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Abstract

In essence, a neural network is an arbitrary differentiable, parametrized function.
Choosing a neural network architecture for any task is as complex as searching the
space of those functions. For the last few years, ‘neural architecture design’ has been
largely synonymous with ‘neural architecture search’ (NAS), i.e. brute-force, large-
scale search. NAS has yielded significant gains on practical tasks. However, NAS
methods end up searching for a local optimum in architecture space in a small neigh-
borhood around architectures that often go back decades, based on CNN or LSTM.

In this work, we present a different and complementary approach to architecture
design, which we term zero-shot architecture design (ZSAD). We develop methods
that can predict, without any training, whether an architecture will achieve a relatively
high test or training error on a task after training. We then go on to explain the error in
terms of the architecture definition itself and develop tools for modifying the architec-
ture based on this explanation. This confers an unprecedented level of control on the
deep learning practitioner. They can make informed design decisions before the first
line of code is written, even for tasks for which no prior art exists.

Our first major contribution is to show that the degree of nonlinearity of a neural
architecture is a key causal driver behind its performance, and a primary aspect of
the architecture’s model complexity. We introduce the nonlinearity coefficient (NLC),
a scalar metric for measuring nonlinearity. Via extensive empirical study, we show
that the value of the NLC in the architecture’s randomly initialized state before train-
ing is a powerful predictor of test error after training and that attaining a right-sized
NLC is essential for attaining an optimal test error. The NLC is also conceptually
simple, well-defined for any feedforward network, easy and cheap to compute, has ex-
tensive theoretical, empirical and conceptual grounding, follows instructively from the
architecture definition, and can be easily controlled via our nonlinearity normalization
algorithm. We argue that the NLC is the most powerful scalar statistic for architecture
design specifically and neural network analysis in general. Our analysis is fueled by
mean field theory, which we use to uncover the meta-distribution of layers.

Beyond the NLC, we uncover and flesh out a range of metrics and properties that
have a significant explanatory influence on test and training error. We go on to explain
the majority of the error variation across a wide range of randomly generated architec-
tures with these metrics and properties. We compile our insights into a practical guide
for architecture designers, which we argue can significantly shorten the trial-and-error
phase of deep learning deployment.

Our results are grounded in an experimental protocol that exceeds that of the vast
majority of other deep learning studies in terms of carefulness and rigor. We study the
impact of e.g. dataset, learning rate, floating-point precision, loss function, statistical
estimation error and batch inter-dependency on performance and other key properties.
We promote research practices that we believe can significantly accelerate progress in
architecture design research.
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logarithm. We set 7' = 2. |B| = 250 as always for fully-connected architectures.
Note that we could not compute the density in the region greater 10°, due to limita-
tions associated with floating-point computation. Conclusion: All distributions are |
well-behaved and can be summarized by e.g. their median. They are also relatively |
robust to random seed change. Both CIFAR10 and Gaussian inputs yield the same |
resultS) . . . .. 176
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F18

NLC vs MGLLA for study A architectures. We set 7" = 2. Only architectures for

which MGLLA < 10° are depicted, due to limitations associated with floating-

point computation. Conclusion: Both metrics are highly associated, especially 1n

@20

NLC vs MES for study A architectures after training error minimization. We set

T = 1.05. Only architectures for which M E'S < 10” are depicted, due to limita-

tions associated with floating-point computation. Conclusion: The NLC predicts

the influence of inputnotse onerror.| . . . . . . . . ... Lo

183

A21

NLC vs NCE for study A CIFARI10 architectures after training error minimization.

The noise weight w 1s specified on the y-axis. The black line indicates where

the NLC equals i Architectures with final NLC greater 10° are not depicted to

improve the visibility of low-NLC architectures. However, they follow the same

trends as other high-NLC architectures. Conclusion: The NLC predicts the noise

@22

NLC vs NCE for study A waveform-noise architectures after training error mini-

mization. The figure and its conclusion are analogous to the previous figure.| . . . .

188

A3

NLC vs a modified NCE where training set inputs are interpolated with their clos-

est test input, for study A CIFAR10 architectures after training error minimization.

The noise weight w 1s specified on the y-axis. The black line indicates where

the NLC equals 117 Architectures with final NLC greater 10° are not depicted to

improve the visibility of low-NLC architectures. However, they follow the same

trends as other high-NLC architectures. Conclusion: Generalization is closely re-

lated to sensitivity to random noise, and that sensitivity 1s predicted by the NLC.|.

. 189

in 2}

NLC vs a modified NCE where training set inputs are interpolated with their clos-

est test mput, for study A waveform-noise architectures after training error mini-

mization. The figure and its conclusion are analogous to the previous figure.| . . . .

190

@25

NLC vs TTNTK for study A architectures in the initial state. Conclusion: The

NLC 1s related to the neural tangent kernel, and thus to kernel bandwidth and the

surrounding conceptual and theoretical machinery.| . . . . . ... ... ... ...

A6

NLC vs 2 measures of effective depth for study A architectures after training error

minimization. Each graph corresponds to one of two measures discussed in|[Philipp

et al. [2018]]. Correlation values are not significant because of the non-linearity of

the relationship of x- and y-axis values. In graphs B/D, we omit architectures

with NLC > 10" as floating-point rounding error makes comparing the Taylor

expansion with the original network impossible. Conclusion: A high NLC usually

1mplies a low effective depth, and hence a non-attainment of the benefits associated

withdepth| . . . . . . . . . . .
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A7

NLC vs LNLC for study A architectures in the initial state. Green markers cor-

respond to GUAs. Red markers correspond to residual architectures that are not

GUAs. Note that 1n this figure, GUAs are actually displayed 1n the background so

that black and red markers that represent outliers are visible. We omit correlation

values due to the presence of extreme outliers. The top row gives results from

decomposing the NLC of the whole network. The bottom row gives results from

decomposing the second half of the network. There were also GUAs that exhibited

LNLC values of as low as 10", They are not depicted in the graphs in order to

improve visibility for non-GUAs. Conclusion: The NLC of fully-connected net-

works can usually be decomposed into the NLC of individual layers in the initial

| state, except for GUAS.| . . . . . . . .. L L 198

.28 NLC vs LNLC for study A architectures 1n the final state. Graphs are analogous |
| to the previous figure. Conclusion: There 1s only a weak association between the |
| NLC and its decomposition in the final state.|. . . . . .. ... ... ... ..... 199

{4.29 Inmtial NLC for study A CIFAR 10 architectures vs equivalent architectures with

[ altered width. Correlation values are close to 1. Conclusion: The NL.Cisrobustto |

widthchange.| . . . . . . . . . . ..

200

A30

Initial NLC vs final NLC for study A and B architectures. Conclusion.: The initial

B3

NLC(fL(f1), fi(D)) at different layers f; for 25 randomly selected study A CI-

FAR10 architectures that are not GUAs 1n the initial state. We plot the value for

a layer f; if 1t 1s a fully-connected layer, a normalization layer, an activation layer

or an addition layer, unless that layer 1s bypassed by a skip connection. All these

layers are placed on the x-axis according to their distance from the output layer,

measured 1n the (possibly fractional) number of macro-layers. The curves arise

by connecting points corresponding to neighboring layers. Conclusion: The NLC

increases smoothly from layer to layer. Often, this change 1s linear 1n log space

from macro-layer to macro-layer. Often, there 1s a jitter for every macro-layer, . . .

204

B32

NLC(fL(f1), fi(D)) at different layers f; for 25 randomly selected study A waveform- |

noise architectures that are not GUAs 1n the 1nitial state. The graph 1s analogous to

figure4.31l Conclusion: 'The NLC still changes smoothly from layer to layer, but

| the curves are less regular than 1n figure |4.31{and not always increasing.| . . . . . . 205

U.33 NLC(fL(f1), f1(N(0,1))) at different layers f; for the same 25 architectures as in |
| figure [4.32| 1n the 1nitial state. The graph 1s analogous to figure 4.31{ Conclusion: |
| The curves closely track those of figure|4.32| . . . . ... ... ... ....... 206
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“.34 NLC(fL(f1), fi(D)) at different layers f; for 25 randomly selected study B archi-

tectures that are not GUAs 1n the 1nitial state. We plot the value for layer f; if 1t

1s a linear layer, a normalization layer, an activation layer, an addition layer or a

pooling layer, unless that layer 1s bypassed by a skip connection. All these layers

are placed on the x-axis according to their distance from the output layer, measured

in the (possibly fractional) number of macro-layers. The curves arise by connect-

ing points corresponding to neighboring layers. Conclusion: The NLC changes

smoothly from layer to layer, but the curves are less regular than in figure|4.31]| .

. 207

@35

NLC(fr(f1), fi(D)) at different layers f; for architectures from figure 4.31|in the

final state (top left); for architectures from figure [4.34|1n the final state (top right);

for 25 randomly selected study A CIFAR10 GUAs 1n the 1nitial state (bottom left);

for 25 randomly selected study B GUAs 1n the nitial state (bottom right). Graphs

are analogous to figure 4.31] for study A and [4.34| for study B. Conclusion: The

patterns of previous figures degrade significantly in the final state, and completely

for GUASL . . . o o e e

5.1

NKURT averaged across an intermediate fully-connected or addition layer. In

graph A, we depict the range across 100 random seeds and therefore 100 ran-

dom 1nitializations for 40 simple fully-connected architectures on CIFAR10 with

a default depth of 51. The interval depicts the range of values across the random

seeds and the filled square depicts the mean. In graphs B-G, we depict the value

for study A architectures, before and after training. We place architectures on the

x-ax1s 1n ascending order. Green markers correspond to GUAs and red markers

correspond to GEAs. Some values fall outside the range of the y-axis. In graph

A, we specify those values in the graph. Conclusion: Neuron distributions in FC

layers of stable architectures 1n the initial state are approximately Gaussian with

respect to excess kurtosis. This 1s not true for GUAs/GEAs.| . . . . . ... .. .. 234

52

NGHI averaged across an intermediate fully-connected or addition layer. Graphs

are analogous to figure|5.1l Conclusion: Neuron distributions in FC layers of stable

architectures 1n the 1nitial state are approximately Gaussian in their cumulative

distribution function. This 1s not necessarily true for GEAs and especially GUAs.| .

53

KURTEX at an intermediate fully-connected or addition layer. Graphs are analo-

gous to previous figures. A very small number of values fall outside the range of

the y-axis 1n graphs E- G. Conclusion: Neuron expectations appear very Gaussian

across an FC layer, especially before tramning.| . . . . . ... ... ... ... ... 236

54

GHIEX at an intermediate fully-connected or addition layer. Graphs are analogous

to previous figures. Conclusion: Neuron expectations appear very Gaussian across

an FC layer, especially before tramning.| . . . . . . ... .. ... ... ... ...

237

53

CVNSTD at an intermediate fully-connected or addition layer. Graphs are anal-

ogous to previous figures. A very small number of values fall outside the range

of the y-axis in graphs E and G. Conclusion: Standard deviations are relatively

constant across an FC layer, especially for stable architectures before training.| . . .
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56

NCORR at an intermediate fully-connected or addition layer. Graphs are anal-

ogous to previous figures. Conclusion: Some correlation between neurons does

arise, especlally when Gaussian mnitialization (graph A) 1s used over orthogonal

mitialization (graphs B-F).| . . . . . . ... oo oo

57

LCV at an intermediate fully-connected or addition layer. Graphs are analogous

to previous figures. Conclusion: Stable architectures have near constant layer

lengths, especially before training, whereas GUAs and GEAs often have wildly

diverging lengths.| . . . . . . ... Lo

240

538

LQM vs its mean field estimate for study A architectures. The metrics are eval-

uated at a fully-connected or addition layer halfway through the network, as in

figures 1n section [5.2.1] because of the narrowness of the output layer. Vertical

lines correspond to confidence intervals of 2 standard deviations. GUAs are de-

picted as blue points with green lines. GEAs are depicted as red points with red

lines. Both GUAs and GEAs are displayed in the foreground as throughout chapter

{4} 1.e. their markers fully or partially occlude the markers of stable architectures

when they overlap. Some graph diagonals are given 1n black as a visual aid. Note

that all x- and y-axis ranges of graphs across this figure, as well as across each

of the figures below, are 1dentical to enable easier comparison. Conclusion: The

mean field estimate 1s highly accurate for stable architectures and GEAs before

training and still relatively accurate after training.| . . . . . .. .. ... ... ..

257

5.9

JACF vs 1ts mean field estimate at an intermediate and at the input layer. Graphs

are analogous to figure|5.8| Conclusion: The mean field estimate 1s highly accurate

for stable architectures and GEAs before training, but not after training.| . . . . . .

5.10

LSCALE vs 1ts mean field estimate at an intermediate layer. GUAs are depicted

in green. GEAs are depicted 1in red. Both are displayed 1n the foreground. There

are no confidence intervals. Graphs are otherwise analogous to previous figures.

Conclusion: The mean field estimate 1s highly accurate for stable architectures and

almost all GEAs before training, and still relatively accurate after training.| . . . . .

259

5.11

Cg%ﬁi}é vs its mean field estimate at an intermediate layer. Graphs are analogous

to previous figures. Conclusion: The mean field estimate 1s highly accurate for sta-

ble architectures and fairly accurate for GEAs before training, but not after training.| 260

512

QMNSTD vs 1ts mean field estimate at an intermediate layer and at the output later.

Graphs are analogous to previous figures. Conclusion: The mean field estimate 1s

highly accurate for stable architectures and almost all GEAs before training. After

training, the range of QMNSTD values 1s small, so it 1s difficult to assess accuracy.| 261

[5.13

NLCNUM vs 1ts mean field estimate, for the whole network and for the second

half of the network. Graphs are analogous to previous figures. Conclusion: The

mean field estimate 1s highly accurate for stable architectures and GEAs before

training. After training, the mean field estimate tends to overestimate NLCNUM,

but 1s still highly correlated with 1t . . . . . . . ... ... ... ... .......
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[5.14

NLC vs its mean field estimate, for the whole network and for the second half of

the network. Graphs are analogous to previous figures. Conclusion: The mean

field estimate 1s highly accurate for stable architectures and GEAs before training.

After training, the mean field estimate usually overestimates the NLC, but it 1s still

highly correlated withat.| . . . . . . . ... ... ... oo oo

5.15

Metric values for study A architectures. In graphs A-C, we plot the initial vs final

n. In graphs D-F, we plot PARMGROWTH for study A architectures, sorted on

the x-axis 1n ascending order. In graphs G-I, we plot the ratio of initial over final

n. Architectures are placed on the x-axis in the same order as in graphs D-F.

Conclusion: n is stable for most architectures, but changes drastically for some.

This change 1s generally associated with significant PARMGROWTH. . . . . . ..

264

5.16

Initial NLC vs the product of activation function NLCs with respect to the unit

Gaussian, for non-residual study B architectures with debiased activation func-

tions. GUAs are displayed in green and in the foreground. Conclusion: Despite

the gross simplification of the mean field NLC, this estimate 1s predictive of the

NLC . e

6.1

Initial NLC vs test error and vs training error after training error minimization for

study A and B architectures. Graphs are 1dentical to graphs in figures |4.2] and 4.4}

except that GUAs are displayed 1n green and 1n the foreground. Note that the x-

axis range differs significantly between graphs A-E and F-G. Keep 1in mind that

throughout this work, axis ranges can vary when related but not identical metric

values are depicted. However, we also strive to keep axis ranges the same for

comparability when possible. Conclusion: In general, GUAs greatly underperform

6.2

Initial LSC ALFE, and test error as the initial weight variance and the loss func-

tion varies, for depth-5 fully-connected RelLU architectures on waveform-noise. A

weight variance scaling factor of 1 corresponds to He initialization. Results are

obtained by averaging 100 independent runs corresponding to 100 random seeds.

(Each of the 100 runs conducts 40 independent training runs with different start-

ing learning rates.) LSCALFE] 1s averaged in log space. Conclusion: Graph A:

Softmax+cross-entropy performs optimally when network outputs have approxi-

mately unit quadratic mean, and then outperforms the other loss functions. Graph

B: The introduction of bias layers causes basic gradient descent to fail for small

mitial weights.. . . . . . ...

292

6.3

Inmtial LBIAS vs test and training error for study A and B architectures. Inset

graphs 1n the bottom right are magnifications of the region 0.8 < L5/ AS < 100.

Conclusion: The LBIAS of an architecture, when evaluated in the initial state

before training, 1s a powerful predictor of test and training error after training and

attaining a small LBIAS value 1s essential for attaining an optimal test or training

XX



(6.4  Final LBIAS vs test and training error for study A and B architectures. Conclusion:

| All architectures that attain a better-than-random test or training error also attain a

| near-1 LBIAS after tramning.| . . . . . . ... .. ... o oo

(6.5 LBIAS vs the maximum L5/ AS; value across all layers for study A and B archi-

res 1n the 1nitial rrelation 1 1 - Th 1

| are functionally equivalent for our purposes.| . . . . . . .. ... L L. 304

[6.6 LBIAS vs the maximum Li5/AS; value across all layers for study A and B ar-

| chitectures 1n the final state. Conclusion: While LBIAS 1s always close to 1 for

| architectures that achieve a better-than-random error, we observe max; L5 AS

| valuesuptoaround 50.[ . . . . . . ..o

305

(6.7  LBIAS vs error for study A waveform-noise architectures trained with output debi-

asing and first-layer-only training. In graphs C and F, we plot LBIAS vs the error

difference between the modified training protocol and training with the original

clusion: Output debiasing and first-layer-only training enable training and gener-

I
I
| study A protocol. The “original” error values are the same as 1n figure |6.3| Con-
I
I

alization for architectures with high initial LBIAS values and do not force those

[6.8 LBIAS vs error for study A waveform-noise architectures trained with output de-

| biasing and DGD. Graphs are equivalent to figure|6.7l Conclusion: Output debias-

| ing and DGD enable tra1n1ng and generahzauon for architectures with high initial

[6.9  Computed metric values for study A waveform-noise architectures. In graphs

A/B/C, we depict results from performing computation using 32-bit floating-point

precision. In graphs D/E/EF, we depict results from using the entire training / vali-

dation / test set as a single batch during training and metric computation. In graphs

G/H/I, we depict results from using the entire training / validation / test set as a

batch and 32-bit precision. In graphs A/D/G, we plot the nitial NLC obtained

from our original regime vs the initial NLC obtained in the modified regime. Note

that these values are computed estimates and do not necessarily reflect the math-

ematical values of the NLC. GUAs are depicted in green in the foreground. In

graphs B/E/H, we plot the mitial NLC from the original regime vs the test error

from the modified regime. In graphs C/F/I, we plot the initial NLC from the origi-

nal regime vs the difference between the test error from the modified and original

regime. Conclusion: Lowered precision compromises NLC computation for some

architectures. Changing batch size from 250 to 3000 does not impact the NLC.

The modified regimes do not yield drastically different test error values overall.| . .
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6.10

Metric values for study A waveform-noise architectures. In graphs A/B, we de-

pict results from performing computation using 32-bit floating-point precision. In

graphs C/D, we depict results from using the entire training / validation / test set

as a single batch during training and error computation. In graphs E/F, we depict

results from using the entire training / validation / test set as a batch and 32-bit

precision. In graphs A/C/E, we plot the initial NLC obtained from our original

regime Vs the training error obtained in the modified regime after training error

minimization. In graphs B/D/F, we plot the 1nitial NLC from the original regime

vs the difference between the training error from the modified and original regime.

Red points correspond to architectures with BN. Conclusion: Lowered precision

compromises trainability for high-NLC architectures. Using full batches enables

trainability for high-NLC architectures with BN.f. . . . . . ... ... ... ...

312

6.11

Count of the number of architectures for which the n’th element in the starting

learning rate sequence was chosen, for study A and B architectures. In graphs

A/B/C, the choice was based on validation error. In graph F, the choice was based

on test error. In graphs D/E/F, the choice was based on training error for the pur-

pose of training error minimization. Conclusion: We were largely successful in

ensuring that, for each architecture, the best SLR considered lies within the wide

valley of the SLR-to-error function.| . . . . ... ... ... ... ... ... .

6.12

Initial NLC vs the smallest SLR considered for study A architectures. Conclusion:

The smallest SLLR decreases proportionally as the NLC increases.|. . . . . . .. ..

315

6.13

Initial NLC vs best SLR for study A and B architectures. Conclusion: 'The NLC 1s

somewhat negatively related to the best SLR. However, only 1n the case of a large

NLC and training error minimization is this relationship strong. In that case, the

best SLR scales as the inverse square of the NLC| . . . . ... ... ... .. ...

316

6.14

Error vs best SLR for study A and B architectures. Conclusion: For CIFAR10 and

MNIST, only a small range of SLRs can lead to close-to-optimal test error. For

waveform-noise and training error, this range is much wider,| . . . . . . . .. . ..

6.15

Initial NLC vs PARMSHIFT corresponding to the best SLR, for study A architec-

tures. Conclusion. PARMSHIFT values lie 1n a narrower range than SLR values.

In the case of a large NLC and training error minimization, PARMSHIFT scales

mversely with NLC.|. . . . .. .. ... ... . ... . .

320

6.16

Error ve PARMSHIFT corresponding to the best SLR, for study A architectures.

Conclusion: PARMSHIFT values lie 1n a narrower range than SLR values. For

CIFAR10 and MNIST, only a small range of PARMSHIFT's can lead to close-to-

optimal testerror.| . . . . . . . . ...

321

6.17

Initial NLC vs OUTSHIFT corresponding to the best SLR, for study A archi-

tectures. Conclusion: OUTSHIFT values have a very narrow range relative to

PARMSHIFT and SLR, especially for waveform-noise. When considering test

error, most architectures have QUTSHIFT ~~/2). . . . . . . . .. .. .. ...
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6.18

Error vs OUTSHIFT corresponding to the best SLR, for study A architectures.

Conclusion: OUTSHIFT values have a very narrow range relative to PARMSHIFT

and SLR, especially for waveform-noise. All architectures that attain close-to-

optimal test error have OUT'SHIFT ~ +/2. This is also necessary for close-to-

optimal testerror.| . . . . . . . ...

323

6.19

Initial NLC vs test and training error for study A and B architectures. In graph

F, we plot mitial NLC vs training error when the entire training set 1s used as a

single batch for all computations. Architectures depicted in green are GUAs. Ar-

chitectures depicted 1n red have L5IAS > 10. Architectures depicted in blue

have NV LC" > 1000, use BN or data augmentation, and are not GUAs. Other archi-

tectures are depicted 1n grey. All colored markers are displayed 1n the foreground

relative to grey markers. We verified that no grey markers 1n distinctive positions

were occluded. Conclusion: Gaussian instability, neuron bias, noise instability and

the NLC explain the majority of performance variation.| . . . . . . . ... ... ..

326

71

The nonlinearity normalization algorithm for architectures with a single activation

72

Comparing the 1nitial NLCs of pairs of architectures. The 1nitial NLC of one ar-

chitecture 1s plotted on the x-axis and the initial NLC of the other architecture 1s

plotted on the y-axis. Both architectures in a pair are from the same base group.

Each graph contains one marker per base group. The labels denote which mem-

bers of the base group are used for each axis. Conclusion: [ values that lead to

larger / smaller n:(; (1, 0) values generally lead to larger / smaller network NLCs

1n the 1mitial state. [y induces an NLC close to 1. The base architecture NLC 1s

approximately contained within the range of normed architecture NLCs.| . . . . . .

332

73

Initial NLC vs test error, broken down by base group. Blue markers correspond to

vanilla architectures. Red markers correspond to BN architectures. Green markers

correspond to LN architectures. Black markers correspond to BN-ResNet archi-

tectures. Squares correspond to base architectures. Lines arise from connecting

points corresponding to the normed architectures within a base group with neigh-

boring values of [. Conclusion: In the majority of cases, the lowest test error 1s

reached at an intermediate NLC value, with the smallest and largest NLC values

performing significantly worse.|. . . . . . .. ... L Lo

334

!

Comparison of error, 1nitial NLC and 1nitial LBIAS between base and tuned ar-

chitectures. All results are averaged over 10 re-training runs. Quantities depicted

1n log scale are averaged 1n log space. Conclusion: nlnorm drastically improves

test error for many base architectures and never significantly increases test error.

Larger NLC reduction corresponds to larger error reduction. Very large LBIAS

reduction corresponds to very large error reduction.| . . . . . .. ... ... L.

XXiil

336



[7.5 Test error of vanilla architectures vs test error of architectures using normalization
layers / skip connections, by normalization layer / skip connection type. Base
architectures are depicted on the left-hand side, tuned architectures on the right-
hand side. Results are averaged over re-training runs. The test error difference,
averaged over AFLMs, 1s given as a number 1n each graph. We omit correlation
values due to the impact of outliers. Conclusion: Normalization layers and skip
connections boost performance without nlnorm, but have a small impact with nlnorm.[338

(7.6 Imitial NLC (graph A) and final NLC (graph B) vs test error. Each curve 1s ob-
tained by connecting points corresponding to normed architectures from the same
base group with neighboring [ values. The test error values are normalized by sub-
tracting the test error of the corresponding tuned architecture. Triangles placed
on the x-axis depict tuned architectures. Conclusion: While there 1s a definite
range that contains the best NLC value for each base group, both before and after
training, there 1s no NLC that universally leads to optimal or even close-to-optimal
performance relative to other members of the same base group.| . . . . . . . .. .. 340

(7.7 NLC before training vs after training for tuned architectures, averaged over re- |
| raining runs. Conclusion: There 1s no significant relationship.| . . . . . . . .. .. 341

[7.8 The mmpact of re-training on the NLC and test error of tuned architectures. x-
axis: Ratio of the initial NLC averaged across re-training runs over the mitial NLC
from the original run. y-axis: Difference of test error averaged across re-training
runs minus the test error from the original run. Conclusion: Overall, there 1s little
deviation between the original run and the re-training runs. There also appears to
be no bias 1n any direction, and no trend between the two plotted values.| . . . . . . 342

[7.9  Imitial NLC vs best SLR for normed architectures. Axis values are equivalent to |
| figure [6.13F. In graph A, we connect points corresponding to neighboring archi- |

Graph B 1s equivalent to figure [6.13F restricted to tuned architectures. Conclu-

I |
I |
| sion: The best SLR can vary wildly even between architectures of the same base |
I |

group with similar [ values. The range of best SLRs for tuned architectures may

(8.1 Initial NLC vs LBIAS for study A and B architectures. Type 1 architectures are
depicted 1n blue, type 2 architectures are depicted 1n red and type 3 architectures
are depicted 1n grey. (Types are prominently defined 1n section|8.5]) Red and blue
markers are displayed in the foreground relative to grey markers and thus may fully
or partially occlude them. Inset graphs in the top right are magnifications of the
region 0.8 < NLC, LBIAS < 2000. Conclusion: The three different architecture
types show very distinct behavior.| . . . . . ... ... ... ... ... ... .. 349




(8.2 Inmitial NLC and LBIAS for study A architectures. Architectures are placed on the
x-axis 1n the order of their y-axis value. Architectures depicted in red are resid-
ual, and normalization layers are placed between residual units. Architectures de-
picted 1n blue are residual, and normalization layers are placed only within residual
blocks. Architectures depicted in black are not residual. Conclusion: Skip con-
nections significantly reduce both NLC and LBIAS. This effect 1s stronger when
normalization layers are placed only within residual blocks.[. . . . . .. .. .. .. 354

(8.3 Imitial NLC vs test error for study A architectures. Graphs mirror those in figure |
| 4.2l Architectures depicted 1n red are residual. Architectures depicted in black are |
| non-residual. Architectures with an initial LBIAS greater than 10 and GUAs are |

mi jon: Residual archi I n have lower NLCs than non-
| residual architectures and tend to outperform non-residual architectures of compa- |
| rable NLC, atleast when 1 < NLC <100 . ... . .. ... ... ... .. ... 356

[9.1  Metric values for various simple fully-connected architectures on wavetorm-noise,
in the final state (test error) or initial state (other metrics). We use regular, un-
augmented softmax+cross-entropy as the loss function. See the top of each graph
and section [3.3[for details. Test error 1s plotted on the left y-axis and all other met-
rics are plotted on the right y-axis. In each graph, we vary a single hyperparameter
and depict how metric values vary. Averages across random seeds are taken in
log space for metrics depicted 1n log scale (NLC, GVCS and GLEN). Conclusion:
NLC correctly predicts performance 1n the presence of confounding hyperparam-
eter changes, whereas other metricsdonot| . . . ... ... ... ......... 364

[9.2  Metric values for a depth-10 fully-connected ReLU-BN architecture with large |
| weight and bias variance and width oscillation 1n the nitial state. Conclusion: The |
| NLC increases smoothly away from the output layer, but other metrics oscillate |
| wildly. TSee section[9.1.4/and [3.3|for architectural details.| . . . .. ... .. ... 370

(9.3 Imtial GLEN, vs test error, itial NLC and mitial LBIAS for study A architec- |
tures. Colors are 1dentical to figure 8.1l Inset graphs are magnifications of the |
region 0.001 < GLEN, < 1000. Lines indicate GLEN, = 1, NLC = 1, |
NLC =GLEN, LBIAS =1and GLEN x LBIAS = 1 respectively. Line col- |
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Chapter 1

Introduction

Neural networks have been highly successful on a range of machine learning tasks recently. To a
large degree, this success is based on the power of gradient methods. As long as we specify an ar-
chitecture and a parameter initialization scheme, we can use algorithms like stochastic gradient de-
scent to set millions of parameter components simultaneously and efficiently. Unfortunately, there
exists no known neural architecture that when trained with gradient methods performs well on all
machine learning tasks. Therefore, we are faced with the challenge of choosing a high-performing
neural architecture for any given task; this challenge is broadly known as ‘neural architecture de-
sign’.

Despite the ubiquity of deep learning in modern research, there is a lack of robust and general
methods that, given only the definition of an architecture, can predict and explain its performance
after training. In this work, we develop methods that can predict performance directly from the
architecture definition without conducting training. We term this approach zero-shot architecture
design (ZSAD). It has immediate practical utility, as architectures that can be predicted to perform
poorly can be discarded before training and do not need to be considered further.

While giving a complete theory of the foundations of neural architecture design is beyond the
scope of this work, we compile an unprecedented repository for understanding (i) what drives
architecture performance, (ii) why popular neural architectures are designed the way they are and
(ii1) how to choose or design neural architectures for a novel task in any domain, even if no prior
art exists for that task, as well as improve existing architectures.

While this work contains many individual contributions, they can be grouped into the following
overarching contributions.

1. Establish |the nonlinearity coefficient (NLC) as one of the most important metrics for neural
architecture design, as the standard practical measure of the degree of nonlinearity and ex-
pressivity of a neural architecture, and hence as a primary measure of the model complexity
of a neural architecture and a primary tool for neural network analysis in general. It (i) is
well-defined for any network with a single input and output, (ii) is easy and cheap to com-
pute, (ii1) is capable of predicting the test error of an architecture without training, (iv) can
be instructively and accurately estimated from the architecture definition, (v) can be easily
controlled by the designer via our nonlinearity normalization algorithm, (vi) is conceptually



simple, (vii) can be shown to be a measure of a network’s degree of nonlinearity through
many lenses, as well as a measure of expressivity, noise sensitivity and model complexity,
(viii) is grounded in mean field theory and has many unique theoretical properties, (ix) can
be controlled independently of other core performance drivers like width, parameter dimen-
sionality and orthogonality and (x) is robust to a wide range of confounders such as data
distribution, initial parameter draw and change of scale. Via the NLC, we show that, con-
trary to prior belief, high model complexity is harmful to generalization but not trainability
in neural networks. Main chapter: [

. Create |a practical guide to neural architecture design by enumerating what can go wrong
when building an architecture. We assemble an arsenal of guidelines that (i) explains the
majority of test and training error variation across a wide range of randomly generated ar-
chitectures without training, (ii) explains much of the utility of some of the most popular
architecture building blocks, like ReLLU, batch normalization and skip connections and (iii)
makes at least designing fully-connected architectures relatively foolproof. We both intro-
duce novel guidelines and flesh out previously known guidelines. Main chapters: [0] [§]

. Develop 'a mean field theory of meta-distributions . We prove and empirically show that,
under practical conditions, the value of a fully-connected layer in the randomly initialized
state is meta-Gaussian meta-distributed, i.e. the distribution of each neuron as induced by
the data is Gaussian and has a Gaussian random mean that is induced by the parameter
initialization scheme. We use this to derive simple recursive calculation rules for the mean
field limits of many properties including layer value magnitude, biasedness of neurons and
the NLC in popular fully-connected architectures. These rules reveal that the NLC of such an
architecture can be estimated simply and instructively from the nonlinearity of its activation
functions without ever evaluating the architecture. We uncover the property of Gaussian
stability, a key prerequisite for the practical predictiveness of mean field theory in general
and a driver of architecture performance. Main chapter: [3]

. Introduce ‘nonlinearity normalization (nlnorm) , a simple algorithm that allows the archi-
tecture designer to (i) control the architecture’s NLC by tuning it like a hyperparameter, (i)
ensure that neuron values are not too large or small (thereby ensuring ‘scale stability’) and
(ii1) prevent the means of neuron distributions from deviating too far from zero (thereby
avoiding ‘neuron bias’). This achieves three of our core design guidelines. We show that
nlnorm can greatly reduce the test error of suboptimal architectures with minimal modifi-
cation. Thereby, nlnorm can capture a large fraction of the performance boost provided by
many of the most popular building blocks, like batch normalization, skip connections, and
specific activation functions. It captures several aspects of their utility. Main chapter:

A more scientific approach to architecture design research based on well-defined metrics .

A key distinguishing feature of some of our guidelines, and especially the NLC, from much
prior work is that they are based on well-defined, quantitative metrics that can be evaluated
for any network. This stands in contrast with ill-defined guidelines like “avoid exploding
gradients”, “choose an architecture on the edge of chaos” and “use an appropriate depth”.
Based on our analysis, we argue that metrics have several key advantages. (i) Generaliz-

ability: Metrics automatically generalize to any network for which they are mathematically
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valid. (ii) Lack of ambiguity: Ill-defined guidelines can behave very differently depend-
ing on how they are quantified. Metrics are already quantitative. (iii) Accountability: It
is possible to determine unambiguously when a metric fails to predict performance. (iv)
Improvability: Metrics can be replaced with better metrics via transparent comparison. (v)
Democratization: Metrics open up machine learning research to non-experts. Main chapter:

Ol

6. Show the value of 'a more scientific approach to experimental protocols|. At a high level,
we advocate (i) controlling confounders, such as parameter dimensionality and loss func-
tion, (ii) independently and exhaustively tuning key hyperparameters, such as learning rate
and the NLC, (iii) covering a broad and unpredictable range of deep learning pipelines and
(iv) managing computational errors such as rounding error and estimation error. We derive
specific recommendations and show how our meticulous experimental protocol underpins
the results of our empirical studies. We believe these empirical studies can serve as a guide
for the design of analytical deep learning studies in general. Main chapter: 3]

1.1 Reader’s guide

The results presented in this work are highly interdependent. While we gave the main chapter(s)
for each overarching contribution above, all chapters contribute to (almost) all overarching contri-
butions. The drawback is that in order to derive maximum utility from any part of this work, it is
necessary to read the rest. The advantage is that the overall utility is maximized.

In general, we order our material to minimize the need for understanding results presented on later
pages in order to fully appreciate results that come before. Chapter[2|can be regarded as the logical
starting point of this work, where we develop foundational concepts like ‘neural networks’ and
‘gradient-based training’, define layer operations and training algorithms, and introduce a range of
notation and terminology. Building from this, in section[I.3] we discuss the historical and current
state of deep learning and neural architecture design; and motivate the need for an approach to
architecture design that is different from and complementary to neural architecture search (NAS).
Then in section [1.4, we introduce our approach: zero-shot architecture design (ZSAD). Motivated
by the intricate challenges of neural architecture design, we detail the meticulous design of our
empirical studies in chapter [3] These empirical studies underpin our analysis, which is presented
in the “main matter” from chapter [ through [9] Finally, we prove the theoretical results given in
chapter [] in chapter [I0] and the theoretical results given in chapter [5] in chapter For novice
readers, we recommend proceeding in this order.

While we believe that reading this work in its entirety is valuable to almost any reader, we expect
that most readers will want to continue with the general summary, overview and outlook in section
[I.2l Among other things, this section lists all key contributions of this work. We place a very large
number of cross-references not just in that section, but throughout this work. This should allow
readers to find and jump to those parts they are most interested in. We provide the most salient
notation, terminology and conventions from chapter[2and sections[I.3]and[I.4]in summary section
We provide the most salient information about the design and presentation of our empirical
studies from chapter 3| in summary section We recommend reading at least sections [2.7) and



before any later chapters. Information from those sections, while sometimes repeated later
where applicable, is often assumed implicitly.

1.2 General summary, overview and outlook

We motivate our work (section based on the limitations of the historical processes which
brought about the current state-of-the-art in neural architectures design, as well as the limitations
of automated design based on training many architectures, which is known as neural architecture
search (NAS). Our work is also motivated by the opportunity presented by the emergence of deep
learning across the machine learning spectrum. Because neural architectures representing black-
box, parametrized, differentiable functions are applied across a wide range of machine learning
domains and settings, novel insights in model design can be replicated across the entire spec-
trum, which massively boosts their utility. We formalize deep learning as the functional-gradient
paradigm in figure[I.1]

The central goal of this work is to formalize and advocate a different and complementary approach
to neural architecture design based on general, predictive, explanatory and, ideally, well-defined
principles that can be applied without conducting any training. We term it ‘zero-shot architecture
design’ (ZSAD; section [1.4), and each design principle a ‘ZSAD guideline’. Please see figure
for our full definition. The recent success of deep learning stands in contrast with a lack of general,
meaningful and well-defined ZSAD guidelines (section chapter [9)).

The modus operandi of this work is to find and flesh out ZSAD guidelines (section which
encapsulate properties of (i) the definition of an architecture or (ii) an architecture’s randomly
initialized state. This makes it possible to determine whether an architecture follows one of these
guidelines without conducting training. In contrast, a ZSAD guideline must not encapsulate a
property of the final state after training, as we do not have access to such information during the
manual design stage (section|1.4.3).

We focus specifically on guidelines that apply across datasets and task domains while being them-
selves as data-independent as possible in their formulation (section|1.4.1.2}|1.4.2.2). We also focus
on guidelines that are capable of predicting test error and / or training error after training. These
are the most important aspects of architecture performance in academic ML. Hence, our guidelines
allow us to decide which architectures to train or study further. All of our analysis flows from the
search for ZSAD guidelines, and is highly interdependent.

e We introduce novel ZSAD guidelines and flesh out existing ones.

e We demonstrate a wide range of properties for our guidelines, including their ability to pre-
dict error after training, along the lines of the utility criteria given in figure

e We uncover the deeper meaning behind the predictive power of our guidelines and thereby
advance the fundamental understanding of neural architectures, e.g. of their model complex-
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e We extend mean field theory to ground our guidelines theoretically and to understand and
predict which architectures follow our guidelines without conducting forward propagation
or backpropagation.

e We develop tools for controlling whether an architecture follows our guidelines.

e We explain popular design strategies and building blocks such as ReLLU, batch normalization
or skip connections based on how they enable architectures to follow our guidelines.

e We develop research practices to make our guidelines more scientifically rigorous and advo-
cate the general application of those practices.

Each of the next 6 subsections is dedicated to one of the overarching contributions given at the
beginning of this chapter. Throughout this section, when we reference an individual contribution
based on original concepts, theory or empirical analysis, we mark it with ). When we reference
a previously known concept or result (“background”), we use (b). When we discuss or interpret a
result, we do not use a marker. (The distinction between the three cases can be somewhat fluid and
subjective.) Finally, we summarize limitations of our work in subsection [I.2.7] and opportunities
for future work in subsection

We validate most of our individual contributions empirically by using architectures trained with
a meticulous training protocol. The architectures we trained can largely be grouped into two em-
pirical studies: study A, based on fully-connected architectures trained on CIFAR10, MNIST and
waveform-noise; and study B, based on convolutional architectures trained on CIFAR10. We detail
our studies in chapter [3} summarize them in section [3.6 and discuss their most important aspects
in section[I.2.6l We detail limitations in section [3.3]and summarize them in section We also
refer to these empirical studies as “our studies” for short.

1.2.1 The nonlinearity coefficient

We introduce the nonlinearity coefficient (NLC; section ®.

NLC(f,D) = \/ = Tr(jT(r:E)(:(:SSjT(I))

Here, f : R% — R%u is the network, D is the input distribution,  ~ D is the row input vector,
J(z) = % € Rbwxdin jg the Jacobian, Cov, = E,(x— )T (x —Z) is the input covariance matrix,

Cov; = E.(f(z) — /)T(f(z) — f) is the output covariance matrix and Tr is the trace.

We also introduce the accompanying ZSAD guideline (section 4.4.1)).

ZSAD guideline definition [I} ‘Use an appropriate NLC’ requires 1 < NLC < 5. ®
That is, given an input distribution D, we generally recommend choosing an architecture such that
1 < NLC(f,D) < 5 holds, where f is the architecture’s randomly initialized state. This ensures

that the ‘degree of nonlinearity’ of the architecture is not excessive. When we refer to the value of
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a metric not based on error or loss for an architecture, such as the NLC value, we generally mean
the value in the initial state.

We now summarize the properties of the NLC by the utility criteria of figure[I.3] To our knowledge,
the NLC fulfills these criteria at least to the degree of any other ZSAD guideline. It is important
to note that many of the properties we discuss rely on ‘Gaussian stability’ (section [I.2.3] below)
and hold especially in an architecture’s randomly initialized state, which is of primary importance

(sections [1.4.3).

Criterion [I; Well-definedness We formalize the concept of the functional-gradient paradigm
(section [1.3.2] and figure [I.1I) ), which is an abstract definition of deep learning as it exists in
the year 2020. It implies that a neural architecture can be an arbitrary function with a trainable
parameter for which an accurate local linear approximation around a given parameter value can be
found. We point out that the NLC makes no additional structural assumptions about the network
(sections 4.2.1] {.4.4) @), such as the presence of neurons or layers, and thus builds directly upon
the functional-gradient paradigm. It only makes a few technical assumptions, which we show to be
mild (sectiond.2) 3. Hence, the NLC is valid for effectively any network with a single data input
and output. It can be formally generalized to networks that use batch normalization, and hence do
not represent a function of a single input (section @.

Criterion[2; Computability (section[d.4.4) The NLC can be implemented in a few lines of code
using a deep learning software framework ). The denominator requires only forward-propagation
of regular inputs from the dataset and taking neuron standard deviations (). By “piggybacking”
on the forward propagation that already takes place during training and when computing error,
the need for additional forward propagation can be eliminated and the computational cost further
reduced @. In addition to the forward propagation of inputs, the numerator requires only back-
propagating Gaussian noise in place of the gradient of the loss function 3. This can be easily
achieved via automatic differentiation built into popular deep learning software frameworks.

Because the NLC formally depends on the input distribution, it has to be computed via statistical
estimation. Because it uses expectation and standard deviation operators, the canonical statisti-
cal estimator is stable even for small datasets (sections [4.4.2] [3.4.1] 4.4.4) @. The NLC does
not suffer from floating-point rounding error as long as the network output itself does not suffer
from rounding error that exceeds its mathematical variation 3. The NLC can be applied to net-
works with batch normalization without modifying the program used to compute it or significantly
compromising statistical efficiency @).

Criterion : Predictiveness The NLC, evaluated in the architecture’s randomly initialized state,
is predictive of test error after training and attaining a right-sized NLC is essential for minimizing
test error (section @. When controlling for neuron bias, Gaussian stability and noise stabil-
ity (summarized in sections below), the NLC explains the vast majority of test error
variation across our architectures (section @®.

We observed that architectures can only attain an optimal test error with an initial NLC between 1
and 5, though this does not guarantee close-to-optimal or even better-than-random test error (sec-
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tion @. Our analysis suggests that this range is widely applicable, as we further discuss
below in section Unfortunately, we were unable to narrow the recommended NLC range
beyond [1,5], as different types of architectures appear to require different NLC values and no spe-
cific value, either before or after training, leads to close-to-optimal test error for all types (section

[7.3) ®.

While architectures with NLC greater 10° attain a random test error (P, architectures with much
larger initial and final NLC can attain a zero training error, though, again, a small NLC does not
guarantee a better-than-random training error (section @. We found a trend that an NLC
close to 1 can be associated with elevated, though better-than-random, training and test error, and
hence underfitting (section d.4.1)) @.

Criterion [ Predictability We use mean field theory to derive simple, recursive formulas that
allow the calculation of the value of the NLC in the infinite width limit of popular fully-connected
architectures given only the architecture definition (chapter [5). We extensively demonstrate the
practical predictiveness of that estimate. The estimate allows us to explain the NLC of an archi-
tecture instructively from its definition, specifically in terms of the nonlinearity of the activation
functions used. We summarize these contributions in section [I.2.3]below.

Criterion |5 Controllability We introduce the simple nonlinearity normalization algorithm that
is effective at controlling the NLC in the design stage and turning it into a tunable hyperparameter
(chapter[7). We summarize it in section below.

Criterion [6; Simplicity Fundamentally, the simplicity of the NLC follows from its definition.
We also show that at least in the initial state of fully-connected architectures, the NLC may be
replaceable by even simpler metrics. For example, the Jacobian may be replaceable by a ratio of

loss gradients (sections 5.5) @.

Criterion [7; Meaningfulness See section [I.2.1.1|below.

Criterion[8; Theoretical grounding The NLC is theoretically grounded through its relationship
with mean field theory, which we summarize in section @below. We have additional theoretical
results in sections .47 and [4.4.8] which we summarize under “well-definedness” above and
in section below.

Criterion [0: Synergy The NLC is especially synergistic with the guidelines of ‘avoid neuron
bias’, ‘use an appropriate width / parameter dimensionality’ and ‘ensure orthogonality’, as we
summarize in section below.

Criterion [I0; Generality The generality of the NLC is grounded in its well-definedness and
predictiveness as summarized above. While the NLC technically depends on an input distribution
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D in addition to a network, it depends on the latter largely through either mean and variance (fully-
connected networks) or mean and covariance (convolutional networks), and these dependencies
are conceptually necessary (section 4.4.2] 4.4.5) @®. Further, the NLC of practical architectures
does not vary much from one draw of the random parameter initialization scheme to the next
(section @. Rather, it depends largely on the random initialization scheme itself, which we
consider part of the architecture definition and subject to direct control. Hence, the NLC can be
fundamentally regarded as an architecture property and is suitable for data-agnostic ZSAD (section
[[.4.1.2), especially since mean- and variance-normalization are common data processing practices.
For example, we could view the “NLC of an architecture” as its NLC on unit Gaussian input in the
initial state.

Beyond this, the NLC is robust to changes of width as long as the initial weight variance co-varies
according to the LeCun initialization (section 4.4.12, [9.1.3) @. It is robust to decomposition into
the sum-product of NLCs of individual layers (section @, to scaling layers and inputs
(sections @ and to shifting layers and inputs (sections @®. The NLC
changes smoothly and regularly from layer to layer (section 4.4.14] 0.1.4) ), and tends to be
somewhat invariant during training (section [4.4.13) @®. We explain many of the above properties
via mean field theory (section[5.5) @®.

1.2.1.1 The meaning of the NLC: nonlinearity, expressivity and model complexity

The NLC is a measure of nonlinearity: elementary properties We give results that establish
the NLC as a measure of the degree of nonlinearity of a network through several different lenses.
We derive the NLC from insights about the nonlinearity of 1-dimensional functions (section
®. We prove the NLC is equal to 1 for linear networks (section[4.2.2) ®.

Proposition[3} Let f be linear. Then NLC(f, D) = 1.

We prove the NLC is invariant to certain linear transformations of network input and output (sec-
tion 4.2.2) ® and that the NLC is greater than 1 for non-linear networks with Gaussian inputs

(section4.2.2) @.

Theorem |1} Let D be Gaussian. Then NLC(f, D) > 1, where equality holds if and only if f is
linear.

We further demonstrate that, at least in the initial state, the value of the NLC on the datasets we

study is very close to its value on Gaussian inputs (section [4.4.2)) @. Also on Gaussian input, we
prove the NLC is at least v/2 for networks that do not have a linear component (section | @.

Theorem 2, Let D be Gaussian and let the least squares linear approximation to f under D be
the zero function. Then we have

NLC(f,D) > V2

We prove that the square of the NLC is proportional to the L2 linear approximation error of the

network (section4.4.7) ®.



Theorem [3| Let D be Gaussian and assume f is not linear. Let xAy + by be the least squares
linear approximation to f under x ~ D and let f = [ — xA; — by be the residual. Then we have

BB
EIF @B+ E.ll(e — 7) 4,13

NLC(f,D)? =1+ (NLC(f,D)* —1)

By depicting the network function corresponding to architectures in the initial state, we demon-
strate that, at least for some examples, the NLC makes visual and intuitive sense as a measure of
nonlinearity and expressivity (section @®. We show the NLC is empirically and conceptu-
ally related to the diameter of the regions in input space in which the gradient-based local linear
approximations are accurate (section d.4.6) ®.

The NLC is related to underfitting Because the NLC is proportional to the L2 linear ap-
proximation error of the network (see theorem [3] above), where the strength of the relationship
NLC( f , D)2 — 1 is at least 1 (see theorem [2| above), the closer the NLC is to 1, the closer the
network has to be to a linear function in an L2 sense. Hence, if a linear architecture underfits
on a task, so do low-NLC architectures, at least as long as nonlinearity does not increase during
training. We observe underfitting for convolutional architectures (section d.4.1)) @.

The NLC is related to noise sensitivity and overfitting We prove the NLC can be considered
the first-order approximation of the sensitivity of the network output to white noise added to the

input (section4.4.8) ®.

Proposition @ Let 0;, ~ N(0,Covy) and 6, ~ N (0, Covy) be row vectors. Assume NLC' > 0.
Then 5

NLCJ<$>T| |§ - Eéout||60ut| |§

Ivéin

As arule of thumb, a random input perturbation of relative magnitude ﬁ will corrupt the network
output. For example, if NLC' = 1000, a relative input perturbation of 0.1% is sufficient. If the
inputs are e.g. images, a random change of 0.1% to the intensity of each pixel is almost certainly
imperceptible. This explains the association of the NLC with overfitting. If the network is sensitive
to noise significantly smaller than the distance between training and test inputs in input space,
generalization fails. We demonstrate this mechanism empirically in detail (sectiond.4.8)) ®. In the
context of classification, high-NLC networks assign inputs that are very close together to different

classes. This is very reminiscent of the “shattering” property of VC dimension.

The NLC is a measure of model complexity We connect the NLC to model complexity via the
notion of kernel bandwidth, which is a primary measure of model complexity in the field of kernel
methods. We utilize the connection of wide networks with Gaussian processes, which is a core
feature of mean field theory. The network function in the initial state is captured by the ‘covariance
kernel’ (section (® and the course of training by the ‘neural tangent kernel’ (section
®). We show a strong empirical relationship between the NLC and the neural tangent kernel, which
we capture via the TTNTK metric (section @.
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Here, 7 is the loss function, 6 is the trainable parameter, D, is the training set, D is the test
set and (z, y) is a datapoint. It is worth noting that TTNTK is an interesting metric worth studying
as a performance predictor in its own right. We go on to prove that in popular fully-connected
architectures, the mean field limit of the NLC is the first-order approximation of the bandwidth of
the covariance kernel, as summarized in section [1.2.3]| below.

The NLC is the best practical measure of expressivity The notion of expressivity has been
accepted as an aspect of model complexity in neural networks and associated with many concepts
in deep learning. Out of these concepts, “exploding / vanishing gradients”, “order / chaos” and
“depth” are the most prominent ones. We argue that the NLC, together with the concept of neuron
bias, largely supersedes these concepts, at least in the context of designing feedforward architec-
tures, as we argue throughout chapter [9] and summarize in section [I.2.5|below. In a similar vein,
we show that the Hessian, a traditional measure of function nonlinearity, is ineffective at character-
izing the network when meaningful second-order information is not available. This happens when
e.g. the second derivative of activation functions used is not meaningful, which is common for
neural networks (e.g. ReLU, section[9.3)) &. Other metrics that could be considered for expressiv-
ity that arise in our work are MGLLA (section {.4.6), which is based on the diameter of linearly
approximable regions in input space, and TTNTK (section 4.4.9), which is based on the neural
tangent kernel.

Additional properties A high NLC tends to induce low effective depth (section 4.4.10) @.
Effective depth was the subject of one of our earlier works [Philipp et al.,[2018]] and was introduced
by |Veit et al.| [2016].

Summary We argue for the NLC as the best practical measure of expressivity and a primary mea-
sure of model complexity because (i) it captures the notion of kernel bandwidth in neural networks
via its connection to neural tangent kernel and covariance kernel, (i1) it is related to underfitting via
its connection to the L2 approximation error, (iii) it is related to overfitting via its connection to
noise sensitivity, (iv) it is advantageous relative to prior measures of expressivity, (v) as opposed to
esoteric properties, like whether the architecture can represent high-order polynomials, the NLC
has been shown to be able to efficiently determine the suitability of practical architectures (see
“predictiveness” above) (vi) of the intuitive connection between nonlinearity and expressivity and
(vii) its overall utility as demonstrated in this work.

The universal nature of the NLC is underscored by the fact that it has strong ties with and adds
understanding and meaning to every other ZSAD guideline we cover in this work, as we summarize

in sections and below.
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1.2.1.2 Understanding expressivity via the NLC

Expressivity is a fuzzy and ill-defined architecture property that is strongly associated with the
notion of model complexity in neural networks. At a high level, the expressivity of an architecture
refers to its ability to represent network functions that are considered complex as the parameter
varies. The most common approach to argue for the expressivity of an architecture is to define a
specific class of functions and show that the architecture can represent them with specific param-
eter values. This has been the primary strategy for arguing for the importance of depth in neural
networks. Deep networks can be shown to be able to represent certain function classes with a
moderate number of neurons whereas shallow architectures, usually of depth 2, would require an
enormous number of neurons. Giihring et al.| [2020] provides a recent, detailed overview. We fur-
ther discuss this point in section[9.4] The notion of expressivity has also been formally associated
with e.g. the order / chaos / edge of chaos concept (section 0.2)), as well as the number of linear
regions in the input space of a ReLLU architecture [Raghu et al.,[2017]]. Informally, expressivity has
been linked to exploding / vanishing gradients and associated concepts like Jacobian eigenvalues
and the Lipschitz constant (section[9.1)). The idea here is that the gradient of the network dictates
how similar the network output has to be for nearby inputs, and that functions where this similarity
is high are of low complexity. We also explain this in the context of kernel bandwidth (section
4.4.9). We argued for the NLC as a measure of expressivity above.

It can be viewed as a drawback that the NLC only measures the complexity of a given network
function, but not the (maximal) complexity of any network function representable by an archi-
tecture for an arbitrary parameter value. As our work is about architecture design, we focus on
properties of the architecture in the initial state, and therefore on the properties of networks ob-
tained by drawing typical parameter values from the random initialization scheme. We bridge the
initial-final state gap by observing that gradient-based training tends to approximately preserve
many key properties, including expressivity, as we further discuss below. Much of the expressivity
literature performs a best-case analysis by considering arbitrary parameter values, whereas we per-
form a typical-case analysis by considering typical parameter values. We are not aware of much
practical value derived from any theoretical result under the best-case approach. As always in this
work, we take the practical route.

Having established the NLC as an expressivity measure, we can now study the notion of expressiv-
ity via the NLC. We show that test error is suboptimal when expressivity is either too large or too
small, and that there is an intermediate “sweet spot” of expressivity that is ideal. In this way, the
concept of expressivity in deep learning corresponds to the concept of model complexity in clas-
sical machine learning. Especially in the context of depth, expressivity has often been regarded
as strictly beneficial, i.e. an increase in expressivity should lead to an increase in performance.
The more expressivity, the better. Our work refutes that view. This opens up a large unanswered
question. In what contexts is great depth truly beneficial and why?

In contrast to the concept of depth, the exploding / vanishing gradient problem has been viewed
through the lens of the “sweet spot”. The classical view is that it is suboptimal when gradients grow
too large or too small during backpropagation; and that a stable gradient is ideal. We show that this
is only true in specific contexts, which we clearly define (section[9.1.5)) @), and that the “sweet spot
of stable gradients” does not in fact correspond to the “sweet spot of desirable expressivity” and
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may in fact be suboptimal (section [9.1.6) @). We show the same for the “order / chaos problem”
(section[9.2.3) .

We can achieve arbitrary NLC values at any depth by e.g. using activation functions of differing
degrees of nonlinearity (sections[9.4] @. Hence, we argue that we can fundamentally achieve
any expressivity level at any depth. This further underscores the need for new explanations of the
value of depth in neural networks. Among our fully-connected architectures, depth is positively
correlated with test error and we observe no benefits from increasing depth beyond around 10

(section ®.

While low-expressivity architectures can have elevated training error due to underfitting, we show
that high-expressivity architectures can still be trained to zero or near-zero training error (section
@. To our knowledge, we are the first to explicitly demonstrate the trainability of ultra-
high expressivity architectures. For example, [Schoenholz et al. [2017] and |Xiao et al. [2018]
previously argued that this was impossible. We uncover that there are a number of requirements
for successful training: small learning rate (section [6.6), lack of noise-inducing building blocks
like batch normalization or data augmentation, and high floating-point precision (sections [6.5]
[6.7). When those requirements hold, we attain a low training error in our empirical studies in all
but one case, where we obtain a moderate training error.

Should expressivity be viewed as equivalent to model complexity in neural networks? Via mean
field theory, we show that the NLC can be viewed as largely independent of the width, and hence
the parameter dimensionality of the architecture (section[5.3] [5.5) @. Parameter dimensionality is
another classical, statistical measure of model complexity that has been widely shown to also be
a key driver of neural architecture performance. Hence, the NLC and width / parameter dimen-
sionality emerge as measures of two independent axes of model complexity, which are represented
by the notions of expressivity and ‘capacity’. One is based on the complexity of the kind of func-
tions expressed by the architecture, while the other is based on how many different functions it
can represent. It would be very interesting to study specifically the differences, similarities and
interactions of these two axes of model complexity.

1.2.1.3 Initial NLC vs the complexity of the true input-label function

While we find that the initial NLC must lie in a specific range for an architecture to achieve better-
than-random performance, the NLC after training must lie in a much narrower range, which is
close to 1 and depends on the dataset (section @. Specifically, we identify two types of
architectures. The first type has an initial NLC of less than around 10° before training and tends
to have a much smaller NLC after training. In fact, there is an approximately linear relationship
in log space between initial and final NLC across those architectures with slope less than 1. The
second type has almost exactly the same NLC after training as before. It does not achieve a better-
than-random test error but can still achieve a zero training error (section @. We note that
we found a very small number of architectures that succeed with relatively large learning rates that
can drastically and unpredictably change their properties during training (sections

[6.6) ®.

We introduce the distribution-valued PNLCD metric for measuring the apparent nonlinearity of
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the true input-label function inherent in the dataset (sectiond.5) @®. (We use the word “apparent”
because of the crudeness of the measure.) PNLCD is based on the gradient of line segments
between datapoints. According to this metric, our datasets CIFAR10, MNIST and waveform-noise
only appear slightly nonlinear as the probability mass of PNLCD concentrates around 1 (section
4.5) ®. By constructing artificial datasets with very high PNLCD sample values, we show that the
peak of the PNLCD distribution is closely associated with the NLC value at which architectures
attain the best test error values for a given dataset (section @. Further, we argue that the
reason PNLCD concentrates around 1 for our datasets is because they are part of a large class of
datasets we term neural regular as we further summarize in section [I.2.3] below. The existence of
such a class would make the NLC as data-agnostic a ZSAD guideline as possible (section[[.4.1.2).
The reason for our recommended [1,5] range for the NLC, beyond our raw performance values, is
that it is close to the PNLCD peak at 1. Some of our artificial datasets required initial NLC values
of up to 10%.

We interpret these observations as follows. The test error of an architecture will be lower the closer
the network function is to the true input-label function after training. Specifically, it must mirror
the degree of nonlinearity. The architecture indeed tries to adopt an ideal NLC through training by
decreasing its initial NLC if it is too large. However, only if the initial NLC is less than 10° does
the architecture achieve a final state with better-than-random test error, and only if the initial NLC
is less than 5 does the architecture achieve a final state with close-to-optimal test error, assuming
the dataset is neural regular and has its PNLCD peak close to 1. If the initial NLC is too large, the
architecture can only achieve a better-than-random training error by memorizing the training set.
Solidifying this view is an interesting direction for future work.

This analysis reveals a general aspect of zero-shot architecture design. Since we study the prop-
erties of an architecture’s definition and initial state, no matter how harmful the property is to e.g.
generalization or trainability, it is usually technically possible that the architecture loses that prop-
erty early in training and achieves a low training and test error from that point forward. Through-
out this work, we find that many key properties we study, including NLC, Gaussian stability and
neuron bias, persist between initial and final state to a large degree, assuming that training was
successful, and that the best strategy is to design an architecture that has desirable properties in the
initial state, rather than relying on change during training. While it may be unsatisfying that we
do not have theoretical results that make final-state guarantees about e.g. NLC or error based on
e.g. initial NLC, we note that making guarantees of this kind that are also practical has been nearly
impossible throughout the history of deep learning. As always, we take the practical route.

1.2.2 A practical guide to neural architecture design

“Anything that can go wrong, will go wrong.” - Murphy’s Law

The space of neural architectures is as large as the space of parametrized, differentiable functions.
But, even if we are content to build a neural architecture from only popular building blocks, there
are still a large number of choices. How many layers should there be? How wide should layers be?
What activation functions and normalization layers should be used? What layer connectivity and
parameter initialization scheme should be used? With many choices, many things can go wrong.
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And the number of pitfalls further increases the more the requirements of a given ML task differ
from extensively studied benchmark tasks.

As summarized at the beginning of section|1.2.2] we formalize the concept of zero-shot architecture
design (ZSAD; section as well as that of a ZSAD guideline (section ®. We frame the
notion of architecture performance in such a way that ZSAD guidelines encapsulating properties
of the randomly initialized state can be considered performance predictors of the final state across
training algorithms, datasets and random parameter draws (section @. In this work,
we present ZSAD guidelines for preventing training and / or generalization failure. In fact, we
present what we believe is the most comprehensive repository of “things that can go wrong” in
neural architecture design, alongside ways to prevent these things from going wrong. We believe
that we have made at least designing fully-connected architectures relatively foolproof, and have
substantially alleviated uncertainty regarding whether a given architecture leaves large amounts of
performance on the table.

As mentioned at the beginning of section [1.2] we also focus on guidelines that are as data-
independent as possible. We demonstrate this in detail for the NLC (see “generality” above) and
briefly discuss it for other guidelines in section[1.4.2.2|and section below.

In figure we plot the NLC vs test and training error across our range of randomly generated
architectures (sections [3.2.1)), and we use colors to indicate whether architectures follow or
do not follow certain ZSAD guidelines as given below. In that figure, we explain the majority
of test and training error variation across these architectures with our ZSAD guidelines 3). This
figure reveals that test and training error is largely all-or-nothing. To ensure low error, we must
follow all ZSAD guidelines. To succeed, nothing must go wrong. But, by Murphy’s law, this
means that we must ensure that nothing can go wrong.

We provide an overview of the ZSAD guidelines we discuss in this work in table along with
building blocks that can cause or prevent an architecture from following these guidelines, as dis-
cussed throughout chapter|[§] We argue that the degree to which building blocks help an architecture
follow our covered guidelines largely explains their popularity. Now we summarize our guidelines
one by one.

Use an appropriate NLC

ZSAD guideline definition[1} ‘Use an appropriate NLC’ requires 1 < NLC < 5. @

We have summarized the NLC and associated guideline in section (1.2.1{above.

An effective strategy for controlling the NLC is nlnorm, as summarized in section below.
The NLC can be reduced by skip connections, especially when normalization layers are not placed
between successive residual units (section[8.9) @®. It can also be reduced by using relatively linear
activation functions, like SELU or softplus (sections @], @ The NLC can be estimated via mean
field theory (section[I.2.3] below).

Ensure Gaussian stability Main sections:
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ZSAD guideline definition 2} ‘Ensure Gaussian stability’ requires that a network exhibits Gaus-
sian stability as defined in section @

Gaussian instability is likely to lead to high test error (sections ®. We summarize this
guideline further in section below.

An effective strategy for inducing Gaussian stability is using activation functions that exhibit mean
field Gaussian stability (section @, which is at least approximately achieved by all popular
activation functions (section[5.6) @®. At least in fully-connected architectures, layer normalization

is also sufficient (sections[5.6] ®.

Ensure scale stability Main section: |6.2

ZSAD guideline definition [3| ‘Ensure scale stability’ requires that at each layer in a network
f, the overall magnitude of neuron values across inputs and neurons is not excessively large or
small ®). Specifically, we advocate measuring this via LSCALFE; ~ 1 at each layer f;, where

LSCALE,(f,D) =/ dilEx| | f1(x)||3 is the quadratic expectation of layer quadratic means. (¥

Here, f; : R% — R% is the layer as a function of the input, [ is the layer index, D is the input
distribution and x ~ D is the input vector.

As we show, scale stability is based on the insight that popular deep learning pipeline building
blocks, such as activation functions, the softmax+cross-entropy loss function and basic training
algorithms using a single learning rate for all layers, are designed to work best when the overall
neuron value magnitude at each layer is around 1 (section[6.2)) @. For example, the nonlinearity of
activation functions can grow very small or large when the inputs to those activation functions grow
small or large, which can lead to an excessive or insufficient NLC, and hence underfitting or over-
fitting (section @. However, when the properties of the building blocks of the deep learning
pipeline are understood and adjusted accordingly, scale stability becomes irrelevant (section|9.1.2)
®.

Effective strategies for inducing scale stability include nlnorm (section @, normalization
layers (section |8.7]), careful weight initialization or simply multiplying layers with fixed constants
recursively (section (). Scale stability has a clear meaning in mean field theory based on the
mean field estimate of LSC ALE) (section [[.2.3] below). Via this estimate, we introduce ‘mean
field scale stability’ (section [6.2)) @).

Ensure training stability Main section: |6.3

ZSAD guideline definition d ‘Ensure training stability’ requires that the value of metrics or the
presence of properties that either directly or indirectly influence architecture performance, such as
LSCALE, LCV, NLC, LBIAS, Gaussian stability or noise stability, are not prone to change in an
uncontrolled or harmful way during training for an architecture f. ¥

In order to achieve better-than-random performance, both NLC (section 4.4.1] section [1.2.1.3
above) and LBIAS (section |6.4| and below) need to be in a narrow range after training. Hence,
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we must ensure that these metrics do not increase drastically during training. We show how the
nonlinearity of many activation functions, such as tanh, increase as their inputs grow (sections 6.3
[5.44) ®. The parameter value tends to grow during training from gradient updates, though to
wildly varying degrees (section [5.3.3) ®. This can lead to neuron value growth, a loss of scale
stability, then to activation function nonlinearity growth and thus, finally, NLC growth (sections

5:3.362) ®.

We suspect that it is desirable to preserve all our ZSAD guidelines more or less during training.

Effective strategies for improving training stability are the use of ReLU and normalization layers,
especially batch normalization (section ®/®.

Avoid neuron bias Main section:

ZSAD guideline definition |S,. ‘Avoid neuron bias’ requires that absolute neuron expectations are
not excessively large (). Specifically, we advocate measuring this via LBIAS; ~ 0 at each layer

T 2
fi, where LBIAS,(f,D) = % is the layer bias. We especially recommend ensuring
LBIAS, ~0.®

Here, S, represents the standard deviation operator. We write LBIAS short for LB AS; evaluated
at the output layer, i.e. LBIASy. We find that neuron bias is close to its maximum across layers
at the output layer in our architectures’ initial state (section[6.4) ®.

We show that LBIAS, evaluated in the architecture’s randomly initialized state, is predictive of test
error after training. We also find that an LBIAS less than around 10 in the initial state is essential
for minimizing test error (section[6.4) @.

This is largely explained by two things: (i) Assuming that the class frequencies in the dataset are
relatively balanced, in order for the architecture to model the true input-label function, the network
function must be relatively unbiased in the final state. Indeed, we find that all our architectures
that achieve a better-than-random error also achieve an LBIAS value close to 1 in the final state
(section[6.4) @®. Like for the NLC, it appears that this can only be achieved through training if the
initial LBIAS value is already somewhat close. (ii) Neuron biases negatively affect the training of
linear layers.

We demonstrate the impact of those two factors by introducing two methods: ‘output debiasing’
and the ‘debiased gradient descent’ training algorithm (section[6.4) @. The first “takes care” of the
bias of the network function. The second removes the impact of the bias on linear layer training.
Architectures with very high neuron bias levels can successfully train and generalize with those
two methods (section @. Hence, we show that architectures that exhibit extreme vanishing
gradients and ‘order’ can both train and generalize with a slightly modified training protocol @.
We suspect that further investigation may reveal that when deep learning pipeline building blocks
are adjusted to bias, this guideline becomes irrelevant in a similar manner as scale stability, though
this adjustment may be significantly more cumbersome.

Among plain architectures with scale stability as defined in sections [5.4.2] and [5.4.3] there exists
a trichotomy where either (1) LBIAS grows exponentially with depth, which also corresponds to
vanishing gradients and ‘order’, (ii) both NLC and LBIAS grow sub-exponentially, which also
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corresponds to ‘edge of chaos’ or (iii) the NLC grows exponentially with depth, which also corre-
sponds to exploding gradients and ‘chaos’ (sections [5.4.4] 0.1.519.2.1) ®. Hence, NLC and
LBIAS represent a fundamental tradeoff, at least in the context of plain architectures. We even find
that this tradeoff largely applies across the entire range of architectures we study empirically (sec-
tions [8.5] @. Contrary to popular belief, we argue that case (iii) is most desirable (section

Effective strategies for avoiding neuron bias are nlnorm (section [I.2.4]below), batch normalization
(section or unbiased activation functions like tanh or SELU (section ®. Neuron bias
can be reduced by skip connections, especially when normalization layers are not placed between
residual units (section [8.9) @®. Neuron bias can be estimated via mean field theory (section [I.2.3|
below).

Ensure noise stability Main section: [6.5

ZSAD guideline definition [0} ‘Ensure noise stability’ requires that the random choices made
when evaluating the network function do not induce output variation of a magnitude greater than
the range of predictions that can be considered accurate for a given task. In this context, floating-
point rounding error can also be viewed as noise. (3

Noise stability is a very general guideline, and we study it using the examples of floating-point
rounding error and batch selection noise induced by batch normalization (BN). We show that the
noise induced by using 32-bit rather than 64-bit floating-point precision and / or BN make ar-
chitectures with a large NLC untrainable (section [6.5) @®. The NLC is a crucial mediator for the
guideline of noise stability because it drives the noise sensitivity of the architecture (section[I.2.1.1]
above). It is interesting to note that, while floating-point rounding error behaves like white noise
as studied in section batch selection noise has a less severe impact on performance than its
magnitude would suggest (section[6.5) @.

Noise stability can be ensured by eliminating sources of significant noise, like low floating-point
precision, batch normalization with a small batch size, or dropout with a high dropout rate. Cru-
cially, architectures that can perform well according to the NLC are also relatively robust to noise.

Ensure orthogonality Main section:

ZSAD guideline definition |/} ‘Ensure orthogonality’ requires that the absolute singular values
of characteristic matrices of the network should be relatively similar. These matrices include the
Jacobian, Gram matrix, covariance matrix, Hessian and Fisher matrix. ()

We discuss guidelines [7] through [9] mainly in the context of related work and results we obtained
for other guidelines. Their impact on performance is not studied explicitly in this work.

We show that mean field theory, which assumes Gaussian initialized weights, accurately estimates
values of e.g. NLC, LBIAS and LSCALE when weights are orthogonally initialized (section|5.3.3])
@. Hence, we can improve orthogonality via orthogonal initialization without impacting those
metric values.
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In our discussion (section [9.5)), we further point out that orthogonality is a natural complement to
the NLC in at least two other ways: (i) The NLC is related to the overall magnitude of singular
values of the Jacobian via the numerator, whereas orthogonality deals with the relative variation
of singular values. (ii) Next to expressivity, orthogonality is the second key ingredient for high-
performing arbitrarily deep fully-connected architectures ().

Orthogonality can be ensured to a significant degree by orthogonally initializing linear layers. We
suspect that this is generally sufficient in practice when also following other ZSAD guidelines.

Avoid pseudo-linearity Main section:

ZSAD guideline definition[8} ‘Avoid pseudo-linearity’ requires that the network does not contain
an activation layer that is effectively identical to a linear function across the inputs it receives from
its parent in the layer graph. (b)

In our discussion (section[9.6), we point out the relationships between pseudo-linearity, which was
introduced in one of our prior works [Philipp et al., 2018]], and other guidelines. (i) Pseudo-linearity
tends to arise automatically in very deep networks with a right-sized NLC. This calls into ques-
tion the value of extreme depth. (ii) Pseudo-linearity tends to arise automatically when LBIAS;
values are high. This underscores the need to avoid neuron bias. (iii) Pseudo-linearity tends to
be minimized when nonlinearity is spread evenly throughout the network, which corresponds to
gradient explosion (under certain definitions) and ‘chaos’. Hence, those phenomena may actually
be desirable (sections 9.2.3). (iv) Pseudo-linearity is related to scale stability. For example,
tanh is almost identical to the identity function when its inputs are small.

Use an appropriate width / parameter dimensionality Main section:

ZSAD guideline definition 9} ‘Use an appropriate width / parameter dimensionality’ requires
that the network (i) has sufficient capacity to absorb information from the dataset, (ii) is sufficiently
wide to prevent harmful information loss and (iii) does not have so much capacity and does not
retain so much information that it overfits. (b)

The NLC can be viewed as largely independent of width in the initial state (section [5.3] [5.5).
Hence, width / parameter dimensionality and NLC form two relatively independent axes of model
complexity, as summarized in section [1.2.1.2] above. Similarly, width can be viewed as largely
independent of any metric that has a mean field limit, such as LBIAS; and LSC' ALFE) (sections

O7E.3) ®.

Perform exhaustive learning rate tuning Main section: [6.6]

This is not technically a ZSAD strategy, as the learning rate is not part of the architecture definition.
However, we cover it in this section (as we cover it in chapter [)) because it is another core choice
that must be made within the deep learning pipeline that is crucial for optimal performance. Case
in point, we show that for each dataset we study in this work, the range of best starting learning
rates (SLRs) across all our architectures for minimizing validation / test error has width around 107
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in log space. Across all tasks, it has width around 10'°. When minimizing training error, we find
the range of best SLRs spans 30 orders of magnitude (section @.

Because of the width of that range, we investigate several strategies for predicting the best SLR,
though this investigation is somewhat preliminary. Evidence suggests the following. (i) The NLC
does not help significantly with choosing SLR, at least when choosing an SLR to minimize vali-
dation / test error (section @ ®. However, the best SLR scales as the inverse square NLC when
minimizing training error for high-NLC architectures. (section [6.6) @®. (ii) Architectures which
obtain the very lowest test error values have a smaller range of best SLRs (section [6.6) @®. Hence,
if we are content not to minimize the test error of architectures that cannot perform as well as other
architectures to begin with, our tuning might not have to be as extensive. (iii) The best-performing
architectures in particular have the property that the initial parameter vector has a similar length
to the change of the parameter vector during training (section [6.6) @®. This is only achieved by
a relatively narrow range of SLRs and is an intriguing thread for further investigation. (iv) Es-
pecially the best-performing architectures have the property that the initial outputs have a similar
magnitude to the change of the outputs during the first gradient update (section[6.6) . Again, this
is only achieved by some SLRs and is an intriguing thread for further investigation as well. This
result is also reminiscent of line search. (v) Architectures that are identical except for differing
slightly in the nonlinearity of the activation functions used can still have drastically different best
SLRs (section @. (vi) Architectures that have been tuned to have an optimal NLC still have a
relatively wide range of best SLRs (section[7.7) (®.

1.2.3 A mean field theory of meta-distributions

Background (section (®) Mean field theory studies the behavior of architectures in the ran-
domly initialized state in the theoretical limit as the width of layers converges to infinity. In this
limit, the value of many important quantities converges with probability 1, where randomness is
induced by the parameter initialization scheme.

Our results are grounded in the most well-studied quantities with mean field limits - (i) the ‘square

mean’ of a layer value E; f;(x("))[i]2, whose limit we denote by ql(l) and (ii) the ‘co-mean’ of two

layer values E; f (z™")[4] f (2(®)[4], whose limit we denote by cll’z). Here, f(z)[i] denotes the value
of the i’th component of layer f; : R% — R% when evaluated on input z. E; denotes the mean
over components.

We base our analysis on the work of |Yang [2019]. They give rules for calculating ql(l), ql@)

(corresponding to x(?) and cl(m) for each layer recursively from input layer to output layer,

given the input square means ¢ = E;2(M[i]> and ¢®» = E;2®][i]> and the input co-mean
1?2 = E;zW[i]2@[i]. In essence, the limits forward-propagate deterministically through the
architecture, starting from the corresponding input quantities. In our work, we focus on the case

¢ = ¢@. Since q\" does not depend on ¢ for any [ and vice versa, we obtain q\") = q\*). For

the purpose of this summary, we write ¢ = ¢/ = ¢®, ¢ = 1%, q; = ql(l) = ql(z) and ¢; = c§1’2).

The recursive calculation of the limits is chiefly driven by the activation functions used in the
architecture. Let 7 be an activation function used by some layer, which we term an ‘activation
layer’. Then the key property of 7 that controls the limit calculation is its ‘covariance kernel’.
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C-(q,¢) = Egpon(us)T(s)7(t) where o = (8) , X = (Z g) andg>c> —q

The values of q; and ¢; at the activation layer f; using activation function 7; are then q; = €, (qx, qx,)
and ¢; = €, (q, ¢x), where q;, and ¢, are the limits at the parent layer of f; in the layer graph. Our
definition of €, is simplified because of the ¢/ = ¢(® assumption. When ¢ = 0, the definition
simplifies to €, (¢,0) = (Esnr0,97(s))? and when ¢ = ¢, the definition simplifies to €, (g, q) =
ESNN(OH)T(S)Z.

Finally, we obtain values q; and c¢;, where the L subscript indicates the output layer. Just like for
activation functions, the ‘covariance kernel’ of the architecture €(q, ¢) is the function that yields
qr = ©(q,q) and ¢, = €(q, c¢), where ¢ and ¢ now refer to the input square mean and co-mean.

Elementwise meta-Gaussian meta-distributions The most important metrics in this work are
those that represent or measure ZSAD guidelines: NLC, LBIAS; (for neuron bias), LSCALE;
(for scale stability). NLC and LBIAS; are based on layer distributions via Covy / S, respectively.
These distributions are induced by the input distribution D, but not by the parameter initialization
scheme. In other words, the metrics are computed as the input varies according to D, but after
the trainable parameter has been drawn and is fixed. However, mean field theory deals with a
random parameter. Hence, we must investigate the distribution over “layer distributions induced
by D” as the parameter varies on a meta-level. We call the layer distribution induced by D with a
fixed parameter the ‘base distribution’ and the distribution over base distributions induced by the
initialization scheme the ‘meta-distribution’.

We prove that the meta-distribution of a fixed-width fully-connected layer, as the width of all
layers between that layer and the input layer converges to infinity, converges to an elementwise
distribution generated by a meta-Gaussian (section[5.2)) ®. This means the following. (i) In each
base distribution, each neuron is independent of all other neurons. (ii) In each base distribution,
each neuron is Gaussian. (iii) The standard deviation of the neurons is constant across the layer
and across base distributions. (iv) Drawing from the meta-distribution corresponds to drawing
each base distribution neuron mean independently from a Gaussian distribution with mean zero
and a standard deviation that is fixed across neurons. This meta-distribution is determined by two
parameters: the variance of the neuron base distributions and the variance of the means of the
neuron base distributions.

Our theorem depends critically on a condition that was not previously present in mean field theory,
which we term ‘elem-like(q, c)’. It requires that all inputs have the same square mean ¢ and all pairs
of inputs have the same co-mean c. While this is technically impossible, it holds approximately
for neural regular datasets, as we discuss below. Under this assumption, the two parameters of the
meta-distribution described above turn out to be exactly q; — ¢; and ¢; respectively (section[5.2)) @.

We conduct a very large number of experiments to verify that this theoretical result is predictive for
fully-connected layers in our fully-connected architectures in the initial state, but to some degree
also in the final state (section @. In a nutshell, we verify each property (i) through (iv) of the
meta-distribution given above in turn. We measure independence via correlation and Gaussianity
via excess kurtosis and a comparison with the Gaussian cumulative distribution function. Only
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architectures that exhibit Gaussian instability, as we further summarize below, fail to exhibit meta-
Gaussian fully-connected layers.

Neural regular data While our investigation in this regard is preliminary, it suggests that there
is a class of datasets which we introduce as ‘neural regular’ (section @. A neural regular
dataset has the following properties: (i) The square means and co-means of its inputs have similar
respective values. (ii) Input components are relatively independent. (iii) The degree of nonlinear-
ity of the true input-label function is close to 1. In a nutshell, these datasets have inputs that are
spread out relatively far from each other across the input domain. Neural regularity enables both
ZSAD guideline (1| (section |1.2.1.3| above) and the mean field theory of meta-distributions. We
show that properties (i) through (iii) are theoretically related (section @. Our datasets CI-
FAR10, MNIST and waveform-noise (sections [3.1.3] [3.2.2)) are neural regular (sections 4.5][5.2.2)
@. We further argue that a large fraction of practical deep learning datasets is neural regular
(section [5.2.2)). We suspect that neural regular datasets exhibit similar behavior in many contexts.
Investigating them as a class is an interesting direction for future work.

Mean field limits of practical architectures Using Yang|[2019], it is possible to obtain mean
field limits at each layer with recursive calculation rules. It is, however, cumbersome, as practi-
cal architectures have to be re-cast in terms of the abstract layer operations in which they frame
their analysis. We prove a set of practical calculation rules for a somewhat general class of fully-
connected architectures built using popular building blocks and design strategies, which we call
‘A-architectures’ (section[5.3.2)) @®. This includes the limit of the square mean of the layer gradient
with respect to the input, which we denote by g;. See especially figure 5.3}

Novel limits: NLC, neuron bias, scale stability We then go on to prove mean field limits for
metrics that depend on the base distribution (section [5.3.2) ®. This specifically yields:

m NLC — QL(QO - Co)
QO(CIL - CL)
lim LBIAS, — il
q—¢

lim LSCALE, = \/q,

It turns out that the mean field limit of our metrics can be expressed in terms of the basic limits
q, ¢ and g. Hence, the recursive calculation rules can be re-used. Note that not only LB AS; and
LSCALFE) have such simple mean field limits, but also other metrics that could be reasonably
used to measure neuron bias and scale stability respectively. We term the limit of the NLC ‘mean

field NLC’ and write n = , / 2£90=<0)
go(ar—cr)

As before, we assume that the input distribution is elem-like(g, c). As before, the calculation rules
depend on the data only through ¢ and c. Hence, any metric with a mean field limit, and hence
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any ZSAD guideline based on such a metric, is largely independent of data, as long as mean field
theory is predictive. Further, the calculation rules depend on the parameter only via its initialization
scheme. Therefore, mean field limits can be considered properties of the architecture definition.

We empirically validate the limits of both simple and more advanced metrics across our fully-
connected architectures (section [5.3.3) ®. We do this by slightly modifying the definition of the
limit quantities to enable us to compute them for architectures that are not Gaussian initialized
or not in the initial state. Indeed, we find that LSC' ALE) in particular is still close to this surro-
gate estimate in the final state (section (. Again, practical predictiveness breaks down for
architectures that do not exhibit Gaussian stability.

The nonlinearity path equation Using the calculation rules of figure we derive the nonlin-
earity path equation (NPE) for A-architectures, which we give in a simplified form below (section

534 ®.

n(fv‘]a C) = Zw(p) Hnn(qkack)Q

peEP TIED

Here, f represents the architecture definition including parameter initialization scheme and ¢ and
¢ stem from the ‘elem-like(q, ¢)’ condition. P is the set of directed paths through the layer graph
from input to output layer and p is a path in that set. w(p) is the weight of the path, which
is proportional to the fraction of the signal flowing through the network that flows through that
path. We have Zpe pw(p) = 1. Finally, n,(qx, ¢x) is the ‘activation function NLC’ of 7; used
at activation layer f; with parent f, which we show can be viewed as the value of the NLC of 7
with respect to meta-Gaussian input (section[5.4.1)) @), which is the kind of input one would expect
stemming from a fully-connected layer.

In plain words, the NPE states the following: The square of the mean field NLC of the architecture
is the weighted average of the mean field NLCs of the directed paths through the layer graph. The
mean field NLC of each path is the product of the activation function NLCs on that path. The path
is weighted according to the fraction of the total signal that flows through it.

The nonlinearity path equation instructively explains the value of the initial NLC in terms of the
activation function NLCs, which can themselves be regarded as measures of degree of nonlinearity
and expressivity. If the layer graph consists only of a single path, the mean field NLC is the
product of all activation function NLCs. Hence, expressivity compounds exponentially with depth
in certain plain architectures, which has been widely observed in the past. The nonlinearity path
equation immediately yields a wide range of other properties given in sections and [5.5] as
well as in later chapters as well as throughout this and the previous two subsections.

A mean field theory of activation functions We further investigate the activation function co-
variance kernel and prove a range of results (sections[5.4] [5.3)) ®. We provide an extensive repos-
itory of key information about all activation functions used in this work, including many popular
activation functions (sections @. We then use this, together with the recursive calcu-
lation rules and the NPE, to develop a taxonomy of the behaviors of activation functions and of
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plain architectures containing those activation functions (sections 5.6, 8.13} 0.1.5] 0.2.1])
@. We give the highlights below.

We prove that under mild conditions, the mean field NLC of an activation function depends simply
on its covariance kernel and is greater or equal to 1 (sections[5.4.1 [5.4.3][5.4.4) @.

¢ M)A —c)

c - ="

n.(c) =

Here, €. (1, ¢) is shortened to €, (c) and n.(1, ¢) is shortened to n,(c). We focus on the case ¢ = 1
for brevity. We then use this result to prove the equivalent statement for A-architectures (section

5.4.3) ®.

2¢(g, ) y—gld — )
nlfa,0) = \/ (0.9)— a0

The term on the right-hand side represents the normalized first-order approximation of the band-
width of the covariance kernel, which ties the NLC to model complexity (section[I.2.1]above).

We study the behavior of plain architectures with various activation functions. A plain architecture
is an architecture with alternating fully-connected and activation layers, where the fully-connected
and the activation layers are identical respectively, as defined in section [5.4.2]

The sigmoid activation function is a bad choice for a deep plain architecture. If weights are initial-
ized to attain mean field scale stability, mean field LBIAS grows exponentially with depth, which
makes the architecture untrainable with standard methods (section [6.4) @. The underlying

property of sigmoid is i:((?)/ < 1, which is equivalent to . 0.1)7'(5)? < Esnro,)7(8)>.

The tanh activation function does not have this issue, because E.xr(0,4)7(s) = 0 for all ¢. Hence,
if mean field L BIAS, is zero at the input layer, it is also zero throughout the architecture. Instead,
the mean field NLC grows exponentially from layer to layer if scale stability holds (section[8.5)) @.
The underlying property is Qé((ll))’ > 1, or, equivalently, E; x0,1)7'(s)* > Esupn0,1)7(s)?. How-
ever, if the initial weight variance is too small, then mean field LSC AL Ej collapses exponentially
to zero from layer to layer (section[8.5) @. Conversely, if the weight magnitude is very large, the
gradient becomes unstable to the point of exploding in expectation but vanishing in probability, as
we informally explain (section [9.1.5.4). The same effect can happen when weights grow during

training, which means tanh architectures have low training stability (section @.

The ReLLU activation function requires individual weights to be initialized with a variance of 2
over the architecture width to attain mean field scale stability, which is known as He initialization
(section[8.5) . However, a ReLU architecture is still relatively forgiving to a lack of scale stability
because cTreru(S) = TreLu(cs) for all ¢ > 0, which also implies higher training stability (sections
[6.2] 6.3) ®. While mean field gradients are stable in a He-initialized ReLU architecture, both
mean field NLC and LBIAS grow linearly with depth. The underlying property is i:((?)/ =1, or,
equivalently, E, n01)7'(s)> = Esnr0,1)7(s)?. Hence, ReLU still turns out to be a suboptimal
choice for deep plain architectures.

23



The SELU activation function is the best choice for deep plain architectures out of the activation
functions we consider. A SELU architecture exhibits mean field scale stability when the initial
weight variance is 1 over width (section ®), which can be considered the default choice.
In that case, mean field LBIAS converges to zero (section @ @. As with tanh, mean field
NLC grows exponentially with depth, but now the growth rate is slow. The underlying property is
N, (0,1) = 1.035. Hence, by the NPE, depth can be as high as log; (35 5 ~ 46 and n < 5 will still
hold in accordance with ZSAD guideline || (section[9.1.7) ®. For comparison, n_, (0,1) = 1.085.

Based on the value of i* ((11))/, we find that there is a trichotomy in terms of how activation functions

behave in scale-stable plain architectures (see the segment on ‘neuron bias’ in section[I.2.2]above).

The above insights about popular activation functions were largely informally known to the com-
munity. The observations we make are similar to those of e.g. [Poole et al.|[2016]]. However, to our
knowledge, we are the first to derive all these insights rigorously out of a theoretical framework.
For brevity, we do not give our main theorems [ and [7 here. See sections[5.4.2]and [5.4.3]

Gaussian stability We discover a class of architectures among those we study that does not have
a significant fraction of the properties we demonstrate in this work. We introduce this “meta-
property” as ‘Gaussian stability’ (section @. The name stems from the fact that these archi-
tectures do not have meta-Gaussian linear layers in the initial state as summarized above. Unfor-
tunately, we have not reached the point of defining Gaussian stability in terms of a well-defined
metric. Hence, diagnosing which of our architectures exhibits Gaussian stability is similarly not
quite precise. Further study is required to determine the “essence” of this emergent phenomenon.
Note that we use “Gaussian instability” synonymously with “absence of Gaussian stability”.

Almost all of our architectures that can be said to exhibit Gaussian instability use either the square
(Tsquare (8) = %) or odd square (Toqd square(S) = $ * |s]) activation function (section 3.4.2) @. We
uncover the underlying property, which we term ‘mean field Gaussian instability’ (section[5.6) @®.

43¢ (g, 9)
¢-(q,9)

Specifically, for square and odd square, this value is always equal to 2. We note that this value
is equal to 1 for ReLLU, which can cause architectures based on ReLLU to exhibit a mild degree of
Gaussian instability, a property which we term ‘Gaussian edge’ (sections 5.6) @.

> 1

Mean field Gaussian instability causes € to be unstable, i.e. to grow small perturbations. This can
cause small deviations of practical metric values from their mean field limit to explode exponen-
tially or even super-exponentially during forward propagation.

We show that many properties depend, to one degree or another, on Gaussian stability 3. They
are as follows. (i) Fully-connected layers are meta-Gaussian meta-distributed (section [5.2). (ii)
Mean field limits in A-architectures are practically predictive (sections [5.3] [5.7). (iii) The statis-
tical estimator of the NLC is stable (section .4.2). (iv) The NLC is robust to changes in data
distribution (section 4.4.2)). (v) The NLC is relatively invariant from one draw of the random ini-
tialization scheme to another (section [4.4.2). (vi) The NLC can be approximated by even simpler
metrics (section[4.4.5). (vii) The NLC is robust to decomposition into the sum-product of NLCs of
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individual layers (section |4.4.11). (viii) The NLC is robust to width change (section 4.4.12)). (ix)
The NLC changes smoothly and regularly from layer to layer (section 4.4.14).

In summary, Gaussian stability modulates the predictiveness of mean field theory and properties
that are directly tied to mean field theory (section [5.5). We note that Gaussian instability does not
affect the technical validity of mean field theory but “only” its practical predictiveness. Gaussian
stability as a crucial prerequisite for mean field predictiveness was, to our knowledge, hitherto
unknown. As we pointed out, Gaussian stability is also critical for architecture performance. Of
course, an architecture cannot even hope to have Gaussian stability if it does not contain e.g. fully-
connected or convolutional layers. Hence, this concept may hold the key to explaining the power
and necessity of linear layers for deep learning in general. This is an exciting research direction.

Application to CNNs Due to time and space limitations our mean field analysis in chapter [5]
is, unfortunately, largely focused on fully-connected architectures. In mean field theory, a convo-
lutional layer is modeled as a collection of fully-connected layers. Hence, our theoretical results
technically hold for certain convolutional architectures, though interpreting them is much more
difficult. We outline this interpretation process and provide initial empirical evidence for practical
predictiveness (section[5.7) @®. The behavior of e.g. activation functions, normalization layers and
skip connections remain largely the same for CNNs, though there are a few differences. For exam-
ple, layer normalization is capable of ensuring Gaussian stability in fully-connected networks, but
not in convolutional networks (section @.

We validate the nonlinearity normalization algorithm (section below), which is grounded in
mean field theory and specifically the nonlinearity path equation, on convolutional architectures.
This further indicates the generality of the underlying principles.

1.2.4 Nonlinearity normalization

We introduce the ‘nonlinearity normalization’ (nlnorm) algorithm as a design strategy for control-
ling the architecture’s initial NLC, LBIAS; and LSC ALE; values to achieve ZSAD guidelines
[T] (appropriate NLC), [3] (scale stability) and [5| (avoiding neuron bias) by minimally modifying the
architecture’s activation functions. We give its form for simple architectures in figure along
with a wider discussion (section ®.

nlnorm is based on the insight derived from the nonlinearity path equation (section [1.2.3| above)
that changing the degree of nonlinearity of a network’s activation functions changes the degree
of nonlinearity of the network itself. Specifically, the mean field NLC n is monotonic in the
activation function NLCs n,,. Hence, replacing an activation function Tl(l) with another 71(2) such

thatn_ (qr, ) < n_w (qg, ¢x) is guaranteed to reduce n, assuming there are no knock-on effects
l l

on downstream ¢ and ¢ values.

nlnorm replaces each instance of an activation function 7(s) that occurs in the architecture by a

modified activation function ¢7(l, s) + b, where [ is a tunable hyperparameter we term the ‘lin-

earization parameter’ that controls the degree of nonlinearity. A basic choice is 7(1, s) = 7(s) +Is.
Because 1,(s)115(1,0)? is proportional to the L2 linear approximation error of 7(s) + s (section
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1.2.1.1] above), the Is term is guaranteed to control the activation function NLC with respect to
the unit Gaussian (section ®. Indeed, we find that the L2 linear approximation error of
practical activation functions explains their degree of nonlinearity to a significant degree (sec-
tion @. For a given [, we jointly set b and ¢ to attain Eyx01)c7(l,s) + b = 0 and
Esn0,1)(c7(l, 8) + b)? = 1, which correspond to avoiding neuron bias and ensuring scale sta-
bility respectively. nlnorm uses “normalization by recursion”, where layers closer to the output are
normalized based on assumptions derived from normalizing layers closer to the input. See section
[Z 1l for details.

We show that nlnorm is indeed effective at controlling the NLC as intended (section @
and that it is consistently able to find good NLC levels (section @. Deploying nlnorm for
an architecture that has suboptimal NLC or LBIAS levels leads to massive reduction in test error
(section ), which implies that the NLC and neuron bias are causally related to architecture
performance.

By way of [, the NLC of the architecture becomes a tunable hyperparameter. This turns model
expressivity itself into a hyperparameter. Thus, we argue that tuning the NLC is of similar impor-
tance to tuning key hyperparameters like learning rate and width. A drawback of turning the NLC
into a hyperparameter is that it does require tuning. While we suggest the [1, 5] range for the initial
NLC, there is still a lot of room in that range. We find that different types of architectures perform
optimally with different initial NLCs, including NLCs larger than 5 for certain suboptimal archi-
tecture types (section @. Even for tuned architectures, the NLC appears to change chaotically
from initial to final state within a limited range (section @. More work is needed to make
more specific NLC recommendations.

Using nlnorm, we attain close-to-optimal test error values using a range of activation functions,
including activation functions that we designed ad hoc and which induce random error values
when nlnorm is not used (section @®. This result suggests that the degree of nonlinearity
of an activation function is more important for performance than its overall shape. Hence, the
success of many activation functions proposed over the years, such as SELU [Klambauer et al.,
2017]], PReLU [He et al., 2015]], ELU [Clevert et al.,[2016]] or Swish [[Ramachandran et al., 2018]],
has likely more to do with their nonlinearity than with other properties. However, by improving
arbitrary activation functions, nlnorm also opens up activation function design to new possibilities
and reduces the need to use specific activation functions, such as ReLLU.

We present evidence that nlnorm may significantly reduce the need for normalization layers, like
batch or layer normalization (section @. This is because normalization layers also control
the architecture’s scale stability and neuron bias (section [8.7). We also present evidence that nl-
norm may significantly reduce the need for skip connections (section[7.4) @®. This is because skip
connections also tend to reduce the NLC (section [8.9). Note that replacing 7(s) with 7(s) + s
corresponds to bypassing the activation layer with a skip connection of strength /. We do not claim
that nlnorm entirely replaces these popular building blocks. For example, normalization layers
also increase training stability (section[I.2.2]above) and batch normalization has been linked to or-
thogonality [Daneshmand et al., 2020]. In our experiments, skip connections made an independent
contribution to test error reduction which is not explained by any of our ZSAD guidelines from

section [1.2.2] (section[8.9) (®.

26



1.2.5 Better practices I: well-defined metrics

In section[I.2.T]above, we summarized the properties that make the NLC well-defined, meaningful
and general. In section[I.2.2] we introduced LBIAS; and LSC ALE) as measures for neuron bias
and scale stability respectively. While more work is necessary to determine the best measure(s) for
Gaussian stability, we suggest several (section [5.6). We also define mean field Gaussian stability

(section [5.6).

When it comes to understanding neural architectures, contemporary research often runs on the
principle of “word associations”. Studies label experimental observations with terms. These terms
later get reused by other authors when they are subjectively reminded of a study that previously
used the term. Over time, ideas get diluted and terms drift, obtain multiple meanings or lose
meaning altogether. Of course, neural networks have achieved impressive practical success under
this regime, so it is not without value. This work also picks up on some ambiguous terms like
expressivity. Nevertheless, a core objective of this work is to serve as a first step towards a tem-
plate for a different and complementary approach to understanding neural architectures based on
well-defined, widely-applicable and extensively-validated metrics. We hope that ZSAD can be an
emblem for this approach, just like NAS is an emblem for large-scale search.

In this work, we document some of the pitfalls associated with ill-defined ZSAD guidelines.
Specifically, we focus on what we believe are three of the most popular and fleshed-out guide-
lines. Our high-level criticisms are of a general nature and not specific to these three guidelines.

e “avoid exploding / vanishing gradients” (section e.g. [Bengio et al. [1994], Hochreiter
[1991], He et al. [2015]], Schoenholz et al.|[2017]], Yang and Schoenholz [2017], Glorot and
Bengio| [2010], |Saxe et al. [2014]], Pascanu et al.| [2013]], Pennington et al. [2017] and many
more)
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e “choose an architecture on the edge of chaos”, “ensure correlation preservation” and “ensure
signal propagation” (section[9.2} e.g. [Poole et al.| [2016]],Schoenholz et al|[2017], [Yang and
Schoenholz| [2017], Xiao et al. [2018]], Chen et al.| [2018], [Pennington et al. [2018]], Yang
et al. [2019])

e ‘“use an appropriate depth” (section e.g. (Chatziafratis et al.|[2020], Bresler and Nagaraj
[2020]; |Giihring et al.| [2020] provides a recent overview)

The concepts order / chaos / edge of chaos, correlation preservation and signal propagation co-
occur in the same set of studies and are used somewhat interchangeably. Hence, we study them
jointly. While the phrase “correlation preservation” is never used explicitly in prior work, we
use it to refer to the implied desideratum that the correlations of inputs should be preserved from
layer to layer during forward propagation. Throughout this subsection as in chapter[9] we shorten
exploding / vanishing gradients to EVG and order / chaos / edge of chaos to OCE.

While we are critical of the high-level discourse around architecture design, we recognize the many
invaluable contributions of the works cited above. Without, for example, mean field theory, this
work would not have been possible in its current form.

We now cover what we view as the key advantages of well-defined metrics.
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Generalizability There is no agreed-upon way to determine whether a given network exhibits
EVG (section[9.1.1). There are some measures for EVG that are valid for general networks, such
as average length of the gradient of the loss with respect to the input. However, it is not clear to
what degree any specific measure captures the EVG concept, because any property demonstrated
for EVG may only hold for whatever measure was used by the study that demonstrated it. OCE and
correlation preservation can be considered as well-defined in limited contexts via the depth scale
/ timescale metric (section 0.2.5). Regardless, determining whether a network exhibits order or
chaos is generally a question requiring expert judgment. This issue gets worse when architectures
are non-homogeneous, e.g. when they use different initial weight variances or activation functions
in different layers (section[9.2.1)). Signal propagation is never quantified (section[9.2.8)). The notion
of depth is inherently ill-defined (section [2.3). While there are agreed-upon definitions in limited
contexts, like plain feedforward networks, they do not easily generalize (section [9.4).

Hence, applying EVG, OCE and depth to networks or architectures remains a case-by-case judg-
ment. Therefore, it is challenging for a non-expert to apply these concepts to novel situations.
Applying a metric is automatic as long as it is mathematically valid and there are no computational
issues. Further, once properties have been demonstrated for a concrete metric in one context, it is
possible to determine their validity in another context. Checking the validity of the NLC’s proper-
ties from section 4.4/ not only provides information about the value of the NLC in a novel situation,
but also about the challenges and idiosyncrasies of that situation in general. Since the “properties
of EVG” are informal beliefs, they are not subject to automated verification.

Lack of ambiguity Based on how an ill-defined concept is quantified, we obtain very different
results. For example, EVG can be measured based on the length of the gradient of the loss with
respect to layers or based on the quadratic mean of gradient components. While both measures are
similar, they behave very differently when the width of layers varies (section @. Some very
prominent papers deal with the interaction of EVG and width [Glorot and Bengio, 2010, He et al.,
2015]]. However, we show that some of their recommendations are an artifact stemming from their
quantification of EVG and not reflective of a real problem that requires fixing (section 9.1.3) (®.
Because metrics do not need to be quantified every time they are used, results are unambiguous.

EVG is commonly applied to both recurrent networks and feedforward networks. We explain
that EVG has very different underlying meanings in both contexts, and that EVG has yet another
meaning for sigmoid / tanh networks (section [9.1.5) @®. While there is no metric that precisely
captures all these situations at once, they get amalgamated under a single term because they appear
similar at a very high level. In contrast, the use of metrics can lead situations that require different
metrics to be recognized as different.

Accountability Given a claim that a metric predicts performance, it is possible to study its lim-
itations by pointing to contexts where it fails to predict performance. We do this for our own
guidelines. We show that scale stability, as measured by LSC ALE), can be irrelevant depending
on the design process (section[9.1.2) . We show that neuron bias, as measured by LBIAS;, can
be mitigated with a bespoke training algorithm, and its importance appears limited to the output
layer and the parents of linear layers (section @. We explain how our empirical results are
dependent on our choice of architectures (section[3.5.2]). We generate artificial datasets where our
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recommended range for the initial NLC of [1,5] is not applicable (section @.

We point out significant issues with specific ways of measuring EVG and correlation preservation.
If EVG 1s measured via the length of the gradient vector, it becomes a superficial property of the
network that can be easily confounded by manipulating irrelevant aspects, such as the scale of the
input in a network with batch normalization (BN), the scale of weights in a ReLU or BN network,
or the scale of the loss function (sections[9.1.2} [0.1.4)) ®. We show that the correlation of different
inputs or layer values can be manipulated to arbitrary degrees by e.g. shifting the inputs or using
intermediate bias layers (section[9.2.7) 3. In each case, EVG and correlation preservation do not
capture a robust pathology and therefore lack meaning.

2 (13

“Exploding gradients are worse than stable gradients”, “chaos is worse than edge of chaos” and
“depth is beneficial” are general mantras. We show that it is just as easy to argue for their opposites.
When the property “exploding gradients” is interpreted as “exponentially growing gradients”, it
can actually be desirable (section @, whereas networks with stable gradients can exhibit
both an excessive NLC and excessive neuron bias (section @. Chaos is often preferable to
the edge of chaos for the same reason (section @. OCE has little meaning for architectures
that behave differently than their infinite depth limit (section @. In our empirical studies,
we find that depth is negatively associated with test error (section[9.4) @ and OCE does not drive

test error (section[9.2.3) @.

Ultimately, it is difficult to criticize general mantras because they can be re-interpreted ad hoc to
excuse any shortcoming. When they fail to predict performance, the criticism can be deflected by
claiming that the guidelines were somehow not understood or were not applied correctly. They
encourage the use of the “no true Scotsman” fallacy.

Improvability We document contexts in which EVG / OCE do predict performance. In fact,
exploding gradients can correspond to excessive NLC and vanishing gradients can correspond to
excessive neuron bias (section [9.1.5) . Similarly, there is a chaos-NLC and order-neuron bias
correspondence (section [9.2.4) @), as well as a correlation change-neuron bias correspondence
(section @. However, we argue that considering NLC and LBIAS directly, at least in the
context of feedforward networks, is preferable because it isolates the differences between the NLC
and neuron bias pathologies, rather than lumping both together under a single guideline. Ulti-
mately, architectures that seem ideal under EVG / OCE actually tend to suffer from both excessive
NLC and LBIAS, as mentioned above. The EVG / OCE terminology suggests that exploding and
vanishing gradients and order and chaos, respectively, are opposites, when they really correspond
to different pathologies (sections @. Throughout this work, we document the robust-
ness and practicality of the NLC. The concept of depth is questionable in this regard (section [9.4)

@®.

We argue that the NLC, along with neuron bias, largely supersedes EVG / OCE / depth, at least
as a ZSAD guideline for feedforward architectures. However, we recognize that this is a difficult
argument to make, because ill-defined concepts are loaded with connotations and intuitions. Given
a set of known properties of e.g. the gradient length metric, it could be rapidly shown that another
metric like the NLC has better properties. However, if ZSAD guidelines are simply viewed as
subjective lenses for judging architectures, there is no scientific argument that any one is more
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effective than any other. Hence, progress stalls.

Democratization In order to take part in machine learning research, one must use the terms of
the machine learning community. However, it is difficult to conceptualize exploding gradients,
depth or signal propagation in the same way as an established group of researchers does. Replicat-
ing how researchers talk about vague terms becomes a barrier to entry. Common attitudes, rather
than being testable hypotheses, become linguistic gatekeepers.

However, when one actually drills into the details, one finds that even famous papers make state-
ments about EVG, OCE or signal propagation that are, at least, misleading or overly general (sec-

tions[9.1.5.510.2.31[9.2.8) ®.

1.2.6 Better practices II: careful experimental protocol

One of our goals in this work is to elevate the standard of architecture design research specifically
and deep learning research in general by deploying and promoting a careful experimental protocol.
In our opinion, protocol deficiency is by far the most pervasive and significant shortcoming among
deep learning studies.

We detail our protocol in chapter [3] which we consider a contribution in its own right &. Most
of our experimental results are derived from two large studies: study A using fully-connected
architectures (section [3.1), and study B using convolutional architectures (section [3.2). We also
conducted some additional experiments using fully-connected architectures and the same training
protocol as study A (section[3.3)). Of course, our protocol also still has limitations, which we detail
in section3.3]and summarize in subsection

Of course, not every deep learning study requires the same protocol. However, a significant fraction
of studies does the following.

e Compare different instances of a certain “target aspect” of a deep learning pipeline, e.g. dif-
ferent activation functions, different learning rate schedules or different objective functions.

e Choose one or more deep learning pipelines to embed these instances into in order to com-
pare them by executing the entire pipeline and evaluating its performance with each of the
instances. “Performance” can refer broadly to any behavior of interest. For example, differ-
ent activation functions may be compared via the test error or adversarial robustness attained
by the pipeline into which they are embedded.

Large portions of our work also fall under this “comparative study” paradigm.

Below, we give standards that we advocate for this paradigm. We detail how we followed the
standard in this work, give examples of how following the standard impacted our results and make
specific recommendations.
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Control confounders: parameter dimensionality, scale stability and loss function Changing
a target aspect of a deep learning pipeline can have side-effects on properties that are known to be
performance drivers. For example, changing depth can change parameter dimensionality, which is
a driver of test error. If this occurs, any observed performance difference may be caused by the
property that is varying indirectly, rather than the explicitly varied target aspect. For example, a
changing test error as depth varies may not be caused by the change in depth, but by the change
in parameter dimensionality. One way to counteract this is to change other aspects of the pipeline
jointly with the target aspect to keep the property that is varying indirectly approximately constant.
For example, one may change width along with depth to control parameter dimensionality.

In study A, we do just this. When varying depth, we also varied width to compensate and kept
parameter dimensionality around 1 million. In study B, we did not vary width or depth. Parameter
dimensionality is arguably the most fundamental performance driver in machine learning in general
(section ®), and is controlled in many deep learning studies.

In both study A and B, we controlled scale stability to a significant degree. We did not choose
weight initialization schemes that differed significantly from the LeCun initialization, where the
initial weight variance is 1 over the number of multiply-adds that contribute to a neuron in a
linear layer. All of our activation functions 7 were the result of scaling with a constant to achieve
Esn01)7(s)? = 1. Scale stability is known to significantly impact performance () and section
[[.2.2) above). Because we co-vary initial weight variance with width, we were able to show how
e.g. test error and NLC are invariant in certain contexts as width changes (sections 9.1.3).

In study A, we controlled the magnitude of the values that are fed into the softmax+cross-entropy
loss function. Specifically, we used an augmented version of the standard softmax+cross-entropy
loss function that scales the network outputs before applying softmax+cross-entropy (section
3.1.2). We knew that softmax+cross-entropy has a strong preference for values with an overall
magnitude around 1, as we also demonstrate (section [0.2) (. On one occasion, we studied the
behavior of an architecture as the magnitude of the input varied, which caused the magnitude of
the output to change as well. We were only able to observe a consistent test error value as input
magnitude decreased because we used the augmented loss function (section4.4.2). Since we were
interested in studying architecture performance, and we did not consider the loss function to be
part of the architecture, we wanted to minimize the impact of the loss function as much as possi-
ble. In general, we recommend using this augmented loss function when comparing architectures
that return outputs of differing magnitudes for classification. We know of studies that did not and
were likely subject to confounding.

In study B, we controlled both scale stability and neuron bias when varying the linearization pa-
rameter [ of the activation function ¢7(l,s) + b by also setting parameters b and ¢ to achieve

Esono,1)(c7(l,8) + b)* = 1 and Eyp0,1)c7 (1, s) + b = 0 (section above).

In study B, we fixed the depth of our convolutional architectures to control the spatial frequency
composition of the output, as studied by Xiao et al.|[2018].

In general, when attempting to discover new performance drivers, e.g. the NLC, that are intended
to be synergistic and complementary to known drivers, such as those mentioned above, it can
be valuable to control those known drivers. This avoids re-discovery and diluted results (section
[3.5.2). Also consider that ZSAD guidelines tend to behave in an all-or-nothing manner when
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predicting test or training error (section above). Hence, unless a significant number of studied
architectures follow all guidelines to a significant degree, a large fraction of them may exhibit
random error, which would leave little performance variation to explain.

Of course, the caveat of controlling pipeline properties is that it becomes necessary to understand
the interaction of the target aspect with the properties that were controlled (e.g. sections #.4.12]
[6.2] also section [I.2.2] above) to understand the limits of generality (sections 0.1.2] 9.2.6] also
section above). It is also necessary to know about potential confounders. Hence, eliminating
confounders is an iterative process of discovery.

Independently and exhaustively tune key hyperparameters: learning rate and NLC When
changing the target aspect of a deep learning pipeline, another property of that pipeline can “fit”
differently with different instances of the target aspect. If this occurs, then any observed perfor-
mance difference may be caused by the difference in fit with that property, rather than the target
aspect directly. In that case, it is necessary to exhaustively search over values of that property
(“hyperparameter”) and pair each value with each instance of the target aspect to fairly assess
performance.

The key example of such a hyperparameter that is universal to nearly all pipelines is learning rate.
We train each study A architecture independently with 40 starting learning rates (SLRs) and we
train each study B architecture independently with 20 SLRs. We divided the learning rate 10 times
by 3 (study A) / 3 times by 10 (study B) during each training run. We show that indeed, the best
SLR varies enormously across our architectures (section[6.6) &), making this tuning essential for a
fair comparison, as we do not consider any specific SLR value as privileged over any other. Some
of our architectures could not generalize but were able to achieve close-to-zero training error when
(1) we considered an even wider range of 60 SLRs that spanned close to 30 orders of magnitude and
(i1) early stopping based on validation error was not used and architectures were allowed to train
for as long as training error kept improving. We re-trained many of our study A architectures with
these protocol changes and successfully achieved low training errors for almost all architectures for
which this was possible based on our ZSAD guidelines. Without exhaustive tuning, we would have
obtained that high-NLC, and hence high-expressivity, architectures are untrainable (section|l1.2.1.2]
above). On multiple occasions in this work, we find that test error is invariant when a specific
hyperparameter value varies (weight variance scaling factor: sections [6.2] and 0.1.2} loss scaling
factor: section[9.1.2). These discoveries depend on allowing the learning rate to co-vary with that
hyperparameter. Further, we find on one occasion that test error is minimized by architectures of
different NLC levels on different artificial datasets where the true input-label function has different
degrees of nonlinearity. Again, pairing high-NLC architectures with smaller learning rates was
essential for this discovery (section |4.5)).

While not all deep learning studies will require considering 60 different SLRs, we advocate finding
the “best” learning rate for each individual pipeline configuration in any comparative study. The
failure to do this has likely confounded many studies. Developing efficient methods to make this
computationally feasible is an interesting topic of study. We make a guess at what range of SLRs
might be ideal for an architecture as part of our experimental protocol, and we base that guess
on the magnitude of the parameter gradient (section [3.1.2)), with some success (section [6.6). We
analyze our results with respect to learning rate as summarized above in section (1.2.2
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In this work, we choose an SLR for each architecture based on which of them yields the lowest val-
idation, test or training error, depending on context. This is a reasonable choice when comparing
architectures based on error. However, it can be problematic when comparing other architecture
properties. Specifically, there exist architectures that do not attain a better-than-random error across
any reasonable set of SLRs. Choosing an SLR based on lowest error then leads to an essentially
random choice. However, SLR still has a massive, non-random impact on properties of an architec-
ture’s final state after training, such as NLC and scale stability (section|4.4.13] ®. With
arandom SLR, we cannot meaningfully associate properties of the final state with the architecture
itself. Hence, throughout this work, when plotting the value of any metric not based on error, we
discard all architectures that did not attain a better-than-random validation / test / training error
when SLR was selected based on validation / test / training error respectively (section |3.4.2]).

While learning rate is the classical example of a key hyperparameter in deep learning, we uncover
the NLC as another such hyperparameter. Our nlnorm algorithm makes the NLC, and thus model
expressivity, tunable. When the NLC is controlled for via exhaustive tuning, the test error impact of
some of the most popular building blocks, like skip connections, normalization layers and various
activation functions, is very different than when the nonlinearity is ignored (section [I.2.4] above).
While we do not claim that any one building block becomes obsolete with nlnorm, we argue that
tuning the NLC when comparing deep learning pipelines (i) would not only likely have simplified
and accelerated the progression of deep learning research in the past, but (ii) will be important
going forward in order to avoid “discovering” ever more methods that reduce error indirectly by
simply reducing NLC, while being believed to succeed for various quirky reasons.

A major challenge when tuning hyperparameters for deep learning is that the architecture’s final
state is often extremely sensitive to very small perturbations in the value of hyperparameters that
affect the initial state or the training procedure. Hence, it is usually impossible to find the global
minimum of a performance measure like error across a continuous hyperparameter space, such as
the space of all SLRs or the space of all linearization parameters when nlnorm is used. When using
e.g. grid or random search or even Bayesian optimization, we have to be content with choosing the
hyperparameter configuration from a discrete set of sample points without a guarantee about the
performance of other configurations. We further discuss this point in section[3.5.9

Cover a broad and unknown range of pipelines Above, we discussed controlling known per-
formance drivers. In addition to those, many other pipeline properties likely have a small or un-
predictable impact on behavior. Across our architectures, we varied: depth; activation function;
initial weight variance; type of weight initialization scheme; presence and initialization of bias
and elementwise multiplication layers; normalization layer; presence, type and strength of skip
connections; data processing; presence and type of pooling; presence of data augmentation. This
is a wider range than the vast majority of deep learning studies. Taking into account learning rate
tuning, we conducted nearly 300,000 independent training runs on fully-connected architectures
and nearly 12,000 independent training runs on convolutional architectures.

Of course, no matter how broad the set of pipelines considered, the outcome of a comparative study
will ultimately depend on the set of pipelines chosen (section[3.5.2)). We argue that a key to making
a comparative study more scientifically valid is to vary pipeline properties where the performance
impact is not known. When choosing our architecture space, we had little understanding of how
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the properties we varied would ultimately influence the NLC and performance. For example, we
were not aware of the nonlinearity path equation. We designed and conducted study B at a later
time than study A, when we already had a good understanding of the NLC. Hence, we decided to
vary properties like pooling and data augmentation that we did not consider in study A.

If we had not “invented” the square and odd square activation functions (figure [2.1), we would
not have discovered Gaussian stability, which is a key condition for many properties of the NLC
(section[5.6)). Case in point, as far as we know, no mean field study has yet considered an activation
function with mean field Gaussian instability. If we had not considered high depths, we would have
discovered neither the impact of noise stability (section [6.3]) nor the limits of the computability of
the NLC at a given level of floating-point precision (section4.4.4). If we had not used architectures
that fall under each of the three types of the NLC-LBIAS trichotomy (section [[.2.2] above), we
would not have discovered that trichotomy, which reveals how even simple architectures with a
small NLC can fail.

While we generally consider only a single training algorithm per architecture (SGD for study A
and momentum for study B), we do verify that Adam behaves equivalently to SGD, at least with
regards to the predictiveness of the NLC (section[4.4.1) ®. While we generally consider only three
different datasets, we note that almost all of our results were highly consistent across them, as we
document throughout the work (.

Managing computational errors: estimation error, floating-point rounding error, sample in-
dependence and batch normalization It is very rare that deep learning studies explicitly discuss
computational errors, i.e. situations where the output produced by a computation differs signifi-
cantly and systematically from the value of the mathematical function that this computation rep-
resents. To be clear, we believe that most studies do not suffer from significant computational
errors because they do not consider pipelines or architectures that significantly differ from popular
pipelines or architectures. Moreover, one of the factors that can cause an architecture to become
popular is robustness to computational errors. However, we advocate that studies that explicitly
consider experimental or randomly generated architectures, as we do, for the purpose of a wide
comparison explicitly consider and discuss computational properties.

We conducted all computation associated with study A with 64-bit floating-point precision (section
[3.4.1.2). This was critical for both training and metric computation. We show that the guideline of
noise stability requires high precision when training networks with very high NLCs (section [6.5])
@. Without high precision, we would have obtained that high-NLC, and hence high-expressivity,
architectures are untrainable (section [1.2.1.2f above). Further, we show how computing metrics
such as NLC (sections 6.5), LBIAS (section and especially MGLLA (section §.4.6)
requires high numerical precision for high-NLC / high-LBIAS architectures ). While we were
unable to use 64-bit precision in study B, we found that it did not contain architectures with NLC
or LBIAS values that were as large as those found in study A (sections 6.4).

We defined many of our metrics via an abstract input distribution D. Hence, they need to be
computed via statistical estimation (section [3.4.1.1). Since our metrics depend on D via basic
probabilistic operators like expectation, standard deviation and median, we can utilize the canon-
ical estimators corresponding to those operators, which are mostly stable. However, this stability
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can break down in the absence of Gaussian stability (section @. As summarized above in
section Gaussian instability leads layer square means to diverge from their mean field limit.
Because this divergence happens to different degrees for different datapoints, the layer distribu-
tion as well as gradient distribution induced by D can become very heavy-tailed, which in turn
increases the sample complexity of e.g. the sample mean estimator.

When defining metrics via the input distribution D, we must also ensure that the data samples
we use to compute those metrics are sufficiently independent from the data samples used for e.g.
training, data processing or architecture initialization (section [3.5.8). It is especially important not
to use the training set to compute metric values after training, except for the purpose of targeted
investigation. We follow this rule in this work. It is interesting to note that, especially for our
convolutional architectures, we found that the final NLC evaluated on the training set is close to
the final NLC evaluated on the test set (section[d.4.2) @®.

Batch normalization (BN), while unreasonably powerful, can be a nuisance for analysis. With BN,
a feedforward network does not represent a function that maps an individual input to an individual
output (section[3.4.1.3). We show that there exists a natural generalization of the NLC for networks
with BN such that (i) applying the generalization to networks without BN yields the original def-
inition, (ii) the exact same program can be used in both cases and (iii) statistical efficiency is not
significantly compromised (section #.4.4) . While we generally do not discuss this explicitly
throughout the work, we go through the same process of deriving such a generalization for the
BN case and of ensuring that our program properly captures that generalization for all metrics.
We derive the generalization by considering the network as a function that maps batches of inputs
to batches of outputs (section [3.4.1.3)). In general, we advocate investigating and discussing the
process of generalizing concepts to BN networks when appropriate.

1.2.7 Limitations and assumptions

The following limitations are specific to our work.

e Due to limited access to code and computational resources, we did not have the chance to
replicate in study B all the experimental measurements we made in study A. Hence, many
of our results (though not our most important ones) are only validated on fully-connected
architectures. There were also some mostly minor limitations associated with the training
protocol used for study B relative to study A (section[3.5.7). We also did not have the chance
to investigate more than one dataset in study B.

e We only explicitly study feedforward networks that have a static layer graph and represent
deterministic functions that take a single input (or batch in the BN case) and return a single

output (section[3.5.5)).

e We do not validate our results beyond the supervised classification / empirical risk minimiza-
tion setting (section [3.5.6).

e We only validate our results on architectures that resemble popular architectures (section

3.5.1).
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e We do not validate our results on datasets of large size or architectures of large width (section

3.5.4).

e We only validate nlnorm on study B and hence convolutional architectures / CIFAR10, as
study A was not designed for this purpose (chapter|/).

e We do not conduct hyperparameter tuning beyond starting learning rate, though we do tune
the NLC in the context of chapter[7] Specifically, we generally only consider a single training
algorithm and loss function per architecture.

e We implicitly assume that neural networks are differentiable throughout much of our discus-
sion and explicitly assume it in our definition of e.g. the NLC and our theoretical results of

chapter [4] (section [2.6.1)).

e Many of our theoretical results from chapter [5 are technically restricted to fully-connected
architectures that resemble popular architectures, where activation functions are also twice
differentiable (introductions of chapters 3] [g)).

e We do not know the range of possible convergence behaviors of the mean field NLC of a
plain stable architecture with increasing depth when (i) the normalized covariance kernel of
the activation function used has a derivative less than 1 at 1 and is not twice differentiable at
1, or when (ii) the activation function is not piecewise 5-differentiable as assumed in theorem

(section[5.4.4).
The following limitations are inherent in the type of the empirical studies we conduct.

e Experimental results that aggregate across architectures are dependent on the precise set of
architectures considered (section [3.5.2)).

e Datapoints from our datasets are reused for the statistical estimation of quantities that se-
quentially depend on each other (section 3.5.8)).

e [t is not possible to find the global error minimum across continuous hyperparameter spaces

(section [3.5.9)).

1.2.8 Future work

Straightforward extensions Like in most deep learning studies, many of our results are limited
in scope for no other reason than a want for time / computational resources to state, prove and /
or validate them in a more general fashion. Below, we give a list of opportunities for generalizing
results in a way that we suspect is more or less straightforward. That is, the generalized result
should be essentially analogous to the original result. These opportunities roughly map onto the
limitations given in the previous subsection.

e Validate the results of this work that have been validated on only either fully-connected or
convolutional architectures on both (section chapter [7)).
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Validate the results of this work on datasets of large size and / or architectures of large width
(section |3.5.4)).

Validate the results of this work by conducting hyperparameter tuning across a wider range
of training protocols, e.g. across a number of training algorithms and loss functions (section

2.2.3).

Validate the results of this work across a range of architectures not built using popular build-
ing blocks and design strategies (section [3.5.1).

Validate the results of this work across a wider range of task settings, such as regression,
reinforcement learning, image generation or noisy label prediction (section [3.5.6).

Extend the results of this work to other architecture types, such as non-deterministic archi-
tectures, RNNs and memory networks (section [3.5.5)).

Give an explicit generalization of nlnorm that ensures scale stability and avoids neuron bias
for more general classes of architectures, such as those containing skip connections (section

7.1).

Investigate the neural regularity properties of a larger number of practical datasets (section

5.2.2).

Explicitly cover one or more cases of non-everywhere-differentiable networks, such as di-
rectionally differentiable networks, in the definition of metrics like the NLC and the theory

of chapter ] (section [2.6.T).

Extend the theory of chapter |5 beyond A-architectures to e.g. convolutional architectures.
Find instructive patterns in the mean field nonlinearity of CNNs analogous to the nonlinearity
path equation (chapter [3)).

Determine the convergence behavior of the mean field NLC of a plain stable architecture
with increasing depth when the normalized covariance kernel of the activation function used
has a derivative less than 1 at 1 and is not twice differentiable at 1 (section [5.4.4). More
fundamentally, extend theorem [/|beyond piecewise 5-differentiable activation functions.

Prove that the NLC is the first-order approximation of the kernel bandwidth for arbitrary
Gaussian processes (section [5.4.5).

Continuing investigations We uncovered a number of intriguing threads throughout this work
that we only followed to a limited degree. Below, we give opportunities for continuing investiga-
tions for which this work already gives some results which are sufficient to envision fully-fledged
solutions.

e Continue the formalization of ZSAD guidelines. We do not definitively associate our non-
NLC guidelines with concrete metrics as more analysis is needed to determine the best ones.
For the same reasons we stress the importance of the well-definedness of the NLC (section
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1.4.2.4,[1.2.1][1.2.3), we believe it is valuable to frame other guidelines as metrics. We give
suggestions for scale stability (section[6.2) and neuron bias (section[6.4) and give a range of
candidates for Gaussian stability (section [5.6)).

Continue the investigation of pseudo-linearity as a ZSAD guideline. We discuss its relation-
ship with scale stability, neuron bias and the nonlinearity of deep networks (section [9.6).
We believe it may be possible to further develop this guideline into a “nonlinearity unifor-
mity” guideline, which would state that nonlinearity should be spread evenly throughout the
architecture. For example, we show that the most popular type of residual architecture con-
tains more nonlinearity in earlier than later residual units (section[8.9). We conducted some
preliminary experiments not presented in this work which suggest this may be suboptimal.

Continue the investigation of orthogonality as a ZSAD guideline. We briefly discuss the
complementary nature of NLC and orthogonality as guidelines (section[9.5]). Orthogonality,
especially under the term of dynamical isometry, has been discussed alongside expressivity
(e.g. Xiao et al.| [2018]], Chen et al. [2018]). Its mean field theory has been developed [ Yang,
2020al, [Karakida and Osawa, 2020]. We believe that integrating our analysis of the NLC
with that of orthogonality may strengthen both approaches.

Continue the investigation of how the NLC modulates noise stability with respect to other
deep learning concepts like quantization, noise-based regularization and adversarial robust-
ness. This could build on our investigation of batch selection noise and floating-point round-
ing error (section [6.5). Relating the NLC to other specific sources of noise could further
widen its scope.

Continue developing methods for determining the best NLC level for a given dataset. We
predict the best NLC by examining the apparent nonlinearity of the dataset via PNLCD
(section {.5)). It may be worth validating this method on further datasets, determining how
to apply it when PNLCD doesn’t have a clear peak, or developing better methods altogether.

Continue the investigation of the properties of neural regular data. We found that there was
a relationship between (i) the apparent nonlinearity of a dataset measured via line segments
between datapoints, (ii) input component independence and (iii) consistency of square means
and co-means across inputs (section[5.2.2). We believe that further solidifying these relation-
ships theoretically and empirically across a wide range of datasets, as well as adding new
properties and relationships, could greatly enhance our understanding of the kind of data on
which deep learning and mean field theory do well.

Continue the investigation of setting the starting learning rate. We found some intriguing
patterns when measuring the shift of the parameter as well as the shift of the network output
during the first iteration when using the best starting learning rate. We believe that it may be
possible to derive methods that reliably find the best starting learning rate, at least for high-
performing architectures, within a few guesses (section [6.6). Our experiments suggest that
line search, at least during the first iteration, might be a valuable strategy for neural network
training.
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e Continue the investigation of the evolution of the NLC during training. Our experiments
suggest that the architecture tries to attain a more optimal NLC during training when its
initial NLC is not too far away (section #.4.13). However, within a certain range, the NLC
reached after training appears unpredictable (section[7.5). Since the NLC ultimately matters
in the final state, when the network must match the true input-label function, but ZSAD
decisions are made in the initial state, we believe further bridging this gap is valuable.

e Continue the comparison of NLC with the MGLLA and TTNTK metrics (sections 4.4.6]
M.49). Solidifying the understanding of the other two metrics should enhance the under-
standing of the NLC and expressivity in general. It may turn out that MGLLA or TTNTK
are either superior to NLC for performance prediction or contain important complementary
information. TTNTK is similar to the OSGR metric from |[Liu et al. [2020c]], which was
developed independently.

e Continue the theoretical investigation of low-NLC networks. It may be difficult to make
guarantees about high-NLC networks, as they can behave like low-NLC networks, except
with an enormous gradient on an irrelevantly tiny subset of the input space. Conversely, we
show that low-NLC networks are close to linear functions in an L2 sense on Gaussian inputs
(section #.4.7). There may be opportunities to develop this further to provide theoretical
error guarantees in practical situations.

e Continue the investigation of the exploding / vanishing gradient problem in tanh and sig-
moid networks. This problem is widely known and discussed. We explained how, in these
networks, gradients can explode in expectation but vanish with high probability (section
[0.1.5.4). When fleshed out in the manner of our other guidelines, this phenomenon could
yield a valuable complementary piece as well as shed light on the infamous “cliffs” of the
recurrent network objective landscape.

e Continue the investigation of the value of bias and elementwise multiplication layers. Ini-
tializing both to the identity prevents them from inducing scale instability or neuron bias
(sections [8.11] [8.12)). Intuitively, controlling expectation and variance of neurons allows the
network to alter e.g. the NLC during training. However, as far as we know, unique benefits
of those layer operations have thus far not been isolated.

Major investigations In various places, our work hints at opportunities for other major investi-
gations that would go well beyond the scope of this work and would likely relate to several other
ongoing strands of investigation in the deep learning community. These are given below.

e Use the ZSAD guidelines of this work to build novel state-of-the-art architectures or improve
existing ones. One of the challenges of ZSAD in this stage of development is that it is
more likely to explain current designs than to suggest new ones. For example, applying
nlnorm in study B only leads to significant test error reduction if the original architecture
was suboptimal. It may be worth scanning the deep learning landscape for state-of-the-art
architectures that do not follow guidelines to an ideal degree and thus present an opportunity
for improvement. For example, it may be worth spreading out nonlinearity evenly in residual
or other multi-path networks as mentioned above.
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o Integrate ZSAD with NAS. Currently, NAS algorithms are initialized by specifying ranges
for each hyperparameter and architecture property over which to optimize. Guidelines can
act as a prior for the “architecture definition-to-error function” or as a filter that prevents
architectures suggested by NAS from being trained. This may reduce runtime and enable
the search over wider hyperparameter ranges. [Liu et al.| [2020b] recently employed a filter
based on the activation function and normalization layers used.

e Investigate the benefit of using (very) deep architectures when expressivity is controlled via
e.g. NLC. We argue that NLC is a better measure of expressivity than depth (section [9.4).
However, the current main argument in favor of depth is that it enables expressivity. When
depth is not needed to control expressivity, new sources of utility need to be found.

o Investigate the benefit of skip connections and multi-path architectures in general when ex-
pressivity is controlled via e.g. NLC. While there has been work on explaining the value of
skip connections, we are not aware of work that specifically factors out overall expressiv-
ity, which is not fundamentally related to skip connections. Our experiments in this work
(section and general experience suggest that there is indeed additional value. Also, in
the context of multi-path architectures, it may be worth controlling the NLC via the addition
weights associated with different paths in the architecture (e.g. skip connection strength)
instead of nlnorm.

e Investigate the infinite-depth, finite-width, finite-NLC limit. We suspect that, as the depth of
e.g. plain architectures converges to infinity while activation function NLC co-varies to keep
architecture NLC constant, the distribution over network functions and many key metrics
induced by the parameter initialization scheme converges in a similar fashion to mean field
theory. This investigation might yield another highly predictive theoretical framework that
complements mean field theory and may illuminate behavior at moderate to high depth just
like mean field theory illuminates the behavior at moderate to high width.

e Investigate the frequency spectrum of networks and activation functions. We suspect that
the NLC is equal to the square root of the mean of frequencies present in a network, where
each frequency is weighted by its magnitude. For example, we verified that the NLC of the
the component of 7(s) = s" that is orthogonal to all lower powers on unit Gaussian input
is equal to y/n for n < 10. By considering the full frequency spectrum, we may be able to
design custom activation functions based on the frequencies in a dataset or design activation
functions that are universally high-performing across neural regular datasets.

e Investigate the relationship of NLC and expressivity to sample complexity, training com-
plexity and training time.

e Formulate a theory of model complexity for neural architectures where expressivity, as mea-
sured by e.g. NLC, and capacity, as measured by e.g. parameter dimensionality, act as two
near-independent dimensions as briefly discussed in section

e Investigate the importance of Gaussian neuron distributions. We demonstrated that Gaussian
stability is key for architecture performance (section and the predictiveness of mean field
theory (sections 5.3.3). However, the underlying mechanisms of these observations,
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especially the former, are largely unexplored. There may be significant utility in determining
the scope of the set of Gaussian stable architectures and further determining and explaining
the properties they have as a class. This may ultimately reveal a path to transcending this
class of architectures.

e Investigate scope, origin and importance of the neural network property that the gradient-
based local linear approximation tends to be accurate across a large fraction of the codomain.
Specifically, in section we found evidence that neural networks behave like a sine
curve, in that the tangent hyperplane stays close to the network function across the range of
outputs (typically) returned by the network. We have not found this property discussed in
literature. It seems, however, intuitively necessary for trainability, in particular the use of
“large” learning rates, as well as several properties of the NLC.

e Use the zero-shot architecture design approach, including the use of well-defined metrics
(section and careful protocols (section [3.6), to frame the investigation of aspects of
neural architecture performance other than training and test error, such as computational
efficiency, privacy or adversarial robustness.

1.3 Problem setup: an overview of neural architecture design

1.3.1 From biological imitation to probabilistic inference to function opti-
mization

To understand contemporary neural architectures, we must understand the history of neural net-
works.

Models called ‘neural networks’ have existed for at least 75 years [McCulloch and Pitts, |1943],
which far predates the field of machine learning. Their original purpose was to be an abstract
representation of neurons in the brain, which form networks through synaptic connections, and to
explain how those neurons learn. Neurons were commonly modeled as computational units that
first linearly aggregate the outputs of other neurons they are connected to and then apply a binary
threshold gate to this aggregated value [Widrow and Lehr, |1990, Rosenblatt, [1958]]. The reason for
this binary thresholding was that neurons in the brain were regarded to have a binary state - either
“firing” or “not firing”. The thresholding function became known as the “activation function”, as it
was meant to determine which incoming signals lead to the neuron emitting an electrical impulse.

For at least 55 years, neural networks have been trained with gradient methods [Bryson et al.,
1963]]. This turned out to be a far more efficient way of setting the free parameters in a neural
network than learning algorithms based on imitating brain function [Hebb, 1949]. Of course, gra-
dient methods require that the computation performed by a neuron be differentiable, which is not
the case for the binary activation function. The sigmoid activation function (table [2.1)) became the
new standard as it was considered the closest differentiable approximation of the binary function
[Rumelhart et al., 1986, Werbos, 1990, Widrow and Lehr, 1990, [Hopfield, 1982]]. Using gradient
methods, neural networks became a practical tool for tasks such as digit recognition [LeCun et al.,
1989]. What made neural networks attractive to machine learning was their ability to compose

41



a large number of generic computational units which can together learn complex relationships in
data while reducing the need for model or data engineering.

In the early 2000’s, neural networks had fallen somewhat out of favor in the machine learning
community. While there is not a clear single reason for this development, it is said that there
was limited success in building “deep” models when utilizing the sigmoid activation function. We
will revisit the difficulty of utilizing the sigmoid in chapter [§] During this period, the dominant
machine learning model for learning complex relationships in data was the probabilistic graphical
model (PGM) [Blei et al., 2003} Xing et al., 2003, Lafferty et al., 2001]]. The central idea of PGMs
is to model the data as a set of random variables called ‘observed variables’. Each datapoint in
the dataset is considered an independent sample of these variables. Then, we introduce additional
random variables, called ‘latent variables’, which are not observed as part of the data. This allows
us to define intricate, hand-crafted joint or conditional distributions over both sets of variables.
Finally, we derive properties of the data via probabilistic inference.

The transition to the deep learning era began in 2006 with the introduction of the Deep Belief Net
(DBN) [Hinton and Osindero, [2006]. The DBN is a hybrid between PGMs and neural networks as
it (1) defines a probability distribution over observed and latent variables and utilizes probabilistic
inference, while also (ii) using a large number of latent variables with a generic distribution. The
difference between ‘neuron’ and ‘latent variable’ is erased. Finally, (iii) DBNs stack layers of
latent variables in a “deep” fashion. Those layers were trained using a complex and intricate two-
stage process involving the contrastive divergence algorithm [Carreira-Perpinan and Bengiol 2005,
Hinton, 2002]. Around 2010, these hybrid models were still the driving force in the emerging deep
learning field [Salakhutdinov and Hinton, [2009, Lee et al., 2009].

The deep learning era arrived in 2012 when Krizhevski et al.|[2012] trained a 7-layer convolutional
network on the ImageNet dataset, eviscerating all previous benchmarks. What was remarkable at
the time was that an architecture of significant depth was trained with a “pure” gradient method
from a random initial parameter value using only empirical risk minimization. It eschewed both
contrastive divergence and its non-probabilistic equivalent, the autoencoder [Le et al., 2012, Rifai
et al., 2011, |Vincent et al., 2008, Steck, [2020]. Both of these predict not just the class label, but the
input distribution itself.

1.3.2 The functional-gradient paradigm

The formalism used by Krizhevski et al. [2012] for classification can be paraphrased as follows.
(For simplicity, we assume datasets contain only one datapoint in this section.)

gt — pt=1) _ adﬁ(f(e(t—el), r),y)
d

Here, f is the neural architecture, x is the input, 6 is the trainable parameter, ¢ is the loss function,
« is the learning rate and (t) is the iteration counter. What is striking about this formalism is
that the neural network is reduced to a function that could, in principle, be almost anything. The
only requirements are that the function takes in and returns values of the correct type, that it has
a trainable parameter, and that it is differentiable, though in practice it is enough that we can
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efficiently compute a local linear approximation to the function that is sufficiently accurate in a
sufficiently large neighborhood of the current parameter value, as explained in sections and
Compared to the complexity that can be rolled up in the function f, the formalism itself is
very simple.

It was this recipe of combining a simple formalism with black-box functions that became dominant
and led deep learning from success to success [Goodfellow et al., [2014, Vaswani et al.| 2019, |L1
et al., 2016, Silver et al., [2017]]. Consider, for example, generative adversarial networks [Goodfel-
low et al., 2014].

min maxlog fp(0p, ) + E- log(1 — fo(0p, fa(fc, =)
G D

Again, the majority of the complexity is rolled up in the arbitrary functions fp and fg. Updates to
their trainable parameters are made via the gradient of the objective.

Finally, consider REINFORCE, a staple building block in deep reinforcement learning [Sutton
et al., [2000].

dlog f(0"~V, ays,)
df

In this algorithm, it is not immediately apparent what objective is being optimized. Ignoring «, the
second term can be written as % %. This is a product between the gradient of f and a term that can
be interpreted as the change in the output of f that the update is desired to induce. We can also
rewrite the classification and GAN updates in this way, where the desired change to the output of
f is the gradient of the objective with respect to f, which, in the case of simple classification, is
the gradient of the loss function.

9 =0t 1 qu,

We are now ready to formalize what we call the ‘functional-gradient learning paradigm’ in figure
It is a close approximation of how the term ‘deep learning’ is used as of 2020. The term
‘neural architecture’ then approximately corresponds to the phrase “function f as it may occur
in a functional-gradient learning system” and ‘neural network’ approximately corresponds to the
phrase “function-parameter pair ( f, #) as it may occur in a functional-gradient learning system”. In
essence, a neural network is any model to which gradient methods can be applied, and that is how
we define it in section Of course, deep learning comes with a very large amount of associated
concepts and popular conventions, the most important of which we detail throughout chapter
However, none of them are essential from the point of view of the formalism. Also, nearly all core
concepts in the deep learning field are fuzzy, subjective and not without exception.

Note that while we focus this work on feedforward networks, which have a single input and output,
multi-input and multi-output functions, as represented by e.g. recurrent networks, are also used
within the functional-gradient paradigm.

Interestingly, the functional-gradient paradigm can even be used for probabilistic modeling. In
the GAN objective above, z is a random variable with a simple (generally Gaussian) distribution
which is transformed into a distribution over (fake) inputs. The complexity of the conditional
distribution z|z is fully contained in fg. The same strategy is applied in e.g. variational autoen-
coders [Kingma and Welling, 2014]. The convergence of a significant fraction of machine learning
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The functional-gradient learning paradigm

e Black-box functions: Complex relationships in data are modeled by func-
tions f. While some functions may lead to far superior learning out-
comes than other functions, the learning formalism itself requires of a
function only (i) that its input(s) and output(s) have certain data types,
(ii) that it has a free parameter # and (iii) that a sufficiently accurate lo-
cal linear approximation in a sufficiently large neighborhood of a given
parameter value can be found.

e Gradient updates: 6 is updated based on the product of the desired
change to the output of f and the gradient of the local linear approxi-
mation of f.

e Simple formalisms: The way f is used within the learning formalism
is simplified as much as possible. The complexity of model and algo-
rithm is pushed into the function. The training algorithm is not much
more complicated than gradient descent [Nesterov, |1983, Kingma and
Ba, 2015]]. If an objective containing f is used, it is largely a vehicle for
specifying a loss and not for encoding structure or intricate priors.

Figure 1.1: Description of the functional-gradient learning paradigm.

around the functional-gradient paradigm is epitomized by the development of functional learning
software frameworks like TensorFlow and PyTorch. They are so popular that the choices made in
their development have effectively become soft constraints on the trajectory of machine learning
research.

1.3.3 The blessing and curse of neural architecture design

While gradient methods are immensely powerful, they are not quite powerful enough to make
choosing an architecture f obsolete, i.e. no architecture is known that performs near-optimally on
all tasks. Hence, for any given task, we are still left with choosing an architecture f, as we also ex-
plain in section We use the term ‘neural architecture design’ in a broad sense to encompass
any process that contributes to the choosing of a neural architecture for a task. We use ‘archi-
tecture design strategy’ to refer to any piece of information that contributes to the choosing of an
architecture. The actual choice of architecture is specified via what we refer to as the ‘architecture
definition’, which is simply all the information required to uniquely specify an architecture. It is
the information given to e.g. a functional learning framework like TensorFlow to instantiate the
architecture in memory.

Fortunately, the functional-gradient paradigm has two massive advantages that are unprecedented
in the field of machine learning. First, because the learning formalism admits arbitrary functions,
there is an almost limitless capacity for research and innovation in the field of neural architec-
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ture design. Second, because functions can be used, to a large degree, for an arbitrary task, any
novel strategy may be applicable across a large fraction of the machine learning spectrum. These
advantages were the primary motivators behind us conducting this work.

Unfortunately, the blessing of flexibility is also a curse. While we have the power to choose
an arbitrary differentiable, parametrized function, neural architecture design is also as complex
as searching the space of those functions. And, even if we are content to build an architecture
from only popular design strategies and building blocks, there are still a large number of choices.
How many layers should there be? How wide should layers be? What activation functions and
normalization layers should be used? Even beyond the architecture, what training algorithm and
learning rate should be used?

In the next three subsections, we discuss what we argue are the main drivers behind neural architec-
ture design in the era of the functional-gradient paradigm, followed by a discussion of automated
design, which has become popular recently.

1.3.4 Historical bias in neural architecture design

Many of the architectures we use today closely resemble architectures that were developed decades
ago, such as CNN [LeCun et al., |1989] and LSTM [Hochreiter and Schmidhuber, 1997]. At that
time, the functional-gradient paradigm did not exist in the way it does today and the objectives of
architecture design were somewhat different. Consider a simple architecture with alternating linear
layers and activation layers. From a historical perspective, the linear layer originated from the ad-
ditive aggregation of incoming electrical potentials in biological neurons, as discussed above. The
activation layer originated from the response of those biological neurons to incoming potentials.
The connectivity structure resembles cascades of biological neurons. These architectures also re-
semble popular PGMs, such as the graphical Lasso [Friedman et al., 2008] or restricted Boltzmann
machine [Carreira-Perpinan and Bengio, 2005].

Historical influences are the first major driver in neural architecture design. In fact, the strength of
these historical influences suggests that popular conventions may be keeping architecture design
stuck in a “local optimum” to some degree. While proving or disproving this idea goes beyond
the scope of this work, it is worth noting that much of the recent progress in architecture design
has come by addressing new data types, such as graph data [Li et al., 2016, [Feng et al., 2020} L1
et al., 2020a], set data [Zaheer et al., 2017, Kim et al., 2020a, |Serviansky et al., |2020], sphere data
[Cohen et al., 2018 [Esteves et al., [2020] or mesh data [Bhatnagar et al., 2020, Pavllo et al., 2020],
or has been domain-specific. Out of the thousands of architecture design strategies and building
blocks that have been proposed in the last decade, only a handful have attained widespread use
across domains and data types, including batch normalization [loffe and Szegedy, 2015], skip
connections [He et al.,|2016a] and attention [Cheng et al., |2016]. Yet even the usefulness of those
strategies has not been fully explained.
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1.3.5 Programs = Functions, and the importance of computational efficiency

Machine learning is a computational discipline. The practical goal is to create a pipeline of pro-
grams that transforms raw data into useful information. Each program in this pipeline consumes
some kind of input and produces some kind of output. Hence, these programs can be abstracted
as mathematical functions. All we need to do is replace floating-point data with real values. The
output of the program, up to rounding error, is then the same as the output of the function. Because
of this duality, oftentimes machine learning models and training algorithms are developed as math-
ematical constructs first and then translated into programs. This can have a major drawback. The
space of functions we can reason about mathematically is very different from the space of programs
that can be tractably executed on a machine. PGMs are a prime example of this. Because they orig-
inate from probability theory, the mathematical formalisms involved in PGMs often involve, for
example, expectation operators over intractable continuous distributions. In the heyday of PGMs,
creating programs that sufficiently approximate those operators was a massive research effort
[Murray et al., 2006, Murphy et al., [1999]. Another example is a machine learning field called
spectral algorithms, which involves eigenspectrum operators applied to potentially enormous ma-
trices. In the functional-gradient paradigm, the tension between the mathematical and computa-
tional is largely resolved by construction. Because formalisms in this paradigm can use arbitrary
functions, we have the ability to choose functions that trivially correspond to programs that can be
efficiently executed on a machine. This ability is a core reason for the success of the paradigm.

Computational efficiency is the second main driver in neural architecture design. Linear operations,
such as matrix multiplication and convolution as well as elementwise operations, can be efficiently
implemented using specialized hardware such as GPUs [Raina et al., 2009, Kwon et al., 2020].
Highly optimized implementations exist for those operations [Zhang et al., 2018b]. Composing
simple operations, such as addition, multiplication, maximum / minimum or exponentiation, en-
ables efficient gradient computation with a computational complexity that is generally less than
thrice the computational complexity of the network evaluation itself through a process called au-
tomatic differentiation [Baydin et al., 2018, Bolte and Pauwels, 2020]]. Thus, these compositional
architectures make full use of the extraordinary power of gradient methods. At a cost of less
than three evaluations, we can approximate the value of f in an entire region around the current
parameter value with the local linear approximation defined by the gradient.

1.3.6 “Designing neural networks is a dark art.”

The statement in the heading of this subsection was a popular sentiment that was echoed in the ma-
chine learning community until not many years ago. It was motivated by the large and seemingly
unpredictable variations in architecture performance based on the design choices that were made.
Hence, these choices were made based on experience by deep learning practitioners.

There have been a few general design guidelines: avoid vanishing / exploding gradients [Bengio
et al., 1994, He et al., 2015] Glorot and Bengio, 2010, Pascanu et al., 2013, Schoenholz et al.,
2017], use an appropriate depth / width [Bresler and Nagaraj, 2020, Giihring et al., 2020, Nakkiran
et al., 2020, d’ Ascoli et al., 2020], and, recently, choose a network “on the edge of chaos” [Poole
et al.,|2016, Schoenholz et al., 2017, Xiao et al.,|2018, Chen et al., 2018, |Yang et al., 2019]]. The gist
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behind these guidelines is often that an architecture should have an appropriate model complexity
so that it neither underfits nor overfits nor becomes untrainable. For example, width is associated
with the dimensionality of the parameter, which is a traditional measure of model complexity.
These guidelines have remained somewhat vague and circumstantial because (i) there are no well-
defined, agreed-upon metrics that measure concepts like exploding gradients and overall width
in practical situations; and (i1) while prior research presented evidence that these guidelines lead
to success in certain situations, their generality is unclear. For example, empirical validation of
research in neural network analysis often occurs on only a single activation function (e.g. |Glorot
and Bengio [2010], Balduzzi et al.|[2017]], |Xiao et al.| [2018]], Schoenholz et al.| [2017], Yang and
Schoenholz| [2017], Labatie [2019]], [Lee et al. [2020a]]). Informal concepts like covariate shift
[Ioffe and Szegedy, |2015] or signal propagation [Poole et al., 2016] often remain undefined.

“Trial and error” is the third main driver in neural architecture design. The success of deep learning
can be significantly attributed to the growth of the number of neural architectures that have been
found to perform well through trial and error and that exist in the public domain. The prevailing
wisdom among practitioners is to fit a novel task to an existing architecture as much as possible.

1.3.7 The strengths and limitations of neural architecture search (NAS)

A major recent development in neural architecture design is the emergence of ‘neural architecture
search” (NAS). The basic and original formalism for NAS is as follows. (i) A number of architec-
tures are trained on a training set and their error is evaluated on a validation set. (ii) A meta-model,
trained via e.g. Bayesian optimization or reinforcement learning, attempts to predict the validation
error of an architecture from its definition. (iii) The meta-model is used to suggest new architec-
tures to train, taking into account both exploration and exploitation. Finally, steps (i1) and (ii1) are
repeated, ever-expanding the pool of trained architectures [Snoek et al., 2012, 2015, [Springenberg
et al., 2016, Zoph and Le, 2017/, Baker et al., 2017]. Of course, this formalism is very expensive.
Generating a single datapoint for the meta-model involves training an entire architecture. Recent
efforts have increased the efficiency of NAS in various ways: parallelizing architecture training
[Falkner et al., 2018, Wu and Frazier, |2016]; sharing parameter components between different ar-
chitectures [Shin et al., 2017, Pham et al., 2018, Liu et al., 2019, Shi et al., |2020, Wang et al.,
2020b, [White et al., 2020]; terminating training runs that do not appear promising early [Li et al.,
2017]]; taking into account performance on similar datasets [Feurer et al., 2015]]; predicting the
learning curve [Klein et al., 2017]; learning an embedding for the architecture definition [Zhang
et al.,[2020b, Letham et al., 2020, |Yan et al., 2020]; training the meta-model with labels of varying
fidelity [L1 et al., 2020b]; using the meta-model itself to generate “pseudo-data” [Luo et al., [2020];
using architectures trained in parallel to supervise each other [Peng et al., 2020] - just to name a
few.

NAS has had a significant positive impact on the performance of practical machine learning sys-
tems. There has been a migration away from architectures that were entirely manually designed
(i.e. without computation) or found through random search or grid search [Bergstra and Bengio),
2012]]. The success of NAS is exemplified by the fact that the terms ‘neural architecture design’ and
‘neural architecture search’ have recently become somewhat synonymous in the community. How-
ever, conceptually, NAS is neither built for nor capable of exploring the space of all differentiable

47



functions. NAS conducts a search for a local optimum in architecture space in a small neighbor-
hood around the manually designed architectures that were used before the advent of NAS. The
need for manual design is therefore not greatly alleviated by NAS. (This does not even take into
account the need to manually design a NAS algorithm.) A strength of NAS is that it is built on top
of the functional-gradient paradigm and can handle arbitrary network functions. The downside of
treating networks as black boxes is that NAS yields few qualitative insights that feed back into the
manual design process. The popularity of black-box approaches also underscores the lack of prac-
tical guidelines that could be used to inform the search. Finally, we note that there is an inherent
tension between the efficiency and flexibility of NAS. Infusing the search with gradient informa-
tion [Maclaurin et al., 2015, Larsen et al., 2012, |Arjovsky et al., 2016a, Liu et al., 2019] increases
its power but also restricts it to well-behaved, continuous, finite-dimensional search spaces, as op-
posed to the heterogeneous spaces that can be explored by basic NAS [Hutter et al.,[2011]]. Sharing
parameter components between different architectures requires them to be sufficiently similar so
that such sharing is meaningful [Shi et al., 2020]].

1.3.8 Summary

Neural architecture design harbors great possibility but also great challenge. The success of neu-
ral networks, which is based on gradient methods, computational simplicity, design flexibility and
cross-task generalization, stands in contrast to the lack of explanatory, well-defined design guide-
lines as well as a general lack of understanding of why certain architectures perform the way they
do. Hence, deep learning practitioners often fall back on anecdotal experience, convenience and
black-box search when choosing architectures.

The more abstract neural networks became, the more success they had. Therefore, we believe that
by reducing the focus on the historical view of neural networks as cascades of computational units
and increasing the focus on the purely functional view, we can build towards a more powerful
theory of architecture design. We believe this work is a small step in that direction. Our flagship
design guideline, the NLC, is based entirely on the network function and is independent of the
layer representation. As a consequence, it can be applied to arbitrary feedforward networks. At
the same time, it is a meaningful architecture property that explains its generalization behavior.
While much of our work is still rooted in the concepts of layers, weight matrices and activation
functions, throughout this work we empirically investigate a wider range of architectures than
the vast majority of prior work. See chapter (3 We put a similar emphasis on generality in our
theoretical work. Hence, we believe that a large fraction of our results convey valuable lessons
about the general class of feedforward networks and beyond, rather than only specific designs.

1.4 Our approach: zero-shot architecture design (ZSAD)

Because the search space of possible architectures is enormous, we cannot train them all. We
cannot even evaluate them on a single input for a single parameter value, or even specify them in
code. All we can hope to do is to think about a modest number of architectures, and to use our
understanding of deep learning to select an even smaller set for further analysis. Hence, inevitably,
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Zero-shot architecture design

Definition 1. ‘Zero-shot architecture design’ (ZSAD) is any process that con-
tributes to the choosing of a neural architecture for a given task based on gen-
eral, predictive, explanatory and ideally well-defined principles that go beyond
the imitation of specific designs or the use of specific building blocks that have
exhibited high performance in the past; and that does so without training ar-
chitectures, without utilizing the properties of specific previously trained net-
works and without heavy computation that mimics the effect of training. We
term such a general, predictive, explanatory and ideally well-defined principle
a ‘ZSAD guideline’.

Figure 1.2: Definition of zero-shot architecture design and ZSAD guideline.

the manual stage of architecture design is a critical stage. The goal of this work is to develop and
advocate an approach to manual design that is as sound, principled and well-reasoned as possible.
Similarly, we advocate such an approach to the process of architecture design research itself.

Once something has a name, it takes on a different dynamic. So we give our approach a name:
‘zero-shot architecture design’ (ZSAD). We define it in detail in figure above.

Of course, this definition is not meant to imply that we should choose a final architecture without
NAS for any given task. However, even if we do not manually choose an architecture, it is critical
that we choose the right NAS algorithm, and that we choose the right architecture space to search
with NAS. Before we write even a single line of code towards any deep learning system, we must
make sweeping decisions about what kinds of architectures or training protocols to consider. ZSAD
represents a framework for making these decisions not just based on “what has worked before”,
but also based on “general, predictive, explanatory and ideally well-defined principles”. Of course,
the boundary between ZSAD, NAS and other types of architecture design is fuzzy and subjective.

The ideal outcome of ZSAD can be viewed as being able to predict the performance of an ar-
chitecture after training, based only on the definition of the architecture and task, with minimal
computation or side information, in a way that yields qualitative insights that improve the efficacy
of the manual design stage. Of course, this outcome is more of an ideal than a practical milestone,
and so we must be content with attempting to come as close to it as possible, and to put up with a
certain amount of subjectivity in our assessment of how close we have actually come.

When we say that ZSAD aims to predict ‘performance’, we include any desiderata that may exist
for the machine learning task in question under the term performance. For example, we include
computational efficiency, privacy or adversarial robustness under this umbrella. Reasoning about
all those properties is valuable. In this work, we focus on supervised classification. The core
aspect of performance in this setting is generalization, which is usually measured via test error in
a research context. In this work, we focus on predicting test error after training, and sometimes on
predicting training error after training. Going forward, we will generally use the term performance
in this more concrete and limited sense, and correspondingly use ZSAD to refer to principled
architecture design for the purpose of generalization and trainability. Correspondingly, we also
restrict our discussion of existing guidelines to those objectives.
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1.4.1 What is architecture performance?

1.4.1.1 Architecture performance modulo training algorithm

We can already see a major problem with the above plan. A neural architecture does not have
an inherent performance after training. Because training a machine learning model is an intricate
process, almost all training runs lead to a network that has not learned anything. At the other
extreme, among the set of all possible training algorithms that could be dreamt up, there is probably
one that would find the global optimum in parameter space with a single iteration by sheer chance,
and we know that these global optima tend to perform much better than networks commonly found
with gradient methods [Hinton et al., 2014}, Tian et al., 2020].

The only practical way to measure post-training performance of an architecture that can be seen
as “inherent” to the architecture is the following three-step process. (i) Choose a set of training
algorithms that are representative of the state of the art in neural network training. (i1) Conduct
an exhaustive search over key hyperparameters of those algorithms via independent training runs,
obtaining validation error values in the process. (iii) Evaluate the test error after the training run
that attained the least validation error. (Here we assume that performance corresponds to test
error.) Luckily, the functional-gradient paradigm uses training algorithms that are either SGD or a
simple variant of SGD, and architectures tend to attain somewhat similar error levels across these
algorithms (see also section 4.4.1)). The only critical hyperparameter that these algorithms have
which has no agreed-upon value is the learning rate. However, the importance of performing an
exhaustive search over the learning rate cannot be overstated. The lack of independent, exhaustive
tuning of hyperparameters like learning rate has been a significant hindrance to making robust
comparisons between different architectures and studies in the deep learning community. While it
is impossible to quantify the extent of this problem exactly, via correspondence with authors and
via replication, we know of two well-known analytical deep learning papers whose results have
been significantly impacted by this problem. We note that there has been a recent push towards
comparability in the NAS community [Yang et al., 2020, [Zela et al., 2020, Dong and Yang, 2020,
Yu et al., 2020].

In this work, we ensure exhaustive learning rate tuning for all experiments. We investigate the im-
portance of learning rate in section [6.6]and discuss it in section Throughout this work, when
we reference “architecture performance”, we usually speak of the test or training error attained
when training with SGD or momentum using the learning rate that yielded the best validation, test
or training error depending on context.

It is important to note that even conducting an exhaustive search over learning rate or other hy-
perparameters does not allow us to estimate the actual global error minimum across a continuous
hyperparameter space. This is due to the sharp valley problem that we discuss in section [3.5.9
In the case of learning rate, we search over a geometric sequence of values with spacing factor
between 3 and 1—3?. This kind of spacing factor has generally been found to yield a robust and
representative estimate of the error minimum with high probability.
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1.4.1.2 Architecture performance modulo data

In the same vein as the training algorithm, the data is a major driver behind performance. Be-
cause signal is rare in the real world, any architecture trained with any algorithm is likely to not
generalize at all. Even among datasets that are well-understood, we might reasonably expect very
different performance levels from one dataset to another. When distinguishing cats from planes,
we might desire near-perfect performance. When predicting stock price movements using only
information that is publicly available to market participants, a 49% test classification error might
be outstanding. Finally, no machine learning model performs equally well on all tasks.

In this work, we aim to develop principles for ZSAD that apply across datasets and task domains
while being themselves as data-independent as possible in their formulation. At face value, this
appears to be a contradiction. Without reasoning about the data, how can a guideline account for
the influence of that data on performance? To reconcile this, we have to adopt a “relative” view
of performance for the purpose of ZSAD. For example, we can assess performance relative to the
performance attained by the best architecture for a task that is known, relative to the performance of
random guessing, or we can consider the performance ranking of all architectures trained on a task.
Using this approach, almost all results we obtain in this work are highly consistent across three
different datasets. In section {.5]and throughout chapter [5) we perform an analysis that provides
an explanation for why it is possible to find strong patterns in architecture performance that span
across datasets. In fact, we identify several conditions that define a class of datasets on which
consistent patterns of architecture performance can be expected in section [5.2.2] Throughout this
work, when considering architecture performance without reference to a specific dataset, we mean
the relative performance attained on the three datasets we studied in particular and the relative
performance attained on the class of datasets described in section[5.2.2]in general.

Of course, we do not claim that data-dependent ZSAD is of lesser importance than data-
independent ZSAD. For example, explicitly infusing a model with information about known in-
variances present in a given dataset is clearly one of the most important requirements for attaining
success with deep learning. We argue that those questions are somewhat orthogonal to the ques-
tions we study in this work, which build on statistical properties of datasets that are common across
domains and tasks.

1.4.1.3 Architecture performance modulo initial parameter value

Another important driver of performance after training is the value taken by the parameter before
training. This initial value is a gradient method hyperparameter and not specified by the training
algorithm. In practice, the initial parameter value is drawn from a distribution known as the param-
eter initialization scheme. A key property of popular initialization schemes, as we also discover
throughout this work, is that they cause the network to behave in almost exactly the same way
no matter the specific initial parameter value drawn from them. Hence, when considering per-
formance, we can largely abstract away that specific value and focus on the initialization scheme
only.

We then perform what is essentially a verbal sleight of hand. We simply consider the initialization
scheme as part of the architecture definition. When we discuss the performance of an architecture,
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we already have a specific initialization scheme in mind. In practice, the initialization scheme
is generally specified together with other architecture properties like depth or activation function.
Hence, thinking of the initialization scheme as just another architecture property makes practical
sense.

1.4.2 ZSAD guidelines
1.4.2.1 Framing ZSAD guidelines: encapsulated properties of the randomly initialized state

We defined ZSAD to be based on “general, predictive, explanatory and ideally well-defined prin-
ciples”. We refer to such a principle as a “ZSAD guideline’, as we also define in figure In
this work specifically, and often in architecture design research in general, ZSAD guidelines can
be boiled down to an architecture or network property that is (said to be) influencing performance.
Consider guidelines referenced in section e.g. “avoid vanishing / exploding gradients”,
“choose an architecture on the edge of chaos” or “use an appropriate depth”. Here, “vanishing /

2 (13

exploding gradients”, “edge of chaos” and “depth” refer to more or less well-defined properties

2 (3

of an architecture or network. Further examples include “minimize dying ReLUs”, “avoid local
minima in the loss surface”, “ensure feature diversity”” and “maximize classification margin”. The
properties are “dying ReLLUs”, “local minima in the loss surface”, “feature diversity” and “classifi-
cation margin”. The words “minimize”, “avoid”, “ensure” and “maximize” indicate that the former
two properties are negative / harmful / that their value or degree of presence should be minimized
/ that their presence should be prevented, and that the latter two properties are positive / helpful /
that their value or degree of presence should be maximized / that their presence should be induced.
When we merely want to express that the value of a property is important, we say e.g. “use an

appropriate width”.

We base our ZSAD guidelines on properties throughout this work, and we refer to the guideline
and the encapsulated property interchangeably. For example, “the guideline of ‘avoid (the property
of) neuron bias’ ” means the same as “the neuron bias guideline”.

Because ZSAD does not involve training, the property encapsulated by a guideline must not be
a property of a trained network. For example, “avoid exploding gradients after training” is not a
ZSAD guideline, but “avoid exploding gradients before training” is. “Avoid dying ReLUs during
training” is not a ZSAD guideline, but “avoid architectures that are prone to having their ReLUs die
during training” might be, depending on whether it can be measured in a meaningful way before
training. In this work, we consider properties for ZSAD that are either defined directly in terms of
the architecture definition, or in terms of the architecture’s initial state. In the latter case, we relate
the property back to the architecture itself via relative invariance to the random parameter draw as
explained in section [1.4.1.3] We further discuss pre- vs post-training properties below in section

4.3l

1.4.2.2 Data-independence of guidelines

In section [1.4.1.2] we outlined how it is possible to conceptualize architecture performance in a
data-independent way. We also stated that we aim to develop ZSAD guidelines that are as inde-
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ZSAD guideline: framing and utility criteria

We frame a ZSAD guideline as postulating that a certain property of an architecture or an ar-
chitecture’s randomly initialized state is related to its performance after training. We assess the
guideline’s utility for ZSAD based on the degree to which that property fulfills the criteria below.

1.

10.

Well-definedness: The property is a concrete metric which yields a specific value, such as a
real scalar or truth value, given a network or architecture.

Computability: The property can be determined in a way that is easy and cheap to compute,
and easy to implement in code.

. Predictiveness: The property is predictive of architecture performance after training, where

architecture performance is conceptualized as in section [1.4.1

Predictability: The property can be simply and instructively determined or estimated from
the architecture definition.

. Controllability: It is possible to minimally modify a given architecture to change the prop-

erty without changing other important properties. This in turn changes performance, which
establishes the property as causal for performance.

Simplicity: The property is conceptually simple and easy to understand.

. Meaningfulness: The property is deep and meaningful. It does not just predict performance,

but also explains it.

. Theoretical grounding: The property is closely related to important theoretical frameworks

of deep learning in a way that enhances the understanding of both the property and that
theoretical framework, and facilitates further analysis.

. Synergy: The aspects of architecture performance captured by the property are independent

of other guidelines. It is possible to consider guidelines jointly to predict performance even
more accurately.

Generality: The above criteria hold across a wide range of architectures and tasks. Fur-
ther, the property as well as the validity of the above criteria cannot be easily changed by
manipulating irrelevant or superficial aspects of the architecture or wider learning pipeline.

Figure 1.3: Our framing of ZSAD guidelines and our criteria for assessing the utility of a guideline.
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pendent of data as possible. Concretely, this means that the property encapsulated by the guideline
should ideally depend only on the architecture definition or the initial state. In general, we do not
reach this level of independence. In fact, many of our encapsulated properties are defined explicitly
in terms of an input distribution in addition to a network, including the NLC (e.g. section 4.2} [6.2]
[6.4). Other properties, while not explicitly referencing an input distribution, cannot be evaluated
without one (e.g. section[6.1}[6.5)). It turns out that this “problem” is not severe in practice, because
our encapsulated properties are largely invariant to structure present in practical input distributions,
being sensitive only to their expectation and covariance, as well as being invariant to the sample
used for statistical estimation, at least in the initial state. We show this empirically for the NLC

in section 4.4.2] and theoretically for the NLC and many other guidelines via mean field theory in
sections [3.3and

1.4.2.3 The utility of a ZSAD guideline

The ZSAD concept is somewhat vague. This vagueness is especially suboptimal for a concept that
is introduced specifically to combat the vagueness of architecture design research. To mitigate this
issue as much as possible, we formulated a list of 10 ‘utility criteria’ for ZSAD guidelines, and
more specifically for the properties encapsulated by guidelines. They are given in figure[I.3] Of
course, while these criteria add detail, they are themselves somewhat fuzzy and subjective, and
they can hold to varying degrees. We use the criteria not just to validate ZSAD guidelines, but
to determine whether any given architecture design strategy meets the threshold of being a ZSAD
guideline. Again, unfortunately, this is a subjective judgment.

Our flagship guideline, ‘ensure 1 < NLC < 5’°, based on the nonlinearity coefficient, fulfills all
criteria to a significant degree. Hence, we argue that it is state-of-the-art among ZSAD guidelines.
We summarize our results for the NLC in terms of the utility criteria in section [I.2.1]

1.4.2.4 Determining the value of network properties - towards well-definedness

To be able to apply a ZSAD guideline, we must determine the property that the guideline encap-
sulates. We must give it a ‘value’. For example, consider the property ‘parameter dimensionality’.
If the parameter is indeed a vector, its dimensionality can be unambiguously determined. If we
believed, say, that an architecture with parameter dimensionality over 1 million exhibits high per-
formance, we can in fact determine the value of the parameter dimensionality of an architecture
and then apply the guideline. In contrast, say we believed that a “chaotic” architecture exhibits
high performance. If we cannot determine whether a given architecture is chaotic, chaos is not a
helpful property. The ability to determine the property is implicit in our discussion of ZSAD guide-
lines (see e.g. utility criteria [2] 3] 4] and [5). When we say e.g. that a “property can be changed”,
we mean that its value can be changed. That value can be e.g. binary when indicating whether the
property is present (e.g. “uses ReLU”), real-valued (e.g. Lipschitz constant) or integer-valued (e.g.
parameter dimensionality).

Ideally, a property already comes with an inherent recipe for determining its value given an archi-
tecture. Again, parameter dimensionality, Lipschitz constant and “uses ReLU” have unambiguous
and unique values for typical architectures. We call such properties ‘well-defined’, which corre-
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sponds to utility criterion |1} In general, a well-defined property can be viewed as a function of
an object like an architecture or dataset that assigns the object a value. We call this function a
‘metric’.

Most existing ZSAD guidelines are not well-defined. While properties like “exploding gradients”
have a quantitative ring to them, there is no agreed-upon way to determine whether a network
has exploding gradients. Other properties like depth are thought of as specific values in certain
contexts, like simple feedforward networks with alternating linear and activation layers, but do not
have a meaningful general definition as we explain in section [2.3.1

Of course, when a ZSAD guideline is applied, some value(s) must be chosen for it. In many
research studies, these values are made up on the fly by authors. The impact that a specific recipe
for determining the property has on the results of a scientific study is often not discussed. Worse,
the recipe is often not even mentioned. This leads to massive problems, as we discuss in chapter 9]
and summarize in section|[I.2.5] Evangelizing well-definedness as a standard in neural architecture
design and analysis is one of the core goals of this work.

Of course, reaching the standard of well-definedness is challenging. In order for a metric to become
a universally-accepted guideline, it must be shown to have truly broad applicability. A fuzzy
concept like “exploding gradients” can be re-interpreted from situation to situation to make it
appear relevant. A concrete metric, on the other hand, is less “flexible”. It can actually be shown
to fail to predict performance in a given situation. While this is essential for scientific validity, it
also means that careful and extensive study is required to find “the right metric” for capturing a
phenomenon. We argue that this work establishes the NLC as a core measure of model complexity
in deep learning and a key causal, explanatory driver of architecture performance. The fact that this
work is so long, and such a large fraction of it is dedicated to one guideline, the NLC, underscores
the effort involved in finding a metric. It took us several iterations of analysis to arrive at the
present definition of the NLC.

While a large fraction of this work is dedicated to the NLC, we also introduce other ZSAD guide-
lines and flesh out existing ones. For none of them do we get to the point of defining them entirely
in terms of a metric. However, for some guidelines (e.g. neuron bias), we make recommendations
for what we consider are advantageous ways to measure them (e.g. LBIAS). We hope that future
work can firmly establish those measures or develop better ones.

Even if we do not define a ZSAD strategy via a concrete metric, we at least ensure that an explicit
definition is given, which goes beyond many other works.

1.4.3 ZSAD is not a ‘“‘generalization measure’ - on the pre-eminence of the
initial state

As explained at the end of section [[.4.2.1] it is crucial that the property encapsulated by a ZSAD
guideline is not a property of a trained network. As mentioned, we consider properties of the
architecture as well as properties of its randomly initialized state. Of course, the property we
ultimately care about, which is performance, is a property of the architecture’s final state after
training. One of the key challenges of ZSAD is to bridge the gap between the trained and untrained
network. This is often simply done by observing that certain properties, like the NLC, are unlikely
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to change dramatically during training, and changes that do occur tend to be uncontrolled. As a
general trend, we observe that it is advantageous for properties that we require after training to also
hold before training so that a better trained network can be found by gradient methods. Of course,
some properties, like parameter dimensionality, are fixed throughout training by definition.

We find it important to distinguish zero-shot architecture design from a sub-field of deep learning
research that might be termed “generalization measures”. Jiang et al. [2020],|Dziugaite et al.|[2020]
are recent overview papers. Studies in this field estimate or bound neural network generalization
either empirically, via metrics based on e.g. Jacobian singular values or classification margin, or
theoretically, through frameworks like VC-dimension or PAC-Bayes. Crucially, they do this for
networks that were already trained, and they make use of the final parameter value. In ZSAD, we
attempt to predict the performance of an architecture after training across training algorithms and
potentially across datasets given access only to the architecture definition, but without conducting
training or knowing the results of training. (See section for details.) The problem we study
is harder and more practical. ZSAD can directly inform the manual architecture design stage. In
contrast, having access to a theoretical estimate of generalization is much less meaningful after
training, at which point it is possible to actually compute test error.

Going forward, when we refer to ‘predicting’ a final state property such as test error, we always
imply that the prediction was made before training.

There is some similarity in terms of study design between the generalization measures field and
this work. For example, Jiang et al.| [2019], Novak et al. [2018] compare metrics that have some
similarity to the NLC, evaluated in the final state, against performance for a range of architectures
and training hyperparameters. Showing that metrics that have clear conceptual ties to error and loss
actually empirically correlate with error and loss when evaluated on the very same network with
the very same parameter value is not entirely satisfying. For example, error is clearly related to
loss (else gradient-based training wouldn’t work) and loss is clearly related to gradient magnitude
(imagine scaling the loss function with a constant). Hence, showing that loss gradient-based met-
rics are related to error in the final state is a very different thing from showing that Jacobian-based
metrics like the NLC, when evaluated in the initial state, are predictive of error.

1.4.4 Summary

Zero-shot architecture design (ZSAD) is an approach and a framework for architecture design
based on general, predictive, explanatory and ideally well-defined principles. It empowers deep
learning practitioners to make informed design decisions before any code is written, as architec-
tures that can be predicted to perform badly can be eliminated from consideration a priori, which
can significantly shorten the trial-and-error and NAS phases of deep learning deployment. We fo-
cus specifically on discovering patterns in test and training error that do not strongly depend on the
data or the task domain. With this work, we hope to evangelize research practices like expressing
ZSAD guidelines via well-defined metrics; addressing a range of utility criteria that are important
for practical relevance; independently and exhaustively tuning key hyperparameters like learning
rate to enable robust comparison; and empirically investigating a wide range of architectures.
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Chapter 2

Background, notation, terminology and
conventions

In this chapter, we build the core concepts that underpin this work from first principles: gradient-
based training, neural networks, architecture design, etc. We define the building blocks of neural
architectures and deep learning pipelines that feature in this work and are most popular in practice.
We explain core terminology and define key notation that is used throughout this work.

We believe that reading this chapter enables a better appreciation of some of the nuances that arise
throughout this work and in architecture design research in general. As such, while this chapter
is primarily geared towards deep learning novices, we believe there is value for most readers. We
provide a summary of the most important notation, terminology and conventions from chapters [I]
and [2] in section [2.7] that should enable advanced readers to easily follow the technical material
presented in later chapters as well as chapter [l This summary contains those definitions from
chapters [1| and [2| that (1) may be used in later chapters and chapter [1| without further explanation
and (i1) are not widely agreed-upon in the machine learning community.

2.1 Machine learning

On a high level, ‘machine learning’ is about extracting useful information from raw data. It en-
compasses a wide range of tasks and settings where a wide range of questions are answered based
on a wide range of data.

In this work, we focus on the simplest, most common and most well-studied setting: ‘supervised
prediction’. In the prediction setting, the goal is to use a ‘model’ f to compute a ‘prediction’ or
‘output’ f(x) from an ‘input’ = from a set X. f(x) should be close or equal to the ‘label’ y from
a set Y, which is the true value of some desired piece of information about the input. f can be an
arbitrary function defined on X. (Note that throughout this work, we use the term ‘input’ to refer to
x specifically as well as to a generic function or program input. We use the term ‘output’ to refer
to f(x) specifically as well as to a generic function or program output. We hope this is sufficiently
clear.)
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Example. In ‘image classification’, we are given images depicting an object of a certain type, such
as a cat, car or tree. The goal is to predict the object type from the image.

x The image

X The space of images considered, e.g. {0, 1}64*3%152 for 64-bit images with S; x S, pixels
with 3 color channels

y The true type of the object present in the image
Y The set of object types considered, e.g. {cat, dog, tree, plane, car}

f A function taking an image as input and returning an object type or a distribution over object
types as output

f(z) The type assigned to x by f, or the distribution over types assigned to x by f

Example. In ‘sentiment analysis’, we are given a piece of text describing a service or product. The
goal is to predict how positive or negative the author’s attitude towards that service or product is
based on this piece of text.

x The text segment

X The space of text segments considered, e.g. {0,1,2,..,255}1% for ASCII text segments of
100 characters

y The true sentiment score, e.g. +1 for entirely positive sentiment and -1 for entirely negative
sentiment

Y The set of sentiment scores considered, e.g. [-1, 1]
f A function taking a piece of text as input and returning a sentiment score as output.

f(x) The sentiment score assigned to = by f

In general, we desire a model f that exhibits ‘high performance’. We use this term in a broad
sense. Depending on the task, it can cover anything from computational efficiency and privacy to
adversarial robustness. The core aspect of performance for a prediction model is whether the model
returns a prediction close to or equal to the label for a large number of inputs. A model exhibiting
high performance is a function that reliably returns useful information, like the sentiment of text
segments, which can then be used for a downstream application.

However, the automation of the prediction process is not yet considered machine learning. In
classical artificial intelligence, decision rules that lead to accurate predictions were explicitly and
manually specified. For machine learning to occur, the generation of the model itself must also be
automated. Specifically, machine learning requires the running of an algorithm called the ‘training
algorithm’. This algorithm takes in data and attempts to find a high-performing model, which it
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returns as its output. We denote the training algorithm by .A. The process of running the training
algorithm is called ‘training’ or ‘learning’.

In supervised prediction, we are given a ‘dataset’ D of ‘datapoints’ (z,y). Each datapoint consists
of an input and label. In the image classification example, a dataset consists of images together
with their respective true object type labels. In the sentiment analysis example, the dataset consists
of text pieces together with their respective true sentiment scores. Because we can evaluate the
performance of a model f on D, we can search for a model that exhibits high performance on
D. The rationale behind this is the assumption that if f makes accurate predictions on D, it will
also make accurate predictions on other inputs from X. In general, this is of course not true.
There is no inherent guarantee that what works on D specifically works on X in general. For a
counterexample, we can simply imagine a situation where the label has no statistical relationship
at all with the input. For example, if we were to try to predict the value of an element in a sequence
of independent random digits from its position in the sequence, no matter what (spurious) patterns
we might find from studying a finite number of example digits, extrapolation would inevitably fail.

However, in certain situations, the input and label have a statistical relationship that enables extrap-
olation. The simplest and by far the most common such relationship is continuity: If two inputs
2 and z? are similar, as measured by e.g. Euclidean distance, then so tend to be their labels y(*
an y?). For example, changing a single pixel in an image does not tend to change the object type
depicted. Changing a single character in a text does not tend to change the sentiment. Virtually
every practical model f makes use of this principle to some degree and would indeed return similar
outputs for inputs that are sufficiently similar. In general, whatever explicit or implicit strategy a
model uses for extrapolation is called its ‘inductive bias’. It is the responsibility of the machine
learning practitioner to select a training algorithm that generates models that have an inductive bias
that matches the statistical relationships present in the data at hand. The model has the property
of ‘generalization’ to the degree to which the accuracy of the predictions translates from D to X.
Conversely, the model has the property of ‘overfitting’ to the degree to which the accuracy of the
predictions does not translate from D to X. Finally, the model has the property of ‘underfitting” if
the accuracy does translate, but was not high to begin with.

When we say that there is a statistical relationship between input and label, we imply that, for
a given input, some labels are more likely to occur than others. This idea can be encapsulated
by a function that maps inputs to distributions over labels which mimics the natural process that
generates the data. For example, if the input is a gene sequence, we might conceptualize the distri-
bution over phenotypes that arises from each gene sequence as a function from gene sequences to
distributions over phenotypes. We term this construct the ‘true input-label function’. Commonly,
it is also reasonable to assume that this function is deterministic, i.e. that it maps inputs to labels.
In many applications in artificial intelligence, such as image classification and sentiment analysis,
situations where the label is ambiguous are rare. Going forward, we will assume determinism.

In this work, we focus on ‘classification’, the most common type of supervised prediction. Here, Y
is a discrete, finite set and inputs which share a label constitute a ‘class’. The most popular example
is image classification, as described above. Sentiment analysis can also be cast as a classification
task if we consider reviews with positive or negative sentiment as the respective classes. In contrast,
the setting where Y is a subset of a real vector space is called ‘regression’.

By far the most popular strategy for training in supervised prediction is ‘empirical risk minimiza-
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tion’ (ERM), which we focus on in this work. Here, a ‘loss function’ ¢ over the prediction and
the label is defined. The training algorithm then corresponds to an optimization algorithm that
searches for a model f from a ‘hypothesis space’ H for which the ‘loss’ is as low as possible.

A

f=A(H, ¢, D) %argminL Z 0(f(x),y)

fer | D| oD

We use ~ loosely here to denote, among other things, that the training algorithm cannot usually
solve the minimization problem exactly, that there may be no minimum, that there may be more
than one minimum or that there may be additional terms in the objective function (e.g. regulariza-
tion).

The idea behind ERM is that we gain some (negative) utility from each prediction made by the
model on D: if the prediction is accurate, we suffer little to no negative utility; if the prediction
is inaccurate, we suffer large negative utility. ERM attempts to minimize the total negative utility
suffered. Note that ¢ is often chosen not as the best estimate of the actual negative utility suffered
(if such a thing even exists), but to make optimization easier / possible. For example, in many
cases, an accurate metric of the negative utility suffered in practice is 0 when f(x) = y and 1
when f(z) # y. However, this metric is generally discontinuous as a function of f(x), which
makes optimization difficult. Hence, a surrogate continuous loss function is often used instead.
In contrast to the loss function, the metric that represents the best estimate of the actual negative
utility suffered is called the ‘error function’ e, which is often discontinuous. Of course, ¢ and e are
also identical in many situations.

We can estimate whether a given model generalizes well if we make the additional assumption that
the end goal is to minimize negative utility on datapoints drawn from some ‘data distribution” D
with support in (X x Y) as well as the assumption that the datapoints in D are drawn IID from
D. We call the marginal of D over inputs z the ‘input distribution’. We also use the symbol D
to denote the input distribution, as it is clear from context which distribution D refers to. (If the
expression containing D also contains y, it refers to the data distribution. If not, it refers to the
input distribution.) In discussion, we use the term ‘data distribution’ more generally to refer to
either or both constructs.

The ‘true error’ or ‘generalization error’ Fy. 1s then defined as follows.

Etrue(fu €, D) - E(:c,y)NDe(f(x)v y)

We will make the assumption of the existence of D from which the dataset is drawn throughout
this work. The simplest and most popular way to exploit this assumption is to split the dataset into
two shards in a uniformly random fashion. One of the shards is then used for ERM. That shard is
called the ‘training set’. The other shard is used to estimate the true error and is called the ‘test set’.
Specifically, the true error can be estimated via the ‘test error’, which is simply the error obtained
on the test set.

1

Etest(fa €, Dtest) - W
test
(

e(f(x),y)

a:,y) € Dyest
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By making weak assumptions about the distribution of e(f(x), y) induced by D, we can place the
true error within a frequentist confidence interval around the test error. By assumption / construc-
tion, the test set is independent of the training set and so the test error is an unbiased estimate
of the true error. In this way, it is possible to compare different models, which were perhaps ob-
tained from different training algorithms, using a single training and test set. In a practical research
context, in the supervised prediction setting, generalization is usually measured via test error.

However, if we were to choose the model with the lowest test error as our final model, we are again
left without an unbiased estimate of its true error. This is because if we choose between a large
number of models in this way, the resulting model will be biased towards having a test error that is
lower than its true error. To overcome this problem, a third shard is often carved out of the dataset,
called the ‘validation set’. Given multiple models, we can choose the best one by comparing the
‘validation error’ F\,;4, which is evaluated on the validation set analogously to the test error. Then,
finally, we can use the test error as an unbiased estimate of the true error of the chosen model. We
use the term ‘data shard’ to refer to any subset of the dataset, including the dataset itself, but most
often to refer to either the training set, validation set or test set. Below, we give a complete set of
definitions.

Metric definition 1. The ‘true error’ Ey., ‘test error’ Ei., ‘validation error’ Fy,;q, ‘training error’
Elain, ‘true 10ss’™ Lyye, ‘test 10ss’ Ly, ‘validation loss’ Ly,g and ‘training 10ss’ Ly, are

Eie(f,e,D) = E@y~pe(f(x),y)

Eeu(f,e,D) = E(wy)eDtesle(f(x) Y)
Evia(fie,D) = E@yepase(f(T),y)
Eiain(f, e, D) = E@yepae(f(2),y)
Lie(f: 6, D) = Ey~pl(f()y)

Les(f: 6, D) = Eyenl(f(2),y)
Lyaia(f, 0, D) = E@yepu(f(7),y)
Luin(f; 4, D) = Eyyenal(f(2),y)

Here, and throughout this work, we denote the mean over a finite set with the expectation operator.
A desideratum for loss functions is that they cause training to lead to low true error.

Throughout this work, we follow the formalism of using a training set for ERM and a test set for
evaluating the final model. Therefore, we use the term ‘performance’ largely as a synonym for test
error and sometimes as a synonym for training error, depending on context. For the purpose of
greater understanding, we are often also interested in training error.

Throughout this section, we have introduced several idealizing assumptions. In practice, labels are
not “true values”, but the outcome of some imperfect labeling process, such as human annotation.
Hence, by assuming these labels are correct, we are susceptible to learning models that mimic
the shortcomings of the labeling process. In general, datapoints contained in D do not have the
same distribution as datapoints the model will ultimately be deployed on. For example, the scenes
that appear in images and the words that appear in text change over time and from situation to
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situation. Also, there may be no such thing as a single correct label. For example, more than
one object might be equally prominent in an image. The author of a product review might have a
neutral stance. Finally, some datapoints may be partially missing from D). There is ample work
investigating the relaxation of these idealizing assumptions. Undoubtedly, many results we present
in this work would still be meaningful or could be easily generalized to these relaxed settings.
However, such an investigation goes beyond the scope of this work.

2.1.1 Program / function overloading

We have introduced a prediction model f as a function that takes inputs = and returns predictions
f(z). As we further explain in sections [1.3.5and [2.3.4 there is a duality between programs and
functions in machine learning in general. In addition to being viewed as a mathematical function
that maps elements of the set X to elements of the set Y, f can also be viewed as a computer
program that consumes inputs of data type X and produces outputs of data type Y. Similarly, the
test error iy can be viewed as the mathematical average of values e(f(x),y), or it can be viewed
as the floating-point computation that produces such an (approximate) average. Similarly, the
dataset D can be viewed as a finite subset of X or as a physical data collection stored on a machine.
Because conceptual development necessarily takes place in the realm of mathematics and practical
deployment necessarily takes place in the realm of computation, we are always confronted with
this duality.

Throughout this work, we will introduce a large number of concepts that exhibit this duality. We
will cope with this by overloading our notation and terminology. For example, when we write
“model” or f, we refer to both the mathematical and computational object at the same time. We
endow f with computational properties, such as runtime or memory requirement, as well as math-
ematical properties, such as gradient or convexity. For this to make sense in practice, we have to
assume that the program is a sufficiently close approximation of the mathematical object. This re-
quires, for example, that the rounding error induced by floating-point computation is not too large
and that expectations over distributions are computed over a sufficiently large number of samples.
In general, we will implicitly ensure this throughout the work. However, we will also explicitly
discuss this issue whenever the need arises, such as in sections and

2.2 Training with gradient methods

Over the decades, a type of training algorithm has emerged dominant: ‘gradient methods’. These
algorithms can be used to (approximately) solve general optimization problems of the form
arg minger F'(0), where F is a differentiable function of the ‘parameter’ 6 called the ‘objective
function’. 6 is an element of the ‘parameter space’ T, which is generally a subset of a real vec-
tor space. The algorithm starts with an ‘initial parameter value’ #(). It then proceeds iteratively.
At ‘iteration’ t, it takes the gradient of the objective function with respect to the parameter at its
current value %. It then uses this gradient to determine the ‘update’ 56® and then adds
it to the current parameter value to obtain the new value 0 = 9= 4+ 501 After T iterations,

we obtain the ‘final parameter value’ 6T which can be viewed as the best effort solution to the
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optimization problem.

The simplest gradient method is ‘gradient descent’. There, the update is a negative scalar multiple
of the gradient. Since [ is differentiable, if this multiple has small enough length, we are guaran-
teed F(®) < F(0®1). We are further guaranteed to converge to the globally optimal 4 if, for
example, F'is strongly convex and update lengths are chosen appropriately. More complex gradi-
ent methods might combine the current gradient with past gradients (e.g. Nesterov’s accelerated
gradient [Nesterov, |1983]) or second-order information such as the Hessian 6575 (e.g. Newton’s
method [Nocedal and Wright, 2006]).

To use gradient methods specifically as training algorithms that return models, we augment f with
a parameter ¢, which is generally a real-valued vector. Instead of having the training algorithm
choose f directly, we fix f and have the training algorithm choose only #. In the context of
empirical risk minimization, this yields

) 1
0 =07 = A(f,09 ¢, Dyyn) =~ arg  min —— 0(f(0,z),
(f wn) % arg_min |Dtram|(w§7_ (f(0,2),y)

Now, the hypothesis space H becomes T, the objective function F' becomes Ly, and the pre-
diction is simply f(6, ). Training a model with a gradient method is also called ‘gradient-based
training’. The degree to which it is possible for a model to achieve low training error by gradient-
based training is called its ‘trainability’.

If | Dyain| is large, computing the gradient is expensive. Instead of computing the exact gradient,
we can approximate it stochastically by replacing Dy, with a random subset. This subset is
known as the ‘batch’ B. If B® C D, is the batch used at iteration ¢, then the gradient used
at iteration ¢ is d%@ Y egyenn L(f(0U7D, x),y). Gradient methods using this approximation
instead of the exact gradient are called ‘stochastic gradient methods’. The batch is usually drawn
(approximately) uniformly at random, which yields an (approximately) unbiased approximation of
the gradient. The stochastic equivalent of gradient descent is called ‘stochastic gradient descent’
(SGD). In the case of non-stochastic methods, for consistency of notation, we write B®Y = Dyain
and say that that the batch equals the training set. If there is a sequence of iterations ¢,¢ + 1, .., ¢’
such that |B®Y| 4 |BUD| + . + |[B®)| &~ |Dyginl, then this sequence of iterations is called an
‘epoch’, indicating that each datapoint contributed approximately once on average to a gradient
computation during that sequence of iterations. If the size of the batch is equal to a fixed value | B|
in each i\%:ra]tion, and if that batch size divides the training set size, then we say an epoch contains
train

exactly B iterations.

Instead of a specific update, many gradient methods merely generate an ‘update proposal’ dpropt at
each iteration. The final update 0 is then some positive scalar multiple adpp6 of the proposal.
« is called the ‘learning rate’. In the case of gradient descent, the update is a negative scalar
multiple of the gradient, and hence the negative gradient is the proposal. While there are strategies
for finding a good learning rate for gradient descent, the algorithm itself does not specify it. It is
a ‘hyperparameter’. Oftentimes, whether a gradient method succeeds in solving the optimization
problem depends critically on using not just one effective value for o, but an effective value at
every iteration.
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2.2.1 How differentiable does f need to be?

The gradient method formalism, at first glance, requires f to be differentiable with respect to 6
for each value 6 can take. In practice, many models [ that are used with gradient methods are not
differentiable everywhere. A key strength of gradient methods is that even when batches are used,
it is not necessary to compute the exact gradient over the batch, but only a (further) approximation.
If the value of W for some (A~ z,y) is required during the running of the gradient
method, then it is enough to find a linear function lin(#) such that lin(0) approximates f (6, x) as
a function of 6 sufficiently accurately in a sufficiently large neighborhood of # = #*~1_ lin can
depend on (%Y 2, %). lin is a ‘local linear approximation’ of f. The gradient of lin can then
be used as a surrogate gradient for the purpose of the gradient method. Using the exact gradient
for the gradient method, lin becomes the tangent hyperplane of (6, z) at 9~ and so we have
lin(0) = F(0U~Y, x) + W (0 — 6T Of course, there is no guarantee that the tangent
hyperplane is a sufficiently accurate approximation of f in a sufficiently large neighborhood of
6“1 that meaningful progress can be made by the gradient method, nor is there a guarantee
that the tangent is the best local linear approximation for this purpose. We refer to the tangent
hyperplane as the ‘gradient-based local linear approximation’.

Throughout this work, we will use the notation and terminology of differentiability while under-
standing that our analysis generalizes smoothly to certain common non-differentiable contexts. We
discuss this issue in detail in section 2.6.11

2.2.2 Model Selection

The price we pay for using gradient methods is that we can only consider hypothesis spaces that
can be cast as a parameter vector space and a single model which is differentiable with respect
to the parameter. A search over such a space with a gradient method is often not sufficient
in practice. For example, consider the linear model fi;,(6,7) = 672 and the Gaussian model
foauss(0, ) = \/%ef%\leél\%‘ There is no clear way to cast the union of both parameter spaces
as a single parameter space that can be searched meaningfully by a gradient method. Therefore,
in practice, we are left with the challenge of selecting a model on top of selecting a parameter.
This process is aptly called ‘model selection’. The simplest strategy would be to enumerate a fi-
nite number of parametrized models, run a gradient method on each of them, and then select the
best-performing model-parameter pair via validation error. Of course, there are also much more
complex model selection methods that e.g. search over the model and parameter jointly, using a
gradient method as a sub-routine to update the parameter.

2.2.3 Hyperparameter tuning

In practice, there are often a plethora of hyperparameters that need to be set a priori, before the
training algorithm can begin. We have already encountered several of them. In the case of gradient
methods, we generally need to choose a model as well as a learning rate. We also need to choose
¢ and A°), Further hyperparameters arise due to the simple fact we can always embellish training
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algorithms with additional arguments, no matter how general or complex that training algorithm
already is. The machine learning community is always hard at work inventing new arguments.

Hyperparameters are often set manually. Any automated process for choosing hyperparameter
values is known as ‘hyperparameter tuning’. Model selection is a special case of hyperparameter
tuning that is concerned with choosing a model to supply to a gradient method. Of course, hyper-
parameter tuning can be a bottomless pit. There is no reason that an algorithm for hyperparameter
tuning should not itself have hyperparameters that need to be tuned by another algorithm and so
on. Eventually, we must manually conduct the highest level of tuning. (This fact alone shows that
there is no such thing as fully automated machine learning.) Furthermore, where does training
end and hyperparameter tuning begin? After all, both processes ultimately exist for the purpose of
making automated predictions. In general, if a gradient method is used in the process of training,
any computation associated with that gradient method is considered part of the training algorithm
and any computation beyond the gradient method is considered part of hyperparameter tuning.

We discuss our protocol for hyperparameter tuning in chapter [3] We largely focus on exhaustive
learning rate tuning.

2.3 Neural networks

The term ‘neural network’ is an elusive one and has been applied to seemingly disparate corners
of the machine learning spectrum. It originally stems from the neuroscientific concept of the same
name, but quickly took on its own meaning within the machine learning community. In section
[[.3.1] we present a brief overview of the history of neural networks. We argue that the most useful,
if imperfect, definition of a neural network in modern machine learning is as follows.

Definition 2. A ‘neural network’ is any model to which gradient methods can be applied.

We detail and argue this definition in section[I.3.2] Note that, in general, gradient methods can be
applied to constructs more complex than simple functions. They can be applied to functions with
multiple inputs and outputs, a variable number of inputs and outputs, functions with “memory”,
etc. As stated above, in this work we focus on supervised prediction, where the network generally
corresponds to a simple function where the single input, the single output and the parameter are real
vectors of fixed dimensionality. Such a network is termed a ‘feedforward network’. Throughout
this work, we often use the terms ‘neural network’ and ‘feedforward network’ interchangeably,
especially since the term ‘feedforward network’ does not have an entirely agreed-upon definition
in the community. Feedforward networks include fully-connected networks (section and
convolutional networks (section [2.4.2)), among others.

2.3.1 Neurons and depth

Beyond being a function, a neural network generally has additional structure. Specifically, it is
composed of a large number of simple operational units called ‘neurons’ that successively extract
useful information from the input. These neurons take as input (parts of) the network input as well
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as outputs of other neurons. Each input to a neuron is a scalar and the output of a neuron is a scalar.
If neuron A directly takes in the output of neuron B, we say neuron B is a ‘dependency’ of neuron
A. Hence, the neurons form a directed, acyclic graph in which neuron B is the parent of neuron A
if it is a dependency of neuron A. This graph is termed the ‘neuron graph’ and literally represents
a “neural network”.

A key property of neural networks is that neurons often form long ‘dependency chains’, i.e. some
neuron takes in the output of another neuron, which takes in the output of another neuron, which
takes in the output of another neuron and so on. This property is known as ‘depth’, and the length of
the longest dependency chain in a given network is known as the ‘depth of the network’. Networks
that are particularly deep are also known as ‘deep neural networks’, although the meaning of
the phrase “particularly deep” is highly subjective and situational. The strategy of applying a
deep neural network (or, really, any neural network) to a machine learning task is known as ‘deep
learning’.

In feedforward networks, the neuron graph is static and each neuron is evaluated exactly once, as
soon as all its dependencies are evaluated. In order to cast such a neuron graph as a model f, it
must take in an input z and return an output f(z). A network generally has a dedicated set of
‘input neurons’, which do not have parents in the neuron graph. To make a prediction for an input
vector x, each component of z is assigned to its corresponding input neuron. The network is then
‘evaluated’, i.e. each neuron in the neuron graph is evaluated individually when all its parents have
been evaluated. The evaluation of input neurons can be considered trivial. A network generally
also has a dedicated set of ‘output neurons’, which do not have children in the neuron graph. The
output f(z) is then a vector where each component is equal to its corresponding output neuron.

A simple network is given below.

zZ1 = —in

zg = e

z3 = cos(z1) +in
out = 2y + 29 %23

{in, 21, 29, 23, out} are the neurons. The longest dependency chain here is (in — 21,2y — 23,23 —
out), so this network has depth 3. However, we can already see the highly volatile nature of the
concept of depth, as we could simply define a different network as follows.

zZ1 = —in
29 = €7
z3 = cos(z1)
Z4 = Z3 + in
out = 21+ 20% 24

Compared to the previous network, the depth has increased to 4 but the network function has re-
mained the same. Further, the compiler might transform the programs implementing both networks
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into the exact same machine code. Hence, the concrete value of depth often depends on choices
which are quite arbitrary.

2.3.2 Training neural networks

In a modern context, neural networks are trained with gradient methods, though alternative algo-
rithms have been used widely in the past (section and are being developed at present (e.g.
Ngkland [2016], Dogra and Redman| [2020]], |[Launay et al.| [2020], |Podlaski and Machens|[2020]],
Ahmad et al.|[2020]]). To use gradient methods, we augment the network with a parameter 6. f is
then referred to as the ‘neural architecture’ or simply ‘architecture’, though the terms architecture
and network are interchangeable in many situations. Training then yields the network f(6"), ). In
general, the initial parameter value #) is drawn from a distribution called the ‘parameter initializa-
tion scheme’, and that distribution is usually specified with and considered part of the architecture.
Throughout this work, when we refer to choosing an architecture, we include in that choice the
parameter initialization scheme. The network f(A(?), x), as it exists at the beginning of training, is
known as the ‘randomly initialized state’ or simply ‘initial state’ of the architecture and f (67, z)
is known as the ‘final state’. We refer to a singular execution of a training algorithm that transforms
an initial state network into a final state network as a ‘training run’.

2.3.3 Layers

In addition to having neurons, neural networks have ‘layers’. A layer is a group of neurons. The
layers themselves form a directed, acyclic graph called the ‘layer graph’. In it, layer A is a parent of
layer B if there exists a neuron in A that is the parent of a neuron in B. By convention, the following
properties hold: (i) each neuron is grouped into exactly one layer and (ii) neurons in the same layer
do not depend on each other. This ensures that neurons in the same layer can be evaluated in
parallel, as soon as all parent layers have been evaluated. Feedforward networks generally have
a single layer that consists of the input neurons (‘input layer’) and a single layer that consists of
the output neurons (‘output layer’). The longest directed path in the layer graph is then an upper
bound on the depth of the network, and is generally equal to the depth of the network. Layers
return vectors of dimensionality equal to the number of neurons they contain. Each component of
that vector corresponds to the scalar returned by the corresponding neuron. The number of neurons
in a layer is called its ‘width’, which is synonymous with ‘dimensionality’. A layer takes as input
the output vectors of its dependencies in the layer graph.

In practice, the operations of neurons in the same layer are identical or near-identical. Hence, the
layer concept encourages the utilization of large numbers of similar neurons that are evaluated in
parallel. This has obvious benefits. Identical parallel operations can be evaluated efficiently on
specialized hardware such as GPUs. It is much easier to specify a layer graph than a neuron graph
if the number of neurons is very large. In fact, when working with layers, a neuron simply becomes
a vector component. The neuron concept is then generally no longer explicitly considered.

A significant fraction of this work is grounded in the layer concept. This fact in itself provides an
implicit explanation for the power of layers. We make this explanation explicit in chapter
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2.3.4 Neural network notation and terminology

We write a network f as a succession of layers f;, 0 < [ < L. Each layer returns a real-valued
vector of dimensionality d;. Each of the d; components of f; is a neuron. While we assume the
width is fixed for each layer, it can vary between layers. Each layer f; has zero or more other layers
as dependencies, and it takes as input the outputs of its dependencies. Without loss of generality,
assume that the index of a dependency of a layer is lower than the index of the layer itself. So for
example, we cannot have f; be the dependency of f5. fj is the input layer to which z, the input
of the network, is assigned. z is a real-valued vector of fixed dimensionality d;,, which implies
din, = dy. Each of the d;, components of x is a ‘feature’. The ‘output layer’ f; returns the output
of the network, a vector of fixed dimensionality doy, = d.

To use gradient methods, each layer is augmented with a real-valued ‘parameter sub-vector’ 6;
with a fixed dimensionality that is possibly zero. The 6; collectively make up the parameter vector
0 = (6,..,0r). f then becomes an architecture and f together with a specific value of @ is a
network. f; in isolation becomes an architecture layer and f; together with a specific value of 6, is
a network layer.

k; denotes the vector of the indices of the dependencies of f;, and K; denotes the dimensionality
of k;. Hence for any 1 <! < L we have

fl(el, fkl[l]; fkl[Q}a ey fk’z[Kz]) : Rdim(el) X Rd’w[ll X dezm X .. X dez[Kz] — Rdl

This definition implies that each layer is well-defined for any set of vector inputs of a given di-
mensionality, which is generally the case in practice and which we assume throughout this work.
Similarly, we consider X as R4, the network f as a function from R% to R%u and the architecture
f as a function from R4™(®) x R to R%, Throughout this work, square brackets [] are reserved
for indexing tensors in addition to denoting closed intervals. If layer f; has a single dependency,
we often omit the square brackets and write f, or simply f; for the dependency. Throughout this
work, k subscripts of quantities indicate that this quantity corresponds to the dependency or de-
pendencies of f;. In contrast, we use an m subscript just like an [ subscript to refer to arbitrary
layers.

Throughout a large fraction of this work, including parts of this section, we do not consider the
parameter 6 explicitly. For brevity and readability, we then discuss neural networks and layers as if
they did not have parameters. Adding the parameter to our notation and terminology in those cases
is always straightforward. (For example, when we say a network “has a Jacobian”, we ignore the
parameter.)

5-fold overloading: program / function / graph / vector / distribution In section we
explained how we overload our notation and terminology to simultaneously refer to mathematical
functions and computer programs whenever a concept exhibits this duality. For neural networks,
things “get worse”. In addition to being a function and a program, a neural network is also a
neuron graph, a layer graph and can be viewed as the vector value represented by its output. Given
an input distribution, it can be viewed as a distribution. As opposed to the layer graph, we never
consider the neuron graph explicitly. However, we will further overload our notation and endow it
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with both graph and vector properties.

When we use, for example, f; to refer specifically to the layer function, we also refer to it as the
‘layer operation’. f; where [ > 0 takes K vectors as input as discussed above. The function that is
f is called simply the ‘network function’.

As a program, f; where [ > 0 consumes K; floating-point arrays with dy, 1y, .., dy, [k, entries re-
spectively and is referred to as the ‘layer program’. The input-output mapping represented by the
program is identical to the function up to floating-point rounding error. Popular layer operations
correspond to programs that do not experience underflow or overflow if the input arrays do not
take extremely small or large values. However, when composing many layers or training with e.g.
high learning rates, underflow or overflow can occur. We discuss this further in section [2.4.2|under
‘scale stability’. When considering the entire ‘network program’ f, layers also take on the meaning
of variables in that program.

As a graph node, f, has properties such as children (layers that depend on f;), parents (dependen-
cies of f;), ancestors (layers from which there exists a directed path to f;) and descendents (layers
to which there exists a directed path from f;). If every directed path from f; to f; contains f,,, we
say f,, is a ‘bottleneck’ for f;.

When we use f; to denote the output vector of a layer, we also refer to it as the ‘layer value’. In this
context, f; has properties like components, length and norm. Specifically, we write f;[i;] to refer
to the 7;’th component of f;, where 0 < i; < d;. (Note that our layer component indices are zero-
based.) Often, we further shorten this to f;[i]. We also alternatively write f;[;]. Each component
corresponds to a neuron, and the scalar output of that neuron is the ‘neuron value’. The output
of the network is the ‘network value’. When we use layers or networks to form mathematical
expressions, we generally consider their vector values. For example, f; = f,, indicates that the
value returned by both layers is equal, not that they are the same graph node or that the layer
operations are equals.

Often, we associate a network with an input distribution D. Then, f; can denote a distribu-
tion. We use the terms ‘output distribution’, ‘layer distribution’ and ‘neuron distribution’ respec-
tively. Drawing from that distribution is equivalent to drawing an input from D and then forward-
propagating that input. As a distribution, f; has properties like expectation and (co)variance.

5-fold overloading leads to compact and consistent notation at the price of a certain amount of
ambiguity. We endeavor to limit this ambiguity throughout this work.

Omitting function inputs Throughout this work, for brevity and readability, we often omit in-
puts of functions in our notation. For example, if we consider a network without reference to
the parameter value or input, we may simply write f instead of f(6,z). If we consider a layer
of a network or architecture without reference to a parameter value, we may simply write f; or
Ji(fes - friry) or fi( fi). Further, we sometimes consider a layer not as a function of its par-
ents, but of one or more ancestors. For example, we write f;(z) to denote the value of f; as z
varies. Hence, f(z) and fr(z) denote the same function. If f,, is a bottleneck of f;, we write
fi(fm) to denote the value of f; as f,, varies. In this expression, f; is a function but f,, is a vector.
In general, we pick and choose which inputs we denote explicitly. The same is true for subscripts
and superscripts.
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Further concepts Let J,,,(¢,x,y) be the Jacobian jf% of f; with respect to f,, evaluated with
parameter 6 at (x,y), where 0 < m <[ < L. We shorten the Jacobian of the output J,; to J; and
we further shorten J. to J,1.e. J = %.

We consider the loss function ¢ to take as inputs the network output f(x) as well as the label y. We
denote the gradient of the loss function %ﬁ;y) by g;.

We denote the layer distribution of f; by f;(D). In general, when we use some distribution dist like
a variable in any expression, e.g. dist + v or dist[i], then that expression also denotes a distribution
where drawing from that distribution is equivalent to drawing from dist and then evaluating the
expression.

When we reference the distribution of a datapoint (x,y), it is the data distribution D by default.
When we reference the distribution of an input z, it is the input distribution D by default. Hence,
we write e.g. E(, .y or even E short for E, ,.p, and E, or even E short for E,.p. Conversely,
we write e.g. E; fi[4;] or E; f;[i] for the finite mean of neurons in a layer. A bar on top of an
expression indicates its expectation with respect to D. So we write e.g. f short for E,.pf().
Correspondingly, we write Cov,. for the covariance matrix of the vector vec with respect to D.

Throughout this work, we use the term “expectation” specifically to refer to the E,.p and E(, ,)~p
operations, while we use the term “mean” to refer to unweighted averages of finite sets, such as
E; fi(x)[i] and E(, 4)ep, as well as the mean parameter of Gaussian distributions. While verbally
distinguishing between e.g. E, f;(x) and E; f;(x)[i] can be tricky at times, we hope this convention
will improve readability.

The same notational conventions that apply to the [E operator apply to other probabilistic operators,
such as the standard deviation S, throughout this work.

Our vectors are row vectors One can either consider the vectors that have been defined as row
vectors or column vectors. Depending on this choice, mathematical expressions such as the inner
product, while equivalent, look somewhat different. Throughout this work, we employ the fol-
lowing conventions. Vectors like f; and 6; are row vectors. Correspondingly, Jacobians have left
dimension equal to the output dimensionality and right dimension equal to the input dimensional-
ity. For example, . ,,, has size d; X d,,.

2.3.5 Forward propagation and backpropagation

At each iteration of a gradient method, we must compute % for a batch of datapoints. This is done
by first evaluating each layer in the network whenever all its dependencies have been evaluated.
This is known as the ‘forward pass’ or ‘forward propagation’. Then, j—]f; and ultimately % is
computed for each layer via what is known as the ‘backpropagation algorithm’ given in algorithm
In that algorithm, the gradient with respect to each layer f; is computed over time as the in-
flowing gradient from each child is added to the current value. When all in-flowing gradients have
been added, we can then compute the gradient of f; with respect to its parents using the chain rule.
We can compute the gradient of a layer as soon as the gradients of all its children in the layer graph

have been evaluated. Hence, we traverse the layer graph in reverse. This process is called the
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end

Algorithm 1: The backpropagation algorithm for a single datapoint. Note that the loop on line
can be fully parallelized and the loop on line [6|can be parallelized to some degree as long as
dependency conflicts are avoided.

‘backward pass’ or ‘backpropagation’. Crucially, because the layer values from the forward pass
are retained, they are available when the Jacobians of the individual layers need to be computed.
Note that practical implementations of backpropagation do not compute those Jacobians explicitly,
but instead use highly optimized programs that are specific to individual layer operations.

2.3.6 Batching

At each iteration of a gradient method, we must evaluate f for a batch of inputs in the forward
pass. This process is embarrassingly parallel across individual inputs. (An exception to this is
batch normalization as described in section [2.4.1.1], which is parallel across neurons instead.) This
opens up the possibility for great computational efficiency. Each layer may be evaluated in parallel
across datapoints. Popular layer operations generally have the property that this parallel evaluation
is indeed highly efficient. For example, assume we have f; = fi A for some matrix A. Then
computing multiple values of f; from multiple values of f;_; is tantamount to matrix multiplication,
an operation for which there exist highly optimized implementations on CPUs and GPUs. The
backward pass can be parallelized in a similar fashion.

We further discuss the desideratum of efficiency in section|1.3.

2.4 Neural architecture design

In this work, we use the term ‘neural architecture design’ in a broad sense as it is used, to the best of
our knowledge, in the community. It encompasses any process that contributes to the choosing of a
neural architecture for a task, or of the neural architecture that is eventually deployed. The choice
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of architecture is specified via what we refer to as the ‘architecture definition’, which is simply all
the information required to uniquely specify an architecture. It is the information given to e.g. a
functional learning framework like TensorFlow to instantiate the architecture in memory. Under
the umbrella of architecture design falls ‘architecture selection’, which is the use of algorithms
to choose an architecture automatically. It is simply model selection as described in section [2.2.2]
applied to neural networks. Under the umbrella of architecture selection falls ‘neural architecture
search’ (NAS) as detailed in section [1.3.7] which is the training of a meta-model that predicts
validation error from the architecture definition based on the known validation error values of a set
of trained architectures.

If automated design is one side of the coin, the other is manual design. In machine learning, we
strive for automation, but there are obvious limitations to this. Even if we automate a given step,
we must manually specify that which automates, as we explained in section [2.2.3] We discuss the
limitations of NAS in section Manual design strategies that are truly general, that transcend
individual layer operations, task domains and data types, and that are explanatory in nature, have
received far less attention than automated ones, which is epitomized by the fact that there exists
no term for this kind of manual design. In section [I.4] we introduce the term ‘zero-shot neural
architecture design’ (ZSAD), which refers to the process of using general, predictive, explanatory
and ideally well-defined principles and a minimal amount of computation to either choose an ar-
chitecture or choose an algorithm for choosing an architecture, or something in between. We refer
to such a principle as a ‘“ZSAD guideline’. Unlike NAS, ZSAD does not conduct any training or
rely on the properties of any specific trained network.

In contrast to the term “ZSAD guideline’, we use the term ‘(architecture) design strategy’, like
‘neural architecture design’, in a very broad sense for any piece of information that contributes to
the choosing of an architecture. It includes anything from the use of neurons, layers and depth to
specific layer operations like ReLU or convolution. One of the challenges of this work is that we
have to draw an inevitably arbitrary and subjective boundary between the broad design strategy
category and the narrow ZSAD guideline category. We hope this distinction will become clear as
we go on, helped especially by chapter [§| and table [8.1} where we explicitly contrast the two.

Over many decades of neural network research, a core arsenal of design strategies has emerged.
We outline this arsenal throughout the remainder of this section. In subsection [2.4.1) we discuss
popular layer operations. In subsection[2.4.2] we discuss more high-level strategies which are about
configuring and connecting layers that use these operations. The key drivers behind the popularity
of these strategies are (i) historical momentum as described in section (i1) computational
efficiency as described in section and (iii) trial-and-error. A full explanation for why they
lead to good performance relative to other strategies that are no longer popular does not exist.
However, recently, explanations have begun to emerge in the community, though they have not
always been made explicit and precise. In chapter [§] we provide substantial explanations for the
performance induced by many of the strategies discussed in this section, and we discuss how they
relate to and expand upon existing explanations.

For more information on the basic concepts laid out in this section, see an introductory deep learn-
ing text such as Goodfellow et al. [2016].
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2.4.1 Layer operations

In this subsection, we introduce and define the layer operations that are most popular, especially
in feedforward architectures, and relevant for the remainder of the work. There are a number of
minor variations from study to study and from system to system in the way these operations are
defined. Here, we present the simplest and most frequently used definitions, which we also use in
this work.

As explained in section breaking down the computation of a network into individual neurons
and layers is a somewhat arbitrary and subjective process. In fact, there are two competing con-
ventions for this in the deep learning community. The first convention is to refer to an instance of
each of the operations defined in this section as a layer. This is the convention we employ in this
work. The second convention is to refer to an instance of a group of operations that occur together
frequently as a layer. We refer to the instance of such a group as a ‘macro-layer’ as detailed in
section This distinction is also described on page 336 of Goodfellow et al. [2016].

Layers are named after their operation. For example, a layer that uses the fully-connection op-
eration is a ‘fully-connected layer’ and a layer that uses the activation operation is an ‘activation
layer’.

Fully-connected (FC) operation
fi = fkWi

The fully-connected operation f; has a single dependency f; which is multiplied by a dense matrix
W, of size dj, x d; called the ‘weight matrix’. The entries of the weight matrix are called ‘weights’
and correspond to the components of the trainable parameter sub-vector ¢;, which is a vector of
dimensionality dd;.

Bias operation

fi=fet+ 5

The bias operation f; has a single dependency f; to which a vector (3; of dimensionality dj, is
added. We must have d;, = d;. 3, is called the ‘bias vector’ and its components correspond to the
components of #;, which is also a vector of dimensionality d;. The bias operation changes slightly
in the context of convolutional networks. See section [2.4.1.2

Elementwise multiplication operation
Ji =Tk

The elementwise multiplication operation f; has a single dependency f; to which a vector ~; of
dimensionality dj, is multiplied elementwise. We denote elementwise multiplication of exprl and
expr2 by exprl.expr2. We must have d;, = d;. We call v; the ‘scaling vector’ and its components
correspond to the components of 6;, which is also a vector of dimensionality d;. The elementwise
multiplication operation changes slightly in the context of convolutional networks. See section
2.4.1.2
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Table 2.1: Activation functions used in this work. Top row: popular activation functions. Bottom
row: activation functions created ad hoc for this work.

Activation operation

fi=m7.(fk)

7, : R — R is applied elementwise to the single dependency, as denoted by .() . 7 is called the ‘ac-
tivation function’ or the ‘nonlinearity’. We will use exclusively the former term to avoid confusion
with the concept of ‘degree of nonlinearity’ that is a core subject of this work. Usually, activation
operations have no trainable parameter sub-vector, i.e. §; is empty, i.e. it has dimensionality zero.
This holds throughout this work. We generally denote a scalar input to an activation function by s.

By far the most popular activation function today is the rectified linear unit (ReLU; Dabhl et al.
[2013]]). It and other popular activation functions are given at the top of table SELU was
introduced by [Klambauer et al.| [2017] and became subsequently popular [Jurman et al., 2017,
Zhang and Shi, 2017, Huang et al.l 2017b, Malekzadeh et al., 2017, |Bhat and Goldman-Mellor,
2017]. swish was “found” through automated search by Ramachandran et al.|[2018]]. Sigmoid and
its variant tanh are the “original” activation functions as discussed in section|1.3.1

Activation functions that we created in an “ad hoc” fashion specifically for study in this work are
given at the bottom of table

Layer normalization (LN) operation [Ba et al., 2016]

_ Te — Ei, frlix]
VE: filir]? — (B, felir])? + &

f

The single dependency is normalized by the mean and standard deviation of its components. We
must have d; = dj.. 0, is empty, though layer normalization is often composed with an elementwise
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multiplication and / or bias operation to compensate for this fact. ¢; is a small fixed regularizer that
is used to ensure f; is well-defined for all inputs. In practice, the square root in the denominator
of LN is virtually never zero, so we can omit ¢; in most implementations of LN. To maintain
mathematical consistency, we can pretend ¢; is so small that its floating-point representation is
Zero.

A ‘normalization operation’ refers to one of several operations that normalize their dependency.
In this work, we focus on batch normalization (see below) and layer normalization, which are the
most popular and second most popular normalization operations respectively.

Addition operation

K
Fi="> Wi frufe

I{lzl

A weighted sum over the dependencies is taken. The scalars w; ,, can either be considered fixed
constants or components of ¢;. Usually, they are fixed to be 1. We must have d; = dj, ., for all
1 < k; < K. We often shorten wy ,;, to wy,.

2.4.1.1 Batch-wise layer operations

As described in section the nature of gradient methods and computational realities encour-
age the joint forward propagation of inputs and the joint backpropagation of the corresponding
gradients. This fact can be harnessed for architecture design. Specifically, there are layer opera-
tions whose value f;(x) for some input 2 does not only depend on the value of their dependencies
fiup) () for the same input x, but also on the values of fy,[.,) for inputs that are forward propagated
jointly with z. However, there is only one popular such operation, and we detail it below.

Batch normalization (BN) operation [loffe and Szegedy, 2015]

fk [Zl] — Ebfk [Zl]

fil] = VEu fiulir]? — (By fulir])? + &

As in layer normalization, we normalize the single dependency. However, instead of using the
mean and standard deviation over components of f;, we normalize each individual component
with its mean and standard deviation over inputs that are jointly propagated. [E; denotes the mean
over those inputs. We must have d; = di. 6; is empty, though BN is often composed with an
elementwise multiplication and / or bias operation to compensate. As in LN, ¢; is a small fixed
regularizer that is used to ensure that f; is valid for all inputs. As for LN, it is usually set to zero in
practice, and in theory we can set it small enough that its floating-point representation is zero. The
BN operation changes slightly in the context of convolutional networks. See section[2.4.1.2

What is to be gained from introducing a cross-input dependency? Like with other layer operations
listed in this subsection, networks that employ BN have exhibited high performance in the past,
which has led to BN becoming popular. There exists no widely proven strategy to replicate all
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aspects of this high performance without cross-input dependencies. Like with other operations,
a full explanation for its performance does not exist, but we provide a substantial explanation in
chapter 3]

When using BN, it is important to decide which inputs propagate jointly. When using stochastic
gradient methods, there is an opportunity to jointly propagate inputs in the batch B® at each
iteration ¢. This is generally done in practice if this joint propagation is not too resource-intensive.
If the batch B® is very large or computational devices used for training are weak, the batch is
split up into slices which are forward-propagated either on separate devices or sequentially on the
same device. The mean and standard deviation for BN are either taken independently for each
slice or a single mean and standard deviation is taken across slices by communicating the required
statistics across devices. In this work, we always propagate all inputs in a single batch jointly, and
hence we use the term ‘batch’ interchangeably for (i) a set of datapoints or inputs considered at
an iteration of a gradient method, (i1) a set of datapoints or inputs considered for the moments of
batch normalization and (iii) a set of datapoints or inputs that are jointly propagated on a single
device along with their corresponding gradients.

As the batch size increases, the mean and standard deviation over the batch converges to the mean
and standard deviation over the entire training set. Therefore, when a trained network is deployed
in practice, the batch moments are simply replaced by the analogous moments taken over the entire
training set, thereby eliminating the dependence of the prediction on the batch. Since taking the
mean and standard deviation over the entire training set is expensive, it cannot feasibly be done
at each iteration of stochastic gradient-based training. From this point of view, it appears as if the
batch moments are simply noisy proxies for the training set moments. However, it turns out that
this noise can actually be beneficial for training as long as it is not too large. We further analyze
this point in section [6.5] though fully explaining the benefits of this noise goes beyond the scope
of this work.

Even if we decide to use the batch for taking moments during training and the training set for
taking moments when deploying the network, this still leaves open the question of how to take
moments in all other contexts, and many different contexts appear throughout this work. For
example, consider a statement like “in network f, we observe that the first and second derivative
have similar magnitude”. If f contains BN, the question always arises whether batch or training
set moments or different moments are used. Further, if batch moments are used, how are batches
constructed? Throughout this work, we adopt a uniform policy of always using batch moments,
never training set moments, for all quantities and metrics, even test error. For each architecture,
the same batch size is used whenever that architecture is evaluated, and batches are always drawn
uniformly at random without replacement. Because the training stage is the most important stage
of our (simple) machine learning pipelines, we decided that it is best to have all of our analysis
reflect the behavior of the network in that critical stage. We also avoid the additional complexity
of having to analyze what are essentially two different networks: one batch-dependent and one
batch-independent.

The presence of BN is an unfortunate reality that forces us into one of two bad options. The first
option is to write this work with the implicit assumption that a neural network is a function that
maps single inputs x to single outputs. If we go down this route, this work is not immediately
applicable to architectures with BN. The second option is to always consider the potential depen-
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dency of the output of f on the batch explicitly. This would make the work unreadable while
conferring minimal practical benefit, as the generalization of our methods and analysis to the BN
case is almost always trivial and boring, as becomes clear e.g. in section [3.4.1.3] We choose the
former option and present our work in terms of single input-single output networks. The incorpo-
ration of BN is done “under the hood” and is rarely brought up explicitly, though we do cover the
BN case in detail in sections (3.4.1.3| 4.4.4|and [11.6]

2.4.1.2 Tensor operations

In many practical architectures, the majority of layers, including the input layer, are specified
as multi-dimensional tensors. This enables us to more easily specify certain operations that are
naturally defined in terms of tensors. If a layer is specified as a tensor, we say it has 7; dimensions
and its size is C) X S;1 X Spa X .. X Syp—1. We write fi[c;, si.1, S.2, .., Si,r—1] for entries in that
tensor where 0 < ¢; < Cyand 0 < s;4, < Sp4, forall 1 < ¢; < 7. Each T' — 1-dimensional slice
of f; defined by a value of ¢ is called a ‘channel’ and each 1-dimensional slice of f; defined by
a tuple (sy, .., S7,—1) is called a ‘spatial location’. The first dimension of f; is called the ‘channel
dimension’ and the other dimensions are called ‘spatial dimensions’.

Of course, networks with tensor layers are still equivalent to networks with vector layers as defined
in section [2.3.4] as we can simply re-specify all operations in terms of vectors, though this may
be much less compact. Throughout this work, we almost always use vector notation, but by doing
so we simultaneously cover the tensor case. For detailed information about the usage of and
motivation behind tensor layers and operations, see chapter 9 of Goodfellow et al. [2016].

Convolutional operation

fi [Cl, S1,15 51,25 ++» 81,7;-1]

= E Jrlcr, sia+hix —oi1, S12+ hia — o012, ., Sir—1 + hir—1 — or—1]

Ckshi,1she 2,k -1

«Wilck, e, hia, hua, -y hyy—1]

The convolutional operation f; has a single dependency fj, which is convolved with the tensor
W;, known as the ‘weight tensor’, as given in the formula above. In that formula, ¢;, ¢; and
the s; have canonical ranges. We must have 7; = Tj. W, has 1) + 1 dimensions and size
Cr x Cp x Hjy X Hj9 X .. x Hy7,—1. The entries of W, are called ‘weights’ and correspond to the
components of 0;. h;;, ranges from O to H;,, — 1. The ‘offsets’ o;;, are fixed constants. In practice,
we almost always have H;;, odd and 20;,, + 1 = H;;,. Since Simonyan and Zisserman| [2015]],
most architectures use H;;, = 3 or H;;, = 1 for the majority of ([, ;) pairs.

For the above formula to be well-defined, we need to have 0;;, < Oand H;;,+S; 4, —014,—1 < Sky,.
This is generally not true in practice. Therefore, we need to handle the case where f;, is indexed at a
position that is out of range. The most popular convention for this is called ‘zero padding’, and we
use it in this work. When the index s; ¢, + hy ¢, — 01, is out of range, then fi[.., s14, + hit, — 014, -]
is replaced by zero in the above formula.
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Entries of a weight tensor W, are known as weights, just like weight matrix entries. A ‘linear
layer’ refers to a layer that either uses the fully-connected operation, the convolutional operation
or a similar linear operation that is not covered in this work. Note that linear layers that have
multiple dependencies are sometimes used in practice. However, they can be broken down into
single-dependency linear layers and an addition layer. Hence, despite not explicitly considering
multi-dependency linear layers, we do not lose representational power, but we do simplify notation
throughout the work.

Subsampling operation
fz [Cz, S51,1,51,2y -+ Sl,Tl—l] = fk;[Cb r1S11,71,251,25 -+ Tl,Tl—lsl,Tl—l]

Each spatial dimension ¢; of the single dependency is sub-sampled with ‘stride’ 7;;,. We must have
T, =Ty and Sy, = 114,51, forall 1 < ¢, <T; — 1. §; is empty.

Pooling operation

fi [Cl, S1,15 51,29 -+ Sl,Tl—l]

= pl({fk[ch Sk,15 Sk,25 -+» Sk,Tl—l] ST Sy S Sk < Tl,tl(sl,tl + 1)})

The single dependency is broken up into sub-tensors along its spatial dimensions with strides 7 .
Each sub-tensor is then replaced by a single-entry tensor according to the ‘pooling function’ p; that
takes in all entries in that sub-tensor. The most popular pooling functions are ‘average pooling’,
which takes the average value over the sub-tensor, and ‘max pooling’, which takes the maximum
value over it. The pooling operation is a generalization of the subsampling operation. Usually, ¢,
is empty. ‘Global pooling’ refers to the choice 1, = Sk, for all ¢;, which induces S}, = 1.

Miscellaneous channel-wise operations If a layer is specified as a tensor, some of the operations
described earlier change their definition slightly. Bias vectors then have C; elements, and the
same component is added to all entries of f; that are in the same channel. The same goes for
scaling vectors. For BN, the mean and standard deviation are taken over all entries in the same
channel as well as inputs in the batch. These modified operations are similar to the convolutional
operation in that they apply the same transformation at each spatial location. This is key for
attaining high performance in situations where tensor layers are used. Throughout this work, we
use these modified operations in all our architectures that utilize tensor layers.

2.4.2 High-level design strategies

In this section, we explain some of the most popular and ubiquitous high-level design strategies
that are also relevant for the remainder of the work.
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Layers and width The layer concept itself can be regarded as the most important architecture de-
sign strategy. Neural networks are firstly gradient-trainable functions and secondly neuron graphs.
Additionally having a layer graph is not a conceptual necessity. In section [2.3.3] we outlined the
clear computational and representational benefits of layers. It is important to note that fully attain-
ing those benefits requires that, in a layer operation, every neuron has an identical or near-identical
operation. Technically, we could define layer operations where each neuron is completely different.
When we say that a network “uses layers”, we implicitly assume neuron operation homogeneity.
The use of layers ties in with the ZSAD guideline of “using an appropriate width”, as the concept
of width itself is defined in terms of layers. See section Mean field theory, which we cover in
chapter[5] is also grounded in the layer concept.

Depth The concept of depth was detailed in section It refers to the utilization of long neu-
ron or layer dependency chains. The property of depth refers to the length of the longest depen-
dency chain. As we explained, the length of that chain as well as what is considered “particularly
deep” is subjective and situational. It is a popular view that the recent success of deep learning is
based to a significant degree on “going deeper”, i.e. on using longer and longer dependency chains.
The use of deep networks gives rise to the ZSAD guideline of “using an appropriate depth”. See
section

Macro-layers Layers performing certain operations tend to occur as a group, and popular ar-
chitectures are often built by repeatedly composing the same group. We refer to such a group as
a ‘macro-layer’. Macro-layers usually contain at least a linear layer and an activation layer. The
linear layer provides the parameter sub-vector which can be trained efficiently using gradient meth-
ods. The activation layer makes the network nonlinear, a desideratum which we explore in detail
in this work. Beyond this two-layer group, a more complex and even more popular configuration
consists of a linear layer, a normalization layer, an elementwise multiplication layer, a bias layer
and an activation layer. While some macro-layers have multiple activation layers utilizing differ-
ent activation functions (e.g. LSTM [Hochreiter and Schmidhuber, 1997]]), activation functions
generally don’t vary between macro-layers unless the architecture is highly bespoke.

In section we explained how the neural network property of depth is subjective because the
neuron and layer concepts are subjective. The most popular convention for measuring depth is
to measure the length of the longest directed path in the “macro-layer graph”. We will use this
convention for the remainder of this work and denote this depth value by M. Of course, this
convention can only apply if networks are meaningfully specified in terms of macro-layers, as we
do for the architectures we study empirically in chapter[3] This is not possible for all architectures.

Random initialization The initial value of weight matrices and tensors is generally drawn from
a distribution. Most often, each individual weight is drawn independently from a distribution with
mean zero and a variance that is equal for all weights in the same layer but not necessarily for
weights in different layers. The variance of these distributions, which we term ‘initial weight
variance’, is often related to dimensionality. For fully-connected layers, the most popular variance
value is i. For convolutional layers, the most popular variance value is (C HtTll;ll H;,)~'. Inboth
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cases, the variance is 1 over the number of multiply-adds that contribute to a neuron in the linear
layer. The strategy of using this initial weight variance is sometimes termed LeCun initialization
[LeCun et al.| [1998]] and sometimes Xavier or Glorot initialization. The latter two names, however,
are technically inaccurate as we explain in section [0.1.3] We refer to the variance value itself as
‘LeCun variance’.

The distribution of each weight is usually either Gaussian or uniform. This is called ‘Gaussian
initialization’ or ‘uniform initialization’ respectively. Note that attaining some specific variance
o requires the uniform distribution to have support [—+/30, v/30], not [—o, o]. Inexplicably, for
example, PyTorch uses uniform initialization with support [—dik, é] for weight matrices by de-
fault. We are not aware of any studies demonstrating the superiority of either uniform or Gaussian
initialization over the other.

Weight matrices are also often initialized as scalar multiples of sub-matrices of max(dy, d;) x
max(dy, d;) uniformly random orthogonal matrices. This is called orthogonal initialization. The
scalar multiple is chosen to control the initial weight variance, which now refers to the variance
of the marginal distribution of each weight. Again, the most popular value is the LeCun variance.
Orthogonal initialization is related to the ZSAD guideline of ‘orthogonality’ as discussed in section
9.5l

Bias vector initialization Components of bias vectors are generally initialized to zero. This
causes bias layers to correspond to the identity operation in the initial state.

Scaling vector initialization Components of scaling vectors are generally initialized to 1. This
causes elementwise multiplication layers to correspond to the identity operation in the initial state.

Scale stability The reason for the popularity of the LeCun initialization as described above is that
it causes the linear layer to approximately preserve the overall magnitude of neuron values in the
initial state. For example, assume that for some fully-connected layer f; we have i | fe(2)]]3=c
for some c. If the weights of f; are initialized using e.g. Gaussian or orthogonal initialization
with the LeCun variance, it is easy to check that EWldilH fi(@)]|3 = c. If d; is not too small,

then dil|| fi(@)||3 = c with high probability. If an architecture were only composed of a single
dependency chain of linear layers, then choosing any initial weight variance other than the Le-
Cun variance would cause the overall magnitude of neuron values to decay or grow exponentially
from layer to layer in expectation. Floating-point computation makes such numerical instability
undesirable. This gives rise to the following.

Definition 3. We say a neural network f exhibits ‘scale stability’ if at each layer, the overall
magnitude of neuron values across inputs and neurons is not excessively large or small.

Since the vast majority of macro-layers in feedforward architectures used in practice do contain a
linear layer, LeCun initialization often ends up being reasonable for ensuring scale stability in the
initial state. One notable exception to this is architectures composed of macro-layers composed of
a linear layer and a ReLU activation layer. It is easy to check that LeCun initialization would yield
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Eyw, dil |fi(2)]]3 = ﬁ || fx(z)||3. Thus, the overall magnitude of neuron values would be halved by
each macro-layer. Hence, the ‘He initialization’ [He et al., 2015] is generally used instead, which
doubles the initial weight variance of the LeCun initialization. We refer to this doubled variance
value as the ‘He variance’.

‘Ensure scale stability’ is the first design strategy we encounter in this chapter that we also con-
sider a ZSAD guideline. It is one of the most widely known and well-understood design principles
[LeCun et al.,|1998| \Glorot and Bengiol 2010, He et al., 2015, Klambauer et al., 2017, |Arpit et al.,
2016, Mishking and Matas, 2016|]. Unfortunately, there is no widely-accepted term or explicit def-
inition for this guideline, and hence we coin the term ‘scale stability’. The lack of terminology is a
testament to the underdevelopment of ZSAD in the deep learning community in general. The term
‘scale stability” hints at the fact that an excessive growth or decay of neuron magnitude generally
happens gradually from layer to layer. However, our specific definition of ‘scale stability’ is based
on the neuron value magnitudes at individual layers, without reference to how those magnitudes
came about. We define ‘scale instability’ to mean the absence of scale stability.

Concerns about numerical overflow or underflow are not the only reasons behind the importance
of scale stability. In a nutshell, constructs such as layer operations and loss functions are designed,
explicitly or implicitly, to perform optimally when their dependencies have neuron values that are
not too large or too small overall. We further explore scale stability in section[6.2] In section[9.1.2]
we show that the generality of scale stability as a ZSAD guideline is also limited in important
ways. We approximately follow scale stability in the architectures used in our empirical studies as
detailed in chapter 3| by using approximately the LeCun variance.

(Avoiding) neuron bias In addition to specifying an effective value for the initial weight vari-
ance, LeCun et al.|[1998] also advocated for neuron values to be unbiased, i.e. to have E,. f[#;] ~ 0
for each (1, 4;) pair. This is another ZSAD guideline. It is less well-known and less consistently
defined than scale stability, but can be seen in the work of e.g. |Arpit et al.|[2016], Klambauer et al.
[2017]. Those two papers introduced a strategy we term activation function debiasing, which is
to choose an activation function such that E,, N(OJ)T(S) = (, which can be achieved by e.g. devel-
oping a new activation function or adding a constant to the output of a given activation function.
Modeling the input to 7 as a Gaussian is justified by mean field theory and is further expounded
upon in section We employ activation function debiasing in some of the architectures used in
our empirical studies as detailed in chapter 3] We further explore neuron bias in detail in section
6.4

Fully-connected network A ‘fully-connected network’ (FCN) is (approximately) a feedforward
network that uses fully-connected layers but no convolutional layers or other linear layers. This is
a relatively popular type of network. In general, it is used when there is no specific structure to
the data, like tensor or graph structure, that would suggest the use of other linear layers. A key
property of fully-connected layers is that they are symmetric with respect to the components of the
dependency. This is appropriate when those components appear exchangeable.

In practice, the term ‘fully-connected network’ comes with the expectation that the architecture
at least resembles an architecture built from popular building blocks and using popular design

81



strategies, like the building blocks and strategies described in this section and like the architectures
we use in our empirical studies as detailed in section (3.1.1

Convolutional network A ‘convolutional network’ (CNN) is a network where linear layers are
predominantly convolutional layers as defined in section 2.4.1.2] or a variant thereof. Almost
always, the input layer is specified as a tensor to represent the natural properties of the data. It is
then followed by layers such as convolutional layers and pooling layers that preserve the tensor
structure. This is arguably the most popular type of network.

Again, in practice, the term ‘convolutional network’ comes with the expectation that the architec-
ture at least resembles an architecture built from popular building blocks and using popular design
strategies, like the building blocks and strategies described in this section and like the architectures
we use in our empirical studies as detailed in section[3.2.1]

Residual network [He et al., 2016a] A ‘residual network’ (ResNet) is a network that utilizes
building blocks of the form f, (fs(f.), f-(fa)), where f(.,.) is an addition layer with two depen-
dencies, and f(f,) and f,.(f,) are each chains of single-dependency layers that begin at the same
layer f,. f-(f.) is referred to as the ‘residual block” and contains one or more activation layers.
Usually, it contains two linear layers, two activation layers and two normalization layers [He et al.,
2016bl, Zaguroyko and Komodakis, 2016]]. f(f,) is referred to as the ‘skip block” or ‘skip connec-
tion’ and contains no activation layers, and is often just equal to f,. We refer to the entire group
of layers fi(fs(fa), f-(fa)) as a ‘residual unit’. The addition weights applied to f; and f, by the
addition layer are generally fixed throughout training and are usually set to 1.

2.5 Deep learning pipeline

Beyond the neural architecture, there are other components that comprise a deep learning pipeline.
In this section, we define the most popular choices for the core components that also feature promi-
nently in this work.

2.5.1 Training algorithms

Below, we give the formulas that the most popular gradient methods for neural networks use to
derive the update proposal o0 from the loss gradient. The parameter update is the product of
the proposal with the learning rate, as described in section [2.2] Note that in practice, there are
slight variations in the algorithms presented below from study to study. We use %(t) to denote
the gradient of the loss with respect to the parameter obtained at iteration ¢. The batch remains
implicit.

It is noteworthy that none of the popular algorithms explicitly use second-order information. The
conjugate gradient and L-BFGS algorithms, which try to infer second-order information from gra-
dients, used to be somewhat popular (e.g. Le et al.| [2011]) but have fallen by the wayside. Earlier
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versions of the algorithms presented below include AdaGrad [Duchi et al., 2011] and AdaDelta
[Zeiler, 2012]]. Newer versions, such as AMSGrad [Reddi et al., 2018|]] and AdamW [Loshchilov
and Hutter, |2019], continue to be developed.

Gradient Descent

(t)

5 g _ 9L

prop df

Momentum
_ dL®
m{ = B+ (1-p)—
db
6Prop0(t) = _mgt)

In the momentum algorithm, the parameter is updated with an exponential moving average of
gradients, which is persisted between iterations. (3; is a scalar referred to as the ‘decay rate’. It is
generally set to 0.9. The idea here is to reduce the variation of the update proposal by “spreading
out” each gradient over multiple updates. The variation reduction is especially evident when small
batches are used. m; is initialized to the zero vector.

Nesterov accelerated gradient [Nesterov, |1983]

_ drL®
mﬁt) = /Blm(lt 2 +(1- 51)@
AL, ®
5Pr0p0(t) - _<B1mgt) + (1 - 51)% )

This is similar to momentum, except that the current gradient receives a higher weighting in the
update.

RMSprop [Tieleman and Hinton, 2012]

Cgt) = /6’205_1) + (1 —Bs)
B dL O\ 2
mi’ = gD+ (1= ) (S )
_dr®
(5pr0p0(t) = —C(i@)
m/(%) +€

Here, we normalize the gradient using the exponential moving average of its square, which is per-
sisted between iterations. Note that both vector squaring and division in the above formulas are
elementwise. 39 is generally set to a value between 0.99 and 0.999. Because of this, we must nor-
malize ms itself by the total capacity ¢, of the exponential moving average, as we would otherwise
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divide by unreasonably small values during the first few iterations. ms and c, are initialized to the
zero vector. € is a regularizer introduced for numerical stability and is generally set to a very small
value, between 107° and 10710,

The idea here is to remove the influence of the overall magnitude of individual gradient components
over time on training. This overall magnitude can vary wildly between components, which can
cause some components to receive significantly more training than others.

Adam [Kingma and Ba, 2015]
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Finally, Adam combines momentum and RMSprop.

2.5.2 Loss functions

Softmax+Cross-entropy

((f,y) = log (Z ef“”) — flv]

This is by far the most popular loss function for classification. Here, f returns a vector of dimen-
sionality |Y|, which is interpreted as a scoring function indicating how much of a fit the input is to
each class. f[y] denotes the degree of fit of the input to the y’th class. The loss decreases as f|y]
increases and the loss increases as other components of f increase.

L2 loss
1
Ufy) = 5IIF =l

This is by far the most popular loss (and error) function for regression. Here, f returns a vec-
tor of the same dimensionality as y. Each component is scored based on how close it is to the
corresponding component of y.
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2.5.3 Error functions

Classification error
e(f,y) = Lysargmaxi, fliz)

This is by far the most popular error function for classification. Again, f returns a vector of
dimensionality |Y|, which is interpreted as a scoring function indicating how much of a fit the input
is to each class. The idea here is that the class we ultimately assign to x based on f corresponds to
the maximum score contained in f(x). If that class matches the label, the error, i.e. the negative
utility, is 0. Otherwise, itis 1.

2.5.4 Data processing

‘Data processing’ refers to the process of taking raw data obtained in the real world and converting
it into a dataset to be used for machine learning. Data processing is a wide field that includes
methods for e.g. converting categorical to real-valued inputs, imputing missing vector components
and standardizing dimensionality across inputs. In general, these objectives must be met in the
context of feedforward networks. However, they are not the subject of this work. Like most
deep learning studies, we use datasets where inputs come as fixed-dimensional, fully specified real
vectors. For these datasets, there are only two highly popular processing methods, which are both
simple.

Componentwise normalization

z (i) — Bz yyepli]
¢E(m7y)er[i]2 - (E(w,y)EDI[i])2

2'[i] =

where x is the raw value and 2’ is the processed value. This normalization method mirrors batch
normalization.

Pointwise normalization .
, x — E;xl[i]

C T Vi - (Eel])?

where x is the raw value and 2’ is the processed value. This normalization method mirrors layer
normalization.

2.5.5 Data augmentation

Once a dataset is processed and ready to be used for learning, there are additional strategies for
modifying the data in order to increase generalization. In section we explained that supervised
prediction always relies on the assumption that patterns found in the dataset extrapolate to other
points within X. Oftentimes, we know a high-performing model should extrapolate in certain ways.
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For example, if we flip a single pixel in the context of image classification or a single character in
the context of sentiment analysis, we expect the label to remain the same. If we rotate or reflect
an image, we expect the label to remain the same. Therefore, in addition to considering the input /
label pairs in the training set, we can generate additional pairs by applying a transformation to the
input that (with high probability) does not change the label. This effectively increases the amount
of data available for training, which tends to improve generalization. ‘Data augmentation’ refers
to any post-processing made specifically to encode desired ways of extrapolation for the purpose
of increasing generalization.

A naive way of performing augmentation would be to apply all possible transformations to each
input in the training set and store the resulting enlarged training set. Many data augmentation
strategies involve random choices. If the number of possible choices is very large, this would lead
to storing very large training sets. To circumvent this, instead of performing augmentation as a
separate stage before training begins, it is performed during training. Whenever a datapoint from
the un-augmented training set is chosen for a batch, a random ‘augmentation function’ is applied
on the fly before forward propagation begins. If the datapoint and augmentation are chosen uni-
formly and independently at random, this corresponds to sampling uniformly from the hypothetical
enlarged training set.

In this work, we consider two data augmentation methods that are popular for images, and for the
CIFAR10 dataset in particular.

Cropping Let the raw value z be specified as a tensor as defined in section[2.4.1.2] Then we set

2'le, s1, .., 57-1) = x[e, 51+ 01, .., S7_1 + 07_1]
where ' is the augmented value. The o, are chosen IID from the set of integers between —O and

O for some fixed O. If the index of x is out of range, the corresponding component of z’ is set to
zero. For CIFAR10, O is generally set to 2.

Horizontal flipping Assume the number of dimensions of the input tensor is equal to 3, which
is usually the case for images, and let the second spatial dimension correspond to the horizontal
image dimension. With 50% probability, we set ' = x. With 50% probability, we set

2'[c, 81, $2] = x[c, 81,89 — 59 — 1]

2.6 Differentiability and integrability

2.6.1 Handling non-differentiable networks

Throughout this chapter, we have made extensive use of the gradient of neural networks and in-
dividual layers to define key concepts such as backpropagation (section [2.3.5)) or specific gradient
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methods (section[2.5.1)). We will continue to use the gradient throughout this work. Unfortunately,
many popular layer operations, and hence many networks, are not differentiable everywhere with
respect to input and / or parameter. This leads to a host of practical, conceptual and theoretical
issues. There are practical issues because we need to write programs that represent algorithms that
require the gradient at inputs where it is not defined. There are conceptual issues because concepts
that rely on gradients are not well-defined when the underlying object is not differentiable. There
are theoretical issues because theoretical results that assume differentiability do not technically
hold for these objects.

However, these issues generally turn out to be benign. Since neural networks are trained with
gradient methods, even when a network is not differentiable everywhere, it must come with a
recipe for computing a surrogate gradient, i.e. the gradient of a local linear approximation, which
can be supplied to the training algorithm, as explained in section[2.2.1] If these surrogate gradients
work in the context of gradient methods, they tend to work in other contexts as well. The ability
to compute at least a surrogate gradient is one of the foundations of neural networks as defined in
section [2.3] and the functional-gradient paradigm as defined in section [[.3.2]

Unfortunately, there does not exist a general solution for obtaining a surrogate gradient that works
for all types of non-everywhere-differentiable networks. Therefore, in general, we have to place
the burden on the reader to generalize the contents of this work to whatever non-everywhere-
differentiable case they are interested in and to judge to what degree our results apply to that
case. Note that reliance on gradients is standard procedure in deep learning literature. Simply
“pretending” that an architecture is differentiable just “works out”, both in theory and in practice.
The price that would be paid in terms of increased presentational complexity and naked word count
to treat these non-differentiable cases explicitly can be prohibitively high. In this work, we choose
not to pay this price and stick with the differentiable framework whenever the need for gradients
arises.

In this work, we include two sources of non-everywhere-differentiability in the architectures we
study empirically, as detailed in chapter |3 (i) non-everywhere-differentiable activation functions,
given in table and (i1) max pooling. In both cases, we have a layer operation that is differen-
tiable almost everywhere and directionally differentiable everywhere. Below, we describe how we
cope with such layer operations on a practical, conceptual and theoretical level.

On a practical level, both the left and right derivatives provide a reasonable local linear approx-
imation for our activation functions. Firstly, it is easy to see that the approximation provided by
the directional derivative at points where the derivative is not available (e.g. the zero point for
ReLU) is “almost as good” as the approximation provided by the derivative at nearby points. Sec-
ondly, the probability of the event that an input to an activation function is at a non-differentiable
point is very small, even in the context of floating-point computation. Thirdly, even if we were to
consider the directional derivative at such points as random noise, that noise is of a small overall
magnitude if the network contains many neurons in activation layers. We know gradient methods
are robust to small amounts of noise. Hence, when computing the gradient via the backpropaga-
tion algorithm, we can replace the derivative of the activation function with either the left or right
derivative without significant downside. Similarly, any directional derivative works for the max
pooling function.

On a conceptual and theoretical level, we have ensured that all our mathematical constructs, such as
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definitions and proofs, are fundamentally applicable and somewhat easily extensible to the direc-
tionally differentiable case. One way to understand this is as follows. We can approximate each of
our non-everywhere-differentiable activation / pooling functions with an everywhere-differentiable
activation / pooling function that is arbitrarily close to it such that all quantities we care about are
preserved to an arbitrary degree of accuracy. For example, consider g y(s) = max(s,0). We
could replace it with % log(1 4 e“*) for some enormous value of ¢. The difference would be negli-
gible, especially considering that floating-point computation is inexact to begin with. Regardless,
all our concepts and theory would apply directly.

2.6.2 Assuming integrability

The flipside of differentiability is integrability. Integrals that are implicit in, e.g., expectation oper-
ators over quantities with continuous distribution are ubiquitous in this work and in deep learning
literature in general. For those integrals to be valid, the respective quantities must be Lebesgue
integrable.

Integrability has two aspects. First, integrals over bounded sets must be valid. This holds in any
reasonable, practical machine learning situation. Functions that violate this condition, such as
the scalar function that returns 1 for rational inputs and O for other inputs, are only a curiosity.
Second, integrals must be finite over unbounded sets. This condition is almost as universal. While
it is technically possible to devise e.g. activation functions that do not yield finite expectations
with respect to distribution we care about, this would only matter in practice if those activation
functions would be evaluated on arbitrarily large inputs, which is impossible with floating-point
computation, which can only represent a bounded set of values anyway.

Going forward, we use the term “integrable” as follows.

Definition 4. When we say a function £’ is “integrable” with respect to a measure du, we mean that
the Lebesgue integral of F' with respect to du is valid over any bounded set, and that the integral
of the absolute value |F'| is finite over any unbounded set. We use “integrable with respect to a
distribution dist” interchangeably with “integrable with respect to the measure corresponding to
dist”.

By including finiteness of the integral of |F’| in addition to F', we eliminate any ambiguity with
regards to how the limit of bounded sets towards a given unbounded set is taken in the definition
of the improper integral.

In the majority of even theory-focused deep learning papers, integrability is implicitly assumed for
simple expressions involving standard objects like networks, layers, gradients, data distributions
and Gaussian distributions. We do the same throughout this work, as we also reiterate in e.g.

sections and
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2.7

Summary of notation, terminology and conventions

In this section, we provide a summary of the most important notation, terminology and conventions
from chapters [I] and [2] that should enable advanced readers to easily follow the technical material
presented in later chapters. This summary contains those definitions from chapters [I] and 2] that
(1) may be used in later chapters and chapter |1| without further explanation and (ii) are not widely
agreed-upon in the machine learning community. Specifically, we do not repeat here most of the
definitions of layer operations, deep learning pipeline building blocks and design strategies given
in bold letters in sections 2.4 and 2.5

2.7.1 Core terminology

Neural network: Any model to which gradient methods can be applied.

Neural architecture: A neural network associated with an unspecified parameter value that
must be set via training.

Functional-gradient paradigm: Our (approximate) framing of the deep learning field as of
the year 2020 based on black-box functions, gradient updates and simple formalisms. See

figure

Neural architecture design: Any process that contributes to the choosing of a neural archi-
tecture for a task, or of the neural architecture that is eventually deployed.

Architecture design strategy: Any piece of information that contributes to the choosing of an
architecture.

Architecture definition: All the information required to uniquely specify an architecture. It is
the information given to e.g. a functional learning framework like TensorFlow to instantiate
the architecture in memory. While this technically conflicts with our definition of ‘neural
architecture’, we also consider the parameter initialization scheme as part of the architecture
definition.

Zero-shot architecture design (ZSAD): See figure

ZSAD guideline: Any general, predictive, explanatory and ideally well-defined principle
that contributes to ZSAD. In this work, we frame a ZSAD guideline as a postulate that a
certain property of an architecture or an architecture’s randomly initialized state is related
to its performance after training. We assess the guideline’s utility for ZSAD based on the
degree to which that property fulfills the criteria in figure [I.3]

Well-defined property: A property of an object like an architecture or dataset that comes
with an inherent recipe for determining its unambiguous and unique value. For example,
‘parameter dimensionality’ is well-defined but “has exploding gradients” is not.

Metric: For a well-defined property, a function that assigns to an object like an architecture
or dataset the value of that property.

89



2.7.2 Focus of this work

We focus on feedforward networks, including fully-connected and convolutional networks.
We often use the terms ‘neural network’ and ‘feedforward network’ interchangeably.

We focus on the supervised classification setting, and specifically on the empirical risk min-
imization approach.

We assume that our datapoints are drawn IID from a data distribution, and that the input and
label have a deterministic relationship within that distribution which is captured by the true
input-label function.

We focus on ZSAD guidelines for predicting test error, and sometimes training error, after
training. While we view the performance of an architecture as including anything from
computational efficiency and privacy to adversarial robustness, we will generally use the
term ‘performance’ in this more concrete and limited sense going forward.

We focus on developing ZSAD guidelines that, while being as independent as possible of
the dataset and task domain in their formulation, are applicable as widely as possible across
datasets and task domains.

2.7.3 Notation

r € R%: input
di,: dimensionality of the input
y € Y: label

D: data distribution over (x,y) pairs or input distribution over x (in discussion, we use the
term ‘data distribution’ more generally to refer to either or both constructs)

D: finite dataset of (x, y) pairs

Diain € D, Dyyia € D, Dy € D: finite training set, validation set and test set of (z,y)
pairs respectively

f : R%n — R%u: peural network; the input of f is =

fo: input layer of the neural network f to which x is assigned

L: number of non-input layers in a network

fr: output layer of the network f which also returns the output of f
dyy: dimensionality of the output

{:R% x Y — R : loss function; the inputs of ¢ are f(x) and y
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0 <l < Laswell as 0 < m < L when used as a subscript: layer index
d;: width / dimensionality of the [’th layer
K;: number of parents of the [’th layer in the layer graph

k;: 1-based vector of layer indices that correspond to the parents of the ’th layer in the layer
graph; treated as a scalar when there is only one parent

K, k: shortened version of K, k; respectively when [ is clear from context

fi: R0 x R0 % . x R¥*K] — R%: [*th neural network layer; the inputs to f; are f, ),
s Sk

Tim = i
%IJL,l:g—ﬁ
J=J=1
912%

7 : R — R: activation function

7; : R — R: activation function used by f; if it is an activation layer

W, € R% x R%: weight matrix used by layer f; if it is a fully-connected layer

W, (overloaded): weight tensor used by layer f; if it is a convolutional layer

[]: square brackets; used exclusively for tensor indexing and denoting closed intervals
0 <1 <dyaswell as 0 < j; < d;: zero-based layer component index

1, j: shortened version of ¢;, j; respectively when [ is clear from context

E(z,): shortened version of E, ,)p

E, as well as E: shortened version of E,..p

[E,.-expr where var has a finite set of values: mean of expr over var

expr: shortened version of £, expr

Covyec: the covariance matrix of vec with respect to D

6 € RY™®): trainable parameter

£ RImO) 5 R —y R (overloaded) : neural architecture; the inputs to f are § and z

0, where 6 = (6,,..,0): trainable parameter sub-vector of the [’th layer which may be
empty
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fi 2 RImO) 5 Rk x Rl % . x Rk — R% (overloaded) : I’th neural architecture
layer; the inputs to f; are 0y, fi,1]» --» i,k

T': number of training iterations

e 1 <t < T training iteration counter

6®): value of the parameter after iteration t.

6©): initial parameter value

91): final parameter value

® B C Dyyn: batch of datapoints

| B|: batch size

e BW: batch used at iteration ¢

2.7.4 Technical conventions

e Network vs architecture: We use two different conventions for the symbol f and related
concepts. In one case, we use f to denote a function that maps an input x to an output f(z)
without reference to a parameter value. In that case, f is a neural network. In the other, we
use f to denote a function that maps a parameter ¢ and an input x to an output f(6, x). In that
case, f is a neural architecture, and an (f, §) pair with a specific  is a neural network. We

switch between the conventions based on whether the context calls for an explicit treatment
of 6.

e Overloading: We overload our neural network notation and terminology to refer to mathe-
matical functions, computer programs, graph nodes and vector values at the same time, as
well as distributions when f is associated with D. f; has, for example, a gradient, a runtime,
ancestors, vector components and an expectation respectively. The mathematical function
provides the abstract definition and its output is a vector. The computer program implements
the mathematical function. Each layer is a graph node in the layer graph. We use e.g. the
terms ‘layer operation’ and ‘network function’ for the function aspect, ‘layer program’ for
the program aspect, ‘layer value’ for the vector aspect, and ‘layer distribution” and ‘output
distribution’ for the distribution aspect. When we use layers or networks to form mathemat-
ical expressions, we generally consider their vector values. For example, f; = f,, indicates
that the value returned by both layers is equal, not that they are the same graph node or that
the layer operations are equal. Finally, we add tensor structure to a layer if it is part of a
convolutional network. However, this does not invalidate our vector-based notation.

e Omitting inputs: We often omit inputs of functions in our notation, i.e. we may simply write
f instead of f(6,x). We sometimes consider a layer not as a function of its parents, but of
one or more ancestors. For example, we write f;(x) to denote the value of f; as  varies. In
general, we pick and choose which inputs to denote explicitly. The same is true for subscripts
and superscripts.
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e Expectation vs mean: We use the term “expectation” specifically to refer to the E,.p and
E(2,4)~p Operations, while we use the term “mean” to refer to unweighted averages of finite
sets, such as E; f;(x)[z] and E(, ,ycp, as well as the mean parameter of Gaussian distributions.
While verbally distinguishing between e.g. E, f;(x) and E; f;(x)[i] can be tricky at times, we
hope this convention will improve readability.

o Assuming differentiability: Throughout large parts of this work, we implicitly assume dif-
ferentiability on a conceptual level by e.g. using the Jacobian [J. All of our concepts and
theoretical results are fundamentally applicable and somewhat easily generalizable to prac-
tical non-differentiable cases, such as architectures that use ReLU. We also validate our
empirical results on such architectures.

o Assuming integrability: Throughout this work, we implicitly assume integrability on a con-
ceptual level by e.g. using the expectation operator [£ over continuous distributions. This
can be considered to hold in all practical cases. Please see section [2.6.2]for our precise usage
of the term “integrable”.

e Batch normalization: We present our work in terms of single-input, single-output networks
f. Oftentimes, this does not directly apply to networks with batch normalization. For brevity
and readability, the generalization to the BN case often remains implicit. It is explicitly

discussed in e.g. sections[4.4.4]and [I1.6]

e Probabilistic operators: The same notational conventions that apply to the £ operator apply
to other probabilistic operators, such as the standard deviation S.

e Row vectors: Vector-valued concepts associated with neural networks such as f; and 6 are
row vectors by default. Jacobians 7, ,,, have left dimension d; and right dimension d,,,.

e Distribution transformations: When a distribution dist is used in expression expr as if it was
a value, then expr denotes a distribution. Drawing from that distribution is equivalent to
drawing a value from dist and then evaluating expr with that value.

e Ordered layers: Without loss of generality, if [ > m, then f; is not an ancestor of f,, in the
layer graph.

2.7.5 Technical terminology

e Input: used both in a general sense for a function or program input and in a specific sense
for the network input z

e Output: used both in a general sense for a function or program output and in a specific sense
for the network output f(x)

e Parameter: used both in a general sense and in a specific sense for the trainable parameter of
a neural architecture
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Layer: used both in a general sense for an arbitrary network node and in a specific sense for
an instance of one of the operations defined in section |2.4.1} such as the fully-connected or
activation operation

Macro-layer: This refers to an instance of a group of operations that occur together fre-
quently, such as a fully-connected operation followed by an activation operation, or a fully-
connected operation followed by a normalization operation, an elementwise multiplication
operation, a bias operation and an activation operation. Many publications use the term
‘layer’ in the way we use ‘macro-layer’.

Initial weight variance: the variance of an entry of a weight tensor under the parameter
initialization scheme

LeCun variance: This is 1 over the number of multiply-adds that contribute to a neuron in a
linear layer. For example, for fully-connected layers f, this refers to the value é.

LeCun initialization: any parameter initialization scheme where the initial weight variance
is the LeCun variance

He variance: twice the LeCun variance

He initialization: any parameter initialization scheme where the initial weight variance is the
He variance

Initial state / randomly initialized state of an architecture f: the neural network (f, 6(?))
Final state of an architecture f: the neural network (f,0())

Training run: a singular execution of a training algorithm that transforms an initial state
network into a final state network

Residual unit: the segment in the layer graph from the beginning to the end of a skip con-
nection

Skip connection / skip block: the layer graph path within the residual unit that generally does
not contain an activation layer

Residual block: the layer graph path within the residual unit that generally does contain an
activation layer

Bottleneck: f,, is a bottleneck for f; if every directed path from f; to f; contains f,,.

Data shard: any subset of the dataset such as the training or test set, including the dataset
itself

Predicting a property: When we refer to predicting a final state property, such as test error,
we always imply that the prediction was made before training.
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Chapter 3

Empirical study design

In many chapters of this work, we refer to experiments we conducted for the purpose of empirical
analysis and validation. The scope of these experiments is a key distinguishing feature of this work.
To our knowledge, we go beyond the vast majority of prior work that analyzes ZSAD guidelines,
such as the works referenced in section[I.3.6] We believe our empirical studies can serve as a guide
for designing analytical deep learning studies in general. In this chapter, we detail these studies.
Our experiments stand out particularly in three ways: (i) in terms of the variety of architectures
studied, (i1) in terms of the carefulness of training and (iii) in terms of the carefulness of metric
computation. We conducted exhaustive learning rate tuning independently for each architecture we
studied, and we trained for a large number of iterations at many different learning rate levels. We
conducted nearly 300,000 independent training runs on fully-connected architectures and nearly
12,000 independent training runs on convolutional architectures, which consumed around 50,000
GPU-hours. For our fully-connected architectures, we conducted all computation using 64-bit
floating-point precision. These choices had a large impact on our results, as we summarize in

section

Our experiments can roughly be grouped into three buckets, which we discuss in the next three
subsections respectively. (i) In study A, we trained 750 fully-connected architectures on three
datasets (section [3.1)). (ii) In study B, we trained 552 convolutional architectures on CIFAR10
(section[3.2). (iii) We conducted further experiments which were similar to study A, but where we
changed the architecture or specific aspects of the training protocol (section [3.3)).

We computed metrics on the architectures we trained, both in their initial and final state. We also
computed metrics on further architectures in their initial state as well as metrics on datasets and a
range of activation functions and datasets. Computing these metrics can be trickier than it appears
at first glance. We discuss them in section In section [3.4.2] we explain how we present the
results of our experiments visually throughout this work. In section [3.5] we point out limitations
to our empirical analysis and discuss our attempts to mitigate those limitations. Some of these
limitations are intrinsic to the type of analysis we conducted. Others are specific to the conditions
under which this work was conducted.

We repeat the most salient information of this chapter in section [3.6] There, we summarize (i) the
choices made in the design of our empirical studies that were most responsible for obtaining the
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results we cover in this work and (ii) the terminology and conventions that are most important for
understanding and interpreting our figures, tables and discussion of experimental measurements.

Background from prior chapters Throughout this chapter, we use the terminology, notation
and conventions of section

3.1 Study A: Fully-connected networks

We studied a total of 750 neural architectures, 250 for each of three datasets: CIFAR10, MNIST
and waveform-noise. In section[3.1.1] we describe the procedure we used to generate the architec-
tures. In section we give the protocol we used for training. In section we detail how
we chose our three datasets and what data processing occurred before training began.

We designed the original version of this study without any strong beliefs or expectations about the
results we would obtain. After observing some initial results, we only made minor alterations to
the study to increase the diversity of observed architecture behaviors without compromising the
statistical validity of our results. Crucially, we did not design this study specifically to obtain any
result we cover in this work.

3.1.1 Architectures used

Summary We generated a total of 750 neural architectures at random. These architectures rela-
tively closely resemble popular architectures built using popular design strategies. See section [2.4
for the definition of the layer operations and design strategies we use. Of course, in this work we
aim to develop ZSAD guidelines that reach beyond the space of familiar architectures. We fur-
ther discuss this point in section In current practice, when choosing an architecture, certain
properties, like depth or the activation function(s) present, are regarded as key to attaining high
performance. We validate this view in chapter[§] When generating our architectures, we randomly
vary properties that are considered important and that vary between practical architectures: depth,
width, weight matrix and bias vector initialization, the activation function used, the normalization
operation used, whether the architecture is residual, where the skip connections are located, and the
addition weights used by the skip connections. Each property was chosen independently for each
architecture, and independently from other properties, with a few exceptions as detailed below.

The full list of architectures is given in the appendix in section|A.1} That list should be interpreted
in light of the remainder of this section.

Layer graph The template for the layer graphs of our architectures is depicted in figure [3.1]
Each architecture is composed of an input layer followed by M macro-layers. Each macro-layer
contains at least a fully-connected layer, a bias layer and an activation layer, except the last macro-
layer which does not contain an activation layer. Some architectures also have a normalization
layer in each macro-layer. In macro-layer m, the normalization layer precedes the activation layer
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layers

Macro-layer M

Macro-layer M-1
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macro-layer 3
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macro-layer 2
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Macro-layer 3

Macro-layer 2
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Figure 3.1: The layer graph template for the fully-connected architectures used in study A. Layers
with dotted boundary are present in some but not all architectures. Each layer in the sequence
directly depends on the preceding layer. Addition layers also depend on exactly one of the layers
they are connected to with an arrow. If M = 3, “Macro-layer M-1" is directly preceded by “Macro-
layer 17.



if m < M and it is the last layer if m = M. In all macro-layers m with 3 < m < M and m
odd, residual architectures have an addition layer directly after the bias layer that adds that bias
layer to either the normalization layer or addition layer from macro-layer m — 2 if m > 5, or the
normalization layer or bias layer from macro-layer 1 if m = 3. The output layer is simply the last
layer in macro-layer M which, depending on the architecture, can be a bias layer, addition layer or
normalization layer.

Depth In our architectures, we define depth as the number of macro-layers M, as is common
practice for the kind of architectures we study. See section[2.4.2] The depth was chosen uniformly
from the set of odd integers between 3 and 49, i.e. {3,5,7,..,47,49}. Odd depths are required for
residual architectures built according to our layer graph template.

Width In each of our architectures, almost all layers have the same width, and we call this simply
the ‘width’ of the architecture. This width is set automatically as a function of depth so that the
parameter has dimensionality approximately equal to 1 million. In section|[I.3.6] we mentioned the
ZSAD guideline of “using an appropriate width”. While it is unclear how to choose the “correct
width”, the fact that the dimensionality of the parameter has some impact on performance is a
foundational observation in machine learning and statistics. We wanted to exclude this source
of performance variation for this study. We discuss this choice further in sections [3.5.2] and
[[.2.6] Setting almost all layer widths equal is the most popular type of width configuration for
fully-connected architectures.

The width of the input layer was set to the input dimensionality of the dataset. This is 810 for
CIFAR10, 334 for MNIST and 40 for waveform-noise after data processing. See section for
how we arrived at these numbers. The first fully-connected layer has width equal to the overall
architecture width. All layers from then on have the same width until the last fully-connected
layer. Finally, all layers from the last fully-connected layer to the output layer have width equal
to the number of classes present in the dataset, which is 10 for CIFAR10 and MNIST and 3 for
waveform-noise.

Activation function In each of our architectures, all activation layers use the same activation
function, as is overwhelmingly popular for simple fully-connected architectures. This activation
function is of form 7(s) = ¢7(ds + h) + b, where 7 is an activation function from table and
d, h,c, b are fixed constants. ReLLU, SELU and Gaussian are selected as 7 with probability % each
and tanh, even tanh, sigmoid, square and odd square with probability 1—11 each. We reduced the
probabilities of tanh, even tanh and sigmoid as we considered them similar. The same holds for
square and odd square. d is 1 with a 50% probability, 1.2 with a 25% probability and 0.8 with a
25% probability. h is O with a 50% probability, 0.2 with a 25% probability and -0.2 with a 25%
probability. Finally, we set (b, ¢) jointly using two constraints. With a 50% probability, the first
constraint is b = 0 and with a 50% probability, it is s zr0,1y¢7(ds + h) + b = 0. The second
constraint is always E 0,1y (c7(ds + h) + b)* = 1.

The primary reason behind introducing these random variations was to increase the diversity of
architectures studied. Setting E,x0,1)7(s)? = 1 follows the ZSAD guideline of scale stability
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as explained in section If the overall magnitude of neuron values at the dependency of
the activation layer is around 1, so it is in the activation layer itself. We wanted to exclude the
potential of performance variation due to scale instability in this study. Ensuring E,x,1)7(s) = 0
is activation function debiasing, which follows the ZSAD guideline of avoiding neuron bias, as
explained in section We wanted to explicitly study the impact of following or not following
that ZSAD guideline.

Weight matrix and bias vector initialization We use orthogonal LeCun initialization. With a
probability of 50%, we initialize the bias vectors in all bias layers as zero vectors and, with a prob-
ability of 50%, we initialize their components as independent zero mean Gaussians with a variance
of 0.05. We took the 0.05 value from |Schoenholz et al.|[2017]]. If the bias vectors are initialized as
nonzero, we scale the weight matrices with a factor of 1/0.95 to attempt to approximately preserve
the overall magnitude of neuron values after applying both the fully-connected and bias operations.
Finally, with a 25% probability, we then additionally multiply all weight matrices and bias vectors
jointly by 0.9 and with a 25% probability, we multiply them by 1.1. We did not deviate too much
from the LeCun variance to, again, exclude the source of performance variation that is a potential
lack of scale stability for this study. Orthogonal initialization has been shown to be superior to
Gaussian and uniform initialization for fully-connected layers [Saxe et al., |2014} |Pennington and
Worah, 2017, Helfrich et al.l 2018 |Arjovsky et al., [2016b, Xiao et al., 2018, Pennington et al.,
2017]. See also section[9.5]

Residual architectures With a 50% probability, an architecture is residual. It then contains ad-
dition layers as described above. The addition weights are fixed throughout training. The addition
weights associated with a residual block are always 1. With a 50% probability, all addition weights
associated with a skip connection are 1. With a 50% probability, all addition weights associated
with a skip connection are set to the same random scalar that is sampled uniformly from the interval
[0, 1]. This can be considered an “interpolation” between a residual and non-residual architecture.
With a 50% probability, all skip connections start at the previous addition layer. (The first skip
connection would start at the first bias layer.) This is the most popular choice. With a 50% prob-
ability, skip connections start at a normalization layer, which are always present in our residual
architectures (see below). We introduced these variations to obtain a more diverse range of non-
linearity levels among residual architectures. Note that normalizing between successive residual
units rather than only within the residual block increases the nonlinearity for reasons explained in

section

The last skip connection in the architecture, which starts at macro-layer M/ — 2 and ends at macro-
layer M, adds two layers of different width. Therefore, we modify the addition layer to first
multiply the skip connection with a fixed orthogonally LeCun initialized matrix that transforms
the vector dimensionality as required, before adding it to the residual block.

Normalization layers A normalization layer is always used if the architecture is residual. This is
necessary to ensure scale stability as explained in section[8.9] A normalization layer is also always
used if the architecture is based on the square or odd square activation function (table [2.1). This is
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because if normalization layers were not used, those architectures would exhibit numerical over-
flow and underflow during forward propagation even in the initial state due to Gaussian instability
as explained in e.g. section[5.6] We would obtain “nan” values at the output layer even when using
64-bit precision. This is because repeated squaring can lead to an extremely fast growth or decay
from macro-layer to macro-layer.

In all other cases, a normalization layer is used with a 50% probability. If normalization layers
are used, they are batch normalization with a 50% probability and layer normalization with a 50%
probability. Overall, we obtain the following aggregate frequencies: no normalization layers -
20.4%, BN - 39.8%, LN - 39.8%. The regularizer of the normalization layers is set to zero for the
purpose of floating-point computation.

3.1.2 Training protocol

Summary We trained each of the 750 architectures with stochastic gradient descent 40 times
with different starting learning rates and selected the best starting learning rate, independently for
each architecture, based on the error on a held-out validation set. During each of the 40 training
runs, we reduced the learning rate 10 times by a factor of 3 based on when the validation error
stopped improving. All training was conducted with 64-bit precision floating-point computation.
We then re-trained the 500 architectures belonging to the CIFAR10 and waveform-noise datasets
without early stopping based on validation error to minimize training error, this time using 60 runs
to select the best starting learning rate. See section [2.5] for the definition of some of the building
blocks referenced in this subsection.

Data shards CIFARI10 and MNIST come as a pre-specified training set of size 50,000 / 60,000
respectively and a pre-specified test set of size 10,000. We further extracted a validation set of size
10,000 from the pre-specified training set that was drawn uniformly at random, so that our training
set had size 40,000 / 50,000 respectively. waveform-noise comes as a single dataset of size 5,000.
We extracted a test and validation set of size 1,000 each, drawn uniformly at random, so that we
were left with a training set of size 3,000. For each dataset, we used the same training, validation
and test set throughout this study.

Parameter initialization For each architecture, we considered a single random initialization, i.e.
a single draw from the random initialization scheme. This is the initial state of the architecture.
Given a limited computational budget, we considered it more important to study as many different
architectures as possible rather than multiple initializations of the same architecture.

Training algorithm We trained each architecture with SGD applied to the training set. We used
batches of size 250, which were drawn uniformly at random without replacement.

Learning rate decay and early stopping We trained with the starting learning rate (SLR) until
the validation error (VE) had not decreased for 10 epochs. We evaluated the VE at the end of each
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epoch for the purpose of making this determination. Then we re-set the parameter to the value it
had 10 epochs prior, when the least VE had been attained. Then we divided the learning rate by 3
and continued training until the VE had not decreased for 5 epochs. We divided the learning rate
by 3 again, re-set the parameter and continued training until the VE had not decreased for 5 epochs
again. This process continued until the learning rate had been divided by 3 ten times. When the VE
had again not decreased for 5 epochs, we re-set one last time and then terminated training. ‘Early
stopping’ refers to the common practice of stopping training when the VE no longer decreases,
even if the training error may still be decreasing.

Starting learning rate tuning To ensure that there is no bias with regards to SLR which may
skew our results, we tuned the SLR independently for each architecture by training each architec-
ture 40 times. All 40 training runs were fully independent of each other. Each training run used
a different SLR. The 40 SLRs formed a geometric series with spacing factor 3. For each training
run, the architecture attains its lowest measured VE at the end of that run due to the early stopping
procedure described above. We selected as the best SLR the one that yielded the lowest VE and
also did not cause overflow at any time during training. Those SLRs are given in section [A.1

(Overflow happens when any value involved in the training computation grows beyond the largest
value representable by floating-point computation.)

For each architecture, the smallest SLR considered was determined as follows. We ran SGD for
1 epoch with a learning rate of 1 without actually applying the updates to the parameter. For
the weight matrix in each macro-layer, we thus obtained one update per iteration. Let 5W,§f)
denote the update obtained for the weight matrix in macro-layer m at iteration ¢ and let W
denote the initial value of the weight matrix in macro-layer m. The smallest SLR was then chosen
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matrix updates obtained with the smallest SLR should not perturb weight matrices by more than
approximately 1078 relative to the norm of the weight matrix. We chose the 10~® factor so that our
smallest SLR would be less than the smallest learning rate that can be meaningfully used under
32-bit precision floating-point computation. Of course, this choice of smallest SLR is merely a
heuristic. The goal of this heuristic is to ensure that the best SLR that would be found by an
unbounded grid search is, with very high probability, within the range of SLRs we consider. (Note
that even the SLR found by an unbounded grid search is not the true best SLR, as further explained
in section [3.5.9]) We validated this heuristic by checking that no architecture that attained a non-
random VE for any SLR attained its lowest VE with either one of the smallest five or largest five
SLRs considered. This condition was fulfilled for all architectures. See section for further
analysis on this point.

-1
) . The reasoning behind this choice is that individual weight

Hyperparameter tuning We did not tune any hyperparameters beyond the SLR. We stress the
conceptual importance of tuning the learning rate exhaustively in section We analyze the
importance empirically in section[6.6] As described above, we also train exhaustively with a large
number of learning rates within a single training run.

We defined the concept of hyperparameter tuning in section Conducting and analyzing
40 training runs would be considered hyperparameter tuning. After the hyperparameter tuning
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stage, technically, we would then have to begin the “actual training” stage, where we train with
the selected hyperparameter values. Of course, at that point, training with the selected SLR value
has already been conducted during the tuning stage and does not have to be repeated. Hence,
hyperparameter tuning and ‘“actual training” are part of the same procedure in our pipeline.

Floating-point precision All training was conducted with 64-bit precision floating-point com-
putation. This was essential for a significant number of architectures to attain a less-than-random
error. See section [6.5]for further analysis on this point.

Loss function We used an augmented version of softmax+cross-entropy as the loss function.
After initializing each architecture, we evaluated the quadratic mean of the output layer neuron

(0 z)[|3. We then had the loss function divide the

network outputs by this scalar value before feeding them into the softmax-+cross-entropy operation.
softmax+cross-entropy yields very different behaviors and levels of performance for networks that
return outputs of different overall magnitude, as is known and as we show in section We did
not want this fact to confound the results of our study. In essence, we ensure scale stability for
the network output. We believe that the preference of softmax-+cross-entropy for network outputs
of a certain magnitude has confounded the results of studies in the past. The value of this scalar
multiplier remained fixed throughout training.

o e . 1
values on the training set: \/ 7B (2,4)€ Dy

Error function We used classification error, as is overwhelmingly popular practice for simple
classification tasks.

Re-training for training error minimization We re-trained some architectures to minimize
their training error. We refer to this as “training error minimization”. We made two changes to
the protocol. (i) We divided the learning rate by a factor of 3 only once the training error had not
decreased for 10 / 5 epochs respectively. We evaluated the full training error at the end of each
epoch for the purpose of making this determination. (ii) We considered 60 different SLRs which

M \/Etnawﬁ?%)*

m=1 (0)
W[l 7
Therefore, we considered even the smallest learning rate that is meaningful under 64-bit precision

floating-point computation. For each training run, the architecture attained its lowest training error
at the end of that run. We selected as the best SLR the one that yielded the lowest training error and
also did not cause overflow at any time during training. We also found that only one architecture
that attained a non-random training error attained its lowest training error with one of either the
smallest or largest five SLRs. Note that if we had used the original set of 40 SLRs, we would have
been unable to train several architectures that required a tiny SLR, as we explain in section [6.6]

formed a geometric series with spacing factor 3 and lowest value 10716 ( >

The reason we did not re-train our 250 MNIST architectures in this way was the very long training
times and considerable computational expense incurred when not using early stopping based on
validation error. We preferred studying a slightly smaller number of architectures / datasets to
compromising our training protocol.
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3.1.3 Data

Selection We wanted to conduct experiments on three different datasets. First, we chose CI-
FAR10 and MNIST as they are the two most popular datasets for evaluating deep neural networks.
They are also small enough for us to conduct a very large number of training runs with the computa-
tional resources we had available. We decided to choose our third dataset from the UCI repository
of machine learning datasets. Klambauer et al. [2017] validated the SELU activation function,
which has become somewhat popular, on a large number of datasets from this repository. We
wanted to choose a dataset that Klambauer et al.| [2017] also used. To decide upon the specific
dataset, we applied the following requirements.

e The dataset is a classification dataset.

The frequency of no class is more than 50% larger than the average frequency of all classes.

The size of the dataset is between 1,000 and 100,000.

The dimensionality of the input is at least 10.

The dataset does not contain images. (We already study 2 image datasets in CIFAR10 and
MNIST.)

No component of the input vector is very sparse across the dataset.

We are actually able to find the dataset on the repository website.

Only two datasets fulfilled all those requirements: waveform and waveform-noise. They are very
similar. We chose the latter because of the greater dimensionality of its input.

Description The CIFARI10 dataset is composed of 32 by 32 color images and a class label for
each image. Each image depicts an object that is of one of 10 types, and the class label corresponds
to that type. (citation: |[CIFAR10-dataset). Images have three 8-bit color channels, which means
each pixel is represented by three integers between 0 and 255. Hence, the entire image is repre-
sented by 3 * 32 x 32 = 3072 integers. For the purpose of applying deep learning, we treat these
integers as real values. This makes sense given that their underlying meaning (color intensity) is
a continuous concept. In study A, we used fully-connected networks. Hence, we treat the input
as a 3072-dimensional real vector. Our data processing, as described below, further reduced the
dimensionality to 810.

The MNIST dataset is composed of 28 by 28 grayscale images of handwritten digits associated
with a digit label that takes values O through 9 (citation: MNIST-dataset). Because the images
are grayscale, they are represented by 1 * 28 x 28 = 784-dimensional vectors, which we consider
real-valued. Data processing further reduced the dimensionality to 334.

The inputs of the waveform-noise dataset are 40-dimensional real vectors consisting of wave at-
tributes. Each input is associated with one of three class labels based on the wave type (citation:
waveform-noise dataset).
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CIFAR10 and MNIST come as a pre-specified training set of size 50,000 / 60,000 respectively and
a pre-specified test set of size 10,000. waveform-noise comes as a single dataset of size 5,000. In
each dataset, all classes are approximately equally frequent.

Processing We processed CIFAR10 and MNIST via the following sequential procedure.

1. We perform pointwise normalization as defined in section [2.5.4

2. We perform componentwise normalization as defined in section [2.5.4{ where only the mean
was subtracted.

3. Via PCA, we determine the dimensionality dim of the input subspace that holds 99% of the
variance of the input.

4. We multiply all inputs with a fixed orig X dim randomly orthogonally initialized matrix,
where orig is the input dimensionality of the unprocessed dataset.

5. We multiply all inputs with a single scalar constant so that the mean of squares across all
components of all inputs becomes 1.

For CIFARI10, orig = 3072 and dim = 810. For MNIST, orig = 784 and dim = 334. Hence, the
input layer width of our CIFARI1O0 architectures was 810 and the input layer width of our MNIST
architectures was 334.

In preliminary experiments, we found that this processing scheme led to faster training and lower
error values compared to using componentwise normalization only. The reason we developed this
scheme was to reduce input dimensionality, so as to reduce the computational complexity of the
first fully-connected layer as well as the amount of memory required to train and store the dataset.
This allowed us to train more architectures at a given budget.

For waveform-noise, we performed componentwise normalization only. Hence, the input layer
width of our waveform-noise architectures was 40.

We note that we did not use the test set “actively” in data processing. Our data processing schemes
do not apply independently to each input. Rather, they involve taking means over the entire dataset
as well as PCA. Both means and PCA used the union of training and validation set, but not the
test set. If we treat the value of the means, as well as dim, as fixed constants, then our data pro-
cessing schemes do apply independently to each input, i.e. they can be viewed as fixed processing
functions. These functions were ultimately applied to the test set for consistency. Therefore, if
the test set is an I1ID draw from the original data distribution, then the processed test set is an IID
draw from the processed data distribution, i.e. it is an IID draw from the image of the original data
distribution under the processing function. The test error remains an unbiased estimate of the true
error after processing, though the training and validation sets are no longer IID draws from the data
distribution. See section for further discussion on this point. See section |3.1.2|above for how
we split the dataset into training, validation and test set.
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3.2 Study B: Convolutional networks

We studied a total of 552 architectures on CIFAR10. In section [3.2.1] we describe the proce-
dure we used to generate the architectures. In section [3.2.2] we give the protocol we used for
training. See section |3.1.3| above for information on the CIFAR10 dataset. For study B, the data
processing scheme varies as described in section The CIFARIO inputs are naturally cast as
3-dimensional tensors with 3 channels and 2 spatial dimensions of size 32.

While we designed study A without significant prior knowledge about the results we would obtain,
we had a strong understanding of the subject matter when designing study B. To mitigate the
damage of “overfitting” our study design by infusing prior knowledge, we chose some different
properties to randomly vary between architectures compared to study A - properties we did not
have as much experience with. We also used a different gradient method. Once we determined the
study design, we made no further changes after observing results.

3.2.1 Architectures used

Summary We generated a total of 552 architectures, partially at random. As in study A, we var-
ied properties that are considered important. As stated above, we wanted to choose some different
properties to vary compared to study A in order to (i) learn more about these properties and (ii)
reduce the contamination of our study design with prior knowledge. Additionally, we wanted to
vary only properties for which there does not exist a consensus standard value in the community.
For example, we always used the LeCun variance for the purpose of weight initialization in this
study. Another design constraint was that the study needed to be suitable to validate nonlinearity
normalization, the algorithm we present in chapter[7] The reason behind some of the choices made
will become clear in that chapter.

We deterministically varied the activation function used, the normalization operation used, and
whether the architecture was residual. We additionally varied the following at random: weight ini-
tialization scheme, whether bias and elementwise multiplication layers were used, data processing
scheme, whether data augmentation was used, the type of pooling layer used, and whether a global
average pooling layer was used. (For convenience, we consider data processing and data augmen-
tation as part of the architecture definition in this study, as they were varied randomly along with
architecture properties.) Each of these properties was sampled independently of the others.

The full list of architectures is given in the appendix in section|A.2| That list should be interpreted
in light of the remainder of this section. Some of the building blocks we use are defined in section
[2.4land some are defined below.

Layer graph The template for the layer graph of our architectures is depicted in figure[3.2] Each
architecture is composed of an input layer followed by 20 macro-layers. We begin by discussing
macro-layers 1 through 19, which are similar. Each of these macro-layers is composed of some of
the layers listed below. All layers present in a macro-layer also appear in the order in which they
are listed below.

105



<—— Output layer

ML 20
|

Macro-layer 19

Macro-layer 18

Macro-layer 17

Activation layer |

Macro-layer 16 1

Macro-layer 15

Macro-layer 14

Macro-layer 12

Macro-layer 11

Macro-layer 10

Macro-layer 9

Macro-layer 8

Macro-layer 7

Macro-layer 6

Macro-layer 5

Macro-layer 4 |ERESEENYASN NETCCLITTITIL I TEOTIITEEIEEs

Macro-layer 3 w

e
>
(=]
=2
<
Q
=p
o
S
@

<
®
=

b

Macro-layer 2

—1 Convolutional layer |

Macro-layer 1

Input Layer

Figure 3.2: The layer graph template for the convolutional architectures used in study B. Layers
with a dotted boundary are present in some, but not all, architectures. Each layer in the sequence
directly depends on the preceding layer. Addition layers also depend on the layer they are con-
nected to with an arrow. Even macro-layers other than macro-layer 20 mirror macro-layer 1. Odd
macro-layers other than 1, 7 and 13 mirror macro-layer 9. Macro-layer 7 mirrors macro-layer 13.
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e Convolutional layer: always present
o (First) bias layer: present if the architecture does not use normalization layers

e Addition layer: present in macro-layers m, where 3 < m < 19 and m odd, if the architecture
1s residual

e Pooling layer: present in macro-layers 7 and 13

e Normalization layer: present in some architectures

e Elementwise multiplication layer: present if randomly chosen to be so (see below)
e (Second) bias layer: present if the elementwise multiplication layer is present

e Activation layer: always present

Addition layers in macro-layer m add the preceding layer to the addition layer from macro-layer
m —2ifm € {5,7,11,13,17,19}, to the pooling layer from macro-layer m — 2 if m € {9,15}
and to the convolutional layer from macro-layer 1 if m = 3.

In contrast to macro-layers 1 through 19, macro-layer 20 contains only a single fully-connected
layer which may be preceded by a global average pooling layer. The fully-connected layer is the
output layer.

Depth The depth is set to 20, i.e. there are 20 macro-layers. We did not vary depth because, in
convolutional networks, depth has an intricate interaction with the spatial frequency composition of
the output, as studied by Xiao et al. [2018]]. Therefore, depth has a significant indirect influence on
performance. We wanted to exclude this source of performance variation for this study. The depth
of 20 was derived from |Simonyan and Zisserman| [2015]]. This paper represented the state-of-the
art in convolutional architectures before residual architectures were introduced. To our knowledge,
20 is approximately the largest depth at which simple convolutional architectures were observed
to have high performance.

Layer size All layers except the output layer are cast as 3-dimensional tensors with 1 channel
dimension and 2 spatial dimensions. See section [2.4.1.2] for notation and terminology. The final
fully-connected layer treats its dependency as a simple vector and returns an output that is not cast
as a tensor.

The input layer has size 3 x 32 x 32 according to the natural layout of CIFAR10 inputs. The first
pooling layer changes the spatial dimensions to 16. The second pooling layer changes them to 8.
The pooling layer in the last macro-layer, if present, changes them to 1. No other layer that is cast
as a tensor changes the spatial dimensions.

The convolutional layer in macro-layer 1 changes the size of the channel dimension to 16. The
convolutional layer in macro-layer 8 changes the size of the channel dimension to 32. The con-
volutional layer in macro-layer 14 changes the size of the channel dimension to 64. The addition
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layers in macro-layers 9 and 15, if present, would then add layers of different channel dimension.
Therefore, before the addition, we multiply each spatial location in the skip connection with a ran-
dom projection matrix of size 16 x 32 (layer 9) / 32 x 64 (layer 15) before adding it to the residual
block. The matrix is the same for all spatial locations and is fixed throughout training. It is LeCun
Gaussian initialized unless the convolutional layers in the architecture are delta-initialized with an
orthogonal slice (see below). In that case, the matrix is LeCun orthogonally initialized. Apart from
the convolutional layers and addition layers just discussed, no layer that is cast as a tensor changes
the size of the channel dimension.

Finally, the output layer has width 10 as CIFAR10 has 10 classes. The pattern of layer sizes follows
the smallest architecture studied in the landmark paper by Zaguroyko and Komodakis| [2016]. For
the same reasons as in study A, we did not vary the dimensionality of the parameter between
architectures.

Activation function All activation layers in a given architecture use the same activation function,
as is overwhelmingly popular for simple convolutional networks. This activation function is of
form 7(s) = ¢7(l,s) + b, where [, ¢, b are fixed constants. (Note that when we don’t use the letter
[ as a subscript, it generally does not denote a layer index as it does in the expression f;.) 7(, s)
is an activation function augmented with a ‘linearization method’. A linearization method is a
method for interpolating an activation function with a linear function. We abbreviate the concept
of an (activation function, linearization method) pair as ‘AFLM’. In table[3.1] we depict all AFLMs
used in the study. The ‘linearization parameter’ [ indicates how close to a linear function 7 is. We
will formalize this intuitive concept in later chapters. [ always has a ‘default value’ that makes the
AFLM revert to the basic activation function from table

Each of the 12 AFLMs in table [3.1|is used with 12 different triplets of values (, ¢, b) in the study.
See section for details. In the first triplet, [ is set to the default value, b is set to 0 and c is set
to achieve E N(O,l)T(s)Q = 1. Across the other 11 triplets, [ varies. This causes 7 to be more or
less linear. Roughly, these 11 triplets correspond to 0% linearization, 10% linearization, etc. up
to 100% linearization. (b, c) are set jointly to achieve Esepnr(0.1)7(s)? = 1 and Eyepro,1)7(s) = 0.
Both strategies for setting b and c are familiar from and explained in section [3.1.1|above.

Combining 12 AFLMs with 12 triplets each yields 12 * 12 = 144 activation functions. Each
activation function is used in exactly four architectures, except those based on the square and odd
square AFLMs, which are used in exactly three architectures.

Finally, note that the sigmoid activation function is equivalent to tanh-dilate with [ = 0.5, assuming
b and c are set as above. Therefore, we did not use an AFLM that was explicitly based on sigmoid.

Normalization layers and residual architectures All activation functions not based on the
square or odd square AFLM are used in four architectures as given below.

e a non-residual architecture not using normalization layers
e a non-residual architecture using batch normalization

e a non-residual architecture using layer normalization
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AFLM ReLU-interpolation ReLU-shift softplus Swish

Formula max(s,0) + Is max(s +1,0) 7 In(1 4 €") T
4
2 2 2 2
Illustration 0
-2 =0 -2 =0 -2 =1, -2 =1
=1 =1 1=0.5 1=0.5

-4 -4 -4 -4
4202 4 4202 4 42024 420 2 4

AFLM abs. val. SELU tanh-interpolation tanh-dilate
Formula |s + TseLu(S) + Is tanh(s) 4 Is tanh(ls)
2
INustration
-2 =0 =1
=1 1=0.5

-4 -4 4 -4
4202 4 4202 4 42024 420 24

AFLM even tanh Gaussian odd square square
Formula | tanh(s)| + Is \/%efg +1s sx|s|+ s , s*+ s
2 2 2 2 V
Tlustration O 0
-2 =01 -2 =01 -2 -2 |=0
=1 4 =1 =1

-4 - -4 -4
420 2 4 42024 42024 420 2 4

Table 3.1: Activation functions augmented with linearization methods 7(/, s) used in study B. The
illustrations depict 7 with the default value of [ in blue. That activation function is identical to
one in figure 2.1] In red, they depict a linearized version of that activation function. In black,
they depict ¢7(,s) + b, where ¢ and b are chosen to achieve E,.xr01)(c7(l,s) +b) = 0 and
Esno,1)(c7(l, 8) + b)? = 1, and where [ has the same value as for the red curve.
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e aresidual architecture using batch normalization

The residual architecture contains addition layers as described above. Addition weights are fixed
to 1. The regularizer of the normalization layers is set to zero for the purpose of floating-point
computation.

The 24 activation functions based on the square and odd square AFLMs are used in three archi-
tectures, which are the second, third and fourth listed above. We always combine those activation
functions with normalization layers for the same reason as in study A.

All randomly chosen properties discussed throughout the remainder of this subsection always take
the same value for all 36 / 48 architectures associated with the same AFLM. These values are
assigned uniformly at random to AFLMs.

Convolutional layers and weight initialization The spatial dimensions of the weight tensor are
always set to 3 with an offset of 1, as established in Zaguroyko and Komodakis| [2016]. Zero
padding is used, as is overwhelmingly popular practice.

6 AFLMs use LeCun initialization and 6 use delta initialization as proposed by Xiao et al. [2018]].
In delta initialization, only weight tensor entries that connect each spatial location in the convolu-
tional layer with the same spatial location in the dependency are initialized at random, with all other
weight tensor entries initialized to zero. The non-zero components correspond to a 2-dimensional
tensor slice where one dimension has size equal to the number of channels in the convolutional
layer and one has size equal to the number of channels in the dependency. For 3 AFLMs, that
slice is Gaussian initialized, and for 3 AFLMs, it is orthogonally initialized. The variance of the
non-zero entries in delta initialization is set to 3 x 3 = 9 times the variance used for regular LeCun
initialization. This can be considered the LeCun variance for delta initialization, because it ensures
scale stability by the same mechanism that we described in section [2.4.2,

Bias and elementwise multiplication layers Bias vectors are initialized to zero and scaling
vectors are initialized to 1. When normalization layers are not used, a bias layer always follows
each convolutional layer. When normalization layers are used, for 6 AFLMs, the normalization
layer is followed by an elementwise multiplication layer and a bias layer. For the other 6 AFLMs,
no bias or elementwise multiplication layers are used in that spot.

Pooling The pooling layers in macro-layers 7 and 13 use the same pooling function. For 6
AFLMs, subsampling is used, which is a special case of pooling. For 3 AFLMs, average pooling
is used. For 3 AFLMs, max pooling is used. The stride is always 2.

The pooling layer in macro-layer 20 is present for 6 AFLMs and not present for the other 6. It is
always average pooling, where the average is taken over all spatial locations.

Data Processing For 3 AFLMs, we used componentwise normalization as defined in section
2.5.41 where mean and standard deviation were taken over the training set. For 3 AFLMs, we used
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pointwise normalization. For 3 AFLMs, we used pointwise normalization followed by compo-
nentwise normalization. For 3 AFLMs, we used ‘global normalization’, i.e. we normalized with
the single scalar mean and standard deviation across all components of all training inputs. As in
study A, even though the test set was not used for the means and standard deviations, the same
processing function was applied to both training and test set for consistency.

Data Augmentation For 6 AFLMs, data augmentation was not used. For 6 AFLMs, we used
cropping by up to 2 pixels and flipping. Both are defined in section This is the standard
data augmentation strategy for CIFAR10 [Zaguroyko and Komodakis, 2016]]. Data augmentation
was applied on the training set, but not on the test set. Data augmentation was applied after data
processing so that the same processing function can be meaningfully applied to both training and
test set. Data augmentation was not just applied when training the architecture, but whenever the
network was evaluated on a training input, such as during metric computation. See section|3.4.1.1
for more information on this point.

3.2.2 Training protocol

Summary We trained each of the 552 architectures with momentum 20 times with different start-
ing learning rates and selected the best SLR via the test set, independently for each architecture.
Each training run lasted for 100,000 iterations, which approximately corresponds to 256 epochs.
The learning rate was reduced by a factor of 10 at iteration 40,000, 60,000 and 80,000. All training
was conducted with 32-bit precision floating-point computation. See section [2.5|for the definition
of some of the building blocks referenced in this subsection.

Some of the choices made in this protocol, especially those that differed from study A, were nec-
essary because we only had a limited amount of time to work with the code base and the compute
cluster which we needed to conduct this study. We had to pick and choose which functionalities
to implement in code in this limited time frame. We also had to use a lot of pre-written code that
imposed constraints on the code we were able to add. We discuss this point further in section[3.5.7

Data shards CIFAR10 comes as a pre-specified training set of size 50,000 and a pre-specified
test set of size 10,000. In contrast to study A, we did not extract a validation set and so the training
set we used had size 50,000.

Training algorithm We trained each architecture with momentum applied to the training set.
The decay rate of momentum was set to 0.9, as is overwhelmingly popular practice. We used
batches of size 128, which were drawn uniformly at random without replacement.

Data augmentation Data augmentation was applied on the fly after a batch was sampled from
the un-augmented training set, as described in section[2.5.5] We can view the training set under data
augmentation as the set consisting of all augmented versions of the “original” training datapoints,
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except that batches cannot contain multiple augmented datapoints that stem from the same original
datapoint, as batches are sampled without replacement.

Learning rate decay and number of iterations We conducted each training run by first training
with the SLR for 40,000 iterations. Then we divided the learning rate by 10 and continued training
for another 20,000 iterations. We repeated this process twice more until we reached 100,000
iterations, which approximately corresponds to 256 epochs. Then training is terminated. We used
a mild version of early stopping based on training error. Specifically, we terminated training after
10,000 iterations if the training error had not fallen below 0.8 until then. Because CIFAR10 has 10
classes of equal frequency, we consider an error above 0.8 as approximately random, i.e. close to
the kind of error attained by random guessing.

Starting learning rate tuning To ensure that there is no bias with regards to SLR which may
skew our results, we tuned the SLR independently for each architecture by training each architec-
ture 20 times. Due to limitations in computational budget, in contrast to study A, we only consid-
ered 20 SLRs per architecture instead of 40. We also did not adjust those SLRs from architecture
to architecture but used the same values for every architecture: 3,1,0.3,..,3 * 1072,1 x 107°. In
contrast to study A, it was not entirely clear that a wider grid would not have yielded a better SLR
for some of the architectures considered, though definitely not for more than a few. See section @
for further analysis on this point. We selected as the best SLR the one that yielded the lowest test
error after training and also did not cause overflow at any time during training. Note that because
we did not use early stopping based on test or validation error, the test error after training could, in
theory, be significantly higher than the test error at some intermediate iteration. We did not observe
such behavior in preliminary experiments. All selected SLRs are given in section [A.2

Hyperparameter tuning As in study A, we did not tune any hyperparameters beyond the SLR.
As in study A, conducting 20 training runs is simultaneously hyperparameter tuning and “actual
training”, because once the value of the SLR hyperparameter is selected, training with that SLR
has already been conducted. In contrast to study A, we used the test set, not the validation set,
to select the SLR. This means that the test error attained with the selected SLR is no longer an
unbiased estimate of the true error. However, our analysis in section suggests that this is not a
significant problem.

Parameter initialization and random number generation In contrast to study A, we used a
different random initialization for each of the 20 training runs, i.e. a different draw from the
random initialization scheme. This was because the deep learning software framework we used for
study B did not have strong support for synchronizing random number generation across different
processes. In fact, we had to change the random number sequence for all computations associated
with the training run. This affected not only parameter initialization, but also batch selection and
random choices associated with metric computation (see section |3.4)).
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Floating-point precision All training was conducted with 32-bit precision floating-point com-
putation. It is possible that this impacted the performance of some architectures. See sections
and [6.7] for further analysis on this point.

Loss function We used softmax+cross-entropy as the loss function, as is overwhelmingly pop-
ular practice for simple classification. In contrast to study A, we did not have the loss function
normalize the network output.

Error function We used classification error, as is overwhelmingly popular practice for simple
classification.

Training error minimization At various points in this work, we are interested in the training
error of our architectures after training (e.g. figure 4.4). For those situations, we selected as the
best SLR the one that yielded the lowest training error after training, without overflow. In contrast
to study A, since early stopping based on test or validation error was not used to begin with, we
did not conduct any re-training. Again, we refer to this as “training error minimization”.

Re-training for result replication For some architectures, after conducting 20 training runs as
described above, we conducted additional training runs. We used the SLR selected from the orig-
inal runs and trained the architecture another 10 times with different random number sequences.
The aim was to replicate the results from the original run. Results from these additional runs are
presented in chapter

We note that some of those reruns exhibited numerical overflow. When presenting the results of
study B reruns, we ignore every individual run that overflowed. From each set of 10 reruns, at least
5 did not overflow.

3.3 Additional experiments

A large fraction of our analysis was validated through studies A and B. However, we also conducted
additional training runs which utilize a different architecture and / or training protocol. We also
analyze architectures that do not belong to study A or B in their initial state, without training them.
Results from experiments that do not fall entirely under study A or B appear in tables and[4.5]
as well as figures Fi6} A9} 1T} BT, 29 BTIA through B7A. 62 67, (68} (6.9 [6:10} 6.19} .1
and 0.2] When referring to those experiments, we are usually quite brief. For example, we will
write: “We evaluated the Hessian of a tanh-BN residual architecture of depth 10 and width 100 in
its initial state.” Such brief statements imply that there are a lot of “default settings” for non-study
A/B experiments. We will specify those default settings, which hold unless stated otherwise, in
this section.
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Architectures used Architectures are fully-connected. They follow the same layer graph tem-
plate as architectures from study A. See section The following defaults apply.

e Width: As in study A, all layers from the first fully-connected layer (inclusive) until the last
fully-connected layer (exclusive) have equal width. We refer to the width of those layers as
simply the ‘width’ of the architecture. By default, that width is 100. As in study A, the width
of the input layer and last few layers is 810 / 10 respectively if CIFAR10 was used, is 334 /
10 when MNIST was used, and is 40 / 3 when waveform-noise was used. It defaults to 810
/ 10 otherwise.

e Activation function: All activation layers use the same activation function. By default, that
activation function is from table Any modifications are specified explicitly.

e Weight matrix initialization: When the activation function is not ReLU, we use Gaussian Le-
Cun initialization. When the activation function is ReLU, we use Gaussian He initialization.

e Bias layers: By default, there are no bias layers. If there are, bias vectors are initialized to
Zero.

e Normalization layers: Normalization layers are not used.

e Residual architectures: By default, the architecture is not residual, i.e. does not contain addi-
tion layers. If the architecture is residual, the addition weights are 1 and the skip connections
are configured as they are in study A when they do not start at a normalization layer.

Training protocol The default training protocol was the one used in study A (section|3.1.2). As
in study A, we always verified that the best starting learning rate was not among the largest or
smallest 5 considered.

As in studies A and B, in some instances, we were interested in minimizing training error instead
of validation / test error. The ‘“re-training protocol” from study A was used for training error
minimization. See the end of section

Datasets and data processing CIFAR10, MNIST and waveform-noise were processed as in
study A. See section[3.1.3] Note that the training / validation split depends on the random seed as
described below.

Random seeds In study A, we considered only a single random initialization of each architec-
ture. In fact, we used a single random seed for all computations associated with a given archi-
tecture. In other experiments, we allowed the random seed to change. If we vary the random
seed, this affects all computations unless stated otherwise. The random seed controls training set
/ validation set split, parameter initialization, batch selection and random choices associated with
computing metrics (see below). In contrast to the validation set, the test set was specified a pri-
ori and remained fixed. Also, when comparing architectures that differ in ways that do not affect
the meaning of the random number sequence, such as in figures [6.2) or [0.T]A-C, we use the same

114



random number sequence(s) for all architectures. This also implies that the initial parameter value
does not vary, except possibly in its length as in figure[9.1|C.

3.4 Metrics

Almost all of our empirical analysis in this work is based on ‘metrics’. We use this term loosely
in accordance with section [2.7|to refer to functions of one or more of the following: neural archi-
tecture, neural network, layer, parameter, data distribution, input distribution, dataset, data shard,
activation function, input, label, loss function, error function and / or layer component index. A
metric represents a property of those constructs, or a measure for an ill-defined property.

As an example, consider the true error metric defined in section [2.1] It is a function of a network,
an error function and a data distribution. In the context of prediction, the true error is arguably
the most important measure of performance, which is arguably the most important property of a
network. As another example, consider the nonlinearity coefficient, which is the most important
metric we study apart from error / loss. It is defined in section It is a measure of the ‘degree
of nonlinearity’ as introduced in section[4.1] It is a function of network and input distribution.

In section 3.4.1] we discuss a range of challenges that arise when computing metric values. In
section [3.4.2] we introduce key terminology and conventions which we use throughout this work
when discussing and presenting metric values and associated concepts. We also describe the visual
tools we use for presenting results based on metrics.

3.4.1 The challenges of computing metric values

In sections [2.1.1] and 2.3.4] we explained in detail how a large number of concepts in machine
learning have a dual nature as both mathematical functions and programs that compute approx-
imations to those mathematical functions. The same is true for metrics. We introduce them as
mathematical functions, but for the purpose of empirical analysis we must compute values for
them. In section [1.3.5] we explained that a core advantage of the functional-gradient paradigm is
that we get to use machine learning models which are relatively easy to evaluate on a computer.
Unfortunately, computing a value for a metric of a network is often not as easy as it is to evaluate
the network or conduct backpropagation. Of course, we design metrics in this work to be as easy
to compute as possible while capturing the properties we care about. However, it is inevitable that
some challenges arise when computing metric values. Below, we discuss those challenges.

Specifically, the three core challenges we faced when computing metric values for this work were
(1) metrics that are defined in terms of a probability distribution, (ii) floating-point rounding error
and (ii1) computing metric values for architectures utilizing batch normalization. We discuss these
challenges in the next three subsubsections respectively. Because of the limited space we have
available, these discussions must remain somewhat high-level. Presenting an exhaustive discussion
of the computational challenges surrounding each individual metric we consider, unfortunately,
goes beyond the scope of this work. For the NLC, we do give an exhaustive discussion in section
We hope this can serve as a blueprint for readers to reason about other metrics we use or
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other metrics they are interested in. In general, we urge the reader to carefully consider the issues
we discuss here.

3.4.1.1 Probability distributions in metric definitions

In this subsubsection, we explain how we compute values for metrics that are defined in terms
of probability distributions. We define two types of such metrics. (i) We define metrics that are
“distribution-valued”, i.e. where the output of the metric function is itself a distribution. These
metrics are “distribution transformations”, i.e. drawing from their output distribution is equivalent
to drawing from other distribution(s) and then applying the transformation represented by the met-
ric. (ii) We define metrics that are scalar-valued. These metrics apply a probabilistic operator over
a distribution.

Distribution-valued metrics A small number of our metrics are functions that output a distri-
bution. In all cases, our aim is simply to plot that distribution for various metric inputs. This is
done in figures 4.4 |.5land[5.2] Aslong as the sample drawn from the distribution(s) that are
being transformed is large enough, the plots are informative. We describe below how the sample
is selected.

Probabilistic operators The majority of our metrics that are defined in terms of distribution(s)
utilize probabilistic operators. The most frequent such operator is the expectation operator [E. The
others are defined below.

e Standard deviation operator:

Svar = \/Evar? — (Evar)?

e Median operator:
Mvar = val where P(var < val) = 0.5

e Covariance operator:
C(vary,vary) = Evar,var, — (Evar,)(Evar,)

e Excess kurtosis operator:

E(var — Evar)*
(E(var — Evar)?)

Kvar =

var simply denotes an arbitrary random variable. If var is multi-dimensional, the operators are
applied elementwise.

We now face the challenge of devising programs that can compute sufficiently accurate approxi-
mate values for these probabilistic operators. We employ two different strategies for this: numeri-
cal integration and statistical estimation. We discuss them in turn.
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Numerical integration Some of our metrics are defined in terms of expectations over 1-
dimensional or 2-dimensional Gaussian distributions for which the mean and (co)variance
is known. These expectations always involve activation functions. For example, consider
Es-n0,1)7(s) for some activation function 7. To compute an approximation, we can either draw
a Gaussian sample and compute the empirical mean of 7 over that sample, or we can compute
[, 7(s)n(s)ds using numerical integration methods, where n here is the unit Gaussian density. It
turns out that the latter method is far more accurate, given that n is smooth and all our 7 are also
well-behaved. Hence, this is the strategy we employ. For maximum accuracy, it is important to
handle points where 7 is not smooth properly.

Earlier in this chapter, we have already encountered several ‘Gaussian expectations’. In sections
[3.1.1] and [3.2.1] we used them to calibrate our activation functions. We will continue to use this
kind of calibration in e.g. section We always compute these Gaussian expectations to within
an error of less than 10~7. In general, calibrating our activation functions to high accuracy is
essential, because errors can compound from layer to layer. The same compounding issue arises
in mean field metrics as defined in section[5.3] which also utilize Gaussian expectations.

Statistical estimation The majority of the time, our metrics are defined in terms of distributions
that are high-dimensional and / or not explicitly known. In that case, we must use statistical
estimation. Unless stated otherwise, we use the following basic estimators for the probabilistic
operators we defined above.

[Evar becomes Egvar

Svar becomes \/ |3

5| _| . (IE,Svar2 — (]Esvar)2>

Mivar becomes Mgvar

5]
5] —1

Cvar,var, becomes \/ (Esvarlvarz — (Esvarl)(ESvar2)>

ccomes ST V(S| = DEg(var — (Egvar))' (IS| - 1)?
et (1S| = 2)(1S| — 3)(Es(var — (Esvar))2)2 "~ (]S —2)(]S| - 3)

S denotes a sample of the distribution over which the operator is taken. var becomes a function
of an element of S. Eg denotes the mean over the finite sample. Mg denotes the median over
the finite sample. All the basic estimators above are canonical. Again, consider the true error as
an example. It is defined in terms of an expectation over datapoints (x,y), which are distributed
according to the data distribution D. We estimate it via the mean over a finite sample of datapoints
drawn from D. This is precisely what e.g. the test error does.
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By default, we define estimators for all our metrics in a canonical fashion by building on the basic
estimators given above. For example, to estimate the hypothetical metric %, we would use
the basic estimator for both the standard deviation and expectation, and then divide the values
we obtain. We give our metric definitions in this work specifically in such a way as to make the
translation from mathematical definition to estimator obvious. The exception to this rule is the
expression E, Tr(J (z)Cov,J 7T (x)), which appears in the metrics NLC, NLCNUM and LNLC.

We detail the estimation of this expression in section (4.4.4

Choosing a sample for a data distribution Many of our metrics are defined in terms of a data
distribution or input distribution D. These constructs are defined in section [2.1] In our metrics,
data distributions always arise as inputs that can be freely chosen along with other inputs. In
general, we want to evaluate metrics on practical data distributions. Of course, data distributions
are hypothetical constructs. We simply assume that datapoints in each of our datasets D are drawn
IID from such a distribution. In general, the only concrete piece of knowledge we have about D
is the (assumed) sample that is D. So, in order to compute an approximation of a probabilistic
operator over D, we have to use estimation.

The clearest choice for the sample S is the dataset D itself. In practice, we use a shard of D as
the sample. The most common choices are training set, validation set and test set. Sometimes we
further randomly subsample or bootstrap those shards. It is important to note that even if we assume
that the datasets as originally downloaded from the internet are composed of independent draws
from the data distribution, there are factors internal to our pipeline that render this assumption
untrue for the samples we actually feed into our estimators. We further discuss this point below
and in section

Choosing a sample from high-dimensional Gaussian or uniform distributions Some of our
metrics are defined in terms of high-dimensional Gaussian and / or uniform random variables.
Their distribution is specified as part of the metric definition and is not a free input. Metrics that
utilize such random variables also always have a data or input distribution input. The limited
amount of data available for the data distribution is always the statistical bottleneck in these cases.
We can always draw a sufficiently large sample for our Gaussian or uniform random variables to
perform sufficiently accurate estimation.

Sometimes, we wish to evaluate metrics that have as an input an input distribution by supplying a
Gaussian distribution as that input distribution. See e.g. section4.4.2] In that case, it is sometimes
possible to derive an exact, closed-form value for the metric. However, for the sake of consistency,
we always use estimation as we do for practical input distributions. In fact, we drew three fixed
samples of 10,000 points each from unit Gaussian distributions for use throughout this work. The
size of 10,000 is comparable to the sample sizes we get from our data shards. Effectively, we
pretend that our 10,000 points are draws from an unknown distribution. Points in these three
samples have dimensionality 810, 334, and 40 respectively. For any given architecture, we use the
sample whose dimensionality matches the width of the architecture’s input layer.
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Stability of our estimators In general, throughout this work, it is not obvious how stable our
estimators are, i.e. to what degree the value they yield depends on the specific sample chosen.
The choice of defining metrics in terms of a data or input distribution in the first place implies
that we expect that different samples from a practical dataset, as well as hypothetical samples
drawn from the corresponding data distribution, all yield approximately the same value, as long
as those samples are about as large as the data shards we have available. While conducting our
empirical analysis, we spent a significant amount of time and effort confirming the stability of our
estimators both theoretically and empirically. For example, we recomputed various metric values
with different random seeds and different data shards.

However, there does exist one key condition behind the stability of our estimators for many metrics:
Gaussian stability. This is a concept that features prominently throughout this work and is defined
in section @ It is a foundation of mean field theory, which we cover in chapter E} In a nutshell,
Gaussian stability ensures that, in the majority of architectures we study, the neuron distributions
induced by practical input distributions at linear layers are approximately Gaussian. Therefore,
neuron value distributions at all layers have favorable statistical properties, including that e.g. their
expectation can be estimated accurately from a small sample.

In section[5.3] we derive highly accurate theoretical approximations of metrics based on mean field
theory. The metrics depend on the input distribution, but the theoretical approximations do not.
Therefore, the influence of the sample on the metric value must be small.

Throughout this work, we demonstrate very strong associations between the values computed for
various different metrics. If these values are noisy, then this can at most mean that the associations
between the true metric values are even stronger than the associations we demonstrate.

Incorporating data processing and data augmentation We used the same data processing that
we used for training also for all other computations involving the dataset. We describe our data
processing schemes in sections [3.1.3|and [3.2.1 On a theoretical level, we assume that the data
distribution of a dataset we study is actually the distribution of the processed datapoints. Drawing
from this distribution is equivalent to drawing from the original data distribution and then applying
the processing function. As mentioned in section [3.1.3|and further discussed in section [3.5.8] the
training and validation set points are then no longer independent of each other because these data
shards are used to compute the processing function itself. On a practical level, we simply use the
processed data shards as the sample.

We use the same strategy for incorporating data augmentation. When data augmentation is used,
on a theoretical level, we assume that drawing from the data distribution is equivalent to drawing
from the un-augmented data distribution and then applying the random augmentation function. Of
course, we only use data augmentation on the training set in study B. Hence, in practice, only
when we use the training set or a subset / bootstrap thereof for estimating a metric in the context
of study B, we apply data augmentation to the datapoints, and we do so on the fly before feeding
them into the estimator. Hence, the training and test set samples take a slightly different form in the
context of study B. This is not a significant issue because data augmentation schemes are designed
to capture invariances of the data distribution.
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3.4.1.2 Floating-point rounding error

For each of our metrics, we had to carefully verify whether computing them for specific inputs was
naively possible given the presence of rounding error. Thankfully, we were able to compute the vast
majority of values accurately with 64-bit precision floating-point computation. We cannot overstate
how important this is. If we had been restricted to 32-bit precision throughout our empirical studies,
we would have either had to incur an enormous coding overhead by implementing custom routines
that reproduce 64-bit computations with 32-bits, or we would have had to severely restrict the
space of architectures we study. When conducting study B (section[3.2]), we were indeed restricted
to 32-bit computation, which did not impact metric computation but did potentially affect training.
We discuss this point further in sections [6.5] and

There were three situations where catastrophic floating-point error actually arose for us in prac-
tice. (i) The standard deviation operator, as defined in the previous subsubsection, was sometimes
applied to a quantity with a much lower standard deviation than expectation. This can lead the
rounding error to exceed the standard deviation. This occurs for the NLC and related metrics as
discussed in section [4.4.4) and LBIAS as discussed in section (i1) Some metrics require that
we evaluate a network for inputs that are only an infinitesimal distance apart. If the actual distance
that is chosen when computing a value for these metrics is too large, we do not capture the true
behavior of networks over an infinitesimal distance. However, if this distance is chosen too small,
then the rounding error introduced at any stage of the network evaluation can corrupt the result.
This occurs for our GLLAD, MGLLA, MES and MGLLAHE metrics as discussed in sections
and (iii) Some metrics require an iterative computation at an unstable fixed point.
Even a tiny rounding error can explode over some number of iterations. This occurs for our mean
field metrics as discussed in section[5.3.3

There are other potential sources of catastrophic rounding error. For example, when summing a
large number of values in 32-bit precision, we have to ensure not to add values to the sum one
after the other in a naive fashion. In study A, we did not have to worry about this as we used 64-bit
precision. In study B, we used Tensorflow. While we don’t assume that Tensorflow actually caused
additional cases of catastrophic rounding due to suboptimal implementation when e.g. summing
the entries of a tensor, we weren’t able to verify this fact. We had to trust in Tensorflow.

3.4.1.3 Metrics and batch normalization

An additional layer of complexity arises because of batch normalization. This is because BN
violates our basic definition of networks as functions mapping single inputs to single outputs.
This assumption is baked into the f(x) notation we employ. Consider again the true error
Ewe(f,e,D) = Egy~pe(f(z),y). If f depends not just on a single input, but also on other
inputs in the same batch, this definition does not technically apply. We discussed BN and its sur-
rounding issues in significant detail in section [2.4.1.1] One possible way around the problem of
batch dependency that we discussed in that section is to replace the mean and standard deviation
over the batch in the definition of BN with the mean and standard deviation over the training set.
This is commonly done when e.g. computing test error. As we explained in section [2.4.1.1] we do
not do this because we want our metrics to capture how our architectures behave during training.
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It turns out that there is a trick that allows us to incorporate BN relatively seamlessly. Let Db¥<h
be the distribution over batches of given size, where each point in the batch is drawn from D
independently of the other points. If we view f as a function mapping batches of inputs to batches
of outputs, and we view the loss and error functions as the mean of their pointwise values across the
batch, all metrics we define throughout this work can be applied directly to the BN case. In practice,
we do generalize each metric using this trick, though we also make additional modifications. All
of our generalized definitions have the property that if they are applied to an architecture not
containing BN, they revert to the original definition for the BN-free case that is given explicitly.

For the purpose of statistical estimation, we can easily obtain a sample point for D" by drawing
a batch from any data shard without replacement. Of course, the downside is that, if we draw mul-
tiple batches, those batches may contain the same datapoint and thus they may not be independent
draws from DP*“", This is a benign issue.

Because we also use batches for the purpose of forward propagation in the BN-free case, it turns
out that we do not have to alter any of our programs that compute metric values in the BN-free
case for the purpose of accommodating BN. Such is the power of the D**! trick.

Finally, we note that we use the D**" trick not just to enable metric value computations for ar-
chitectures with BN, but other computations as well. For example, it enables us to extend the loss
function we use for study A (section|3.1.2) to the BN case.

3.4.2 Metric terminology, conventions and presentation

4-fold overloading: function / estimator / program / value In section [2.3.4) we explained
how the concept of a neural network f has five different aspects. It is a mathematical function, a
program that implements a close approximation to that mathematical function, a graph over layers,
the vector value that it outputs, and the distribution over that vector value when associated with an
input distribution. We explained how we overload our notation and terminology to simultaneously
refer to these five aspects.

In the same fashion, any of our metrics has (up to) four different aspects. It is (1) a mathemati-
cal function as we define it in the text, (ii) (if one of its inputs is a data or input distribution) a
statistical estimator for that function, (iii) a program implementing the function or estimator and
(iv) a scalar or distribution value. As with networks, we overload our notation and terminology to
simultaneously refer to all four aspects.

Throughout the remainder of this work, the use of statistical estimation when computing met-
ric values remains implicit, except when we state which data shard the sample for the estimator
was taken from. We will say “The value of the metric evaluated on the training set was ...”. We
discussed how we conduct estimation in detail in section We use canonical programs to
implement our metrics and estimators. We discuss these programs only whenever our results were
affected by catastrophic floating-point rounding error as discussed in section[3.4.1.2] When metrics
have a network or architecture as input, we define and discuss the metric under the assumption that
the network maps single inputs to single outputs. When we want to evaluate the metric on a net-
work or architecture with BN, we generalize the metric as described in section Except for
the NLC, this generalization remains implicit. We re-iterate that values for these generalized met-
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rics are computed using the exact same programs as values for the corresponding un-generalized
metrics, and that the generalized definition reverts to the original definition for networks or ar-
chitectures that do not use BN. We discuss all the above issues in detail for the NLC, our most
important metric besides error / loss, in section [4.4.4]

Shorthands and defaults Many of our metrics have a network or architecture as input. When-
ever a metric is a function of a network, we can equivalently define it as a function of an archi-
tecture and parameter. While we generally use the former option for brevity, the two are used
interchangeably throughout this work.

Often, we will use shorthands to refer to values of metrics that have a network or architecture
input. We will say things like “The value of the NLC of f is ...”. When we do this, the following
conventions and defaults apply for the other inputs of the metric.

e The error function e defaults to classification error.

e The loss function ¢ defaults to regular softmax+cross-entropy for study B and our augmented
version of softmax+cross-entropy used for study A otherwise.

e The data distribution D defaults to the hypothetical data distribution of the dataset used to
train the architecture on which the metric was computed. If the architecture falls outside
of study A or B and was not trained, the default is the data distribution of CIFAR10. By
default, the sample used for statistical estimation is taken from the training set if the metric
is computed on a randomly initialized parameter value, and from the test set otherwise.

e The parameter value defaults as follows. When we reference the metric value for an architec-
ture in the “initial state” or “before training”, we mean that the parameter value was drawn
from the initialization scheme. Unless otherwise stated, the specific parameter value used
was as follows. For study A architectures, we use the parameter value that was used to begin
each training run for that architecture. For study B architectures, we use the parameter value
that was used to start the training run that used the starting learning rate chosen by hyper-
parameter tuning as described in section For experiments outside of studies A and B,
if the architecture was trained, we use the same initial parameter value used for training. If
the architecture was not trained, we simply sample a fresh parameter value. If we sample
multiple parameter values in this way, we make it explicit.

When we reference the metric value for an architecture in the “final state” or “after training”,
the parameter value is the one obtained after training with the best starting learning rate
chosen by hyperparameter tuning as described in sections [3.1.2] and [3.2.2] Hence, metric
values for the initial and final state always use parameter values that belong to the same
training run.

In the context of training error minimization, metric values in the initial and final state use the
parameter values from the training run that yielded the least training error. If the architecture
was fully-connected, we used a completely different set of training runs for training error
minimization as described at the end of section[3.1.2] Whenever we give results from training
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error minimization in any graph, we display the train-opt marker above it. See e.g. figure

For example, when we quote a value for “the NLC of f before training” we imply the default data
distribution, sample and random parameter value as described above, and we imply that the value
was computed via the estimators and program as described earlier in this section. When we deviate
from the defaults, we say e.g. “the NLC of f evaluated on the validation set” if the sample stems
from the validation set.

Metric values before and after training Throughout this work, we focus mainly on analyzing
the properties of architectures in the initial state, rather than the final state. This is because one of
our core goals is to improve architecture design without the need for training. We want to enable
readers to understand and predict the performance and behavior of architectures by examining the
initial state, not the final state.

For some architectures, no training run achieved an error that we deemed better-than-random. The
threshold for this was 0.5 for waveform-noise and 0.8 for CIFAR10 and MNIST. Many of our met-
rics depend critically on starting learning rate when evaluated after training. If no starting learning
rate yielded better-than-random performance, there was no meaningful way to choose the best
starting learning rate. Hence, we cannot meaningfully choose a final state for evaluating metrics.
Hence, whenever we reference values for any metric not based on error in the final state, we restrict
ourselves to architectures that achieved a better-than-random error on at least one training run. If
we selected the starting learning rate based on validation error, we determined better-than-random-
ness also based on validation error. The same goes for training error / test error.

Conventions of notation Throughout this work, we define metrics using the metric definition
environment. We have used this environment already to define error and loss in section[2.1] Metrics
are denoted by “labels” consisting of (usually more than one) capital letter. Their inputs are given
in parentheses. An exception to this is when those inputs are layer indices or activation functions.
In that case, they are denoted as subscripts. As an example, when a metric M E'T" takes as input an
architecture f, a parameter 6 and a layer index [, we write M ET;(f,6). When we first introduce
and define a metric, we always denote all its inputs explicitly. However, later on, we pick and
choose which inputs we denote explicitly based on the situation. All of this is equivalent to how
we use f to denote a network or architecture function. See section for details. When we do
not state metric inputs explicitly, defaults apply as given above.

Scatter plots We present our results most often in the form of scatter plots, where each marker
generally corresponds to a single architecture and each axis depicts the value of a metric of that
architecture. We sometimes give the correlation value as well as the statistical significance of the
correlation at the top of the graph. If a metric is depicted in log scale, the logarithm of that metric
is also used to evaluate this correlation and significance. Each axis is labeled with the metric
depicted on it. Above the graph, we state which architectures are depicted and which dataset is
used for training and metric computation. ‘CIFAR10 - FC’ refers to study A architectures trained
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on CIFAR10. ‘MNIST’ / ‘waveform-noise’ refers to study A architectures trained on the respective
dataset. ‘CIFARI1O - Conv’ refers to study B architectures. We use the train-opt marker above a
graph when the initial and / or final state considered stems from training error minimization.

When metric values evaluated on architectures in the final state are depicted, such as test error,
by default, training is conducted using the protocols given in sections [3.1.2] [3.2.2]and [3.3] When
those protocols are altered, the specific alteration is given in parentheses above the graph.

Sometimes, we plot a metric value corresponding to one architecture on the x-axis and a metric
value corresponding to another architecture on the y-axis. Or, we plot metric values corresponding
to two final states obtained from two different training protocols. In those cases, we use a label
of form “(X vs. Y)” above the graph, where X and Y describe the difference in architecture /
protocol. In this context, “original” refers to the default architecture / protocol as given in this
chapter. Further, on each axis, we give the architecture / protocol used for that axis after a colon.

Sometimes, we plot the difference or ratio of a metric value between two architectures or two
training protocols on one axis. Again, we use a label of form “(X vs. Y)” above the graph. On the
axis in question, we specify which difference / ratio is used after a colon.

Whenever a metric value was unavailable due to rounding error, we often simply do not plot that
value. However, for the NLC and LBIAS metrics, it was possible to derive reasonable approxi-
mations for missing values. Oftentimes, we do plot the approximations in our scatter plots. See
section for more information.

Sometimes, we found that multiple markers in our scatter plots were in (almost) the exact same
location. When it is important that these markers be individually identifiable for the purpose of
interpreting the graph, we added tiny random perturbations to these markers. The following things
were always true about situations where we found this to be necessary: (i) The graphs depicted the
training or test error of the architectures represented by the markers on the x- or y-axis. (ii) The
architectures were always study B architectures trained on CIFARI10. (iii) The overlapping markers
always corresponded to architectures with an error close or equal to 0.9, which corresponds to
random performance. (iv) We added random perturbations to any axis value of the overlapping
markers that depicted error.

In general, we vary the range of the x- and y-axes in our scatter plots so that as much of the plot
area as possible is utilized. However, we also strive to keep the axis ranges the same for similar
plots, to enhance comparability. Please check the x- and y-axis ranges, especially when comparing
plots.

Gaussian stability Throughout this work, we study the concept of Gaussian stability, which is
a major driver of (lack of) performance and many other behaviors. See e.g. sections 5.6/ and
We do not define Gaussian stability via a concrete metric. For the purpose of our empirical
analysis, we say that an architecture is a ‘Gaussian unstable architecture’ (GUA) if it falls in one of
the following categories. (i) The architecture is fully-connected, based on the square or odd square
activation function, and uses BN. (ii) The architecture is convolutional and uses an activation func-
tion based on square or odd square. (iii) The architecture is convolutional, uses an activation
function based on abs. val., and [ < 0.8 holds for the linearization parameter. Further, we say that
an architecture is a ‘Gaussian edge architecture’ (GEA) if it is fully-connected, is based on ReLU
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and does not use LN. We explain these choices in section [5.6 and give the full list of GUAs and
GEAs in the appendix in chapter |Al We stress that our designation of GUAs and GEAs is merely
for the purpose of simplicity and empirical evaluation. We do not advocate for criteria (i) through
(ii1) above to be the definition of the actual phenomenon of Gaussian stability / instability.

In many figures in this work, markers that correspond to GUAs are displayed in green and markers
that correspond to GEAs are displayed in red (e.g. figures 5.8). In all but two figures, which
are figures and GUAs and GEAs are also “displayed in the foreground”. Whenever
a green or red marker corresponding to a GUA or GEA overlaps with a (usually black) marker
corresponding to another architecture, the green or red marker is fully visible while the other
marker is partially or fully occluded. It is important to note that not all of our figures use green
or red markers. A lack of such markers does not mean the GUAs or GEAs are excluded from the
figure. It simply means that they do not behave differently from other architectures, so there is no
need to visually distinguish them.

3.5 Limitations of empirical studies

There were a number of limitations that affected our empirical studies, which we discuss in this
section. Some of these limitations are intrinsic to the type of analysis we conducted. Others are
specific to the conditions under which this work was conducted, i.e. limited time, code and com-
putational resources. Each of the following subsections discusses a broad limitation. Discussions
about specific limitations that affect only a small number of metric values are dispersed throughout
the work.

3.5.1 Limitations of architecture choice: breadth vs relevance

Throughout chapter |1, we stressed that one of our core objectives is to develop guidelines that
are universal and reach beyond popular designs. Yet, in section [3.1.1] and [3.2.1] we stated that
we conducted our empirical studies specifically on architectures that relatively closely resemble
popular architectures. How do we reconcile this apparent contradiction?

The simple answer is that, like any study, we only had access to a finite amount of computational
resources. Hence, we had to validate our results on a set of architectures that would inevitably
be a tiny subset of the set of all possible architectures. If we can only validate results empirically
on some set of architectures, we might as well do it on a set of architectures built from popular
design strategies. Since there are a large number of factors influencing architecture performance,
it makes sense to begin by focusing on those that are most relevant to popular architectures. We
believe there is great value in explaining the majority of performance variation for architectures
built from popular strategies, as we do in chapter [6| Finally, we note that the vast majority of
all neural architectures perform like random guessing. Generating architectures that have a good
chance of succeeding is the best way to ensure that performance variation is observed at all.

The key to generalizing our empirical results beyond popular architectures is to understand why
our results hold on the architectures we study and what properties of those architectures cause the
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observed behavior, which corresponds to utility criterion[7} We investigate these questions in great
detail in this work. By building a scientific theory on top of our individual results, our results
explain and reinforce each other. This yields a degree of certainty that extends to architectures on
which we did not explicitly conduct experiments.

Despite the limitations on the breadth of architectures we were able to study, we stress that this
same breadth went far beyond the vast majority of related studies, and indeed far beyond that of
most deep learning studies, period.

3.5.2 On the sensitivity of our results to the architecture space

Throughout this work, we investigate questions like “Is there an association between some metric
A and another metric B?”. For example, we investigate whether the NLC before training is asso-
ciated with test error after training. The empirical validity of such associations is always, perhaps
unfortunately, highly dependent on the specific set of architectures across which it is measured.
There is absolutely nothing we can do about this dependence.

For example, consider study A. It contains 250 randomly sampled architectures that were trained
on CIFARI10. Let’s say that we observe that the value of metric A is correlated at a level of
0.99 with the value of metric B across those 250 architectures. While this is certainly a strong
signal, we have to bear in mind that by manipulating even just the frequency of properties like
activation function and normalization operation among those 250 architectures, we can change
these correlation levels to almost arbitrary degrees. For example, we will find that, throughout this
work, architectures that exhibit Gaussian instability represent outliers with respect to many trends.
By increasing or decreasing the frequency of certain architecture properties that induce Gaussian
instability, we can therefore control the strength of these trends.

Just as in section the most important remedy to this problem is to understand why our results
hold for the architectures we study and what properties of those architectures cause the observed
behavior. When we can predict what our results would look like on different sets of architectures
based on our understanding of deep learning, we are no longer dependent on specific empirical
values. A second remedy is to design our random architecture generators without an agenda to
elicit specific results. When we developed the experimental protocol for study A as described in
section [3.1] we did so certainly with some understanding of the field of deep learning, but without
a strong expectation about the results we would obtain regarding the concepts we study in this
work. For example, the fact that two of our activation functions in study A sometimes cause
Gaussian instability while the others do not, and the fact that those activation functions account
for approximately % of our architectures, happened by pure coincidence. When we designed
study B, we did have a strong understanding of concepts, such as nonlinearity, and of architecture
properties, such as activation functions. Therefore, we chose some different properties, like data
processing, to vary in study B relative to study A.

When designing our random architecture generators, we also decided to exclude some known
sources of performance variation. For example, we did not vary the dimensionality of the parameter
significantly within either study A or B. We also ensured that all our architectures exhibited scale
stability to a significant degree. We always had our skip connections skip 2 macro-layers, which
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is the popular standard [He et al., 2016b, Zaguroyko and Komodakis, 2016]]. The reasoning here
is that we did not want to “rediscover” these factors. Of course, in some sense, this “inflated our
numbers”. For example, if we had studied architectures with a parameter dimensionality of 100
alongside architectures with a parameter dimensionality of 1 million, the NLC would explain a
lesser fraction of test error variation since parameter dimensionality would likely explain a large
fraction. Again, we stress that we are not primarily interested in empirical values on some specific
set of architectures, but in universal conceptual understanding.

3.5.3 Limited hyperparameter tuning beyond learning rate

While we conduct exhaustive learning rate tuning and emphasize its importance (sections|(1.4.1.1}
[6.6), we do not generally tune other training hyperparameters. The next most important such
hyperparameters are (i) the choice of training algorithm itself and (ii) the loss function.

We generally consider a single training algorithm per architecture. Without a deeper reason, we use
SGD for fully-connected architectures and momentum with a decay rate of 0.9 for convolutional
architectures. An exception to this is section where we also validate our results with Adam.
Ultimately, as in section 4.4.1], we do not expect the choice of algorithm, as long as it is one of the
few popular algorithms, to significantly impact our results.

For study A, we construct a special augmented version of the softmax+cross-entropy loss function
that normalizes the overall magnitude of network outputs to eliminate the confounding impact of
softmax+cross-entropy on architecture comparisons, as we mention in section[3.1.2]and investigate
in section [6.2] In study B, we use regular softmax+cross-entropy. Ultimately, we did not further
tune the choice of loss function as this is the overwhelming default choice for simple classification,
and because we were able to successfully explain our results without reference to the loss function.

3.5.4 Lack of “large-scale’’ experiments

Some strengths of our studies, including the wide range of architectures, the carefulness of select-
ing the best starting learning rate, and the large number of training iterations, came at the cost of
high computational expense. This meant that our experiments were not “large-scale”, i.e. we had
to limit dataset size and layer width.

Throughout this work, we observe that dataset size and layer width do not impact our results. We
provide deep explanations for our results that do not depend on whether experiments are small-
scale or large-scale. Therefore, we do not believe that increasing dataset size or layer width further
would provide significant benefit to our analysis.

3.5.5 Limitations of architecture type

We restrict our empirical analysis to deterministic feedforward networks. We do not study recurrent
networks, memory networks or dropout, for example. While we do not doubt that our core results
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extend to those network types and that there are interesting and important extensions to be found,
that goes beyond the scope of this work.

3.5.6 Limitations of task setting

We also restrict our empirical analysis to the supervised classification setting and the empirical
risk minimization approach. While it is the most popular setting in deep learning, a core feature of
the functional-gradient paradigm is that architectures can work in any setting. It would have been
nice to verify that the relative performance of our architectures is roughly the same when they are
applied to e.g. regression, reinforcement learning, image generation or noisy label predictions.
We note that, while we frame our notation and terminology in terms of the prediction setting for
brevity and readability, our analysis does not suggest that our results are fundamentally restricted
to that setting.

3.5.7 Code base limitations

Because study B used convolutional networks, its computational cost exceeded that of study A by
over an order of magnitude. We are grateful that we had access to a massive amount of computing
resources for a certain time period in order to conduct study B. Without those resources, study B
would not have been possible. However, we only had access to those resources for a limited time,
and we did not have access to the code we used to conduct study A during that time. Hence, we
could only implement a limited amount of code to use for study B and had to rely significantly on
pre-written code. Because of this, we were only able to compute values for our most important
metrics, such as the NLC. While study B was massive in terms of the number of training runs
conducted, we did not obtain as many measurements as we would have liked from each training
run. Because we also lost access to the code used for study B once study B was completed, we did
not have the chance to make further measurements at a later date. Hence, a significant fraction of
our results are validated empirically only for fully-connected networks.

Beyond obtaining fewer metric values, as mentioned at the beginning of section we also had
to “cut corners” in the experimental protocol of study B itself. Since we had to use pre-written
code, we had to abide by choices that were baked into that code. Many of these choices, which we
view as shortcomings relative to standards we are hoping to set, are already mentioned in section
[3.2] They are also referenced when necessary throughout this work. Below is a list of the most
important shortcomings.

e The single most important shortcoming is that all computation was conducted with 32-bit
floating-point precision, which potentially hurt training for some architectures. See sections

and[6.7]

e We did not have access to a validation set. We had to select the best starting learning rate
based on test error rather than validation error. We study the impact of this in section

e We could not use the same parameter value to start all 20 training runs for each architecture.
Rather, we sampled a different value from the initialization scheme for each run. Therefore,

128



the performance difference between runs was not entirely due to the difference in starting
learning rate. We rely on the high degree of consistency that architectures exhibit from one
draw of the initialization scheme to the next for the purpose of our analysis.

e We had to use a fixed number of training iterations and a fixed number of iterations for
each learning rate level. We could not increase the number of iterations dynamically based
on whether training was still making progress. We were not able to stop training at the
parameter value at which we measured the lowest error.

e We had to use Tensorflow. Therefore, we were not always able to verify whether catastrophic
floating-point rounding error occurred. We had to assume that Tensorflow makes “smart”
choices, for example when summing a large number of floating-point values, that do not
exacerbate rounding error.

3.5.8 Lack of independent samples for statistical estimation

One of the challenges of this work is to compute accurate values for metrics when we have to rely
on statistical estimation. We cover this challenge in detail in section Many of our metrics
are defined in terms of a data or input distribution. The only option we have for constructing sam-
ples for estimating those metrics is to use the datapoints from our datasets. Because our datasets
are not large, we have to reuse our datapoints both during the computation of individual metric
values, and to conduct multiple computations that depend on each other sequentially. Every time
we use a datapoint, information “leaks” into the computation. The next time we use that datapoint,
it no longer constitutes an independent draw from D relative to the whole pipeline. Hence, even
if we assume that the datasets as originally downloaded from the internet are composed of inde-
pendent draws from a data distribution, there are factors internal to our pipeline that render this
assumption untrue for the samples we actually feed into our estimators. We list various forms of
information leakage below.

Overall, we believe the impact of this sample non-independence is ultimately negligible. The types
of datapoint reuse we engage in are common in the deep learning community and rarely mentioned.

e In all our experiments, we utilize data processing. In many cases, we use statistics computed
on the training and validation set for this. This causes each datapoint to be normalized based
on the value of other datapoints, so inter-dependency is introduced. We at least make sure
that datapoints in the test set are not used to normalize other datapoints.

e When an architecture is trained, the datapoints in the training set are infused into the pa-
rameter value. If a metric utilizes the trained parameter value, the training set is no longer
an independent sample. Information from the validation set is also infused if early stopping
is used. Hence, we never implicitly use any datapoints other than test set datapoints for
computing metrics on trained architectures.

e Some of our metrics, such as the NLC, utilize multiple probabilistic operators over the data
or input distribution. In general, we (slightly improperly) use overlapping samples for each
sub-estimator.
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e When computing metrics on architectures that use BN, we do not ensure that batches never
re-use the same datapoint. Therefore, batches are not independent draws from DY*h a5
defined in section 3.4.1.3

e When we apply data augmentation, we do so on the fly after the batch is drawn from the un-
augmented training set without replacement. This introduces some inter-dependency as our
batches can never contain two augmented datapoints that stem from the same un-augmented
datapoint.

e Sometimes, we generate a sample by bootstrapping the data shard. This can obviously re-use
the same datapoint.

3.5.9 Hyperparameters and the sharp valley problem

In many places in this work, we wish to find the “best hyperparameter value”. For example,
we wish to determine the least test error attained by an architecture under SGD for any starting
learning rate (SLR). In deep learning, computing the minimal value of a metric such as error in
the final state, as the initial parameter value, architecture or training protocol varies continuously,
is impossible. This is because the gradient % is often enormous, as it requires backpropagation
through the entire training procedure, which often leads it to explode [Metz et al., 2019]]. Therefore,
the sensitivity of the final error with respect to a hyperparameter that affects either (), the way (%)
is used by the architecture, or the progress of training starting from (), is also often enormous.
While the impact of large changes to the initial condition, like changing every activation function
in an architecture or doubling the number of layers, is often predictable, the impact of very small
changes is chaotic. Changing the initial parameter value in the 10th significant digit may change
the final error in the second significant digit. This means that no matter how many values of e.g.
SLR we “try out”, we cannot estimate how close the lowest error we have observed is to the actual
lowest error. If an SLR of 0.7465 induces an error of 0.103 and an SLR of 0.7466 induces an
error of 0.104, we cannot guarantee that an SLR of 0.74655 does not induce an error of 0.07, for
example. We term this the ‘sharp valley problem’. Further, even if we were able to compute the
true lowest error at great computational expense for a small architecture, that value would be of
limited practical utility because it would likely not be feasible to compute the corresponding value
for large, real-world architectures.

Thus, in practice, when choosing a grid of hyperparameter values for which to conduct full training
runs, we must choose a grid fine enough so that we capture “meaningful macro-effects” but not
so fine that we end up optimizing over “chaotic micro-effects”. In the case of SLR, considering
a geometric sequence of values with spacing factor between 2 and 10 is a popular choice. This
is reflected in our study design. We then choose the best value from this sequence. Through-
out this work, we refer to this chosen value as the “best starting learning rate” (best SLR) while
acknowledging that this phrasing is not technically accurate.

Beyond calibrating the grid, the best way to mitigate the sharp valley problem is independent
validation. For example, in study A, when selecting the best SLR for minimizing test error, we
actually choose the SLR that yields the least validation error. So if we were “unluckily lucky” and
found an SLR value that yields a validation error that is not reflective of the validation error in the
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“general vicinity” of that SLR value, there is still a good chance that the test error is not inside a
sharp valley.

3.6 Summary of empirical studies

In this chapter, we detailed the experiments used throughout this work for the purpose of empirical
analysis and validation. In this section, we summarize (i) the choices made in the design of our
empirical studies that were most responsible for obtaining the results we cover in this work; and
(i1) the terminology and conventions that are most important for understanding and interpreting
our figures, tables and discussion of experimental measurements. We also repeat specific pieces of
information from this summary in later chapters where applicable.

Study A (section[3.I) We trained 750 randomly generated architectures with SGD and exhaus-
tive learning rate tuning. We trained 250 architectures for each of three datasets: CIFAR10, MNIST
and waveform-noise. waveform-noise is from the UCI repository of datasets popular for evaluating
fully-connected architectures [Klambauer et al., [2017].

e Architectures: We generated 750 fully-connected architectures by randomly and largely in-
dependently varying depth, weight matrix and bias vector initialization, the activation func-
tion used, the normalization operation used, whether the architecture is residual, where the
skip connections are located, and the addition weights used by the skip connections. The full
list of architectures is given in section[A.T]

e Activation functions: An architecture’s activation function is of form 7(s) = ¢7(ds+ h) + b,
where 7 is an activation function from table and d, h, c, b are fixed constants. d is set
to 1, 1.2 or 0.8. h is set to 0, 0.2 or -0.2. Finally, we set (b, c) jointly using two con-
straints. With a 50% probability, the first constraint is b = 0 and with a 50% probability, it is
Esn0,1)¢T(ds+h)+b = 0. The second constraint is always E,xr0,1)(c7(ds+h)+b)* = 1.
Using Egnr0,1y¢7(ds + h) + b = 0 corresponds to ‘activation function debiasing’.

o Weight initialization: Weight matrices were LeCun orthogonally initialized and then further
scaled by a factor that was 1.0, 0.9 or 1.1. By not deviating too far from the LeCun variance
and by using the constraint E,x1)(c7(ds + k) + b)> = 1, we controlled scale stability
(section [2.4.2)).

e Depth: We define depth as the number of macro-layers M. This was chosen uniformly from
the set of odd integers between 3 and 49, i.e. {3,5,7,..,47,49}.

o Width: Width was chosen deterministically as a function of depth so that the dimensionality
of the trainable parameter was around 1 million. This controls the performance driver that is
parameter dimensionality (section[9.7).

e Normalization layers: Architectures used either layer normalization, batch normalization or
no normalization layers. When skip connections or an activation function based on square
or odd square is used, we always use normalization layers to control scale stability.
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e Learning rate: We tuned the starting learning rate by independently training each architec-
ture 40 times with different starting learning rates from the same initial state. The small-
est starting learning rate considered varies between architectures. It was approximately in-
versely proportional to the magnitude of the parameter gradient. The “best starting learning
rate” was selected based on the error on a held-out validation set. During each training run,
we decreased the learning rate 10 times by a factor of 3 and then terminated the run when-
ever the validation error stopped improving. Hence, we used ‘early stopping’. We study the
importance of learning rate tuning in section [6.6]

e Floating-point precision: We conducted all computation associated with study A in 64-bit
floating-point precision. We analyze the importance of this in section [6.5]

e Loss function: We used an augmented version of softmax+cross-entropy as the loss func-
tion. After initializing each architecture, we evaluated the quadratic mean of the output

B y)e Dy |1 £ (0©), 2)[|3. We then had the loss

function divide the network outputs by this fixed scalar value before feeding them into the
softmax+cross-entropy operation. This controls the impact of the loss function on perfor-
mance via the output magnitude (section [6.2).

layer neuron values on the training set:

® Re-training / training error minimization: We re-trained the CIFAR10 and waveform-noise
architectures without early stopping based on validation error, with the aim of determining
the least training error that could be achieved. We refer to this as “training error minimiza-
tion”. We tuned the starting learning rate by independently training each architecture 60
times with different starting learning rates from the same initial state as before; and then
selecting based on the final training error.

Study B (section [3.2) We trained 552 partially randomly generated architectures with momen-
tum and exhaustive learning rate tuning on CIFAR10. Many of the differences compared to study
A arose because we only had a limited time to work with the code base and compute cluster used
to conduct study B (section [3.5.7). We did not have the chance to replicate many experimental
results obtained for fully-connected architectures on convolutional architectures.

e Architectures: We deterministically varied activation function, the normalization operation
used, and whether the architecture was residual. We additionally varied the following at ran-
dom: weight initialization scheme, whether bias and elementwise multiplication layers were
used, data processing scheme, whether data augmentation was used, the type of pooling layer
used, and whether a global average pooling layer was used. (For convenience, we consider
data processing and data augmentation as part of the architecture definition in this study, as
they were varied randomly along with architecture properties.) Each of these properties was
sampled independently of the others. The full list of architectures is given in section

e Activation function: An architecture’s activation function is of form 7(s) = ¢7(l,s) + b,
where [, ¢, b are fixed constants. (Note that when we don’t use the letter [ as a subscript, it
generally does not denote a layer index as it does in the expression f;.) 7(/, s) is an activation
function augmented with a ‘linearization method’. A linearization method is a method for
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interpolating an activation function with a linear function. We abbreviate the concept of
(activation function, linearization method) pair as ‘AFLM’. In table[3.1], we depict all AFLMs
used in the study. The ‘linearization parameter’ [ indicates how close to a linear function 7
is. We will formalize this intuitive concept in later chapters. [ always has a ‘default value’
that makes the AFLM revert to a basic activation function from table

Each of the 12 AFLMs in table [3.1|is used with 12 different triplets of values ([, ¢, b) in the
study. See section for details. In the first triplet, [ is set to the default value, b is set to 0
and c is set to achieve E, N(OJ)T(S)z = 1. Across the other 11 triplets, [ varies. This causes
T to be more or less linear. Roughly, these 11 triplets correspond to 0% linearization, 10%
linearization, etc. up to 100% linearization. (b, c) are set jointly to achieve Eyep,1)7(s)? =
1 and Esepnr01)7(s) = 0. As before, Esepr0,17(s) = 0 corresponds to activation function
debiasing.

Weight initialization: As in study A, we choose the initial weight variance along with
Ese /\/(071)7'(8)2 = 1 to achieve scale stability.

Depth: Depth was fixed to 20 and not varied in order to control the spatial frequency com-
position of the output [Xi1ao et al., 2018]].

Layer size: Layer size was fixed to control parameter dimensionality.

Normalization layers: All activation functions not based on the square or odd square AFLM
are used in four architectures: (i) a non-residual architecture not using normalization layers,
(i1) a non-residual architecture using batch normalization, (iii) a non-residual architecture
using layer normalization and (iv) a residual architecture using batch normalization. The 24
activation functions based on the square and odd square AFLMs are used only in the three
architectures (ii) through (iv) to prevent scale instability. All randomly chosen architecture
properties always take the same value for all 36 / 48 architectures associated with the same
AFLM.

Learning rate: We tuned the starting learning rate by independently training each architec-
ture 20 times with different starting learning rates from different initial states. The 20 values
were 3,1,0.3,..,3 % 1072, 1 % 107°. The “best starting learning rate” was selected based on
the lowest test error achieved after training. We study the impact of not having access to a
validation set in section Each training run lasted 100,000 iterations, which is approxi-
mately 256 epochs, and the learning rate was divided by 10 after 40,000, 60,000 and 80,000
iterations. If the training error had not decreased below 0.8 after 10,000 iterations, training
was terminated.

Floating-point precision: We conducted all computation associated with study B in 32-bit
floating-point precision.

Loss function: We used regular softmax+cross-entropy.

Training error minimization: Because early stopping based on validation or test error was
not used to begin with, to determine the least training error that could be achieved, we simply
selected the best starting learning rate from our original 20 training runs based on the training
error after training.
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® Re-training: For some architectures, after conducting 20 training runs as described above,
we conducted additional training runs. We used the starting learning rate selected from the
original runs and trained the architecture another 10 times with different random number
sequences. Results from this re-training are presented in chapter [7]

Additional experiments (section [3.3) A large fraction of our analysis was validated through
studies A and B. However, we also conducted additional training runs which utilize a different
architecture and / or training protocol. We also analyze some architectures that do not belong to
study A or B in their initial state, without training them. Results from experiments that do not fall

entirely under study A or B appear in tables and as well as figures
429 B.IA through 5.7A, 6.2 6.7 6.5 6.9, .10 6,19, 0. and B2

Architectures that do not fall under study A or B are always fully-connected and of a layout similar
to study A. We used the same training protocol as in study A, including 64-bit precision, learning
rate tuning and augmented loss function, unless stated otherwise. We also used the “re-training
protocol” for training error minimization.

Metrics, terminology, convention and presentation (section [3.4) Almost all of our empirical
analysis in this work is based on ‘metrics’. We use this term loosely in accordance with section
to refer to functions of one or more of the following: neural architecture, neural network,
layer, parameter, data distribution, input distribution, dataset, data shard, activation function, input,
label, loss function, error function, layer component index. A metric represents a property of those
constructs, or a measure for an ill-defined property.

e Statistical estimation: Many of our metrics are defined in terms of input or data distributions.
We use statistical estimation to compute values for those metrics, where samples are taken
from our data shards.

e Overloading: Any of our metrics has (up to) four different aspects. It is (i) a mathematical
function as we define it in the text, (ii) (if one of its inputs is a data or input distribution)
a statistical estimator for that function, (iii) a program implementing the function or esti-
mator and (iv) a scalar or distribution value. We overload our notation and terminology to
simultaneously refer to all four aspects. We do the same with neural networks and associated
concepts as described in section[2.3.4]/

o [nitial state: When we reference the metric value for an architecture in the “initial state”
or “before training”, we imply that the parameter value was drawn from the initialization
scheme. When we reference the metric value for an architecture without qualifier, we gener-
ally mean the value in the initial state, unless the metric is based on error. Unless otherwise
stated, the specific parameter value used is as follows. For study A architectures, we use the
parameter value that was used to begin each training run for that architecture. For study B
architectures, we use the parameter value which was used to start the training run that used
the starting learning rate chosen by hyperparameter tuning. For experiments outside of stud-
ies A and B, if the architecture was trained, we use the same initial parameter value used for
training. If the architecture was not trained, we simply sample a fresh parameter value. If
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we sample multiple parameter values in this way, we make it explicit. By default, the sample
used for statistical estimation in the initial state is taken from the training set.

Final state: When we reference the metric value for an architecture in the “final state” or
“after training”, we imply that the parameter value is the one obtained after training with
the best starting learning rate. Hence, metric values for the initial and final state always use
parameter values that belong to the same training run. When we reference the value of a
metric based on error for an architecture without qualifier, we generally mean the value in
the final state. By default, the sample used for statistical estimation in the final state is taken
from the test set.

Training error minimization: Under training error minimization, metric values in the initial
and final state use the parameter values from the training run that yielded the least train-
ing error, as described above. If the architecture was fully-connected, re-training applies.
Whenever we display results from training error minimization in any graph, we display the
train-opt marker above it. See e.g. figure

Discarding randomly performing architectures: For some architectures, no training run
achieved an error that we deemed better-than-random. The threshold for this was 0.5 for
waveform-noise and 0.8 for CIFAR10 and MNIST. Many of our metrics depend critically
on starting learning rate when evaluated after training. If no starting learning rate yielded
better-than-random performance, there was no meaningful way to choose the best starting
learning rate. Hence, we cannot meaningfully choose a final state for evaluating metrics.
Hence, whenever we reference values for any metric not based on error in the final state,
we restrict ourselves to architectures that achieved a better-than-random error on at least one
training run. If we selected the starting learning rate based on validation error, we deter-
mined better-than-random-ness also based on validation error. The same goes for training
error / test error.

Scatter plots: We present our results most often in the form of scatter plots, where each
marker usually corresponds to a single architecture and each axis depicts the value of a
metric of that architecture. We sometimes give the correlation value as well as the statistical
significance of the correlation at the top of the graph. If a metric is depicted in log scale,
the logarithm of that metric is also used to evaluate this correlation and significance. Each
axis is labeled with the metric depicted on it. Above the graph, we state which architectures
are depicted and which dataset is used for training and metric computation. ‘CIFAR10 - FC’
refers to study A architectures trained on CIFAR10. ‘MNIST’ / ‘waveform-noise’ refers to
study A architectures trained on the respective dataset. ‘CIFAR10 - Conv’ refers to study B
architectures.

Gaussian stability: Throughout this work, we study the concept of Gaussian stability, which
is a major driver of (lack of) performance and many other behaviors. See e.g. sections [5.2]
[5.6/ and [6.1] We do not define Gaussian stability via a concrete metric. For the purpose
of our empirical analysis, we say that an architecture is a ‘Gaussian unstable architecture’
(GUA) if it falls in one of the following categories. (i) The architecture is fully-connected,
based on the square or odd square activation function and uses BN. (ii) The architecture
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is convolutional and uses an activation function based on square or odd square. (iii) The
architecture is convolutional, uses an activation function based on abs. val. and [ < 0.8
holds for the linearization parameter. Further, we say that an architecture is a ‘Gaussian
edge architecture’ (GEA) if it is fully-connected, is based on ReLLU and does not use LN. We
explain these choices in section [5.6]and give the full list of GUAs and GEAs in the appendix
in chapter[A]l We stress that our designation of GUAs and GEAs was merely for the purpose
of simplicity and empirical evaluation. We do not advocate for criteria (i) through (iii) above
to be the definition of the actual phenomenon of Gaussian stability / instability.

In many figures in this work, markers that correspond to GUAs are displayed in green and
markers that correspond to GEAs are displayed in red (e.g. figures [5.8). In all but
two figures, which are figures and 4.28) GUAs and GEAs are also “displayed in the
foreground”. Whenever a green or red marker corresponding to a GUA or GEA overlaps
with a (usually black) marker corresponding to another architecture, the green or red marker
is fully visible but the other marker is partially or fully occluded. It is important to note
that not all of our figures use green or red markers. A lack of such markers does not mean
the GUAs or GEAs are excluded from the figure. It simply means that they do not behave
differently from other architectures, so there was no need to visually distinguish them.
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Chapter 4

The Nonlinearity Coefficient (NLC)

In this chapter, we begin the process of establishing the nonlinearity coefficient (NLC) as a core
metric for neural architecture design and a primary tool for neural network analysis in general. The
NLC is a function of a network that, when evaluated in an architecture’s randomly initialized state,
is predictive of the architecture’s test error after training, and that fulfills many other utility criteria
as postulated in figure [I.3]to a significant degree. Hence, we establish the utility of the NLC for
zero-shot architecture design (ZSAD; figure[1.2). Please see section [[.2.1] for a detailed overview
of this chapter as well as related results.

Analyzing the NLC is a process that spans all chapters and the majority of sections of this work
from this point forward. In each chapter, we take a slightly different approach. In this chapter, we
take a “one-by-one approach”, i.e. we investigate properties of the NLC in isolation, one after the
other, section by section and subsection by subsection. We use conceptually simple experiments
and theory to validate results individually. Of course, designing the right experimental protocol
and proving the theorems is far from simple. In fact, in order to keep this chapter manageable,
we outsource our presentation and discussion of our experimental protocol to chapter |3| and we
provide proofs for the propositions and theorems of this chapter in chapter[I0} The strength of this
chapter is its simplicity, its weakness is that, at least in some parts, we largely rely on empirical
results, which depend to some degree on our choice of which neural architectures to study. We
discuss this tradeoff in section[3.5.2] Later chapters provide context and explanation for the results
of this chapter. For example, in section [5.5] we explain results using mean field theory. In section
we explain architectures that represent outliers in our figures of section 4.4.1

The NLC is a measure of the property ‘degree of nonlinearity’ of a neural network, which is intu-
itively related to the notion of the complexity of a mathematical function. We begin this chapter by
asking the fundamental question, “What is nonlinearity?” in section In section |4.2| we derive
the definition of the NLC, and give a theorem that establishes the NLC as a nonlinearity measure.
In section [4.3] we provide a visual illustration of the meaning of nonlinearity and its relation to
the NLC. In section .4} we demonstrate a range of properties of the NLC, where each subsection
corresponds to a different property which is given in the title. In section we investigate the
interplay between the dataset and performance prediction using the NLC. As discussed in section
[[.4.1.2] we aim to develop ZSAD guidelines that are as data-agnostic as possible.
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Function (a) (®) © @ (e) ® (2 ()

Tustration

Is linear? yes yes no no no no no no
%]E|F’(s)| 1 1 2 8 1 2.48 1 1
d

' ‘j;T‘ VEF(s)2 1 1 222 8.89 1.20 2.85 3.14 3.14

Table 4.1: Comparison of scalar functions with regards to nonlinearity. dom refers to the domain,
which spans the range of the x-axis. co refers to the codomain, which spans the range of the y-
axis. |.| applied to an interval denotes interval length. Conclusion: The expected square derivative
is more suitable for measuring nonlinearity than the expected absolute derivative.

Background from prior chapters Throughout this chapter, we use the terminology, notation
and conventions of section

4.1 What is nonlinearity?

To define nonlinearity, we must first understand linearity. Linear functions are a fundamental
building block of mathematics, as well as a fundamental building block of machine learning. In
the context of prediction, having the output be a linear transformation of the input is highly popular.
For example, combining a linear model with a softmax+cross-entropy loss function (section[2.5.2))
leads to logistic regression. Combining a linear model with the L2 loss function (section
leads to linear regression. Combining a linear model with the hinge loss function leads to a support
vector machine.

In the first instance, nonlinear simply means not linear. Almost all functions are not linear. Con-
sider functions F' : R% — R%u«_ Linearity implies that there exists some di, X do, matrix A and
doui-dimensional vector b such that F'() can be written for all y € R% as yA + b. A and b only

have a combined (d;, + 1)dy degrees of freedom. To recognize just how restrictive linearity is,

T
consider that for linear F' we have F'(x') = F(x)+ (X' — x) %;X) for all x, Y’ € R% . This means

that the value of F' everywhere is determined by a single function value F'(x) and a single Jacobian
dF (x)

—. I is determined by its value in an arbitrarily small neighborhood around any point.
X

Neural networks are generally not linear, and for good reason. No matter how fancy a network
may appear, as long as it is a linear function of the input x, it can simply be represented as x A + b.
To train a linear model, it is sufficient to consider A and b as trainable parameters and apply e.g.
a gradient method directly to x A + b. Because the expression A + b is convex in both A and b,
this is the best way to train a linear model. While linear networks are interesting constructs for
theoretical study (e.g. [Saxe et al.| [2014], [Pennington et al.|[2017]), they are not practically useful.

In this work, of course, we want to go beyond the binary distinction of “linear” and “not linear”.
We are interested in studying the degree of nonlinearity of a network. This concept is not math-
ematically well-defined. We must therefore come up with a measure that captures this intuitive
notion.
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Let’s begin by investigating the 1-dimensional case. In table we depict eight different scalar
functions. It is clear that functions (a) and (b) are linear, while functions (c) through (h) are not
linear. However, it is unclear exactly how different each of the functions (c) through (h) are from
a linear function. For example, comparing function (f) and (g), we can say that function (g) can be
closely approximated by three line segments, whereas function (f) requires many line segments.
On the other hand, function (g) changes direction very drastically in two places, whereas function
(f) is at least somewhat locally linear. Comparing functions (g) and (h), we can say that (h) can be
approximated better by a single line, in the mean square error sense, relative to (g). On the other
hand, we can say that the largest interval where the function is exactly linear is larger for (g) than
for (h).

We can already see that there is no right answer to the question “What is nonlinearity?”. If we were
to come up with a real-valued metric to measure the degree of nonlinearity of not just scalar func-
tions, but practical neural networks, at best, we could hope to have it (i) be intuitively reasonable
and (ii) fulfill the utility criteria of figure|l.3|as much as possible. An aspect of the meaningfulness
of the metric (criterion[/)) would then be that it is a measure of nonlinearity.

4.2 Deriving and defining the NLC

The NLC is based on the simple insight that linear networks have a constant gradient. In a nutshell,
we will say that the more a network’s gradient changes direction and magnitude, the more nonlinear
itis.

Let’s again look at the 1-dimensional case. Let the closed and bounded real interval dom denote
the domain of the differentiable scalar function F'. Let co denote the codomain, which we define
as the set of values taken by F'. Let |.| applied to an interval denote interval length. One way to
express that linear F” have a constant derivative is via the formula |F”(s)| = ‘Clif;’rt', which holds for
all s € dom. Hence, we have

|dom|

E|F’ =1
oo EIF6)

We take s to be uniformly distributed over the domain. (For now, we ignore the possibility of
dividing by zero.) Further, for any F' we have

|dom|

E|F’ > ]
o] EF()] 2

We can see this by considering that equality holds if /' is monotonic, due to the fundamental
theorem of calculus. The left-hand side effectively measures the number of times the function
traverses the codomain.

Now we have a functional, a metric, namely lT::"‘ E|F’(s)|, that is minimized by any linear function.
Therefore, it is a potential candidate for measuring the nonlinearity of scalar functions. In table

4.1, we give the value of this metric for functions (a) through (h). Indeed, all values are at least 1.
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Unfortunately, as mentioned above, the metric is equal to 1 for all monotonic functions even if they
are nonlinear, e.g. functions (e), (g) and (h). This is a fatal flaw. In essence, the metric captures
changes in direction of the derivative, but not changes in magnitude. To overcome the flaw, we
note that by Jensen’s inequality we have

P Ep([F'(s)]) = E[F(s)]

for any convex, strictly increasing p : R>, — R>. Further, if p is strictly convex, equality holds
if and only if |F'(s)| is constant. If F’ is also monotonic, equality holds if and only if F is linear.
And the gap between the left- and right-hand side increases the greater the variation in derivative
magnitude.

The simplest and most obvious choice for p(s) is s%. Thus we obtain

dom| /EF s > 1

|col

where equality holds if and only if F'is linear, and the gap increases the greater the variation in
derivative magnitude and direction. This gives us another metric, |T§g"| EF'(s)%. Let’s call this
metric NL1D. As before, we give the value of NL1D in table @ It is larger than 1 for functions
(c) through (h), as desired. All values are indeed intuitively reasonable. We can also immediately

observe several intuitively reasonable properties in the table.

e NLI1D is invariant under shifting and scaling. Specifically, the value of the metric for some
F(s) on [L, R] is equal to its value for aF(cs + d) + b on [2L — ¢ 1R — 4] for scalars
a,b,c,d with a,c # 0. This is reasonable because shifting and scaling preserves linearity.
This invariance is why we left the range of the x- and y-axes undefined in table These
ranges are irrelevant for the value of our metrics.

e NLI1D is proportional to the frequency of a periodic function such as a sine curve. For
example, compare functions (c) and (d), which differ in frequency by a factor of 4.

e NLID is unchanged when a monotonic function is repeated. For example, compare functions
() and (h).

So far, so good. But how could we apply NL1D to neural networks? There are several issues.

e NLID is only defined for scalar functions. Neural networks can have multi-dimensional
inputs and outputs.

e NLID assumes there is a well-defined bounded domain and codomain. There is no equiva-
lent assumption in the case of neural networks.

e In NL1D, s is sampled uniformly from the domain. In practice, the input distribution D may
have the majority of its probability mass concentrated in certain regions of input space. We
may want our metric to preferentially sample the behavior of f in those regions.
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We are now ready to define the NLC as a solution to these issues.

Metric definition 2. Let f be a neural network and let x be drawn from some input distribution
D. Then the ‘nonlinearity coefficient’ (NLC) of f with respect to D is

E, Tr(J (z)Cov, I T (x))
NL D) =
¢, D) \/ Tr(Covy)
where  Cov,[i, '] = C.(z[i],z[i']) is the covariance matrix of the input,
Covely, i1 = Cu(f(z)[j], f(z)[j']) is the covariance matrix of the output and J(z) = %

is the Jacobian. C is the standard covariance operator as defined in section3.4.1.1} Tr is the trace.
This follows our standard notation from section

The NLC can be viewed as a multi-dimensional generalization of NL1D. |/ Tr(Cov), which is
also equal to the square root of the sum of eigenvalues of Covy, can be viewed as the radius of
the (ill-defined) codomain. Similarly, \/Tr(Cov,) can be viewed as the radius of the domain.

VIJIT = ||TJ||F is the direct generalization of v/ F’2. Combining 7 and Cov, in the numerator
means that we only consider the gradient of f in directions where x actually varies, which seems
desirable.

Technical considerations From a mathematical standpoint, we need to make the following as-
sumptions for the NLC to be valid.

Assumption 1. f is differentiable everywhere.

This is often not true in practice. For example, networks using the ReLLU activation function are
at most directionally differentiable everywhere. However, this assumption still turns out to be
acceptable, as we argue extensively in section [2.6.1] In practice, we can replace the Jacobian in
the NLC with the Jacobian of a local linear approximation of f, which is defined in the same way
as the gradient of the local linear approximation that is used for training, as we explain in section
[2.2.1] Such a gradient must be computable for training to be possible. See also section[d.4.4]

Assumption 2. All expectation operators involved in the definition of the NLC are valid and finite,
i.e. several simple expressions involving x, f and J need to be integrable with respect to the input
distribution.

This is a mild assumption, as we argue in section
Assumption 3. Tr(Covy) > 0

This assumption is also very mild, as shown by the proposition below.

Proposition 1. Assume there exists an open set S where D has a continuous, positive density
function and f is not constant on S. Then Tr(Covy) > 0.

Finally, we make another assumption that will also greatly simplify notational bookkeeping.

141



Assumption 4. Cov, is non-singular.

This assumption is also very mild, as shown by the proposition below. Given any practical input
or output distribution with singular covariance, we can simply attain non-singularity via linear
projection / change of coordinates.

Proposition 2. Assume there exists a non-empty open set S where D has a continuous, positive
density function. Then Cov, is non-singular.

As a general rule, going forward, we will not address technical issues, such as integrability, dif-
ferentiability, dividing by zero and singularities, in the predominantly empirical parts of this work,
as these issues generally work out in a straightforward manner. We explain this with respect to
differentiability in section and with respect to integrability in section We will reserve
technical discussions for the theoretical chapters [5] [[0]and

4.2.1 The NLC builds upon the functional-gradient paradigm

The mildness of the assumptions required for the NLC is one of its core strengths. It underpins
utility criteria [T and [I0] The strongest assumption is differentiability.

In section[1.3.2] we outlined the functional-gradient paradigm, which has emerged as dominant in
machine learning. It is based on black-box functions with three key properties as given in figure
One of these properties is that a local linear approximation in a region around the parameter
value can be found which is suitable for gradient updates. But this is precisely what is necessary to
evaluate the NLC, as explained above. Hence, the NLC builds directly upon the functional-gradient
paradigm and thereby inherits all of its advantages, including its full generality.

4.2.2 The NLC is a nonlinearity measure

What makes NL1D a nonlinearity measure is that it attains its minimum exactly for linear func-
tions. It turns out the NLC generalizes this property to multi-dimensional networks with Gaussian
inputs.

Theorem 1. Let D be Gaussian. Then NLC(f, D) > 1, where equality holds if and only if f is
linear.

The downside of this theorem is that the NLC can be as small as zero if D is not Gaussian. This
happens, for example, when the support of D has several connected components and f is constant
on each component, but takes different values on different components. In general, we might say
that a downside of the NLC is that it is technically not a nonlinearity measure for networks f,
but for pairs (f, D). However, in section and then further in chapter |5, we generate highly
accurate approximations for the NLC using Gaussian inputs that mimic only the expectation and
covariance of practical input distributions D. In section 4.4.2| we also show that the dependency on
expectation and covariance is necessary for any reasonable nonlinearity measure.

Even in the non-Gaussian regime, we have several valuable properties.
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depth
NLC

[lustration

depth
NLC

Ilustration

Table 4.2: Illustration of the network functions of fully-connected architectures with the SELU
activation function at different depths in the initial state. Each disc depicts a spherical 2D subspace
of the input space as an azimuthal projection, and each color corresponds to a different region of
the output space. The NLC was evaluated on unit Gaussian input. Conclusion: The more nonlinear
the network appears, the higher the NLC.

Proposition 3. Let f be linear. Then NLC(f,D) = 1.

Proposition 4. Let A be an orthogonal matrix of size d,,; X d,,; and b be a d,,,,~-dimensional vector.
Then NLC(fA+b,D)=NLC(f,D).

Proposition 5. Let A be a matrix of size d;, X d;, and b be a d;,-dimensional vector. Assume
Tr(Covyzate)) > 0. Then NLC(f(xA+b),D) = NLC(f(x), DA+ b), where drawing x from
DA + b is equivalent to drawing x from D and applying A + b.

We develop the mathematics behind the theorems and propositions of this chapter and provide
proofs in chapter [T0}

4.3 An eye test

Is the NLC intuitively reasonable as a measure of nonlinearity? Since this question is non-
quantitative by nature, it is impossible to verify it on a broad scale. Notwithstanding, in this
section we check whether the NLC passes an eye test.

In table 4.1 we saw that the NL1D metric corresponds reasonably well to the intuitive notion of
nonlinearity across eight scalar functions. In table #.2] we depict the network functions of fully-
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connected architectures with SELU activation function, d,,, = 3 and different depths in their initial
state. See section [3.3|for architectural and other details.

We drew three inputs ("), 2(?) and 23 from the unit Gaussian distribution. We associated each
point (a, b, ¢) that lies on the unit sphere in R3, i.e. that has a® + b*> + ¢ = 1, with the input
az™ + br® + cx®). We call the sphere of points (a, b, ¢) associated with these inputs the “input
sphere”. We evaluated the network on a dense grid of those inputs. For each input, we obtained
a 3-dimensional output, which we divided by its length. Now the output lies on the unit sphere
in R3. Each point on that “output sphere” was associated with a color as depicted in figure
Finally, we colored each point on the input sphere according to its respective color on the output
sphere.

The RGB values of colors were chosen so that the R component is largest whenever the value of the
first output neuron is largest, the G component is largest whenever the value of the second output
neuron is largest and the B component is largest whenever the value of the third output neuron is
largest. If we imagine that the output is fed into a softmax+cross-entropy loss function for 3-class
classification, then “purer” colors correspond to more confident predictions.

The colored input spheres are given in table #.2] We also give
the NLC of those same networks taken on unit Gaussian input.
As desired, we find that the more nonlinear a network appears,
the higher the NLC. While we do not have space for more col-
ored input spheres, we did verify that this relationship also holds
across e.g. different activation functions and widths.

4.4 Properties of the NLC

In this long section, we demonstrate a range of properties of the
NLC, where each subsection corresponds to a different property

which is given in its title. Figure 4.1: Coloring of the out-
put sphere used for the illustra-
tions in table 4.2} depicted as an

Background from prior chapters The majority of subsec- azimuthal projection.

tions rely on empirical evidence, which is based on our empiri-

cal studies. Our experiments can roughly be grouped into three

buckets. (1) In study A, we trained 750 randomly generated fully-connected architectures, 250 each
on CIFAR10, MNIST and waveform-noise. (ii) In study B, we trained 552 convolutional archi-
tectures on CIFAR10. (iii)) We conducted further experiments which were similar to study A, but
where we changed the architecture or specific aspects of the training protocol. Our studies are laid
out in detail in chapter [3|and summarized in section [3.6] along with the terminology and conven-
tions that are most important for understanding and interpreting our figures, tables and discussion
of experimental measurements. While we recommend reading at least the summary section, we
also hope to present our results in this work in such a way that reading chapter [3|is not necessary
beyond the summary or not necessary at all.

The scope of our empirical studies, especially in terms of the variety of architectures considered,
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the carefulness of training and the carefulness of metric computation, is a key distinguishing fea-
ture of this work relative to prior work. We conducted nearly 300,000 independent training runs
on fully-connected architectures and nearly 12,000 independent training runs on convolutional ar-
chitectures. Hence, we believe chapter [3 has much value in its own right for informing the design
of analytical deep learning studies.

4.4.1 The NLC is predictive of test error and to some degree training error

In this subsection, we establish the NLC’s most important property. The NLC of an architecture,
when evaluated in the initial state before training, is a powerful predictor of test error after training,
and attaining a right-sized NLC is essential for attaining an optimal test error. This is ultimately
the motivation behind caring about nonlinearity. To our knowledge, no single metric has ever been
shown to have the same predictive power across such a wide range of architectures as the NLC.
(Of course, concepts that are related to the NLC, such as gradient magnitude, automatically inherit
some of its predictiveness, as we will see in section[9.1.5])

Initial NLC predicts test error In figure we plot the NLC in the initial state vs test error
for all architectures in studies A and B. Figure like many figures in this work, depicts scatter
plots where each marker corresponds to a single randomly generated architecture. Throughout this
work, results are depicted separately for each dataset used in study A, thereby underscoring the
consistency of our results across datasets.

In figure d.2] we find that there is a strong association between initial NLC and test error. Further,
architectures that achieve the lowest test error values for a given dataset / study all have NLCs that
lie in a narrow range, approximately between 1 and 5. Hence, we formulate the following ZSAD
guideline.

ZSAD guideline definition 1. ‘Use an appropriate NLC’ requires 1 < NLC < 5.

This has immediate practical utility as architectures with an excessive initial NLC can be discarded
before training and do not need to be considered further, either conceptually or within the context
of NAS. Liu et al.|[2020b] provides an example for filtering out undesirable architectures.

We depict a magnification of the region 0.8 < NLC < 100 in each of the graphs in figure
Even within that relatively narrow range, architectures with smaller NLCs tended to perform better
(graphs A/B/C) or at least seem capable of performing better (graph D). While a right-sized NLC
was necessary to attain good performance, it was not sufficient. There were a significant number
of architectures with NLCs in the 1-to-5 range that did not perform optimally or did not even attain
a better-than-random test error. We explore the reasons behind the failure of these architectures
in detail in chapter 0] Just as for close-to-optimal performance, there is a range that the initial
NLC must fall in for better-than-random performance, approximately between 1 and 10°. One
architecture was an exception to this rule. It was trained on the waveform-noise dataset with initial

NLC around 10'° and achieved a relatively low error. We further discuss this architecture in section
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In section 4.2.2] we showed that the NLC of linear networks is 1 and that the NLC of nonlinear
networks is greater than 1 if the input is Gaussian. We find that the lower bound of 1 holds for all
NLCs in figure .2 up to estimation error, and thus for architectures in the initial state.

In figure d.2] like in other figures in this work, we give the correlation of the two metrics plotted on
the x- and y-axes at the top. If any metric is depicted in log scale, we also use its logarithm for eval-
uating the correlation. The strength of the association between NLC and test error is underscored
by their correlation ranging from 0.54 to 0.67 across studies / datasets. Note that those specific
correlation values should be taken with a grain of salt, as they depend heavily on the choices we
made in generating the random architectures. In chapter [6] we detail a range of factors that influ-
ence performance other than the NLC. As a general rule, the more these other factors vary among
architectures considered, the less the fraction of the performance variation explained by the NLC.
We further discuss this point in section [3.5.2] Note that we did not generate our architectures with
the goal of achieving specific correlation values. We use correlation as a “quick and dirty” tool
to statistically demonstrate metric associations. We are not implying that the metrics are linearly
related. In fact, it is clear in figure 4.2] that a nonlinear predictor from NLC to test error would be
more accurate and would explain an even greater fraction of performance variation.

We give the initial NLC and test error of all our architectures in the appendix in chapter [A]

Final NLC is associated with test error In figure [4.3] we plot the NLC evaluated in the final
state vs test error. Note that whenever we evaluate any metric not based on error in the final state,
we automatically discard all architectures for which no starting learning rate achieved better-than-
random validation error (study A) or test error (study B). This is because metric values in the
final state often depend greatly on the learning rate. Without a meaningful way to choose the best
starting learning rate, there is no meaningful final state metric value. Because architectures that
achieve better-than-random validation or test error must have relatively small NLCs, the range of
NLCs depicted in figures such as 4.3|is much narrower compared to e.g. figure (Of course,
this also affects correlation values.)

We find that final NLC is also strongly associated with test error, with correlation values compara-
ble to those of the initial NLC. Architectures that exhibit close-to-optimal performance still have
their NLC lie in a narrow range, though this range changes based on dataset / study. Some archi-
tectures now have an NLC less than 1. For better-than-random performance, the final NLC must
lie in a range narrower than the initial NLC, approximately between 1 and 100. However, again, a
close-to-optimal NLC is no guarantee of close-to-optimal performance.

NLC predicts training error in the case of underfitting In figure[4.4Jand[4.5] we plot the initial
and final NLC vs training error. Let’s first consider the study A architectures (graphs A/B). We find
that, while at least the initial NLC is correlated with training error, there exist several architectures
with very high NLC both before and after training that achieve zero or close to zero training error.
This behavior differs from test error. As one would expect, overall error levels are also much lower.
Just as some high-NLC architectures trained well, we find that some low-NLC architectures did
not train.

While the NLC is less predictive of training error than test error, the trainability of high-NLC
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architectures is an important finding in its own right, as we further detail in e.g. sections 4.4.9]
and|1.2.1.2] as it demonstrates the trainability of ultra-high complexity architectures.

The values in figures [4.4A/B and #.5]A/B stem from our re-training of study A architectures, where
we tune starting learning rate by considering 60 different values and where we do not use early
stopping based on validation error. Hence, the final state differs from e.g. figure 4.3l While
exhaustive learning rate tuning was essential for a fair comparison of architectures in figure 4.4
this even more exhaustive protocol was essential to be able to train high-NLC architectures at all.
See section [6.6] for details. Using 64-bit floating-point precision was also essential (section [6.5).
Whenever we give results from training conducted to minimize training error, we always use the
train-opt marker above our graphs. Whenever such graphs depict metrics not based on error in the
final state, such as figure 4.5|A/B, we depict only architectures that attained a better-than-random
training error.

In figures B.4IC and f.5[C, we plot the NLC vs training error for study B. Here, we find that no
architecture with high NLC was trainable. However, as we will go on to show in sections [6.5]
and this was due to all our high-NLC architectures using batch normalization or data aug-
mentation. There are a large number of architectures with a very small NLC that attain a training
error significantly above 0 but below 0.6. In contrast, the vast majority of architectures in graphs
A/B either have a near-zero or near-random training error. This difference was caused by how we
generated the architectures in studies A and B. In study B, we used activation functions that were
interpolations between standard activation functions and linear functions. See section [3.2.1| and
table This meant that many architectures had activation functions that were close to linear
functions and therefore many architectures were themselves close to linear functions and thus also
had low NLCs. It turns out that logistic regression, which is based on a linear model, attains around
a 0.6 training and test error on CIFAR10 due to underfitting. Hence, our results indicate that many
architectures in study B also exhibit underfitting. See sections [4.4.7| and [7.3.2] for further analysis
on this point. In contrast, in e.g. sections 4.4.8/and 4.4.9] we show that overfitting explains why a
high NLC leads to high test error. The underfitting phenomenon also caused the greater diversity
of test error values in figure #.2D versus [#.2]A-C.

We did not re-train our convolutional architectures for the purpose of figures and[4.5C, as we
used a fixed number of iterations and did not use early stopping based on validation or test error
to begin with. However, we did re-select the starting learning rate and therefore the training run
based on the lowest training error after training. Again, we signify this with the train-opt marker.

We give the initial NLC and training error of our architectures in the appendix in chapter [Al Note
that we did not conduct re-training for our MNIST architectures due to limitations in computational
budget. Hence, we do not consider those architectures throughout this work when it comes to
training error.

We obtain the same findings with Adam Of course, the error achieved by an architecture de-
pends to some extent on the training algorithm used. We trained all architectures in study A with
SGD. To a significant degree, we eliminated the confounding effect of the training algorithm by
conducting extensive and independent learning rate tuning for each architecture. The learning rate
hyperparameter is the most important determinant of performance other than architecture. See
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sections and [6.6] for further information. To further validate our results, we retrained our
waveform-noise architectures using the Adam algorithm. We otherwise used the same careful
training protocol as in study A. Both training algorithms used the same initial state, so the NLC
before training was also the same. In figure 4.6] we plot the initial and final NLC vs test error after
training with Adam (graphs A/B), and we compare the test error achieved with SGD and Adam
directly (graph C). Graphs A and B appear very similar to figures and respectively,
yielding the same findings, as desired. The only difference is that there were a small number of
architectures that attained an NLC significantly smaller than 1 after training with Adam. We did
not previously observe this for waveform-noise, but we did for MNIST (see figure d.3B/C). In fig-
ure @p, we find that the error achieved by both algorithms does differ somewhat, but there were
only a few architectures that attained a better-than-random test error with one algorithm but not the
other. Adam was slightly superior in this regard.

148



(A)1 CIFARI( - FC L ®) 1 MNIST
correlatlon 0 67 p value 1 7e 33 correlatlon 0 56 p value 5 6e 22
- ., R L - '..__. L : .

0.8 + . 0.8 + .
506 i 1 506 ]
E 1,2 ' - t" .
5} ch o .
7 BT :
e 04 - - {1 804t S i

Ear
0.2 102t S .
0 S RS I R B 0 . ‘..\ S S R BN E R
1e0 leb lel0 leld 1e20 1e0 leb 1el0 leld 1e20
NLC before training NLC before training
(C) 1 — Waveform noise. — (D) 1 — CIFARlO Cony
Correlatlon O 54 p value 5 6e 20 correlatlon 0 64 p value 3 8e 66
= . ‘:5.--.-\- LIt T

08 1 o8t A& .
506 = L o506 | Lor /s ]
— — ,._.E-

) 5 £t :
. o i E
0.2 b fgan E 0.2 R b AL 4
0 S R R 0 S S B U R HU R
1e0 leb lel0 leld 1e20 1e0 leb lelO leld 1e20
NLC before training NLC before training

Figure 4.2: The NLC evaluated in the architecture’s initial state vs the test error evaluated in the
architecture’s final state, for all architectures in studies A and B. Graphs A, B and C depict results
from study A. Graph D depicts results from study B. Each point in the scatter plots corresponds to
a single architecture. The correlation of the metrics plotted on the x- and y- axes, as well as the
statistical significance of that correlation, is given at the top of the graph. If a metric is depicted in
log scale, then the log of that metric is used to evaluate the correlation. The dataset used is given
above the figure. For CIFAR10, we also note whether the architectures used were fully-connected
(study A) or convolutional (study B). Inset graphs in the bottom right are magnifications of the
region 0.8 < NLC' < 100. Note that one black point in graph C is “hidden” among red points.
Conclusion: The NLC of an architecture, when evaluated in the initial state before training, is
a powerful predictor of test error after training, and attaining a right-sized NLC is essential for
attaining an optimal test error.
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Figure 4.3: NLC vs test error in the final state, for all architectures in studies A and B that achieved
a better-than-random validation error (study A) / test error (study B). Inset graphs in the bottom
right are magnifications of the region 0.3 < NLC < 10. Blue lines indicate NLC = 1. Conclu-
sion: The final NLC is associated with test error, and optimal / better-than-random performance
requires the NLC to lie in a narrow range.
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Figure 4.4: Initial NLC vs training error. In graph A, we depict CIFAR10 architectures from study
A. In graph B, we depict waveform-noise architectures from study A. In graph C, we depict ar-
chitectures from study B. Both training error and NLC were evaluated on the training run which
yielded the lowest training error after training, as signified by the train-opt marker. Study A ar-
chitectures were re-trained without early stopping based on validation error. Note that the y-axis
extends below the zero point for improved visibility. Inset graphs in the bottom right are magnifi-
cations of the region 0.6 < NLC < 100. Conclusion: The initial NLC is somewhat predictive of
training error, especially when it comes to underfitting, but some high-NLC architectures are also
trainable, at least when they are fully-connected.
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Figure 4.5: NLC vs training error in the final state. In graph A, we depict CIFAR10 architectures
from study A. In graph B, we depict waveform-noise architectures from study A. In graph C, we
depict architectures from study B. Only architectures that achieved a better-than-random training
error are depicted. Inset graphs in the bottom right are magnifications of the region 0.6 < NLC <
100. Conclusion: Successfully trained architectures can have very high NLC after training, at least
when they are fully-connected. A small or moderate NLC after training does not guarantee low
training error.
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Figure 4.6: Comparing NLC and test error for study A waveform-noise architectures, trained with
Adam and SGD. Inset graphs in the bottom right are magnifications of the region 0.8 < NLC <
100 in graph A and 0.3 < NLC < 10 in graph B. The blue line indicates N LC' = 1. Conclusion:
Adam behaves very similarly to SGD.
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Figure 4.7: Initial NLC evaluated on the training set vs test set and unit Gaussian input for study
A architectures. Green markers correspond to Gaussian unstable architectures (GUAs), and they
are displayed in the foreground. All correlation values are close to 1. Conclusion: The estimator
of the NLC is stable for our samples. The NLC on practical input distributions matches the NLC
on Gaussian inputs.

4.4.2 The NLC is robust to data distribution and data sample

The NLC does not, strictly speaking, measure the nonlinearity of networks, but the nonlinearity of
a network with respect to a distribution. In this subsection, we show that the NLC can nonetheless
be fundamentally regarded as a property of the network as it is invariant to structure present in
practical input distributions, being sensitive only to their expectation and covariance, as well as
being insensitive to the sample used for estimation, at least in the initial state.

The NLC estimator is stable The NLC is defined in section 4.2| via probabilistic operators over
inputs drawn from the input distribution. The data distribution is only known via the dataset, which
is assumed to be an IID sample. Hence, we must compute the NLC using statistical estimation. We
discuss the computation of the NLC in section and the computation of our metrics in general

in section

This raises the question of whether our datasets are large enough for our estimators to yield stable
values. In figure 4.7A-C, for study A architectures, we plot the value of the initial NLC evaluated
on a sample that stems from the training set vs the value of the initial NLC evaluated on a sample
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that stems from the test set. Assuming that both shards are drawn from D, we would desire these
values to be as close as possible. Indeed, we find a very close match for most architectures. As
one would expect based on dataset size, the difference between both values is slightly larger for
waveform-noise than for CIFAR10 / MNIST.

However, there are also a few architectures for which we ob-

serve a more pronounced difference between both estimates. __ CIFARIO - Conv__
The short and shallow explanation for this is that all these archi- comelation=09, praiue=0
tectures are based on either the square or odd square activation
function and they use batch normalization. The deep explana-
tion is that this combination of layer operations can lead to a
pathology we term ‘Gaussian instability’, which we investigate
in detail later in this work, such as sections [5.2] [5.6] and
Since we do not provide an exact definition for Gaussian in-
stability, for the purpose of our empirical analysis, we say an
architecture is a ‘Gaussian unstable architecture’ (GUA) if it is : : : : :
built from specific layer operations given at the end of section NLO after tr;ier?ing (test 1;2?)
[3.4.2] and section [3.6] (Note that we do not advocate for our

designation of GUA as the definition of the actual phenomenon Figure 4.8: Final NLC evalu-
of Gaussian stability.) The full list of GUAs is given in the ated on the training vs test set
appendix in chapter [A] If a figure in this work contains green for study B architectures. Con-
markers, such as figure then those markers correspond to clusion: Both values are close to
the GUAs unless otherwise stated. By default, these markers equal, especially when exclud-
are also displayed in the foreground, i.e. they fully or partially ing GUAs.

occlude other markers if they are in the same or in highly sim-

ilar locations in the graph. GUAs defy, to one degree or another, many valuable properties we
uncover throughout this work. As we will find in section [6.1] perhaps fortunately, GUAs also tend
to exhibit high test error. It is important to note that not all of our figures use green markers. A lack
of green markers does not mean the GUAs are excluded from the figure. It simply means that they
do not behave differently from other architectures, so there was no need to visually distinguish

them.

In figure 4.7} we find that for GUAs, the NLC evaluated on the training and test set is not necessarily
close-to-equal, which means that the samples are not large enough to ensure stability of the NLC
estimator. This fact should be kept in mind when interpreting graphs throughout this work.

led + E

le2 B

NLC after training (training set)
z
S
T
‘
L

Training and test set NLC are similar even after training Previously, we compared the NLC
evaluated on the training and test set in the initial state with the clear expectation that both values
should be close to equal. In the final state, this is not necessarily the case because the training set
was used to run the training algorithm, and is thus far from an unbiased sample for the purpose
of estimating the NLC. In figure #.T0A-C, we make the same comparison as in figure d.7A-C, but
in the final state. We find that the NLC values taken on training and test set are no longer near-
identical, but the correlation is still high. In figure we make the same comparison for study
B architectures. Here, we find that the correlation is actually still close to 1 even after training,
and even when including GUAs. This is a rare occasion where we find convolutional architectures
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to be better-behaved than fully-connected architectures. Note that some of our convolutional ar-
chitectures, as opposed to fully-connected architectures, employ data augmentation on the training
set. If this is the case, then training and test inputs cannot even be regarded to be from the same
distribution, as we explain in section [3.4.1.1]

This consistency between training and test set is noteworthy considering the nature of the NLC
and gradient methods. The NLC is based on %, and gradient methods are designed specifically
to minimize % on the training set. Therefore, one might expect that % values are also signifi-
cantly smaller on the training set compared to the test set. While this is certainly true for some
architectures, especially when trained on MNIST, it does not hold for the majority of architectures,

especially convolutional architectures.

The NLC on practical datasets mirrors the NLC on Gaussian distributions We evaluated
the NLC of all architectures in study A in the initial and final state on unit Gaussian input. For
this purpose, we generated sets of 10,000 points where each component of each point was inde-
pendently drawn from N (0, 1). We generated three such sets of different dimensionality to match
the width of the input layer of architectures generated for CIFAR10, MNIST and waveform-noise
respectively. Samples for estimating the NLC were then taken from those sets.

In figure 4.7D-F, we plot the initial NLC taken on the training
set vs the NLC on unit Gaussian input. The match is as good ez depth-2 Sa‘ﬁggthﬁaﬁ’EfOrm”loise- 1
as between training and test set values. This means that any Test error —w—
structure present in our input distributions is completely ignored
by the NLC, at least in the initial state. In figure {.10D-F, we
make the same comparison in the final state. As with training
and test set, the match is not as good as before training, but the

correlation still hovers around 0.9.

o0

,_.

o

2
1=

NLC before training
Test error

In theorem [I} we showed that the NLC is at least 1 on Gaussian ~ 1e0 ‘ ‘ 0
input, for any network f. This theoretical finding is confirmed 2 et scoling fogtor

in figures 4.7 and .10} up to estimation error. The close match

between Gaussian and practical NLC values makes this bound Figure 4.9: Initial NLC and test
very meaningful. error as the magnitude of the
inputs is varied by multiplying
with a fixed scaling factor,
for depth-2  fully-connected
sawtooth  architectures  on
waveform-noise.  Conclusion:
Data variance impacts both NLC

and test error.

As a general rule, throughout this work we will find that many
properties hold almost exactly in the initial state, but deterio-
rate in the final state. The well-behaved nature of randomly
initialized architectures can be largely explained by mean field
theory, which we cover in chapter [5} This theory directly pre-
dicts the behavior we observe in this subsection, and many of
the following subsections, for architectures in their initial state.
In general, we place greater emphasis on the behavior of architectures in the initial state, because
a core goal of this work is to improve architecture design without the need for training. We want
to enable readers to understand and predict the performance and behavior of architectures by ex-
amining the initial state, not the final state.

The results reported here are corroborated by section
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Figure 4.10: Final NLC evaluated on the test set vs training set and unit Gaussian input for study
A architectures. Note that the x- and y-axis ranges differ significantly from figure Throughout
this work, axis ranges can vary when related, but not identical, metric values are depicted. How-
ever, we also strive to keep axis ranges the same for comparability when practical. Conclusion:
The final NLC is still relatively consistent across data shards and distributions.

The NLC takes into account input expectation and variance One commonality between the
unit Gaussian distribution and the three datasets from study A is that each input feature has mean
zero and the average variance across features is 1. This is critical. If these two moments vary sig-
nificantly between input distributions, then the NLC is also likely to vary significantly. Consider
a simple fully-connected network of depth 2 with the sawtooth activation function (table [2.1)). If,
instead of using a dataset where inputs have mean zero and variance one, we vary the variance by
multiplying the inputs with a fixed scaling factor, then we obtain a wide range of NLC values. Ap-
plying a scaling factor to the inputs means that the layer values in the dependency of the sawtooth
layer are also multiplied with this factor. This effectively increases the size of the “domain” of
values fed into the sawtooth layer, which in turn increases the frequency of the activation function
relative to the domain. Remember table 4.1 We found that increasing the frequency of a peri-
odic scalar function proportionally increases its nonlinearity as measured by NL1D. Therefore, we
would expect increasing the standard deviation of the input to a 2-layer sawtooth network would
also proportionally increase the NLC.

This is exactly what we find in figure There, we plot the initial NLC of 2-layer fully-connected
sawtooth architectures on the waveform-noise dataset as a function of the input scaling factor.
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When the scaling factor is small, almost all values fed into a sawtooth neuron are contained within
its linear segment around 0. When this happens, sawtooth, and hence the entire network, is approx-
imately linear, and we find the NLC is close to 1. We say the activation function is ‘pseudo-linear’.
However, as the scaling factor increases and multiple periods of a sawtooth neuron are covered by
its inputs, the NLC increases proportionally with the scaling factor.

While the relationship between input variance and NLC can be intuitively understood for 2-layer
sawtooth networks, in general, there is a complex interplay between input variance and NLC, as
well as many of our other metrics. In section[5.3] we will find that the input expectation is equally
important.

We might find this dependence on input expectation and variance undesirable as it means the NLC
is not a pure network property. However, it is important to note that changes to the moments of
the data also impact performance. For the NLC to be predictive of performance, it must therefore
be sensitive to changes in moments. Given our insights from section [4.4.1] we expect a high ini-
tial NLC to be associated with high test error. In figure 4.9 we also plot the test error attained
by our 2-layer sawtooth architectures when trained on waveform-noise. We use the same careful
training protocol as in study A (section /[3.6). The results are as expected. If the scaling
factor, and hence the NLC, is below a certain level, test error is low. If it is above that level, it is
close-to-random. Two aspects of our careful protocol are critical for obtaining this result. Learn-
ing rate tuning allows the pairing of small scaling factors with small learning rates that keep the
inputs to the activation function small. Using our augmented loss function, which normalizes the
network output before applying softmax+cross-entropy, is important to maintain close-to-optimal
performance with small scaling factors that also cause the network output to decrease in magnitude

(section [6.2)).

On the NLC and input covariance So far, we have compared the value of the NLC on practical
data shards and unit Gaussian input. While in both cases = has the same mean and variance, the
covariance matrix is not equal. Practical datasets tend to have sparse input spectra, whereas the unit
Gaussian only has unit eigenvalues. (Though of course, the spectra of our 10,000-point samples
are not nearly as uniform.) We found that nonetheless, in the initial state, the NLC values match
for fully-connected study A architectures.

While we do not have NLC values for our convolutional architectures on Gaussian input, we find
in section that not just the variance of the data, but the entire covariance structure matters
even in the initial state. This is expected, as convolutional nets are built to take advantage of the
covariance structure of images and similar types of data.

Summary We found that the NLC depends on the input distribution largely through its expec-
tation and covariance. An expectation of zero and unit covariance can be viewed as the default
setting. Hence, it is justified to view the NLC as a network property.
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Figure 4.11: Initial NLC across 100 different random seeds for 40 simple fully-connected architec-
tures. Green markers correspond to GUAs. The highest point of each interval indicates the largest
of the 100 NLCs and the lowest point of each interval indicates the smallest of the 100 NLCs. The
architectures are sorted on the x-axis by the width of the interval in log space. Conclusion: The
NLC does not vary much from one random initialization to the next.

4.4.3 The NLC is robust to random initialization

In the previous subsection, we showed that the NLC depends on practical data distributions largely
through their input expectation and covariance. In this section, we will further show that the NLC
in the initial state is largely a property of the architecture rather than the network, meaning that
the NLC does not vary significantly from one draw of the parameter initialization scheme to the
next. In figure [4.11] we depict this variation for 40 different fully-connected architectures, where
we vary activation function, normalization operation and whether the architecture is residual. Most
architectures use a depth of 51, though some use a lower depth, as indicated on the x-axis. Lower
depths are due to overflow caused by Gaussian instability or because the NLC was not computable
due to floating-point rounding error (see section 4.4.4). We always chose the depth as large as
possible while still avoiding those issues.
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We find that, indeed, the NLC does not vary much from one random initialization to the next,
except for GUAs. Hence, we can meaningfully refer to the NLC of an architecture in the initial
state on unit Gaussian input as the “NLC of the architecture”. Note that when generating the results
for figure 4. 11], we not only varied the value of the parameter, but all random choices controlled by
the random seed, including training / validation set split (the NLC was evaluated on the training

set), batch selection and random noise used in the estimator of the NLC as described in section
4.4.4

4.4.4 The NLC is simple and cheap to compute

As we have established the NLC as a predictive measure of architecture nonlinearity, we now turn
our attention towards its computability. We show the following.

e The NLC can be implemented in a few lines of code.

e The NLC can be estimated accurately even on small datasets via sample means and sample
standard deviations.

e The NLC requires little computation beyond standard forward propagation and backpropa-
gation of f. Further, the NLC can “piggyback” on the forward propagation that already takes
place during training and when computing error.

e The NLC does not suffer from floating-point rounding error as long as the network output
itself does not suffer from rounding error that exceeds its mathematical variation.

e The NLC can be trivially generalized to a network for which no gradient or directional
derivative is available, as long as a local linear approximation can be found for that network
that is suitable for gradient methods. (While we do not investigate this explicitly, we suspect
that our analysis fully applies even to those networks.)

e The NLC can be applied to networks with batch normalization without modifying the pro-
gram used to compute it, while maintaining mathematical and statistical consistency.

In this section, we discuss the computation of the NLC and surrounding issues both abstractly and

with regards to how they manifested in our empirical studies. This section is a follow-up to section

Computation via estimation The NLC, like a large fraction of metrics used in this work, is
defined in terms of an input distribution D. Of course, D is hypothetical. The only information we
have are the inputs in the dataset I, which is assumed to be an IID sample from D. Hence, we have
to compute the NLC using statistical estimation and a sample of the distribution. In our empirical
studies, we take our samples from one of the three main data shards - training set, validation set
and test set - or from a set of points drawn from the unit Gaussian as in section
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Estimating the numerator We present two different estimators for the numerator of the NLC,
which we call ‘backward estimator’ and ‘forward estimator’ respectively. Of course, these are
simply suggestions. There are many other options which we leave to the reader to explore.

Letting z, ' ~ D, we have

E, Tr(J (z)Cov,J (z)T)
= E,Tr(J(2)(By (2 — 1) (' — 7)) T (2)")
= E,0||J(z)(@ —2)"3
= Eowunon(wd (z)(@ —z)")

Backward estimation is a 2-step process utilizing the last line of the above derivation. In the
first step, it estimates & = [E,z via the sample mean. In the second step, it estimates the outer
expectation. We require a sample S of triplets (z, z’, u). The estimator is

|51

1S — 1E(x,x’,u)es(UJ(x)(x’ — )72

As usual, E applied to a finite set denotes the mean. The estimator uses a correction based on
the sample size as the difference between 2’ and the mean can be regarded as a variance. We use
backward estimation in our empirical studies.

Forward estimation utilizes the penultimate line of the above derivation. It also first estimates
via the sample mean. Then it estimates the outer expectation using a sample S of pairs (z,z’) as
below.

51

S 1Bl T @6 - )71

Computing and implementing the numerator x can simply be computed once for all networks
for a sample of inputs as it does not depend on f. Of course, oftentimes, data shards are processed
to have mean zero, which allows skipping this step entirely.

For backward estimation, for a given (z,2’,u) triplet, the value uJ(x) can be computed by
forward-propagating z, then backpropagating w as if it were the gradient of the loss function with
respect to the network output. Computing (uJ (z)(2’ — Z)1)? is then straightforward. This is in-
credibly convenient. Forward-propagating inputs and backpropagating gradients are already part
of the standard deep learning pipeline. All that needs to be added is the ability to backpropagate
Gaussian noise, which can be done in a few lines of code in most deep learning software frame-
works.

Evaluating (uJ (x)(2’ — z)T)? for batches of triplets at a time instead of individual triplets works
naturally. In our studies, we uniformly sample individual batches of = and x’ without replacement
one at a time from the data shard, as we do during training. Every batch is sampled independently.
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Effectively, we bootstrap the data shard except that a single batch cannot contain the same input
multiple times. For each pair of an = and 2’ batch, we draw a u batch of independent unit Gaussian
values.

For forward estimation, for a given (z, ') pair, the value J(z)(z’ — Z)? can be computed by
forward-propagating x, then forward-propagating ' — T as the gradient using forward-mode au-
tomatic differentiation. Forward estimation is slightly less noisy due to the absence of u. However,
we did not use it because we did not have access to forward-mode AD in our code, and because it
is not straightforward to generalize to the case where f contains batch normalization (see below).

Estimating the denominator Again, we will give two different estimators which we call ‘exact
estimator’ and ‘convenient estimator’.

‘We have

Tr(Covy)

doul*1
= ) Covylj,J]
=0

doul -1

— Z Co(f (@), £ ()[4])

doul -1

= > (Sef(@)]j])?

Jj=0

= [ISof ()3

As defined in section S denotes the standard deviation operator and C denotes the covari-
ance operator. Exact estimation simply replaces S on the last line above with the sample standard
deviation. This is also equivalent to replacing C above with the sample covariance. We always
use exact estimation in our studies, which we call “exact” because it exactly takes the standard
deviation over the sample.

Convenient estimation works explicitly on a batch-by-batch basis. It divides the sample into
batches and takes the sample standard deviation over each batch. The final value is then the mean
of squares of the estimates for each batch and component.

Computing and implementing the denominator For exact estimation, we recommend first
forward-propagating the sample in batches and accumulating the mean. Then, forward-propagate
the sample again. This time, after propagating each batch, subtract the previously computed sam-
ple mean from the output, which allows the direct accumulation of the mean of residual squares.
We use this method in our studies. It can be superior to computing the standard deviation in a
single pass by accumulating mean and mean of squares, as we detail below. We use the whole data
shard as the sample.
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For convenient estimation, it is possible to accumulate the residual sum of squares in a single pass
over the sample. This is why it is “convenient”. The flipside is that the random batching process
introduces some noise.

Floating-point rounding error When implemented correctly, the NLC does not suffer from
catastrophic floating-point rounding error, unless the network outputs are so close together that the
rounding error induced by the network evaluation exceeds their variation. Then, it is impossible
to compute their standard deviation without modifying the neural network implementation. Fortu-
nately, in our studies, as we suspect in most practical situations, these cases are easy to detect as
we simply have to check whether the output values vary at least somewhat more than the width of
the floating-point grid. One could argue that this “output collapse” is actually a case of the network
experiencing catastrophic rounding error, not the NLC.

It turns out that this collapse precisely corresponds to a severe case of output bias, a pathology
we investigate in section [6.4] and beyond. We will argue that this collapse is undesirable from a
performance standpoint.

At this point, we want to caution the reader against introducing catastrophic rounding error unnec-
essarily via a suboptimal implementation. Some pitfalls that apply to the NLC also apply to the
majority of other metrics we define in this work. For example, when summing a large number of
floating-point values, we have to ensure not to naively add these values one by one to a running
sum. If we assume these values are random, IID and their standard deviation does not greatly
exceed their absolute expectation, we suffer significant rounding error when summing more than
~ 10° values in 32-bit precision in this way.

Some pitfalls are specific to the NLC. When computing the denominator, the simple and naive
way would be to accumulate the mean as well as the mean of squares of the output during a
single pass over the sample, and then to subtract the square of the accumulated mean from the
accumulated mean of squares. It turns out that this incurs catastrophic rounding error when
ISf(x)]l2 < VellEf(x)]|2, where e denotes the relative floating-point grid spacing, i.e. around
1077 for 32-bit and 10716 for 64-bit. In other words, the naive method can only compute the stan-
dard deviation if the output varies in the first half of its significant digits. That is, in 32-bit, the
output has to vary in the first 4 significant digits. In 64-bit, it has to vary in the first 8 significant
digits. Using either of the two options for implementing the denominator that we recommended
above circumvents this issue.

Handling missing values In study A, there are four architectures for which we were unable to
compute an NLC in the initial state due to output collapse. However, we could easily estimate
that the true NLC value was close to 1 based on our analysis from section See section [8.5| for
further information on why output collapse is associated with a small NLC. Hence, whenever we
plot the NLC against a metric value that we were able to compute for study A architectures, we
impute an NLC value of 1 for those four architectures.

Estimator stability The NLC can be estimated from sample means and sample standard devi-
ations as described above. Both of these basic estimators are well-behaved and well-understood.
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They are accurate even when the sample size is small as long as the underlying distribution is not
too heavy-tailed. As we discover in sections [5.2| and Gaussian stability ensures that this is not
the case in the majority of our architectures. In e.g. sections d.4.2]and[5.3] we confirm the stability
of our NLC estimator empirically.

Sample independence It is possible to reuse inputs from the data shard during sample genera-
tion. During bootstrapping, the same input can be drawn multiple times. When generating (x, 2/, u)
or (z,z') tuples, an input can show up as x and z’ in different tuples, or even the same tuple. Fi-
nally, the same input can be used both when estimating the denominator and the numerator. All
these things occur in our studies. While this compromises sample independence, we think this is a
benign and negligible issue, especially relative to the issue of having access to a limited amount of
data to begin with.

Incorporating data augmentation There are two possibilities for interpreting the definition of
the NLC in the presence of data augmentation. First, we can consider the augmentation function to
be part of the network and absorb it into the Jacobian. Second, we can consider the augmentation
function to apply before the network and absorb it into the input distribution. This would mean
evaluating the NLC with respect to D¢, which is the input distribution that arises when drawing
from D and then applying (possibly random) data augmentation to the drawn input x. In general,
we don’t think that there is a significant difference between both choices. In our studies, we choose
the latter option as it allows us to not explicitly deal with non-deterministic networks. See section

B4LIl

Given an IID sample from D, applying data augmentation to each input independently yields an
IID sample from D*¢. Whenever we reuse a datapoint for estimation as described above in the
context of data augmentation, we re-apply the random augmentation function.

Computing the NLC while training Computing the NLC involves forward-propagating inputs
and backpropagating noise. Forward propagation of inputs is conducted naturally during training,
so it is possible to piggyback on this to further reduce the computational overhead of computing the
NLC throughout training. When accumulating moments for our estimators, we can use exponential
moving averages to obtain an “average of recent NLC values”. It is important to keep in mind
never to use these EMAs to compute moments over the current batch. For example, do not use the
moving average to compute the residual sum of squares over the outputs in the current batch as
part of an estimate of the output standard deviation. The convenient estimator for the denominator
requires only a single scalar EMA. The same is true for both estimators we recommended for the
numerator. Note that the training set may not be ideal for the NLC computation once training has
started, as it is no longer an independent sample of D relative to the parameter value. See section
4.4.2) for further discussion of this point.

Computing the NLC while computing error or loss It is even easier to integrate the NLC
computation with the computation of e.g. training loss or test error. Again, we can piggyback on
the forward propagation of inputs, and now we can use simple averages instead of EMAs.
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On computing the NLC without gradients In sections [2.6.1| and 4.2.1 we explained how to
extend the NLC even to networks for which no gradient is available. Non-differentiable networks,
such as quantized networks, generally come with a recipe for computing the gradient of a local
linear approximation of the network that can then be supplied to the training algorithm in lieu of
a gradient. Above, we showed how we can compute the NLC numerator by applying standard
backpropagation to the Gaussian noise vector u, rather than computing e.g. the Jacobian explicitly.
Hence, for a non-differentiable network, at the point where we backpropagate u, we can simply
substitute whatever method “comes with the network™ for computing the surrogate gradient. We
do not need to develop any additional algorithms.

4.4.4.1 The NLC under batch normalization

Generalizing the definition of the NLC If the network contains BN, it is no longer a function
mapping single inputs to single outputs. Hence, the definition of the NLC from section does
not directly apply. To generalize the definition, we use a trick we introduced in section [3.4.1.3]
Namely, we re-define f as a function of batches of inputs that returns batches of outputs. The
input distribution D*" is then over vectors of dimensionality |B|d;,, where | B| is the batch size
and each “segment” of dimensionality dj, is drawn independently from D. f then returns outputs
of dimensionality d;,|B|, which are obtained by forward-propagating each segment of the input
through f while taking batch moments across segments. For the remainder of this subsubsection,
let x and f be defined in this way and let u also be a unit Gaussian noise vector of dimensionality
dout| B|. Note that the network function then also depends on the batch size, and reasonably so.

Generating batch samples Generating samples of batches is straightforward. Given any 11D
sample from D, uniformly dividing that sample into batches of the proper size yields an IID sample
from D " In our studies, we generate samples of batches in the BN case in the exact same way as
we generate batches of samples in the BN-free case. Since we reuse inputs during estimation in the
way described above, our batches can overlap, though each one is sampled without replacement.
In the BN case, we do have to take care that we use the same batch size we use during training if
we are interested in capturing the network’s behavior during training exactly. In our studies, we
use a batch size of 250 for fully-connected networks and 128 for convolutional networks for all
network evaluations.

Generalizing the estimators of the numerator When generalizing estimators from the BN-free
case to the BN case, the following three criteria apply.

(i) When the generalized estimator is applied to a network without BN, it should return the same
value as the original estimator for any batch size.

(i) The program that is used for computing the original estimator should also be usable for the
generalized estimator so that little to no additional code is needed.

(ii1)) The generalized estimator should not have significantly less statistical power than the origi-
nal estimator.
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Both the forward and backward estimator of the numerator given above can be generalized naively
by letting S be a set of tuples of batches rather than a set of tuples of individual inputs. This works
seamlessly for the forward estimator in that all three criteria above are fulfilled. However, for the
backward estimator this naive approach fulfills none of the three criteria. Specifically, the reason
why the naive approach lacks statistical power is that obtaining a single value of (uJ (z)(z'—Z)T)?
for the sample mean would require propagating an entire batch instead of just propagating an
individual input as in the original backward estimator. We would like to take the sample mean
over a set of size |S||B| instead of just |S| so that the number of sample points relative to our
propagation effort remains the same as in the original estimator.

Luckily, this can be achieved as follows. As for the original estimator, we begin by estimating z
via the sample mean, which corresponds to | B| concatenated copies of its original value. Using r
as a shorthand for 2’ — Z, we have

E, Tr(J (x)Cov,J (z)")
= E, Tr(J(2)(Ex (2’ — 2)" (' — 7)) T (x)")

= E,» Tr(erro)
din,| B|,dout;| B|,din,| B|

= E,u > T [Pdowt + J, bdin + )7 [bdin + ]7[0 din + 7| T [pdou + J, V' din + 7]

i,b,7,p,i" ,b’=0
= Ex,:c/ Z j[pdout + j, bdin + Z.]"d[bdin + Z‘]T[bdin + Z‘/]\7[pdout + j: bdin + Z/]
1,b,7,p,1
= E:p,z/,u Z j[pdout + j7 bdin + Z.]7,[17din + Z.]"n[bdin + i/]j[pdout + j7 bdin + i/]u[pdout + j]z
1,b,7,p,8"
- Ea:,m’,u( Z j[pdout + ju bdin + i]r[bdin + i]r[bdin + il]j[p,dout + j/’ bdin + ll]
i,b,3,p,4',3'p’

ulpdow -+ jJulp'dow + 7))

= Ex,z/,u Z <( Z j[pdout + ja bdin + Z']7a[bdin + Z-]u[pdout + ]])
b 4,J,P
( Z j[p/dout + j,7 bd;n + i/]r[bdin + i’]u[p’dom + ]/]))
Z‘/7j/7p/
2
- Ex,x’,u Z <Z j[pdout + j, bdin + i]r[bdin + i]u[pdout + j])
b 07,P

= BIE s ST (@))lbdn + 1)(a" — )b +1])

)

The key insight here is that, because each segment of x is drawn independently from D, we have
Eprlbdi, + i|r[b'di, + '] = 0 when b # . Hence, we can eliminate this case from the sum above.
In the last line, we give b the uniform distribution over {0, .., | B| — 1}. The generalized backward
estimator then becomes
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7

Now, given a sample S of triplets (z, 2", u), we can average over |S||B| values by also varying b as
desired. And, we still only need to propagate | S| batches in total. Unfortunately, the |S|| B| values
cannot be considered independent draws from a distribution because groups of | B| values derive
from the same network evaluation. Because the cross-batch dependency is actually mild when | B|
is not too small, the generalized backward estimator still retains most of the statistical power of
the original backward estimator from the BN-free case, which yields criterion (iii). It turns out
that criteria (i) and (ii) are also fulfilled. The only minor difference between the generalized and
original estimator is that we now have an additional factor of | B|, which will, however, cancel out
with a similar factor that will pop up in the denominator.

Generalizing the estimator of the denominator As with the numerator, we can try to generalize
our estimators naively. This breaks down completely for the convenient estimator, because each
batch now only yields a single value for each output component. For the exact estimator, the
naively generalized version is statistically workable, though we would not have criteria (i) or (ii).
As before, we can obtain much better estimators by co-varying b and the sample point. We have

Tr(Covy)
dout*1 |B|71
= Z Z (Sxf(l')[bdout + ]])2
j=0  b=0
doutfl

= |B| Z (Szpf () [bdow + ]])2

To obtain the last expression, we use the fact that the marginal distribution of f(z)[bdey + j| is
independent of b. This last expression now gives us | B| values for the sample standard deviation
per batch as desired.

Taking the sample standard deviation over all (z, b) pairs yields the generalized exact estimator.
Criteria (i) and (i1) are fulfilled. Again, we recommend accumulating the mean in a first pass
over the sample and then the residual mean of squares in a second pass for maximum numerical
precision. As with the backward estimator of the numerator, the generalized exact estimator has a
tiny loss of statistical power as groups of | B| values for the standard deviation again originate from
the same network evaluation.

We obtain the generalized convenient estimator by taking sample standard deviations over the
groups of |B| values. Again, we have (i) and (ii). However, the loss of statistical power may be
more significant because each sample standard deviation is now based on only a single network
evaluation. Since we do not use the convenient estimator in our studies, we did not study this point
further.
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4.4.5 The NLC can (sometimes) be proxied by even simpler metrics

In the previous subsection, we found that the denominator of the NLC is simply the average vari-
ance of output neurons. Comparatively, the numerator is somewhat more complex. In this subsec-
tion, we find that, at least in the initial state of fully-connected networks, it is possible to proxy the
NLC with other metrics that have a simpler numerator. Conversely, for convolutional networks we
find it necessary to use the NLC itself.

One question that arises in this work is what we gain by studying nonlinearity over “gradient
vanishing / explosion”. In this subsection, we look at when the Jacobian-covariance product in the
NLC numerator can be accurately approximated by a ratio of loss gradients. See chapter [9] for a
detailed analysis.

It is enough to use a single batch of inputs at a time when estimating the numerator In the
previous subsection, we showed that the NLC numerator equals E, ./ 0,1 (0T (z) (2" — 2)T)2.
Obtaining a single value for the expression inside the expectation requires sampling two inputs x
and z’. When computing the NLC in our empirical studies, we sampled two batches of inputs, one
for x and one for 2, to obtain a single batch of values for the sample mean.

We suspected that it would be sufficient to instead sample a single batch of inputs and simply
shuffle it for the purpose of pairing up individual = and 2’ values. Of course, the probability of
pairing up an input with itself is at least |—é| in this case, so sample independence deteriorates. The
upshot is that the NLC computation can more easily piggyback on the training or error computation
as described in section 4.4.4] which generally only requests a single batch at a time from the data
loading component of the deep learning pipeline. We use N LC*"8* to refer to this slightly less

statistically sound way of computing the NLC.

In figure A-C), we plot the value of NLC*"¢* ys the NLC in the initial state for study A
architectures. We obtain a very close match, even for GUAs. This was possible because we made

sure that all random processes (batches, u vectors ...) used the same random number sequence for
both N LC*"g® and NLC.

One concern we had in this subsection, and throughout this work, was that some results only
hold because of special properties of the data distributions corresponding to our datasets. For this
reason, we investigated some properties of the NLC on a more diverse range of input distributions
by using the following trick. We designated a layer in the middle of the network, about halfway
between input and output, as a surrogate input layer. We propagated the data shard forward to
that layer and then computed the NLC on the remainder of the network by taking our sample
from those propagated values. In other words, if f; is the surrogate input layer, we computed
NLC(fr(f1), fi(D)). Informally, we say that we computed the NLC on the “second half” of the
network. Of course, the input distribution to the second half then depends on the first half of the
network, which drastically increases input distribution diversity. The layer at which the second
half begins is an addition layer for residual networks, thus ensuring that this layer is a bottleneck,
and a linear layer otherwise.

In figure —C, we plot N LC*"¢ vg the NLC in the initial state for the second half of study A
architectures. We find that the match is again near-perfect except for GUAs, where it is still decent.
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In figure 4.14A-C and 4.T5]A-C, we make the comparison in the final state. The approximation
deteriorates only slightly.

For fully-connected networks, we can decouple the Jacobian and input covariance The
“next level” of simplification is to decouple the Jacobian from the input covariance and approxi-
mate By o o) (0T (2) (2" = 2)7)* & F-Eouenon[ud (2)[3Es ||z — 23,

Metric definition 3.

NLCFROB(f,D) = \/ (E, Tr(J (2)7 ()")) Tr(Cov,) _ \/Eamxﬂrm(%va

din Tr(Covy) din Tr(Covy)

We compute E, |7 (2)]|3 = E, uno,n||uT (z)|]3 similarly to the backward estimator of the NLC
numerator in section 4.4l We compute the traces like we compute the NLC denominator in
section

In figures B.12D-F and 4.13D-F, we find that this approximation still works almost perfectly in
the initial state except for GUAs. In figure 4. 16|A-C, we find that this is not true for convolutional
networks from study B. This is somewhat expected as convolutional networks take advantage of the
covariance structure of images and similar types of data. Specifically, neighboring spatial locations
tend to be highly correlated. In section [4.4.2] we showed that, for fully-connected architectures,
the NLC was preserved when the input was replaced by unit Gaussian noise. Here, we show that
decoupling the covariance in the NLC does not work for convolutional networks, not even in the
initial state. Interestingly, we also find that NLCFROB > 1 does not hold.

After training, while the correlation between NLCFROB and the NLC is still substantial in many
cases, the approximation deteriorates significantly (figure d.14D-F @.15D-F, A.16E/G). This fol-
lows the general trend we outlined in section |4.4.2

For fully-connected networks, we can further replace the Jacobian with a ratio of gradients
To estimate metrics involving the Jacobian, we generally need to take additional computational
steps such as backpropagating Gaussian noise u, as described in section 4.4.4] If we do not want
to incur additional computational cost beyond backpropagating the gradient of the loss function,
which is necessary for training, we can make the following further approximation.

Metric definition 4.

dow(Ea||g0][3) Tr(Cova)
din(Ea]|g1[[3) Tr(Covy)

NLCGRAD(f,(,D) = \/

go = % is obtained from g; = % through multiplication with the Jacobian, so we can proxy the
magnitude of the Jacobian via its impact on the length of g;. If g; was unit Gaussian distributed,
this approximation would be exact and we would obtain gy = w7 (z), which is an expression that
we are by now familiar with.

Throughout figures {.12} .13 @.14] and [4.15] we find that the approximation obtained from NL-
CGRAD is nearly identical in quality to NLCFROB. A caveat is that we only consider a single loss
function.
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Figure 4.12: NLC vs simpler metrics / estimators for study A architectures in the initial state.
Green markers correspond to GUAs and are displayed in the foreground, as always. All correlation
values are close to 1. Conclusion: The NLC can be proxied by simpler metrics / estimators for
fully-connected architectures in the initial state.
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Figure 4.13: NLC vs simpler metrics / estimators for the second half of study A architectures in
the initial state. All correlation values are close to 1. Conclusion: The NLC can be proxied by
simpler metrics / estimators for the second half of fully-connected architectures in the initial state.
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Figure 4.14: NLC vs simpler metrics / estimators for study A architectures in the final state. Con-
clusion: The more we simplify, the more the approximation deteriorates.

172



(A) CIFARI0 - FC (B) MNIST (©) waveform-noise
correlation:‘l.OU, p-value:l.Ze‘—286 correlation:(‘].gg, p—value:fﬁ.[)e‘—lg’? correlation:‘l.OO, p-value:l.Be‘-215
=) & =)
E 1e2 - 18 12t 15 12} 1
< < =]
o g =l
o a o
o0 o0 o0
=] i =t
=i - = g
£ 10 / R ~ 2 1w ”
- e 4 < el # 4 + e -
5 e 5 # 5 /
= : = =
= = . =
Q QO Q
— — =
Z Z. Z.
le-2 ! ! le-2 ! ! le-2 ! !
le-2 ) 1e0 le2 le-2 . 1le0 le2 le-2 ) 1le0 le2
NLCs™mele after training (2nd half) NLCsmgle after training (2nd half) NLCsm8le after training (2nd half)
(D) CIFARI0 - FC (E) MNIST (F) waveform-noise
correlation:‘O.?Q, p-value=7.59‘,-44 correlation:‘O.SS, p-value=7.3@‘,-61 correlation:‘O.GS‘ p»value:S.le‘.»27
) ) )
E 1e2 b 1E 1e2 f 12 12} 1
b=l o el
IS =] el
o o Q)
o0 ) o0
g : 8 g
8 - = g
= le0 |- é’!”f‘:“ 1 & le0 1 £ 1e0 |- 1
g - 8 5
&= hat £
= < 5]
Q O @)
= = —
Z Z Z
le-2 . . le-2 . . le-2 . .
le-2 1e0 le2 le-2 1e0 le2 le-2 1le0 le2
NLCFROB after training (2nd half) NLCFROB after training (2nd half) NLCFROB after training (2nd half)
(G) CIFARI0 - FC (H) MNIST (1) waveform-noise
correlation:‘(},Sl, p-value:g.gé-48 correlation:‘oﬂl, p-value:2.6e‘-33 correlation:‘UJO. p»value:&gé»29
& =) =)
& le2 1E 12t 12 12} 1
< < <
g g g
Ll a QU
) o) o0
g i g
= .o = g
8 "o g £ E
L . e 4 & L g 4 B L 4
o e J,a*w S le0 . ‘;ﬁ;i‘ﬁ o0
5 = b =
< < Bl <
Q O Q
= — —
Z. Z Z
le-2 ! ! le-2 ! le-2
le-2 1le0 le2 le-2 1le0 le2 le-2 1e0 le2
NLCGRAD after training (2nd half) NLCGRAD after training (2nd half) NLCGRAD after training (2nd half)

Figure 4.15: The NLC vs simpler metrics / estimators for the second half of study A architectures
in the final state. Conclusion: Simplifying the estimator works well, but simplifying the metric
leads to significant deterioration.
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Figure 4.16: The NLC vs simpler metrics for study B architectures. Conclusion: The simpler
metrics are insufficient approximations, especially considering the lower bound of 1 no longer

holds in the initial state.
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4.4.6 The NLC is related to the size of linearly approximable regions

We began this chapter with a discussion of nonlinearity. We established the NLC as a measure of
nonlinearity through its relationship with NL1D, theoretical results and an eye test. In this subsec-
tion and the next, we uncover yet more ways in which the NLC measures network nonlinearity.
Thus, we further establish the NLC as a meaningful and deep metric, in the vein of utility criterion
In this subsection, we show that the NLC is closely related to the size of linearly approximable
regions of a network in input space.

As mentioned in section a key property of linear functions F' : R — Réw i that the

‘gradient-based local linear approximation’ (GLLA) F'(x) + (x' — X)dFd—;X)T taken at any y € R
is equal to F'(y’) everywhere. To the degree to which this is true for an arbitrary differentiable
function £, we can say it is more or less nonlinear. This makes sense especially in the context of
neural networks trained with gradient methods. They rely on the fact that an accurate local linear
approximation around the parameter value is available. The findings of this subsection might also

be valuable for understanding the network training process.

To develop a metric to capture the property of “local linear approximability”, like in section 4.2, we
first turn to the case of a function F' with a bounded domain. Let us also assume that this domain
is convex. Consider some Y in that domain and some Xpoung ON the boundary of that domain. Then
we can say that the greater the fraction of the distance from x to Xpouna the GLLA at y remains
accurate, the more linearly approximable F' is at x in the direction of Ypouna- We can measure this
accuracy in terms of whether the GLLA remains within some tolerance of /' when projected onto
a certain direction in output space. Formally, given some tolerance 7" and (row) vector do, € R,
we can measure the local linear approximablity of F* with respect to (X, Xbound; Oout, I') Via the
largest C' < 1 such that for all ¢ < C we have

¢ dF(x)

f(sout W

F(x)

d
(Xbound - X)T S 5out(F(X + C(Xbound - X)) - F(X))T S CTdoutW(Xbound - X)T

In order to turn this into a practical metric for neural networks, we have to (i) replace the bounded,
convex domain with the input distribution D and (ii) eliminate the need to manually specify Y,
Xbound aNd doye. Just as with the NLC, we will draw the input from D and model the domain as a

Gaussian with covariance Cov,. Specifically, we draw Xpouna — X from U COV;% , where U is the
uniform distribution over vectors of dimensionality d;, and length \/di,. This distribution has the
same covariance as D. It can be viewed as the uniform distribution over “l1-standard deviation
offsets in D”, or as the uniform distribution over radii of D. Finally, (i) we draw d,, from the unit
Gaussian N (0, I, ), (i) we consider batches instead of individual inputs and (iii) we invert the
value of C' to arrive at the metric below.

Metric definition 5. The ‘gradient-based local linear approximability distribution’ (GLLAD) of a
network f with respect to D, tolerance 7" and batch size | B| is the distribution over C', where C' is
the smallest value greater or equal to 1 such that for all ¢ < % we have

|B| |B] |B]

= 30T @50 < 3SR + ) = fEONT < e dnT (@ )a)”
b=1 b=1 b=1
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Figure 4.17: GLLAD for 15 simple fully-connected architectures of depth 51 (unless otherwise
specified) in their initial state on CIFAR10 (top row) and unit Gaussian input (bottom row). For
each architecture, the lower curve denotes the 5th percentile over 100 random seeds. The middle
curve denotes the mean over those seeds. The upper curve denotes the 95th percentile. The density
is defined over the base 10 logarithm. We set 7' = 2. |B| = 250 as always for fully-connected
architectures. Note that we could not compute the density in the region greater 10°, due to limita-
tions associated with floating-point computation. Conclusion: All distributions are well-behaved
and can be summarized by e.g. their median. They are also relatively robust to random seed
change. Both CIFAR10 and Gaussian inputs yield the same results.

The distribution over C' is induced by z® ~ D, 51(:) ~ UCovZ and 6) ~ N (0, I4,, ), drawn
independently for 1 < b < |B|. U is the uniform distribution over vectors of dimensionality dj,

and length \/d;,.

Linear networks achieve C' = 1 with probability 1. In general, C' > 1. Note that C' = 1 can
hold for nonlinear networks, even with probability 1. We define GLLAD over batches instead of
individual inputs so we can easily generalize it to networks with batch normalization. We invert
the value of C' so that larger C' corresponds to larger nonlinearity, just as with the NLC. Note that
GLLAD effectively measures the radius of linearly approximable regions relative to the radius of
the domain, not the volume of linearly approximable regions relative to the volume of the domain.
Informally speaking, the number of linearly approximable regions required to cover the domain
behaves as GLLAD%,

To build an understanding of GLLAD, we plot it for 15 simple fully-connected architectures in
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the initial state on CIFAR10 in figure @.17(A-C). For each architecture, we consider 100 different
random seeds. Random seed controls the parameter value and other things specified in section
3.3l We plot the mean, the 5th percentile and the 95th percentile of the 100 distributions in log
space. We find that all distributions are well-behaved and have a clear, single peak that is relatively
consistent as the random seed changes. This is true even for architectures ‘square’ and ‘square-
BN-ResNet’, which are GUAs. Therefore, we summarize the GLLAD with a single value, its
median.

Metric definition 6. The ‘median gradient-based local linear approximability’ (MGLLA) is the
median of the GLLAD defined above, i.e. qu,) 5O 50 GLLAD.

out for 1<b<|B]|

In figure D-F), we plot GLLAD for the same architectures as in (A-C), but evaluated on unit
Gaussian input analogously to sections and figure The plots are near-identical to (A-C),
even for GUAs. Again, nonlinearity proves robust to changes in input distribution.

NLC vs MGLLA: empirical relationship Now we are ready to investigate whether the NLC is
a measurement of nonlinearity by way of measuring local linear approximability. In figure
we plot the NLC vs MGLLA for all study A architectures in the initial and final state. We find
that both values are highly correlated, especially in the initial state. In the initial state, there are
no outliers, not even GUAs. The NLC somewhat underestimates MGLLA, especially in the final
State.

NLC vs MGLLA: intuitive connection In figure 4.19] we
illustrate the intuitive connection between NLC and GLLA with
a simple 1D example, similarly to section Assume F'is a
sine curve, depicted in blue. s; and s are two scalars. We plot
the location of (s1, F'(s1)) in red and the location of (sy, F'(s2))
in olive. The thick red and olive lines correspond to the GLLA
of F' at s; and sy respectively, which is simply the tangent line
of the blue curve. The shaded olive and red regions correspond
to the intervals in which the tangent falls inside the codomain,
which is defined to be the set of values taken by F' over the
domain.

Codomain

Domain

It is easy to check that the proportion of the domain covered by
the red_lnterval and ol{ve '1nter.va1 is 7 (5|1°)°‘|‘ gomy @0d 77 (8|2C)°‘|| doml  Figure 4.19: 1d pictorial illustra-
respectively. The key insight is that both tangents can only be ;' ¢ the connection between
close to /' while they remain inside the codomain, and there- Ny c and MGLLA.

fore within their respective shaded area. This is evidently true

in both cases, as both tangent lines quickly move away from F' outside the shaded region. In
the case of s9, this bound is also tight as the tangent tracks [’ closely everywhere in the olive re-
gion. However, in the case of sy, the bound is loose, as the red line completely decouples from

throughout a large part of the red region.

|co|
|F'(s)||dom|

So, we can view as an upper bound on gradient-based local linear approximability, so we
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Figure 4.18: NLC vs MGLLA for study A architectures. We set 7' = 2. Only architectures for
which MGLLA < 10° are depicted, due to limitations associated with floating-point computation.
Conclusion: Both metrics are highly associated, especially in the initial state.

\/ ’(s)2|dom . ..
VESE P Idom] oo lower bound on MGLLA. But we can view the NLC as a generalization

|cof

+/EsF'(s)2|d .. ) ) )
of % to multi-dimensional networks, where I’ becomes the Jacobian, the diameter

of the domain is measured by 2,/ Tr(Cov,) and the diameter of the codomain is measured by

24/Tr(Covy). This is the exact same generalization process as in section In summary, we
would expect the NLC to be a tight lower bound of MGLLA, and this is exactly what we find in

figure

From the perspective of training neural networks, it is interesting that we found such a close match
between MGLLA and NLC. This implies that GLLAs of practical neural networks are close to the
true value of f as long as the value of the GLLA remains inside the range of values taken by f. So
GLLAs of practical networks tend to behave like the olive tangent in figure 4.19] and not like the
red tangent. If a similar property holds for the GLLA around the parameter, then a single gradient
update can shift the network output to a desired value for a given input = without the update having
to cross the boundary of the approximable region. This seems to be a highly valuable property for
the purpose of trainability that we believe warrants further investigation.

can view
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Computing MGLLA We could not (fully) compute GLLAD / MGLLA for some architectures,
such as square-BN in figure4.17} Computing these metrics is challenging in general. To obtain the
approximate value of C' for some batch of triplets (x, d;,, dout), We need to start with an infinitesimal
value of c, verify that the GLLA is accurate, and then gradually increase ¢ while retesting the GLLA
until it is no longer accurate. This causes a dilemma. If the first tested value of c¢ is too large, it
will already exceed %, and the first test will fail. Conversely, if the first value of ¢ is too small,
then we may experience catastrophic rounding error during forward propagation. In section4.4.4]
we explained how we couldn’t compute the NLC when network outputs were indistinguishable
because of rounding error. When inputs to a network are only a tiny distance apart, that problem
is correspondingly exacerbated.

We determined that, by using 64-bit precision, we were able to compute values of C' as long as
they were at most 10°. Hence, both figures and are cut off at GLLAD = 10° and
MGLLA = 10° respectively. We see no reasons why the patterns we detect should not hold for
more nonlinear networks.

Another challenge for computing MGLLA is that we need to compute the full Cov, matrix, instead
of just its trace like in the NLC. This is both computationally more expensive and statistically more
uncertain, as it is not clear how the estimation errors that occur for each entry of Cov, compound in
the context of the MGLLA metric. This challenge applies to several other metrics defined later that
also require Cov,. Cov, is estimated via elementwise sample covariance as described in section

We considered investigating the MGLLA metric as our primary metric and base this work on
MGLLA instead of NLC. We even developed a mean field theory of MGLLA. The deciding factors
were that the NLC is much more computable and takes a much simpler form.

4.4.7 The NLC is related to L2 linear approximation error and underfitting

In the previous subsection, we showed a strong relationship between the NLC and local linear
approximability. In this subsection, we show a relationship between the NLC and global linear
approximability in an L2 sense. We do this via two theorems that we illustrate using our activation
functions. We also begin explaining why the NLC is related to test error, by connecting the NLC
to underfitting.

We begin by introducing a simple decomposition of a network f.

Definition 5. Denote the least squares linear fit to f under some input distribution D by x A, + by.

e The ‘linear component’ of f is (v — Z)A;.
e The ‘constant component’ of f is by + TAy.
e The ‘nonlinear component’ of f is f = f — rAy — by.
e The ‘nonlinear basis’ of f is .
f
Ellf112
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Metric definition 7. Let Ay, b; and f be defined as above.

e The ‘linear approximation ratio’ (LAR) is

El|(z — 2) A3
E|I113

LAR(f,D) =

e The ‘constant approximation ratio’ (CAR) is

[Iby + A3
CAR(f,D) = ——-"=
E[|f113
e The ‘nonlinear approximation ratio’ (NAR) is
E||f|[3
NAR(f,D) =
E[l113

Based on assumption [3| we have E||f||2 = Tr(Cov;) + ||[Ef||? > 0. The name ‘nonlinear basis’
expresses that ((z — z)Ay, by + Ay, f ) is a decomposition of f into three functions which can
be viewed as a basis in function space. The three functions are orthogonal and thus we have
CAR + LAR + NAR = 1. Further, the nonlinear component is orthogonal to arbitrary linear
functions.

Proposition 6. We have
1. EFTf = 0and EF fT = 0 for any linear function F : R — Rdou

2. E((x —2)Ap) T =0,E(by + 2Ap) [T =0and E((x — ) Af)(by + zA;)T =0

3. LAR + CAR + NAR =1

NLC( 1, D) is valid as long as f is not linear.

Proposition 7. Assume there exists an open set S where D has a continuous, positive density
function and f is not linear on S. Then Tr(Covj) > 0.

Now we can state the two key theorems of this subsection.

Theorem 2. Let D be Gaussian and let the linear component of f be the zero function. Then we
have

NLC(f,D) > V2
Theorem 3. Let D be Gaussian and assume f is not linear. Then we have

,  LAR NAR

NLO(f.D)? =
CUD) = NARTLAR W NAR+LAR

NLC(f,D)?
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These theorems significantly extend theorem [I| which originally motivated the NLC as a nonlin-
earity measure. Again, we assume that D is Gaussian. Theorem [2| states that networks that do
not have a linear component have their NLC bounded away from 1, at V2. Theorem [3| states
that the square NLC of a network that has a nonlinear component is the weighted average of the
square NLC of the nonlinear component, which is N LC'( f , D)2, and the square NLC of the linear
component, which is 1. Each squared NLC is weighted by the relative power of the respective
component. In other words, the square NLC of a network is proportional to the L2 error incurred
when approximating that function with a linear function, relative to the overall magnitude of the
function. This is yet another avenue for connecting NLC and nonlinearity. Note that the presence
and power of the constant component is irrelevant for theorem 3]

Finally, we can connect both theorems with the observation that N LC( 1 D) > /2 because the
linear component of f is the zero function.

Proposition 8. Let vA; + by be the least squares linear fit to f. Then A j=0andb; =0.

Another important consequence of these theorems is that they provide a first explanation for the
NLC:s relationship to test error. In the initial state, when the NLC of an architecture on the dataset
mirrors the NLC on Gaussian input, an NLC close to 1 implies that the network is close to a linear
function in an L2 sense. Hence, if a linear model underfits on a given dataset, the network is likely
to underfit as well. This is what we find in figure #.4C. While it is possible for the properties of a
network to change during training, relying on such a change might not be desirable. We investigate
the change of the NLC during training in e.g. sections and[5.3]

It is difficult to compute LAR, CAR and NAR on practical networks with respect to practical input
distributions. Therefore, we restrict our empirical investigation in this section to activation func-
tions and AV/(0, 1). The properties of this function-distribution pair will be important, especially in
chapters [5|and |7, The standard formula for the least squares linear fit yields A, = E, x0,1)s7(5)
and b, = E,n0,1)7(s), where both A, and b, are scalars.

In table 4.3] we give a range of metric values. It is easy to check that theorems 2] and [3] as well as
the last statement of proposition|[6] hold for all activation functions. There are a significant number
of activation functions that do not have a constant and / or linear component. Also, some activation
functions have very small nonlinear components, such as sigmoid, SeLLU and softplus, and are very
close to a linear function in an L2 sense. Ranking activation functions by their NLC is comparable
to ranking them by their NAR, which shows that the presence of linear components significantly
dictates the NLC. When the linear component is removed, the NLC ranking changes drastically.
For example, the least possible N LC(f), v/2, is achieved by the square activation function, which
does not have a small NLC. ReLLU and abs. val. have the same nonlinear basis. Softplus, Swish

and square have similar nonlinear bases, which is exemplified by their similar N LC( f) values.
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Act. fun. ReLLU SELU softplus Swish abs. val. tanh
Formula max(s, 0) T log(1+€e7) T |s] tanh(s)

4 4 4 4 4 4

2 2 2 2 2 2
Illustration © 0 0 0 0 o

-2 -2 -2 -2 2 -2

-4 -4 -4 -4 -4 -4

42024 42024 42024 42024 42024 -4-202 4

4 4 4 4 4 4

2 2 2 2 2 2
Nonlinear \/ 0 V ] \/ o \/ o \/ S
basis 2 2 2 2 2 2

-4 -4 -4 -4 -4 -4

42024 420024 42024 42024 42024 -420 24
LAR 0.5 0.971 0.271 0.703 0.930
CAR 0.318 0.000 0.705 0.120 0.637 0
NAR 0.182 0.029 0.023 0.177 0.363 0.070
NLC 1.211 1.035 1.039 1.101 1.659 1.085
NLC(f) 1.659 1.855 1.420 1.433 1.659 1.886
Act. fun. sigmoid even tanh Gaussian  odd square square sawtooth

52

Formula H% | tanh(s)| \/%76_7 s |s] s I

4 4 4 4 4 4

2 2 2 2 2 \/ 2
Mlustration 0~ | O O 0 0 O

-2 -2 -2 -2 -2 -2

-4 -4 -4 -4 -4 -4

4 2024 420024 42024 42024 42024 42024

4 4 4 4 4 4

. 2 2 2 2 2 2

Nonlinear OY 0/\ 0 o \/ OW/V\/\/V\I
basis -2 -2 -2 -2 -2 -2

-4 -4 -4 -4 -4 -4

42024 420024 42024 42024 42024 -4202 4
LAR 0.146 0 0.849
CAR 0.852 0.784 0.866 0 0.333 0
NAR 0.002 0.216 0.134 0.151 0.667 1
NLC 1.017 2.335 1.577 1.155 1.414 6.928
NLC(f) 1.767 2.335 1.577 1.790 1.414 6.928

115501.0507s + 15<01.75814(e® — 1)
iIr(s)=s—|s]ifs—[s] <0.25;7(s) =s— |s] —1lifs— |[s] > 0.75;7(s) = 0.5 — s + |s] else

Table 4.3: Activation functions with key metrics computed on unit Gaussian input. Conclusion:
Theorems [2]and [3] as well as proposition [6] hold.
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Figure 4.20: NLC vs MES for study A architectures after training error minimization. We set
T = 1.05. Only architectures for which M ES < 10° are depicted, due to limitations associated
with floating-point computation. Conclusion: The NLC predicts the influence of input noise on
error.

4.4.8 The NLC is related to noise sensitivity and overfitting

In the last subsection, we began the project of explaining the relationship between NLC and per-
formance, and we did so in terms of underfitting. In this subsection, we continue the project by
relating NLC and overfitting, and specifically by relating the NLC and the sensitivity of the net-
work output to input perturbation. We show that when test inputs are too far away from training
inputs of the same class relative to the NLC, networks fail to generalize.

We begin by giving a simple proposition that explicates the relationship between NLC, input noise
and output change.

Proposition 9. Let 6;, ~ N (0, Cov,) and 6y ~ N (0, Covy) be row vectors. Assume NLC > 0.
Then

6in
NLC

Ooul[3

T (@)"[[3 = Es,,

z :51')1

Informally, the NLC measures what fraction of the domain of f we need to traverse in a random
direction in order to traverse the codomain of f, assuming the input is propagated forward through
the gradient-based local linear approximation (GLLA) given by 7 (x). The NLC measures the
required magnitude of random noise relative to the variation of the input that is capable of sig-
nificantly corrupting the network output. The assumption that the input is propagated through the
GLLA is justified by section |4.4.6, where we showed that the GLLA tends to be accurate through-
out a large fraction of the codomain.

The magnitude of noise relative to the variation of the input, or to the variation of the value of
intermediate layers, shows up all over the place in deep learning. The field of adversarial examples
studies imperceptible noise [Szegedy et al., 2014, Mor et al., 2020, Balunovic and Vechev, 2020,
Salman et al.,|2020], which implies that the magnitude of the noise is small relative to the magni-
tude of the input. Specifically, it studies noise that can, in the context of classification, flip the class
prediction. “Flipping the class prediction”, “traversing the codomain” and ““corrupting the output”

183



can be regarded as roughly equivalent. Having an output that is robust to noise is important for a
range of strategies such as batch normalization, dropout [Srivastava et al., |2014] and quantization
[Stock et al., 2020, Sun et al., 2020, Lin et al., 2020]. Each of these three strategies introduces
noise at intermediate layers that has a roughly constant magnitude relative to the variation of the
values at that layer, assuming that batch size / dropout rate / number of quantization buckets is
constant respectively. We further investigate the relationship of noise sensitivity and architecture
performance in the context of batch normalization and floating-point rounding error in section [6.5]

Based on this discussion, we can already see how an excessive NLC could be harmful to general-
ization. In the vast majority of practical datasets that are used for deep learning, a change to the
input that is very small relative to /Tr(Cov,) almost never affects the label. This is a fundamental
property of the true input-label function which we investigate further in section 4.5] For example,
flipping a single pixel in an image almost never changes the type of the object depicted. Of course,
the smaller the number of pixels in an image, the correspondingly smaller the number of pixels
that need to be changed to change the type. Flipping a single character in a text of many characters
almost never changes the sentiment of the text in the context of sentiment analysis. A function that
experiences a large relative output change in response to a small relative input change cannot be a
close match to the true input-label function.

We began our empirical investigation by verifying that input noise indeed corrupts network output,
as suggested by proposition [9] We did this by measuring the change in error while the inputs are
being perturbed.

Metric definition 8. The ‘noise-corrupted error’ (NCE) of a network f with respect to error func-
tion e, data distribution D and scalar noise weight w is

NCE(f,e,D,w) = Ey)ue(f(wu + (1 —w)x),y)

where u ~ N (0, Cov,.) independently of (z, y).

Of course, the value of NCE, like regular error, is only interesting after training. And, it is only
interesting when the regular error is better-than-random. Because of this, we computed NCE on
our CIFAR10 and waveform-noise architectures on the training set after they were (re-)trained to
minimize training error, because this is the context where even high-NLC architectures can achieve
low error, as shown in figuresd.4Jand[d.5] In figures and[4.22] we plot NCE vs NLC in the final
state. We find that there are two distinct regimes. For some architectures, adding noise weighted by
w massively increases the error to the point of random performance, while for other architectures
there is no change in error. For each value of w, we find that the transition point between both
regimes is around the point w = NLLC

We wanted to go further and investigate specifically at what noise level the error started to increase
significantly for each architecture. To develop a metric that captures this property, we follow a
similar strategy as with MGLLA in section Given some input = and offset in input space dy,,
we are interested in how large a scalar ¢ can be such that f still makes the correct prediction on the
entire line segment from x to x + ¢dy,.

Metric definition 9. The ‘median error sensitivity’ (MES) of f with respect to error function e,
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data distribution D, tolerance T" and batch size | B| is the median of the distribution over C, where
C' is the smallest value greater or equal to 1 such that

Bl

|B|
> max e(f(z® +cdl)),y®) <Y e(f(a®),y®)(1+1T)
b=1

<e< L
b—1 0<ce< &

1
The distribution over C'is induced by (z(®, y®) ~ D and 6" ~ £{Cov2, drawn independently for
1 < b < |B|. U is the uniform distribution over vectors of dimensionality d;, and length /d;,.

In figure we plot the NLC vs MES, again after training error minimization. We find a strong
association. Note that the same computational challenges apply to MES as apply to MGLLA, as
discussed at the end of section (4.4.6}

Figures [4.21] [4.22] and [4.20] provide strong evidence for the practical predictiveness of proposition
9 Under classification error, we can tolerate a change to the output that is a roughly a fixed fraction
of the codomain diameter before the correct class prediction on an input flips. The NLC accurately
predicts the magnitude of input noise necessary for this to occur. It is worth understanding just how
sensitive high-NLC networks are. If NLC = 1000, a relative input corruption of 0.1% is sufficient
to corrupt the output. If the inputs are e.g. images, a random change of 0.1% to the intensity of
each pixel is almost certainly imperceptible.

We now have a clear hypothesis for how the NLC predicts overfitting. If we view the offset between
an input in a training set and an input in the test set that is part of the same class as noise, then
the NLC must be small enough so that adding that noise vector to the training input does not flip
the class prediction. To verify this, we repeated our experiment with the NCE metric with a slight
change. Instead of letting v be a noise vector, we let it be the test input that is closest to the
respective training input by Euclidean distance. Then, evaluating NCE with w = 0 corresponds to
a stochastic version of training error, whereas NCE with w = 1 corresponds to a stochastic version
of test error. In figures[d.23|and 4.24] we find virtually the same pattern as in figures[4.21)and 4.22]
Switching from training inputs to interpolated inputs tends to cause no or a massive error increase,
where the NLC controls the transition between both regimes. There is a slight departure from the
previous figures in that the error increase appears slightly lower for a given value of w. This is
partially explained by the fact that the distance from training inputs to their closest test input is on
average only 65% of the distance to a Gaussian vector. Therefore, the same value of w corresponds
to a lower level of corruption. While it does appear that (as one would hope) networks generalize
better to test inputs than to Gaussian noise, it is clear that the NLC after training has to be close to
1 for better-than-random generalization. This is what we found in figure 4.3

In summary, networks with a large NLC overfit because the output is susceptible to relatively small
input changes. In section we further verify that the ideal NLC for a dataset is determined by
the distance between training and test inputs. In section[2.1] we explained that the common denom-
inator between almost all machine learning models is that they extrapolate from seen datapoints to
unseen datapoints by being continuous, i.e. assigning similar outputs to similar inputs. The NLC
is a measure of the degree to which this principle holds for a neural network. The particular brand
of continuity we study in this subsection, where the class assigned by the network does not change
on the line segment between inputs of the same actual class, is also the basis for the popular data

185



augmentation method mixup [Zhang et al.,|2018al], which feeds linear combinations of training set
inputs to the network during training.
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Figure 4.21: NLC vs NCE for study A CIFAR10 architectures after training error minimization.
The noise weight w is specified on the y-axis. The black line indicates where the NLC equals i
Architectures with final NLC greater 10® are not depicted to improve the visibility of low-NLC
architectures. However, they follow the same trends as other high-NLC architectures. Conclusion:

The NLC predicts the noise level at which the error increases.
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Figure 4.22: NLC vs NCE for study A waveform-noise architectures after training error minimiza-
tion. The figure and its conclusion are analogous to the previous figure.
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Figure 4.23: NLC vs a modified NCE where training set inputs are interpolated with their closest
test input, for study A CIFARI10 architectures after training error minimization. The noise weight
w is specified on the y-axis. The black line indicates where the NLC equals i Architectures with
final NLC greater 10® are not depicted to improve the visibility of low-NLC architectures. How-
ever, they follow the same trends as other high-NLC architectures. Conclusion: Generalization is
closely related to sensitivity to random noise, and that sensitivity is predicted by the NLC.
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Figure 4.24: NLC vs a modified NCE where training set inputs are interpolated with their closest
test input, for study A waveform-noise architectures after training error minimization. The figure
and its conclusion are analogous to the previous figure.
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4.4.9 The NLC is related to kernel methods and model complexity

In this subsection, we will further explain why the NLC is predictive of test error, via a relationship
between the NLC, model complexity and kernel methods. Neural architectures can be viewed as
kernel methods via mean field theory, specifically via the covariance kernel and neural tangent
kernel. The NLC can be viewed as a measure of the bandwidth of those kernels, and bandwidth is
a popular measure of model complexity in kernel methods.

Model complexity is one of the core concepts in machine learning and statistics. Like many popular
concepts we encounter in this work, it is not well-defined. We must view it through the lens
of popular measures such as VC dimension, Rademacher complexity and kernel bandwidth. We
can immediately relate these measures to the insights gained in the previous subsection. In the
context of classification, all of these measures depend on a model’s ability to assign nearby inputs
to different classes. We showed that the NLC predicts a neural network’s ability to do this.

In the machine learning field of kernel methods, predictions made by models f depend on the
‘kernel function’ K (z,z’) that measures the similarity of input pairs (x, z’). The larger the value
of K(z, '), the more the model believes the inputs x and 2’, and hence the corresponding outputs
f(z) and f(2'), should be similar. Large values of K across the dataset indicate that individual
inputs are considered similar to many other inputs. In that case, individual predictions are averages
of many labels in the dataset, leading to a function f that is relatively smooth, unresponsive to
input changes, and hence of “low complexity”, which can lead to underfitting. Conversely, small
values of K across the dataset indicate that individual inputs are considered similar to only a small
number of other inputs. In that case, individual predictions are averages of few labels in the dataset,
leading to a function f that is relatively erratic, highly responsive to input changes, and hence of
“high complexity”, which can lead to overfitting. The degree to which a kernel function assigns

large values to input pairs is called its ‘bandwidth’ h. This concept is defined more specifically in
: : llz—a]13
the common example of the Gaussian kernel function Kgyss(x, 2') = e & 2 Here, h controls

the Euclidean distance at which K still assigns non-negligible values to input pairs.

The major theoretical framework that connects neural networks to kernel methods is mean field
theory, which we cover in chapter [5| Mean field theory states (among other things) that, in the
limit as the width of architecture layers converges to infinity, (i) the initial state is equivalent to a
Gaussian process when the parameter is viewed as a random variable drawn from the initialization
scheme. The kernel of that GP is called the ‘covariance kernel’. For fully-connected architec-
tures with length-normalized inputs, it is a scalar function of the input co-mean, i.e. E;x[i]z'[i].
And (ii) the course of training is controlled by the neural tangent kernel (NTK). In the limit of
fully-connected architectures with length-normalized inputs, the NTK is also a scalar function of
The NLC has a key meaning in the context of both of those results. With regards to (i), the NLC is
the first-order approximation of the bandwidth of the covariance kernel. We will defer this result
to chapter [5] and specifically section when the necessary theoretical machinery has been

introduced. For now, we will focus on the relationship between the NLC and the NTK, which we
investigate empirically.
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Figure 4.25: NLC vs TTNTK for study A architectures in the initial state. Conclusion: The NLC is
related to the neural tangent kernel, and thus to kernel bandwidth and the surrounding conceptual

and theoretical machinery.

The NTK is defined to be the outer product of the parameter Jacobians j—j;, 1.e. we have

df(0,z) df(0,2")"
do do

This is a matrix of size dy, X do. It can be interpreted as follows. If we make
an update using SGD based on a batch consisting only of a single datapoint (z,y),
then the update will be —agL(Q,x,y)%, where « is the learning rate. Under the
gradient-based local linear approximation, the change to the loss value at (x,y) is then

_agL(ea Z, y)%%TgL<ev Z, y)T = _CYQL<0, Z, y)KNTK(xv xl)gL(ev Z, y)T9 and the Change
to the loss value at (', /) is —agr (0, z, y) Kntx (7, 2')g1(0, 2', y) . Therefore, if Kyrk(z, ) for
x # 2’ is large relative to Ktk (, x), then we would expect a gradient update based on (x,y) to
have a strong impact on the loss value at (2, %’). This implies a high bandwidth and is “low com-
plexity behavior”. Conversely, if Kntk(z,x’) for z # 2’ is small relative to Kyrk(z, x), then we
would expect a gradient update based on (x, y) to have a small impact on the loss value at (z',y').

This implies a low bandwidth and is “high complexity behavior”.

KNTK(% 13/) =

For the purpose of empirical investigation, as usual, we would like to define a scalar metric that
captures the property in question, i.e. the NTK, for a given network and dataset. We do this by
considering the gradient update obtained when the entire training set is used as the batch. Specif-
ically, we measure the impact of that update on the loss value of the entire test set, relative to the
impact on the loss value of the entire training set.

Metric definition 10. The ‘train-test neural tangent kernel’ (TTNTK) is

(E o) Doy LG (E 14 Dy LLEDD)T
TTNTK(f,0,, Dainy Diest) = ~— 220 Puin __do_ I P
E (c.5)¢ Doun PLEED ) (B 41 9o, D EDD )T

In figure we plot the NLC vs TTNTK in the initial state. We find that TTNTK is around 1
when the NLC is around 1. As the NLC increases, TTNTK decreases roughly proportionally with
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the log of the NLC until we have NLC' ~ 30, and then remains around 0. The two metrics are
strongly associated, though not linearly across the entire range of observed NLC values. Hence,
the correlation values depicted are a significant underestimation of the strength of the association.

Assuming the batch is the entire training set and the learning rate is sufficiently small, a small
TTNTK in the initial state implies that the first SGD update does not reduce the loss on the test
set significantly. Conversely, a TTNTK close to 1 indicates that the test loss reduction is similar to
the training loss reduction. Therefore, TTNTK is the first-order approximation of generalization
in the initial state. The relationship between TTNTK and NLC is thus another explanation for the
NLC predicting overfitting, and establishes a relationship between the NLC and bandwidth. We
find TTNTK to be a highly interesting metric that may deserve significant study in its own right.
TTNTK is similar to the OSGR metric from Liu et al.| [2020c]], which was developed independently.

Given the emergence of the NLC as a measure of model complexity, figures .4 and 4.5 take on a
new significance. There, we showed the successful training of architectures that have a very high
NLC in both initial and final state. To our knowledge, we are first to note the trainability of ultra-
high complexity neural architectures in general. For example, |Schoenholz et al.| [2017] and Xiao
et al.| [2018]] previously argued this was impossible. We discuss this point more in e.g. sections

[6.7,9.2.3]and [1.2.1.2]

4.4.10 The NLC is related to effective depth

The concept of effective depth was introduced in|Veit et al. [2016] and expanded upon in one of our
prior works [Philipp et al., 2018]]. The idea is that if a deep network function can be approximated
by a much shallower network, then we do not attain the benefits of having a deep network to begin
with, and we say the deep network has a low ‘effective depth’.

Philipp et al. [2018]] presents two methods for measuring effective depth. One method uses the
magnitude of gradients that flow through the parameter updates versus the initial parameter values,
and the other method uses the Taylor expansion of the network around the initial parameter value.
Here, we will not explain how those methods work. We will refer the reader to |Philipp et al.
[2018] for their definition and for an extended discussion of effective depth. We use the same
metric definitions and implementations as |Philipp et al. [2018]] to compute effective depth based on
gradients. We compute effective depth based on the Taylor expansion by considering the shallowest
network obtainable by replacing layers of the network successively with their first-order Taylor
expansion around the initial parameter value without corrupting the network output by more than
1%. The Taylor expansion is defined and implemented as in Philipp et al. [2018].

Effective depth is only interesting after training and when the error is better-than-random. Hence,
in figure we plot the NLC vs both measures of effective depth after training error minimiza-
tion, similar to section We find that whenever the NLC was greater than around 10* after
training, the effective depth of networks was always 1 or 2 for both measures for waveform-noise,
and more likely than not to be 1 or 2 for CIFAR10. Those networks can be approximated by net-
works where any directed path in the macro-layer graph has at most 2 macro-layers with trainable
parameters. Since we hope to train networks of significantly greater depth than 2 in practice, we
find that high-NLC architectures are generally unsuitable.
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Figure 4.26: NLC vs 2 measures of effective depth for study A architectures after training error
minimization. Each graph corresponds to one of two measures discussed in [Philipp et al.| [2018]].
Correlation values are not significant because of the non-linearity of the relationship of x- and y-
axis values. In graphs B/D, we omit architectures with NLC' > 10'° as floating-point rounding
error makes comparing the Taylor expansion with the original network impossible. Conclusion:
A high NLC usually implies a low effective depth, and hence a non-attainment of the benefits
associated with depth.

Philipp et al.| [2018] shows how the effective depth of a network is related to the magnitude of
the parameter updates during training relative to the magnitude of the initial parameter value, and
hence to the difference between initial and final parameter value. In section[6.6) we show that most
of our high-NLC architectures indeed require small parameter updates to train, and do not exhibit
large parameter changes. There, we also show that the few high-NLC architectures that did attain
a high effective depth were those that we found trainable with a large learning rate.

4.4.11 The NLC is decomposable into NLCs of individual layers

We finish section[d.4] with four properties that fall under the rubric of robustness, like the properties
of subsections4.4.2Jand[4.4.3] In the following subsections, we show the NLC is robust to changing
layer width, somewhat robust to training, and robust to adding a single additional layer to the
network. In this subsection, we show that, in the initial state, the NLC is robust to breaking
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the network down into its individual layers and computing the NLC on a layer-by-layer basis.
Assuming the network is composed of a single layer dependency chain, the NLC is the product of
layerwise NLCs.

Assume we have a network [ that is composed of a single layer dependency chain
fr(fo—1(..(fi(x))..)). Then we have

NLC(f,D)
_ (ETr(jL,UCOVfOJZO)>%
Tr(Covy,)
E Tr( jLOCOVijLO)>
E Tr(Jz,.Covy, I/1)

(

E Tr(J,Cov lel) 1

B (H f ))
(11

ETr(JL 1+1Covy, jL J+1

L ET (JL l+1$+1lCOsz\Z+1sz l+1)>
ETr(JL z+1COsz+1\7L 1+1)

The expression on the last line almost looks like N LC(f;11, fi(D)), except that the matrix inside
the trace in both the numerator and denominator is multiplied on each side by Jr, ;4. If we could
simply cancel out those matrices, we would indeed obtain that the NLC of the network is the
product of the NLC of each layer. We use the above derivation as a motivation to hypothesize that
the NLC of the network might be of similar value to the product of the NLCs of individual layers.

What about residual networks? There, we encounter addition layers of the form f; = fs(f,) +
fr(fa), where f; is the skip block and f, is the residual block as defined at the end of section2.4.2]
We can use the above derivation to motivate decomposing the NLC into the product of NLCs of
residual units and of NLCs of individual layers not contained in a residual unit. Beyond this, we
further want to decompose the NLC of each residual unit. We have

ETr(ﬂ,aCOVfQZ?;) 1
( Tr(Covy,) )
_ ( ETr(Joa + Jra)Covs, (Joa + Tra)") )é
(E(fr+ fs = o = )T + fs = fr = £5))

( E Tr(JsoCovy, I, + TraCovy, T, +

ETe((fy = fo)T(fo = o) + (e = f)T (s = fo) +
-+ T5aCovy, Tl + TraCovy, J1) )é

(f FT(fe = Jo) + (fs = F)7(fs = [5))

Both numerator and denominator contain the sum of four terms, two of which depend on both f,
and f;. We will now make the assumption that the expectation of these mixed terms is approx-
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imately 0. This assumption is based on the analysis from one of our prior works [Philipp et al.,
2018] and further justified by mean field theory in section The above formula then becomes

1
2

Tr(Covy,)

( Tr(Covy, )
Tr(Covy,) + Tr(Covy,)

(Covy,) + Tr(Covy,)

NLC(f,, fo(D))? + T NLC(f, fa(D))Q)

So the squared NLC of the residual unit becomes approximately equal to the weighted average of
the squared NLC of both blocks, where the weight of each block is proportional to the squared
radius of the codomain. Note that in some residual networks, the addition layer multiplies the skip
block and / or the residual block with an addition weight w, / w, before adding them together. In
that case, the squares of those weights are simply multiplied to the Tr(Covy) and Tr(Cov,.) terms
respectively in the above formula.

Based on all the above derivations, we define a metric to capture the decomposed NLC.

Metric definition 11. The ‘layerwise NLC’ (LNLC) of a network f with respect to the input
distribution D is as follows. If f is a single dependency chain of layers, then

LNLC(f,D) = ﬁ NLC(fisa(fr), (D))

If f contains residual units, we take the product over NLCs of residual units and layers not con-
tained in a residual unit. We then replace the NLC of a residual unit wy fs(f,) + w, f,(fa) by

w2 Tr(Covy,) w2 Tr(Covy, )
2 - NLC(fs, fo(D))? o - NLC(f, fo(D))?
\/ngr(COst)+w%Tr(C0Vfr) Olfa: folD)) T W2 Te(Covy.) + w2 Tr(Covy,) Cfr: Ja(P)

Finally, we replace the NLC(f, f.(D)) and the NLC(f., f.(D)) by the product of the NLCs of
the layers contained in them as above. We do not apply LNLC to networks that are not of the types
covered above.

In figure [4.27A-C, we plot NLC vs LNLC in the initial state for our study A architectures. We find
that for non-residual architectures that are not GUAs, depicted in black, the match is very close,
except for a small number of outliers. Those few outliers can attain an LNLC significantly less than
1. For residual architectures that are not GUAs, depicted in red, LNLC somewhat underestimates
the NLC. Of course, residual networks have a more complicated LNLC involving weighted sums.
Finally, GUAs, depicted in green as always, have a complete mismatch between both quantities. In
fact, figure does not tell the full story. Some GUAs have an LNLC of less than 1073, which
is not visible in the figure. In figure 4.27D-F, we plot the NLC vs LNLC on just the second half of
the network, i.e. we consider a layer halfway through the network as the surrogate input layer. We
previously did this in section for the purpose of validating on a wider range of (surrogate)
input distributions. We obtain the same findings.
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Our findings bolster our findings from section The NLC of an individual layer uses an input
distribution that can be very different from the network’s input distribution. The fact that this
variation does not impact decomposability is noteworthy.

In figure we plot NLC vs LNLC in the final state. We find that there is still an association
between both metrics, but it is significantly weaker than in the initial state. For waveform-noise, a
large number of architectures have an LNLC much less than 1. The degradation of the association
from initial to final state appears greater than in previous subsections.

Finally, we note that when computing LNLC, we do not compute the NLC of linear layers, but set
them to 1 according to proposition 3
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Figure 4.27: NLC vs LNLC for study A architectures in the initial state. Green markers correspond
to GUAs. Red markers correspond to residual architectures that are not GUAs. Note that in this
figure, GUAs are actually displayed in the background so that black and red markers that represent
outliers are visible. We omit correlation values due to the presence of extreme outliers. The top
row gives results from decomposing the NLC of the whole network. The bottom row gives results
from decomposing the second half of the network. There were also GUAs that exhibited LNLC
values of as low as 1072, They are not depicted in the graphs in order to improve visibility for
non-GUAs. Conclusion: The NLC of fully-connected networks can usually be decomposed into
the NLC of individual layers in the initial state, except for GUAs.
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Figure 4.28: NLC vs LNLC for study A architectures in the final state. Graphs are analogous
to the previous figure. Conclusion: There is only a weak association between the NLC and its
decomposition in the final state.
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Figure 4.29: Initial NLC for study A CIFAR 10 architectures vs equivalent architectures with
altered width. Correlation values are close to 1. Conclusion: The NLC is robust to width change.

4.4.12 The NLC is robust to width change

Changing layer widths does not impact the NLC significantly, as long as those layers do not become
unreasonably narrow. We compared the NLC of each of our CIFAR10 architectures from study A
in the initial state vs the NLC of corresponding architectures with different layer widths. In figure
M.29)A, we change the architecture width to 50. In figure #.29B, we change layer widths so that
the fully-connected layers oscillate in width between 50 and 500. In figure {.29[C, we change the
architecture width to 500. In all cases, we find the NLC was preserved almost perfectly, except for
GUA:s.

Of course, in all these cases, the width of the input and output layer remained constant, as dictated
by the dataset. In figure 4.29D-F, we evaluate the NLC only on the second half of the network, as
in section 4.4.5] The dimensionality of the surrogate input layer to the second half of the network
varies both between architectures and before vs after width change. We find that this does not alter
the strength of the association.

Two things are worth keeping in mind. First, altering width also changes initial weight variance as
dictated by LeCun initialization (section [2.4] section [3.3)). This is necessary for obtaining robust-
ness to width change. Second, changing width causes a random re-initialization of the weights, as
in section4.4.3] but does not impact any other processes controlled by the random seed.

200



A - (B / C waveform-noise
CIFARI10 - FC MNIST f i
T T T T T T T T T
1e10 L correlation=0.66, p-value=2.3e-26 i 1el0 - correlation=0.72, p-value=1.1e-35 i 1e10 - correlation=0.70, p-value=2.0e-28
£ £ £
2 2
et 1E e | 1E 15 | |
& = s
) 5 8
& E g
Q -t ) S @) et .
leo | At - 17 100 | gassdoL 17 qep | wtE 1
L L L L L L L L L
1e0 leb 1lel0 1e0 led lel0 1e0 led 1lel0
NLC before training (test set) NLC before training (test set) NLC before training (test set)
(D) CIFARI10 - FC, train-opt (E) waveform-noise, train-opt (F) CIFAR - Conv
T T T T T T T T T T
leld F correlation=0.95, p-value=1.1e-106 . | 1e10 | correlation=0.83, p-value=8.5e-53 1 =1e10 L correlation=0.64, p-value=7.6e-59 i
3 2 o
8 . 8 =
—1el0 - . 4= £
o0 50 N
g £ 15t 1.5 leb 1
£ g =
5 le5 |- 15 8
g : :
b
©) i S b . = .
Z WA = L 10 Lo
1e0 | 'f{.. ] 1e0 ,ﬁ‘ B E 1e0 L i.,\-:. o i
L L L L L L L L L L
1e0 leb lel0 lelb 1e0 leb lel0 1e0 leb lel0
NLC before training (test set) NLC before training (test set) NLC before training (training set)

Figure 4.30: Initial NLC vs final NLC for study A and B architectures. Conclusion: The initial
NLC is associated with the final NLC.

4.4.13 The initial NLC predicts the final NLC

In section 4.4.1] we showed that the NLC is associated with test error, both before and after train-
ing. In this section, we show that the NLC before training is also predictive of the NLC after
training. In figure 4.30] we plot both NLCs vs each other, for both study A and B architectures.
Throughout this chapter, we have evaluated NLCs on the training set before training and on the test
set after training, unless otherwise stated. To enable a direct comparison, we evaluated both NLCs
on the test set for fully-connected architectures, and we evaluated both NLCs on the training set
for convolutional architectures in this subsection. For study B, the initial NLC was not available
on the test set due to code base limitations. By our results in figure and [4.8] this should not be
a big issue.

We find that while the NLC decreases overall, there appears to be a linear relationship between the
logarithm of both quantities, with a slope of less than 1. Graphs D and E are especially interesting.
There, we plot the NLC before vs after training when the architectures were trained to minimize
training error. As we showed in figures [4.4] and 4.5] some architectures with high NLC achieved
a better-than-random training error. It turns out that those high-NLC architectures preserved their
NLC value almost exactly. This is in contrast with low-NLC architectures, which tend to experi-
ence a decrease. This points towards high-NLC architectures absorbing the information from the
training set differently, perhaps via what is termed “memorization” in the community (e.g. Zhang
et al. [2020a], Feldman and Zhang [2020]).
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We interpret these results in conjunction with the results in section4.4.1|as follows. When the NLC
is sufficiently small, then the architecture can learn to adopt a suitable NLC, which is close to 1, and
achieve better-than-random test error. However, only if the initial NLC is already ideal can a truly
optimal performance be reached. If the NLC is too large, the architecture can, if it is trainable,
memorize the training data but will only achieve a random test error. Further investigating the
evolution of the NLC during training is an interesting topic for future work.

There is one significant outlier to the trends described above. One waveform-noise architecture
that started with an NLC of around 10'° ended up with an NLC of around 10. In subsection m
we found this architecture to be the only architecture with a very large NLC that achieved a better-
than-random test error. This drastic change in NLC is what enabled this relatively low error. We
further investigated this architecture and found that the learning rate that led to this change led the
parameter update during the first iteration of training to be several orders of magnitude greater than
the initial parameter value. This immediately changed the fundamental properties of the network
function, including its nonlinearity. In general, large learning rates have the power to cause such
changes. Still, we found that it is necessary to start with a good NLC to attain optimal and reliable
performance. We further investigate the relationship between parameter and update magnitude and

NLC in e.g. sections[5.3.3]and [6.6]

4.4.14 The NLC is continuous from layer to layer

We end section [4.4] by demonstrating that the NLC changes gradually, and often with great reg-
ularity, from layer to layer as the Jacobian is backpropagated. That is, when we write a network
as a dependency chain fr.(fr—1(..(f1(x))..)), then NLC(fr(f1), fi(D)) changes smoothly as [ de-
creases from L to 0.

In figure@.31] we plot NLC(f1(f1), fi(D)) for 25 randomly selected non-GUA study A CIFAR10
architectures in the initial state. We place each linear layer, activation layer, normalization layer
and addition layer on the x-axis according to its distance from the output layer, measured in the
(possibly fractional) number of macro-layers. So, for example, if an architecture has A macro-
layers, then the value of the NLC of the output as a function of the normalization layer in macro-
layer M — 2 is plotted at x-coordinate 2.25, and the value of the NLC of the output as a function
of the linear layer in macro-layer M — 20 is plotted at x-coordinate 20.75, assuming M > 20.
The x-coordinate of all layers is ordered according to their ordering in the network. See section
B.1.1] Of course, if a given architecture has, say, no normalization layers, nothing is plotted for
those layers. The curves arise from connecting neighboring plotted points for each architecture. If
an architecture is residual, we omit all layers that are bypassed by skip connections as they are not
bottlenecks.

There are a number of interesting findings from figure|4.31| First, we confirm that the NLC changes
smoothly from layer to layer. We also find that the NLC increases from layer to layer. For most
architectures, that increase is linear from macro-layer to macro-layer in log space. Also, for many
architectures, there is a small jitter for every macro-layer. The jitter occurs because the change to
the NLC depends on the type of layer that is being newly included in the section of the network
on which the NLC is evaluated. While it is not directly apparent from figure we found that
whenever we include another activation layer, the NLC increases. Conversely, when we include

202



another normalization or linear layer, the NLC is stable. It turns out that including an additional
linear layer always preserves the NLC exactly, by proposition[5} (Note that the value of the estima-
tor of the NLC can and does still change slightly, due to estimation error.) Including an additional
bias layer also preserves the NLC, as well as preserving the estimator. (Therefore, in figure {.31]
we do not plot bias layers.) Note that we do not see jitters for residual architectures, because we
do not plot every layer.

These results are somewhat expected, given our results from section We found that the
NLC in the initial state could be replicated by the (sum-)product of layerwise NLCs. By theorem
and section4.4.2| we would expect those NLCs to be least 1. Hence, we would expect the curves
in figure 4.31]to approximately arise from successively multiplying values that are at least 1, up to
estimation error.

We make one final observation with regards to figure 4.31] While the curves increase roughly
linearly for a majority of architectures, they are bending upwards for others and stay close to the
y-coordinate of 1 for others. We explain those different behaviors in detail in chapter|[§]

In figure [4.32] we give the same NLC curves as before, but for 25 randomly selected non-GUA
waveform-noise architectures. Here, the curves appear somewhat less regular. Specifically, we find
that one curve dips below a value of 1. Several curves increase quickly at first but then become
flat. Some linearly increasing curves are also not perfectly regular.

We were interested in the cause behind the degradation of the patterns we found for CIFAR10. In
figure 4.33| we plot the same curves for the same architectures as in figure but we replace
D with the unit Gaussian, as done in e.g. section[4.4.2l While those curves are surprisingly even
less regular than those in figure 4.32] they still track those in figure 4.32] pretty closely. This
shows that the irregular behavior relative to figure [4.31]is not caused by the input distribution. We
replicated the curves from figure [4.31] with unit Gaussian input and found that they are an exact
match to figure So, CIFAR10 and waveform-noise architectures show different behavior,
even on the same inputs. Both groups of architectures were drawn from the same distribution
over architectures, with one exception. CIFAR10 architectures have d;, = 810 and d,,; = 10.
waveform-noise architectures have d;, = 40 and d,,; = 3. So it is their narrow input and / or
output layer that make waveform-noise architectures irregular in these experiments.

Mean field theory (chapter[5) relies on architectures having at least a moderate width. Here we have
an example where low width when exhibited by only two layers harms the regularity of networks.

In figure [4.34] we plot the same curves for 25 randomly selected non-GUA study B convolutional
architectures in the initial state. Compared to fully-connected architectures, while we still see
many of the same patterns, the regularity is degraded. The NLC dips significantly below zero for
some layers of 2 of the 25 architectures. We note that the number of channels in the convolutional
architectures we studied was considerably less than the width of layers in the fully-connected
architectures we studied, as is usually the case in practice. For this and further reasons explained
in section we would expect less regularity.

As usual, we find that the regularity further degrades when we look at the final state. In figure
4.35(top), we depict the architectures from figures and in their final state. While the

NLC is still relatively smooth from layer to layer, the curves are neither reliably linear nor reliably
increasing. Finally, in figure bottom), we depict GUAS in the initial state. Chaos reigns!
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1e3 CIFARI0 - FC, 25 randomly sampled, no GUAs
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Macro-layers from output

Figure 4.31: NLC(fL(f1), fi(D)) at different layers f; for 25 randomly selected study A CIFAR10
architectures that are not GUAs in the initial state. We plot the value for a layer f; if it is a fully-
connected layer, a normalization layer, an activation layer or an addition layer, unless that layer
is bypassed by a skip connection. All these layers are placed on the x-axis according to their
distance from the output layer, measured in the (possibly fractional) number of macro-layers. The
curves arise by connecting points corresponding to neighboring layers. Conclusion: The NLC
increases smoothly from layer to layer. Often, this change is linear in log space from macro-layer
to macro-layer. Often, there is a jitter for every macro-layer.
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le3 waveform-noise, 25 randomly sampled, no GUAs
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Figure 4.32: NLC(fL(fi), fi(D)) at different layers f; for 25 randomly selected study A
waveform-noise architectures that are not GUAs in the initial state. The graph is analogous to
figure .31} Conclusion: The NLC still changes smoothly from layer to layer, but the curves are

less regular than in figure [4.31] and not always increasing.
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Figure 4.33: NLC(f.(f)), fi(N(0,1))) at different layers f; for the same 25 architectures as in
figure B.32] in the initial state. The graph is analogous to figure 4.31] Conclusion: The curves
closely track those of figure .32}
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CIFARI0 - Conv, 25 randomly sampled, no GUAs
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Figure 4.34: NLC(fL(f1), fi(D)) at different layers f; for 25 randomly selected study B architec-
tures that are not GUAs in the initial state. We plot the value for layer f; if it is a linear layer, a
normalization layer, an activation layer, an addition layer or a pooling layer, unless that layer is
bypassed by a skip connection. All these layers are placed on the x-axis according to their distance
from the output layer, measured in the (possibly fractional) number of macro-layers. The curves
arise by connecting points corresponding to neighboring layers. Conclusion: The NLC changes
smoothly from layer to layer, but the curves are less regular than in figure 4.31]
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Figure 4.35: NLC(fr(f1), fi(D)) at different layers f; for architectures from figure in the
final state (top left); for architectures from figure [d.34]in the final state (top right); for 25 randomly
selected study A CIFAR10 GUAs in the initial state (bottom left); for 25 randomly selected study
B GUAs in the initial state (bottom right). Graphs are analogous to figure 4.31] for study A and
4.34] for study B. Conclusion: The patterns of previous figures degrade significantly in the final
state, and completely for GUAs.
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Dataset CIFARI10 MNIST waveform-noise

5 mean=0.97 5 mean=0.95 5 mean=0.82
median=1.04 median=1.02 median=1.09
4 mode=1.02 | 4 mode=1.01 | 4 mode=1.18
3 3 3
PNLCD
density 2 12 2
!
1 11 1 \‘
0 0 0
0 1 2 3 0 1 2 3 0 1 2 3

Table 4.4: PNLCD evaluated on the union of training and validation set for study A datasets. The
mode ignores the PN LC'D = 0 point. Conclusion: The true input-label functions of our datasets
appear to be only slightly nonlinear.

4.5 What is the best NLC for a dataset?

In subsection 4.4.1] we showed that the NLC in the initial state predicts test error. For all three
datasets we studied, architectures that attained close-to-optimal test error had an initial NLC be-
tween 1 and 5. In this section, we show that the optimal range is not universal across all datasets,
but argue that it should be highly similar for most practical datasets.

In sections[4.4.7,[4.4.8]and 4.4.9] we showed how the NLC is related to underfitting and overfitting.
If the output of the network f is too sensitive to input perturbation, then it cannot generalize from
training to test points that are a certain distance apart. Conversely, if the network is too close to
a linear function, its performance does not exceed that of a linear model. Overall, we suspect
that an ideal network has a degree of nonlinearity that matches the nonlinearity of the true input-
label function. So, to choose an optimal NLC to choose an optimal architecture, we would like to
estimate that nonlinearity. In this section, we give a very simple method for (crudely) doing so.

Consider two datapoints (z,y) and (z’,y’) drawn from D. We can estimate the fraction of the
domain that lies between the two inputs as 5 le=vl2_ and the fraction of the codomain that lies

Tr(Covy)
ly—y'll2
24/ Tr(Covy)
codomain with twice the trace, as in sections [4.2] and [4.4.6] In the case of classification, where
y represents a class label, we cast y as a ‘one-hot vector’, i.e. a vector of dimensionality equal
to the number of classes that has a 0 at each component except at the component corresponding
to the y’th class, where it has a 1. Therefore, for this pair of points. we can estimate the frac-

tion of the codomain traversed between them relative to the fraction of the domain traversed as
lly—y'[13 Tr(Cova)
[lz—a'||3 Tr(Covy) *

between the two outputs as . We proxy the diameter of the hypothetical domain and

Metric definition 12. The ‘pairwise nonlinearity coefficient distribution’ (PNLCD) is
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Hy yng IT(CO x) A
PNLCD(D) = wh x x ~D
( ) ||.CE ZEIH%TI'(CO y) ere( 7y)a( ay)

Here, 3 is cast as a one-hot vector in the case of classification.

PNLCD is similar to the NLC as Cov, is similar to Covy, and ”i’:g“i can be viewed as the
derivative along the line segment from (x,y) to (z’,y'). Note that we do not summarize PNLCD
as a scalar as it is not as well-behaved as we observed e.g. GLLAD to be in section In table
4.4l we depict PNLCD for our 3 datasets evaluated on the union of training and validation set. We

also give the expectation, median and mode. Note that the mode ignores the PN LC'D = ( point.

We find that each distribution has a singular peak at zero. This corresponds to pairs of datapoints
that have the same label. The remaining probability mass of PNLCD concentrates around 1, with
the median and mode being slightly larger than 1 in all cases. Therefore, according to PNLCD,
the input-label function appears to be only very slightly nonlinear. While this may seem surprising
at first glance, it is actually expected. If both z and y were drawn IID from high-dimensional unit
Gaussian distributions, PNLCD would concentrate around 1. In this idealized context, obtaining
even a single large sample value from PNLCD would require sampling a number of datapoint pairs
that is exponential in the number of dimensions. If anything, we would expect a practical input-
label function to appear more linear than Gaussian noise. Unless we have specific reason to believe
that there are clusters of inputs with varying labels that concentrate in regions of input space that
are small relative to the domain itself, then we should expect PNLCD to concentrate around 1.

Now we demonstrate that PNLCD predicts the ideal NLC for an architecture for a dataset. Unfor-
tunately, we are not familiar with any specific practical dataset with yields PNLCD samples that
include many large values, for the reasons given above. Hence, we need to study the relationship
between NLC and PNLCD on artificial datasets.

We generated artificial datasets as follows. We drew two 40-dimensional vectors from the unit
Gaussian distribution. Then we assigned each datapoint in the waveform-noise dataset to either
one of these two noise vectors at random. We replaced each input in the waveform-noise dataset
with the weighted average of itself and the assigned noise vector. This yielded a modified dataset.
Inputs that were assigned to different noise vectors cause Tr(Cov, ) to not become too small for the
modified dataset, whereas points assigned to the same noise vector cause some ||z — z'||3 values
to become very small. We generated 6 datasets in this way. We used the same 2 noise vectors for
each of them, but weighted those vectors differently when taking the average between them and
the waveform-noise inputs. If the weight associated with the noise vector was w, then each input
in the artificial dataset «’ was generated as ' = wv + (1 — w)z, where = was the corresponding
input from waveform-noise and v is the assigned noise vector. The labels remained the same.

In table[4.5] we give PNLCD for each of the artificial datasets. As expected, PNLCD sample values
corresponding to pairs of datapoints assigned to the same noise vector that also have different labels
increase proportionally with the noise weight. PNLCD sample values corresponding to pairs of
datapoints that are assigned to different noise vectors and have different labels remain around 1.
Note that we do not depict the peak at PN LC D = 0 corresponding to pairs with the same label
because the density is depicted in log scale.
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We then trained 19 depth-2 fully-connected sawtooth architectures with layer normalization on
each of the 6 datasets. We used the same careful protocol as in study A (section /3.6). In
each architecture, we dilated the sawtooth activation function 7(s) (table with a different fixed
constant, i.e. we replaced 7(s) with 7(ds) for some d between 1072 and 107. This has essentially
the same effect as scaling the inputs, which we did in section The larger the value of d,
the higher the frequency of the activation function, and the higher the NLC. In table we give
the initial NLC and test error attained by these architectures. As expected, the NLC is roughly
proportional to d and the ideal NLC for a dataset is roughly proportional to the expectation of
PNLCD. When the noise weight is 0.9, an architecture that is almost linear in the initial state
is still capable of adapting to the shortened distances between inputs. When the noise weight is
at 0.99 or higher, then those architectures always underfit drastically. We also note that the best
achieved test error is higher for noise weights 0.99 or above. We suspect that this is because these
noise weights force the architecture to effectively learn to make correct predictions on two different
datasets, one dataset per noise vector, with only half as much data available per dataset.

Two aspects of our careful training protocol are critical for obtaining the test error values of figure
4.5l Learning rate tuning allows the use of very small learning rates, which are required for high-
NLC architectures (section [6.6). 64-bit precision enables us to tease apart inputs that are very close
together and to use small parameter updates that stem from small learning rates (section|[6.5)).

In light of this section, let us revisit section @} There, we stated that we are interested in
developing ZSAD guidelines that are data-agnostic, i.e. that apply across a large class of datasets
that spans across task domains. Almost all of our empirical results from this chapter held for all 3
datasets, just not always to quite the same degree. In this section, we took a first significant step to-
wards identifying a class of datasets across which architectures may show consistent behavior and
a universal range of “good” NLC values, namely [1, 5]. These are datasets where inputs are some-
what evenly distributed across the domain, like Gaussian noise, and where PNLCD concentrates
around 1, at least for inputs with different labels. We extend this discussion in section

We end with a few remarks. It is worth keeping in mind that even though the output of a linear
function changes slowly when the input is perturbed with random noise, it can change extremely
quickly when the input perturbation is in the direction of the gradient. In fact, the sensitivity to
gradient perturbation scales with \/d;,. Hence, even a linear network is capable of representing
extremely quick change in some direction.

Another effect of high dimensionality is that even a network that is close to linear has an enormous
degree of freedom. Imagine that a network is defined over the unit cube of dimensionality d;, and
side length 1, and assume that the cube is partitioned (roughly!) into subcubes of side length 1 — ¢
on which the network has to be linear. Then because the total number of subcubes would be ﬁdi“,
the network would still have a number of degrees of freedom that is exponential in d;,! As long as
the parameter and input are high-dimensional enough, this may provide an explanation of why we

observe many networks with NLC very close to 1 still substantially outperform linear models.

One practical case of a dataset with inputs that are very non-uniform might be a dataset containing
adversarial inputs and “regular” inputs, where the label denotes whether the input was generated
via an adversarial perturbation (e.g. [Feinman et al. [2017]). These datasets might warrant further
study in the context of nonlinearity.
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Table 4.5: Metric values for 6 datasets generated from interpolating waveform-noise inputs with
2 Gaussian noise vectors. Top rows: PNLCD on the union of training and validation set. Bottom
rows: Initial NLC and test error of depth-2 fully-connected sawtooth-LLN architectures with dilated
activation functions. Note that PNLCD is zero for pairs of datapoints that share a label. We do
not depict this in our graphs as we use log scale. Note that the mode we give for PNLCD ignores
the peaks at PNLC'D = 0 and PNLCD = 1. Conclusion: The noise weight used to interpolate
waveform-noise inputs with the Gaussian noise vectors predicts the PNLCD peak above 1. The
location of the peak predicts the NLC that leads to minimal test error.
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Chapter 5

Mean field nonlinearity analysis

In chapter 4 we showed what properties the NLC has. In this chapter, we further explain why it
has those properties and why a given network has the NLC value that it has. We extend ‘mean field
theory’ to link an architecture’s initial NLC and other metric values to its definition in terms of the
layer graph. The highlight of this chapter is corollary [I6] which gives an embarrassingly simple
and instructive formula, which we term the ‘nonlinearity path equation’, for estimating and under-
standing an architecture’s initial NLC without any computation, for fully-connected architectures
like those in study A. Many of the properties that were shown empirically in chapter d] are trivially
explained by that formula. Another highlight is proposition [19] which shows the mean field limit
of the NLC is the first-order approximation of the bandwidth of the covariance kernel. This is the
most important of our results that establish the NLC as a primary measure of model complexity in
deep learning.

Mean field theory studies neural architectures in their randomly initialized state, as the width of
layers converges to infinity. In a nutshell, we specify architectures where the width of some or all
layers is undetermined. The definition of individual layers, along with the random initialization
scheme of their parameter sub-vectors, is then specified as a function of the width of that layer
as well as the widths of the dependencies of that layer. We can then consider the value of metrics
such as the NLC. For each layer width configuration, we obtain what is generally a distribution over
values for that metric induced by the parameter initialization scheme and / or input distribution.
The payoff comes when the layer widths jointly converge to infinity. For many important metrics,
their distribution will then converge almost surely to a deterministic value that only depends on the
architecture definition in an instructive manner. When those metrics are then computed on practical
architectures with fixed, finite layer widths, their values are often close to these theoretical values
obtained from the large-width limit.

Our core theoretical innovation is to extend mean field theory to cover not just distributions of
layer values, but meta-distributions, which are obtained by having input and parameter vary in
two hierarchical stages. Specifically, we show that the value of a fully-connected layer is meta-
Gaussian meta-distributed, i.e. the distribution of each neuron as induced by the data is Gaussian
and has a Gaussian random mean that is induced by the parameter initialization scheme. While
this does require stronger assumptions than previous results in mean field theory, we demonstrate
the approximate empirical validity of these assumptions and the empirical predictiveness of the
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resulting theory in painstaking detail. Another important contribution is that we document not just
the successes, but the failures of mean field theory. Empirical validation of mean field studies
is almost always conducted using well-behaved architectures using the tanh or ReLLU activation
function, or one of its derivatives such as hard tanh (e.g. [Poole et al. [2016], Xiao et al. [2018],
Lee et al.[[2020a]). In our opinion, this leads the generality of mean field theory to be somewhat
implicitly overstated. Failure analysis gives rise to the notion of ‘Gaussian stability’, which is as,
if not more, important to architecture performance than nonlinearity.

While mean field theory bolsters and explains the results we have presented so far, it also lays the
groundwork for results in later chapters. For example, it directly motivates nonlinearity normaliza-
tion in chapter [7] It enables the estimation of LBIAS (section [6.4]) from the architecture definition
along with the NLC. It helps explain the popularity of many architecture designs in chapter [§] It
facilitates the comparison of the NLC to prior work in chapter 9]

Chapter overview In section we give the most important prior results of mean field theory
as they apply to this work. Unfortunately, this section is quite dense as mean field theory relies
on many high-level abstractions. We attempt to minimize the number of direct references made
to this section throughout the rest of the chapter. In section [5.2] we extend mean field theory to
obtain the layer and output meta-distributions of an architecture in the infinite-width limit, which
leads to NLC estimates and is a valuable theoretical innovation in its own right. In section
we give a theorem that specifies a list of very simple rules for calculating the limit of metrics like
the NLC from only the layer operations and layer graph that define an architecture similar to those
used in study A (section [3.1.T)). In section[5.4] we dive deeper into how the activation functions
used in an architecture influence its mean field properties, which culminates in establishing the
NLC as a measure of the kernel bandwidth of neural networks. In section[5.5] we explain many of
the properties of the NLC that we demonstrated empirically in chapter ] with mean field theory.
In section[5.6] we document the phenomenon of Gaussian stability and discuss its implications for
many aspects of this work and deep learning in general. Finally, in section[5.7, we give an outlook
of how to extend our results to convolutional architectures and provide experimental evidence that
this is likely to work.

We give a more detailed overview of our mean field-related results, which roughly correspond to
the results in this chapter, in section|(1.2.3

We prove theoretical results from this chapter in chapter

Background from prior chapters We invite readers to review our core notation, terminology
and conventions given in section which will be used throughout this chapter. In some places
in this chapter, we deviate slightly from the standards laid out specifically in section [2.3.4] with
regards to neural architectures, but we always point out explicitly when this happens. We also
sometimes overload notation, but we try to limit this to individual sections.

We use the empirical studies laid out in chapter |3| for validation. We recommend reading at least
summary section before proceeding. Chapter []is largely not required as background, except
for motivating the continued study of the NLC.
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Technical considerations The only technical assumption we make implicitly throughout this
chapter is that all integrals implicit in the probabilistic operators we use (e.g. [E) are valid and
finite whenever we apply them. This is analogous to assumption [2] from section 4.2] See section
[2.6.2) for details. While we sometimes assume e.g. differentiability and positive denominators for
the purpose of discussion, we always make these kinds of assumptions explicit in the theoretical
results of this chapter.

Limitations The biggest shortcoming of this chapter is that our main theorem 5] propositions [16|
and and hence some of the discussion in later parts of this chapter, are technically restricted
to fully-connected architectures using popular building blocks and design strategies as we use in
study A, where activation functions are also twice differentiable. Like almost all results in this
work, we expect these results to not be fundamentally limited to fully-connected architectures
on a conceptual level. Like most theoretical approaches to deep learning, mean field theory is a
“one building block at a time” approach, where proofs have to be generalized incrementally over
time. Nonetheless, the empirical predictiveness of mean field theory has been outstanding even on
complex architectures (e.g. |Yang [2019]).

5.1 Background

Over the last few years, a range of papers have investigated mean field theory (e.g. |[Poole et al.
[2016], Schoenholz et al. [2017], Pennington et al. [2017/], Pennington and Worah! [2017], Yang
and Schoenholz [2017], Jacot et al. [2018]], X1ao et al. [2018]], Chen et al. [2018]], Pennington et al.
[2018], ILee et al. [2018a], |Yang et al.| [2019]], Novak et al.| [2019], Yang [2019, 2020b], |Chizat
et al. [2019]], Hanin and Nica/ [2020],|Oono and Suzukil [2020], Dyer and Gur-Ari [2020]], Bai and
Lee [2020], Littwin et al.| [2020], [Karakida and Osawa [2020] and many more). Lee et al.| [2020a]
provides a very long list of references. The popularity of this approach is perhaps exemplified by
the existence of a mean field software framework [Novak et al., 2020]. Recently, |Yang [2019],
Yang [2020b] and |Yang [2020a]] presented what we consider are the most important insights of
the theory in an instructive fashion. In this section, we will review primarily the results from
Yang| [2019], on which we base this chapter. Note that we use terminology and notation already
established earlier in this work as opposed to notation and terminology used in|Yang|[2019]]. While
it may be cumbersome for readers familiar with [Yang| [2019] or the follow-up papers to adjust to
new notation, we believe it would ultimately be more cumbersome to use two sets of notation
and terminology in this work. We also do not present all results from Yang| [2019] in their full
generality. We limit ourselves to what is relevant for this work to keep this background section
manageable. (For example, we do not cover RNNSs.)

5.1.1 Maean field architectures
Yang| [2019, 2020b,a] present their theory for architectures having specific properties, which we

introduce in this subsection. We term these architectures ‘mean field architectures’. In section
we will go on to express practical architectures as mean field architectures.
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Mean field architectures are built from only two layer operations. One operation is the fully-
connected operation defined as in section The other operation is the abstract elementwise
operation.

Elementwise operation
fi= pl'(fkl[l]a fkl[2]7 s fkl[Kl]a Eiffcz[l] [4], Ez’f}}lm 2], -, Eifl%,[[%l][i])

Here, as throughout this chapter, each ¢ ranges over the width of the respective layer. This is a
generalization of the activation operation from section 2.4.1] It can have multiple dependencies
fi%z[ll through f; (i) to which it is applied elementwise. We call these ‘elementwise dependencies’.
It can also have additional dependencies fl%z[ll through f (K] from which it uses the layer mean.

We call these ‘mean dependencies’. Hence, p; is a function from RE+K! (o R, We term it ‘multi-
activation function’ and say it has ‘elementwise inputs’ and ‘mean inputs’. The trainable parameter
sub-vector of an elementwise layer is empty.

In their most general result, Yang|[2019] allow their elementwise operation, which they term ‘Non-
lin+’, to depend on general scalar functions of previous layers, not just layer means. However,
Yang [2019} 2020bja]] focus largely on layer means. For ease of presentation, we focus entirely on
layer means. |Yang [2019] also use the addition operation to build their architectures, which they
term ‘LinComb’. As they point out, this operation can be absorbed into the elementwise operation
without losing representational power. This is what we do.

In contrast to regular feedforward architectures, mean field architectures may have multiple input
and / or output layers. Input layers do not have parents in the layer graph and do not have an
operation. Output layers do not have children in the layer graph.

Mean field theory considers the properties of architectures as the width of layers converges to
infinity. Since architectures generally have more than one layer, there are multiple ways in which
this convergence can occur. While Yang [2019] deals with arbitrary forms of convergence, for
ease of presentation, we will focus on the case where the ratio of layer widths is constant as
convergence occurs, similar to what is done in Yang| [2020b]. We denote the width of f; by d;dy,
where d; remains fixed as usual and dyr can be taken to infinity. Since the limit of infinite width
is a purely theoretical construction to begin with, the exact style of convergence does not matter as
long as practically predictive theorems can be proven with it.

To a significant degree, mean field theory focuses on the properties of architectures in the initial
state where no training has been conducted. Of course, it is still necessary to initialize the parame-
ter, which, in mean field architectures, is composed only of the weight matrices of fully-connected
layers. Here, it is critical to use a fixed multiple of Gaussian LeCun initialization. For each fully-
connected layer f;, we choose a fixed constant o7 we term the ‘variance parameter’ and initialize

each entry of the weight matrix as a Gaussian of mean zero and variance d:Ti/IF’ where a k subscript
indicates the dependency of layer f; as always. Another important aspect of mean field architec-
tures is that they allow what is called ‘weight sharing’. Different fully-connected layers can use
the same weight matrix, i.e. the set of all fully-connected layers is partitioned into subsets, which

can be of size 1, and fully-connected layers in the same subset use the same weight matrix which
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is randomly initialized once for the subset. Of course, within each subset the 012, d; and d}, values
must be equal.

Finally, as in most of [Yang| [2019, 2020bjal], for ease of presentation, we make the assumption
that elementwise dependencies of elementwise layers can only be fully-connected layers or input
layers. This does not limit representational power, because any elementwise dependencies that are
themselves elementwise layers could simply be recursively replaced by their own dependencies to
eliminate such a configuration.

We now summarize our definition of mean field architectures.

Definition 6. We say a ‘mean field architecture’ f is a neural architecture similar to that defined
in section [2.3.4) with the following properties. Properties marked with (*) differ from our “regular
architectures” as defined in section2.3.4

e The width of a layer f; is equal to d;dy, where d; is fixed but dy is variable. (¥)

e There can be multiple input layers and output layers. (*)

2
e Each layer f is either a fully-connected layer with initial weight variance N (0, d;lMF) for
some ‘variance parameter’ o7, or it is an elementwise layer where each elementwise depen-

dency is either an input layer or a fully-connected layer.

e Different fully-connected layers can share the same weight matrix, which is initialized once
for all layers that use it. (*)

Our definition of ‘mean field architecture’ mirrors the definition of ‘NETSOR program’ from|Yang
(2019, 2020bla].

If the widths of input layers change as dyr changes, then the inputs must also change. Of course,
practical inputs have fixed dimensionality. We show how to reconcile this in section with
readin layers. For now, we use a surrogate input distribution.

Definition 7. We say a distribution dist over vectors x of fixed dimensionality d is ‘elementwise’
if there exists a distribution G over scalars such that drawing a vector from dist is equivalent to
drawing each component from G independently.

Further, we say a distribution dist over a tuple of /V vectors (X(l), W )) of fixed dimensionality
d is ‘elementwise’ if there exists an N-dimensional distribution G such that drawing (xV, .., y™¥))
from dist is equivalent to drawing (xV[d], .., x'™[i]) independently for all 0 < i < d from G.

In both cases, we term G the ‘generator distribution’ or ‘generator’ for short.

Finally, we say a distribution dist over a tuple of N vectors (x(V), .., x¥)) that do not necessarily
have the same dimensionality is ‘product elementwise’ if the set of vectors can be partitioned into
(one or more) subsets of vectors of equal dimensionality such that dist is elementwise on each
subset and the subsets are independent under dist. We say the generator distribution of dist is the
product of generator distributions of the subsets.
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Going forward, we use a product elementwise distribution as the surrogate input distribution for
a mean field architecture. If the architecture has N input layers, the product elementwise distri-
bution must be over /V vectors. Each vector is assigned to one input layer. The generator of the
surrogate input distribution is over RY. Now we see how this construction allows us to consider
architectures of variable input dimensionality. We associate a mean field architecture with a gen-
erator G. Then as dyf varies, we draw the input layers from the product elementwise distribution
that corresponds to G, dyr and the d; for the various inputs layers f;. While the surrogate input
distribution varies, G stays fixed. Note that under this construction, components of input layers are
all assumed to be independent except components that share the same index ¢ and are in layers of
equal dimensionality.

5.1.2 Master theorem

Yang| [2019] state (several versions of) a theorem which they term “master theorem”. Indeed, this
result is highly general and many core insights from mean field theory can be derived from it (as
well as the master theorems of |Yang [2020bja]) without further low-level analysis. Our work very
much relies on this. In a nutshell, the master theorem states that as dyr converges to infinity, the
metrics E; f;[¢] and E; f;[7] f,»[i] with d; = d,,, converge to deterministic values almost surely as
parameter and surrogate input are random. We can then use these core metrics to build towards
more complex metrics as we do in section[5.3]

We now state a few more definitions and then the master theorem.

Definition 8. For any vector object, we use the term ‘mean’ to refer to the unweighted average
of its components. For example, the ‘layer mean’ is the mean of layer components and the ‘input
mean’ is the mean of input components. Analogously, we say the ‘square mean’ of a vector is the
mean of its square components; and we say the ‘co-mean’ of two vectors of equal dimensionality
is the mean of the components of their elementwise product.

As stated in section [2.7, we use the term “mean” to refer to finite averages, like the ones defined
above, as well as mean parameters of Gaussian distributions. We use the term “expectation” for
the E,.p and E(, ,)~p operations.

Definition 9. Let f be a mean field architecture and G a generator distribution. Let S be a set
of elementwise layers in f such that there exists a weight matrix such that for each member of S
there exists a fully-connected layer using that weight matrix and depending on that member. Let
Ag be the |S| x |S| matrix where each entry is the layer co-mean of the layers corresponding to
the row and column indices of that entry. We say that (f,G) has ‘rank stability’ if the following
statement holds for each possible S. If Ag converges almost surely to some A% as dyr — 00,
then the probability that the rank of Ag equals the rank of A% converges to 1 as dyr — oo. The
randomness of Ag is induced jointly by # and G.

Definition 10. Let F' : R% — R be an arbitrary function with scalar output. Let C be an arbitrary
class of functions from R% to R. We say F" is ‘controlled’ by C if there exists a function in C that
is greater or equal to | F'| everywhere.
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Value f;  fn Formula

m;  input - EG[n] where f; is the n’th input layer

my FC - 0

ny elem - Ecpi(e, m)

¢.m  input input EG[n]G[n’] where f;/ f,, is the n’th / n”’th input layer
¢.m input FC 0

Clim FC FC o?cy, if fand f,, share their weight matrix else 0
¢.m  elem elem Ecpi(e, m)pm (e, m)

¢.m  elem input Ecpi(e, m)e,,

¢.m elem FC Eepi(e, m)e,,

Table 5.1: Rules for calculating the mean field limit of layer means and co-means. p;(e, m) is
short for pl(eklm, s €l W17 - W [m). pm(€e, m) is an equivalent abbreviation. (e, e1, .., er)
forms a multi-variate Gaussian vector with moments given by Ee; = m; and Eeje,,, = ¢, €1y, 18
only defined when d; = d,,,. The m values and moments of e used in any given rule are obtained
by recursion.

Definition 11. Let a multi-activation function be denoted by p(e, m), where e € RX and m € R
represent the elementwise and mean inputs respectively. We say p is ‘parameter-controlled’ at
m* € RE by function class C if there exist functions ™ : RX — R and p™ : RX — R-qU{oo}
such that

e p(e,m*) is controlled by C as a function of e
° pmean(m*) — 0

mean

° is continuous at m*

p*™m is controlled by C

lp(e,m) — p(e,m*)| < pe™(e)p™a(m) for all e and m, where the right-hand side may be
infinite

Definition 12. Let CE2 be the class of functions R — R of form e“Xll3™“ +¢" where ¢, ¢ and ¢
are positive constants with ¢/ < 2, d is a positive integer, and y € R? is the function input.

Background Theorem 1 ([Yang, 2019]). Let f be a mean field architecture and G a generator
distribution. Assume:

e (f,G) has rank stability.
o G is a Gaussian which may have a singular or even zero covariance matrix.

o All multi-activation functions in f are parameter-controlled by C* at (m,%[l], s My i(])'
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Then for all 0 < I, m < L with d; = d,, we have

dMligoo E:fi(z)[i]] = ma.s.
lim E;fi(x)[i]fm(@)[i]] = cma.s.

dMFHOO

where the values of w; and c¢,.,, are defined recursively as in table a.s. stands for ‘almost
surely’. The randomness is induced jointly by 6 and G.

Note that the theorem itself recursively yields that every Ag that arises in the definition of rank
stability above indeed converges to some limit AZ a.s. as defined by the corresponding c;.,,, values.
Also, the theorem itself recursively yields the m values used in the parameter-control condition. In
Yang| [2019], this version of the master theorem is called theorem C.11, the “Self-Parameterized
NETSOR+ Master Theorem™.

5.1.3 Fully-connected layers are Gaussian distributed

Examining table 5.1 we can informally describe forward propagation in an infinitely wide archi-
tecture as follows. The output of a fully-connected layer is independent of all other fully-connected
layers that do not share its weight matrix. The outputs of sets of fully-connected layers that do share
a weight matrix are jointly elementwise distributed. Each layer by itself is elementwise distributed.
Each of these insights is powerful in its own right.

Yang [2019] go on to formalize this informal description with a corollary based on the master
theorem. To do this, they use a construct called ‘readout weights’, which we translate as ‘readout
layer’.

Definition 13. We say f is a ‘mean field architecture with readout layers’ if f is a valid mean field
architecture except that some or all output layers f; have fixed dimensionality d; which does not
change as dyf varies, just like in our “original architectures” in section These output layers
are called ‘readout layers’. Readout layers are fully-connected and may share weights with each
other but not other fully-connected layers. A readout layer f; is Gaussian initialized with initial

2
weight variance d;le, where o7 is the variance parameter as before. We write clipout(f) for the
architecture obtained by removing the readout layers. (This may create new output layers.) If f
has exactly one readout layer, we call the value returned by it the ‘output’ of f and denote its

dimensionality by dy.

Background Corollary 1 ([Yang, 2019])). Let f be a mean field architecture with readout lay-
ers and G be a generator distribution. Assume the conditions of background theorem [I| hold for
(clipout(f),G). Then as dyr converges to infinity, the components of all readout layers jointly
converge in distribution to a Gaussian. This Gaussian is product elementwise where the generator
has mean zero and the covariance corresponding to layers f; and fy, is ¢, as defined in table[5.]]
when d; = d,, and zero otherwise. The randomness is induced jointly by 0 and G.
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This corollary is explicitly concerned with the readout layers of f. Of course, we can also use it to
obtain the Gaussianity of intermediate layers as well if we restrict the layer graph of the architecture
to a sub-graph and redefine which layers are readout layers. The key requirement is that readout
layers must use fresh weights. The formulation of the above corollary roughly corresponds to
corollary C.13 in|Yang [2019].

5.1.4 The covariance kernel

So far, we have considered mean field architectures that can have multiple input and output layers
and share weights. The reason for this is not that we are especially strongly interested in such
architectures, but that it allows us to build “trick architectures”. We can often prove a result for an
architecture by transforming or extending that architecture and then applying background theorem
or background corollary|(l| Such a transformation may add additional input or output layers. This
process is a recurrent theme in prior work, in this chapter and especially chapter[T1]

The first example of this process is given in this subsection. Here, we use background corollary
[ to determine the outputs returned by architectures on fixed, finite-dimensional datasets. First,
we introduce finite-dimensional input layers in addition to the finite-dimensional output layers we
introduced in section

Definition 14. We say f is a ‘mean field architecture with finite input layers’ if f is a valid mean
field architecture except that some or all input layers f; have a fixed dimensionality d; which does
not change as dy varies, just like in our “original architectures” in section We call these
layers ‘finite input layers’. Layers that depend on finite input layers must be fully-connected layers.

Those fully-connected layers are called ‘readin layers’. A readin layer f; is Gaussian initialized

2
7

with initial weight variance Q> where o7 is the variance parameter as before. Readin layers may
share weights with each other but not other fully-connected layers. We write clipin(f) for the
architecture obtained by removing the finite input layers and turning the readin layers into input
layers. If f has exactly one finite input layer, we call the value x assigned to it its ‘input’ and
denote its dimensionality by d;,. Finally, if f has exactly one finite input layer and one readout
layer, we write f(z) for the value returned by the readout layer when x is assigned to the finite
input layer. A readout layer cannot be a readin layer.

The way we build our trick architecture in this subsection is by duplicating the original architecture.
The very long definition below formalizes architecture duplication where copies share weights.

Definition 15. Let f be a mean field architecture that may have readout layers. We say f” is the
‘N-duplex’ of fif f% is composed of N (L + 1) layers which can be divided into N groups of size
L + 1 such that there exists a map from the layers of [ to the layers of f such that the following
holds.

e Layers in a group can only depend on layers in the same group.
e The map is a bijection when restricted to any group.

e Each layer in f has the same definition as its map image.
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e The dependencies of the map image of any layer in f are the map images of the dependen-
cies of that layer.

e Fully-connected layers in fV share weights if and only if their map images are identical or
share weights in f.

Further, let G be a generator distribution. Then we say G% is the ‘N-duplex’ of G if having the
input layers of fV generated by G is equivalent to generating the input layers of f by G and then
assigning to each input layer in fV the vector that was assigned to its map image. (This leads to
each layer group in f having the same values assigned to its input layers as all other groups.)

Finally, let f be a mean field architecture with one or more readin layers, and possibly readout
layers, and A some symmetric, positive semi-definite N x N matrix. Then we write G(A) for the
generator that, when associated with the input layers of clipin(f)? that stem from the readin layers
in f has the following properties. It is Gaussian, has mean zero and covariance matrix with entries

/
UlUmA[na n ]ﬂl = mor f; and fp, share weights

G(A) has to generate I N input layers, where [ is the number of readin layers in f. Hence, each
row of the covariance matrix of G(A) corresponds to a readin layer f; and duplex index n and each
column also corresponds to a readin layer f,,, and duplex index n’. The entries of the covariance
matrix are defined in terms of [, m, n, n’ above.

Let f be a mean field architecture with a single finite input layer and a single readout layer, and
let G be a generator distribution associated with its non-finite input layers. Let (1), .. 2(") be
the inputs in a dataset D. Let Kj, be the N x N kernel matrix of the co-means of the inputs,
ie. Ki[n,n'] = Egcicq 2™ [i]2™)[i]. Consider the readin layers. Because all their weights are
Gaussian, the joint distribution over all readin layer component values in response to all NV inputs is
Gaussian. It is easy to check that this joint distribution is in fact product elementwise and generated
by G(Kj,) as defined above, except that the duplex index is now replaced with the input index. Now
consider clipin( )%, the N-duplex of clipin(f). It has N(I + I') input layers. NI of these stem
from the [ readin layers in f and NI’ stem from the I’ non-finite input layers in f. For these input
layers of clipin(f)¥, consider the generator G(Kj,) x G, where the two factors are used for the
two types of input layers. It is clear that the input layers of clipin(f)" then have the same joint
distribution as the non-finite input layers and readin layers of f in response to the N inputs, where
again the duplex index is replaced by the input index, assuming that the non-finite input layers are
fixed as the finite-dimensional input varies. Also note that G is independent of the weights in the
readin layers of f. Hence, the output of clipin(f)" also has the same distribution as the output of
f across the N inputs. So background corollary |1|yields that the joint distribution of the N output
vectors returned by f for the /N inputs converges in distribution to a Gaussian that is elementwise
with a generator that has mean zero and some covariance K,,. Assuming that f and G are fixed,
applying table|5.1|yields that the diagonal entries of K, are a function of only the corresponding
entry of Kj,, whereas the off-diagonal elements depend on the corresponding entry as well as the
two diagonal entries in the same row / column of Kj,.
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Background Corollary 2. Let [ be a mean field architecture with a single finite input layer and
a single readout layer, and let G be a generator distribution associated with its non-finite input
layers. Let V), .., x™N) be the inputs in a dataset D and let K;, be the co-mean kernel matrix
of these inputs. Assume (clipout(clipin(f))", G(K;,) x GV) fulfills the conditions of background
theoreml[l| Then there exists a function € such that the following holds. As dyr converges to infinity,
(f(zMW), .., f(z™))) converges in distribution to a Gaussian. This Gaussian is elementwise over
output vectors where the generator has mean zero and covariance matrix K,,, where

Knut[nynl] = Q:(Km[n7 n]7 Kin[n/a TL/], Kin{na n/])’ 1 S n, TL/ S N

¢ is derived via table|5.1|applied to (clipin(f)Y,G(K;,) x GN). The randomness is induced by 0
and the surrogate input generated by G, both of which are identical across inputs x™.

Definition 16. The ‘covariance kernel’ €(q, ¢/, ¢) is the function that arises in the above corollary.
We write &(q, c) short for €(q, q,c) and €(c) short for €(1,1,¢). We also refer to both these
shortened versions as the covariance kernel. Note that €(q, ¢, ¢) is only valid when ¢,¢ > 0 and

lc| < V4qq'.

This corollary states that, in the limit, €(q, ¢, ¢) completely determines the joint distribution of all
outputs of f on finite sets of inputs where randomness is induced by 6 and G. Further, we find that
the scalar function €(c) is sufficient when inputs are length-normalized. Throughout this chapter,
we will focus on the case where inputs indeed have the same square mean for ease of presentation.
Hence, we focus on €(q, ¢) and €(c). This is sufficient to study the majority of interesting behaviors
that are observed in this work and in prior work. In practice, inputs are generally normalized in
some way.

It is possible to generalize the above background corollary to multiple finite input and readout
layers. As throughout the remainder of this work, we focus on the single input-single output
case. The background corollary can be considered a more formal version of corollary 5.6 in|Yang
[2019]. The notion of mapping two input square means and an input co-mean to output square
mean / co-mean is taken from e.g. Jacot et al. [2018].

5.1.5 Wide networks are Gaussian processes

Given some ‘mean function’ y : R% — R and ‘covariance function’ v : R% x R% — R, a
‘Gaussian process’, as also defined in [Yang| [2019] is a stochastic process R% — R that maps
any finite set of inputs (M, .., 2™) to outputs that are jointly Gaussian distributed, where the
n’th component of the mean vector is p(x™) and the (n,n’)’th entry of the covarience matrix
is v(2™, (")), By background corollary [2, each output neuron of f converges to a Gaussian
process as dyr — oo in the sense that for any finite set of inputs (1 .., (™) the joint distribution
of (f(zM)[i], .., f(™))[4]) converges in distribution to a Gaussian where the mean vector is zero
and the (n,n’)’th entry of the covarience matrix is

vi(x™, 2y = €(Kin[n, n), Kin[n/, '], Kin[n, n']) = €(Esz™[i])?, By ™[i]?, Byz™ [1]2")[i])
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Formally, under the conditions of background corollary 2| each output neuron of f converges in
finite distribution to a Gaussian process. Since we can only ever apply f to a finite set of inputs
in practice, it is reasonable to say that “wide networks are Gaussian processes” [ Yang, 2019]. The
covariance kernel is so named because it corresponds to the covariance function of a Gaussian
process. The equivalence between wide networks and Gaussian processes was first described by
Neal| [[1994] and expanded upon by e.g. Williams| [1997], Lee et al.|[2018a], Novak et al.[[2019],
Yang| [2019].

5.1.6 Neural tangent kernel

So far, we have cast § as a random variable. Hence, the Gaussian process equivalence holds only in
the architecture’s randomly initialized state. So, while the covariance kernel determines the initial
state of wide mean field architectures, it does not necessarily predict the course of training.

In their seminal paper, Jacot et al.| [2018]] showed that the ‘neural tangent kernel’ actually deter-
mines the course of training in the infinite width limit, assuming SGD and infinitesimal step sizes

are used. As defined in section 4.4.9, we have Kyrx(x,z') = o (jf) a (3ém/)T. While this is a
dout X doy matrix, for mean field architectures with a readin and readout layer, it can be shown
that its limit when dyr — o0 is a scalar multiple of the identity matrix, where the multiple can
be calculated similarly to background corollary 2] from input square means and co-means. While

Yang| [2019]] focus on the Gaussian process equivalence, Yang [2020b] focus on the NTK.

The theoretical power of the NTK rests on the observation that it does not change during training
in the infinite width limit. Fan and Wang| [2020], Fort et al.|[2020] study the evolution of the NTK
in practical, finite-width architectures. The NTK has been generalized for training using natural
gradient descent [Karakida and Osawa, [2020], weight decay [Chen et al., 2020b] and when labels
are involved [Chen et al., 2020a]. Recently, a number of works have linked great width to the
existence of global minima of deep learning optimization landscapes and their reachability with
gradient-based training (e.g. |Gu et al.| [2020], Nguyen and Mondelli [2020]).

A flipside of the theoretical power of the NTK is that it is not as predictive for practical, finite-width
architectures trained with practical step sizes as e.g. background theorem |1} NTK theory predicts
that in the infinite width limit, only the last linear layer learns. This phenomenon is termed ‘lazy
training’. However, practical architectures often exceed the test error obtained from lazy training,
even at very high width [Chizat et al., 2019, Goldblum et al., 2020, Liu et al.l 2020a, [Novak et al.,
2019, [Lee et all, 2020a]. While we investigate the NTK empirically in section 4.4.9] we do not
further consider it in this chapter.

5.2 Maean field theory of meta-distributions

Throughout section [5.1] we studied the distribution of layer and network quantities where ran-
domness was induced by the parameter # and the surrogate input for the non-finite input layers
generated by G. In section we studied layer means and co-means of mean field architectures.
In section we examined entire distributions of layer values. In section we introduced a
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finite number of fixed inputs and examined the joint distribution of layer values across these inputs.

In this section, we extend mean field theory to cover not just distributions of layer values, but
meta-distributions. Let D be an input distribution for a single finite input layer. For a fixed value
of 6§ and surrogate input, D induces a distribution at each layer. If we now additionally allow 6
and surrogate input to vary at random on top of this process, we obtain a ‘meta-distribution’, i.e. a
distribution over distributions over layer values. The first level of randomness stems from x ~ D,
and the second level of randomness stems from 6 and surrogate input, which corresponds to the
entire randomness from section[5.1} As given in section[2.7, we use the term ‘layer distribution’ to
refer to the distribution over layer values at some layer f; induced by D for a fixed § and surrogate
input, i.e. f;(D). We use e.g. ‘output distribution’ and ‘neuron distribution’ similarly.

There are at least three reasons why investigating the meta-distribution is interesting. First, we want
to derive the limit of the NLC, which is defined in terms of D for a fixed 6. Hence, we need to
understand how e.g. f(D) varies as a distribution as 6 varies. Second, we want to investigate batch
normalization when batch size converges to infinity. While BN with a fixed, finite batch size is
covered by |Yang| [2019], it is a rather cumbersome operation. When | B| — oo, we observe simple
and nice behaviors for BN, similar to layer normalization when width converges to infinity. Third,
it is instructive to understand the types of layer distributions we can expect for a fixed . When we
are dealing with a practical architecture in the initial state, we are dealing with a specific parameter
value, not with parameter values that are drawn independently for each input. A practical layer
distribution is a draw from the meta-distribution, and those draws can differ significantly from the
distribution obtained when varying = and 6 jointly.

Our strategy for deriving the meta-distribution is to discretize D and then apply background corol-
lary[2] Specifically, instead of considering D directly, we consider the uniform discrete distribution
over an independent sample of size N drawn from D. A draw from the meta-distribution of any
other layer is then also a uniform discrete distribution over NV fixed values. We then take the limit
of that “discrete meta-distribution” as dyr converges to infinity. Finally, we “unify” these limits
across all possible integer values of /N. We formalize this process in a way that is intuitive, suitable
for our analysis and similar to the notion of convergence in finite distribution used by Yang [2019].

Definition 17. For any meta-distribution M, let the ‘N-expansion’ of M be the distribution over
N values that is equivalent to drawing a distribution from M and then drawing N values from
that distribution. Further, we say a sequence of meta-distributions (M) ‘expansion-converges’ to
a meta-distribution M"™ if the sequence of N-expansions of the M converges in distribution to
the N-expansion of M'™ forall N > 1.

For any N, D induces a distribution over N x N input co-mean kernel matrices K;, when the
2™ are drawn from D. In the setup of background corollary |2, as dyr — o0, Kj, is mapped
deterministically to the NV x N output co-mean matrix K, via the covariance kernel function,
which then generates the elementwise Gaussian output. So in the limit, we can say that D induces
a distribution over K. To prove a theorem based on expansion-convergence, we need two things.
We need (i) a D that induces a “nice and manageable” distribution over K, for each N and
(11) a meta-distribution that yields elementwise N-expansions with generators that are (potentially
infinite) mixtures of Gaussians with mean zero, where the covariance matrix is distributed as K,
in (i). It turns out that what we call the ‘elem-like’ distribution and the ‘meta-Gaussian’ meta-
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distribution fulfill (i) and (ii) respectively. We now provide several definitions and then the main
theorem of this section.

Definition 18. We say a meta-distribution metadist over distributions dist,.. over vectors of dimen-
sionality d is ‘elementwise’ if there exists a meta-distribution metadist,e, over distributions distg,
over scalars such that drawing a value of dist,,. from metadist is equivalent to drawing d values
of disty, from metadist,., and then taking the product of those d values. metadist,., is called the
‘generator meta-distribution’ or ‘generator’ for short.

This mirrors the definition from section [5.1.2] It implies that any distribution drawn from an
elementwise meta-distribution has independent components. It also implies that the distribution
over vectors obtained by drawing from a draw from the meta-distribution is elementwise.

Definition 19. We say a meta-distribution over distributions over scalars is ‘meta-Gaussian’
MN (q,c) with ¢ > ¢ > 0 if a distribution drawn from it is Gaussian with variance ¢ — ¢ and
mean drawn from another Gaussian with mean zero and variance c.

Definition 20. We say an input distribution D is ‘elem-like(q, c¢)’ with ¢ > ¢ > 0if z,2’ ~ D
implies E;x[i]* = E;2'[i]> = ¢ and E;z[i]2'[i] = ¢ with probability 1. We write Ki,(N, g, c) for
the N x N matrix with diagonal entries equal to ¢ and off-diagonal entries equal to ¢, which is the
co-mean kernel matrix for a sample of size N drawn from an elem-like(q, ¢) input distribution D
with probability 1.

Theorem 4. Let | be a mean field architecture with a single finite input layer and a single readout
layer. Let G be a generator distribution associated with the non-finite input layers of f. Let D be
an input distribution associated with the finite input layer of f. Assume:

e D is elem-like(q, c).
e (clipout(clipin(f))™,G(K (N, q,c)) x GV) has rank stability for all N.
e G is Gaussian.

o All multi-activation functions used in f are parameter-controlled by C*? at (m,;[l], oy My fﬂ)'

Then as dyr converges to infinity, the meta-distribution of the readout layer expansion-converges
to the elementwise meta-distribution with generator MN (€(q, q),€(q,¢)). € and the my . are

derived via table |5. I| applied to (clipin(f)™,G(K (N, q,c)) x GN). The first level of randomness
is induced by D. The second level of randomness is induced by 0 and G.

In practical terms, theorem 4 states that neuron distributions in fully-connected layers are Gaus-
sians with a standard deviation that is fixed across the layer and an expectation drawn from another
zero mean Gaussian that is induced by the parameter. While we can glean this practical meaning,
the statement of the theorem is still somewhat opaque. Specifically, it may not be clear how to
cast a regular, practical architecture as a mean field architecture and generator G. In a nutshell, we
must re-cast segments of the layer graph between successive fully-connected layers of the regular
architecture as a single elementwise layer in the mean field architecture. Then, we must re-cast
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the trainable parameter sub-vectors in non-fully-connected layers as a surrogate input generated
by G. Hence, 6 in a regular context maps onto ¢ and G in a mean field context. (Hence, we usually
skip over G in our non-technical discussions.) We demonstrate how to do this in section[5.3]and in
greater detail in section[T1.5.2]

The major condition for theorem []is that D is elem-like. We can immediately see that this condi-
tion cannot be achieved exactly by any input distribution over finite-dimensional vectors. For gen-
eral (g, c), for a set of N vectors of dimensionality d to have co-mean Kernel matrix K (N, g, ¢),
we must have N < d! A strong requirement indeed. The elem-like condition is also not just a
convenience. To see this, consider a D that is itself a discrete distribution over a finite set of val-
ues. If this is the case, the output distribution is clearly neither Gaussian nor elementwise, even
in the limit dyjg — co. In the limit, while the distribution of a neuron value in a fully-connected
layer induced by 6 for a fixed x is Gaussian under very general conditions, the neuron distribution
induced by = ~ D for a fixed 6 is not. We further analyze the elem-like condition in section[5.2.2]

b

Finally, note that in our definition of ‘elem-like(q,c)’, we require the ¢ parameter to be non-
negative. This is because a negative ¢ would imply that every vector drawn from D is negatively
correlated with every other vector drawn from D, which doesn’t even approximately make sense.
c also cannot be negative in proposition [T0}

5.2.1 Empirical analysis

Like for most concepts in this work, the ultimate justification for theorem []is its strong practical
predictiveness, which we now demonstrate. Specifically, we investigate layer distributions of our
fully-connected architectures from study A (section [3.1)). We also investigate layer distributions of
40 “simple architectures” which have been randomly initialized 100 times using different random
seeds (section[3.3). These architectures and initializations are the same as those used in e.g. section
4.4.3]

For each architecture, we investigate a single layer that is roughly halfway between input and
output layer, which is the same layer used as the surrogate input layer for the “second half” of the
network in sections4.4.5| 4.4.11{and |4.4.12| This layer is either a fully-connected layer in the case
of non-residual architectures, or it is an addition layer in the case of residual architectures. Note
that in our residual architectures, addition layers are effectively the sum of (possibly normalized)
fully-connected layers. Therefore, we expect them to have the same meta-Gaussian properties as
the layers they sum over. The reason for studying intermediate layers instead of output layers is
that output layers in our architectures had width 10 or less, which makes it more difficult to assess
e.g. whether neuron expectations in that layer appear to be Gaussian distributed across the layer.
We denote the intermediate layer by f 1.

Our goal is to determine whether the layer meta-distribution is approximately the elementwise
distribution that is generated by MN (€(q, q), €(g, ¢)). We are not aware of a consensus protocol
for empirically identifying a meta-distribution. However, it turns out that verifying that some f;
indeed has the above meta-distribution is equivalent to verifying the following sub-properties.

1. For each 6 and i, f;(D)[i] is Gaussian.
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2. f;is elementwise and generated by A(0, &(g, c)) when 6 is random.
3. Foreach § and i, S, fi(x)[i] = €(q,q) — €(q, ¢).
4. For each f and i # i, f;(D)][i] is independent of f,(D)[¢'].

Of course, these properties, which hold exactly in the limit, can only hold approximately and with
high probability over 6 in practice. S here is the standard deviation operator as defined in section
3.4.1.1

A convenient aspect of properties 1, 3 and 4 is that they are defined in terms of a fixed value of 6.
Hence, we can verify them on neural networks using fixed 6. We do not have to compare different
values of 6. (In practice, we will use a trick to achieve the same thing for property 2.) Below, we
investigate all four properties in turn. Note that we will defer some of the investigation to section
when we have derived rules for calculating €(q, ¢) and €(q, ¢) for study A architectures.

In this chapter, as in section we will define metrics that capture the properties we investigate
and plot the metric values for our architectures. Figures [5.1] through are all laid out in the
same way. In graph (A), we plot the metric values for our 40 simple architectures on CIFAR10 in
the initial state. The interval depicted gives the range of the metric value across the 100 random
seeds and the filled square depicts the mean. In graphs (B-D), we plot the metric values for our
study A architectures in the initial state. In graphs (E-G), we plot the metric values for our study
A architectures in the final state. While our theoretical framework applies directly only to the
initial state, throughout this chapter, we also investigate how well it predicts the final state. In this
chapter in general, as in section [4.4] we find that its predictiveness degrades significantly but not
completely. As in section4.4] whenever we quote the value of any metric not based on error in the
final state, we exclude all architectures that did not attain a better-than-random validation error for
any starting learning rate. If there is no meaningful way to select a starting learning rate, then the
final state of the architecture is not meaningfully defined for the purpose of metric computation.
Hence, the total number of architectures depicted in graphs E-G is somewhat lower than in graphs
B-D in the following figures.

In this chapter, as in section .4} Gaussian unstable architectures (GUAs) play a prominent role
as they again defy many trends that hold for other architectures. As always, they are depicted
in graphs by green markers. (In figures and they are depicted as blue points with green
confidence intervals for visibility.) They were first discussed in section As described at the
end of section [3.4.2] we say one of our fully-connected architectures is a GUA if (i) it uses either
the square or odd square activation function and (ii) it does not use layer normalization. In this
and the next section, we add the color red for what we term ‘Gaussian edge architectures’ (GEAs),
which use ReLU and also do not use LN. We give a full explanation of these phenomena in section
For now, we notice that throughout this section, we find that GUAs and GEAs are “not (meta-)
Gaussian”. Throughout this section and section [5.3.3] only, we use the term ‘stable’ to refer to
architectures that are neither GUAs nor GEAs.

Now we turn to our four properties as given above.

Property 1: Gaussianity of individual neurons We begin by investigating whether f1(D) [i] is
Gaussian for fixed 6. A staple metric for measuring “degree of Gaussianity” is excess kurtosis.
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Metric definition 13. The ‘neuron excess kurtosis’ (NKURT) of a network f with respect to an
input distribution D at the 7’th neuron in layer [ is

The excess kurtosis operator K as well as its estimator are given in section [3.4.1.1] The excess
kurtosis of a Gaussian distribution is 0. Hence, we interpret NKURT being close to zero as Gaus-
sian behavior. Specifically, in order to assess Gaussianity, excess kurtosis focuses on outliers, 1.e.
it measures whether a distribution is heavy-tailed or light-tailed relative to a Gaussian.

In ﬁgu we plot the value of NKURT averaged over all neurons in f 1, 1.e. E;,NKU RT 1. In
figure|5.1[(A-D), we find that for stable architectures, depicted in black, excess kurtosis is very close
to zero, and actually more likely to be below than above zero, indicating Gaussianity. On the other
hand, for GEAs and GUAs, depicted in red and green respectively, excess kurtosis is significant
to enormous, indicating that neuron distributions are very non-Gaussian. GUAs have especially
non-Gaussian neuron distributions. Specifically, before training, stable architectures tend to have
neuron distributions in fully-connected (FC) layers that are as or more light-tailed than a Gaussian,
whereas GEAs and especially GUAs have neuron distributions in FC layers that are heavy-tailed.
In figure [5.I(E-G), we find that neuron distributions are often very light-tailed after training, but
that there are also a few stable architectures that have large NKURT values.

In addition to E;, N KU RT1 we investigated the standard deviation of excess kurtosis values across
the layer, i.e. S;NKU RT1 We found that the standard deviation never significantly exceeded the
absolute value of the mean and was often significantly lower. Hence, we do not display those
values here as they provide little additional information. However, this does confirm that the
neuron kurtosis is a characteristic value of the network and layer and does not vary too much from
neuron to neuron in an FC layer.

In addition to capturing heavy-tailedness via NKURT, we wanted to examine the neuron distribu-
tion with another metric that focuses on whether the cumulative distribution function at each neu-
ron is close to the cumulative distribution function of a Gaussian between, say, -2 and +2 standard
deviations. For this purpose, we devised the ‘Gaussian histogram intersection’ metric. We divide
the real line into a small number of buckets and obtain a histogram from both the unit Gaussian
and the expectation and variance normalized neuron distribution. We then sum the bucket-wise
minimum of the two histograms to obtain the distribution overlap. A value of 1 then constitutes a
perfect match, whereas a value close to 0 indicates dissimilarity.

Metric definition 14. The ‘neuron Gaussian histogram intersection’ (NGHI) is

NGHI(f,D,i,E)

= 2 min (N(E[6+1]) — N(E[e]), E.{E[¢] fili] = sz

> < NI <E[e+1]})

where V() is the unit Gaussian CDF, E is the edge vector that defines the buckets and curly braces
denote an indicator variable.
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In figure we plot E;NGH I, with

E = (—o00,-1.8,—1.4,—1,-0.6,-0.2,0.2,0.6,1,1.4, 1.8, c0)

We obtain very similar results as for NKURT. Before training, stable architectures have an NGHI
value above 0.9, and often above 0.95, indicating that their neuron distributions have CDFs com-
parable to a Gaussian. GUAs have NGHI values close to 0, with GEAs still having NGHI values
mostly above 0.8. After training, NGHI is significantly lower overall and the architecture type is
less predictive.

Property 2: Distribution of neuron expectations To show that f% is elementwise and generated

by NV (0, €(q, c)) as 6 is random, we need to evaluate the covariance kernel. We calculate the kernel
for study A architectures in the next section. For now, we will show that the neuron expectations
across an FC layer for a given (typical) 6 appear like a Gaussian sample. We use similar metrics as
above.

Metric definition 15. B
KURTEX,(f,D) = K, [[i]

Metric definition 16.

GHIEX,(f,D,E)
| < ﬁ[_ﬂ - Ez/ﬁ[li]
= VE (Al — Eo fili")?

= ) min (N(E[e +1]) — N(E[e]),E{Ele < Ele+ 1]}>

where N () is the unit Gaussian CDF, E is the edge vector that defines the buckets and curly braces
denote an indicator variable.

We give results in figures [5.3] and [5.4] with the same edge vector as before. Before training, KUR-
TEX is close to zero and GHIEX is close to 1 for all architectures including GUAs and GEAs,
indicating that neuron expectations appear highly Gaussian across the layer.

This is to be expected. If f; is an FC layer, we have f; = f,W,, so we have f; = fi,W,. f
can be viewed as a random vector that depends on the parameter sub-vectors of layers f; through
fx. Drawing f; from the meta-distribution corresponds to drawing both f;, and 17, independently.
Because of the symmetry of I¥; when it is either Gaussian or orthogonally initialized, we have that
the orientation of f; is independent of f;. Further, since KURTEX and GHIEX are independent of
the length of f;, both metrics are entirely independent of f,. But for a fixed f;, the distribution of f;
is either Gaussian when W, is Gaussian initialized or indistinguishably close to Gaussian when IV,
is orthogonally initialized. Hence, for any FC layer f; in any architecture with respect to any input
distribution, the distribution of KURTEX and GHIEX induced by @ is the distribution those metrics
attain on a Gaussian sample with size equal to the width of f;. In plain terms, the distribution of
neuron expectations across an FC layer appears as Gaussian as a sample from an actual Gaussian.

Because of this, any deviation we observe from KURTEX = 0 and GHIEX = 1 in figures
and [5.4]in the initial state can be regarded as sampling noise caused by the finite layer width,
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at least for non-residual architectures where f 1 is actually FC. In graph (A), architectures have
width 100 and in graphs (B-D), architectures have width between 130 and 1000. This causes
neuron expectations to appear more Gaussian for our study A architectures. This above insight
also provides further context for figures [5.1and [5.2] For our stable architectures, the individual
neuron distributions in f% in the initial state appear significantly more Gaussian than samples from
a Gaussian distribution with size between 100 and 1000.

After training, we find that neuron expectations across f% tend to become less Gaussian, though
not much.

While we have shown that neuron expectations across an FC layer appear Gaussian for a fixed
0, this does not necessarily imply that they are mean zero elementwise Gaussian as ¢ is random.
However, we would obtain this from the above analysis if f; has fixed square mean. In section
we show that this is true as dyg — oo under the conditions of theorem |5 and approximately true
empirically. Finally, in that section, we will calculate €(q, ¢) and show that it empirically predicts
the standard deviation of neuron expectations in FC layers. This completes the analysis of property
2.

Property 3: Standard deviation of individual neurons Again, we will not calculate the value
@(q,q) —€(q, c) as it arises in property 3 for now. We will focus on demonstrating that the standard
deviations of neuron distributions are approximately constant across the layer. Hence, we use the
coefficient of variation of standard deviations.

Metric definition 17. The ‘coefficient of variation of neuron standard deviations’ (CVNSTD) is

CVNSTD(f, D) = S8/l

A low value of CVNSTD indicates that the mean of standard deviations is much larger than the
standard deviation of standard deviations, which indicates that the standard deviations are relatively
constant across the layer as desired. This is what we find in figure [5.5 The largest CVNSTD
values before training are around 0.5 and are largely observed on GUAs and GEAs. However, the
“advantage” of stable architectures is not as drastic as e.g. in figures [5.T]and [5.2] We also find that
overall, CVNSTD values are much smaller for study A architectures in graphs (B-D) than for the
simple architectures in graph (A). This is because study A uses orthogonal initialization for weight
matrices, whereas the simple architectures use Gaussian initialization. Given some fixed value of
Covy,, it is easy to see that minimizing C'V N ST'D; requires that the columns of ¥/, have fixed and
equal length, which happens under orthogonal initialization when d; > d;, but not under Gaussian
initialization. Further, the spectrum of Covy, itself tends to be better conditioned under orthogonal
initialization [Pennington et al., 2017, Saxe et al., 2014]].

After training, while CVNSTD values are much larger, standard deviations of neuron distributions
are still relatively constant across the layer.

In section , we prove that lelMFHSmle% converges to €(q,q) — €(g,c) a.s. as dyp — 0.
Demonstrating this empirically for FC layers in section[5.3.3|will complete the analysis of property
3.
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Property 4: Neuron independence Finally, we examine to what degree the neuron distributions
are independent. A staple metric for assessing independence is correlation.

Metric definition 18. The ‘neuron correlation’ (NCORR) is

C..(fild], £ili"))

NCORR(f, D) = {|E;, ( )

(/D) \/ Se fi[i]S=fili]

The covariance operator C and its estimator are defined in section It is worth noting that

we consider the quadratic mean of pairwise correlations rather than the arithmetic mean. This is

necessary because a positive and negative correlation with the same absolute value is equally likely
due to the symmetry of WW,.

In figure we plot N CORR1 We find that even before training, most architectures exhibit

some degree of correlation, and ‘that the largest correlations tend to occur in GUAs and GEAs.

Some amount of correlation can be explained by Gaussian initialization itself. Non-zero correla-

tions between columns of W lead to non-zero correlations between neurons. In fact, even if Covy,

is the identity matrix, we would expect NCORR 1A \/27. Since architectures in figure A)
2

have d1 = 100, it is unsurprising that we do not observe N C’ORR1 values below F As ex-
pected neuron correlations are smaller for study A architectures than the simple architectures, as
they are orthogonally initialized.

It is also interesting to note that NCORR, is 0.19 / 0.16 / 0.17 when evaluated for CIFAR10 /
MNIST / waveform-noise respectively. Hence, the majority of stable architectures with orthogo-
nal initialization actually reduce neuron correlation during forward propagation in the initial state.
Since we would expect an orthogonal transformation to approximately preserve neuron correla-
tion, this reduction is caused by the nonlinear layers. Pennington and Worah| [2017] studied the
decorrelating effect of activation layers.

After training, NCORR rises significantly and can attain values close to 1.

If neuron distributions are independent across a layer, we expect the square mean of layer values
to be approximately constant across D. See e.g. proposition |10 in the next subsection. Hence,
another way to measure independence is with the metric below.

Metric definition 19. The ‘layer coefficient of variation’ (LCV) is

Sall fill2
E.[ fill2

In figure we plot LCV% . The results are more drastic than for the NCORR metric. Stable
architectures have an almost perfectly constant length, whereas many GUAs and GEAs exhibit
severe variation. To appreciate the extent of this variation, consider an architecture with batch
normalization. The largest possible value of LCV at a BN layer is attained when a single layer
value in the batch has far greater length than the others, and then LC'V =~ /|B|. Since we use a
batch size of 250, many GUAs actually come close to this theoretical maximum. Length variation
remains very small for stable architectures after training.

LCV|(f,D) =
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It turns out that studying the degree of variation among layer lengths is a key to explaining Gaussian
instability in section
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Figure 5.1: NKURT averaged across an intermediate fully-connected or addition layer. In graph
A, we depict the range across 100 random seeds and therefore 100 random initializations for 40
simple fully-connected architectures on CIFAR10 with a default depth of 51. The interval depicts
the range of values across the random seeds and the filled square depicts the mean. In graphs B-G,
we depict the value for study A architectures, before and after training. We place architectures on
the x-axis in ascending order. Green markers correspond to GUAs and red markers correspond to
GEAs. Some values fall outside the range of the y-axis. In graph A, we specify those values in the
graph. Conclusion: Neuron distributions in FC layers of stable architectures in the initial state are
approximately Gaussian with respect to excess kurtosis. This is not true for GUAs / GEAs.
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Figure 5.2: NGHI averaged across an intermediate fully-connected or addition layer. Graphs are

analogous to figure Conclusion: Neuron distributions in FC layers of stable architectures in

the initial state are approximately Gaussian in their cumulative distribution function. This is not

necessarily true for GEAs and especially GUAs.
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to previous figures. A very small number of values fall outside the range of the y-axis in graphs E-
G. Conclusion: Neuron expectations appear very Gaussian across an FC layer, especially before
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Figure 5.3: KURTEX at an intermediate fully-connected or addition layer. Graphs are analogous
training.



—-— (0¢ mdop) NT-prowsts
—-— JONSN-NT-21renbs
- Ng-prowsts
Ng-orenbs
—. Ng-uerssner)
—— Ng-que) UoAs
—.— JONSOY-NT-qure)
—— NT-quel
— 1ONSOY-NT-NTPH
- NT-NTAS
= Nd-N'T°Y
- NT-NToY
— 1ONSOY-NT-o1enbs ppo
—- JONSN-N-UeISsnes) _ —~ o0 ©
—a JONSN-NE-prowsSis 8 < <
—- quey
— NT-o1enbs ppo
— NT-Jque) uoAd
JNSOY-Ng-o1enbs
= 1ONSOU-NG-1'T°Yd
— 1ONSOY-NT-UeIssner)
—- 1ONS-Ng-[Ue) USAD
—— Ng-quel
—- JONSOY-NT-PIOWSIIS
— Nd-ATIS
—— Jue) uaA9
—— 1ONSOY-Ng-qure)
- NT4as
—. JONSOY-NT-Ure) ToAd

(2 adep) axenbs ppo &
—— Ny =
— NT-o1enbs
—— (0g qydop) prowsrs
—- (g1 yydep) uerssnen
— 1ONSOU-NI-NTAS
Ng-orenbs ppo
—. N'T-ueIssner)
(2, yadep) arenbs
— FONSOU-NT-N'THS
1ONSOY-Ng-oIenbs ppo

waveform-noise
waveform-noise

0.4

MNIST
MNIST

—

0.8
0.6
0.4
4 0.4

various fully-connected, default depth 51, 100 random seeds

CIFARI10 - FC
CIFARI0 - FC

1 1 1 1
- ©® 2 <+ o o°
o o o o

0TUVAID) Suturesy o10§0q T Y71 HO

— 0 © = o o _~ 0 © = o o
=] =] NO (=] (=] (=] NU (=]
w:m:mdha QI0Jq TXHIHD m:m:ﬂm.z oYge TXHTHD

(A) =
(B)

(E)

to previous figures. Conclusion: Neuron expectations appear very Gaussian across an FC layer,
237

Figure 5.4: GHIEX at an intermediate fully-connected or addition layer. Graphs are analogous
especially before training.
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Figure 5.5: CVNSTD at an intermediate fully-connected or addition layer. Graphs are analogous
stable architectures before training.
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Figure 5.6: NCORR at an intermediate fully-connected or addition layer. Graphs are analogous

to previous figures. Conclusion: Some correlation between neurons does arise, especially when

Gaussian initialization (graph A) is used over orthogonal initialization (graphs B-F).
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Figure 5.7: LCV at an intermediate fully-connected or addition layer. Graphs are analogous to

previous figures.

Conclusion: Stable architectures have near constant layer lengths, especially

before training, whereas GUAs and GEAs often have wildly diverging lengths.
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Dataset CIFAR10 MNIST waveform-noise

5 5 5
4 4 4
3 3 3
INSQD density ) ) )
1 1 1
0 1 2 0 1 2 0 1 2
4 4 4
3 3 3
INCMD density ) ) )
1 1 1 /\
0—1 0 1 0-1 0 1 0-l 0 1

Table 5.2: INSQD and INCMD taken on the union of training and validation set for study A
datasets. Note that INSQD for waveform-noise appears jittery because the sample size is smaller.
Conclusion: Our datasets can be viewed as approximately ‘elem-like(1,0)’.

5.2.2 Neural regular data

In theorem 4] we used the condition that the input distribution D is elem-like(q, ¢). We explained
that this condition cannot be fulfilled exactly. In this subsection, we further analyze it. We begin
by simply examining the distribution of the input square mean and co-mean.

Metric definition 20. The ‘input square mean distribution’ (INSQD) and ‘input co-mean distribu-
tion’ (INCMD) are

INSQD(D) = E;x[i]*> where z ~ D
INCMD(D) = E;x[i]2'[i] where z,2' ~ D

We plot the density functions of INSQD and INCMD in table [5.2] They were taken on the union
of training and validation set after data processing as always. We find that INSQD ~ 1 and
INCMD = 0. Of course, for a hypothetical exact elem-like(1,0) distribution, INSQD would
have all its probability mass concentrated at 1 and INCMD would have all its probability mass
concentrated at 0. This suggests that our datasets are approximately elem-like(1,0) and hence
suitable for our mean field theory of meta-distributions.
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Note that INSQD = 1 can simply be achieved by normalizing the length of inputs and
E; . INCMD = 0 can simply be achieved by normalizing the expectation of input components.
See pointwise and componentwise normalization in section respectively. E,.INSQD = 1
and E, ,,/JNCMD = 0 indeed holds on the union of training and validation set of our datasets due
to data processing according to section and hence in figure [5.2] (Of course, this means that
training and validation set are no longer strictly an independent sample for evaluating INSQD and
INCMD.)

5.2.2.1 Elem-like ~ elementwise

It turns out that an elementwise distribution becomes more and more elem-like as dimensionality
increases. This explains our choice of the name ‘elem-like’.

Proposition 10. Let My be a meta-distribution over distributions X; over scalars s. For each
d > 0, let My be the elementwise meta-distribution over distributions Xy over vectors xq of
dimensionality d that is generated by M. Let ¢ = Ex,p,.s~x, 8> and ¢ = Ex, o, (Esor, s)2

Let x4 and X', be drawn from the same X, which is drawn from M. Then

lim E;xq[i]* = q a.s.
d—ro0
lim E;xq[i]x}[i] = cas.
d—o0

Note that if M; is MN (g, ¢) in the above proposition, then the ¢ and ¢ values we obtain are exactly
the parameters of the meta-Gaussian. This was the reason behind parametrizing the meta-Gaussian
in the way we did. Of course, the proposition also holds when M, has all its probability mass on
a single fixed distribution &7, which implies that each component of y, is drawn IID from AX}.

In light of the proposition, the elem-like property can be interpreted as requiring that D mimics
an elementwise distribution, which happens to be the type of distribution that allowed us to set up
mean field theory in section [5.1]in the first place. More generally, we can glean from proposition
[10] that the law of large numbers will lead to approximate elem-like-ness if input components are
“relatively independent”, i.e. sufficiently independent that an average over all input components
tends to exhibit a significant amount of convergence towards its mean. As mentioned in section
the NCORR, values obtained from our datasets are 0.19 for CIFAR10, 0.16 for MNIST
and 0.17 for waveform-noise, i.e. they are low.

5.2.2.2 Elem-like ~ use a small NLC

In section [4.5] we showed how the apparent nonlinearity of the true input-label function, as mea-
sured by the PNLCD metric, is predictive of the ideal architecture NLC for a dataset. PNLCD
is based on comparing the distance of labels relative to the size of the codomain to the distance
of inputs relative to the size of the domain. Our evidence suggested that PNLCD concentrating
around 1 would lead the dataset to also require a small initial NLC between 1 and 5. We de-
scribed how inputs drawn from the unit Gaussian distribution, which is elementwise, would lead to
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PNLCD concentrating around 1. We showed that datasets must have “tight input clusters” to attain
larger PNLCD sample values. We showed that our three study A datasets largely do not have such
clusters. Now, we relate that analysis back to this section.

Proposition 11. Let D be a data distribution using a finite set of labels in the form of one-hot
vectors. Let py, .., pc > 0 be the probabilities of each of the C' > 1 classes occurring. Let the input
of D be elem-like(q, c) for some q > ¢ > 0.

Then PN LCD(D) = ————— with probability 1 — Z<C=1 p; and 0 with probability E?Zl .

/ c
=37 p%

In practical terms, if the inputs are elem-like and the class frequencies are not too unbalanced,
PNLCD is concentrated at a value close to 1 for datapoints of different classes.

5.2.2.3 Discussion

We now have three different views of dataset regularity - (i) via its apparent nonlinearity, ideal
NLC and the PNLCD metric, (ii) via the mean field theory of meta-distributions, elem-like-ness
and the INSQD and INCMD metrics and (iii) via surrogate input distributions, elementwise-ness
and the NCORR metric. These are all related. Below, we state a definition that unifies the three
views.

Definition 21. A data distribution is ‘neural regular’ if (i) datapoints with relatively different la-
bels tend to have inputs that are relatively distant within their domain, (ii) input components are
relatively independent and (iii) the distributions of input square means and co-means are relatively
concentrated around fixed values.

Neural regularity, unfortunately, is not well-defined at this point. However, as also argued in
section [4.5] we suspect a large fraction of practical deep learning datasets, especially after data
processing, to be sufficiently neural regular to produce the results obtained in this work, as well
as other important results. This can serve as a foundation for data-agnostic ZSAD, as outlined in

section[1.4.1.2

We note that the NLC is not just useful for neural regular datasets. In section 4.5|we showed that
the NLC is also predictive of test error when PN LC'D = 1 is severely violated for datapoints of
different classes. In that case, we have to estimate the ideal NLC range based on e.g. examining
PNLCD.

Of course, we are not claiming that the precise requirements for the predictiveness of the NLC
and the predictiveness of our mean field theory of meta-distributions will turn out to be exactly the
same. There may be “imperfectly neural regular” datasets that are more suitable for one concept
than the other. Investigating this beyond the analysis already performed is a task for future work.
However, it is noteworthy that the predictiveness of the NLC, as modulated by the true input-label
function, is closely related to the predictability of the NLC using mean field theory in the sense of

figure
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5.3 Maean field theory of practical metrics and architectures

5.3.1

A-architectures

We now apply the abstract results from previous sections to derive even more practical insights.
Specifically, we calculate the limit of metrics such as the NLC as width converges to infinity. In
subsection[5.3.4] our analysis results in a simple and instructive formula for the limit of the NLC.

In section[3.1.1] we detailed the types of fully-connected architectures we used for study A, which
are some of the simplest types of practical architectures. We will use our study A architectures as
a blueprint in this section.

Definition 22. We say an architecture f is an ‘A-architecture’ (after study A) if it has the following
properties. A-architectures follow our standard framework from section [2.3.4] except for a single
property marked with (*).

22.1

22.2

22.3

224

22.5

22.6

22.7
22.8

22.9

22.10

It is composed of layers using the following operations: fully-connected, activation, bias,
layer normalization, batch normalization and addition. See section for how we
define these operations.

Activation functions used are non-constant, twice differentiable, and both they and their
derivatives are controlled by C*2.

Addition layers have fixed, non-zero addition weights.

The input layer has fixed width dy = d;,. Non-input, non-output layers f; have width
d;dvr, where d; is fixed and dyr can vary. There is at least one non-input, non-output
layer. The output layer may have variable width d;dyg or be a fully-connected ‘readout
layer’ of fixed width d;, = d,. We also use dMF to denote the width of a layer, which can
be d; or d;dyr depending on the layer. (*)

Components of weight matrices WV, are initialized as independent Gaussians with mean
2

zero and variance % for some ‘variance parameter’ 012 > ( that is fixed as dyf varies.
k

Components of bias vectors [; are initialized as independent Gaussians with mean zero
and variance o7 for some fixed ‘variance parameter’ o7.

If f; is a normalization layer, the regularizer ¢, is positive.
f uses either batch normalization or layer normalization layers, but not both.

In the layer graph, there do not exist two directed paths that begin at distinct activation
layers, end at the same layer, and do not contain any fully-connected layers.

In the layer graph, there does not exist a directed path that begins at an activation
layer, ends at a different activation or normalization layer, and does not contain a fully-
connected layer.
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22.11 In the layer graph, there do not exist two distinct directed paths that begin and end at the
same layer and contain no fully-connected layer outside of their starting point.

A-architectures follow the framework of section[2.3.4] except that layers have variable width. Vari-
able width stems from mean field architectures defined in section In contrast to mean field
architectures, A-architectures have a single input and output layer and there is no weight sharing.

Our architectures from study A are A-architectures when dyr = 1, except (i) weight matrices are
orthogonally initialized, (ii) some activation functions are only directionally differentiable instead
of twice differentiable everywhere and (iii) the last addition layer in residual architectures multi-
plies the skip connection with a fixed orthogonally initialized matrix. These are minor differences
in this context. Large orthogonally initialized matrices have approximately Gaussian entries with
very mild cross-entry dependency. Our directionally differentiable activation functions are also
very close to smooth activation functions. For example, ReLLU is approximately % log(1 + e°*) for
some very large c. See section for further discussion on assuming differentiability in neural
network analysis.

A-architectures turn out to be a specialization of mean field architectures. This insight is behind the
results given below. While A-architectures allow more than the two layer operations used in mean
field architectures, each possible combination of these operations can nonetheless be expressed in
terms of those two. Yang [2019] explained how to cast operations such as layer normalization
and bias as elementwise layers. In this section, we cast entire architectures made up of up to
five different operations as mean field architectures, which requires groups of layers to be re-cast
jointly. This then enables the utilization of e.g. background theorem [I]to prove the results below.
Despite re-casting groups of layers as one, we show that we can nonetheless calculate a wide range
of key metrics via recursion from one A-architecture layer to the next.

We note that many of the properties of A-architectures given in the definition, which are restrictive
in nature, are not “strictly necessary”. One can derive results similar to the ones given below for
more general classes of architectures, including those admitting convolutional layers, as we further
discuss at the end of section and in section Because of space and time limitations, we
decided to focus on a class of architectures that would yield calculation rules that are as simple and
instructive as possible. We hope that our presentation is itself instructive and will allow readers to
generalize our results to whatever architecture class they are interested in with the techniques we
employ.

5.3.2 Metric limits in A-architectures

We now show how to calculate the limits of metrics as width converges to infinity in A-
architectures. After a definition, we state the main theorem of this section.

Definition 23. The ‘covariance kernel’ €, of an activation function 7 and scalars ¢ > ¢ > —q is

0
C-(q,¢) = Egpnum7(s)7(t) where 1 = <0> Y= (q c)

¢ q

We also write €, (c) with 1 > ¢ > —1 short for €.(1, ¢).
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This definition mirrors that of the covariance kernel of an architecture from section When
¢ = 0, the definition simplifies to €.(¢,0) = (Esn0,g7(s))? and when ¢ = ¢, the definition
simplifies to € (q, ¢) = Es 0,97 (5)>.

Theorem 5. Let ...

e ... f be an A-architecture with an output layer of variable width.
o ... D be an input distribution.

o ... 2 M) be a sample from D of size N > 2 and let DY) be the discrete uniform
distribution over that sample.

o ... €be the vector of all regularizers used by normalization layers in f.
Assume:

e D is elem-like(q, c).

e g>c

If f does not contain batch normalization but can contain layer normalization layers, we have

LmE, fi(zM)[i] = my (5.1)
mE, fy(zM)[i]> = q (5.2)
HmE; f; (2 [i] fi(z)]i] = ¢ (5.3)
1
tim e () = (5.4)
1 m
1
thEfoz(ﬂf)H% = q (5.5)
1
limWHEccfl(x)Hg = q (5.6)
1
limWHSxfl(x)Hg = q—q (5.7)
1
lim e | ()| = o (5.8)
]_ m ~ vm
hmW]ExTr(‘ﬂm(a:)Covfm.ﬁm(x)T) - % (5.9)
i NLO(fi(f). fo( D)) = | 9Lm = Em) 5.10
n (fl(f ) f( )) gm(ql_cl) ( )

where
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ok ~ DW)

... lim stands for limg o N—y00 (limdwﬁoO ...a.s.). The inner limit takes dyr to infinity and
the outer limit takes N to infinity as well as € to zero. The inner limit is an “almost sure”
limit.

e ... my q; ¢; and g; are calculated via table
e ... fu, is a bottleneck for f;.
e ..0<m<I<L

e ... randomness is induced by 6 and the x™.

Further, if the output layer is instead a readout layer of fixed dimensionality d,,, the above
limits do not necessarily hold when | = L. Instead, (a) as dyr — oo, the meta-distribution
of the output layer expansion-converges to the elementwise meta-distribution with generator
MN (parm1, parm2), where limz,qparml = q; and limz,oparm2 = c;. The first level of
randomness is induced by D and the second level by 0. And, (b) when N is fixed, for almost
all samples, as dyp — oo, (f(zM), .., f(™)) converges in distribution to a Gaussian that
is elementwise over output vectors where the generator has mean zero and covariance matrix
K (N, parml, parm2), where again limg .o parml = q;, and limz_,o parm2 = ¢;. Randomness for
each sample is induced by 6.

If f does not contain layer normalization but can contain batch normalization layers, analogous
statements hold. See section[l1.6|for details.

Because this theorem is already very long, we decided not to give the BN case explicitly here,
but instead defer it to section [I1.6l Nonetheless, we include BN in table[5.3] and in the discussion
below. As in section we generalize to the BN case by letting f take batches of inputs instead
of individual inputs.

5.3.2.1 Interpreting theorem

Assumptions As in theorem 4] the most severe assumption is that D is elem-like. See section
[5.2]for a discussion of elem-like-ness, which holds approximately for our study A datasets.

q > cis a mild assumption. ¢ = ¢ would effectively imply that all inputs to f are equal, and
therefore that each layer takes a single fixed value. This would e.g. make the NLC invalid and BN
degenerate as € converges to zero. Since the definition of ‘elem-like(q, ¢)’ also requires ¢ > 0, we
have ¢ > ¢ > 0.

Note that we no longer explicitly require rank stability or parameter-controlled multi-activation
functions in theorem [5] the way we did throughout sections and Now, we obtain these
things indirectly from our other assumptions and the definition of A-architectures.
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Value fi Formula

qQ input ¢ parameter of inputs
q FC o7k

q;  activation &, (an, qi)

qN bias ar + o}

qu LN 1

q BN 1

q  addition oW Qi)
¢ input ¢ parameter of inputs
] FC o 12 Ck

¢ activation ¢, (qk, k)

¢ bias cr + of

C LN =

¢ BN 0

¢ addition fll:l wf,ﬂ Chy [rd]
m; input undetermined
i FC 0

my activation Esn(0,q1) T (s)
ny bias my

my LN 0

ny BN 0

m;  addition SNy my
o input 1

o FC o} Ok

ol activation Q:TZ (A, 9% ) Bk
o] bias Ok

(2] LN %

I BN p e

o addition oy WF . O]

Table 5.3: Recursive rules for calculating mean field limits in an A-architecture f.
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Limits It is important that we take the limit over dy first, before we take the limit over N.
Therefore, we are not technically making statements about metric values with respect to D as dyg
converges to infinity, but only about the metric values with respect to arbitrarily large samples of
D as dyr converges to infinity. This is not entirely satisfying from a mathematical standpoint.
However, it i1s practically sufficient because we can only ever apply a neural network to a finite
number of inputs. |Yang [2019] also focused on arbitrarily large, finite sets of inputs. The reason
for this ordering of the limit is because we follow a proof strategy as outlined in section
where we propagate the sample forward using the N-duplex of f. We can then evaluate means
and co-means of that /N-duplex to obtain the metric values with respect to the sample of size N.
Exchanging the limits is likely possible, but would require a more powerful version of background
theorem [I] which goes beyond the scope of this work.

The limit over €'is of minor importance. We need positive regularizers to eliminate the singularity
of the normalization operations, which can be considered a “nuisance” for theoretical analysis. If
€is very small, as it is in practice, it has no significant impact on any observed phenomena.

As mentioned at the beginning of section batch normalization with a finite batch size is a
cumbersome operation from a mean field perspective. When theorem [3]is applied to architectures
with BN, we take the limit of batch size to infinity while taking the limit of N to infinity. When
neural networks with BN are deployed after training, the batch moments are generally replaced by
training set moments, as we described in section This is similar to taking the batch size
towards infinity. Unless very small batches are used during training, infinite batches capture the
mean field behavior of the architecture adequately.

Limit quantities m,, q; and ¢; can be easily interpreted as layer mean, square mean and co-mean
based on statements (5.1)), (5.2) and (5.3). g; can be understood in light of statement (5.4). This
yields lim ?}ﬂ;HJLO(a{:(l))H% = g;. We further have ||J0(zM)||%2 = E||J0(z™M)ul|3 when u is
unit Gaussian. Hence, g; can be regarded as the limit of the square mean of the gradient as it is
forward-propagated from the input. Using forward-mode propagation instead of backpropagation
for the gradient enables us to base theorem [5) on background theorem [I] instead of the master
theorem of |Yang [2020b]. |Yang| [2020b] requires more complex mean field architectures and
stronger assumptions to model gradient backpropagation. This strategy also allows us to bypass
the gradient of the loss function Z—Jf which is not part of the mean field framework. [Yang [2020b]
have to use a Gaussian approximation for the gradient of the loss function. We suspect that using
forward-mode propagation, the tools and weaker assumptions from |Yang [2019]] may actually be
sufficient to obtain the results of |Yang| [2020b].

Statements We will interpret the statements one by one.

(5.I) This is equivalent to the first statement of background theorem I}

(5.2) and (5.3) This is equivalent to the second statement of background theorem [I] gq; is the
layer square mean and corresponds to ¢;;. ¢; is the layer co-mean and is obtained
by propagating 2! and z? jointly through the 2-duplex of f. ¢; corresponds to
¢.r, where f; and fp form a pair in the duplex.
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As explained above, g; can be regarded as the square mean of the forward-
propagated gradient. It ultimately derives from the second statement of
background theorem [I] when gradient propagation is cast as “regular” for-
ward propagation in a mean field architecture (section [I1.5.2). By definition,
Jo = TimTmo because f,, is a bottleneck for f;. Statement yields
1Ti0(@)[2 ~ gio [|Tmo D) = g and [| T (D)% ~ £ So state-
ment can be interpreted as saying that the Frobenius norm of the Jacobian
is decomposable, similar to section 4.4.11]

(5.5) This is similar to (5.2)), except that we take the expectation over x in addition to
the mean over i. Since x is drawn from a finite sample, we simply take the mean
over that sample, which works as expected.

(5.6) This is an interesting statement that relates the co-mean of layer values to the
magnitude of neuron expectations. It can be understood in light of proposition
[I0} which relates the co-mean of two vectors to the square mean of their compo-
nentwise expectations.

(5.7) This follows directly from the previous two statements as ||S, f;||3 = E,|| fi||3 —
||E. fi]3-

This follows from (5.4) by taking the mean over a finite sample.

(.9) First, we observe Tr(Covy,,) = IS¢ fim(z)]|5 and  hence
lim g Tr(Covy,) = (qm — ¢n), according to statement (5.6).  Sec-
ond, we observe —rE,Tr(Jm(z)Tim(x)”) = ZwE|lTmllE =~

1 1

random. Statement (5.9) is the amalgamation of both observations.

(5.10) This is the square root of the ratio of (5.9) and (5.7).

2)71 if Jno is assumed to be uniformly

Expansion-convergence and convergence in distribution results These are straightforward ap-
plications of theorem 4| and background corollary [2| respectively, where the abstract € based on
table [5.1) has been replaced by concrete values based on table

Table We will begin with some high-level observations.

g, always depends multiplicatively on g,. This is because gradient propagation multiplies the
gradient of each layer to the in-flowing gradient. If the magnitude of the in-flowing gradient
changes by some factor, so does the magnitude of the out-flowing gradient.

The recursion of q does not depend on ¢. This is because q is the limit of quantities that can
be obtained by forward-propagating only a single input without regard to its relationship to other
inputs, as long as f does not use BN. And the BN operation sets g to a fixed value regardless of c.
Conversely, the recursion of ¢ does depend on g. This is because operations such as activation and
LN depend upon the square mean of the dependency in a nonlinear fashion.
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The recursion of q and ¢ does not depend on m. This is because we chose the definition of A-
architectures intentionally to eliminate this dependency. q and ¢ are required to calculate the NLC
limit, but m is not. So A-architectures allow us to calculate the NLC with the simplest possible
recursion. Both g and ¢ would depend on m if we allowed, say, activation layers followed by
normalization layers or addition layers that depend on multiple activation layers.

In order for all statements of theorem [5|to be valid, we require q; > ¢; > 0 and g; > 0 for all [.
Since we assume g > ¢ > 0, we have qo > ¢y > 0 and table@]yields go = 1 > 0. It turns out
that the recursion preserves this property from layer to layer. This is easy to see for non-activation
layers. For activation layers, we have the following.

Proposition 12. Assume T is continuous, non-constant and q > ¢ > —q. Then

¢ (q,q9) > €(q,c)

Proposition 13. For any 7 and ¢ > ¢ > 0, we have
¢-(q,¢) 20
Proposition 14. Assume T is continuous, not the zero function and q > 0. Then

¢ (q,q) >0

So, putting things together we have the following.

Proposition 15. Let f be an A-architecture. Let q;, ¢; and g; be defined according to table |5.3
where ¢ > ¢ > 0. Then q; > ¢, > 0 and g; > 0 for all l.

In general, the rules for g, ¢ and g look similar to the definition of the operation itself, and similar to
each other. This will become more apparent below, where we discuss the rules for each individual
operation.

input The conditions on D were chosen specifically to yield a fixed q and ¢ value.

FC Both the operation and its gradient apply a multiplicative transformation to a vector,
where the scale of that transformation is controlled by o7. This is reflected in the
recursive calculation rules. Because each weight matrix entry has mean zero, we obtain
an m value of zero.

activation We effectively replace 7 with €, and 7’ with &, during input / gradient propagation
respectively. In this way, the recursion mimics the layer operation. €, is defined in
terms of an expectation over a Gaussian distribution, similar to [E, in table @ We will
dive deeper into this in section[5.4]

bias Because the same bias vector is added to both f;,(zV)) and fi (), we experience the
same increase in both the square mean and co-mean. Bias vector addition has a unit
gradient, so there is no effect on g;. Since bias vector components have mean zero,
there is no effect on my.

251



LN Note that one property of A-architectures is that normalization layers cannot follow
activation layers before another FC layer. Therefore, we have m; = 0. So the mean

subtraction part of LN has no effect on the limit and we obtain m; = 0 regardless.
Dividing the dependency by the standard deviation has the effect of dividing qy, ¢ and
gk by qp.

BN The key difference with LN is that BN removes the neuron mean across inputs in a
batch, whereas LN removes the layer mean for each input. So the subtraction part of
BN affects ¢ instead of my, which may be nonzero. So we subtract ¢ from both gy
and ¢, and then divide by q; — ¢, which also affects the gradient.

addition We apply weighted addition to all limit quantities, where quantities that represent a
square mean or co-mean require squaring the weights.

Scope As discussed in section the proof of theorem [5] requires us to re-cast segments
of the layer graph of the A-architecture between successive fully-connected layers as a single
elementwise layer in a mean field architecture. This process is highly dependent on the form that
this segment takes. Properties [22.1] [22.8] [22.9] 22.10|and 22.11] of A-architectures limit the range
of segments that can occur in an A-architecture. While the complexity of segments for which we
prove mean field limits, to our knowledge, goes beyond that of related work, we need to draw the
line somewhere. As stated, we orient ourselves on the architectures we use for study A. Limiting
the scope of the class of A-architectures also keeps the calculation rules of table simple and
enables e.g. proposition [I6]

If we did not have property it would be possible to have consecutive activation layers in an
A-architecture. The first activation layers could induce non-Gaussian neuron distributions. Then it
would no longer be possible to model the dependency of the second activation layer as Gaussian,
as is done by the covariance kernel €. In table the recursion for g, ¢, and g do not depend
on m. Without property it would be possible to have an addition layer that adds together
two activation layers, which can have non-zero m values. Then, depending on whether those m
values e.g. have the same or different signs, they could cancel out or amplify in the addition layer,
which would have a knock-on effect on e.g. q. The calculation rules for addition layers in table
[5.3] assume that the weighted sum is taken over essentially independent layers. Without property
this would not be the case as there could be an addition layer that e.g. adds a layer to itself.

Properties[22.4] 22.5|and 22.6]are basic requirements for applying mean field theory. Property
is technical and ensures that normalization operations do not diverge for e.g. zero input vectors. We

suspect property is unnecessary in that theorem [5] as stated would hold without it. However,
BN and LN layers require somewhat different proof strategies. We did not consider them jointly
to keep the complexity and length of the proof at its current level. Property [22.3is a convenience.
Any layer graph edge corresponding to a zero addition weight can simply be removed.

The aspect of property [22.2] that requires differentiable activation functions is necessary to state
theorem [3 in terms of gradients. We use the second derivative of activation functions to prove
parameter-control for layer graph segments containing LN and activation layers. A weaker as-
sumption, such as a locally Lipschitz derivative, might also suffice. Finally, assuming control by
CE? is necessary to apply background theorem and its corollaries.
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Metric name Notation Definition Statement Limit

Layer quadratic LQM,(f,x) VE: fi(z)[i]? 5.2 Vai
mean
Jacobian Frobenius  JACEF,,,(f,x) \/L@ | Tim (2)|| P 5.4 N
norm
Layer scale LSCALE(f,D) v i Eellfill3 5.5 Vai
Quadratic mean of QMNEX,(f,D) \/LE [|Ez fil]2 5.6 NG
neuron expectations
Quadratic mean of QMNSTD(f,D) ﬁHSxﬁHQ 5.7 VI — o
neuron standard de-
viations |
Nonlinearity coeffi- NLCNUM,,(f, D) \/dllIEx Tr(JymCovy, J,) 5.9 W
cient numerator

. . Eg Tr(J1,mCov sy, ‘7le) 91 (dm—Cm)
Nonthnearlty coeffi-  NLC),,(f,D) \/ TH(Covy ) 5.10 = parny
cien

Table 5.4: Metrics used to determine the practical predictiveness of theorem [5| For each metric,
we give the statement in theorem [3]it corresponds to as well as its mean field limit.

To fully appreciate the relevance of each of the properties of an A-architecture for theorem [3] it is
necessary to study the proof (sections|[I1.5.2] [I1.6.3).

The requirement that f,, is a bottleneck for f; can likely be eliminated if we set all g values
corresponding to layers that are not descendants of f,, to zero and apply all other calculation rules
as normal.

5.3.3 Empirical analysis

In this subsection, we validate theorem [5 empirically. Specifically, we focus on statements (5.2),
through (5.7), and (5.10). Combining those statements with the analysis done in section
[5.2.1] validates the expansion-covergence clause at the end of theorem [5| Each statement (5.1))
through (5.10) is an equality statement with a left- and right-hand side. The left-hand side is a
limit of a metric defined in terms of propagation through a network of variable but finite width.
The right-hand side contains expressions of “limit quantities”, which are defined via table and
do not require any network or layer evaluation. Below, we discuss how we compute a representative
value for each side. Then, we present results.

Computing the finite width metrics To compute values for the left-hand side of the theorem
statements, we simply ignore the limit. This requires choosing values for the quantities over which
the limit is taken. We replace DW) with D and set dyr = 1. We use a batch size of 250 and set €
small enough so that its floating-point representation is zero, as usual. This turns the left-hand side
into metrics of fixed width networks under the framework of section as we computed them
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throughout this work. The metrics we compute are given in table

Metric definition 21. See table

Each metric corresponds to one of the statements from theorem [5 In table we include addi-
tional square roots. Taking the root on both sides of a theorem statement does not alter its validity,
but makes the quantities a bit more intuitive. (In general, we prefer means over squares of means.)

Computing mean field metrics To compute values for the right-hand side of the theorem state-
ments, we have to use table A few issues arise. (i) Our datasets are not exactly elem-like and
thus do not come with g and c parameters. Because our datasets are normalized to have component
means of 0 and an average neuron variance of 1 across the union of training and validation set, we
set ¢ = 1 and ¢ = 0 in table[5.3] See also section[5.2.2] (ii) As in section[5.2.1] we want to conduct
experiments in the initial state, when weight matrices are not Gaussian initialized, and in the final
state. Hence, we do not generally have explicit access to the variance parameters as strictly defined
in section I@ Hence, we replace o7 in table 5.3 with its finite-width estimate, i.e. dll ||W;||% for

FC layers and dil||5l||§ for bias layers. For Gaussian initialized bias and especially FC layers, this
estimate would be very close to o7 for practical widths, due to the law of large numbers.

Metric definition 22. The ‘mean field metrics’ m;(f,0,q,¢), q.(f,0,q,¢), ¢(f,0,q,¢) and
0:1(f,0,q,c) of an architecture f, parameter value 6 and scalars ¢ > ¢ > 0 are calculated via
table |5.3} where we replace o with ;-||Wj|[3 for FC layers and ||3|[3 for bias layers. For all
these metrics, the default value of ¢ is 1 and the default value of ¢ is zero. f must be composed
of the layer operations in table for the metrics to be valid. Finally, using the same function
arguments on both sides, we write

ﬁl,m(f: 97 q, C) =

Mean field metrics are different from the metrics we defined previously in this work. They depend
not on the network f via function evaluation, but on the architecture f via recursive calculation
rules that utilize the architecture definition. Computing these metrics poses somewhat different
challenges. Instead of statistical estimation, we have to use numerical integration for the Gaussian
expectation inside €.. While this works well enough for a single evaluation of €., it can create
problems when we iterate many times for a deep network. Under Gaussian instability, even 64-bit
floating-point rounding errors can grow to the point of overflow, though this does not happen in
our experiments. We further discuss this in section See also section(3.4.1.1

Mean field theory predicts finite width metrics We plot the finite width metrics from table
vs their estimate based on mean field metrics in figures 5.8 [5.9 [5.10} [5.11},[5.12] [5.13]and [5.14] In
all cases, we depict the estimate on the x-axis and the finite width metric on the y-axis. Each figure
corresponds to one finite width metric. Note that we do not present the value of QMNEX explicitly,

but via the ratio %. This is because computing the neuron expectation incurs an estimation
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error proportional to the neuron standard deviation. Therefore when QM NEX << QM NSTD
we cannot hope to compute QMNEX accurately in absolute terms, but only relative to QMNSTD
or LSCALE.

We find that all mean field estimates are highly accurate when three conditions hold. (i) The
architecture is in the initial state, (ii) we use CIFAR-10 or MNIST and (iii) the architecture is stable,
i.e. depicted in black. Consider especially figure [5.9(A-B). There, we plot the network Jacobian
Frobenius norm along with a confidence interval of +/-2 standard deviations. We find that even
at +/-2 standard deviations, JACF is very close to the mean field estimate, even though the range
of JACF values obtained for different architectures spans 30 orders of magnitude! Consider also
figure [5.14(A-B). We find that mean field theory predicts the NLC of stable architectures highly
accurately in the initial state, and still reasonably accurately for GEAs. It only fails for GUAs,
which do not use popular activation functions. This means that we can use table [5.3] as a neural
architecture design guide. This is the central insight of this chapter.

Let’s look at the three factors we mentioned above that cause the degradation of mean field predic-
tiveness. (1) We find that estimates for waveform-noise are somewhat less accurate than estimates
for the other datasets for most metrics, including the NLC. This is likely explained by the lower
input and output dimensionality, which caused irregular behavior in e.g. section4.4.14] and / or
the lower dataset size which induced noise e.g. in section|4.4.2] (ii) As usual, GUAs and GEAs are
less well-behaved. Of course, in table @ the limits of activation layers model the neurons in the
dependency as Gaussian. Therefore, if they are less Gaussian in practice, as we showed in section
we can expect the theory to be less predictive. GEAs, depicted in red, are still estimated
relatively accurately in general. Note, however, that GEAs have some of the biggest confidence
intervals in figures @ and @ (iii) As usual, architectures are not as well-behaved after training.
However, it is worth noting that the accuracy of mean field estimates after training does differ sig-
nificantly from metric to metric. Specifically, LQM (figure[5.8)) and LSCALE (figure are still
estimated quite well. We conjecture that this is because the architecture does not have an incen-
tive to modify layer quadratic means during training. The architecture does have an incentive to
attain a low NLC after training for reasons discussed in sections[4.4.13]and@4.5] This conjecture is
supported by figure [5.14] where we find that mean field theory overestimates the NLC after train-
ing. More generally, we find that gradient-related metrics (figures are overestimated and
QMNSTD (figure , which is the denominator of the NLC, is underestimated.

We include correlation values in the figures. As usual, the caveat applies that the exact correlation
values are significantly influenced by the frequency of GUAs and GEAs among architectures, as
well as by only considering architectures that attained a non-random validation error after training
in the bottom row of each figure.

The mean field estimate of the NLC usually stays relatively constant during training, but
sometimes changes drastically In figure[5.15(A-C), we plot the mean field estimate of the NLC
before vs after training. We find that the value changes very little for most architectures. Of course,
the only way in which training can impact the mean field estimate is via a change of weight matrix
and / or bias vector magnitude.

Metric definition 23. The ‘parameter growth’ (PARMGROWTH) of a final parameter value 6(7)
relative to an initial parameter value 6 is
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PARMGROWTH (0, 61)) =

In figure [5.15(D-F), we plot PARMGROWTH. We find that the parameter length never decreases
more than a tiny amount, and it stays approximately constant for a majority of architectures. How-
ever, for some architectures it increases by orders of magnitude. In figure [5.15(G-I), we confirm
that significant changes to the mean field estimate of the NLC only happen when the parameter
length undergoes a large relative change, except for a very small number of architectures. Even
when the parameter length changes drastically, the mean field estimate often does not. It is worth
noting that the mean field estimate of the NLC is actually independent of the parameter in study
A architectures when batch normalization is used. Also, PARMGROWTH is highly dependent on
the learning rate. While we chose the starting learning rate in a very systematic fashion (section
[3.1.2), there were sometimes wide ranges of starting learning rates that yielded very similar per-
formance, such that choosing from within this range was essentially random. However, this choice
still affects PARMGROWTH enormously.

Overall, the inaccuracy of the mean field estimate of the NLC after training is not caused by a
change in the value of the estimate, as it is approximately constant for most architectures.
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Figure 5.8: LQM vs its mean field estimate for study A architectures. The metrics are evaluated
at a fully-connected or addition layer halfway through the network, as in figures in section [5.2.1]
because of the narrowness of the output layer. Vertical lines correspond to confidence intervals of
2 standard deviations. GUAs are depicted as blue points with green lines. GEAs are depicted as
red points with red lines. Both GUAs and GEAs are displayed in the foreground as throughout
chapter[d] i.e. their markers fully or partially occlude the markers of stable architectures when they
overlap. Some graph diagonals are given in black as a visual aid. Note that all x- and y-axis ranges
of graphs across this figure, as well as across each of the figures below, are identical to enable
easier comparison. Conclusion: The mean field estimate is highly accurate for stable architectures
and GEAs before training and still relatively accurate after training.
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Figure 5.9: JACF vs its mean field estimate at an intermediate and at the input layer. Graphs
are analogous to figure [5.8] Conclusion: The mean field estimate is highly accurate for stable

architectures and GEAs before training, but not after training.
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Figure 5.10: LSCALE vs its mean field estimate at an intermediate layer. GUAs are depicted in
green. GEAs are depicted in red. Both are displayed in the foreground. There are no confidence in-
tervals. Graphs are otherwise analogous to previous figures. Conclusion: The mean field estimate
is highly accurate for stable architectures and almost all GEAs before training, and still relatively

accurate after training.
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previous figures. Conclusion: The mean field estimate is highly accurate for stable architectures
and fairly accurate for GEAs before training, but not after training.
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Figure 5.12: QMNSTD vs its mean field estimate at an intermediate layer and at the output later.
Graphs are analogous to previous figures. Conclusion: The mean field estimate is highly accurate
for stable architectures and almost all GEAs before training. After training, the range of QMNSTD
values is small, so it is difficult to assess accuracy.
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Figure 5.13: NLCNUM vs its mean field estimate, for the whole network and for the second half
of the network. Graphs are analogous to previous figures. Conclusion: The mean field estimate is
highly accurate for stable architectures and GEAs before training. After training, the mean field
estimate tends to overestimate NLCNUM, but is still highly correlated with it.
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Figure 5.14: NLC vs its mean field estimate, for the whole network and for the second half of the
network. Graphs are analogous to previous figures. Conclusion: The mean field estimate is highly
accurate for stable architectures and GEAs before training. After training, the mean field estimate
usually overestimates the NLC, but it is still highly correlated with it.
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Figure 5.15: Metric values for study A architectures. In graphs A-C, we plot the initial vs final n. In
graphs D-F, we plot PARMGROWTH for study A architectures, sorted on the x-axis in ascending

order. In graphs G-I, we plot the ratio of initial over final n. Architectures are placed on the x-axis
in the same order as in graphs D-F. Conclusion: n is stable for most architectures, but changes
drastically for some. This change is generally associated with significant PARMGROWTH.
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5.3.4 The mean field NLC and nonlinearity path equation

While each recursion rule in table [5.3|makes sense by itself, taken together they still appear some-
what “black-box”, i.e. it is not clear whether there is a simple relationship between specific quali-
tative architecture properties, such as depth, activation functions or skip connections, and the mean
field limits of important metrics. In this section, we show that we can indeed express the mean
field estimate of the NLC in an incredibly instructive way. This allows us to ultimately explain the
nonlinearity of an architecture using mean field theory and the architecture definition.

Metric definition 24. The ‘mean field NLC’ n; ,,, of an A-architecture f and scalars ¢ > ¢ > 0 is

91(qm — €m)
Wan(f24,¢) =\ | ——F—~
) O — 1)
where the limit quantities on the right-hand side are calculated according to table[5.3] The variance

parameters are considered part of the architecture definition as usual. We write n short for ny, o for
the “mean field NLC of f”.

Going forward, we will use the term ‘mean field NLC” interchangeably for n; ,,, and 1, ,,,, as defined
in the previous subsection, as both have nearly identical values for practical A-architectures in the
initial state without severe Gaussian instability.

We can immediately observe that n; ,,, is decomposable in the sense of section d.4.11} i.e. if we
break down the section of the architecture between f,, and f; into a series of segments where
the endpoints of those segments are bottlenecks, n; ,,, is the product of mean field NLCs of these
segments. Specifically, given a chain of layers in which each has a single dependency, the mean
field NLC of that chain is equal to the product of mean field NLCs of each individual layer.

We also observe that the mean field NLC of individual layers has a simple form. For FC, bias, LN
and BN layers, it is equal to 1. For addition layers with a single dependency, it is equal to 1. This
is expected for operations that are linear functions of the dependency, like FC, bias and addition,
because of proposition [3] Informally, we can say that LN and BN layers are approximately linear
for large width and batch sizes. To see this, consider that subtracting the mean of a vector is linear.
Dividing by the standard deviation projects the values of the dependency onto a lower-dimensional
space which is curved in only a single dimension per neuron (BN) / input (LN). Therefore, the
nonlinearity of that space becomes increasingly negligible as width / batch size increases.

If f, is an activation layer, we have

N =

)

\/ (qx — )€ (qr, qr)
Q:Tl(qk7 qk) - Q:Tl<qk’ Ck‘)

Hence, we define the following.

Definition 24. The ‘activation function NLC’ of an activation function 7 and scalars ¢ > ¢ > 0 is
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B (¢ — )€ (q,q)
IlT(% C) - \/QT((L q) - €T(Q7 C)

We write n(c) short for n, (1, ¢). When ¢ = 0, the formula simplifies to

ESN / 2
n‘r(qv O) = \/ q N(OH)T (S)

Esn0,q7(5)? = (Esn(0,97(5))>

We will investigate n. in detail in section [5.4] For now, note that n, is valid for any ¢ > ¢ > —q¢
for any differentiable and non-constant 7 due to propositions [I2] and [I3] Note also that the ¢ and
c arguments in n.(q, c) are somewhat different from those in n,, ;(f, ¢, ¢) in that they capture the
properties of the input to 7, instead of the properties of D.

In A-architectures, the only layer operation that can have multiple dependencies is the addition
operation. In other words, if p and p’ are two directed paths through the layer graph, then those
paths can only join at an addition layer.

Definition 25. Define the ‘path-weight’ w(p) of a directed path in the layer graph of an A-
architecture as follows. For each addition layer contained in the path, consider the ratio %
where f; is the addition layer, f; is the dependency contained in the path, and w is the addition
weight corresponding to fy. w(p) is then the product of all such ratios for addition layers contained

in the path that are not its starting point.

Considering the calculation rule for the q and ¢ values of addition layers in table [5.3] it is easy
to see that the sum of path weights over all directed paths from input to output layer in a given
layer graph equals 1. Informally, if we consider q; — ¢ as the variance of the network output,
the path weight indicates the fraction of that variance that is contributed by that particular path.
The path representation now enables the following proposition, which can be proven simply using
induction.

Proposition 16 (‘Nonlinearity path equation’). Let q;, ¢; and g; be defined according to table
Let 0 < m <1 < Landlet f,, be abottleneck for f; in the A-architecture f. Then

Nm f q,C) = Z ) H nTl/(qk'vck’)Q

perl fl/EP

where P,, ; is the set of directed paths from f,, to f,, the product is over all activation layers f; on
path p excluding its starting point and f. is the dependency of f.

When F,, ; only contains a single path / dependency chain p,,, ;, this simplifies to

(i) = ] nn(aw, o)

fl’epm l
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In plain words, the mean field NLC of an A-architecture is the weighted quadratic mean of the
mean field NLC of each directed path in the layer graph, where each path is weighted according to
the fraction of the output variance it contributes. The mean field NLC of a path is the product of
the activation function NLCs on that path.

This is the instructive relationship between n and the architecture definition we have been looking
for. It allows us to make manual design decisions while controlling the initial NLC. We will use the
nonlinearity path equation throughout the remainder of this work as a reference point for compiling
design insights. For now, we will give some first observations.

e nis independent of width as long as the o7 are fixed.

e n decreases with the introduction of linear skip connections, proportionally with the square
of the skip connection strength, assuming there are no knock-on effects on downstream g
and c values.

e n does not directly depend on normalization layers used.

e Replacing an activation function with another of higher n, value increases n, assuming there
are no knock-on effects on downstream ¢ and ¢ values.

e Composition of activation functions corresponds to multiplying nonlinearity, a principle that
is familiar from the chain rule of calculus, the exploding / vanishing gradient problem and
the notion of neural network expressivity.

5.4 Mean field theory of activation functions

The key properties of an activation function from a mean field perspective are €, €., and the de-
rived quantity n.. In this section, we study these constructs as activation function metrics. We will
establish a plethora of useful properties that will be utilized later in this work. This effort culmi-
nates in subsection [5.4.5] where we show that the mean field NLC is the first-order approximation
of the bandwidth of the covariance kernel. This is the most important of our results that establish
the NLC as a primary measure of model complexity in deep learning.

Metric definition 25. ¢ (q,c¢) and n.(q, c) are defined as in the beginning of section and
section [5.3.4]respectively.

As stated in section n; is valid for any ¢ > ¢ > —q and differentiable, non-constant 7. We
will implicitly assume this in our discussion, but not in our theoretical results. In practical terms,
activation function metrics are computed using numerical integration techniques as described in
section [3.4.1] The discussion of section [2.6.1] applies to the issue of non-differentiable activation
functions such as ReLU. However, in this section we do also give results for 7 that are only direc-
tionally differentiable, so that we have at least some theory in this work that explicitly includes this
case.
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5.4.1 The NLC of activation functions with meta-Gaussian input

We begin by showing that n. is not just an abstract quantity arising from table [5.3] but a direct
measure of activation function nonlinearity.

Let the distribution 7 over vectors x of dimensionality d, be drawn from an elementwise meta-
distribution with generator MN (g, ¢), ¢ > ¢ > 0. Then

(q - C)Ez s~N(0 q—c)T,(X[i] + 8)2
NLC(7,T) = et —
w7 \/Ez‘,swm,q—cﬂ(x [i] + 5)? = Ei(Bson 0407 (X[1] + 9))?

Here, the component means y[i| are drawn on the meta-level from a Gaussian with mean zero and
variance ¢, and E; is a finite mean over d, values. The term NLC(r,7T ) implies that the scalar
function 7 is applied elementwise to vectors drawn from 7. Given that the sample mean converges
almost surely to the distribution expectation, we obtain

: (¢ = O)Esn(097 ()
lim NLC(7,T) = : a.s.
dr=yo0 77 \/Esw(o,q)T(S)2 = Eeon0,0 Bsno,g-0T(t + 5))?

We can cast the Gaussian expectations in the above formula as a metric of 7, ¢ and ¢, like we did
with the covariance kernel.

Metric definition 26. The ‘bias kernel’ B, of an activation function 7 and scalars ¢ > ¢ > 0 is
B (g, ) = Esn0,0) (Einn(0g-7(s +1))?

Then we obtain

. o (q - C)%r'(% Q)
d}gnoo NLC(1,T) = \/‘BT(C],Q) ~®.(q.0) a.s.

The right-hand side is exactly n,(q, c), except that the covariance kernel is replaced by the bias
kernel. We close the loop with the following result.

Proposition 17. For any 7 and ¢ > ¢ > 0, we have
B,(q,c) =& (q,c)

Hence, we have
lim NLC(1,T) =n.(q,c)as.
dr—ro0

So the activation function NLC is the limit of the NLC under meta-Gaussian input. Of course,
this is not unexpected given theorem @, which establishes that fully-connected layers are meta-
Gaussian meta-distributed. Proposition [10]also shows that these meta-Gaussians lead to the square
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means and co-means that arise in table The above result also justifies the name ‘activation
function NLC’. Finally, we obtain that the nonlinearity path equation relates the mean field NLC
of the architecture to the actual nonlinearity of its activation functions.

5.4.2 The length kernel of activation functions

The term €, (q, q) has appeared repeatedly in this chapter. In this subsection, we investigate it
further. We begin by giving it its own definition.

Metric definition 27. The ‘length kernel’ £, of an activation function 7 and scalar A > 0 is

2,0 = V&2 22 = | [Eeooanyr(s)?

The length kernel represents the infinite width limit of the quadratic mean of an activation layer
when its dependency is distributed according to N (0, A\>T). We believe that the quadratic mean is
a more intuitive quantity to deal with than the square mean. Hence, we define [; = ,/q;. Table
then yields [; = £,,(I;) for activation layers f;. Since a deep network generally composes many
activation layers, [;, depends on [; via a sequence of length kernel applications.

Definition 26. We say a ‘plain architecture’ is an architecture composed of M macro-layers, which
are themselves composed of an FC and an activation layer. Each activation layer uses the same
activation function 7 and each FC layer is Gaussian initialized with the same fixed multiple o2 of
the LeCun variance.

A plain architecture is a fixed width A-architecture, except for the technical conditions on the
activation function. Hence, for the purpose of discussion, we apply theorem [5|and its corollaries,
in addition to the results of section [5.4] to plain architectures.

In a plain architecture with ¢ = 1, we have [, = £Y(l,), where the exponent indicates com-
position. Of course, not all architectures we care about are this simple. However, this example
motivates us to study the length kernel under the umbrella of function iteration. In a nutshell,
because of the ZSAD guideline of scale stability given in section [2.4.2] we desire the iteration to
converge to a non-zero value, which is ideally close to 1. We will further discuss this point in detail
throughout chapter [§]

Below, we give the main theorem of this subsection, which gives a range of properties for the
length kernel. We follow this up with an empirical study.

Theorem 6. For any T we have

1. If £,(\) # 0 for some X\ > 0, then for all A > 0 we have

(@) £.(\) >0

(b) L. is differentiable at A with £_(\) = 3£, (A) 'Eyunoa2)7(s)?(s?A73 — A1)

(M)A 1
(c) T > 3
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(d) (VAL (V) >0
2. If T is continuous and not zero everywhere, then £,.(\) > 0 for all A > 0.
3. If T is continuous at zero, £, is continuous at zero.

4. If T is directionally differentiable at zero, then £, is differentiable at zero with £ (0) =

VOO i (0) = 0 and £,(0) = A= sign(r(0)) (1 (0) — 7(0)) if 7(0) # 0. The +

and - superscripts indicate the right and left derivative respectively.

5. If £,(X) # 0 for some \ > 0, then for all X > 0 the sequence (L£"(\)),, either (i) is strictly
increasing and diverges to infinity or (ii) converges.

The highlights are that under very mild conditions £, is differentiable, iterating £, yields con-
vergence or strictly increasing divergence, and statement 1(c) yields that £, has no unstable fixed
points where it is decreasing. Going forward, we can think of the iteration convergence behavior
of £, like that of a general differentiable function.

In tables [5.5] [5.6] and [5.8] we depict the length kernel for 24 activation functions: the 12 ac-
tivation functions contained in tables 2.1} [3.1] and [4.3] as well as the debiased versions of those
activation functions. Debiasing in the context of activation functions, as described in e.g. section
corresponds to subtracting from the activation function its expectation under the unit Gaus-
sian distribution, i.e. E, (0,1)7(s). This strategy was used for generating many architectures for
both study A and study B. Note that tanh, odd square and sawtooth are equal to their debiased
versions, and SeL.U is almost equal to it.

We plot length kernels in three colors: blue, red and magenta. When we iterate £, starting from a
point in a blue segment, the iteration converges to a non-zero point. When we iterate £, starting
from a point in a red segment, the iteration either converges to zero or diverges to infinity. When
we iterate £, starting from a point in a magenta segment, the iteration is stationary.

We find that we obtain a range of different convergence behaviors for different activation functions.

e For many activation functions, all starting values of A\ converge to the same non-zero value.
Their length kernels are depicted in all blue and the limit is a bold blue point.

e Also for many activation functions, all starting values of A converge to zero. Their length
kernels are depicted in all red and lie below the diagonal, which is depicted in black as a
visual aid.

e For some activation functions, small values of A\ converge to zero whereas large values di-
verge. Their length kernels are depicted in red, and the curve crosses the diagonal.

e For one activation function (abs. val.), £, is the identity, so A is preserved. Its length kernel
is depicted in magenta.

e Finally, for one activation function (square-debiased), all values of A diverge. Its length
kernel is depicted in red and above the diagonal.
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Similarly, we find a range of values for the convergence rate. The majority of the time, convergence
is exponential. This occurs when the derivative of £, is neither O, 1 or -1 at the limit point. If the
derivative is 0, then the convergence is superexponential. This happens for the square and odd
square activation functions. In fact, convergence is square exponential. If the derivative is either 1
or -1, convergence is sub-exponential. For tanh and even tanh, the rate is O (575 5705 ), and for sawtooth
the rate is sub-polynomial, i.e. slower than any O( -) with € > 0. In tables through E we
specify convergence rates as precisely as we were able to determine them with snnple methods.

In tablesﬁ o 8 This is the length kernel
we would obtain When normahzlng the activation function by its quadratic mean under the unit
Gaussian, i.e. \/E. x(0,1)7(s)% This normalization is done for both study A and study B archi-
tectures. Hence, we are interested in normalized length kernels, which are themselves valid length
kernels, as is any positive multiple of a valid length kernel. The range of convergence behaviors
observed among our normalized length kernels is largely similar to the range we observed previ-
ously, except that there are now several activation functions that have both A values that converge

to a non-zero value (depicted in blue) as well as \ values that diverge (depicted in red).

While we have observed a wide range of convergence behaviors in tables [5.5]through through
deliberate design of activation functions, we could generate an even more diverse set of behaviors,
though this goes beyond the scope of this work. While length kernels depicted have at most one
stable and one unstable fixed point, it is easy to generate activation functions that have an infinite
number of them. When 7(s)? oscillates between small and large values, so can £,.

£\
27( )’
for some fixed \" > 0. 2’ " has a fixed point

In addition to studying the length kernel normalized by its value at 1, i.e.

27()
2(

at A = )" with derivative = (( )) We plot (( )) as a function of X in tables 5 through ﬂ
value between -0.5 and 1 indicates stability (deplcted in blue), a value above 1 indicates instability
(depicted in red) and a value of 1 indicates stationary behavior (depicted in magenta). Note that
statement 1(c) of theorem [6] implies that this curve cannot dip below -0.5. For the majority of
activation functions, we obtain the same regime for all values of A, though for some we obtain
stability specifically for small values of \.

we can study

the family of all normalizations of form

5.4.3 The covariance kernel of activation functions

When calculating ¢, according to table we repeatedly apply €. (g, ¢). So just as with the length
kernel, we are interested in function iteration.

Definition 27. We say an architecture is ‘plain stable(q,¢’)’ if it is a plain architecture where

oq¢=q and £.(\¢) = /4.

In a plain stable(q, 1) architecture, when the input distribution is elem-like(q, ¢), we have ¢, =
q@f (1,¢), where the exponent indicates composition and ¢, denotes < Qfl 5. While this setup
might appear specific, it describes networks fulfilling the scale stability ZSAD guideline from
section [2.4.2| in a mean field sense. This setup was used approximately for both study A and B
and was the focus of prior work [Poole et al.,|2016,|Schoenholz et al., 2017, Jacot et al., 2018, Lee

et al., 2019]. As previously mentioned, we shorten €. (1, ¢) to €,.(c). While we mostly focus on
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the case ¢’ = 1 in this and the next subsection, we can easily obtain equivalent results for any other
value of ¢’. Again, we will further use the results from this subsection in chapter

It turns out that €, (c) is more regular than £, (). After a definition, we give our main theorem of
this subsection, followed by an empirical study.

Definition 28. We say a function F' : R — R is ‘piecewise n-differentiable’ if there exists a
partition of R into a finite set of intervals such that (i) F' is n times differentiable in the interior
of each interval and (ii) F' is continuous and n times directionally differentiable everywhere. In
particular, the left and right derivative at each interval endpoint does not have to be the same.

All of our activation functions in table except sawtooth, are piecewise n-differentiable for any
n. Sawtooth is still piecewise n-differentiable within any bounded interval.

Theorem 7. Assume 7 is piecewise 5-differentiable. Consider €. (c) defined on |0, 1]. Let a;s + b,
be the least squares linear fit to T under N'(0,1) and let T = 7 — a,;s — b,. Then
(a) €, is differentiable and €. = €.

(b) €, is increasing, convex and for all ¢ > 0, € > 0 with ¢ + 3¢ < 1 we have € (c + 3¢) —
3¢, (c+2€¢) +3¢,(c+e)— € (c) > 0.

(¢) (i) € (c) = C-(c) +aZe+ 12, (ii) €-(0) = 0, (iii) €, (0) = b2, (iv) €4(0) = 0, (v) €,(0) = a2,
1

(vi) CAR(, N'(0,1)) = &, (vii) LAR(T, N'(0,1)) = &} and (viii) &, is linear if and

¢ (1)
only if T is linear.

¢ (c)
A E))

Now also assume T is not linear. Then, for the normalized covariance kernel éT(c) = exactly

one of three cases hold on [0, 1].

1. There is a stable fixed point at '™ = 1 with exponential convergence rate and no other fixed

point. 0 < € (1) < 1 holds.

2. There is a stable fixed point at ™ = 1 with sub-exponential convergence rate and no other

fixed point. €.(1) = 1 holds.

3. There is an unstable fixed point at 1 and there is exactly one other fixed point dmin [0, 1),
which is stable. €.(1) > 1 and 1 > € (™) > 0 hold. The convergence rate is super-
exponential or exponential depending on whether € (c'™) = 0 holds.

lim

In particular, there exists exactly one stable fixed point c'"™ and iterating ¢, will lead to convergence

towards c™ from any starting point.

The third part of statement (b) is similar to saying that €, (c) has a non-negative third derivative.
Note that if 7 is smooth, we can apply statement (a) repeatedly to obtain that the n’th derivative of
¢, (c) is the covariance kernel of the n’th derivative. Hence, we immediately have a wide range of
properties for the n’th derivative, including those in the above theorem as well as propositions

[13]and [14]
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While we do not give a detailed interpretation of the theorem here, we make use of the different
parts in various places throughout this work. We note that, to a large degree, the convergence case
breakdown in the second half of the theorem was previously observed empirically by Poole et al.
[2016] for various architectures based on the tanh activation function. However, to our knowledge,
it was never proven for general 7.

In tables and we plot the normalized covariance kernel €, (¢) for our 24 activation
function. Note that € (c) is itself a valid covariance kernel of the activation function ﬁu) Indeed,
each of the three convergence cases from the theorem is observed.

The LAR, CAR and NAR metrics were defined in section In table {.3] we gave LAR,
CAR and NAR values for our activation functions as well as the 7 corresponding to our 7. More

generally, the analysis from section 4.4.7| applies to activation functions. For example, we have

n#(0) > v2and n-(0)* = g + e (0)%

5.4.4 The activation function NLC

Properties of n,(c) Using theorem[7] we straightforwardly obtain the following about n,(c).

Proposition 18. Assume 7 is piecewise 5-differentiable. Consider n,(c) defined on [0, 1). Then

2. n; is decreasing
3 limeyn.(c) =1

4. n.(c)>1

Hence, n,(c) is determined entirely by the covariance kernel of 7. Note the contrast of statement
1 to statement (c) from theorem [/} It turns out that the nonlinearity of an activation function as
measured by the linear approximation error is related to the derivative of the covariance kernel at
0. The nonlinearity of an activation function as measured by the NLC is related to the derivative
of the covariance kernel at 1. Statement 2 makes sense in light of proposition The smaller the
neuron variance under the meta-Gaussian, the more linear 7 becomes across its effective domain.

Iterating n,(c¢) For plain stable(q, 1) A-architectures, the nonlinearity path equation yields
M
n =TT n(& )
m=1

We are interested in the behavior of n as M converges to infinity. By theorem (;IT(CO) converges
to some value c'™ as m increases, where c™ is the single stable fixed point of €. If ¢™ £ 1, then
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clearly n diverges exponentially with rate n,(c'™). This corresponds to case 3 in theorem [7, Two
cases remain.

1—¢o
1-€M(co)

infinity, where the rate is related to the convergence rate of @4 to 1. For ReL.U and abs. val., for
example, that rate is O(#), and therefore n grows linearly with depth. If €, is twice differentiable

Case 2 from theorem : n is a telescopic product that equals . This also diverges to

at 1, that rate is O( ﬁ) and so n grows as the square root. By theorem ¢, is twice differentiable
if 7 is differentiable and 7’ is piecewise 5-differentiable. This is fulfilled by neither ReLLU nor abs.
val.. Because lim._,; n,.(c) = 1, divergence is always sub-exponential.

Case 1 from theorem [7f The limit of n also depends on the analytical properties of ¢, at 1. If
¢, is twice differentiable at 1, then it is easy to show that n converges exponentially with depth.
By theorem [/| this holds, for example, for softplus, sigmoid and Gaussian. These are the three
activation functions in tables [5.5|to[5.§]that fall under case 1. Unfortunately, we do not know what
can happen when €. is not twice differentiable.

Properties of n.(g,0) We are also interested in how n, responds to changes in g, though for
the opposite reason that we are interested in n (1, ¢). While we generally design architectures to
achieve q; ~ 1 for dependencies of activation layers, we also want to understand what happens if
this condition fails.

In tables and we plot n-(A?,0), where A\ = ,/g as in section We find

that different activation functions exhibit drastically different behavior. Some activation functions,
such as ReLLU, abs. val. and square, have a stable n,, whereas other activation functions, such
as even tanh and sawtooth, have a rapidly increasing one. Hence, different activation functions
respond very differently to e.g. changes in the variance of weight matrix entries. Here are some
general patterns.

e n.()\?,0) is invariant to debiasing.

e SeLU, softplus and Swish are all ReLU-like for large A and so limy_ . n,(\%,0) =
nReLU(170> = 1.21.

ReL.U, abs. val., square and odd square have the property 7(\s) = A7(s) for arbitrary s and
A >0, son.(\?,0) is constant.

Tanh and sigmoid “converge to the step function” so n,(\2,0) diverges as O(v/)).

Even tanh and Gaussian “converge to the delta function” so n, (A2, 0) diverges as O(\).

Sawtooth is periodic so n.(\?,0) diverges as O(\).

5.4.5 The covariance kernel of A-architectures

Now we bring things back to the architecture level. The covariance kernel of a mean field archi-
tecture with a single finite input and readout layer with respect to finite sets of inputs was defined
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in section in the context of background corollary 2| In the context of A-architectures and
elem-like input distributions, we define analogously.

Definition 29. For an A-architecture f without batch normalization, the ‘covariance kernel’
&(q,c), ¢ > ¢ > 0, is the function that returns ¢;, defined according to table

It is easy to check that q;, = €(q, ¢) holds. To see that € is valid for the case ¢ = ¢, which was
excluded in e.g. theorem[5]and proposition[I5] we note that each operation other than BN preserves
q > ¢ > 0in table For the activation operation, see propositions [12]and

Proposition 19. Let f be an A-architecture where each activation function used is piecewise 5-
differentiable and let ¢ > ¢ > 0. If f does not contain batch normalization but can contain layer
normalization layers, we have

| a€a, )l g=g(a —¢)
olf a.e) = \/ ¢(q,q) — €(g, )

If f does not contain layer normalization but can contain batch normalization layers, an analogous
statement holds. See section for details.

Like the nonlinearity path equation, this can be proven simply with induction. Crucially, we
also use statement (a) from theorem Like for theorem [3] we defer the BN case to section
This proposition explicitly requires that the activation functions used by f are piecewise
S-differentiable. Further, because f is an A-architecture, its activation functions are also required
to be controlled by CF?, non-constant and twice differentiable with a derivative controlled by C®2.

We can interpret proposition [I9] just as we interpreted the NLC in section [4.2] and gradient-
based local linear approximability in section #.4.6] If we view D as an elementwise distribu-
tion in the spirit of proposition then the dimensionality-normalized radius of the domain

A /dim Tr(Cov,) becomes /¢ — c. Similarly, if the codomain is generated by MN (€(q, q), €(q, ¢)),
then /7 Tr(Covy) becomes /€(g, q) — €(g, ¢). Finally, 7:¢(q, ¢')|y=, measures the sensitiv-

ity of the output co-mean with respect to small changes in input co-mean. So we can informally
say the following. If E;z[i]> = E;2'[i]* = ¢ and E;z[i]2'[i] = q — ¢, then € = 5~ ||z — 2/||3 and

d%,@(q, ¢)lg=g€ + O(€®) = 5= (x) = f(=")|[5. So \/‘il"—;‘;diq,ﬁ(q,q’)w:q measures the output
change induced by a small input change as defined by Euclidean distance. But \/Ldej ||F also

measures this change, so ;5€(g, g{’ )Ne=q represents =1 T1[%. Putting it all together, n(f,q,c)
resembles N LC'F RO B from section [4.4.5] which has the same mean field limit as the NLC.

“Wide networks are Gaussian processes” [Yang| 2019], as we outlined in section[5.1.4] The asso-
ciated kernel function for an A-architecture with elem-like input is €(E;z[]?, E;z[i]2'[i]). There-
fore, we can view diq,Qf(q, q')| 4= as the first-order approximation of the bandwidth of the kernel.
n(f,q,c) then becomes the (square root of the) bandwidth normalized by the radius of domain

and codomain. This normalization is desirable for all the reasons it is desirable to employ this
normalization in the NLC as discussed in e.g. sections and|4.4.8] For a fixed unnormalized
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bandwidth value, a large domain implies that a small fraction of input pairs in that domain receive
a significant kernel value, whereas a small domain implies that a large fraction of input pairs in that
domain receive 