 134 w1 gl035 {eperatec ne-cheage

ns ¥ 2 P1 91032 (scaxch-fer-belp

17 133 01 21843 {({te-be-found shew) (valwe-of-samethisg)
a1 133 Ot find-eriterion (keywoed)

us 134 wrd g1049 (sperator- so-chasge

23 138 P p1e8¢é (fimd-critexiea

s 1 8¢ #1066 {{to-be-found sbow) {val £

223 137 0t foous—-an-suttest-wvindow

223 42 M{-m-y) (~1/2 1is & of heyword ‘sassent’) -m 31 ai 138 138 01 evealeate-current ~wvisdew goes by but doesa’t stop oa zamscat,
234 43 -- (emey) (heywerd servll ber, above elewator) eoat

2338 43 -- (+y) {above keyword wg arrow) ooat

226 139 «>@: ¢g1092 (opesator ao-change alcro-codable as:
227 140 P p189?9 (evaluate-items-ia-window 162 O: vead-input (sensont)
220 141 81 81109 {{to-be-found show) (valuwe-of-something)
329 143 O: read-iaput (write}

230 163 01 attempt-matah

1 144 ©1 read-isput (wroag}

232 148 01 sttampt-match

33 166 0: read-input (wroagv)

234 147 01 sktempt-aatch

a3s 148 0: read-iagut (xim)

a3 149 Ot sttempt-matoh

37 138 Ot read-inpet (wowt)

23¢ 151 01 ettemgt-mataoh

39 153 0: tead-ispet (saltered)

240 133 01 attempt-match

41 154 0: read-tapwt (samscet)

242 158 01 attempt-match

243 136 01 read-inpet (sarvowm)

4 137 01 attempt-match

348 130 0t chaage-eurveat-window

346 159 =>8: 1376 {opezator so-change

27 168 P pr383 (i hode- € hang dow
240 - 161 8t 21291 ({to-be-fouad show)

M 162 01 sorell (keywozd)

ase 163 =>@: ¢g13¢4 (oparator mo-change

a1 164 P1 91311 (mec-esthod-of-soroll

1852 168 St 81330 {(to-be-found show)

253 ¢4 M(-Yy) (Reyword wp axrow) - 32 ar 166 166 01 wove-seuss} (keyword wp)

284 44 80 lat’s Ju v 33 v 138

2585 44 O wb 34 aba 167 167 0: press-buttoa

136 keyword mewu scrolls & stops

157 44 © ab 35 =ba 166 168 01 release-button

ase 148 0: evaluste-curreat-wiadow

asy 70 81 gi1358 {(oparator wo-chaage

ase 171 P1 91363 (ovaluate-iteme-ian-window

a6t 172 $: #1378 {{to-be-found show) (valws-of-sometbing)
263 173 0: read-input (wse)

263 17¢ 01 sttempt -matoh

24 17 01 read-ingut (user-vars)

185 176 0t attempt-matoh

a6¢ 1 01 read-input (vbar)

267 170 Ot attempt-metch

68 179 0« read-ingut (vector)

269 190 01 attempt-matah

17e 101 O1 read-input (write)

an 192 01 sttempt-match

a7z 193 01 read-iaput (wroag)

a7’ 184 01 attempt-match

2174 188 01 read-iaput (wroagv)

78 106 01 aktempt-matoh

aTe 107 0: read-iaput (xis)

mn 100 01 sttempt-astch

aTe 109 01 change-curreat -window

7 190 .w>@1 g1$47 (opetator ao-ol

ass Y } Y P: 91884 ({ £ haog: wind
201 193 ‘81 #1863 ((to-be-found show|

203 193 031 sevoll (keywoecd)

303 194 «>d: giS7S (sperator ae-change

ELl) 198 #¢ pi382 (mac-method-of-soroll

2e8 196 8: 81391 ({to-bu-fouad show)

286 44 D ub 3¢ mba 197 197 0: press-buttoa

a7 keyword meau sorolls & stope 1o

Soar/MT - 21 December 1992

Appendixes to Chapter 7

s

¥ Mowse sstiens Window acticas Vecbal 4 xype MDC DC

162

Sear trave

288
289
198
.
32
£ 24
4
8
¢
297
e
k1)
300
08
302
303
204
8
306
307
300
30
310
318
a2
313
334
ns
316
17
ne
319
330
kY
323
333
334
3128
3a¢
337
330
329
336
2
332
33
34
318
336
37
330
33
340
341
342

344
345
346
347
348
349
ase
381
83
353
%4
388
356
387

ass
360
E133
362
36
364

366
367
36
369
370

“e ah 37 aba 198 190
<5 suze X kaow how sont
199
308
201
303
0
a6e
208
208
207
aee
s
e
1
312
3
314
18
1
217
21s

21e
m
32
k]
E L]
128
236
4 D s 38 =ba 337 327
Raywoed wesu serells & steps
4 9

n

e

40 40 ambe 287 187
Reyword meau scrells & stope
4 T

47 M{-n-y) (‘showh’ 2ad £/ top of liat)

47 M(emey) (~1/4ia R of ‘showb’, ths lst item}
40 ¥(+x) (Just R & Delow keyword wp arrow)

48 == (4x) (wp arrow)

4 show B show

41 mba 358 230
=i 359 239
(1] ui 239
. wi 389

 FERN TS
»
-»

<
-
-

v 289

a1

172

1.

10
310

ab 46
b 47

aba 207
uba 200

Ot selesse-butten

Coatinned frem whot matched do 120

01 svaluste-surrent -window

=>@e
L]
8
O:
O:
Ot
L 2}
o
O
L
L0
L 23
o
o
Oc
L)
O
o
o

91622 {epeceien ao-change

91629 (ovaluste-items-in-wisdow

21639 ((te-be-found show) (velws-of-somethisg)
zead-iagut (ten}

attengt-mateh

read-laget (temt)

aktesgt-asteh

read-iaget (toush)

ttengt -astsh

01 changue-surreat -windew

->8
L 23
[1}
O

1011 {opeceter ne-changs
pae1s {i hods~£4 hang
8102¢ ({te-be-found show)
serell (heyweed)

s gi839 (eperates

aeo-change
P pledé (mas-asthed-of-serell
$: 81858 ({teo-be-found show)
0: press-buttes these serolls, all withia 1 & ia the human,
doa’t soczespend to this novies like model.

0: release-bmtton «= some of this will chusk uwp ia the humas.

01 evaluste-eursent -wisdew

O
L4
o
O
-8t
"
L1
L 13

91886 {eperatar ac-change
21093 (oveluate-iteme-in-wiadow
#1903 (! £ d show} {(val £
read-iaget (striag)
sktengt -uateh
read-iagut (syutaxlevel)
gtangt-metch
coad-ingut {ten}
akteapt-matoh
read-iaget (temt)
attengt-aatoh
read-iaget (towsh)
ettenpt -aakch
zead-ingut {wait)
attemgt-match
resd-ingut (wse)
attempt -astoh
zead-iaput (wsex-vars)
attempt-satch
~wiadow
92073 {ogecator mo-chaage
pI00 (; £ b
23 {(to-be-found show)
serell (keywood)

=>@1 @g3193 (opecator mo-ahange

Pt 93119 (mac-asthod-of-seroll
8: #2119 (({to-be-fouad show)
0: press-buttos

01 release-button

0: evaluste-currest-wiadow

-
[4]
8
O
o
O
O
ot
(4]
(1]
(1]
o
o1
0
03
L2
0
oc
o

partial move to get reedy to scroll
again, Fits laeari

2150 {(opecstor no-chenge

p3157 (evaluate-items-in-wiadow

2167 (beo-found show) (val € ag)

road-lagut (showb) T™his is & patched fa trece
asttenpt -matoh from & 263 to 277
road-ingut (showh)

attengt -satch

resd-input (shews)

aktempt -match

read-inget [(showt}

attempt-sateh

read-tagut (sigm}

sttangt -astch

read-iagut
aktempt ~-sataoh

sead-input (esish)

attempt -matcoh

cond-iaget (sise)

attangt -sstch .

01 change-gurreat -window

-8
L1
8
O

93338 (operatox mo-al

IS £ chang ol ads
83384 {{to~be-Cfouwnd show!

serell (Reyword)

=»8: g3367 (opecetor ne-chaage

P: 92374 (mas-methed-of-serell
S¢ 82383 ((to-be-fouad show)
O: prese-button

0: release-buttos

01 evaluate-curreat-window

@t
L]
81
o

93418 (operator vo-change

93432 (eveluste-items-in-wiadow
#3433 {{to-be-fousd show) (val £
Toad-input (soalex)

Soar/MT - 21 December 1992

Appendixes to Chapter 7 | 163

$1 ¥ Mowse actions Wiadow actices Verbal 2 4 WMype MDC OC Sear trace Commeats
3 394 01 sktenpt-sateh
398 01 read-inget (scaley)
196 01 sktempt-matoh
a»n 0: vead-ingut (set)
290 01 sttempt-astch
99 0t read-tagut (swtfile)
00 0Ot attempt-mateh
E 118 0: read-iagut (show)
303 01 attempt-gatoh
03 01 aneess-iten (Reywecd)
304 st g3537 (epecatoc no-chenge
308 P 93534 (mm hode-£ 1
306 1 82842
07 0: ellek-ca-item (12837)
300 »>8: g3548 (epacakec ne-change
406 9 7 p3SSS (mas-asthed-ef-eslick-en-item
497 31 61 s2882
498 53 M(-m=-y) (‘showb’, drd fram Det, Reywsd meau) am 40 - 33t 311 R 01 move-mouss (Leyword wanspesified)
@ == (+y]} {‘show") ooat
410 82 ¢ wb 4% mba 312 312 03 eliek-button
411 313 0: evaluste-help-temt
413 34 «r@: gI576 (epetetsr so-shange
413 318 Pt p2583 (evaluate-help-temt
414 e 8: 22593 { show) (wal £ 3
“s 317 0: fosus-en-balp-temt
416 53 I dem’t kne v 50 v 318 330 0: svaluate-eurzent -wiandow
417 Se show bisary, pro eont
410 88 sheow spressiea. eoat
419 s¢ is an infinite £ aeemt
438 36 NM(-y) (middle R side of help temt) L2 ad 310
431 57 M{-y) (a little lower) - $3 ai 310
422 s¢ wha. .. v 53 shert
423 58 M{-y) {a little lowsr) - e ai 28
424 €8 bt I wonds v 53 v 318
438 63 M{sm-y) {jwst L of dn arrew for help tut wia) un 56 mme
426 &3 for v 3y v 3
437 318 =>81 g3613 (epecstor ae-chenge
438 320 #1 p2623 (evaluate-prose-ia-visdow
429 m 81 52633 (show) (val £ {]
438 322 01 resd-iagut
431 333 0 comprebead
433 . 324 0: campare-te-griterias
433 318 ©0: abasge-currest-viadow
a3 3¢ >@1 g3658 (operator So-cheage
o8 337 P pA6ES ds-foc-chane wind
@ 328 8t 93673 ((eceessed show)
437 328 0: screll (help-teamt)
438 330 =81 g3688 (opecator mo-chaage
439 m " 93 (mec-asthod-of-seroll
448 332 81 82701 {{accessed show)
441 63 K(+x]} (dowm arTow} am S¢ - 333 333 0: move-wouse (help-text dowa)
442 &4 D help text wia. scrolls ab S$ aba 336 334 Ot press-buttos
443 68 markers v 0 v 3
4“e 65 0 mb §1 w=ba 333 338 0: release-buttoa
443 3¢ 0: evaluate-curreat -window
37 =>31 gi744 (opecator ao-chaage
38 P1 2751 {evaluate-prose-in-window
33 81 83762 { 4 show) (val £
340 01 read-fapet
341 0: comprehand
342 0: campare-to-eriteria
343 01 change-gutrreat -wisdow
344 =>@: §2787 {operetor so-change
348 . P: paTRE | ds- £ chaag: window
346 8t 23082 ((avcessed show)
347 Ot soroll {help-taemt)
340 =>8: ¢g301¢ (operator no-change
49 P1 p3t2l (mas-method-of-scroll
358 8: 52838 ((eccassed show)
66 D help temt win. serolls b 63 mba 351 331 0s prese-buttoa
7T ab 63 aba 352 383 01 zelease-button
(1] okay v 64 v 334 @i - This had beea 332, a etataer
383 01 evaluate~curreat ~wisndow 30-jua-92 PER
384 =8t 42064 (opecator ne-change
k133 P: p2871 {evaluwate-prose-is-window
386 81 a3803 (show) (val £
387 0: read-iaput
358 01 cemgeehend
359 01 sompare-to-oritecia
L1 - 0t chaagu-curreat -window
36 «->81 g2 {opesator 20—l
2 362 Pt 92914 {; hode- £ hang window
473 363 81 83932 ({accessed show)
474 384 0: soroll (help-temt)
473 348 =>@1 g2934 (epexator mc-change
476 386 P: p2s4l (mec-method-of-ecroll
77 367 81 82980 ({accessed show)
478 68 D help temt win. sorolls ub ¢ mba 368 348 O press-button
479 ¢ O nb &6 mba 369 369 01 release-button
400) 378 01 evaluate-curreat -wisdow
401 m =»8t g3984 (epacator no-change
492 372 P: 92991 (evaluate-prose-ia-wiadow
48 373 L H d show} (val £ hi
484 374 0:
485 378 or
486 376 0: compare-to-ariteria
467 L 01 cheaage-curreat -wisdow
408 370 =>@: ¢3927 (operator aoc-change
ey 3719 1 pIede ¢ b € hang: wiadow
490 300 %1 83042 ((anceased show)
4 p 133 0: seroll {help-temt}
493 30 >t g3054 {(eperator mo-change
493 3 #: 93061 (mac-method-of-saroll

Soar/MT - 21 December 1992

Appendixes to Chapter 7

164

351 7 Wouse ssticas Wiadew estiems Vesbal 2 ¢ Mype MDC DC Seas trece Comments
494 04 $1 83070 ((acecssed show)

43 70 O belp temt wia. serells ub 67 sha 308 388 01 press-bukton

496 72 well, I°11 ¥ 68 v 370

T2V ab 69 =ha 366 306 01 release-buttea

L Y 01 evaluste-surrent-window

499 300 w»@: g3184 (opexater mo-eheage

] . #: pi1il (evaluate-prese-is-wisdow
se1 390 8: #3133 { show) (val -
383 nm 01 read-ingut

50 392 01 cemprehend

304 Rz 01 eompare-te-eriteria

ses 34 =381 state so-sheage

seé s w81 gii1s3 {geal ne-change

se7 396 =81 ¢3189 (gval mo-change

see 397 «>@: ¢3166 (goal ao-change

09 e ar@s @317 (geal ac~shange

sie 399 o>z g3100 (goal mo-change

Soar/MT - 21 December 1992

Appendixes to Chapter 7

165

2 Displays of each analytical measure for each episode of Browser-Soar

L

Il

e

I

I

L]

!!lll kit

I
o
(s

B
o

|

N
[

i

o

T e

.
!

i

\ \ \ =
\ \
03 i
) m B
{1

o1

fo™|
=

'f“‘"“

I

b
formtt—1

f

Y e e

w

TH

et e e

2
St
Browees-Soar egisode 8 cacle

HEtieLast! ““{mlllll

et

Figure 46: The operator support displays for each of the episodes.

Covmr—
Browsar-Soar episods § -var

Soar/MT - 21 December 1992

Appendixes to Chapter 7

OPERATOR .

Browse I Model acon

QO Conesponding overt mouse behavior
X ¢ nplicit mouse

V' Corresponding verbal ullerance

ot

Click-button

N T Y AU N S 5 T 2 25 [N O I IO O
S/
-

NOT MATCHED]
A 1 A 'y L ' '] L 1 1 1 1 L i A il 1 1 1 1 i 1

Operator appiications
Browser-Soar episode 3 :array

’

Fri Deo 421.40:47 EST 1982

OPERATOR
Browss ’ B Model acton
Find-appropriate-help O Conespondng overt mouse behavior
i X Comespanding impat maouse behavior
V' Comespondng verbat utierancs

|

L {
Ll bbb bttt b ittt
—
h 4
2 [
——¢
ral
—x

|

!

Evaluate-help-text

R

Evaluate-current-win
Change-current-win
Access-tern
Scroll
Page
Drag
Click-on-item
Double-ciick-on-tem
Move-mouse
Press-button
Reisase-button
Note-eaw-crit
Click-button
Double-click-button

NOT MATCHED

| SRS U I SV S EURY T T T S MR NN S W SN RS DU TS TUN SR SN W SR S NI SHN S S N !

Operator applications
Browser-Soar episode 11 :better-array

FnDeo 421:49:42 EST 1992

Figure 46: The operator support displays for each of the episodes (cont.).

Soar/MT - 21 December-1992

166

Appendixes to Chapter 7

167

o [-
= L1
L e
${= .
1
s
i "
34
23 - L3 --
-—ase i
. AN . g —— PR =)
T T v T v r
L] » - - » . » - - - -
Sdieviny b emandy
Erowess-Soar anisode 4 :recision ——
Sttt ot sttty wpts eatsnts o marinss 2 sy vt w——
. LAt L]
- -
¥ m—— ¥ e
- 1=
"
L
i . -
$4
Lonan e
=T =TT
= e
- S o . e cmtv——.
. - - - - . = - - - -
Sttt b st St o 4 st
Erowser-Soar episode § s ——— Browser-Soer ecisode 7 jabeix e r—

-
"

et e b Damioion Oynibe
£ d

it e & et
Browser Soar ecisode § ol

Figure 47: The relative processing rates displays based on decision cycles for each of the

Sutiont v smerats
Browssr-Sos ecinode § vers

episodes.

Soar/MT - 21 December 1992

Dot s i et
Browser-Soar ecisode 10 Zoommand

Appendixes to Chapter 7

Modet time in Decision Cycles

Model time in Decision Cycles

100
1

Model to data slope 9.482 de/s
RMSD = 81.258 dc
MAD = 69.602 dc

"2 0007
N = 96 maiched behaviors

0 20 40 60 80 100
Subject time in seconds
Browser-Soar episode 3 :arrav o Dew 7082084 657 1000
Dashed lines are range of th ity expected pond: rates

200
1

100
1

Model! to data slope 6.372 dc/s
AMSD = 60.254 dc

Subject time in seconds
Browser-Soar episode 11 :better-arrav Mon Goo 7020041 EST 102
Figure 47:The relative processing rate displays based on decision
cycles for of the episodes (cont.).

Soar/MT - 21 December 1992

168

Appendixes to Chapter 7

169

el S 17 sl apeter sppliren
. -

@ aaan @ —
fa— X —
W — ¥ mo———

B st [Tras——

g e T
=Es =E2
" e
0@ o @ St
. - - - -
- - ; - » - - - » - - -
Sujt v &0 omasnhs Sndjmt tivn b cmvunt St e b emments:
acipade 1 we ——— Browser-Goar snisade 2 ur#t ——— Browner-Soar evivade 4 ‘Brecision ——————

W= o
B
¥
=g |1 EEr

et e i o
Browser-Sow svisode § vers

Figure 48: The relative processing rates displays based on operator applications for

each of the episodes.

Soar/MT - 21 December 1992

Appendixes to Chapter 7
§ -
3 &0
&
o 8 _
g -
&
g
3
[=4
2
g
e 27
g
§ Model to data 2.268
= H&SDS 17.16 Optopd.
MAD = 15.16 ops
"a 0.7802
o - N = 96 matched behaviors
[] . N o]
T T T L T
0 20 40 60 80
Subject time in seconds
Browser-Soar episode 3 :arrav Man Ovo 7022832 ST 102
[~
n -
- Q Overt mouse behavior
X tvplich mouse behaviar
g V' Varbel ulierance
=
g
§ 3
3 <
9
=
=
[=4
:
e B
2
=
§ Model to data A9
= n‘a‘u’so:‘ﬁ".’&s o;sopd‘
MAD = 10.179 ops
2w 0.757
o - N = 96 matched behaviors
EE]

T T T T T
0 20 40 60 80

Subject time in seconds
Browser-Soar ebisode 11 :better-arrav
Figure 48: The relative processing rates displays based on operator applications for
each of the episodes (cont.).

Ma Deo 7 022900 €ST 1922

Soar/MT - 21 December 1992

170

Performance demonstration IT: Use of Soar/MT components by others 171

Chapter 8
Performance demonstration II: Use of Soar/MT components by others

While the environment is integrated, its components have been developed separately. As each
component became available, it was spun off for use by others performing subsets of the tasks
involved in model testing. The number of users of each tool, their comments, or both, provided
feedback on how the various tools help perform (Tesler, 1983) specific tasks of model testing.
Together they provides an estimate of the current and potential impact of the whole environment.

Spa-mode has had no use outside of this thesis. As noted earlier, the total environment, but for the
displays, was used by V. Peck to perform two episodes of the Browser-Soar reanalysis. The
underlying Dismal spreadsheet has had three to four additional users. It still has many problems, so a
survey probably will not point out inadequacies not already known.

A survey was conducted of Soar users to find the strengths and weaknesses of the Developmental Soar
Interface (DSI).

The other pieces of software either are not used by enough users (Spa-mode, Dismal), or they are so
widely used that undertaking a survey is a more serious proposition (S-mode) than can be undertaken
as part of this work. Portions of the DSI should no longer be considered pieces of developmental
software, for out of the 60 Soar users responding to the survey, two-thirds now use some portion of it
every time they use Soar.

8.1 Usage of the Developmental Soar Interface to develop Soar models "

The three modules of the DSI (Soar-mode, Taql-mode, and the SX graphic display), have been through
several releases. How to obtain them is explained in Appendix 1. One or more of the modules are
installed at each of the four principle Soar sites in the US, and at sites in Germany and the Netherlands,
with over 40 researchers using one or more of the modules.

In the Fall of 1992, a survey (included as an appendix to this chapter) was sent to members of the Soar
community identified through the Soar project’s mailing lists, workshop attendance lists, and
presenters at workshops, as most likely to use Soar in a routine way. In addition to the users directly
targeted, an announcement of the survey was emailed to the general Soar mailing list, and an
announcement was made at the Soar XI workshop in October, 1992.

Out of the 69 potential users identified, 63 returned a survey (a 92% response rate).. The three people
who never actually used Soar were dropped from later analyses. If users that were personally known
did not fill in an item, or misidentified a portion of the DSI, this was corrected. Of the people
responding, 50 are current members of the Soar community, and 13 are former members.

Table 8-33 shows a listing of the usage patterns. The columns list the components used, with each row
representing a single user. The rows are grouped by the sets of components used. The primary tool
used is Soar-mode, with 37 of the 60 users reporting using it. The SX graphic display has only been
used as a routine tool for debugging by its developer and two other users, but 14 people have used it to
create pictures of Soar models and to give demonstrations of their models. Taql-mode has been used
and put aside by several people as they became more familiar with the TAQL grammar.

In users’ responses of why they did not use additional modules, the largest number of responses (14)
was that they did not use TAQL, so they did not need Taql-mode. (This would not necessarily
translate into 14 users if they used TAQL.) The next largest concern (12) noted problems with
installation and not knowing how to use the tools. Speed (5) was also a concern, and this concern was
not limited just to the graphic display, a few users thought that Soar-mode and Taql-mode were slow to
load. Most potential users of the SX graphic display were put off by how much it slowed down the
system, and while only half the users reported dissatisfaction with its speed, this does not mean that

Soar/MT - 21 December 1992 -

Performance demonstration II: Use of Soar/MT components by others

Components used

172

Table 8-33: Survey responses categorized by usage pattern.
Each row represents a user. Totals do not include "tried" users.

Frequency of usage

Soar

EVERYTHING

SX & SOAR-MODE

TAQL-MODE
SOAR- & TAQL-MODE

SOAR-MODE

NOTHING

daily
daily
daily
daily
weekly
weekly
weekly
daily
daily
daily
daily
daily
daily
weekly
weekly
daily
daily
daily
daily
daily
weekly
monthly
daily
daily
daily
daily
daily
daily
daily
daily
daily
weekly
weekly
weekly
weekly
weekly
weekly
monthly
monthly
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
daily
weekly
weekly
weekly
weekly
monthly
monthly

quarterly

Totals

na
na

60

Soar-mode

daily
daily
daily
dally
weekly
weekly
weekly
daily
daily
daily
daily
daily
daily
weekly
weekly
tried
daily
daily
daily
daily
weekly
monthly
weekly
daily
daily
daily
daily
daily
daily
daily
daily
weekly
weekly
weekly
weekly
weekly
weekly
monthly
monthly
tried
tried

tried

38

<3 4
Weekly
special
special
daily
weekly
special
special
weekly
special
special
special
special
special
special
weekly

tried

tried

tried

15

Taql-mode Totals
daily 7

weekly

daily
special
monthly
special

daily

tried

tried
daily 1
daily 6
daily
daily
daily
weekly
monthly
17
tried

tried

tried
tried 21

tried

14 60

Soar/MT - 21 December 1992

Performance demonstration II: Use of Soar/MT components by others 173

they were satisfied with it. There were no underlying problems reported with the metaphor,
representations, and manipulation of the problem space level objects.

Other users had problems with the underlying systems that the tools were built on. Several users (4)
reported that they did not have a machine that could run the X window system, and some users (2) did
not know or want to learn Emacs. A few users, perhaps four or five, use a Macintosh exclusively, or
nearly exclusively, and the current environment is unavailable to them.

While only two respondents had not heard of all the software, a few were misinformed. One user did
not know that they were using Soar-mode (but loaded it in their startup files), and one did not know
that they were using Taql-mode (but when reporting useful Soar-mode features included a feature only
in Taqgl-mode).

Use in video productions. The SX graphic display has been used to make three videos of Soar and
Soar models that have been shown outside of CMU. A 20 minute tape of NTD-Soar was shown at a
NASA contractors’ meeting and as part of a research talk at Queen Mary & Westerfield College, both
in the Spring of 1992. A 2 minute video showing the basic interaction method with the DSI and how
Soar uses the Garnet toolkit has been shown four times: at the CHI *91 Garnet Special interest group
meeting, at the CHI *92 Doctoral Consortium, May 1992, and as part of research talks at the Applied
Psychology Unit in Cambridge, England and at Queen Mary & Westerfield College in the Spring of
1992.

Work is underway to create an introductory video explaining Soar (Newell, P., et al., forthcoming).
This video is a demonstration of what will be a general capability to take a graphic description of Soar
models and create high quality graphic output suitable for commercial broadcast. The initial
depictions of the Soar model were created with the SX graphic display and then sent to a commercial
computer graphics company for visual enhancement. The project is expected to be completed in the
Spring of 1993.

Impact of the DSI on the next release of Soar software: Soar6. In the next release of the Soar software,
called Soar 6, several of the features of the DSI have been incorporated or have encouraged the Soar 6
developers to include similar features. These include a very customizable trace, hooks for interacting
with Soar-mode, and a better command line interpreter. Soar 6 is still under development; given time,
we hope to migrate additional features to Soar 6, such as the ability to display the match set
continuously, and the ability to provide a display of which productions will fire on the next decision
cycle.

8.2 Usage of S-mode to create functions in S

S-mode has been distributed through three sources that make its total usage hard to compute. It
appears, however, to be one of the dominant ways of interacting with S. It was first placed in 1991 in
the GNU-Emacs archives at The Ohio State University. This makes it available via anonymous FTP.
S-mode has also been distributed via anonymous FTP from the authors’ machines. The number of
users who picked it up in these two ways cannot be known.

The second mode of distribution, through a statistics software mail server, allows an approximation of
a lower bound. Statlib, run by Dr. Michael Meyer at CMU, is a system for distributing statistical
software and datasets by electronic mail. The system keeps track of the mail requests for each plece of
software and can provide a listing of who requested each piece. Since S-mode was first placed in the
Statlib server, there has been 1,043 requests for it, including requests for updated versions (personal
communication, M. Meyer, October, 1992).

The exact size of its distribution is confounded further by the nature of GNU-Emacs’ copy protection
and the nature of S-mode’s installation. GNU-Emacs and S-mode are copylefted, which means that
users are entitled to (and indeed legally obligated to) provide others with copies upon request, although
a copying fee can be charged. How many sites have passed S-mode on would be impossible to

Soar/MT - 21 December 1992

Performance demonstration II: Use of Soar/MT components by others 174

compute. GNU-Emacs and its extensions are installed primarily on multi-user machines and
distributed file systems. Once installed, many users can use the same piece of software although on
different machines. For example, S-mode has been installed with GNU-Emacs on the Andrew system
at CMU (and I don’t even know who installed it). Any of the approximately 5,000 Andrew users at
CMU can use S-mode.

Soar/MT - 21 December 1992

Appendix to Chapter 8: Survey distributed to Soar users 175

Appendix to Chapter 8: Survey distributed to Soar users

Survey on the Developmental Soar Interface
Prank Ritter
12-0ct-92

I'm writing up my thesis and would like to get a better headcount of
how many people use the DSI, and how they use it. Your comments will
also be used to improve the current interface and serve as background
for future versions.

* How often do you use Soar?
Daily Weekly Monthly Quarterly Other (describe)

* Which of the following have you heard of and which have you used?

Heard of Have used
SX graphic display (triangle thingy) Y N Y N
Soar-mode Y N Y N
Taql-mode Y N ’ Y N

* For items you’ve heard of, but never used, have you considered using any?
Any specific reasons why you have not used them?

* Are there any features that you would like to see added to the Soar
interface for programming, editing, or understanding Soar models ?

If you have not used any items, you can quit here. Thank you.

Soar/MT - 21 December 1992

Appendix to Chapter 8: Survey distributed to Soar users 176

* How often you use it ? (tick one and/or write in a modifying number)
Daily Weekly Nonthly Quarterly
Tried once or twice Never

Special purpose (e.g., demos, making figures; please explain)

* If you don‘t use the SX graphic display, why don’t you use 1it?

* How do you use it? (you may tick more than one)
I‘ve only tried it.
I use it for special debugging. I use it for routine development.

I use it for demos. I use it to make presentation diagrams

* How long have you used it (e.g., 3/91 to present) ?

* What are the most valuable features ?

* What are the worst problema/bugs/factors stopping you from using the SX
graphic display more often?

Soar/MT - 21 December 1992

Appendix to Chapter 8: Survey distributed to Soar users 177

-t ot -

* How often you use Soar-mode ? (tick one and/or write in a modifying number)
Daily Weekly Monthly Quarterly
Tried once or twice Never
Special purpose (e.g., demos, making figures; please explain)

* How do you use Socar-mode? (you may tick more than one)

I use it for special debugging. I use it for routine development.
I use it for demos. I‘'ve only tried it.

* How long have you used soar-mode (e.g., 3/91 to present) ?

* What are the most valuable features of Soar-mode?

* What are the worst problems/bugs/factors stopping you from using
Soar-mode more often? -

* If you don’‘t use Soar-mode, why don’‘t you use it?

Soar/MT - 21 December 1992

Appendix to Chapter 8: Survey distributed to Soar users 178

How often do you use tagl-mode ? (tick one and/or write in a modifying number)
Daily : Weekly Monthly Quarterly

Tried once or twice Never

Special purpose (e.g., demos, making figures; please explain)

How do you use tagl-mode? (you may tick more than one)

I‘ve only tried it. I use it for demos.
I use it for special debugging. I use it for routine development.

How long have you used tagl-mode (e.g., 3/91 to present) ?

What are the most valuable features of tagl-mode?

What are the worst problems/bugs/factors stopping you from using
tagl-mode more often?

If you don’t use tagl-mode, why don’‘t you use 1t?

Additional on-line & hardcopy coples available from Frank Ritter@cs.cmu.edu

Please return surveys by email or hardcopy to Prank Ritter@cs.cmu.edu

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic

model testing 179
Chapter 9
Contributions and steps toward the vision of routine automatic
model testing

Compared with Chapter 1, we are not in the same place in many ways, and we are considerably further
along toward the capacity to perform routine process model testing. Progress has been made on
defining a methodology for testing the sequential predictions of process models. A computer
environment has been implemented to support this methodology, and this environment has been used
to test an actual model with actual data. Portions of the environment are used by researchers around
the world. The environment was used to test and extend the sequentiality assumption of Ericsson and
Simon’s (1984) theory of verbal protocol production. The path to an intelligent automatic modeling
system based on agent tracking is clearer. Only model testing (open analysis) has been considered in
this work, but the methodology and environment should largely be applicable to using models to
classify sequential behavior (closed analysis) for such things as cognitive-based testing (Ohlsson,
1990).

The central problem: dealing with large amounts of information. Within the methodology of TBPA
the essential problem in testing process models still appears to be one of manipulating and
understanding the large amounts of information involved: the model, its predictions, and the data used
to test it. Scientists do not decry the difficulty of model creation and manipulation as often as they
have the amount of bookkeeping required for testing the sequential predictions. The size of the data
sets prove a real problem; the amount of qualitative information used in this task is relatively large
given the analyst’s limited processing capabilities. :

Each of the steps in TBPA requires manipulating large amounts of information. This is a central
problem that runs through this work, and it is fought in every tool in the Soar/MT environment. Two
approaches have been developed for dealing with it. The first is to automate as many tasks as possible,
and to support the analyst for the remainder. The second is to design and use visual displays of
information.

Secret weapon #1: Automate and support. Automating aspects of each step reduces the work load
required of the analyst. Soar/MT assists the analyst by automatically aligning unambiguous parts of
protocols, creating model-based summary displays of the comparison, and providing many aids for
displaying and manipulating the model. Although the automatic processes fall short of the ideal speed,
and still must be speeded up through better algorithm and data structure design, they have proved
useful in their current state. The process is not so inherently large or computationally intensive that
so-called super-computing will be required.

The data set presented with Browser-Soar (Peck & John, 1992) is not the largest data set ever used to
test a model (although it is fairly large, see Table 2-2), but Soar/MT has substantially speeded up the
analysis of this data set. We can now imagine analyzing enough protocol data to achieve Ericsson and
Simon’s (1984) vision of verbal reports as data.

Supporting the analyst in performing the tasks that are not yet automated has required careful design of
the displays and manipulation tools for the large amount of information. The current maximum size of
the predictions and data, not including the model, is about 330 Kb. The analyst cannot directly
visualize and manipulate information sets the size of a small phone book (5,000 names at 60 bits per
name, or 300 Kb total). Special displays have been created to show the important trends in the data,
which is the next secret weapon. '

Secret weapon #2: Scientific visualization of qualitative information. Appropriate visual displays can
support faster processing rates and provide new insights (Larkin & Simon, 1981). Visual displays of
qualitative information have become central to quantitative data analysis in many domains and they
have lead to the major methodology of scientific visualization.

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing 180

Visual displays should now be considered essential for performing each step of protocol analysis and
process model testing. Visual displays help the analyst understand the model’s structure and
performance, relating them to each other in a single display, the SX graphic display. Tabular displays
of the model’s predictions, the data, and their correspondences show simple and directly where the
model’s predictions do and do not match the data. Other displays aggregate the correspondences in
terms of the model components and in terms of relative processing rates. These displays summarize
where the model performs well and where it performs poorly, providing clues about where and how to
improve the model’s fit to the data.

9.1 A methodology for testing the sequential predictions of process models

Trace Based Protocol Analysis (TBPA), a methodology for testing the sequential predictions of
process models with protocol data has been defined through listing its inputs, processing steps, and
their requirements. TBPA tests a model by running it to generate a trace of how the model performs
the task. This trace provides a set of theoretical predictions of what will be found in a subject’s verbal
and non-verbal protocol, and it is used to interpret the data. TBPA is designed to be an integrated and
iterative process, so a summary of where the predictions are unmatched in the protocol is then used to
modify the model, and the model is run again. The necessary inputs to TBPA, its steps, and the
processing requirements for each step to perform the testing routinely, were specified in enough detail
to create a computer environment to support this methodology.

Clarification of the testing process. What it means to test the model became clearer from specifying
each step in the process. What are tested in any given episode are the model’s predictions. The
comparison of the predictions with the data is not just one of alignment. The model’s predictions are
used to interpret the data. With unambiguous data, such as mouse clicks on menu items, the process
appears to be one of simple alignment and it can be treated that way. When the data are verbal
protocols, then the items in the trace may provide substantial guidance for interpreting the meaning and
function of the information described verbally.

Some theories require every prediction to be matched, but the theory of verbal protocol used to
interpret the utterances (Ericsson & Simon, 1984) states that not every possible prediction will be
found: The model’s predictions are predictions of what could be found in the subject’s verbal protocol.

The need for declarative versions of models. It is necessary for model based analysis to refer to
structures of the model and to note which parts of the model did and did not apply, or were and were
not supported. It is necessary to have declarative representations of process models representing
procedural knowledge. Running the model to create the structures upon demand is not enough. There
is the simple problem that the structures will be created and then disappear as the context changes.
There is also a more complicated problem of coverage, on any given run not all the possible structures
will be created. Examining the initial implementation of the model is not adequate either, the model
might leam from its environment, and computing all the model’s structures is equivalent to running it.

At a minimum, it is necessary to create a description of the model computed by observing the model’s
performance over time, although combinations of the other methods, such as derivation from the static
structure, are a useful adjunct. Although this method is the best way to build the model, even this
model is not guaranteed to be complete.

The DSI creates a declarative representation of Soar models. While the Soar model runs, the DSI
displays and remembers which and how often the problem spaces, states, and operators have been
applied. By watching the model as it runs the DSI builds up as complete a view of the model as is
possible. The resulting description can be used by other components in the environment. The
interpretation environment can use it to initially code the data. The saved model can be used to
summarize the correspondences created though interpreting and aligning the data with respect to the
predictions. .

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing 181

9.2 Each step in the methodology was supported in a software environment

-An environment to support an analyst performing TBPA has been created based on its requirements.
The environment directly supports the main tasks of model tracing; interpreting and aligning the
model’s predictions with the data, both automatically and semi-automatically; aggregating the
comparison data in a variety of displays designed to show how to improve the model; understanding
and modifying the model based on how it does not fit.

The steps were specified and broken down to a level that they could be performed automatically, or
semi-automatically. Building, loading, and running models was supported in a semi-automatic way.
Many small tasks are supported through keystroke macros in the structured editors and smarter
interfaces. Finding the emergent properties of Soar models (listing the problem spaces and their
operators) is supported, as is counting how often they are instantiated. Unambiguous portions of the
subject data are now matched automatically. The same algorithm can be used to interpret and align the
data in an incomplete and heuristic fashion, requiring the analyst only to check and clean up the
approximate interpretation. Finally, the analytic displays can be automatically created from the
comparison data.

The environment also supports the requirements of integrating the steps, automating the tasks where
possible, and supporting the analyst for the rest. The environment and the methodology it supports
were tested by testing a process model, and in the process learning new things about the model and its
fit to the data. The tasks in TBPA that the environment support overlap with other tasks often
performed in cognitive model building and modification, data manipulation with a tabular display, and
exploratory data analysis.

Sub-portions of the environment supported other users doing the sub-tasks for different reasons, the
DSI for AI modeling, Dismal for spreadsheets, and S-mode for statistics and graphing. A survey of
users of the DSI found that over half the Soar community uses some portion of the DSI whenever they
use Soar. It would be safe to say that pieces of the environment supporting these tasks are in use by
over 500 researchers around the world.

The analyses are fast enough to be considered routine. A minute long episode of subject data
(approximately 20 verbal segments and 30 motor actions in the browsing task) can now be compared
with the model’s predictions in 2.5 hours given sufficient inputs, the process model and transcribed
data. This is almost within automating range; when it took 60 hours to perform (estimate derived from
Ohlsson, 1980), too many under specified processes were required, and automating this task was not
conceivable.

Example testing of Browser-Soar using TBPA. The methodology was demonstrated on the Browser-
Soar (Peck & John, 1992) model. A set of suggestions for improving Browser-Soar was generated,
and one of them was implemented. This lead to a slightly better fit, but more importantly, to a much
more parsimonious model. Browser-Soar and its data set did not push this methodology in all
directions, but this was good. It allowed making headway on some problems by avoiding others.

9.2.1 Interpreting and aligning the model’s predictions and the data

This thesis explored the automatic alignment of unambiguous data to model predictions. The Card
algorithm for doing this was slightly improved, and its behavior characterized more clearly.

A spreadsheet approach to the comparison process was demonstrated, and it appears to visually
support many of the necessary operations on the data that would otherwise require extensive
computation by hand. For example, areas where the predictions match the data in a denser manner is
clearly presented. The spreadsheet was also effective in supporting the analyst in easily adjusting the
alignment manually when necessary.

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing 182

9.2.2 Analyzing the results of the testing process

A lack of clarity about what measures are necessary or desirable for measuring predictions fit to the
data may have contributed to the lack of progress. The review in Chapter 2 outlined the uses and
abuses of several of these measures, and championed Grant’s (1962) approach of analytic testing, of
finding out where the model can be improved.

A display for showing the support of operators in the model was automated, and an additional family
of displays were produced for presenting and analyzing the relative processing rate of the subject with
respect to the model. These two sets of displays can be created automatically from the comparison
data. They have shown the periodicity of human browsing behavior, the types of mismatches between
model and data, and ways to improve the fit of the model. There are many ways for data to not match
the model. Additional graphs will be necessary, so an environment is provided to assist in editing and
designing these graphs.

9.2.3 Steps related to manipulating the model: Prediction generation and modification

While the model’s components are used throughout the analyses, the process model itself is directly
involved in two steps, that of generating the sequential predictions, and the final step of revising the
model based on the testing process.

Generating the predictions. Generating the model’s predictions in a way that they can be used for
automnatic alignment has required extending infrastructure from the model (in this case, a Soar model)
out further toward the data. This has resulted in a better trace — one that is less ambiguous and more
readable by humans. Based on the example analysis, we also found that a problem space model must
provide state traces in addition to operator traces.

The improved trace lead to an unexpected benefit. We found that deriving aggregate measures in the
trace was useful for comparing models and describing their behavior in general terms.

Manipulating and creating models. The Developmental Soar Interface demonstrates the feasibility and

utility of several design principles. Across the environment it was possible to meet the design shown
in Table 9-34,

Table 9-34: The ease of use and learnability design features met by each tool in the environment.

¢ Provide a path to expertise through:
* Menus to drive the interface.

* Keystroke accelerators available and automatically placed on menus for users to
leamn.

* Help provided for each command on request.
* Hardcopy manuals also available on-line through the menu.
* Treat structures on the theoretical level as first class objects.

¢ Provide a general tool with macro facilities.

These features make the task of inserting the model’s knowledge into Soar easier. Keystroke level
models can be presented as evidence for this, as well as the fact that approximately two-thirds of the
Soar community now use some portion of the DSI in their daily work.

Node based graph display. Many structure display algorithms draw the complete structure, forcing the
user to scroll a window pane across it. Presenting Soar’s working memory contents is such a structure

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing _ : 183

display task. The set of tasks users need to perform when examining the structures within working
memory have been identified, and a display meeting these requirements has been designed and
implemented. The task analysis lead to a different design than a big scrollable window — a node-
based design that allows users to open up individually selected nodes in working memory, close their
parents, and so on. The users seem pleased, and it provides a much faster display.

General results about Soar. The visual and structural representations in the Developmental Soar
Interface highlighted several features of Soar models and the TAQL macro language. For TAQL, the
templates within the structured editor provided a measure of the cumbersome size of the TAQL syntax.

For several specific models we were able to display how their behavior is not best characterized as just
search in problem spaces. Behavior within many models now includes routine behavior, search
through problem spaces, migration of knowledge between problem spaces, and composition of
knowledge.

Within Soar models in general, displaying their behavior graphically pointed out how ephemeral
problem spaces and their structures are. In many ways the application and interactions of objects on
the problem space level should be considered as emergent behavior. The structure of the model is only
available from repeated viewing; the model itself has no representation of itself, and cannot conjure up
all the problem spaces and operators that are possible. ' ’

9.2.4 The synergy from integration

The environment receives much of its power from integration. The model, its behavior, the subject
data, and the comparison of the model and the data all exist in the same environment. This supports
several analyses that would be difficult without the integration and. it allows them to be much more
fluid. Integration allows: (a) direct, preliminary coding of the protocols based on the model’s
components; (b) appropriate mixed (text and symbolic graphics) presentation of data in the DSI; (c)
appropriate mixed (text and symbolic graphics) presentation of data in the analyses; and (d) the
portions of the trace that were well aligned and not well aligned could be directly compared with the-
model’s structures. .

9.3 Validated and extended the sequentiality assumption of protocol
generation theory

Using the TBPA methodology and the Soar/MT environment, the Browser-Soar model and data of
Peck & John (1992) were re-examined. Besides providing a test-bed for the methodology and
environment, this effort yielded the following new scientific result.

The verbal protocol production theory of Ericsson and Simon (1984) assumes that working memory
structures are reported in the order that they enter working memory. This assumption can be tested
with a model that predicts when objects enter working memory. The Soar/MT display of the relative
processing rates of the Browser-Soar model and the subject provided a direct visual test of this
assumption. The underlying data structures were then directly queried to confirm and count the
number of sequential and non-sequential pairs of events there were. In every episode of the Browser-
Soar, the sequentiality assumption was found to hold for the verbal protocol. An examination of the
non-verbal protocol segments found that they too were always performed in the same order as the
model, both for overt task actions, and for actions that were not directly related to the task, such as
moving the mouse pointer over words being read on the screen.

The two data streams appeared to be presented in a non-sequential order. Verbal utterances typically
lagged 10 to 30 simulation cycles (approximately 1 to 3 s) behind the overt actions; and rarely (3/300)
they lagged up to 400 simulation cycles (approximately 40 s).

~ The shorter lags were probably reports of working memory delayed by workload associated with the
task, and minor inconsistencies in the model. Examination of the correspondences showed that the

Soar/MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing : 184

primary cause of the long lags was probably an artifact of the interpretation process. The verbal
utterances in the analysis were matched to-operators rather than to the state information created by the
operators. This approximation simplified the analysis considerably, and it should remain available —
it is a valuable technique. But it must be seen as only an approximation; one that will sometimes lead
to inconsistencies in the comparison. Any operator that sets up long lasting state information can
cause this problem.

As a result of these analyses it is proposed that the sequentiality assumption holds for both verbal
utteranances and task actions. Including motor task actions as part of the protocol provides reference
points for fixing the correspondences between the predictions and subject’s actions, and allows the lag
of the verbal utterances to be measured.

9.4 Progress toward the vision of routine applied theoretically
guided protocol analysis

This work has made appreciable progress toward the vision of autormatic modeling. All the parts of
Soar/MT are part of a grand vision of what an integrated modeling and data analysis system would
need to do, and could do. The major steps and inputs have been identified as the parts of TBPA, and a
prototype environment has been created that an automatic modeling system would need. The next
steps will be to create initial models, and to provide a more intelligent process for interpreting
ambiguous data with respect to the model’s predictions.

Because this environment is based on an architecture for general intelligence, it is conceptually
possible to add knowledge to the architecture of how to perform parts or all of the analysis. To do this
completely would require incorporating a complete model of the analyst. However, the architecture
used in this environment, Soar, also learns. So perhaps an easier, but less direct way to automate this
task might be through having a Soar-based agent learn to perform the analyses by watching a series of
analyses. As it watched a series of routine analyses over similar episodes be performed, it could
follow along, learning how to run the analyses, and then driving the analyses programs itself.

Not that we are there, but we can now see further down the path toward completely automatic
modeling. If NL-Soar (a Soar system for interpreting natural language) were to be incorporated, then
Soar/MT might take in instructions for different experiments, and use the models that NL-Soar creates
from reading the instructions as initial models to predict the behavior of subjects for each experiment
(Lewis, Newell & Polk, 1989; Newell, 1991). The alignment also could be automated. The non-
verbal overt actions can be compared directly; the verbal utterances would have data structures, the
predictions, laying around that are designed to be sufficient to parse them. NL-Soar (Lehman et al.,
1991) is available as a potential parser designed to use these predictions.

This style of protocol analysis requires further computer science and Al work: performing the
alignment of predictions to natural language, running the models more quickly, and gathering better
statistics. But it remains a task within psychology: the real use is for comparing protocols against
models’ predictions.

Remaining problems. Many problems remained in this methodology and environment. I would like to
note a few here to admit its deficiencies, to warn potential users of the current specificity of the tasks
Soar/MT can address, and to suggest directions for future work.

How to aggregate support from the predictions to the model structures is not always as straightforward
as it appeared in the sample analysis of Browser-Soar. There is a problem of specifying how the
predictions are used to interpret the data. There is also a problem in specifying how to aggregate
support for model components. Across episodes, the structures in the model that generated the
predictions remain and summarize the behavior over time. The current model implemented its
operators rather directly and in the same manner each time. This need not be the case. Consider an
Add operator such as Siegler uses in his work modeling children’s arithmetic knowledge (Siegler,

Soar™MT - 21 December 1992

Contributions and steps toward the vision of routine automatic
model testing 185

1988; Siegler & Shrager, 1984). Different operands result in different reaction times and error
patterns. Assigning support to an operator in this case must be differentiated by the operator’s
arguments, and a representation for this must be developed. So there is an additional step to TBPA,
not yet made explicit, of translating the support that individual predictions receive from the data back
to the structures in the model that generated them.

The analyst is currently left with an abduction task of improving the fit with indications of where the
model does not fit and with tools for understanding and modifying the model. There are some simple
rules that would apply in specific circumstances, and these were noted in the chapter describing the
graphical measures of model fit. The possibility of finding a more complete and algorithmic
description, like Heise (1987, 1989; Corsaro & Heise, 1990; Heise & Lewis, 1991) provides for his
models, should be explored.

Speed, always and everywhere — the analyst always desires a faster system that performs more
complicated analyses automatically. Partial views of the data and model are included in this. The
recent translation of Soar to the C language offers a speedup in the basic architecture. Taking
advantage of this may require translating the DSI into C.

Directions for future work. The way to improve this methodology is the same way to improve a
model, by testing and using it on additional models and data sets. Some preliminary discussions have
taken place with other researchers about using Soar/MT to test their process models, usually models
implemented in Soar.

The software environment could be automated further, and as noted in Chapter 3, the next direct step
toward automatic agent modeling would be to represent the knowledge to perform a single step as a
Soar model. This would provide further automation. One of the potential places for doing this would
be to have NL-Soar parse the verbal utterances, another would be to further automate the generation of
the analytical diagrams.

9.5 Concluding remarks

We build our theories, test them, then modify them, iterating through a loop. This loop was described
briefly and perhaps for the first time with respect to process models and protocol analysis by Feldman
(1962, p. 342). But not surprisingly, it is like all theory testing in science. Models are not primarily
tested to be rejected (as the popularization of Popper’s (1959) views goes), or tested simply with a
significance test to determine their value, but models are tested in order to improve them (Grant, 1962;
Newell, 1990, p. 14). By using protocols to test these models, we are not attempting to code a segment
so that it is coded, but we are using the data to build a model (e.g., a simulation process model). That
is, to test whether subjects perform the same actions in the same order as the model predicts.

Because they will allow us to see new things, new analyses and tools are also science (Hall, 1992;
Laird & Rosenbloom, 1992; Newell, 1991; Ohlsson, 1990; Simon, 1991). New scientific problems are
found this way (Toulmin, 1972). Indeed, much of what science consists of — what is passed on from
generation to generation of scientists — is just technique (Ohlsson, 1990; Toulmin, 1972).

Because of the difficulties associated with creating process models and of manipulating protocol data,
sometimes analysts have lost sight of this fundamental nature of protocol analysis. The technique of
testing process models’ predictions of sequential behavior has been nudged forward just a bit.

Soar/MT - 21 December 1992

References

Soar/MT - 21 December 1992

186

References 187

References

Afifi, A., & Clark, V. (1984). Computer-aided Multivariate Analysis. New York: Van
Nostrand Reinhold Company.

Altmann, E. (February, 1992). Toward Human-scale task performance: Preliminaries. Talk
presented at the Soar X workshop.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, Massachusetts: Harvard
University Press.

Anderson, J. R. (in press). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, J. R., & Bower, G. H. (1973). Human associative memory. Hillsdale, NJ: Lawrence
Erlbaum Associates. Third revised printing 1979.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the LISP tutor.
Cognitive Science, 13(4), 467-505. ‘

Anderson, J. R, Farrell, R, & Sauers, R. (1981). Learning to program in Lisp. Cognitive
Science, 8, 87-129.

Anderson, J. R, Greeno, J. G., Kline, P. J., & Neves, D. M. (1981). Acquisition of problem-
solving skill. In Anderson, J. R. (Ed.), Cognitive skills and their acquisition. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Anjewierden, A., Wielemaker, J., & Toussaint, C. (1990). Shelley — Computer aided
knowledge engineering. In Wielinga, B., Boose, J. H., Gaines, B. R., Schreiber, G, & van
Someren, M. (Eds.), Current trends in Knowledge acquisition (Proceedings of the 4rth
European workshop on knowledge acquisition, EKAW-90, Amsterdam. Amsterdam: [0S Press.

Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological Review, 86,
124-140.

Ardis, M. A. (1987). Template-Mode for GNU Emacs. Available from The Ohio State
University elisp archives on archive.cis.ohio-state.edu as file
pub/gnu/emacs/elisp-archive/modes/templatemode.tar.Z.

Atwood, M. E., & Poulson, P. G. (1976). A process model for water jug problems. Cognitive
Psychology, 8, 191-216.

Bates, D., Kademan, E., & Ritter, F. E. (Fall 1990, revised Fall 1991). S-mode for GNU Emacs.
Available from the Statlib software archive (S is a statistics package, Statlib is
statlib@lib.stat.cmu.edu).

Becker, R.A., Chambers, J M., & Wilks, A.R. (1988). The New S Language. Pacific Grove,
CA: Wadsworth and Brooks/Cole.

Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual
Review of Psychology, 31, 419-456.

Bhaskar, R. (1978). Problem solving in semantically rich domains. Doctoral dissertation,
Carnegie-Mellon University.

Bhaskar, R., & Simon, H. A. (1977). Problem solving in semantically rich domains: An
example from engineering thermodynamics. Cognitive Science, 1, 193-215.

Soar/MT - 21 December 1992

References 188

Bree, D. S. (1968). The understanding process as seen in geometry theorems. Doctoral
dissertation, Camegie Mellon University.

Brooks, F. P. (1975). The mythical man-month: Essays on software engineering. Reading, MA:
Addison-Wesley Pub. Co.

Brown, C. R. (1986). The verbal protocol analysis tool (VPA): Some formal methods for
describing expert behavior. In Proceedings 2nd Symposium on Human Interface, Oct. 29-30,
Tokyo, Japan, 561-567.

Brown, J. S., & Burton, R. B. (1980). Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science, 2, 155-192.

Brueker, J., & Wielinga, B. (1989). Models of expertise in knowledge acquisition. In Guida, G.,
& Tasso, C. (Eds.), Topics in expert system design. North Holland: Elsevier Science Publishers
B.V.

Card, S. K, Moran, T. P,, & Newell, A. (1980). The keystroke-level model for user
performance time with interactive systems. Communications of the ACM, Vol. 23(7).

Card, S., Moran, T., & Newell, A. (1983). The psychology of human-computer interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Carley, K. (1988). Formalizing the social expert’s knowledge. Sociological methods and
research, 17(2), 165-232.

Carpenter, P. A, Just, M. A,, & Shell, P. (1990). Cognitive coordinate systems: Accounts of
mental rotation and individual differences in spatial ability. Psychological Review, 92, 137-172.

Chambers, J. M., & Hastie, T.J., eds. (1992). Statistical Models in S. Pacific Grove, CA:
Wadsworth and Brooks/Cole.

Cohen, M. S, Payne, D. G, & Pastore, R. E. (1991). Computerized task analysis. SIGCHI
Bulletin, 23(4), 57-58.

Corsaro, W. A, & Heise, D. R. (1990). Event structure models from ethnographic data. In
Clogg, C. (Ed.), Sociological methodology: 1990. Cambridge, MA: Basil Blackwell.

Dansereau, D. (1969). An information processing model of mental multiplication. Doctoral
dissertation, Department of Psychology, Carnegie-Mellon University.

Diederich, J., Ruhmann, I, & May, M. (1987). KRITON: A knowledge-acquisition tool for
expert systems. International Journal of Man-Machine Studies, 26, 29-40.

Dillard, J. F., Bhaskar, R., & Stephens, R. G. (1982). Using first-order cognitive analysis to
understand problem solving behavior: An example from accounting. Instructional Science,
11(1), 71-92.

Doorenbos, R., Tambe, M., & Newell, A. (1992). Learning 10,000 chunks: What’s it like out
there? Proceedings of the Tenth National Conference on Artificial Intelligence. AAAL

Dukes, N. F. (1968). N=1. Psychological Bulletin, 64(1), 74-79.

Embretson, S. E. (1992). Computerized adaptive testing: Its potential substantive contributions

to psychological research and assessment. Current directions in psychological science, 1(4),
129-131.

Ericsson, K. A.,, & Simon, H. A. (1980). Protocol analysis: Verbal reports as data.
Psychological Review, 87, 215-251.

Soar/MT - 21 December 1992

References 189

Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data. Cambridge,
MA: The MIT Press.

Feigenbaum, E. A, & Simon, H. S. (1984). EPAM-like models of recognition and learning.
Cognitive Science, 8, 305-336.

Feldman, J. (1962). Computer simulation of cognitive processes. In Borko, H. (Ed.), Computer
applications in the behavioral sciences. Englewood cliffs, NJ: Prentice-Hall.

Feldman, J., Tonge, F. M., & Kanter, H. (1991). Empirical explorations of a hypothesis-testing
model of binary choice behavior. Hoggatt, A. C., & Balderston, F. E. (Eds.), Symposium on
simulation models. Cincinnati, OH, South-Western Publishing Company.

Fielding, N. G., & Lee, R. M. (Eds.). (1991). Using computers in qualitative research. London
& Beverly Hills, CA: Sage.

Finlay, J., & Harrison, M. (1990). Pattern recognition and interaction models. Diaper, D., et al.
(Eds.), Human-computer interaction — INTERACT ’90. IFIP, Elsevier Science Publishers B. V.

Fisher, C. (1987). Advancing the study of programming with computer-aided protocol analysis.
In Olson, G., Soloway, E., & Sheppard, S. (Eds.), Empirical studies of programmers: Second
workshop. Norwood, NJ: Ablex.

Fisher, C. (1991). Protocol Analyst’s Workbench: Design and evaluation of computer-aided
protocol analysis. Doctoral dissertation, Department of Psychology, Carnegie-Mellon
University.

Forgy, C. L. (1981). OPS5 user’s manual (Tech. Rep)CMU-CS -81-135. Department of
Computer Science, Carnegie-Mellon University.

Free Software Foundation. (1988). GNU Emacs. Boston: Free Software Foundation.
Directions for obtaining GNU-Emacs are available by FTPing file /pub/gnu/GNUinfo/FTP on
prep.ai.mit.edu, using the anonymous FTP protocol.

Garey, M. R, & Johnson, D. S. (1979). Computers and intractability: A guide to the théory of
NP-Completeness. New York, New York: W. H. Freeman and Company.

Garlick, S. & VanLehn, K. (1987). CIRRUS: An automated protocol analysis tool (Tech.
Rep.) 6. Department of Psychology, Carnegie-Mellon University.

Gascon, J. (1976). Computerized protocol analysis of the behavior of children on a weight
seriation task. Doctoral dissertation, Departement de Psychologie, Université de Montréal.

Gottman, J. M., & Roy, A. K. (1990). Sequential analysis: A guide for behavioral researchers.
Cambridge, UK: Cambridge University Press.

Grant, D. A. (1962). Testing the null hypothesis and the strategy and tactics of investigating
theoretical models. Psychological Review, 69, 54-61.

Greenblatt, R. D., Knight, T. F. Jr., Holloway, J., Moon, D. A., & Weinreb, D. L. (1984). The
LISP machine. In Barstow, D. R., Shrobe, H. E., & Sandewall, E. (Eds.), Interactive
programming environments. New York, NY: McGraw-Hill.

Greeno, J. G., and Simon, H. A. (1984). Problem solving and reasoning. In Atkinson, R. C.,
Hermnstein, G., Lindzey, G., and Luce, R. D. (Eds.), Stevens’ handbook of experimental
psychology, 2nd edition, Volume II. New York, NY: John Wiley & Sons. Also available as tech
report UPITT/LRDC/ONR/APS-14.

Gregg, L. W., & Simon, H. S. (1967). An information-processing explanation of one-trial and

Soar/MT - 21 December 1992

References 190

. incremental learning. Journal of Verbal Learning and Verbal Behavior, 6, 780-787.
Hall, S. (1992). How technique is changing science. Science, 257, 344-349.

Hansen, J. P. (1991). The use of eye mark recordings to support verbal retrospection in
software testing. Acta Psychologica, 76, 31-49.

Hegarty, M. (1988). Comprehension of diagrams accompanied by text. Doctoral dissertation,
Department of Psychology, Carnegie-Mellon University.

Heise, D. R. (August 1987). Computer assisted analysis of qualitative field data, Didactic
seminar, Session 176, American Sociological Association, Chicago.

Heise, D. R. (1989). Modeling event structures. Journal of Mathematical Sociology, 14(2-3),
139-169.

Heise, D. R. (1991). Event structure analysis: A qualitative model of quantitative research. In
Fielding, N. G., & Lee, R. M. (Eds.), Using computers in qualitative research. London: Sage.

Heise, D., & Lewis, E. (1991). Introduction to ETHNO. Dubuque, Iowa Wm. C. Brown
Publishers.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann Machines. In
Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1:
Foundations. Cambridge, Massachusetts: The MIT Press.

Hirschberg, D. S. (1975). A linear space algorithm for computing maximal common
subsequences. Communications of the ACM, 18(6), 341-343.

James, J. M., Sanderson, P. M., & Seidler, K. S. (1990). SHAPA Version 2.0: Instruction
manual and reference (Tech. Rep.) EPRL-90-16/M. Engineering Psychology Research
Laboratory.

Jefferys, W. H., & Berger, J. O. (1992). Ockham’s Razor and Bayesian Analysis. American
Scientist, 80(January-February), 64-72.

John, B. E. (1988). Contributions to engineering models human-computer interactions, Volume
1. Doctoral dissertation, Department of Psychology, Carnegie-Mellon University.

John, B. E. (1990). Applying cognitive theory to the evaluation and design of human-computer
interfaces. Final report to US West sponsored research program.

John, B. E., & Vera, A. H. (May 1992). A GOMS analysis of a graphic, machine-paced, highly
interactive task. CHI’92 Proceedings of the Conference on Human Factors and Computmg
Systems. NewYork: SIGCHI, ACM Press.

John, B. E., Vera, A. H., & Newell, A. (December 1990). Toward Real-Time GOMS (Tech.
Rep.) CMU-CS-90-195. School of Computer Science, Camegie-Mellon University.

John, B.E., Remington, RW. & Steier, DM. (May 1991). An Analysis of Space Shuttle
Countdown Activities: Preliminaries to a Computational Model of the NASA Test Director
(Tech. Rep.) CMU-CS-91-138. School of Computer Science, Carnegie-Mellon University.

Johnson, T. R., & Smith, J. W. (1991). A Framework for Opportunistic Abductive Strategies.
Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society. Hillsdale,
New Jersey: Cognitive Science Society, Lawrence Erlbaum Associates.

Johnson, P. E., Dura’n, A. S., Hassebrock, F., Moller, J., Prietula, M., Feltovich, P. J., Swanson,
D. B. (1981). Expertise and error in diagnostic reasoning. Cognitive Science, 5, 235-283.

Soar/MT - 21 December 1992

References 191

Just, M. A, & Carpenter, P. A. (1980). A theory of reading: From eye fixations to
comprehension. Psychological Review, 87(4), 329-354.

Just, M. A, & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental
rotation and individual differences in spatial ability. Psychological Review, 92(2), 137-172.

Just, M. A., & Carpenter, P. A. (1987). The psychology of reading and language
comprehension. Newton, MA: Allyn & Bacon.

Just, M. A, & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual
differences in working memory. Psychological Review, 99, 122-149. -

Just, M. A., & Thibadeau, R. A. (1984). Developing a computer model of reading times. In
Kieras, D. E., & Just, M. A. (Eds.), New methods in reading comprehension research. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Kadane, J. B,, Larkin, J. H., & Mayer, R. H. (1981). A moving average model for sequenced
reaction-time data. Journal of Mathematical Psychology, 23(2), 115-133.

Kaplan, C. (1987). Computer simulation: Separating fact from fiction. Published as Technical
report #498 in the C. L P. Series, Department of Psychology, Carnegie-Mellon University.

Karat, J. (1968). A model of problem solving with incomplete constraint knowledge. Cognitive
Psychology, 14, 538-559.

Kennedy, S. (1989). Using video in the BNR usability lab. SIGCHI Bulletin, 21(2), 92-95.
Kiearas, D. (May 1992). Personal communication.

Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive
Science, 12(1), 1-48.

Koedinger, K. R., & Anderson, J. R. (1990). Abstract planning and perceptual chunks:
Elements of expertise in geometry. Cognitive Science, 14(4), 511-550.

Kolen, 1. F., & Pollack, J. B. (1988). Scenes from exclusive-or: Back propagation is sensitive to
initial conditions. Proceedings of the Twelfth Annual Conference of the Cognitive Science
Society. Cognitive Science, LEA.

Kowalski, B., & VanLehn, K. (1988). Cirrus: Inducing subject models from protocol data.

Proceedings of the Tenth Annual Conference of the Cognitive Science Society. Cognitive
Science, LEA.

Krishnan, R., Li, X., & Steier, D. M. (September 1992). Development of a knowledge-based
mathematical model formulation system. Communications of the ACM, 35(9), 138-146.

Kulkami, D., & Simon, H. A. (1988). The process of scientific discovery: The strategy of
experimentation. Cognitive Science, 12, 139-176.

Laird, J. E., & Rosenbloom, P. S. (1992). In pursuit of mind: The research of Allen Newell. To
appear in Al Magazine.

Laird, J.E., Congdon, C.B., Altmann, E. & Swedlow, K. (October 1990). Soar User’s Manual:
Version 5.2 (Tech. Rep.) CSE-TR-72-90. Electrical Engineering and Computer Science
Department, University of Michigan. Also available from The Soar Project, School of Computer
Science, Carnegie-Mellon University, as technical report CMU-CS-90-179.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general
intelligence. Artificial Intelligence, 33(1), 1-64.

Soar/MT - 21 December 1992

References 192

Langley, P., & Ohlsson, S. (1989). Automated cognitive modeling. Proceedings of AAAI-84.
Los Altos, CA, Morgan Kaufman.

Langley, P., Bradshaw, G. L., & Simon, H. A. (1983). Rediscoven'ng chemistry with the Bacon
system. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine learning, an
artificial intelligence approach. Palo Alto, CA: Tioga.

Larkin, J. H. (1981). Enriching formal knowledge: A model for leaming to solve textbook
physics problems. In Anderson, J. R. (Ed.), Cognitive skills and their acquisition. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Larkin, J. H., & Simon, H. A. (1981). Learning through growth of skill in mental modeling. In
Proceedings of the Third annual conference of the Cognitive Science Society. Cognitive Science
Society, Lawrence Erlbaum Associates.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, 11, 65-99. '

Larkin, J. H., Mayer, R. H., & Kadane, J. B. (1986). An information-processing model based
on reaction times in solving linear equations. Journal of Mathematical Psychology, 23(2),
115-133.

Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Models of competence in
solving physics problems. Cognitive Science, 4, 317-345.

Lehman, J. F., Lewis, R. L., & Newell, A. (1991). Integrating knowledge sources in language
comprehension. Proceedings of the Thirteenth Annual Conference of the Cognitive Science
Society. .

Levy, B. (Fall 1991). Able Soar Jr: A model for learning to solve kinematic problems. Final
project for PSY 85-711: Cognitive processes and problem solving.

Lewis, R. L., Huffman, S. B., John, B. E., Laird, J. E., Lehman, J. F., Newell, A., Rosenbloom,
P. S., Simon, T, & Tessler, S. G. (July 1990). Soar as a Unified Theory of Cognition: Spring
1990. Proceedings of the Twelfth Annual Conference of the Cognitive Science Society.
Cambridge, MA.

Lewis, R. L., Newell, A., & Polk, T. A. (1989). Toward a Soar theory of taking instructions for
immediate reasoning tasks. Proceedings of the Annual Conference of the Cognitive Science
Society. Hillsdale, New Jersey: Cognitive Science Society, Lawrence Erlbaum Associates.

Lueke, E., Pagerey, P. D., & Brown, C. R. (1987). User requirements gathering through verbal
protocol analysis. In Salvendy, G. (Ed.), Cognitive Engineering in the Design of Human-
Computer Interaction and Expert Systems. Amsterdam: Elsevier Science Publishers.

Luger, G. F. (1981). Mathematical model building in the solution of mechanics problems:
Human protocols and the MECHO trace. Cognitive Science, 5, 55-71.

Mackay, W. (1989). EVA: An experimental video annotator for symbolic analyses of video
data. SIGCHI Bulletin, 21(2), 68-71.

MacWhinney, B. (1991). The CHILDES project: Tools for analyzing talk. Hillsdale, NJ:
Lawrence Erlbaum Associates.

MacWhinney, B., & Snow, C. (1990). The Child Language Data Exchange System: An update.
Journal of Child Language, 17, 457-472.

McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing:
A handbook of models, programs, and exercises. Cambridge, Massachusetts: The MIT Press.

Soar/MT - 21 December 1992

References ‘ 193

McClelland, J. L., Rumelhart, D. E., & the PDP research group. (1986). Parallel distributed -
processing: Explorations in the microstructure of cognition. Volume 2: Psychological and
biological models. Cambridge, Massachusetts: The MIT Press.

McConnell, C. (Spring 1992). llisp: Fancy LISP interface for GNU Emacs that supports multiple
dialects (Version 4.12). Available from The Ohio State University elisp archives on
archive.cis.ohio-state.edu as file pub/gnu/emacs/elisp-archive/packages/ilisp.tar.Z, and from
katmandu.mt.cs.cmu.edu:/pub/ilisp/ilisp.tar.Z.

Miller, C. S., & Laird, J. E. (1991). A Constraint-Motivated Model of Lexical Acquisition.
Proceedings of the thirteenth annual conference of the Cognitive Science Society. Cognitive
Science, Lawrence Erlbaum Associates.

Milnes, B. G. (1988). The Soar Graphic Interface. Talk and demo presented at the Soar V
Workshop.

Miwa, K., & Simon, H. A. (1992). Measuring individual differences by modifying production
systems. Submitted for publication.

Motta, E., Eisenstadt M., Pitman, K., & West, M. (1988). Support for knowledge acquisition in
the Knowledge Engineer’s Assistant (KEATS). Expert Systems, 5, 6-28.

Myers, B. A, & Rossen, M. B. (May 1992). Survey on user interface programming. CHI’92
Proceedings of the Conference on Human Factors and Computing Systems. NewYork, ACM
Press, Also available as Camegie-Mellon School of Computer Science technical report CMU-
CS-92-113.

Myers, B. A,, Giuse, D. A., Dannenberg, R. B., Vander Zanden, V., Kosbie, D. S., Pervin, E.,
Mickish, A., & Marchal, P. (November 1990). Gamet: Comprehensive Support for Graphical, -
Highly-Interactive User Interfaces. IEEE Computer, 23(11), 71-85.

Myers, B. A,, Guise, D., Dannenberg, R. B., Vander Zanden, B., Kosbie, D., Marchal, P., Pervin,
E., Mickish, A., Kolojejchick, J. A. (1991). The Garnet toolkit reference manuals, revised for
Version 1.4 (Tech. Rep.) CMU-CS-90-117-R. School of Computer Science, Carnegie-Mellon
University.

Neches, R. (1982). A process model for water jug problems. Behavior research methods &
instrumentation, 14(2), 77-91.

Neches, R., Langley, P., & Klahr, D. (1987). Learning, development, and production systems.
In Klahr, D., Langley, P., & Neches, R. (Eds.), Production system models of learning and
development. Cambridge, MA: Massachusetts Institute of Technology.

Nelson, T. O. (1984). A comparison of current measures of the accuracy of feeling-of-knowing
predictions. Psychological Bulletin, 95(1), 109-133.

Nerb, J. & Krems, J. (1992). Kompetenzerwerb beim Loesen von Planungsproblemen:
experimentelle Befunde und ein SOAR-Model (Skill acquisition in solving scheduling problems:
Experimental results and a Soar model). FORWISS-Report FR-1992-001, Muenchen
(Germany).

Neter, J., Wasserman, W., & Kutner, M. H. (1985). Applied linear statistical models.
Homewood, IL: Irwin.

Neuwirth, C. M., Kaufer, D. S., Chandhok, R., & Morris, J. H. (1990). Issues in the design of
computer support for co-authoring and commenting. In Proceedings of the Third Conference on
Computer Supported Cooperative Work (CSCW’90). Computer supported cooperative work,
Association for Computing Machinery.

Soar/MT - 21 December 1992

References , 194

Newell, A. (1968). On the analysis of human problem solving protocols. In Gardin, J. C., &
Jaulin, B. (Eds.), Calcul et formalisation dans les sciences de I’'homme. Paris: Centre National
de la Recherche Scientifique. Excerpt published in Johnson-Laird, P. J., & Wason, P. C. (1977)
(Eds.), "On the analysis of human problem solving protocols”, Thinking: Readings in cognitive
science, 46-61, Bath (UK): The Pitman Press.

Newell, A. (1972). A theoretical exploration of mechanisms for coding the stimulus. In Melton,
A. W., & Martin, E. (Eds.), Coding processes in human memory. Washington, DC:
V. H. Winstor.

Newell, A. (1973). You can’t play 20 questions with nature and win. In Chase, W. G. (Ed.),
Visual information processing. New York, NY: Academic Press.

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18, 87-127.

Newell, A. (1990). Unified theories of cognition. Cambridge, Massachusetts: Harvard
University Press.

Newell, A. (1991). Desires and diversions. School of Computer Science Distinguished Lecture,
Carnegie-Mellon University. December 4rth.

Newell, A. (1992). Unified theories of cognition and the role of Soar. In Michon, J. A, &
Akyurek, A. (Eds.), Soar: A cognitive architecture in perspective. Dordrecht (the Netherlands):
Kluwer Academic Publishers.

Newell, A. (1980a). Perception and production of fluent Speech. In Cole, R. (Ed.), Harpy,
production systems, and human cognition. Hillsdale, NJ: Lawrence Erlbaum Associates. Also
. available as CMU tech. report CMU-CS-78-140.

Newell, A. (1980b). Reasoning, problem solving and decision processes: The problem space as
a fundamental category. In Nickerson, R. (Ed.), Attention and performance VIII. Hillsdale, NJ:
Lawrence Erlbaum Associates. Also available as a Department of Computer Science, Carnegie-
Mellon University tech report.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of
practice. In Anderson, J. R. (Ed.), Cognitive skills and their acquisition. Hillsdale, NIJ:
Lawrence Erlbaum Associates.

Newell, A., & Simon, H. A. (1961). The simulation of human thought. In Current trends in
psychological theory. Pittsburgh, PA: University of Pittsburgh Press. Also available as RAND
tech. reports P-1734 and RM-2506.

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-
Hall, Inc. ’

Newell, A., & Steier, D. (1992). Intelligent Control of External Software Systems. Al in
Engineering, Vol. in press. Also available as Technical Report EDRC 05-55-91, Engineering
Design Research Center, Camegie Mellon University, April, 1991.

Newell, A., Shaw, J. C.,, & Simon, H. A. (1958). Elements of a theory of human problem
solving. Psychological Review, 65, 151-166.

Newell, A., Shaw, J. C., & Simon, H. A. (1960). Report on a general problem-solving program
for a computer. Information processing: Proceedings of the international conference on
information processing. Paris, UNESCO, Also available as Rand tech. report P-1584; reprinted
in Computers and Automation, July 1959..

Newell, A,, Yost, G. R., Laird, J. E., Rosenbloom, P. S. & Altmann, E. (1991). Formulating the

Soar/MT - 21 December 1992

References 195

problem space computational model. In Rashid, R.F. (Ed.), Carnegie Mellon Computer Science:
A 25-Year Commemorative. Reading, PA: ACM-Press: Addison-Wesley.

Newell, P., Lehman; J., Altmann, E., Ritter, F., & McGinnis, T. (1992). The Soar video.
forthcoming.

Norman, D. A. (1990). Approaches to the study of intelligence. Artificial Intelligence, Vol. 26.
Also to be published in Kirsh, D. (Ed.) (in preparation). Foundations of artificial intelligence.
Cambridge, MA: MIT Press.

O'Reilly, R. C. (1991). X3DNet: An X-Based Neural Network Simulation Environment.
Available from oreilly@cmu.edu, or via anonymous FTP from hydra.psy.cmu.edu as file
pub/x3dnet/x3dnet.tar.Z.

Ohlsson, S. (1980). Competence and strategy in reasoning with common spatial concepts: A
study of problem solving in a semantically rich domain. Doctoral dissertation, U. of Stockholm.
Also published as #6 in the Working papers from the Cognitive seminar, Department of
Psychology, U. of Stockholm.

Ohlsson, S. (1990). Trace analysis and spatial reasoning: An example of intensive cognitive
diagnosis and its implications for testing. In Frederiksen, N., Glaser, R., Lesgold, A., & Shafto,
M. G. (Eds.), Diagnostic monitoring of skill and knowledge acquisition. Hillsdale, NIJ:
Lawrence Erlbaum Associates.

Ohlsson, S. (October 1992). Personal communication.

Olson, J. S., Olson, G. M., Storrosten, M., & Carter, M. (1992). How a group-editor changes the
character of a design meeting as well as its outcome. Paper presented at the HCI Consortium
meeting, February 1992.

Peck, V. A. (November 1992). Personal communication.

Peck, V. A., & John, B. E. (May 1992). Browser-Soar: A computational model of a highly
interactive task. CHI’92 Proceedings of the Conference on Human Factors and Computing
Systems. NewYork, ACM Press.

Pitman, K. M. (1985). Cref: An editing facility for managing structured text (Tech. Rep.) A.L
Memo No. 829. Massachusetts Institute of Technology, Artificial Intelligence Laboratory.

Platt, J. R. (1964). Strong Inference. Science, 146(3642), 347-353.

Polk, T. A. (August 1992). Verbal reasoning. Doctoral dissertation, School of Computer
Science, Carnegie-Mellon University.

Poltrock, S. E., & Nasr, M. G. (1989). Protocol analysis: A tool for analyzing human-computer
interactions (Tech. Rep.) ACT-HI-186-89. Microelectronics and Computer Technology
Corporation.

Popper, K. R. (1959). The logic of scientific discovery. New York, NY: Basic Books.

Priest, A. G., & Young, R. M. (1988). Methods for evaluating micro-theory systems. In Self,
J. (Ed.), Artificial Intelligence and Human Learning: Intelligent Computer-Aided Instruction.
London: Chapman and Hall.

Qin, Y., & Simon, H. A. (1990). Laboratory replication of scientific discovery processes.
Cognitive Science, 14(2), 281-312.

Quinlan, R. (1983). Learning efficient classification procedures and their application to chess
end games. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine learning:

Soar/MT - 21 December 1992

References 196

An artificial intelligence approach. Palo Alto, CA: Tioga.

Reiser, B. J., Anderson, J. R, & Farrell, R. G. (1985). Dynamic student modeling in an
intelligent tutor for LISP programming. Proceedings of the International Joint Conference on
Artificial Intelligence - 85. Los Angeles: International Joint Conference on Artificial
Intelligence.

Reynolds, H. T. (1984). Analysis of nominal data (Tech. Rep.) 07-001. London & Beverly
Hills, CA: Sage university paper series on quantitative application in the social sciences.

Ritter, F. E. (September, 1988). "Extending the Seibel-Soar Model". Presented at the Soar V
Workshop held at CMU.

Ritter, F. E. (1989). Transparencies from Soar Meeting, May, 1989. FOKIBOFIT-Soar: A Soar
model of the effect of problem-part frequency on feeling-of-knowing, Department of
Psychology, Carnegie-Mellon University, Unpublished. Also presented as part of the
Understand Seminar, PSY 85-811.

Ritter, F. E. (1991). TAQL-mode Manual. The Soar Project, School of Computer Science,
Carnegie-Mellon University.

Ritter, F. E. (February, 1992). "Bruno Levy’s Able-Soar, Jr. model”. Presented at the Soar X
Workshop held at The University of Michigan.

Ritter, F. E., & Fox, D. (1992). Dismal: A spreadsheet for GNU-Emacs. The Soar Project,
School of Computer Science, Camegie-Mellon University.

Ritter, F. E., & McGinnis, T. F. (1992). Manual for SX: A graphical display and interface for
Soar in X windows. The Soar Project, School of Computer Science, Carnegie-Mellon
University.

Ritter, F. E., Hucka, M., & McGinnis, T. F. (1992). Soar-mode Manual (Tech.
Rep.) CMU-CS-92-205. School of Computer Science, Camegie-Mellon University.

Rosenbloom, P. S. & Lee, S. (1989). Soar arithmetic and functional 'capability. Software
provided with the Soar 5 distribution.

Rosenbloom, P. S., & Newell, A. (September 1982). Learning by chunking, a production system
model of practice (Tech. Rep.) CMU-CS-82-135. Department of Computer Science, Carnegie-
Mellon University.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (1987). Meta-levels in Soar. In Maes, P., &
Nardi, D. (Eds.), Meta-Level Architectures and Reflection. Amsterdam: North Holland
Publishing Company.

Rumelhart, D. E., McClelland, J. L., & the PDP research group. (1986). Parallel distributed
processing: Explorations in the microstructure of cognition. Volume 1: Foundations.
Cambridge, MA: The MIT Press.

Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word
recognition. IEEE Transactions on acoustics, speech, and signal processing, 26(1), 43-49.

Samual, A. L. (July 1959). Some studies in machine learning using the game of checkers. IBM
J. of Research and Development, 3, 210-229.

Sanderson, P. M. (1990). Verbal protocol analysis in three experimental domains using SHAPA.
Proceedings of the Human Factors Society 34th Annual Meeting. Human Factors Society.

Sanderson, P., James, J., Watanabe, L., & Holden, J. (1990). Human operator behavior in

Soar/MT - 21 December 1992

References _ 197‘

complex worlds: Rendering sequential records analytically tractable. Proceedings of the 9th
Annual Conference on Human Decision Making and Manual Control. Varese, Italy, Also
available from the Engineering Psychology Research Laboratory, Department of Mechanical and
Industrial Engineering, U. of Illinois, as technical report EPRL-90-12.

Sanderson, P. M., Verhage, A. G., & Fuld, R. B. (1989). State-space and verbal protocol
methods for studying the human operator in process control. Ergonomics, 32(11), 1343-1372.

Schank, R. C. (1982). Dynamic memory. Cambridge, UK: Cambridge University Press.
Schroeder, D. (November 1992). Personal communication.

Shadbolt, N. R., & Wielinga, B. (1990). Knowledge-based knowledge acquisition: the next
generation of support tools. In Wielinga, B., Boose, J. H., Gaines, B. R., Schreiber, G., & van
Someren, M. (Eds.), Current trends in Knowledge acquisition (Proceedings of the 4th European
workshop on knowledge acquisition, EKAW-90, Amsterdam. Amsterdam: 10S Press.

Sherwood, B. A., & Sherwood, J. N. (1984). The cT language and its uses: A modern
programming tool. In Redish, E. F., & Risley, J. S. (Eds.), The Conference on Computers in
Physics Instruction Proceedings. Redwood City, CA: Addison-Wesley. Also available as tech
report UPITT/LRDC/ONR/APS-14.

Sherwood, B. A., & Sherwood, J. N. (1992). The cT Language Manual. Wentworth, NH:
Falcon Software. The cT programming language is distributed by Falcon Software, Inc., P.O.
Box 200, Wentworth, NH 03282; phone 603-764-5788, fax 603-764-9051. A site license is
available for users at CMU.

Shrager, J., Hogg, T., & Huberman, B. A. (1988). A dynamical theory of the power-law of
learning in problem-solving. Draft paper submitted to AAAI-88.

Siegler, R. S. (1988). Strategy choice procedures and the development of multiplication skill.
Journal of Experimental Psychology: General, 117(3), 258-275.

Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and subtraction: How do
children know what to do? In Sophian, C. (Ed.), Origins of cognitive skills. Hillsdale, NJ:
Lawrence Erlbaum Associates.

ACM Special interest group on Artificial Intelligence. (April 1989). Special issue on:
Knowledge Acquisition, Sigart Newsletter (108). ’

Special interest group on Artificial Intelligence. (1991). Special section on integrated cognitive
architectures Sigart Bulletin, 2(4),

Special interest group on Computer-Human Interaction. (1989). Special issue on protocol
analysis tools and methods, SigChi Bulletin, 21(2),

Simon, H. A. (1979). Models of Thought. New Haven, CT: Yale University Press.
Simon, H. A. (1989). Models of Thought, Volume II. New Haven, CT: Yale University Press.
Simon, H. S. (1990). Invarants of human behavior. Annual Review of Psychology, 41, 1-19.

Simon, H. A. (October 1991). Setting up research programs. Talk presented as part of the
Graduate student professional seminar series: Interfacing the science and the profession,
Department of Psychology, Carnegie-Mellon University.

Simon, H. A., & Newell, A. (1956). Models: Their uses and limitations. In White, L. D. (Ed.),
The state of the social sciences. Chicago: University of Chicago Press.

Soar/MT - 21 December 1992

References 198

Simon, H. A., & Reed, S. K. (1976). Modeling strategy shifts in a problem-solving task.
Cognitive Psychology, 8, 86-97.

Simon, D. P., & Simon, H. A. (1978). Individual differences in solving physics problems. In
Siegler, R. S. (Ed.), Children’s thinking: What develops?. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Simon, T., Newell, A., & Klahr, D. (1991). A computational account of children’s learning
about number conservation. In Fisher, D., & Pazzani, M. (Eds.), Working Models of Human
Perception. Los Altos, California: Morgan Kaufman.

Singley, M. K. (1987). Developing models of skill acquisition in the context of intelligent
tutoring systems. Doctoral dissertation, Department of Psychology, Carnegie-Mellon
University.

Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA:
Harvard University Press.

Siochi, A. C., & Hix, D. (1991). A study of computer-supported ﬁser interface evaluation using
maximal repeating pattern analysis. Proceedings of the Chi’91. SIGCHI. .

Sleeman, D., Hirsh, H., Ellery, L, & Kim, L. (1990). Extending domain theories: Two cases
studies in student modeling. Machine Learning, 5, 11-37.

Smith, E. E. (1967). Effects of familiarity on stimulus recognition and categorization. Journal
of Experimental Psychology, 74(3), 324-332.

Smith, D. (September, 1992a). S-mode version 3.1 (program ’documentation). Distributed with
S-mode. ,

Smith, D. (September, 1992b). S-mode reference card. Distributed with S-mode.

Stallman, R. M. (1984). EMACS: The extensible, customizable, self-documenting display
editor. In Barstow, D. R., Shrobe, H. E., & Sandewall, E. (Eds.), Interactive programming
environments. New York, NY: McGraw-Hill. Extended version of a paper that was published
in Proceedings of the ACM SIGPLAN SIGOA Symposium on text manipulation, June 1981,
Portland, OR, pp. 147-156.

Stobie, I, Tambe, M., & Rosenbloom, P. (November 1992). Flexible integration of path-
planning capabilities. Proceedings of the SPIE conference on Mobile Robots. .

Stone, P. J., Dunphy, D. C, Smith, M. S., & Ogilvie, D. M. with associates. (1966). The
General Inquirer: A computer approach to content analysis. Cambridge, MA: The MIT Press.

Suchman, L. (October 1983). Office procedures as practical action: Models of work and system
design. ACM Transactions on Office Information Systems, 1(4), 320-328.

Swets, J. A. (1973). The relative operating characteristic in psychology. Science, I 82(7
December 1973), 990-1000.

Swets, J. A. (1986). Indices of discrimination or diagnostic accuracy: Their ROCs and implied
models. Psychological Bulletin, 99(1), 100-117.

Tesler, L. (January 1983). Enlisting user help in software design. SIGCHI Bulletin, 1 4(3), 5-9.

The Soar group. (24 September 1990). A brief introduction to Soar and selected readings. The
Soar group, Department of Computer Science, Camegie-Mellon University. 2 pages.

Thibadeau, R., Just, M. A., & Carpenter, P. A. (1982). A model of the time course and content

Soar/MT - 21 December 1992

References _ 199

of reading. Cognitive Science, 6, 157-203.
Toulmin, S. E. (1972). Human understanding. Princeton, NJ: Princeton University Press.

Touretzky, D. S. (December, 1986). A distributed connectionist production system (Tech.
Rep.) CMU-CS-86-172. Computer Science Department, Camegie Mellon University.

Tufte, E. R. (1990). Envisioning information. Cheshire, CT: Graphics Press.

Turing, A. M. (1956). Can a machine think? In Newman, J. R. (Ed.), The world of mathematics
(4). New York, NY: Simon and Schuster.

Underwood, B. J. (1969). Attributes of memory. Psychological Review, 76(6), 559-573.

Unruh, A. (1986). Comprehensive programming project: An interface for Soar. Dept. of
Computer Science, Stanford University.

van Gelder, T. (1991). Connectionism and Dynamic Explanation. Proceedings of the Annual
Conference of the Cognitive Science Society. Hillsdale, NJ: Cognitive Science Society,
Lawrence Erlbaum Associates. ‘

VanLehn, K. (1989). Human skill acquisition: Theory, model, and psychological validation.
Proceedings of AAAI-83. Los Altos, CA, Morgan Kaufman.

VanLehn, K., & Garlick, S. (1987). Cirrus: an automated protocol analysis tool. Langley,
P. (Ed.), Proceedings of the Fourth Machine Learning Workshop. - Los Altos, CA, Morgan-
Kaufman, also published as Technical Report PCG-6, Departments of Psychology and Computer
Science, Carnegie-Mellon University.

VanLehn, K., Brown, J. S, & Greeno, J. (1984). Competitive argumentation in computational
theories of cognition. In Kintsch, W., Miller, J. R., & Polson, P. G. (Eds.), Methods and tactics
in cognitive science. Hillsdale, NJ: Lawrence Erlbaum Associates. ‘

VanLehn, K., Jones, R. M., & Chi, M. T. H. (1991). Modeling the self-explanation effect.
Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society. Hillsdale,
NJ: Cognitive Science Society, Lawrence Erlbaum Associates.

VanLehn, K., & Ball, W. (1987). Flexible execution of cognitive procedures (Tech.
Rep.) PCG-5. Departments of Psychology and Computer Science, Carnegie-Mellon University.

Wagner, R. A., & Fisher, M. J. (1974). The string-to-string correction problem. J. of the
Association for Computing Machinery, 21, 168-172.

Wagner, D. A., & Scurrah, M. J. (1971). Some characteristics of human problem-solving in
chess. Cognitive Psychology, 2, 454-478.

Waldrop, M. M. (July 1988). Soar: A Unified Theory of Cognition? Science, 241, 296-298.

Waltz, D. L. (January 1987). Applications of the Connection Machine. IEEE Computer, 20(1),
85-97.

Ward, B. (May 1991). ET-Soar: Toward an ITS for Theory-Based Representations. Doctoral
dissertation, School of Computer Science, Carnegie-Mellon University.

Waterman, D. (1973). Pas-II reference manual, Version 29. Copies are currently available from
Herb Simon and Frank Ritter, Department of Psychology, Carnegie-Mellon University.

Waterman, D. A., & Newell, A. (1971). Protocol Analysis as a task for artificial intelligence.
Artificial Intelligence, 2, 285-318. Shorter version published as Waterman, D.A. and Newell,
A., (1971). Protocol Analysis as a Task for Artificial Intelligence, in Proceedings of the Second

Soar/MT - 21 December 1992

References , 200

International Joint Conference on Artificial Intelligence (IICAI):

Waterman, D. A., & Newell, A. (1973). Pas-II: An interactive task-free version of an automatic
protocol analysis system (Tech. Rep.). Department of Computer Science, Camnegie-Mellon
University. Also included in the preprints for the Third International Joint Conference on
Artificial Intelligence.

Wickens, T. D. (1982). Models for behavior: Stochastic processes in psychology. San
Francisco: W. H. Freeman and Company.

Winikoff, A. (1967). Eye movements as an aid to protocol analysis of problem solving
behavior. Doctoral dissertation, Carnegie-Mellon University.

Yost, GR. (March 1992). TAQL: A Problem Space Tool for Expert System Development.
Doctoral dissertation, School of Computer Science, Camegie-Mellon University.

Yost, G.R., & Altmann, E. (1991). TAQL 3.1.3: Soar Task Acquisition Language User Manual.
School of Computer Science, Carnegie-Mellon University, 19 December, 1991. Unpublished.

Yost, G. R., & Newell, A. (1989). A problem space approach to expert system specification.
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence. UCAL

Young, R. M. (1973). Children’s seriation behavior: a production-system analysis. Doctoral
dissertation, Carnegie-Mellon University. Also published as C.LP. report #245.

Young, R. M. (1979). Production systems for modeling human cognition. In Michie, D. (Ed.),
Expert systems in the micro-electronic age. Edinburgh (UK): The University Press.

Young, R. M., & O’Shea, T. (1981). Errors in children’s subtraction. Cognitive Science, 3,
153-177. ‘

Soar/MT - 21 December 1992

E 1ow to obtain the software described in this thesis 201

L. How to obtain the softwaré described ih this thesis

¥ All of the software presented in this thesis is available. Many of the tools described in this thesis are
protected under the GNU copy-left agreement. This basically means that if you get a copy, you also
get the source code, and take on an obligation to provide it to others upon request. In short: you may
use this code any way you like, as long as you don’t charge money for it, remove this notice, or hold
anyone liable for its results. Most of the remaining tools are in the public domain and can be freely
copied. The S statistics system is the only exception. It is available from AT&T and Stat Science.

The DSI

The SX graphic display. Starting in your local directory where you want to install the SX display code
(e.g., tOSU/soar/sx/5.3), open an FTP connection to Centro.soar.cs.cmu.edu [128.2.242.245]. Login as
"anonymous", using your address as password (e.g., "user@machine.site.edu”).

Change to the directory Jafs/cs.cmu.edu/project/soar/5.2/2/public
(cd /afs/cs.cmu.edu/project/soar/5.2/2/public). NB: You will not be able to cd to any directory between
/afs and .../public: :

Set file type to binary (binary).

Retrieve the file all-sx.5.3.1.tar.Z (retrieve all-sx.5.3.1.tar.Z). Close the FTP connection (qhit). This
file is approximately .5 meg. The final uncompressed, untared, compiled distribution will come to
approximately 9 meg plus an image, which is about 17 M on a Dec 3100/5000 machine.

Uncompress it (uncompress all-sx.5.3.1.tar.Z) and untar it (tar xf all-sx.5.3.1.tar). You should find the
following five lisp files and four bitmap files: build-sx.lisp, gl.lisp, g2.lisp, g3.lisp, all-sx.lisp,
garnet.cursor, hourglass.cursor, garnet.mask, hourglass.mask. You will also get an example .Sx-
init.lisp file called default.sx-init.lisp, examples of things you can put in your .cshrc in dsi-cshrc-
additions, postscript and doc versions of this manual, and a checkout script.

Follow the directions included in the manual to complete the installation.

Soar-mode. The complete source for soar-mode is available from
Jafs/cs.cmu.edu/project/soar/5.2/2/public/soar-mode.tar.Z. You can copy this file directly if you are at
Michigan or ISL, or you can retrieve it via anonymous-FTP to Centro.soar.cs.cmu.edu [128.2.242.245].
Note: CMU’s machines do not allow you to access intermediate directories in this path. To access the
latest version you may have to do a listing of the files in that directory ("1s”). Follow the directions
included in the manual to complete the installation.

Tagl-mode. The complete source for Tagl-mode is available from
"/afs/cs.cmu.edu/project/soar/5.2/2/public/tagl-mode.2.2.tar.Z". 'You can copy this file directly if you
are at Michigan or ISI, or you can retrieve it via anonymous-FTP to Centro.soar.cs.cmu.edu
[128.2.242.245). Note: CMU’s machines do not allow you to access intermediate directories in this
path. To access the latest version you may have to do a listing of the files in that directory ("Is").
Follow the directions included in the manual to complete the installation.

The alignment tool and dismal spreadsheet

Please contact Ritter@cs.cmu.edu to receive these tools. They have not yet been generally released.

The interface to the S programming system

S is a statistics package available from Bell Labs particularly suited for descriptive and exploratory

Soar/MT - 21 December 1992

How to obtain the software described in this ;h&sis 202

statistics. S-mode is built on top of comint (the general-command interpreter mode written by Olin
Shivers), as an interface to S.

The latest version of S-mode is available from the Statlib email statistical software server by sending a
blank message with subject "send index from S" to statlib@stat.cmu.edu, and following the directions
from there. Comint is probably already available at your site, and already in your load path. If it is
not, you can get it from archive.cis.ohio-state.edu (login name is anonymous, password is your real id)
in directory /pub/gnu/emacs/elisp-archive/as-is/comint.el.Z. This version has been tested and works
with (at least) comint-version 2.03. You probably have copies of comint.el on your system. Copies of
comint are also available from ritter@cs.cmu.edu, and shivers@cs.cmu.edu.

S-mode is also available for anonymous FTP from attunga.stats.adelaide.edu.au in the directory pub/S-
mode, and from the Emacs-lisp archive on archive.cis.ohio-state.edu.

The simple menu package

Updated versions (if any) of the simple-menu package used to provide the menus in S-mode, Soar-
mode, and Tagl-mode are available from the author or via FTP: from the elisp archive on
archive.cis.ohio-state.edu as file pub/gnu/emacs/elisp-archive/interfaces/simple-menu<version>.el.Z.
Iff you post me mail that you use it, I'll post you updates when they come out.

Soar/MT - 21 December 1992

