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Abstract

Natural language corpora are phenomenally rich resources for learning about people

and society, and have long been used as such by various disciplines such as history

and political science. Recent advances in machine learning and natural language pro-

cessing are creating remarkable new possibilities for how scholars might analyze such

corpora, but working with textual data brings its own unique challenges, and much

of the research in computer science may not align with the desiderata of social scien-

tists. In this thesis, I present a line of work on developing methods for computational

social science focused primarily on observational research using natural language text.

Throughout, I take seriously the concerns and priorities of the social sciences, leading

to a focus on aspects of machine learning which are otherwise sometimes secondary,

including calibration, interpretability, and transparency. Two ideas which unify this

work are the problems of exploration and measurement, and as a running example I

consider the problem of analyzing how news sources frame contemporary political

issues. Following the introduction, I devote one chapter to providing the necessary

background on computational social science, framing, and the “text as data” paradigm.

Subsequent chapters each focus on a particular model or method that strives to address

some aspect of research which may be of particular interest to social scientists. Chap-

ters 3 and 4 focus on the unsupervised setting, with the former presenting a model for

learning archetypal character representations, and the latter presenting a framework
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for neural document models which can flexibly incorporate metadata. Chapters 5 and

6 focus on the supervised setting and present alternately, a method for measuring label

proportions in text in the presence of domain shift, and a variation on deep learning

classifiers which produces more transparent and robust predictions. The final chapter

concludes with implications for computational social science and possible directions

for future work.
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Chapter 1

Introduction

Over the past decade, the field of machine learning has grown massively in prominence

and importance, influencing many neighboring academic disciplines, and becoming

the de facto core toolkit of modern data analysis (Jordan and Mitchell, 2015). Through

creative innovations in algorithms, elegant theoretical foundations, and effective im-

plementations, research in machine learning has demonstrated that it is possible to

derive insights from, and make accurate predictions about, even very complicated

and large-scale datasets, above and beyond what was thought to be achievable with

traditional statistics.

Among the fields eager to make use of these innovations is the diverse set of disci-

plines we think of as the social sciences. These disciplines embody a rich history of

trying to make sense of the behavior of individuals, communities, and society. Many

methods have been developed over the years in pursuit of this objective, but most

recently there has been a flourishing of research under the banner of computational

social science, in which ideas and methods from computer science are being integrated

into the process of studying people and their interactions (Lazer et al., 2009). In addi-

tion to advances in methodology, this work has been fueled, in part, by huge increases

11



12 CHAPTER 1. INTRODUCTION

in the amount of data, including text, that people generate, both actively and passively,

as they go about their lives (Salganik, 2017).

Text is a particularly rich source of potential insight, as it can simultaneously rep-

resent both aggregate trends, such as changes in language use over time, as well as

more individual expressions of what people think, believe, and wish to communicate

(O’Connor et al., 2011). However, there are several ways in which the needs of social

science investigations often differ from conventional prediction problems, including

in their goals, priorities, and criteria for success (Hopkins and King, 2010; Wallach,

2018). Further complicating matters, text data presents unique difficulties for machine

learning, and this is especially true in social science applications, where insight and

theory are often prized above and beyond raw predictive power (Grimmer and Stewart,

2013).

In this thesis, I bring together a line of work on developing methods in machine

learning and natural language processing attuned to the needs of computational social

science and so-called “text as data” research. Some of this this work involves conven-

tional model building in both supervised and unsupervised settings. However, I try

throughout to take seriously the priorities of the social sciences, as well as the necessity

of collaborative efforts. I firmly believe that the most interesting results emerge from

interdisciplinary teams which bring together people with diverse expertise. As such,

the goal should be not merely to develop tools that can be used by people in other

disciplines, but to create the framework in which teams can come together and actively

participate in all aspects of the research cycle.

In particular, I draw inspiration from the needs and priorities of scholars in other

domains, such as political science, leading me to focus on otherwise somewhat sec-

ondary aspects of machine learning, including iterative modeling, interpretability,

transparency, calibration, and credibility. However, far from being parochial concerns,
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most of these are in fact important to all scientific investigations, and I believe that

machine learning as a field can itself learn from the best practices of the social sciences.

Although the focus of this thesis is on methods, not on substantive sociological

findings, as a running example threaded throughout this thesis, I consider the issue

of framing — that is, the idea that the way in which we present information can make

a difference (Gitlin, 1980; Entman, 1993; Kahneman, 2011). While framing remains a

challenging idea to study, it is a useful example of the type of complex phenomenon

that social scientists wish to discover and measure in text (see §2.4).

1.1 Thesis statement

In this thesis, I argue that there is great potential for machine learning and natural

language processing to be useful in social science research, but that the priorities

of the social sciences necessitate placing greater emphasis on sometimes secondary

aspects of computational methods, including interpretability, transparency, calibration,

reliability, and cost. I illustrate this by developing a variety of different models and

methods, each of which illustrates one or more of these aspects that is sometimes

overlooked, driven by the priorities of researchers in the social sciences. In particular,

I am especially focused on the problems of exploration and measurement—that is,

how can we construct useful machine learning models which allow us to a) make

sense of large text corpora; and b) convert rich data, such as text, into quantitative

measurements of theoretical concepts of interest.

The focus of this thesis is on interdisciplinary research in the social sciences, but it

can also be seen as part of a more general data science paradigm, one that is particularly

attuned to text data. Although there is an important role for experiments in social

science, I emphasize observational over experimental work. Similarly, while there are
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often good reasons to develop unique models for particular applications, I am mostly

interested in collaborative scenarios, in which people from other disciplines are able

to make greater use of ideas and tools from machine learning and natural language

processing.

1.2 Structure of this thesis

The remainder of this thesis is made up of five chapters. Chapter 2 provides the

relevant background on computational social science and “text as data”, a summary of

desiderata for social science methods, and an overview of work on framing that is used

as a running example throughout the thesis. Each of the remaining chapters proposes

a model or method, each of which attempts to address at least one concern that is of

particular importance to social scientists.

Chapters 3 and 4 deal with the unsupervised setting. The first of these proposes a

specific model for unsupervised learning of archetypal character representations. The

latter proposes a model for documents with metadata, emphasizing the potential of

neural variational inference to allow for model customization without model-specific

derivations. Chapters 5 and 6, by contrast focus on the supervised setting. The first

of these chapters focuses specifically on text classification as a tool for measurement

in the presence of domain shift. The last chapter is not focused exclusively on text,

but instead shows how a small change to any deep learning classifier can produce

predictions that are more transparent and robust, particularly for out-of-domain data.

I conclude with a summary of implications for computational social science and

ideas about possible directions for future work. Taken together, this collection of

chapters can be understood as an effort to push the field towards a more nuanced

approach to interdisciplinary applications of machine learning.



Chapter 2

Background

2.1 Computational social science and “text as data”

Despite a growing trend towards interdisciplinary research, computer scientists, social

scientists, and policy makers often have different goals, methods, and criteria for

success (Hopkins and King, 2010; O’Connor et al., 2011; Grimmer and Stewart, 2013;

Kleinberg et al., 2015; Wallach, 2016, 2018). Broadly speaking, social science proceeds

by theorizing causal explanations of social phenomena, and evaluating, interrogating,

and refining those theories. While in many cases this endeavor proceeds through

constructing models and testing hypotheses in ways that will be familiar to machine

learning researchers (either through experimental or observational studies), there is

also a large amount of effort devoted to exploratory work, much of which focuses

on providing “thick” description and context, which may be used for subsequent

theorizing.1

1Ideally, a good theory should be able to make useful predictions, and comparing predictions against
reality is an important form of evaluation; however, because of the complexity inherent in social systems,
theories in social science are sometimes more useful as sources of insight, or as a way of thinking about
a new phenomenon, even if they have limited predictive power.

15



16 CHAPTER 2. BACKGROUND

Although every project is different, a large amount of research in social science

disciplines can be broken down into the following stages: i) formulating research ques-

tions based on existing theory; ii) collecting and annotating data; iii) exploratory data

analysis; iv) building, testing, and applying models; v) interpretation and visualization

of results; vi) refining theoretical ideas for further investigation. This is clearly not a

unidirectional process, but rather one in which the results at each stage inform decision

making at the previous stages on the next iteration, as illustrated in Figure 2.1.2

Figure 2.1: Schematic depiction of the interaction between existing theory for a given
domain and the research cycle for a particular project. Feedback loops (dashed arrows)
emphasize how each stage is informed by insights from later stages.

While the research cycle described above applies to a great deal of traditional re-

search, there is increasingly a movement within the social sciences to make use of

digital data, online experiments, machine learning, and other computational methods,

hence the idea of computational social science (Lazer et al., 2009; O’Connor et al., 2011;

Mason et al., 2014; Salganik, 2017; Wallach, 2018). Different researchers may assign

different meanings to this term, but the general idea is that computational social sci-

ence is a collaborative area of research in which insights and methods from computer

science (e.g., large-scale statistical inference, network analysis, text analysis, etc.) are

brought to bear on asking and answering questions about society.

As the name would suggest, computational social science is inherently interdisci-

2David Blei provides a similar description of the iterative nature of latent variable modeling in his
presentation of “Box’s loop” (Blei, 2014).
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plinary. Not only do scholars from the social sciences bring background knowledge

and domain expertise that is essential in formulating research questions, they are often

in the best position to evaluate whether the results of an investigation are sensible

or meaningful in light of existing theory. Unfortunately, there tends to be a trade-off

between familiar, interpretable, and relatively simple models (such as linear and logistic

regression), and modern machine learning models, which may be more powerful, but

also more difficult to understand or interpret. Nevertheless, there is much greater scope

for enabling researchers to bring implicit or explicit knowledge to bear on the other

stages, by expanding the range of tools and methods that are readily available to those

with less expertise in machine learning or natural language processing.

While a great deal of computational social science deals with traditional types of

data, such as opinion polls or voting behavior, a growing community of scholars in

computational social science is especially interested in the potential of using written

text as a source of insight. The phrase “text as data” may seem redundant to researchers

in natural language processing, but it has been a compelling idea in recent years,

providing the name for a research association, an annual meeting, and a widely cited

summary paper (Grimmer and Stewart, 2013).

Textual archives clearly play a fundamental role in certain sub-fields of the social

sciences and humanities; what is novel is the idea of considering raw unstructured text

as data which can be interpreted quantitatively using automated or semi-automated

methods. In addition, the phrase suggests an allusion to “big data”, underscoring that

there is an enormous amount of unstructured text available that has been written by

people; as with the many other electronic traces we leave in our lives, this sort of “found

data” has the potential to be a remarkable source of insight into society, in some cases

with the ability to answer questions that have little to do with the original reasons for

the existence of such data.
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2.2 Exploration and measurement

Compared with more directly quantitative data, such as images or structured records,

text presents unique challenges for statistical analysis, yet also offers unique prospects

in terms of the potential for answering social scientific questions and learning about

society more broadly. Developments in statistical and computational methods for text

analysis over the past decade have vastly expanded the range of what is possible, but

there continues to be a gap between the potential demonstrated in select research

projects, and the range of tools and methods that have seen widespread adoption in

the broader research community (Grimmer and Stewart, 2013; O’Connor, 2014).

When working with massive text corpora, there are two basic ways of using com-

putational methods that are especially important (O’Connor et al., 2011). The first is

exploration, in which we want to make sense of and discover things about a corpus of

documents that is too large to be read.3 The second is to use computational methods

as tools for measurement, ones which allow us to convert documents into quantitative

measurements of social constructs. Although distinct, these two approaches are clearly

related, as corpus exploration typically involves quantifying text in ways which may

suggest potential measurements.

Broadly speaking, there are a few different ways of approaching the problem of

making measurements from text. The traditional approach used in many social sciences

is that of content analysis (Krippendorff, 2012). Given a set of possible codes, each of

which typically represents a concept related to a particular question of interest, human

annotators read the text and assign codes to documents or parts of documents. These

codes are typically developed in an iterative fashion (and might be unique to each

3The term “document” will be used as a stand-in for any appropriately sized piece of text, even if it
exists only in virtual form. In the context of this thesis, a document could be a newspaper article, a tweet,
an online product review, etc.
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project), and are formalized in a codebook. Annotating large numbers of documents

thus allows researchers to make inferences or draw conclusions about a corpus that

relates to the substantive question of interest. While trained annotators can typically

identify these codes in text with some acceptable level of agreement, this remains a

somewhat subjective process, and of course does not scale beyond the limits of human

labour.

Alternatively, supervised learning provides a way to try to augment the coding

process, which I will consider in more detail in Chapter 5. In principle, predicted

labels can serve as a supplement to human-coded documents, though this raises

additional questions about validity, reliability, and reproducibility (see §2.3). However,

because of the richness and ambiguity of human language, this remains a challenging

problem. Recent developments in pretraining have brought enormous gains in tasks

such as text classification (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019),

but more complicated deep models have certain downsides, including opaqueness,

over-confidence, and cost (see Chapter 6; also Gururangan et al., 2019).

Finally, it is also possible to use unsupervised methods to attempt to measure

relevant concepts or categories, often by incorporating prior knowledge. While unsu-

pervised learning is typically thought of as a tool for exploration (and indeed is often

useful for that purpose), Wallach (2016) emphasizes that it is also a natural way to

approach the measurement problem. Specifically, by defining a generative model, and

using the available data to make inferences about latent variables, we can obtain poste-

rior estimates which can serve as the basis of measurements (Blei, 2014). Topic models

such as latent Dirichlet allocation (Blei et al., 2003) are the most familiar example (see

also Boyd-Graber et al., 2017), but it is also possible to develop more specialized models,

as I do in Chapter 3 for personas, as well as more broadly applicable models, as I do in

Chapter 4 for documents with metadata. Although evaluation remains a challenge for
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unsupervised learning, the probabilistic graphical models framework allows for rich

specification of prior knowledge and can, in some cases, allow us to attribute specific

interpretations to various parts of a model.

2.3 Desiderata in computational social science methods

Although recent work in machine learning fairness has drawn attention to some of the

trade-offs involved (Hardt et al., 2016; Kleinberg et al., 2017b), the conventional objec-

tive in most machine learning research is still that of maximizing accuracy. Treating

prediction and inference as types of measurement, by contrast, requires taking seriously

the rich body of work that is prominent within the social sciences concerning possible

threats to validity. In this section, I review some of the important considerations for

methods used in the social sciences. While most of these are broadly applicable, I

specifically have in mind the application of making measurements of text, and provide

examples below.

A complete discussion of measurement is beyond the scope of this thesis, but in

general, the following considerations are particularly important:

• Validity: Validity is a central concept in the discussion of research methods in

social science, and includes multiple different aspects (Drost, 2011; Bhattacherjee,

2012; Nguyen et al., 2016). Some of these, such as statistical conclusion validity,

internal validity, and external validity have to do with drawing conclusions from

measurements (i.e., is the relationship statistically significant and robust? Is it

causal? Will it generalize?). Most relevant here, however, is the notion of construct

validity. In social science research, one typically assumes the existence of a

theoretical construct which is theorized to have some relevance to a question,

and which one would ideally like to measure, such as “political ideology”. In
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practice, however, one will typically need to rely on some sort of instrument

which will measure an operationalized form of the construct (i.e., something that

can be explicitly measured). Construct validity is an assessment of how well the

thing that we can measure actually represents the construct that we care about.

Discussions of research methods (e.g., Bhattacherjee, 2012) typically break this

down into many sub-components, such as face validity (is it reasonable “on-its-

face”?), content validity (does it completely and exclusively measure the construct

of interest), and convergent validity (does it agree with existing measure of the

construct?). Ultimately, however, it is difficult to ever conclusively prove validity;

rather, one should be aware of various common failure modes, and validate to

the extent possible.

• Reliability: Even if one has a valid way of measuring a particular construct (for

example, by using human annotators), it is still necessary to consider possible

measurement error, just as we would for measuring a physical property, such

as temperature. As in all measurements, we should ask about both random and

systematic errors. For a given instrument, we can think about systematic errors

as a type of bias, and random errors as variance. An ideal instrument would be

unbiased with low variance, but in practice we will likely have to worry about both

(Bhattacherjee, 2012). Of course, in many settings, it is preferable to introduce

some bias in order to obtain lower variance, but unbiasedness is nevertheless

prioritized in some domains. For categorical measurements, it is more intuitive

to discuss error in terms of properties of the confusion matrix, such as accuracy,

false positive rate, or sensitivity. Moreover, for probabilistic classifiers, it is also

useful to assess calibration (the long run correctness of predicted probabilities, as

discussed in Chapter 5). Note, however, that a single number is not sufficient to

summarize all properties on an instrument, even for a binary classifier.
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• Reproducibility: While reliability typically refers to the use of a particular in-

strument, reproducibility refers to the broader ability of other researchers to

reproduce a particular measurement or result (Gundersen and Kjensmo, 2018).

Although reproducibility gets less attention within discussions of research meth-

ods in social science, compared to validity and reliability, it has become a growing

priority with the rise of the so-called “replication crisis” (Goodman et al., 2016).

While reproducibility involves technical considerations, it also relates to how eas-

ily and effectively methodologies can be communicated and understood; simpler

methods are likely to be more reproducible, though publishing code, for example,

can enhance the reproducibility of any method. Some approaches to machine

learning naturally facilitate reproducibility (such as when using convex optimiza-

tion under controlled conditions). However, with the increasing dominance of

deep neural networks, there are numerous hurdles to this sort of reproducibil-

ity, including the impact of large numbers of hyperparameters, random seeds,

software dependencies, hardware differences, and so on. Reproducibility has

also received attention within the natural language processing and text-as-data

communities (Radev, 2009; Dror et al., 2017).

• Interpretability: While reproducibility depends on the ability to understand and

communicate a methodology, interpretability typically refers to the ability to

understand the operation or output of a particular instantiation of a model (Wal-

lach, 2016; Lipton, 2016). Interpretability is currently an active area of research in

machine learning, and the term is to some extent overloaded (Doshi-Velez and

Kim, 2017). However, the key is that interpretability must be evaluated within

the context of who is asking and what they want to know. A great deal of work

in interpretability focuses on providing approximate explanations to complex

models, whereas other seeks to provide true explanations that are nevertheless
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simple. Transparency also acts as a foundation for interpretability, as making

sense of decisions is much more difficult in the case where the system is com-

pletely hidden from view. For additional discussion of interpretability, please refer

to Chapter 6.

• Scale and cost: Especially in the age of big data, one of the key promises of

text-as-data research is the ability to conduct measurements at scale (Salganik,

2017). Most methods that involve some amount of automation will be able to

scale to large corpora, whereas those based on human judgments will necessarily

be quite limited (though scaling these may be possible through online crowd

workers). Closely tied to scale is cost. Almost any method can be made to scale for

enough money. Different researchers have different budgets, however, and certain

methods may only be feasible for well-funded groups with access to sufficient

computational resources. Not only will this determine the types of methods one

might consider, it also connects to issues such as reproducibility, as a method

which is perfectly reproducible in principle will not be reproducible in practice if

the cost is prohibitive. While most traditional social science research has been

constrained by relatively small budgets, machine learning research in industry is

tending towards ever more computationally intensive models and larger datasets,

which has drawn attention to negative externalities (Strubell et al., 2019), and

a renewed emphasis on solutions for the limited-resource setting (Gururangan

et al., 2019).

As a concrete example to illustrate above desiderata, consider three simple tools

for conducting measurements of text: human coding, dictionary methods, and text

classification via supervised learning. As mentioned above, human coding (i.e., an-

notation) is perhaps the most conventional approach to making measurements of

text. Because humans are able to easily and effectively process the meaning of text,
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they are able to recognize arbitrarily complex categories with some acceptable level

of agreement (conditional on appropriate training). They are also able to do some

amount of discovery simultaneously, identifying new categories which have not yet

been codified, and should be added to the codebook.4 The codes given by annotators

to documents, perhaps combined via some method for aggregating annotations or

resolving disputes, thus enact the desired measurements.

Having multiple annotators code each document allows us to quantify the error

of this instrument in terms of the rate of agreement, as measured by an appropriate

metric, such as Krippendorff’s alpha (Krippendorff, 2011). When done properly, this

method has great potential to have excellent validity, as humans have the necessary

world knowledge and reasoning ability to determine whether or not a piece of text

truly expresses a particular concept. However, the limitations of this method are due

to the lack of interpretability, reproducibility, and scale. Because annotation is a time-

consuming task, in many cases requiring skilled annotators, any annotation effort will

be costly and time-consuming, and will thus be limited in its ability to generate more

than a relatively small number of measurements. Moreover, no matter how carefully

a codebook is constructed, there will always be difficulties in knowing exactly why a

particular choice was made, or in trying to apply the same codebook in a new setting.

For small projects, human coding is in some sense the gold standard, but comes with

severe limitations for more ambitious projects.

Dictionary methods, by contrast, define a set of words associated with each category.

These words might be derived from a statistical method, prior intuition, surveys, or any

other means (Grimmer and Stewart, 2013). In the simplest setting, we might weight all

words equally, and simply count up the number of words from each list that appear in

each document. A slightly richer dictionary model would assign a weight to each word.

4Note that there is an extensive literature on how to define tasks, train annotators, aggregate judge-
ments, etc. See for example Krippendorff (2012), Barbera et al. (2019), and references therein.
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The sum for each document would then be our measurement of that document. This is

an incredibly simple approach that is easily understood, reproducible, and scalable.

Dictionary methods are also highly interpretable, in that we can easily look to see

which words were responsible for the counts for any document, and they are relatively

easy to adapt or extend, by coming up with a new or modified word list appropriate to a

new setting. However, the major downsides of this method have to do with its reliability

and validity. Because of the simplicity of dictionary methods, they are unlikely to be

sufficiently accurate or comprehensive to make correct measurements of all documents.

It is still possible that a well-calibrated dictionary method could give an unbiased result

in the domain for which it was developed. However, the validity of dictionary methods

is open to serious dispute when applied to a new domain (Grimmer and Stewart, 2013).

Because a dictionary will have many features that could be specific to the domain

for which it was developed (and validated), there is no reason to think that the same

dictionary will work well for a new domain.

Finally, consider the use of text classification via supervised learning as a tool for

measurement. This idea will be considered in more depth in Chapter 5, but for the

moment, consider the conventional use of text classification using a standard machine

learning approach, such as logistic regression or deep neural networks. This approach

shares some of the advantages of dictionary methods, especially in terms of scalability.

Moreover, we might expect that supervised learning would offer greater reliability than

a simple dictionary approach, as it could be a more subtle instrument, sensitive to

a wider range of evidence. However, depending on the complexity of model used,

reproducibility (in the sense of re-creating the same classifier) might be an issue. In

some cases, even applying such a model might require specialized hardware such

as GPUs. This method may also suffer in terms of interpretability, as the reasons for

predictions may be less obvious. Above all, as with dictionaries, we should be concerned



26 CHAPTER 2. BACKGROUND

that this method will suffer from domain shift, and problems of validity when applied

out of domain. Finally, because we will typically want to train a model for each problem,

at least some amount of labeled data will likely be required as an initial step, requiring

some of the start-up costs of human annotation.

As evidenced by the above discussion, it should be clear that there is no single

method which is most appropriate for all settings, and that we should expect to face

a trade off. Researchers will need to choose based on their priorities for each project.

As such, the remainder of this thesis is largely about adding nuance to these concerns,

and providing specific examples of additional methodologies which expand the menu

of options for future work in text-as-data research.

As a final note, it is important to emphasize two additional aspects of computational

social science and the text-as-data paradigm. First, although there is a strong tendency

to treat text on the internet as found data, we must remember that all such data exists in

context and has a history. Naively using such data has the potential to unintentionally

recreate biases which exist in the data, and which can potentially be amplified by our

models (Bolukbasi et al., 2016; Caliskan et al., 2017; Zhao et al., 2017; Sap et al., 2019).

Moreover, even if users are aware of website terms and conditions, they may still have

additional expectations and preferences about how the data they create and share will

be used (Nissenbaum, 2009; Fiesler and Proferes, 2018). We should remember that,

as in more traditional research, aggregating data entails potential harm (Ohm, 2010;

Salganik, 2017). Identifying patterns may be valuable, but making predictions about

individuals may be reckless.

Second, research in the social sciences is noteworthy in that it has the potential to

inform policy decisions and lead to real-world impact. Already, we are seeing instances

of both research and deployed systems related to criminal sentencing (Kleinberg et al.,

2017a), health care (Ustun and Rudin, 2016), and predictive policing (Wang and Rudin,
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2015), in many cases using proprietary software. This makes it all the more important

that we keep in mind aspects of fairness, accountability, transparency, and ethics of

our models (Hardt et al., 2016; Corbett-Davies et al., 2017; Selbst et al., 2019). Although

computational social science allows us to ask new questions, or answer the same

questions at lower cost (Salganik, 2017), computational methods must be used with

care, and results should be treated with skepticism in the absence of validation, as with

all research.

2.4 Running example: Framing in the media

As a running case study that I will draw on throughout this thesis, consider the issue of

framing. A long tradition of research in multiple disciplines has demonstrated that the

presentation of information, especially in narrative form, is rarely, if ever neutral (Gitlin,

1980; Entman, 1993; Benford and Snow, 2000; Chong and Druckman, 2007; D’Angelo

and Kuypers, 2010). Rather, this use of language inherently involves choices about what

to report, how to characterize people and events, what background facts to include,

the use of metaphors, and so on. Although there are plenty of examples of people who

engage in deliberate framing (e.g., Lakoff et al., 2008) we are generally most interested

in more systemic, background effects – persistent patterns in how people communicate

about issues that change slowly over time.

In a widely cited definition, Entman (1993) argues that “to frame is to select some

aspects of a perceived reality and make them more salient in a communicating text,

in such a way as to promote a particular problem definition, causal interpretation,

moral evaluation, and/or treatment recommendation.” Further elaborations have

emphasized how various elements of framing tend to align and cohere, eventually

being deployed as “packages” which can be evoked through particular phrases, images,
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or other synecdoches (Gameson and Modigliani, 1989; Benford and Snow, 2000; Chong

and Druckman, 2007).

Framing is a phenomenon largely studied and debated in the social sciences, where

it is common to analyze specific issues in meticulous detail. Past work on framing

includes many examples of issue-specific studies based on manual content analysis

(Baumgartner et al., 2008; Berinsky and Kinder, 2006). While such studies reveal much

about the range of opinions on specific issues, such as the death penalty, they do not

characterize framing at a level of abstraction that allows comparison across social

issues.

More recently, there has been a surge of interest in framing within the NLP com-

munity (Nguyen et al., 2015c; Tsur et al., 2015; Baumer et al., 2015; Field et al., 2018;

Demszky et al., 2019; Hartmann et al., 2019), and I have argued elsewhere that framing

can be understood as a general aspect of linguistic communication about facts and

opinions on any issue (Card et al., 2015). Moreover, it is important because a) it has

been repeatedly demonstrated that framing has an impact on people’s expressed opin-

ions, at least in the short term (Hopkins and Mummolo, 2017); and b) it is commonly

held that the dominant framing in mainstream media tends to reflect the preferences

of powerful institutions and actors (Herman and Chomsky, 1988). By making use of

larger corpora than could be analyzed by manual close reading, we may be in a position

to test and/or add nuance to both of these theories.

As a starting point towards analyzing framing as a general phenomenon that oper-

ates across issues, I have created a dataset in collaboration with others that we have

called the Media Frames Corpus (MFC), which will be used for experiments in some

chapters of this thesis. The MFC collects news articles from major U.S. newspapers

on a set of six issues, for each of which we have richly annotated thousands of articles

in terms of a set of 15 cross-cutting framing dimensions (Card et al., 2015). These
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categories are designed to subsume the more precise issue-specific frames that might

be used for any particular issue, and the full list of them is given in Figure 2.2. The anno-

tations are fine-grained, with annotators identifying spans of text which cue particular

frames for them, providing a valuable source of information about the instantiation

of framing in language. However, there is naturally a degree of subjectivity to this

annotation task, and we have preserved disagreements between annotators, which in

themselves provide evidence of the diversity of framing effects.

Economic: costs, benefits, or other financial implications

Capacity and resources: availability of physical, human or financial resources,
and capacity of current systems

Morality: religious or ethical implications

Fairness and equality: balance or distribution of rights, responsibilities, and
resources

Legality, constitutionality and jurisprudence: rights, freedoms, and authority
of individuals, corporations, and government

Policy prescription and evaluation: discussion of specific policies aimed at
addressing problems

Crime and punishment: effectiveness and implications of laws and their en-
forcement

Security and defense: threats to welfare of the individual, community, or nation

Health and safety: health care, sanitation, public safety

Quality of life: threats and opportunities for the individual’s wealth, happiness,
and well-being

Cultural identity: traditions, customs, or values of a social group in relation to a
policy issue

Public opinion: attitudes and opinions of the general public, including polling
and demographics

Political: considerations related to politics and politicians, including lobbying,
elections, and attempts to sway voters

External regulation and reputation: international reputation or foreign policy
of the U.S.

Other: any coherent group of frames not covered by the above categories

Figure 2.2: Framing dimensions from Boydstun et al. (2014).



Chapter 3

Inferring character and story types as

an aspect of framing

(This chapter was originally published as Card et al., 2016)

3.1 Introduction

As discussed in Chapter 2, communication inescapably involves framing—choosing “a

few elements of perceived reality and assembling a narrative that highlights connec-

tions among them to promote a particular interpretation” (Entman, 2007). Memorable

examples include loaded phrases (e.g., “death tax”, “war on terror”), but the literature

attests a much wider range of linguistic means toward this end (Pan and Kosicki, 1993;

Greene and Resnik, 2009; Choi et al., 2012; Baumer et al., 2015).

Framing is associated with several phenomena to which NLP has been applied,

including ideology (Lin et al., 2006; Hardisty et al., 2010; Iyyer et al., 2014; Preotiuc-Pietro

et al., 2017), sentiment (Pang and Lee, 2008; Feldman, 2013), and stance (Walker et al.,

30
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2012; Hasan and Ng, 2013). Although such author attributes are interesting, framing

scholarship is concerned with persistent patterns of representation of particular issues—

without necessarily tying these to the states or intentions of authors—and the effects

that such patterns may have on public opinion and policy. Note that NLP has also often

been used in large-scale studies of news and its relation to other social phenomena

(Leskovec et al., 2009; Gentzkow and Shapiro, 2010; Smith et al., 2013; Niculae et al.,

2015).

Can framing be automatically recognized? If so, social-scientific studies of framing

will be enabled by new measurements, and new applications might bring framing effects

to the consciousness of everyday readers. Research in NLP has explored unsupervised

framing analysis of political text using autoregressive and hierarchical topic models

(Nguyen et al., 2013, 2015c; Tsur et al., 2015), but most of these conceptualize framing

along a single dimension. Rather than trying to place individual articles on a continuum

from liberal to conservative or positive to negative, I am interested in discovering broad-

based patterns in the ways in which the media communicate about issues.

In this chapter, my focus is on the narratives found in news stories, specifically the

participants in those stories. Insofar as journalists make use of archetypal narratives

(e.g., the struggle of an individual against a more powerful adversary), one would ex-

pect to see recurring representations of characters in these narratives (Schneider and

Ingram, 1993; Van Gorp, 2010). A classic example is the contrast between “worthy” and

“unworthy” victims (Herman and Chomsky, 1988). As another example, Glenn Green-

wald emphasized how he was repeatedly characterized as an “activist” or “blogger”,

rather than a “journalist” during his reporting on the NSA (Greenwald, 2014).

The model I present here builds on the “Dirichlet persona model” (DPM) introduced

by Bamman et al. (2013) for the unsupervised discovery of what they called personas in

short film summaries (e.g., the “dark hero”). As in the DPM, I operationalize personas
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as mixture of textually-expressed characteristics of entities: what they do, what is done

to them, and their descriptive attributes. I begin by providing a description of the full

model, after which I highlight the differences from the DPM.

This chapter presents an example of a model designed specifically to enable both a

new way of exploring a corpus, and a particular type of measurement from text, in this

case one discovered automatically and focused on how entities are represented. The

main contributions are:

• I strengthen the DPM’s assumptions about the combinations of personas found

in documents, applying a Dirichlet process prior to infer patterns of coocurrence

(§3.3). The result is a clustering of documents based on the collections of personas

they use, discovered simultaneously with those personas.

• Going beyond named characters, I allow Bamman-style personas to account for

entities like institutions, objects, and concepts (§3.5).

• I demonstrate that this model produces interpretable clusters which provide

insight into the immigration articles in the Media Frames Corpus (MFC; §3.6).

• I propose a new kind of evaluation based on Bayesian optimization. Given a

supervised learning problem, I treat the inclusion of a candidate feature set (here,

personas) as a hyperparameter to be optimized alongside other hyperparameters

(§3.7).

• In the case of U.S. news stories about immigration, I find that personas are, in

many cases, helpful for automatically inferring the coarse-grained framing and

tone employed in a piece of text, as defined in the MFC (§3.7). Demonstrating

that discovered personas are predictive of human-annotated frames and tone can

be seen as a type of validation of the proposed form of measurement.
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3.2 Model description

The plate diagram for the model presented in this chapter is shown in Figure 3.1 (right),

with the original DPM (Bamman et al., 2013) shown on the left.

As evidence, the model considers tuples 〈w, r, e, i〉, where w is a word token, with r

being the category of syntactic relation1 it bears to an entity with index e mentioned in

document with index i. The model’s generative story explains this evidence as follows:

1. Let there beK topics as in LDA (Blei et al., 2003). Each topic φk ∼ Dir(γ) is a multi-

nomial over the V words in the vocabulary, drawn from a Dirichlet parameterized

by γ.

2. For each of P personas p, and for each syntactic relation type r, define a multino-

mial ψp,r ∼ Dir(β) over the K topics, each drawn from a Dirichlet parameterized

by β.

3. Assume an infinite set of distributions over personas drawn from a base distribu-

tion H. Each of these θj ∼ Dir(α) is a multinomial over the P personas, with an

associated probability of being selected πj , drawn from the stick-breaking process

with hyperparameter λ.

4. For each document i:

(a) Draw a cluster assignment si ∼ π, with corresponding multinomial distribu-

tion over personas θsi .

(b) For each entity e participating in i:

i. Draw e’s persona pe ∼ θsi .

ii. For every 〈r, w〉 tuple associated with e in i, draw z ∼ ψpe,r then w ∼ φz.
1I adopt the terminology from Bamman et al. (2013) of “agent”, “patient”, and “attribute”, even though

these categories of relations are defined in terms of syntactic dependences.
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Figure 3.1: Plate diagrams for the DPM (left), and for the new model (right).

The DPM (Figure 3.1, left) has a similar generative story, except that each document

has a unique distribution over personas. As such, step 4(a) is replaced with a draw from

a symmetric Dirichlet distribution θi ∼ Dir(α).

3.3 Clustering stories

The DPM assumes that each document has a unique distribution (θi) from which its

personas are drawn. However, for entities mentioned in news articles (as well as for

the dramatis personae of films), one would expect certain types of personas to occur

together frequently, such as articles about lawmakers and laws. Thus I would like

to cluster documents based on their “casts” of personas. To do this, I have added

a Dirichlet process (DP) prior on the document-specific distribution over personas

(step 3), which allows the number of clusters to adapt to the size and complexity of the

corpus (Antoniak, 1974; Escobar and West, 1994).

There are a number of equivalent formulations of Dirichlet process mixture models.



3.3. CLUSTERING STORIES 35

Here I present the formulation based on the stick-breaking process. According to

this perspective, each mixture component is drawn from an (infinite) set of mixture

components (equivalently, clusters), each of which is drawn from a base measure,

H. The conditional probability of a cluster assignment is distributed according to an

(infinite) multinomial distribution, generated according to the stick-breaking process,

with hyperparameter λ. In particular,

{π′k}∞k=1 ∼ Beta(1, λ) (3.1)

{πk}∞k=1 ∼ π′k

k−1∏
l=1

(1− π′l) (3.2)

si ∼ π (3.3)

θsi ∼ H (3.4)

In this model, I takeH to be a symmetric Dirichlet distribution with hyperparameter

α. Given a cluster assignment for the ith document, each entity’s persona is then drawn

according to pe ∼ θsi , where si indexes the cluster assignment of the ith document.

Although the model admits an unbounded number of distributions over personas,

the properties of DPs are such that the number used by D documents will tend to be

much less than D. As a result, inference under this model provides topics φ (distribu-

tions over words) interpretable as textual descriptors of entities, personas ψ (distribu-

tions over reusable topics), and clusters of articles s with associated distributions over

personas θ.

Following Bamman et al. (2013), I perform inference using collapsed Gibbs sampling,

collapsing out the distributions over words (φ), topics (ψ), and personas (θ), as well as

π. On each iteration, I first sample a cluster for each document, followed by a persona

for each entity, followed by a topic for each tuple. Because I assume a conjugate
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base measure, sampling clusters can be done efficiently using the Chinese restaurant

process (Aldous, 1985) for story types, personas, and topics, with slice sampling for

hyperparameters (α, β, γ, λ).

The probability of a document being assigned to an existing cluster (mixture compo-

nent) is proportional to the number of documents already assigned to that cluster times

the likelihood of the document’s current personas being generated from that cluster’s

distribution over personas (θsi). The probability of the document being assigned to a

new cluster is proportional to λ times the likelihood of the document’s personas being

generated from a new draw from the base distribution. Integrating out θ and π gives:

p(si = s′ | s−i,p, α, λ) ∝ n
(−i)
s′,∗ × f(s′) (3.5)

p(si = snew | s−i,p, α, λ) ∝ λ× f(snew) (3.6)

f(s) =
J∏
j=1

α + n
(−i)
s,pj +

∑j−1
j′=1 I[p′j = pj]

Pα + n
(−i)
s,∗ + (j − 1)

(3.7)

Here, s′ is an existing cluster, J ranges over the entities in document i, and pj is the

persona of the jth entity. n(−i)
s,pj is the number of entities in documents of type s with

persona pj , excluding those in i. n(−i)
s,∗ is the total number of entities in this set, and I[·]

is the indicator function.

The equation for sampling personas is similar, and can be shown to be

p(pe = p | p−e, z, se, α, β) =
(
α + n(−e)

se,p

)
×

R∏
r=1

Te,r∏
t=1

β + n
(−e)
p,r,kt

+
∑t−1

t′=1 I[kt′ = kt]

Kβ + n
(−e)
p,r,∗ + (t− 1)

(3.8)

where n
(−e)
se,p is the number of entities with persona p in documents with cluster se,

excluding entity e. R is the number of categories of relations (agent, patient, attribute),

Te,r is the number of tuples for entity e with relation r, kt is the topic of the tth tuple in

Te,r, n
(−e)
p,r,kt

is the number of tuples with relation r and topic kt for entities with persona
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p, excluding entity e, and n(−e)
p,r,∗ are these counts summed over topics.

The equation for sampling the topic of a tuple attached to entity e is:

p(zt = k | z−t,p,w, r, β, γ) =
(
β + n

(−t)
pe,rt,k

)
×

γ + n
(−t)
k,wt

V γ + n
(−t)
k,∗

(3.9)

where V is the size of the vocabulary, n(−t)
pt,rt,k

is the number of tuples with relation rt

and topic k attached to entities with persona pe, excluding tuple t. n(−t)
k,wt

is the number

of tuples with wt assigned to topic k, excluding t, and n(−t)
k,∗ is the sum of these counts

across topics.

During sampling, I discard samples from the first 10,000 iterations, and collect one

sample from every tenth iteration for following 1,000 iterations. I sample hyperparame-

ters every 20 iterations for the first 500 iterations, and every 100 thereafter.

3.4 Dataset

For the experiments this chapter, I use the articles about immigration from the MFC, as

described in in §2.4. Specifically, I make use of the annotations of the “primary frame”

(one of 15 general-purpose “framing dimensions”, such as Politics or Legality) and “tone”

(pro, neutral, or anti) of each article for a set of approximately 4,200 annotated articles.

In order to train this model on a larger collection of articles, I use the original corpus

of articles from which the annotated articles in the MFC were drawn. This produces a

corpus of approximately 37,000 articles about immigration; I train the persona model

on this larger dataset, only using the smaller set for evaluation on a secondary task.

Note that the MFC annotations are not used by this model; rather, I hypothesize that

the personas it discovers may serve as features to help predict framing—this serves as

one of my evaluations (§3.7).
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3.5 Identifying entities

The original focus of the DPM was on named characters in movies, which could be

identified using named entity recognition and pronominal coreference (Bamman et al.,

2013), or name matching for pre-defined characters (Bamman et al., 2014). Here, I are

interested in applying this model to entities about which I assume no specific prior

knowledge.

In order to include a broader set of entities, I preprocess the corpus and apply a

series of filters. First, I obtain lemmas, part-of-speech tags, dependencies, coreference

resolution, and named entities from the Stanford CoreNLP pipeline (Manning et al.,

2014), as well as supersense tags from the AMALGrAM tagger (Schneider and Smith,

2015). For each document, I consider all tokens with a NN* or PRP part of speech as

possible entities, partially clustered by coreference. I then merge all clusters (including

singletons) within each document that share a non-pronomial mention word.

Next, I exclude all clusters lacking at least one mention classified as a person, orga-

nization, location, group, object, artifact, process, or act (by CoreNLP or AMALGrAM).

From these, I extract 〈w, r, e, i〉 tuples using extraction patterns lightly adapted from

(Bamman et al., 2013). The complete set of patterns I use are given in the Table 3.1.

To further restrict the set of entities to those that have sufficient evidence, I construct

a vocabulary for each of the three relations, and exclude words that appear less than

three times in the corresponding vocabulary.2 I then apply one last filter to exclude

entities that have fewer than three qualifying tuples across all mentions. From the

dataset described in §3.4, I extract 128,655 entities, mentioned using 11,262 different

mention words, with 575,910 tuples and 11,104 distinct 〈r, w〉 pairs.

2I also exclude the lemma “say” as a stopword, as it is the most common verb in the corpus by an
order of magnitude
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Relation type Neighbor Arc type POS
parent nsubj JJ

Attribute parent nsubj NN*
child amod JJ

parent agent VB*
Agent parent nsubj VB*

child acl VB*
parent dobj VB*

Patient parent nsubjpass VB*
parent iobj VB*

Table 3.1: Extraction patterns.

3.6 Exploratory analysis

Here I discuss the model presented in this chapter, as estimated on the corpus of 37,000

articles discussed in §3.4 with 50 personas and 100 topics; these values were not tuned.

A cursory examination of topics shows that each tends to be a group of either verbs or

attributes. Personas, on the other hand, blend topics to include all three relation types.

The estimated Dirichlet hyperparameters are all� 1, giving sparse (and hence easily

scanned) distributions over personas, topics, and words.

Table 3.2 shows all 50 personas. For each p, I show (i) the mention words most

strongly associated with p, and (ii) 〈r, w〉 pairs associated with the persona. (To save

space, “I” denotes immigrant.) Recall that, like the Dirichlet persona model, my model

says nothing about the mention words; they are not included as evidence during

inference.3 Nonetheless, each persona is strongly associated with a sparse handful of

mention words, and I find that labeling each persona by its most strongly associated

mention word (excluding immigrant) is often sensible (these are capitalized in Table 3.2,

though in some cases the relation words differentiate strongly (e.g., the group personas,

IDs 17 and 18 in Table 3.2).
3I did explore adding mention words as evidence, but they tended to dominate the relation tuples.

Because my interest is in a richer set of framing devices than simply the words used to refer to people
(and other entities), I consider here only the model based on the surrounding context.
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ID Mention words Relations
1 AGENT police official authority federalm tellp finda arresta localm tella
2 ASYLUM crime refugee asylum_seeker politicalm seekp grantp commitp seriousm denyp

3 BILL law immigration_reform measure comprehensivem passa passp makea havea supportp
4 BOAT van crime document criminalm otherm havep usea usep bea

5 BORDER border_patrol border_agent mexicanm crossp securep southernm u.s.-mexicom

6 BUSH official mcnary people I havea tella wanta tellp formerm calla
7 CANDIDATE bush romney leader republicanm presidentialm democraticm havea calla
8 CARD document visa status greenm newm getp temporarym fakem permanentm
9 CARD visa state document consularm federalm havea mexicanm receivep getp

10 COMPANY country I state nation havea regionalm globalm ruralm takea requirep

11 COUNTRY people I citizen united_states americanm otherm enterp havea leavep centralm
12 COUPLE marriage people I class gaym bilingualm same-sexm havea primem

13 COURT lawsuit suit ruling federalm filep rulea civilm filea havea

14 EMPLOYER company people business hirea havea manym requirep employa localm
15 FENCE amendment law wall realm 14thm virtualm buildp bea havea

16 GOVERNMENT court judge official federalm localm havea rulea askp otherm
17 GROUP deportation attack country terroristm civilm facep armedm islamicm muslimm

18 GROUP I voter people bush hispanicm immigrantm localm manym wanta havea

19 I ALIEN immigration people worker illegalm allowp havea legalm undocumentedm livea

20 I ALIEN people criminal inmate illegalm criminalm deportp immigrantm detainp

21 I ALIEN worker immigration employer illegalm hirep undocumentedm employp legalm
22 I ALIEN worker people immigration illegalm arrestp undocumentedm arresta chargep

23 I CHILD worker people student immigrantm foreign-bornm havea manym comea

24 I GROUP people population business newm immigrantm otherm manym asianm havea

25 I GROUP program center city newm havea firstm bea otherm makea

26 I IMMIGRATION alien worker illegalm legalm hirep havea allowp undocumentedm

27 I IMMIGRATION alien worker people illegalm legalm havea bea comea immigrantm
28 I JEWS refugee israel child sovietm jewishm russianm havea vietnamesem

29 I MAN alien refugee people illegalm chinesem cubanm arrestp haitianm findp

30 I PEOPLE child student worker manym youngm havea illegalm comea bea

31 I PEOPLE country woman man blackm muslimm africanm havea comea koreanm

32 I WORKER people citizen job americanm newm havea mexicanm illegalm manym

33 I WORKER resident student people legalm foreignm permanentm havea allowp skilledm

34 I WORKER student people child undocumentedm illegalm immigrantm havea allowp

35 JOB I people immigration law havep havea bea takep goodm makea

36 JOB study survey I labor finda newm findp showa fillp takep

37 LAW immigration_law bill measure newm federalm enforcep requirea passp allowa

38 MAN I woman people haitians deportp havea arrestp holdp releasep facea

39 MAN people agent official I arrestp chargep otherm formerm havea facea

40 MAN woman I people girl tella killp havea otherm youngm takep

41 PEOPLE I child man woman havea comea livea goa tellp worka

42 PROFILING violence abuse discrimination racialm domesticm safem physicalm bea affordablem

43 PROGRAM system law agency newm nationalm federalm createp usep specialm
44 REFUGEE I boy people elian cubanm haitianm chinesem havea allowp returnp

45 SCHOOL people I family english havea highm seea comea goa bea

46 SERVICE school care college publicm medicalm providep denyp receivep attendp

47 TRAFFICKING rights group flight humanm internationalm commercialm bea havea

48 WORKER I immigration student company foreignm legalm skilledm hirep americanm havea

49 WORKER I people woman man mexicanm immigrantm undocumentedm migrantm
50 YEAR program month income fiscalm lastm enda nextm previousm begina

Table 3.2: Personas with their associated mention words and relation tuples (a = agent,
p patient, m = modifier/attribute); I denotes “immigrant”.
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In general, the output of the model appears to have reasonably strong face validity.

For example, the model finds expected participants (such as workers, political can-

didates, and refugees), but also more conceptual entities, such as laws, bills (IDs 3,

37), and the U.S.-Mexican border (ID 5), which looms large in the immigration debate.

Some interesting distinctions are discovered, such as two of the worker personas, one

high-skilled and residing legally (ID 48), the other illegal (ID 49).

Using the original publication dates of the articles, I can estimate the frequency of

appearance of each persona within immigration coverage by summing the posterior

distribution over personas for each entity mention, and plotting these frequencies

across time. (Note that time metadata is not given to the model as evidence.) I find im-

mediately that personas can signal events. Figure 3.2 shows these temporal trajectories

for a small, selected set of personas. Although bills and laws are conceptually similar,

and have similar trajectories from 1980 to 2005, they are strongly divergent in 2006

and 2010. These are particularly notable years for immigration policy, corresponding

to the failed Comprehensive Immigration Reform Act of 2006 (Senate bill S.2611) and

Arizona’s controversial anti-immigration laws from 2010.4 Refugees, by contrast, show

a marked spike around the year 2000. Inspection showed this persona to be strongly

tied to the case of Elián González, which received a great deal of media attention in that

year.

The main advantage of the extended model over the DPM is being able to cluster

articles by “casts”. During sampling, thousands of clusters are created (and mostly

destroyed). Ultimately, this inference procedure settled on approximately 110 clusters,

and I consider two examples. Figure 3.3 shows the temporal trajectories of the two

clusters with the greatest representation of the refugee persona. Both show the charac-

teristic spike around the year 2000. The top personas for these two clusters are given

4Other notable events which appear to be represented include the Illegal Immigration Reform and
Immigrant Responsibility Act of 1996, and the Secure Fence Act of 2006.
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Figure 3.2: Temporal patterns of the mentions of selected personas.

in Table 3.3. Type A, which includes a story with the headline “Protesters vow to keep

Elián in U.S.,” emphasizes political aspects, while type B (e.g., “Court says no to rights

for refugees”) emphasizes legal aspects. Note that Political and Legality are two of the

framing dimensions used in the MFC.

Do these persona-cast clusters relate to frames? For the five most common story

clusters, (which have no overlap with the two refugee story types), Figure 3.4 shows the

number of annotated articles with each of the primary frames if I assign each article

to its most likely cluster. The second and fifth clusters correlate particularly well with

primary frames (Political and Crime, respectively). This is further reinforced by looking

at the most frequent persona for each of these story clusters which are candidate (ID

7) for the second and immigrant (ID 22), characterized by illegalm and arrestp, for the

fifth.
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Figure 3.3: Temporal patterns of two clusters with the greatest overall representation of
the refugee persona.

Refugee story cluster A
Frequency Persona ID
0.49 REFUGEE immigrant boy 44
0.10 BUSH official mcnary 6
0.06 IMMIGRANT man alien 29
0.05 ASYLUM crime refugee 2

Refugee story cluster B
Frequency Persona ID
0.29 MAN immigrant woman 38
0.23 REFUGEE immigrant boy 44
0.12 COURT lawsuit suit 13
0.10 GOVERNMENT court judge 16

Table 3.3: Truncated distribution over personas for the two clusters depicted in Figure
3.3. IDs index into Table 3.2.
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Figure 3.4: Number of annotated articles in each of the five most frequent clusters, with
colors showing the proportion of articles annotated with each primary frame.

3.7 Experiments: Personas and framing

For a more quantitative analysis, I evaluate personas as features for automatic analysis

of framing and tone, as defined in the MFC (§3.4). Specifically, I build multi-class

text classifiers (separately) for the primary frame and the tone of a news article, for

which there are 15 and 3 classes, respectively. Because there are only a few thousand

annotated articles, I applied 10-fold cross-validation to estimate performance.

Features are derived from this model by considering each persona and each story

cluster as a potential feature. A document’s feature values for story types are the

proportion of samples in which it was assigned to each cluster. Persona feature values

are similarly derived by the proportion of samples in which each entity was assigned to

each persona, with the persona values for each entity in each document summed into

a single set of persona values per document. I did not use the topics (z) discovered by

this model as features.
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Primary frame Tone
Feature set Accuracy # Features Feature set Accuracy # Features
MF 0.174 0 MF 0.497 0
(W) 0.529 3.9k (W) 0.628 5.0k
(W, P1) 0.537 3.5k (W, P1) 0.631 5.0k
(W, P2) *0.540 3.5k (W, P2) 0.628 5.0k
(W, P2, S) 0.537 2.8k (W, P2, S) 0.630 4.0k

Table 3.4: Evaluation using a direct comparison to a simple baseline. Each model uses
the union of listed features. (W = unigrams and bigrams, P1 = personas from DPM,
P2 = personas from my model, S = story clusters; MF = always predict most frequent
class.) An asterisk (*) indicates a statistically significant difference compared to the (W)
baseline (p < 0.05).

3.7.1 Experiment 1: Direct comparison

For the first experiment, I trained independent multi-class logistic regression classifiers

for predicting primary frame and tone. I considered adding persona and/or story clus-

ter features to baseline classifiers based only on unigrams and bigrams with binarized

counts, a simple but robust baseline (Wang and Manning, 2012).5 In all cases, I used L1

regularization and use 5-fold cross validation within each split’s training set to deter-

mine the strength of regularization. I then repeated this for each of the 10 folds, thereby

producing one prediction (of primary frame and tone) for every annotated article. The

results of this experiment are given in Table 3.4; for predicting the primary frame, clas-

sifiers that used persona and/or story cluster features achieve higher accuracy than the

bag-of-words baseline (W); the classifier using personas from my model but not story

clusters is significantly better than the baseline.6 The enhanced models are also more

compact, on average, using fewer effective features. A benefit to predicting tone is also

observed, but it did not reach statistical significance.

5I also binarized the persona feature values.
6Two-tailed McNemar’s test (p < 0.05).
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3.7.2 Experiment 2: Automatic evaluation

Although bag-of-n-grams models is a relatively strong simple baseline for text classi-

fication, researchers familiar with the extensive catalogue of features offered by NLP

will potentially see them as a straw man. I propose a new and more rigorous method

of comparison, in which a wide range of features are offered to an automatic model

selection algorithm for each of the prediction tasks, with the features to be evaluated

withheld from the baseline.

Because no single combination of features and regularization strength is best for all

situations, it is an empirical question which features are best for each task. I therefore

make use of Bayesian optimization (Bayesopt) to make as many modeling decisions as

possible (Pelikan, 2005; Snoek et al., 2012; Bergstra et al., 2015; Yogatama et al., 2015).

In particular, let F be the set of features that might be used as input to any text

classification algorithm. Let f be a new feature that is being proposed. Allow the

inclusion or exclusion of each feature in the feature set to be a hyperparameter to be

optimized, along with any additional decisions such as input transformations (e.g.,

lowercasing), and feature transformations (e.g., normalization). Using an automatic

model selection algorithm such as Bayesian optimization, allow the performance on

the validation set to guide choices about all of these hyperparameters on each iteration,

and set up two independent experiments.

For the first condition, A1, allow the algorithm access to all features in F . For the

second, A2, allow the algorithm access to all features in F ∪ f . After R iterations of

each, choose the best model or the best set of models from each of A1 and A2 (M1 and

M2, respectively), based on performance on the validation set. Finally, compare the

selected models in terms of performance on the test set (using an appropriate metric

such as F1), and examine the features included in each of the best models. If f is a
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helpful feature, one would expect to see that, a) F1(M2) > F1(M1), and b), f is included

in the best model(s) found by A2.

If F1(M2) > F1(M1) but f is not included in the best models from A2, this suggests

that the performance improvement may simply be a matter of chance, and there is

no evidence that f is helpful. By contrast, if f is included in the best models, but

F1(M2) is not significantly better than F1(M1), this suggests that f is offering some

value, perhaps in a more compressed form of the useful signal from other features, but

does not actually offer better performance.

For this experiment, I used the tree-structured Parzen estimator for Bayesian opti-

mization (Bergstra et al., 2015), with L1-regularized logistic regression as the underlying

classifier, and set R = 40. In addition to the entities and story clusters identified by

these models, I allowed these classifiers access to a large set of features, including

unigrams, bigrams, parts of speech, named entities, dependency tuples, ordinal senti-

ment values (Manning et al., 2014), multi-word expressions (Justeson and Katz, 1995),

supersense tags (Schneider and Smith, 2015), Brown clusters (Brown et al., 1992), frame

semantic features (Das et al., 2010), and topics produced by standard LDA (Blei et al.,

2003). The inclusion or exclusion of each feature is determined automatically on each

iteration, along with feature transformations (removal of rare words, lowercasing, and

binary or normalized counts).

The baseline, denoted “B,” offers all features except personas and story clusters

to Bayesopt; I consider adding DPM personas, my model’s personas, and my model’s

personas and story clusters. Table 3.5 shows test-set accuracy for each setup, averaged

across the three best models returned by Bayesopt.

Using this more rigorous form of evaluation, approximately the same accuracy is

obtained in all experimental conditions. However, we can still gain insight into which

features are useful by examining those selected by the best models in each condition.
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Feature set Primary Frame Tone
(B) 0.566 0.667
(B, P1) 0.568 0.671
(B, P2) 0.568 0.667
(B, P2, S) 0.567 0.671

Table 3.5: Mean accuracy of the best three iterations from Bayesian optimization
(chosen based on validation accuracy). (B = features from many NLP tools, P1=personas
from the DPM, P2 = personas from my model, S=story clusters.)

For primary frame prediction, both personas and story clusters are included by the best

models in every case where they have been offered as possible features, as are unigrams,

dependency tuples, and semantic frames. Other commonly-selected features include

bigrams and part of speech tags. For predicting tone, personas are only included by half

of the best models, with the most common features being unigrams, bigrams, semantic

frames, and Brown clusters. As expected, the best models in each condition obtain

better performance than the models from experiment 1, thanks to the inclusion of

additional features and transformations.

This secondary evaluation suggests that for this task, persona features are useful

in predicting the primary frame, but are unable to offer improved performance over

existing features, such as semantic frames. However, the fact that that both personas

and story clusters are included by all the best models for predicting the primary frame

suggests that they are competitive with other features, and perhaps offer useful infor-

mation in a more compact form.

Here, Bayesopt has provided a means of evaluating the utility of different features.

However, it could in principle be used to evaluate the impact of any hyperparameter,

such as the the use of dropout in training neural networks. By using the same procedure,

and comparing across many datasets, one could establish whether a particular choice is

better in expectation. Note however, that one must be careful about comparing models

from a finite number of trials. An expanded hyperparameter search space entails the
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possibility of a better optimum, but may also require more trials of hyperparameter

tuning in order to find a superior result. Thus, we should recognize that performance is

a function of the amount of effort used to tune hyperparameters and provide details

about this where appropriate (Dodge et al., 2019).

3.8 Qualitative evaluation

Prior to exposure to any output of my model, a contributor to this work (Justin Gross,

who has expertise in both framing and the immigration issue) prepared a list of personas

he expected to frequently occur in American news coverage of immigration. Given the

example of the “skilled immigrant,” he listed 22 additional named personas, along with

a few examples of things they do, things done to them, and attributes.

The list he prepared includes several different characterizations of immigrants

(low-skilled, unauthorized, legal, citizen children, undocumented children, refugees,

naturalized citizens), non-immigrant personas (U.S. workers, smugglers, politicians,

officials, border patrol, vigilantes), related pairs (pro / anti advocacy groups, employers /

guest workers, criminals / victims), and a few more conceptual entities (the border, bills,

executive actions). Of these, almost all are arguably represented in the personas that

were discovered. However, there is rarely a perfect one-to-one mapping: predefined

personas are sometimes merged (e.g., “the border” and “border patrols”) or split (e.g.,

legislation, employers, and various categories of immigrants). Personas which don’t

emerge from my model include smugglers, guest workers, vigilantes, and victims of

immigrant criminals. On the other hand, my model proposes far more non-person

entities, such as ID cards, courts, companies, jobs, and programs.

These partial matchings between predefined personas and the results of my model

are generally identifiable by comparing the names given to the predefined personas
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to the the most commonly occurring mention words and attributes of the discovered

personas. The attributes and action words given to the predefined personas are harder

to evaluate, as many of them are rare (e.g. politicians “vacillate”) or compound phrases

(e.g. low-skilled immigrants “do jobs Americans won’t do”) that tend to miss the more

obvious properties captured by my model. For example, the employer persona captured

by my model engages in actions like hire, employ, and pay. By contrast, the terms given

for the pre-defined “business owners” persona are “lobby” and “rely on immigrant

labor.” The unsupervised discovery of this persona can clearly be matched to the

predefined persona in this case, but doesn’t provide such fine-grained insight into how

they might be characterized.

The best match between predefined and discovered personas is the U.S.-Mexican

border. Of the words given for the predefined persona, almost all are more frequently as-

sociated with border than with any other discovered persona (“Mexican-U.S.,” “lawless,”

“porous,” “unprotected,” “guarded,” and “militarized”). The most commonly associated

words discovered by my model that are missing from the predefined description include

crossed, secured, southern, and closed.

While this qualitative evaluation helps to demonstrate the face validity of my model,

it would be better to have a more comprehensive set of predefined personas, based

on input from additional experts. Moreover, it also illustrates the challenge of trying

to match the output of an unsupervised model to expected results. Not only is some

merging and splitting of categories inevitable, there was a mismatch in this case in the

types of entities to be described (people as opposed to more abstract entities), and

the ways of describing them (rare but specific words as opposed to more generic but

potentially obvious terms).
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3.9 Related work

Much NLP has focused on identifying entities or events (Ratinov and Roth, 2009; Ritter

et al., 2012), analyzing schemes or narrative events in terms of characters (Chambers

and Jurafsky, 2009), inferring the relationships between entities (O’Connor et al., 2013;

Iyyer et al., 2016), and predicting personality types from text (Flekova and Gurevych,

2015). Bamman also applied variants of the DPM to characters in novels (Bamman

et al., 2014), and released a dataset of annotated entities in fiction (Bamman et al.,

2019).

Previous work on sentiment, stance, and opinion mining has focused on recogniz-

ing stance or political sentiment in online ideological debates (Somasundaran and

Wiebe, 2010; Hasan and Ng, 2014; Sridhar et al., 2015), and other forms of social media

(O’Connor et al., 2010; Agarwal et al., 2011), and recently through the lens of conno-

tation frames (Rashkin et al., 2016). Opinion mining and sentiment analysis are the

subject of ongoing research in NLP and have long served as test platforms for new

methodologies (Socher et al., 2013; İrsoy and Cardie, 2014; Tai et al., 2015)

3.10 Summary

In this chapter, I have presented an extension of a model for discovering latent personas

to simultaneously cluster documents by their “casts” of personas. By exploring the

model’s inferences and by incorporating the learned representations as features into a

challenging text analysis task—characterizing coarse-grained framing in news articles—

I have demonstrated that personas are a useful abstraction when applying NLP to

social-scientific inquiry. Finally, I introduced a Bayesian optimization approach to

rigorously assess the usefulness of new features in machine learning tasks.



Chapter 4

Modeling documents with metadata

using neural variational inference

(This chapter was originally published as Card et al., 2018)

4.1 Introduction

Topic models comprise a family of methods for uncovering latent structure in text

corpora, and are widely used tools in the digital humanities, political science, and

other related fields (Boyd-Graber et al., 2017), both for topic discovery, and as a way of

making measurements of text (O’Connor et al., 2011; Wallach, 2016). Latent Dirichlet

allocation (LDA; Blei et al., 2003) is often used when there is no prior knowledge about

a corpus. In the real world, however, most documents have non-textual attributes such

as author (Rosen-Zvi et al., 2004), timestamp (Blei and Lafferty, 2006), rating (McAuliffe

and Blei, 2008), or ideology (Eisenstein et al., 2011; Nguyen et al., 2015c), which I refer

to as metadata.

52
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Many customizations of LDA have been developed to incorporate document meta-

data. Two models of note are supervised LDA (SLDA; McAuliffe and Blei, 2008), which

jointly models words and labels (e.g., ratings) as being generated from a latent repre-

sentation, and sparse additive generative models (SAGE; Eisenstein et al., 2011), which

assumes that observed covariates (e.g., author ideology) have a sparse effect on the

relative probabilities of words given topics. The structural topic model (STM; Roberts

et al., 2014), which adds correlations between topics to SAGE, is also widely used, but

like SAGE it is limited in the types of metadata it can efficiently make use of, and how

that metadata is used. Note that in this work I will distinguish labels (metadata that

are generated jointly with words from latent topic representations) from covariates

(observed metadata that influence the distribution of labels and words).

Up to this point, the ability to create variations of LDA such as those listed above

has been limited by the expertise needed to develop custom inference algorithms for

each model. As a result, it is rare to see such variations being widely used in practice.

In this work, I take advantage of recent advances in variational methods (Kingma and

Welling, 2014; Rezende et al., 2014; Miao et al., 2016; Srivastava and Sutton, 2017) to

facilitate approximate Bayesian inference without requiring model-specific derivations,

and propose a general neural framework for topic models with metadata, SCHOLAR.1

SCHOLAR combines the abilities of SAGE and SLDA, and allows for easy exploration

of the following options for customization:

• Covariates: as in SAGE and STM, SCHOLAR can incorporate explicit deviations for

observed covariates, as well as effects for interactions with topics.

• Supervision: as in SLDA, SCHOLAR can use metadata as labels to help infer topics

that are relevant in predicting those labels.

• Rich encoder network: Using the encoding network of a variational autoencoder

1Sparse Contextual Hidden and Observed Language AutoencodeR.
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(VAE), it is possible to incorporate additional prior knowledge in the form of word

embeddings, and/or to provide interpretable embeddings of covariates.

• Sparsity: as in SAGE, a sparsity-inducing prior can be used to encourage more

interpretable topics, represented as sparse deviations from a background log-

frequency.

I begin with the necessary background and motivation (§4.2), and then describe the

basic framework and its extensions (§4.3), followed by a series of experiments (§4.5).

In an unsupervised setting, it is possible to customize the model to trade off between

perplexity, coherence, and sparsity, with improved coherence through the introduction

of word vectors. Alternatively, by incorporating metadata the model can either learn

topics that are more predictive of labels than SLDA, or learn explicit deviations for

particular parts of the metadata. Finally, by combining all parts of our model SCHOLAR

can meaningfully incorporate metadata in multiple ways, which I demonstrate through

an exploration of the corpus of immigration articles in the Media Frames Corpus (MFC;

see §2.4).

Like more familiar topic models, SCHOLAR can be used for both discovery and mea-

surement, and offers attractive properties in terms of its interpretability. In presenting

this particular model, I emphasize not only its ability to adapt to the characteristics of

the data, but the extent to which the VAE approach to inference provides a powerful

framework for latent variable modeling that suggests the possibility of many further

extensions. As such, VAEs have the ability to expand the range of modeling options

available to scholars in other disciplines, without requiring the expertise necessary to

derive specialized inference algorithms.
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4.2 Background and motivation

LDA can be understood as a non-negative Bayesian matrix factorization model: the

observed document-word frequency matrix, X ∈ ZD×V (D is the number of documents,

V is the vocabulary size) is factored into two low-rank matrices, ΘD×K and BK×V ,

where each row of Θ, θi ∈ ∆K is a latent variable representing a distribution over

topics in document i, and each row of B, βk ∈ ∆V , represents a single topic, i.e., a

distribution over words in the vocabulary.2 While it is possible to factor the count data

into unconstrained matrices, the particular priors assumed by LDA are important for

interpretability (Wallach et al., 2009). For example, the neural variational document

model (NVDM; Miao et al., 2016) allows θi ∈ RK and achieves normalization by taking

the softmax of θ>i B. However, the experiments in Srivastava and Sutton (2017) found

the performance of the NVDM to be slightly worse than LDA in terms of perplexity, and

dramatically worse in terms of topic coherence.

The topics discovered by LDA tend to be parsimonious and coherent groupings of

words which are readily identifiable to humans as being related to each other (Chang

et al., 2009), and the resulting mode of the matrix Θ provides a representation of each

document which can be treated as a measurement for downstream tasks, such as

classification or answering social scientific questions (Wallach, 2016). LDA does not

require — and cannot make use of — additional prior knowledge. As such, the topics

that are discovered may bear little connection to metadata of a corpus that is of interest

to a researcher, such as sentiment, ideology, or time.

In this chapter, I take inspiration from two models which have sought to alleviate

this problem. The first, supervised LDA (SLDA; McAuliffe and Blei, 2008), assumes

2Z denotes nonnegative integers, and ∆K denotes the set of K-length nonnegative vectors that sum
to one. For a proper probabilistic interpretation, the matrix to be factored is actually the matrix of latent
mean parameters of the assumed data generating process, Xij ∼ Poisson(Λij). See Cemgil (2009) or
Paisley et al. (2014) for details.
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that documents have labels y which are generated conditional on the corresponding

latent representation, i.e., yi ∼ p(y | θi).3 By incorporating labels into the model, it

is forced to learn topics which allow documents to be represented in a way that is

useful for the classification task. Such models can be used inductively as text classifiers

(Balasubramanyan et al., 2012).

SAGE (Eisenstein et al., 2011), by contrast, is an exponential-family model, where

the key innovation was to replace topics with sparse deviations from the background

log-frequency of words (d), i.e., p(word | softmax(d+θ>i B)). SAGE can also incorporate

deviations for observed covariates, as well as interactions between topics and covariates,

by including additional terms inside the softmax. In principle, this allows for inferring,

for example, the effect on an author’s ideology on their choice of words, as well as

ideological variations on each underlying topic. Unlike the NVDM, SAGE still constrains

θi to lie on the simplex, as in LDA.

SLDA and SAGE provide two different ways that users might wish to incorporate

prior knowledge as a way of guiding the discovery of topics in a corpus: SLDA incorpo-

rates labels through a distribution conditional on topics; SAGE includes explicit sparse

deviations for each unique value of a covariate, in addition to topics.4

Because of the Dirichlet-multinomial conjugacy in the original model, efficient

inference algorithms exist for LDA. Each variation of LDA, however, has required the

derivation of a custom inference algorithm, which is a time-consuming and error-prone

process. In SLDA, for example, each type of distribution one might assume for p(y | θ)

would require a modification of the inference algorithm. SAGE breaks conjugacy, and

3Technically, the model conditions on the mean of the per-word latent variables, but I elide this detail
in the interest of concision.

4A third way of incorporating metadata is the approach used by various “upstream” models, such
as Dirichlet-multinomial regression (Mimno and McCallum, 2008), which uses observed metadata to
inform the document prior. I hypothesize that this approach could be productively combined with the
SCHOLAR framework, but leave this as future work.
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as such, the authors adopted L-BFGS for optimizing the variational bound. Moreover,

in order to maintain computational efficiency, it assumed that covariates were limited

to a single categorical label.

More recently, the variational autoencoder (VAE) was introduced as a way to per-

form approximate posterior inference on models with otherwise intractable posteriors

(Kingma and Welling, 2014; Rezende et al., 2014). This approach has previously been

applied to models of text by Miao et al. (2016) and Srivastava and Sutton (2017). I build

on their work and show how this framework can be adapted to seamlessly incorporate

the ideas of both SAGE and SLDA, while allowing for greater flexibility in the use of

metadata. Moreover, by exploiting automatic differentiation, I allow for modification

of the model without requiring any change to the inference procedure. The result

is not only a highly adaptable family of models with scalable inference and efficient

prediction; it also points the way to incorporation of many ideas found in the literature,

such as a temporal evolution of topics (Blei and Lafferty, 2006), and hierarchical models

(Blei et al., 2010; Nguyen et al., 2013, 2015c).

4.3 Scholar: A neural topic model with covariates, super-

vision, and sparsity

I begin by presenting the generative story for SCHOLAR, and explain how it general-

izes both SLDA and SAGE (§4.3.1). I then provide a general explanation of inference

using VAEs and how it applies to my model (§4.4), as well as how to infer document

representations and predict labels at test time (§4.4.1). Finally, I discuss how one can

incorporate additional prior knowledge (§4.4.2).
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4.3.1 Generative story

Consider a corpus of D documents, where document i is a list of Ni words,wi, with V

words in the vocabulary. For each document, one may have observed covariates ci (e.g.,

year of publication), and/or one or more labels, yi (e.g., sentiment).

My model builds on the generative story of LDA, but optionally incorporates labels

and covariates, and replaces the matrix product of Θ and B with a more flexible gener-

ative network, fg, followed by a softmax transform. Instead of using a Dirichlet prior

as in LDA, I employ a logistic normal prior on θ as in Srivastava and Sutton (2017) to

facilitate inference (§4.4): I draw a latent variable, r, from a multivariate normal, and

transform it to lie on the simplex using a softmax transform.5

The generative story is shown in Figure 4.1a and described in equations below:

For each document i of length Ni:

# Draw a latent representation on the simplex from a logistic normal prior:

• ri ∼ N (r | µ0(α),diag(σ2
0(α)))

• θi = softmax(ri)

# Generate words, incorporating covariates:

• ηi = fg(θi, ci)

• For each word j in document i:

• wij ∼ p(w | softmax(ηi))

# Similarly generate labels:

• yi ∼ p(y | fy(θi, ci))
5Unlike the correlated topic model (CTM; Lafferty and Blei, 2006), which also uses a logistic-normal

prior, I fix the parameters of the prior and use a diagonal covariance matrix, rather than trying to infer
correlations among topics. However, it would be a straightforward extension of this framework to place a
richer prior on the latent document representations, and learn correlations by updating the parameters
of this prior after each epoch, analogously to the variational EM approach used for the CTM.



4.3. SCHOLAR: A NEURAL TOPIC MODEL 59

wy

η

θ

r

α

c B

Ni

D

(a) Generative model

r

µ σ

π

cy w

ε

lin
ea

r lin
ear

D

(b) Inference model

Figure 4.1: (a) presents the generative story of SCHOLAR. (b) illustrates the inference
network using the reparametrization trick to perform variational inference on the
model presented in this chapter. Shaded nodes are observed; double circles indicate
deterministic transformations of parent nodes.

where p(w | softmax(ηi)) is a multinomial distribution and p(y | fy(θi, ci)) is a dis-

tribution appropriate to the data (e.g., multinomial for categorical labels). fg is a

model-specific combination of latent variables and covariates, fy is a multi-layer neural

network, and µ0(α) and σ2
0(α) are the mean and diagonal covariance terms of a multi-

variate normal prior. To approximate a symmetric Dirichlet prior with hyperparameter

α, these are given by the Laplace approximation (Hennig et al., 2012) to be µ0,k(α) = 0

and σ2
0,k = (K − 1)/(αK).

If one were to ignore covariates, place a Dirichlet prior on β, and let η = θ>i B, this

model is equivalent to SLDA with a logistic normal prior. Similarly, one can recover a

model that is like SAGE, but lacks sparsity, if one ignores labels, and let

ηi = d+ θ>i B + c>i Bcov + (θi ⊗ ci)>Bint, (4.1)
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where d is the V -dimensional background term (representing the log of the overall

word frequency), θi ⊗ ci is a vector of interactions between topics and covariates, and

Bcov and Bint are additional weight (deviation) matrices. The background is included to

account for common words with approximately the same frequency across documents,

meaning that the B∗ weights now represent both positive and negative deviations from

this background. This is the form of fg which I will use in my experiments.

To recover the full SAGE model, one can place a sparsity-inducing prior on each B∗.

As in Eisenstein et al. (2011), I make use of the compound normal-exponential prior for

each element of the weight matrices, B∗m,n, with hyperparameter γ,6

τm,n ∼ Exponential(γ), (4.2)

B∗m,n ∼ N (0, τm,n). (4.3)

One can choose to ignore various parts of this model, if, for example, one doesn’t

have any labels or observed covariates, or doesn’t wish to use interactions or sparsity.7

Other generator networks could also be considered, with additional layers to represent

more complex interactions, although this might involve some loss of interpretability.

In the absence of metadata, and without sparsity, this model is equivalent to the

ProdLDA model of Srivastava and Sutton (2017) with an explicit background term, and

ProdLDA is, in turn, a special case of SAGE, without background log-frequencies, spar-

sity, covariates, or labels. In the next section I generalize the inference method used for

ProdLDA; in my experiments I validate its performance and explore the effects of regu-

6To avoid having to tune γ, I employ an improper Jeffery’s prior, p(τm,n) ∝ 1/τm,n, as in SAGE.
Although this causes difficulties in posterior inference for the variance terms, τ , in practice, I resort
to a variational EM approach, with MAP-estimation for the weights, B, and thus alternate between
computing expectations of the τ parameters, and updating all other parameters using some variant of
stochastic gradient descent. For this, I only require the expectation of each τmn for each E-step, which is
given by 1/B2

m,n. I refer the reader to Eisenstein et al. (2011) for additional details.
7One could also ignore latent topics, in which case one would get a naive Bayes-like model of text

with deviations for each covariate p(wij | ci) ∝ exp(d+ c>i Bcov).
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larization and word-vector initialization (§4.4.2). The NVDM (Miao et al., 2016) uses

the same approach to inference, but does not not restrict document representations to

the simplex.

4.4 Learning and inference

As in past work, each document i is assumed to have a latent representation ri, which

can be interpreted as its relative membership in each topic (after exponentiating and

normalizing). In order to infer an approximate posterior distribution over ri, I adopt

the sampling-based VAE framework developed in previous work (Kingma and Welling,

2014; Rezende et al., 2014).

As in conventional variational inference, I assume a variational approximation to

the posterior, qΦ(ri | wi, ci,yi), and seek to minimize the KL divergence between it and

the true posterior, p(ri | wi, ci,yi), where Φ is the set of variational parameters to be

defined below. After some manipulations, I obtain the evidence lower bound (ELBO)

for a single document,

L(wi) = EqΦ(ri|wi,ci,yi)

[
Ni∑
j=1

log p(wij | ri, ci)
]

+ EqΦ(ri|wi,ci,yi) [log p(yi | ri, ci)]

−DKL [qΦ(ri | wi, ci,yi) || p(ri | α)] . (4.4)

As in the original VAE, I will encode the parameters of the variational distributions

using a shared multi-layer neural network. Because I have assumed a diagonal normal

prior on r, this will take the form of a network which outputs a mean vector, µi =

fµ(wi, ci,yi) and diagonal of a covariance matrix, σ2
i = fσ(wi, ci,yi), such that qΦ(ri |

wi, ci,yi) = N (µi,σ
2
i ). Incorporating labels and covariates to the inference network
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used by Miao et al. (2016) and Srivastava and Sutton (2017), I use:

πi = fe([Wxxi; Wcci; Wyyi]), (4.5)

µi = Wµπi + bµ, (4.6)

logσ2
i = Wσπi + bσ, (4.7)

where xi is a V -dimensional vector representing the counts of words in wi, and fe

is a multilayer perceptron. The full set of encoder parameters, Φ, thus includes the

parameters of fe and all weight matrices and bias vectors in Equations 4.5–4.7 (see

Figure 4.1b).

This approach means that the expectations in Equation 4.4 are intractable, but

one can approximate them using sampling. In order to maintain differentiability with

respect to Φ, even after sampling, I make use of the reparameterization trick (Kingma

and Welling, 2014),8 which allows us to reparameterize samples from qΦ(r | wi, ci,yi)

in terms of samples from an independent source of noise, i.e.,

ε(s) ∼ N (0, I), (4.8)

r
(s)
i = gΦ(wi, ci,yi, ε

(s)) = µi + σi · ε(s). (4.9)

I thus replace the bound in Equation 4.4 with a Monte Carlo approximation using a

single sample9 of ε (and thereby of r):

L(wi) ≈
Ni∑
j=1

log p(wij | r(s)i , ci) + log p(yi | r(s)i , ci)−DKL [qΦ(ri | wi, ci,yi) || p(ri | α)] .

(4.10)
8The Dirichlet distribution cannot be directly reparameterized in this way, which is why I use the

logistic normal prior on θ to approximate the Dirichlet prior used in LDA.
9Alternatively, one can average over multiple samples, either naively or using importance weighting

(Burda et al., 2016).
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It is now possible to optimize this sampling-based approximation of the variational

bound with respect to Φ, B∗, and all parameters of fg and fy using stochastic gradi-

ent descent. Moreover, because of this stochastic approach to inference, one is not

restricted to covariates with a small number of unique values, which was a limitation

of SAGE. Finally, the KL divergence term in Equation 4.10 can be computed in closed

form (see Kingma and Welling, 2014 or Card et al., 2018 for details).

4.4.1 Prediction on held-out data

In addition to inferring latent topics, SCHOLAR can both infer latent representations

for new documents and predict their labels, the latter of which was the motivation for

SLDA. In traditional variational inference, inference at test time requires fixing global

parameters (topics), and optimizing the per-document variational parameters for the

test set. With the VAE framework, by contrast, the encoder network (Equations 4.5–4.7)

can be used to directly estimate the posterior distribution for each test document, using

only a forward pass (no iterative optimization or sampling).

If not using labels, one can use this approach directly, passing the word counts

of new documents through the encoder to get a posterior qΦ(ri | wi, ci). When also

including labels to be predicted, one can first train a fully-observed model, as above,

then fix the decoder, and retrain the encoder without labels. In practice, however, if one

trains the encoder network using one-hot encodings of document labels, it is sufficient

to provide a vector of all zeros for the labels of test documents; this is what I adopt for

my experiments (§4.5.2), and I still obtain good predictive performance.

The label network, fy, is a flexible component which can be used to predict a

wide range of outcomes, from categorical labels (such as star ratings; McAuliffe and

Blei, 2008) to real-valued outputs (such as number of citations or box-office returns;
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Yogatama et al., 2011). For categorical labels, predictions are given by

ŷi = argmax
y ∈ Y

p(y | θi, ci). (4.11)

Alternatively, when dealing with a small set of categorical labels, it is also possible

to treat them as observed categorical covariates during training. At test time, one can

then consider all possible one-hot vectors, e, in place of ci, and predict the label that

maximizes the probability of the words, i.e.,

ŷi = argmax
y ∈ Y

Ni∑
j=1

log p(wij | θi, ey). (4.12)

This approach works well in practice (as I show in §4.5.2), but does not scale to large

numbers of labels, or other types of prediction problems, such as multi-class classifica-

tion or regression.

The choice to include metadata as covariates, labels, or both, depends on the

data. The key point is that one can incorporate metadata in two very different ways,

depending on what one wants from the model. Labels guide the model to infer topics

that are relevant to those labels, whereas covariates induce explicit deviations, leaving

the latent variables to account for the rest of the content.

4.4.2 Additional prior information

A final advantage of the VAE framework is that the encoder network provides a way to

incorporate additional prior information in the form of word vectors. Although one

can learn all parameters starting from a random initialization, it is also possible to

initialize and fix the initial embeddings of words in the model, Wx, in Equation 4.5.

This leverages word similarities derived from large amounts of unlabeled data, and may
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promote greater coherence in inferred topics. The same could also be done for some

covariates; for example, one could embed the source of a news article based on its place

on the ideological spectrum. Conversely, if one chooses to learn these parameters, the

learned values (Wy and Wc) may provide meaningful embeddings of these metadata

(see section §4.5.3).

Other variants on topic models have also proposed incorporating word vectors, both

as a parallel part of the generative process (Nguyen et al., 2015b), and as an alternative

parameterization of topic distributions (Das et al., 2015), but inference is not scalable

in either of these models. Because of the generality of the VAE framework, one could

also modify the generative story so that word embeddings are emitted (rather than

tokens); I leave this for future work.

4.4.3 Additional details

As observed in past work, inference using a VAE can suffer from component collapse,

which translates into excessive redundancy in topics (i.e., many topics containing the

same set of words). To mitigate this problem, I borrow the approach used by Srivastava

and Sutton (2017), and make use of the Adam optimizer with a high momentum,

combined with batchnorm layers to avoid divergence. Specifically, I add batchnorm

layers following the computation of µ, logσ2, and η.

This effectively solves the problem of mode collapse, but the batchnorm layer

on η introduces an additional problem, not reported in past work. At test time, the

batchnorm layer will shift the input based on the learned population mean of the

training data; this effectively encodes information about the distribution of words in

this model that is not captured by the topic weights and background distribution. As

such, although reconstruction error will be low, the document representation θ, will
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not necessarily be a useful representation of the topical content of each document. In

order to alleviate this problem, I reconstruct η as a convex combination of two copies

of the output of the generator network, one passed through a batchnorm layer, and

one not. During training, I then gradually anneal the model from relying entirely on

the component passed through the batchnorm layer, to relying entirely on the one that

is not. This ensures that the the final weights and document representations will be

properly interpretable.

4.5 Experiments and results

To evaluate and demonstrate the potential of this model, I present a series of experi-

ments below. I first test SCHOLAR without observed metadata, and explore the effects

of using regularization and/or word vector initialization, compared to LDA, SAGE,

and NVDM (§4.5.1). I then evaluate my model in terms of predictive performance, in

comparison to SLDA and an l2-regularized logistic regression baseline (§4.5.2). Finally,

I demonstrate the ability to incorporate covariates and/or labels in an exploratory data

analysis (§4.5.3).

The scores I report are generalization to held-out data, measured in terms of per-

plexity; coherence, measured in terms of non-negative point-wise mutual information

(NPMI; Chang et al., 2009; Newman et al., 2010), and classification accuracy on test

data. For coherence I evaluate NPMI using the top 10 words of each topic, both in-

ternally (using test data), and externally, using a decade of articles from the English

Gigaword dataset (Graff and Cieri, 2003). Since SCHOLAR employs variational methods,

the reported perplexity is an upper bound based on the ELBO.

As datasets I use the familiar 20 newsgroups, the IMDB corpus of 50,000 movie

reviews (Maas et al., 2011), and the UIUC Yahoo answers dataset with 150,000 docu-
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ments in 15 categories (Chang et al., 2008). For further exploration, I also make use of

the immigration articles from the MFC, each annotated with pro- or anti-immigration

tone (see Chapter 2). All datasets were preprocessed by tokenizing, converting to

lower case, removing punctuation, and dropping all tokens that included numbers,

all tokens less than 3 characters, and all words on the stopword list from the snowball

sampler.10 The vocabulary was then formed by keeping the words that occurred in the

most documents.

For all experiments I use a model with 300-dimensional embeddings of words, and

take fe to be the element-wise softplus nonlinearity (followed by the linear transfor-

mations for µ and logσ2). Similarly, fy is a linear transformation of θ, followed by a

softplus layer, followed by a linear transformation to the size of the output (the number

of classes). During training, I set S (the number of samples of ε) to be 1; for estimating

the ELBO at on test documents, I set S = 20.

I use the original author-provided implementations of SAGE11 and SLDA,12 while

for LDA I use Mallet.13 My implementation of SCHOLAR for these experiments was

in TensorFlow, but I have also provided a PyTorch implementation of the core of the

model.14

It is challenging to fairly evaluate the relative computational efficiency of this ap-

proach compared to past work (due to the stochastic inference, choices about hyperpa-

rameters such as tolerance, and because of differences in implementation). Neverthe-

less, in practice, the performance of SCHOLAR is highly appealing. For all experiments

in this chapter, my implementation was much faster than SLDA or SAGE (implemented

in C and Matlab, respectively), and competitive with Mallet.

10snowball.tartarus.org/algorithms/english/stop.txt
11github.com/jacobeisenstein/SAGE
12github.com/blei-lab/class-slda
13mallet.cs.umass.edu
14github.com/dallascard/scholar

snowball.tartarus.org/algorithms/english/stop.txt
github.com/jacobeisenstein/SAGE
github.com/blei-lab/class-slda
mallet.cs.umass.edu
github.com/dallascard/scholar
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4.5.1 Unsupervised evaluation

Although the emphasis of this work is on incorporating observed labels and/or covari-

ates, I briefly report on experiments in the unsupervised setting. Recall that, without

metadata, SCHOLAR equates to ProdLDA, but with an explicit background term. I there-

fore use the same experimental setup as Srivastava and Sutton (2017) (learning rate,

momentum, batch size, and number of epochs) and find the same general patterns as

they reported (see Tables 4.1, 4.2, and 4.3): in general, SCHOLAR returns more coherent

topics than LDA, but at the cost of worse perplexity. SAGE, by contrast, attains very

high levels of sparsity, but at the cost of worse perplexity and coherence than LDA. As

expected, the NVDM produces relatively low perplexity, but very poor coherence, due

to its lack of constraints on θ.

Further experimentation revealed that the VAE framework involves a tradeoff among

the scores; running for more epochs tends to result in better perplexity on held-out data,

but at the cost of worse coherence. This phenomenon has recently been investigated in

more detail, revealing that while both perplexity and coherence tend to improve early

on, at some point coherence will begin to decrease (sometimes catastrophically), while

perplexity will continue to improve (Ding et al., 2018). Recent work building on the

model presented in this chapter noted the same finding, and proposed using coherence

(as measured by NPMI) as a criterion for early stopping (Gururangan et al., 2019).

Adding regularization to encourage sparse topics has a similar effect as in SAGE,

leading to worse perplexity and coherence, but it does create sparse topics. Interestingly,

initializing the encoder with pretrained word2vec embeddings, and not updating them

tends to produce a model with the best internal coherence on most datasets.

Finally, the background term in SCHOLAR model does not have much effect on

perplexity, but plays an important role in producing coherent topics; as in SAGE, the
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Ppl. NPMI NPMI Sparsity
Model ↓ (int.) ↑ (ext.) ↑ ↑
LDA 1508 0.13 0.14 0
SAGE 1767 0.12 0.12 0.79
NVDM 1748 0.06 0.04 0
SCHOLAR − B.G. 1889 0.09 0.13 0
SCHOLAR 1905 0.14 0.13 0
SCHOLAR + W.V. 1991 0.18 0.17 0
SCHOLAR + REG. 2185 0.10 0.12 0.58

Table 4.1: Performance of the various models in an unsupervised setting (i.e., without
labels or covariates) on the IMDB dataset using a 5,000-word vocabulary and 50 topics.
The best result in each column is shown in bold.

Ppl. NPMI NPMI Sparsity
Model ↓ (int.) ↑ (ext.) ↑ ↑
LDA 810 0.20 0.11 0
SAGE 867 0.27 0.15 0.71
NVDM 1067 0.18 0.11 0
SCHOLAR - B.G. 928 0.17 0.09 0
SCHOLAR 921 0.35 0.16 0
SCHOLAR + W.V. 955 0.29 0.17 0
SCHOLAR + REG. 1053 0.25 0.13 0.43

Table 4.2: Performance of various models on the 20 newsgroups dataset with 20 topics
and a 2,000-word vocabulary.

background can account for common words, so they are mostly absent among the

most heavily weighted words in the topics. For instance, words like film and movie in

the IMDB corpus are relatively unimportant in the topics learned by SCHOLAR model,

but would be much more heavily weighted without the background term, as they are in

topics learned by LDA. Moreover, the background term also helps to avoids some of the

repetition among top terms in topics that can otherwise occur.

An example of 20 topics learned by SCHOLAR on the 20 newsgroups dataset is shown

in Table 4.4
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Ppl. NPMI NPMI Sparsity
Model ↓ (int.) ↑ (ext.) ↑ ↑
LDA 1035 0.29 0.15 0
NVDM 4588 0.20 0.09 0
SCHOLAR - B.G. 1589 0.27 0.16 0
SCHOLAR 1596 0.33 0.13 0
SCHOLAR + W.V. 1780 0.37 0.15 0
SCHOLAR + REG. 1840 0.34 0.13 0.44

Table 4.3: Performance of various models on the Yahoo answers dataset with 250 topics
and a 5,000-word vocabulary. SAGE did not finish in 72 hours so I omit it from this
table.

NPMI Topic
0.77 turks armenian armenia turkish roads escape soviet muslim mountain soul
0.52 escrow clipper encryption wiretap crypto keys secure chip nsa key
0.49 jesus christ sin bible heaven christians church faith god doctrine
0.43 fbi waco batf clinton children koresh compound atf went fire
0.41 players teams player team season baseball game fans roger league
0.39 guns gun weapons criminals criminal shooting police armed crime defend
0.37 playoff rangers detroit cup wings playoffs montreal toronto minnesota
0.36 ftp images directory library available format archive graphics package
0.33 user server faq archive users ftp unix applications mailing directory
0.32 bike car cars riding ride engine rear bmw driving miles
0.32 study percent sexual medicine gay studies april percentage treatment
0.32 israeli israel arab peace rights policy islamic civil adam citizens
0.30 morality atheist moral belief existence christianity truth exist god objective
0.28 space henry spencer international earth nasa orbit shuttle development
0.27 bus motherboard mhz ram controller port drive card apple mac
0.25 windows screen files button size program error mouse colors microsoft
0.24 sale shipping offer brand condition sell printer monitor items asking
0.21 driver drivers card video max advance vga thanks windows appreciated
0.19 cleveland advance thanks reserve ohio looking nntp western host usa
0.04 banks gordon univ keith soon pittsburgh michael computer article ryan

Table 4.4: Topics from the unsupervised SCHOLAR on the 20 newsgroups dataset, and
the corresponding internal coherence values.
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20news IMDB Yahoo
Vocabulary size 2000 5000 5000
Number of topics 50 50 250

SLDA 0.60 0.64 0.65
SCHOLAR (labels) 0.67 0.86 0.73
SCHOLAR (covariates) 0.71 0.87 0.72
Logistic regression 0.70 0.87 0.76

Table 4.5: Accuracy of various models on three datasets with categorical labels.

4.5.2 Text classification

I next consider the utility of SCHOLAR in the context of categorical labels, and consider

them alternately as observed covariates and as labels generated conditional on the

latent representation. I use the same setup as above, but tune number of training

epochs for this model using a random 20% of training data as a development set, and

similarly tune regularization for logistic regression.

Table 4.5 summarizes the accuracy of various models on three datasets, revealing

that SCHOLAR offers competitive performance, both as a joint model of words and

labels (Eq. 4.11), and a model which conditions on covariates (Eq. 4.12). Although

SCHOLAR is comparable to the logistic regression baseline, my purpose here is not to

attain state-of-the-art performance on text classification. Rather, the high accuracies I

obtain demonstrate that the model are learning low-dimensional representations of

documents that are relevant to the label of interest, outperforming SLDA, and have

the same attractive properties as topic models. Further, any neural network that is

successful for text classification could be incorporated into fy and trained end-to-end

along with topic discovery.



72 CHAPTER 4. MODELING DOCUMENTS WITH METADATA

0 1

p(pro-immigration | topic)

arrested charged charges agents operation
state gov benefits arizona law bill bills
bush border president bill republicans
labor jobs workers percent study wages
asylum judge appeals deportation court
visas visa applications students citizenship
boat desert died men miles coast haitian
english language city spanish community

Figure 4.2: Topics inferred by a joint model of words and tone, and the corresponding
probability of pro-immigration tone for each topic. A topic is represented by the top
words sorted by word probability throughout the chapter.

4.5.3 Exploratory study

In this section, I demonstrate how SCHOLAR might be used to explore an annotated

corpus of articles about immigration, and adapt to different assumptions about the

data. I only use a small number of topics in this part (K = 8) for compact presentation.

Tone as a label. I first consider using the annotations as a label, and train a joint model

to infer topics relevant to the tone of the article (pro- or anti-immigration). Figure 4.2

shows a set of topics learned in this way, along with the predicted probability of an

article being pro-immigration conditioned on the given topic. All topics are coherent,

and the predicted probabilities have strong face validity, e.g., “arrested charged charges

agents operation” is least associated with pro-immigration.

Tone as a covariate. Next I consider using tone as a covariate, and build a model using

both tone and tone-topic interactions. Table 4.6 shows a set of topics learned from the

immigration data, along with the most highly-weighted words in the corresponding

tone-topic interaction terms. As can be seen, these interaction terms tend to capture

different frames (e.g., “criminal” vs. “detainees”, and “illegals” vs. “newcomers”, etc).
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Base topics (each row is a topic) Anti-immigration interactions Pro-immigration interactions
ice customs agency enforcement criminal customs arrested detainees detention center
population born percent jobs million illegals english newcomers hispanic
judge case court guilty appeals guilty charges man charged asylum court judge case appeals
patrol border miles coast desert patrol border agents boat died authorities desert border
licenses drivers card visa cards foreign sept visas system green citizenship card citizen
island story chinese ellis smuggling federal charges island school ellis english story
guest worker workers bush labor bill border house senate workers tech skilled farm labor
benefits bill welfare republican republican california gov law welfare students tuition

Table 4.6: Top words for topics (left) and the corresponding anti-immigration (mid-
dle) and pro-immigration (right) variations when treating tone as a covariate, with
interactions.

Combined model with temporal metadata. Finally, I incorporate both the tone an-

notations and the year of publication of each article, treating the former as a label and

the latter as a covariate. In this model, I also include an embedding matrix, Wc, to

project the one-hot year vectors down to a two-dimensional continuous space, with

a learned deviation for each dimension. I omit the topics in the interest of space, but

Figure 4.3 shows the learned embedding for each year, along with the top terms of

the corresponding deviations. As can be seen, the model learns that adjacent years

tend to produce similar deviations, even though I have not explicitly encoded this

information. The left-right dimension roughly tracks a temporal trend with positive

deviations shifting from the years of “Clinton” and “INS” on the left, to “Obama” and

“ICE” on the right.15 Meanwhile, the events of 9/11 dominate the vertical direction, with

the words “sept”, “hijackers”, and “attacks” increasing in probability as one moves up in

the space. One could also to look at each year individually, by dropping the embedding

of years, and instead learning a sparse set of topic-year interactions, similar to tone in

Table 4.6.
15The Immigration and Naturalization Service (INS) was transformed into Immigration and Customs

Enforcement (ICE) and other agencies in 2003.
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1990
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 obama clinton deportations

 sept hijackers elian attacks
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clinton

obama
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ICE
path

Figure 4.3: Learned embeddings of year-of-publication (treated as a covariate) from
combined model of news articles about immigration.

4.6 Additional related work

The literature on topic models is vast; in addition to papers cited throughout, other

efforts to incorporate metadata into topic models include Dirichlet-multinomial re-

gression (DMR; Mimno and McCallum, 2008), Labeled LDA (Ramage et al., 2009), and

MedLDA (Zhu et al., 2009). A recent paper also extended DMR by using deep neu-

ral networks to embed metadata into a richer document prior (Benton and Dredze,

2018). An extension of the work presented in this chapter has also demonstrated how

neural variational document models can be effectively used for pretraining document

representations for semi-supervised text classification in the low-resource setting (Gu-

rurangan et al., 2019).

A separate line of work has pursued parameterizing unsupervised models of docu-

ments using neural networks (Hinton and Salakhutdinov, 2009; Larochelle and Lauly,

2012), including non-Bayesian approaches (Cao et al., 2015). More recently, Lau et al.

(2017) proposed a neural language model that incorporated topics, and He et al. (2017)

developed a scalable alternative to the correlated topic model by simultaneously learn-

ing topic embeddings.
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Others have attempted to extend the reparameterization trick to the Dirichlet and

Gamma distributions, either through transformations (Kucukelbir et al., 2016) or a gen-

eralization of reparameterization (Ruiz et al., 2016). Black-box and VAE-style inference

have been implemented in at least two general purpose tools designed to allow rapid

exploration and evaluation of models (Kucukelbir et al., 2015; Tran et al., 2016).

A natural extension of the work in this chapter would be to develop a neural varia-

tional approach to inference in the type of hierarchical model developed for inferring

latent personas in Chapter 3. Although there have been several proposed approaches

to hierarchical VAEs (Sønderby et al., 2016; Klushyn et al., 2019), these have not yet

been fully developed for text data or social science applications more broadly.

4.7 Summary

In this chapter, I have presented a neural framework for generalized topic models to

enable flexible incorporation of metadata with a variety of options. I take advantage

of stochastic variational inference to develop a general algorithm for this framework

such that variations do not require any model-specific algorithm derivations. The

resulting model, SCHOLAR, demonstrates the tradeoff between perplexity, coherence,

and sparsity, and outperforms SLDA in predicting document labels. Furthermore, this

model and accompanying code can facilitate rapid exploration of document collections

with metadata, as demonstrated by an example using the immigration articles from the

Media Frames Corpus.



Chapter 5

Estimating label proportions from

annotations

(This chapter was originally published as Card and Smith, 2018)

5.1 Introduction

As discussed in Chapter 2, a methodological tool often used in the social sciences and

humanities (and practical settings like journalism) is content analysis – the manual

categorization of pieces of text into a set of categories which have been developed to an-

swer a substantive research question (Krippendorff, 2012). Automated content analysis

holds great promise for augmenting the efforts of human annotators (O’Connor et al.,

2011; Grimmer and Stewart, 2013). While this task bears similarity to text categorization

problems such as sentiment analysis, the quantity of real interest is often the proportion

of documents in a dataset that should receive each label (Hopkins and King, 2010). This

chapter tackles the problem of estimating label proportions in a target corpus based on

a small sample of human annotated data.

76



5.1. INTRODUCTION 77

As an example, consider the hypothetical question (not explored in this work) of

whether hate speech is increasingly prevalent in social media posts in recent years.

“Hate speech” is a difficult-to-define category only revealed (at least initially) through

human judgments (Davidson et al., 2017; Sap et al., 2019). Note that the goal would

not be to identify individual instances, but rather to estimate a proportion, as a way

of measuring the prevalence of a social phenomenon. Although I assume that trained

annotators could recognize this phenomenon with some acceptable level of agreement,

relying solely on manual annotation would restrict the number of messages that could

be considered, and would limit the analysis to the messages available at the time of

annotation.1

I thus treat proportion estimation as a measurement problem, and seek a way to

train an instrument from a limited number of human annotations to measure label

proportions in an unannotated target corpus.

This problem can be cast within a supervised learning framework, and past work has

demonstrated that it is possible to improve upon a naive classification-based approach,

even without access to any labeled data from the target corpus (Forman, 2005, 2008;

Bella et al., 2010; Hopkins and King, 2010; Esuli and Sebastiani, 2015). However, as

I argue (§5.2), most of this work is based on a set of assumptions that I believe are

invalid in a significant portion of text-based research projects in the social sciences and

humanities.

The main contributions of this chapter include:

• identifying two different data-generating scenarios for text data (intrinsic vs. ex-

trinsic labels) and and establishing their importance to the problem of estimating

proportions (§5.2);

1For additional examples see Grimmer et al. (2012), Hopkins and King (2010), and references therein.



78 CHAPTER 5. ESTIMATING LABEL PROPORTIONS

• analyzing which methods are suitable for each setting, and proposing a simple

alternative approach for extrinsic labels (§5.3); and

• an empirical comparison of methods that validates this analysis (§5.4).

Complicating matters somewhat is the fact that annotation may take place before

the entire collection is available, so that the subset of instances that are manually

annotated may represent a biased sample (§5.2). Because this is so frequently the

case, all of the results in this chapter assume that one must confront the challenges

of transfer learning or domain adaptation. (The simpler case, where one can sample

from the true population of interest, is revisited in §5.5.)

5.2 Problem definition

The setup in this chapter is similar to that faced in transfer learning, and I will use

similar terminology (Pan and Yang, 2010; Weiss et al., 2016). Specifically, I assume that

one has a source and a target corpus, comprised of NS and NT documents respectively,

the latter of which are not available for annotation. I will represent each corpus as a set

of documents, i.e.,X(S) = 〈x(S)
1 , ...,x

(S)
Ns
〉, and similarly forX(T ).

I further assume that one has a set ofK mutually exclusive categories,Y = {1, . . . , K},

and that one wishes to estimate the proportion of documents in the target corpus that

belong to each category. These would typically correspond to a quantity one wishes

to measure, such as what fraction of news articles frame a policy issue in a particular

way, what fraction of product reviews are considered helpful, or what fraction of social

media messages convey positive sentiment. Generally speaking, these categories will

be designed based on theoretical assumptions, an understanding of the design of the

platform that produced the data, and/or initial exploration of the data itself.
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In idealized text classification scenarios, it is conventional to assume training data

with already-assigned gold-standard labels. Here, I are interested in scenarios where

one must generate the labels via an annotation process.2 Specifically, assume that there

exists some annotation function,A, which produces a distribution over the K mutually

exclusive labels, conditional on text. Given a document, xi, the annotation process

samples a label from the annotation function, defined as:

A(xi, k) , p(yi = k | xi). (5.1)

Typically, the annotation function would represent the behavior of a human anno-

tator (or group of annotators), but it could also represent a less controlled real-world

process, such as users rating a review’s helpfulness. Note that this setup does include

the special case in which true gold-standard labels are available for each instance (such

as the authors of documents in an authorship attribution problem). In such a case,A is

deterministic (assuming unique inputs).

Given that my objective is to mimic the annotation process, I seek to estimate the

proportion of documents in the target corpus expected to be categorized into each of

the K categories, if one had an unlimited budget and full access to the target corpus at

the time of annotation. That is, I wish to estimate q(T ), which I define as:

q(y = k |X(T )) , 1
NT

∑NT

i=1 p(yi = k | x(T )
i ). (5.2)

Given a set of documents sampled from the source corpus and L applications of

the annotation function, one can obtain, at some cost, a labeled training corpus of

L documents, i.e., D(train) = 〈(x1, y1), . . . , (xL, yL)〉. Because the source and target cor-

2This could include gathering multiple independent annotations per instance, but I will typically
assume only one.
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Assumption Intrinsic labels Extrinsic labels
Data generating process x ∼ p(x | y) y ∼ p(y | x)
Assumed to differ across domains p(y) p(x)
Assumed constant across domains p(x | y) p(y | x)
Corresponding distributional shift Prior probability shift Covariate shift

Table 5.1: Data generating scenarios and corresponding distributional properties.

pora are not in general drawn from the same distribution, I seek to make explicit the

assumptions about how they differ.3 Past literature on transfer learning has identified

several patterns of dataset shift (Storkey, 2009). Here I focus on two particularly impor-

tant cases, linking them to the relevant data generating processes, and analyze their

relevance to estimating proportions.

Two kinds of distributional shift. There are two natural assumptions one could make

about what is constant between the two corpora. One could assume that there is no

change in the distribution of text given a document’s label, i.e., p(S)(x | y) = p(T )(x | y).

Alternately, one could assume that there is no change in the distribution of labels given

text, i.e., p(S)(y | x) = p(T )(y | x). The former is assumed in the case of prior probability

shift, where one assumes that p(y) differs but p(x | y) is constant, and the later is

assumed in the case of covariate shift, where one assumes that p(x) differs but p(y | x)

is constant (Storkey, 2009).

These two assumptions correspond to two fundamentally different types of scenar-

ios that one needs to consider, which are summarized in Table 5.1. The first is where

one is dealing with what I will call intrinsic labels, that is labels which are inherent to

each instance, and which in some sense precede and predict the generation of the text

of that instance. A classic example of this scenario is the case of authorship attribution

(e.g., Mosteller and Wallace, 1964), in which different authors are assumed to have dif-

3Clearly, if one makes no assumptions about how the source and target distributions are related, there
is no guarantee that supervised learning will work (Ben-David et al., 2012).
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ferent propensities to use different styles and vocabularies. The identity of the author

of a document is arguably an intrinsic property of that document, and it is easy to see a

text as having been generated conditional on its author.

The contrasting scenario is what I will refer to as extrinsic labels; this scenario is my

primary interest. I assume here that the labels are not inherent in the documents, but

rather have been externally generated, conditional on the text as a stimulus to some

behavioral process.4 I argue that this is the relevant assumption for most annotation-

based projects in the social sciences, where the categories of interest do not correspond

to pre-existing categories that might have existed in the minds of authors before writing,

or affected the writing process. Rather, these are theorized categories that have been

developed specifically to analyze or measure some aspect of the document’s effect that

is of interest to the researcher.

One won’t always know the true distributional properties of one’s datasets, but

distinguishing between intrinsic and extrinsic labels provides a guide. The critical point

is that these two different labeling scenarios have different implications for robustness

to distributional shift. In the case of extrinsic labels, especially when working with

trained annotators, it is reasonable to assume that the behavior of the annotation

function is determined purely by the text, such that p(y | x) is unchanged between

source and target, and any change in label proportions is explained by a change in

the underlying distribution of text, p(x). With intrinsic labels, by contrast, it may be

the case that p(x | y) is the same for the source and the target, assuming there are

no additional factors influencing the generation of text. In that case, a shift in the

distribution of features would be fully explained by a difference in the underlying label

proportions.

4Fong and Grimmer (2016) also consider this process in attempting to identify the causal effects of
texts.
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The idea that there are different data generating processes is obviously not new.5

What is novel here, however, is asking how these different assumptions affect the

estimation of proportions. Virtually all past work on estimating proportions has only

considered prior probability shift, assuming that p(x | y) is constant.6 Existing methods

take advantage of this assumption, and can be shown empirically to work well when it is

satisfied (e.g., through artificial modification of real datasets to alter label proportions in

a corpus). One would expect them to fail, however, in the case of extrinsic annotations,

as there is no reason to think that the required assumption should necessarily hold.

By contrast, the problem of covariate shift is in some sense less of a problem because

one directly observesX(T ). Since the annotation function is assumed to be unchanging,

one could perfectly predict the expected label proportions in the target corpus if one

could learn the annotation function using labeled data from the source corpus. The

problem thus becomes how to learn a well-calibrated approximation of the annotation

function from a limited amount of labeled data.

5.3 Methods

Given a labeled training set and a target corpus, the naive approach is to train a classifier

through any conventional means, predict labels on the target corpus, and return the

relative prevalence of predicted labels. Following Forman (2005), I refer to this approach

as classify and count (CC). If using a probabilistic classifier, averaging the predicted

posterior probabilities rather than predicted labels will be referred to as probabilistic

classify and count (PCC; Bella et al., 2010).

Both approaches can fail, however. In the case of intrinsic labels, this is because

5Peters et al. (2014) describe these, somewhat confusingly, as causal and anti-causal problems.
6For example, Hopkins and King (2010) argue that bloggers first decide on the sentiment they wish to

convey and then write a blog post conditional on that sentiment.
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these approaches will not account for the shift in prior label probability, p(y), which is

assumed to have occurred (Hopkins and King, 2010). In the case of covariate shift, the

difference in p(x) will result in a model that is not optimal (in terms of classification

performance) for the target domain. In both cases, there is also the problem of classifier

bias or miscalibration. Particularly in the case of unbalanced labels, a standard classifier

is likely to be biased, overestimating the probability of the more common labels, and

vice versa (Zhao et al., 2017). Here I present a simple but novel method for extrinsic

labels, followed by a number of baseline approaches against which I will compare.

5.3.1 Proposed method: Calibrated probabilistic classify and count

(PCCcal)

One simple solution, which I propose here, is to attempt to train a well-calibrated clas-

sifier. To be clear, calibration refers to the long-run accuracy of predicted probabilities.

That is, a probabilistic classifier, hθ(x), is well calibrated at the level µ if, among all

instances for which the classifier predicts class k with a probability of µ, the proportion

that are truly assigned to class k is also equal to µ.7

It has previously been shown (DeGroot and Fienberg, 1983; Bröcker, 2009) that

any proper scoring rule (e.g., cross entropy, Brier score, etc.) can be factored into two

components representing calibration and refinement, the later of which effectively mea-

sures how close predicted probabilities are to zero or one. Minimizing a corresponding

loss function thus involves a trade-off between these two components.

Optimizing only for calibration is not helpful, as a trivial solution is to simply predict

a probability distribution equal to the observed label proportions in the training data

for all instances (which is perfectly calibrated on the labeled sample). The alternative

7For example, a weather forecaster will be well-calibrated if it rains on 60% of days for which the
forecaster predicted a 60% chance of rain, etc.
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I propose here is to train a classifier using a typical objective (here, regularized log

loss) but use calibration on held-out data as a criterion for model selection, i.e., when

one tunes hyperparameters via cross validation. I refer to this method as calibrated

PCC (PCCcal). Specifically, I propose to select regularization strength via grid search,

choosing the value that leads to the lowest average calibration error on held-out data,

averaging over splits of the data. Of course, other hyperparameters could be included

in model selection as well.

To estimate calibration error (CE) during cross-validation, I use an approximation

due to Nguyen and O’Connor (2015), adaptive binning. In the case of binary labels, this

is computed as:

CE , 1
B

∑B
j=1

(
1
|Bj |
∑

i∈Bj yi − pθ(xi)
)2
, (5.3)

using B bins, where bin Bj contains instances for which pθ(xi) are in the jth quantile,

where pθ(xi) is the predicted probability of a positive label for instance i. For added

robustness, I take the average of CE for B ∈ {3, 4, 5, 6, 7}.

In my experiments, I consider two variants of PCC: the first, PCCF1 , which is a

baseline, is tuned conventionally for classification performance, whereas the other

(PCCcal) is tuned for calibration, as measured using CE, but is otherwise identically

trained. As a base classifier I make use of l1-regularized logistic regression, operating

on n-gram features.8

5.3.2 Existing methods appropriate for extrinsic labels

The idea of extrinsic labels has not been previously considered by past work on estimat-

ing proportions, but it is closely related to the problems of calibration and covariate

8More complex models could be considered, but I use logistic regression because it is a well-
understood and widely applicable model that has been shown to be relatively well-calibrated in general
(Niculescu-Mizil and Caruana, 2005).
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shift. Here I briefly summarize two representative methods, which I consider as base-

lines.

Platt scaling. One approach to calibration is to train a model using conventional

methods and to then learn a secondary calibration model. One of the most common

and successful variations on this approach is Platt scaling, which learns a logistic

regression classifier on held-out training data, taking the scores from the primary

classifier as input. This model is then applied to the scores returned by the primary

classifier on the target corpus (Platt, 1999). To estimate proportions, the predicted

probabilities are then averaged, as in PCC.

Reweighting for covariate shift. Although they are not typically thought of in the

context of estimating proportions, several methods have been proposed to deal directly

with the problem of covariate shift, including kernel mean matching and its extensions

(Huang et al., 2006; Sugiyama et al., 2011). Here, I consider the two-stage method

from Bickel et al. (2009), which uses a logistic regression model to distinguish between

source and target domains, and then uses the probabilities from this model to re-weight

labeled training instances, to more heavily favor those that are representative of the

target domain. The appeal of this method is that all unlabeled data can be used to

estimate this shift.

5.3.3 Existing methods appropriate for intrinsic labels

As previously mentioned, virtually all of the past work on estimating proportions

makes the assumption that p(x | y) is constant between source and target. Under

this assumption, it can be shown that p(y(θ) = j | y = k) is also constant for all j and

k, where y(θ) is the predicted label from hθ, and y is the true (intrinsic) label. If these
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values were known, then the label proportions in the target corpus could be found by

taking the model’s estimate of label proportions in the target corpus, (CC), and then

solving a linear system of equations as a post-classification correction. Although a

number of variations on this model have been proposed, all are based on the same

assumption, thus I take a method known as adjusted classify and count (ACC) as an

exemplar, which directly estimates the relevant quantities using a confusion matrix

(Forman, 2005). In the case of binary classification, this reduces to:

q̂ACC(y = 1 |X(T )) =
1
NT

∑NT

i=1 y
(θ)
i − FPR

TPR − FPR
, (5.4)

where FPR = p̂(y(θ) = 1 | y = 0) and TPR = p̂(y(θ) = 1 | y = 1) are both estimated

using held-out data. Because ACC can result in inadmissible values in extreme cases, I

threshold its predictions to be in the range [0, 1].

5.4 Experiments

For the experiments in this chapter, I focus on the case of binary classification where

the difference between the source and target corpora results from a difference in time—

that is, the training documents are sampled from one time period, and the goal is to

estimate label proportions on documents from a future time period. I include examples

of both intrinsic and extrinsic labels to demonstrate the importance of this distinction

to the effectiveness of different methods.

As described below, I create multiple subtasks from each dataset by using different

partitions of the data. In all cases, I report absolute error (AE) on the proportion of

positive instances, averaged across the subtasks of each dataset.
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Although I do not have access to the true annotation function, I approximate the

expected label proportions in the target corpus by averaging the available labels, which

should be a very close approximation when the number of available labels is large

(which informed my choice of datasets for these experiments). For a single subtask, the

absolute error is thus evaluated as

AE =
∣∣∣q̂(y = 1 |X(T ))− 1

NT

∑NT

i=1 y
(T )
i

∣∣∣ . (5.5)

For all experiments, I also report the AE I would obtain from using the observed

label proportions in the training sample as a prediction (labeled “Train”). Although this

does not correspond to an interesting prediction (as it only says the future will always

look exactly like the past), it does represent a fundamental baseline. If a method is

unable to do better than this, it suggests that the method has too much measurement

error to be useful.

To test for statistically significant differences between methods, I use an omnibus

application of the Wilcoxon signed-rank test to compare one method against all others,

including a Bonferroni correction for the total number of tests per hypothesis. With 4

datasets, each with 2 sample sizes, comparing against 6 other methods this results in a

significance threshold of approximately 0.001.

Finally, in order to connect this work with past literature on estimating proportions,

I also include a side experiment with one intrinsically-labeled dataset where I have

artificially modified the label proportions in the target corpus by dropping positive or

negatively-labeled instances in order to simulate a large prior probability shift between

the source and target domains.
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5.4.1 Datasets

Here I briefly describe the datasets I have used in this chapter. Note that although this

work is primarily focused on applications in which the amount of human-annotated

data is likely to be small (which is typical in most social science applications), fair

evaluation of these methods requires datasets that are large enough that one can

approximate the expected label proportion in the target corpus using the available

labels; as such, the following datasets were chosen so as to have a representative sample

of sufficiently large intrinsically and extrinsically-labeled data, where documents were

time-stamped, with label proportions that differ between time periods.

Media Frames Corpus (MFC): As a primary example of extrinsic labels, I use the

annotated data for three issues (immigration, smoking, and same-sex marriage) from

the Media Frames Corpus described in §2.4. I treat annotations as indicating the

presence or absence of each dimension in the document, and consider each one as

a separate subtask. To create a source and target corpus for each subtask, I partition

by time, dividing the articles into those published before and after January 1, 2009.

Particularly for this dataset, it seems reasonable to posit that the annotation function

was relatively constant between source and target, as the annotators worked without

explicit knowledge of the article’s date.

Amazon reviews: As a secondary example of extrinsic labels, I make use of a subset

of Amazon reviews for five different product categories, each of which has tens of

thousands of reviews. For this dataset, I ignore the star rating associated with the review,

and instead focus on predicting the proportion of people that would rate the review as

helpful. Here I create separate subtasks for each product category by considering each

pair of adjacent years as a source and target corpus, respectively (McAuley et al., 2015).
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Yelp reviews: As a primary example of a large dataset with intrinsic labels, I make

use of the Yelp10 dataset, treating the location of the review as the label of interest.

Specifically, I create binary classification tasks by choosing three pairs of cities with

approximately the same number of reviews, and again use year of publication to divide

the data into source and target corpora, creating multiple subtasks per pair of cities.

For this experiment, I ignore the star rating, title, and author information, and only

consider the review text and location (as a label).

Twitter sentiment: Finally, I include a Twitter sentiment analysis dataset which was

collected and automatically labeled, using the presence of certain emoticons as implicit

labels indicating positive or negative sentiment (with the emoticons then removed

from the text). Because of the way this data was collected, and the relatively narrow

time coverage, it seems plausible to treat the sentiment as an intrinsic label. As with

the above datasets, I create subtasks by considering all pairs of temporally adjacent

days with sufficient tweets, and treating them as a paired source and target corpora,

respectively (Go et al., 2009).

5.4.2 Results

The results on the datasets with extrinsic and intrinsic labels are presented in Figures

5.1a and 5.1b, respectively. As expected, the results differ in important ways between

intrinsically and extrinsically labeled datasets, although there are some results which

hold in all cases. In all settings, CC is worse on average than predicting the observed pro-

portions in the training data (significantly worse for the Amazon and Twitter datasets),

reinforcing the idea that averaging the predictions from a classifier will lead to a biased

estimate of label proportions. This same finding holds for PCCF1 when the amount

of labeled data is small (L = 500), suggesting that simply averaging the predicted
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(a) Absolute error (AE) on datasets with extrinsic labels. PCCcal (bottom row) performs best on
average in all cases and is significantly better than most other methods on MFC.
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(b) Absolute error (AE) on datasets with intrinsic labels. No method is significantly better than
all others.

Figure 5.1: Performance of all methods on dataset with extrinsic labels (top) and
intrinsic labels (bottom). Each dot represents the result for a single subtask, and bars
show the mean.

probabilities is not reliable without a sufficiently large labeled dataset.

For the datasets with extrinsic labels, PCCcal performs best on average in all settings.

For the MFC dataset, PCCcal is significantly better than all methods except Platt scaling

when L = 500 and significantly better than all methods except reweighting and PCCF1

when L = 2000 (after a Bonferroni correction, as in all cases). As expected, ACC is

actually worse on average than CC on the extrinsic datasets, presumably because of the

mismatched assumptions. Reweighting for covariate shift offers mediocre performance

in all settings, perhaps because, while it attempts to account for covariate shift, it may

still suffer from miscalibration.

On the datasets with intrinsic labels, by contrast, no one method dominates the
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others. As expected, ACC does poorly when the amount of labeled data is small (L =

500); it does improve upon CC when L = 4000, but not by enough to do significantly

better than other methods, perhaps calling into question the validity of the assumption

that p(x | y) is constant in these datasets.

Surprisingly, both Platt scaling and PCCcal also offer competitive performance in

the experiments with intrinsic labels. However, this is likely the case in part because

the change in label proportions is relatively small from year to year (or day to day in

the case of Twitter). This is illustrated by Figure 5.2, which presents the results of the

side-experiment with artificially modified (intrinsic) label proportions using a subset

of the Twitter data. These results confirm past findings, and show that ACC drastically

outperforms other methods such as PCCF1 , if one selectively drops instances so as to

enforce a large difference in label proportions between source and target. This is the

expected result, as ACC is the only method tailored to deal with prior probability shift

(which is being artificially simulated). Unfortunately, its advantage is not maintained

when the difference between source and target is small, which is the case for all of the

naturally-occurring differences found in the Yelp and Twitter datasets. Although past

work has relied heavily on these sorts of simulated differences and artificial experiments,

it is unclear whether they are a good substitute for real-world data, given that I mostly

observed relatively small differences in practice.

Finally, I also tested the effect of using l2 instead of l1 regularization, but found that

it tended to produce significantly worse estimates of proportions using CC and PCCF1

on the datasets with extrinsic labels, and statistically indistinguishable results using

other methods, suggesting that either type of regularization could serve as a basis for

PCCcal or Platt scaling.
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Figure 5.2: Absolute error (AE) for predictions on one day of Twitter data (L = 5000)
when artificially modifying target proportions. The proportion of positive labels in the
source corpus is 0.625. ACC performs significantly better given an large artificially-
created difference in label proportions between source and target, but not when the
difference is small.

5.5 Discussion

As anyone who has worked with human annotations can attest, the process of collect-

ing annotations is messy and time-consuming, and tends to involve large numbers of

disagreements (Artstein and Poesio, 2008). Although it is conventional to treat disagree-

ments as errors on the behalf of some subset of annotators, this chapter provides an

alternative way of understanding these. By treating annotation as a stochastic process,

conditional on text, one can explain not only the disagreements between annotators,

but also the lack of self-consistency that is also sometimes observed. Although the

assumption that p(y | x) does not change is clearly a simplification, it seems reasonable

when working with trained annotators. Certainly this assumption seems much better

justified than the conventional assumption that p(x | y) is constant, since the latter

does not account for differences in the distribution of text arising from differences in

subject matter, etc.

Although I have demonstrated that using a method that is appropriate to the data

generating process is beneficial, it is important to note that all methods presented here

can still result in relatively large errors in the worst cases. In part this is due to the
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difficulty of learning a conditional distribution involving high-dimensional data (such

as text) with only a limited number of annotations. Even with much more annotated

data, however, previously unseen features could still have a potentially large impact on

future annotations. Ultimately, one should be cautious about all such predictions, and

always validate where possible, by eventually sampling and annotating data from the

target corpus.

What if one can sample from the target corpus? Although there are many situations

in which domain adaptation is unavoidable (such as predicting public opinion from

Twitter in real time with models trained on the past), at least some research projects in

the humanities and social sciences might reasonably have access to all data of interest

from the beginning of the project, such as when working with a historical corpus.

Although a full proof is beyond the scope of this chapter, in this case, the best approach

is almost certainly to simply sample a random set of documents, label them using the

annotation function, and report the relative prevalence of each label (Hopkins and

King, 2010).

Although this simple random sampling (SRS) approach ignores the text, it is an un-

biased estimator with variance that can easily be calculated, at least in approximation.9

More importantly, because it is independent of the dimensionality of the data, it works

well on high-dimensional data, such as text, whereas classification-based approaches

will struggle.

I illustrate this by comparing SRS and PCC using a simple simulation. Figure 5.3

shows the mean AE for a case in which one knows the true model and only need to

9If one were sampling with replacement, the variance in the binary case would be given by the
standard formula V[q̂SRS] = p̄(1−p̄)

L , where p̄ = 1
NT

∑NT

i=1 p(yi = 1 | xi). This may not be possible, however,
as annotators seeing a document for the second or third time would likely be affected by their own
past decisions. Nevertheless, using this as the basis for a plug-in estimator should still be a reasonable
approximation when the target corpus is large.
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Figure 5.3: Comparison of SRS and PCC in simulation when one knows the true model
and sample from the target corpus (averaged over 200 repetitions).

learn the values of the weights. Specifically, I use the following data generating process,

for i = 1, . . . , N and j = 1, . . . , P :

Xij ∼ Bernoulli(px)

βj ∼ Laplace(0, 1)

β0 ∼ N (0, 1)

pi = sigmoid(Xi,: · β + β0)

yi ∼ Bernoulli(pi),

with N = 20000, P = 10000, and px = 0.01, averaged over 200 repetitions. I then fit

this model to a subset of the data using an l1-regularized logistic regression model

with regularization strength equal to 1, and average the predicted probabilities over all

instances (PCC), or simply average the observed labels in the subset (SRS). Even in this

idealized scenario, SRS remains better than PCC for all values of L.

Thus, depending on the level of accuracy required, simply sampling a few hundred

documents and labeling them should be sufficient to get a reasonably reliable estimate

of the overall label proportions, along with an approximate confidence interval. Unfor-

tunately, this option is only available when one has full access to the target corpus at
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the time of annotation.

Additional related work. There is a small literature on the problem of estimating

proportions in a target dataset (see §5.1); as I have emphasized, almost all of it makes

the assumption that p(x | y) is the same for both source and target. Moreover, most of

the methods that have been proposed have been tested using relatively small datasets,

or datasets where the target corpus has been artificially modified by altering the label

proportions in the target corpus (as I did in the side experiment reported in Figure 5.2).

It is not obvious that this is a good simulation of the kind of shift in distribution that

one is likely to encounter in practice.

An exception to this is Esuli and Sebastiani (2015), who test their method on the

RCV1-v2 corpus, also splitting by time. They perform a large number of experiments,

but unfortunately, nearly all of their experiments involve only a very small difference in

label proportions between the source and target (with the vast majority < 0.01), which

limits the generalizability of their findings. Additional methods for calibration could

also be considered, such as the isotonic regression approach of Zadrozny and Elkan

(2002), but in practice one would expect the results to be very similar to Platt scal-

ing. More recently, Keith and O’Connor (2018) approached this problem by assuming

intrinsic labels and fitting simple graphical models to estimate label proportions.

Another line of work has approached the problem of aggregating labels from mul-

tiple annotators (Raykar et al., 2009; Hovy et al., 2013; Yan et al., 2013). That is, if one

believes that some annotators are more reliable than others, it might make sense to try

to determine this in an unsupervised manner, and give more weight to the annotations

from the reliable annotators. This seems particularly appropriate when dealing with

uncooperative annotators, as might be encountered, for example, in crowdsourcing

(Snow et al., 2008; Zhang et al., 2016). However, with a team of trained annotators, it is
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likely that legitimate disagreements contain valuable information better not ignored.

Finally, this work also relates to the problem of active learning, where the goal

is to interactively choose instances to be labeled, in a way that maximizes accuracy

while minimizing the total cost of annotation (Beygelzimer et al., 2009; Baldridge and

Osborne, 2004; Rai et al., 2010; Settles, 2012). This is an interesting area that might be

productively combined with the ideas in this chapter. In general, however, the use of

active learning involves additional logistical complications and does not always work

better than random sampling in practice (Attenberg and Provost, 2011).

5.6 Summary

When estimating proportions in a target corpus, it is important to take seriously the

data generating process. In this chapter, I have argued that in the case of data annotated

by humans in terms of categories designed to help answer social-scientific research

questions, labels should be treated as extrinsic, generated probabilistically conditional

on text, rather than as a combination of correct and incorrect judgements about a

label intrinsic to the document. Moreover, it is reasonable to assume in this case that

p(y | x) is unchanging between source and target, and methods that aim to learn a well-

calibrated classifier, such as PCCcal, are likely to perform best. By contrast, if p(x | y)

is unchanging between source and target, then various correction methods from the

literature on estimating proportions, such as ACC, can perform well, especially when

differences are large. Ultimately, any of these methods can still result in large errors in

the worst cases. As such, validation remains important when treating the estimation of

proportions as a type of measurement.



Chapter 6

Transparent and credible predictions

using deep neural networks

(This chapter was originally published as Card et al., 2019)

6.1 Introduction

As discussed in the previous chapter, text classification is a useful tool in many social

science investigations. Over the past several years, deep learning has become the

dominant approach to training machine learning classifiers for any domain involving

complex, structured, or high-dimensional data. However, despite the success of deep

learning as a framework, many concerns have been raised about deep models. In addi-

tion to typically requiring large amounts of labeled data and computational resources,

the parameters tend to be relatively difficult to interpret, compared to more traditional

(e.g., linear) methods. Moreover, some deep models tend to be poorly calibrated relative

to simpler models, despite being more accurate (Guo et al., 2017), and extensive work

on adversarial examples has demonstrated that many deep models are more brittle

97



98 CHAPTER 6. TRANSPARENT AND CREDIBLE PREDICTIONS

than test-set accuracies would suggest (Goodfellow et al., 2015; Hendrycks and Gimpel,

2017; Nguyen et al., 2015a; Recht et al., 2018). All of these issues raise the question of

whether deep learning is appropriate for social science applications.

Although deep learning is somewhat vaguely defined, I will use it here to refer to

any architecture which makes a prediction based on the output of a function involving

a series of linear and non-linear transformations of the input representation. While

the details of these transformations differ by domain (for example, two-dimensional

convolutions are often used for images, whereas sequential models with attention are

more common for text), most models for binary or multiclass classification include

a final softmax layer to produce a properly normalized probability distribution over

the label space. In this chapter, I explore an alternative to the softmax, yielding what I

call a deep weighted averaging classifier (DWAC), and evaluate its potential to deliver

equally accurate predictions, while offering greater transparency, interpretability, and

robustness.

Particularly in light of recent controversy and legislation, such as the General Data

Protection Regulation (GDPR) in Europe, there has been rapidly growing interest in

developing more interpretable models, and in finding ways to provide explanations for

predictions made by machine learning systems. Although there is currently an active

debate in the field about how best to conceptualize and operationalize these terms

(Doshi-Velez and Kim, 2017; Guidotti et al., 2018), recent research has broadly fallen

into two camps. Some work has focused on models that are inherently interpretable,

such that an explanation for a decision can be given in terms that are easily understood

by humans. This category includes classic models that can easily be simulated by

humans, such as decision lists, as well as sparse linear models, where the prediction is

based on a weighted sum of features (Breiman et al., 1984; Lakkaraju et al., 2016; Lou

et al., 2012; Tibshirani, 1996; Ustun and Rudin, 2016; Wang and Rudin, 2015). Other
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work, meanwhile, has focused on developing methods to provide explanations that

approximate the true inner workings of more complex models, in a way that provides

some utility to the user or developer of a model beyond what is attainable through

more direct means (Bastani et al., 2017; Lei et al., 2016; Lundberg and Lee, 2017; Ribeiro

et al., 2016, 2018b,a; Selvaraju et al., 2016).

In this chapter, I propose a method which, like those in the former category, offers

an explanation that is transparent (in that the complete explanation is in terms of a

weighted sum of training instances), but also explore ways to approximate this expla-

nation by using only a subset of the relevant instances. While this approach retains

some of the inherent complexity of typical deep models (in that it is still difficult to

explain why the model has weighted the training instances as it has for a particular

test instance), the mechanism behind the prediction is far more transparent than

softmax-based models, and the individual instance weights provide a way for a user to

examine the basis of the prediction, and evaluate whether or not the model is doing

something reasonable. Similarly, while looking at the nearest neighbors of a test point

is a commonly-used heuristic to attempt to understand what a model is doing, that

approach is only an approximation for models which map each instance directly to a

vector of probabilities.

There is, of course, a long history in machine learning of making predictions directly

in terms of training instances, including nearest neighbor methods (Cover and Hart,

1967), kernel methods, including support vector machines (Boser et al., 1992; Cortes

and Vapnik, 1995), and transductive learners more broadly (Vapnik, 1998). The main

novelty here is to adapt any existing deep model to make predictions explicitly in terms

of the training data using only a minor modification to the model architecture, and

arguing for and demonstrating the advantages offered by this approach.

As I will describe in more detail below, I propose to learn a function which maps
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from the input representation to a low-dimensional vector representation of each

input. Predictions on new instances are then made in terms of a weighting of the

label vectors of the training instances, where the weights are a function of the distance

from the instance to be evaluated to all training instances, in the low-dimensional

space. This is closely related to a long line of past work on metric learning (Xing et al.,

2002; Goldberger et al., 2004; Weinberger et al., 2006; Davis et al., 2007; Bellet et al.,

2013; Kulis, 2013), but rather than trying to optimize a particular notion of distance

(such as Mahalanobis distance), I make use of a fixed distance function, and allow

the architecture of standard deep models to do the equivalent work. This idea is also

related to models which use neural networks to learn a similarity function for specific

applications, such as face recognition (Chopra et al., 2005) or text similarity (Mueller

and Thyagarajan, 2016), and similar architectures have also been used for one-shot

learning (Koch et al., 2015; Vinyals et al., 2016); here I show how this is a more generally

applicable way to train models, and I emphasize the connection to interpretability.

Such an approach comes with distinct advantages:

1. A precise explanation of why the model makes a specific prediction (label or

probability) can be given in terms of a subset of the training examples, rank

ordered by distance. Moreover, the weight on each training instance implicitly

captures the degree to which the model views the two instances as similar. The

explanation is thus given in terms of exemplars or prototypes, which have been

shown to be an effective approach to interpretability (Kim et al., 2014).

2. In §6.5.3, I show that, in many cases, a very small subset of training instances can

be used to provide an approximate explanation with high fidelity to the complete

explanation.

3. In addition, it is possible to choose the size of the learned output representation

so as to trade off between performance and interpretability. For example, one can
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use a lower dimensional output representation if one wishes to make it easy to

directly visualize the embedded training data.

4. Even in cases where revealing the training data is not feasible, it is possible to

provide an explanation purely in terms of weights and labels. Although this does

not reveal the way in which a new instance is viewed (by the model) as similar

to past examples, it still provides a quantifiable notion of how unusual the new

example is. The form of this model suggests a natural metric of nonconformity,

and in §6.3.4, I formalize this using the notion of conformal methods, describing

how the relevant distances can be used to either provide bounds on the error rate

(for data drawn from the same distribution), or robustness against outliers.

5. Finally, although this model does entail a slight cost in terms of increased com-

putational complexity, the difference in terms of speed and memory require-

ments at test time can be minimized by pre-computing and storing only the

low-dimensional representation of the training data (from the final layer of the

model). The cost during training will in most cases be dominated by the other

parts of the network, and it is still possible to train such models on large datasets

without difficulty. Moreover, in the experiments, this choice seemingly involves

no loss in accuracy or calibration.

Deep weighted averaging classifiers (DWACs) are ideally suited to domains where it

is possible to directly inspect the training data, such as controlled settings like social

science research. In this domain, DWACs offer a more transparent and interpretable

version of any successfully developed deep learning architecture. Although the advan-

tages are diminished in domains where privacy is a concern, presenting information

solely in terms of weights and labels still provides a useful way to quantify the credibility

of a prediction, even without allowing direct inspection of the original training data.

The experiments in this chapter are primarily based on benchmark datasets in order
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to provide a robust comparison to the baseline. However, DWACs provide a compelling

alternative to the use of conventional deep learning models in socially consequential

applications, especially when developers wish to maximize accuracy while retaining the

ability to easily investigate the reasons for individual predictions. Moreover, because

conformal methods provide guarantees on error rates, albeit in a somewhat unusual

fashion, this suggests potential value in terms of being able to quantify uncertainty in

measurement.

6.2 Background

6.2.1 Scope and notation

In this chapter, I will be concerned with the problem of classification. In general, I will

assume a set of m training instances, xi for i = 1, . . . ,m, with corresponding labels in

some categorical label space, yi ∈ Y , for i = 1, . . . ,m, where c = |Y| is the number of

classes. I also assume that there will eventually be given a set of n test instances, xi, yi,

for i = 1 +m, . . . , n+m. I will use hi to refer to the output representation of a model for

instance i. Square brackets with a subscript [·]k will denote the kth element of a vector.

6.2.2 Nonparametric kernel regression

DWACs build on a classic method from nonparametric regression, known as Nadaraya-

Watson (NW). The original use case of NW was in regression, with yi ∈ R, where it is

assumed that yi = m(xi) + ε, where E[ε] = 0 and V[ε] = σ2. The goal is to estimate the
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mean function, m(x), which can be expressed in terms of the joint density as

m(x) = E[Y | X = x] =

∫
y P (y | x) dy =

∫
y P (x, y) dy∫
P (x, y) dy

. (6.1)

By approximating the joint density using kernel density estimation, it is possible to

re-express this as a weighted sum of training instances, i.e.,

m̂(x) =

∑m
i=1 yi K(x,xi)∑m
j=1K(x,xj)

, (6.2)

where K(x,xi) is a kernel, such as a Gaussian (Nadaraya, 1964; Watson, 1964). It is easy

to see that this corresponds to a linear smoother, in that it will predict outputs as a

weighted sum of training instances, i.e.,

m̂(x) =
m∑
i=1

yi αi(x), (6.3)

where αi(x) = K(x,xi)∑m
j=1K(x,xj)

.

This method can easily be adapted to classification by predicting the probability of

an output label as a weighted sum of training labels, i.e.,

PNW(y = k | x) =
m∑
i=1

I[yi = k] αi(x), (6.4)

where I[·] equals 1 if the condition holds or 0 if not.

The primary limitation on NW is due to the curse of dimensionality: as the dimen-

sionality of x grows, sparse data becomes a problem, and the notion of proximity

becomes problematic (Aggarwal et al., 2001). In this work, I show how one can avoid

this problem by using neural networks to embed inputs into a space with much lower

dimensionality, and proceed to compute weights over training instances in that space.
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6.2.3 Conformal methods

Conformal methods refer to a broad set of ideas which aim to provide theoretical

guarantees on error rates in classification or regression (Saunders et al., 1999; Vovk

et al., 2005; Shafer and Vovk, 2008; Lei et al., 2014). Conformal methods can be used

with any base classifier or predictor, and work by introducing a generic notion of

nonconformity. As will be explained in detail below, each possible prediction (i.e., label

or value) that can be made for a given test instance can be evaluated in terms of its

nonconformity. By comparing these with the nonconformity scores of either all data in

a leave-one-out manner, or with a held-out calibration set, the equivalent of a p-value

can be associated with each possible prediction, allowing for thresholding in a way that

provides a guarantee on the error rate (for i.i.d. or exchangeable data).

Because of the high computational cost of the leave-one-out approach to conformal

predictors, I will focus here on the approach based on a held-out calibration set.1 In

particular, I will begin by shuffling the training data, and partitioning it into a proper

training set (i = 1, . . . , t), and a calibration set (i = t+ 1, . . . ,m).2

The fundamental choices in conformal methods are a base classifier and a measure

of nonconformity, A. The latter concept, which intuitively corresponds to how atypical

an instance is, maps a bag of examples (i.e., the proper training set, with labels), and

one additional instance (x, the observed features) with one possible label, k ∈ Y , to a

scalar η ∈ R, i.e.,

η(x, k) = A
(
H(xi, yi)Iti=1, (x, k)

)
, (6.5)

where H·I denotes a bag, i.e., a multi-set (potentially containing duplicate instances).

1The leave-one-out approach may be superior in terms of statistical efficiency, but it is computation-
ally infeasible for all but very small datasets.

2The calibration set will also serve as the validation set for early stopping during training.
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The idea of a measure of nonconformity is quite general, but in practice, the most

common approach is to convert a bag of examples into a model, and then compare

the prediction of that model on the training instance (x) with the hypothesized label,

k. In particular, for any probabilistic model, the simplest measure of model-based

nonconformity is any inverse monotonic transform of the predicted probability of the

hypothesized label, such as the inverse or negation. For example, the following is a

valid measure of nonconformity:

η(x, k) = −PM(H(xi,yi)Iti=1)
(y = k | x) , (6.6)

where M (H(xi, yi)Iti=1) represents a model trained on the proper training set, i =

1, . . . , t.

Conformal methods work by comparing the nonconformity score of each possible

prediction for each test instance to the nonconformity scores of all instances in the

calibration set. Specifically, the model will compute a p-value for each hypothetical

test instance label equal to the proportion of the calibration instances that have a

higher nonconformity score (i.e., a value between 0 and 1 indicating how conforming a

possible label for a new instance is, relative to the calibration data). More precisely, for

a test instance x and hypothesized label, k,

p(x, k) =

∑m
j=t+1 I[η(xj, yj) ≥ η(x, k)]

m− t , (6.7)

where η is computed relative to the proper training set for all instances (both calibration

and test).

Unlike traditional classifiers, conformal methods may predict anywhere from zero

to c labels for a given instance. I will revisit this choice below, but for the moment,

the decision rule will be that for each test instance, the model will make a positive
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prediction for all labels k for which p(x, k) > ε, where ε ∈ [0, 1] is chosen by the user.

By the properties of conformal predictors, these predictions will be asymptotically

valid; that is, both theoretically and empirically, for i.i.d. data, this will produce a set

of predicted labels for each test instance such that at least 1− ε of the predicted label

sets include the true label, with high probability. Moreover, this property holds for

any measure of nonconformity.3 Of course, this property is trivially easy to satisfy

by predicting all labels for all test instances. In practice, however, better choices of

measures of nonconformity will be more or less efficient, in that they will tend to

produce smaller predicted label sets without compromising on error rate.

Although there is some risk of terminological confusion here, Saunders et al. (1999)

propose to characterize the distribution of p-values for a single instance in terms of

what they call confidence and credibility (see also Shafer and Vovk, 2008). In the context

of conformal methods, “confidence” refers to the largest 1−ε such that the predicted

label set includes only a single label (i.e., one minus the second-largest p-value among

the possible labels). This corresponds to the probability, according to the model, that

the label which is predicted to be most likely is correct. For example, for i.i.d. data,

one would expect 92% of predictions with 92% confidence to be correct, and 8% to be

incorrect.

“Credibility”, by contrast, is equal to the largest ε for which the predicted label set

is empty (i.e., the largest p-value among the possible labels). This correspond to one

minus the model’s confidence that none of the possible labels are correct. In other

words, predictions with low credibility indicate that even the most likely prediction is

relatively nonconforming compared to the calibration instances (with their true labels),

3More precisely, for any measure of nonconformity, and i.i.d. data drawn from any distribution, the
unconditional probability that the true label of a random test instance is not in the predicted label set
does not exceed ε for any ε. The broader statement follows from the law of large numbers. It is also
possible to bound the conditional probability of error (conditional on the training data) with slightly
weaker guarantees. For more details, please refer to Vovk et al. (2005) and Vovk (2012).
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and that one should therefore be skeptical of this prediction.

Terminology aside, the important point is that it is these two properties in com-

bination which fully characterize how to interpret a prediction. In particular, when

a prediction has low credibility (which also entails low confidence), this implies that

none of the labels are suitable for the corresponding instance, according to the model.

By contrast, if multiple p-values are close to one, (high credibility, but low confidence),

this corresponds to what is sometimes called ambiguity, that is, multiple labels seem

suitable, according to the model. Only when there is a single label that has a high p-

value (high confidence and high credibility), do we have the desired scenario in which

the model will predict a single label.

The idea of not predicting any label is somewhat foreign to conventional approaches,

as one can only obtain better accuracy by hazarding at least some guess, and in some

applications it would be reasonable to still predict the most probable label according

to the model, with an associated confidence and credibility. In other circumstances,

however, there may be valuable information in an empty label set. In particular, as I

will discuss below, an empty label set (low credibility) is an indication that none of the

labels are appropriate, suggesting that the model itself may be inappropriate for that

particular instance (or equivalently, that the instance may be out-of-domain for that

model).

6.3 Deep weighted averaging classifiers

I now turn to the method proposed in this chapter, deep weighted averaging classifiers.
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6.3.1 Model details

Most neural network models for classification take the form

P (y = k | x) =
exp([h]k)∑c
j=1 exp([h]j)

, (6.8)

where h = W · f(x) + b. In this architecture, f(x) embeds the input in a model-

specific way (e.g., a convolutional or recurrent network) into a lower-dimensional

vector representation. Although W and b could be folded into f(x), I make them

explicit to emphasize thatW is required to project the output of f(x) (which is a vector

of arbitrary length) down to a vector of length c (the number of classes). The softmax

(Eq. 6.8) then projects this vector onto the simplex.

My proposed alternative is to leave f(x) unchanged, eliminate the softmax, and to

redefine the predicted probability as

P (y = k | x) =

∑t
i=1 I[yi = k] w(h,hi)∑t

j=1w(h,hj)
, (6.9)

i.e., a weighted average of the labels of the instances in the proper training set, where h

is defined as above and w(h,hi) is a function of the similarity between the embeddings

of x and xi in the low-dimensional space, according to some metric. In this architec-

ture, the dimensionality of h is arbitrary, and the size ofW and b can be modified as

necessary.4

An obvious choice of weight function is a Gaussian kernel operating on Euclidean

distance, i.e.,

w(h,hi) = exp

(−‖h− hi‖22
2σ

)
. (6.10)

4One could of course dispense withW and b here, and compute w(·, ·) directly on the output of f(x),
but I wish to remain as close as possible to the softmax model for the purpose of comparison, while
allowing for the possibility of varying the size of h.
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Typically, in using NW, or other kernel smoothers, one needs to choose the band-

width, equivalent to σ in equation (6.10). However, because I will assume that this

classifier will be built on top of a high-capactity embedding network, f(x), I will simply

fix σ = 1
2

, and force f(x) to adapt to this distance function.

6.3.2 Training

In order to learnW , b, and all parameters of f(x), I will use stochastic gradient descent

to optimize the log loss on the training data. Because it is impractical to compute the

exact probabilities according to the model during training (because they depend on all

training instances), I instead rely on an approximation based on the other instances

within each minibatch. Specifically, on each epoch of training, I shuffle all instances

in the proper training set into minibatches of size B. For each minibatch, B, I then

minimize

L(B) =
1

B

∑
j∈B

c∑
k=1

−I[yj = k] log P̂ (yj = k | xj), (6.11)

where

P̂ (yj = k | xj) =

∑
i∈B\{j} I[yi = k] w(hj,hi)∑

l∈B\{j}w(hj,hl)
. (6.12)

As usual, the loss function in equation (6.11) can be augmented with a regularization

term if desired.

Although computing all pairwise distances between many points is relatively ex-

pensive, this can be done efficiently for minibatches using standard matrix operations

on a GPU. Specifically, a forward pass through the last layer of a DWAC model (i.e.,

computing probabilities for one minibatch) requiresO(B2h), where B is the size of the
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minibatch and h = len(h). This will typically be larger than the last layer of the softmax

classifier, which isO(Bhc), where c is the number of classes, but in most cases will be

dominated by the cost of computing f(x). In practice, the only significant increase in

training time is due to the need to embed all training instances in order to estimate

performance on a validation set after each epoch (which could also be approximated).

As such, the training runtime will tend to be no worse than twice that of training a

softmax model. Similarly, at test time, the computational cost of making a prediction

on one test instance is dominated by the cost of embedding the training data. However,

this can be pre-computed after training, and only the low-dimensional h vectors need

be stored.5

6.3.3 Prediction and explanations

Once the model has been trained, predictions can easily be made using the entire

training dataset, rather than using a subset, as when computing the loss during training.

The explanation for why the model predicts a particular label or probability can then

be given explicitly in terms of the training instances, along with the weight on each

instance. Moreover, if one considers the closest points (which will be most heavily

weighted) as being the most similar, relevant, or important, it is reasonable to provide

a sorted list of examples as the explanation. Because the later examples will carry

less weight, in many cases only a subset of instances needs to be provided (because

for many instances, the lower-weighted training instances will be unable to affect the

prediction, no matter what their labels may be).

If one wishes to provide an even simpler but approximate explanation, one can

also choose to provide only the closest k examples as the explanation, which is a

5Note that one only needs to compute distances in the low-dimensional space, for which one can
choose an appropriately small dimensionality.
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commonly used heuristic for trying to understand model behavior. Although one

would not expect that using only a small set of examples would provide a well-calibrated

probability, it could still provide a reasonable approximate explanation for why the

model predicted a particular label, assuming that there is strong agreement between

predictions made using such a subset and the full model (which I will empirically

evaluate in the experiments below).

6.3.4 Confidence and credibility

As discussed in section §6.2.3 above, for any probabilistic classifier, one can use any

monotonic transformation of the predicted probabilities which reverses their order

(such as −P (x) or 1/P (x)) as a valid measure of nonconformity. However, the archi-

tecture of the model proposed in this chapter suggests another measure, namely the

negated unnormalized weighted sum of training labels of the hypothesized class, i.e.,

η(x, k) = A
(
H(xi, yi)Iti=1, (x, k)

)
= −

t∑
i=1

I[yi = k] w(h,hi). (6.13)

Because of the properties of conformal methods, this measure of nonconformity

is automatically valid. It may, however, be more or less efficient than other measures,

such as ones based on probabilities. I note, however, that this proposed measure has

an intuitive explanation in terms of how close the training points of the predicted class

are (in the embedded space) to the instance for which one wishes to make a prediction.

Naturally the absolute distance has no meaning in the embedded space, but I avoid

this problem by scaling the measure of nonconformity relative to calibration data in

order to obtain a p-value, as is always the case in conformal methods.

When using probability as the basis of nonconformity, the farther a point is from
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the decision boundary, the higher will be its predicted probability, and therefore its

credibility. Under the measure I propose in equation (6.13), by contrast, predictions

will only be associated with high credibility when the embedded representation of

that instance is relatively close to the embedded training instances. That is, if one

encounters an instance that is unlike anything seen in the training data, and if the model

embeds that instance such that it is far away from all embedded training instances,

then this measure will tell us that it is highly nonconforming for all classes, which will

result in the model’s prediction having very low credibility. As I show below, this is

a useful way to quantify the degree to which one should be skeptical of the model’s

prediction.

6.4 Experiments

To demonstrate the potential of DWAC models, I provide a range of empirical evalu-

ations on a variety of datasets. In addition to showing that my proposed approach is

capable of obtaining equivalently accurate predictions, I also compare to a baseline in

terms of calibration and robustness to outliers, and illustrate the sorts of explanations

offered by a DWAC model. I also empirically validate that the theoretical guarantees

claimed by conformal methods hold for both the softmax and the DWAC model, both

with and without my proposed measure of nonconformity.

In all cases I report accuracy and calibration (i.e., the accuracy of the predicted

probabilities), measuring the latter in terms of mean absolute error (MAE), using the

adaptive binning approach of Nguyen and O’Connor (2015). For the initial comparison

between models, I only consider conventional prediction (i.e., only using the top-

scoring label predicted by each model), and separately evaluate conformal prediction

in §6.5.4. Note that the purpose here is not to demonstrate state-of-the-art performance
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on any particular task, but rather to show that the proposed modification works for a

wide variety of architectures.

In order to evaluate robustness to outliers, I consider two approaches. The first is to

drop one class from a multiclass dataset, and treat the held-out class as out-of-domain

data. The other approach is to find a dataset that has a similar input representation,

but is fundamentally different in terms of content, and again, treat these instances as

out-of-domain.

6.4.1 Datasets

For the experiments I make use of datasets of three different types (tabular, image,

and text), including both binary and multiclass problems. For tabular data, I use the

familiar Adult Income (Kohavi, 1996) and Covertype (Blackard and Dean, 1999) datasets

available from the UCI machine learning repository,6 as well as the Lending Club loan

dataset available through Kaggle.7 For images I use CIFAR-10 (Krizhevsky and Hinton,

2009) and Fashion MNIST (Xiao et al., 2017). For text I use paragraph-length product

reviews (Amazon; 1–5 stars) (McAuley et al., 2015) and movie reviews (IMDB; positive

or negative) (Maas et al., 2011), sentences extracted from movie reviews and labeled in

terms of subjectivity (Pang and Lee, 2004), and a dataset of Stack Overflow question

titles sampled from 20 different categories (Xu et al., 2015).

Table 6.1 summarizes the most important properties of these datasets. For language

datasets, text was tokenized with spaCy,8 and converted to lower case, using a vocabu-

lary built from the training set, with word embeddings initialized using 300-dimensional

Glove vectors trained on the 6 billion tokens of Wikipedia 2014 and Gigaword 5.9

6https://archive.ics.uci.edu/ml/datasets
7https://www.kaggle.com/wsogata/good-or-bad-loan-draft/notebook
8https://spacy.io/
9https://nlp.stanford.edu/projects/glove/

https://archive.ics.uci.edu/ml/datasets
https://www.kaggle.com/wsogata/good-or-bad-loan-draft/notebook
https://spacy.io/
https://nlp.stanford.edu/projects/glove/
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Dataset Type # classes # instances # features
Adult Income Tabular 2 45,000 103
Covertype Tabular 7 581,000 54
Lending Club Tabular 2 626,000 157
Fashion MNIST Image 10 60,000 784
CIFAR-10 Image 10 60,000 3,072
Subjectivity Text 2 10,000 20,000
Stack Overflow Text 20 20,000 15,000
IMDB Text 2 50,000 112,000
Amazon Text 5 190,000 144,000

Table 6.1: Properties of datasets used in this chapter. For text data, I report vocabulary
size as the number of features.

6.4.2 Models and training

In all cases I choose a base model appropriate to the data. For the tabular data, I use a

simple three-layer multi-layer perceptron. For images, I use multi-layer convolutional

neural networks. For text datasets, I use a shallow convolutional model with atten-

tion (Mullenbach et al., 2018). In all cases I compare DWAC and softmax models of

equivalent size, but also explore varying the dimensionality of h in the DWAC model.

I use the standard train/test split where available, and otherwise sample a random

10% of the data for a test set, and always use a random 10% of the training data as

a validation/calibration set. For measuring accuracy and calibration on test data, I

average over 5 trials with different splits of the training data into a proper training set

and a validation/calibration set, with the same split being given to both models. For

both models I use Adam (Kingma and Ba, 2014) with an initial learning rate of 0.001

and early stopping.
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Accuracy ↑
Dataset Softmax DWAC
Adult Income 0.851 (±0.002) 0.850 (±0.002)
Covertype 0.774 (±0.003) 0.760 (±0.001)
Lending Club 0.956 (±0.001) 0.955 (±0.001)
Fashion MNIST 0.928 (±0.002) 0.927 (±0.002)
CIFAR-10 0.898 (±0.004) 0.897 (±0.009)
Subjectivity 0.948 (±0.002) 0.946 (±0.004)
Stack Overflow 0.869 (±0.005) 0.866 (±0.008)
IMDB 0.905 (±0.002) 0.904 (±0.001)
Amazon 0.740 (±0.002) 0.738 (±0.002)

Calibration (MAE) ↓
Dataset Softmax DWAC
Adult Income 0.012 (±0.006) 0.018 (±0.002)
Covertype 0.005 (±0.001) 0.010 (±0.001)
Lending Club 0.007 (±0.001) 0.014 (±0.001)
FashionMNIST 0.006 (±0.001) 0.003 (±0.001)
CIFAR-10 0.011 (±0.001) 0.009 (±0.002)
Subjectivity 0.020 (±0.006) 0.023 (±0.006)
Stack Overflow 0.009 (±0.001) 0.010 (±0.001)
IMDB 0.029 (±0.006) 0.024 (±0.010)
Amazon 0.008 (±0.002) 0.004 (±0.001)

Table 6.2: Accuracy (top; higher is better) and calibration (bottom; lower is better) on
various datasets using the single best-scoring predicted label from softmax and DWAC
models of equivalent size, with standard deviations in parentheses.

6.5 Results

6.5.1 Classification performance

As shown in Table 6.2, except for one dataset (Covertype) the performance of DWAC

is indistinguishable from a softmax model of the same size in terms of accuracy. As

noted above, these results are based on the single best-scoring label from each model,

without yet incorporating the idea of conformal prediction. For calibration, the DWAC

model is sometimes slightly better and sometimes slightly worse, although I note in

passing that, at least for these models and datasets, the predictions from both models
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Figure 6.1: Accuracy of DWAC in comparison to a softmax model on the 10-class
Fashion MNIST dataset for varying dimensionality of the output layer. Performance is
indistinguishable for a DWAC model of the same size, but accuracy drops if the size of
the output layer is decreased too much.

are quite well calibrated, such that the predicted probabilities are relatively reliable, at

least for in-domain test data. As expected, runtime during training was approximately

50% longer per epoch than for the equivalent softmax model, with a similar number of

epochs required.

One advantage of DWAC is the freedom to choose the dimensionality of the final

output layer, and Figure 6.1 illustrates the impact of this choice on the performance of

the new model. While using the same dimensionality as the softmax model gives equiv-

alent performance, the same accuracy can often be obtained using a lower-dimensional

representation (i.e., few total parameters). In some cases, however, reducing the dimen-

sionality too much (e.g., two-dimensional output for Fashion MNIST) results in a slight

degradation of performance.

On the other hand, using a two-dimensional output layer means that one are able to

more easily visualize the learned embeddings, without requiring an additional dimen-

sionality reduction step, e.g., using PCA or t-SNE (van der Maaten and Hinton, 2008).



6.5. RESULTS 117

Figure 6.2: Learned embeddings of the Fashion MNIST training data when using a
DWAC model with a two-dimensional output layer.

In this way, one could look directly at where a test instance is being embedded, relative

to training instances, with no loss of fidelity.

Figure 6.2 shows the embeddings learned by DWAC for the Fashion MNIST training

data using a two-dimensional output layer. Pleasingly, there is a natural semantics to

this space, with all of the footwear occurring close together, and the “shirt” class being

centrally located relative to related classes (t-shirt, pullover, etc.).

6.5.2 Interpretability and explanations

Recall that explanations for predictions made by DWAC are given in terms of a weighted

sum of training instances. Figure 6.3 (top) shows an example of a partial explanation

provided by DWAC for an image dataset. A test image is shown in the top row, along
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Figure 6.3: Two examples of predictions made by the DWAC model on the Fashion
MNIST dataset. An approximate explanation for the model’s prediction on the test
image (single image) is the four most-highly weighted training images (row of four),
along with their weights and labels. The top example shows a prediction that is well
supported, with many nearby training instances of the same class, whereas the bottom
shows an example where even the nearest training instances are relatively distant.

with its true label, and the four closest images from the proper training set (as measured

in the embedded space) are shown below it, along with their weights. In this case, all

share the same label, and all contribute approximately equally to the prediction.

As a contrasting example, Figure 6.3 (bottom) shows an example which has poor

support among the nearest training points. Although the prediction is correct, and the

closest training images appear visually similar, this sort of wide-legged trouser is quite

rare in the dataset (most trousers included have narrow legs). As such, the model has
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Weight Sentence Label
Test Drupal 6 dynamic menu item Drupal
0.994 drupal how to limit the display results of the calendar view Drupal
0.994 Drupal : Different output for first item in a block Drupal
0.994 changing user role in drupal Drupal

Weight Sentence Label
Test save data from editable division Ajax
0.214 Pass data from workspace to a function Matlab
0.133 upload data from excel to access using java Apache
0.130 Finding incorrectly - formatted email addresses in a CSV file Excel

Table 6.3: Two examples from the Stack Overflow dataset with approximate explana-
tions from a DWAC model: an easy example with many close neighbours (top) and
a more difficult example with no close neighbours (bottom). The first line is the test
instance in both cases.

clearly not learned as well how to embed such images into the low-dimensional space.

The low weights indicate that one should be skeptical of this prediction.

Images are relatively easy to compare at a glance; text, by contrast, may be more

difficult. Nevertheless, the explanations given by DWAC for the predictions on text

data are in some cases very meaningful. For the Stack Overflow dataset, for example,

many instances are almost trivially easy, in that the label is part of the question. Not

surprisingly, these examples tend to have many highly-weighted neighbors which

provide a convincing explanation. Such an example is shown in Table 6.3 (top). In other

cases, the text is more ambiguous. Table 6.3 (bottom) shows an example with very little

support, for which a user might rightly be skeptical of the model, based on both the

weights and the explanation.

Finally, because one can use any deep model to compute f(x), one is free to choose

one with preferred characteristics, including interpretability. For the text classification

experiments, I chose a base model originally proposed for interpretable classification

of medical texts (Mullenbach et al., 2018). To further unpack the explanation given for
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Income Cover. Lend. Fash. CIFAR Subj. Stack IMDB Amazon
k=1 0.85 0.76 0.96 0.95 0.96 0.98 0.81 0.95 0.78
k=5 0.91 0.77 0.98 0.97 0.98 0.99 0.84 0.98 0.87
k=10 0.93 0.77 0.99 0.98 0.98 0.99 0.85 0.98 0.90
k=100 0.96 0.83 0.99 0.99 0.99 1.00 0.89 0.99 0.94

Table 6.4: Impact of considering a subset of the training instances as an approximate
explanation: the columns show agreement with the full model on the single most-
probable label when basing the prediction on only the k closest training instances.

a prediction, one could, for example, inspect the attention weights for a particular pair

of sentences to understand the importance of each word in context.

6.5.3 Approximate explanations

Because the weights on training instances decrease exponentially with distance, the

closest training instances will contribute the most to the prediction. In some cases,

only relatively few training instances will be required to fully determine the model’s

predicted label (because beyond this the remaining instances will lack sufficient weight

to alter which class will be most highly-weighted). In practice, most test instances

tend to require a substantial proportion of the nearest training instances in order to

cross this threshold. However, even considering a much smaller number of the closest

training instances may still result in high agreement with the prediction based on all of

the data. Table 6.4 shows the agreement with the full model if one only considers the

top k neighbors to each test instance. For most datasets, this agreement is very high,

even for a very small number of neighbours.

6.5.4 Confidence and credibility

The above results only considered the single top-scoring label predicted for each in-

stance; here I extend both models to the conformal setting. To verify the theoretical
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expectations of conformal methods, I show that my proposed measure of nonconfor-

mity correctly works to maintain a desired error rate in making predictions. Figure 6.4

shows the results for the Fashion MNIST dataset, where I vary ε (the desired maximum

error rate) from 0 to 0.2. The top subfigure (a) shows the proportion of predictions on

the test set which are correct (that is, which contain the true label), for the softmax

model using negative probability (probs) as a measure of nonconformity, DWAC using

the same measure, and DWAC using my proposed measure of nonconformity (weights)

given in Equation 6.13. As can be seen, all three demonstrate correct coverage, with

all lines close to but not exceeding the expected proportion (1−ε) across the full range

(shown as a dashed line on the top subfigure). Note that this is not the same as accuracy,

as some predictions may contain multiple labels.

The second and third subfigures show the same lines for the proportion of predicted

label sets that are empty (b) or contain multiple labels (c). The bottom figure shows the

mean number of labels in all non-empty predicted label sets. In all cases, the dashed

line represents an optimal outcome (that is, a proportion of predicted label sets equal

to ε are empty, all other predictions are correct, and no predictions contain multiple

labels).

As can be seen, the softmax and DWAC models give indistinguishable results when

using the same measure of nonconformity. My proposed measure of nonconformity,

by contrast, appears to be slightly less efficient, producing slightly more predicted

label sets with multiple labels, but also slightly more empty label sets, which represent

identifiable errors contributing to the proportion of incorrect predictions.

The advantage of my proposed measure, however, comes in robustness to out-of-

domain data. If one trains a model on the Fashion MNIST dataset, and then ask it to

make predictions on the original MNIST digits dataset (which has the same size and

data format, but consists of hand-written digits rather than items of clothing), one
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Figure 6.4: Coverage of various models on the Fashion MNIST test data, as I vary the
desired maximum error rate (ε). From top to bottom, the subfigures show (a) the
proportion of predicted label sets that are correct (contain the true label); (b) that
are empty (make no prediction); (c) that contain multiple labels; and (d) the mean
number of labels in non-empty prediction sets. The softmax and DWAC models give
nearly identical results when using negative probability as a measure of nonconformity
(probs). My proposed measure (weights) has an indistinguishable error rate, but is
slightly less efficient. The dashed line in each figure represents an optimal response.
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would hope that a good model would predict relatively low probability for all such

instances. In fact, as has been previously observed (Nguyen et al., 2015a), deep models

tend to predict relatively high probabilities, even for out-of-domain data, and this is

also true of DWAC models.

Fortunately, the credibility score from a conformal predictor provides a meaningful

estimate of how much one should trust the corresponding prediction.10 Both the

softmax model (using negative probability as a measure of nonconformity), and the

DWAC model (using my proposed measure of nonconformity) give low credibility to the

vast majority of out-of-domain examples, as shown in Figure 6.5. The credibility scores

from DWAC however, are noticeably shifted closer to zero, indicating that the sum of

the weights of the corresponding class is a better measure when one is concerned about

the possibility of out-of-domain data. (For in-domain data, the credibility values will

be approximately uniformly distributed).

I find similar results when training on CIFAR-10 images, and predicting on the Tiny

Images dataset (see Figure 6.6), and an even more extreme difference in the case of

the Covertype dataset, where I treat one out of seven classes as out-of-domain data,

and train a model on only the six remaining classes (see Figure 6.7) . For that setup,

the mean credibility score from the softmax model on the out-of-domain data is 0.9,

whereas for the DWAC model with my measure of nonconformity it is 0.2. This indicates

that to the softmax model, the held-out images “look like” even more extreme versions

of one of the other classes, whereas the DWAC model correctly recognizes that the

held-out images are relatively unlike the training instances (relative to the calibration

data).
10Specifically, as mentioned above, it is equal to one minus the model probability that none of the

labels should be given to this instance.
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Figure 6.5: Empirical distribution of credibility scores from the softmax (top) and DWAC
(bottom) models when trained on Fashion MNIST and tested on MNIST digits (which
have the same input format but different content), with the latter using my proposed
measure of nonconformity.
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Figure 6.6: Empirical distribution of credibility scores from the softmax (top) and DWAC
(bottom) models when trained on CIFAR-10 and tested on Tiny Images, with the latter
using our proposed measure of nonconformity.
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Figure 6.7: Empirical distribution of credibility scores from the softmax (top) and DWAC
(bottom) models when trained on 6 of the classes in the Covertype dataset and tested
on the 7th class. This represents an extreme example where the credibility scores are
skewed towards 1 in the softmax model, given that in-domain data would typically be
approximately uniformly distributed.

6.6 Discussion and future work

The idea of interpretability has always been important in statistics and machine learn-

ing, but has taken on a renewed urgency with the increased expressive power of deep

learning models and the expanded deployment of machine learning systems in society.

No single approach to interpretability is likely to solve all problems; here I have focused

on adapting existing models so as to make their predictions more transparent, by de-

composing them into a sum over training instances, the support for each of which can

be inspected. As emphasized by papers that have made use of user studies (Huysmans

et al., 2011; Kulesza et al., 2013; Narayanan et al., 2018; Poursabzi-Sangdeh et al., 2018;

Yin et al., 2019), careful empirical work is required to evaluate the effectiveness of

explanations, and I leave such an evaluation of this approach for future work.

A few recent papers have also sought to formalize the question of when to trust a
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classifier. Jiang et al. (2018) present a method for determining how much any existing

classifier should be trusted on any given test point, based on the relative distance

to the most-likely and second-most-likely clusters, with clusters based on a pruned

training set. This appears to be a theoretically well-motivated and empirically effective

technique, but is more focused on trust than interpretability. In an unpublished paper,

Papernot and McDaniel (2018) propose to train a conventional deep model, but make

predictions using a k-nearest neighbours approach, with distance computed using all

internal nodes of the network. My approach, by contrast, is to train a model using the

same form as will be used for prediction, to make predictions based on a weighted sum

over the entire training set, and rely on similarities computed in the low-dimensional

space of the final layer. Wallace et al. (2018) apply the method from Papernot and

McDaniel (2018) to the problem of text classification and explore the implications for

interpretability.

There have also been several papers focused on the problem of predicting whether

data is in-domain or out-of-domain (Lee et al., 2018; Liang et al., 2018). Many of these

build on Hendrycks and Gimpel (2017), who observed that the predicted probabilities

contain some useful signal as to whether data came from in-domain or out-of-domain,

and proposed to use this to differentiate between the two by thresholding these prob-

abilities. The authors did not, however, make the connection to conformal methods,

which offer a more theoretically sound basis on which to make these decisions, as well

as greater flexibility of metrics, beyond just predicted probability.

There are several natural extensions to this work which could be pursued, such

as applying a similar architecture to regression or multi-label problems, as well as

extending the idea of nonconformity to provide class-conditional guarantees.
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6.7 Summary

In this chapter I have demonstrated that even for sophisticated deep learning models,

it is possible to create a nearly identical model, with all of the same desirable properties,

that nevertheless provides an explanation for any prediction in terms of a weighted

sum of training instances. In domains where the training data can be freely inspected,

this provides greater transparency by revealing the many components that explicitly

contribute to a model’s prediction, each of which can in principle be inspected and

interrogated. Moreover, this method can build on top of other approaches to inter-

pretability, by choosing an appropriate base model. When an approximate explanation

will suffice, then using only a small subset of the training instances provides a natural

high-fidelity approximation.

More importantly, representing the prediction in this manner suggests a natural

alternative measure of nonconformity, which, as I have shown, provides a more effec-

tive measure for detecting out-of-domain examples. Even in cases where training data

cannot be shared (due to privacy concerns, for example), this use of conformal meth-

ods still allows us to assert a quantitative estimate of the credibility of an individual

prediction, one that is far more meaningful than the model’s predicted probability.

The experiments in this chapter focused on a variety of data types, rather than

a particular social science problem, in part to show the generality of this method.

However, the ability to better interrogate why a model is making a particular prediction,

or to be able to easily visualize what a model has learned, is of obvious value for

model development where transparency and interpretability are important. Moreover,

by providing a quantitative estimate of how much a particular prediction should be

trusted, we can more effectively know the limits of where our measurements might

break down, and when we should be skeptical of a model’s predictions. Particularly for
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social science applications, where there is real potential for the translation of ideas into

policy, the credibility scores from DWACs, or from conformal methods more generally,

provide a potentially useful check on the possibility of invalid predictions.



Chapter 7

Conclusion

7.1 Summary of contributions

Machine learning and natural language processing have repeatedly demonstrated

their value in interdisciplinary research, and the social sciences are no exception.

However, productive interdisciplinary work requires consideration of the concerns

and priorities of the social sciences, including an emphasis on validity, reliability,

reproducibility, interpretability, and cost. This thesis has brought together a line of

work on methods for both supervised and unsupervised settings which try to take

these desiderata seriously. While no single method will ever be the right solution for all

problems, these chapters include examples of models designed for specific purposes,

such as estimating label proportions, as well as more generically useful approaches,

such as modeling documents with metadata. In all cases, the goal has been to work

towards collaborative research, by incorporating thinking from the social sciences

about research methods, while aiming to make machine learning and natural language

processing useful to scholars from a broader range of disciplines.

129
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Specific contributions of this thesis include:

• Chapter 3 presented a graphical model designed for automatically inferring

archetypal character representations and story types in an unsupervised manner.

These inferred values were shown to be useful in predicting annotations of the

framing and tone of news articles about U.S. immigration, including when using

a novel type of feature evaluation based on Bayesian optimization.

• Chapter 4 introduced a model which generalizes multiple topic model variants in

a unified framework, using neural variational inference. In addition to showing

that this allows for more flexible exploration, by allowing metadata associated

with documents to be incorporated in multiple ways, this chapter also argued for

using neural variational inference as the foundation of a more accessible form of

modeling, with the potential to expand the range of tools available to scholars in

other disciplines.

• Chapter 5 focused on the use of text classification as tool for measurement when

the goal is to estimate label proportions, as is often the case in text-as-data re-

search. It characterized two different sets of assumptions that might be made

when researchers need to confront domain shift (intrinsic vs extrinsic labels),

and argued that most past work targeted at accounting for this shift is based on

an assumption which is inappropriate for most annotation scenarios. For the

extrinsic setting, it was shown that the goal should be a well-calibrated model,

and that we can improve upon a naive approach by using a different criterion for

model selection.

• Finally, Chapter 6 demonstrated how a simple change to any deep learning

classifier can create a model which is equally accurate, but with more trans-

parently interpretable predictions, by making predictions explicitly in terms of

training instances. Furthermore, this approach suggested a novel measure of
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non-conformity, one which was shown to be more useful in detecting out-of-

domain data. These deep weighted averaging classifiers (DWACs) provide a useful

approach when researchers are concerned with the possibility of encountering

out-of-domain instances, or want to be able to provide an explanation for the

decisions made by a classifier.

7.2 Recurring themes

Several themes which recur throughout this work, as summarized below:

Text-as-data: As emphasized in Chapter 2, human-generated natural language holds

enormous potential for learning about society. Indeed, a great deal of social science is

based on text in some form, including interviews and open-ended survey responses.

Historically, making use of such data required interpretation by humans to extract

important insights and patterns, which is neither reproducible nor scalable. By drawing

on methods from machine learning and natural language processing, we can more

effectively leverage the text that is available from these sources, as well as larger-scale

cultural products, such as news articles, wikis, social media, and so on. Most chapters

in this thesis (especially 3, 4, and 5) proposed ways of learning from text, with the idea

of framing providing a running example.

Exploration and measurement: Social science is typically theorized in terms of con-

cepts (formally, constructs), but these concepts must be operationalized in terms of

properties that can be measured, along with appropriate instruments. Particularly

when working with complicated data such as open ended text, the measurement

problem becomes especially difficult. While machine learning and natural language
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processing provide many possible ways of quantifying text, there is still enormous

scope for designing custom models (as in Chapter 3), as well as for expanding the space

of tools that are easily useable by scholars in other disciplines (as in Chapter 4). The

ideas of exploration and measurement appear throughout, but Chapter 5 is specifically

concerned with the problem of using text classification as an instrument, while Chapter

6 explores how we can make such instruments more transparent and trustworthy.

Learning from social science: Just as social sciences can benefit from tools and in-

sights derived from machine learning and natural language processing, computer

science can also benefit from ideas in the social sciences. Chapter 2 provided an

overview of the main concerns surrounding research methods in social science, and

discussed the importance of taking these concerns seriously, especially as algorithmic

systems are coming to play an increasingly prominent role in society. Chapter 3 empha-

sized the importance of collaborating with domain experts for theoretical grounding,

validation, and interpretation of results. Other chapters addressed various properties

valued by social scientists, such as reliability, calibration (Chapter 5), transparency, and

interpretability (Chapter 6). For additional recent work related to this thesis addressing

the issues of cost and reproducibility, please refer to Gururangan et al. (2019) and Dodge

et al. (2019).

7.3 Implications for computational social science

The majority of this thesis has focused on methods, without always making explicit the

connection to particular, substantive research questions in social science. This is in

part to emphasize generality, but also because many social science questions merit the

kind of in-depth investigation that would not easily fit into this sort of thesis (and often
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warrant a thesis or a book-length treatment of their own). Nevertheless, I hope that the

ideas contained within will be useful for computational social science research and the

text-as-data community in particular.

Chapter 3 provided an example of an approach to exploration and measurement

using probabilistic graphical models, demonstrating how a model can be designed to

instantiate ideas from other fields (e.g., the idea of archetypal character types in news)

and produce meaningful representations. In particular, the personas model provided a

means of both discovering the sorts of character representations and story types that

were present in a corpus, as well as providing a set of measurements of the corpus (i.e.,

as features), which were found to be predictive of framing. This sort of approach has

wide-spread applicability to a variety of different types of data and questions, though

as emphasized, it suffers from the need for a certain level of expertise in the area of

graphical models in order to design an appropriate model and inference algorithm.

As a step towards mitigating that limitation, neural variational inference was used

in Chapter 4 as a means of unifying a set of related models into a common framework,

thereby providing the foundation for painless model customization by users, even

by those with less expertise in statistics and machine learning. The resulting model,

SCHOLAR, provides an alternative to other widely-used topic model variants, such as the

structural topic model (Roberts et al., 2014), one which provides greater scalability, and

the ability to incorporate richer covariates or additional prior knowledge in the form of

pre-trained word vectors. As above, this sort of approach to modeling is useful primarily

as a way of exploring a large collection of documents (possibly for the purpose of hy-

pothesis generation), but also provides a way of making measurements of text (Wallach,

2016). In particular, follow on work (Gururangan et al., 2019) has demonstrated that an

extension of this model is highly effective as a way to learn useful document represen-

tations for semi-supervised text classification in the limited-resources setting. Further
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work is required in order to make neural variational inference a broadly accessible way

of exploring text corpora, including questions of interface design and how to handle

more complex models. Nevertheless, there is an opportunity here to use it as the basis

of a user-friendly system for text analysis in the social sciences.

The idea of using text classification as a tool for measurement was addressed more

directly in Chapter 5. This remains an important paradigm for any setting in which we

would like to augment manual annotation (i.e., human coding) of documents. As shown,

however, there are two important take-aways. First, if the goal is only to estimate the

label proportions in a fixed corpus of documents, then for most applications, the simple

random sampling approach of sampling and manually labeling a modest number of

documents is likely to be far better, in terms of validity, reliability, and cost, than any

approach based on dictionary methods or supervised learning. However, for cases in

which we care about individual document labels, or only have access to part of the

corpus during annotation, some form of supervised learning will often be necessary.

As emphasized, if we must confront the problem of domain shift (as in the case of

generalizing to future data), then it is important to consider the data generating process

(i.e., intrinsic vs. extrinsic labels), and to recognize that validation is the only guarantee

against potential error.

Finally, Chapter 6 made use of a variety of types of data, but is nevertheless highly

relevant. First, in developing text classifiers as tools for measurement, it is important

to be able to understand and communicate how they are working. Deep learning has

brought such large gains in accuracy in numerous areas of natural language processing,

that it would be ill-advised to ignore it. However, given the problems associated with

deep learning as discussed in Chapter 6, it may be unappealing for many social scien-

tists. DWACs provide, at a minimum, a more direct way of inspecting the basis for each

prediction, which will help to determine if the model is doing something reasonable
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during model development.

In addition, social science research is noteworthy in that many findings have the

potential to be translated into policy. Any tool which is developed for the purpose

of measurement (e.g., of text) has the potential to be deployed as a way of making

predictions. Given the problems of domain shift discussed above, and the potential

harms involved, especially when making predictions about people (e.g., based on their

social media posts), it would be highly valuable to know when a model might be making

a prediction that should not be trusted. The credibility scores from DWACs, or from

conformal methods more generally, provide just such a mechanism; especially using

DWACs, this allows us to identify data which may be unlike the training data, and for

which we should be skeptical of the model’s prediction.

Of course, as emphasized in the introduction, this kind of observational text-as-data

research is only one part the universe of computational social science. Going beyond

purely observational data, some of the ideas presented here could also be applied to

the results of open-ended survey responses, for example, and could be incorporated

into causal analysis in experimental work (see, for example, Fong and Grimmer, 2016).

7.4 Directions for future work

Each of the main chapters of this thesis addressed a particular problem and made a

specific contribution. Nevertheless, there is great scope for potential future work.

The idea of personas served as the foundation for the model presented in Chapter

3, and was found to be useful for predicting annotations about the framing of news

articles. Indeed, one important aspect of framing is the set of entities that are present

in text, and the ways in which they are depicted. Further work along these lines seems
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like a particularly promising direction for future research into framing. Although

effective and interpretable, the model presented here only made use of a very limited

set of textual evidence for inferring entity representations. A model which made use

of greater context would be a natural extension, as would one which made use of

additional metadata about the shared identity of entities depicted across documents or

by different sources.

Developing a more comprehensive persona model might be difficult using tradi-

tional inference techniques, but neural variational inference, as used in Chapter 4

provides a potentially useful foundation upon which to base a model. Indeed, demon-

strating that neural variational inference could easily be extended to the type of hier-

archical model of text used for studying personas would be highly useful, as it would

suggest greater generalizability. While there is excellent work happening in the domain

of hierarchical VAE models (e.g., Sønderby et al., 2016), as well as probabilistic program-

ming and automated inference (e.g., Tran et al., 2016), these methods have not yet seen

much use in the social sciences when dealing with text.

In addition, further consideration of the trade-offs inherent in this sort of approach

to inference would be valuable. Experiments in Chapter 4 suggest that inference using

VAEs is inferior (in terms of model fit) to traditional collapsed Gibbs sampling with

hyperparameter updating, at least for standard models like LDA, and understanding

this difference would be useful. Similarly, the randomness in VAE-based inference

creates potential problems in terms of reproducibility, though this could perhaps be

mitigated by some sort of initialization, such as the spectral initializer used in the

structural topic model (Roberts et al., 2014).

Going beyond entities, there is great scope for deeper analysis of framing, especially

given the recent gains obtained on a wide range of tasks using contextual embeddings

(Peters et al., 2018; Devlin et al., 2019). Promising directions include metaphor, ar-
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gumentation, and narrative. Metaphor is a frequently-cited component of framing,

but one which has been difficult to study computationally. Similarly, arguments are

perhaps the quintessential aspect of framing (i.e., “to promote a particular problem

definition, causal interpretation ...”, Entman, 1993). Many codes in social science code-

books take the form of more or less specific ideas or claims (e.g., “immigration is good

for the economy”), which may be expressed in many different ways. Given continued

advances such as contextual embeddings, recognizing such specific ideas in text seems

quite promising, given sufficient data. Finally, linking together these metaphors and

claims into larger narratives which change over time is perhaps the ultimate objective,

and could potentially benefit from work in computational narrative analysis.

The identification of ideas in text would be useful beyond the analysis of framing,

and is a promising direction of research. A limitation, however, is the lack of evaluation

data, as identifying every mention of an idea in a large corpus remains challenging.

Moreover, the fact that the similarity of ideas is often implicit means that a more

interactive approach, one integrating active learning and proper interface design,

would allow a domain expert to navigate a corpus, gradually refining the concept by

example. Additional methods of visualizing the relations between ideas, such as Tan

et al. (2017), would also be useful.

Both calibration and interpretability are still underdeveloped areas which need

further work. It is clear that classifier accuracy can benefit massively from pretraining

(even in the low-resource setting; Gururangan et al., 2019), but we don’t yet have a full

appreciation of what this sort of transfer learning implies for calibration, or the potential

for introducing unwanted biases into measurement. Many ideas have been proposed

for interpretable models, but there is a great need for more empirical studies with real

users to understand how people make sense of such information (Poursabzi-Sangdeh

et al., 2018; Yin et al., 2019). Similar evaluation would be useful for thinking about
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the credibility scores returned by conformal methods and the value of transparent

predictions more broadly.

Finally, there is a great deal of work to be done in studying the second-order ef-

fects of these technologies. As machine learning and natural language processing are

increasingly being deployed in social settings, such as recommender systems, voice

assistants, and social media monitoring, we should expect that these interventions

will modify the environment in which they operate. Fortunately, these fields of study

also provide the means to study these kinds of downstream consequences at scale.

Collaborative work in computational social science is in the best position of all fields

to make sense of changes that are taking place in society due to the expansion of algo-

rithmic interventions, and this presents a huge opportunity for further development of

datasets, methods, analyses, interventions, and insights.
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