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Abstract
Sparse learning, deep networks, and adversarial learning are new paradigms and

have received significant attention in recent years due to their wide applications to
various big data problems in computer vision, natural language processing, statistics,
and theoretical computer science. The paradigms include learning with sparsity,
learning with low-rank approximations, and learning with deep neural networks,
corresponding to the assumptions that data have only a few non-zero coordinates,
lie on low-rank subspaces, and lie on low-dimensional manifolds, respectively. The
focus of this study is to develop algorithms which are sample-efficient, are easier to
optimize, and are robust to adversarial corruptions.

Despite a large amount of work on these new paradigms, many fundamental
questions remain unresolved. From the statistical aspect, understanding the tight
sample complexity of big data problems is an important research question. Intuitively,
the intrinsic dimension of structured data should be much smaller than their ambient
dimension. Because the true sample complexity should be comparable to the intrinsic
dimension rather than the ambient dimension, this implies the possibility of sub-linear
sample complexity w.r.t. the ambient dimension. In this thesis, we design principled,
practical and scalable algorithms for big data problems with near-optimal sample
complexity. These include models of matrix completion, robust PCA, margin-based
active learning, property testing, and compressed sensing.

From the computational aspects, direct formulations of these new paradigms are
non-convex and NP-hard to optimize in general. Therefore, one of the long-standing
questions is designing computationally efficient algorithms by taking into account
the structure of the data. In this thesis, we develop new paradigms toward global
optimality of non-convex optimization in polynomial time. In particular, we design
algorithms and understand the landscape (e.g., duality gap) for the problems of (1-bit)
compressed sensing, deep neural networks, GAN, and matrix factorization.

From the robustness aspects, models such as deep networks are vulnerable to
adversarial examples. Although the problem has been widely studied empirically,
much remains unknown concerning the theory underlying designing defense methods.
There are two types of adversarial examples: training-time adversarial examples, such
as data positioning, and inference-time adversarial examples. We discuss both types
of adversarial examples in this thesis, for the problems of (1-bit) compressed sensing
and robust PCA, as well as the problems of deep networks by adversarial learning.

Beyond theoretical contributions, our work also has significant practical impact.
For example, inspired by our theoretical analysis, we design a new defense method,
TRADES, against inference-time adversarial examples. Our proposed algorithm is
the winner of the NeurIPS 2018 Adversarial Vision Challenge in which we won the
1st place out of 1,995 submissions, surpassing the runner-up approach by 11.41% in
terms of mean `2 perturbation distance.
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Chapter 1

Introduction

1.1 Why Sparse Learning, Deep Networks, and Adversarial
Learning?

We are now in an era of big data as well as high dimensional data. Fortunately, high dimensional
data are not unstructured. Usually, they lie near low dimensional manifolds. This is the basis of
linear and nonlinear dimensionality reduction. As simple yet effective approximations, there are
three typical assumptions on the structure of data:
• Sparsity. Sparsity is probably one of the most popular low-dimensional structures for

vector-type data. That is, only a few entries of data vectors are non-zero. This assumption
is the foundation of compressive sensing techniques.

• Low rank. Linear subspaces are widely used to model the data distribution. Because low
dimensional subspaces correspond to low rank data matrices, the rank minimization problem,
which models the real problem into an optimization problem by minimizing the rank in the
objective function, is now widely used in machine learning and data recovery. Actually,
rank is regarded as a sparsity measure for matrices. So low rank recovery problems are
studied in parallel with the compressed sensing theories for sparse vector recovery. Typical
rank minimization problems include matrix completion, which aims at completing the entire
matrix from a small sample of its entries, and robust principal component analysis, which
recovers the ground truth data from sparsely corrupted elements.

• Low-dimensional manifolds. The structure of low-dimensional manifolds has received
significant attention in recent years as a more realistic assumption beyond the linearity of
the data. Such a data structure is typically characterized by deep neural networks.

One of the commonalities among these data assumptions is that direct formulations of them
lead to sparse learning, deep networks, or Adversarial Learning. For example, sparsity-induced
data results in the `0-norm minimization problem, and low-rank-induced data assumption results
in the rank minimization problem, all of which belong to sparse learning. The manifold-induced
data assumption serves as the foundation for the recent popularity of deep neural networks and
adversarial learning.

1



1.2 ROSE: Robustness, Optimization, and Sample Efficiency

Despite a large amount of work on these data assumptions, many fundamental questions remain
unresolved:

From the statistical aspect, understanding the tight sample complexity of big-data problems
under the above-mentioned assumptions is an important research question. Intuitively, the intrinsic
dimensionality of data should be much smaller than the ambient dimension, and the tight sample
complexity should be comparable to the intrinsic dimension, rather than the ambient dimension.
• Contribution 1 (Sample efficiency). We design principled, practical and scalable algo-

rithms for big data problems with near-optimal sample complexity. These include models of
matrix completion, robust PCA, margin-based active learning, property testing, compressed
sensing, etc.

From the computational aspects, direct formulations of the above-mentioned approximate
recovery problems are non-convex and might be NP-hard to optimize in general. Therefore,
one of the long-standing questions is designing computationally efficient noise-tolerant learning
algorithms that can approximate the unknown target parameters to any arbitrary accuracy. We
address this problem in this thesis.
• Contribution 2 (Optimization). One of our focuses is to develop new paradigms toward

global optimality of non-convex optimization in polynomial time. In particular, we design
algorithms and provide an understanding of the landscape (e.g., duality gap) for the problems
of (1-bit) compressed sensing, deep neural networks, GAN, matrix factorization, etc.

From the robustness aspects, models of non-convex learning such as deep neural networks,
active learning, as well as low-rank models (matrix completion and PCA) might be vulnera-
ble to adversarial examples. Although these problems have been widely studied empirically,
much remains unknown concerning the theory of designing robust methods against adversarial
corruptions.
• Contribution 3 (Robustness). We design new algorithms to improve the robustness of

non-convex learning models. For example, we investigate the performance of active
learning under adversarial noise model, and show that active learning works well under
this challenging noise model. We also analyze the robustness of robust PCA to sparse
adversarial corruption. For learning by deep neural networks, we identify a trade-off
between robustness and accuracy that serves as a guiding principle in the design of defenses
against adversarial examples.

1.3 Organization of This Thesis
This thesis makes the above three contributions and consists of the following three components.
• Learning with sparsity. Learning with sparsity involves solving non-convex optimization

with `0 constraints or regularization. In Chapter 2, we will present works on how to
efficiently approximate the unknown target vector w∗ to arbitrary accuracy for the problem
of (1-bit) compressed sensing [176] and active learning under Massart noise and adversarial
noise models [17]. We apply the technique of solving a sequence of carefully-designed

2



convex surrogate problems. We are able to get arbitrarily close to the target vector, although
the original problem itself is highly non-convex. We achieve exponential improvements in
label complexity over passive learning approaches.

• Learning with low-rank approximations. Learning with low-rank approximation in-
volves solving non-convex optimization with low-rank constraints or regularization. In
Chapter 3, we will discuss the problems of matrix completion and robust PCA via strong
duality [26, 27], and design efficient algorithms for property testing of matrix rank [25].
Our algorithms enjoy nearly optimal sample complexity.

• Learning with deep neural networks. Deep neural networks are more challenging non-
convex problems as they involves non-linear activation functions beyond low-rank approxi-
mation. In Chapter 4, we will try to understand the landscape of deep neural networks [258]
and GANs [257] via architecture designs. Our main results show that the multi-branch deep
neural networks and GANs enjoy smaller duality gap. A smaller duality gap in relative
value typically implies that the problem is less non-convex, and thus is easier to optimize.
The results shed light on better understanding the power of over-parametrization where
increasing the network width tends to make the loss surface less non-convex. We will also
study how to improve the robustness of deep neural networks via new loss design [259].

3
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Chapter 2

Learning with Sparsity

2.1 Learning of Halfspaces and One-Bit Compressed Sensing

2.1.1 Introduction
Linear models are a central object of study in machine learning, statistics, signal processing, and
many other domains [69, 84, 133, 230, 231, 246, 256]. In machine learning and statistics, study
of such models has led to significant advances in both the theory and practice of prediction and
regression problems. In signal processing, linear models are used to recover sparse signals via a
few linear measurements. This is known as compressed sensing or sparse recovery. In both cases,
the problem can be stated as approximately recovering a vector w∗ ∈ Rd given information about
w∗ · xi, where the xi’s are drawn from a distribution. The feedback typically comes in the form of
the value of w∗ · xi or just the sign of the value. The focus of this work is on the latter setting
known as classification or 1-bit compressed sensing in the respective communities. That is, given
noisy 1-bit measurements of the form sign(w∗ · xi), how to efficiently recover a vector w that is a
good approximation to w∗ ∈ Rd, in terms of the value ‖w − w∗‖2. Furthermore, in the context of
1-bit compressed sensing, where w∗ is t-sparse, we must use a number of measurements xi’s that
scale polynomially in t and only polylogarithmically in d, the ambient dimension.

Despite a large amount of work on linear models, many fundamental questions remain
unresolved. In learning theory, one of the long-standing questions is designing efficient noise-
tolerant learning algorithms that can approximate the unknown target vector w∗ to any arbitrary
accuracy. Here noise corresponds to the corruption in the observations sign(w∗ ·xi). In the absence
of noise, the recovery problem can be solved efficiently via linear programming. Several other
algorithms such as Support Vector Machines [231], Perceptron [170] and Winnow [159] exist that
provide better guarantees when the target vector has low L2 or L1 norm. This problem becomes
more challenging in the context of 1-bit compressed sensing, as in addition to computational
efficiency, one has to approximately recover w∗ given a number of measurements poly(t, log(d)).
In the absence of noise, methods of this type are known only for Gaussian marginal distribution [97,
185, 186] or when the data has a large L1 margin. However, this problem is left open for general
distributions even in the absence of noise.

When measurements are noisy, this problem becomes more challenging in both its classifi-
cation and 1-bit compressed sensing forms. This is due to the fact that direct formulations of
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the approximate recovery problem are non-convex and are NP-hard to optimize [102]. There is
significant evidence to indicate that without assumptions on the noise and the distribution of xi,
such recovery might not be computationally possible [71, 136]. When no assumptions are made
on the nature of the noise (agnostic model), the best known result shows that when the distribution
is uniform over the unit ball, one can achieve an O(ν) + ε approximation, where ν is the fraction
of the noisy labels [14]. An exciting work of [185] considers 1-bit compressed sensing under the
challenging agnostic noise model and provides the best known result in approximately recovering
a t-sparse w∗ efficiently with a number of samples poly(t log d), albeit with an approximation
factor (11ν

√
log e

ν
+ ε
√

log e
ε
)1/2 that does not match that of its non-sparse counterpart [14].

Due to the difficulty of the most general form of the problem, most positive results for
obtaining arbitrarily good approximation have focused on the case of symmetric noise. A noise
process is called symmetric if the probability that sign(w∗ · xi) is corrupted only depends on the
magnitude |w∗ · xi| [185]. Symmetric noise has many structural properties that one can exploit.
For instance, when samples xi’s are generated from a symmetric distribution, it can be shown
that the sign weighted average of the samples is enough to approximate w∗. This is the main
insight behind some existing works on classification and 1-bit compressed sensing algorithms
that are concerned with symmetric noise, such as [185, 206]. When 1-bit compressed sensing is
considered, the more challenging aspect is to show that the number of samples scale linearly with
the sparsity of w∗. Even when xi’s are not generated from a “nice” distribution, one can show
that the weighted average is not far from w∗.1 However, these observations and techniques break
down when the noise is not symmetric.

2.1.2 Our results on label efficiency, optimization, and robustness
Our work tackles the problem of approximate recovery under highly asymmetric noise and
advances the state-of-the-art results in multiple aspects. We first study a natural asymmetric noise
model known as the bounded noise (a.k.a Massart noise) model. In this model, the probability
of corrupting the sign(w∗ · xi) is upper bounded by a constant 1

2
− β

2
, i.e., an adversary flips the

label of each point xi with probability η(xi) ≤ 1
2
− β

2
. This is a natural generalization of the

well known random classification noise model of [133], where the probability of flipping the
label of each example is η = 1

2
− β

2
. Bounded noise model has been widely studied in statistical

learning theory [42] in the context of achieving improved convergence rate. However, except
for very simple classes with constant VC dimension, computationally efficient results in this
space had remained unknown until recently.2 We provide the first polynomial time algorithm for
approximate recovery to arbitrary accuracy in this model for any constant noise level and a broad
class of data distributions. Our work improves over that of [15] that required β to be very close to
1 (noise of order 10−7). In this work, we introduce a novel algorithm that goes beyond this value
of β and efficiently approximates linear separators to arbitrary accuracy ε for any constant value of

1This needs additional assumption on the nature of noise. The most widely studied among them is the random
classification noise model where the sign of each observation is flipped i.i.d. with probability η < 1

2 . This can then
be boosted in polynomial time to obtain a vector that is arbitrarily close [40].

2A variant of bounded noise, where the flipping probability for each point is either η(x) = 0 or η(x) = η has been
also considered as an important open problem in learning theory with the hope that understanding the complexities
involved in this type of noise could shed light on the problem of learning disjunctions in the presence of noise.
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β > 0 in time poly(d, 1
ε
), when the marginal distribution is isotropic log-concave in Rd. We also

introduce an attribute-efficient variant of this algorithm and perform 1-bit compressed sensing
with number of samples scaling only polynomially in the sparsity parameter and polylogarithmic
in the ambient dimension. This is the first such result demonstrating that efficient 1-bit compressed
sensing to any desired level of accuracy is possible under highly asymmetric noise. Throughout
this section, we assume ‖w‖2 = 1. Below, we state our main theorems informally:

Theorems 2 and 3 (informal). Let x1, x2, . . . xm ∈ Rd be generated i.i.d. from an isotropic log-
concave distribution. Let y1, y2, . . . ym be the corresponding labels generated asNβ(sign(w∗ ·xi)),
where Nβ is an arbitrary Massart noise process with a constant β. (a) There is an efficient
algorithm that for any ε > 0, runs in time polynomial inm, d, 1

ε
, and with probability 1−δ outputs

a vector w such that ‖w − w∗‖2 ≤ ε, provided that m ≥ poly(d, 1
ε
, log (1

δ
)). (b) Furthermore, if

w∗ is t-sparse then the algorithm only needs m ≥ poly(t, log(d), 1
ε
).

We also consider a more challenging noise model known as adversarial (a.k.a. agnostic) noise.
Here, no assumptions are made about the nature of the noise and as a result, even information
theoretically, approximate recovery within arbitrarily small error is not possible [132]. However,
one can still recover w such that ‖w − w∗‖2 ≤ cν + ε, where ε > 0 can be arbitrarily small
and ν is the fraction of examples that are adversarially corrupted. One would like to keep c
as small as possible, ideally a constant3. We provide a polynomial time algorithm that can
approximately recover w∗ in this model with c = O(1) and the dependence on the number of
samples is O( t

ε3
polylog(d, 1

ε
, 1
δ
)). Below, we state our main theorems informally:

Theorem 4 (informal). Let x1, x2, . . . xm ∈ Rd be generated i.i.d. from an isotropic log-concave
distribution. Let w∗ be a t-sparse vector and y1, y2, . . . ym be the measurements generated by
Nadversarial(sign(w∗ · xi)), where Nadversarial is the adversarial noise process that corrupts a ν
fraction of the measurements. There is an efficient algorithm that for any ε > 0, runs in time
polynomial in m, d, 1

ε
, and with probability 1 − δ outputs a vector w such that ‖w − w∗‖2 ≤

O(ν) + ε, provided that m = Ω( t
ε3

polylog(d, 1
ε
, 1
δ
)) or the number of actively labeled samples is

Ω( t
ε2

polylog(d, 1
ε
, 1
δ
)).

1-bit compressed sensing under adversarial noise is also considered under a stronger require-
ment of uniformity, where the approximate recovery guarantee is required to hold with high
probability over all sparse signals w∗ and all possible corruption of ν fraction of the samples.
In other words, in the non-uniform case (Theorem 4) an unknown sparse target vector w∗ and a
noisy distribution D̃ are fixed in advance before the samples (xi, yi) are drawn from D̃, while in
the uniform case, the adversary first observes xi’s and then chooses a w∗ and noisy labels yi’s.
In the uniform case, one typically needs more samples to achieve the same accuracy as in the
non-uniform case. In this work, when uniformity is considered our algorithm returns w such that
‖w − w∗‖2 ≤ O(ν) + ε when the number of samples is O( t

ε4
polylog(d, 1

ε
, 1
δ
)).

Theorem 5 (informal). Let x1, x2, . . . xm ∈ Rd be generated i.i.d. from an isotropic log-concave
distribution. With probability 1− δ the following holds. For any signal w∗ such that ‖w∗‖0 ≤ t
and measurements y1, y2, . . . ym generated byNadversarial(sign(w∗ · xi)), whereNadversarial is the
adversarial noise process that corrupts a ν fraction of the measurements, there is an efficient

3This is the information theoretic limit.
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algorithm that for any ε, such that ν ∈ O(ε/ log(d/ε)2), runs in time polynomial in m, d, 1
ε

and
outputs a vector w such that ‖w−w∗‖2 ≤ O(ν) + ε, provided that m = Ω( t

ε4
polylog(d, 1

ε
, 1
δ
)).

Our work on 1-bit compressed sensing provides the first result in non-uniform 1-bit compressed
sensing under adversarial noise. Under the uniform case when ν is small, we considerably improve
the best known approximation results of [185] from ‖w − w∗‖2 ≤ (11ν

√
log e

ν
+ ε
√

log e
ε
)1/2

to ‖w − w∗‖2 ≤ O(ν) + ε. Furthermore, we improve the dependence of the sample complexity
on ε from 1

ε6
in the case of the results of [185] to 1

ε4
. While prior work on 1-bit compressed

sensing only handles the special case when the distribution is Gaussian, our results hold when the
distribution of xi is any isotropic log-concave distribution.

Hardness. We now study the hardness of the above-mentioned problems. We show that one-shot
minimization does not work for a large family of loss functions that include any continuous loss
with a natural property that points at the same distance from the separator have the same loss.
This generalizes the result of [15] who showed that one-shot minimization of hinge loss does not
lead to an arbitrarily small 0/1 error even under bounded noise with small flipping probability,
and justifies why minimizing a sequence of carefully designed losses, as we will do in Section
2.1.4, is indispensable to achieving an arbitrarily small excess error.

Without loss of generality, we discuss the lower bound in R2. Formally, let Pβ be the class
of noisy distribution D̃ with uniform marginal over the unit ball, and let (zw, ϕw) represent the
polar coordinate of a point P in the instance space, where ϕw represents the angle between the
linear separator hw and the vector from origin to P , and zw is the L2 distance of the point P and
the origin. Let `w+(zw, ϕw) and `w−(zw, ϕw) denote the loss functions on point P with correct and
incorrect classification by hw, respectively. The loss functions we study here satisfy the following
properties.
Definition 1. Continuous loss functions `w+(zw, ϕw) and `w−(zw, ϕw) are called proper, if and only
if

1. `w+(zw, ϕw) = `w+(zw, kπ ± ϕw) and `w−(zw, ϕw) = `w−(zw, kπ ± ϕw), for k ∈ N ;
2. For zw > 0, `w−(zw, ϕw) ≥ `w+(zw, ϕw); The equality holds if and only if ϕw = kπ, ∀k ∈ N .
Note that all losses that are functions of the distance to the classifier, e.g. the hinge-loss and

logistic loss, etc., satisfy Property 1, since the distance of a point to classifier w is |zw sinϕw| =
|zw sin(kπ ± ϕw)|. However, Property 1 only requires the symmetry of the loss w.r.t. the linear
separator, and is not limited to distance-based losses, that is, the losses on the points with the same
distance can be different. Moreover, this property does not require the loss to be monotonically
increasing in the distance. Property 2 is a very natural assumption since to achieve low error, it is
desirable to penalize misclassification more. Note that we equally penalize correct and incorrect
classifications if and only if points lie exactly on the linear separator.

In fact, most of the commonly used loss functions [32] satisfy our two properties in Definition
1, e.g., the (normalized) hinge loss, logistic loss, square loss, exponential loss, and truncated
quadratic loss, because they are all functions of the distance to classifier. Furthermore, we
highlight that Definition 1 covers the loss even with regularized term on w. A concrete example is
1-bit compressed sensing, with loss function formulated as `+(zw, ϕw) = −|zw sinϕw|+λ1‖w‖1+
λ2‖w‖2 and `−(zw, ϕw) = |zw sinϕw|+ λ1‖w‖1 + λ2‖w‖2. Thus our lower bound demonstrates
that one-shot 1-bit compressed sensing cannot always achieve arbitrarily small excess error under
the Massart noise.
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Our lower bound for any proper function is stated as follows.
Theorem 1. For every bounded noise parameter 0 ≤ β < 1, there exists a distribution D̃β ∈ Pβ
(that is, a distribution over R2×{+1,−1}, where the marginal distribution on R2 is uniform over
the unit ball, and the labels {+1,−1} satisfies bounded noise condition with parameter β) such
that any proper loss minimization is not consistent on D̃β w.r.t. the class of halfspaces. That is,
there exists an ε ≥ 0 and a sample size m(ε) such that any proper loss minimization will output a
classifier of excess error larger than ε by a high probability over sample size at least m(ε).

2.1.3 Our techniques

In this section, we discuss the techniques used for achieving our results.

Iterative polynomial regression: Our algorithm follows a localization technique inspired by the
work of [22] and building on [14, 16]. Our algorithm is initialized by a classifier w0 with a 0/1
error that is at most an appropriate small constant more than the error of w∗ w.r.t. the observed
labels. This difference is known as the excess error. The algorithm then proceeds in rounds,
aiming to cut down the excess error by half in each round. By the properties of bounded noise
and the log-concave distribution, excess error of a classifier is a linear function of its angle to w∗.
Therefore, our algorithm aims to cut the angle by half at each round and eventually will output a
w that is close to w∗.

Consider wk−1 with angle ≤ αk to w∗. It can be shown that for a band of width γk−1 = Θ(αk)
around the separator wk−1, wk−1 makes most of its error in this band. Therefore, improving
the accuracy of wk−1 in the band significantly improves the accuracy of wk−1 overall. When
considering vectors that are at angle ≤ αk to wk−1, it can be shown that any vector wk that
achieves a small enough constant excess error with respect to the distribution in the band, indeed,
enjoys a much stronger guarantee of having excess error that is half of wk−1 overall. Therefore, if
such a vector wk can be found efficiently in the presence of bounded noise, a classifier of excess
error ε can be learned in O(log(1

ε
)) steps. In order to make the above method work we need to

achieve two goals: a) achieve a constant excess error while tolerating noise rate of 1
2
− β

2
and b)

the hypothesis output should be a halfspace.
On one hand, efficient proper learning methods, such as surrogate loss minimization in

the band, readily achieve goal (b). However, convex surrogate loss functions are only a good
approximation of the 0/1 loss when the noise is small enough. Since the noise in the band can be
as high as 1

2
− β

2
, this directly restricts the noise rate of bounded noise that can be tolerated with

such methods. Indeed, [15] demonstrated that when hinge-loss minimization is used in the band,
such a method only works if the probability of flipping the label is as small as ≈ 10−6, i.e., when
β is very close to 1. On the other hand, the polynomial regression approach of [129] learns linear
separators to an arbitrary excess error of ε with runtime poly(d, exp(poly(1

ε
)) when the marginal

distribution is log-concave, requiring no additional assumption on noise. Since the distribution in
the band is also log-concave, this method can achieve an arbitrarily small constant excess error in
the band thereby achieving goal (a). However, this algorithm outputs the sign of a polynomial p(·)
as a hypothesis, which is not necessarily a halfspace.

Instead, our algorithm takes a novel two-step approach to find wk for any amount of noise.
This is done by first finding a polynomial pk that has a small constant excess error in the band. To
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obtain such a polynomial, we choose poly(d, log( log(1/ε)
δ

)) labeled samples from the distribution in
the band and use the algorithm by [128] to find a polynomial with a small enough but, importantly,
a constant excess error, eKKMS, in the band. Note that at this point pk already satisfies goal (a)
but it does not satisfy goal (b) as it is not a halfspace. At a high level, since pk has a small excess
error with respect to w∗ in the band, using a structural property of bounded noise that connects the
excess error and disagreement of a classifier with respect to w∗, we can show that pk is also close
in classification to w∗. Therefore, it suffices to agnostically learn a halfspace wk to a constant error
for samples in the band that are labeled based on sign(p(·)). To achieve this, we use localized
hinge loss minimization in the band over a set of samples that are labeled based on predictions of
pk to find wk. Therefore, wk is close in classification to pk in the band, which is in turn close to
w∗ in the band. As a result, wk also has a small error in the band as desired 4.

1-bit compressed sensing: Notice that the techniques mentioned above involve minimizing a
convex loss function over a suitably chosen convex set, i.e., the band. When the target vector is
sparse, we show that it is enough to perform the minimization task over the set of separators (or
polynomials) of small L1 norm. Since we focus on a smaller candidate set than that of the
general case, we can hope to achieve tighter concentration bounds and thus obtain better sample
complexity.

Specifically, in the case of Massart noise we extend the polynomial regression algorithm of
[128] to the sparse case by adding L1 constraint for polynomials. The target polynomial can then
be found using L1 regression over the convex set of low degree polynomials with small L1 norm.
To prove the correctness of this algorithm, we show that when w∗ is sparse, there exists a low
degree polynomial of small L1 norm that approximates w∗. This is due to the fact that the target
polynomial can be represented by a linear combination of sparse Hermite polynomials. To derive
the sample complexity, we use a concentration result of [261] on the covering number of linear
functions of L1-constrained vectors that satisfy a certain margin property. We analyze such margin
property by extending the random thresholding argument of [128]. The sample complexity of our
method follows by combining the two techniques together.

For non-uniform 1-bit compressed in presence of adversarial noise, we build on the algorithm
of [14] for learning halfspaces. Similarly as in the previous procedure, this algorithm relies on
hinge loss minimization in the band for computing a halfspace of a constant error. However,
this algorithm does not use the polynomial regression as an intermediate step, rather, it directly
minimizes the hinge loss on a set of points drawn from the noisy distribution in the band. To
make this algorithm attribute-efficient, we constrain the hinge loss minimization step to the set of
vectors with L1 norm of at most

√
t. The challenge here is to derive the sample complexity under

L1 constraint. To do this, we use tools from Rademacher theory that exploit the L1 bound of the
linear separators. The improved sample complexity follows from stronger upper bounds on the
L∞ norm of xi’s and the value of hinge loss.

In the uniform case, we build on the techniques described above and show that for a larger
number of samples, the analysis would hold uniformly over all possible noisy measurements on
the samples obtained from a choice of sparse w∗ and any ν fraction of points corrupted. First,

4The recent work of [72] also combines the margin-based approach with polynomial regression. However, in [72]
polynomial regression is only used once in the end as opposed to the iterative application of polynomial regression
used in this work.
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we show that when the number of samples is m = Ω( t
ε4

polylog(d, 1
ε
, 1
δ
)), then every band that

could be considered by the algorithm has a sufficient number of samples. This can be proved
using covering number and uniform convergence bounds for a class of bands around halfspaces
whose L1 norm is bounded by

√
t. Next, we show that at round k, the empirical hinge loss is

concentrated around its expectation uniformly over all choices of w∗, wk−1, and a ν fraction of
the samples whose labels differ from the labels of w∗. We note that wk−1 is uniquely determined
by the labeled samples used by the algorithm in the previous rounds. Therefore, by arguing about
the number of possible labelings that can be produced by a sparse w∗ and adversarial noise only
on the samples that have been used by the algorithm, we can derive a concentration bound that
holds uniformly.

2.1.4 Our algorithms

In this section, we introduce efficient algorithms for recovering the true classifier in the presence
of bounded noise for any constant β. We first consider the non-sparse case and show how our
algorithm can return a classifier that is arbitrarily close to w∗. Building on this, we introduce an
attribute-efficient variation of this algorithm that is applicable to 1-bit compressed sensing and
recovers a t-sparse w∗ from few measurements.

Algorithm for the general case

Here, we describe an efficient algorithm for learning in the presence of bounded noise for any
constant β. At a high level, our algorithm proceeds in log(1

ε
) rounds and returns a linear separator

wk at round k whose disagreement with respect to w∗ is halved at every step. By induction,
consider wk−1 whose disagreement with w∗ is at most Pr[sign(w∗ · x) 6= sign(wk−1 · x)] ≤ αk

π
.

First, we draw samples from the distribution of points that are at distance at most γk−1 to wk−1. We
call this region the band at round k and indicate it by Swk−1,γk−1

. Next we apply the polynomial
regression algorithm of [128] to get a polynomial p(·) of error a constant eKKMS in the band. We
draw additional samples from the band, label them based on sign(p(·)), and minimize hinge loss
with respect to these labels to get wk. We then show that wk that is obtained using this procedure
has disagreement at most αk+1

π
with the target classifier. We can then use wk as the classifier for

the next iteration. The detailed procedure is presented in Algorithm 1. The main result of this
section is that Algorithm 1 efficiently learns halfspaces under log-concave distributions in the
presence of bounded noise for any constant parameter β that is independent of the dimension.
The small excess error implies arbitrarily small approximation rate to the optimal classifier w∗

under bounded noise model.
Theorem 2. Let the optimal Bayes classifier be a halfspace denoted by w∗. Assume that the
bounded noise condition holds for some constant β ∈ (0, 1]. For any ε > 0, δ > 0, there exist ab-
solute constants e0, C,C1, C2, c1, c2 such that Algorithm 1 with parameters rk = e0

C12k
, γk = Crk,

λ = 3C1

8CC2
, eKKMS = β(λ/(4c1 + 4c2 + 2))4, and τk = λ γk−1/(4c1 + 4c2 + 2) runs in polynomial

time, proceeds in s = O(log 1
ε
) rounds, where in round k it takes nk = poly(d, exp(k), log(1

δ
))

unlabeled samples and mk = poly(d, log(s/δ)) labels and with probability 1− δ returns a vector
w ∈ Rd such that ‖w − w∗‖2 ≤ ε.
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For the remainder of this section, we denote by D̃ the noisy distribution and by D the
distribution with labels corrected according to w∗. Furthermore, we refer to D̃wk−1,γk−1

and
Dwk−1

, γk−1, the noisy and clean distributions in the band, by D̃k and Dk, respectively.

Algorithm 1 LEARNING HALFSPACES UNDER ARBITRARILY BOUNDED NOISE

Input: An initial classifier w0, a sequence of values γk, τk and rk for k = 1, . . . , log(1/ε). An
error value eKKMS.
1. Let w0 be the initial classifier.

2. For k = 1, . . . , log(1/ε) = s.

(a) Take poly(d, log( s
δ
)) labeled samples from D̃k, the conditional distribution within the

band {x : |wk−1 · x| ≤ γk−1}, and place them in the set T . Run the polynomial
regression algorithm [128] over T to find a polynomial pk such that errD̃k(sign(pk)) ≤
errD̃k(hw∗) + eKKMS.

(b) Take d(d+log(k/δ)) unlabeled samples from D̃k and label them according to sign(pk(·)).
Call this set of labeled samples T ′.

(c) Find vk ∈ B(wk−1, rk−1) that approximately minimizes the empirical hinge loss over T ′

using threshold τk, i.e., Lτk(vk, T
′) ≤ minw∈B(wk−1,rk−1) Lτk(w, T

′) + λ
12

.

(d) Let wk = vk
‖vk‖2 .

Output: Return ws, which has excess error ε with probability 1− δ.

1-bit compressed sensing in presence of bounded noise

We consider the true classifier w∗ to be t-sparse and build upon our previous Algorithm 1 to
return a vector w such that ‖w − w∗‖2 ≤ ε, given a number of samples m ≥ poly(t, log(d)

ε
). Our

algorithm is in Algorithm 2. Our main result is the following:
Theorem 3 (Bounded Noise). Let the optimal Bayes classifier be a halfspace denoted by w∗

such that ‖w∗‖0 = t. Assume that the bounded noise condition holds for some constant β ∈
(0, 1]. For any ε > 0, δ > 0, there exist absolute constants e0, C,C1, C2, c1, c2 such that
Algorithm 2 with parameters rk = e0

C12k
, γk = Crk, λ = 3C1

8CC2
, eKKMS = β(λ/(4c1 + 4c2 + 2))4,

and τk = λ γk−1/(4c1 + 4c2 + 2) runs in polynomial time, proceeds in s = O(log 1
ε
) rounds,

where in round k it takes nk = poly(t log(d), exp(k), log(1
δ
)) unlabeled samples and mk =

poly(t, log(sd/δ), exp(k)) labels and with probability 1− δ returns a vector w ∈ Rd such that
‖w − w∗‖2 ≤ ε.

1-bit compressed sensing in presence of adversarial noise

In this section, we first consider 1-bit compressed sensing of linear separators under adversarial
noise. In this noise model, the adversary can choose any distribution D̃ over Rd × {+1,−1} such
that the marginal over Rd is unchanged but a ν fraction of the labels are flipped adversarially.
We introduce an attribute-efficient variant of the algorithm of [14] for noise-tolerant learning
that given O(t polylog(d, 1

ε
, 1
δ
)/ε3) samples from a given D̃ distribution, with probability 1− δ
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Algorithm 2 LEARNING SPARSE HALFSPACES UNDER ARBITRARILY BOUNDED NOISE

Input: An initial classifier w0, a sequence of values γk, τk and rk for k = 1, . . . , log(1/ε). An
error value eKKMS.
1. Let w0 be the initial classifier.

2. For k = 1, . . . , log(1/ε) = s.

(a) Take poly( t
γk
, log(ds

δ
)) labeled samples from D̃k, the conditional distribution within

the band {x : |wk−1 · x| ≤ γk−1}, and place them in the set T . Run the polynomial
regression algorithm [128] over T to find a polynomial pk such that errD̃k(sign(pk)) ≤
errD̃k(hw∗) + eKKMS and ‖p‖1 = O(( t

ε
)
poly(1/eKKMS)

).

(b) Take mk = Ω( t
τ2
k
polylog(d, 1

δ
, 1
ε
)) unlabeled samples from D̃k and label them according

to sign(pk(·)). Call this set of labeled samples T ′.

(c) Find vk ∈ B(wk−1, rk−1) such that ‖vk‖1 ≤
√
t and vk approximately mini-

mizes the empirical hinge loss over T ′ using threshold τk, i.e., Lτk(vk, T
′) ≤

minw∈B(wk−1,rk−1) and ||w||1≤
√
t Lτk(w, T

′) + λ
12

.

(d) Let wk = vk
‖vk‖2 .

Output: Return ws, which has excess error ε with probability 1− δ.

returns a vector w, such that ‖w − w∗‖2 ≤ O(ν) + ε. To the best of our knowledge this is the
first result in non-uniform 1-bit compressed sensing under adversarial noise. Furthermore, the
approximation factor of this result almost matches the information theoretic bound.
Theorem 4 (Adversarial Noise – Non-uniform). Assume that the noise is adversarial and let
the optimal linear classifier be a halfspace denoted by w∗ such that ‖w∗‖0 = t. Let ν > 0 be
the error of w∗. For any ε > 0, δ > 0, there exist absolute constants e0, C,C1, C2, c1, c2 such
that Algorithm 3 with parameters rk = e0

C12k
, γk = Crk, λ = 3C1

8CC2
, and τk = λ γk−1/(4c1 +

4c2 + 2) runs in polynomial time, proceeds in s = log 1
ε

rounds, where in round k it takes
nk = poly(t, log(d), exp(k), log(1

δ
)) unlabeled samples and mk = O(t polylog(sd/δ)22k) labels

and with probability 1 − δ returns a vector w ∈ Rd such that ‖w − w∗‖2 ≤ O(ν) + ε. That
is the total number of unlabeled samples is m = O( t

ε3
polylog(d, 1

ε
, 1
δ
)) and at every round

mk ≤ O( t
ε2

polylog(d, 1
ε
, 1
δ
)) labels are requested.

We also consider the stronger requirements of uniform 1-bit compressed sensing. In this setting,
we show that given O(t polylog(d, 1

ε
, 1
δ
)/ε4) samples xi, with probability 1− δ, uniformly over

all possible noisy measurements on xi’s obtained from a choice of sparse w∗ and any ν fraction
of measurements corrupted, the algorithm returns a vector w such that ‖w − w∗‖2 ≤ O(ν) + ε,
when ν is small with respect to ε. When ν is small, this result considerably improves the
best known approximation results of [185] from ‖w − w∗‖2 ≤ (11ν

√
log e

ν
+ ε
√

log e
ε
)1/2 to

‖w − w∗‖2 ≤ O(ν) + ε. Furthermore, we improve the dependence of the sample complexity on ε
from 1

ε6
in the case of the results of [185] to 1

ε4
5. Our result for this setting is as follows.

5The sample complexity of the method of [185] is expressed as O(t polylog(d, 1
ε ,

1
δ )/ε

6) for achieving error
(
11ν
√
log e

ν + ε
√
log e

ε

)1/2
. When ν is small compared to ε, this in fact compares to a method with sample

complexity 1
ε12 for achieving excess error Õ(ε) which is the regime we work in.
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Algorithm 3 NON-UNIFORM 1-BIT COMPRESSED SENSING UNDER ADVERSARIAL NOISE

Input: An initial classifier w0, a sequence of values γk, τk and rk for k = 1, . . . , log(1/ε).
1. Let w0 be the initial classifier.

2. For k = 1, . . . , log(1/ε) = s.

(a) Take mk = Ω( t
ε2

polylog(d, 1
δ
, 1
ε
)) samples from D̃k and request the labels. Call this set

T ′.

(b) Find vk ∈ B(wk−1, rk−1) such that ‖vk‖1 ≤
√
t and vk approximately mini-

mizes the empirical hinge loss over T ′ using threshold τk, that is, Lτk(vk, T
′) ≤

minw∈B(wk−1,rk−1) and ||w||1≤
√
t Lτk(w, T

′) + λ
12

.

(c) Let wk = vk
‖vk‖2 .

Output: Return ws, which has excess error O(ν) + ε with probability 1− δ.

Theorem 5 (Adversarial Noise – uniform). Let x1, x2, . . . xm ∈ Rd be drawn i.i.d. from an
isotropic log-concave distribution. With probability 1 − δ the following holds. For all signals
w∗ such that ‖w∗‖0 ≤ t and measurements y1, y2, . . . ym generated by Nadversarial(sign(w∗ · xi)),
where Nadversarial is the adversarial noise process that corrupts a ν fraction of the measurements,
and for any ε such that ν ∈ O(ε/ log(d/ε)2), there exist absolute constants e0, C,C1, C2, c1, c2

such that Algorithm 4 with parameters rk = e0
C12k

, γk = Crk, λ = 3C1

8CC2
, and τk = λ γk−1/(4c1 +

4c2 + 2) runs in time poly(d, 1
ε
) and returns a vector w ∈ Rd such that ‖w − w∗‖2 ≤ O(ν) + ε

if m = Ω( t
ε4

polylog(d, 1
ε
, 1
δ
). Furthermore, the number of labeled samples at every round k is

mk ≤ O( t
ε3

polylog(d, 1
ε
, 1
δ
).

Algorithm 4 UNIFORM 1-BIT COMPRESSED SENSING UNDER ADVERSARIAL NOISE

Input: An initial classifier w0, a sequence of values γk, τk and rk for k = 1, . . . , log(1/ε).
1. Let w0 be the initial classifier.

2. For k = 1, . . . , log(1/ε) = s.

3. Take m = O(tpolylog(d, 1
ε
, 1
δ
)/ε4) unlabeled samples from D̃, in set S.

(a) Take mk = O(tpolylog(d, 1
ε
, 1
δ
)/ε2) of the samples in S ∩ Sk request the labels. Call this

set of labeled samples T ′.

(b) Find vk ∈ B(wk−1, rk−1) such that ‖vk‖1 ≤
√
t and vk approximately mini-

mizes the empirical hinge loss over T ′ using threshold τk, i.e., Lτk(vk, T
′) ≤

minw∈B(wk−1,rk−1) and ||w||1≤
√
t Lτk(w, T

′) + λ
12

.

(c) Let wk = vk
‖vk‖2 .

Output: Return ws, which has excess error O(ν) + ε with probability 1− δ.

We build on the algorithm of [14] for learning halfspaces under adversarial noise. Much like
our procedure for bounded noise, this algorithm also relies on hinge loss minimization in the
band for computing a halfspace of a constant error. However, this algorithm does not make use of
polynomial regression as an intermediate step, rather, it directly minimizes the hinge loss on a
labeled set of points drawn from the noisy distribution in the band, D̃k.
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To make this algorithm attribute-efficient, we constrain the hinge loss minimization step to the
set of vectors with L1 norm of at most

√
t. See Algorithm 4. Since w∗ is t-sparse, ‖w∗‖1 ≤

√
t

and therefore the comparison between the outcome of every step and w∗ remains valid. This
shows that such a change preserves the correctness of the algorithm. We prove the correctness of
this algorithm and its sample complexity in Section 2.1.5.

2.1.5 Proofs of our main results
Preliminaries

We use X to denote the domain of the samples and Y to denote the label set. In this work X is Rd

and Y is the set {+1,−1}. We define the sign function as sign(x) = 1 if x ≥ 0 and −1 otherwise.
The problem of interest in this section is approximate recovery: Given ε > 0 and m i.i.d. samples
x1, x2, . . . xm drawn from a distribution over Rd, and labeled as yi = N (sign(w∗ · xi)), design
a polynomial time algorithm to recover a vector w such that ‖w − w∗‖2 ≤ ε. Furthermore, if
‖w∗‖0 = t, we require m to grow as poly(t, log(d), 1

ε
). Here N is a noise process that corrupts

the measurements/labels. We study two asymmetric noise models in this work. The first is Nβ,
the bounded (a.k.a Massart) noise model. A joint distribution over (X, Y ) satisfies the bounded
noise condition with parameter β > 0, if

|Pr(Y = +1|x)− Pr(Y = −1|x)| ≥ β, ∀x ∈ X.

In other words, bounded noise is equivalent to the setting where an adversary constructs the
distribution by flipping the label of each point x from sign(w∗ · x) to −sign(w∗ · x) with a
probability η(x) ≤ 1−β

2
. As is customary, we will use Bayes optimal classifier to refer to w∗,

the vector generating the uncorrupted measurements. The other noise model that we study
is Nadversarial, the adversarial noise model. Here the adversary can corrupt the labels in any
fashion. In this model, the goal of approximate recovery will be to get a vector w such that
‖w − w∗‖2 ≤ O(ν) + ε, where ν is the fraction of examples corrupted by the adversary.

For any halfspace w, we denote the resulting classifier hw = sign(w · x). For any classifier
h : X 7→ {+1,−1}, we define the error w.r.t. distribution P as errP(h) = Pr(x,y)∼P [h(x) 6= y].
We define the excess error of h as errP(h)− errP(hw∗). We use OPT to denote the error of the
Bayes classifier, i.e., errP(hw∗). When the distribution is clear from the context, we use err(hw∗)
instead of errP(hw∗). The next lemma demonstrates an important relation between the excess
error of a classifier h and its “closeness” to w∗ in terms of classification (or its disagreement).
Lemma 1. Given a classifier h : X 7→ {+1,−1} and distribution P satisfying bounded noise
condition with parameter β, let w∗ be the Bayes optimal classifier. Then we have

β Pr
(x,y)∼P

[h(x) 6= hw∗(x)] ≤ errP(h)− errP(hw∗) ≤ Pr
(x,y)∼P

[h(x) 6= hw∗(x)]. (2.1)

Proof. Here, we prove that the following equation holds for distribution P with Massart noise
parameter β > 0.

β Pr
(x,y)∼P

[h(x) 6= hw∗(x)] ≤ errP(h)− errP(hw∗) ≤ Pr
(x,y)∼P

[h(x) 6= hw∗(x)].
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The right hand side inequality holds by the following.

errP (h) ≤ Pr
(x,y)∼P

[h(x) 6= hw∗(x)] + Pr
(x,y)∼P

[hw∗(x) 6= y] = Pr
(x,y)∼P

[h(x) 6= hw∗(x)] + errP(hw∗).

Let A = {x : h(x) 6= hw∗(x)} be the region where h and hw∗ disagree in their predictions. Note
that Pr(A) = Pr(x,y)∼P [h(x) 6= hw∗(x)]. Then,

errP(h)− errP(hw∗) = Pr(A)[errP(h|A)− errP(hw∗|A)] + Pr(Ā)[errP(h|Ā)− errP(hw∗ |Ā)].

Classifiers h and hw∗ agree over the set Ā, i.e., either both make mistakes or neither does,
simultaneously. Hence the second term is zero. On the other hand, the two classifiers disagree over
A, so exactly one of them is making an incorrect prediction. Hence, errP(h|A)+errP(hw∗|A) = 1.
We have

errP(h)− errP(hw∗) = Pr(A)[1− 2errP(hw∗|A)].

Since the labels are each flipped with probability at most 1−β
2

, we have that errP(hw∗|A) ≤ 1−β
2

.
Re-arranging the above inequality proves the claim.

We frequently examine the region within a specified margin of a given halfspace. For
distribution P , halfspace w, and margin γ, we denote by Pw,γ the conditional distribution over the
set Sw,γ = {x : |w · x| ≤ γ}. We define the τ -hinge loss of a halfspace w over an example-label

pair (x, y) as `τ (w, x, y) = max
(

0, 1− y(w·x)
τ

)
. When τ is clear from the context, we simply

refer to the above quantity as the hinge loss. For a given set T of examples, we use Lτ (w, T )
to denote the empirical hinge loss over the set, i.e., Lτ (w, T ) = 1

|T |
∑

(x,y)∈T `τ (w, x, y). For a
classifier w ∈ Rd and a value r, we use B(w, r) to denote the set {v ∈ Rd : ‖w − v‖2 ≤ r}.
Moreover, for two unit vectors u and v, we use θ(u, v) = arccos(u ·v) to denote the angle between
the two vectors.

In this work, we focus on distributions whose marginal over X is an isotropic log-concave
distribution. A distribution over d-dimensional vectors x = {x1, x2, . . . , xd} with density function
f(x) is log-concave if log f(x) is concave. In addition, the distribution is isotropic if it is centered
at the origin, and its covariance matrix is the identity, i.e., E[xi] = 0, E[xi

2] = 1, ∀i and
E[xixj] = 0, ∀i 6= j. Below we state useful properties of such distributions. See [16, 20, 160]
for a proof of Lemma 2.
Lemma 2. Let P be an isotropic log-concave distribution in Rd. Then there exist absolute
constants C1, C2 and C3 such that
1. All marginals of P are isotropic log-concave.
2. For any two unit vectors u and v in Rd, C1θ(v, u) ≤ Prx∼P [sign(u · x) 6= sign(v · x)].
3. For any unit vectors w and any γ, C3γ ≤ Prx∼P [|w · x| ≤ γ] ≤ C2γ.
4. For any constant C4, there exists a constant C5 such that for two unit vectors u and v in Rd

with ‖u− v‖2 ≤ r and θ(u, v) ≤ π/2, we have that

Pr
x∼P

[sign(u · x) 6= sign(v · x) and |v · x| ≥ C5r] ≤ C4r.

5. For any constant C6, there exists another constant C7, such that for any unit vectors v and u in
Rd such that ‖u− v‖2 ≤ r and any γ ≤ C6, Ex∼Pu,γ [(v · x)2] ≤ C7(r2 + γ2).
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Proofs of Theorem 2

We use the following upper bound on the density of isotropic log-concave distributions.
Lemma 3 ([160]). Let P be a 1-dimensional isotropic log-concave distribution over R. Then
Prx∼P [x ≥ α] ≤ exp(−α + 1).
Lemma 4. There exists an absolute constant c1, such that E(x,y)∼Dk [`τk(w

∗, x, y)] ≤ c1
τk
γk−1

.

Proof. Notice that w∗ never makes a mistake on distribution Dk, so the hinge loss of w∗ on Dk is
entirely attributed to the points of Dk that are within distance τk from w∗. We have,

E(x,y)∼Dk [`τk(w
∗, x, y)] ≤ Pr

(x,y)∼Dk
[|w∗ · x| < τk]

=
Pr(x,y)∼D[|w∗ · x| < τk]

Pr(x,y)∼D[|wk−1 · x| ≤ γk−1]

≤ C2τk
C3γk−1

(By Part 3 of Lemma 2)

≤ c1
τk
γk−1

.

The next lemma uses VC dimension tools to show that for linear classifiers that are considered
in Step 2c (the ones with angle αk to wk), the empirical and expected hinge loss are close. Let D′k
denote the distribution Dk where the labels are predicted based on sign(pk(·)). Note that T ′ is
drawn from distribution D′k.
Lemma 5. There is mk = O(d(d + log(k/d))) such that for a randomly drawn set T ′ of mk

labeled samples from D′k, with probability 1− δ
4(k+k2)

, for any w ∈ B(wk−1, rk−1),

∣∣E(x,y)∼D′k [`τk(w, x, y)]− `τk(w, T ′)
∣∣ ≤ λ

12
.

Proof. The pseudo-dimension of the set of hinge loss values, i.e., {`τk(w, ·) : w ∈ <d} is known
to be at most d. Next, we prove that for any halfspace w ∈ B(wk−1, rk−1) and for any point
(x, y) ∼ D′k, `τk(w, x, y) ∈ O(

√
d). We have,

`τk(w, x, y) ≤ 1 +
|w · x|
τk

≤ 1 +
|wk−1 · x|+ ‖w − wk−1‖2‖x‖2

τk

≤ 1 +
γk−1 + rk−1‖x‖2

τk
≤ c(1 + ‖x‖2).

By Lemma 3, for any (x, y) ∈ T ′, Pr(x,y)∼D′k [‖x‖2 > α] ≤ c exp(−α/
√
d). Using union bound

and setting α = Θ(
√
d ln(|T ′|k2/δ)) we have that with probability 1− δ

8(k+k2)
, maxx∈T ′ ‖x‖2 ∈
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O(
√
d ln(|T ′|k2/δ)). Using standard pseudo-dimension rule we have that for |T ′| > Õ(d(d +

log k
δ
)), with probability 1− δ

4(k+k2)
,

∣∣E(x,y)∼D′k [`(w, x, y)]− `(w, T ′)
∣∣ ≤ λ

12
.

Lemma 6. There exists an absolute constant c2 such that

|E(x,y)∼D′k [`τk(w
∗, x, y)]− E(x,y)∼Dk [`τk(w

∗, x, y)]| ≤ c2
γk−1

τk

√
Pr

(x,y)∼Dk
[sign(pk(x)) 6= hw∗(x)].

Proof. Let N indicate the set of points (x, y) such that pk and hw∗ disagree. We have,

∣∣E(x,y)∼D′k [`τk(w
∗, x, y)]− E(x,y)∼Dk [`τk(w

∗, x, y)]
∣∣

≤
∣∣E(x,y)∼D′k [1x∈N (`τk(w

∗, x, y)− `τk(w∗, x, sign(w∗ · x)))]
∣∣

≤ 2 E(x,y)∼D′k

[
1x∈N

( |w∗ · x|
τk

)]

≤ 2

τk

√
Pr

(x,y)∼D′k
[x ∈ N ]×

√
E(x,y)∼D′k [(w

∗ · x)2] (By Cauchy Schwarz)

≤ 2

τk

√
Pr

(x,y)∼Dk
[sign(pk(x)) 6= hw∗(x)]×

√
E(x,y)∼Dk [(w

∗ · x)2] (By definition of N )

≤ 2

τk

√
Pr

(x,y)∼Dk
[sign(pk(x)) 6= hw∗(x)]×

√
C7(r2

k−1 + γ2
k−1) (By Lemma 5)

≤ c2
γk−1

τk

√
Pr

(x,y)∼Dk
[sign(pk(x)) 6= hw∗(x)].

Lemma 7. Let c1 and c2 be the absolute constants from Lemmas 6 and 4, respectively. Then with
probability 1− δ

2(k+k2)
,

errD′k(hwk) ≤ 2c1
τk
γk−1

+ 2c2
γk−1

τk

√
Pr

(x,y)∼Dk
[sign(pk(x)) 6= hw∗(x)] +

λ

2
.

Proof. First, we note that the true 0/1 error of wk on any distribution is at most its true hinge
loss on that distribution. So, it suffices to bound the hinge loss of wk on D′k. Moreover, vk
approximately minimizes the hinge loss on distribution D′k, so in particular, it performs better
than w∗ on D′k. On the other hand, Lemma 6 shows that the difference between hinge loss of w∗

on D′k and Dk is small. So, we complete the proof by using Lemma 4 and bounding the hinge of

18



w∗ on Dk. The following equations show the process of derivation of this bound as we explained.

errD′k(hwk) ≤ E(x,y)∼D′k [`τk(wk, x, y)] (Since hinge loss larger than 0/1 loss)

≤ 2E(x,y)∼D′k [`τk(vk, x, y)] (Since ‖vk‖2 > 0.5)

≤ 2Lτk(vk, T
′) + 2(

λ

12
) (By Lemma 5)

≤ 2Lτk(w
∗, T ′) + 4(

λ

12
) (vk was an approximate hinge loss minimizer)

≤ 2E(x,y)∼D′k [`τk(w
∗, x, y)] + 6(

λ

12
) (By Lemma 5)

≤ 2E(x,y)∼Dk [`τk(w
∗, x, y)] + 2c2

γk−1

τk

√
Pr

(x,y)∼Dk
[sign(pk(x)) 6= hw∗(x)] +

λ

2
(By Lemma 6)

≤ 2c1
τk
γk−1

+ 2c2
γk−1

τk

√
Pr

(x,y)∼Dk
[sign(pk(x)) 6= hw∗(x)] +

λ

2
. (By Lemma 4)

We are now ready to prove our main theorem.
Recall that we use the following parameters in Algorithm 1: rk = e0

C12k
, γk = Crk, where

we defer the choice of C to later in the proof, λ = 3C1

8CC2
, eKKMS = β(λ/(4c1 + 4c2 + 2))4, and

τk = λγk−1/(4c1 + 4c2 + 2). Note, that by Equation (2.1), for any classifier h the excess error of
h is upper bounded by the probability that h disagrees with hw∗ , i.e., errD(h). Here, we show that
Algorithm 1 returns ws such that errD(hws) = Pr(x,y)∼D[hws(x) 6= hw∗(x)] ≤ ε, and in turn, the
excess error of hws is also at most ε.

We use induction to show that at the kth step of the algorithm, θ(wk, w∗) ≤ e0
C12k

. Since Part 4
of Lemma 2 and other Lemmas that build on it require θ(w,w∗) ≤ π

2
for any considered halfspace,

we need to choose e0 such that θ(w0, w
∗) ≤ π

2
. Using Part 2 of Lemma 2, we have that e0 ≤ π

2C1
.

Assume by the induction hypothesis that at round k−1, errD(hwk−1
) ≤ e0/2

k−1. We will show
that wk, which is chosen by the algorithm at round k, also has the property that errD(hwk) ≤ e0/2

k.
Let Sk = {x : |wk−1 · x| ≤ γk−1} indicate the band at round k. We divide the error of wk to two
parts, error outside the band and error inside the band. That is,

errD(hwk) = Pr
(x,y)∼D

[x /∈ Sk and hwk(x) 6= hw∗(x)] + Pr
(x,y)∼D

[x ∈ Sk and hwk(x) 6= hw∗(x)].

(2.2)
By Part 2 of Lemma 2, θ(wk−1, w

∗) ≤ rk−1. So, for the first part of the above inequality, which is
the error of wk outside the band, we have that

Pr
(x,y)∼D

[x /∈ Sk and hwk(x) 6= hw∗(x)]

≤ Pr
(x,y)∼D

[x /∈ Sk and hwk(x) 6= hwk−1
(x)] + Pr

(x,y)∼D
[x /∈ Sk and hwk−1

(x) 6= hw∗(x)]

≤ 2
C1rk−1

16
≤ e0

4× 2k
, (2.3)
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where the penultimate inequality follows from the fact that by the choice of wk ∈ B(wk−1, rk−1)
and the induction hypothesis, respectively, θ(wk−1, wk) < rk−1 and θ(wk−1, w

∗) < rk−1; By
choosing large enough constant C in γk−1 = Crk−1, using Part 4 of Lemma 2, the probability of
disagreement outside of the band is C1rk−1/16.

For the second part of Equation (2.2) we have that

Pr
(x,y)∼D

[x ∈ Sk and hwk(x) 6= hw∗(x)] = errDk(hwk) Pr
(x,y)∼D

[x ∈ Sk], (2.4)

and
errDk(hwk) Pr

(x,y)∼D
[x ∈ Sk] ≤ errDk(hwk)C2γk−1 ≤ errDk(hwk)

2C2Ce0

C12k
, (2.5)

where the penultimate inequality is based on Part 3 of Lemma 2. Therefore, by replacing
Equations (2.3) and 2.5 with Equation (2.2), we see that in order to have errD(hwk) <

e0
2k

, it suffices
to show that errDk(hwk) ≤ 3C1

8CC2
= λ. The rest of the analysis is contributed to proving this bound.

We have errDk(hwk) = Pr(x,y)∼Dk [hwk(x) 6= hw∗(x)] ≤ Pr(x,y)∼Dk [sign(pk(x)) 6= hw∗(x)] +
Pr(x,y)∼Dk [hwk(x) 6= sign(pk(x))]. For the first part, using the assumption in Equation (2.1), we
have that

Pr
(x,y)∼Dk

[sign(pk(x)) 6= hw∗(x)] ≤ 1

β

(
errD̃k(sign(pk))− errD̃k(hw∗)

)
≤ eKKMS

β
. (2.6)

For the second part, using Lemma 7, we have

Pr
(x,y)∼Dk

[hwk(x) 6= sign(pk(x))] = errD′k(hwk) ≤ 2c1
τk
γk−1

+ 2c2
γk−1

τk

√
eKKMS

β
+
λ

2
.

Therefore, by the choice of parameter τk = λγk−1/(4c1 + 4c2 + 2) = γk−1 (eKKMS/β)1/4, we have

errDk(hwk) ≤
eKKMS

β
+ 2c1

τk
γk−1

+ 2c2
γk−1

τk

√
eKKMS

β
+
λ

2

≤ eKKMS

β
+ 2c1

(
eKKMS

β

)1/4

+ 2c2

(
eKKMS

β

)1/4

+
λ

2

≤ (2c1 + 2c2 + 1)

(
eKKMS

β

)1/4

+
λ

2
≤ λ

2
+
λ

2
≤ λ.

Sample complexity and runtime: To get error of eKKMS with probability 1− s
δ

at every round,
we need a labeled set of size poly(d, log s

δ
). The sample set T ′ is labeled based on pk, so it does

not contribute to the label complexity. So, at each round, we need mk = poly(d, log( log(1/ε)
δ

))

labels. At each round, to get poly(d, log( log(1/ε)
δ

)) labels for the polynomial regression algorithm
in the band of Sk we need O(2kmk) samples from D̃. To get d(d+ log(k/δ)) unlabeled samples
in the band for Step 2b, we need O(2k(d(d + log(k/δ))) = poly(d, exp(k), log(1

δ
)) unlabeled

samples. So, overall, we need nk = poly(d, exp(k), log(1
δ
)) unlabeled samples at each round.

The running time is dominated by the polynomial regression algorithm which takes time dexp( 1
β4 ).

However, since β is a constant, this is a polynomial in d.
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Proofs of Theorem 3

In this section, we prove Theorem 3 for efficiently learning halfspaces under isotropic log-concave
distributions in presence of bounded noise with parameter β that is independent of the dimension.
We will assume that the target vector w∗ is t-sparse.

We will first argue the proof of correctness and then the sample complexity. To argue
correctness, we need to show that the new polynomial regression based algorithm in Step 2a of
Algorithm 2 will indeed output a polynomial of excess error at most eKKMS. Secondly, we need to
argue that the hinge loss minimization w.r.t. the polynomial p(·) will output a vector vk that is
close to p(·). The second part is easy to see, since the vector w∗ itself has L1 norm at most

√
t.

By restricting to vectors of small L1 norm we still have to find a vk with L1 norm at most
√
t that

does well in the class (in comparison to w∗) in learning labels of p(·). For the first part, we prove
the following extension of [128].
Theorem 6. Let (X, Y ) be drawn from a distribution over Rd × {+1,−1} with isotropic log-
concave marginal, constrained to the set {x : |w · x| ≤ γ} for some w and γ. Let OPT be
the error of the best t-sparse halfspace, i.e., OPT = minw∈Rd,‖w‖0≤t Pr(x,y)∼D[sign(w · x) 6=
y]. Then, for every ε > 0, there is an algorithm that runs in time dpoly( 1

ε
) and uses m =

Oε

(
( t
γ
)poly( 1

ε
)polylog(d)

)
samples from the distribution and outputs a polynomial p(·) such that

err(p) ≤ OPT + ε. Here, err(p) = Pr(x,y)[sign(p(x)) 6= y]. Furthermore, the polynomial p(·)
satisfies ‖p‖1 ≤ ( t

γ
)poly( 1

ε
).

Note that the claimed sample complexity of our approach is an immediate consequence of
the above theorem, since we require error of eKKMS in the band and the subsequent hinge loss
minimization step of our algorithm only uses examples labeled by p(·) and, therefore, does not
affect the overall sample complexity of our algorithm. In order to prove the theorem, we need the
following result about approximation of sign of halfspaces by polynomials.
Theorem 7. Let w∗ be a halfspace in Rd. Then, for every log-concave distribution over Rd, there
exists a degree 1

ε2
polynomial p(·) such that E[(p(x)− sign(w∗ · x))2] ≤ ε. Here the expectation

is over a random x drawn from the distribution.

Proof of Theorem 6. First, consider an isotropic log-concave distribution. Notice that if w∗ is
t-sparse, then the polynomial p(·) referred to in Theorem 7 will have support size at most t

1
ε2 .

This is due to the fact that the isotropicity and log-concavity of the distribution is preserved
when considering the projection of the instance space on the relevant t variables. Since there are
only t1/ε2 monomials in the lower dimension of degree at most 1

ε2
, the 1

ε2
-degree polynomial p(·)

that satisfies the theorem in this lower dimension also satisfies the requirement in the original
space and is t1/ε2-sparse. The analysis of [128] also shows that p(·) is

∑deg
i=0 ciH̄i(·), the linear

combination of up to degree deg = 1
ε2

normalized Hermite polynomials, where
∑deg

i=0 c
2
i < 1 and

H̄i(x) = Hi(x)/
√

2ii! refers to the normalized Hermite polynomial with degree i. By a naïve
bound of

√
i!2i on the coefficients of H̄i(x) and the fact that i < 1

ε2
, we know that the L1 norm of

each of the Hermite polynomials is bounded by Oε(t
1/ε2), where Oε considers ε to be a constant.

Moreover, since
∑deg

i=0 ci ≤
√
deg

∑deg
i=0 c

2
i <
√
deg, the L1 norm of p is also bounded by tO( 1

ε2
).

This holds when the distribution is isotropic log-concave. However, the distributions we
consider are conditionals of isotropic log-concave distribution over {|w · x| ≤ γk}. These
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distributions are log-concave but not isotropic. To put them in the isotropic position, we transform
each instance x to x′ by a factorO( 1

γ
) along the direction of w. Then applying the above procedure

on the transformed distribution we get a polynomial p′(x′) =
∑deg

i=0 p
′
i

∏d
j=1(x′j)

aj . Since x′i ≤
O( 1

γ
)xi for every i, this polynomial can be formed in terms of x as p(x) =

∑deg
i=0 pi

∏d
j=1(xj)

aj ,
where pi ≤ O(( 1

γ
)i)p′i. Therefore, for such distributions, the coefficients of the polynomial blow

up by a factor of O(( 1
γ
)
poly(1/ε)

) and as a result ‖p‖1 ≤ O(( t
γ
)poly(1/ε)). Thus, by enforcing that

the polynomial p(·) belongs to S = {q : ‖q‖1 = O(( t
γ
)poly(1/ε)) and degree(q) ≤ poly(1/ε)},

we only need to argue about polynomials in the set S as opposed to general poly(1
ε
)-degree

polynomials. Hence, as in [128], we run the L1 regression algorithm, but we also ensure that
the L1 norm of the induced polynomial is bounded by ‖q‖1 = O(( t

γ
)poly(1/ε)). This can be

done via constrained L1 norm minimization. The analysis of this algorithm is similar as that
of [128]. For the self-completeness of the paper, we show a complete proof here. Denote by
Z = (x1, y1), · · · , (xm, ym) the samples. Firstly, we have

1

m

m∑

j=1

I(q(xj)yj < γ) =
1

m

m∑

j=1

I(sign(q(xj)) 6= yj) +
1

m

m∑

j=1

I(sign(q) = yj & q(xj)yj < γ)

≤ 1

2m

m∑

j=1

|yj − p(xj)|+ γ

2
,

(2.7)

where q(x) = p(x) − T . The above inequality holds because of a standard argument on the
randomized threshold T : Note that sign(q(xj)) 6= yj iff the threshold T lies between p(xj) and yj;
Similarly, sign(q(xj)) = yj & q(xj)yj < γ iff the threshold T lies between p(xj) and p(xj)−yjγ.
So if we choose T uniformly at random on [−1, 1], Equation (2.7) holds in expectation. Since we
select T to minimize the LHS of Equation (2.7), the inequality holds with certainty. Then by the
L1 polynomial regression algorithm which fits the labels by polynomial in the sense of L1 norm,
we have

1

m

m∑

j=1

|yj − p(xj)| ≤ 1

m

m∑

j=1

|yj − p∗(xj)| ≤ 1

m

m∑

j=1

|yj − c(xj)|+ |c(xj)− p∗(xj)|,

where c is the optimal classifier and p∗ is a polynomial satisfying Theorem 7. Thus

EZ

[
1

m

m∑

j=1

I(q(xj)yj < γ)

]
≤ OPT +

ε

2
+
γ

2
.

Let S = {q : degree(q) ≤ 1
ε2
, ‖q‖1 ≤ ( t

γ
)O( 1

ε2
)} and let L̂(q) = 1

m

∑
(xj ,yj) I(q(xj)yj < γ)

be the empirical 0/1 loss of the polynomial q with margin γ. In order to complete the proof,
we need to argue that if m is large enough then for all q ∈ S, we have, with high probability,
|L̂(q)− err(q)| ≤ ε/4. To see this, we need the following lemma of [261].
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Lemma 8 ([261]). Let the instance space be bounded as ‖x‖∞ ≤ X∞, and consider the class of
hyperplane w such that ‖w‖1 ≤ W1. Denote by err(w) the expected 0/1 error of w. Then there is
a constant C such that with probability 1− δ, for all γ, we have

err(w) ≤ 1

m

m∑

j=1

I(yj(w · xj) < γ) +

√
C

m

(
X2
∞W

2
1 (log d+ 1)

γ2
logm+ log

1

δ

)
.

Setting γ as ε/2, W1 as
(
t
γ

)O( 1
ε2

)

, and X∞ as O
(

(log(md))O( 1
ε2

)
)

(see Lemma 10), viewing

the polynomial q as a dO(1/ε2)-dimensional vector, Lemma 8 gives the desired sample complexity
m = Oε

(
( t
γ
)poly( 1

ε
)polylog(d)

)
.

In the above, we explicitly suppressed the dependence on ε, because for the purpose of
our algorithm, we use a constant value eKKMS for the desired value of the error in Theorem 6.
Moreover, the distribution at every round is restricted to the set {x : |wk−1 · x| ≤ γk−1}. Since
γk ≥ ε, for all k, we use the value of γ = ε in Theorem 6 and achieve the results of Theorem 3 as
a consequence.

Proofs of Theorem 4

In this section, we first consider the case of non-uniform 1-bit compressed sensing under adver-
sarial noise and provide a proof of Theorem 4. Then, we discuss an extension of our analysis
that holds for uniform 1-bit compressed sensing under adversarial noise and provide a proof of
Theorem 5.

We start with the following result of [14].
Theorem 8 ([14]). Let (x, y) be drawn from a distribution over Rd × {+1,−1} such that the
marginal over x is isotropic log-concave. Let OPT be the 0/1 error of the best halfspace, i.e.,
OPT = minw:‖w‖2=1 Pr[sign(w · x) 6= y] and let w∗ be the halfspace that achieves OPT . Then,
there exists an algorithm that, for every ε > 0, runs in time polynomial in d and 1

ε
and outputs a

halfspace w such that ‖w − w∗‖2 ≤ O(OPT ) + ε.
We extend the algorithm of [14] for 1-bit compressed sensing. The main difference between

our algorithm and the algorithm of [14] is in the hinge-loss minimization step and the sample
complexity. In this case, when minimizing hinge loss at each step, we restrict the search to vectors
of L1 norm bounded by

√
t. Note that this does not affect the correctness of the algorithm, as w∗

itself is t-sparse and ‖w∗‖1 ≤
√
t. The crux of the argument is in showing that when ‖w‖1 ≤

√
t,

the empirical hinge loss of w is nicely concentrated around its expectation. This is proved in
Lemma 12. Using this new concentration results, the proof of Theorem 4 follows immediately by
the analysis of [14]. For completeness, here we provide a complete proof of Theorem 4.

To achieve desirable concentration result, we use the tools from VC and Rademacher com-
plexity theory to obtain a sample complexity that is polynomial in t and only logarithmic in the
ambient dimension d. The following lemma helps us in achieving such concentration result.
Lemma 9 ([207]). LetF be the class of linear predictors with the L1 norm of the weights bounded
by W1. Assume that the infinity norm of all instances is bounded by X∞. Then for the ρ-Lipschitz
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loss ` such that maxw·x∈[−W1X∞,W1X∞] |`(w, x, y)| ≤ U and the choice of an i.i.d. sample T of
size m,

∀w, s.t., ‖w‖1 ≤W1, Pr

[
|E`(w, x, y)− `(w, T )| ≥ 2ρW1X∞

√
2 log(2d)

m
+ s

]
≤ 2 exp

(
−ms

2

2U2

)
.

In preparation to use Lemma 9, we bound the infinity norm of the instances used by our
algorithm in the next lemma.
Lemma 10. Let S be the set of all (unlabeled) samples drawn from D. With probability 1− δ for
all x ∈ S, ‖x‖∞ ≤ O(log |S|d

δ
).

Proof. Since D is an isotropic log-concave distribution, the marginal distribution on any coordi-
nate is a one-dimensional isotropic log-concave distribution. Therefore, by concentration results
of [160], we have

Pr
x∼D

[
‖x‖∞ ≥ c′ log

d

δ

]
≤
∑

i∈[d]

Pr
x∼D

[
xi ≥ c′ log

d

δ

]
≤ δ.

Taking union bound over all elements of S, with probability 1− δ, ‖x‖∞ ≤ O(log |S|d
δ

).

Next, we bound the value of hinge loss on any instance (x, y) used by our algorithm. Let H
be a class of halfspaces w, with ‖w‖1 ≤

√
t and ‖w‖2 = 1.

Lemma 11. For a given k and v ∈ H , let T ′ be the set of mk samples drawn from D̃v,γk . For
any halfspace u such that ‖u‖2 = 1, ‖u‖1 ≤

√
t and u ∈ B(v, rk), with probability 1− δ, for all

x ∈ T ′, `τk(u, x, y) ≤ O(log mk
γkδ

).

Proof. We have

`τk(u, x, y) ≤ 1 +
|u · x|
τk

≤ 1 +
|v · x|
τk

+
|(u− v) · x|

τk
.

By the choice of x ∼ Dv,γk , we know that v · x ≤ γk. Therefore, |v·x|
τk
≤ O(1). For the second

part of the inequality, |(u− v) · x|, first consider all x ∼ D. Since, D is an isotropic log-concave
distribution and ‖u−v‖ ≤ rk, without loss of generality, we can assume that u−v = (r, 0, . . . , 0)
for some r ≤ rk. Moreover, (u−v) ·x = r|x1|, and x1 is a one-dimensional isotropic log-concave
distribution. Therefore,

Pr
x∼D

[
|(u− v) · x| ≥ rk(1 + log

1

δ
)

]
≤ Pr
x∼D

[
r|x1| ≥ rk(1 + log

1

δ
)

]
≤ Pr
x∼D

[
|x1| ≥ 1 + log

1

δ

]
≤δ.

So,

Pr
x∼Dk

[
|(u− v) · x| ≥ rk(1 + log

1

γkδ
)

]
=

Prx∼D
[
|(u− v) · x| ≥ rk(1 + log 1

γkδ
) & |v · x| ≤ γk

]

Prx∼D[|v · x| ≤ γk]

≤
Prx∼D

[
|(u− v) · x| ≥ rk(1 + log 1

γkδ
)
]

Prx∼D[|v · x| ≤ γk]

≤ Θ(
1

γk
) Pr
x∼D

[
|(u− v) · x| ≥ rk(1 + log

1

γkδ
)

]

≤ δ.
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So for a fixed v and k, and for allmk samples T ′ with probability 1−δ, |(u−v)·x|
τk

≤ rk
τk

log mk
γkδ
≤

O(log mk
γkδ

).

Lemma 12. Let mk = Ω( t
ε2

polylog(d, 1
δ
, 1
ε
)) and T ′ be the samples drawn from D̃k and T to be

the corresponding samples when their labels are corrected based on w∗. With probability 1− δ,

sup
w

∣∣∣E(x,y)∼D̃k [`τk(w, x, y)]− `τk(w, T ′)
∣∣∣ ≤ λ

12
,

and

sup
w

∣∣∣E(x,y)∼D̃k [`τk(w, x, y)]− `τk(w, T )
∣∣∣ ≤ λ

12
.

where w ∈ B(wk−1, rk−1) such that ‖w‖1 ≤
√
t.

Proof. Using Lemma 9 we have that

Pr


sup

w

∣∣∣E(x,y)∼D̃k [`τk(w, x, y)]− `τk(w, T ′)
∣∣∣ ≥ 2ρW1X∞

√
2 log(2d)

mk

+ s


 ≤ 2 exp

(
−mks

2

2U2

)
,

(2.8)
where U , ρ, W1 and X∞ are defined as Lemma 9, and the supremum is taken over all w in
K = {w ∈ Rd : ‖w‖1 ≤ W1, ‖w‖2 ≤ 1}. Note that W1 ≤

√
t and ρ = 1

τk
≤ 1

ε
and by Lemma 10

and 11 for any δ, with probability δ, X∞ ≤ O(log md
δ

) and U ≤ O(log mk
γkδ

).
Assume that these bounds hold for X∞ and U . For m = Θ( t

ε3
polylog(d, 1

δ
, 1
ε
)) and mk ≥

Ω( t
ε2

log(md/δ) log d), and for appropriate choice of constant s, with probability at most δ,

sup
w

∣∣∣E(x,y)∼D̃k [`τk(w, x, y)]− `τk(w, T ′)
∣∣∣ ≥ 2

√
t

ε
log(

md

δ
)

√
2 log(2d)

mk

+ s ≥ λ/12.

The proof for the case of T is similar to the above.

We would need the following lemmas:
Lemma 13. There exists an absolute constant c1 such that in round k of Algorithm 3, we have
E(x,y)∼Dk [`τk(w

∗, x, y)] ≤ c1
τk
γk−1

.

Proof. Notice that w∗ never makes a mistake on distribution Dk, so the hinge loss of w∗ on Dk is
entirely attributed to the points of Dk that are within distance τk from w∗. We have,

E(x,y)∼Dk [`τk(w
∗, x, y)] ≤ Pr

(x,y)∼Dk
[|w∗ · x| < τk]

=
Pr(x,y)∼D[|w∗ · x| < τk]

Pr(x,y)∼D[|wk−1 · x| ≤ γk−1]

≤ C2τk
C3γk−1

(By Part 3 of Lemma 2)

≤ c1
τk
γk−1

.
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Lemma 14. There exists an absolute constant c2 such that

∣∣∣E(x,y)∼D̃k [`τk(w
∗, x, y)]− E(x,y)∼Dk [`τk(w

∗, x, y)]
∣∣∣ ≤ c2

γk−1

τk

√
C2kν.

Proof. Let N indicate the set of points where w∗ makes a mistake. We have,

∣∣∣E(x,y)∼D̃k [`τk(w
∗, x, y)]− E(x,y)∼Dk [`τk(w

∗, x, y)]
∣∣∣

≤
∣∣∣E(x,y)∼D̃k [1x∈N (`τk(w

∗, x, y)− `τk(w∗, x, sign(w∗ · x)))]
∣∣∣

≤ 2 E(x,y)∼D̃k

[
1x∈N

( |w∗ · x|
τk

)]

≤ 2

τk

√
Pr

(x,y)∼D̃k
[x ∈ N ]×

√
E(x,y)∼D̃k [(w

∗ · x)2] (By Cauchy Schwarz)

≤ 2

τk

√
Pr

(x,y)∼Dk
[x ∈ N ]×

√
E(x,y)∼Dk [(w

∗ · x)2] (By definition of N )

≤ 2

τk

√
Pr

(x,y)∼Dk
[x ∈ N ]×

√
C7(r2

k−1 + γ2
k−1) (By Lemma 5)

≤ c2
γk−1

τk

√
Pr

(x,y)∼Dk
[x ∈ N ]

≤ c2
γk−1

τk

√
C2kν. (The noise rate within the band can go up by a factor of 2k)

Lemma 15. Let c1 and c2 be the absolute constants from Lemmas 13 and 14, respectively. Then
with probability 1− δ

2(k+k2)
,

errD̃k(hwk) ≤ 2c1
τk
γk−1

+ 2c2
γk−1

τk

√
Cν2k +

λ

2
.

Proof. First, we note that the true 0/1 error of wk on any distribution is at most its true hinge
loss on that distribution. So, it suffices to bound the hinge loss of wk on D̃k. Moreover, vk
approximately minimizes the hinge loss on distribution D̃k, so in particular, it performs better
than w∗ on D̃k. On the other hand, Lemma 14 shows that the difference between hinge loss of w∗

on D̃k and Dk is small. So, we complete the proof by using Lemma 13 and bounding the hinge of
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w∗ on Dk. The following equations show the process of derivation of this bound as we explained.

errD̃k(hwk) ≤ E(x,y)∼D̃k [`τk(wk, x, y)] (Since hinge loss larger than 0-1 loss)

≤ 2E(x,y)∼D̃k [`τk(vk, x, y)] (Since ‖vk‖2 > 0.5)

≤ 2Lτk(vk, T
′) + 2(

λ

12
) (By Lemma 12)

≤ 2Lτk(w
∗, T ′) + 4(

λ

12
) (vk was an approximate hinge loss minimizer)

≤ 2E(x,y)∼D̃k [`τk(w
∗, x, y)] + 6(

λ

12
) (By Lemma 12)

≤ 2E(x,y)∼Dk [`τk(w
∗, x, y)] + 2c2

γk−1

τk

√
C2kν +

λ

2
(By Lemma 14)

≤ 2c1
τk
γk−1

+ 2c2
γk−1

τk

√
C2kν +

λ

2
. (By Lemma 13)

We are now ready to prove our main theorem.

Proof of Theorem 4. We use induction to show that at the kth step of the algorithm, θ(wk, w∗) ≤
e0
C12k

where e0 is the initial error of w0. Assume by the induction hypothesis that at round k − 1,
errD(hwk−1

) ≤ e0/2
k−1. We will show that wk, which is chosen by the algorithm at round k, also

has the property that errD(hwk) ≤ e0/2
k. Let Sk = {x : |wk−1 · x| ≤ γk−1} indicate the band at

round k. We divide the error of wk to two parts, error outside the band and error inside the band.
That is,

errD(hwk) = Pr
(x,y)∼D

[x /∈ Sk and hwk(x) 6= hw∗(x)] + Pr
(x,y)∼D

[x ∈ Sk and hwk(x) 6= hw∗(x)].

(2.9)
By Part 2 of Lemma 2, θ(wk−1, w

∗) ≤ rk−1. So, for the first part of the above inequality, which is
the error of wk outside the band, we have that

Pr
(x,y)∼D

[x /∈ Sk and hwk(x) 6= hw∗(x)]

≤ Pr
(x,y)∼D

[x /∈ Sk and hwk(x) 6= hwk−1
(x)] + Pr

(x,y)∼D
[x /∈ Sk and hwk−1

(x) 6= hw∗(x)]

≤ 2
C1rk−1

16
≤ e0

4× 2k
,

where the penultimate inequality follows from the fact that by the choice of wk ∈ B(wk−1, rk−1)
and the induction hypothesis, respectively, θ(wk−1, wk) < rk−1 and θ(wk−1, w

∗) < rk−1; By
choosing large enough constant in γk−1 = Crk−1, using Part 4 of Lemma 2, the probability of
disagreement outside of the band is C1rk−1/16.

For the second part of Equation 2.9, using the same derivation as in Lemma 15 we get that

errDk(hwk) ≤ 2c1
τk
γk−1

+ 2c2
γk−1

τk

√
Cν2k +

λ

2
.
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By our choice of parameters, we know that the ratio of τk and γk−1 is bounded by ≤ λ
12

. Hence,
for the sum to be bounded by λ, we need C2kν to be bounded by a constant. But this is true since
k ≥ log 1

cν+ε
for an appropriate constant c.

Proofs of Theorem 5

Next, we provide a proof for Theorem 5. We extend our analysis from the previous section to
hold for the case of uniform 1-bit compressed sensing. The main difference between the results
of this section and the analysis of the previous section is that we need to obtain a concentration
result that holds uniformly over all choice of underlying noisy distribution. In other words, they
hold uniformly over the choice of w∗ and the ν fraction of the samples whose labels differ from
the labels of w∗.

First, we introduce Lemma 16 that shows that for a large enough number of unlabeled samples,
every band around a halfspace that can be considered by the algorithm has sufficient samples. In
contrast, the results of the previous section only show that the bands around w1, . . . , wk, which are
uniquely determined by the samples and the fixed (but unknown) distribution D̃, have sufficient
samples. Next, we build on the concentration results from the previous section and show that the
hinge loss is concentrated around its expectation uniformly over all choice of all w∗ and ν fraction
of the samples whose labels differ from the labels of w∗. Using this new concentration result, the
proof of Theorem 5 follows immediately by the analysis of the non-uniform case.

Note that at every step of the algorithm, vector vk that is chosen by the hinge loss minimization
step is such that ‖vk‖1 ≤

√
t. As [14] argue, ‖vk‖2 ≥ 1/2. Therefore, the outcome of step 3c

also satisfies ‖wk‖1 ≤ O(
√
t). The following lemma shows that when the number of unlabeled

samples is large enough, every possible band around every such wk considered by the algorithm
contains a number of points that is at least a multiplicative approximation to the number of points
expected to be in that band. Therefore, in every step of the algorithm, there is a sufficient number
of samples in the band.
Lemma 16. Let S be a set of m ≥ t

ε4
polylog(d) log(1

δ
) samples drawn from D. With probability

1− δ for all γ ∈ Ω(ε) and w such that ‖w‖1 ≤ O(
√
t) and ‖w‖2 = 1,

1

m

∣∣∣{x | x ∈ S and |w · x| ≤ γ}
∣∣∣ ≥ cγ,

where c is a constant.

Proof. Let H be a class of (non-homogeneous) halfspaces w, with ‖w‖1 ≤ O(
√
t) and ‖w‖2 = 1.

Let B be a class of hypothesis defined by bands around homogeneous halfspaces, w, such that
‖w‖1 ≤ O(

√
t) and ‖w‖2 = 1 with arbitrary width.

The covering number of H is at most logN(γ,H) = O (t polylog(d)/γ2) [185]. Since every
band is an intersection of two halfspaces, each band of B can be represented by the intersection
of two halfspaces from H . Therefore, logN(γ,B) = O (t polylog(d)/γ2). Furthermore, by
Lemma 2, E

[
1
m
|{x | x ∈ S and |w · x| ≤ γ}|

]
= Θ(γ). Therefore, by the uniform convergence
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results for covering number, we have that

Pr

[
sup
w,γ

1

m

∣∣∣{x | x ∈ S and |w · x| ≤ γ}
∣∣∣−Θ(γ) ≤ γ

]
≤ N(γ,H)e−

γ2m
8

≤ e−
ε2m

8
+
t polylog(d)

ε2

≤ δ.

Lemma 17. For ν ∈ O(ε/ log(d
ε
)2) and S of size m = Θ( t

ε4
polylog(d, 1

ε
, 1
δ
)), with probability

1− δ,

sup
w∗,{yi}mi=1,w

∣∣∣E(x,y)∼D̃k [`τk(w, x, y)]− `τk(w, T ′)
∣∣∣ ≤ λ

12
,

and

sup
w∗,{yi}mi=1,w

∣∣E(x,y)∼Dk [`τk(w, x, y)]− `τk(w, T )
∣∣ ≤ λ

12
,

where w∗ is a t-sparse halfspace, {yi}mi=1 are the labels of the set of samples S such at most ν
fraction of them differs from the labels of w∗, and wk−1 ∈ H is the unique halfspace determined
by the outcome of step k of the algorithm given w∗ and {yk}mk=1 (labels used in the previous
round), and w ∈ B(wk−1, rk−1) such that ‖w‖1 ≤

√
t.

Proof. Using Lemma 9 we have that

Pr


sup

w

∣∣∣E(x,y)∼D̃k [`τk(w, x, y)]− `τk(w, T
′)
∣∣∣ ≥ 2ρW1X∞

√
2 log(2d)

mk
+ s


 ≤ 2 exp

(
−mks

2

2U2

)
,

(2.10)
where U , ρ, W1 and X∞ are defined as Lemma 9, and the supremum is taken over all w in
K = {w ∈ Rd : ‖w‖1 ≤ W1, ‖w‖2 ≤ 1}. Note that W1 =

√
t and ρ = 1

τk
≤ 1

ε
and by Lemma 10

and 11 for any δ, with probability δ, X∞ ≤ O(log md
δ

) and U ≤ O(log mk
γkδ

).
Assume that these bounds hold for X∞ and U . Then for a fixed wk−1 considering mk =

t
ε3

polylog(d, 1
ε
, 1
δ
)) of the samples in the band around it (there areO(mγk) ≥ mk such samples by

Lemma 16), and for an appropriate choice of constant s, with probability at most 2 exp
(
−mks

2

2U2

)
,

sup
w

∣∣∣E(x,y)∼D̃k [`τk(w, x, y)]− `τk(w, T ′)
∣∣∣ ≥ 2

√
t

ε
polylog(d,

1

ε
,
1

δ
)

√
2 log(2d)

mk

+ s ≥ λ/12

Next, we show how to achieve a similar concentration result over all choices of w∗ and
choices of νm corrupted measurements and the resulted wk−1. Note that wk−1 depends only
on the samples of S and their labels used in previous steps. Since, we only use labels of
mk = O( t

γ3 polylog(d, 1
ε
, 1
δ
)) points in every step, overall, Equation (2.10) only depends on the
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labels of these sample points. This is uniquely determined by the choice of w∗ and the ν fraction
of the samples that do not agree with labels of w∗. Therefore, we can restrict our attention to the
different labelings that can be produced by such w∗ and adversarial corruption on the sample of
size

∑
imi ≤ t

ε3
polylog(d, 1

ε
, 1
δ
).

Let K ′ = {w ∈ Rd : ‖w‖0 ≤ t, ‖w‖2 ≤ 1} be the set of all possible true signals w∗. It is
known that the VC dimension of the set K is t log d, therefore there are O((

∑
imi)

t log d) possible
labeling that can be produced by some w∗ ∈ K ′. Moreover, because

∑
i≤kmi = Θ(γkm).

Therefore, the adversary can corrupt a ν
γk

fraction of the
∑

i≤kmi samples. This is in the worst
case, (ν

ε
) t
ε3

polylog(d, 1
ε
, 1
δ
)). Let m′ =

∑
i≤kmi. By taking the union bound over choices of w∗

and ν
ε
m′ corrupted points, we have

Pr

[
sup

w∗,{yk}
mk
k=1,w

∣∣∣E(x,y)∼D̃k [`τk(w, x, y)]− `τk(w, T
′)
∣∣∣ ≥ λ/12

]
≤ exp

(
−mks

2

2U2

)
c′m′t log d

(
m′
ν
εm
′

)

≤ c exp

(
−mks

2

2U2
+ t log d log(m′) +

ν

ε
log(

ε

ν
)m′
)

≤ c exp

(
−mks

2

2U2
+ t log d log(m′) +

ν

ε
log(

ε

ν
) log(

1

ε
)mk

)

≤ exp

(
−O(

mk

log mk
γkδ

)

)

where the last inequality follows from ν ∈ O(ε/ log(d
ε
)2). Therefore, with probability at least

1− δ,

sup
w∗,{yk}

mk
k=1,w

∣∣∣E(x,y)∼D̃k [`τk(w, x, y)]− `τk(w, T ′)
∣∣∣ ≤ λ/12.

Proofs of Theorem 1

Theorem 1 (restated). For every bounded noise parameter 0 ≤ β < 1, there exists a distribution
D̃β ∈ Pβ (that is, a distribution over R2 × {+1,−1}, where the marginal distribution on R2 is
uniform over the unit ball, and the labels {+1,−1} satisfies β-bounded noise condition) such
that any proper loss minimization is not consistent on D̃β w.r.t. the class of halfspaces. That is,
there exists an ε ≥ 0 and a sample size m(ε) such that any proper loss minimization will output a
classifier of excess error larger than ε by a high probability over sample size at least m(ε).

Proof. We prove the theorem by constructing a distribution D̃β ∈ Pβ that is consistent with our
conclusion. Since we have assumed that the marginal distribution over the instance space X
is uniform over the unit ball, we now construct a noisy distribution on the label space for our
purpose. To do so, given the Bayes optimal classifier hw∗ and some linear classifier hw such that
θ(hw∗ , hw) = α, we first divide the instance space X into four areas A, B, C, and D, as shown in
Figure 2.1(b). Namely, area A is the disagreement region between hw and hw∗ with angle α, and
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Figure 2.1: Demonstrating the construction for the lower bound.

the agreement region consists of areas B (points closer to hw) and D (points closer to hw∗). Area
C, a wedge with an angle of α, is a part of area B. We flip the labels of all points in areas A and B
with probability η = (1− β)/2, and retain the original labels of instances in area D. This setting
naturally satisfies β-bounded noise condition. As we will show later, when the angle α is small
enough, the expected value of proper loss of hw over the whole instance space will be smaller
than that of hw∗ . Then by the standard analysis of [15], we conclude that there exists an ε ≥ 0 and
a sample size m(ε) such that any proper loss minimization will output a classifier of excess error
larger than ε by a high probability over sample size at least m(ε).

We now show the key steps in our analysis. We consider here unit vectors w∗ and w. Let cA,
cB, cC, and cD be the proper loss of hw∗ on areas A, B, C, and D when the labels are correct, and
let dA, dB, dC, and dD be the loss of hw∗ on areas A, B, C, and D when the labels are incorrect.
By the symmetry property 1 in Definition 1, we have

cA =
2

π

∫ α

0

∫ 1

0

`w
∗

+ (z, ϕ)zdzdϕ. (2.11)

Similarly, we can calculate cB, cC, cD, dA, dB, dC, dD, and can check that

cA+ cB =
2

π

∫ π+α
2

0

∫ 1

0

`w
∗

+ (z, ϕ)zdzdϕ = cC + cD, (2.12)

dA+ dB =
2

π

∫ π+α
2

0

∫ 1

0

`w
∗
− (z, ϕ)zdzdϕ = dC + dD. (2.13)

On the other side, according to the noisy distribution D̃ designed by us, the expected loss of hw∗ is

L(hw∗) = η(dA+ dB) + (1− η)(cA+ cB) + cD. (2.14)

For hw, as the role of B to hw is the same as the role D to hw∗ by Property 1 in Definition 1, we
have

L(hw) = η(cA+ dD) + (1− η)(dA+ cD) + cB. (2.15)
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Therefore, combining with Equations 2.12 and 2.13, we have

L(hw)− L(hw∗) = (1− η)(dA− cA)− η(dC − cC). (2.16)

That is to say, once η > η(α) , dA−cA
dA−cA+dC−cC , we will have L(hw) < L(hw∗). We now show that

dA−cA
dA−cA+dC−cC can be arbitrarily small when α approaches to zero, i.e., limα→0

dA−cA
dA−cA+dC−cC = 0.

To see this, let fw∗(z, ϕ) = `w
∗
− (z, ϕ)− `w∗+ (z, ϕ), then

lim
α→0

dA− cA
dA− cA+ dC − cC

= lim
α→0

2
π

∫ α
0

∫ 1

0
fw∗(z, ϕ)zdzdϕ

2
π

∫ α
0

∫ 1

0
fw∗(z, ϕ)zdzdϕ+ 4

π

∫ π
2
π−α

2

∫ 1

0
fw∗(z, ϕ)zdzdϕ

= lim
α→0

2
π

∫ 1

0
fw∗(z, α)zdz

2
π

∫ 1

0
fw∗(z, α)zdz + 2

π

∫ 1

0
fw∗(z,

π−α
2

)zdz
(By L’Hospital’s rule)

=
limα→0

2
π

∫ 1

0
fw∗(z, α)zdz

limα→0
2
π

∫ 1

0
fw∗(z, α)zdz + 2

π

∫ 1

0
fw∗(z,

π−α
2

)zdz
(By existence of the limit)

=

∫ 1

0
fw∗(z, 0)zdz

∫ 1

0
fw∗(z, 0)zdz +

∫ 1

0
fw∗(z,

π
2
)zdz

(
By continuity of

∫ 1

0

fw∗(z, α)zdz

)

=
0

0 +
∫ 1

0
fw∗(z,

π
2
)zdz

= 0.

(
Since

∫ 1

0

fw∗
(
z,
π

2

)
zdz > 0, see Lemma 18

)

(2.17)

The following lemma guarantees the denominator of the last equation is non-zero:

Lemma 18. For any continuous function fw∗(z, ϕ), we have
∫ 1

0

fw∗
(
z,
π

2

)
zdz > 0. (2.18)

Proof. In the close interval [1/2, 1], since function fw∗(z, π2 ) is continuous, by extreme value
theorem, there exists ξ ∈ [1/2, 1] such that minz fw∗(z,

π
2
)z = fw∗(ξ,

π
2
)ξ > 0 (By Property 2 in

Definition 1). So
∫ 1

0

fw∗
(
z,
π

2

)
zdz =

∫ 1
2

0

fw∗
(
z,
π

2

)
zdz +

∫ 1

1
2

fw∗
(
z,
π

2

)
zdz

≥
∫ 1

1
2

fw∗
(
z,
π

2

)
zdz

≥ 1

2
min
z
fw∗
(
z,
π

2

)
z

≥ 1

2
fw∗
(
ξ,
π

2

)
ξ

> 0.

(2.19)
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This completes our proof.

2.2 Adaptive Compressed Sensing

2.2.1 Introduction
Compressed sensing, also known as sparse recovery, is a central object of study in data stream
algorithms, with applications to monitoring network traffic [111], analysis of genetic data [127,
210], and many other domains [174]. The problem can be stated as recovering an underlying
signal x ∈ Rn from measurements A1 · x, ..., Am · x with the C-approximate `p/`q recovery
guarantee being

‖x− x̂‖p ≤ C min
k-sparse x′

‖x− x′‖q, (2.20)

where the Ai are drawn from a distribution and m � n. The focus of this work is on adap-
tive compressed sensing, in which the measurements are chosen in rounds, and the choice of
measurement in each round depends on the outcome of the measurements in previous rounds.

Adaptive compressed sensing has been studied in a number of different works [4, 59, 112,
113, 121, 124, 168, 188] in theoretical computer science, machine learning, image processing,
and many other domains [17, 121, 188]. In theoretical computer science and machine learning,
adaptive compressed sensing serves as an important tool to obtain sublinear algorithms for
active learning in both time and space [17, 92, 121, 188]. In image processing, the study of
adaptive compressed sensing has led to compressed acquisition of sequential images with various
applications in celestial navigation and attitude determination [101].

Despite a large amount of works on adaptive compressed sensing, the power of adaptivity
remains a long-standing open problem. Indyk, Price, and Woodruff [121] were the first to show
that without any assumptions on the signal x, one can obtain a number m of measurements
which is a log(n)/ log log(n) factor smaller than what can be achieved in the non-adaptive setting.
Specifically, for p = q = 2 and C = 1 + ε, they show that m = O(k

ε
log log(n)) measurements

suffice to achieve guarantee (2.20), whereas it is known that any non-adaptive scheme requires

k = Ω(k
ε

log(n
k
)) measurements, provided ε >

√
k logn
n

(Theorem 4.4 of [187], see also [18]).
Improving the sample complexity as much as possible is desired, as it might correspond to, e.g.,
the amount of radiation a hospital patient is exposed to, or the amont of time a patient must be
present for diagnosis.

The `1/`1 problem was studied in [187], for which perhaps surprisingly, a better dependence
on ε was obtained than is possible for `2/`2 schemes. Still, the power of adaptivity for the `1/`1

recovery problem over its non-adaptive counterpart has remained unclear. An O( k√
ε

log n log3(1
ε
))

non-adaptive bound was shown in [187], while an adaptive lower bound of Ω( k√
ε
/ log k√

ε
) was

shown in [188]. Recently several works [173, 212] have looked at other values of p and q, even
those for which 0 < p, q < 1, which do not correspond to normed spaces. The power of adaptivity
for such error measures is also unknown.

33



Table 2.1: The sample complexity of adaptive compressed sensing. Results without any citation
given correspond to our new results.

C, Guaran-
tees

Upper Bounds Rounds Lower Bounds

1 + ε, `1/`1 O( k√
ε
loglog(n) log

5
2 (1

ε
)) O(loglog(n)) Ω( k√

ε log(k/
√
ε))

) [188]
1 + ε, `p/`p O( k

εp/2
loglog(n)poly(log(1

ε
))) O(loglog(n)) Ω( k

εp/2
1

log2(k/ε)
)√

1
k
, `∞/`2 O(kloglog(n) + k log(k)) O(loglog(n)) -

1 + ε, `2/`2

O(k
ε
loglog(nε

k
)) [121] O(log∗(k)loglog(nε

k
)) [121]

Ω(k
ε

+
loglog(n)) [188]O(kloglog(n

k
) + k

ε
loglog(1

ε
)) O(log∗(k)loglog(n

k
))

O(k
ε
loglog(n log(nε)

k
)) O(loglog(n log(nε

k
))

2.2.2 Our results on optimization and sample efficiency

Our work studies the problem of adaptive compressed sensing by providing affirmative answers
to the above-mentioned open questions. We improve over the best known results for p = q = 2,
and then provide novel adaptive compressed sensing guarantees for 0 < p = q < 2 for every p
and q. See Table 2.1 for a comparison of results.

For `1/`1, we design an adaptive algorithm which requires only O( k√
ε
loglog(n) log

5
2 (1

ε
))

measurements for the `1/`1 problem. More generally, we study the `p/`p problem for 0 < p < 2.
One of our main theorems is the following.
Theorem 9 (`p/`p Recovery Upper Bound). Let x ∈ Rn and 0 < p < 2. There exists a
randomized algorithm that performsO( k

εp/2
loglog(n)poly(log(1

ε
))) adaptive linear measurements

on x in O(loglog(n)) rounds, and with probability 2/3, returns a vector x̂ ∈ Rn such that
‖x− x̂‖p ≤ (1 + ε)‖x−k‖p.

Theorem 9 improves the previous sample complexity upper bound for the case of C = 1 + ε

and p = q = 1 from O( k√
ε

log(n) log3(1
ε
)) to O( k√

ε
loglog(n) log

5
2 (1

ε
)). Compared with the

non-adaptive (1 + ε)-approximate `1/`1 upper bound of O( k√
ε

log(n) log3(1
ε
)), we show that

adaptivity exponentially improves the sample complexity w.r.t. the dependence on n over non-
adaptive algorithms while retaining the improved dependence on ε of non-adaptive algorithms.
Furthermore, Theorem 9 extends the working range of adaptive compressed sensing from p = 1
to general values of p ∈ (0, 2).

We also state a complementary lower bound to formalize the hardness of the above problem.
Theorem 10 (`p/`p Recovery Lower Bound). Fix 0 < p < 2, any (1 + ε)-approximate `p/`p
recovery scheme with sufficiently small constant failure probability must make Ω( k

εp/2
/ log2(k

ε
))

measurements.
Theorem 10 shows that our upper bound in Theorem 9 is tight up to the log(k/ε) factor.
We also study the case when p 6= q. In particular, we focus on the case when p =∞, q = 2

and C =
√

1
k
, as in the following theorem.

Theorem 11 (`∞/`2 Recovery Upper Bound). Let x ∈ Rn. There exists a randomized algorithm
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that performs O(k log(k) + kloglog(n)) linear measurements on x in O(loglog(n)) rounds, and
with probability 1−1/poly(k) returns a vector x̂ such that ‖x−x̂‖2

∞ ≤ 1
k
‖x−k‖2

2, where x−k ∈ Rn

is the vector with the largest n− k coordinates (in the sense of absolute value) being zeroed out.
We also provide an improved result for (1 + ε)-approximate `2/`2 problems.

Theorem 12 (`2/`2 Sparse Recovery Upper Bounds). Let x ∈ Rn. There exists a randomized
algorithm that
• uses O(k

ε
loglog(1

ε
) + kloglog(n

k
)) linear measurements on x in O(loglog(n

k
) · log∗(k))

rounds;
• uses O(k

ε
loglog(n log(nε)

k
)) linear measurements on x in O(loglog(εn log(n

k
))) rounds;

and with constant probability returns a vector x̂ such that ‖x− x̂‖2 ≤ (1 + ε)‖x−k‖2.
Previously the best known tradeoff was O(k

ε
loglog(nε

k
)) samples and O(log∗(k)loglog(nε

k
))

rounds for (1 + ε)-approximation for the `2/`2 problem [121]. Our result improves both the
sample complexity (the first result) and the number of rounds (the second result). We summarize
our results in Table 2.1.

2.2.3 Our techniques

`∞/`2 sparse recovery. Our `∞/`2 sparse recovery scheme hashes every i ∈ [n] to poly(k)
buckets, and then proceeds by finding all the buckets that have `2 mass at least Ω( 1√

k
‖x−Ω(k)‖2).

We then find a set of buckets that contain all heavy coordinates, which are isolated from each other
due to hashing. Then, we run a 1-sparse recovery in each bucket in parallel in order to find all the
heavy coordinate. However, since we have O(k) buckets, we cannot afford to take a union bound
over all one-sparse recovery routines called. Instead, we show that most buckets succeed and
hence we can substract from x the elements returned, and then run a standard COUNTSKETCH

algorithm to recover everything else. This algorithm obtains an optimal O(loglog(n)) number of
rounds andO(k log(k)+kloglog(n)) number of measurements, while succeeding with probability
at least 1− 1/poly(k).

We proceed by showing an algorithm for `2/`2 sparse recovery with O(k
ε
loglog(n)) mea-

surements and O(loglog(n)) rounds. This will be important for our more general `p/`p scheme,
saving a log∗(k) factor from the number of rounds, achieving optimality with respect to this
quantity. For this scheme, we utilize the `∞/`2 scheme we just developed, observing that for
small k < O(log(n)), the measurement complexity is O(kloglog(n)). The algorithm hashes to
k/(ε log(n)) buckets, and in each bucket runs `∞/`2 with sparsity k/ε. The `∞/`2 algorithm
in each bucket succeeds with probability 1 − 1/polylog(n)); this fact allows us to argue that
all but a 1/polylog(n) fraction of the buckets will succeed, and hence we can recover all but a
k/polylog(n)) fraction of the heavy coordinates. The next step is to subtract these coordinates
from our initial vector, and then run a standard `2/`2 algorithm with decreased sparsity.

`p/`p sparse recovery. Our `p/`p scheme, 0 < p < 2, is based on carefully invoking several
`2/`2 schemes with different parameters. We focus our discussion on p = 1, then mention
extensions to general p. A main difficulty of adapting the `1/`1 scheme of [187] is that it relies
upon an `∞/`2 scheme, and all known schemes, including ours, have at least a k log k dependence
on the number of measurements, which is too large for our overall goal.
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A key insight in [187] for `1/`1 is that since the output does not need to be exactly k-sparse,
one can compensate for mistakes on approximating the top k entries of x by accurately outputting
enough smaller entries. For example, if k = 1, consider two possible signals x = (1, ε, . . . , ε) and
x′ = (1 + ε, ε, . . . , ε), where ε occurs 1/ε times in both x and x′. One can show, using known
lower bound techniques, that distinguishing x from x′ requires Ω(1/ε) measurements. Moreover,
x1 = (1, 0, . . . , 0) and x′1 = (1 + ε, 0, . . . , 0), and any 1-sparse approximation to x or x′ must
therefore distinguish x from x′, and so requires Ω(1/ε) measurements. An important insight
though, is that if one does not require the output signal y to be 1-sparse, then one can output
(1, ε, 0, . . . , 0) in both cases, without actually distinguishing which case one is in!

As another example, suppose that x = (1, ε, . . . , ε) and x′ = (1 + εc, ε, . . . , ε) for some
0 < c < 1. In this case, one can show that one needs Ω(1/εc) measurements to distinguish x and
x′, and as before, to output an exactly 1-sparse signal providing a (1 + ε)-approximation requires
Θ̃(1/εc) measurements. In this case if one outputs a signal y with y1 = 1, one cannot simply
find a single other coordinate ε to “make up” for the poor approximation on the first coordinate.
However, if one were to output 1/ε1−c coordinates each of value ε, then the εc “mass" lost by
poorly approximating the first coordinate would be compensated for by outputting ε · 1/ε1−c = εc

mass on these remaining coordinates. It is not clear how to find such remaining coordinates
though, since they are much smaller; however, if one randomly subsamples an εc fraction of
coordinates, then roughly 1/ε1−c of the coordinates of value ε survive and these could all be
found with a number of measurements proportional to 1/ε1−c. Balancing the two measurement
complexities of 1/εc and 1/ε1−c at c = 1/2 gives roughly the optimal 1/ε1/2 dependence on ε in
the number of measurements.

To extend this to the adaptive case, a recurring theme of the above examples is that the top k,
while they need to be found, they do not need to be approximated very accurately. Indeed, they
do need to be found, if, e.g., the top k entries of x were equal to an arbitrarily large value and
the remaining entries were much smaller. We accomplish this by running an `2/`2 scheme with
parameters k′ = Θ(k) and ε′ = Θ(

√
ε), as well as an `2/`2 scheme with parameters k′ = Θ(k/

√
ε)

and ε′ = Θ(1) (up to logarithmic factors in 1/ε). Another theme is that the mass in the smaller
coordinates we find to compensate for our poor approximation in the larger coordinates also does
not need to be approximated very well, and we find this mass by subsampling many times and
running an `2/`2 scheme with parameters k′ = Θ(1) and ε′ = Θ(1). This technique is surprisingly
general, and does not require the underlying error measure we are approximating to be a norm. It
just uses scale-invariance and how its rate of growth compares to that of the `2-norm.

`2/`2 sparse recovery. Our last algorithm, which concerns `2/`2 sparse recovery, achieves
O(kloglog(n)+ k

ε
loglog(1/ε)) measurements, showing that ε does not need to multiply loglog(n).

The key insight lies in first solving the 1-sparse recovery task with O(loglog(n) + 1
ε
loglog(1/ε))

measurements, and then extending this to the general case. To achieve this, we hash to polylog(1/ε)
buckets, then solve `2/`2 with constant sparsity on a new vector, where coordinate j equals the `2

norm of the jth bucket; this steps requires only O(1
ε
loglog(1/ε)) measurements. Now, we can run

standard 1-sparse recovery in each of these buckets returned. Extending this idea to the general
case follows by plugging this sub-routine in the iterative algorithm of [121], while ensuring that
sub-sampling does not increase the number of measurements. For that we also need to sub-sample
at a slower rate, slower roughly by a factor of ε.
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Notation: For a vector x ∈ Rn, we define Hk(x) to be the set of its largest k coordinates in
absolute value. For a set S, denote by xS the vector with every coordinate i /∈ S being zeroed out.
We also define x−k = x[n]\Hk(x) and Hk,ε(x) = {i ∈ [n] : |xi| ≥ ε

k
‖x−k‖2

2}, where [n] represents
the set {1, 2, ..., n}. For a set S, let |S| be the cardinality of S.

2.2.4 Proofs of our main results
Proofs of Theorem 9

This section is devoted to proving Theorem 9. Our algorithm for `p/`p recovery is in Algorithm
16.

Let f = εp/2, r = 2/(p log(1/f)) and q = max{p − 1
2
, 0} = (p − 1

2
)+. We will invoke the

following `2/`2 oracle frequently throughout the paper.
Oracle 1 (ADAPTIVESPARSERECOVERY`p/`q(x, k, ε)). The oracle is fed with (x, k, ε) as input
parameters, and outputs a set of coordinates i ∈ [n] of sizeO(k) which corresponds to the support
of vector x̂, where x̂ can be any vector for which ‖x− x̂‖p ≤ (1 + ε) minO(k)-sparse x′ ‖x− x′‖q.

Existing algorithms can be applied to construct Oracle 1 for the `2/`2 case, such as [121].
Without loss of generality, we assume that the coordinates of x are ranked in decreasing value,
i.e., x1 ≥ x2 ≥ · · · ≥ xn.

Algorithm 5 Adaptive `p/`p Recovery
1: A← ADAPTIVESPARSERECOVERY`2/`2(x, 2k/f, 1/10).
2: B ← ADAPTIVESPARSERECOVERY`2/`2(x, 4k, f/r2).
3: S ← A ∪B.
4: For j = 1 : r
5: Uniformly sample the entries of x with probability 2−jf/k for k/(2f(r + 1)q) times.
6: Run the adaptive ADAPTIVESPARSERECOVERY`2/`2(x, 2, 1/(4(r + 1))

2
p ) algorithm on

each of the k/(2f(r + 1)q) subsamples to obtain sets Aj,1, Aj,2, . . . , Aj,k/(2f(r+1)q).
7: Let Sj ← ∪k/(2f(r+1)q)

t=1 Aj,t \ ∪j−1
t=0St.

8: End For
9: Request the entries of x with coordinates S0, ..., Sr.

10: Output: x̂ = xS0∪···∪Sr .

Lemma 19. Suppose we subsample x with probability p and let y be the subsampled vector
formed from x. Then with failure probability e−Ω(k), ‖y−2k‖2 ≤

√
2p
∥∥x−k/p

∥∥
2
.

Proof. Let T be the set of coordinates in the subsample. Then E
[∣∣∣T ∩

[
3k
2p

]∣∣∣
]

= 3k
2

. So

by the Chernoff bound, Pr
[∣∣∣T ∩

[
3k
2p

]∣∣∣ > 2k
]
≤ e−Ω(k). Thus

∣∣∣T ∩
[

3k
2p

]∣∣∣ ≤ 2k holds with

high probability. Let Yi = x2
i if i ∈ T Yi = 0 if i ∈ [n] \ T . Then E

[∑
i> 3k

2p
Yi

]
=

p
∥∥∥x− 3k

2p

∥∥∥
2

2
≤ p

∥∥x−k/p
∥∥2

2
. Notice that there are at least k

2p
elements in x−k/p with absolute

value larger than
∣∣∣x 3k

2p

∣∣∣. Thus for i > 3k
2p

, Yi ≤
∣∣∣x 3k

2p

∣∣∣
2

≤ 2p
k

∥∥x−k/p
∥∥2

2
. Again by a Chernoff
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bound, Pr
[∑

i> 3k
2p
Yi ≥ 4p

3

∥∥x−k/p
∥∥2

2

]
≤ e−Ω(k). Conditioned on the latter event not happening,

‖y−2k‖2
2 ≤

∑
i> 3k

2p
Yi ≤ 4p

3

∥∥x−k/p
∥∥2

2
≤ 2p

∥∥x−k/p
∥∥2

2
. By a union bound, with failure probability

e−Ω(k), we have ‖y−2k‖2 ≤
√

2p
∥∥x−k/p

∥∥
2
.

Lemma 20. Let x̂ be the output of the `2/`2 scheme on x with parameters (k, ε/2). Then with
small constant failure probability,

∥∥x[k]

∥∥p
p
− ‖x̂‖pp ≤ k1− p

2 ε
p
2 ‖x−k‖p2 .

Proof. Notice that with small constant failure probability, the `2/`2 guarantee holds and we have

∥∥x[k]

∥∥2

2
− ‖x̂‖2

2 = ‖x− x̂‖2
2 − ‖x−k‖

2
2 ≤ (1 + ε) ‖x−k‖2

2 − ‖x−k‖
2
2 = ε ‖x−k‖2

2 .

Let S ⊂ [n] be such that xS = x̂, and define y = x[k]\S , z = xS\[k]. Then if ‖y‖pp ≤
k1− p

2 ε
p
2 ‖x−k‖p2 we are done. Otherwise, let 1 ≤ k′ ≤ k denote the size of [k] \ S, and de-

fine c = ‖y‖2 /
√
k′.

∥∥x[k]

∥∥p
p
− ‖x̂‖pp = ‖y‖pp − ‖z‖

p
p ≤ k′

1− p
2 ‖y‖p2 − ‖z‖

p
p =
‖y‖2

2

c2−p − ‖z‖
p
p

≤ ‖y‖
2
2 − ‖z‖

2
2

c2−p =

∥∥x[k]

∥∥2

2
− ‖x̂‖2

2

c2−p ≤ ε ‖x−k‖2
2

c2−p .

Since c ≥ ‖y‖p
k
′ 1p
≥ ‖y‖p

k
1
p
≥ √ ε

k
‖x−k‖2 , we have

∥∥x[k]

∥∥p
p
− ‖x̂‖pp ≤ k

2−p
2 ε1−

2−p
2 ‖x−k‖2−(2−p)

2 =

k1− p
2 ε

p
2 ‖x−k‖p2 .

Theorem 13. Fix 0 < p < 2. For x ∈ Rn, there exists a (1 + ε)-approximation algorithm
that performs O( k

εp/2
loglog(n) log

2
p

+1−(p− 1
2

)+

(1
ε
)) adaptive linear measurements in O(loglog(n))

rounds, and with probability at least 2/3, we can find a vector x̂ ∈ Rn such that

‖x− x̂‖p ≤ (1 + ε) ‖x−k‖p . (2.21)

Proof. The algorithm is stated in Algorithm 16. We first consider the difference
∥∥x[k]

∥∥p
p
−‖xS0‖pp.

Let i∗(0) be the smallest integer such that for any l > i∗(0), |xl| ≤ ‖x−2k/f‖2/
√
k.

Case 1. i∗(0) > 4k
Then for all k < j ≤ 4k, we have |xj| > ‖x−2k/f‖2/

√
k. Hence xS0 must contain at least 1/2 of

these indices; if not, the total squared loss is at least 1/2·3k‖x−2k/f‖2
2/k ≥ (3/2)‖x−2k/f‖2

2, a con-

tradiction to ε′ = 1/10. It follows that ‖xS0∩{k+1,...,4k}‖pp ≥ 3
2
k
[
‖x−2k/f‖2√

k

]p
= 3

2
k1− p

2‖x−2k/f‖p2.
On the other hand,

∥∥x[k]

∥∥p
p
− ‖xS0‖pp is at most 1.1k1− p

2‖x−2k/f‖p2, since by the `2/`2 guarantee

‖x[k]‖pp − ‖xS0∩[k]‖pp ≤ k1− p
2‖x[k] − xS0∩[k]‖p2 ≤ k1− p

2‖x− xS0‖p2 ≤
11

10
k1− p

2‖x−2k/f‖p2.

It follows that ‖x[k]‖pp−‖xS0‖pp = ‖x[k]‖pp−‖xS0∩[k]‖pp−‖xS0∩{k+1,...,4k}‖pp ≤ 11
10
k1− p

2‖x−2k/f‖p2−
3
2
k1− p

2‖x−2k/f‖p2 ≤ 0.
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Case 2. i∗(0) ≤ 4k, and
∑2k/f

j=i∗(0)+1 x
2
j ≥ 4‖x−2k/f‖2

2.
We claim that xS0 must contain at least a 5/8 fraction of coordinates in {i∗(0)+1, ..., 2k/f}; if not,
then the cost for missing at least a 3/8 fraction of the `2-norm of x{i∗(0)+1,...,2k/f} will be at least
(3/2)‖x−2k/f‖2

2, contradicting the `2/`2 guarantee. Since all coordinates xj’s for j > i∗(0) have
value at most ‖x−2k/f‖2/

√
k, it follows that the p-norm of coordinates corresponding to {i∗(0) +

1, ..., 2k/f} ∩S0 is at least
∥∥x{i∗(0)+1,...,2k/f}∩S0

∥∥p
p
≥ 5

2
k

2−p
2
‖x−2k/f‖22
‖x−2k/f‖2−p2

= 5
2
k1− p

2‖x−2k/f‖p2. Then

‖x[k]‖pp − ‖xS0‖pp ≤
11

10
k1− p

2‖x−2k/f‖p2 + k

(‖x−2k/f‖2√
k

)p
− ‖x{i∗(0)+1,...,2k/f}∩S0‖pp

≤ 21

10
k1− p

2‖x−2k/f‖p2 −
5

2
k1− p

2‖x−2k/f‖p2 ≤ 0.

Case 3. i∗(0) ≤ 4k, and
∑2k/f

j=i∗(0)+1 x
2
j ≤ 4‖x−2k/f‖2

2.
With a little abuse of notation, let xS0 denote the output of the `2/`2 with parameters (4k, f/r2).
Notice that there are at most 8k non-zero elements in xS0 , and ‖x−4k‖2

2 ≤ ‖x−i∗(0)‖2
2 =∑2k/f

j=i∗(0)+1 x
2
j +‖x−2k/f‖2

2 ≤ 5‖x−2k/f‖2
2. By Lemma 20, we have

∥∥x[k]

∥∥p
p
−‖xS0‖pp ≤

∥∥x[4k]

∥∥p
p
−

‖xS0‖pp ≤ (4k)1− p
2
f
p
2

rp
‖x−4k‖p2 ≤ O

(
1
rp

)
k1− p

2 f
p
2‖x−2k/f‖p2. According to the above three cases,

we conclude that ‖x[k]‖pp − ‖xS0‖pp ≤ O
(

1
rp

)
k1− p

2 f
p
2‖x−2k/f‖p2. Thus with failure probability at

most 1/6,

‖x− x̂‖pp−‖x−k‖pp = ‖x[k]‖pp−
r∑

j=0

‖xSj‖pp ≤ O
(

1

rp

)
k1− p

2 f
p
2‖x−2k/f‖p2−

r∑

j=1

∥∥xSj
∥∥p
p
. (2.22)

In order to convert the first term on the right hand side of (2.22) to a term related to the `p norm
(which is a semi-norm if 0 < p < 1), we need the following inequalities: for every u and s, by
splitting into chunks of size s, we have

s1− p
2 ‖u−2s‖p2 ≤ ‖u−s‖

p
p , and ‖u ¯[s]∩[2s]‖2 ≤

√
s |us| .

Define c = (r + 1)min{p,1}. This gives us that, for 0 < p < 2 1
(r+1)p

k1− p
2 f

p
2

∥∥x−2k/f

∥∥p
2
≤

k1− p2 f
p
2

c

∥∥∥x−2k/f
1+ 2

p

∥∥∥
p

2
+ k1− p2 f

p
2

c

∑r
j=1 ‖∇a\}ex2jk/f2j+1k/f‖p2 ≤ f

(1− p2 )(1+ 2
p )+

p
2

c

∥∥∥x−k/f1+ 2
p

∥∥∥
p

p
+

1
c

∑r
j=1 k2pj/2

∣∣x2jk/f

∣∣p . Therefore,

‖x̂− x‖pp − ‖x−k‖pp ≤ O
(

1

c

)
f

2
p

∥∥∥x−k/f1+ 2
p

∥∥∥
p

p
+

r∑

j=1

O
(

1

c

)
k2pj/2|x2jk/f |p −

r∑

j=1

‖xSj‖pp

≤ O
(

1

c

)
f

2
p

∥∥x−k/f
∥∥p
p

+
r∑

j=1

O
(

1

c

)
k2pj/2|x2jk/f |p −

r∑

j=1

‖xSj‖pp.

(2.23)

Let y = xT denote an independent subsample of x with probability f/(2jk), and ŷ be the output
of the `2/`2 algorithm with parameter s(2, 1/(4(r+ 1))

2
p ). Notice that |Sj| ≤ 2k/(r+ 1)f by the
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adaptive `2/`2 guarantee. Define Q = [2jk/f ] \ (S0 ∪ · · · ∪ Sj−1). There are at least 2jk/(2f)
elements in Q, and every element in Q has absolute value at least

∣∣x2jk/f

∣∣. In each subsample,
notice that E[|T ∩Q|] = 1

2
. Thus with sufficiently small constant failure probability there exists

at least 1 element in y with absolute value at least |x2jk/f |. On the other hand, by Lemma 20 and
Lemma 19,

∥∥y[1]

∥∥p
p
− ‖ŷ‖pp ≤

∥∥y[2]

∥∥p
p
− ‖ŷ‖pp ≤

21− p
2

4(r + 1)
‖y−2‖p2 ≤

1

2(r + 1)

(
f

2jk

) p
2 ∥∥x−2jk/f

∥∥p
2
, (2.24)

with sufficiently small constant failure probability given by the union bound. For the k/(2f(r + 1)q)
independent copies of subsamples, by a Chernoff bound, a 1/4 fraction of them will have the
largest absolute value in Q and (2.24) will also hold, with the overall failure probability being
e−Ω(k/(frq)). Therefore, since k/f > 2pj/2k,

∥∥xSj
∥∥p
p
≥ 2pj/2k

8(r + 1)q

[
∣∣x2jk/f

∣∣p − 1

2(r + 1)

(
f

2jk

) p
2 ∥∥x−2jk/f

∥∥p
2

]

≥ 2pj/2k

8(r + 1)q
∣∣x2jk/f

∣∣p − k1− p
2 f

p
2

16(r + 1)q+1

∥∥x−2k/f

∥∥p
2
,

and by the fact that 0 < q < p < 2,

‖x− x̂‖pp − ‖x−k‖pp ≤ O(
1

rp
)k1− p

2 f
p
2‖x−2k/f‖p2 −

r∑

j=1

∥∥xSj
∥∥p
p

≤
[
O
(

1

rp

)
+

r

16(r + 1)q+1

]
k1− p

2 f
p
2‖x−2k/f‖p2 −

r∑

j=1

2pj/2k

8(r + 1)q
∣∣x2jk/f

∣∣p

≤ O
(

1

c

)
f

2
p

∥∥x−k/f
∥∥p
p

+

[
O
(

1

c

)
+

1

16(r + 1)q
− 1

8(r + 1)q

] r∑

j=1

k2pj/2
∣∣x2jk/f

∣∣p

≤ f
2
p

∥∥x−k/f
∥∥p
p
≤ ε ‖x−k‖pp .

The total number of measurements will be at most

O
(
k

f
loglog(n)+

4kr2

f
loglog(n)+

kr

2frq
r

2
p loglog(n)

)
= O

(
k

ε
p
2

loglog(n) log
2
p

+1−(p− 1
2

)+

(
1

ε

))
,

while the total failure probability given by the union bound is 1/6 + e−Ω(k/(frq)) < 1/3, which
completes the proof.

Proofs of Theorem 10

We will first briefly introduce the definition and lower bound on the communication complexity
of Ind`∞, a two-party communication problem that is defined and studied in [187]. Then we
will show how to use an adaptive (1 + ε)-approximate `p/`p sparse recovery scheme A to solve
the communication problem Ind`∞. We obtain a lower bound on the number of measurements
required of an adaptive (1 + ε)-approximate `p/`p sparse recovery scheme.
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Direct sum for distributional `∞ Consider two-party randomized communication complexity.
There are two parties, Alice and Bob, with input vectors x and y respectively, and their goal is
to solve a promise problem f(x, y). The parties have private randomness. The communication
cost of a protocol is its maximum transcript length, over all possible inputs and random coin
tosses. The randomized communication complexity Rδ(f) is the minimum communication cost
of a randomized protocol Π which for every input (x, y) outputs f(x, y) with probability at least
1− δ (over the random coin tosses of the parties). We also study the distributional complexity of
f , in which the parties are deterministic and the inputs (x, y) are drawn from distribution µ, and a
protocol is correct if it succeeds with probability at least 1− δ in outputting f(x, y), where the
probability is now taken over (x, y) ∼ µ. We define Dµ,δ(f) to be the minimum communication
cost of a correct protocol Π.

We consider the following promise problem Gap`B∞, whereB is a parameter, which was studied
in [30, 200]. The inputs are pairs (x, y) of m-dimensional vectors, with xi, yi ∈ {0, 1, 2, . . . , B}
for all i ∈ [m], with the promise that (x, y) is one of the following types of instance:
• NO instance: for all i, |xi − yi| ∈ {0, 1}, or
• YES instance: there is a unique i for which |xi−yi| = B, and for all j 6= i, |xj−yj| ∈ {0, 1}.

The goal of a protocol is to decide which of the two cases (NO or YES) the input is in. Consider
the distribution σ: for each j ∈ [m], choose a random pair (Zj, Pj) ∈ {0, 1, 2, . . . , B} ×
{0, 1} \ {(0, 1), (B, 0)}. If (Zj, Pj) = (z, 0), then Xj = z and Yj is uniformly distributed in
{z, z + 1}; if (Zj, Pj) = (z, 1), then Yj = z and Xj is uniformly distributed on {z − 1, z}.
Let Z = (Z1, . . . , Zm) and P = (P1, . . . , Pm). Next choose a random coordinate S ∈ [m]. For
coordinate S, replace (XS, YS) with a uniform element of {(0, 0), (0, B)}. LetX = (X1, . . . , Xm)
and Y = (Y1, . . . , Ym).

In [187], they define a problem, Ind`r,B∞ , which involves solving r copies of Gap`B∞, and relate
the `1/`1 recovery scheme with Ind`r,B∞ in order to get a lower bound. Here we introduce the
definition of Ind`r,B∞ and present their results on the studies of communication complexity.
Definition 2 (Indexed Ind`r,B∞ Problem). There are r pairs of inputs (x1, y1), (x2, y2), . . . , (xr, yr)
such that every pair (xi, yi) is a legal instance of the Gap`B∞ problem. Alice is given x1, . . . , xr.
Bob is given an index I ∈ [r] and y1, . . . , yr. The goal is to decide whether (xI , yI) is a NO or a
YES instance of Gap`B∞.

Let η be the distribution σr × Ur, where Ur is the uniform distribution on [r]. We bound
D1−way
η,δ (Ind`∞)r,B as follows. For a function f , let f r denote the problem of computing r instances

of f . For a distribution ζ on instances of f , let D1−way,∗
ζr,δ (f r) denote the minimum communication

cost of a deterministic protocol computing a function f with error probability at most δ in each of
the r copies of f , where the inputs come from ζr.
Theorem 14. For δ less than a sufficiently small constant,D1−way

η,δ (Ind`r,B∞ ) = Ω(δ2rm/(B2 log r)).
Lemma 21. Let R = [s, cs] for some constant c and parameter s. Let X be a permutation
independent distribution over {0, 1}n with ‖x‖1 ∈ R with probability p. If y satisfies ‖x− y‖1 ≤
(1− ε) ‖x‖1 with probability p′ with p′ − (1− p) = Ω(1), then I(x; y) = Ω(εs log(n/s)).
Lemma 22. A lower bound of Ω(b) bits for such an adaptive `p/`p sparse recovery bit scheme
with p ≤ 2 implies a lower bound of Ω(b/((1 + c+ d) log n)) bits for regular (1 + ε)-approximate
sparse recovery with failure probability δ − 1/n.
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The overall lower bound The proof of the adaptive lower bound of `p/`p scheme is similar to
the proof of the non-adaptive lower bound for `1/`1 sparse recovery given in [187]. Fix parameters
B = Θ(1/ε1/2), r = k, m = 1/ε(2+p)/2, and n = k/ε3. Given an instance (x1, y1), . . . , (xr, yr)
of Ind`r,B∞ we define the input signal z to a sparse recovery problem. We allocate a set Si of m
disjoint coordinates in a universe of size n for each pair (xi, yi), and on these coordinates place
the vector yi − xi. The locations turn out to be essential for the proof of Lemma 23 below, and
are placed uniformly at random among the n total coordinates (subject to the constraint that the
Si are disjoint). Let ρ be the induced distribution on z.

Fix an `p/`p recovery multiround bit scheme A that uses b bits and succeeds with probability
at least 1− δ1/2 over z ∼ ρ. Let S be the set of top k coordinates in z. As shown in equation (14)
of [187], A has the guarantee that if v = A(z), then

‖(v − z)S‖pp + ‖(v − z)[n]\S‖pp ≤ (1 + 2ε)‖z[n]\S‖pp. (2.25)

Next is our generalization of Lemma 6.8 of [187].
Lemma 23. For B = Θ(1/ε1/2) sufficiently large, suppose that Prz∼ρ[‖(v − z)S‖pp ≤ 10ε ·
‖z[n]\S‖pp] ≥ 1− δ. Then A requires b = Ω(k/(εp/2 log k)).

Proof. We need to show how to useA to solve instances of Ind`r,B∞ with probability at least 1−C
for some small C, where the probability is over input instances to Ind`r,B∞ distributed according to
η, inducing the distribution ρ. Since A is a deterministic sparse recovery bit scheme, it receives a
sketch f(z) of the input signal z and runs an arbitrary recovery algorithm g on f(z) to determine
its output v = A(z).

Given x1, . . . , xr, for each i = 1, 2, . . . , r, Alice places −xi on the appropriate coordinates
in the block Si used in defining z, obtaining a vector zAlice, and transmits f(zAlice) to Bob. Bob
uses his inputs y1, . . . , yr to place yi on the appropriate coordinate in Si. He thus creates a vector
zBob for which zAlice + zBob = z. Given f(zAlice), Bob computes f(z) from f(zAlice) and f(zBob),
then v = A(z). We assume all coordinates of v are rounded to the real interval [0, B], as this can
only decrease the error.

We say that Si is bad if either

• there is no coordinate j in Si for which |vj| ≥ B
2

yet (xi, yi) is a YES instance of Gap`r,B∞ ,
or

• there is a coordinate j in Si for which |vj| ≥ B
2

yet either (xi, yi) is a NO instance of
Gap`r,B∞ or j is not the unique j∗ for which yij∗ − xij∗ = B

For B sufficiently large, the `p-error incurred by a bad block is at least B/4. Hence, if there
are t bad blocks, the total error to the p-th power is at least tBp/4p, which must be smaller than
10ε · ‖z[n]\S‖pp with probability 1− δ. Condition on this, we would like to bound t. All coordinates
in z[n]\S have value in the set {0, 1}. Hence, ‖z[n]\S‖pp ≤ rm. So t ≤ 4p10εrm/Bp ≤ 160εrm/Bp.
Plugging in r, m and B, t ≤ Ck, where C > 0 is a constant that can be made arbitrarily small by
increasing B = Θ(1/ε1/2).

If a block Si is not bad, then it can be used to solve Gap`r,B∞ on (xi, yi) with probability 1.
Bob declares that (xi, yi) is a YES instance if and only if there is a coordinate j in Si for which
|vj| ≥ B/2.
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Since Bob’s index I is uniform on the m coordinates in Ind`r,B∞ , with probability at least
1 − C the players solve Ind`r,B∞ given that the `p error is small. Therefore they solve Ind`r,B∞
with probability 1− δ − C overall. By Theorem 14, for C and δ sufficiently small, A requires
Ω(mr/(B2 log r)) = Ω(k/(εp/2 log k)) bits.

Lemma 24. Suppose Prz∼ρ[‖(v − z)[n]\S‖pp] ≤ (1 − 8ε) · ‖z[n]\S‖pp] ≥ δ/2. Then A requires
b = Ω( 1

εp/2
k log(1/ε)).

Proof. The distribution ρ consists of B(mr, 1/2) ones placed uniformly throughout the n coor-
dinates, where B(mr, 1/2) denotes the binomial distribution with mr events of 1/2 probability
each. Therefore with probability at least 1−δ/4, the number of ones lies in [δmr/8, (1−δ/8)mr].
Thus by Lemma 21, I(v; z) ≥ Ω(εmr log(n/(mr))). Since the mutual information only passes
through a b-bit string, b = Ω(εmr log(n/(mr))) = Ω( 1

εp/2
k log(1/ε)) as well.

Theorem 15. Any adaptive (1 + ε)-approximate `p/`p recovery scheme with sufficiently small
constant failure probability δ must make Ω( 1

εp/2
k/ log2(k/ε)) measurements.

Proof. We will lower bound any `p/`p sparse recovery bit scheme A. If A succeeds, then in order
to satisfy inequality (2.25), we must either have ‖(v − z)S‖pp ≤ 10ε‖z[n]\S‖pp or we must have
‖(v − z)[n]\S‖pp ≤ (1 − 8ε)‖z[n]\S‖pp. Since A succeeds with probability at least 1 − δ, it must
either satisfy the hypothesis of Lemma 23 or the hypothesis of Lemma 24. But by these two
lemmas, it follows that b = Ω( 1

εp/2
k/ log k). Therefore by Lemma 22, any (1 + ε)-approximate

`p/`p sparse recovery algorithm requires Ω( 1
εp/2

k/ log2(k/ε)) measurements.

Proofs of Theorem 11

In this section, we will prove Theorem 11. Our algorithm first approximates ‖x−k‖2. The goal is
to compute a value V which is not much smaller than 1

k
‖x−k‖2

2, and also at least Ω( 1
k
)‖x−Ω(k)‖2

2.
This value will be used to filter out coordinates that are not large enough, while ensuring that
heavy coordinates are included. We need the following lemma, which for example can be found
in Section 4 of [148].
Lemma 25. Using log(1/δ) non-adaptive measurements we can find with probability 1 − δ a
value V such that 1

C1k
‖x−C2k‖2

2 ≤ V ≤ 1
k
‖x−k‖2

2, where C1, C2 are absolute constants larger
than 1.

We use the aforementioned lemma with Θ(log k) measuremenents to obtain such a value V
with probability 1− 1/poly(k). Now let c be an absolute constant and let g : [n]→ [kc] be a ran-
dom hash function. Then, with probability at least 1− 1

poly(k)
we have that for every i, j ∈ Hk(x),

g(i) 6= g(j). By running PARTITIONCOUNTSKETCH(x, 2C1k, {g−1(1), g−1(2), . . . g−1(kc)}, we
get back an estimate wj for every j ∈ [kc]; here C1 is an absolute constant. Let γ′ be an absolute
constant to be chosen later. We set S = {j ∈ [kc] : w2

j ≥ γ′V } and T =
⋃
j∈S g

−1(j). We prove
the following lemma.
Lemma 26. Let C ′ be an absolute constant. With probability at least 1− 1/poly(k) the following
holds.

1. |S| = O(k).
2. Every j ∈ [kc] such that there exists i ∈ Hk(x) ∩ g−1(j), will be present in S.
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3. For every j ∈ S, there exists exactly one coordinate i ∈ g−1(j) with x2
i ≥ 1

C′k‖x−C2k‖2
2.

4. For every j ∈ S, ‖xg−1(j)\Hk(x)‖2
2 ≤ 1

k2‖x−k‖2
2.

Proof. Let C0 be an absolute constant larger than 1. Note that with probability 1 − C2
0 · k6−c,

all i ∈ HC0k3(x) (and, hence, also in HC0k3,1/k3(x)) are isolated under g. Fix j ∈ [kc] and, for
i ∈ [n], define the random variable Yi = 1g(xi)=jx

2
i . Now observe that

E


 ∑

i∈g−1(j)\HC0k
3,1/k3 (x)

Yi


 =

1

kc
‖x−C0k3‖2

2.

Applying Bernstein’s inequality to the variables Yi with

K =
1

C0k3
‖x−C0k3‖2

2, and σ2 <
1

kc+3
‖x−C0k3‖4

2,

we have that

Pr


 ∑

i∈g−1(j)\HC0k
3,1/k3 (x)

x2
i ≥ 1/k2‖x−C0k2‖2

2


 ≤ e−k,

where c is an absolute constant. This allows us to conclude that the above statement holds for
all different kc possible values j, by a union-bound. We now prove the bullets one by one. We
remind the reader that PARTITIONCOUNTSKETCH aproximates the value of every ‖xg−1(j)‖2

2 with
a multiplicate error in [1− γ, 1 + γ] and additive error 1

C0k
‖x−k‖2

2.

1. Since there are at most 1
γ′(1+γ)

C2k + C2k indices j with (1 + γ)‖xg−1(j)‖2
2 ≥ γ′

k
‖x−k‖2

2 ≥
γ′V , the algorithm can output at most O(k) indices.

2. The estimate for such a j will be at least (1− γ) 1
k
‖x−k‖2

2− 1
2C1k
‖x−C2k‖2

2 ≥ γ′V , for some
suitable choice of γ′. This implies that j will be included in S.

3. Because of the guarantee for V and the guarantee of PARTITIONCOUNTSKETCH, we have
that all j that are in S satisfy (1 + γ)‖xg−1(j)‖2

2 + 1
k
‖x−2C1k‖2

2 ≥ γ′

k
‖x−C2k‖2

2, and since

∑

i∈g−1(j)\HC0k
3 (x)

x2
i ≤

1

k2
‖x−k‖2

2,

this implies that there exists i ∈ HC0k3(x) ∩ g−1(j). But since all i ∈ HC0k3(x) are perfectly
hashed under g, this implies that this i should satisfy x2

i ≥ 1
C′k‖x−C2k‖2

2, from which the claim
follows.

4. Because elements in HC0k3(x) are perfectly hashed, we have that

‖xg−1(j)\Hk(x)‖2
2 = ‖xg−1(j)\HC0k

3
(x)‖2

2 ≤
1

k2
‖x−k‖2

2

for C0 large enough.
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Given S, we proceed in the following way. For every j ∈ S, we run the algorithm guaranteed
by Lemma 15 from the full version 6 to obtain an index ij , using O(kloglogn) measurements.
Then we observe directly xij using anotherO(k) measurements, and form vector z = x−x{ij}j∈S .
We need the following lemma.
Lemma 27. With probability 1− 1/poly(k), |Hk(x) \ {ij}j∈S| ≤ k

log2 n
.

Proof. Let us consider the calls to the 1-sparse recovery routine in j for which there exists i ∈
Hk(x)∩ g−1(j). Since the 1-sparse recovery routine succeeds with probability 1− 1/poly(log n),
then the probability that we have more than k

log2 n
calls that fail, is

(
k
k

log2 n

)(
1

poly(log n)

)k/ log2 n

≤ 1

poly(k)
.

This gives the proof of the lemma.

For the last step of our algorithm, we run PARTITIONCOUNTSKETCH(zT , k/ log(n), [n]) to
estimate the entries of z. We then find the coordinates with the largest 2k estimates, and observe
them directly. Since

log n

k
‖(zT )−k/ logn‖2

2 ≤
log n

k
· 1

k2
‖x−k‖2

2 =
log n

k3
‖x−k‖2

2,

every coordinate will be estimated up to additive error logn
k3 ‖x−k‖2

2, which shows that every
coordinate in T ∩ Hk,1/k(x) will be included in the top 2k coordinates. Putting everything
together, we obtain the desired result.

Proofs of Theorem 12

In this section, we give an algorithm for `2/`2 compressed sensing using O(loglogn) rounds,
instead of O(log∗ k · loglogn) rounds. Specifically, we firstly prove the first bullet of Theorem 12.
We call this algorithm ADAPTIVESPARSERECOVERY`∞/`2 .

We proceed with the design and the analysis of the algorithm. We note that for k/ε =
O(log5 n)7, `∞/`2 gives already the desired result. So, we focus on the case of k/ε = Ω(log5 n).
We pick a hash function h : [n] → [B], where B = ck/(ε log n) for some constant c large
enough. The following follows by an application of Bernstein’s Inequality and the Chernoff
Bound, similarly to `∞/`2.
Lemma 28. With probability 1− 1/poly(n), the following holds:

∀j ∈ [B] : |Hk/ε(x) ∩ h−1(j)| ≤ log n, and

∣∣∣∣∣∣
∑

i∈h−1(j)\Hk/ε(x)

x2
i

∣∣∣∣∣∣
≤ ε

k
‖x−k‖2

2.

6see https://arxiv.org/pdf/1804.09673.pdf
7the constant 5 is arbitrary
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We now run the `∞/`2 algorithm for the previous section on vectors xh−1(1), xh−1(2), . . . , xh−1(B)

with sparsity parameter O(log n), to obtain vectors x̂1, x̂2, . . . , x̂B. The number of rounds is
O(loglog(n)), since we can run the algorithm in every bucket in parallel. By the definition of
the `∞/`2 algorithm, one can see that |supp(x̂j)| ≤ O(log n). We set S = ∪j∈B|supp(xj)|,
and observe that |S| = ck/(ε log n) · O(log n) = O(k/ε). The number of measurements equals
ck/(ε log n) · O(log n · loglog(n log(n/k))) = O((k/ε) · loglog(n log(n/k))).
Lemma 29. With probability 1− 1/poly(n), we have that |S \Hk/ε(x)| ≤ k

ε log2 n
.

Proof. Since every call to `∞/`2 fails with probability 1/poly(log n), the probability that we have
more than a 1

logn
fraction of the calls that fail is at most

(
B

B/ log2 n

)(
1

log n

)B/ logn

≤ (e log2 n)logn(log n)−B/ logn ≤ 1

poly(n)
.

This implies that S will contain all but at most B/ log2 n · log n = k/(ε log2 n) coordinates
i ∈ Hk(x).

We now observe xS directly and form the vector z = x − xS , for which ‖z−k/(ε log2 n)‖2 ≤
‖x−k/ε‖2. We now run a standard `2/`2 algorithm that fails with probability 1/poly(n) to obtain
a vector ẑ that approximates z (for example PARTITIONCOUNTSKETCH(z, k/(ε log2 n), [n])
suffices). We then output ẑ + xS , for which ‖ẑ + xS − x‖2 = ‖ẑ − z‖ ≤ (1 + ε)‖z−k/(ε logn)‖2 ≤
(1 + ε)‖x−k‖2. The number of measurements of this step is O(1

ε
k

log2 n
· log n) = o(k

ε
). The total

number of rounds is clearly O(loglog(n log(nε
k

))).
We now prove the second part of Theorem 12. We first need an improved algorithm for the

1-sparse recovery problem.
Lemma 30. Let x ∈ Rn. There exists an algorithm IMPROVEDONESPARSERECOVERY, that
uses O(loglogn+ 1

ε
loglog(1

ε
)) measurements in O(loglog(n)) rounds, and finds with sufficiently

small constant probability an O(1)-sparse vector x̂ such that ‖x̂− x‖2 ≤ (1 + ε)‖x−1‖2.

Proof. We pick a hash function h : [n] → [B], where B = d1/εhe for a sufficiently large
constant h. Observe that all elements of H√B(x) are perfectly hashed under h with constant

probability, and, ∀j ∈ [B], E
[∥∥∥xh−1(j)\H√B(x)

∥∥∥
2

]
≤ 1/B‖x−√B‖2. As in the previous sections,

invoking Bernstein’s inequality we can get that with probability 1 − 1/poly(B), ∀j ∈ [B],∥∥∥xh−1(j)\H√B(x)‖2

∥∥∥
2

2
≤ c logB

B
‖x−√B‖2

2, where c is some absolute constant, and the exponent in
the failure probability is a function of c.

We now define the vector z ∈ RB, the j-th coordinate of which equals zj =
∑

i∈h−1(j) σi,jxi.
We shall invoke Khintchine inequality to obtain

∀j, Pr



∣∣∣∣∣∣

∑

i∈h−1(j)\H√B(x)

σi,jxi

∣∣∣∣∣∣

2

>
c′

ε

∥∥∥xh−1(j)\H√B(x)

∥∥∥
2

2


 ≤ e−Ω(1/ε2)
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, for some absolute constant c′. This allows us to take a union-bound over allB = d1/εhe entries of

z to conclude that there exists an absolute constant ζ such that ∀j ∈ [B],
∣∣∣
∑

i∈h−1(j)\H√B(x) σi,jxi

∣∣∣
2

≤
c′
ε
‖xh−1(j)\H√B(x)‖2

2 < ζε‖x−1‖2
2, by setting h large enough. Now, for every coordinate j ∈ [B] for

which h−1(j)∩H1,ε(x) = i∗ or some i∗ ∈ [n], we have that |zj| ≥
∣∣∣∣|xi∗| −

√
c logB
B
· c′
ε
‖x−√B‖2

∣∣∣∣ ≥
(1 − ζ)

√
ε‖x−1‖2, whereas for every j ∈ [B] such that h−1(j) ∩ H1,εζ(x) = ∅ it holds that

|zj| ≤ 2ζ
√
ε‖x−1‖2. We note that H1,ε(x) ⊂ H√B(x), and hence all elements of H1,ε(x) are also

perfectly hashed under h. Moreover, observe that E‖z−1‖2
2 ≤ ‖x−1‖2

2, and hence by Markov’s
inequality, we have that ‖z−1‖2

2 ≤ 10‖x−1‖2
2 holds with probability 9/10. We run the `2/`2

algorithm of Theorem 12 for vector z with the sparsity being set to 1, and obtain vector ẑ. We then
set S = supp(ẑ). We now define w = (|z1|, |z2|, . . .), for which ‖w−1‖2 = ‖z−1‖2. Clearly, ‖z −
zS‖2

2 ≤ ‖z− ẑ‖2
2 ≤ (1+ε)‖z−1‖2

2 = (1+ε)‖w−1‖2
2. So ‖w−wS‖2

2 = ‖z−zS‖2
2 ≤ (1+ε)‖w−1‖2

2.
We now prove that

∥∥x− x∪j∈Sh−1(j)

∥∥
2
≤ (1 +O(ε))‖x−1‖2. Let i∗ be the largest coordinate in

magnitude of x, and j∗ = h(i∗). If j∗ ∈ S, then it follows easily that ‖x−x∪j∈Sh−1(j)‖2 ≤ ‖x−1‖2.
Otherwise, since

∑
j 6=j∗ w

2
j = ‖w−1‖2

2, and
∑

j /∈S w
2
j ≤ (1 + ε)‖w−1‖2

2, it must be the case that∣∣w2
j∗ − ‖wS‖2

2

∣∣ ≤ ε‖w−1‖2
2 ≤ 10ε‖x−1‖2

2. The above inequality, translates to
∑

i∈h−1(j∗) x
2
i ≤

|S|ζε‖x−1‖2
2 +ζε‖x−1‖2

2 +10ε‖x−1‖2
2 +
∑

j∈S
∑

i∈h−1(j) x
2
j = O(ε)‖x−1‖2

2 +
∑

j∈S
∑

i∈h−1(j) x
2
j .

This gives
∥∥x− x∪j∈Sh−1(j)

∥∥
2

=
∑

i∈h−1(j∗) x
2
i +

∑
j /∈S∪{j∗}

∑
i∈h−1(j) x

2
i ≤ O(ε)‖x−1‖2

2 +

O(1)ζε‖x−1‖2
2 +

∑
j∈S
∑

i∈h−1(j) x
2
j +

∑
j /∈S∪{j∗}

∑
i∈h−1(j) x

2
i+ ≤ (1 +O(ε))‖x−1‖2

2.

Given S, we run the 1-sparse recovery routine on vectors xj for j ∈ S, with a total of
O(loglogn) measurements and O(loglogn) rounds. We then output {xij}j∈S . Let ij be the
index returned for j ∈ S by the 1-sparse recovery routine. Since we have a constant number of
calls to the 1-sparse recovery routine (because S is of constant size), all our 1-sparse recovery
routines will succeed. We now have that ‖x − x∪j∈Sij‖2 ≤ ‖xS̄‖2 +

∑
j∈S ‖xh−1(j) − xij‖2 ≤

‖xS̄‖2 +
∑

j∈S(1 + ε)‖xh−1(j)\H1(x)‖1 ≤ (1 + O(ε))‖x−1‖2. Rescaling ε, we get the desired
result.

The algorithm for general k is similar to [121], apart from the fact that we subsample at a
slower rate, and also use our new 1-sparse recovery algorithm as a building block. In the algorithm
below, Rr is the universe we are restricting our attention on at the rth round. Moreover, J is the
set of coordinates that we have detected so far. We are now ready to prove Theorem 12.

Proof. The number of measurements is bounded in the exact same way as in Theorem 3.7 from
[121].

We fix a round r and i ∈ Hkr,εr(x
(r)). Then the call to SUBSAMPLE(Rr, 1/(C0kr)) yields

Pr
[
|Hkr,εr(x− x(r)) ∩ St| = {i}

]
≥ 1

C0kr
, E

[
‖xSt\Hkr,εi (x(r))‖2

2

]
=

1

C0kr
‖x−kr‖2

2.

Setting C0 to be large enough and combining Markov’s inequality with the guarantee of Lemma
30, we get that the probability that the call to IMPROVEDONESPARSERECOVERY(xSt) returns
i is Θ(1/kr). Because we repeat kr log(1/(frδr)), the probability that i or a set Si of size O(1)
such that ‖x{i} − xSi‖2 ≤ εi‖x−kr‖2

2, is not added in J is at most (1− 1/kr)
kr log(1/(frδr)) = frδr.
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Algorithm 6 Adaptive `2/`2 Sparse Recovery
1: R0 ← [n].
2: x0 ← ~0.
3: δ0 ← δ/2, ε0 ← ε/e, f0 ← 1/32, k0 ← k.
4: J ← ∅.
5: For r = 0 to O(log∗ k) do
6: For t = 0 to Θ(kr log(1/(δrfr))) do
7: St ← SUBSAMPLE(x− x(r), Rr, 1/(C0kr)).
8: J ← J ∪ IMPROVEDONESPARSERECOVERY((x− x(r))St).
9: End For

10: Rr+1 ← [n] \ J .
11: δr+1 ← δr/8.
12: εr+1 ← εr/2.
13: fr+1 ← 1/21/(4i+rfr).
14: kr+1 ← frkr.
15: Rr+1 ← [n] \ J .
16: End For
17: x̂← x(r+1).
18: Return x̂.

Given the above claim, the number of measurements isO((kloglogn+k/εloglog(1/ε) log(1/δ))
and the analysis of the iterative loop proceeds almost identically to Theorem 3.7 of [121].
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Chapter 3

Learning with Low-Rank Approximations

3.1 Matrix Completion and Robust PCA

3.1.1 Introduction
Non-convex matrix factorization problems have been an emerging object of study in theoretical
computer science [8, 106, 123, 172, 193, 214, 215, 220], optimization [209, 239], machine
learning [37, 87, 88, 122, 155, 238], and many other domains. In theoretical computer science
and optimization, the study of such models has led to significant advances in provable algorithms
that converge to local minima in linear time [2, 5, 106, 123, 220]. In machine learning, matrix
factorization serves as a building block for large-scale prediction and recommendation systems,
e.g., the winning submission for the Netflix prize [138]. The matrix factorization problems can
be stated as finding a target matrix X∗ in the form of X∗ = AB, by minimizing the objective
function H(AB) + 1

2
‖AB‖2

F or H(AB) + 1
2
‖A‖2

F + 1
2
‖B‖2

F over factor matrices A ∈ Rn1×r

and B ∈ Rr×n2 with a known value of r � min{n1, n2}, where H(·) is some function that
characterizes the desired properties of X∗. Two prototypical examples are matrix completion and
robust Principal Component Analysis (PCA).

This work develops a novel framework to analyze a class of non-convex matrix factorization
problems and show their strong duality, which leads to exact recoverability for matrix completion
and robust PCA via the solutions to convex optimization problems. Strong duality is well
understood for convex optimization, but very few non-convex problems were known to have this
property. The results in this work thus significantly expand the set of non-convex problems with
strong duality. Furthermore, our framework also shows exact recoverability of the two prototypical
examples matrix completion and robust PCA with nearly-optimal sample complexity.

Our work is motivated by several promising areas where our analytical framework for non-
convex matrix factorizations is applicable. The first area is low-rank matrix completion. It has
been shown that a low-rank matrix can be exactly recovered by finding a solution of the form AB
that is consistent with the observed entries (assuming that it is incoherent) [88, 123, 220]. This
problem has received a tremendous amount of attention due to its important role in optimization
and its wide applicability in many areas such as quantum information theory and collaborative
filtering [21, 106, 255]. The second area is robust PCA, a fundamental problem of interest in data
processing. It aims at recovering both the low-rank and the sparse components exactly from their
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superposition [57, 100, 177, 247, 253, 255], where the low-rank component corresponds to the
product of A and B while the sparse component is captured by a proper choice of function H(·),
e.g., the `1 norm [17, 57]. Besides these two areas, we believe that our analytical framework can
be potentially applied to other non-convex problems more broadly, e.g., matrix sensing [225],
dictionary learning [219], weighted low-rank approximation [155, 193], and deep linear neural
network [131], which may be of independent interest.

Without assumptions on the structure of the objective function, direct formulations of matrix
factorization problems are NP-hard to optimize in general [110, 251]. With standard assumptions
on the structure of the problem and with sufficiently many samples, these optimization problems
can be solved efficiently, e.g., by convex relaxation [55, 63]. Some other methods run local
search algorithms given an initialization close enough to the global solution in the basin of
attraction [87, 106, 123, 126, 220]. However, these methods have sample complexity significantly
larger than the information-theoretic lower bound; see Table 3.1 for a comparison. The problem
becomes even more challenging when the number of samples is small enough that the sample-
based initialization can be far from the desired solution, in which case the algorithm can run into
a local minimum or a saddle point.

Another line of work has focused on studying the loss surface of matrix factorization problems,
providing positive results for approximately achieving global optimality. One nice property in
this line of research is that there is no spurious local minima for specific applications such as
matrix completion [88], matrix sensing [37], dictionary learning [219], phase retrieval [218],
linear deep neural networks [131], etc. However, these results are based on concrete forms of
objective functions. Also, even when any local minimum is guaranteed to be globally optimal, in
general it remains NP-hard to escape high-order saddle points [6], and additional arguments are
needed to show the achievement of a local minimum. Most importantly, all existing results rely
on strong assumptions on the sample size.

3.1.2 Our results on sample efficiency, optimization, and robustness
Our work studies a variety of non-convex matrix factorization problems, and the goal is to provide
a unified framework to analyze a large class of matrix factorization problems and to provide
efficient algorithms to achieve global optimum. Our main results show that although matrix
factorization problems are hard to optimize in general, under certain dual conditions the duality
gap is zero, and thus the problem can be converted to an equivalent convex program.

To state the main theorem of our framework, recall that a function H(·) is closed if for
each α ∈ R, the sub-level set {X ∈ Rn1×n2 : H(X) ≤ α} is a closed set. Also, recall the
nuclear norm (a.k.a. trace norm) of a matrix X is ‖X‖∗ =

∑r
i=1 σi(X). Define the r∗-norm to be

‖X‖r∗ = maxM〈M,X〉 − 1
2
‖M‖2

r where ‖M‖2
r =

∑r
i=1 σ

2
i (M) is the sum of the first r largest

squared singular values. Note that both ‖X‖∗ and ‖X‖r∗ are convex functions. Our main results
are as follows.
Theorem 16 (Strong Duality. Informal). Under certain dual conditions, strong duality holds for
the non-convex optimization problem

(Ã, B̃) = argmin
A∈Rn1×r,B∈Rr×n2

H(AB) +
1

2
‖AB‖2

F , (3.1)
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where H(·) is convex and closed. In other words, problem (3.1) and its bi-dual problem

X̃ = argmin
X∈Rn1×n2

H(X) + ‖X‖r∗, (3.2)

have exactly the same optimal solutions in the sense that ÃB̃ = X̃.
Similarly, under certain dual conditions, strong duality holds for the non-convex optimization

problem

(Ā, B̄) = argmin
A∈Rn1×r,B∈Rr×n2

H(AB) +
1

2
‖A‖2

F +
1

2
‖B‖2

F , (3.3)

where H(·) is convex and closed. In other words, problem (3.1) and its bi-dual problem

X̄ = argmin
X∈Rn1×n2

H(X) + ‖X‖∗, (3.4)

have exactly the same optimal solutions in the sense that ĀB̄ = X̄.

Description of dual conditions. Intuitively, the dual conditions in the above-mentioned theorems
state that the angle between ∂H(ÃB̃) and the row and column spaces of ÃB̃ is small. In other
words, there is a matrix in the sub-differential set ∂H(ÃB̃) which has almost the same row and
column spaces as matrix ÃB̃. For example, we have ∂H(ÃB̃) = Ω for the matrix completion
problem, where Ω represents the subspace of matrices supported on the observed indices. Then
the dual conditions require that there is a matrix which is supported on the observed indices and
shares almost the same row and column spaces as ÃB̃.

Theorem 20 connects the non-convex programs (3.1) to its convex counterpart (3.2) via strong
duality; see Figure 3.1. Note that strong duality rarely holds in the non-convex optimization
region: low-rank matrix approximation [182] and quadratic optimization with two quadratic
constraints [33] are among the few paradigms that enjoy such a nice property. Given strong
duality, the computational issues of the original problem can be overcome by solving the convex
bi-dual problem (3.2).

Furthermore, Theorem 20 also connects the non-convex programs (3.3) to its convex coun-
terpart (3.4): the theorem connects 1

2
‖A‖2

F + 1
2
‖B‖2

F to the nuclear norm ‖X‖∗. This gives new
insights for the nuclear norm relaxation technique commonly used for optimization problems
with low rank constraints from the perspective of strong duality. The theorem also connects the
regularization 1

2
‖AB‖2

F to the r∗ norm ‖X‖r∗. This regularization is of special interest to many
matrix factorization problems. For example, when H(AB) = 1

2
‖X‖2

F − 〈X,AB〉, problem (3.1)
reduces to the PCA problem: minA,B

1
2
‖X −AB‖2

F . When H(AB) = 1
2
‖X‖2

F − 〈X,AB〉 +
γ‖A‖2

F + γ‖B‖2
F , problem (3.1) reduces to the quadratically regularized PCA problem [227]:

minA,B
1
2
‖X−AB‖2

F + γ‖A‖2
F + γ‖B‖2

F . Our framework of strong duality is then applicable
to all these problems.

The positive result of our framework is complemented by a lower bound to formalize the
hardness of the above problem in general. Assuming that the random 4-SAT problem [193] is
hard, we give a strong negative result for deterministic algorithms. If also BPP = P, then the
same conclusion holds for randomized algorithms succeeding with probability at least 2/3.
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Figure 3.1: Strong duality of matrix factorizations.

Theorem 17 (Hardness Statement). Assuming that random 4-SAT is hard on average, there is
a problem in the form of (3.1) such that any deterministic algorithm achieving (1 + ε)OPT in
the objective function value with ε ≤ ε0 requires 2Ω(n1+n2) time, where OPT is the optimum and
ε0 > 0 is an absolute constant. If BPP = P, then the same conclusion holds for randomized
algorithms succeeding with probability at least 2/3.

Now we turn to the application of our framework. This only requires the verification of the
dual conditions in Theorem 20. We will show that two prototypical problems, matrix completion
and robust PCA, obey the conditions. They belong to the linear inverse problems of form (3.1)
with a proper choice of function H(·), which aim at exactly recovering a hidden matrix X∗ with
rank(X∗) ≤ r given a limited number of linear observations of it.

For matrix completion, the linear measurements are of the form {X∗ij : (i, j) ∈ Ω}, where Ω
is the support set which is uniformly distributed among all subsets of [n1]× [n2] of cardinality m.
With strong duality, we can either study the exact recoverability of the primal problem (3.1), or
investigate the validity of its convex dual (or bi-dual) problem (3.2). Here we study the former
with tools from geometric functional analysis. Recall that in the analysis of matrix completion,
one typically requires a µ-incoherence condition for a given rank-r matrix X∗ with skinny SVD
UΣVT [56, 194]:

‖UTei‖2 ≤
√
µr

n1

for all i ∈ [n1], and ‖VTei‖2 ≤
√
µr

n2

for all i ∈ [n2], (3.5)

‖X∗‖∞ ≤
√

µr

n1n2

σr(X
∗). (3.6)

where ei’s are basis vectors with i-th entry equal to 1 and other entries equal to 0. The incoherence
condition claims that information spreads throughout the left and right singular vectors and is
standard in the matrix completion literature. Under this standard condition, we have the following
results.
Theorem 18 (Matrix Completion). There exist optimization problems for matrix completion
in the forms of (3.1) and (3.2) that enjoy strong duality with each other and exactly recovers
X∗ with high probability, provided that m = O(κ2µ(n1 + n2)r log(n1 + n2) log2κ(n1 + n2))
or m = O(µ(n1 + n2)r log2(n1 + n2)), where κ is the condition number of X∗. The sample
complexity lower bound is Ω(µr(n1 + n2) log(n1 + n2)).

To the best of our knowledge, our result is the first to connect convex matrix completion
to non-convex matrix completion, two parallel lines of research that have received significant
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Table 3.1: Comparison of matrix completion methods. Here κ = σ1(X∗)/σr(X∗) is the condition
number of X∗ ∈ Rn1×n2 , ε is the accuracy such that the output X̃ obeys ‖X̃ − X∗‖F ≤ ε,
n(1) = max{n1, n2} and n(2) = min{n1, n2}.

Work Sample Complexity Incoherence

[123] O
(
κ4µ2r4.5n(1) log n(1) log

(
r‖X∗‖F

ε

))
(3.5)

[106] O
(
µrn(1)(r + log

(
n(1)‖X∗‖F

ε

)
‖X∗‖2F
σ2
r

)
(3.5)

[88] O(max{µ6κ16r4, µ4κ4r6}n(1) log2 n(1)) ‖X∗i:‖2≤ µ‖X∗‖F√
n(2)

[220] O(rn(1)κ
2 max

{
µ log n(2),

√
n(1)

n(2)
µ2r6κ4

}
(3.5)

[266] O(µr2n(1)κ
2 max(µ, log n(1))) (3.5)

[85] O
((
µ2r4κ2 + µr log

(
‖X∗‖F

ε

))
n(1)log

(
‖X∗‖F

ε

))
(3.5)

[265] O
(
µr3n(1) log n(1) log

(
1
ε

))
(3.5)

[134] O
(
n(2)r

√
n(1)

n(2)
κ2 max

{
µ log n(2), µ

2r
√

n(1)

n(2)
κ4
})

(3.5) and (3.6)

[98] O(µrn(1) log2 n(1)) (3.5) and (3.6)
[63] O(µrn(1) log2 n(1)) (3.5)
Ours O(κ2µrn(1) log(n(1)) log2κ(n(1))) (3.5)
Ours O(µrn(1) log2 n(1)) (3.5)

Lower Bound1 Ω(µrn(1) log n(1)) (3.5)

attention in the past few years. Table 3.1 compares our results with prior results. Ours match the
best known results but further provide strong duality. Also, our results are achieved by a clean
framework for a class of related problems.

For robust PCA, instead of studying exact recoverability of problem (3.1) as for matrix
completion, we investigate problem (3.2) directly. The robust PCA problem is to recover an
incoherent low-rank component X∗ and a sparse component S∗ from their sum [1, 57]. We obtain
the following theorem for robust PCA.
Theorem 19 (Robust PCA). There exists a convex optimization formulation for robust PCA in the
form of problem (3.2) that exactly recovers the incoherent matrix X∗ ∈ Rn1×n2 and S∗ ∈ Rn1×n2

with high probability, even if rank(X∗) = Θ
(

min{n1,n2}
µ log2 max{n1,n2}

)
and the size of the support of

S∗ is m = Θ(n1n2), where the support set of S∗ is uniformly distributed among all sets of
cardinality m, and the incoherence parameter µ satisfies the incoherence condition (3.5) and
‖X∗‖∞ ≤

√
µr
n1n2

σr(X
∗).

The bounds in Theorem 19 match the best known results in the robust PCA literature when
the supports of S∗ are uniformly sampled [57], while our assumption is arguably more intuitive.
Note that our results hold even when X∗ is close to full rank and a constant fraction of the entries
have noise.

1This lower bound is information-theoretic [56].
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Independently of our work, [89] developed a framework to analyze the loss surface of low-
rank problems, and applied the framework to matrix completion and robust PCA. For matrix
completion, their sample complexity is O(κ6µ4r6(n1 + n2) log(n1 + n2)), significantly larger
than our bound. For robust PCA, the number of the outlier entries that their method can tolerate is
O
(
n1n2

µrκ5

)
, but their result is for deterministic outlier entries and thus are not directly comparable

to ours. [262] also studied the robust PCA problem using non-convex optimization, where the
outlier entries are also deterministic and the number of outliers that their algorithm can tolerate is
O
(
n1n2

rκ

)
.

3.1.3 Our techniques

Reduction to low-rank approximation. Our results are inspired by the low-rank approximation
problem:

min
A∈Rn1×r,B∈Rr×n2

1

2
‖ − Λ̃−AB‖2

F . (3.7)

We know that all local solutions of (4.7) are globally optimal and that strong duality holds for
any given matrix −Λ̃ ∈ Rn1×n2 [99]. To extend this property to our more general problem (3.1),
our main insight is to reduce problem (3.1) to the form of (4.7) using the `2-regularization term.
While some prior work attempted to apply a similar reduction, their conclusions either depended
on unrealistic conditions on local solutions, e.g., all local solutions are rank-deficient [99, 104], or
their conclusions relied on strong assumptions on the objective functions, e.g., that the objective
functions are twice-differentiable [105]. For example, the conditions that all local solutions are
rank-deficient break down even for the PCA problem, and the assumptions that the objective
function is twice-differential preclude H(·) in (3.1) and (3.3) from encoding hard constraints.
Instead, our general results formulate strong duality via the existence of a dual certificate Λ̃. For
concrete applications, the existence of a dual certificate is then converted to mild assumptions,
e.g., that the number of measurements is sufficiently large and the positions of measurements are
randomly distributed. We will illustrate the importance of randomness below.

The blessing of randomness. The desired dual certificate Λ̃ may not exist in the deterministic
world. A hardness result [193] shows that for the problem of weighted low-rank approximation,
which can be cast in the form of (3.1), without some randomization in the measurements made on
the underlying low rank matrix, it is NP-hard to achieve a good objective value, not to mention
to achieve strong duality. A similar result was shown for deterministic matrix completion [107].
Thus we should utilize randomness to analyze the existence of a dual certificate. For specific
applications such as matrix completion, the assumption that the measurements are random is
standard, under which, the angle between the space Ω (the space of matrices which are consistent
with observations) and the space T (the space of matrices which are low-rank) is small with
high probability, namely, X∗ is almost the unique low-rank matrix that is consistent with the
measurements. Thus, our dual certificate can be represented as another form of a convergent
Neumann series concerning the projection operators on the spaces Ω and T ; otherwise, the same
construction of Neumann series may diverge as the norm concerning the projection operators on
the spaces Ω and T is larger than 1 in the deterministic worst case. The remainder of the proof
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is to show that such a construction obeys the dual conditions. To show this, we use the fact that
the subspace Ω and the complement space T ⊥ are almost orthogonal when the sample size is
sufficiently large. This implies the projection of our dual certificate on the space T ⊥ has a very
small norm, which exactly matches the dual conditions.
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Set 𝒟𝑠(𝐗∗) 
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0 𝐷𝒮(𝐗∗) 

) 
𝕊𝑛1×𝑛2−1 𝐷𝒮(𝐗∗)  ∩ 𝕊𝑛1×𝑛2−1 

 

) 

Figure 3.2: Feasibility.

Non-convex geometric analysis. Strong duality implies that the
primal problem (3.1) and its bi-dual problem (3.2) have exactly
the same solutions in the sense that ÃB̃ = X̃. Thus, to show
exact recoverability of linear inverse problems such as matrix
completion and robust PCA, it suffices to study either the non-
convex primal problem (3.1) or its convex counterpart (3.2). Here
we do the former analysis for matrix completion. We mention that
traditional techniques [56, 61, 194] for convex optimization break
down for our non-convex problem, since the subgradient of a non-
convex objective function may not even exist [44]. Instead, we
apply tools from geometric analysis [234] to analyze the geometry
of problem (3.1). Our non-convex geometric analysis is in stark
contrast to prior techniques of convex geometric analysis [236]
where convex combinations of non-convex constraints were used
to define the Minkowski functional (e.g., in the definition of atomic norm) while our method uses
the non-convex constraint itself.

For matrix completion, problem (3.1) has two hard constraints: a) the rank of the output matrix
should be no larger than r, as implied by the form of AB; b) the output matrix should be consistent
with the sampled measurements, i.e., PΩ(AB) = PΩ(X∗). We study the feasibility condition of
problem (3.1) from a geometric perspective: ÃB̃ = X∗ is the unique optimal solution to problem
(3.1) if and only if starting from X∗, either the rank of X∗ + D or ‖X∗ + D‖F increases for all
directions D’s in the constraint set Ω⊥ = {D ∈ Rn1×n2 : PΩ(X∗ + D) = PΩ(X∗)}. This can
be geometrically interpreted as the requirement that the set DS(X∗) = {X − X∗ ∈ Rn1×n2 :
rank(X) ≤ r, ‖X‖F ≤ ‖X∗‖F} and the constraint set Ω⊥ must intersect uniquely at 0 (see Figure
3.2). This can then be shown by a dual certificate argument.

Putting things together. We summarize our new analytical framework with Figure 3.3.

	

Non-Convex	Problems	(1)(3)	
(NP-hard	in	general)	

Randomness	

Geometric	
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Figure 3.3: New analytical framework for non-convex matrix factorization.
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Other techniques. An alternative method is to investigate the exact recoverability of problem
(3.2) via standard convex analysis. We find that the sub-differential of our induced function ‖ · ‖r∗
has similar properties as that of the nuclear norm. With this observation, we prove the validity of
robust PCA in the form of (3.2) by combining this property of ‖ · ‖r∗ with standard techniques
from [57].

3.1.4 Experimental results
Experiments on synthetic data

We verify the exact recoverability of the r∗ minimization (3.16) and the nuclear norm minimiza-
tion [55] on the matrix completion problem by experiments on the synthetic data. The synthetic
data are generated as follows. We construct the ground-truth matrix X∗ = AB as a product of
matrices A of size n× r and B of size r× n, whose entries are i.i.d. N (0, 1). We then uniformly
sample m entries from X∗ as the observations. For each size of the problem (X∗ is 100 × 100
or 200 × 200), we test with different rank ratios r/n and observation ratios m/n2. Each set of
parameters is run 5 times, and the algorithm is said to succeed if ‖X̃ −X∗‖F/‖X∗‖F ≤ 10−3

for all five experiments, where X̃ is the output of the algorithms. We set the parameter r in r∗

minimization (3.16) as the true rank, and use the Augmented Lagrange Multiplier Method [62]
for optimization, where the proximal map of r∗ norm is computed as in [99].

The two figures in Figure 3.4 plots the fraction of exact recoveries: the white region represents
the exact recovery by nuclear norm minimization, the white+gray region represents the exact
recovery by r∗ minimization (3.16), and the black region indicates the failure for both algorithms.
It is clear that both algorithms succeed for a wide range of parameters. The success region of r∗

minimization is slightly larger and contains the success region of the nuclear norm minimization
for both 100× 100 and 200× 200 matrix completion problems.
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Figure 3.4: Exact recoverability of matrix completion with varying ranks and sample sizes. White
Region: nuclear norm minimization succeeds. White and Gray Regions: r∗ minimization
succeeds. Black Region: both algorithms fail. It shows that the success region of r∗ minimization
slightly contains that of the nuclear minimization method.
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Experiments on real data

Table 3.2: Relative error by matrix completion algorithms on the Hopkins 155 dataset.
m = 0.05n1n2 m = 0.1n1n2

#Task Size Nuclear r∗ Nuclear r∗

Average over all 155 tasks – 0.8249 0.8114 0.5689 0.5409
#1 59× 459 0.7438 0.5948 0.5115 0.5117
#2 49× 482 0.8235 0.6564 0.6371 0.5919
#3 49× 153 0.7803 0.9174 0.5386 0.5386
#4 49× 379 0.8500 0.9583 0.7287 0.7691
#5 49× 432 0.8174 0.6353 0.4476 0.4477

To verify the performance of the algorithms on real data, we conduct experiments on the Hopkins
155 dataset. This dataset consists of 155 tasks/matrices, each of which consists of multiple data
points drawn from 2 or 3 moving objects. The trajectory of each object lies in a low-dimensional
subspace, so the matrix for each task is supposed to be approximately low rank. We uniformly
sample m entries from the matrix as our observations and run the matrix completion algorithms.
The parameter r in the r∗ minimization is set as the number of moving objects which is known to
us in the dataset.

Table 3.2 shows the the relative errors ‖X̂−X∗‖F/‖X∗‖F of the nuclear norm minimization
and r∗ minimization (3.16). On average, r∗ minimization slightly outperforms the competitor,
while sometimes the nuclear norm minimization is better. Table 3.2 also shows the errors on the
first five tasks in the dataset. It shows that when the number of observations is relatively large
(10% observations or higher), the performance of the two algorithms are competitive to each other.
When the number of observations is small (5% observed entries), there is a larger variance, but on
average r∗ minimization has an slight advantage.

3.1.5 Proofs of our main results
New framework of strong duality

We consider the problem

(Ã, B̃) = argmin
A∈Rn1×r,B∈Rr×n2

H(AB) +
1

2
‖AB‖2

F ,

We first consider an easy case where H(AB) = 1
2
‖Ŷ‖2

F − 〈Ŷ,AB〉 for a fixed Ŷ, leading to the
objective function 1

2
‖Ŷ −AB‖2

F . For this case, we establish the following lemma.
Lemma 31. For any given matrix Ŷ ∈ Rn1×n2 , any local minimum of f(A,B) = 1

2
‖Ŷ−AB‖2

F

over A ∈ Rn1×r and B ∈ Rr×n2(r ≤ min{n1, n2}) is globally optimal, given by svdr(Ŷ). The
objective function f(A,B) around any saddle point has a negative second-order directional
curvature. Moreover, f(A,B) has no local maximum.2

2Prior work studying the loss surface of low-rank matrix approximation assumes that the matrix Λ̃ is of full
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Proof. By the assumption of the lemma, (Ã, B̃) is a local minimizer of L(A,B, Λ̃) = 1
2
‖ −

Λ̃−AB‖2
F + c(Λ̃), where c(Λ̃) is a function that is independent of A and B. So according to

Lemma 31, (Ã, B̃) = argminA,B L(A,B, Λ̃), namely, (Ã, B̃) globally minimizes L(A,B,Λ)

when Λ is fixed to Λ̃. Furthermore, Λ̃ ∈ ∂XH(X)|X=ÃB̃ implies that ÃB̃ ∈ ∂ΛH
∗(Λ)|Λ=Λ̃ by

the convexity of function H , meaning that 0 ∈ ∂ΛL(Ã, B̃,Λ). So Λ̃ = argmaxΛ L(Ã, B̃,Λ)

due to the concavity of L(Ã, B̃,Λ) w.r.t. variable Λ. Thus (Ã, B̃, Λ̃) is a primal-dual saddle
point of L(A,B,Λ).

We now prove the strong duality. By the fact that F (A,B) = maxΛ L(A,B,Λ) and that
Λ̃ = argmaxΛ L(Ã, B̃,Λ), we have

F (Ã, B̃) = L(Ã, B̃, Λ̃) ≤ L(A,B, Λ̃), ∀A,B.

where the inequality holds because (Ã, B̃, Λ̃) is a primal-dual saddle point of L. So on the one
hand, we have

min
A,B

max
Λ

L(A,B,Λ) = F (Ã, B̃) ≤ min
A,B

L(A,B, Λ̃) ≤ max
Λ

min
A,B

L(A,B,Λ).

On the other hand, by weak duality,

min
A,B

max
Λ

L(A,B,Λ) ≥ max
Λ

min
A,B

L(A,B,Λ).

Therefore, minA,B maxΛ L(A,B,Λ) = maxΛ minA,B L(A,B,Λ), i.e., strong duality holds.
Hence,

ÃB̃ = argmin
AB

L(A,B, Λ̃)

= argmin
AB

1

2
‖ − Λ̃−AB‖2

F −
1

2
‖Λ̃‖2

F −H∗(Λ̃)

= argmin
AB

1

2
‖ − Λ̃−AB‖2

F

= svdr(−Λ̃),

as desired.

Given this lemma, we can reduce F (A,B) to the form 1
2
‖Ŷ −AB‖2

F for some Ŷ plus an
extra term:

F (A,B)=
1

2
‖AB‖2

F +H(AB) =
1

2
‖AB‖2

F +H∗∗(AB)=max
Λ

1

2
‖AB‖2

F + 〈Λ,AB〉−H∗(Λ)

= max
Λ

1

2
‖ −Λ−AB‖2

F −
1

2
‖Λ‖2

F −H∗(Λ) , max
Λ

L(A,B,Λ),

(3.8)

rank and does not have the same singular values [29]. In this work, we generalize this result by removing these two
assumptions.
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where we define L(A,B,Λ) , 1
2
‖−Λ−AB‖2

F− 1
2
‖Λ‖2

F−H∗(Λ) as the Lagrangian of problem
(P),3 and the second equality holds because H is closed and convex w.r.t. the argument AB.
For any fixed value of Λ, by Lemma 31, any local minimum of L(A,B,Λ) is globally optimal,
because minimizing L(A,B,Λ) is equivalent to minimizing 1

2
‖ −Λ−AB‖2

F for a fixed Λ.
The remaining part of our analysis is to choose a proper Λ̃ such that (Ã, B̃, Λ̃) is a primal-dual

saddle point of L(A,B,Λ), so that minA,B L(A,B, Λ̃) and problem (P) have the same optimal
solution (Ã, B̃). For this, we introduce the following condition, and later we will show that the
condition holds with high probability.
Condition 1. For a solution (Ã, B̃) to problem (P), there exists an Λ̃ ∈ ∂XH(X)|X=ÃB̃ such
that

− ÃB̃B̃T = Λ̃B̃T and ÃT (−ÃB̃) = ÃT Λ̃. (3.9)

Explanations of Condition 2. We note that

∇AL(A,B,Λ) = ABBT + ΛBT and ∇BL(A,B,Λ) = ATAB + ATΛ

for a fixed Λ. In particular, if we set Λ to be the Λ̃ in (4.18), then ∇AL(A, B̃, Λ̃)|A=Ã = 0 and
∇BL(Ã,B, Λ̃)|B=B̃ = 0. So Condition 2 implies that (Ã, B̃) is either a saddle point or a local
minimizer of L(A,B, Λ̃) as a function of (A,B) for the fixed Λ̃.

The following lemma states that if it is a local minimizer, then strong duality holds.
Lemma 32 (Dual certificate). Let (Ã, B̃) be a global minimizer of F (A,B). If there exists a
dual certificate Λ̃ satisfying Condition 2 and the pair (Ã, B̃) is a local minimizer of L(A,B, Λ̃)

for the fixed Λ̃, then strong duality holds. Moreover, we have the relation ÃB̃ = svdr(−Λ̃).

Proof. By the assumption of the lemma, we can show that (Ã, B̃, Λ̃) is a primal-dual saddle
point to the Lagrangian L(A,B,Λ); see Appendix 3.1.5. To show strong duality, by the fact
that F (A,B) = maxΛ L(A,B,Λ) and that Λ̃ = argmaxΛ L(Ã, B̃,Λ), we have F (Ã, B̃) =

L(Ã, B̃, Λ̃) ≤ L(A,B, Λ̃), for any A,B, where the inequality holds because (Ã, B̃, Λ̃) is a
primal-dual saddle point of L. So on the one hand, minA,B maxΛ L(A,B,Λ) = F (Ã, B̃) ≤
minA,B L(A,B, Λ̃) ≤ maxΛ minA,B L(A,B,Λ). On the other hand, by weak duality, we have
minA,B maxΛ L(A,B,Λ) ≥ maxΛ minA,B L(A,B,Λ). Therefore, minA,B maxΛ L(A,B,Λ) =

maxΛ minA,B L(A,B,Λ), i.e., strong duality holds. Therefore, ÃB̃ = argminAB L(A,B, Λ̃) =

argminAB
1
2
‖AB‖2

F + 〈Λ̃,AB〉 −H∗(Λ̃) = argminAB
1
2
‖ − Λ̃−AB‖2

F = svdr(−Λ̃), as de-
sired.

This lemma then leads to the following theorem.
Theorem 20. Denote by (Ã, B̃) the optimal solution of problem (P). Define a matrix space

T , {ÃXT + YB̃, X ∈ Rn2×r, Y ∈ Rn1×r}.

Then strong duality holds for problem (P), provided that there exists Λ̃ such that

(1) Λ̃ ∈ ∂H(ÃB̃) , Ψ, (2) PT (−Λ̃) = ÃB̃, (3) ‖PT ⊥Λ̃‖ < σr(ÃB̃). (3.10)
3One can easily check that L(A,B,Λ) = minM L′(A,B,M,Λ), where L′(A,B,M,Λ) is the Lagrangian of

the constraint optimization problem minA,B,M
1
2‖AB‖2F +H(M), s.t. M = AB. With a little abuse of notation,

we call L(A,B,Λ) the Lagrangian of the unconstrained problem (P) as well.
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Figure 3.5: Geometry of dual condition (3.10) for general matrix factorization problems.

Proof. The proof idea is to construct a dual certificate Λ̃ so that the conditions in Lemma 67 hold.
Λ̃ should satisfy the following:

(a) Λ̃ ∈ ∂H(ÃB̃), (by Condition 2)

(b) (ÃB̃ + Λ̃)B̃T = 0 and ÃT (ÃB̃ + Λ̃) = 0, (by Condition 2)

(c) ÃB̃ = svdr(−Λ̃). (by the local minimizer assumption and Lemma 31)

(3.11)

It turns out that for any matrix M ∈ Rn1×n2 ,PT ⊥M = (I−ÃÃ†)M(I−B̃B̃†) and so ‖PT ⊥M‖ ≤
‖M‖, a fact that we will frequently use in the sequel. Denote by U the left singular space of
ÃB̃ and V the right singular space. Then the linear space T can be equivalently represented
as T = U + V . Therefore, T ⊥ = (U + V)⊥ = U⊥ ∩ V⊥. With this, we note that: (b)
(ÃB̃ + Λ̃)B̃T = 0 and ÃT (ÃB̃ + Λ̃) = 0 imply ÃB̃ + Λ̃ ∈ Null(ÃT ) = Col(Ã)⊥ and
ÃB̃ + Λ̃ ∈ Row(B̃)⊥ (so ÃB̃ + Λ̃ ∈ T ⊥), and vice versa. And (c) ÃB̃ = svdr(−Λ̃) implies
that for an orthogonal decomposition −Λ̃ = ÃB̃ + E, where ÃB̃ ∈ T , and E ∈ T ⊥, we
have ‖E‖ < σr(ÃB̃). Conversely, ‖E‖ < σr(ÃB̃) and condition (b) imply ÃB̃ = svdr(−Λ̃).
Therefore, the dual conditions in (4.19) are equivalent to (1) Λ̃ ∈ ∂H(ÃB̃) , Ψ; (2) PT (−Λ̃) =

ÃB̃; (3) ‖PT ⊥Λ̃‖ < σr(ÃB̃).

To show the dual condition in Theorem 20, intuitively, we need to show that the angle θ
between subspace T and Ψ is small (see Figure 3.5) for a specific function H(·). In the following,
we will demonstrate applications that, with randomness, obey this dual condition with high
probability.

Proofs of matrix completion

In matrix completion, there is a hidden matrix X∗ ∈ Rn1×n2 with rank r. We are given mea-
surements {X∗ij : (i, j) ∈ Ω}, where Ω ∼ Uniform(m), i.e., Ω is sampled uniformly at random
from all subsets of [n1] × [n2] of cardinality m. The goal is to exactly recover X∗ with high
probability. Here we apply our unified framework in the last section to matrix completion, by
setting H(·) = I{M:PΩ(M)=PΩ(X∗)}(·).

A quantity governing the difficulties of matrix completion is the incoherence parameter µ.
Intuitively, matrix completion is possible only if the information spreads evenly throughout the
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low-rank matrix. This intuition is captured by the incoherence conditions. Formally, denote by
UΣVT the skinny SVD of a fixed n1 × n2 matrix X of rank r. Candès et al. [55, 57, 194, 255]
introduced the µ-incoherence condition (3.5) to the low-rank matrix X. For conditions (3.5), it
can be shown that 1 ≤ µ ≤ n(1)

r
. The condition holds for many random matrices with incoherence

parameter µ about
√
r log n(1) [134].

We first propose a non-convex optimization problem whose unique solution is indeed the
ground truth X∗, and then apply our framework to show that strong duality holds for this non-
convex optimization and its bi-dual optimization problem.
Theorem 21 (Uniqueness of solution). Let Ω ∼ Uniform(m) be the support set uniformly
distributed among all sets of cardinality m. Suppose that m ≥ cκ2µn(1)r log n(1) log2κ n(1) for
an absolute constant c and X∗ obeys µ-incoherence (3.5). Then X∗ is the unique solution of
non-convex optimization

min
A,B

1

2
‖AB‖2

F , s.t. PΩ(AB) = PΩ(X∗), (3.12)

with probability at least 1− n−10
(1) .

Proof. We note that a recovery result under the Bernoulli model automatically implies a cor-
responding result for the uniform model [57]. So in the following, we assume the Bernoulli
model.

Consider the feasibility of the matrix completion problem:

Find a matrix X ∈ Rn1×n2 such that PΩ(X) = PΩ(X∗), ‖X‖F ≤ ‖X∗‖F , rank(X) ≤ r.
(3.13)

Note that if X∗ is the unique solution of (3.13), then X∗ is the unique solution of (3.12). We now
show the former. Our proof first identifies a feasibility condition for problem (3.13), and then
shows that X∗ is the only matrix that obeys this feasibility condition when the sample size is large
enough. We denote by

DS(X∗) = {X−X∗ ∈ Rn1×n2 : rank(X) ≤ r, ‖X‖F ≤ ‖X∗‖F},

and
T = {UXT + YVT , X ∈ Rn2×r, Y ∈ Rn1×r},

where UΣVT is the skinny SVD of X∗.
Before proceeding, we first study a property of sub-gradient of the r∗ norm.

Lemma 33. Let UΣVT be the skinny SVD of matrix X∗ of rank r. The subdifferential of ‖ · ‖r∗
evaluated at X∗ is given by

∂‖X∗‖r∗ = {X∗ + W : UTW = 0,WV = 0, ‖W‖ ≤ σr(X
∗)}.

Proof. Note that for any fixed function f(·), the set of all optimal solutions of the problem

f ∗(X∗) = max
Y
〈X∗,Y〉 − f(Y) (3.14)
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form the subdifferential of the conjugate function f ∗(·) evaluated at X∗. Set f(·) to be 1
2
‖ · ‖2

r

and notice that the function 1
2
‖ · ‖2

r is unitarily invariant. By Von Neumann’s trace inequality, the
optimal solutions to problem (3.14) are given by

[U,U⊥]diag([σ1(Y), ..., σr(Y), σr+1(Y), ..., σn(2)
(Y)])[V,V⊥]T ,

where {σi(Y)}n(2)

i=r+1 can be any value no larger than σr(Y) and {σi(Y)}ri=1 are given by the
optimal solution to the problem

max
{σi(Y)}ri=1

r∑

i=1

σi(X
∗)σi(Y)− 1

2

r∑

i=1

σ2
i (Y).

The solution is unique such that σi(Y) = σi(X
∗), i = 1, 2, ..., r. The proof is complete.

We have the following proposition for the feasibility of problem (3.13).

Proposition 1 (Feasibility condition). X∗ is the unique feasible solution to problem (3.13) if
DS(X∗) ∩ Ω⊥ = {0}.

Proof. Notice that problem (3.13) is equivalent to another feasibility problem

Find a matrix D ∈ Rn1×n2 such that rank(X∗ + D) ≤ r, ‖X∗ + D‖F ≤ ‖X∗‖F , D ∈ Ω⊥.

Suppose that DS(X∗) ∩ Ω⊥ = {0}. Since rank(X∗ + D) ≤ r and ‖X∗ + D‖F ≤ ‖X∗‖F are
equivalent to D ∈ DS(X∗), and note that D ∈ Ω⊥, we have D = 0, which means X∗ is the
unique feasible solution to problem (3.13).

The remainder of the proof is to show DS(X∗) ∩ Ω⊥ = {0}. To proceed, we note that

DS(X∗) =

{
X−X∗ ∈ Rn1×n2 : rank(X) ≤ r,

1

2
‖X‖2

F ≤
1

2
‖X∗‖2

F

}

⊆ {X−X∗ ∈ Rn1×n2 : ‖X‖r∗ ≤ ‖X∗‖r∗}
(

since
1

2
‖Y‖2

F = ‖Y‖r∗
)

, DS∗(X∗).

We now show that
DS∗(X∗) ∩ Ω⊥ = {0}, (3.15)

when m ≥ cκ2µrn(1) log2κ(n(1)) log(n(1)), which will prove DS(X∗) ∩ Ω⊥ = {0} as desired.
By Lemma 35, there exists a Λ such that

(1) Λ ∈ Ω,

(2) PT (−Λ) = X∗,

(3) ‖PT ⊥Λ‖ < 2

3
σr(X

∗).
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Consider any D ∈ Ω⊥ such that D 6= 0. By Lemma 33, for any W ∈ T ⊥ and ‖W‖ ≤ σr(X
∗),

‖X∗ + D‖r∗ ≥ ‖X∗‖r∗ + 〈X∗ + W,D〉.

Since 〈W,D〉 = 〈PT ⊥W,D〉 = 〈W,PT ⊥D〉, we can choose W such that

〈W,D〉 = σr(X
∗)‖PT ⊥D‖∗.

Then

‖X∗ + D‖r∗ ≥ ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈X∗,D〉

= ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈X∗ + Λ,D〉 (since Λ ∈ Ω and D ∈ Ω⊥)

= ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈X∗ + PTΛ,D〉+ 〈PT ⊥Λ,D〉

= ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈PT ⊥Λ,D〉 (by condition (2))

= ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈PT ⊥PT ⊥Λ,D〉

= ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ + 〈PT ⊥Λ,PT ⊥D〉

≥ ‖X∗‖r∗ + σr(X
∗)‖PT ⊥D‖∗ − ‖PT ⊥Λ‖‖PT ⊥D‖∗ (by Hölder’s inequality)

≥ ‖X∗‖r∗ +
1

3
σr(X

∗)‖PT ⊥D‖∗ (by condition (3)).

So if T ∩ Ω⊥ = {0}, since D ∈ Ω⊥ and D 6= 0, we have D 6∈ T . Therefore,

‖X∗ + D‖r∗ > ‖X∗‖r∗

which then leads to DS∗(X∗) ∩ Ω⊥ = {0}.
The rest of proof is to show that T ∩ Ω⊥ = {0}. We have the following lemma.

Lemma 34. Assume that Ω ∼ Ber(p) and the incoherence condition (3.5) holds. Then with
probability at least 1− n−10

(1) , we have ‖PΩ⊥PT ‖ ≤
√

1− p+ εp, provided that

p ≥ C0ε
−2(µr log n(1))/n(2),

where C0 is an absolute constant.

Proof. If Ω ∼ Ber(p), we have, by Theorem 23, that with high probability

‖PT − p−1PT PΩPT ‖ ≤ ε,

provided that p ≥ C0ε
−2 µr logn(1)

n(2)
. Note, however, that since I = PΩ + PΩ⊥ ,

PT − p−1PT PΩPT = p−1(PT PΩ⊥PT − (1− p)PT )

and, therefore, by the triangle inequality

‖PT PΩ⊥PT ‖ ≤ εp+ (1− p).

Since ‖PΩ⊥PT ‖2 ≤ ‖PT PΩ⊥PT ‖, the proof is completed.
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We note that ‖PΩ⊥PT ‖ < 1 implies Ω⊥ ∩ T = {0}. The proof is completed.

Given the non-convex problem, we are ready to state our main theorem for matrix completion.
Theorem 22 (Efficient matrix completion). Let Ω ∼ Uniform(m) be the support set uniformly dis-
tributed among all sets of cardinality m. Suppose X∗ has condition number κ = σ1(X∗)/σr(X∗).
Then there are absolute constants c and c0 such that with probability at least 1 − c0n

−10
(1) , the

output of the convex problem

X̃ = argmin
X
‖X‖r∗, s.t. PΩ(X) = PΩ(X∗), (3.16)

is unique and exact, i.e., X̃ = X∗, provided that m ≥ cκ2µrn(1) log2κ(n(1)) log(n(1)) and X∗

obeys µ-incoherence (3.5). Namely, strong duality holds for problem (3.12).

Proof. We have shown in Theorem 21 that the problem

(Ã, B̃) = argmin
A,B

1

2
‖AB‖2

F , s.t. PΩ(AB) = PΩ(X∗),

exactly recovers X∗, i.e., ÃB̃ = X∗, with small sample complexity. So if strong duality holds,
this non-convex optimization problem can be equivalently converted to the convex program (3.16).
Then Theorem 22 is straightforward from strong duality.

It now suffices to apply our unified framework in the beginning of this subsection to prove
the strong duality. We show that the dual condition in Theorem 20 holds with high probability
by the following arguments. Let (Ã, B̃) be a global solution to problem (3.16). For H(X) =
I{M∈Rn1×n2 : PΩM=PΩX∗}(X), we have

Ψ = ∂H(ÃB̃) = {G ∈ Rn1×n2 : 〈G, ÃB̃〉 ≥ 〈G,Y〉, for any Y ∈ Rn1×n2 s.t. PΩY = PΩX∗}
= {G ∈ Rn1×n2 : 〈G,X∗〉 ≥ 〈G,Y〉, for any Y ∈ Rn1×n2 s.t. PΩY = PΩX∗} = Ω,

where the third equality holds since ÃB̃ = X∗. Then we only need to show

(1) Λ̃ ∈ Ω, (2) PT (−Λ̃) = ÃB̃, (3) ‖PT ⊥Λ̃‖ < 2

3
σr(ÃB̃). (3.17)

It is interesting to see that dual condition (3.17) can be satisfied if the angle θ between subspace
Ω and subspace T is very small; see Figure 3.5. When the sample size |Ω| becomes larger and
larger, the angle θ becomes smaller and smaller (e.g., when |Ω| = n1n2, the angle θ is zero as
Ω = Rn1×n2). We show that the sample size m = Ω(κ2µrn(1) log2κ(n(1)) log(n(1))) is a sufficient
condition for condition (3.17) to hold.

Let Ã ∈ Rn1×r and B̃ ∈ Rr×n2 such that ÃB̃ = X∗. Then we have the following lemma.

Lemma 35. Let Ω ∼ Uniform(m) be the support set uniformly distributed among all sets of
cardinality m. Suppose that m ≥ cκ2µn(1)r log n(1) log2κ n(1) for an absolute constant c and X∗

obeys µ-incoherence (3.5). Then there exists Λ̃ such that

(1) Λ̃ ∈ Ω,

(2) PT (−Λ̃) = ÃB̃,

(3) ‖PT ⊥Λ̃‖ < 2

3
σr(ÃB̃).

(3.18)
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with probability at least 1− n−10
(1) .

The rest of the section is denoted to the proof of Lemma 35. We begin with the following
lemma.

Lemma 36. If we can construct an Λ such that

(a) Λ ∈ Ω,

(b) ‖PT (−Λ)− ÃB̃‖F ≤
√

r

3n2
(1)

σr(ÃB̃),

(c) ‖PT ⊥Λ‖ < 1

3
σr(ÃB̃),

(3.19)

then we can construct an Λ̃ such that Eqn. (3.18) holds with probability at least 1− n−10
(1) .

Proof. To prove the lemma, we first claim the following theorem.

Theorem 23 ([55], Theorem 4.1). Assume that Ω is sampled according to the Bernoulli model
with success probability p = Θ( m

n1n2
), and incoherence condition (3.5) holds. Then there is an

absolute constant CR such that for β > 1, we have

‖p−1PT PΩPT − PT ‖ ≤ CR

√
βµn(1)r log n(1)

m
, ε,

with probability at least 1− 3n−β provided that CR
√

βµn(1)r logn(1)

m
< 1.

Suppose that Condition (3.19) holds. Let Y = Λ̃−Λ ∈ Ω be the perturbation matrix between
Λ and Λ̃ such thatPT (−Λ̃) = ÃB̃. Such a Y exists by setting Y = PΩPT (PT PΩPT )−1(PT (−Λ)−
ÃB̃). So ‖PTY‖F ≤

√
r

3n2
(1)

σr(ÃB̃). We now prove Condition (3) in Eqn. (3.18). Observe that

‖PT ⊥Λ̃‖ ≤ ‖PT ⊥Λ‖+ ‖PT ⊥Y‖

≤ 1

3
σr(ÃB̃) + ‖PT ⊥Y‖.

(3.20)

So we only need to show ‖PT ⊥Y‖ ≤ 1
3
σr(ÃB̃).

Before proceeding, we begin by introducing a normalized version QΩ : Rn1×n2 → Rn1×n2 of
PΩ:

QΩ = p−1PΩ − I.
With this, we have

PT PΩPT = pPT (I +QΩ)PT .
Note that for any operator P : T → T , we have

P−1 =
∑

k≥0

(PT − P)k whenever ‖PT − P‖ < 1.
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So according to Theorem 23, the operator p(PT PΩPT )−1 can be represented as a convergent
Neumann series

p(PT PΩPT )−1 =
∑

k≥0

(−1)k(PTQΩPT )k,

because ‖PTQΩPT ‖ ≤ ε < 1
2

once m ≥ Cµn(1)r log n(1) for a sufficiently large absolute
constant C. We also note that

p(PT ⊥QΩPT ) = PT ⊥PΩPT ,
because PT ⊥PT = 0. Thus

‖PT ⊥Y‖ = ‖PT ⊥PΩPT (PT PΩPT )−1(PT (−Λ)− ÃB̃))‖
= ‖PT ⊥QΩPT p(PT PΩPT )−1((PT (−Λ)− ÃB̃))‖
= ‖

∑

k≥0

(−1)kPT ⊥QΩ(PTQΩPT )k((PT (−Λ)− ÃB̃))‖

≤
∑

k≥0

‖(−1)kPT ⊥QΩ(PTQΩPT )k((PT (−Λ)− ÃB̃))‖F

≤ ‖QΩ‖
∑

k≥0

‖PTQΩPT ‖k‖PT (−Λ)− ÃB̃))‖F

≤ 4

p
‖PT (−Λ)− ÃB̃)‖F

≤ Θ
(n1n2

m

)√ r

3n2
(1)

σr(ÃB̃)

≤ 1

3
σr(ÃB̃)

with high probability. The proof is completed.

It thus suffices to construct a dual certificate Λ such that all conditions in (3.19) hold. To this
end, partition Ω = Ω1 ∪ Ω2 ∪ ... ∪ Ωb into b partitions of size q. By assumption, we may choose

q ≥ 128

3
Cβκ2µrn(1) log n(1) and b ≥ 1

2
log2κ

(
242n2

(1)κ
2
)

for a sufficiently large constant C. Let Ωj ∼ Ber(q) denote the set of indices corresponding to the
j-th partitions. Define W0 = ÃB̃ and set Λk = n1n2

q

∑k
j=1PΩj(Wj−1), Wk = ÃB̃− PT (Λk)

for k = 1, 2, ..., b. Then by Theorem 23,

‖Wk‖F =

∥∥∥∥Wk−1 −
n1n2

q
PT PΩk(Wk−1)

∥∥∥∥
F

=

∥∥∥∥
(
PT −

n1n2

q
PT PΩkPT

)
(Wk−1)

∥∥∥∥
F

≤ 1

2κ
‖Wk−1‖F .

So it follows that ‖ÃB̃ − PT (Λb)‖F = ‖Wb‖F ≤ (2κ)−b‖W0‖F ≤ (2κ)−b
√
rσ1(ÃB̃) ≤√

r
242n2

(1)

σr(ÃB̃).

The following lemma together implies the strong duality of (3.16) straightforwardly.
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Lemma 37. Under the assumptions of Theorem 22, the dual certification Λb obeys the dual
condition (3.19) with probability at least 1− n−10

(1) .

Proof. It is well known that for matrix completion, the Uniform model Ω ∼ Uniform(m) is
equivalent to the Bernoulli model Ω ∼ Ber(p), where each element in [n1]× [n2] is included with
probability p = Θ(m/(n1n2)) independently. By the equivalence, we can suppose Ω ∼ Ber(p).

To prove Lemma 37, as a preliminary, we need the following lemmas.

Lemma 38 ([63], Lemma 2). Suppose Z is a fixed matrix. Suppose Ω ∼ Ber(p). Then with high
probability,

‖(I − p−1PΩ)Z‖ ≤ C ′0

(
log n(1)

p
‖Z‖∞ +

√
log n(1)

p
‖Z‖∞,2

)
,

where C ′0 > 0 is an absolute constant and

‖Z‖∞,2 = max



max

i

√∑

b

Z2
ib,max

j

√∑

a

Z2
aj



 .

Lemma 39 ([57], Lemma 3.1). Suppose Ω ∼ Ber(p) and Z is a fixed matrix. Then with high
probability,

‖Z− p−1PT PΩZ‖∞ ≤ ε‖Z‖∞,
provided that p ≥ C0ε

−2(µr log n(1))/n(2) for some absolute constant C0 > 0.

Lemma 40 ([63], Lemma 3). Suppose that Z is a fixed matrix and Ω ∼ Ber(p). If p ≥
c0µr log n(1)/n(2) for some c0 sufficiently large, then with high probability,

‖(p−1PT PΩ − PT )Z‖∞,2 ≤
1

2

√
n(1)

µr
‖Z‖∞ +

1

2
‖Z‖∞,2.

Observe that by Lemma 39,

‖Wj‖∞ ≤
(

1

2

)j
‖ÃB̃‖∞,

and by Lemma 40,

‖Wj‖∞,2 ≤
1

2

√
n(1)

µr
‖Wj−1‖∞ +

1

2
‖Wj−1‖∞,2.

So

‖Wj‖∞,2

≤
(

1

2

)j√n(1)

µr
‖ÃB̃‖∞ +

1

2
‖Wj−1‖∞,2

≤ j

(
1

2

)j√n(1)

µr
‖ÃB̃‖∞ +

(
1

2

)j
‖ÃB̃‖∞,2.
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Therefore,

‖PT ⊥Λb‖

≤
b∑

j=1

‖n1n2

q
PT ⊥PΩjWj−1‖

=
b∑

j=1

‖PT ⊥(
n1n2

q
PΩjWj−1 −Wj−1)‖

≤
b∑

j=1

‖(n1n2

q
PΩj − I)(Wj−1)‖.

Let p denote Θ
(

q
n1n2

)
. By Lemma 38,

‖PT ⊥Λb‖

≤ C ′0
log n(1)

p

b∑

j=1

‖Wj−1‖∞ + C ′0

√
log n(1)

p

b∑

j=1

‖Wj−1‖∞,2

≤ C ′0
log n(1)

p

b∑

j=1

(
1

2

)j
‖ÃB̃‖∞+C ′0

√
log n(1)

p

b∑

j=1

[
j

(
1

2

)j√n(1)

µr
‖ÃB̃‖∞+

(
1

2

)j
‖ÃB̃‖∞,2

]

≤ C ′0
log n(1)

p
‖ÃB̃‖∞ + 2C ′0

√
log n(1)

p

√
n(1)

µr
‖ÃB̃‖∞ + C ′0

√
log n(1)

p
‖ÃB̃‖∞,2.

Setting ÃB̃ = X∗, we note the facts that (we assume WLOG n2 ≥ n1)

‖X∗‖∞,2 = max
i
‖eTi UΣVT‖2 ≤ max

i
‖eTi U‖σ1(X∗) ≤

√
µr

n1

σ1(X∗) ≤
√
µr

n1

κσr(X
∗),

and that
‖X∗‖∞ = max

ij
〈X∗, eieTj 〉 = max

ij
〈UΣVT , eie

T
j 〉 = max

ij
〈eTi UΣ, eTj V〉

≤ max
ij
‖eTi UΣVT‖2‖eTj V‖2 ≤ max

j
‖X∗‖∞,2‖eTj V‖2 ≤

µrκ√
n1n2

σr(X
∗).

Substituting p = Θ
(
κ2µrn(1) log(n(1)) log2κ(n(1))

n1n2

)
, we obtain ‖PT ⊥Λb‖ < 1

3
σr(X

∗). The proof is
completed.

This positive result matches a lower bound from prior work up to a logarithmic factor, which
shows that the sample complexity in Theorem 21 is nearly optimal.
Theorem 24 (Information-theoretic lower bound. [56], Theorem 1.7). Denote by Ω ∼ Uniform(m)
the support set uniformly distributed among all sets of cardinality m. Suppose that m ≤
cµn(1)r log n(1) for an absolute constant c. Then there exist infinitely many n1 × n2 matrices X′

of rank at most r obeying µ-incoherence (3.5) such that PΩ(X′) = PΩ(X∗), with probability at
least 1− n−10

(1) .
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Proofs of Robust PCA

Theorem 19 (Robust PCA. Restated). Suppose X∗ is an n1 × n2 matrix of rank r, and obeys
incoherence (3.5) and (3.6). Assume that the support set Ω of S∗ is uniformly distributed among
all sets of cardinality m. Then with probability at least 1− cn−10

(1) , the output of the optimization
problem

(X̃, S̃) = argmin
X,S

‖X‖r∗ + λ‖S‖1, s.t. D = X + S, (3.21)

with λ = σr(X∗)√
n(1)

is exact, namely, X̃ = X∗ and S̃ = S∗, provided that

rank(X∗) ≤ ρr
n(2)

µ log2 n(1)

and m ≤ ρsn1n2

, where c, ρr, and ρs are all positive absolute constants, and function ‖ · ‖r∗ is given by ‖X‖r∗ :=
maxM〈X,M〉 − 1

2
‖M‖2

r and ‖M‖2
r =

∑r
i=1 σ

2
i (M).

Dual certificates We first show the dual certificates.
Lemma 41. Assume that ‖PΩPT ‖ ≤ 1/2 and λ < σr(X

∗). Then (X∗,S∗) is the unique solution
to problem (19) if there exists (W,F,K) for which

X∗ + W = λ(sign(S∗) + F + PΩK),

where W ∈ T ⊥, ‖W‖ ≤ σr(X∗)
2

, F ∈ Ω⊥, ‖F‖∞ ≤ 1
2
, and ‖PΩK‖F ≤ 1

4
.

Proof. Let (X∗ + H,S∗ −H) be any optimal solution to problem (3.21). Denote by X∗ + W∗

an arbitrary subgradient of the r∗ function at X∗ (see Lemma 33), and sign(S∗) + F∗ an arbitrary
subgradient of the `1 norm at S∗. By the definition of the subgradient, the inequality follows

‖X∗ + H‖r∗ + λ‖S∗ −H‖1 ≥ ‖X∗‖r∗ + λ‖S∗‖1 + 〈X∗ + W∗,H〉 − λ〈sign(S∗) + F∗,H〉
= ‖X∗‖r∗ + λ‖S∗‖1 + 〈X∗ − λsign(S∗),H〉+ 〈W∗,H〉 − λ〈F∗,H〉
= ‖X∗‖r∗ + λ‖S∗‖1 + 〈X∗ − λsign(S∗),H〉+ σr(X

∗)‖PT ⊥H‖∗ + λ‖PΩ⊥H‖1

= ‖X∗‖r∗ + λ‖S∗‖1 + 〈λF + λPΩK−W,H〉+ σr(X
∗)‖PT ⊥H‖∗ + λ‖PΩ⊥H‖1

≥ ‖X∗‖r∗ + λ‖S∗‖1 +
σr(X

∗)

2
‖PT ⊥H‖∗ +

λ

2
‖PΩ⊥H‖1 −

λ

4
‖PΩH‖F ,

where the third line holds by picking W∗ such that 〈W∗,H〉 = σr(X
∗)‖PT ⊥H‖∗ and 〈F∗,H〉 =

−‖PΩ⊥H‖1.4 We note that

‖PΩH‖F ≤ ‖PΩPTH‖F + ‖PΩPT ⊥H‖F
≤ 1

2
‖H‖F + ‖PT ⊥H‖F

≤ 1

2
‖PΩH‖F +

1

2
‖PΩ⊥H‖F + ‖PT ⊥H‖F ,

4For instance, F∗ = −sign(PΩ⊥H) is such as matrix. Also, by the duality between the nuclear norm and the
operator norm, there is a matrix obeying ‖W‖ = σr(X

∗) such that 〈W,PT ⊥H〉 = σr(X
∗)‖PT ⊥H‖∗. We pick

W∗ = PT ⊥W here.
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which implies that λ
4
‖PΩH‖F ≤ λ

4
‖PΩ⊥H‖F + λ

2
‖PT ⊥H‖F ≤ λ

4
‖PΩ⊥H‖1 + λ

2
‖PT ⊥H‖∗. There-

fore,

‖X∗ + H‖r∗ + λ‖S∗ −H‖1 ≥ ‖X∗‖r∗ + λ‖S∗‖1 +
σr(X

∗)− λ
2

‖PT ⊥H‖∗ +
λ

4
‖PΩ⊥H‖1

≥ ‖X∗ + H‖r∗ + λ‖S∗ −H‖1 +
σr(X

∗)− λ
2

‖PT ⊥H‖∗ +
λ

4
‖PΩ⊥H‖1,

where the second inequality holds because (X∗ + H,S∗−H) is optimal. Thus H ∈ T ∩Ω. Note
that ‖PΩPT ‖ < 1 implies T ∩ Ω = {0} and thus H = 0. This completes the proof.

According to Lemma 41, to show the exact recoverability of problem (3.21), it is sufficient to
find an appropriate W for which





W ∈ T ⊥,
‖W‖ ≤ σr(X∗)

2
,

‖PΩ(X∗ + W − λsign(S∗))‖F ≤ λ
4
,

‖PΩ⊥(X∗ + W)‖∞ ≤ λ
2
,

(3.22)

under the assumptions that ‖PΩPT ‖ ≤ 1/2 and λ < σr(X
∗). We note that λ = σr(X∗)√

n(1)
< σr(X

∗).
To see ‖PΩPT ‖ ≤ 1/2, we have the following lemma.
Lemma 42 ([57], Cor 2.7). Suppose that Ω ∼ Ber(p) and incoherence (3.5) holds. Then with
probability at least 1− n−10

(1) , ‖PΩPT ‖2 ≤ p+ ε, provided that 1− p ≥ C0ε
−2µr log n(1)/n(2) for

an absolute constant C0.
Setting p and ε as small constants in Lemma 42, we have ‖PΩPT ‖ ≤ 1/2 with high probability.

Dual certification by least squares and the golfing scheme The remainder of the proof is to
construct W such that the dual condition (3.22) holds true. Before introducing our construction,
we assume Ω ∼ Ber(p), or equivalently Ω⊥ ∼ Ber(1 − p), where p is allowed be as large as
an absolute constant. Note that Ω⊥ has the same distribution as that of Ω1 ∪ Ω2 ∪ ... ∪ Ωj0 ,
where the Ωj’s are drawn independently with replacement from Ber(q), j0 = dlog n(1)e, and q
obeys p = (1 − q)j0 (q = Ω(1/ log n(1)) implies p = O(1)). We construct W based on such a
distribution.

Our construction separates W into two terms: W = WL + WS . To construct WL, we apply
the golfing scheme introduced by [98, 194]. Specifically, WL is constructed by an inductive
procedure:

Yj = Yj−1 + q−1PΩjPT (X∗ −Yj−1), Y0 = 0,

WL = PT ⊥Yj0 .
(3.23)

To construct WS , we apply the method of least squares by [57], which is

WS = λPT ⊥
∑

k≥0

(PΩPT PΩ)ksign(S∗). (3.24)
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Note that ‖PΩPT ‖ ≤ 1/2. Thus ‖PΩPT PΩ‖ ≤ 1/4 and the Neumann series in (3.24) is well-
defined. Observe that PΩWS = λ(PΩ − PΩPT PΩ)(PΩ − PΩPT PΩ)−1sign(S∗) = λsign(S∗).
So to prove the dual condition (3.22), it suffices to show that

(a) ‖WL‖ ≤ σr(X
∗)

4
,

(b) ‖PΩ(X∗ + WL)‖F ≤
λ

4
,

(c) ‖PΩ⊥(X∗ + WL)‖∞ ≤
λ

4
,

(3.25)

(d) ‖WS‖ ≤ σr(X
∗)

4
,

(e) ‖PΩ⊥WS‖∞ ≤
λ

4
.

(3.26)

Proof of dual conditions Since we have constructed the dual certificate W, the remainder
is to show that W obeys dual conditions (3.25) and (3.26) with high probability. We have the
following.
Lemma 43. Assume Ωj ∼ Ber(q), j = 1, 2, ..., j0, and j0 = 2dlog n(1)e. Then under the other
assumptions of Theorem 19, WL given by (3.23) obeys dual condition (3.25).

Proof. Let Zj = PT (X∗ −Yj) ∈ T . Then we have

Zj = PT Zj−1 − q−1PT PΩjPT Zj−1 = (PT − q−1PT PΩjPT )Zj−1,

and Yj =
∑j

k=1 q
−1PΩkZk−1 ∈ Ω⊥. We set q = Ω(ε−2µr log n(1)/n(2)) with a small constant ε.

Proof of (a). It holds that

‖WL‖ = ‖PT ⊥Yj0‖ ≤
j0∑

k=1

‖q−1PT ⊥PΩkZk−1‖

=

j0∑

k=1

‖PT ⊥(q−1PΩkZk−1 − Zk−1)‖

≤
j0∑

k=1

‖q−1PΩkZk−1 − Zk−1‖

≤ C ′0

(
log n(1)

q

j0∑

k=1

‖Zk−1‖∞ +

√
log n(1)

q

j0∑

k=1

‖Zk−1‖∞,2
)
. (by Lemma 38)

We note that by Lemma 39,

‖Zk−1‖∞ ≤
(

1

2

)k−1

‖Z0‖∞,
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and by Lemma 40,

‖Zk−1‖∞,2 ≤
1

2

√
n(1)

µr
‖Zk−2‖∞ +

1

2
‖Zk−2‖∞,2.

Therefore,

‖Zk−1‖∞,2 ≤
(

1

2

)k−1√n(1)

µr
‖Z0‖∞ +

1

2
‖Zk−2‖∞,2

≤ (k − 1)

(
1

2

)k−1√n(1)

µr
‖Z0‖∞ +

(
1

2

)k−1

‖Z0‖∞,2,

and so we have

‖WL‖

≤ C ′0

[
log n(1)

q

j0∑

k=1

(
1

2

)k−1

‖Z0‖∞+

√
log n(1)

q

j0∑

k=1

(
(k − 1)

(
1

2

)k−1√n(1)

µr
‖Z0‖∞+

(
1

2

)k−1

‖Z0‖∞,2
)]

≤ 2C ′0

[
log n(1)

q
‖X∗‖∞ +

√
n(1) log n(1)

qµr
‖X∗‖∞ +

√
log n(1)

q
‖X∗‖∞,2

]

≤ 1

16

[
n(2)

µr
‖X∗‖∞ +

√
n(1)n(2)

µr
‖X∗‖∞ +

√
n(2)

µr
‖X∗‖∞,2

]
(since q = Ω(µr log n(1))/n(2))

≤ σr(X
∗)

4
, (by incoherence (3.6))

where we have used the fact that

‖X∗‖∞,2 ≤ √n(1)‖X∗‖∞ ≤
√

µr

n(2)

σr(X
∗).

Proof of (b). Because Yj0 ∈ Ω⊥, we have PΩ(X∗ + PT ⊥Yj0) = PΩ(X∗ − PTYj0) = PΩZj0 . It
then follows from Theorem 23 that for a properly chosen t,

‖Zj0‖F ≤ tj0‖X∗‖F
≤ tj0

√
n1n2‖X∗‖∞

≤ tj0
√
n1n2

√
µr

n1n2

σr(X
∗)

≤ λ

8
. (tj0 ≤ e−2 logn(1) ≤ n−2

(1))

Proof of (c). By definition, we know that X∗ + WL = Zj0 + Yj0 . Since we have shown
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‖Zj0‖F ≤ λ/8, it suffices to prove ‖Yj0‖∞ ≤ λ/8. We have

‖Yj0‖∞ ≤ q−1

j0∑

k=1

‖PΩkZk−1‖∞

≤ q−1

j0∑

k=1

εk−1‖X∗‖∞ (by Lemma 39)

≤ n(2)ε
2

C0µr log n(1)

√
µr

n(1)n(2)

σr(X
∗) (by incoherence (3.6))

≤ λ

8
,

if we choose ε = C
(
µr(logn(1))

2

n(2)

)1/4

for an absolute constant C. This can be true once the constant
ρr is sufficiently small.

We now prove that WS given by (3.24) obeys dual condition (3.26). We have the following.
Lemma 44. Assume Ω ∼ Ber(p). Then under the other assumptions of Theorem 19, WS given
by (3.24) obeys dual condition (3.26).

Proof. According to the standard de-randomization argument [57], it is equivalent to studying the
case when the signs δij of S∗ij are independently distributed as

δij =





1, w.p. p/2,
0, w.p. 1− p,
−1, w.p. p/2.

Proof of (d). Recall that

WS = λPT ⊥
∑

k≥0

(PΩPT PΩ)ksign(S∗)

= λPT ⊥sign(S∗) + λPT ⊥
∑

k≥1

(PΩPT PΩ)ksign(S∗).

To bound the first term, we have ‖sign(S∗)‖ ≤ 4
√
n(1)p [235]. So ‖λPT ⊥sign(S∗)‖ ≤ λ‖sign(S∗)‖ ≤

4
√
pσr(X

∗) ≤ σr(X
∗)/8.

We now bound the second term. Let G =
∑

k≥1(PΩPT PΩ)k, which is self-adjoint, and denote
by Nn1 and Nn2 the 1

2
-nets of Sn1−1 and Sn1−1 of sizes at most 6n1 and 6n2 , respectively [145].

We know that [[235], Lemma 5.4]

‖G(sign(S∗))‖ = sup
x∈Sn2−1,y∈Sn1−1

〈G(yxT ), sign(S∗)〉

≤ 4 sup
x∈Nn2 ,y∈Nn1

〈G(yxT ), sign(S∗)〉.
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Consider the random variable X(x,y) = 〈G(yxT ), sign(S∗)〉 which has zero expectation. By
Hoeffding’s inequality, we have

Pr(|X(x,y)| > t) ≤ 2 exp

(
− t2

2‖G(xyT )‖2
F

)
≤ 2 exp

(
− t2

2‖G‖2

)
.

Therefore, by a union bound,

Pr(‖G(sign(S∗))‖ > t) ≤ 2× 6n1+n2 exp

(
− t2

8‖G‖2

)
.

Note that conditioned on the event {‖PΩPT ‖ ≤ σ}, we have ‖G‖ =
∥∥∑

k≥1(PΩPT PΩ)k
∥∥ ≤

σ2

1−σ2 . So

Pr(λ‖G(sign(S∗))‖ > t)

≤ 2× 6n1+n2 exp

(
− t2

8λ2

(
1− σ2

σ2

)2
)

Pr(‖PΩPT ‖ ≤ σ) + Pr(‖PΩPT ‖ > σ).

Lemma 42 guarantees that event {‖PΩPT ‖ ≤ σ} holds with high probability for a very small
absolute constant σ. Setting t = σr(X∗)

8
, this completes the proof of (d).

Proof of (e). Recall that WS = λPT ⊥
∑

k≥0(PΩPT PΩ)ksign(S∗) and so

PΩ⊥WS = λPΩ⊥(I − PT )
∑

k≥0

(PΩPT PΩ)ksign(S∗)

= −λPΩ⊥PT
∑

k≥0

(PΩPT PΩ)ksign(S∗).

Then for any (i, j) ∈ Ω⊥, we have

WS
ij = 〈WS, eie

T
j 〉 =

〈
λsign(S∗),−

∑

k≥0

(PΩPT PΩ)kPΩPT (eie
T
j )

〉
.

Let X(i, j) = −∑k≥0(PΩPT PΩ)kPΩPT (eie
T
j ). By Hoeffding’s inequality and a union bound,

Pr

(
sup
ij
|WS

ij| > t

)
≤ 2

∑

ij

exp

(
− 2t2

λ2‖X(i, j)‖2
F

)
.

74



We note that conditioned on the event {‖PΩPT ‖ ≤ σ}, for any (i, j) ∈ Ω⊥,

‖X(i, j)‖F ≤
1

1− σ2
σ‖PT (eie

T
j )‖F

≤ 1

1− σ2
σ
√

1− ‖PT ⊥(eieTj )‖2
F

=
1

1− σ2
σ
√

1− ‖(I−UUT )ei‖2
2‖(I−VVT )ej‖2

2

≤ 1

1− σ2
σ

√
1−

(
1− µr

n(1)

)(
1− µr

n(2)

)

≤ 1

1− σ2
σ

√
µr

n(1)

+
µr

n(2)

.

Then unconditionally,

Pr

(
sup
ij
|WS

ij| > t

)

≤ 2n(1)n(2) exp

(
−2t2

λ2

(1− σ2)2n(1)n(2)

σ2µr(n(1) + n(2))

)
Pr(‖PΩPT ‖ ≤ σ) + Pr(‖PΩPT ‖ > σ).

By Lemma 42 and setting t = λ/4, the proof of (e) is completed.

Proof of Theorem 17

Our computational lower bound for problem (P) assumes the hardness of random 4-SAT.
Conjecture 1 (Random 4-SAT). Let c > ln 2 be a constant. Consider a random 4-SAT formula
on n variables in which each clause has 4 literals, and in which each of the 16n4 clauses is
picked independently with probability c/n3. Then any algorithm which always outputs 1 when
the random formula is satisfiable, and outputs 0 with probability at least 1/2 when the random
formula is unsatisfiable, must run in 2c

′n time on some input, where c′ > 0 is an absolute constant.
Based on Conjecture 1, we have the following computational lower bound for problem (P). We

show that problem (P) is in general hard for deterministic algorithms. If we additionally assume
BPP = P, then the same conclusion holds for randomized algorithms with high probability.

Theorem 17 (Computational Lower Bound. Restated). Assume Conjecture 1. Then there exists an
absolute constant ε0 > 0 for which any algorithm that achieves (1 + ε)OPT in objective function
value for problem (P) with ε ≤ ε0, and with constant probability, requires 2Ω(n1+n2) time, where
OPT is the optimum. If in addition, BPP = P, then the same conclusion holds for randomized
algorithms succeeding with probability at least 2/3.

Proof. Theorem 17 is proved by using the hypothesis that random 4-SAT is hard to show hardness
of the Maximum Edge Biclique problem for deterministic algorithms.

Definition 3 (Maximum Edge Biclique). The problem is

Input: An n-by-n bipartite graph G.
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Output: A k1-by-k2 complete bipartite subgraph of G, such that k1 · k2 is maximized.

[94] showed that under the random 4-SAT assumption there exist two constants ε1 > ε2 > 0
such that no efficient deterministic algorithm is able to distinguish between bipartite graphs
G(U, V,E) with |U | = |V | = n which have a clique of size≥ (n/16)2(1+ ε1) and those in which
all bipartite cliques are of size ≤ (n/16)2(1 + ε2). The reduction uses a bipartite graph G with at
least tn2 edges with large probability, for a constant t.

Given a given bipartite graph G(U, V,E), define H(·) as follows. Define the matrix Y
and W: Yij = 1 if edge (Ui, Vj) ∈ E, Yij = 0 if edge (Ui, Vj) 6∈ E; Wij = 1 if edge
(Ui, Vj) ∈ E, and Wij = poly(n) if edge (Ui, Vj) 6∈ E. Choose a large enough constant β > 0
and let H(AB) = β

∑
ij W2

ij(Yij − (AB)ij)
2. Now, if there exists a biclique in G with at least

(n/16)2(1+ε2) edges, then the number of remaining edges is at most tn2−(n/16)2(1+ε1), and so
the solution to minH(AB)+ 1

2
‖AB‖2

F has cost at most β[tn2−(n/16)2(1+ε1)]+n2. On the other
hand, if there does not exist a biclique that has more than (n/16)2(1 + ε2) edges, then the number
of remaining edges is at least (n/16)2(1+ ε2), and so any solution to minH(AB)+ 1

2
‖AB‖2

F has
cost at least β[tn2− (n/16)2(1 + ε2)]. Choose β large enough so that β[tn2− (n/16)2(1 + ε2)] >
β[tn2 − (n/16)2(1 + ε1)] + n2. This combined with the result in [94] completes the proof for
deterministic algorithms.

To rule out randomized algorithms running in time 2α(n1+n2) for some function α of n1, n2

for which α = o(1), observe that we can define a new problem which is the same as problem (P)
except the input description ofH is padded with a string of 1s of length 2(α/2)(n1+n2). This string is
irrelevant for solving problem (P) but changes the input size to N = poly(n1, n2) + 2(α/2)(n1+n2).
By the argument in the previous paragraph, any deterministic algorithm still requires 2Ω(n) = Nω(1)

time to solve this problem, which is super-polynomial in the new input size N . However, if a
randomized algorithm can solve it in 2α(n1+n2) time, then it runs in poly(N) time. This contradicts
the assumption that BPP = P. This completes the proof.

3.2 Property Testing of Matrix Rank

3.2.1 Introduction
Data intrinsic dimensionality is a central object of study in compressed sensing, sketching,
numerical linear algebra, machine learning, and many other domains [68, 139, 158, 241, 251,
252, 254]. In compressed sensing and sketching, the study of intrinsic dimensionality has led to
significant advances in compressing the data to a size that is far smaller than the ambient dimension
while still preserving useful properties of the signal [17, 176]. In numerical linear algebra and
machine learning, understanding intrinsic dimensionality serves as a necessary condition for the
success of various subspace recovery problems [108], e.g., matrix completion [106, 123, 220, 255]
and robust PCA [26, 43, 253]. The focus of this work is on the intrinsic dimensionality of matrices,
such as the rank, stable rank, Schatten-p norms, and SVD entropy. The stable rank is defined to
be the squared ratio of the Frobenius norm and the largest singular value, and the Schatten-p norm
is the `p norm of the singular values. We study these quantities in the framework of non-adaptive
property testing [60, 74, 183]: given non-adaptive query access to the unknown matrix A ∈ Fn×n
over a field F, our goal is to determine whether A is of dimension d (where dimension depends
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on the specific problem), or is ε-far from having this property. The latter means that at least an
ε-fraction of entries of A should be modified in order to have dimension d. Query access typically
comes in the form of reading a single entry of the matrix, though we will also discuss sensing
models where a query returns the value 〈Xi,A〉 := tr(X>i A) for a given Xi. Without making
assumptions on A, we would like to choose our sample pattern or set {Xi} of query matrices so
that the query complexity is as small as possible.

Despite a large amount of work on testing matrix rank, many fundamental questions remain
open. In the rank testing problem in the sampling model, one such question is to design an efficient
algorithm that can distinguish rank-d vs. ε-far from rank-d with optimal sample complexity. The
best-known sampling upper bound for non-adaptive rank testing for general d is O(d2/ε2), which
is achieved simply by sampling an O(d/ε)×O(d/ε) submatrix uniformly at random [139]. For
arbitrary fields F, only an Ω((1/ε) log(1/ε)) lower bound for constant d is known [153].

Besides the rank problem above, testing many numerical properties of real matrices has yet
to be explored. For example, it is unknown what the query complexity is for the stable rank,
which is a natural relaxation of rank in applications. Other examples for which previously we
had no bounds are the Schatten-p norms and SVD entropy. We discuss these problems in a new
property testing framework that we call the bounded entry model. This model has many realistic
applications in the Netflix challenge [138], where each entry of the matrix corresponds to the rating
from a customer to a movie, ranging from 1 to 5. Understanding the query complexity of testing
numerical properties in the bounded entry model is an important problem in recommendation
systems and applications of matrix completion, where often entries are bounded.

3.2.2 Our results on sample efficiency

Our work has two parts: (1) we resolve the query complexity of non-adaptive matrix rank testing,
a well-studied problem in this model, and (2) we develop a new framework for testing numerical
properties of real matrices, including the stable rank, the Schatten-p norms and the SVD entropy.
Our results are summarized in Table 3.3. We use Õ and Ω̃ notation to hide polylogarithmic factors
in the arguments inside. For the rank testing results, the hidden polylogarithmic factors depend
only on d and 1/ε and do not depend on n; for the other problems, they may depend on n.

Rank testing. We first study the rank testing problem when we can only non-adaptively query
entries. The goal is to design a sampling scheme on the entries of the unknown matrix A and an
algorithm so that we can distinguish whether A is of rank d, or at least an ε-fraction of entries
of A should be modified in order to reduce the rank to d. This problem was first proposed by
Krauthgamer and Sasson in [139] with a sample complexity upper bound of O(d2/ε2). In this
work, we improve this to Õ(d2/ε) for every d and ε, and complement this with a matching lower
bound, showing that any algorithm with constant success probability requires at least Ω̃(d2/ε)
samples:
Theorem 25. For any matrix A ∈ Fn×n over any field, there is a randomized non-adaptive
sampling algorithm which reads Õ(d2/ε) entries and runs in poly(d/ε) time, and with high
probability correctly solves the rank testing problem. Further, any non-adaptive algorithm with
constant success probability requires Ω̃(d2/ε) samples over R or any finite field.
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Table 3.3: Query complexity results for non-adaptive testing of the rank, stable rank, Schatten-p
norms, and SVD entropy. The testing of the stable rank, Schatten p-norm and SVD entropy are
considered in the bounded entry model.

Problems Rank Stable Rank Schatten-p Norm Entropy

Sampling
Õ(d2/ε) (all fields) Õ(d3/ε4)

Ω(n)†Ω̃(d2/ε) (finite fields and R) Ω̃(d2/ε2)† Õ(1/ε4p/(p−2)) (p > 2)

Sensing
O(d2) (all fields) Õ(d2.5/ε2) Ω(n) (p ∈ [1, 2))

Ω̃(d2) (finite fields) Ω̃(d2/ε2)†

† The lower bound involves a reparameterization of the testing problem.

Our non-adaptive sample complexity bound of Õ(d2/ε) matches what is known with adaptive
queries [153], and thus we show the best known upper bound might as well be non-adaptive.

New framework for testing matrix properties. Testing rank is only one of many tasks in
determining if a matrix has low intrinsic dimensionality. In several applications, we require
a less fragile measure of the collinearity of rows and columns, which is known as the stable
rank [223]. We introduce what we call the bounded entry model as a new framework for studying
such problems through the lens of property testing. In this model, we require all entries of a
matrix to be bounded by 1 in absolute value. Boundedness has many natural applications in
recommendation systems, e.g., the user-item matrix of preferences for products by customers has
bounded entries in the Netflix challenge [138]. Indeed, there are many user rating matrices, etc.,
which naturally have a small number of discrete values, and therefore fit into a bounded entry
model. The boundedness of entries also avoids trivialities in which one can modify a matrix to
have a property by setting a single entry to be arbitrarily large, which, e.g., could make the stable
rank arbitrarily close to 1.

Our model is a generalization of previous work in which stable rank testing was done in a
model for which all rows had to have bounded norm [153], and the algorithm is only allowed
to change entire rows at a time. As our non-adaptive rank testing algorithm will illustrate, one
can sometimes do better by only reading certain carefully selected entries in rows and columns.
Indeed, this is precisely the source of our improvement over prior work. Thus, the restriction of
having to read an entire row is often unnatural, and further motivates our bounded entry model.
We first informally state our main theorems on stable rank testing in this model.
Theorem 26. There is a randomized algorithm for the stable rank testing problem to decide
whether a matrix is of stable rank at most d or is ε-far from stable rank at most d, with failure
probability at most 1/3, and which reads Õ(d3/ε4) entries.

Theorem 26 relies on a new (1± τ)-approximate non-adaptive estimator of the largest singular
value of a matrix, which may be of independent interest.
Theorem 27. Suppose that A ∈ Rn×n has stable rank O(d) and ‖A‖2

F = Ω(τn2). Then in
the bounded entry model, there is a randomized non-adaptive sampling algorithm which reads
Õ(d2/τ 4) entries and with probability at least 0.9, outputs a (1± τ)-approximation to the largest
singular value of A.

We remark that when the stable rank is constant and the singular value gap σ1(A)/σ2(A) =
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(1/τ)γ for an arbitrary constant γ > 0, the operator norm can be estimated up to a (1± τ)-factor
by querying O(1/τ 2) entries non-adaptively.

Other measures of intrinsic dimensionality include matrix norms, such as the Schatten-p
norm ‖ · ‖Sp , which measures the central tendency of the singular values. Familiar special cases
are p = 1, 2 and∞, which have applications in differential privacy [24, 109] and non-convex
optimization [26, 76] for p = 1, and in numerical linear algebra [167] for p ∈ {2,∞}. Matrix
norms have been studied extensively in the streaming literature [149, 150, 151, 152], though their
study in property testing models is lacking.

We study non-adaptive algorithms for these problems in the bounded entry model. We consider
distinguishing whether ‖A‖pSp is at least cnp for p > 2 (at least cn1+1/p for p < 2), or at least an
ε-fraction of entries of A should be modified in order to have this property, where c is a constant
(depending only on p). We choose the threshold np for p > 2 and n1+1/p for p < 2 because
they are the largest possible value of ‖A‖pSp for A under the bounded entry model. When p > 2,
‖A‖Sp is maximized when A is of rank 1, and so this gives us an alternative “measure” of how
close we are to a rank-1 matrix. Testing whether ‖A‖Sp is large in sublinear time allows us to
quickly determine whether A can be well approximated by a low-rank matrix, which could save
us from running more expensive low-rank approximation algorithms. In contrast, when p < 2,
‖A‖Sp is maximized when A has a flat spectrum, and so is a measure of how well-conditioned A
is. A fast tester could save us from running expensive pre-conditioning algorithms. We state our
main theorems informally below.

Theorem 28. For constant p > 2, there is a randomized algorithm for the Schatten-p norm testing
problem with failure probability at most 1/3 which reads Õ(1/ε4p/(p−2)) entries.

Results for sensing algorithms. We also consider a more powerful query oracle known as the
sensing model, where query access comes in the form of 〈Xi,A〉 := tr(X>i A) for some sensing
matrices Xi of our choice. These matrices are chosen non-adaptively. We show differences in the
complexity of the above problems in this and the above sampling model. For the testing and the
estimation problems above, we have the following results in the sensing model:

Theorem 29. Over an arbitrary finite field, any non-adaptive algorithm with constant success
probability for the rank testing problem in the sensing model requires Ω̃(d2) queries.

Theorem 30. There is a randomized algorithm for the stable rank testing problem with failure
probability at most 1/3 in the sensing model with Õ(d2.5/ε2) queries. Further, any algorithm with
constant success probability requires Ω̃(d2/ε2) queries.

Theorem 31. For p ∈ [1, 2), any algorithm for the Schatten-p norm testing problem with failure
probability at most 1/3 requires Ω(n) queries.

Theorem 32. Suppose that A ∈ Rn×n has stable rank O(d) and ‖A‖2
F = Ω(τn2). In the

bounded entry model, there is a randomized sensing algorithm with sensing complexity Õ(d2/τ 2)
which outputs a (1± τ)-approximation to the largest singular value with probability at least 0.9.
This sensing complexity is optimal up to polylogarithmic factors.

We also provide an Ω(n) query lower bound for the SVD entropy testing in the sensing model.
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(r, c)
(r, c′)

(r′, c′) ?
(r′, c)

(r′′, c′′)
(r′′, c′)

?
(r, c′′)

Figure 3.6: Our sampling scheme (the region enclosed by the dotted lines modulo permutation of rows
and columns) and our path of augmenting a 1× 1 submatrix. The whole region is the O(d/ε)×O(d/ε)
submatrix sampled from the n× n matrix.

3.2.3 Our techniques
We now discuss the techniques in more detail, starting with the rank testing problem.

Prior to the work of [153], the only known algorithm for d = 1 was to sample an O(1/ε)×
O(1/ε) submatrix. In contrast, for rank 1 an algorithm in [153] samples O(log(1/ε)) blocks of
varying shapes “within a random O(1/ε)×O(1/ε) submatrix” and argues that these shapes are
sufficient to expose a rank-2 submatrix. For d = 1 the goal is to augment a 1 × 1 matrix to a
full-rank 2× 2 matrix. One can show that with good probability, one of the shapes “catches” an
entry that enlarges the 1× 1 matrix to a full-rank 2× 2 matrix. For instance, in Figure 3.6, (r, c)
is our 1 × 1 matrix and the leftmost vertical block catches an “augmentation element” (r′, c′)

which makes
[

(r,c′) (r,c)
(r′,c′) (r′,c)

]
a full-rank 2× 2 matrix. Hereby, the “augmentation element” means

the entry by adding which we augment a r × r matrix to a (r + 1) × (r + 1) matrix. In [153],
an argument was claimed for d = 1, though we note an omission in their analysis. Namely, the
“augmentation entry” (r′, c′) can be the 1 × 1 matrix we begin with (meaning that Ar′,c′ 6= 0,
which might not be true), and since one can show that both (r, c) and (r′, c′) fall inside the same
sampling block with good probability, the 2× 2 matrix would be fully observed and the algorithm
would thus be able to determine that it has rank 2. However, it is possible that Ar′,c′ = 0 and
(r′, c′) would not be a starting point (i.e., a 1× 1 rank-1 matrix), and in this case, (r′, c) may not
be observed, as illustrated in Figure 3.6. In this case the algorithm will not be able to determine
whether the augmented 2× 2 matrix is of full rank. For d > 1, nothing was known. One issue is
that the probability of fully observing a d × d submatrix within these shapes is very small. To
overcome this, we propose what we call rebasing and transformation to a canonical structure.
These arguments allow us to tolerate unobserved entries and conveniently obtain an algorithm for
every d, completing the analysis of [153] for d = 1 in the process.

Rebasing argument + canonical structure. The best previous result for the rank testing problem
uniformly samples anO(d/ε)×O(d/ε) submatrix and argues that one can find a (d+ 1)× (d+ 1)
full-rank submatrix within it when A is ε-far from rank-d [139]. In contrast, our algorithm
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follows from subsampling an O(ε)-fraction of entries in this O(d/ε) ×O(d/ε) submatrix. Let
R1 ⊆ · · · ⊆ Rm and C1 ⊇ · · · ⊇ Cm be the indices of subsampled rows and columns, respectively,
with m = O(log(1/ε)). We choose these indices uniformly at random such that |Ri| = Õ(d2i)

and |Ci| = Õ(d/(2iε)), and sample the entries in all m blocks determined by the {Ri, Ci}
(see Figure 3.6, where our sampled regions are enclosed by the dotted lines). Since there are
Õ(log(1/ε)) blocks and in each block we sample Õ(d2/ε) entries, the sample complexity of our
algorithm is as small as Õ(d2/ε).

The correctness of our algorithm for d = 1 follows from what we call a rebasing argument.
Starting from an empty matrix, our goal is to maintain and augment the matrix to a 2× 2 full-rank
matrix when A is ε-far from rank-d. By a level-set argument, we show an oracle lemma which
states that we can augment any r×r full-rank matrix to an (r+1)× (r+1) full-rank matrix by an
augmentation entry in the sampled region, as long as r ≤ d and A is ε-far from rank-d. Therefore,
as a first step we successfully find a 1× 1 full-rank matrix, say with index (r, c), in the sampled
region. We then argue that we can either (a) find a 2× 2 fully-observed full-rank submatrix or a
2× 2 submatrix which is not fully observed but we know must be of full rank, or (b) move our
maintained 1× 1 full-rank submatrix upwards or leftwards to a new 1× 1 full-rank submatrix and
repeat checking whether case (a) happens or not; if not, we implement case (b) again and repeat
the procedure. To see case (a), by the oracle lemma, if the augmented entry is (r′′, c′) (see Figure
3.6), then we fully observe the submatrix determined by (r′′, c′) and (r, c) and so the algorithm is
correct in this case. On the other hand, if the augmented entry is (r′, c′), then we fail to see the
entry at (r′, c). In this case, when Ar,c′ = 0, then we must have Ar′,c′ 6= 0; otherwise, (r′, c′) is
not an augment of (r, c), which leads to a contradiction with the oracle lemma. Thus we find a
2× 2 matrix with structure

[
Ar,c′ Ar,c

Ar′,c′ Ar′,c

]
=

[
0 6= 0
6= 0 ?

]
, (3.27)

which must be of rank 2 despite an unobserved entry, and the algorithm therefore is correct in this
case. The remaining case of the analysis above is when Ar,c′ 6= 0. Instead of trying to augment
Ar,c, we augment Ar,c′ in the next step. Note that the index (r, c′) is to the left of (r, c). This leads
to case (b). In the worst case, we move the 1× 1 non-zero matrix to the uppermost left corner,5

e.g., (r′′, c′). Fortunately, since (r′′, c′) is in the uppermost left corner, we can, as guaranteed by
the oracle lemma, augment it to a 2 × 2 fully-observed full-rank matrix. Again the algorithm
outputs correctly in this case.

The analysis becomes more challenging for general d, since the number of unobserved entries
(i.e., those entries marked as “?”) may propagate as we augment an r×r submatrix (r = 1, 2, ..., d)
in each round. To resolve the issue, we maintain a structure (modulo elementary transformations)

5The upper-left corner refers to the intersection of all sampled blocks, namely,R1 × Cm; it does not mean the
top-left entry.
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similar to structure (3.27) for the r × r submatrix, that is,



0 0 · · · 0 · · · 0 6= 0
0 0 · · · 0 · · · 6= 0 ?
...

...
...

...
...

0 6= 0 · · · ? · · · ? ?
6= 0 ? · · · ? · · · ? ?



. (3.28)

Since the proposed structure has non-zero determinant, the submatrix is always of full rank.
Similar to the case for d = 1, we show that we can either (a) augment the r × r submatrix to an
(r + 1)× (r + 1) submatrix with the same structure (3.28) (modulo elementary transformations);
or (b) find another r × r submatrix of structure (3.28) that is closer to the upper-left corner than
the original r × r matrix. Hence the algorithm is correct for general d.

Pivot-node assignment. Our rank testing lower bound under the sampling model over a finite field
F follows from distinguishing two hard instances UV> vs. W, where U,V ∈ Ft×d and W ∈ Ft×t
have i.i.d. entries that are uniform over F. For an observed subset S of entries with |S| = O(d2),
we bound the total variation distance between the distributions of the observed entries in the two
cases by a small constant. In particular, we show that the probability Pr[(UV>)|S = x] is large
for any observation x ∈ F|S|, by a pivot-node assignment argument, as follows. We reformulate
our problem as a bipartite graph assignment problem G = (L ∪R,E), where L corresponds to
the rows of U, R the rows of V and each edge of E one entry in S . We want to assign each node
a vector/affine subspace, meaning that the corresponding row in U or V will be that vector or in
that affine subspace, such that they agree with our observation, i.e., (UV>)|S = x. Since U,V
are random matrices, we assign random vectors to nodes adaptively, one at a time, and try to
maintain consistency with the fact that (UV>)|S = x. Note that the order of the assignment is
important, as a bad choice for an earlier node may invalidate any assignment to a later node. To
overcome this issue, we choose nodes of large degrees as pivot nodes and assign each non-pivot
node adaptively in a careful manner so as to guarantee that the incident pivot nodes will always
have valid assignments (which in fact form an affine subspace). In the end we assign the pivot
node vectors from their respective affine subspaces. We employ a counting argument for each
step in this assignment procedure to lower bound the number of valid assignments, and thus lower
bound the probability Pr[(UV>)|S = x].

The above analysis gives us an Ω(d2) lower bound for constant ε since W is constant-far
from being of rank d. The desired Ω(d2/ε) lower bound follows from planting UV> vs. W with
t =
√
εn into an n× n matrix at uniformly random positions, and padding zeros everywhere else.

New analytical framework for stable rank, Schatten-p norm, and entropy testing. We pro-
pose a new analytical framework by reducing the testing problem to a sequence of estimation
problems without involving poly(n) in the sample complexity. There is a two-stage estimation in
our framework: (1) a constant-approximation to some statistic X of interest (e.g., stable rank)
which enables us to distinguish X ≤ d vs. X ≥ 10d for the threshold parameter d of interest. If
X ≥ 10d, we can safely output “A is far from X ≤ d”; otherwise, the statistic is at most 10d, and
(2) we show that X has a (1± ε)-factor difference between “X ≤ d” and “far from X ≤ d”, and
so we implement a more accurate (1± ε)-approximation to distinguish the two cases. The sample
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complexity does not depend on n polynomially because (1) the first estimator is “rough” and gives
only a constant-factor approximation and (2) the second estimator operates under the condition
that X ≤ 10d and thus A has a low intrinsic dimension. We apply the proposed framework to
the testing problems of the stable rank and the Schatten-p norm by plugging in our estimators in
Theorem 27 and Theorem 32. This analytical framework may be of independent interest to other
property testing problems more broadly.

In a number of these problems, a key difficulty is arguing about spectral properties of a matrix
A when it is ε-far from having a property, such as having stable rank at most d. Because of the
fact that the entries must always be bounded by 1 in absolute value, it becomes non-trivial to
argue, for example, that if A is ε-far from having stable rank at most d, that its stable rank is even
slightly larger than d. A natural approach is to argue that you could change an ε-fraction of rows
of A to agree with a multiple of the top left or right singular vector of A, and since we are still
guaranteed to have stable rank at least d after changing such entries, it means that the operator
norm of A must have been small to begin with (which says something about the original stable
rank of A, since its Frobenius norm can also be estimated). The trouble is, if the top singular
vector has some entries that are very large, and others that are small, one cannot scale the singular
vector by a large amount since then we would violate the boundedness criterion of our model.
We get around this by arguing there either needs to exist a left or a right singular vector of large
`1-norm (in some cases such vectors may only be right singular vectors, and in other cases only
left singular vectors). The `1-norm is a natural norm to study in this context, since it is dual to the
`∞-norm, which we use to capture the boundedness property of the matrix.

Our lower bounds for the above problems follow from the corresponding sketching lower
bounds for the estimation problem in [150, 154], together with rigidity-type results [229] for the
hard instances regarding the respective statistic of interest.

3.2.4 Proofs of our main results
Proofs of Theorem 25

Useful lemmas In this section, we study the following problem of testing low-rank matrices.
Problem 1 (Rank Testing with Parameter (n, d, ε) in the Sampling Model). Given a field F and a
matrix A ∈ Fn×n which has one of promised properties:
H0. A has rank at most d;
H1. A is ε-far from having rank at most d, meaning that A requires changing at least an

ε-fraction of its entries to have rank at most d.
The problem is to design a property testing algorithm that outputs H0 with probability 1 if A ∈ H0,
and output H1 with probability at least 0.99 if A ∈ H1, with the least number of queried entries.

Positive Results Below we provide a non-adaptive algorithm for the rank testing problem under
the sampling model with Õ(d

2

ε
) queries when ε ≤ 1

e
. Let η ∈ (0, 1

2
) be such that η log( 1

η
) = ε and

let m = dlog( 1
η
)e.

We note that the number of entries that Algorithm 7 queries is

O(k · [log d+ log log(1/η)]2d2 log2(1/η)/η) = Õ(d2/ε).
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Algorithm 7 Robust non-adaptive testing of matrix rank
1: ChooseR1, . . . ,Rm and C1, . . . , Cm from [n] uniformly at random such that

R1 ⊆ · · · ⊆ Rm, C1 ⊇ · · · ⊇ Cm,

and

|Ri| = c[log d+log log(1/η)]d log(1/η)2i, |Ci| = c[log d+log log(1/η)]d log(1/η)/(2iη),

where c > 0 is an absolute constant. To impose containment forRi’s,Ri can be formed by
appending toRi−1 uniformly random |Ri| − |Ri−1| rows. The containment for Ci’s can be
imposed similarly.

2: Query the entries in Q =
⋃m
i=1(Ri × Ci). Note that the entries in (Rm × C1) \ Q are

unobserved. The algorithm solves the following minimization problem by filling in those
entries of A(Rm×C1)\Q given input AQ.

r := min
A(Rm×C1)\Q

rank(ARm,C1). (3.29)

3: Output “A is ε-far from having rank d” if r > d; otherwise, output “A is of rank at most d”.

We now prove the correctness of Algorithm 7. Before proceeding, we reproduce the definitions
augment set and augment pattern i and relevant lemmata from [153] as follows.
Definition 4 (Augment). For n×n fixed matrix A, we call (r, c) an augment forR×C ⊆ [n]× [n]
if r ∈ [n]\R, c ∈ [n]\C and rank(AR∪{r},C∪{c}) > rank(AR,C). We denote by aug(R, C) the set
of all the augments forR× C, namely,

aug(R, C) = {(r, c) ∈ ([n]\R)× ([n]\C) | rank(AR∪{r},C∪{c}) > rank(AR,C)}.

Definition 5 (Augment Pattern). For fixedR, C and A, define countr (where r ∈ [n]\R) to be the
number of c’s such that (r, c) ∈ aug(R, C). Let {count∗i }i∈[n−|R|] the non-increasing reordering
of the sequence {counti}i∈[n]\R, and count∗i = 0 for i > n−|R|. We say that (R, C) has augment
pattern i on A if and only if count∗n/2i ≥ 2i−1ηn.
Lemma 45. Let AR,C be a t × t full-rank matrix. If A is ε-far from having rank d and
rank(AR,C) = t ≤ d, then

|aug(R, C)| =
∑

r∈[n]\R
countr =

n−|R|∑

i=1

count∗i ≥
εn2

3
.

Proof. Let S be the set of entries (r, c) inRc × Cc such that rank(AR∪{r},C∪{c}) > rank(AR,C),
i.e., S = aug(R, C). We will show that |S| ≥ εn2/3.

Let T be the complement of S inside the set Rc × Cc. For any (r, c) ∈ S, we discuss the
following two cases.

Case (i). There is c′ ∈ Cc such that (r, c′) ∈ T or r′ ∈ Rc such that (r′, c) ∈ T
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In the former case, the row vector Ar,C∪{c′} is a linear combination of the rows of AR,C∪{c′}.
So we can change the value of Ar,c so that Ar,C∪{c} is a linear combination of AR,C∪{c} with
the same representation coefficients as that of AR,C∪{c′}. Therefore, augmenting AR,C by the
pair (r, c) would not increase rank(AR,C). Similarly, if there is r′ ∈ Rc such that (r′, c) ∈ T ,
we can change the value of Ar,c so that augmenting AR,C by the pair (r, c) would not increase
rank(AR,C). We change at most |S| entries for both cases combined.

Case (ii). (r, c′) ∈ S for all c′ ∈ Cc and (r′, c) ∈ S for all r′ ∈ Rc

In this case, we can change the entire r-th row and c-th column of A so that rank(AR,C) does
not increase by augmenting it with any pair in (Rc × {c}) ∪ ({r} × Cc). Recall that n ≥ 2d and
t ≤ d. It follows that n ≤ 2(n− t). Therefore, this specific pair (r, c) would lead to the change of
at most 2n ≤ 2(n − t) + 2(n − t) ≤ 2(|Rc| + |Cc|) entries. For all such (r, c)’s, we change at
most 2|S| entries in this case.

In summary, we can change at most 3|S| entries of A so that rank(AR,C) cannot increase by
augmenting AR,C with any pair (r, c) ∈ Rc × Cc. Since A is ε-far from being rank d, we must
have 3|S| ≥ εn2. Namely, |aug(R, C)| = |S| ≥ εn2/3.

Lemma 46. Let AR,C be a t×t full-rank matrix. If A is ε-far from being rank d and rank(AR,C) =
t ≤ d, then there exists i such that (R, C) has augment pattern i.

Proof. Suppose that (R, C) does not have any augment pattern in [log(1/η)]. That is

count∗n/2i < 2i−1ηn, i = 1, 2, ..., log(1/η).

Therefore,

∑

i

count∗i =
n∑

i=n
2

+1

count∗i +

n
2∑

i=n
4

+1

count∗i + ...+

n

2log(1/η)−1∑

i= n

2log(1/η)
+1

count∗i +

ηn∑

i=1

count∗i

≤ n

2
count∗n

2
+1 +

n

4
count∗n

4
+1 + · · ·+ n

2log(1/η)
count∗ n

2log(1/η)
+1 + ηncount∗1

<
n

2
ηn+

n

4
2ηn+ ...+ ηn2log(1/η)−1ηn+ ηn2

=
ηn2

2
(log(1/η) + 2)

≤ εn2

3
,

which leads to a contradiction with Lemma 45.

Lemma 47. For fixed (R, C), suppose that (R, C) has augment pattern i on A. LetR′, C ′ ⊆ [n]
be uniformly random such that |R′| = c2i, |C ′| = c/(2iη). Then the probability that (R′, C ′)
contains at least one augment of (R, C) on A is at least 1− 2e−c/2.

Proof. Since (R, C) has augment pattern i on matrix A, the probability that R′ (and C ′) does
not hit row (and column) of any augment is (1− 2−i)c2

i (and (1− 2i−1η)c/(2
iη)). Therefore, the

probability that (R′, C ′) hits at least one augment is given by
(

1− (1− 2−i)c2
i
)(

1− (1− 2i−1η)c/(2
iη)
)
≥ 1− 2

ec/2
.
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Warm-up: the case of d = 1. Without loss of generality, we may permute the rows and
columns of A and assume thatRi = {1, . . . , |Ri|} and Ci = {1, . . . , |Ci|} for all i ≤ dlog 1

η
e.

Theorem 33. Let ε ≤ 1/e and d = 1. For any matrix A, the probability that Algorithm 7 fails is
at most 1/3.

Proof. If A is of rank at most d, then the algorithm will never make mistake; so we assume that
A is ε-far from being rank d in the proof below.

Lemma 46 shows that (∅, ∅) has some augment pattern s and by Lemma 47, with probability
at least 1− 2e−c/2 there exists (r, c) ∈ (Rs, Cs) such that (r, c) ∈ aug(∅, ∅), i.e., A(r,c) 6= 0. We
now argue that the rank-1 submatrix A(r,c) can be augmented to a rank-2 submatrix.

Again by Lemma 46, ({r}, {c}) has an augment pattern j; otherwise, A is not ε-far from
being rank-d, and with probability at least 1 − 2e−c/2 there exists (r′, c′) ∈ (Rj, Cj) such that
(r′, c′) ∈ aug({r}, {c}). We now discuss three cases based on the position of (r′, c′) in relation to
(r, c).

Case (i). (r′, c′) ∈ Rs × Cs.
By Lemma 47, with probability at least 1− 2e−c/2,Rj × Cj contains an argument for (r, c),

denoted by (r′, c′). By construction of {Rj} and {Cj}, (r, c′) and (r′, c) are also queried (See
Figure 3.7(a)). Thus we find a 2× 2 non-singular matrix. The algorithm answers correctly with
probability at least 1− 4e−c0/4 > 2/3 in this case.

Case (ii). r′ 6∈ Rs or c′ 6∈ Cs.
In this case, we show that starting from Ar,c, we can always find a path for the non-singular

1 × 1 submatrix A∗,∗ such that the index (∗, ∗) always moves to the left or above, so we make
progress towards case (i): we note that the non-zero element in the most upper left corner can
always be augmented with three queried elements in the same augment pattern (i.e., Case (i)),
because the uppermost left corner belongs to all (Ri, Ci)’s by construction. We now show how to
find the path (Please refer to Figure 3.7(b) for the following proofs).

For index (r, c) such that Ar,c 6= 0, if r′ 6∈ Rs or c′ 6∈ Cs (say r′ 6∈ Rs at the moment), then by
Lemma 47, there exists an index (r′, c′) ∈ (Rj, Cj) such that (r, c) can be augmented by (r′, c′).
However, we cannot observe Ar′,c so we do not find a 2× 2 submatrix at the moment. To make
progress, we further discuss two cases.

Case (ii.1). Ar,c′ = 0 and Ar′,c′ = 0.
This case is impossible; otherwise, (r′, c′) cannot be an augment of (r, c).

Case (ii.2). Ar,c′ = 0 and Ar′,c′ 6= 0.
Since Ar,c 6= 0, Ar′,c′ 6= 0 and Ar,c′ = 0, no matter what Ar,c′ is, the 2× 2 submatrix

[
Ar,c′ Ar,c

Ar′,c′ Ar′,c

]
=

[
0 6= 0
6= 0 ?

]

is always non-singular (Denote by ? the entry which can be observed or unobserved, meaning that
the specific value of the entry is unimportant for our purpose). So the algorithm answers correctly
with probability at least 1− 4e−c0/4 > 2/3.

Case (ii.3). Ar,c′ 6= 0. Instead of augmenting (r, c), we shall pick (r, c′) to be our new base entry
(1× 1 matrix) and try to augment it to a 2× 2 matrix. In this way, we have moved our base 1× 1
matrix towards the upper-left corner. We can repeat the preceding arguments of different cases.
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Rs

Rj

Cj

Cs

(r, c)(r, c′)

(r′, c)(r′, c′)

(a) Case (i).

(r, c)
(r, c′)

(r′, c′) ?
(r′, c)

(r′′, c′′)
(r′′, c′)

?
(r, c′′)

(b) Case (ii).

Figure 3.7: Finding an augmentation path (d = 1), where the whole region is theO(d/ε)×O(d/ε)
submatrix uniformly sampled from the original n× n matrix.

If Case (i) happens for (r, c′), we immediately have a 2×2 rank-2 submatrix and the algorithm
answers correctly with a good probability. If Case (i) does not happen, we shall demonstrate that
we can make further progress. Suppose that (r′′, c′′) is an augment of ({r}, {c′}) and c′′ 6∈ Cs ∪Cj .
We intend to look at the submatrix [

Ar′′,c′ Ar′′,c′′

Ar,c′ Ar,c′′

]

Here we cannot observe Ar,c′′ . We know that Ar′′,c′ and Ar′′,c′′ cannot be both 0, otherwise
(r′′, c′′) would not be an augment for (r, c′). If Ar′′,c′ = 0 and Ar′′,c′′ 6= 0, this 2 × 2 matrix is
nonsingular regardless of the value of Ar,c′′ and the algorithm will answer correctly. If Ar′′,c′ 6= 0,
we can rebase our 1× 1 base matrix to be (r′′, c′) and try to augment it. Since (r′′, c′) is above
(r′, c), we have again moved towards the upper-left corner.

Note that there are at most log(1/η) different augment patterns and each time we rebase, A∗,∗
moves from one (Rt, Ct) to another for some t. Hence, after repeating the argument above at most
2 log(1/η) times, the algorithm is guaranteed to observe a 2× 2 non-singular submatrix. Since the
failure probability in each round is at most 4e−c0/4, by union bound over 2 log(1/η) rounds, the
overall failure probability is at most 8 log(1/η)e−c0/4 ≤ 1/3, provided that c0 = O(log log( 1

η
)).

In summary, the overall probability is at least 2/3 that the algorithm answers correctly in all
cases by finding a submatrix of rank 2, when A is ε-far from being rank-1.

Extension to general rank d. We now extend the analysis to the general rank d.
Theorem 34. Let ε ≤ 1/e and d ≥ 1. For any matrix A, the probability that Algorithm 7 fails is
at most 1/poly(d log(1

ε
)).

Proof. If A is of rank at most d, then the algorithm will never make mistake, so we assume that
A is ε-far from being rank d in the proof below.
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The idea is that, we start with the base case of an empty matrix, and augment it to a full-rank
r × r matrix in r rounds, where in each round we increase the dimension of the matrix by exactly
one. Each round may contain several steps in which we move the intermediate j×j matrix (j ≤ r)
towards the upper-left corner without augmenting it; here, moving the matrix towards the upper-
left corner means changing AR,C to AR′,C′ , of the same rank, with |R′| = |R| = |C ′| = |C| = j
and R′ � R and C ′ � C, where R′ � R means that, suppose that r′1 < r′2 < · · · < r′j are the
(sorted) elements in R′ and r1 < r2 < · · · < rj are the (sorted) elements in R, it holds that
r′i ≤ ri for all 1 ≤ i ≤ j, and C ′ � C has a similar meaning.

The challenge is that those unobserved entries ?’s may propagate as we augment the submatrix
in each round. Our goal is to prove that starting from a structural (r − 1) × (r − 1) full-rank
submatrix which might have ?’s as its entries, no matter what values of all ?’s are, with the
augment operator we either (1) make progress for (r − 1) × (r − 1) submatrix, or (2) obtain
an r × r full-rank submatrix with the same structure. Let us first condition on the event that
Lemma 47 holds true. Regarding the structure, we have the following claim.

Claim 1. There exists a searching path for r × r full-rank submatrices with non-decreasing r
which has the following lower triangular form modulo an elementary transformation




0 0 · · · 0 · · · 0 6= 0
0 0 · · · 0 · · · 6= 0 ?
...

...
...

...
...

0 0 · · · 6= 0 · · · ? ?
...

...
...

...
...

0 6= 0 · · · ? · · · ? ?
6= 0 ? · · · ? · · · ? ?




, (3.30)

where 6= 0 denotes the known entry which is non-zero, and ? denotes an entry which can be either
observed or unobserved.

Proof of Claim 1. Without loss of generality, we assume that all ?’s are unobserved, which is the
most challenging case; otherwise, the proof degenerates to the discussion of central submatrix in
Case (iii) which we shall specify later. We prove the claim by induction. The base case r = 1 is
true by Theorem 33. Suppose the claims holds for r − 1. We now argue the correctness for r.

Let (p, q) be the augment. Denote the augment row by
[
y1 · · · yb Ap,q yb+2 · · · yr

]
,

and the augment column by

[
x1 · · · xa Ap,q xa+2 · · · xr

]>
.

We now discuss three cases based on the relation between a+ b and r.

Case (i). a+ b = r − 1 (Ap,q is on the antidiagonal of r × r submatrix).
In this case, yb+2, . . . , yr and xa+2, . . . , xr are all ?’s. We argue that x1 = x2 = · · · = xa = 0

and y1 = y2 = · · · = yb = 0; otherwise, we can make progress. First consider yi for 1 ≤ i ≤ b.
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If some yi 6= 0, we can delete the (r − i)-th row in the (r − 1) × (r − 1) submatrix and insert
the augment row (without the augment entry Ap,q), which is above the deleted row. Thus we
obtain a new (r − 1)× (r − 1) submatrix towards the upper-left corner, and furthermore, the new
submatrix exhibits the structure in (3.30). The same argument applies for x1, x2, ..., xa. Therefore,
if no progress is made, it must hold that x1 = x2 = ... = xa = 0 and y1 = y2 = ... = yb = 0. In
this case, Ap,q 6= 0; otherwise, (p, q) is not an augment. Therefore we obtain an r × r full-rank
matrix of the form (3.30).

Case (ii). a+ b < r − 1 (Ap,q is above the antidiagonal of r × r submatrix).
In this case, yr−a+1, . . . , yr and xr−b+1, . . . , xr are all ?’s. Similarly to Case (i), we shall argue

that x1 = · · · = xa = xa+2 = · · · = xr−b = 0 and y1 = · · · = yb = yb+2 = · · · = yr−a = 0;
otherwise, we can make progress. To see this, consider first yi for 1 ≤ i ≤ b and then for
b+2 ≤ i ≤ r−a. If yi 6= 0 for some i ≤ b, we can delete the (r− i)-th row in the (r−1)×(r−1)
submatrix and insert the augment row (without the augment entry Ap,q), which is above the deleted
row, and so we make progress. Now assume that y1 = · · · = yb = 0. If yi 6= 0 for some i such
that b+ 2 ≤ i ≤ r − a, we can delete the (r − i+ 1)-st row in the (r − 1)× (r − 1) submatrix
of the last step and insert the augment row (without the augment entry Ap,q), which is above
the deleted row. So we make progress towards the most upper left corner. The same argument
applies to x1, . . . , xa, xa+2, . . . , xr−b. Therefore, x1 = · · · = xa = xa+2 = ... = xr−b = 0 and
y1 = · · · = yb = yb+2 = · · · = yr−a = 0. In this case, Ap,q 6= 0; otherwise, (p, q) is not an
augment since all possible choices of ?’s cannot make the r × r submatrix non-singular. By
exchanging the (a+ 1)-st row and the (r − b)-th row of the r × r submatrix or exchanging the
(b+ 1)-st column and the (r − a)-th column, we obtain an r × r submatrix of the form (3.30).

Case (iii). a+ b > r − 1 (Ap,q is below the antidiagonal of r × r submatrix).
In this case, we argue that xi = yj = 0 for all i ≤ r − b− 1 and j ≤ r − a− 1; otherwise we

can make progress as Cases (i) and (ii) for yj . To see this, let us discuss from j = 1 to r−a−1. If
yj 6= 0 (j = 1, 2, . . . , r−a−1), we can delete the (r−j)-th row in the (r−1)×(r−1) submatrix
and insert the augment row (without the augment entry Ap,q), which is above the deleted row.
So we make progress. The same argument applies to x1, . . . , xr−b−1. So xi = yj = 0 for all
i ≤ r − b− 1 and j ≤ r − a− 1.

Given that there is only one non-zero entry in the first r − b− 1 rows and the first r − a− 1
columns of the r × r submatrix (i.e., the Laplace expansion of the determinant), we only need
to focus on a minor corresponding to a min{a, b} ×min{a, b} central submatrix, which decides
whether the determinant of the r × r submatrix is zero and is fully-observed because the augment
(p, q) is at the lower right corner of the central submatrix (see the red part in Eqn. (3.31)). Since
it is fully-observed, the minor must be non-zero; otherwise, (p, q) cannot be an augment for all
choices of ?’s. Therefore, we can do an elementary transformation to make the central submatrix a
lower triangular matrix with non-zero antidiagonal entries. More importantly, such an elementary
transformation also transforms the r × r matrix to a lower triangular matrix with non-zero
antidiagonal entries, because all the entries to the left and above of the central matrix are 0’s,
and all the entries to the right and below of the central matrix are ?’s. Hence any elementary
transformation keeps 0’s and ?’s unchanged, and we obtain therefore an r × r submatrix of the
form (3.30).
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0 0 · · · · · · 0 · · · 0 · · · 0 6= 0
0 0 · · · · · · 0 · · · 0 · · · 6= 0 ?
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · · · · 6= 0 · · · known · · · ? ?
...

...
...

...
...

...
0 0 · · · · · · known · · · augment Ap,q · · · ? ?
...

...
...

...
...

...
0 6= 0 · · · · · · ? · · · ? · · · ? ?
6= 0 ? · · · · · · ? · · · ? · · · ? ?




. (3.31)

Now we are ready to prove Theorem 34. Note that Lemma 47 works only for fixed (R, C).
To make the lemma applicable “for all” (R, C) throughout the augmentation process, we shall
take a union bound by choosing |R| and |C| large enough. Specifically, for each i, we divide
Ri =

⋃`
k=1R

(k)
i uniformly at random into ` = d + d log( 1

η
)6 even parts R(1)

i ,R(2)
i , . . . ,R(d)

i ,

where each |R(k)
i | = c[log(d)+log log( 1

η
)]2i, and divide Ci =

⋃d
k=1 C

(k)
i uniformly at random into

` even parts C(1)
i , C(2)

i , . . . , C(`)
i , where each |C(k)

i | = c[log(d) + log log( 1
η
)]/(2iη) for every k. We

note that {R(k)
i }k (and {C(k)

i }k) are independent of each other. It follows that the event in Lemma
47 holds with probability at least 1− 1

poly(d log(1/η))
. By a union bound over all `2 = Θ(d2 log2( 1

η
))

possible choices of {R(k)
i } × {C(k)

i } and Claim 1, with probability at least 1− 1/poly(d log(1
ε
)),

Algorithm 7 answers correctly, when A is ε-far from having rank d.

A computationally efficient algorithm We now show how to implement Algorithm 7 effi-
ciently, for which we only need to give a polynomial-time algorithm to solve the minimization
problem (3.29) in Algorithm 8. We have the following theorem.
Theorem 35. Algorithm 8 correctly solves the minimization problem (3.29) in poly(d

ε
) time.

Proof. Without loss of generality, we may permute the rows and columns of A and assume
that Ri = {1, . . . , |Ri|} and Ci = {1, . . . , |Ci|} for all i ≤ dlog 1

η
e. Our goal is to complete the

submatrix A(Rm×C1) such that its rank is minimal. Denote byR(i) the set of sampled indices in
the i-th column of A. We start from an empty matrix S = [ ]. We will extend S as we process the
columns of A that are not in the block (Rk, Ck) from left to right. We will maintain the following
two invariants:

• The minimal rank of matrix completion is always equal to the number of columns of S.

6In the number of parts d+ d log( 1
η ), the first term follows from the operation of augmenting 1× 1 submatrix

to d× d. The second term follows from moving the submatrix towards the upper left corner (from the lower-right
corner in the worst case).
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Algorithm 8 Solving problem (3.29) in the polynomial time
Input: R1, . . . ,Rk and C1, . . . , Ck. Denote byR(i) the set of sampled indices in the i-th column

of A, and letR(i)
⊥ = Rk \ R(i).

Output: the solution r to the minimization problem (3.29).
1: S← [ ] is an empty matrix.
2: r ← 0.
3: For i = 1, . . . , |C1|
4: If there exists x such that SR(i),:x = AR(i),i

5: AR(i)
⊥ ,i
← SR(i)

⊥ ,:
x.

6: Else
7: AR(i)

⊥ ,i
← 1.

8: S← [S,ARk,i].
9: r ← r + 1.

10: End If
11: End For

• After processing the i-th column of A, the restricted column AR(i),i is in the column space
of SR(i),:.

Note that both invariants hold in the base case. For the i-th column A:,i that we encounter,
if AR(i),i is in the column space of SR(i),:, then we use a linear combination on the first |R(i)|
coordinates of vectors given by the columns of SR(i),: to extend AR(i),i from a vector in |R(i)|
dimensions to a vector in |Rm| dimensions, and we do not change S. Notice that the two invariants
are preserved in this case.

Otherwise, AR(i),i is not in the column space of SR(i),:. If AR(i),i were in the column space of
AR(i),1:(i−1), we would, by the second invariant above, have that AR(i),i is in the column space of
SR(i),:, a contradiction. Therefore, AR(i),i is not in the column space of AR(i),[i−1]. In this case,
A:,i must be linearly independent of all previous columns A:,[i−1]. We can thus append to S on the
right the vector [AR(i),i; 1] (The vector 1 can be replaced with any (|Rk| − |R(i)|)-dimensional
vector), which increases the size and rank of S by 1, and we maintain our two invariants.

The time complexity of Algorithm 8 is poly(d
ε
).

Lower bounds over finite fields in the sampling model According to Yao’s minimax principle,
it suffices to provide a distribution on n× n input matrices A for which any deterministic testing
algorithm fails with significant probability over the choice of A. Before proceeding, we first state
a hardness result that we want to reduce from.
Lemma 48. Let G = (L ∪ R,E) be a bipartite graph such that |L| = |R| = n and |E| < γ2d2

for d ≤ n/γ. Then Algorithm 9 returns a partition E = E1 ∪ E2 ∪ · · · ∪ Et, where t ≤ γ2d2 and
|Ei| ≤ γd for all i.

Proof. We first show that Algorithm 9 can be executed correctly, that is, whenever E 6= ∅ there
always exists v such that 1 ≤ deg(v) ≤ γd. We note that 1 ≤ deg(v) is obvious because E 6= ∅.
If all vertices with non-zero degree have degree at least γd, the total number of edges would be at
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Algorithm 9 Decomposing edges E
Input: A bipartite graph G = (L ∪R,E).
Output: Partition of E = E1 ∪ · · · ∪ Et and the set of pivot nodes {wt}.

1: t← 0.
2: While E 6= ∅
3: Find v such that 1 ≤ deg(v) ≤ γd.
4: t→ t+ 1.
5: Et ← edges between v and all its neighbours.
6: wt ← v.
7: E ← E \ Et.
8: End While
9: return E = E1 ∪ · · · ∪ Et and {wt}.

least γdn ≥ d2γ2, contradicting our assumption on the size of E. When the algorithm terminates,
it is clear that each Ei generates at most γd edges and the Ei’s are disjoint and so t ≤ γ2d2.

Lemma 49. Suppose that there are t groups of (fixed) vectors {v(k)
1 , . . . ,v

(k)
sk }k∈[t] ⊂ Fd such that

the vectors in each group are linearly independent (denoted by ⊥). Let w1, . . . ,wr be random
vectors in Fd such that each wi is chosen uniformly at random from some set Si ⊆ Fd with
|Si| ≥ |F|(1−γ)d. Let s = maxk sk. When s+ r ≤ γd for all k and t ≤ γ2d2, it holds that

Pr
w1,...,wr

{
v

(k)
1 ⊥ · · · ⊥ v(k)

sk
⊥ w1 ⊥ · · · ⊥ wr for all k ∈ [t]

}
≥ 1− γ3d3

|F|(1−2γ)d
.

Proof. For fixed w1, . . . ,wi−1 such that v
(k)
1 , . . . ,v

(k)
sk ,w1, . . . ,wi−1 are linearly independent for

all k ∈ [t], the probability that wi ∈ Si is linearly independent of v
(k)
1 , . . . ,v

(k)
sk ,w1, . . . ,wi−1 for

all k ∈ [t] is at least 1− t|F|sk+i−1

|Si| ≥ 1− t|F|sk+i−1

|F|(1−γ)d = 1− t
|F|(1−γ)d−(sk+i−1) ≥ 1− t

|F|(1−γ)d−(s+i−1) .
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Therefore, for all k ∈ [t] with t ≤ γ2d2, we have

Pr
w1,...,wr

{v(k)
1 ⊥ · · · ⊥ v(k)

sk
⊥ w1 ⊥ · · · ⊥ wr for all k}

=
r∏

i=2

Pr
wi

{v(k)
1 ⊥· · ·⊥v(k)

sk
⊥w1⊥· · ·⊥wi for all k | v(k)

1 ⊥· · · ⊥ v(k)
sk
⊥w1⊥· · ·⊥wi−1 for all k}

× Pr
w1

{v(k)
1 ⊥ · · · ⊥ v(k)

sk
⊥ w1 for all k}

≥
r∏

i=1

(
1− t

|F|(1−γ)d−(s+i−1)

)

≥
r∏

i=1

(
1− γ2d2

|F|(1−2γ)d

)
(by s+ i− 1 ≤ γd and t ≤ γ2d2)

≥ 1− rγ2d2

|F|(1−2γ)d
(by (1− x)t ≥ 1− tx for x ∈ (0, 1))

≥ 1− γ3d3

|F|(1−2γ)d
. (since r ≤ γd).

When |Si| = |F|d−di for di ≤ γd, it follows from Lemma 49 that the number of choices of the
event

∣∣∣
{

(w1, . . . ,wr) ∈ S1 × · · · × Sr : v
(k)
1 ⊥ · · · ⊥ v(k)

sk
⊥ w1 ⊥ · · · ⊥ wr for all k

}∣∣∣

= Pr
w1,...,wr

{
v

(k)
1 ⊥ · · · ⊥ v(k)

sk
⊥ w1 ⊥ · · · ⊥ wr for all k

}
·

r∏

i=1

|Si|

≥
(

1− γ3d3

|F|(1−2γ)d

)
·

r∏

i=1

|Si| (by Lemma 49)

=

(
1− γ3d3

|F|(1−2γ)d

)
|F|rd−

∑r
i=1 di . (recall that |Si| = |F|d−di)

(3.32)

Based on this result, we have the following lemma.
Lemma 50. Let U,V ∼ UF(n, d), where UF(m,n) represents m× n i.i.d. uniform matrix over
a finite field F. Denote by S any subset of [n] × [n] such that |S| < γ2d2 for γ ∈ (0, 1/4) and
d ≤ n/γ. It holds that for any x ∈ F|S|,

Pr[(UVT )|S = x]− 1

|F||S| ≥ −
γ5d5

|F|(1−2γ)d+|S| .

Proof. Consider a bipartite graph G = (L ∪ R,E) where |L| = |R| = n and (i, j) ∈ E if and
only if (i, j) ∈ S . We run Algorithm 9 on graph G. By Lemma 48, we obtain a sequence of edge
sets E1 . . . , Et with w1, . . . , wt (called pivot nodes), such that

1. {Ei, . . . , Et} forms a partition of E;
2. |Ei| ≤ γd for all i.
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Algorithm 10 Path for assigning subspace Hv and random vector xv to each node v
Input: Bipartite graph G = (L ∪ R,E), partition E = E1 ∪ · · · ∪ Et and pivot nodes {wt} by

Algorithm 9, observed entries x|E .
Output: An affine space Hv of vectors for every node v and a vector xv ∈ Hv for every node v.

1: Hv ← Fd for all v.
2: Set all nodes v unassigned.
3: For i← t down to 1
4: Let v(i)

1 , . . . , v
(i)
|Ei| be the non-pivot nodes in Ei (i.e., the edges in Ei are (wi, v

(i)
j )).

5: For j ← 1 to |Ei|
6: If v(i)

j is unassigned
7: W

v
(i)
j
← H

v
(i)
j
\⋃

k≤i:v(i)
j 6=wk

span{x(i)
v1 , . . . ,x

(i)
vj−1 , previously assigned non-pivot nodes in Ek}.

8: Choose w
v

(i)
j

uniformly at random from H
v

(i)
j

.
9: If w

v
(i)
j
6∈ W

v
(i)
j

10: abort.
11: End If
12: Set v(i)

j to be assigned.
13: End If
14: End For
15: Let Hwi be the solution set to the linear system (w.r.t. xwi): x>wi [x

(i)
v1 , · · · ,x(i)

v|Ei|
] = (x|Ei)>.

16: End For
17: Choose xws uniformly from Hws of dimension d − |Es| for all s ∈ S0 = {p ∈ [t] |

wp is unassigned}.
18: return {Hv} and {xv}.

Since there is a one-by-one correspondence between the edges and the entries in S, we will not
distinguish edges and entries in the rest of the proof.

We associate each node v of G with an affine space Hv ⊆ Fd and a random vector xv ∈ Hv as
in Algorithm 10. Basically, Algorithm 10 first assigns the non-pivot nodes (to determine the affine
subspace Hwi) from the Et down to the E1), and in the end assigns all unassigned pivot nodes.

In the following argument, we number the for-loop iterations in Algorithm 10 backwards, i.e.,
the for-loop starts with the t-th iteration and goes down to the first iteration. In the i-th iteration,
let ri denote the number of nodes v(i)

j that are unassigned at the runtime of Line 6 and let #Ei
denote the number of good choices (which do not trigger abortion) of Step 8 over all ri nodes to be
assigned. Let #G be the number of possible choices of Step 17 of Algorithm 10 and s0 = |S0| be
the number of assigned pivot nodes by Step 17. Note that by the construction of Algorithm 9, the
non-pivot nodes of Ei cannot be the pivot nodes of Ej for j < i. So Algorithm 10, if terminated
successfully, can find an assignment such that (UV>)|S = x. We now lower bound the success
probability.

Let d(i)
j = d− dim(H

v
(i)
j

), which is either 0 or |Ek| for some k > i. For any given realization
x, we have the following:
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Pr{(UV>)|S = x}

≥ #Et ·#Et−1 · · ·#E1

|F|d(rt+···+r1)

#G
|F|ds0 (by rule of product and definition of #Ei)

≥
t∏

i=1

1

|F|d(i)
1 +···+d(i)

ri

(
1− γ3d3

|F|(1−2γ)d

)t
· #G
|F|ds0 (by Eqn. (3.32))

≥ 1

|F|
∑t
i=1

∑ri
j=1 d

(i)
j

(
1− γ5d5

|F|(1−2γ)d

)
· #G
|F|d×s0 (by (1− x)t ≥ 1− tx for x ∈ (0, 1) and t ≤ γ2d2)

=
1

|F|
∑t
i=1

∑ri
j=1 d

(i)
j

(
1− γ5d5

|F|(1−2γ)d

)
· 1

|F|
∑
s∈S0

|Es| (by definition of #G)

≥ 1

|F||E1|+···+|Et|

(
1− γ5d5

|F|(1−2γ)d

)
,

where the last inequality holds because |E1| + · · · + |Et| =
∑t

j=1

∑rj
i=1 d

(j)
i +

∑
s∈S0
|Es| as

every pivot and non-pivot node must be assigned exactly once by Algorithm 10 upon successful
termination. (Recall that d(j)

i is either equal to 0 when v(i)
j is non-pivotal, or equal to |Ek| when

v
(i)
j = wk.)

Denote by S ⊂ [n]× [n] a set of indices of an n× n matrix. For any distribution L over Fn×n,
define L(S) on F|S| as the marginal distribution of L on the entries of S, namely,

(Xp1,q1 ,Xp2,q2 , . . . ,Xp|S|,q|S|) ∼ L(S), X ∼ L.

Now we are ready to show a lower bound of robust testing problem over any finite field.
Theorem 36. Suppose that F is a finite field and γ ∈ (0, 1/4) is an absolute constant. Let
U,V ∼ UF(n, d) and W ∼ UF(n, n), where UF(m,n) represents m × n i.i.d. uniform matrix
over a finite field F. Consider two distributions L1 and L2 over Fn×n defined by UV> and W,
respectively. Let S ⊂ [n]× [n]. When |S| < γ2d2, it holds that

dTV (L1(S),L2(S)) ≤ Cd5|F|−cd,

where C, c > 0 are constants depending on γ, and dTV (·, ·) represents the total variation distance
between two distributions.

Proof. Let

X =

{
x ∈ F|S|

∣∣∣∣ Pr
[
(UV>)|S = x

]
<

1

|F||S|
}
.

It follows from the definition of total variation distance that

dTV (L1(S),L2(S)) =
∑

x∈X

[
1

|F||S| − Pr[(UV>)|S = x]

]
≤
∑

x∈X

γ5d5

|F|(1−2γ)d

1

|F||S| ≤
γ5d5

|F|(1−2γ)d
,

where the last inequality holds since |X | ≤ |F||S|.
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Based on the above theorem, we have the following lower bound for the rank testing problem
over finite field.
Theorem 37. Let d ≤ √εn. Any non-adaptive algorithm for Problem 1 over any finite field F
requires Ω(d2/ε) queries.

Proof. We first show that for constant ε, any non-adaptive algorithm for Problem 1 over finite
field F requires Ω(d2) queries. Note that W ∼ UF(n, n) is ε-far from having rank less than d.
It follows immediately from the preceding theorem that any algorithm which solves the matrix
rank testing problem over a finite field must read Ω(d2) entries; otherwise when d is large enough,
it will hold that dTV (L1(S),L2(S)) < 1/4, contradicting the correctness of the algorithm on
distinguishing L1 from L2.

We now prove the case for arbitrary ε. Denote by A and B the two hard instances in Theorem
36. We construct two hard instances C and D by uniformly at random planting the above-
mentioned hard instances A and B of dimension

√
εn ×√εn, respectively, and padding zeros

everywhere else. Note that D being ε-far from rank d is equivalent to B being constant-far from
rank d. Suppose that we can request cd2/ε queries with a small absolute constant c to distinguish
the ranks of the hard instances C and D, then in expectation (and with high probability by a
Markov bound) we can request cd2 queries of the hard instances A and B to distinguish their
ranks, which leads to a contradiction.

Lower bounds over real field under the sampling model The rigidity of a matrix A over a
field F, denoted byRF

A(r), is the least number of entries of A that must be changed in order to
reduce the rank of A to a value at most r: RF

A(r) := min{‖C‖0 | rankF(A + C) ≤ r}. We first
cite the following lemma and theorem.
Lemma 51 (Matrix rigidity, Theorem 6.4, [229]). The real n× n i.i.d. Gaussian matrix G is of
rigidityRR

G(r) = Ω((n− r)2) with probability 1.
Theorem 38 (Theorem 3.5, [152]). Let U,V ∼ G(n, d) and G ∼ G(n, n). Consider two
distributions L1 and L2 over Rn×n defined by UV> and UV> + n−14G, respectively. Let
S ⊂ [n]× [n]. Whenever |S| ≤ d2, it holds that

dTV (L1(S),L2(S)) ≤ C|S|(n−2 + dcd),

where C > 0 and 0 < c < 1 are absolute constants.
Now we are ready to prove the sample complexity lower bound of rank testing over the reals

in the sampling model.
Theorem 39. Let d ≤ √εn. Any non-adaptive algorithm for Problem 1 over R requires Ω(d2/ε)
queries.

Proof. We first show that for constant ε, any non-adaptive algorithm for Problem 1 over R requires
Ω(d2) queries. Note that Theorem 38 provides two hard instances for distinguishing a rank-d
matrix (of the form A = UV>) from a rank-n matrix (of the form B = UV> + n−14G), where
U,V ∼ G(n, d) and G ∼ G(n, n). For our purpose, we only need to show that the rank-n matrix
B = UV>+n−14G has rigidityRR

B(d) = Ω(n2). Denote by rank`(B) = min‖S‖0=` rank(B+S).
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We note that

d ≥ rankRR
B(d)(B)

= min
‖S‖0=RR

B(d)
rank(UV> + n−14G + S)

≥ min
‖S‖0=RR

B(d)
rank(n−14G + S)− rank(UV>)

≥ min
‖S‖0=RR

B(d)
rank(n−14G + S)− d.

Therefore, min‖S‖0=RR
B(d) rank(n−14G + S) ≤ 2d, i.e., RR

B(d) ≥ RR
n−14G(2d). By Lemma 51,

we haveRR
n−14G(2d) = Ω(n− 2d)2 = Ω(n2). SoRR

B(d) = Ω(n2).
We now prove the case for arbitrary ε. We construct two hard instances C and D by uniformly

at random planting the above-mentioned hard instances A and B of dimension
√
εn × √εn,

respectively, and padding zeros everywhere else. Note that D being ε-far from rank d is equivalent
to B being constant-far from rank d. Suppose that we can request cd2/ε queries with a small
absolute constant c to distinguish the ranks of the hard instances C and D, then in expectation
(and with high probability by a Markov bound) we can request cd2 queries of the hard instances
A and B to distinguish their ranks, which leads to a contradiction.

Proofs of Theorem 29

In this section, we provide a lower bound for the rank testing problem in the sensing model over
any finite field F. The sensing problem can query the underlying matrix A in the form of 〈A,Xi〉
for any sequence of (randomized or deterministic) sensing matrices {Xi}. The algorithms for
querying entries of A are a special case of matrix sensing problem if we set Xi = epe

>
q for some

(p, q). The problem can be stated more formally as follows:
Problem 2 (Rank Testing with Parameter (n, d, ε) in the Sensing Model). Given a field F and a
matrix A ∈ Fn×n which has one of promised properties:
H0. A has rank at most d;
H1. A is ε-far from having rank at most d, meaning that A requires changing at least an

ε-fraction of its entries to have rank at most d.
The problem is to design a property testing algorithm that outputs H0 with probability 1 if A ∈ H0,
and output H1 with probability at least 0.99 if A ∈ H1, with the least number of queries of the
form 〈A,Xi〉, where {Xi} is a sequence of sensing matrices.
Definition 6 (Ruzsa-Szemerédi Graph). A graph G is an (r, t)-Ruzsa-Szemerédi graph (RS graph
for short), if and only if the set of edges of G consists of t pairwise disjoint induced matchings
M1, . . . ,Mt, each of which is of size r.
Definition 7 (Boolean Hidden Hypermatching, BHHn,p). The Boolean Hidden Hypermatching
problem is a one-way communication problem where Alice is given a boolean vector x ∈ {0, 1}n
such that n = 2kp for some integer k ≥ 1, and Bob is given a boolean vector w of length n/p and a
perfect p-hypermatchingM on n vertices such that each hyperedge contains p vertices. Denote by
Mx the length n/p boolean vector (

⊕
1≤i≤p xM1,i

,
⊕

1≤i≤p xM2,i
, . . . ,

⊕
1≤i≤p xMn/p,i

) where
{M1,1, . . . ,M1,p}, . . . , {Mn/p,1, . . . ,Mn/p,p} are the hyperedges of M. It is promised that
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eitherMx = w orMx = w. The goal of the problem is for Bob to output YES whenMx = w
and NO whenMx = w (⊕ stands for addition modulo 2).

For our purpose, it is more convenient to focus on a special case of Boolean Hidden Hy-
permatching problem, namely, BHH0

n,p where the vector w = 0n/p (p is an even integer) and
Bob’s task is to output YES if Mx = 0n/p and output NO if Mx = 1n/p. It is known that
we can reduce any instance of BHHn,p to an instance of BHH0

2n,p deterministically without any
communication between Alice and Bob [54, 149, 233], by the following reduction.

Reduction from BHHn,p to BHH0
2n,p. We reduce any instance of BHHn,p to an instance of

BHH0
2n,p (n = 2kp for some integer k). LetM be a perfect p-hypermatching and x ∈ {0, 1}n in

BHHn,p. Denote by x′ = [x; x] the concatenation of x and x, where x is the bitwise negation of x.
LetM′ be the p-hypermatching in BHH0

2n,p. Denote by {x1, . . . ,xp} ∈ M the l-th hyperedge of
M (l ∈ [n/p]). We add two hyperedges toM′ as follows. If wl = 0, we add {x1,x2, . . . ,xp} and
{x1,x2, . . . ,xp} toM′; Otherwise, we add {x1,x2, . . . ,xp} and {x1,x2, . . . ,xp} toM′. Note
that we flip an even number of bits when wl = 0 and an odd number of bits when wl = 1. This
does not change the parity of each set as p is even. ThusMx = w impliesM′x′ = 02n/p, and
Mx = w impliesM′x′ = 12n/p.

Previous papers [12, 54, 82] used the BHH0
n,p problem to prove lower bounds for estimating

matching size in the data stream: given an instance (x,M) in BHH0
n,p (Denote by DBHH the hard

distribution of BHH0
n,p), we create a graph G(V ∪W,E) with |V | = |W | = n via the following

algorithm.

Algorithm 11 Reduction from BHH0
n,p to the problem of estimating matching size in the data

stream
Input: An instance from BHH0

n,p.
Output: A graph G = (V ∪W,E).

1: For any xi = 1, Alice adds an edge between vi and wi to E.
2: Bob adds to E a clique between the vertices wi that belongs to the same hyperedge e in the
p-hypermatchingM.

We shall use the graph created by Algorithm 11 to build a hard distribution for our rank testing
problem. The following claim guarantees the correctness of this reduction from BHH0

n,p to the
problem of estimating matrix rank in a data stream.
Lemma 52. Let G(V ∪W,E) be the graph derived from an instance (x,M) of BHH0

n,p (for even
integers p and n) with the property that ‖x‖0 = n/2 (see Algorithm 11). Denote by A the 2n×2n
adjacency matrix of G. Then with probability at least 1− e−n/p4

, we have
• ifMx = 0n/p (i.e., YES case), then rank(A) ≥ 3n

2
− n

2p2 ;
• ifMx = 1n/p (i.e., NO case), then rank(A) ≤ 3n

2
− 3n

2p2 .

Proof. According to Algorithm 11, the graph consists of n vertices v1, . . . , vn and n/p cliques,
together with edges which connect vi’s with the cliques according to x ∈ {0, 1}n. We call these
latter edges ‘tentacles’.
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Let A be the adjacency matrix of G where both the rows and columns are indexed by the
nodes in G. The diagonals of A are all zeros. For each pair w, u of clique nodes in G, we have
Aw,u = 1. For each ‘tentacle’ pair (v, w), Av,w = 1. All other entries of A are zeros. Then
A is an n × n block diagonal matrix, where each block Aqi (Aqi represents the block with qi
‘tentacles’) is of the following form modulo permutations of rows and columns (The red rows and
columns represent ‘tentacles’):

Aqi =




0 1 · · · 1 1 1 0 · · ·
1 0 · · · 1 1 0 1 · · ·
...

...
...

...
...

...
1 1 · · · 0 1 0 0 · · ·
1 1 · · · 1 0 0 0 · · ·
1 0 · · · 0 0 0 0 · · ·
0 1 · · · 0 0 0 0 · · ·
...

...
...

...
...

...




According to the reduction from BHHn/2,p to BHH0
n,p, the hypermatching in the hard distri-

bution of BHH0
n,p can be divided into n/(2p) groups. Each group consists of two hyperedges

such that the sum of the number of ‘tentacles’ connecting to these two hyperedges is p for every
group, i.e., (qi, p − qi) where qi is the number of ‘tentacles’ connecting to one of hyperedges,
which is either even (YES case) or odd (NO case) according to the promise. Moreover, the qi’s
are independent across the n/p groups, because we can process each group one by one and after
processing each group, the number of remaining ‘tentacles’ decreases by p.

Let rqi = rank(Aqi). Denote by A = EYES(rqi + rp−qi) and B = ENO(rqi + rp−qi), where A
andB will be calculated later. Summing up n/(2p) independent groups and by the Chernoff bound,
with probability at least 1− e−δ2 n

2p
A/2 and 1− e−δ2 n

2p
B/3, respectively, rank(A) ≥ (1− δ) n

2p
A in

the even case and rank(A) ≤ (1 + δ) n
2p
B in the odd case, where δ > 0 is an absolute constant.

We note that A = 3p and B = 3p− 4/p. Therefore, rank(A) ≥ (1− δ)3n/2 in the even case and
rank(A) ≤ (1 + δ)(3n/2− 2n/p2) in the odd case. Choosing δ = 1

3p2 finishes the proof.

In the following we shall set ε = Θ(1/ log n) and p = Θ(log n). Denote by Matchingn,k,ε the
k-player simultaneous communication problem of estimating the size of maximum matching up to
a factor of (1± ε), where the edges of an n-vertex input graph are partitioned across the k players
and the referee. For our purpose, we reduce from the problem of Matchingn,k,ε to our problem
of rank testing. We use the hard distribution DM in Algorithm 12 for Matchingn,k,ε. Notice that
the hard instance of BHH0

r,p in Step 2 is reduced from that of BHHr/2,p as we did before in this
section.
Claim 2. Let IBHH be the embedded BHH0

r,p instance (x(i),M) in Algorithm 12. The adjacency
matrix A ∈ Fn×n of the graph that is drawn from distribution DM (Algorithm 12) obeys

1. If IBHH is a YES instance, then rank(A) ≥ k(3r
2
− r

2p2 );

2. If IBHH is a NO instance, then rank(A) ≤ k(3r
2
− 3r

2p2 ) +N − 2r,

with probability at least 1− ke−n/p4
.
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Algorithm 12 A construction of a hard distribution DM for Matchingn,k,ε

Input: r = N1−o(1), t =
(N2 )−o(N2)

r
, k = N

εr
, n = N + 2r(k − 1), and p = b 1

8ε
c.

1: Fix an (r, t)-RS graph GR on N vertices.
2: Pick j∗ ∈ [t] uniformly at random and draw a BHH0

r,p instance (x(j∗),M) from the distribution
DBHH.

3: For each player P (i) independently
4: (a) Let Gi be the input graph of P (i), initialized by a copy of GR with vertices Vi = [N ].
5: (b) Let V ∗i be the set of vertices matched in the j∗-th induced matching of Gi. Change the

induced matching MR
J∗ of Gi to Mj∗ := MR

j∗ |x(j∗) .
6: (c) For any j ∈ [t]\{j∗}, draw a vector x(i,j) ∈ {0, 1}r from the distribution DBHH for

BHH0
r,p, and change the induced matching MR

j of Gi to Mj := MR
j |x(i,j) .

7: (d) Create the family of p-cliques ofM on the vertices R(MR
j∗), and give the edges of the

p-clique family to the referee.
8: End For
9: Choose a random permutation σ of [n]. For each player P (i), relabel v to σ(j) for each vertex v

in Vi\V ∗i with label j ∈ [N−2r]. Enumerate the vertices in V ∗i from the one with the smallest
label to the one with the largest label, and relabel the j-th vertex to σ(N + (i − 2)2r + j).
Finally, let the vertices with the same label correspond to the same vertex.

Proof. Note that by construction, the adjacency matrix of the graph drawn from DM is a k-block-
diagonal matrix together with some ‘junk’ (area of size (N −2r)×n union n× (N −2r)) outside
the block area such that each block is an independent sample of the matrix A in Lemma 52. The
claim then is a straightforward result of Lemma 52.

Reduction from Matchingn,k,ε to problem 2. Given a hard graph instance G of Matchingn,k,ε,
we can estimate the maximum matching size of G by testing the rank of the adjacency matrix
AG of G: If we can distinguish out rank(AG) ≥ k(3r

2
− r

2p2 ), we ouput that the matching size is
strictly larger than 3N

ε
; If we can distinguish out rank(AG) ≤ k(3r

2
− 3r

2p2 ) +N − 2r, we output
that the matching size is smaller than 3N

ε
− 3N . The correctness for the reduction follows from

Claim 2, the construction that the hard distributions of Matchingn,k,ε and Problem 2 are derived
from the same graph, and the fact that the matching size is strictly larger than 3N

ε
when IBHH is a

YES instance and is smaller than 3N
ε
− 3N when IBHH is a NO instance (see Claim 6.3, [12]).

The hardness of Matchingn,k,ε by the construction in Algorithm 12 was proved in [12].
Theorem 40 (Theorem 10, [12]). For any sufficiently large n and sufficiently small ε < 1

2
, there

exists some k = no(1) such that the distribution DM for Matchingn,k,ε in Algorithm 12 satisfies

ICδSMP,DM
(Matchingn,k,ε) = n2−O(ε),

where ICδSMP,DM
(Matchingn,k,ε) is the information complexity of Matchingn,k,ε in the multi-party

number-in-hand simultaneous message passing model (SMP).
The following theorem summarizes the results in this section, providing a lower bound for

Problem 2.
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Theorem 41. Any non-adaptive algorithm for Problem 2 over GF(p) requires Ω(d2/ log p)
queries.

Proof. We first discuss the case when d = Ω(n), where we will give an Ω(n2) lower bound. Let
AG be the hard instance given by Algorithm 12. We want to find an n× n random matrix H′ such
that: (1) rank(H′A) = rank(A) (Multiplying H′ does not change the rank of A so that testing A
is equivalent to testing H′A); (2) M = H′A is rigid (Multiplying H′ makes matrix A rigid). We
now show how to do this. Let B be a random matrix such that we want to distinguish rank n v.s.
rank n − n/ log2 n for matrix A := AG + B. Let k = rank(A), H be a 3nk/δ × n uniformly
sampled matrix over GF(p)3nk/δ×n and H′ be the first n rows of H. One can see that any subset
of at most n rows of H has full rank with a large probability.

Proof of (1). We note that rank(H′A) ≤ k. We will show that H′A has rank k with probability
at least 1− δ. We will use the following lemma.

Lemma 53 (Lemma 5.3, [67]). If L ⊆ GF(p)n is a j-dimensional linear subspace, and A has
rank k ≥ j, then the dimension of LA := {w ∈ GF(p)n | w>A ∈ L} is at most n− k + j.

For j < n, consider the linear subspace Lj spanned by the first j rows of HA. By the above
lemma, the dimension of the subspace L′j := {w ∈ Rn | w>A ∈ Lj} is at most n− k+ j. Given
that the rows of H are linearly independent with high probability, at most n− k + j of them can
be in L′j . Thus the probability that H′(j+1),:A is not in Lj is at least 1− (n− k + j)/(3nk/δ − j),
and the probability that all such events hold, for j = 0, . . . , k − 1, is at least

(
1− n

3nk/δ − k

)k
=

(
1− 1

k

δ/3

1− δ/(3n)

)k
≥ 1− δ

2

for small δ. All such independence events occur if and only if H′1:k,:A has rank k. Therefore, the
probability that H′A is of rank k is at least 1− δ/2.

Proof of (2). We need the following result on matrix rigidity.

Lemma 54 (Matrix rigidity, Theorem 6.4, [229]). The fraction of matrices over GF(p)n×n with
matrix rigidityRGF(p)(r) = Ω((n− r)2/ logp n) is at least 0.99, for r < n−√2n logp 2 + log n.

For uniform matrix H′, we note that H′A is uniform as well: for any given matrix T in
GF(p)n×n

Pr
H′∼Unif

[H′A = T] = Pr
H′∼Unif

[H′ = TA−1] =

(
1

p

)kn
.

Then by Lemma 54,RGF(p)
H′A (n− n/ log n) = Ω(n2/ log2 n) with high probability.

Now we are ready to prove the hardness of Problem 2 with parameter (n, n− n
log2(n)

, 1
log4(n) logp(n)

).
For any non-adaptive algorithm Atest for Problem 2 with ε = 1/ log n and d = n − n/ log n,
assume that the required number of queries is q. We use such algorithms to estimate the maximum
matching size by our reduction. Given a graph G with maximum matching size ≥ 3N/ε v.s.
≤ 3N/ε−3N . We know that the rank of A := AG+B is of rank n v.s. n−n/ log2 n. By left mul-
tiplying matrix A with above-mentioned H′, the rank of resulting matrix H′A remains the same
and is of rigidity RGF(p)

B (n − n/ log2 n) = Ω(n2/(log4(n) logp(n))) according to properties (1)
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and (2) that we have proven. By assumption,Atest can distinguish rank n from rank n−n/ log2 n
for matrix H′A in q queries with high probability. So Atest can be used to compute the maximum
matching size with (1± 1/ log n)-approximation rate with O(q log p) bits of communication. By
Theorem 40, we have q log p = Ω(n2), which implies that q = Ω(n2/ log p).

We now prove the lower bound for arbitrary d. Let 1 ∈ GF(p)
n(1−1/ log d)

d
×n(1−1/ log d)

d be the
all-ones matrix and A ∈ GF(p)

d
1−1/ log d

× d
1−1/ log d be the above hard instance. We do the Kronecker

product to generate matrix C = 1⊗A ∈ GF(p)n×n. If there exists a non-adaptive algorithmAtest
that can correctly test whether C has rank at most d or is far from having rank d with cd2/ log p
queries and high probability for an absolute constant c, the algorithm Atest can also test whether
A has rank at most d or is far from having rank d with cd2/ log p queries by outputting the same
result as testing C. This leads to a contradiction.

Theorem 41 is tight up to a logarithmic factor. Indeed, there is an O(d2) upper bound for
every field, independent of ε, as follows. If A is an (unknown) n × n matrix and has rank at
least d+ 1, the matrix SAT will have rank at least d+ 1 with high probability for random S of
d + 1 rows and T of d + 1 columns; furthermore, this matrix product can be computed in the
matrix sensing model because (SAT)i,j can be written as 〈A,Si,:T:,j〉i,j , which is in the form of
matrix sensing. Computing SAT uses only (d+ 1)2 measurements instead of the d2/ε we need
for reading entries.

Proofs of Theorems 26 and 30

In this section and onwards, we study the problem of non-adaptively testing numerical properties
of real-valued matrices. They can be studied under a unified framework in this section.

Roughly, our analytical framework reduces the testing problem to a sequence of estimation
problems without involving poly(n) in the sample complexity. Our framework consists of two
levels of estimation: (1) a constant-factor approximation to the statistic X of interest (e.g., stable
rank), and (2) a more accurate (1± τ)-approximation to X .
Definition 8 (Stable rank). The stable rank of A is defined by srank(A) = ‖A‖2

F/‖A‖2, where
‖A‖F is the Frobenius norm and ‖A‖ the spectral norm (largest singular value).
Problem 3 (Stable rank testing in the entry Model). Let A ∈ Rn×n be a matrix which satisfies
‖A‖∞ ≤ 1 and has one of promised properties:
H0. A has stable rank at most d;
H1. A is ε/d-far from having stable rank at most d, meaning that A requires changing at least

an ε/d-fraction of its entries to have stable rank at most d.
The problem is to design a property testing algorithm that outputs H0 with probability at least
0.99 if A ∈ H0, and output H1 with probability at least 0.99 if A ∈ H1, with the least number of
queried entries.

Upper bounds We first prove the upper bounds.
Lemma 55 ([197, Theorem 1.8]). Let A be an n×n matrix. LetQ be a uniformly random subset
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of {1, 2, . . . , n} of expected cardinality q with replacement. Then

E ‖A|Q‖ .
√
q

n
‖A‖+

√
log q‖A‖(n/q),

where A|Q = (Ai,j)i∈Q,j≤n is a random row-submatrix of A, and ‖A‖(n/q) is the average of n/q
biggest Euclidean lengths of the columns of A.
Lemma 56. Let x ∼ Unif(Sn−1). Then with probability at least 1 − n−2, we have ‖x‖∞ ≤√

2 logn
n

.

Algorithm 13 Algorithm for stable rank testing under sampling/sensing model
. Lines 1-2 estimate the Frobenius norm of A.

1: Uniformly sample q0 = O(
√
d

ε2.5
) entries A, forming vector y.

2: X ← n2

q0
‖y‖2

2. . X is an estimator of ‖A‖2
F .

3: If X ≤ 9
10

(1− 1
d
)εn2

4: Output “stable rank ≤ d”.
5: Else
6: Uniformly sample a q × q submatrix Ã′ with q = O(d logn

ε
).

7: If ‖Ã′‖ ≤ C0

√
X√
c1d

q
n

8: Output “ε/d-far from being stable rank ≤ d”.
9: Else

10: Run Algorithm 14 (with τ = Θ(ε/d1/4)) for the sampling model or Algorithm 16 (with
τ = Θ(ε/(d1/4

√
log n))) for the sensing model to obtain an operator norm estimate Z.

11: If Z2 ≥ X
d

12: Output “stable rank ≤ d”.
13: Else
14: Output “ε/d-far from being stable rank ≤ d”.
15: End If
16: End If
17: End If

Theorem 42. Suppose that d = Ω((1/ε)1/3). Then (a) Algorithm 13 is a correct algorithm for the
stable rank testing problem with failure probability at most 1/3 under the sampling model, and
it reads O(d

3

ε4
log2 n) entries; (b) Algorithm 13 is a correct algorithm for the stable rank testing

problem with failure probability at most 1/3 under the sensing model, and it makes O(d
2.5

ε2
log n)

sensing queries.

Proof. When A is ε/d-far from being stable rank at most d, we claim that ‖A‖2
F ≥ εn2(1− 1

d
).

Otherwise, replacing any εn
d

rows of A with all-one row vectors 1>’s results in a new matrix
B such that ‖B‖2 ≥ εn2

d
and ‖B‖2

F = ‖A‖2
F + εn2

d
≤ εn2(1 − 1

d
) + εn2

d
= εn2, leading to

srank(B) ≤ d, a contradiction. We note that by sampling q0 entries from A and stacking
them as vector y, the resulting estimator X = n2

q2
0
‖y‖2

2 satisfies E[X] = ‖A‖2
F and Var[X] ≤
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n2(n4/q2
0)(q0/n

2) = n4/q0. So by the Chebyshev’s inequality, when q0 = O(n4/(τ 2‖A‖4
F )) we

have

Pr
[
|X − ‖A‖2

F | > τ‖A‖2
F

]
≤ n4/q0

τ 2‖A‖4
F

≤ 1

3
.

Thus we have
(1− τ)‖A‖2

F ≤ X ≤ (1 + τ)‖A‖2
F , (3.33)

where τ will be specified later multiple times. So the algorithm is correct in Step 4 with constant
τ (although we over-sample entries here for later purpose).

Let c1 > 1 be an absolute constant to be specified later. We discuss two separate cases.

Case (i). srank(A) > c1d when A is far from srank(A) ≤ d.
We first discuss the case when A is far from srank(A) ≤ d. Let U be a uniformly random

n× n orthogonal matrix and let A′row be the matrix after uniform row sampling of A of expected
cardinality q. Note that ‖A′row‖ = ‖A′rowU‖, and (AU)i,: = Ai,:U uniformly distributes on
‖Ai,:‖2 · Sn−1. So ‖Ai,:U‖2

∞ ≤ 2‖Ai,:U‖2
2 log(n)/n for any fixed i with probability at least

1− 1/n2 by Lemma 56. Therefore, with probability at least 1− 1/n by a union bound over all
rows, ‖AU‖2

col ≤ 2‖A‖2
F log(n)/n, where ‖A‖col represents the maximum `2 norm among all

columns of A. By Lemma 55,

E‖A′row‖ ≤ C ′1

√
q

n
‖A‖+ C ′2

√
log q

√
log n

n
‖A‖F

for absolute constants C ′1 and C ′2, and by the Markov bound, with probability at least 0.9,

‖A′row‖ ≤ C1

√
q

n
‖A‖+ C2

√
log q

√
log n

n
‖A‖F

≤ C1

√
q

n

‖A‖F√
c1d

+ C2

√
log q

√
log n

n
‖A‖F (since srank(A) > c1d)

≤ 1√
1− τ

(
C1

√
q

c1d
+ C2

√
log q log n

)√
X

n
(by Eqn. (3.33))

for absolute constants C1 and C2. By the Markov bound, we also have with constant probability
that

‖A′row‖2
F ≤ c′

q

n
‖A‖2

F ≤ c
q

n
X.

Conditioning on this event, by applying the same argument on the column sampling of A′row, we
have

‖Ã′‖ ≤ C1

√
q

n
‖A′row‖+ C2

√
log q

√
log n

n
‖A′row‖F

≤ C1

√
q

n

1√
1− τ

(
C1

√
q

c1d
+ C2

√
log q log n

)√
X

n
+ C2

√
log q

√
log n

n

√
qc

√
X

n

≤ C0
1√

1− τ

√
X√
c1d

q

n
(because the first term dominates as q � d)

≤ C ′0

√
1 + τ

1− τ
‖A‖F√
c1d

q

n
, (by Eqn. (3.33))
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where Ã′ is the matrix after the column sampling of A′row, and C0, C
′
0 are absolute constants.

On the other hand, when srank(A) ≤ d and q = O(d logn
ε

), we have with high probability that

‖Ã′‖ ≥ C
q

n
‖A‖ = C

q

n

‖A‖F√
srank(A)

≥ C
q

n

‖A‖F√
d
,

where the first inequality holds by applying Lemma 60 twice on row and column sampling (set
β = Θ(ε) and τ = Θ(1) there). By setting c1 as a large absolute constant, we have

C ′0

√
1 + τ

1− τ
‖A‖F√
c1d

q

n
< C

q

n

‖A‖F√
d
.

Thus we can distinguish (a) srank(A) ≤ d from (b) srank(A) ε/d-far from being at most d by
checking ‖Ã′‖ in Case (i).

Case (ii). srank(A) ≤ c1d when A is far from srank(A) ≤ d.
We now show that we can distinguish the two cases of srank(A) ≤ d from srank(A) being

ε/d-far from at most d, suppose we have an accurate estimator to estimate the stable rank.
Let u ∈ Sn−1 be a unit vector such that ‖A‖ = ‖Au‖2, i.e., u is a right singular vector

corresponding to the largest singular value. First we claim that we can drop off coordinates in u
that are at most θ/

√
n for some small constant θ without affecting ‖Au‖2 by too much.

Let u′ be the vector obtained from u by zeroing out the coordinates of u which are at least
θ/
√
n, then

‖Au′‖2
2 ≤ ‖A‖2‖u′‖2

2 ≤ ‖A‖2n

(
θ√
n

)2

≤ θ2‖A‖2,

and thus
‖A(u− u′)‖2 ≥ ‖Au‖2 − ‖Au′‖2 ≥ (1− θ)‖A‖.

Let u′′ = u− u′ and v = Au′′/‖Au′′‖2, then (1− θ)‖A‖ ≤ 〈Au′′,v〉. Next we show similarly
that we can drop off coordinates in v that are at most θ/

√
n. Similarly we let v′ be the vector

obtained from v by zeroing out the coordinates of v which are at least θ/
√
n, then ‖v′‖2 ≤ θ,

hence

〈Au′′,v − v′〉 ≥ (1− θ)‖A‖ − 〈Au′′,v′〉 ≥ (1− θ)‖A‖ − ‖Au′′‖2‖v′‖2 ≥ (1− 2θ)‖A‖.
Let v′′ = v − v′. Observe that

(1− 2θ)
‖A‖F√
c1d
≤ (1− 2θ)‖A‖ ≤ 〈Au′′,v′′〉 ≤ ‖Au′′‖∞‖v′′‖1 ≤ ‖u′′‖1‖v′′‖1,

where we used the fact that |Aij| ≤ 1 in the last inequality. This implies that at least one
of ‖u′′‖1 and ‖v′′‖1 is at least

√
(1− 2θ)‖A‖F/(c1d)1/4 = c

√
‖A‖F/d1/4 for some constant

c =
√

1− 2θ/c
1/4
1 .

Without loss of generality, assume that ‖u′′‖1 ≥ c
√
‖A‖F/d1/4. Next we shall argue that we

can drop large coordinates from u′′ by affecting ‖u′′‖1 by at most a constant factor. To see this,
let I = {i : |u′′i | ≥ κ} for some κ to be determined later. It follows that |I| ≤ 1/κ2 and

‖u′′I‖1 ≤
√
|I| ‖u′′I‖2 ≤

1

κ
=
c

2

√
‖A‖F
d1/4

,
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provided that

κ =
2d1/4

c
√
‖A‖F

.

Let x̂ = u′′ − u′′I , we see that ‖x̂‖1 ≥ 1
2
‖u′′‖1. For notational simplicity let S = supp(x̂).

Suppose that A is ε/d-far from being stable rank at most d, and we reorder the rows of A such
that |〈A1,:,u〉| ≤ |〈A2,:,u〉| ≤ · · · ≤ |〈An,:,u〉|. Let m = εn2

d|S| (we shall verify that m ≤ n later).
For i = 1, . . . ,m, change Ai,j to sgn(x̂j) for all j ∈ S if 〈Ai,Sc ,u〉 ≥ 0, and change Ai,j to
− sgn(x̂j) for all j ∈ S if 〈Ai,Sc ,u〉 < 0, yielding a matrix B and we know that srank(B) > d.

Now we verify that m ≤ n so that the aforementioned change is valid. It is clear that
|S| ≥ ‖x̂‖1/κ, and so

m ≤ εn2

d · ‖x̂‖1/κ
≤ εn2

d
· 4
√
d

c2‖A‖F
≤ 8
√
ε

c2
√
d
n < n,

provided that ε ≤ ε0 for some absolute constant ε0 small enough.
We observe that

‖B‖2
F ≤ ‖A‖2

F +m|S|, (3.34)

and

‖B‖2 ≥ ‖Bu‖2
2 ≥

n∑

i=m+1

〈Ai,:,u〉2 +m‖x̂‖2
1

≥
(

1− m

n

)
‖Au‖2

2 +m‖x̂‖2
1

=
(

1− m

n

)
‖A‖2 +m‖x̂‖2

1.

(3.35)

It follows from srank(B) > d that

d < srank(B) =
‖B‖2

F

‖B‖2
≤ ‖A‖2

F +m|S|
(1− m

n
)‖A‖2 +m‖x̂‖2

1

,

or,

d
(

1− m

n

)
‖A‖2 < ‖A‖2

F

(
1− m(d‖x̂‖2

1 − |S|)
‖A‖2

F

)
. (3.36)

Next we claim that it holds under certain assumptions

d‖x̂‖2
1 ≥

1

η1

|S|. (3.37)

Observe that
d‖x̂‖2

1

|S| = d‖x̂‖1
‖x̂‖1

|S| ≥ d · ‖u
′′‖1

2
· θ√

n
≥ d

3
4 cθ

√
‖A‖F
n

, (3.38)

which is at least 1/η1, provided that

‖A‖F ≥
n

d
3
2 c2θ2η2

1

. (3.39)
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This holds when d = Ω((1/ε)1/3) since we know that ‖A‖2
F = Ω(εn2).

Hence under the assumption (3.39) it follows from (3.36) that

d
(

1− m

n

)
‖A‖2 < ‖A‖2

F

(
1− (1− η1)

md‖x̂‖2
1

‖A‖2
F

)
. (3.40)

Note that

(1− η1)
md‖x̂‖2

1

‖A‖2
F

≥ (1− η1)md ·
c2

4
· ‖A‖F√

d

‖A‖2
F

=
(1− η1)c2

4
m ·

√
d

‖A‖F
≥ 1

η2

· m
n
,

provided that

‖A‖F ≤
η2(1− η1)c2

4
n
√
d. (3.41)

Combining (3.39) and (3.41) leads to that

d ≥ 2

c2θη1

√
(1− η1)η2

=
2
√
c1

θ(1− 2θ)η1

√
(1− η1)η2

. (3.42)

Now, under both assumptions (3.39) and (3.42), it follows from (3.40) that

‖A‖2
F

d‖A‖2
≥ 1 + (1− η1 − η2)

md‖x̂‖2
1

‖A‖2
F

≥ 1 + (1− η1 − η2)
εn2

d‖A‖2
F

· d‖x̂‖
2
1

|S|

≥ 1 + (1− η1 − η2)cθ
εn3/2

d1/4‖A‖3/2
F

, (by (3.38))

Choosing θ = 1/4, η1 +η2 < 1, we see from (3.42) that we shall need d = Ω(
√
c1). It is also easy

to verify that (3.41) is satisfied for such d. Overall, we see that we shall need τ = Θ

(
εn3/2

d1/4‖A‖3/2F

)

in (3.33).

We are now ready to prove Theorem 26.
Result (a): In fact, We have an accurate estimator to estimate the stable rank by reading an
O(d1.5 log(n)/ε2)×O(d1.5 log(n)/ε2) submatrix: combining Theorem 27 with Eqn. (3.33) yields
an accurate estimator of the stable rank of A:

(1−Θ(τ)) · srank(A) ≤ X

‖Ã‖2
≤ (1 + Θ(τ)) · srank(A).

Setting τ as Θ( ε
d1/4 ) gives the claimed result immediately.

Result (b): It follows from setting τ = Θ( ε
d1/4 ) in Theorem 32 on sketching complexity.
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Lower bounds We then prove the lower bounds.
Lemma 57 (Corollary 5.35, [235]). Let A be an m × n (m > n) matrix whose entries are
independent standard normal random variables. Then for every t ≥ 0 and fixed v ∈ Rn, it holds
with probability at least 1− 2 exp(−t2/2) that

√
m−√n− t ≤ σmin(A) ≤ σmax(A) ≤ √m+

√
n+ t.

Lemma 58 (Lemma 1, [142]). Let X ∼ χ2(k). Then we have the tail bound

Pr[k − 2
√
kx ≤ X ≤ k + 2

√
kx+ 2x] ≥ 1− 2e−x.

Lemma 59 (Theorem 4, [150]). Let u1, ...,ur be i.i.d. N (0, Im) vectors and v1, ...,vr be i.i.d.
N (0, In) vectors and further suppose that {ui} and {vi} are independent. Let D1 = G(m,n)
and D2 = G(m,n) +

∑r
i=1 siuiv

>
i , where s = [s1, ..., sr]

> and G(m,n) represents m × n i.i.d.
standard Gaussian matrix over R. Denote by L1 and L2 the corresponding distribution of the
linear sketch of size k on D1 and D2. Then there exists an absolute constant c > 0 such that
dTV (L1,L2) ≤ 1/10 whenever k ≤ c/‖s‖4

2, where dTV (·, ·) represents the total variation distance
between two distributions.
Theorem 43. Let ε ∈ (0, 1/3) and let d ≥ 4. For A ∈ R(d/ε2)×d, any algorithm that distinguishes

“srank(A) ≤ d0” from “A being ε0/d0-far from stable rank ≤ d0” with error probability at most
1/6 requires measurements Ω(d2/(ε2 log(d/ε))) for any linear sketch, where d0 = d

1+Θ(ε)
and

ε0 = Θ( ε
log2(d/ε)

).

Remark 1. Theorem 43 can be generalized to the (d/ε2)× (d/ε2) matrix by concatenating the
columns of two hard instances in Theorem 43 (1/ε2) times. This scales up all singular values
in our (d/ε2)× d hard instances by a factor of 1/ε, and thus the stable rank remains the same.
Observe that the bounds on ‖G‖, ‖G‖F and ‖S‖F in (3.45) and (3.46) in the proof below are
also scaled up by 1/ε. The concatenated matrix is therefore ε0/d0-far from having stable rank at
most d0 following the same argument.

Proof. Let m = d/ε2 and n = d. We will apply Lemma 59 with r = 1. To this end, we need to
justify that

C

log(d/ε)
G and

C

log(d/ε)
(G0 + s1uv>)

differ in the stable rank (i.e., srank(G) > d0 ≥ srank(G0 + s1uv>)) and that G is rigid (i.e.,
changing ε0/d0-fraction of entries of G would not change the stable rank of G to be less than
d0), where the multiplicative factor C/ log(d/ε) is to keep the maximum absolute value of entries
in the two hard instances less than 1, G,G0 ∼ G(m,n), u ∼ N (0, Im), v ∼ N (0, In), and
s1 = 3

√
ε/d. Note that by Lemma 59, we cannot distinguish G from G′ := G0 + s1uv> with

Ω(d2/ε2) samples. So if the stable ranks of G and G′ have a gap, we cannot detect the gap either.
For the operator norm, on one hand, it follows from Lemma 57 that with probability at least

1− 2 exp(−d/2),

(1− 1.1ε)

√
d

ε
≤ σmin(G) ≤ σmax(G) ≤ (1 + 1.1ε)

√
d

ε
,
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for an absolute constant C0 > 0. On the other hand, with probability ≥ 1− exp(−Ω(d)) we have

∥∥G0 + s1uv>
∥∥2

= sup
x∈Sn−1

∥∥G0x + s1uv>x
∥∥2

2

≥
∥∥G0v + s1uv>v

∥∥2

2

‖v‖2
2

=
‖G0v‖2

2

‖v‖2
2

+ s2
1‖u‖2

2‖v‖2
2 + 2〈G0v, s1u〉

≥
(

(1− 1.1ε)

√
d

ε2

)2

+ 0.92s2
1

d2

ε2
−O

(
d√
ε

)

≥
(

(1− 1.1ε)

√
d

ε2

)2

+ 0.92s2
1

d2

ε2
−O

(
d√
ε

)

≥ ((1− 1.1ε)2 + 7.29ε)
d

ε2
−O

(
d√
ε

)

≥ ((1− 1.1ε)2 + 7.29ε)
d

ε2
−O

(
d√
ε

)

≥ (1 + 2ε)2 d

ε2
,

where the second inequality (line 4) follows from the concentration of the quadratic form (see,
e.g., [198])

Pr
u,v
{|vTG0u| > t} ≤ 2 exp

(
−cmin

{
t

‖G0‖
,

t2

‖G0‖2
F

})
(3.43)

for fixed G0; since ‖G0‖ '
√
d/ε and ‖G0‖2

F ' d2/ε2 with high probability, we can take
t = Θ(d3/2/ε). For the Frobenius norm, we note that

∥∥∥∥G0 + 3

√
ε

d
uv>

∥∥∥∥
2

F

= ‖G0‖2
F + 9

ε

d
‖uv>‖2

F + 6

√
ε

d
〈G0,uv>〉.

Observe that ‖G0‖2
F ∼ χ2(d

2

ε2
) so ‖G0‖2

F = (1 ± Θ( ε
d
))d

2

ε2
with probability ≥ 0.9 by Lemma

58, and 9 ε
d
‖uv>‖2

F = 9 ε
d
‖u‖2

2‖v‖2
2 = Θ(d

ε
) with high probability. And also, setting t =

Θ(d/ε) in (3.43), we have with probability at least 0.9 that |〈G0,uv>〉| = O(d
ε
) and thus

6
√

ε
d
|〈G0,uv>〉| = O(

√
d
ε
). Therefore,

(
1−Θ

( ε
d

))
‖G0‖2

F ≤
∥∥∥∥G0 + 3

√
ε

d
uv>

∥∥∥∥
2

F

≤
(

1 + Θ
( ε
d

))
‖G0‖2

F .

As a result,

srank(G) =
‖G‖2

F

‖G‖2
≥ d

(1 + 1.2ε)2
,
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and

srank(G′) =
‖G′‖2

F

‖G′‖2
≤ d

(1 + 1.9ε)2
.

By Lemma 59, it is therefore hard to distinguish

srank

(
C

log(d/ε)
G′
)

= srank(G′) =
‖G′‖2

F

‖G′‖2
≤ d

(1 + 1.9ε)2
, d0

from

srank

(
C

log(d/ε)
G

)
= srank(G) =

‖G‖2
F

‖G‖2
≥ d

(1 + 1.2ε)2
≥ (1 + 1.3ε)d0, (3.44)

with sample size O(d2/ε2), provided that ε is sufficiently small.
We now show that C

log(d/ε)
G is rigid, i.e., changing ε0/d0-fraction of entries of C

log(d/ε)
G will not

make srank
(

C
log( d

ε
)
G
)
≤ d0. For any S ∈ R(d/ε2)×d such that ‖S‖0 = θd

ε log2( d
ε
)

(where 0 < θ < 1)

and
∥∥∥ C

log( d
ε
)
G + S

∥∥∥
∞
≤ 1 (thus S has an ε0

d0
-fraction of non-zero entries and ‖S‖∞ ≤ 2), we have

∥∥∥∥
C

log(d/ε)
G + S

∥∥∥∥
2

= sup
‖u‖2=1,‖v‖2=1

〈(
C

log(d/ε)
G + S

)
u,v

〉2

≤ C2

log2(d/ε)
sup
‖u‖2=1
‖v‖2=1

〈Gu,v〉2 + sup
‖u‖2=1
‖v‖2=1

〈Su,v〉2 +
2C

log(d/ε)
sup
‖u‖2=1
‖v‖2=1

〈G>Su,v〉

=
C2

log2(d/ε)
‖G‖2 + ‖S‖2 +

2C

log(d/ε)
‖G>S‖

≤ C2

log2(d/ε)
‖G‖2 + ‖S‖2 +

2C

log(d/ε)
‖G>‖‖S‖

≤ C2

log2(d/ε)
‖G‖2 + ‖S‖2

F +
2C

log(d/ε)
‖G>‖‖S‖F

Now, observe that

‖S‖2
F ≤

4θd

ε log2(d/ε)

and that, by setting t = O(
√
d/ε) in Lemma 57,

‖G‖ = O
(√

d

ε

)

with probability at least 1− 2 exp(−Ω(d/ε2)), we have that
∥∥∥∥

C

log(d/ε)
G + S

∥∥∥∥
2

≤ C2

log2(d/ε)
‖G‖2 +O

(
(θ +

√
θ)d

ε log2(d/ε)

)
≤
(

1 + c1

√
θε
) C2

log2(d/ε)
‖G‖2,

(3.45)

110



where c1 > 0 is an absolute constant.
On the other hand, with probability at least 1− c′ exp(−Ω(d/ε)) it holds that

∥∥∥∥
C

log(d/ε)
G + S

∥∥∥∥
2

F

≥
(

C

log(d/ε)
‖G‖F − ‖S‖F

)2

≥
(

1− c2

√
εθ

d

)
C2

log2(d/ε)
‖G‖2

F ,

(3.46)

where c2 > 0 is an absolute constant.
Therefore,

srank

(
C

log(d/ε)
G + S

)
≥
(

1− c3

√
θε
)
srank

(
C

log(d/ε)
G

)
> d0,

where c3 > 0 is an absolute constant, and θ is small enough such that the last inequality holds.
We conclude that C

log(d/ε)
G is ε0/d0-far from having stable rank ≤ d0. The proof is complete.

Proofs of Theorems 27 and 32

In this section, we develop new (1±τ)-approximation estimators to the operator norm in sampling
and sensing models.

Sampling algorithms. We first discuss the sampling algorithms which are only allowed to read
the entries of a matrix.

Estimation without eigengap. Before proceeding, we first cite the following result from [165].
Lemma 60 (Theorem 20, [165]). Let A ∈ Rn×n have rows {At,:}nt=1. Independently sample q
rows At1,:, . . . ,Atq ,: with replacement from A according to the probabilities:

pt ≥ β
‖At,:‖2

2

‖A‖2
F

for β < 1. Let

A0 =




At1,:√
qpt1
...

Atq,:√
qptq


 .

Then if q ≥ 4srank(A)
βτ2 log 2n

δ
, with probability at least 1− δ, we have

‖A>A−A>0 A0‖ ≤ τ‖A‖2.
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Algorithm 14 The sampling algorithm to estimate ‖A‖ up to (1± τ) relative error
. Lines 1-5 estimates the row norms of A and then sample rows non-uniformly.

1: Sample each row of A by Bernoulli distribution with probability O( 1
nτ

). Denote by Srow the
sampled set and q = |Srow|.

2: For i← 1 to q
3: Uniformly sample O( 1

τ
) entries from ASrow(i),:, forming vector x.

4: ri ← max{τn‖x‖2
2, τn}.

5: End For
6: Sample qrow = O(d logn

τ2 ) indices in Srow independently with replacement according to the
probability pi = ri

r
, where r =

∑q
j=1 rj . Denote by Irow the sampled row indices.

. Lines 6-10 estimates the column norms of A and then sample columns non-uniformly.
7: Sample each row with probability O( 1

nτ
). Repeat the procedure n times with replacement.

Denote the sampled set by Scol and q′ = |Scol|.
8: For i← 1 to q′
9: Uniformly sample O( 1

τ
) entries from AIrow,Scol(i) , forming vector x.

10: r′i ← max{τq‖x‖2
2, τq}.

11: End For
12: Sample qcol = O(d logn

τ2 ) indices in Scol independently with replacement according to the
probability p′i =

r′i
r′ , where r′ =

∑q′

j=1 r
′
j . Denote by Icol the sampled row indices.

13: Ã← AIrow,Icol . Rescale the rows of Ã by
{√

q
piqrow

}
and the columns of Ã by

{√
q′

p′iqcol

}
.

14: return index sets Irow, Icol, scaling factors
{√

q
piqrow

}
,
{√

q′
p′iqcol

}
, Ã, and ‖Ã‖.
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Remark 2. Lemma 60 implies that

(1− τ)‖A‖2 ≤ ‖A0‖2 ≤ (1 + τ)‖A‖2,

because
∣∣‖A‖2 − ‖A0‖2

∣∣ =
∣∣‖A>A‖ − ‖A>0 A0‖

∣∣ ≤ ‖A>A−A>0 A0‖ ≤ τ‖A‖2.

Theorem 27 (restated). Suppose that A is an n × n matrix satisfying that ‖A‖2
F = Ω(τn2),

‖A‖∞ ≤ 1 and srank(A) = O(d). Then with probability at least 0.9, the output of Algorithm 14
satisfies (1− τ)‖A‖ ≤ ‖Ã‖ ≤ (1 + τ)‖A‖. The sample complexity is O(d2 log2(n)/τ 4).

Proof of Theorem 27. We note that for any row Ai,: such that |Ai,j| ≤ 1 and η ≤ ‖Ai,:‖2
2 ≤ n,

uniformly sampling Θ(n
η
) entries of Ai,: suffices to estimate ‖Ai,:‖2

2 within a constant multiplica-
tive factor. To see this, we use Chebyshev’s inequality. Let s = Θ(n

η
) be the number of sampled

entries, Zj be the square of the j-th sampled entry Ai,l(j) of vector Ai,:, and Z = n
s

∑s
j=1 Zj . So

Z is an unbiased estimator:

E[Z] =
n

s
sE[Z1] = n

n∑

j=1

1

n
A2
i,l(j) = ‖Ai,:‖2

2.

For the variance, we have

Var[Z] =
n2

s2

s∑

j=1

Var[Zj] ≤
n2

s2

s∑

j=1

E[Z2
j ] =

n2

s
E[Z2

1 ] =
n2

s

n∑

j=1

1

n
A4
i,j

≤ n

s

n∑

j=1

A2
i,j (since |Ai,j| ≤ 1)

= Θ(η)‖Ai,:‖2
2

≤ Θ(‖Ai,:‖4
2). (since η ≤ ‖Ai,:‖2

2)

Therefore, by Chebyshev’s inequality, we have

Pr
[∣∣Z − ‖Ai,:‖2

2

∣∣ ≥ 10‖Ai,:‖2
2

]
≤ 1

3
.

Note that in Step 6 of Algorithm 14, in total we sample qrow = O(d logn
τ2 ) row indices, obeying

the conditions in Lemma 60 for a constant β. By concentration, with high probability r = O(
‖A‖2F
τn

)
in Step 6, because in expectation we sampleO( 1

τ2 ) entries to estimate r and we scale ‖x‖2
2 by a τn

factor in Steps 3 and 4, and that ‖A‖2
F is as large as Ω(τn2). The probability that any given row i

is sampled is equal to 1
nτ
× ri

r
= Ω( ri

‖A‖2F
). Suppose first that ‖Ai,:‖2

2 ≤ τn. Then we have ri = τn.

Consequently, for such i, the probability of sampling row i is at least Ω( τn
‖A‖2F

) ≥ Θ(
‖Ai,:‖22
‖A‖2F

), just
as in Lemma 60. Suppose next that ‖Ai,:‖2

2 ≥ τn. Then we have ri = Θ(‖Ai,:‖2
2). Consequently,

for such i, the probability of sampling row i is at least Ω(
‖Ai,:‖22
‖A‖2F

), just as in Lemma 60. Therefore,
in the followings we can set β in Lemma 60 as an absolute constant.
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It follows from Lemma 60 that with probability at least 0.9,

(1− τ)‖A‖2 ≤ ‖Arow‖2 ≤ (1 + τ)‖A‖2,

where Arow is the scaled row sampling of A as in Lemma 60. Conditioning on this event, by
applying Lemma 60 again to the column sampling of Arow, we have with high probability,

(1− τ)2‖A‖2 ≤ (1− τ)‖Arow‖2 ≤ ‖Ã‖2 ≤ (1 + τ)‖Arow‖2 ≤ (1 + τ)2‖A‖2, (3.47)

where we have used the fact that srank(Arow) = O(d). The statement srank(Arow) = O(d) holds
because E‖Arow‖2

F = ‖A‖2
F and by the Markov bound, we have with constant probability that

‖Arow‖2
F ≤ c‖A‖2

F ,

so

srank(Arow) =
‖Arow‖2

F

‖Arow‖2
≤ c‖A‖2

F

(1− τ)‖A‖2
≤ Csrank(A) ≤ C ′d.

Estimation with eigengap. Let A ∈ Rn×n. Suppose that p = 2q. We define a cycle σ to be an
ordered pair of a sequence of length q: λ = ((i1, ..., iq), (j1, ..., jq)) such that ir, jr ∈ [k] for all r.
Now we associate with λ a scalar

Aλ =

q∏

`=1

Ai`,j`Ai`+1,j` , (3.48)

where for convention we define that iq+1 = i1. Denote by

Z =
1

N

N∑

i=1

Aλi . (3.49)

Our goal is to estimate σ1(A) up to (1± τ) relative error, which is an (1± τ) approximation to
‖A‖.

Algorithm 15 Estimate ‖A‖ up to (1± τ) relative error
Input: Cycle length q, matrix size n.
Output: (1± τ)-approximation estimator.

1: For i = 1 to N
2: Uniformly sample a cycle λi of length q.
3: Compute Aλi by Eqn. (3.48).
4: End For
5: Compute Z as defined in (3.49).
6: return Z1/(2q)n.

Theorem 44. Let τ ∈ (0, 1
2
) be the accuracy parameter and suppose that the input matrix

A ∈ Rn×n satisfies
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• ‖A‖∞ ≤ 1;

• ‖A‖F ≥ cn for some absolute constant c > 0;

• σ2(A)/σ1(A) ≤ τ γ for some absolute constant γ > 0;

• srank(A) = O(1).
Let N = C1

τ2 exp( c1
γ

) and q = C2

γ
for some large constants C1, C2 > 0 and some small constant

c1 > 0. Then with probability at least 0.9, the estimator returned by Algorithm 15 satisfies
(1− τ)‖A‖ ≤ Z1/(2q)n ≤ (1 + τ)‖A‖. The sample complexity is Θ(Nq) = Θ

(
1
γτ2 exp( c1

γ
)
)

.

Proof of Theorem 44. We show that the cycle estimator approximates ‖A‖ within a (1 ± τ)
relative error. Let λ = ({is}, {js}) which is chosen uniformly with replacement. Recall that

Aλ =

q∏

`=1

Ai`,j`Ai`+1,j` .

Hence

EAλ = E

[
q∏

`=1

Ai`,j`Ai`+1,j`

]
=

1

n2q


 ∑

i1,i2,...,iq ,j1,j2,...,jq

q∏

`=1

Ai`,j`Ai`+1,j`


 .

Note that (see, e.g., [149])

∑

i1,i2,...,iq ,j1,j2,...,jq

q∏

`=1

Ai`,j`Ai`+1,j` = ‖A‖2q
2q,

and by the assumption on the singular values and the stable rank,

σ1(A)2q ≤ ‖A‖2q
2q ≤ (1 + τ)σ1(A)2q,

provided that q ≥ 1
2γ

( log srank(A)
log(1/τ)

+ 1), and thus it suffices to take q = Θ( 1
γ
).

Therefore, noting that E[Z] = E[Aλ],

E[Z] ≤ 1 + τ

n2q
σ1(A)2q ≤ 1 + τ, (3.50)

E[Z] ≥ 1

n2q
σ1(A)2q ≥ 1

n2q

( ‖A‖2
F

srank(A)

)q
≥
(

c2

srank(A)

)q
= exp

(
c1

γ

)
. (3.51)

We now bound the variance of Aλ. Observe that

Var[Aλ] ≤ E[A2
λ] ≤ 1,

because |Ai,j| ≤ 1 for all i, j ∈ [n]. Thus by repeating the procedure N = C1

τ2 exp
(

2c1
γ

)
times,

we have

Var[Z] =
1

N
Var[Aλ] ≤

1

10
τ 2 exp

(
2c1

γ

)
,
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by choosing C1 sufficiently large. It follows from the Chebyshev inequality that

Pr [|E[Z]− Z| > τE[Z]] ≤ Var[Z]

τ 2E[Z]2
≤ 1

10
,

where we have used the lower bound (3.51). This together with (3.50) and (3.51) implies that

Pr

[
(1− τ)

1

n2q
σ1(A)2q ≤ Z ≤ (1 + τ)2 1

n2q
σ1(A)2q

]
>

9

10
.

So
Pr
[
(1− τ)σ1(A) ≤ Z1/(2q)n ≤ (1 + τ)σ1(A)

]
>

9

10
.

Sensing algorithms. We now discuss the sensing algorithms.

Theorem 32 (restated). Suppose that A is an n × n matrix such that ‖A‖2
F = Ω(τn2),

‖A‖∞ ≤ 1 and srank(A) = O(d). Then Algorithm 16 outputs a value Z, which satisfies
(1 − τ)‖A‖ ≤ Z ≤ (1 + τ)‖A‖ with probability at least 0.9. The sketching complexity is
O(max{log2(d log(n)/τ), d2 log(n)}/τ 2).
Remark 3. The optimality of Theorem 32 follows from the hard instance in the proof of Theorem
43.

Algorithm 16 The sketching/sensing algorithm to estimate ‖A‖ up to (1± τ) relative error

1: Obtain indices Irow, Icol and scaling factors
{√

q
piqrow

}
,
{√

q′
p′iqcol

}
by Algorithm 14 with

|Irow| = |Icol| = O(d log(n)/τ 2).
2: Let G and H be Θ(max{log(d log(n)/τ),d}

τ
)×O(d logn

τ2 ) matrices with i.i.d. N (0, 1) entries. Scale

the columns of G by
{√

q
piqrow

}
and the columns of H by

{√
q′

p′iqcol

}
.

3: Maintain GAIrow,IcolH
>.

4: Compute Y defined in Eqn. (3.53).
5: return Y τ/(2 log(d log(n)/τ2)).

Before proving Theorem 32, we introduce a new estimator of operator norm under the sensing
model, which approximates the operator norm by the Schatten-p norm of large p.

Specifically, let A be an n× n matrix. We define a cycle σ to be an ordered pair of a sequence
of length q with p = 2q: λ = ((i1, . . . , iq), (j1, . . . , jq)) such that ir, jr ∈ [k] for all r, ir 6= is and
jr 6= js for r 6= s. Now we associate with λ a scalar

Aλ =

q∏

`=1

Ai`,j`Ai`+1,j` , (3.52)

where for convention we define that iq+1 = i1. Denote by C the set of cycles. We define

Y =
1

|C|
∑

λ∈C
(GAH>)λ (3.53)
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for even p, where G ∼ G(k, n), H ∼ G(k, n), and k ≥ q. This estimator, akin to that in [152],
approximates the Schatten-p and thus the operator norm, as we shall show below.
Lemma 61. Suppose that A is a n×nmatrix of stable rank at most d. Let k = Θ(max{

√
nd, log n})

and Y be the estimator defined in (3.53). With probability at least 0.9, it holds that (1− τ)‖A‖ ≤
Y τ/(2 log(n)) ≤ (1 + τ)‖A‖. The sketching complexity is O(k2) = O(max{nd, log2 n}).

Proof of Lemma 61. We first show that ‖A‖Sp and ‖A‖ differ at most a (1 ± τ) factor for
p = 2dlog(n)/τe. To see this,

1 ≤
‖A‖pSp
‖A‖p =

σp1(A) + σp2(A) + · · ·+ σpn(A)

σp1(A)
≤ n,

and therefore

1 ≤ ‖A‖Sp‖A‖ ≤ n1/p ≤ 1 +
1

2
τ.

We now show that the cycle estimator Y 1/p approximates ‖A‖Sp within a (1± 1
2
τ) relative error.

We say that two cycles λ = ({i}, {j}) and τ = ({i′}, {j′}) are (a1, a2)-disjoint if |i∆i′| = 2a1

and |j∆j′| = 2a2, denoted by |λ∆τ | = (a1, a2). Here ∆ is the symmetric difference. Denote
by A = UΣV> the skinny SVD of A. Let G and H be random matrices with i.i.d. N (0, 1)

entries. Note that GAH> is identically distributed as GΣH> by rotational invariance. Let Ã be
the k × k matrix GΣH>, where k ≥ q. It is clear that

Ãs,t =
n∑

i=1

σiGs,iHt,i.

Define

Y =
1

|C|
∑

λ∈C
Ãλ.

Let λ = ({is}, {js}). Then

Ãλ =
∑

`1∈[n],...,`q∈[n]
m1∈[n],...,mq∈[n]

q∏

s=1

σ`sσmsGis,`sHjs,`sGis+1,msHjs,ms .

We note that

EY = EÃλ =
n∑

i=1

σ2q
i = ‖A‖pSp .

We now bound the variance of Y . Let τ = ({i′s}, {j′s}). Observe that

EY 2 =
1

|C|2
q∑

a1=0

q∑

a2=0

∑

λ,τ∈C
|λ∆τ |=(a1,a2)

E(ÃλÃτ ),
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where

E(ÃλÃτ ) =
∑

`1∈[n],...,`q∈[n]
`′1∈[n],...,`′q∈[n]

m1∈[n],...,mq∈[n]
m′1∈[n],...,m′q∈[n]

(
q∏

i=1

σ`iσmiσ`′iσm′i

)
E

(
q∏

s=1

Gis,`sGis+1,msGi′s,`′sGi′s+1,m
′
s

)

× E

(
q∏

s=1

Hjs,`sHjs,msHj′s,`′sHj′s,m′s

)
.

(3.54)

For any fixed cycles λ = ({is}, {js}) and τ = ({i′s}, {j′s}) such that |λ∆τ | = (a1, a2), we
notice that

E(ÃλÃτ ) ≤ (2cnd)p‖A‖2p
Sp , (3.55)

for an absolute constant c. To see this, we observe that for the expectation E(ÃλÃτ ) to be
non-zero, we must have that each appeared G and H in Eqn. (3.54) repeats an even number of
times. Though there are totally n4q many of configurations for {`s}, {`′s}, {ms} and {m′s}, there
are at most n2q3q non-zero terms among the summation in Eqn. (3.54). This is because each G
and H must have power 2 or 4 by the construction of the cycle. We know that for each fixed
configuration of blocks there are at most n2q free variables, and there are at most 16q different
kinds of configurations of blocks because the size of each block is at most 4. So the number of
non-zero terms is at most (4n)2q. This is true no matter whether there exists some ir, i′s or jr, j′s
such that ir = i′s or jr = j′s. We also claim that for each non-zero term in the summation of Eqn.
(3.54),

E

(
q∏

s=1

Gis,`sGis+1,msGi′s,`′sGi′s+1,m
′
s

)
· E
(

q∏

s=1

Hjs,`sHjs,msHj′s,`′sHj′s,m′s

)
≤ 25q.

This is because EG2 = EH2 = 1 and EG4 = EH4 = 3. Therefore, for a certain configuration
in which p1, . . . , pw are free variables with multiplicity r1, . . . , rw ≥ 2, the summation in Eqn.
(3.54) is bounded by

4n2q100q
∑

p1,...,pw

σr1p1
· · ·σrwpw ≤ (2n)p‖A‖r1Sr1 · · · ‖A‖

rw
Srw ≤ (2nd)p‖A‖2p

Sp ,

where the last inequality follows from the facts that
∑w

i=1 ri = 2p and, by the assumption
srank(A) ≤ d, that ‖A‖Sr ≤ ‖A‖F ≤

√
d‖A‖Sp for any r ≥ 2. Thus we obtain Eqn. (3.55).

We now bound EY 2. Note that |C| = Θ(kp) and there are
(
k

q

)(
q

q − a1

)(
k − (q − a1)

a1

)(
k

q

)(
q

q − a2

)(
k − (q − a2)

a2

)

pairs of (a1, a2)-disjoint cycles, which can be upper bounded by O(10q). Hence

EY 2 =
1

|C|2
q∑

a1=0

q∑

a2=0

∑

λ,τ∈C
|λ∆τ |=(a1,a2)

E(ÃλÃτ ) ≤ C ′
1

k2p
q210q(2nd)p‖A‖2p

Sp ≤ ‖A‖
2p
Sp ,
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by the assumption that k = Ω(
√
nd).

It follows that
Var[Y ] ≤ EY 2 ≤ ‖A‖2p

Sp .

Then by the Chebyshev inequality,

Pr

[∣∣∣‖A‖pSp − Y
∣∣∣ > 1

2
‖A‖pSp

]
≤ Var[Y ]

4‖A‖2p
Sp
≤ 1

10
,

namely,

Pr

[(
1− 1

2
τ

)
‖A‖Sp ≤ Y 1/p ≤

(
1 +

1

2
τ

)
‖A‖Sp

]
>

9

10
.

This together with the fact that ‖A‖ ≤ ‖A‖Sp ≤ (1 + 1
2
τ)‖A‖ implies that

Pr
[
(1− τ)‖A‖ ≤ Y 1/p ≤ (1 + τ)‖A‖

]
>

9

10
,

as desired. This completes the proof of Lemma 61.

We are now ready to prove Theorem 32. Recall that we have shown that by focusing on an
O(d logn

τ2 ) × O(d logn
τ2 ) submatrix (without sampling it), we can achieve guarantee (3.47) when

‖A‖2
F = Ω(τn2) and ‖A‖∞ ≤ 1. Letting d← c1d and n← O(d logn

τ2 ) in Lemma 61 concludes
the proof of Theorem 32.

Proofs of Theorems 28 and 31

We study the problem of testing Schatten-p norms in this section.

Upper bounds. We first prove the upper bound for p > 2.
Problem 4 (Schatten-p Norm Testing in the Bounded Entry Model for p > 2). Let p > 2 and
A ∈ Rn×n be a matrix such that ‖A‖∞ ≤ 1. For an absolute constant c, the matrix A satisfies
one of the promised properties:
H0. ‖A‖pSp ≥ cnp;
H1. A is ε-far from ‖A‖pSp ≥ cnp, meaning that it requires changing at least an ε-fraction of

the entries of A such that that ‖A‖pSp ≥ cnp.
The problem is to design a non-adaptive property testing algorithm that outputs H0 with probability
at least 0.9 if A ∈ H0, and output H1 with probability at least 0.99 if A ∈ H1, with the least
number of queried entries.

First we prove a lemma showing that H0 and H1 can be distinguished by the Schatten p-norm.
Lemma 62. Suppose that p > 2 is a constant. There exist constants c = c(p), C = C(p) and
ε0 = ε(p) such that for any ε ∈ [C/n, ε0], when A ∈ H1 it holds that ‖A‖pSp ≤ (c − c′ε)np for
some small constant c′ that may depend on p.
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Proof. Assume that ‖A‖pSp ≥ c1n
p for some constant c1 < c, otherwise there is already a constant-

factor gap. Together with the assumption that ‖A‖∞ ≤ 1 and thus ‖A‖2
F ≤ n2, it must hold that

‖A‖ ≥ c2n for c2 = c
1/(p−1)
1 .

We claim that we can find a set T of εn rows such that ‖AT c,:‖pSp ≥ (1−C ′ε)‖A‖pSp for some
C ′ (which may depend on p) and therefore ‖AT c,:‖ ≥ c′2n, where AT c,: stands for a submatrix
of A with rows restricted on the set T c. Consider a random subset T formed by including rows
independently with probability ε, that is, let δi be the indicator variable whether i ∈ T and Eδi = ε.
Denote by Ai,: ∈ R1×n the i-th row of A. Then we have, by the standard symmetrization trick
(see, e.g., [146, Lemma 6.3]), that

Eδi‖AT,:‖2
Sp = Eδi

∥∥∥∥∥
∑

i

δiA
>
i,:Ai,:

∥∥∥∥∥
Sp/2

≤ Eδi



∥∥∥∥∥
∑

i

(δi − ε)A>i,:Ai,:

∥∥∥∥∥
Sp/2

+

∥∥∥∥∥
∑

i

εA>i,:Ai,:

∥∥∥∥∥
Sp/2




≤ 2EδiEεi

∥∥∥∥∥
∑

i

εiδiA
>
i,:Ai,:

∥∥∥∥∥
Sp/2

+ ε‖A‖2
Sp ,

where εi’s are i.i.d. {±1}-valued Rademacher variables with Pr(εi = +1) = Pr(εi = −1) = 1/2.
Applying the Non-Commutative Khintchine Inequality (abbreviated as NCKI) [162] yields that

Eεi

∥∥∥∥∥
∑

i

εiδiA
>
i,:Ai,:

∥∥∥∥∥
Sp/2

≤


Eεi

∥∥∥∥∥
∑

i

εiδiA
>
i,:Ai,:

∥∥∥∥∥

p/2

Sp/2




2/p

(by Jensen’s inequality)

≤ C1

√
p

2

∥∥∥∥∥∥

(∑

i

δi(A
>
i,:Ai,:)

2

) 1
2

∥∥∥∥∥∥
Sp/2

(by NCKI)

≤ C1

√
p

2

∥∥∥∥∥∥
max
i
‖Ai,:‖2 ·

(∑

i

δiA
>
i,:Ai,:

) 1
2

∥∥∥∥∥∥
Sp/2

≤ C1

√
p

2

√
n‖AT,:‖Sp/2

≤ C1

√
p

2
n

1
2 |T | 1p‖AT,:‖Sp , (by Hölder’s inequality)

where the third inequality holds since
∑

i δi(A
>
i,:Ai,:)

2 � maxi ‖Ai,:‖2
2 ·
∑

i δiA
>
i,:Ai,:. Hence,

taking expectation on both sides w.r.t. δi,

E‖AT,:‖2
Sp ≤ C1

√
p

2
n

1
2 (E|T | 2p )

1
2 (E‖AT,:‖2

Sp)
1
2 + ε‖A‖2

Sp (by Cauchy-Schwarz inequality)

≤ C1

√
p

2
n

1
2 (E|T |) 1

p (E‖AT,:‖2
Sp)

1
2 + ε‖A‖2

Sp (by Jensen’s inequality)

≤ C1

√
p

2
n

1
2 (εn)

1
p (E‖AT,:‖2

Sp)
1
2 + ε‖A‖2

Sp ,
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whence we can solve that

E‖AT,:‖2
Sp ≤ C2

1

p

2
ε

2
pn1+ 2

p + 4ε‖A‖2
Sp ≤ C2ε‖A‖2

Sp .

That is, we can find T such that ‖AT,:‖2
Sp ≤ C2ε‖A‖2

Sp and thus

‖AT c,:‖2
Sp=‖A>T c,:AT c,:‖Sp/2 = ‖A>A−A>T,:AT,:‖Sp/2 ≥ (1−C2ε)‖A>A‖Sp/2 = (1−C2ε)‖A‖2

Sp

as desired. A Chernoff bound shows that |T | ≥ 0.9εn with at least a high constant probability.
We can assume that it happens, since conditioning on this event will increase E‖AT,:‖2

Sp just by a
constant factor. When |T | > εn we can just remove rows from T , which only decreases ‖AT,:‖Sp .

Let v be the normalized eigenvector associated with the largest eigenvalue of A>T c,:AT c,:.
We shall change the rows of T all to ṽ := sgn(v), obtaining a matrix B. Note that B>B =
A>T c,:AT c,: + |T |vv> � A>T c,:AT c,: is a rank-1 PSD perturbation of A>T c,:AT c,: and v is the leading
eigenvector of A>T c,:AT c,:, we have that for the i-th eigenvalue λi(·),

λi(B
>B) ≥ λi(A

>
T c,:AT c,:), i ≥ 2.

and the largest eigenvalue

λ1(B>B) = sup
x:‖x‖2=1

x>(A>T c,:AT c,: + εnṽṽ>)x

≥ v>(A>T c,:AT c,: + |T |ṽṽ>)v

= λ1(A>T c,:AT c,:) + |T |‖v‖2
1.

Observe that

λ1(A>T c,:AT c,:) = ‖AT c,:v‖2
2 =

∑

i∈T c
〈Ai,:,v〉2 ≤

∑

i∈T c
‖Ai,:‖2

∞‖v‖2
1 ≤ (n− |T |)‖v‖2

1.

Then

λ1(B>B) ≥
(

1 +
0.9ε

1− ε

)
λ1(A>T c,:AT c,:)

and so

cnp > ‖B‖pSp ≥
(

1 +
0.9ε

1− ε

) p
2

λ
p
2
1 (A>T c,:AT c,:) +

∑

i≥2

λ
p
2
i (A>T c,:AT c,:)

≥
((

1 +
0.9ε

1− ε

) p
2

− 1

)
(c′2n)p + ‖AT c,:‖pSp

≥ c3pεn
p + (1− C ′ε)‖A‖pSp ,

whence it follows that
‖A‖pSp ≤ (c− (c3p− cC ′)ε)np,

provided that c and ε are sufficiently small.
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Algorithm 17 Algorithm for Schatten-p norm testing (p > 2)
. Lines 1-2 estimate the Frobenius norm of A.

1: Uniformly sample q0 = O( 1
ε2

) entries A, forming vector y.
2: X ← n2

q0
‖y‖2

2. . X is an estimator of ‖A‖2
F .

3: Uniformly sample a q × q submatrix Ã′ with q = O( logn
ε

).
4: If ‖Ã′‖ ≤ C0

√
X q

n

5: Output “A ∈ H1”.
6: Else
7: Run Algorithm 14 with τ = Θ(εp/(p−2)/p) and obtain indices Irow and Icol.
8: A0 ← AIrow,Icol .
9: I ← {i | σi(A0) > (1 + ε/(3p))n(cε/3)1/(p−2)}.

10: If
∑

i∈I σ
p
i (A0) ≥ cnp

11: Output “A ∈ H0”.
12: Else
13: Output “A ∈ H1”.
14: End If
15: End If

Theorem 45. Let p > 2 be a constant, and c and ε be as in Lemma 62. Then Algorithm 17
is a correct algorithm for the Schatten-p norm testing problem under the sampling model with
probability at least 0.99. It reads O

(
log2 n

ε4p/(p−2)

)
entries.

Proof. When A ∈ H0, we claim that srank(A) = O(1) which is independent of n and 1/ε.
Otherwise, suppose srank(A) = f(n, 1/ε). Then ‖A‖ = ‖A‖F/

√
srank(A) ≤ n/f(n, 1/ε) =

o(n). In this case, ‖A‖pSp is maximized when the first r singular values are equal to ‖A‖, where
r ≤ n2/‖A‖2 in order to satisfy ‖A‖F ≤ n. So the maximal ‖A‖pSp is r‖A‖p ≤ n2‖A‖p−2 =
o(np), which leads to a contradiction with A ∈ H0. That is, srank(A) is an absolute constant
which is independent of n and 1/ε, say 4e2. Thus, when A ∈ H0 we have ‖A‖ = Θ(n) and
‖A‖F = Θ(n), because n ≥ ‖A‖F ≥ ‖A‖Sp ≥ c1/pn.

We note that by sampling q0 entries from A and stacking them as vector y, the resulting
estimatorX = n2

q2
0
‖y‖2

2 satisfies E[X] = ‖A‖2
F and Var[X] ≤ n2(n4/q2

0)(q0/n
2) = n4/q0. Taking

q0 = O(1/ε2), we have, by Chebyshev’s inequality, that

Pr
[
|X − ‖A‖2

F | > εn2
]
≤ n4/q0

ε2n4
≤ 0.999.

Thus with constant probability, |X − ‖A‖2
F | ≤ εn2.

We argue that uniformly sampling an O(log(n)/ε)×O(log(n)/ε) submatrix of A suffices to
distinguish srank(A) ≤ 4e2 v.s. srank(A) > 4c1e

2 for a large absolute constant c1 with a constant
probability. To see this, when srank(A) > 4c1e

2, let U be a uniformly random n× n orthogonal
matrix and let A′row be the matrix after uniform row sampling of A of expected cardinality q. Note
that ‖A′row‖ = ‖A′rowU‖, and (AU)i,: = Ai,:U is uniform on ‖Ai,:‖2 · Sn−1. So ‖Ai,:U‖2

∞ ≤
2‖Ai,:U‖2

2 log(n)/n for any fixed i with probability at least 1− 1/n2 by Lemma 56. Therefore,
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with probability at least 1 − 1/n by union bound over all rows, ‖AU‖2
col ≤ 2‖A‖2

F log(n)/n,
where ‖A‖col represents the maximum `2 norm among all columns of A. By Lemma 55,

E‖A′row‖ ≤ C ′1

√
q

n
‖A‖+ C ′2

√
log q

√
log n

n
‖A‖F

for absolute constants C ′1 and C ′2, and by a Markov bound, with probability at least 0.999,

‖A′row‖ ≤ C1

√
q

n
‖A‖+ C2

√
log q

√
log n

n
‖A‖F

≤ C1

√
q

n

‖A‖F√
4c1e2

+ C2

√
log q

√
log n

n
‖A‖F (since srank(A) > 4c1e

2)

for absolute constants C1 and C2. By a Markov bound, we also have with constant probability that

‖A′row‖2
F ≤ c

q

n
‖A‖2

F .

Conditioning on this event, by applying the same argument on the column sampling of A′row, we
have

‖Ã′‖ ≤ C1

√
q

n
‖A′row‖+ C2

√
log q

√
log n

n
‖A′row‖F

≤ C1

√
q

n

(
C1

√
q

n

‖A‖F√
4c1e2

+ C2

√
log q

√
log n

n
‖A‖F

)
+ C2

√
log q

√
log n

n

√
cq

n
‖A‖F

≤ C0
‖A‖F√

4c1e2

q

n
, (because the first term dominates as q � a constant)

where Ã′ is the matrix after the column sampling of A′row, and C0 is an absolute constant. On the
other hand, when srank(A) ≤ 4e2 and q = O( logn

ε
), we have with high probability that

‖Ã′‖ ≥ C
q

n
‖A‖ = C

q

n

‖A‖F√
srank(A)

≥ C
q

n

‖A‖F√
4e2

,

where the first inequality holds by applying Lemma 60 twice on row and column sampling (set
β = Θ(ε) and τ = Θ(1) there). By setting c1 as a large absolute constant, we have

C0
‖A‖F√

4c1e2

q

n
< C

q

n

‖A‖F√
4e2

.

Thus we can distinguish (a) srank(A) ≤ 4e2 and (b) srank(A) > 4c1e
2 by checking ‖Ã′‖. If we

find srank(A) > 4c1e
2, then we can safely output “A ∈ H1”. Therefore, in the following we can

assume srank(A) ≤ 4c1e
2.

Recall that, according to Lemma 62, there is a multiplicative gap in the Schatten-p norm
between case H0 and case H1. Without loss of generality, we assume ‖A‖pSp = (1 ± ε)cnp
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in the following, which represents the hardest case to distinguish H0 from H1. In that case,
srank(A) = O(1) and ‖A‖2

F = Θ(n2), as we have shown in the beginning of the proof.
We now show that with poly(1/ε) sampled entries, we can have an estimator which approx-

imates ‖A‖pSp up to (1± ε) factor; therefore, we can distinguish H0 from H1 due to the gap of
‖A‖pSp in the two cases. Consider all singular values of A which are at most n/

√
r and consider

‖A‖pSp . This is maximized when there are as many singular values as possible that are equal to
n/
√
r. Note that there can be at most r singular values of value n/

√
r, since ‖A‖2

F ≤ n2 for
‖A‖∞ ≤ 1. Therefore, the total contribution of singular values which are no larger than n/

√
r is

at most npr1−p/2. So if r = (cε/3)
2

2−p , this quantity is at most cεnp/3. Thus all singular values
less than n(cε/3)

1
p−2 contribute not too much, at most cεnp/3. For the remaining singular values

(i.e., σi(A) > n(cε/3)
1
p−2 ), by Theorem 27, with O

(
p4

ε4p/(p−2) log2 n
)

samples we have

∣∣σ2
i (A)− σ2

i (A0)
∣∣ =

∣∣σi(A>A)− σi(A>0 A0)
∣∣ ≤ ‖A>A−A>0 A0‖ ≤

2ε

3p

(cε
3

) 2
p−2 ‖A‖2

≤ 2ε

3p

(cε
3

) 2
p−2

n2 <
2ε

3p
σ2
i (A),

namely, σpi (A0) = (1± ε/3)σpi (A). Therefore,
∑

i: σi(A)>n(cε/3)1/(p−2)

σpi (A0) = (1± ε/3)
∑

i: σi(A)>n(cε/3)1/(p−2)

σpi (A) = (1± 2ε/3)‖A‖pSp ,

where the last ⊆ holds because all singular values less than n(cε/3)
1
p−2 contribute at most cεnp/3.

Let I = {i | σi(A0) > (1 + ε/(3p))n(cε/3)1/(p−2)} and J = {i | σi(A) > n(cε/3)1/(p−2)}. We
note that I ⊆ J , and that all singular values of A less than (1 + ε/(3p))n(cε/3)

1
p−2 contribute

not too much, at most cεnp/2, by a similar analysis as above. Therefore, those singular values of
A that lie in J \I contribute at most cεnp/6, and by the relation σpi (A0) = (1± ε/3)σpi (A) for
all i ∈ J , those singular values of A0 that lie in J \I contribute at most cεnp/5. Therefore

∑

i∈I
σpi (A0) =

∑

i∈J
σpi (A0)± cεnp

5
= (1± ε)‖A‖pSp ,

as desired.

Lower bounds. We then prove the lower bound for p ∈ [1, 2).
Problem 5 (Schatten-p Norm Testing in the Bounded Entry Model for p ∈ [1, 2)). Let p ∈ [1, 2)
and A ∈ Rn×n with ‖A‖∞ ≤ 1. For a constant c, the matrix A satisfies one of the promised
properties:
H0. ‖A‖pSp ≥ cn1+p/2;
H1. A is ε-far from ‖A‖pSp ≥ cn1+p/2, meaning that it requires changing at least an ε-fraction

of entries of A such that ‖A‖pSp ≥ cn1+p/2.
The problem is to design a non-adaptive property testing algorithm that outputs H0 with probability
at least 0.9 if A ∈ H0, and output H1 with probability at least 0.9 if A ∈ H1, with the least
number of queried entries.
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Suppose that G ∼ G(n, n) and O is a random n × n orthogonal matrix. Consider two
distributions D1 = 1+η√

n
G and D2 = O + η√

n
G, where η > 0 is a small absolute constant. The

following lemma comes from a manuscript of Li et al. [154].
Lemma 63 ([154]). Consider a linear sketch of length m for random matrices drawn from D1

or D2. Let L1 and L2 be the induced distribution of the linear sketch of D1 and D2, respectively.
There exists α = α(η) ∈ (0, 1) such that whenever m ≤ αn, it holds that dTV (L1,L2) < 1/10.
Theorem 46. Let p ∈ [1, 2) be a constant. There exist constants c = c(p) and ε0 = ε0(p) such
that for any ε ≤ ε0 and A ∈ Rn×n, any non-adaptive algorithm that correctly tests H0 against H1
with probability at least 0.99 must make Ω(n) queries (i.e., the sketch size is Ω(n)).

Proof. Consider the hard distributions D1 and D2 for Lemma 63. For p < 2, it is a well-
known fact that with high probability over G ∼ G(n, n), it holds that ‖ 1√

n
G‖ ≤ 2(1 + o(1))

and ‖ 1√
n
G‖pSp ≤ (1 + o(1))cpn for some constant cp < 1 that depends only on p. Hence

with high probability, when A ∼ D1, it holds that ‖A‖pSp ≤ (1 + o(1))(1 + η)cpn. On the
other hand, with high probability, when A ∼ D2, it follows from the triangle inequality that
‖A‖pSp ≥ (1− (1 + o(1))ηc

1/p
p )pn. Therefore, when η is sufficiently small (depending on p only),

there is a constant-factor multiplicative gap in ‖A‖pSp between D1 and D2.
Let C be a large constant to be determined. We truncate D1 and D2 by applying the map

x 7→ max

{
min

{
x,

C√
n

}
,− C√

n

}

entrywise to the matrices, resulting in two new distributions D̃1 and D̃2. We claim that with high
probability, there remains a constant-factor multiplicative gap in ‖A‖pSp between D̃1 and D̃2. It
suffices to show that with high probability, truncation incurs only a change of cn for some small
constant c > 0 in ‖A‖pSp for both D1 and D2.

Suppose that A ∼ D1, and let Ã be the truncated matrix. We can write Ã = A + 1√
n
B, where

B is a random matrix with i.i.d. entries following a truncated Gaussian distribution ÑC(0, 1)
whose probability density function is

fC(t) = (1− pC)δ(t) +
1√
2π

exp

(
−(|t|+ C)2

2

)
,

where δ(t) is the Dirac delta function and

pC =
2√
2π

∫ ∞

C

exp

(
−x

2

2

)
dx =: erfc

(
C√

2

)
.

One can also calculate that
mC := E|Bij|2 (3.56)

has a subgaussian decay w.r.t. C. It follows from a Chernoff bound that ‖B‖2
F ≤ 2mCn

2 with
high probability. Since ‖B‖Sp ≤ n

1
p
− 1

2‖B‖F ≤
√

2mCn
1
p

+ 1
2 , we see that ‖ 1√

n
B‖Sp ≤

√
2mCn

1
p ,

where the constant factor can be made arbitrarily small by choosing C large enough; that is,
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truncating A ∼ D1 incurs only a constant factor loss (where the constant can be made arbitrarily
small) in ‖A‖pSp with probability ≥ 0.999.

Next, suppose that A′ ∼ D2 and we write the truncation as Ã′ = A′ + B′. It is a classical
result [41] that

lim
n→∞

Pr{√nOij ≤ t} = Pr
g∼N (0,1)

{g ≤ t}. (3.57)

Observe that A′ij
dist
= Oij + η√

n
g′ and Aij

dist
= 1√

n
g + η√

n
g′ with the same additive ‘noise’ η√

n
g′,

where g, g′ ∼ N(0, 1) are independent, it follows that Pr{√nA′ij ≤ t} → Pr{√nAij ≤ t}
for any (fixed) t as n → ∞ (note that

√
nAij

dist
= (1 + η)g and does not depend on n). Hence

each entry of B′ij is stochastically dominated by 1√
n
ÑC/2(0, 1). Similarly to before, E‖B′‖Sp ≤

n
1
p
− 1

2E‖B′‖F ≤ √mC/2n
1
p , and thus by Markov’s inequality, with probability ≥ 0.999 it holds

that ‖B′‖Sp ≤ 1000
√
mC/2n

1
p ; that is, truncating A′ ∼ D2 incurs only a constant factor loss

(where the constant can be made arbitrarily small) in ‖A′‖pSp with probability ≥ 0.999.

Now, the matrices from
√
n
C
D̃1 and

√
n
C
D̃2 have entries bounded by 1, and with high probability,

‖A‖Sp ≤ c1n
1
2

+ 1
p when A ∼

√
n
C
D̃1 and ‖A‖Sp ≥ c2n

1
2

+ 1
p when A ∼

√
n
C
D̃2, for constants

c1 < c2 (depending on η and C). Our result of the theorem would follow immediately from
Theorem 46 once we establish that with high probability, a random matrix from

√
n
C
D̃1 is ε-far

from having Schatten p-norm at least c2n
1
2

+ 1
p . Indeed, let E denote the pertubation to A such

that ‖E‖0 ≤ εn2 and ‖A + E‖∞ ≤ 1. Since ‖A‖∞ ≤ 1, it must hold that ‖E‖∞ ≤ 2. Thus
‖E‖Sp ≤ n

1
p
− 1

2‖E‖F ≤ 2
√
εn

1
p

+ 1
2 . When ε is sufficiently small, it is easy to see via triangle

inequality that there remains a constant-factor gap between ‖A + E‖Sp and c2n
1
2

+ 1
p .
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Chapter 4

Learning with Deep Neural Networks

4.1 Deep Neural Networks with Multi-Branch Architectures

4.1.1 Introduction

Deep neural networks are a central object of study in machine learning, computer vision, and
many other domains. They have substantially improved over conventional learning algorithms in
many areas, including speech recognition, object detection, and natural language processing. The
focus of this work is to investigate the duality gap of deep neural networks. The duality gap is
the discrepancy between the optimal values of primal and dual problems. While it has been well
understood for convex optimization, little is known for non-convex problems. A smaller duality
gap in relative value typically implies that the problem itself is less non-convex intrinsically, and
thus is easier to optimize.1 Our results establish that: Deep neural networks with multi-branch
architecture have small duality gap in relative value.

Our study is motivated by the computational difficulties of deep neural networks due to its
non-convex nature. While many works have witnessed the power of local search algorithms
for deep neural networks [49], these algorithms typically converge to a suboptimal solution
in the worst cases according to various empirical observations [208]. It is reported that for a
single-hidden-layer neural network, when the number of hidden units is small, stochastic gradient
descent may get easily stuck at the poor local minima [90, 199]. Furthermore, there is significant
evidence indicating that when the networks are deep enough, bad saddle points do exist [6] and
might be hard to escape [6, 31, 39, 73].

Given the computational obstacles, several efforts have been devoted to designing new archi-
tectures to alleviate the above issues, including over-parametrization [10, 50, 156, 179, 211] and
multi-branch architectures [64, 120, 222, 232, 245]. Empirically, increasing the number of hidden
units of a single-hidden-layer network encourages the first-order methods to converge to a global
solution, which probably supports the folklore that the loss surface of a wider network looks
more “convex” (see Figure 4.1). Furthermore, several recently proposed architectures, including
ResNeXt [245], Inception [222], Xception [64], SqueezeNet [120] and Wide ResNet [249] are

1Throughout the paper, we discuss the duality gap w.r.t. the Lagrangian function, rather than the augmented
Lagrangian function as in Chapter 11 of [195] where the duality gap is always zero.
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(a) I = 10. (b) I = 30. (c) I = 70. (d) I = 1, 000.

Figure 1: The loss surface of one-hidden-layer ReLU network projected onto a 2-d plane, which is spanned by three points
to which the SGD algorithm converges according to three different initialization seeds. It shows that as the number of
hidden neurons I increases, the landscape becomes less non-convex.

solution, which probably supports the folklore that the
loss surface of a wider network looks more “convex”
(see Figure 1). Furthermore, several recently proposed
architectures, including ResNeXt [61], Inception [56],
Xception [18], SqueezeNet [33] and Wide ResNet [62]
are based on having multiple branches and have demon-
strated substantial improvement over many of the ex-
isting models in many applications. In this work, we
show that one cause for such success is due to the fact
that the loss of multi-branch network is less non-convex
in terms of duality gap.

Why is duality gap a measure of intrinsic non-
convexity? Although some highly non-convex prob-
lems such as PCA and quadratic programming may
have small/zero duality gap, we argue that the du-
ality gap is a measure of intrinsic non-convexity of
an optimization problem. There are two reasons for
such an argument. a) The optimal value of the dual
problem is equal to the optimal value of the convex
relaxation of the primal problem. Hereby, the convex
relaxation is the problem arising by replacing the non-
convex objective with its convex closure and replacing
the non-convex feasible set with its closed convex hull.
Therefore, the duality gap measures the discrepancy
between the optimal values of primal problem and its
convex relaxation (Taking convex problems as an ex-
ample, the duality gap is zero in most cases). When
the duality gap is small, one can solve the convex relax-
ation problem whose solution is guaranteed to being
close to the solution of primal problem. b) We show in
our main result that the duality gap is a lower bound
of the discrepancy between objective and its convex
relaxation2 (see Theorem 1 for the case of I = 1). So a
smaller duality gap implies a possibly smaller discrep-
ancy between objective and its convex relaxation.

Our Contributions. This paper provides both theo-
retical and experimental results for the population and

2Note that the convex relaxation of objective is different
from the convex relaxation of primal non-convex problem
which requires convexification operation on both objective
and constraint.

empirical risks of deep neural networks by estimating
the duality gap.

• We study the duality gap of deep neural network-
s with arbitrary activation functions, any data
distribution, and multi-branch architecture (see
Theorem 1). The multi-branch architecture is gen-
eral, which includes the classic one-hidden-layer
architecture as a special case (see Figure 2). By
Shapley-Folkman lemma, we show that the duality
gap of both population and empirical risks shrinks
to zero as the number of branches increases.

• We prove that the strong duality (a.k.a. zero
duality gap) holds for the empirical risk of deep
linear neural networks (see Theorem 2). To this
end, we develop multiple new proof techniques,
including reduction to low-rank approximation and
construction of dual certificate (see Section 4),
which might be of independent interest to other
non-convex problems.

• We empirically study the loss surface of multi-
branch neural networks. Our experiments verify
our theoretical findings.

Notation. We will use bold capital letter to represent
matrix and lower-case letter to represent scalar. Specif-
ically, let I be the identity matrix and denote by 0 the
all-zero matrix. Let {Wi 2 Rdi⇥di�1 : i = 1, 2, ..., H}
be a set of network parameters, each of which represents
the connection weights between the i-th and (i + 1)-th
layers of neural network. We use W:,t 2 Rn1⇥1 to
indicate the t-th column of W. We will use �i(W) to
represent the i-th largest singular value of matrix W.
Given skinny SVD U⌃VT of matrix W, we denote
by svdr(W) = U:,1:r⌃1:r,1:rV

T
:,1:r the truncated SVD

of W to the first r singular values. For matrix norm-
s, denote by kWkSH

=
�P

i �
H
i (W)

�1/H the matrix
Schatten-H norm. Nuclear norm and Frobenius norm
are special cases of Schatten-H norm: kWk⇤ = kWkS1

and kWkF = kWkS2
. We use kWk to represent the

matrix operator norm, i.e., kWk = �1(W), and denote
by rank(W) the rank of matrix W. Denote by Row(W)
the span of rows of W. Let W† be the Moore-Penrose
pseudo-inverse of W.

Figure 4.1: The loss surface of one-hidden-layer ReLU network projected onto a 2-d plane, which is
spanned by three points to which the SGD algorithm converges according to three different initialization
seeds. It shows that as the number of hidden neurons I increases, the landscape becomes less non-convex.

based on having multiple branches and have demonstrated substantial improvement over many of
the existing models in many applications. In this work, we show that one cause for such success
is due to the fact that the loss of multi-branch network is less non-convex in terms of duality gap.

Why is duality gap a measure of intrinsic non-convexity? Although some highly non-convex
problems such as PCA and quadratic programming may have small/zero duality gap, we argue
that the duality gap is a measure of intrinsic non-convexity of an optimization problem. There
are two reasons for such an argument. a) The optimal value of the dual problem is equal to the
optimal value of the convex relaxation of the primal problem. Hereby, the convex relaxation is
the problem arising by replacing the non-convex objective with its convex closure and replacing
the non-convex feasible set with its closed convex hull. Therefore, the duality gap measures the
discrepancy between the optimal values of primal problem and its convex relaxation (Taking
convex problems as an example, the duality gap is zero in most cases). When the duality gap is
small, one can solve the convex relaxation problem whose solution is guaranteed to being close
to the solution of primal problem. b) We show in our main result that the duality gap is a lower
bound of the discrepancy between objective and its convex relaxation2 (see Theorem 47 for the
case of I = 1). So a smaller duality gap implies a possibly smaller discrepancy between objective
and its convex relaxation.

Notation. We will use bold capital letter to represent matrix and lower-case letter to represent
scalar. Specifically, let I be the identity matrix and denote by 0 the all-zero matrix. Let {Wi ∈
Rdi×di−1 : i = 1, 2, ..., H} be a set of network parameters, each of which represents the connection
weights between the i-th and (i+ 1)-th layers of neural network. We use W:,t ∈ Rn1×1 to indicate
the t-th column of W. We will use σi(W) to represent the i-th largest singular value of matrix
W. Given skinny SVD UΣVT of matrix W, we denote by svdr(W) = U:,1:rΣ1:r,1:rV

T
:,1:r the

truncated SVD of W to the first r singular values. For matrix norms, denote by ‖W‖SH =(∑
i σ

H
i (W)

)1/H the matrix Schatten-H norm. Nuclear norm and Frobenius norm are special
cases of Schatten-H norm: ‖W‖∗ = ‖W‖S1 and ‖W‖F = ‖W‖S2 . We use ‖W‖ to represent
the matrix operator norm, i.e., ‖W‖ = σ1(W), and denote by rank(W) the rank of matrix W.

2Note that the convex relaxation of objective is different from the convex relaxation of primal non-convex problem
which requires convexification operation on both objective and constraint.
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Denote by Row(W) the span of rows of W. Let W† be the Moore-Penrose pseudo-inverse of W.
For convex matrix function K(·), we denote by K∗(Λ) = maxM〈Λ,M〉 − K(M) the

conjugate function of K(·) and ∂K(·) the sub-differential. We use diag(σ1, ..., σr) to represent a
r × r diagonal matrix with diagonal entries σ1, ..., σr. Let dmin = min{di : i = 1, 2, ..., H − 1},
and [I] = {1, 2, ..., I}. For any two matrices A and B of matching dimensions, we denote by
[A,B] the concatenation of A and B along the row and [A; B] the concatenation of two matrices
along the column.

4.1.2 Our results on optimization
Duality gap of multi-branch neural networks

We first study the duality gap of neural networks in a classification setting. We show that the
wider the network is, the smaller the duality gap becomes.

Network Setup. The output of our network follows from a multi-branch architecture (see Figure
4.2):

f(w; x) =
1

I

I∑

i=1

fi(w(i); x), w(i) ∈ Wi,

whereWi is a convex set, w is the concatenation of all network parameters {w(i)}Ii=1, x ∈ Rd0

is the input instance, {Wi}Ii=1 is the parameter space, and fi(w(i); ·) represents an Rd0 → R
continuous mapping by a sub-network which is allowed to have arbitrary architecture such as
convolutional and recurrent neural networks. As an example, fi(w(i); ·) can be in the form of a
Hi-layer feed-forward sub-network:

fi(w(i); x) = w>i ψHi(W
(i)
Hi
...ψ1(W

(i)
1 x)) ∈ R,

w(i) = [wi; vec(W
(i)
1 ); ...; vec(W

(i)
Hi

)] ∈ Rpi .

Hereby, the functions ψk(·), k = 1, 2, ..., Hi are allowed to encode arbitrary form of continuous
element-wise non-linearity (and linearity) after each matrix multiplication, such as sigmoid,
rectification, convolution, while the number of layers Hi in each sub-network can be arbitrary as
well. When Hi = 1 and dHi = 1, i.e., each sub-network in Figure 4.2 represents one hidden unit,
the architecture f(w; x) reduces to a one-hidden-layer network. We apply the so-called τ -hinge
loss [17, 28] on the top of network output for label y ∈ {−1,+1}:

`τ (w; x, y) := max

(
0, 1− y · f(w; x)

τ

)
, τ > 0. (4.1)

The τ -hinge loss has been widely applied in active learning of classifiers and margin based
learning [17, 28]. When τ = 1, it reduces to the classic hinge loss [50, 143, 157].

We make the following assumption on the margin parameter τ , which states that the parameter
τ is sufficiently large.
Assumption 1 (Parameter τ ). For sample (x, y) drawn from distribution P , we have τ > y ·
f(w; x) for all w ∈ W1 ×W2 × ...×WI with probability measure 1.
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Figure 4.2: Multi-branch architecture, where the sub-networks are allowed to have arbitrary architectures,
depths, and continuous activation functions. Hereby, I represents the number of branches. In the extreme
case when the sub-network is chosen to have a single neuron, the multi-branch architecture reduces to a
single-hidden-layer neural network and the I represents the network width.

We further empirically observe that using smaller values of the parameter τ and other loss
functions support our theoretical result as well. It is an interesting open question to extend our
theory to more general losses in the future.

To study how close these generic neural network architectures approach the family of convex
functions, we analyze the duality gap of minimizing the risk w.r.t. the loss (4.1) with an extra
regularization constraint. The normalized duality gap is a measure of intrinsic non-convexity of a
given function [36]: the gap is zero when the given function itself is convex, and is large when the
loss surface is far from the convexity intrinsically. Typically, the closer the network approaches to
the family of convex functions, the easier we can optimize the network.
Multi-Branch Architecture. Our analysis of multi-branch neural networks is built upon tools
from non-convex geometric analysis — Shapley–Folkman lemma. Basically, the Shapley–Folkman
lemma states that the sum of constrained non-convex functions is close to being convex. A neural
network is an ideal target to apply this lemma to: the width of network is associated with the
number of summand functions. So intuitively, the wider the neural network is, the smaller the
duality gap will be. In particular, we study the following non-convex problem concerning the
population risk:

min
w∈W1×...×WI

E(x,y)∼P [`τ (w; x, y)], s.t.
1

I

I∑

i=1

hi(w(i)) ≤ K, (4.2)

where hi(·), i ∈ [I] are convex regularization functions, e.g., the weight decay, and K can be
arbitrary such that the problem is feasible. Correspondingly, the dual problem of problem (4.2) is
a one-dimensional convex optimization problem:3

max
λ≥0
Q(λ)− λK,

Q(λ) := inf
w∈W1×...×WI

E(x,y)∼P [`τ (w; x, y)] +
λ

I

I∑

i=1

hi(w(i)).
(4.3)

3Although problem (4.3) is convex, it does not necessarily mean the problem can be solved easily. This is because
computing Q(λ) is a hard problem. So rather than trying to solve the convex dual problem, our goal is to study the
duality gap in order to understand the degree of non-convexity of the problem.
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Before proceeding, we first define some notations to be used in our main results. For w̃ ∈ Wi,
denote by

f̃i(w̃) := inf
aj ,wj

(i)
∈Wi

pi+2∑

j=1

ajE(x,y)∼P

(
1−

y · fi(wj
(i); x)

τ

)
,

s.t. w̃ =

pi+2∑

j=1

ajwj
(i),

pi+2∑

j=1

aj = 1, aj ≥ 0.

This represents the convex relaxation of the i-th summand term E(x,y)∼P [1− y · fi(·; x)/τ ] in the
objective, because the epigraph of f̃i is exactly the convex hull of epigraph of E(x,y)∼P [1 − y ·
fi(·; x)/τ ] by the definition of f̃i. For w̃ ∈ Wi, we also define

f̂i(w̃) := inf
w(i)∈Wi

E(x,y)∼P

(
1− y · fi(w(i); x)

τ

)
, s.t. hi(w(i)) ≤ hi(w̃).

This is a “restricted” version of the i-th summand term E(x,y)∼P [1− y · fi(w(i); x)/τ ] to the hard
constraint hi(w(i)) ≤ hi(w̃).

Our main results for multi-branch neural networks are as follows:
Theorem 47. Denote by inf(P) the minimum of primal problem (4.2) and sup(D) the maximum
of dual problem (4.3). Let ∆i := supw∈Wi

{
f̂i(w)− f̃i(w)

}
≥ 0 and ∆worst := maxi∈[I] ∆i.

SupposeWi’s are compact and both fi(w(i); x) and hi(w(i)) are continuous w.r.t. w(i). If there
exists at least one feasible solution of problem (P), then under Assumption 1 the duality gap w.r.t.
problems (4.2) and (4.3) can be bounded by

0 ≤ inf(P)− sup(D)

∆worst

≤ 2

I
.

Remark 4. Note that ∆i measures the divergence between the function value of f̂i and its convex
relaxation f̃i. The constant ∆worst is the maximal divergence among all sub-networks, which
grows slowly with the increase of I . This is because ∆worst only measures the divergence of
one branch. The normalized duality gap (inf(P)− sup(D))/∆worst has been widely used before
to measure the degree of non-convexity of optimization problems [36, 38, 75, 83, 226]. Such
a normalization avoids trivialities in characterizing the degree of non-convexity: scaling the
objective function by any constant does not change the value of normalized duality gap.
Remark 5. Even though Theorem 47 is in the form of population risk, the conclusion still holds
for the empirical loss as well. This can be achieved by setting the marginal distribution Px as the
uniform distribution on a finite set and Py as the corresponding labels uniformly distributed on
the same finite set.
Remark 6. Setting K in problem (4.2) infinitely large implies that Theorem 47 holds for uncon-
strained deep neural networks as well.

Inspiration for architecture designs. Theorem 47 shows that the duality gap of deep network
shrinks when the width I is large; when I → +∞, surprisingly, deep network is as easy as a convex
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optimization, as the gap is zero. An intuitive explanation is that the large number of randomly
initialized hidden units represent all possible features. Thus the optimization problem involves just
training the top layer of the network, which is convex. Our result encourages a class of network
architectures with multiple branches and supports some of the most successful architectures
in practice, such as Inception [222], Xception [64], ResNeXt [245], SqueezeNet [120], Wide
ResNet [249], Shake-Shake regularization [86] — all of which benefit from the split-transform-
merge behaviour as shown in Figure 4.2.

Strong duality of linear neural networks

In this section, we show that the duality gap is zero if the activation function is linear. Deep linear
neural network has received significant attention in recent years [131, 161, 204, 264] because of
its simple formulation4 and its connection to non-linear neural networks.

Network Setup. We discuss the strong duality of regularized deep linear neural networks of the
form

(W∗
1, ...,W

∗
H) = argmin

W1,...,WH

1

2
‖Y−WH · · ·W1X‖2

F +
γ

H

[
‖W1X‖HSH +

H∑

i=2

‖Wi‖HSH

]
, (4.4)

where X = [x1, ...,xn] ∈ Rd0×n is the given instance matrix, Y = [y1, ...,yn] ∈ RdH×n is the
given label matrix, and Wi ∈ Rdi×di−1 , i ∈ [I] represents the weight matrix in each linear layer.
We mention that (a) while the linear operation is simple matrix multiplications in problem (4.4),
it can be easily extended to other linear operators, e.g., the convolutional operator or the linear
operator with the bias term, by properly involving a group of kernels in the variable Wi [105].
(b) The regularization terms in problem (4.4) are of common interest, e.g., see [105]. When
H = 2, our regularization terms reduce to 1

2
‖Wi‖2

F , which is well known as the weight-decay or
Tikhonov regularization. (c) The regularization parameter γ is the same for each layer since we
have no further information on the preference of layers.

Our analysis leads to the following guarantees for the deep linear neural networks.
Theorem 48. Denote by Ỹ := YX†X ∈ RdH×n and dmin := min{d1, ..., dH−1} ≤ min{d0, dH , n}.
Let 0 ≤ γ < σmin(Ỹ) and H ≥ 2, where σmin(Ỹ) stands for the minimal non-zero singular value
of Ỹ. Then the strong duality holds for deep linear neural network (4.4). In other words, the
optimum of problem (4.4) is the same as its convex dual problem

Λ∗ = argmax
Row(Λ)⊆Row(X)

−1

2
‖Ỹ −Λ‖2

dmin
+

1

2
‖Y‖2

F , s.t. ‖Λ‖ ≤ γ, (4.5)

where ‖ · ‖2
dmin

=
∑dmin

i=1 σ
2
i (·) is a convex function. Moreover, the optimal solutions of primal

problem (4.4) can be obtained from the dual problem (4.5) in the following way: let UΣVT =
svddmin

(Ỹ −Λ∗) be the skinny SVD of matrix svddmin
(Ỹ −Λ∗), then W∗

i = [Σ1/H ,0; 0,0] ∈
Rdi×di−1 for i = 2, 3, ..., H − 1, W∗

H = [UΣ1/H ,0] ∈ RdH×dH−2 and W∗
1 = [Σ1/HVT ; 0]X† ∈

Rd1×d0 is a globally optimal solution to problem (4.4).
4Although the expressive power of deep linear neural networks and three-layer linear neural networks are the

same, the analysis of landscapes of two models are significantly different, as pointed out by [131, 161].
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Figure 4.3: Visualization of Shapley-Folkman lemma. The first figure: an `1/2 ball. The second
and third figures: the averaged Minkowski sum of two and ten `1/2 balls. The fourth figure:
the convex hull of `1/2 ball (the Minkowski average of infinitely many `1/2 balls). It show that
with the number of `1/2 balls to be averaged increasing, the Minkowski average tends to be more
convex.

The regularization parameter γ cannot be too large in order to avoid underfitting. Our result
provides a suggested upper bound σmin(Ỹ) for the regularization parameter, where oftentimes
σmin(Ỹ) characterizes the level of random noise. When γ = 0, our analysis reduces to the
un-regularized deep linear neural network, a model which has been widely studied in [131, 161].

Theorem 48 implies the followig result on the landscape of deep linear neural networks: the
regularized deep learning can be converted into an equivalent convex problem by dual. To the best
of our knowledge, this is the first result on the strong duality of linear neural networks. We note
that the strong duality rarely happens in the non-convex optimization: matrix completion [26],
Fantope [182], and quadratic optimization with two quadratic constraints [33] are among the few
paradigms that enjoy the strong duality. For deep networks, the effectiveness of convex relaxation
has been observed empirically in [11, 264], but much remains unknown for the theoretical
guarantees of the relaxation. Our work shows strong duality of regularized deep linear neural
networks and provides an alternative approach to overcome the computational obstacles due to
the non-convexity: one can apply convex solvers, e.g., the Douglas–Rachford algorithm,5 for
problem (4.5) and then conduct singular value decomposition to compute the weights {W∗

i }Hi=1

from svddmin
(Ỹ − Λ∗). In addition, our result inherits the benefits of convex analysis. The

vast majority results on deep learning study the generalization error or expressive power by
analyzing its complicated non-convex form [178, 250, 263]. In contrast, with strong duality one
can investigate various properties of deep linear networks with much simpler convex form.

4.1.3 Our techniques
In this section, we present our techniques and proof sketches of Theorems 47 and 48.

(a) Shapley-Folkman lemma. The proof of Theorem 47 is built upon the Shapley-Folkman
lemma [36, 75, 83, 216], which characterizes a convexification phenomenon concerning the
average of multiple sets and is analogous to the central limit theorem in the probability theory.
Consider the averaged Minkowski sum of I sets A1,A2, ...,AI given by {I−1

∑
j∈[I] aj : aj ∈

Aj}. Intuitively, the lemma states that ρ(I−1
∑

j∈[I]Aj) → 0 as I → +∞, where ρ(·) is a

5Grussler et al. [99] provided a fast algorithm to compute the proximal operators of 1
2‖ · ‖2dmin

. Hence, the
Douglas–Rachford algorithm can find the global solution up to an ε error in function value in time poly(1/ε) [114].
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metric of the non-convexity of a set (see Figure 4.3 for visualization). We apply this lemma
to the optimization formulation of deep neural networks. Denote by augmented epigraph the
set {(h(w), `(w)) : all possible choices of w}, where h is the constraint and ` is the objective
function in the optimization problem. The key observation is that the augmented epigraph of
neural network loss with multi-branch architecture can be expressed as the Minkowski average of
augmented epigraphs of all branches. Thus we obtain a natural connection between an optimization
problem and its corresponding augmented epigraph. Applying Shapley-Folkman lemma to the
augmented epigraph leads to a characteristic of non-convexity of the deep neural network.

(b) Variational form. The proof of Theorem 48 is built upon techniques (b), (c), and (d).
In particular, problem (4.4) is highly non-convex due to its multi-linear form over the op-
timized variables {Wi}Hi=1. Fortunately, we are able to analyze the problem by grouping
WHWH−1...W1X together and converting the original non-convex problem in terms of the
separate variables {Wi}Hi=1 to a convex optimization with respect to the new grouping variable
WHWH−1...W1X. This typically requires us to represent the objective function of (4.4) as
a convex function of WHWH−1...W1. To this end, we prove that ‖WHWH−1...W1X‖∗ =

minW1,...,WH

1

H

[
‖W1X‖HSH +

H∑

i=2

‖Wi‖HSH

]
. So the objective function in problem (4.4) has an

equivalent form

min
W1,...,WH

1

2
‖Y −WHWH−1 · · ·W1X‖2

F + γ‖WHWH−1 · · ·W1X‖∗. (4.6)

This observation enables us to represent the optimization problem as a convex function of the
output of a neural network. Therefore, we can analyze the non-convex problem by applying
powerful tools from convex analysis.

(c) Reduction to low-rank approximation. Our results of strong duality concerning problem
(4.6) are inspired by the problem of low-rank matrix approximation:

min
W1,...,WH

1

2
‖Y −Λ∗ −WHWH−1 · · ·W1X‖2

F . (4.7)

We know that all local solutions of (4.7) are globally optimal [26, 131, 161]. To analyze the more
general regularized problem (4.4), our main idea is to reduce problem (4.6) to the form of (4.7)
by Lagrangian function. In other words, the Lagrangian function of problem (4.6) should be of
the form (4.7) for a fixed Lagrangian variable Λ∗, which we will construct later in subsection (d).
While some prior works attempted to apply a similar reduction, their conclusions either depended
on unrealistic conditions on local solutions, e.g., all local solutions are rank-deficient [99, 105], or
their conclusions relied on strong assumptions on the objective functions, e.g., that the objective
functions are twice-differentiable [105], which do not apply to the non-smooth problem (4.6).
Instead, our results bypass these obstacles by formulating the strong duality of problem (4.6)
as the existence of a dual certificate Λ∗ satisfying certain dual conditions. Roughly, the dual
conditions state that the optimal solution (W∗

1,W
∗
2, ...,W

∗
H) of problem (4.6) is locally optimal to

problem (4.7). On one hand, by the above-mentioned properties of problem (4.7), (W∗
1, ...,W

∗
H)

globally minimizes the Lagrangian function when Λ is fixed to Λ∗. On the other hand, by the
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convexity of nuclear norm, for the fixed (W∗
1, ...,W

∗
H) the Lagrangian variable Λ∗ globally

optimize the Lagrangian function. Thus (W∗
1, ...,W

∗
H ,Λ

∗) is a primal-dual saddle point of the
Lagrangian function of problem (4.6). The desired strong duality is a straightforward result from
this argument.

(d) Dual certificate. The remaining proof is to construct a dual certificate Λ∗ such that the
dual conditions hold true. The challenge is that the dual conditions impose several constraints
simultaneously on the dual certificate, making it hard to find a desired certificate. This is why
progress on the dual certificate has focused on convex programming. To resolve the issue, we
carefully choose the certificate as an appropriate scaling of subgradient of nuclear norm around a
low-rank solution, where the nuclear norm follows from our regularization term in technique (b).
Although the nuclear norm has infinitely many subgradients, we prove that our construction of
dual certificate obeys all desired dual conditions. Putting techniques (b), (c), and (d) together, our
proof of strong duality is completed.

4.1.4 Experimental results
Visualization of loss landscape

Experiments on Synthetic Datasets. We first show that over-parametrization results in a less non-
convex loss surface for a synthetic dataset. The dataset consists of 1, 000 examples in R10 whose
labels are generated by an underlying one-hidden-layer ReLU network f(x) =

∑I
i=1 w∗i,2[W∗

i,1x]+
with 11 hidden neurons [199]. We make use of the visualization technique employed by [147] to
plot the landscape, where we project the high-dimensional hinge loss (τ = 1) landscape onto a
2-d plane spanned by three points. These points are found by running the SGD algorithm with
three different initializations until the algorithm converges. As shown in Figure 4.1, the landscape
exhibits strong non-convexity with lots of local minima in the under-parameterized case I = 10.
But as I increases, the landscape becomes more convex. In the extreme case, when there are
1, 000 hidden neurons in the network, no non-convexity can be observed on the landscape.
Experiments on MNIST and CIFAR-10. We next verify the phenomenon of over-parametrization
on MNIST [144] and CIFAR-10 [140] datasets. For both datasets, we follow the standard prepro-
cessing step that each pixel is normalized by subtracting its mean and dividing by its standard
deviation. We do not apply data augmentation. For MNIST, we consider a single-hidden-layer
network defined as: f(x) =

∑I
i=1 Wi,2[Wi,1x]+, where Wi,1 ∈ Rh×d, Wi,2 ∈ R10×h, d is the

input dimension, h is the number of hidden neurons, and I is the number of branches, with
d = 784 and h = 8. For CIFAR-10, in addition to considering the exact same one-hidden-layer
architecture, we also test a deeper network containing 3 hidden layers of size 8-8-8, with ReLU
activations and d = 3, 072. We apply 10-class hinge loss on the top of the output of considered
networks.

Figure 4.4 shows the changes of landscapes when I increases from 1 to 100 for MNIST, and
from 1 to 50, 000 for CIFAR-10, respectively. When there is only one branch, the landscapes
have strong non-convexity with many local minima. As the number of branches I increases, the
landscape becomes more convex. When I = 100 for 1-hidden-layer networks on MNIST and
CIFAR-10, and I = 50, 000 for 3-hidden-layer network on CIFAR-10, the landscape is almost
convex.
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(a) I = 1. (b) I = 3. (c) I = 5. (d) I = 100.

(e) I = 1. (f) I = 3. (g) I = 5. (h) I = 100.

(i) I = 1. (j) I = 3. (k) I = 5. (l) I = 50, 000.

Figure 4: Top Row: Landscape of one-hidden-layer network on MNIST. Middle Row: Landscape of one-
hidden-layer network on CIFAR-10. Bottom Row: Landscape of three-hidden-layer, multi-branch network
on CIFAR-10 dataset. From left to right, the landscape looks less non-convex.

5 Experiments

In this section, we verify our theoretical contributions by the experimental validation. We release our PyTorch
code at https://github.com/hongyanz/multibranch.

5.1 Visualization of Loss Landscape

Experiments on Synthetic Datasets. We first show that over-parametrization results in a less non-convex
loss surface for a synthetic dataset. The dataset consists of 1, 000 examples in R10 whose labels are generated
by an underlying one-hidden-layer ReLU network f(x) =

PI
i=1 w⇤

i,2[W
⇤
i,1x]+ with 11 hidden neurons [50].

We make use of the visualization technique employed by [40] to plot the landscape, where we project the
high-dimensional hinge loss (⌧ = 1) landscape onto a 2-d plane spanned by three points. These points
are found by running the SGD algorithm with three different initializations until the algorithm converges.
As shown in Figure 1, the landscape exhibits strong non-convexity with lots of local minima in the under-
parameterized case I = 10. But as I increases, the landscape becomes more convex. In the extreme case,
when there are 1, 000 hidden neurons in the network, no non-convexity can be observed on the landscape.

10

Figure 4.4: Top Row: Landscape of one-hidden-layer network on MNIST. Middle Row: Land-
scape of one-hidden-layer network on CIFAR-10. Bottom Row: Landscape of three-hidden-layer,
multi-branch network on CIFAR-10 dataset. From left to right, the landscape looks less non-
convex.

Frequency of hitting global minimum

To further analyze the non-convexity of loss surfaces, we consider various one-hidden-layer
networks, where each network was trained 100 times using different initialization seeds under the
setting discussed in our synthetic experiments of Section 4.1.4. Since we have the ground-truth
global minimum, we record the frequency that SGD hits the global minimum up to a small error
1× 10−5 after 100, 000 iterations. Table 4.1 shows that increasing the number of hidden neurons
results in higher hitting rate of global optimality. This further verifies that the loss surface of
one-hidden-layer neural network becomes less non-convex as the width increases.
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Table 4.1: Frequency of hitting global minimum by SGD with 100 different initialization seeds.

# Hidden Neurons Hitting Rate # Hidden Neurons Hitting Rate
10 2 / 100 16 30 / 100
11 9 / 100 17 32 / 100
12 21 / 100 18 35 / 100
13 24 / 100 19 52 / 100
14 24 / 100 20 64 / 100
15 29 / 100 21 75 / 100

4.1.5 Proofs of our main results

Proofs of Theorem 47

The lower bound 0 ≤ inf(P)−sup(D)
∆worst

is obvious by the weak duality. So we only need to prove the
upper bound inf(P)−sup(D)

∆worst
≤ 2

I
.

Consider the subset of R2:

Yi :=

{
yi ∈ R2 : yi =

1

I

[
hi(w(i)),E(x,y)∼P

(
1− y · fi(w(i); x)

τ

)]
,w(i) ∈ Wi

}
, i ∈ [I].

Define the vector summation
Y := Y1 + Y2 + ...+ YI .

Since fi(w(i); x) and hi(w(i)) are continuous w.r.t. w(i) andWi’s are compact, the set

{(w(i), hi(w(i)), fi(w(i); x)) : w(i) ∈ Wi}

is compact as well. So Y , conv(Y), Yi, and conv(Yi), i ∈ [I] are all compact sets. According to
the definition of Y and the standard duality argument [166], we have

inf(P) = min {w : there exists (r, w) ∈ Y such that r ≤ K} ,

and
sup(D) = min {w : there exists (r, w) ∈ conv (Y) such that r ≤ K} .

Technique (a): Shapley-Folkman lemma. We are going to apply the following Shapley-
Folkman lemma.
Lemma 64 (Shapley-Folkman, [216]). Let Yi, i ∈ [I] be a collection of subsets of Rm. Then for
every y ∈ conv(

∑I
i=1 Yi), there is a subset I(y) ⊆ [I] of size at most m such that

y ∈


 ∑

i 6∈I(y)

Yi +
∑

i∈I(y)

conv(Yi)


 .
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We apply Lemma 73 to prove Theorem 47 with m = 2. Let (r, w) ∈ conv(Y) be such that

r ≤ K, and w = sup(D).

Applying the above Shapley-Folkman lemma to the set Y =
∑I

i=1 Yi, we have that there are a
subset I ⊆ [I] of size 2 and vectors

(ri, wi) ∈ conv(Yi), i ∈ I and w(i) ∈ Wi, i 6∈ I,

such that
1

I

∑

i 6∈I

hi(w(i)) +
∑

i∈I

ri = r ≤ K, (4.8)

1

I

∑

i 6∈I

E(x,y)∼P

(
1− y · fi(w(i); x)

τ

)
+
∑

i∈I

wi = sup(D). (4.9)

Representing elements of the convex hull of Yi ⊆ R2 by Carathéodory theorem, we have that for
each i ∈ I, there are vectors w1

(i),w
2
(i),w

3
(i) ∈ Wi and scalars a1

i , a
2
i , a

3
i ∈ R such that

3∑

j=1

aji = 1, aji ≥ 0, j = 1, 2, 3,

ri =
1

I

3∑

j=1

ajihi(w
j
(i)), wi =

1

I

3∑

j=1

ajiE(x,y)∼P

(
1−

y · fi(wj
(i); x)

τ

)
.

Recall that we define

f̂i(w̃) := inf
w(i)∈Wi

{
E(x,y)∼P

(
1− y · fi(w(i); x)

τ

)
: hi(w(i)) ≤ hi(w̃)

}
, (4.10)

f̃i(w̃) := inf
aj ,wj

(i)
∈Wi

{
pi+2∑

j=1

ajE(x,y)∼P

(
1−

y · fi(wj
(i); x)

τ

)
: w̃ =

pi+2∑

j=1

ajwj
(i),

pi+2∑

j=1

aj = 1, aj ≥ 0

}
,

and ∆i := supw∈Wi

{
f̂i(w)− f̃i(w)

}
≥ 0. We have for i ∈ I,

ri ≥
1

I
hi

(
3∑

j=1

ajiw
j
(i)

)
, (because hi(·) is convex) (4.11)

and

wi ≥
1

I
f̃i

(
3∑

j=1

ajiw
j
(i)

)
(by the definition of f̃i(·))

≥ 1

I
f̂i

(
3∑

j=1

ajiw
j
(i)

)
− 1

I
∆i. (by the definition of ∆i)

(4.12)
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Thus, by Eqns. (4.26) and (4.28), we have

1

I

∑

i 6∈I

hi(w(i)) +
1

I

∑

i∈I

hi

(
3∑

j=1

ajiw
j
(i)

)
≤ K, (4.13)

and by Eqns. (4.27) and (4.29), we have

E(x,y)∼P


1

I

∑

i 6∈I

(
1− y · fi(w(i); x)

τ

)
+

1

I

∑

i∈I

f̂i

(
3∑

j=1

ajiw
j
(i)

)
≤ sup(D) +

1

I

∑

i∈I

∆i.

(4.14)
Given any ε > 0 and i ∈ I, we can find a vector w(i) ∈ Wi such that

hi(w(i)) ≤ hi

(
3∑

j=1

ajiw
j
(i)

)
and E(x,y)∼P

(
1− y · fi(w(i); x)

τ

)
≤ f̂i

(
3∑

j=1

ajiw
j
(i)

)
+ ε,

(4.15)
where the first inequality holds because Wi is convex and the second inequality holds by the
definition (4.10) of f̂i(·). Therefore, Eqns. (4.30) and (4.15) impliy that

1

I

I∑

i=1

hi(w(i)) ≤ K.

Namely, (w(1), ...,w(I)) is a feasible solution of problem (4.2). Also, Eqns. (4.14) and (4.15)
yield

inf(P) ≤ E(x,y)∼P

[
1

I

I∑

i=1

(
1− y · fi(w(i); x)

τ

)]

≤ sup(D) +
1

I

∑

i∈I

(∆i + ε)

≤ sup(D) +
2

I
∆worst + 2ε,

where the last inequality holds because |I| = 2. Finally, letting ε→ 0 leads to the desired result.

Proofs of Theorem 48

Let Ỹ = YX†X. We note that by Pythagorean theorem, for every Y,

1

2
‖Y −WH · · ·W1X‖2

F =
1

2
‖Ỹ −WH · · ·W1X‖2

F +
1

2
‖Y − Ỹ‖2

F
︸ ︷︷ ︸

independent of W1,...,WH

.

So we can focus on the following optimization problem instead of problem (4.4):

min
W1,...,WH

1

2
‖Ỹ −WH ...W1X‖2

F +
γ

H

[
‖W1X‖HSH +

H∑

i=2

‖Wi‖HSH

]
. (4.16)
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Technique (b): Variational form. Our work is inspired by a variational form of problem (4.16)
given by the following lemma.

Lemma 65. If (W∗
1, . . . ,W

∗
H) is optimal to problem

min
W1,...,WH

F (W1, . . . ,WH) :=
1

2
‖Ỹ −WH · · ·W1X‖2

F + γ‖WH · · ·W1X‖∗, (4.17)

then (W∗∗
1 , . . . ,W

∗∗
H ) is optimal to problem (4.16), where UΣVT is the skinny SVD of

W∗
HW∗

H−1 · · ·W∗
1X,

W∗∗
i = [Σ1/H ,0; 0,0] ∈ Rdi×di−1 for i = 2, 3, ..., H − 1, W∗∗

H = [UΣ1/H ,0] ∈ RdH×dH−2 and
W∗∗

1 = [Σ1/HVT ; 0]X† ∈ Rd1×d0 . Furthermore, problems (4.16) and (4.17) have the same
optimal objective function value.

Proof of Lemma 65. Let UΣVT be the skinny SVD of matrix WHWH−1 · · ·W1X =: Z. We
notice that

‖Z‖∗ = ‖WHWH−1 · · ·W1X‖∗

≤ ‖W1X‖SH
H∏

i=2

‖Wi‖SH (by the generalized Hölder’s inequality)

≤ 1

H

[
‖W1X‖HSH +

H∑

i=2

‖Wi‖HSH

]
. (by the inequality of mean)

Hence, on one hand, for every (W1, . . . ,WH),

min
W1,...,WH

F (W1, . . . ,WH) ≤ 1

2
‖Ỹ −WH · · ·W1X‖2

F + γ‖WHWH−1 · · ·W1X‖∗

≤ 1

2
‖Ỹ −WH · · ·W1X‖2

F +
γ

H

[
‖W1X‖HSH +

H∑

i=2

‖Wi‖HSH

]
,

which yields

min
W1,...,WH

F (W1, . . . ,WH) ≤ min
W1,...,WH

1

2
‖Ỹ−WH · · ·W1X‖2

F+
γ

H

[
‖W1X‖HSH +

H∑

i=2

‖Wi‖HSH

]
.

On the other hand, suppose (W∗
1, . . . ,W

∗
H) is optimal to problem (4.17), and let UΣVT be the

skinny SVD of matrix W∗
HW∗

H−1 · · ·W∗
1X. We choose (W∗∗

1 , . . . ,W
∗∗
H ) such that

W∗∗
H = [UΣ

1
H ,0], W∗∗

1 X = [Σ
1
HVT ; 0], W∗∗

i = [Σ
1
H ,0; 0,0], i = 2, . . . , H − 1.

We pad 0 around W∗∗
i so as to adapt to the dimensionality of each W∗∗

i . Notice that

‖W∗
HW∗

H−1 · · ·W∗
1X‖∗ = ‖W∗∗

HW∗∗
H−1 · · ·W∗∗

1 X‖∗

=
1

H

[
‖W∗∗

1 X‖HSH +
H∑

i=2

‖W∗∗
i ‖HSH

]
.
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Since W∗
HW∗

H−1 · · ·W∗
1X = W∗∗

HW∗∗
H−1 · · ·W∗∗

1 X, for every Ỹ,

‖Ỹ −W∗
HW∗

H−1 · · ·W∗
1X‖F = ‖Ỹ −W∗∗

HW∗∗
H−1 · · ·W∗∗

1 X‖F .

Hence

min
W1,...,WH

F (W1, . . . ,WH) = F (W∗
1, . . . ,W

∗
H) = F (W∗∗

1 , . . . ,W
∗∗
H )

=
1

2
‖Ỹ −W∗∗

H · · ·W∗∗
1 X‖2

F +
γ

H

[
‖W∗∗

1 X‖HSH +
H∑

i=2

‖W∗∗
i ‖HSH

]

≥ min
W1,...,WH

1

2
‖Ỹ −WH · · ·W1X‖2

F +
γ

H

[
‖W1X‖HSH +

H∑

i=2

‖Wi‖HSH

]
,

which yields the other direction of the inequality and hence completes the proof.

Technique (c): Reduction to low-rank approximation. We now reduce problem (4.17) to the
classic problem of low-rank approximation of the form minW1,...,WH

1
2
‖Ŷ −WH · · ·W1X‖2

F ,
which has the following nice properties.

Lemma 66. For any Ŷ ∈ Row(X), every global minimum (W∗
1, . . . ,W

∗
H) of function

f(W1, . . . ,WH) =
1

2
‖Ŷ −WH · · ·W1X‖2

F

obeys W∗
H · · ·W∗

1X = svddmin
(Ŷ). Here Ŷ ∈ Row(X) means the row vectors of Ŷ belongs to

the row space of X.

Proof of Lemma 66. Note that the optimal solution to minWH ,...,W1

1
2
‖Ŷ −WH · · ·W1X‖2

F is
equal to the optimal solution to the low-rank approximation problem minrank(Z)≤dmin

1
2
‖Ŷ − Z‖2

F

when Ŷ ∈ Row(X), which has a closed-form solution svddmin
(Ŷ).6

We now reduce F (W1, . . . ,WH) to the form of 1
2
‖Ŷ−WH · · ·W1X‖2

F for some Ŷ plus an
extra additive term that is independent of (W1, . . . ,WH). To see this, denote by K(·) = γ‖ · ‖∗.
We have

F (W1, . . . ,WH) =
1

2
‖Ỹ −WH · · ·W1X‖2

F +K∗∗(WH · · ·W1X)

= max
Λ

1

2
‖Ỹ −WH · · ·W1X‖2

F + 〈Λ,WH · · ·W1X〉 −K∗(Λ)

= max
Λ

1

2
‖Ỹ −Λ−WH · · ·W1X‖2

F −
1

2
‖Λ‖2

F −K∗(Λ) + 〈Ỹ,Λ〉
=: max

Λ
L(W1, . . . ,WH ,Λ),

6Note that the low-rank approximation problem might have non-unique solution. However, we will use in this
section the abuse of language svddmin

(Ŷ) as the non-uniqueness issue does not lead to any issue in our developments.
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where we defineL(W1, . . . ,WH ,Λ) := 1
2
‖Ỹ−Λ−WH · · ·W1X‖2

F−1
2
‖Λ‖2

F−K∗(Λ)+〈Ỹ,Λ〉
as the Lagrangian of problem (4.17). The first equality holds because K(·) is closed and convex
w.r.t. the argument WH · · ·W1X soK(·) = K∗∗(·), and the second equality is by the definition of
conjugate function. One can check that L(W1, . . . ,WH ,Λ) = minM L′(W1, . . . ,WH ,M,Λ),
where L′(W1, . . . ,WH ,M,Λ) is the Lagrangian of the constraint optimization problem

min
W1,...,WH ,M

1

2
‖Ỹ −WH · · ·W1X‖2

F +K(M), s.t. M = WH · · ·W1X.

With a little abuse of notation, we call L(A,B,Λ) the Lagrangian of the unconstrained problem
(4.17) as well.

The remaining analysis is to choose a proper Λ∗ ∈ Row(X) such that (W∗
1, . . . ,W

∗
H ,Λ

∗) is
a primal-dual saddle point of L(W1, . . . ,WH ,Λ), so that the problem

min
W1,...,WH

L(W1, . . . ,WH ,Λ
∗)

and problem (4.17) have the same optimal solution (W∗
1, . . . ,W

∗
H). For this, we introduce the

following condition, and later we will show that the condition holds.

Condition 2. For a solution (W∗
1, . . . ,W

∗
H) to optimization problem (4.17), there exists an

Λ∗ ∈ ∂ZK(Z)|Z=W∗
H ···W∗

1X ∩ Row(X)

such that

W∗T
i+1 · · ·W∗T

H (W∗
H · · ·W∗

1X + Λ∗ − Ỹ)XTW∗T
1 · · ·W∗T

i−1 = 0, i = 2, . . . , H − 1,

W∗T
2 · · ·W∗T

H (W∗
HW∗

H−1 · · ·W∗
1X + Λ∗ − Ỹ)XT = 0,

(W∗
HW∗

H−1 · · ·W∗
1X + Λ∗ − Ỹ)XTW∗T

1 · · ·W∗T
H−1 = 0.

(4.18)

We note that if we set Λ to be the Λ∗ in (4.18), then ∇Wi
L(W∗

1, . . . ,W
∗
H ,Λ

∗) = 0 for every
i. So (W∗

1, . . . ,W
∗
H) is either a saddle point, a local minimizer, or a global minimizer of

L(W1, . . . ,WH ,Λ
∗) as a function of (W1, . . . ,WH) for the fixed Λ∗. The following lemma

states that if it is a global minimizer, then strong duality holds.

Lemma 67. Let (W∗
1, . . . ,W

∗
H) be a global minimizer of F (W1, . . . ,WH). If there exists a

dual certificate Λ∗ satisfying Condition 2 and the pair (W∗
1, . . . ,W

∗
H) is a global minimizer of

L(W1, . . . ,WH ,Λ
∗) for the fixed Λ∗, then strong duality holds. Moreover, we have the relation

W∗
H · · ·W∗

1X = svddmin
(Ỹ −Λ∗).

Proof of Lemma 67. By the assumption of the lemma, (W∗
1, . . . ,W

∗
H) is a global minimizer of

L(W1, . . . ,WH ,Λ
∗) =

1

2
‖Ỹ −Λ∗ −WHWH−1 · · ·W1X‖2

F + c(Λ∗),

where c(Λ∗) is a function of Λ∗ that is independent of Wi for all i’s. Namely, (W∗
1, . . . ,W

∗
H)

globally minimizes L(W1, . . . ,WH ,Λ) when Λ is fixed to Λ∗. Furthermore,

Λ∗ ∈ ∂ZK(Z)|Z=W∗
H ...W

∗
1X

142



implies that W∗
HW∗

H−1 · · ·W∗
1X ∈ ∂ΛK

∗(Λ)|Λ=Λ∗ by the convexity of function K(·), meaning
that 0 ∈ ∂ΛL(W∗

1, . . . ,W
∗
H ,Λ). So Λ∗ = argmaxΛ L(W∗

1, . . . ,W
∗
H ,Λ) due to the concavity

of function L(W∗
1, . . . ,W

∗
H ,Λ) w.r.t. variable Λ. Thus (W∗

1, . . . ,W
∗
H ,Λ

∗) is a primal-dual
saddle point of L(W1, . . . ,WH ,Λ).

We now prove the strong duality. By the fact that

F (W∗
1, . . . ,W

∗
H) = max

Λ
L(W∗

1, . . . ,W
∗
H ,Λ)

and that Λ∗ = argmaxΛ L(W∗
1, . . . ,W

∗
H ,Λ), for every W1, . . . ,WH , we have

F (W∗
1, . . . ,W

∗
H) = L(W∗

1, . . . ,W
∗
H ,Λ

∗) ≤ L(W1, . . . ,WH ,Λ
∗),

where the inequality holds because (W∗
1, . . . ,W

∗
H ,Λ

∗) is a primal-dual saddle point of L. Notice
that we also have

min
W1,...,WH

max
Λ

L(W1, . . . ,WH ,Λ) = F (W∗
1, . . .W

∗
H)

≤ min
W1,...,WH

L(W1, . . . ,WH ,Λ
∗)

≤ max
Λ

min
W1,...,WH

L(W1, . . . ,WH ,Λ).

On the other hand, by weak duality,

min
W1,...,WH

max
Λ

L(W1, . . . ,WH ,Λ) ≥ max
Λ

min
W1,...,WH

L(W1, . . . ,WH ,Λ).

Therefore,

min
W1,...,WH

max
Λ

L(W1, . . . ,WH ,Λ) = max
Λ

min
W1,...,WH

L(W1, . . . ,WH ,Λ),

i.e., strong duality holds. Hence,

W∗
HW∗

H−1 · · ·W∗
1 = argmin

WHWH−1...W1

L(W1, . . . ,WH ,Λ
∗)

= argmin
WHWH−1···W1

1

2
‖Ỹ −Λ∗ −WHWH−1 · · ·W1X‖2

F −
1

2
‖Λ∗‖2

F −K∗(Λ∗) + 〈Ỹ,Λ∗〉

= argmin
WHWH−1···W1

1

2
‖Ỹ −Λ∗ −WHWH−1 · · ·W1X‖2

F

= svddmin
(Ỹ −Λ∗).

The proof of Lemma 67 is completed.

Technique (d): Dual certificate. We now construct dual certificate Λ∗ such that all of conditions
in Lemma 67 hold. We note that Λ∗ should satisfy the followings by Lemma 67:

(a) Λ∗ ∈ ∂K(W∗
HW∗

H−1 · · ·W∗
1X) ∩ Row(X); (by Condition 2)

(b) Equations (4.18); (by Condition 2)

(c) W∗
HW∗

H−1 · · ·W∗
1X = svddmin

(Ỹ −Λ∗). (by the global optimality and Lemma 66)

(4.19)
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Before proceeding, we denote by Ã := W∗
H · · ·W∗

min +1, B̃ := W∗
min · · ·W∗

1X, where W∗
min is

a matrix among {W∗
i }H−1
i=1 which has dmin rows, and let

T := {ÃCT
1 + C2B̃ : C1 ∈ Rn×dmin , C2 ∈ RdH×dmin}

be a matrix space. Denote by U the left singular space of ÃB̃ and V the right singular space. Then
the linear space T can be equivalently represented as T = U + V . Therefore, T ⊥ = (U + V)⊥ =

U⊥ ∩ V⊥. With this, we note that: (b) W∗
HW∗

H−1 · · ·W∗
1X + Λ∗ − Ỹ ∈ Null(ÃT ) = Col(Ã)⊥

and W∗
HW∗

H−1 · · ·W∗
1X + Λ∗ − Ỹ ∈ Row(B̃)⊥ (so W∗

HW∗
H−1 · · ·W∗

1X + Λ∗ − Ỹ ∈ T ⊥)
imply Equations (4.18) since either W∗T

i+1 · · ·W∗T
H (W∗

HW∗
H−1 · · ·W∗

1X + Λ∗ − Ỹ) = 0 or
(W∗

HW∗
H−1 · · ·W∗

1X + Λ∗ − Ỹ)XTW∗T
1 · · ·W∗T

i−1 = 0 for all i’s. And (c) for an orthogonal
decomposition Ỹ −Λ∗ = W∗

HW∗
H−1 · · ·W∗

1X + E where W∗
HW∗

H−1 · · ·W∗
1X ∈ T and E ∈

T ⊥, we have that
‖E‖ ≤ σdmin

(W∗
HW∗

H−1 · · ·W∗
1X)

and condition (b) together imply W∗
HW∗

H−1 · · ·W∗
1X = svddmin

(Ỹ−Λ∗) by Lemma 66. There-
fore, the dual conditions in (4.19) are implied by

(1) Λ∗ ∈ ∂K(W∗
HW∗

H−1 · · ·W∗
1X) ∩ Row(X);

(2) PT (Ỹ −Λ∗) = W∗
HW∗

H−1 · · ·W∗
1X;

(3) ‖PT ⊥(Ỹ −Λ∗)‖ ≤ σdmin
(W∗

HW∗
H−1 · · ·W∗

1X).

It thus suffices to construct a dual certificate Λ∗ such that conditions (1), (2) and (3) hold,
because conditions (1), (2) and (3) are stronger than conditions (a), (b) and (c). Let r = rank(Ỹ)
and r̄ = min{r, dmin}. To proceed, we need the following lemma.

Lemma 68 ([227]). Suppose Ỹ ∈ Row(X). Let (W∗
1, . . . ,W

∗
H) be the solution to problem

(4.17) and let Udiag(σ1(Ỹ), . . . , σr(Ỹ))VT denote the skinny SVD of Ỹ ∈ Row(X). We have
W∗

HW∗
H−1 · · ·W∗

1X = Udiag((σ1(Ỹ)− γ)+, . . . , (σr̄(Ỹ)− γ)+, 0, . . . , 0)VT .
Recall that the sub-differential of the nuclear norm of a matrix Z is

∂Z‖Z‖∗ = {UZVT
Z + TZ : TZ ∈ T ⊥, ‖TZ‖ ≤ 1},

where UZΣZVT
Z is the skinny SVD of the matrix Z. So with Lemma 68, the sub-differential of

(scaled) nuclear norm at optimizer W∗
HW∗

H−1 · · ·W∗
1X is given by

∂(γ‖W∗
HW∗

H−1 · · ·W∗
1X‖∗) = {γU:,1:r̄V

T
:,1:r̄ + T : T ∈ T ⊥, ‖T‖ ≤ γ}. (4.20)

To construct the dual certificate, we set

Λ∗ = γU:,1:r̄V
T
:,1:r̄︸ ︷︷ ︸

Component in space T

+ U:,(r̄+1):rdiag(γ, . . . , γ)VT
:,(r̄+1):r︸ ︷︷ ︸

Component T in space T ⊥ with ‖T‖≤γ

∈ Row(X),

where Λ∗ ∈ Row(X) because VT ∈ Row(X) (This is because VT is the right singular matrix of Ỹ

and Ỹ ∈ Row(X)). So condition (1) is satisfied according to (4.20). To see condition (2), PT (Ỹ−
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Λ∗) = PT Ỹ − γU:,1:r̄V
T
:,1:r̄ = Udiag((σ1(Ỹ) − γ)+, . . . , (σr̄(Ỹ) − γ)+, 0, 0, . . . , 0)VT =

W∗
HW∗

H−1 . . .W
∗
1X, where the last equality is by Lemma 68 and the assumption σmin(Ỹ) > γ.

As for condition (3), note that
∥∥∥PT ⊥(Ỹ −Λ∗)

∥∥∥ =
∥∥∥U:,(r̄+1):rdiag(σr̄+1(Ỹ)− γ, . . . , σr(Ỹ)− γ)VT

:,(r̄+1):r

∥∥∥

=

{
0, if r̄ = r,

σdmin+1(Ỹ)− γ, otherwise.

By Lemma 68, σdmin
(W∗

HW∗
H−1 · · ·W∗

1X) ≥ ‖PT ⊥(Ỹ −Λ∗)‖. So the proof of strong duality
is completed, where the dual problem is given in the next section.

To see the relation between the solutions of primal and dual problems, it is a direct result of
Lemmas 65 and 67.

Dual problem of deep linear neural network

In this section, we derive the dual problem of non-convex program (4.4). Denote byG(W1, . . . ,WH)

the objective function of problem (4.4). Let K(·) = γ‖ · ‖∗, and let Ỹ = YX†X be the projection
of Y on the row span of X. We note that

min
W1,...,WH

G(W1, . . . ,WH)− 1

2
‖Y − Ỹ‖2

F

= min
W1,...,WH

1

2
‖Y −WH · · ·W1X‖2

F −
1

2
‖Y − Ỹ‖2

F +K(WH · · ·W1X)

= min
W1,...,WH

1

2
‖Ỹ −WH · · ·W1X‖2

F +K∗∗(WH · · ·W1X)

= min
W1,...,WH

max
Row(Λ)⊆Row(X)

1

2
‖Ỹ −WH · · ·W1X‖2

F + 〈Λ,WH · · ·W1X〉 −K∗(Λ)

= min
W1,··· ,WH

max
Row(Λ)⊆Row(X)

1

2
‖Ỹ −Λ−WH · · ·W1X‖2

F −
1

2
‖Λ‖2

F −K∗(Λ) + 〈Ỹ,Λ〉,

where the second equality holds sinceK(·) is closed and convex w.r.t. the argument WH · · ·W1X
and the third equality is by the definition of conjugate function of nuclear norm. Therefore, the
dual problem is given by

max
Row(Λ)⊆Row(X)

min
W1,...,WH

1

2
‖Ỹ −Λ−WH ...W1X‖2

F −
1

2
‖Λ‖2

F −K∗(Λ) + 〈Ỹ,Λ〉+
1

2
‖Y − Ỹ‖2

F

= max
Row(Λ)⊆Row(X)

1

2

min{dH ,n}∑

i=dmin+1

σ2
i (Ỹ −Λ)− 1

2
‖Ỹ −Λ‖2

F −K∗(Λ) +
1

2
‖Y‖2

F

= max
Row(Λ)⊆Row(X)

−1

2
‖Ỹ −Λ‖2

dmin
−K∗(Λ) +

1

2
‖Y‖2

F ,

where ‖ · ‖2
dmin

=
∑dmin

i=1 σ
2
i (·). We note that

K∗(Λ) =

{
0, ‖Λ‖ ≤ γ;

+∞, ‖Λ‖ > γ.
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So the dual problem is given by

max
Row(Λ)⊆Row(X)

−1

2
‖Ỹ −Λ‖2

dmin
+

1

2
‖Y‖2

F , s.t. ‖Λ‖ ≤ γ. (4.21)

Problem (4.21) can be solved efficiently due to their convexity. In particular, Grussler et
al. [99] provided a computationally efficient algorithm to compute the proximal operators of

functions
1

2
‖ · ‖2

r . Hence, the Douglas-Rachford algorithm can find the global minimum up to an

ε error in function value in time poly(1/ε) [114].

4.2 Stackelberg Generative Adversarial Nets

4.2.1 Introduction

Generative Adversarial Nets (GANs) are emerging objects of study in machine learning, computer
vision, natural language processing, and many other domains. In machine learning, study of
such a framework has led to significant advances in adversarial defenses [203, 242] and machine
security [13, 203]. In computer vision and natural language processing, GANs have resulted
in improved performance over standard generative models for images and texts [96], such as
variational autoencoder [135] and deep Boltzmann machine [201]. A main technique to achieve
this goal is to play a minimax two-player game between generator and discriminator under the
design that the generator tries to confuse the discriminator with its generated contents and the
discriminator tries to distinguish real images/texts from what the generator creates.

Despite a large amount of variants of GANs, many fundamental questions remain unresolved.
One of the long-standing challenges is designing universal, easy-to-implement architectures that
alleviate the instability issue of GANs training. Ideally, GANs are supposed to solve the minimax
optimization problem [96], but in practice alternating gradient descent methods do not clearly
privilege minimax over maximin or vice versa (page 35, [95]), which may lead to instability in
training if there exists a large discrepancy between the minimax and maximin objective values.
The focus of this work is on improving the stability of such minimax game in the training process
of GANs.

To alleviate the issues caused by the large minimax gap, our study is motivated by the so-called
Stackelberg competition in the domain of game theory. In the Stackelberg leadership model, the
players of this game are one leader and multiple followers, where the leader firm moves first
and then the follower firms move sequentially. It is known that the Stackelberg model can be
solved to find a subgame perfect Nash equilibrium. We apply this idea of Stackelberg leadership
model to the architecture design of GANs. That is, we design an improved GAN architecture
with multiple generators (followers) which team up to play against the discriminator (leader). We
therefore name our model Stackelberg GAN. Our theoretical and experimental results establish
that: GANs with multi-generator architecture have smaller minimax gap, and enjoy more stable
training performances.
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Under review as a conference paper at ICLR 2019

(a) Step 0. (b) Step 6k. (c) Step 19k. (d) Step 25k.

(e) Step 0. (f) Step 6k. (g) Step 19k. (h) Step 25k.

Figure 1: Stackelberg GAN stabilizes the training procedure on a toy 2D mixture of 8 Gaussians. Top
Row: Standard GAN training. It shows that several modes are dropped. Bottom Row: Stackelberg
GAN training with 8 generator ensembles, each of which is denoted by one color. We can see that
each generator exactly learns one mode of the distribution without any mode being dropped.
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(a) Step 0. (b) Step 6k. (c) Step 13k. (d) Step 19k. (e) Step 25k.

(f) Step 0. (g) Step 6k. (h) Step 13k. (i) Step 19k. (j) Step 25k.

Figure 1: Stackelberg GAN stabilizes the training procedure on a toy 2D mixture of 8 Gaussians. Top
Row: Standard GAN training. It shows that several modes are dropped. Bottom Row: Stackelberg
GAN training with 8 generator ensembles, each of which is denoted by one color. We can see that
each generator exactly learns one mode of the distribution without any mode being dropped.

(a) Step 0. (b) Step 13k. (c) Step 25k.

(d) Step 0. (e) Step 13k. (f) Step 25k.

Figure 2: Stackelberg GAN stabilizes the training procedure on a toy 2D mixture of 8 Gaussians. Top
Row: Standard GAN training. It shows that several modes are dropped. Bottom Row: Stackelberg
GAN training with 8 generator ensembles, each of which is denoted by one color. We can see that
each generator exactly learns one mode of the distribution without any mode being dropped.

• We propose Stackelberg GAN framework of having multiple generators in the GAN archi-
tecture. Our framework is general that can be applied to all variants of GANs, e.g., vanilla
GAN, Wasserstein GAN, etc. It is built upon the idea of jointly optimizing an ensemble of
GAN losses w.r.t. all pairs of discriminator and generator.
Differences with prior work. Although the idea of having multiple generators in the GAN
architecture is not totally new, e.g., MIX+GAN (Arora et al., 2017) and MGAN (Hoang
et al., 2018), there are key differences between Stackelberg GAN and prior work. a) In
MGAN (Hoang et al., 2018), various generators are combined as a mixture of probabilistic
models with assumption that the generators and discriminator have enough capacity. In
contrast, in the Stackelberg GAN model we uniformly ensemble the losses of various
standard GAN without any assumption on the model capacity. b) In MIX+GAN (Arora
et al., 2017), the losses are ensembled with learned weights and an extra regularization
term, which discourages the weights being too far away from uniform. We find it slightly
unnecessary because the expressive power of each generator already allows implicit scaling
of each generator. To the contrary, in the Stackelberg GAN we apply equal weights for all
generators.

• We prove that the minimax duality gap shrinks as the number of generators increases (see
Theorem 1 and Corollary 2). Unlike the previous work, our result has no assumption on the
expressive power of generators and discriminator, but instead depends on their non-convexity.
With extra condition on the expressive power of generators, we show that Stackelberg GAN
is able to achieve ✏-approximate equilibrium with eO(1/✏) generators (see Theorem 3). This

2

Figure 2: Stackelberg GAN stabilizes the training procedure on a toy 2D mixture of 8 Gaussians. Left
Figure, Top Row: Standard GAN training. It shows that several modes are dropped. Left Figure,
Bottom Row: Stackelberg GAN training with 8 generator ensembles, each of which is denoted by
one color. Right Figure: Stackelberg GAN training with 10 generator ensembles on real images
without cherry pick, where each row corresponds to one generator. We can see that each generator
exactly learns one mode of the distribution without any mode being dropped.

[Pengtao: It is kind of abrupt that you say "Stackelberg GAN stabilizes the training
procedure" in the beginning sentence, then the rest talks about losing mode. In the
introduction, a convincing tie between instability and mode collapse is still missing.]

• We propose Stackelberg GAN framework of having multiple generators in the GAN archi-
tecture. Our framework is general that can be applied to all variants of GANs, e.g., vanilla
GAN, Wasserstein GAN, etc. It is built upon the idea of jointly optimizing an ensemble of
GAN losses w.r.t. all pairs of discriminator and generator.
Differences with prior work. Although the idea of having multiple generators in the GAN
architecture is not totally new, e.g., MIX+GAN (Arora et al., 2017) and MGAN (Hoang
et al., 2018), there are key differences between Stackelberg GAN and prior work. a) In
MGAN (Hoang et al., 2018), various generators are combined as a mixture of probabilistic
models with assumption that the generators and discriminator have enough capacity. In
contrast, in the Stackelberg GAN model we uniformly ensemble the losses of various
standard GAN without any assumption on the model capacity. b) In MIX+GAN (Arora
et al., 2017), the losses are ensembled with learned weights and an extra regularization
term, which discourages the weights being too far away from uniform. We find it slightly
unnecessary because the expressive power of each generator already allows implicit scaling
of each generator. To the contrary, in the Stackelberg GAN we apply equal weights for all
generators.

• We prove that the minimax duality gap shrinks as the number of generators increases (see
Theorem 1 and Corollary 2). Unlike the previous work, our result has no assumption on the

2

Figure 1: Left Figure, Top Row: Standard GAN training on a toy 2D mixture of 8 Gaussians. Left Figure,
Bottom Row: Stackelberg GAN training with 8 generator ensembles, each of which is denoted by one color.
Right Figure: Stackelberg GAN training with 10 generator ensembles on fashion-MNIST dataset without
cherry pick, where each row corresponds to one generator.

To alleviate the issues caused by the large minimax gap, our study is motivated by the zero-sum
Stackelberg competition [25] in the domain of game theory. In the Stackelberg leadership model, the players
of this game are one leader and multiple followers, where the leader firm moves first and then the follower
firms move sequentially. It is known that the Stackelberg model can be solved to find a subgame perfect Nash
equilibrium. We apply this idea of Stackelberg leadership model to the architecture design of GANs. That is,
we design an improved GAN architecture with multiple generators (followers) which team up to play against
the discriminator (leader). We therefore name our model Stackelberg GAN. Our theoretical and experimental
results establish that: GANs with multi-generator architecture have smaller minimax gap, and enjoy more
stable training performances.
Our Contributions. This paper tackles the problem of instability during the GAN training procedure with
both theoretical and experimental results. We study this problem by new architecture design.

• We propose the Stackelberg GAN framework of multiple generators in the GAN architecture. Our
framework is general since it can be applied to all variants of GANs, e.g., vanilla GAN, Wasserstein
GAN, etc. It is built upon the idea of jointly optimizing an ensemble of GAN losses w.r.t. all pairs of
discriminator and generator.

Differences from prior work. Although the idea of having multiple generators in the GAN architecture
is not totally new, e.g., MIX+GAN [2], MGAN [15], MAD-GAN [11] and GMAN [10], there are key
differences between Stackelberg GAN and prior work. a) In MGAN [15] and MAD-GAN [11], various
generators are combined as a mixture of probabilistic models with assumption that the generators and
discriminator have infinite capacity. Also, they require that the generators share common network
parameters. In contrast, in the Stackelberg GAN model we allow various sampling schemes beyond the
mixture model, e.g., each generator samples a fixed but unequal number of data points independently.
Furthermore, each generator has free parameters. We also make no assumption on the model capacity
in our analysis. This is an important research question as raised by [3]. b) In MIX+GAN [2], the losses
are ensembled with learned weights and an extra regularization term, which discourages the weights
being too far away from uniform. We find it slightly unnecessary because the expressive power of
each generator already allows implicit scaling of each generator. In the Stackelberg GAN, we apply
equal weights for all generators and obtain improved guarantees. c) In GMAN [10], there are multiple

2

Figure 4.5: Left Figure, Top Row: Standard GAN training on a toy 2D mixture of 8 Gaussians.
Left Figure, Bottom Row: Stackelberg GAN training with 8 generator ensembles, each of which
is denoted by one color. Right Figure: Stackelberg GAN training with 10 generator ensembles
on fashion-MNIST dataset without cherry pick, where each row corresponds to one generator.

4.2.2 Stackelberg GANs
Before proceeding, we define some notations and formalize our model setup in this section.

Notations. We will use bold lower-case letter to represent vector and lower-case letter to represent
scalar. Specifically, we denote by θ ∈ Rt the parameter vector of discriminator and γ ∈ Rg the
parameter vector of generator. Let Dθ(x) be the output probability of discriminator given input
x, and let Gγ(z) represent the generated vector given random input z. For any function f(u),
we denote by f ∗(v) := supu{uTv − f(u)} the conjugate function of f . Let c̆lf be the convex
closure of f , which is defined as the function whose epigraph is the convex closed hull of that of
function f . We define ĉlf := −c̆l(−f). We will use I to represent the number of generators.

Model setup

Preliminaries. The key ingredient in the standard GAN is to play a zero-sum two-player game
between a discriminator and a generator — which are often parametrized by deep neural networks
in practice — such that the goal of the generator is to map random noise z to some plausible
images/texts Gγ(z) and the discriminator Dθ(·) aims at distinguishing the real images/texts from
what the generator creates.

For every parameter implementations γ and θ of generator and discriminator, respectively,
denote by the payoff value

φ(γ; θ) := Ex∼Pdf(Dθ(x)) + Ez∼Pzf(1−Dθ(Gγ(z))),

where f(·) is some concave, increasing function. Hereby, Pd is the distribution of true images/texts
and Pz is a noise distribution such as Gaussian or uniform distribution. The standard GAN thus
solves the following saddle point problems:

inf
γ∈Rg

sup
θ∈Rt

φ(γ; θ), or sup
θ∈Rt

inf
γ∈Rg

φ(γ; θ). (4.22)
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Figure 4.6: Architecture of Stackelberg GAN. We ensemble the losses of various generator and
discriminator pairs with equal weights.

For different choices of function f , problem (4.22) leads to various variants of GAN. For example,
when f(t) = log t, problem (4.22) is the classic GAN; when f(t) = t, it reduces to the Wasserstein
GAN. We refer interested readers to the paper of [181] for more variants of GANs.

Stackelberg GAN. Our model of Stackelberg GAN is inspired from the Stackelberg competition
in the domain of game theory. Instead of playing a two-player game as in the standard GAN, in
Stackelberg GAN there are I + 1 players with two firms — one discriminator and I generators.
One can make an analogy between the discriminator (generators) in the Stackelberg GAN and the
leader (followers) in the Stackelberg competition.

Stackelberg GAN is a general framework which can be built on top of all variants of standard
GANs. The objective function is simply an ensemble of losses w.r.t. all possible pairs of
generators and discriminator: Φ(γ1, ..., γI ; θ) :=

∑I
i=1 φ(γi; θ). Thus it is very easy to implement.

The Stackelberg GAN therefore solves the following saddle point problems:

w∗ := inf
γ1,...,γI∈Rg

sup
θ∈Rt

1

I
Φ(γ1, ..., γI ; θ), or q∗ := sup

θ∈Rt
inf

γ1,...,γI∈Rg
1

I
Φ(γ1, ..., γI ; θ).

We term w∗ − q∗ the minimax (duality) gap. We note that there are key differences between the
naïve ensembling model and ours. In the naïve ensembling model, one trains multiple GAN
models independently and averages their outputs. In contrast, our Stackelberg GAN shares a
unique discriminator for various generators, thus requires jointly training. Figure 4.6 shows the
architecture of our Stackelberg GAN.

How to generate samples from Stackelberg GAN? In the Stackelberg GAN, we expect that
each generator learns only a few modes. In order to generate a sample that may come from all
modes, we use a mixed model. In particular, we generate a uniformly random value i from 1 to I
and use the i-th generator to obtain a new sample. Note that this procedure in independent of the
training procedure.

4.2.3 Our results on optimization
In this section, we develop our theoretical contributions and compare our results with the prior
work.
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Minimax duality gap

We begin with studying the minimax gap of Stackelberg GAN. Our main results show that the
minimax gap shrinks as the number of generators increases.

To proceed, denote by hi(ui) := infγi∈Rg(−φ(γi; ·))∗(ui), where the conjugate operation is
w.r.t. the second argument of φ(γi; ·). We clarify here that the subscript i in hi indicates that
the function hi is derived from the i-th generator. The argument of hi should depend on i, so
we denote it by ui. Intuitively, hi serves as an approximate convexification of −φ(γi, ·) w.r.t the
second argument due to the conjugate operation. Denote by c̆lhi the convex closure of hi:

c̆lhi(ũ) := inf
{aj},{uji}

{
t+2∑

j=1

ajhi(u
j
i ) : ũ =

t+2∑

j=1

ajuji ,
t+2∑

j=1

aj = 1, aj ≥ 0

}
.

c̆lhi represents the convex relaxation of hi because the epigraph of c̆lhi is exactly the convex hull of
epigraph of hi by the definition of c̆lhi. Let ∆minimax

θ = infγ1,...,γI∈Rg supθ∈Rt
1
I
Φ(γ1, ..., γI ; θ)−

infγ1,...,γI∈Rg supθ∈Rt
1
I
Φ̃(γ1, ..., γI ; θ), and ∆maximin

θ = supθ∈Rt infγ1,...,γI∈Rg
1
I
Φ̃(γ1, ..., γI ; θ) −

supθ∈Rt infγ1,...,γI∈Rg
1
I
Φ(γ1, ..., γI ; θ), where Φ̃(γ1, ..., γI ; θ) :=

∑I
i=1 ĉlφ(γi; θ) and −ĉlφ(γi; θ)

is the convex closure of −φ(γi; θ) w.r.t. argument θ. Therefore, ∆maximin
θ + ∆minimax

θ measures the
non-convexity of objective function w.r.t. argument θ. For example, it is equal to 0 if and only if
φ(γi; θ) is concave and closed w.r.t. discriminator parameter θ.

We have the following guarantees on the minimax gap of Stackelberg GAN.
Theorem 49. Let ∆i

γ := supu∈Rt{hi(u)− c̆lhi(u)} ≥ 0 and ∆worst
γ := maxi∈[I] ∆i

γ . Denote by
t the number of parameters of discriminator, i.e., θ ∈ Rt. Suppose that hi(·) is continuous and
domhi is compact and convex. Then the duality gap can be bounded by

0 ≤ w∗ − q∗ ≤ ∆minimax
θ + ∆maximin

θ + ε,

provided that the number of generators I > t+1
ε

∆worst
γ .

Remark 7. Theorem 49 makes mild assumption on the continuity of loss and no assumption
on the model capacity of discriminator and generators. The analysis instead depends on their
non-convexity as being parametrized by deep neural networks. In particular, ∆i

γ measures the
divergence between the function value of hi and its convex relaxation c̆lhi; When φ(γi; θ) is
convex w.r.t. argument γi, ∆i

γ is exactly 0. The constant ∆worst
γ is the maximal divergence among

all generators, which does not grow with the increase of I . This is because ∆worst
γ measures the

divergence of only one generator and when each generator for example has the same architecture,
we have ∆worst

γ = ∆1
γ = ... = ∆I

γ . Similarly, the terms ∆minimax
θ and ∆maximin

θ characterize the
non-convexity of discriminator. When the discriminator is concave such as logistic regression
and support vector machine, ∆minimax

θ = ∆maximin
θ = 0 and we have the following straightforward

corollary about the minimax duality gap of Stackelberg GAN.
Corollary 1. Under the settings of Theorem 49, when φ(γi; θ) is concave and closed w.r.t.
discriminator parameter θ and the number of generators I > t+1

ε
∆worst
γ , we have 0 ≤ w∗−q∗ ≤ ε.
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Existence of approximate equilibrium

The results of Theorem 49 and Corollary 1 are independent of model capacity of generators and
discriminator. When we make assumptions on the expressive power of generator as in [9], we
have the following guarantee (4.23) on the existence of ε-approximate equilibrium.
Theorem 50. Under the settings of Theorem 49, suppose that for any ξ > 0, there exists a
generator G such that Ex∼Pd,z∼Pz‖G(z) − x‖2 ≤ ξ. Let the discriminator and the generators
be L-Lipschitz w.r.t. inputs and parameters, respectively. Then for any ε > 0, there exist
I = t+1

ε
∆worst
γ generators Gγ∗1 , ..., Gγ∗I and a discriminator Dθ∗ such that for some value V ∈ R,

∀γ1, ..., γI ∈ Rg, Φ(γ1, ..., γI ; θ
∗) ≤ V + ε,

∀θ ∈ Rt, Φ(γ∗1 , ..., γ
∗
I ; θ) ≥ V − ε. (4.23)

Related work. While many efforts have been devoted to empirically investigating the performance
of multi-generator GAN, little is known about how many generators are needed so as to achieve
certain equilibrium guarantees. Probably the most relevant prior work to Theorem 50 is that of
[9]. In particular, [9] showed that there exist I = 100t

ε2
∆2 generators and one discriminator such

that ε-approximate equilibrium can be achieved, provided that for all x and any ξ > 0, there
exists a generator G such that Ez∼Pz‖G(z) − x‖2 ≤ ξ. Hereby, ∆ is a global upper bound of
function |f |, i.e., f ∈ [−∆,∆]. In comparison, Theorem 50 improves over this result in two
aspects: a) the assumption on the expressive power of generators in [9] implies our condition
Ex∼Pd,z∼Pz‖G(z) − x‖2 ≤ ξ. Thus our assumption is weaker. b) The required number of
generators in Theorem 50 is as small as t+1

ε
∆worst
γ . We note that ∆worst

γ � 2∆ by the definition of
∆worst
γ . Therefore, Theorem 50 requires much fewer generators than that of [9].

4.2.4 Experimental results
In this section, we verify our theoretical contributions by the experimental validation.

MNIST dataset

We first show that Stackelberg GAN generates more diverse images on the MNIST dataset [144]
than classic GAN. We follow the standard preprocessing step that each pixel is normalized via
subtracting it by 0.5 and dividing it by 0.5.

Figure 4.7 shows the diversity of generated digits by Stackelberg GAN with varying number
of generators. When there is only one generator, the digits are not very diverse with many "1"’s
and much fewer "2"’s. As the number of generators increases, the images tend to be more diverse.
In particular, for 10-generator Stackelberg GAN, each generator is associated with one or two
digits without any digit being missed.

Fashion-MNIST dataset

We also observe better performance by the Stackelberg GAN on the Fashion-MNIST dataset.
Fashion-MNIST is a dataset which consists of 60,000 examples. Each example is a 28 × 28
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Figure 6: Standard GAN vs. Stackelberg GAN on the MNIST dataset without cherry pick. Left Figure:
Digits generated by the standard GAN. It shows that the standard GAN generates many "1"’s which are not
very diverse. Middle Figure: Digits generated by the Stackelberg GAN with 5 generators, where every
two rows correspond to one generator. Right Figure: Digits generated by the Stackelberg GAN with 10
generators, where each row corresponds to one generator.

5 Experiments

In this section, we verify our theoretical contributions by the experimental validation.

5.1 MNIST Dataset

We first show that Stackelberg GAN generates more diverse images on the MNIST dataset [18] than classic
GAN. We follow the standard preprocessing step that each pixel is normalized via subtracting it by 0.5 and
dividing it by 0.5. The detailed network setups of discriminator and generators are in Table 4.

Figure 6 shows the diversity of generated digits by Stackelberg GAN with varying number of generators.
When there is only one generator, the digits are not very diverse with many "1"’s and much fewer "2"’s.
As the number of generators increases, the images tend to be more diverse. In particular, for 10-generator
Stackelberg GAN, each generator is associated with one or two digits without any digit being missed.

5.2 Fashion-MNIST Dataset

We also observe better performance by the Stackelberg GAN on the Fashion-MNIST dataset. Fashion-MNIST
is a dataset which consists of 60,000 examples. Each example is a 28⇥ 28 grayscale image associating with a
label from 10 classes. We follow the standard preprocessing step that each pixel is normalized via subtracting
it by 0.5 and dividing it by 0.5. We specify the detailed network setups of discriminator and generators in
Table 4.

Figure 7 shows the diversity of generated fashions by Stackelberg GAN with varying number of generators.
When there is only one generator, the generated images are not very diverse without any “bags” being found.
However, as the number of generators increases, the generated images tend to be more diverse. In particular,
for 10-generator Stackelberg GAN, each generator is associated with one class without any class being
missed.
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Figure 4.7: Standard GAN vs. Stackelberg GAN on the MNIST dataset without cherry pick. Left
Figure: Digits generated by the standard GAN. It shows that the standard GAN generates many
"1"’s which are not very diverse. Middle Figure: Digits generated by the Stackelberg GAN with
5 generators, where every two rows correspond to one generator. Right Figure: Digits generated
by the Stackelberg GAN with 10 generators, where each row corresponds to one generator.

grayscale image associating with a label from 10 classes. We follow the standard preprocessing
step that each pixel is normalized via subtracting it by 0.5 and dividing it by 0.5.

Figure 4.8 shows the diversity of generated fashions by Stackelberg GAN with varying number
of generators. When there is only one generator, the generated images are not very diverse without
any “bags” being found. However, as the number of generators increases, the generated images
tend to be more diverse. In particular, for 10-generator Stackelberg GAN, each generator is
associated with one class without any class being missed.

CIFAR-10 dataset

We then implement Stackelberg GAN on the CIFAR-10 dataset. CIFAR-10 includes 60,000
32×32 training images, which fall into 10 classes [140]). The architecture of generators and
discriminator follows the design of DCGAN in [189]. We train models with 5, 10, and 20 fixed-
size generators. The results show that the model with 10 generators performs the best. We also
train 10-generator models where each generator has 2, 3 and 4 convolution layers. We find that
the generator with 2 convolution layers, which is the most shallow one, performs the best. So we
report the results obtained from the model with 10 generators containing 2 convolution layers.
Figure 4.9 shows the samples produced by different generators. The samples are randomly drawn
instead of being cherry-picked to demonstrate the quality of images generated by our model.

For quantitative evaluation, we use Inception score and Fréchet Inception Distance (FID) to
measure the difference between images generated by models and real images.

Results of Inception score. The Inception score measures the quality of a generated image
and is correlated well with human’s judgment [202]. We report the Inception score obtained by
our Stackelberg GAN and other baseline methods in Table 4.2. For fair comparison, we only
consider the baseline models which are completely unsupervised model and do not need any
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Figure 7: Generated samples by Stackelberg GAN on CIFAR-10 dataset without cherry pick. Left Figure:
Examples generated by the standard GAN. It shows that the standard GAN fails to generate bags. Middle
Figure: Examples generated by the Stackelberg GAN with 5 generators, where every two rows correspond
to one generator. Right Figure: Examples generated by the Stackelberg GAN with 10 generators, where
each row corresponds to one generator.

5.3 CIFAR-10 Dataset

We then implement Stackelberg GAN on the CIFAR-10 dataset. CIFAR-10 includes 60,000 32⇥32 training
images, which fall into 10 classes [17]). The architecture of generators and discriminator follows the design
of DCGAN in [21]. We train models with 5, 10, and 20 fixed-size generators. The results show that the
model with 10 generators performs the best. We also train 10-generator models where each generator has 2, 3
and 4 convolution layers. We find that the generator with 2 convolution layers, which is the most shallow
one, performs the best. So we report the results obtained from the model with 10 generators containing 2
convolution layers. Figure 8a shows the samples produced by different generators. The samples are randomly
drawn instead of being cherry-picked to demonstrate the quality of images generated by our model.

For quantitative evaluation, we use Inception score and Fréchet Inception Distance (FID) to measure the
difference between images generated by models and real images.
Results of Inception Score. The Inception score measures the quality of a generated image and is correlated
well with human’s judgment [23]. We report the Inception score obtained by our Stackelberg GAN and other
baseline methods in Table 1. For fair comparison, we only consider the baseline models which are completely
unsupervised model and do not need any label information. Instead of directly using the reported Inception
scores by original papers, we replicate the experiment of MGAN using the code, architectures and parameters
reported by their original papers, and evaluate the scores based on the new experimental results. Table 1
shows that our model achieves a score of 7.62 in CIFAR-10 dataset, which outperforms the state-of-the-art
models. For fairness, we configure our Stackelberg GAN with the same capacity as MGAN, that is, the two
models have comparative number of total parameters. When the capacity of our Stackelberg GAN is as small
as DCGAN, our model improves over DCGAN significantly.

Results of Fréchet Inception Distance. We then evaluate the performance of models on CIFAR-10 dataset
using the Fréchet Inception Distance (FID), which better captures the similarity between generated images
and real ones [14]. As Table 1 shows, under the same capacity as DCGAN, our model reduces the FID
by 20.74%. Meanwhile, under the same capacity as MGAN, our model reduces the FID by 14.61%. This
improvement further indicates that our Stackelberg GAN with multiple light-weight generators help improve
the quality of the generated images.

9

Figure 4.8: Generated samples by Stackelberg GAN on fashion-MNIST dataset without cherry
pick. Left Figure: Examples generated by the standard GAN. It shows that the standard GAN fails
to generate bags. Middle Figure: Examples generated by the Stackelberg GAN with 5 generators,
where every two rows correspond to one generator. Right Figure: Examples generated by the
Stackelberg GAN with 10 generators, where each row corresponds to one generator.

label information. Instead of directly using the reported Inception scores by original papers,
we replicate the experiment of MGAN using the code, architectures and parameters reported by
their original papers, and evaluate the scores based on the new experimental results. Table 4.2
shows that our model achieves a score of 7.62 in CIFAR-10 dataset, which outperforms the
state-of-the-art models. For fairness, we configure our Stackelberg GAN with the same capacity as
MGAN, that is, the two models have comparative number of total parameters. When the capacity
of our Stackelberg GAN is as small as DCGAN, our model improves over DCGAN significantly.

Results of Fréchet Inception distance. We then evaluate the performance of models on CIFAR-
10 dataset using the Fréchet Inception Distance (FID), which better captures the similarity between
generated images and real ones [117]. As Table 4.2 shows, under the same capacity as DCGAN,
our model reduces the FID by 20.74%. Meanwhile, under the same capacity as MGAN, our model
reduces the FID by 14.61%. This improvement further indicates that our Stackelberg GAN with
multiple light-weight generators help improve the quality of the generated images.

Tiny ImageNet dataset

We also evaluate the performance of Stackelberg GAN on the Tiny ImageNet dataset. The Tiny
ImageNet is a large image dataset, where each image is labelled to indicate the class of the object
inside the image. We resize the figures down to 32× 32 following the procedure described in [65].
Figure 4.9 shows the randomly picked samples generated by 10-generator Stackelberg GAN. Each
row has samples generated from one generator.
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Table 4.2: Quantitative evaluation of various GANs on CIFAR-10 dataset. All results are either
reported by the authors themselves or run by us with codes provided by the authors. Every
model is trained without label. Methods with higher inception score and lower Fréchet Inception
Distance are better.

Model Inception Score Fréchet Inception Distance

Real data 11.24± 0.16 -
WGAN [7] 3.82± 0.06 -
MIX+WGAN [9] 4.04± 0.07 -
Improved-GAN [202] 4.36± 0.04 -
ALI [78] 5.34± 0.05 -
BEGAN [34] 5.62 -
MAGAN [237] 5.67 -
GMAN [79] 6.00± 0.19 -
DCGAN [189] 6.40± 0.05 37.7
Ours (capacity as DCGAN) 7.02± 0.07 29.88
D2GAN [180] 7.15± 0.07 -
MAD-GAN (our run, capacity 1×MGAN) [91] 6.67± 0.07 34.10
MGAN (our run) [118] 7.52± 0.1 31.34
Ours (capacity 1×MGAN≈ 1.8×DCGAN) 7.62± 0.07 26.76

4.2.5 Proofs of our main results

Useful lemmas

Lemma 69. Given the function

(f1 + ...+ fI)(θ) := f1(θ) + ...+ fI(θ),

where fi : Rt → R, i ∈ [I] are closed proper convex functions. Denote by f ∗1 ⊕ ...⊕f ∗I the infimal
convolution

(f ∗1 ⊕ ...⊕ f ∗I )(u) := inf
u1+...+uI=u

{f ∗1 (u1) + ...+ f ∗I (uI)}, u ∈ Rt.

Provided that f1 + ...+ fI is proper, then we have

(f1 + ...+ fI)
∗(u) = cl(f ∗1 ⊕ ...⊕ f ∗I )(u), ∀u ∈ Rt.
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Table 1: Quantitative evaluation of various GANs on CIFAR-10 dataset. All results are either reported by the
authors themselves or run by us with codes provided by the authors. Every model is trained without label.
Methods with higher inception score and lower Fréchet Inception Distance are better.

Model Inception Score Fréchet Inception Distance

Real data 11.24 ± 0.16 -
WGAN [1] 3.82 ± 0.06 -
MIX+WGAN [2] 4.04 ± 0.07 -
Improved-GAN [23] 4.36 ± 0.04 -
ALI [9] 5.34 ± 0.05 -
BEGAN [6] 5.62 -
MAGAN [27] 5.67 -
GMAN [10] 6.00 ± 0.19 -
DCGAN [21] 6.40 ± 0.05 37.7
Ours (capacity as DCGAN) 7.02 ± 0.07 29.88
D2GAN [19] 7.15 ± 0.07 -
MAD-GAN (our run, capacity 1⇥MGAN) [11] 6.67 ± 0.07 34.10
MGAN (our run) [15] 7.52 ± 0.1 31.34
Ours (capacity 1⇥MGAN⇡ 1.8⇥DCGAN) 7.62 ± 0.07 26.76

5.4 Tiny ImageNet Dataset

We also evaluate the performance of Stackelberg GAN on the Tiny ImageNet dataset. The Tiny ImageNet is
a large image dataset, where each image is labelled to indicate the class of the object inside the image. We
resize the figures down to 32⇥ 32 following the procedure described in [8]. Figure 8b shows the randomly
picked samples generated by 10-generator Stackelberg GAN. Each row has samples generated from one
generator. Since the types of some images in the Tiny ImageNet are also included in the CIFAR-10, we order
the rows in the similar way as Figure 8a.

(a) Samples on CIFAR-10. (b) Samples on Tiny ImageNet.

Figure 8: Examples generated by Stackelberg GAN on CIFAR-10 (left) and Tiny ImageNet (right) without
cherry pick, where each row corresponds to samples from one generator.
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Figure 4.9: Examples generated by Stackelberg GAN on CIFAR-10 (left) and Tiny ImageNet
(right) without cherry pick, where each row corresponds to samples from one generator.

Proof. For all θ ∈ Rt, we have

f1(θ) + ...+ fI(θ) = sup
u1

{θTu1 − f ∗1 (u1)}+ ...+ sup
uI

{θTuI − f ∗I (uI)}

= sup
u1,...,uI

{θT (u1 + ...+ uI)− f ∗1 (u1)− ...− f ∗I (uI)}

= sup
u

sup
u1+...+uI=u

{
θTu− f ∗1 (u1)− ...− f ∗I (uI)

}

= sup
u

{
θTu− inf

u1+...+uI=u
f ∗1 (u1)− ...− f ∗I (uI)

}

= sup
u

{
θTu− (f ∗1 ⊕ ...⊕ f ∗I )(u)

}

= (f ∗1 ⊕ ...⊕ f ∗I )∗(θ).

(4.24)

Therefore,

cl(f ∗1 ⊕ ...⊕ f ∗I )(u) = c̆l(f ∗1 ⊕ ...⊕ f ∗I )(u) = (f ∗1 ⊕ ...⊕ f ∗I )∗∗(u) = (f1 + ...+ fI)
∗(u),

where the first equality holds because (f ∗1 ⊕ ...⊕ f ∗I ) is convex, the second quality is by standard
conjugate theorem, and the last equality holds by conjugating the both sides of Eqn. (4.24).

Lemma 70 (Proposition 3.4 (b), [35]). For any function p(u), denote by q(µ) := infu∈Rt{p(u) +

µTu}. We have supµ∈Rt q(µ) = c̆lp(0).
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Proofs of Theorem 49 and Corollary 1

Theorem 49 (restated). Let ∆i
γ := supu∈Rt{hi(u) − c̆lhi(u)} ≥ 0 and ∆worst

γ := maxi∈[I] ∆i
γ .

Denote by t the number of parameters of discriminator, i.e., θ ∈ Rt. Suppose that hi(·) is
continuous and domhi is compact and convex. Then the duality gap can be bounded by

0 ≤ w∗ − q∗ ≤ ∆minimax
θ + ∆maximin

θ + ε,

provided that the number of generators I > t+1
ε

∆worst
γ .

Proof. The statement 0 ≤ w∗ − q∗ is by the weak duality. Thus it suffices to prove the other side
of the inequality. All notations in this section are defined in Section 4.2.3.

We first show that

inf
γ1,...,γI∈Rg

sup
θ∈Rt

1

I
Φ̃(γ1, ..., γI ; θ)− sup

θ∈Rt
inf

γ1,...,γI∈Rg
1

I
Φ̃(γ1, ..., γI ; θ) ≤ ε.

Denote by
p(u) := inf

γ1,...,γI∈Rg
sup
θ∈Rt

{
Φ̃(γ1, ..., γI ; θ)− uT θ

}
.

We have the following lemma.

Lemma 71. We have

sup
θ∈Rt

inf
γ1,...,γI∈Rg

Φ̃(γ1, ..., γI ; θ) = (c̆lp)(0) ≤ p(0) = inf
γ1,...,γI∈Rg

sup
θ∈Rt

Φ̃(γ1, ..., γI ; θ).

Proof. By the definition of p(0), we have p(0) = infγ1,...,γI∈Rg supθ∈Rt Φ̃(γ1, ..., γI ; θ). Since
(c̆lp)(·) is the convex closure of function p(·) (a.k.a. weak duality theorem), we have (c̆lp)(0) ≤
p(0). We now show that supθ∈Rt infγ1,...,γI∈Rg Φ̃(γ1, ..., γI ; θ) = (c̆lp)(0). Note that p(u) =
infγ1,...,γI∈Rg pγ1,...,γI (u), where

pγ1,...,γI (u) = sup
θ∈Rt
{Φ̃(γ1, ..., γI ; θ)− uT θ} = (−Φ̃(γ1, ..., γI ; ·))∗(−u),

and that

inf
u∈Rt
{pγ1,...,γI (u) + uTµ}

= − sup
u∈Rt
{uT (−µ)− pγ1,...,γI (u)}

= −(pγ1,...,γI )
∗(−µ) (by the definition of conjugate function)

= −(−Φ̃(γ1, ..., γI ; ·))∗∗(µ) = Φ̃(γ1, ..., γI ;µ). (by conjugate theorem)

(4.25)

So we have

(c̆lp)(0)

= sup
µ∈Rt

inf
u∈Rt
{p(u) + uTµ} (by Lemma 70)

= sup
µ∈Rt

inf
u∈Rt

inf
γ1,...,γI∈Rg

{pγ1,...,γI (u) + uTµ} (by the definition of p(u))

= sup
µ∈Rt

inf
γ1,...,γI∈Rg

inf
u∈Rt
{pγ1,...,γI (u) + uTµ} = sup

µ∈Rt
inf

γ1,...,γI∈Rg
Φ̃(γ1, ..., γI ;µ), (by Eqn. (4.25))
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as desired.

By Lemma 71, it suffices to show p(0) − (c̆lp)(0) ≤ (t + 1)∆worst
γ . We have the following

lemma.

Lemma 72. Under the assumption in Theorem 49, p(0)− (c̆lp)(0) ≤ (t+ 1)∆worst
γ .

Proof. We note that

p(u) := inf
γ1,...,γI∈Rg

sup
θ∈Rt

{
Φ̃(γ1, ..., γI ; θ)− uT θ

}

= inf
γ1,...,γI∈Rg

sup
θ∈Rt

{
I∑

i=1

ĉlφ(γi; θ)− uT θ

}
(by the definition of Φ̃)

= inf
γ1,...,γI∈Rg

(
I∑

i=1

−ĉlφ(γi; ·)
)∗

(−u) (by the definition of conjugate function)

= inf
γ1,...,γI∈Rg

inf
u1+...+uI=−u

{
I∑

i=1

(−ĉlφ(γi; ·))∗(ui)
}

(by Lemma 69)

= inf
γ1,...,γI∈Rg

inf
u1+...+uI=−u

{
I∑

i=1

(−φ(γi; ·))∗(ui)
}

(by conjugate theorem)

= inf
u1+...+uI=−u

inf
γ1,...,γI∈Rg

{(−φ(γ1; ·))∗(u1) + ...+ (−φ(γI ; ·))∗(uI)}

=: inf
u1+...+uI=−u

{h1(u1) + ...+ hI(uI)}, (by the definition of hi(·))

where u1, ...,uI ,u ∈ Rt. Therefore,

p(0) = inf
u1,...,uI∈Rt

I∑

i=1

hi(ui), s.t.
I∑

i=1

ui = 0.

Consider the subset of Rt+1:

Yi :=
{
yi ∈ Rt+1 : yi = [ui, hi(ui)] ,ui ∈ domhi

}
, i ∈ [I].

Define the vector summation
Y := Y1 + Y2 + ...+ YI .

Since hi(·) is continuous and domhi is compact, the set

{(ui, hi(ui)) : ui ∈ domhi}

is compact. So Y , conv(Y), Yi, and conv(Yi), i ∈ [I] are all compact sets. According to the
definition of Y and the standard duality argument [35], we have

p(0) = inf {w : there exists (r, w) ∈ Y such that r = 0} ,
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and
c̆lp(0) = inf {w : there exists (r, w) ∈ conv (Y) such that r = 0} .

We are going to apply the following Shapley-Folkman lemma.

Lemma 73 (Shapley-Folkman, [216]). Let Yi, i ∈ [I] be a collection of subsets of Rm. Then for
every y ∈ conv(

∑I
i=1 Yi), there is a subset I(y) ⊆ [I] of size at most m such that

y ∈


 ∑

i 6∈I(y)

Yi +
∑

i∈I(y)

conv(Yi)


 .

We apply Lemma 73 to prove Lemma 72 with m = t+ 1. Let (r, w) ∈ conv(Y) be such that

r = 0, and w = c̆lp(0).

Applying the above Shapley-Folkman lemma to the set Y =
∑I

i=1 Yi, we have that there are a
subset I ⊆ [I] of size t+ 1 and vectors

(ri, wi) ∈ conv(Yi), i ∈ I and ui ∈ domhi, i 6∈ I,
such that ∑

i 6∈I

ui +
∑

i∈I

ri = r = 0, (4.26)

∑

i 6∈I

hi(ui) +
∑

i∈I

wi = c̆lp(0). (4.27)

Representing elements of the convex hull of Yi ⊆ Rt+1 by Carathéodory theorem, we have that
for each i ∈ I, there are vectors {uji}t+2

j=1 and scalars {aji}t+2
j=1 ∈ R such that

t+2∑

j=1

aji = 1, aji ≥ 0, j ∈ [t+ 2],

ri =
t+2∑

j=1

ajiu
j
i =: ui ∈ domhi, wi =

t+2∑

j=1

ajihi(u
j
i ). (4.28)

Recall that we define

c̆lhi(ũ) := inf
{aj},{uji}

{
t+2∑

j=1

ajhi(u
j
i ) : ũ =

t+2∑

j=1

ajuji ,
t+2∑

j=1

aj = 1, aj ≥ 0

}
,

and ∆i
γ := supu∈Rt{hi(u)− c̆lhi(u)} ≥ 0. We have for i ∈ I,

wi ≥ c̆lhi

(
t+2∑

j=1

ajiu
j
i

)
(by the definition of c̆lhi(·))

≥ hi

(
t+2∑

j=1

ajiu
j
i

)
−∆i

γ (by the definition of ∆i
γ)

= hi (ui)−∆i
γ. (by Eqn. (4.28))

(4.29)
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Thus, by Eqns. (4.26) and (4.28), we have

I∑

i=1

ui = 0, ui ∈ domhi, i ∈ [I]. (4.30)

Therefore, we have

p(0) =
I∑

i=1

hi(ui) (by Eqn. (4.30))

≤ c̆lp(0) +
∑

i∈I

∆i
γ (by Eqns. (4.27) and (4.29))

≤ c̆lp(0) + |I|∆worst
γ

= c̆lp(0) + (t+ 1)∆worst
γ , (by Lemma 73)

as desired.

By Lemmas 71 and 72, we have proved that

inf
γ1,...,γI∈Rg

sup
θ∈Rt

1

I
Φ̃(γ1, ..., γI ; θ)− sup

θ∈Rt
inf

γ1,...,γI∈Rg
1

I
Φ̃(γ1, ..., γI ; θ) ≤ ε.

To prove Theorem 49, we note that

w∗ − q∗ := inf
γ1,...,γI∈Rg

sup
θ∈Rt

1

I
Φ(γ1, ..., γI ; θ)− sup

θ∈Rt
inf

γ1,...,γI∈Rg
1

I
Φ(γ1, ..., γI ; θ)

= inf
γ1,...,γI∈Rg

sup
θ∈Rt

1

I
Φ(γ1, ..., γI ; θ)− inf

γ1,...,γI∈Rg
sup
θ∈Rt

1

I
Φ̃(γ1, ..., γI ; θ)

+ inf
γ1,...,γI∈Rg

sup
θ∈Rt

1

I
Φ̃(γ1, ..., γI ; θ)− sup

θ∈Rt
inf

γ1,...,γI∈Rg
1

I
Φ̃(γ1, ..., γI ; θ)

+ sup
θ∈Rt

inf
γ1,...,γI∈Rg

1

I
Φ̃(γ1, ..., γI ; θ)− sup

θ∈Rt
inf

γ1,...,γI∈Rg
1

I
Φ(γ1, ..., γI ; θ)

≤ ∆minimax
θ + ∆maximin

θ + ε,

as desired.

Corollary 1 (restated). Under the settings of Theorem 49, when φ(γi; θ) is concave and closed
w.r.t. discriminator parameter θ and the number of generators I > t+1

ε
∆worst
γ , we have 0 ≤

w∗ − q∗ ≤ ε.

Proof. When φ(γi; θ) is concave and closed w.r.t. discriminator parameter θ, we have ĉlφ = φ.
Thus, ∆minimax

θ = ∆maximin
θ = 0 and 0 ≤ w∗ − q∗ ≤ ε.
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Proofs of Theorem 50

Theorem 50 (restated). Under the settings of Theorem 49, suppose that for any ξ > 0, there
exists a generator G such that Ex∼Pd,z∼Pz‖G(z)−x‖2 ≤ ξ. Let the discriminator and generators
be L-Lipschitz w.r.t. inputs and parameters, and let f be Lf -Lipschitz. Then for any ε > 0, there
exist I = t+1

ε
∆worst
γ generators Gγ∗1 , ..., Gγ∗I and a discriminator Dθ∗ such that for some value

V ∈ R,

∀γ1, ..., γI ∈ Rg, Φ(γ1, ..., γI ; θ
∗) ≤ V + ε,

∀θ ∈ Rt, Φ(γ∗1 , ..., γ
∗
I ; θ) ≥ V − ε.

Proof. We first show that the equilibrium value V is 2f(1/2). For the discriminator Dθ which
only outputs 1/2, it has payoff 2f(1/2) for all possible implementations of generatorsGγ1 , ..., GγI .
Therefore, we have V ≥ 2f(1/2). We now show that V ≤ 2f(1/2). We note that by assumption,
for any ξ > 0, there exists a closed neighbour of implementation of generator Gξ such that
Ex∼Pd,z∼Pz‖G′ξ(z)− x‖2 ≤ ξ for all G′ξ in the neighbour. Such a neighbour exists because the
generator is Lipschitz w.r.t. its parameters. Let the parameter implementation of such neighbour
of Gξ be Γ. The Wasserstein distance between Gξ and Pd is ξ. Since the function f and the
discriminator are Lf -Lipschitz and L-Lipschitz w.r.t. their inputs, respectively, we have

∣∣Ez∼Gξf(1−Dθ(z))− Ex∼Pdf(1−Dθ(x))
∣∣ ≤ O(LfLξ).

Thus, for any fixed γ, we have

sup
θ∈Rt

Ex∼Pdf(Dθ(x)) + Ez∼Gξf(1−Dθ(z))

≤ O(LfLξ) + sup
θ∈Rt

Ex∼Pdf(Dθ(x)) + Ex∼Pdf(1−Dθ(x))

≤ O(LfLξ) + 2f(1/2)→ 2f(1/2), (ξ → +0)

which implies that 1
I

supθ∈Rt Φ(γ1, ..., γI ; θ) ≤ 2f(1/2) for all γ1, ..., γI ∈ Γ. So we have
V = 2f(1/2). This means that the discriminator cannot do much better than a random guess.

The above analysis implies that the equilibrium is achieved when Dθ∗ only outputs 1/2.
Denote by Θ the small closed neighbour of this θ∗ such that Φ(γ1, ..., γI ; θ) is concave w.r.t.
θ ∈ Θ for any fixed γ1, ..., γI ∈ Γ. We thus focus on the loss in the range of Θ ⊆ Rt and Γ ⊆ Rg:

Φ(γ1, ..., γI ; θ) :=
I∑

i=1

[Ex∼Pdf(Dθ(x)) + Ez∼Pzf(1−Dθ(Gγi(z)))] , θ ∈ Θ, γ1, ..., γI ∈ Γ.

Since Φ(γ1, ..., γI ; θ) is concave w.r.t. θ ∈ Θ for all γ1, ..., γI ∈ Γ, by Corollary 1, we have

inf
γ1,...,γI∈Γ

sup
θ∈Θ

1

I
Φ(γ1, ..., γI ; θ)− sup

θ∈Θ
inf

γ1,...,γI∈Γ

1

I
Φ(γ1, ..., γI ; θ) ≤ ε.

The optimal implementations of γ1, ..., γI is achieved by argminγ1,...,γI∈Γ supθ∈Θ
1
I
Φ(γ1, ..., γI ; θ).
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4.3 Robustness of Deep Classification Networks

4.3.1 Introduction
In response to the vulnerability of deep neural networks to small perturbations around input
data [221], adversarial defenses have been an imperative object of study in machine learning [119,
259], computer vision [169, 213, 244], natural language processing [125], and many other
domains. In machine learning, study of adversarial defenses has led to significant advances in
understanding and defending against adversarial threat [116]. In computer vision and natural
language processing, adversarial defenses serve as indispensable building blocks for a range
of security-critical systems and applications, such as autonomous cars and speech recognition
authorization. The problem of adversarial defenses can be stated as that of learning a classifier
with high test accuracy on both natural and adversarial examples. The adversarial example
for a given labeled data (x, y) is a data point x′ that causes a classifier c to output a different
label on x′ than y, but is “imperceptibly similar” to x. Given the difficulty of providing an
operational definition of “imperceptible similarity,” adversarial examples typically come in the
form of restricted attacks such as ε-bounded perturbations [221], or unrestricted attacks such as
adversarial rotations, translations, and deformations [3, 48, 80, 93, 243, 260]. The focus of this
work is the former setting.

Despite a large literature devoted to improving the robustness of deep-learning models, many
fundamental questions remain unresolved. One of the most important questions is how to trade
off adversarial robustness against natural accuracy. Statistically, robustness can be be at odds with
accuracy when no assumptions are made on the data distribution [224]. This has led to an empirical
line of work on adversarial defense that incorporates various kinds of assumptions [141, 217].
On the theoretical front, methods such as relaxation based defenses [137, 190] provide provable
guarantees for adversarial robustness. They, however, ignore the performance of classifier on
the non-adversarial examples, and thus leave open the theoretical treatment of the putative
robustness/accuracy trade-off.

The problem of adversarial defense becomes more challenging when considering computa-
tional issues. This is due to the fact that direct formulations of robust-classification problems
involves minimizing the robust 0-1 loss

max
x′:‖x′−x‖≤ε

1{c(x′) 6= y}, (4.31)

a loss which is NP-hard to optimize [103]. This is why progress on algorithms that focus on
accuracy have built on minimum contrast methods that minimize a surrogate of the 0–1 loss
function [32], e.g., the hinge loss or cross-entropy loss. While prior work on adversarial defense
replaced the 0-1 loss 1(·) in Eqn. (4.31) with a surrogate loss to defend against adversarial
threat [141, 164, 228], this line of research may suffer from loose surrogate approximation to the
0-1 loss. It may thus result in degraded performance.

We begin with an illustrative example that illustrates the trade-off between accuracy and
adversarial robustness, a phenomenon which has been demonstrated by [224], but without theo-
retical guarantees. We demonstrate that the minimal risk is achieved by a classifier with 100%
accuracy on the non-adversarial examples. We refer to this accuracy as the natural accuracy and
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Figure 4.10: Left figure: decision boundary learned by natural training method. Right figure:
decision boundary learned by our adversarial training method, where the orange dotted line
represents the decision boundary in the left figure. It shows that both methods achieve zero natural
training error, while our adversarial training method achieves better robust training error than the
natural training method.

we similarly refer to the natural error or natural risk. In this same example, the accuracy to the
adversarial examples, which we refer to as the robust accuracy, is as small as 0% (see Table 4.3).
This motivates us to quantify the trade-off by the gap between optimal natural error and the robust
error. Note that the latter is an adversarial counterpart of the former which allows a bounded
worst-case perturbation before feeding the perturbed sample to the classifier.

We study this gap in the context of a differentiable surrogate loss. We show that surrogate
loss minimization suffices to derive a classifier with guaranteed robustness and accuracy. Our
theoretical analysis naturally leads to a new formulation of adversarial defense which has several
appealing properties; in particular, it inherits the benefits of scalability to large datasets exhibited by
Tiny ImageNet, and the algorithm achieves state-of-the-art performance on a range of benchmarks
while providing theoretical guarantees. For example, while the defenses overviewed in [13]
achieve robust accuracy no higher than ~47% under white-box attacks, our method achieves
robust accuracy as high as ~57% in the same setting. The methodology is the foundation of our
entry to the NeurIPS 2018 Adversarial Vision Challenge where we won first place out of 1,995
submissions, surpassing the runner-up approach by 11.41% in terms of mean `2 perturbation
distance.

Summary of contributions. Our work tackles the problem of trading accuracy off against
robustness and advances the state-of-the-art in multiple ways.

• Theoretically, we characterize the trade-off between accuracy and robustness for classifica-
tion problems via the gap between robust error and optimal natural error. We provide an
upper bound for this gap in terms of surrogate loss. The bound is optimal as it matches the
lower bound in the worst-case scenario.

• Algorithmically, inspired by our theoretical analysis, we propose a new formulation of
adversarial defense, TRADES, as optimizing a regularized surrogate loss. The loss consists
of two terms: the term of empirical risk minimization encourages the algorithm to maximize
the natural accuracy, while the regularization term encourages the algorithm to push the
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decision boundary away from the data, so as to improve adversarial robustness (see Figure
4.10).
• Experimentally, we show that our proposed algorithm outperforms state-of-the-art methods

under both black-box and white-box threat models. In particular, the methodology won the
final round of the NeurIPS 2018 Adversarial Vision Challenge.

4.3.2 Preliminaries
Before proceeding, we define some notation and clarify our problem setup.

Notations. We will use bold capital letters such as X and Y to represent random vector, bold
lower-case letters such as x and y to represent realization of random vector, capital letters such
as X and Y to represent random variable, and lower-case letters such as x and y to represent
realization of random variable. Specifically, we denote by x ∈ X the sample instance, and by
y ∈ {−1,+1} the label, where X ⊆ Rd indicates the instance space. sign(x) represents the
sign of scalar x with sign(0) = +1. Denote by f : X → R the score function which maps
an instance to a confidence value associated with being positive. It can be parametrized, e.g.,
by deep neural networks. The associated binary classifier is sign(f(·)). We will frequently use
1{event}, the 0-1 loss, to represent an indicator function that is 1 if an event happens and 0
otherwise. For norms, we denote by ‖x‖ a generic norm. Examples of norms include ‖x‖∞,
the infinity norm of vector x, and ‖x‖2, the `2 norm of vector x. We use B(x, ε) to represent
a neighborhood of x: {x′ ∈ X : ‖x′ − x‖ ≤ ε}. For a given score function f , we denote by
DB(f) the decision boundary of f ; that is, the set {x ∈ X : f(x) = 0}. B(DB(f), ε) indicates
the neighborhood of the decision boundary of f : {x ∈ X : ∃x′ ∈ B(x, ε) s.t. f(x)f(x′) ≤ 0}.
For a given function ψ(u), we denote by ψ∗(v) := supu{uTv − ψ(u)} the conjugate function
of ψ, by ψ∗∗ the bi-conjugate, and by ψ−1 the inverse function. We will frequently use φ(·) to
indicate the surrogate of 0-1 loss.

Robust (classification) error

In the setting of adversarial learning, we are given a set of instances x1, ...,xn ∈ X and labels
y1, ..., yn ∈ {−1,+1}. We assume that the data are sampled from an unknown distribution
(X, Y ) ∼ D. To characterize the robustness of a score function f : X → R, [52, 70, 205] defined
robust (classification) error under the threat model of bounded ε distortion:

Radv(f) := E(X,Y )∼D1{∃X′ ∈ B(X, ε) s.t. f(X′)Y ≤ 0}.
This is in sharp contrast to the standard measure of classifier performance—the natural (clas-
sification) error Rnat(f) := E(X,Y )∼D1{f(X)Y ≤ 0}. We note that the two errors satisfy
Radv(f) ≥ Rnat(f) for all f ; the robust error is equal to the natural error when ε = 0.

Trade-off between natural and robust errors

Our study is motivated by the trade-off between natural and robust errors. [224] showed that
training robust models may lead to a reduction of standard accuracy. To illustrate the phenomenon,
we provide a toy example here.
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Figure 4.11: Counterexample given by Eqn. (4.32).

Table 4.3: Comparisons of natural and robust errors of Bayes optimal classifier and all-one
classifier in example (4.32). The Bayes optimal classifier has the optimal natural error while the
all-one classifier has the optimal robust error.

Bayes Optimal Classifier All-One Classifier
Rnat 0 (optimal) 1/2
Radv 1 1/2 (optimal)

Example. Consider the case (X, Y ) ∼ D, where the marginal distribution over the instance space
is a uniform distribution over [0, 1], and for k = 0, 1, ..., d 1

2ε
− 1e,

η(x) := Pr(Y = 1|X = x)

=

{
0, x ∈ [2kε, (2k + 1)ε),

1, x ∈ ((2k + 1)ε, (2k + 2)ε].

(4.32)

See Figure 4.11 for the visualization of η(x). We consider two classifiers: a) the Bayes optimal
classifier sign(2η(x) − 1); b) the all-one classifier which always outputs “positive.” Table 4.3
displays the trade-off between natural and robust errors: the minimal natural error is achieved
by the Bayes optimal classifier with large robust error, while the optimal robust error is achieved
by the all-one classifier with large natural error. Despite a large literature on the analysis of
robust error in terms of generalization [70, 205, 248] and computational complexity [51, 52], the
trade-off between the natural error and the robust error has not been a focus of theoretical study.

Our goal. To characterize the trade-off, we aim at approximately solving a constrained problem
for a score function f̂ with guaranteeRadv(f̂) ≤ OPT + δ, given a precision parameter δ > 0:

OPT := min
f
Radv(f), s.t. Rnat(f) ≤ R∗nat + δ,

where R∗nat represents the risk of the Bayes optimal classifier, the classifier with the minimal
natural error. We note that it suffices to showRadv(f)−R∗nat ≤ δ. This is because a)Rnat(f)−
R∗nat ≤ Radv(f)−R∗nat ≤ δ, and b)Radv(f) ≤ R∗nat + δ ≤ OPT + δ, where the last inequality
holds sinceRnat(f) ≤ Radv(f) for all f ’s and therefore minf Rnat(f) ≤ minf Radv(f) ≤ OPT.
In this section, our principal goal is to provide a tight bound onRadv(f)−R∗nat, using a regularized
surrogate loss which can be optimized easily.

163



Table 4.4: Examples of classification-calibrated loss φ and associated ψ-transform. Here ψlog(θ) =
1
2
(1− θ) log2(1− θ) + 1

2
(1 + θ) log2(1 + θ).

Loss φ(α) ψ(θ)
Hinge max{1− α, 0} θ

Sigmoid 1− tanh(α) θ

Exponential exp(−α) 1−
√

1− θ2

Logistic log2(1 + exp(−α)) ψlog(θ)

Classification-calibrated surrogate loss

Definition. Minimization of the 0-1 loss in the natural and robust errors is computationally
intractable and the demands of computational efficiency have led researchers to focus on min-
imization of a tractable surrogate loss, Rφ(f) := E(X,Y )∼Dφ(f(X)Y ). We then need to find
quantitative relationships between the excess errors associated with φ and those associated with
0–1 loss. We make a weak assumption on φ: it is classification-calibrated [32]. Formally, for
η ∈ [0, 1], define the conditional φ-risk by

H(η) := inf
α∈R

Cη(α) := inf
α∈R

(ηφ(α) + (1− η)φ(−α)) ,

and define H−(η) := infα(2η−1)≤0Cη(α). The classification-calibrated condition requires that
imposing the constraint that α has an inconsistent sign with the Bayes decision rule sign(2η − 1)
leads to a strictly larger φ-risk:
Assumption 2 (Classification-Calibrated Loss). We assume that the surrogate loss φ is classification-
calibrated, meaning that for any η 6= 1/2, H−(η) > H(η).

We argue that Assumption 2 is indispensable for classification problems, since without it
the Bayes optimal classifier cannot be the minimizer of the φ-risk. Examples of classification-
calibrated loss include hinge loss, sigmoid loss, exponential loss, logistic loss, and many others
(see Table 4.4).

Properties. Classification-calibrated loss has many structural properties that one can exploit. We
begin by introducing a functional transform of classification-calibrated loss φ which was proposed
by [32]. Define the function ψ : [0, 1]→ [0,∞) by ψ = ψ̃∗∗, where ψ̃(θ) := H−

(
1+θ

2

)
−H

(
1+θ

2

)
.

Indeed, the function ψ(θ) is the largest convex lower bound on H−
(

1+θ
2

)
− H

(
1+θ

2

)
. The

value H−
(

1+θ
2

)
− H

(
1+θ

2

)
characterizes how close the surrogate loss φ is to the class of non-

classification-calibrated losses.
Below we state useful properties of the ψ-transform. We will frequently use the function ψ to

boundRadv(f)−R∗nat.
Lemma 74 ([32]). Under Assumption 2, the function ψ has the following properties: ψ is
non-decreasing, continuous, convex on [0, 1] and ψ(0) = 0.

4.3.3 Our results on robustness
In this section, we present our main theoretical contributions for binary classification and compare
our results with prior literature. Binary classification problems have received significant attention
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in recent years as many competitions evaluate the performance of robust models on binary
classification problems [48]. We defer the discussions for multi-class problems to Section 4.3.4.

Upper bound

Our analysis leads to the following guarantee on the performance of surrogate loss minimization.
Theorem 51. Under Assumption 2, for any non-negative loss function φ such that φ(0) ≥ 1, any
measurable f : X → R, any probability distribution on X × {±1}, and any λ > 0, we have7

Radv(f)−R∗nat

≤ ψ−1(Rφ(f)−R∗φ) + Pr[X ∈ B(DB(f), ε), c0(X) = Y ]

≤ ψ−1(Rφ(f)−R∗φ) + E max
X′∈B(X,ε)

φ(f(X′)f(X)/λ),

where Rφ(f) := Eφ(f(X)Y ), R∗φ := minf Rφ(f) and c0(·) := sign(2η(·) − 1) is the Bayes
optimal classifier.

Quantity governing model robustness. Our result provides a formal justification for the
existence of adversarial examples: learning models are brittle to small adversarial attacks
because the probability that data lie around the decision boundary of the model, Pr[X ∈
B(DB(f), ε), c0(X) = Y ], is large. As a result, small perturbations may move the data point to
the wrong side of the decision boundary, leading to weak robustness of classification models.

Lower bound

We now establish a lower bound onRadv(f)−R∗nat. Our lower bound matches our analysis of
the upper bound in Section 4.3.3 up to an arbitrarily small constant.
Theorem 52. Suppose that |X | ≥ 2. Under Assumption 2, for any non-negative loss function
φ such that φ(x) → 0 as x → +∞, any ξ > 0, and any θ ∈ [0, 1], there exists a probability
distribution on X × {±1}, a function f : Rd → R, and a regularization parameter λ > 0 such
thatRadv(f)−R∗nat = θ and

ψ
(
θ − E max

X′∈B(X,ε)
φ(f(X′)f(X)/λ)

)
≤ Rφ(f)−R∗φ

≤ ψ

(
θ − E max

X′∈B(X,ε)
φ(f(X′)f(X)/λ)

)
+ ξ.

Theorem 52 demonstrates that in the presence of extra conditions on the loss function, i.e.,
limx→+∞ φ(x) = 0, the upper bound in Section 4.3.3 is tight. The condition holds for all the
losses in Table 4.4.

7We study the population form of the loss function, although we believe that our analysis can be extended to the
empirical form by the uniform convergence argument. We leave this analysis as an interesting problem for future
research.
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4.3.4 Our algorithms

Optimization. Theorems 51 and 52 shed light on algorithmic designs of adversarial defenses. In
order to minimizeRadv(f)−R∗nat, the theorems suggest minimizing8

min
f

E
{
φ(f(X)Y )︸ ︷︷ ︸

for accuracy

+ max
X′∈B(X,ε)

φ(f(X)f(X′)/λ)

︸ ︷︷ ︸
regularization for robustness

}
. (4.33)

We name our method TRADES (TRadeoff-inspired Adversarial DEfense via Surrogate-loss
minimization).

Intuition behind the optimization. Problem (4.33) captures the trade-off between the natural and
robust errors: the first term in (4.33) encourages the natural error to be optimized by minimizing
the “difference” between f(X) and Y , while the second regularization term encourages the output
to be smooth, that is, it pushes the decision boundary of classifier away from the sample instances
via minimizing the “difference” between the prediction of natural example f(X) and that of
adversarial example f(X′). This is conceptually consistent with the argument that smoothness is
an indispensable property of robust models [66]. The tuning parameter λ plays a critical role on
balancing the importance of natural and robust errors. To see how the hyperparameter λ affects
the solution in the example of Section 4.3.2, problem (4.33) tends to the Bayes optimal classifier
when λ→ +∞, and tends to the all-one classifier when λ→ 0.

Comparisons with prior works. We compare our approach with several related lines of research
in the prior literature. One of the best known algorithms for adversarial defense is based on robust
optimization [137, 164, 190, 191, 240]. Most results in this direction involve algorithms that
approximately minimize

min
f

E
{

max
X′∈B(X,ε)

φ(f(X′)Y )

}
, (4.34)

where the objective function in problem (4.34) serves as an upper bound of the robust error
Radv(f). In complex problem domains, however, this objective function might not be tight as an
upper bound of robust error, and may not capture the trade-off between natural and robust errors.

A related line of research is adversarial training by regularization [141, 196, 267]. There are
several key differences between the results in this section and those of [141, 196, 267]. Firstly,
the optimization formulations are different. In the previous works, the regularization term either
measures the “difference” between f(X′) and Y [141], or its gradient [196]. In contrast, our
regularization term measures the “difference” between f(X) and f(X′). While [267] generated
the adversarial example X′ by adding random Gaussian noise to X, our method simulates the
adversarial example by solving the inner maximization problem in Eqn. (4.33). Secondly, we note
that the losses in [141, 196, 267] lack of theoretical guarantees. Our loss, with the presence of the
second term in problem (4.33), makes our theoretical analysis significantly more subtle. Moreover,
our algorithm takes the same computational resources as adversasrial training at scale [141],

8There is correspondence between the λ in problem (4.33) and the λ in the right hand side of Theorem 51, because
ψ−1 is a non-decreasing function. Therefore, in practice we do not need to involve function ψ−1 in the optimization
formulation.
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which makes our method scalable to large-scale datasets. We defer the experimental comparisons
of various regularization based methods to Table 4.7.

Differences with Adversarial Logit Pairing. We also compare TRADES with Adversarial
Logit Pairing (ALP) [81, 130]. The algorithm of ALP works as follows: given a fixed net-
work f in each round, the algorithm firstly generates an adversarial example X′ by solving
argmaxX′∈B(X,ε) φ(f(X′)Y ); ALP then updates the network parameter by solving a minimization
problem

min
f

E {αφ(f(X′)Y ) + (1− α)φ(f(X)Y ) + ‖f(X)− f(X′)‖2/λ} ,

where 0 ≤ α ≤ 1 is a regularization parameter; the algorithm finally repeats the above-mentioned
procedure until it converges. We note that there are fundamental differences between TRADES
and ALP. While ALP simulates adversarial example X′ by the FGSMk attack, TRADES simulates
X′ by solving argmaxX′∈B(X,ε) φ(f(X)f(X′)/λ). Moreover, while ALP uses the `2 loss between
f(X) and f(X′) to regularize the training procedure without theoretical guarantees, TRADES
uses the classification-calibrated loss according to Theorems 51 and 52.

Heuristic algorithm. In response to the optimization formulation (4.33), we use two heuristics
to achieve more general defenses: a) extending to multi-class problems by involving multi-class
calibrated loss; b) approximately solving the minimax problem via alternating gradient descent.
For multi-class problems, a surrogate loss is calibrated if minimizers of the surrogate risk are also
minimizers of the 0-1 risk [184]. Examples of multi-class calibrated loss include cross-entropy
loss. Algorithmically, we extend problem (4.33) to the case of multi-class classifications by
replacing φ with a multi-class calibrated loss L(·, ·):

min
f

E
{
L(f(X),Y) + max

X′∈B(X,ε)
L(f(X), f(X′))/λ

}
, (4.35)

where f(X) is the output vector of learning model (with softmax operator in the top layer for
the cross-entropy loss L(·, ·)), Y is the label-indicator vector, and λ > 0 is the regularization
parameter. The pseudocode of adversarial training procedure, which aims at minimizing the
empirical form of problem (4.35), is displayed in Algorithm 18.

The key ingredient of the algorithm is to approximately solve the linearization of inner
maximization in problem (4.35) by the projected gradient descent (see Step 7). We note that xi is
a global minimizer with zero gradient to the objective function g(x′) := L(f(xi), f(x′)) in the
inner problem. Therefore, we initialize x′i by adding a small, random perturbation around xi in
Step 5 to start the inner optimizer. More exhaustive approximations of the inner maximization
problem in terms of either optimization formulations or solvers would lead to better defense
performance.

4.3.5 Experimental results

In this section, we verify the effectiveness of TRADES by numerical experiments. We denote
by Aadv(f) := 1 − Radv(f) the robust accuracy, and by Anat(f) := 1 − Rnat(f) the natural
accuracy on test dataset. The pixels of input images are normalized to [0, 1].
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Algorithm 18 Adversarial training by TRADES
1: Input: Step sizes η1 and η2, batch size m, number of iterations K in inner optimization,

network architecture parametrized by θ
2: Output: Robust network fθ
3: Randomly initialize network fθ, or initialize network with pre-trained configuration
4: Repeat until convergence
5: Read mini-batch B = {x1, ...,xm} from training set
6: For i = 1, ...,m (in parallel)
7: x′i ← xi + 0.001 · N (0, I), whereN (0, I) is the Gaussian distribution with zero mean and

identity variance
8: For k = 1, ..., K
9: x′i ← ΠB(xi,ε)(η1sign(∇x′iL(fθ(xi), fθ(x

′
i))) +x′i), where Π is the projection operator

10: End For
11: End For
12: θ ← θ − η2

∑m
i=1∇θ[L(fθ(xi),yi) + L(fθ(xi), fθ(x

′
i))/λ]/m

Optimality of Theorem 51

We verify the tightness of the established upper bound in Theorem 51 for binary classification
problem on MNIST dataset. The negative examples are ‘1’ and the positive examples are ‘3’.
Here we use a Convolutional Neural Network (CNN) with two convolutional layers, followed by
two fully-connected layers. The output size of the last layer is 1. To learn the robust classifier, we
minimize the regularized surrogate loss in Eqn. (4.33), and use the hinge loss in Table 4.4 as the
surrogate loss φ, where the associated ψ-transform is ψ(θ) = θ.

To verify the tightness of our upper bound, we calculate the left hand side in Theorem 51, i.e.,

∆LHS = Radv(f)−R∗nat,

and the right hand side, i.e.,

∆RHS = (Rφ(f)−R∗φ) + E max
X′∈B(X,ε)

φ(f(X′)f(X)/λ).

As we cannot have access to the unknown distribution D, we approximate the above expectation
terms by test dataset. We first use natural training method to train a classifier so as to approximately
estimateR∗nat andR∗φ, where we find that the naturally trained classifier can achieve natural error
R∗nat = 0%, and loss value R∗φ = 0.0 for the binary classification problem. Next, we optimize
problem (4.33) to train a robust classifier f . We take perturbation ε = 0.1, number of iterations
K = 20 and run 30 epochs on the training dataset. Finally, to approximate the second term
in ∆RHS, we use FGSMk (white-box) attack (a.k.a. PGD attack) [141] with 20 iterations to
approximately calculate the worst-case perturbed data X ′.

The results in Table 4.5 show the tightness of our upper bound in Theorem 51. It shows that
the differences between ∆RHS and ∆LHS under various λ’s are very small.
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Table 4.5: Theoretical verification on the optimality of Theorem 51.
λ Aadv(f) (%) Rφ(f) ∆ = ∆RHS −∆LHS

2.0 99.43 0.0006728 0.006708
3.0 99.41 0.0004067 0.005914
4.0 99.37 0.0003746 0.006757
5.0 99.34 0.0003430 0.005860

Table 4.6: Sensitivity of regularization hyperparameter λ on MNIST and CIFAR10 datasets.
MNIST CIFAR10

1/λ Aadv(f) (%) Anat(f) (%) Aadv(f) (%) Anat(f) (%)
0.1 91.09 ± 0.0385 99.41 ± 0.0235 26.53 ± 1.1698 91.31 ± 0.0579
0.2 92.18 ± 0.0450 99.38 ± 0.0094 37.71 ± 0.6743 89.56 ± 0.2154
0.4 93.21 ± 0.0660 99.35 ± 0.0082 41.50 ± 0.3376 87.91 ± 0.2944
0.6 93.87 ± 0.0464 99.33 ± 0.0141 43.37 ± 0.2706 87.50 ± 0.1621
0.8 94.32 ± 0.0492 99.31 ± 0.0205 44.17 ± 0.2834 87.11 ± 0.2123
1.0 94.75 ± 0.0712 99.28 ± 0.0125 44.68 ± 0.3088 87.01 ± 0.2819
2.0 95.45 ± 0.0883 99.29 ± 0.0262 48.22 ± 0.0740 85.22 ± 0.0543
3.0 95.57 ± 0.0262 99.24 ± 0.0216 49.67 ± 0.3179 83.82 ± 0.4050
4.0 95.65 ± 0.0340 99.16 ± 0.0205 50.25 ± 0.1883 82.90 ± 0.2217
5.0 95.65 ± 0.1851 99.16 ± 0.0403 50.64 ± 0.3336 81.72 ± 0.0286

Sensitivity of regularization hyperparameter λ

The regularization parameter λ is an important hyperparameter in our proposed method. We show
how the regularization parameter affects the performance of our robust classifiers by numerical
experiments on two datasets, MNIST and CIFAR10. For both datasets, we minimize the loss
in Eqn. (4.35) to learn robust classifiers for multi-class problems, where we choose L as the
cross-entropy loss.

MNIST setup. We use the CNN which has two convolutional layers, followed by two fully-
connected layers. The output size of the last layer is 10. We set perturbation ε = 0.1, perturbation
step size η1 = 0.01, number of iterations K = 20, learning rate η2 = 0.01, batch size m = 128,
and run 50 epochs on the training dataset. To evaluate the robust error, we apply FGSMk (white-
box) attack with 40 iterations and 0.005 step size. The results are in Table 4.6.

CIFAR10 setup. We apply ResNet-18 [115] for classification. The output size of the last layer
is 10. We set perturbation ε = 0.031, perturbation step size η1 = 0.007, number of iterations
K = 10, learning rate η2 = 0.1, batch size m = 128, and run 100 epochs on the training dataset.
To evaluate the robust error, we apply FGSMk (white-box) attack with 20 iterations and the step
size is 0.003. The results are in Table 4.6.

We observe that as the regularization parameter 1/λ increases, the natural accuracy Anat(f)
decreases while the robust accuracy Aadv(f) increases, which verifies our theory on the trade-off
between robustness and accuracy. Note that for MNIST dataset, the natural accuracy does not
decrease too much as the regularization term 1/λ increases, which is different from the results
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of CIFAR10. This is probably because the classification task for MNIST is easier. Meanwhile,
our proposed method is not very sensitive to the choice of λ. Empirically, when we set the
hyperparameter 1/λ in [1, 10], our method is able to learn classifiers with both high robustness
and high accuracy.

Adversarial defenses under various attacks

Previously, [13] showed that 7 defenses in ICLR 2018 which relied on obfuscated gradients may
easily break down. In this section, we verify the effectiveness of our method with the same
experimental setup under both white-box and black-box threat models.

MNIST setup. We use the CNN architecture in [58] with four convolutional layers, followed
by three fully-connected layers. We set perturbation ε = 0.3, perturbation step size η1 = 0.01,
number of iterations K = 40, learning rate η2 = 0.01, batch size m = 128, and run 100 epochs
on the training dataset.

CIFAR10 setup. We use the same neural network architecture as [164], i.e., the wide residual
network WRN-34-10 [249]. We set perturbation ε = 0.031, perturbation step size η1 = 0.007,
number of iterations K = 10, learning rate η2 = 0.1, batch size m = 128, and run 100 epochs on
the training dataset.

White-box attacks We summarize our results in Table 4.7 together with the results from [13]. We
also implement methods in [141, 196, 267] on the CIFAR10 dataset as they are also regularization
based methods. For MNIST dataset, we apply FGSMk (white-box) attack with 40 iterations
and the step size is 0.01. For CIFAR10 dataset, we apply FGSMk (white-box) attack with 20
iterations and the step size is 0.003, under which the defense model in [164] achieves 47.04%
robust accuracy. Table 4.7 shows that our proposed defense method can significantly improve
the robust accuracy of models, which is able to achieve robust accuracy as high as 56.61%. We
also evaluate our robust model on MNIST dataset under the same threat model as in [203] (C&W
white-box attack [58]), and the robust accuracy is 99.46%. See appendix for detailed information
of models in Table 4.7.

In addition, we also evaluate our models by using FGSMk with more perturbation steps. For
MNIST dataset, we use FGSMk (white-box) attack with 1, 000 iterations and the step size is
6× 10−5. For CIFAR10 dataset, we use FGSMk (white-box) attack with 1, 000 iterations and the
step size is 6 × 10−4. The results are in Table 4.7. It shows that the performance of TRADES
under various FGSMk attacks of varying k’s does not differ too much.

Black-box attacks We verify the robustness of our models under black-box attacks. We first train
models without using adversarial training on the MNIST and CIFAR10 datasets. We use the same
network architectures that are specified in the beginning of this section, i.e., the CNN architecture
in [58] and the WRN-34-10 architecture in [249]. We denote these models by naturally trained
models (Natural). The accuracy of the naturally trained CNN model is 99.50% on the MNIST
dataset. The accuracy of the naturally trained WRN-34-10 model is 95.29% on the CIFAR10
dataset. We also implement the method proposed in [164] on both datasets. We denote these
models by Madry’s models (Madry). The accuracy of [164]’s CNN model is 99.36% on the
MNIST dataset. The accuracy of [164]’s WRN-34-10 model is 85.49% on the CIFAR10 dataset.
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Table 4.7: Comparisons of TRADES with prior defense models under white-box attacks.
Defense Under which attack Dataset Distance Anat(f) Aadv(f)

[53] [13] CIFAR10 0.031 (`∞) - 0%
[163] [13] CIFAR10 0.031 (`∞) - 5%
[77] [13] CIFAR10 0.031 (`∞) - 0%

[213] [13] CIFAR10 0.031 (`∞) - 9%
[175] [13] CIFAR10 0.015 (`∞) - 15%
[240] FGSM20 (PGD) CIFAR10 0.031 (`∞) 27.07% 23.54%
[164] FGSM20 (PGD) CIFAR10 0.031 (`∞) 87.30% 47.04%
[267] FGSM20 (PGD) CIFAR10 0.031 (`∞) 94.64% 0.15%
[141] FGSM20 (PGD) CIFAR10 0.031 (`∞) 85.25% 45.89%
[196] FGSM20 (PGD) CIFAR10 0.031 (`∞) 95.34% 0%

TRADES (1/λ = 1) FGSM1,000 (PGD) CIFAR10 0.031 (`∞) 88.64% 48.90%
TRADES (1/λ = 6) FGSM1,000 (PGD) CIFAR10 0.031 (`∞) 84.92% 56.43%
TRADES (1/λ = 1) FGSM20 (PGD) CIFAR10 0.031 (`∞) 88.64% 49.14%
TRADES (1/λ = 6) FGSM20 (PGD) CIFAR10 0.031 (`∞) 84.92% 56.61%
TRADES (1/λ = 1) DeepFool (`∞) CIFAR10 0.031 (`∞) 88.64% 59.10%
TRADES (1/λ = 6) DeepFool (`∞) CIFAR10 0.031 (`∞) 84.92% 61.38%
TRADES (1/λ = 1) LBFGSAttack CIFAR10 0.031 (`∞) 88.64% 84.41%
TRADES (1/λ = 6) LBFGSAttack CIFAR10 0.031 (`∞) 84.92% 81.58%
TRADES (1/λ = 1) MI-FGSM CIFAR10 0.031 (`∞) 88.64% 51.26%
TRADES (1/λ = 6) MI-FGSM CIFAR10 0.031 (`∞) 84.92% 57.95%
TRADES (1/λ = 1) C&W CIFAR10 0.031 (`∞) 88.64% 84.03%
TRADES (1/λ = 6) C&W CIFAR10 0.031 (`∞) 84.92% 81.24%

[203] [13] MNIST 0.005 (`2) - 55%
[164] FGSM40 (PGD) MNIST 0.3 (`∞) 99.36% 96.01%

TRADES (1/λ = 6) FGSM1,000 (PGD) MNIST 0.3 (`∞) 99.48% 95.60%
TRADES (1/λ = 6) FGSM40 (PGD) MNIST 0.3 (`∞) 99.48% 96.07%
TRADES (1/λ = 6) C&W MNIST 0.005 (`2) 99.48% 99.46%

Table 4.8: Comparisons of TRADES with prior defenses under black-box FGSM40 attack on the
MNIST dataset. The models inside parentheses are source models which provide gradients to
adversarial attackers. The defense model ‘Madry’ is the same model as in the antepenultimate
line of Table 4.7. The defense model ‘TRADES’ is the same model as in the penultimate line of
Table 4.7.

Defense Model Robust Accuracy Aadv(f)
Madry 97.43% (Natural) 97.38% (Ours)

TRADES 97.63% (Natural) 97.66% (Madry)
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Table 4.9: Comparisons of TRADES with prior defenses under black-box FGSM20 attack on the
CIFAR10 dataset. The models inside parentheses are source models which provide gradients to
adversarial attackers. The defense model ‘Madry’ is implemented based on [164] and defined in
Section 4.3.5, and the defense model ‘TRADES’ is the same model as in the 11th line of Table 4.7.

Defense Model Robust Accuracy Aadv(f)
Madry 84.39% (Natural) 66.00% (Ours)

TRADES 87.60% (Natural) 70.14% (Madry)

For both datasets, we use FGSMk (black-box) method to attack various defense models.
For MNIST dataset, we set perturbation ε = 0.3 and apply FGSMk (black-box) attack with 40
iterations and the step size is 0.01. For CIFAR10 dataset, we set ε = 0.031 and apply FGSMk

(black-box) attack with 20 iterations and the step size is 0.003. Note that the setup is the same as
the setup specified in Section 4.3.5. We summarize our results in Table 4.8 and Table 4.9. In both
tables, we use two source models (noted in the parentheses) to generate adversarial perturbations:
we compute the perturbation directions according to the gradients of the source models on the
input images. It shows that our models are more robust against black-box attacks transfered
from naturally trained models and [164]’s models. Moreover, our models can generate stronger
adversarial examples for black-box attacks compared with naturally trained models and [164]’s
models.

Interpretability

We show that models trained by TRADES have strong interpretability.

Adversarial examples on MNIST and CIFAR10 datasets We show adversarial examples on
MNIST and CIFAR10. We apply foolbox9 [192] to generate adversarial examples, which is
able to return the smallest adversarial perturbations under the `∞-norm distance. The adversarial
examples are generated by using FGSMk (white-box) attack on the models described in Sec-
tion 4.3.5, including Natural models, Madry’s models and TRADES models. Note that the FGSMk

attack is foolbox.attacks.LinfinityBasicIterativeAttack in foolbox. See
Figure 4.12 and Figure 4.13 for the adversarial examples of different models on the MNIST and
CIFAR10 datasets.

Adversarial examples on Bird-or-Bicycle dataset We find that the robust models trained by
TRADES have strong interpretability. To see this, we apply a (spatial-tranformation-invariant)
variant of TRADES to train ResNet-50 models in response to the unrestricted adversarial examples
in the Bird-or-Bicycle competition [48]. The dataset in the competition is Bird-or-Bicycle, which
consists of 30,000 pixel-224× 224 images with label either ‘bird’ or ‘bicycle’. The unrestricted
threat models include structural perturbations, rotations, translations, resizing, 17+ common
corruptions, etc. Please refer to [48] for more detailed setup of the competition.

9Link: https://foolbox.readthedocs.io/en/latest/index.html
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We show in Figures 4.14 and 4.15 the adversarial examples by the boundary attack with
random spatial transformation on our robust model trained by the variant of TRADES. The
boundary attack [46] is a black-box attack method which searches for data points near the decision
boundary and attack robust models by these data points. Therefore, the adversarial images
obtained by boundary attack characterize the images around the decision boundary of robust
models. We attack our model by boundary attack with random spatial transformations, a baseline
in the competition. The classification accuracy on the adversarial test data is as high as 95% (at
80% coverage), even though the adversarial corruptions are perceptible to human. We observe that
the robust model trained by TRADES has strong interpretability: in Figure 4.14 all of adversarial
images have obvious feature of ‘bird’, while in Figure 4.15 all of adversarial images have obvious
feature of ‘bicycle’. This shows that images around the decision boundary of truly robust model
have features of both classes.

4.3.6 Case study: NeurIPS 2018 Adversarial Vision Challenge

Competition settings. In the NeurIPS 2018 Adversarial Vision Challenge [47], the adversarial
attacks and defenses are under the black-box setting. The dataset in this challenge is Tiny
ImageNet, which consists of 550,000 data (with our data augmentation) and 200 classes. The
robust models only return label predictions instead of explicit gradients and confidence scores.
The task for robust models is to defend against adversarial examples that are generated by the
top-5 submissions in the un-targeted attack track. The score for each defense model is evaluated
by the smallest perturbation distance that makes the defense model fail to output correct labels.

Competition results. The methodology in this section was applied to the competition, where our
entry ranked the 1st place in the robust model track. We implemented our method to train ResNet
models. We report the mean `2 perturbation distance of the top-6 entries in Figure 4.16. It shows
that our method outperforms other approaches with a large margin. In particular, we surpass the
runner-up submission by 11.41% in terms of mean `2 perturbation distance.

4.3.7 Proofs of our main results

In this section, we provide the proofs of our main results.

Proofs of Theorem 51

We denote by f ∗(·) := 2η(·)− 1 the Bayes decision rule throughout the proofs.
Lemma 75. For any classifier f , we have

Radv(f)−R∗nat

=E[1{sign(f(X)) 6= sign(f ∗(X)),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|]
+ Pr[X ∈ B(DB(f), ε), sign(f ∗(X)) = Y ].
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(d) adversarial examples of class ‘7’

Figure 4.12: Adversarial examples on MNIST dataset. In each subfigure, the image in the first
row is the original image and we list the corresponding correct label beneath the image. We show
the perturbed images in the second row. The differences between the perturbed images and the
original images, i.e., the perturbations, are shown in the third row. In each column, the perturbed
image and the perturbation are generated by FGSMk (white-box) attack on the model listed below.
The labels beneath the perturbed images are the predictions of the corresponding models, which
are different from the correct labels. We record the smallest perturbations in terms of `∞ norm
that make the models predict a wrong label.
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Figure 4.13: Adversarial examples on CIFAR10 dataset. In each subfigure, the image in the first
row is the original image and we list the corresponding correct label beneath the image. We show
the perturbed images in the second row. The differences between the perturbed images and the
original images, i.e., the perturbations, are shown in the third row. In each column, the perturbed
image and the perturbation are generated by FGSMk (white-box) attack on the model listed below.
The labels beneath the perturbed images are the predictions of the corresponding models, which
are different from the correct labels. We record the smallest perturbations in terms of `∞ norm
that make the models predict a wrong label (best viewed in color).
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(a) clean example (b) adversarial example by boundary
attack with random spatial transfor-
mation

(c) clean example (d) adversarial example by boundary
attack with random spatial transfor-
mation

(e) clean example (f) adversarial example by boundary
attack with random spatial transfor-
mation

Figure 4.14: Adversarial examples by boundary attack with random spatial transformation on the
ResNet-50 model trained by a variant of TRADES. The ground-truth label is ‘bicycle’, and our
robust model recognizes the adversarial examples correctly as ‘bicycle’. It shows in the second
column that all of adversarial images have obvious feature of ‘bird’ (best viewed in color).
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(a) clean example (b) adversarial example by boundary
attack with random spatial transfor-
mation

(c) clean example (d) adversarial example by boundary
attack with random spatial transfor-
mation

(e) clean example (f) adversarial example by boundary
attack with random spatial transfor-
mation

Figure 4.15: Adversarial examples by boundary attack with random spatial transformation on the
ResNet-50 model trained by a variant of TRADES. The ground-truth label is ‘bird’, and our robust
model recognizes the adversarial examples correctly as ‘bird’. It shows in the second column that
all of adversarial images have obvious feature of ‘bicycle’ (best viewed in color).
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Figure 4.16: Top-6 results (out of 1,995 submissions) in the NeurIPS 2018 Adversarial Vision
Challenge (Robust Model Track). The vertical axis represents the mean `2 perturbation distance
that makes robust models fail to output correct labels.

Proof. For any classifier f , we have

Pr(∃X′ ∈ B(X, ε) s.t. sign(f(X′)) 6= Y |X = x)

= Pr(Y = 1,∃X′ ∈ B(X, ε) s.t. sign(f(X′)) = −1|X = x)

+ Pr(Y = −1,∃X′ ∈ B(X, ε) s.t. sign(f(X′)) = 1|X = x)

= E[1{Y = 1}1{∃X′ ∈ B(X, ε) s.t. sign(f(X′)) = −1}|X = x]

+ E[1{Y = −1}1{∃X′ ∈ B(X, ε) s.t. sign(f(X′)) = 1}|X = x]

= 1{∃x′ ∈ B(x, ε) s.t. sign(f(x′)) = −1}E1{Y = 1|X = x}
+ 1{∃x′ ∈ B(x, ε) s.t. sign(f(x′)) = 1}E1{Y = −1|X = x}

= 1{∃x′ ∈ B(x, ε) s.t. sign(f(x′)) = −1}η(x) + 1{∃x′ ∈ B(x, ε) s.t. sign(f(x′)) = 1}(1− η(x))

=

{
1, x ∈ B(DB(f), ε),

1{sign(f(x)) = −1}(2η(x)− 1) + (1− η(x)), otherwise.

Therefore,

Radv(f)

=

∫

X
Pr[∃X′ ∈ B(X, ε) s.t. sign(f(X′)) 6= Y |X = x]dPrX(x)

=

∫

B(DB(f),ε)

Pr[∃X′ ∈ B(X, ε) s.t. sign(f(X′)) 6= Y |X = x]dPrX(x)

+

∫

B(DB(f),ε)⊥
Pr[∃X′ ∈ B(X, ε) s.t. sign(f(X′)) 6= Y |X = x]dPrX(x)

= Pr(X ∈ B(DB(f), ε))

+

∫

B(DB(f),ε)⊥
[1{sign(f(x)) = −1}(2η(x)− 1) + (1− η(x))]dPrX(x).
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We have

Radv(f)−Rnat(f
∗)

= Pr(X ∈ B(DB(f), ε)) +

∫

B(DB(f),ε)⊥
[1{sign(f(x)) = −1}(2η(x)− 1) + (1− η(x))]dPrX(x)

−
∫

B(DB(f),ε)⊥
[1{sign(f ∗(x)) = −1}(2η(x)− 1) + (1− η(x))]dPrX(x)

−
∫

B(DB(f),ε)

[1{sign(f ∗(x)) = −1}(2η(x)− 1) + (1− η(x))]dPrX(x)

= Pr(X ∈ B(DB(f), ε))−
∫

B(DB(f),ε)

[1{sign(f ∗(x)) = −1}(2η(x)− 1) + (1− η(x))]dPrX(x)

+ E[1{sign(f(X)) 6= sign(η(X)− 1/2),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|]
= Pr(X ∈ B(DB(f), ε))− E[1{X ∈ B(DB(f), ε)}min{η(X), 1− η(X)}]

+ E[1{sign(f(X)) 6= sign(η(X)− 1/2),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|]
= E[1{X ∈ B(DB(f), ε)}max{η(X), 1− η(X)}]

+ E[1{sign(f(X)) 6= sign(η(X)− 1/2),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|]
= Pr[X ∈ B(DB(f), ε), sign(f ∗(X)) = Y ]

+ E[1{sign(f(X)) 6= sign(f ∗(X)),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|].

Now we are ready to prove Theorem 51.

Theorem 51 (restated). Under Assumption 2, for any non-negative loss function φ such that
φ(0) ≥ 1, any measurable f : X → R, any probability distribution on X ×{±1}, and any λ > 0,
we have

Radv(f)−R∗nat ≤ ψ−1(Rφ(f)−R∗φ) + Pr[X ∈ B(DB(f), ε), c0(X) = Y ]

≤ ψ−1(Rφ(f)−R∗φ) + E max
X′∈B(X,ε)

φ(f(X′)f(X)/λ),

whereR∗φ := minf Rφ(f) and c0(·) = sign(2η(·)− 1) is the Bayes optimal classifier.

Proof. By Lemma 75, we note that

ψ(Radv(f)−Rnat(f
∗)− Pr[X ∈ B(DB(f), ε), sign(f ∗(X)) = Y ])

= ψ(E[1{sign(f(X)) 6= sign(f ∗(X)),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|])
≤ E[1{sign(f(X)) 6= sign(f ∗(X)),X ∈ B(DB(f), ε)⊥}ψ(|2η(X)− 1|)]
≤ E[1{sign(f(X)) 6= sign(f ∗(X))}ψ(|2η(X)− 1|)]
= E[1{sign(f(X)) 6= sign(f ∗(X))} × (H−(η(X))−H(η(X)))]

= E
[
1{sign(f(X)) 6= sign(f ∗(X))} ×

(
inf

α:α(2η(X)−1)≤0
Cη(X)(α)−H(η(X))

)]

≤ E[Cη(X)(f(X))−H(η(X))]

= Rφ(f)−R∗φ.
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Also, notice that

Pr[X ∈ B(DB(f), ε), sign(f ∗(X)) = Y ] ≤ Pr[X ∈ B(DB(f), ε)]

= E max
X′∈B(X,ε)

1{f(X′) 6= f(X)}

= E max
X′∈B(X,ε)

1{f(X′)f(X)/λ < 0}

≤ E max
X′∈B(X,ε)

φ(f(X′)f(X)/λ),

as desired.

Proofs of Theorem 52

Theorem 52 (restated). Suppose that |X | ≥ 2. Under Assumption 2, for any non-negative loss
function φ such that φ(x) → 0 as x → +∞, any ξ > 0, and any θ ∈ [0, 1], there exists a
probability distribution on X × {±1}, a function f : Rd → R, and a regularization parameter
λ > 0 such thatRadv(f)−R∗nat = θ and

ψ
(
θ−E max

X′∈B(X,ε)
φ(f(X′)f(X)/λ)

)
≤ Rφ(f)−R∗φ ≤ ψ

(
θ − E max

X′∈B(X,ε)
φ(f(X′)f(X)/λ)

)
+ξ.

Proof. The first inequality follows from Theorem 51. Thus it suffices to prove the second
inequality.

Fix ε > 0 and θ ∈ [0, 1]. By the definition of ψ and its continuity, we can choose γ, α1, α2 ∈
[0, 1] such that θ = γα1 + (1 − γ)α2 and ψ(θ) ≥ γψ̃(α1) + (1 − γ)ψ̃(α2) − ε/3. For two
distinct points x1,x2 ∈ X , we set PX such that Pr[X = x1] = γ, Pr[X = x2] = 1 − γ,
η(x1) = (1 + α1)/2, and η(x2) = (1 + α2)/2. By the definition of H−, we choose function
f : Rd → R such that f(x) < 0 for all x ∈ X , Cη(x1)(f(x1)) ≤ H−(η(x1)) + ε/3, and
Cη(x2)(f(x2)) ≤ H−(η(x2)) + ε/3. By the continuity of ψ, there is an ε′ > 0 such that ψ(θ) ≤
ψ(θ − ε0) + ε/3 for all 0 ≤ ε0 < ε′. We also note that there exists an λ0 > 0 such that for any
0 < λ < λ0, we have

0 ≤ E max
X′∈B(X,ε)

φ(f(X′)f(X)/λ) < ε′.

Thus, we have

Rφ(f)−R∗φ = Eφ(Y f(X))− inf
f
Eφ(Y f(X))

= γ[Cη(x1)(f(x1))−H(η(x1))] + (1− γ)[Cη(x2)(f(x2))−H(η(x2))]

≤ γ[H−(η(x1))−H(η(x1))] + (1− γ)[H−(η(x2))−H(η(x2))] + ε/3

= γψ̃(α1) + (1− γ)ψ̃(α2) + ε/3

≤ ψ(θ) + 2ε/3

≤ ψ

(
θ − E max

X′∈B(X,ε)
φ(f(X′)f(X)/λ)

)
+ ε.
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Furthermore, by Lemma 75,

Radv(f)−R∗nat = E[1{sign(f(X)) 6= sign(f ∗(X)),X ∈ B(DB(f), ε)⊥}|2η(X)− 1|]
+ Pr[X ∈ B(DB(f), ε), sign(f ∗(X)) = Y ]

= E|2η(X)− 1|
= γ(2η(x1)− 1) + (1− γ)(2η(x2)− 1)

= θ,

where f ∗ is the Bayes optimal classifier which outputs “positive” for all data points.
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Chapter 5

Conclusion and Discussion

Throughout this thesis, we have witnessed that sparse learning, deep networks and adversarial
learning are ubiquitous in various machine learning topics, ranging from learning from sparsity,
learning with low-rank approximations, to learning with deep neural networks and more. These
correspond to the data assumptions that the underlying data is sparse, is of low-rank, and is drawn
from low-dimensional manifold, respectively. On the other hand, although these new paradigms
have been widely applied to the real-world problems such as AlphaGo, AlphaStar, autonomous
vehicle, medical AI and so on, many fundamental questions remain unresolved. This requires us
to better understand these learning problems from ROSE perspective: Robustness, Optimization,
and Sample Efficiency.

5.1 Robustness

Robustness is always at the heart of machine learning models; without it, learning models cannot
be deployed to the real applications as they will be vulnerable to adversarial attacks. In this thesis,
we discuss the robustness of sparse active learning, robust PCA, as well as the classification by
deep neural networks, while we use three different techniques to analyze the models. For sparse
active learning, we show that the localization technique itself is robust to adversarial noise model;
for robust PCA, replacing `0 norm with `1 norm is robust to sparse corruption as well; and for
deep neural networks, we identify a trade-off between robustness and accuracy that serves as a
guiding principle in the design of defenses against adversarial examples. Our contributions are not
only from theoretical aspects, but also are from practical aspects. For example, we implement our
robust training algorithms of supervised classification by deep neural networks. The methodology
is the winning submission of NeurIPS 2018 Adversarial Vision Challenge, in which we won the
first place out of 1,995 submissions, surpassing the runner-up approach by a large margin. Our
model TRADES also create a new record in the Unrestricted Adversarial Examples Challenge
hosted by Google.
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5.2 Optimization
Non-convex learning is notorious for its hardness to achieve global optimality in polynomial
time. For generic non-convex learning problems, it has been proved to be NP-hard to get global
optimality. However, if we can make use of nice structure of some non-convex learning problems,
we can hopefully solve for their global optimality in polynomial time. In this thesis, we show
that the idea works for many non-convex learning problems, ranging from margin-based active
learning under Massart and adversarial noise models, matrix factorization with random sampling
of its entries, to provable approximate global optimality of deep neural networks and GANs with
multi-branch architecture. At the core of our analysis is the duality gap which serves as a measure
to characterize the non-convexity of learning problems.

5.3 Sample Efficiency
This thesis also cares about the sample/label efficiency of sparse learning algorithms, targeting
on designing learning algorithms with (near-)optimal sample complexity. This requires us to
understand the hardness of problem independent of any specific algorithm (by showing the lower
bound), as well as providing tight upper bound by analyzing the proposed algorithms. For almost
all the problems that were studied in this thesis (we did not try to discuss the sample complexity
of learning by deep neural network), we provide tight (upper and lower) bounds for the sample
complexity of sparse learning problems. These models include margin-based active learning under
Massart and adversarial noise models, adaptive compressed sensing, matrix completion, robust
PCA, and property testing of matrix rank.

5.4 Future Directions
Finally, we propose some interesting directions for the future study.

5.4.1 Small-data learning by self-supervised and semi-supervised learning

Supervised learning has been widely applied to various fields ranging from computer vision to
natural language processing. However, the framework is data-hungry: to learn a deep neural
network for image classification tasks, it typically requires more than 10, 000 labelled data, while
collecting labels are labor-intensive and expensive. Therefore, small-data learning has become
more and more popular in recent years. It will not only reduce the cost of data collection,
but small data is also friendly to short-time training procedures. This is highly related to the
“sample-efficiency” theme in this thesis.

We are particularly interested in how to use the structure of data itself to learn representation
for some pretext tasks, and apply the representation to the downstream tasks. This is also known
as the self-supervised learning, because the practicableness of the pretext tasks typically comes
from the fake labels of data itself. For example, given a image of cat with patch “cat nose” and
“cat right ear”, we know that the latter patch should be at the top right conner of the former patch.
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This positional relation serves as a fake label, and we hope that by taking this into account, the
number of true required labels can be reduced.

Semi-supervised learning is another way to improve the label complexity. Typically semi-
supervised learning includes co-training and Transductive SVM. We might combine our discovery
in this thesis with these new frameworks to achieve improved sample-efficient learning.

5.4.2 Robust learning by self-supervised and semi-supervised learning

The idea of self-supervised learning or co-training might be applied to the analysis of adversarial
examples as well. In the co-training and some pretext tasks in the self-supervised learning, there
are two views X1 and X2 for each instance X = (X1,X2). For example, X may represent an
image of a cat, X1 represents a patch of the image corresponding to cat nose, and X2 represents a
patch of the image corresponding to cat’s right ear. Therefore, X1 and X2 are two different views
of the same cat image X. However, X1 and X2 are highly related: it is known that X2 should
be at the top right conner compared with the position of X1 in the image. Suppose there is an
adversary who generates an adversarial example X′ = (X′1,X

′
2) by adding small perturbation

on the top of X = (X1,X2), that is, ‖X − X′‖ ≤ ε. Since the standard training method of
Deep Neural Networks (DNNs) implicitly processes each patch separately without taking into
account the global relations among various patches in the image (see [45]), it is quite possible that
DNNs fail to recognize that X′2 should be at the top right conner of X′1. With this, we can detect
whether a given image is an adversarial example or not. Furthermore, if we extract two features
related to two different views X1 and X2 with considerations of their positional relationship,
the DNNs trained by the two features intuitively should be much more robust to the adversarial
examples, because there is one extra constraint (e.g., the positional relationship) for the generation
of adversarial examples, which is harder. In summary, the “consistency” and “compatibility”
between the two views X1 and X2 in the language of self-supervised learning and co-training
might play a key role in the defense against adversarial examples (X′1,X

′
2), in the hope that X′1

might be inconsistent and incompatible with X′2.

Another interesting open question is that whether unlabeled data may help alleviate the
vulnerability of DNNs to adversarial examples. It is known that adversarially robust generalization
requires more data [205]. However, labeled data is very expensive, while unlabeled data is cheap
to collect. So it is interesting to see whether unlabeled data (especially in the framework of semi-
supervised learning) can help. Fortunately, model (4.35) has been ready for this purpose: note
that the second term in model (4.35) measures the difference between f(X) and its adversarial
counterpart f(X′); no label information is required here. Therefore, model (4.35) can be directly
applied to the semi-supervised framework (using the unlabeled data to estimate the second term
more precisely without the requirement of label information). In fact, there are some previous
works which have explored this idea in the name of virtual adversarial training [171]. However,
there is no theoretical support in this line of research. The existing analysis of co-training might
be a good starting point for this problem.
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5.4.3 Other potential directions
Perturbation resilience is a famous data assumption that the optimum clustering to the objective is
preserved under small multiplicative perturbations to distances between points [19, 23]. This data
assumption may have straightforward connections with the analysis of TRADES in Section 4.3:
the success of the regularization term in Equ. (4.35) may have implicitly built upon perturbation
resilience, as it requires the neighbour of data points should have stable output. It is interesting to
see how the techniques of perturbation resilience [19, 23] can be applied to the robustness analysis
of supervised learning.
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