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Abstract

Virtually all methods of learning dynamic models from datarsfrom the same
basic assumption: that the learning algorithm will be pded with a single or mul-
tiple sequences of data generated from the dynamic modeletd, in quite a few
modern time series modeling tasks, the collection of rédidine series data turns
out to be a major challenge, due to either slow progressidineoflynamic process of
interest, or inaccessibility of repetitive measuremeritdhe same dynamic process
over time. In most of those situations, however, we obsdraeit is easier to col-
lect a large amount of non-sequence samples, or randomtsstaps the dynamic
process of interest without time information.

This thesis aims to exploit such non-sequence data in legenfew widely used
dynamic models, including fully observable, linear and lirear models as well as
Hidden Markov Models (HMMs). For fully observable models point out several
issues on model identifiability when learning from non-sauee data, and develop
EM-type learning algorithms based on maximizing approxeii&elinood. We also
consider the setting where a small amount of sequence datvailable in addition
to non-sequence data, and propose a novel penalized leasesapproach that uses
non-sequence data to regularize the model. For HMMs, we drgpiration from
recent advances in spectral learning of latent variableatsoand propose spectral
algorithms thatprovablyrecover the model parameters, under reasonable assump-
tions on the generative process of non-sequence data aricliéhenodel. To the
best of our knowledge, this is the first formal guarantee amnimg dynamic mod-
els from non-sequence data. We also consider the case wtlkerséquence data
are available, and propose learning algorithms that, alsarfully observable case,
use non-sequence data to provide regularization, but do@s combination with
spectral methods. Experiments on synthetic data and deeatalata sets, includ-
ing gene expression and cell image time series, demonshatffectiveness of our
proposed methods.

In the last part of the thesis we return to the usual settingeafning from
sequence data, and consider learning bi-clustered veatorragressive models,
whose transition matrix is both sparse, revealing signitieaeractions among vari-
ables, and bi-clustered, identifying groups of variabled hiave similar interactions
with other variables. Such structures may aid other legrtasks in the same do-
main that have abundant non-sequence data by providingy lbegularization in our
proposed non-sequence methods.
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Chapter 1

Introduction

Learning dynamic models from data is the traditional togisystem identification [Ljung, 1999]
in control theory and many algorithms have been proposeithelmachine learning literature, the
learning of temporal graphical models, such as dynamic 8iapenetworks [Ghahramani, 1998a;
Murphy, 2002], and the learning of various types of Markowd®lg [e.g., Abbeel and Ng, 2005;
Beal et al., 2002; Ghahramani, 1998b; Hsu et al., 2009; Rapi®89; Song et al., 2010], have
been extensively studied.

Virtually all methods of learning dynamic models from datarsfrom the same basic as-
sumption: that the learning algorithm will be provided wilsingle or multiple sequences of
data generated from the dynamic model. However, in quitevanf@dern dynamic modelling
tasks, a major difficulty turns out to be the collection ofable time series data. In some of these
tasks, such as learning dynamic models of galaxy or stau@wgal the dynamics of the processes
of interest are far too slow for researchers to collect ssswe data points showing any mean-
ingful changes. At more modest time scales, the same proatesas in the understanding of
slow-evolving human diseases such as Alzheimer’s or Pswokiis, which may progress over a
decade or more. In other situations, the dynamic process@fast may not be able to undergo
repetitive measurements, so researchers have to measliggeninstances of the same process
while maintaining synchronization among these instanCe® such example is gene expression
time series. In their study, Tu et al. [2005] measured exgioesprofiles of yeast genes along
consecutive metabolic cycles. Due to the destructive paiftithe measurement technique, they
collected expression data from multiple yeast cells. Ireotd obtain reliable time series data,
they spent a lot of effort developing a stable environmengyiochronize the cells during the
metabolic cycles. Yet, they point out in their discussioat such a synchronization scheme may
not work for other species, e.g., certain bacteria and fuagjieffectively as for yeast. Another
example is cell image time series. In a recent study [Buck g2@09] on cell cycle dependence
of protein subcellular location inferred from images, thehers discussed some challenges in
obtaining time series of cell images...“time-lapse images can be more difficult to obtain than
single images of cells because many microscopes do notamraaviable environment for the
cells they image (e.g., cells die after some time, and evele alive they are not under con-
stant conditions). Furthermore, repeated excitation oésiyor fluorescence imaging causes
photobleaching, reducing signal and leading to toxic clehchanges (phototoxicity), further
perturbing cells:



Table 1.1: Summary of thesis work

Model Class
First-order Observable | Hidden Markov Model

* Non-sequence data as regularization

=
+ O g }

g = ¢ | * Significant improvement over standard sequence-only methods
=2 g when sequence data is few

g‘ =] [Chapters 4 and 6]
= * EM-type algorithms * Spectral algorithms with

2 = $ | maximizing approximate formal guarantee

< g S| likelihood » First theoretical statement on
Sl g » Synthetic data, gene learning from non-sequence
S |= S| expressions and cell images data

Qe @ -

[Chapter 3] [Chapter 5]

Learning Bi-clustered Vector Auto-regressive Model [Chapter 7]

While obtaining reliable time series can be difficult, it isesf easier to collect non-sequence
samples, or snapshots of the dynamic process of interesteample, the Sloan Digital Sky
Survey (SDS@)has collected images of millions of celestial objects, ezfalihich may be in a
different phase of its life cycle. In medical sciences, &stst studying Alzheimer’s or Parkin-
son’s can collect samples from his or her current pool ofgrasi, each of whom may be in a
different stage of the disease. Or in gene expression daatysrent technology already enables
large-scale collection of static gene expression datas #lso the case in cell image analysis,
as concluded by Buck et al. [2009]A“method using un-synchronized cells with single-image
capture would have the advantages of avoiding repeated arpds fluorescence excitation
(permitting higher-energy exposure to obtain better slyaad fewer environment viability re-
quirements.

More broadly, in social and medical sciences it is usually ¢hse thakongitudinal study
the collection and analysis of data from the same subjeats long periods of time, is more
powerful but also expensive thaross-sectional studyvhich uses observations collected from a
large or representative portion of the population withiharstime frame. With recent advances
in sensing technology, there will likely be a large increaseross-sectional data in various
domains, and it would be great if they can be used not onlyesssectional study but also to
aid longitudinal study.

1.1 Thesis Summary

Motivated by challenges in time series data collection feaugety of modern dynamic modeling
tasks, we propose and study several methods for learningugadynamic models using non-

http://www.sdss.org/



sequence data that lack time information but are easy tarobable 1.1 summarizes our thesis
work and contributions. In brief, we consider learning t@asses of dynamic models: first-order
observable models and hidden Markov models (HMMs), underdmnditions on the input data.
When the input data consists of both sequence and non-segs@mples, our proposed methods
use non-sequence data as regularization to existing seengarty learning methods, and achieve
significant improvement when sequence data is few. In therdoallenging situation where all
the input data are non-sequence, our methods for learnstgofider observable models maxi-
mize approximate likelihood functions via EM-type procegk) and obtain encouraging results
on synthetic data as well as several real data sets, ingugBne expression data and cell im-
ages. For HMMs, we take advantage of recent advances irrapleetrning [Anandkumar et al.,
2012a] and identify reasonable generative assumptionsmsaquence data that lead to spectral
methods with consistent parameter learning guaranteetheloest of our knowledge, this is the
first theoretical statement on learning from non-sequeiata.d

1.2 Thesis Overview

After surveying related work in Chapter 2, we first consideCinapters 3 and|/4 learning fully
observable dynamic models. In Chapter 3, we assume the otdyadailable are snapshots
taken from multiple instantiations of a dynamic processetnown times, and the dynamic pro-
cess falls in the class of fully observable, discrete-tifitet-order linear or non-linear dynamic
models. Acknowledging several issues in model identifigbive developed EM-type learn-
ing algorithms that maximize approximate likelihood fuoaos, along with novel initialization
methods based on the idea of temporal smoothing. In a nunfleeperiments on synthetic and
real data sets including gene expression data and cell sndgeproposed algorithms are able to
learn moderately to highly accurate dynamic models, butrag suffer severely from the model
ambiguity inherent in this setting.

We thus in Chapter|4 consider slightly stronger assumptiamsddition to non-sequence
data, a small amount of sequence data are also availableedtvet the class of dynamic mod-
els to first-order discrete-time stable vector auto-regiues(VAR) models, and assume the non-
sequence data are independent samples drawn from thenatgtaistribution of the VAR model.
The latter assumption is valid when, for example, snapsretsaken from multiple trajectories
of a VAR process after they have reached stationarity. Basd¢tlese assumptions, we proposed
learning algorithms that minimize a new penalized leastsgwbjective, which incorporates
non-sequence data in a novel regularization term that dieswiolation of the Lyapunov equa-
tion relating the autoregressive model to the covariandts sfationary distribution. Experiments
demonstrate that when the amount of sequence data is somgtiraposed method of exploiting
non-sequence data can significantly improve over stan@arting algorithms, which use only
the sequence data.

Although fully observable models like VAR are useful, in ngaapplications only a subset
of the variables in the underlying dynamical system can seoked. Thus in Chapters 5 and
6/ we turn to learning dynamic models with hidden states. At fitance this seems formidable
because even when sequence data are available, learntenksthte models is in general dif-
ficult both statistically and computationally. However,emerging line of research in machine

3



learning, known as spectral learning, has recently deeslgpatistically consistent and computa-
tionally efficient algorithms for learning from sequencéalperhaps the most widely-used class
of hidden-state models, hidden Markov models (HMMs) [Artandar et al., 2012b; Hsu et al.,
2009; Siddiqi et al., 2010; Song et al., 2010]. Unlike tramfial EM-based learning methods,
which are vulnerable to bad local optima, these new methoelbased on spectral decomposi-
tion, such as Singular Value Decomposition (SVD), of enggiimoments computed from data,
and therefore result innique, local-minima freestimates of model parameters, allowing formal
statistical guarantees to be established. Building orethesent advances, we propose spectral
algorithms for learning HMMs that exploit non-sequenceadat

In Chapter 5 we consider the case where only non-sequencedatvailable. However,
unlike in Chapter 3 where all the data points are assumed ®thasame initial condition, here
we neednultiple setof non-sequence data, each generated from a differerdlihidden-state
distribution. The main contribution of this chapter is temdify conditions on the initial hidden-
state distributions, by drawing connections to spectratrigg of Latent Dirichlet Allocation
(LDA) models [Anandkumar et al., 2013], as well as distribnal assumptions on the missing
time information that allow us to develop spectral algarithwith formal guarantees on HMM
parameter learning. To the best of our knowledge, thesehardirst theoretical guarantees in
learning from non-sequence data. Compared with EM-baseldadgin simulation, our spectral
algorithms perform significantly better in parameter estiion.

Then in Chapter 6 we look at the situation where, as in Chaptsode sequence data are
available and the non-sequence data consist of indepesdsgles from the stationary distri-
bution of the underlying HMM. Extending state-of-the arespal algorithms for learningb-
servable representatioof HMMs [Hsu et al., 2009; Siddiqi et al., 2010; Song et al.1@] our
proposed methods obtain improved estimates of lower-oraenents by minimizing estimation
error on the sequence data plus a regularization term ondhesaquence data, and then apply
spectral decomposition to the improved moment estimatésrdstingly, although the high-level
idea is similar to that of Chapter 4 and HMMs are more complexi@®than VARSs, the opti-
mization problems in this chapter turn out to be convex wagtbe ones in Chapter 4 are non-
convex. Experiments on simulated data and sensor recadihguman activities demonstrate
improvement over existing sequence-only spectral aligorst

In the final part of the thesis, Chapter 7, we return to the ti@utl setting of learning from
sequence data and focus on learning structured vectorregtessive models. Although this
chapter is not directly related to the main theme of the thdbe methodology developed here
can aid learning in the non-sequence setting through iisat#d structure of the VAR model,
which may guide the design of the regularization terms irptleposed EM-type methods (Chap-
ter/3) when applied to non-sequence data in the same domarar&\motivated by problems
in biological time series analysis, where dependency geaphclustering of variables, such as
expression levels of genes, are two of the most commonlyldastguctures. In spite of be-
ing closely related, these two structures are usually edéchin separate procedures. We thus
propose a fully Bayesian approach to simultaneous learoirtese two structures for vector
auto-regressive models, using a novel bi-clustered angisp@romoting prior for the transition
matrix and an efficient blocked Gibbs sampling proceduregfmsterior inference. Applied to a
T-cell activation gene expression time series data setd®aet al., 2004], this new method finds
a more biologically meaningful clustering of genes thanestd-the art gene expression time

4



series clustering methods.
This thesis contains our published work in several venues:
Chapter 3 [Huang and Schneider, 2009; Huang et al., 2010]

Chapter 4 [Huang and Schneider, 2011]
Chapter 5 [Huang and Schneider, 2013b]
Chapter 6 [Huang and Schneider, 2013a]
Chapter 7 [Huang and Schneider, 2012]






Chapter 2
Related Work

In a good number of applications, a critical issue is to ustderd the dynamics or temporal de-
pendency underlying observed data that lack temporal aresgdl information. As a result,
various methods were proposed independently in differezdsa but to the best of our knowl-
edge, no prior work studies the general problem of learnyradhic models from non-sequence
data as comprehensively as this thesis. In this chapter weysseveral such applications and
briefly explain the methods developed therein.

As mentioned in Chapter 1, cell imaging has become a usefllftocstudying certain
types of cell dynamics, such as variation in protein sulbtallocalization during the cell cycle
[Buck et al., 2009]. Instead of relying on time-series calages as in most previous studies,
Buck et al. [2009] propose to utilize static, asynchronawepshots taken from multiple cells at
various phases of the cell cycle because, as quoted in CHasiech images are easier to obtain
on a large scale than time-series images. Their approaahfisst extract a one-dimensional
surrogate of cell cycle time from static cell image featurgsnanifold learning techniqd:é,sand
then use this surrogate in place of cell cycle time for subsatcell-cycle dependence tests.
Through analysis of real data, they confirm that such a sateoig well correlated with the cell
cycle. However, they did not perform explicit dynamic maodg| i.e, building models to predict
future observations.

A closely related problem studied in a number of disciplireethat of ordering a set of ob-
jects. Depending on the domain of interest, an ordering @aimterpreted as progression of
time, some coherent sequential structure or monotonicgrtgpln natural language processing,
the task of multi-document summarization requires ordgohsentences selected from differ-
ent documents, and automatic title generation technigaestaict a headline by selecting and
ordering words from the input text [Barzilay and Elhadad020Deshpande et al., 2007]. In
multimedia analysis and retrieval, automatic generatibwiadeo or slideshow from photos in-
volves laying down a coherent and smoothly transitionirgusace of scenes [Chen et al., 2006;
Hua et al., 2004]. Some of the techniques developed for tteestes are tailored to a specific
problem domain, and most of them have access to some extaraaledge about orderings

IManifold learning techniques have been used in dynamic inledening to identify a subspace where the
dynamics reside, leading to more accurate models. Seexfon@e, [Boot and Gordon, 2011] and references
therein. Similar techniques can be used in combination aitiproposed methods as a pre-processing step to make
the problem lower-dimensional and thus easier.



of objects, such as time stamps of photos or grammaticas fiolesentence compositions. In
contrast, we consider a more general problem setting wiglidsron no or little domain specific
knowledge, though our proposed methods make more expladietrassumptions.

The computational biology community has also studied tludlem of ordering objects, in
the context of finding a temporal ordering of static, asyonaus microarray measurement data
[Gupta and Bar-Joseph, 2008; Magwene et al., 2003]. Theogezpmethods therein are less
domain dependent and fall in a large family of algorithmsdolving thecurve reconstruction
problem which has been studied in various fields such as computdtgmometry (e.g., Giesen
[1999)), statistics [Hastie and Stuetzle, 1989], and maekearning [Smola et al., 2001]. More
specifically, Magwene et al. [2003] proposed to reconstifuetemporal ordering of microarray
samples through finding the minimum spanning tree on thetgiamed by the sample points,
while Gupta and Bar-Joseph [2008] proposed to solve aniostaf the traveling salesman prob-
lem (TSP) and proved that under certain conditions on thealyos generating the samples, the
optimal TSP path accurately reconstructs the true ordednkey assumption behind these two
methods is that temporally close sample points should adsepatially close. Both of these
methods are unable to choose an overall direction of timenigaltion due to the invariance to
time direction in their objective functions. Our problenitsey differs from the aforementioned
in that we consider snapshots franultiple trajectorief some dynamic process rather than out-
of-order samples from single sequenceMoreover, we focus more on learning a model for the
underlying dynamics than ordering the data points. Althotige non-sequence data considered
in our settings, as formalized in later chapters, can beretdbased on their unobserved time
stamps, such an ordering may not be very useful to existimguayc model learning methods
because these methods require as input sequences trélokisgme instances/er time. Nev-
ertheless, ordering objects is still a useful componenuinproposed methods in Chapter 3, but
the objects being ordered, instead of raw data points, ane sepresentative points discovered
by clustering algorithms.

Another problem involving learning dynamic models withéeitnporal ordering is the net-
work structure inference problem considered by Rabbat ¢2@08]. The authors point out that
in many situations, ranging from telecommunication neiwtomography problems to construc-
tion of biological signal pathways or social networks, tloalgs to reconstruct a directed graph
representing the underlying network structure, but the @vkilable data are sets of nodas
occurring in random walks on the graph without the order in which theyemasited. These
problem can be cast as learning a first-order Markov chaim fiata lacking ordering informa-
tion. To avoid the exponential-time complexity of enumirgll possible orderings, the authors
propose a polynomial-time, importance sampling based Ejdrahm with convergence guar-
antee to estimate the parameters of the Markov chain. kdy Rabbat et al. [2008], several
researchers in computational linguistics study the proldé&learning a bi-gram language model
from the commonly-used, order-invariant bag-of-wordsespntation of text corpus [Zhu et al.,
2008], and develop a similar sampling-based EM algorithm.il&#mpirically successful to
some extent, these algorithms, like most EM proceduresotibave guarantees on the quality
of their parameter estimates. Very recently, Gripon anddR&af2013] propose a combinatorial
algorithm for graph reconstruction from co-occurrenceadatd provide some theoretical guar-
antees on the reconstruction accuracy. However, theittseapply only to undirected graphs
and require the input to the algorithm to be the exact setfées of nodes that are connected but
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cycle-free in the graph. In Chapter 5 we also study the proldéhearning first-order Markov
chains from data lacking temporal information. Howevest&ad of data with hidden order-
ings, we consider data drawn from multiple, independei¢cttaries of the underlying Markov
chain, so there was no ordering to begin with. At first glarkearning in this setting may seem
more difficult than in the hidden-ordering setting, but ataded in Chapter 5, the independence
assumption in our setting actually makes learning easier.

In addition to the above general problem areas, there arespsoific problems we find rel-
evant to our work. One is collective inference on Markov nisd8heldon et al., 2008], which
finds the most likely collection of paths on a trellis grapbegi observations on the collective be-
havior of a group of dynamic objects. Their motivation wasréme out trajectories of individual
birds from aggregate statistics of an entire species ofatiigy birds. The other is connecting the
dots between news articles [Shahaf and Guestrin, 2010¢hnhiims to build a chronologicahd
coherent story line of news that connects a given pair ofistaand end articles, thereby pro-
viding readers a detailed description of the causal refatip between two events. A common
feature in both problems is the need of identifying struesuof sequentially matched objects
from partially ordered data. A similar situation arises meaccomponent of our methods, where
the data points are put into ordered clusters for furthec@ssing (Section 3.3). But instead of
finding hard matchings between data points in adjacentarisisive take a soft-matching type of
approach, updating the soft matching and the dynamic mdigehatingly.

While our focus is on learning from data lacking time or ordgrinformation, another com-
mon problem involving time in dynamic modeling is the migalinent of time measurements
across multiple sequences of observed data, due to intearnation of the dynamic process of
interest or measurement error. This problem arises in mamy $eries modeling tasks, such as
speech recognition [L. Rabiner, 1993; Vintsyuk, 1968],lgsia of gene expression time series
[Aach and Church, 2001], activity recognition [Junejo ef 2D11], and audio information re-
trieval [Chapter 4, Miller, 2007], bringing forth a large body of research, knawstatistics as
curve registration [Ramsay and Li, 1998; Silverman, 199%] i computer sciences as dynamic
time warping [Berndt and Clifford, 1994; Keogh and Ratanaataha, 2005]. The general idea
in these works is to first postulate a class of possible timuesfiormations or warping operations,
and then recover the most likely warping operation for eaokeovation by optimizing some
global matching score across all the data sequences. Theesudt is time-warped sequences
of observations that are in better alignment with one anmotéhile not directly related to our
thesis focus, these methods can potentially aid our workoinexample, an iterative, EM-like
manner, where time stamps and dynamic models are alteghatierestimated given the other
until convergence.

Finally, we briefly mention where our work lies in the vast spaf research on dynamical
systems conducted in physics and mathematics. Most dyaathieories are concerned with
the asymptotic behavior of some dynamical system, undéowsuassumptions on the phase or
state space of the system and the short-time evolution laatokand Hasselblatt, 1996]. But
our work studies in some sense the reverse problem, thaivesy gbservations that reflect the
global status of a dynamical system, we try to develop meghioalt figure out the short-time or
local evolution law.



10



Chapter 3

Learning Fully Observable Models From
Non-sequence Data

In this chapter, we are interested in learning first-ordéscrte-time, fully observable linear
dynamic models described by the following transition fumct

X(t—i—l) _ AX(t) + €(t+1)’ (31)

wherex® ¢ RP*! is the state vector at timg A € RP*? is the state transition matrix, ard

is the noise vector at time Such a model is also known as a first-order vector auto-ssgre
model (VAR) in the time series literature. For simplicityevassume hereafter thet, €® ~

N (- ]0,0%I),a Gaussian distribution with zero mean and covariartdewherel is the identity
matrix. However, the proposed methods in later sectionsaailbe extended to handle general
covariance matrices. The dynamical system also has a &itef &hich we denote as®. Thus,
the linear dynamic models we consider are fully characterizy® = {A, 02, x(0}.

When sequenced observations are available, a basic leametigpd is least-square linear
regression of the observations at timen the observations at time— 1, whose properties
have been studied extensively (see e.g., [Hamilton, 19944 problem without observed state
sequences is much more difficult. We assumethextecutions of the dynamic model (3.1) have
taken place, and from each execution we have observed & siatgl point drawn at random from
the sequence of states generated in that execution. THeisesdata points{x;, ...,x,}, each
from a different trajectory and having occurred at an unkn@eint in time. To avoid confusion
in indices, hereafter we use parenthesized super-script,x¢?, to denote the time index, but
sub-script, e.gx;, to denote the data index. A precise description of this geive process is
given in Algorithm 3.1 along with a graphical illustration.

We focus on estimatingl and o2, and treat the start stat€? as a nuisance parameter.
For an observatior;, if its immediate predecessat is known, then the likelihood is simply
N(x; | Ax;,0*I). Butx; is unknown, so we integrate it out with respect to the distitim one
time step earlier thar; and obtain the following likelihood:

[|xi—Ax||3
exp(— ) e
L(x; | 0,t;) = / (277022)5 N(x | pl=D, £l Dydx, (3.2)
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Algorithm 3.1 Sampling from multiple trajectories
1: Input: transition matrix4, 02, x| T.x, andn

2: for i = 1ton do fAl
3. Pick arandom time stampfrom {1,..., T }- Ix 3
4. fort=1tot;do P2
5: x® — AxtD 4 €@ € ~ N (-|0, 0%1). oS 2.525
6: end for X3 X‘A
7:  Setx; = x(t), '

8: end for o e

9: Output: A samplex;, X, ..., X,. =

wheret; denotes the true but unknown timexqf || - || is the vector two-norm, and the predeces-
sor distribution, by the closure of Gaussian under lineangformation, is Gaussian with mean
%1 and covarianc&® 1, where

2 A AN >,

3.3
0, t=0. (33)

p® =A@ y® . {
Since then data points are drawn independently, we can factorize Kediiood of the sample
points as

L(X17,Xn|0,t1,,tn) :HL<X1|97tl) (34)
=1

The maximization off (3.4) is a challenging task becauseuggested by (3.3), the transition
matrix A appears in/(3.4) as polynomials whose degrees depend onissegntime indices
t;'s. In the following sections we proposed methods that atluldifficulty by various approx-
imations to/(3.4), but before presenting our proposed nustheve first discuss several possibly
non-identifiable properties of the model when the true teralgaformation is missing.

3.1 Identifiability Issues

Consider a simple linear dynamic model with the followingis#ion matrix and initial point:
4 = |cos (22?:) —sin (272?’7) ’ O 1 ‘

sin (T) cos (T) 0
The ideal trajectory rolled out by this simple dynamic moliet on the unit circle in the two-

dimensional Euclidean space. Suppose we observe a setri$ imm the ideal trajectory, but
do not know their time indices. It is easy to see that all offtilewing dynamic models:

2nt 27t

Alt) = [2?5((%;@3 _Csisn(%)], te{+1,42,...,+(T - 1)},

as illustrated in Table 3.1, would explain the data equakyl wnder any reasonable measure of
goodness of fit. In the presence of process noise, some @& thedels may become less likely,
but it would still be hard to uniquely determine the true dymamodel.
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Table 3.1: An example demonstrating unidentifiability ofi¢i direction and speed

Data Three equally possible dynamic models
o © o o ° o O
[ [} [
° o 5 4 3 o 11 2 g o 4 By
d ° 2 ! 10 8 5@
L] L X 03 LAV
* 8 ' 12 ! 3 '
¢ ° ¢ 13. ¢ 5 ° ¢ 10
° o’ 10 12 of 4 9 o 6
o o ° i o 0 o ;

Table 3.2: An example demonstrating general unidentifigbil
Data Model 1 Model 2

The above example suggests two possibly non-identifialleguties of the model: the over-
all direction in time and the speed of the underlying dynamidn fact, Peters et al. [2009]
showed that under some linear dynamic models the true @ireict time is not identifiable. The
methods proposed in subsequent sections thus do not reeebeambiguities; the learnt model
may follow either of the two directions in time, but usuallyreesponds to the slowest dynamics.

Another perhaps more intriguing example is depicted in @&bR, which presents a non-
sequenced and noiseless data set in the left column and sgdpodynamic models in the right
column. Onthe one hand, according to our assumption of ¢esiixgd start state as in Algorithm
3.1, Model 1 should be favored over Model 2 under any reademabasure of goodness of fit
that incorporates such an assumption. On the other haney anckrtain level of noise and/or
some non-uniform sampling rate in the temporal domain, tta denerated from Model 1 may
be more similar to a cylinder than to a spiral, making ModelqRadly or even more likely to
have generated the data. There are more examples of thisstyple as a torus of points where
rotations around the short and the long circumferences eadal\nbe distinguished from each
other in the absence of any temporal information. Theaasétitvestigation into such issues as
conditions under which these ambiguities can or cannot belved is thus an important, but
challenging future direction.

13



3.2 Approximate Likelihood and Expectation Maximization

We present three methods for estimatihgndo? in Sections 3.2.1 to 3.2.3, based on maximizing
various approximations to the likelihood (3.4). The optation is carried out by Expectation
Maximization (EM) types of algorithms. Then Section 3.2ehtbnstrates extensions of these
three methods for learning nonlinear dynamic models, whielke use of reproducing kernels.

3.2.1 Unordered Approximation

We first remove the problem of unknown time indices by marigireg out the missing;’s.
According to the generative process in Algorithm 3.1, th&rdiutions oft;’s are independent
from A ando?, and also mutually independent. LEft;) denote the probability mass function
of t; € {1, ..., Thax}. We then write

,1—‘111 ax Tm ax

L(x1,...,%|0) = > -+ > L(X1,...,Xn, b1, .., 1]6)

t1=1 tnh=1

_ f . f <H L(Xi|0,ti)P<ti)>

t1=1 th=1 \i=1
n Tmax
= ] Lxil6,t:)P(t:).

=1 t;=1

Plugging in the conditional likelihood (3.2), we obtain
s (el e -
Lo xle) = T[> [/ ot NG, 50D ) P

. n exp( ||X12;;X||2 o (ti— _
_ (/ e Z/\/xm G0y pt) | dx |(3.5)

i=1

In the case ofP(t;) = 1/Thax, i-€. t;'s are uniformly distributed, and;,. is large, we have

Tmax ,Tmax t 1 E(tzfl)
ZNX|Mt 17 t I)P(tz) _ Z <X|[J, )

t —1 Tm ax

Tonn )

)

Q

t;=1 Trmax
which is the density that the data poifts,, ..., x,} are generated from. This gives another
view of the generative process: a random sample point isrfapproximately) from (3/6) and
an observation is created by applying (3.1) to it. Howeveg) still depends on the unknown
t;'s. To remove this dependency, we replace|(3.6) with its eicadiestimate given by the sample
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points we have. This together with (3.5) leads to the follmpapproximate likelihood:

~ " (Al
Lixi,....xil0) = ] (Ze p<_ 1)(22;02)3)> . (3.7)

i=1 \ j#i (n

We exclude the case that generates itself to avoid the degenerate estimate /. To avoid
overfitting, we impose a zero-mean Gaussian prioAamth precision\/ and an inverse Gamma
prior ono? with shape and scale parametarand3, leading to the approximate log-posterior:

[Ixi— Ax; |2

p 3 exp(— 5 ) ) A s
log P (011, ..., %x,) = Zlog (Z (n— 1)(227ra?)§ ) — §||A||% —(a+1)logo? — e
i=1 i
(3.8)

This is the representative form of the objective our firstmoetaims to maximize. Later in the
experiments we may use variants|of (3.8) such as allowingmgeneral noise variances, but all
the associated methods can be easily derived from the nebasdd on (3.8), which we present
below. Since there is no notion of ordering involved|in (38 refer to it as the Unordered
Approximation.

Before introducing our optimization algorithm, we pointtdbat (3.8) considers the data
points as if eaclx; were generated from some otherin the sample by (3!1). However, accord-
ing to Algorithm 3.1 nax; was generated from any othey in the sample. Such a discrepancy is
due to our replacing (3.6) with its empirical estimate, andramediate consequence is that
in (3.8) now accounts for not only the noisén the dynamic model (3.1), but also the approxi-
mation error introduced by replacing (3.6) with the empatidensity.

To present our learning algorithm, we observe that theilikeld (3.7) is a product of summa-
tions of Gaussian densities. This structure is also shayatelikelihood of Gaussian Mixture
Models (GMM), for which Expectation Maximization (EM) aldthms are the common choice
for estimation. Although (3.8) is not a GMM, its similar stture allows us to derive an EM
procedure with analytical update rules. We first introdutstent variable matrixy € {0, 1}"*"
such that

1, x;wasgenerated from; =
ij = . , JF
0, otherwise

(3.9)

j=1

Again, here %; was generated from;” is to be taken as an approximation due to our replacing
(3.6) with the data. We then rewrite (3.8) using the standarthtional equation (c.f. Section
9.4, [Bishop, 2006]):

logﬁUM(lel,...,xn) = logZﬁUM(e,Z|X1,...,Xn), (3.10)
Z

where

n l|x; — Ax ;2 Zij
3 exp — 5y A o
PUM(07Z’X1""7XN) = | | | | ( o )> exp <_§”AH%_0—2( +1)_ﬁ/02>

—_ 2 2
Pl iestet (n —1)(2mo?)z
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Algorithm 3.2 Expectation Maximization for (3.8)
Input: Data pointxy,...,x,
Initialize A () ando), setk = 0
repeat
UpdateZ ;1) by (3.11) with A, andof,

UpdateA ;.1 by (3.13) withZ(;.1.1) ando?

Updatea(QkH) by ) WithA(k+1) andZ(kH)
k—k+1
until The approximate log posterior (3.8) does not increase

is referred to as the complete posterior. Following thedtan EM derivation, in the E-step we
compute the posterior probability &f:

Po(0, Z|x1, ..., %)
PUM(0|X17 “ .. 7)(n)

Q(Z10,x1,...,x,) =

I

which simplifies as

llx; —Ax; 112
exp| — 7202

Zij = Q(Zij:1|0,x1,...,xn) = Zsﬂexp(—w

20

)’ i (3.11)

0, i= .

In the M-step we maximize the expectation of the log compgetsterior with respect to the
posterior probabilityQ (7|0, x4, . .., x,):

max g Q(Z|0,x1,...,xn)logﬁUM(O’,Z|x1,...,xn) —
0/
Z

N5 (XA p 2 A 2 B
max —;;le <T+§log(27m ) ) — §HAHF_ (a+1)logo” — =t (3.12)

whose solution has a simple form:

n n n n -1

i=1 j=1 i=1 j=1

n n o~ 2
o2 = Dict Ejzl Zij|l%; — Ax| +257 (3.14)
pn+2(a+1)

A summary of the EM procedure is given in Algorithm 3.2. Nokatt (3.14) can be easily
generalized to handle general covariance structures.

According to (3.11) and (3.12), we can view Algorithm 3.2 ageasion of the iteratively
re-weighted least square (IRLS) procedure. Although itinspée and often computationally
efficient, one may worry that without enforcing any direct consistency in th&;;’'s the EM
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(a) True dynamics (b) Degenerate estimate

Figure 3.1: Degenerate estimate by the unordered apprdriman 200 data points

algorithm may lead to degenerate dynamic models, espgaialen the sample size is limited.
In fact, this happens in our experiments on simulated data.thl/s propose a variant of (3.8)
that incorporates additional constraints in the next secti

Although our focus is learning first-order models, it is wortoting that the proposed EM
algorithm can be easily generalized to learn higher-ordedefs. For example, consider the
second-order model

x12) = AxD 4 Bx®) 4 42 D A(- | 0, 0%0).
Using approximations similar to those in (3.7), we may abtae following unordered approxi-

mate likelihood:

l[xi—Ax; —Bxy||*

~ - exp(— L )
L(x1,...,%,|0) = H(Z p<n_1)(2m2)’5 )

i=1 \kz£ji

The corresponding EM algorithm then involves a latent thweg tensor variableZ € {0, 1}
the E step computes posterior probabilities thats generated fronx,; andx; for all triples
i # j # k, and the M step solves weighted least square regressioh férando?.

3.2.2 Partially-ordered Approximation

As mentioned before, the replacement of the true state spaTdEty with the empirical density
results in the approximate likelihood (3.7), where the gettimts are treated as if each one were
actually generated from some other one. What might be motdgmaatic is such an approxima-
tion ignores the fact that there is a latent temporal ordgimduced by the unknown time indices
of the data points, even though the data points are drawmpérdiently. A possible consequence
of ignoring the latent ordering is a degenerate estimat@@fdynamic model, as illustrated in
Figure 3.1, which shows the true one-step displacementrsdix; — x; and the UM estimates.
On this data set, the UM likelihood of the true model is evems@dhan the degenerate estimate.
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In our experiments on synthetic data (Section 3.4), we fiml $ich degeneracy issues usually
arise when the data is small, say a few hundred points. Thosrisecond approach, we take
into account the ordering relation explicitly. To do so, wroduce a set of weight parameters
w;;'s, collectively denoted as an-by-n matrix w, and modify the approximate likelihood (3.7)

as follows: o |
~ T exp(— zgzxj )
Lo(x1,...,%,|0,w) : H le ( 27r02 wij) , (3.15)
ngS
inwhichS = {i:t;, <t; Vj},
Wij > 0, t < t;,
wij =0, t;>t, and Zw” =1,Vi¢gs. (3.16)
Wi = 0, VZ, j=1

The first set of constraints in (3.16) is to force the sumnmatio(3.15) to be consistent with
a global direction of time, while the normalization consgita are to maintain the notion of
approximating the true state space density with an empuleasity. The set denotes the data
points that are the earliest in time (hence cannot be gestefedm other data points), which
can be viewed as rough estimates of the first state. If therlymog dynamic model exhibits a
periodic behavior (such as rotation on a plane), the truediege may not be identifiable but
ando? still may be. In that caseS is chosen arbitrarily and the relative time offsets between
points may still be correct, thus leading to reasonablenegtis ofA ando?.

As mentioned before, the true time indigg's of the data points are missing, and even with
the above approximation (3.15) and (3.16) it is still uncleaw to jointly estimate them and
the model parameters. We instead considerdhis as unknown parameters to be estimated,
which we interpret as decomposing the global ordering mftron into parameters of pairwise
relations. Again, we make clear that as in Section 3.2.1¢ ner are also approximating the
likelihood as if each point in the data were actually geregtdtom some other point in the data.
The set of constraints (3.16) can be restated only in termsas follows:

1. wis non-negative; each row af sums to one or zero.

2. As a weighted adjacency matrix, represents directed acycligraph.
Note that for both constraints to hold at the same time, oneare rows inw must sum to
zero, and the corresponding data points form theSsetlowever, it is hard to maximize (3.15)
with respect tow under these constraints because they define a non-convexVimeover,
Nicholson [1975] proved that a weighted adjacency madtdxcontains no cycle if and only
if permanentM + I) = 1, and Valiant [1979] showed that computing the matrix peremans
#P-complete. We therefore consider a subset of the prewenisonstraints:

1. w can only take values if0, 1}.

2. As an adjacency matrixy forms adirected spanning tree
The new constraints turn the problem into a combinatori&l, evhich at first glance seems even
more difficult. As we will show below, the fact that this diste version is computationally
tractable depends entirely on our restrictiagto be a directed spanning tree. Under the new
constraints, the sef has only one data point, which is the root of the directed spantree.
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Algorithm 3.3 Alternating Maximization for((3.17)

Input: Data pointy, ..., X,.

Initialize A () andot), setk = 0

repeat
Construct the weight matrik/,, by (3.24) with A ando?,,
W (k1) < OptimumBranch(W,)
UpdateA ;1) by (3.22) withw ;1) andog,,
Updatea(QkH) by ) WithA(k-+1) andw(kﬂ)
k—k+1

until The approximate log posterior (3.17) does not increase

Combining these tree-based constraints with the approgitillinood (3.15) and imposing
the same priors onl ando? as before, we propose maximizing the following approximate
posterior for estimation:

lIxi—Ax;|1?
max Zlogz (exp 207 )wij) - gHAHQF —(a+1)logo? — % (3.17)
o

Ao w, - 27?02
re{l ..... n} i=
S.t. ww {0,1}, (3.18)
sz‘jzla i?’éT, Zwrj:O, (319)
j=1 j=1
w forms a tree with rooxk,.. (3.20)

We refer t0((3.17) as the Partially-ordered Approximatiand with the constraints (3.18) and
(3.19) it can be simplified as follows:

21 z DS L) - Al - ot Diogo? — 2
o8 (2mo?)% i 2 FA 08T o?
z;ér
ll3i—Ax; |12\ \ “
exp( ) A g
= E logH ( 2%022 207 ) —§||A]\2F—(oz+1)log02—ﬁ

% — Ax;| p 2 A 2 » P
=— Zszj <T + 510g(27r0 ) ) — §||AHF —(a+1)logo” — 2 (3.21)

i=1 j=1

Interestingly, this objective function is in the same formthae expected log complete posterior
(3.12) in Section 3.2.1 witlr,; being replaced by;;. One may thus view as the latent variable
Z in Section 3.2.1 with additional constraints. Howeverréhis a subtle differenceZ serves
only as a means to derive the EM algorithm and does not appehe imaximization objective
(3.7) of the Unordered Approximation, whereaexplicitly appears in the optimization problem
(3.17) as an unknown parameter to be estimated.
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Next we discuss how to maximize (3.17). Since (3.21) has #meesform as| (3.12), the
optimal A ando? under a fixedv have the same form ds (3.13) and (3.14):

n n n n -1

i=1 j=1 i=1 j=1

o2 _ dict Z?:l wijllxi — Ax;|* + 26. (3.23)
p(n—1)4+2(a+1)

When A ando? are fixed, maximizing (3.21) with respectdounder (3.18),/(3.19) and (3.20)
is equivalent to finding thenaximum spanning tree on a directed weighted graplwvhich each
data pointx; is a node, each pair of nodes is connected in both directaorsthe weight on the
edge(s,j) is
2
Wi = — (w + glog(2W02)> : (3.24)

The problem of finding maximum spanning trees on directeghgas a special case of tbeti-
mum branchinggroblem, which seeks a maximum or minimum forest of rooteddr(branch-
ing) on a directed graph. Chu and Liu [1965], Edmonds [1967d, Bock [1971] independently
developed efficient algorithms for the optimum branchingsbfem. The ones by the former two
are virtually identical, and are usually referred to as the-Chu-Edmonds algorithm, for which
Tarjan [1977] gave an efficient implementation that run®im?) time, wheren is the number
of nodes, for densely connected graphs. Camerini et al. [1J9Gi@ted out an error by Tarjan
[1977] and provided a remedy retaining the same time contglex

With these results, we present an alternate maximizatioogature, Algorithm 3.3 for max-
imizing (3.17), whereDptimumBranch(-) taking an edge-weight matrix as the input argument
uses an implementatiomf Tarjan [1977] and Camerini et al. [1979]. Since Algorithn3 2l-
ways increases the objective (3.21), it converges to a loeaimum.

3.2.3 Expectation Maximization over Directed Spanning Trees

Recently in the Natural Language Processing communitgarefers [Globerson et al., 2007,
Smith and Smith, 2007] have developed sum-product inferaigorithms for directed spanning
trees, which make use of the matrix tree theorem [Tutte, L9®8&ased on their techniques,
we develop an EM procedure whose E-step computes the thetakpa of the latent variabl&
over all directed spanning trees. Such a tree-based EM guoeean be viewed as being midway
between the previous two methods, the first of which averagesentirely the latent sequential
nature of the data, while the second aggressively seleetsiigle most likely partial order.
Consider the set of spanning tre@%,X ), on the complete directed graph whose nodes are
the sample points. We represent a spanning tree by its adjaoeatrix, whose rows correspond
to heads and columns correspond to tails. We also slightigathe notatioy to mean both a
predecessor matrix and the corresponding set of edges, foc Z meansZ;; = 1. We then

LAvailable atht t p: / / ednonds- al g. sour cef or ge. net /
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maximize the following approximate log posterior:

10g Prrec(A, 02| X) (3.25)

| — AXJ||2 A 2 p(n—1) 2 P
ciog| 3 TJ (- k- (P 0 ) oo - 2

ZeT(X) (i,j)eZ

where as before we place a zero-mean Gaussian pridneith hyper-parametex and an inverse
Gamma prior ornr? with hyper-parameters and3. A major difference between (3.25) and the
unordered approximate log posterior (3.8) is that the forsuens over “global” latent structures,
i.e., spanning trees, whereas the latter sums over “loatdht predecessor variables as shown in
(3.10). We thus expect (3.25) to be more robust against inadbéss local maxima than (3.8).

To derive an estimation procedure based on maximizing J3v2& first denote the posterior
distribution overZ € T'(X) by

HZeT(X y i A |
QA x) = 2T DHluer b (~=527) (3.26)

x;—Ax;||?
ZZ/GT(X) H(i,j)eZ/ exp (——” 552 il )

Then, by applying the standard variational equation weinlttee following lower bound:

10g Pyyee(A, 02| X)

[|xi — AX I A &
> | ¥ ew@iaetx (o T oo (<=5 250) ) ) - S - 5
ZeT(X) (4,9)€Z
p(n—l
— + (a+1) | logo?
o |Xz AXJ” A p(n—1)
= (2]: : | A1 02 5 + (a+1) ) logo?, (3.27)
where B
Zij = EqlZ] = Z 1{(i,j) € Z}Q(Z|A',(0")?, X). (3.28)
ZeT(X)

The lower bound (3.27) holds for all choices 4f and(¢’)? in the posterior mean (3.28), sug-
gesting an EM procedure that alternates between compuﬁipgnd maximizing[(3.27) with
respect tod ando?.

For the M-step, the lower bound (3.27), as a functioml@fndo?, is in the same form as the
complete log posterior (3.12), leading to update ruleslaino (3.13) and (3.14):

n n n n —1

A = <Z Z Zz‘sz'X;r> <Z Z ZinjX;»r + )\02]> , (3.29)

i=1 j=1 i=1 j=1

o = 2is 2?11 Zijllxi — Axj||* + 25. (3.30)
p(n—1)+2(a+1)
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Algorithm 3.4 Expectation Maximization for (3.25)
Input: Data pointxy,...,x,
Initialize A () ando), setk = 0
repeat
UpdateZ ;1) by (3.33) withA, andof,
UpdateA ;.1 by (3.29) withZ(.1.1) ando?
Updatea(QkH) by @) WithA(k+1) andZ(kH)
k—k+1
until The approximate log posterior (3.25) does not increase

For the E-step, we resort to the techniques in Sections 3113ghof [Globerson et al., 2007].

Let .
= A o
W eXP( 52 ) i # 7 (3.31)
0, i=j.

denote the weight on the edge to x;. Based on the Laplacian of the corresponding weighted
directed graph, we define the following matrix:

Ti, j: 17
Lz’j = Z;’I’:l VVij’7 7 = j’ j > ]_, (332)
_Wija 17&]7 j>]—a

which replaces the first column of the Laplacian with a nogatiee root selection score vector
r € R". The values inr reflect how likely each sample poigrt would be the root of a spanning
tree. When prior knowledge is unavailable, we simplyset= 1, i = 1,...,n. Then, we
computeZ;; by

Zi; = (1-1{1=ihWi(L s — (1 — 1{j = IHWi(L7");u. (3.33)

We determine convergence of the algorithm by checking ttevaf the log posterior (3.25),
which is computed by

~ — )\ . 1
l0g Puree(4, 0*|X) ox log|Z| = S| Al - (% (ot 1>) logo? — 2.
g
A summary of the EM algorithm is in Algorithm 3.4.

3.2.4 Nonlinear Extension via Kernel Regression

To learn nonlinear dynamic models, we extend the aforeroeatl three methods through the
use of kernel regression. We consider nonlinear dynamicetsaaf the following form:

xH) = Bo(x®) + €®, €®) ~ N (-0, 0%1). (3.34)
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where¢(-) maps a point irR? into a Reproducing Kernel Hilbert Space (RKHS) endowed with
a kernel functionC(x,y) = ¢(x)"¢(y), and B is a linear mapping from the RKHS f&?.
ReplacingAx; in (3.8), (3.17) and (3.25) by¢(x;) then leads to nonlinear extensions of the
three approximate log posteriors.

Next we extend Algorithms 3.2, 3.3 and 3.4 for learniBgand 0. For the E-steps, we
only need to replacelx; in (3.11), (3.24) and (3.31) bB¢(x;). For the M-steps, we solve the
weighted least squares problems (3.12), (3.21) and |(3.2W) A% ; replaced byB¢(x;). The
resulting three update rules fét ando? are very similar, so for brevity here we only give the
one for maximizing the unordered approximate posterior:

b = (Z Z Z‘jxiﬁb(xj)T) (Z Z Zj</5(xj)¢(xj)T + >\02I>

i=1 j=1 i=1 j=1

— XZ¢(X)T (¢(X)Az6(X)T + Ao?T) " (3.35)

= XZ(KA;+ 22D o(X)7, (3.36)

o D i 2o Zigllxi — Bo(x;) || + 257 (3.37)
pn+2(a+1)

where X := [x; --- x,] collects the data into g-by-n matrix, (X) := [o(x1) -+ d(x,)]
is the RKHS mapping of the entire data s&; is a diagonal matrix witl{Az),; = Y77, Zi,
and K = ¢(X)"¢(X) is the kernel matrix. We obtain (3.36) from (3.35) by using Matrix
Inversion lemma.

One issue with the above extensions is that we cannot coniputieen the mapping(-) is
of infinite dimension. However, we observe that the EM praced only make use dB¢p(X),
and according to (3.36)

Bi(X) = XZ(KAz;+X0?) " ¢(X) ¢(X)
= XZ(KA;+o?) K.

Therefore, instead aB we maintain and updatezaby-n matrix M := X Z (KA + >\02)_1 in
the EM iterations. To predict the next state for a new obs@ma, we computeV/ ¢ (X ) ¢(x),
which also only requires kernel evaluations. Alternagyale may compute a finite-dimensional
approximation tas(X ) by doing a low-rank factorization of the kernel matfix~ ¢(X )" ¢(X),
and replacey(X) in the EM procedure with)(X) € R™" m < n. This can be viewed as
dimensionality reduction in the RKHS. Then we can maintaid apdate3 € RP*™ explicitly.
To do prediction on a set of new data points, we project theto tire basis found by factorizing
the training kernel matrix, thereby computing their findgnensional approximatiop, and then
apply the estimated to the mapped points.

3.3 Initialization of EM by Temporal Smoothing

All of the proposed methods are solving non-convex optitiozaproblems, and avoiding local
optima is a critical issue. A common practice in applying EMthods is to run the algorithm
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multiple times, each with a randomly initialized model, ahdn choose the best local optimum
as the final estimate. We follow this practice in our expenits®n simulated data in Section 3.4,
but observe that the number of random restarts needed tomabgood model is usually large,
meaning that a lot of random initializations lead to undsade local optima. Moreover, our
simulated data are low dimensional, but the problem caugdddal optima will only become
worse in a higher dimension, which is common with real data.thVis investigate an alternative
way of initialization.

We begin by observing that in the case of a linear dynamic ke samples generated by
Algorithm[3.1 can be viewed as i.i.d. samples drawn from tlle¥ing mixture of Gaussians:

Tmax
x ~ Y 7N |p®, 20, (3.38)
t=1

wherep® andx® are defined in (3.3) and® > 0 is the probability thak is drawn at timet.
Based on this view, we devise a heuristic to initialize thedeio
1. Estimateu®’s by fitting a GMM to or clustering the data

2. Estimate the true temporal order@f)’s based on their estimates from Step 1

3. Learn a dynamic model from the estimated sequengg’d$ by existing dynamic model
learning methods

For Step 1 we can use the standard EM algorithm for learningSMor simply the k-means
algorithm since subsequent steps only need estimates aig¢hes. Step|2 in its own right is a
challenging problem. If we believe temporally clog€)’s should be similar, we can compute
pairwise distances between estimategu6t’s and solve a traveling salesman problem (TSP).
Then we need to decide the direction of time on the TSP patlthad often impossible without
prior or expert knowledge. In our experiments in Sectiors &d 3.5.2 we simply try both
directions and report the one that performs better. In higredsions, Euclidean distances suffer
from the curse of dimensionality and are vulnerable to ndfge thus propose an alternative way
to recover the true temporal order, which is based on theafiéamporal smoothing.

Unlike methods proposed in previous sections, the methodregent in the following does
not make any assumptions about the functional form of theetlyidg dynamic model. It only
assumes the underlying dynamics todmooth i.e., the curvature of the trajectory rolled out
by the dynamic model is small. More precisely, we quantifyosthness by the second order
differences of temporally adjacent points generated bylymamic model:

Tmax—1
§= 2 N = x) = (9 =X, (3.39)

t=2

whereT},., is the maximum time. Small values 6fcorrespond to smooth trajectories. An ex-
ample is in Figure 3.2. Such a smoothness measure has bekasitbe regularization term in the
Hodrick-Prescott filter [Hodrick and Prescott, 1997; Les4661], a common tool in macroeco-
nomics for obtaining a smooth and nonlinear representati@itime series.

The quantity[(3.39) cannot be computed on our data sincetlegtime indices of the data
points are missing. Nevertheless, it can be succinctlyesg®d using the Laplacian of the
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Figure 3.2: An example of smooth (left) v.s. non-smoothh{ijdrajectory

temporal adjacency grapbbtained by connecting temporally adjacent pairs of datiatpoMore
specifically, we letX := [x; --- x,]| be thep-by-n data matrix as before, and be a directed
temporaladjacency matrix such thaf;, = 1 if x; precedest; immediately in time, and
otherwise. Then, we defing := Z + ZT to represent the undirected, symmetric temporal
adjacency of the data points. If the data points were sodedrding to their true temporal order,
the matrix Z would consist of ones in the upper-first and lower-first dfigbnals and zeros
elsewhere. The graph Laplacian based on the adjacencyxmiaisi thenL = diag(Z1) — Z,
wherel is a vector of ones andiag(Z1) denotes the diagonal matrix with the vectét in the
main diagonal. Simple algebraic manipulation shows thasthoothness can be expressed in
terms of L (henceZ) as follows:

S(Z) = | XL||% = Tr((diag(Z1) — Z)" X " X (diag(Z1) — 7)), (3.40)

which is a quadratic and convex functionfand henceZ. Since we assume the true dynamics
to be smooth, a natural way to reconstruct a temporal orgemould be to solve the following
problem:

Zr = arngin S(Z)
s.t. Z represents a directed Hamiltonian path through the datagoi (3.41)

However, this problem is essentially a quadratic versioh®®, and to the best of our knowledge,
no efficient solver exists for such problems. We thus comglikefollowing two-step heuristics.
In the first step, we minimiz&(~Z) under a modified set of constraints:

Z = argmin S(Z)
z (3.42)
st.Z1=1, Z'1=1, Z;>0, Z;=0.

The constraints in (3.42) are not a proper relaxation ofi(BbecauseZ must have one zero row
and one zero column to represent a Hamiltonian path. Nesledh, we can interpret solving
(3.42) as learning a pairwise similariiywhose(i, j)-th entry reflects how likely; is to precede
x; temporally. Then in the second step, we solve an instanc&sefwith1 — (2 + ET)/2 as
the distance, and obtain an ordering from the optimal TSR.datour experiments we use the
state-of-the arConcorde TSP solvgApplegate et al.], which implements an exact algorithm
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Algorithm 3.5 Projected Gradient Method far (3.42)
Input: Data matrixX = [x; --- X,
Output: Z

1: Seta =0.1,e =105, 0 = 1072

2: Initialize Z(,), setk = 1

3: repeat

4:  Compute the gradie¥ () := VS(Zy), n < 1.0
5.  repeat

6 7 = Z(k) — UV(k), Drov = peol = [O]nxn
7 repeat

8: J— 7

o: Z! « (,-Projection(Z — D"™");.), Vi
10: Drow — Z/ _ (Z _ Drow)

11: 7! — (y-Projection(Z’ — D) ;), Vj
12: Dcol - Z// o (Z/ o Dcol)

13: Z 7"

14: until [|Z — Z||p <€

15: n < an

16 until S(2) — S(Zg) < oTr (Vi (2 = Zg) )
17: t<—t—|—1, Z(k)<—Z

18: l./l\ntil HZ(k) - Z(kfl)HF <e

19: Z «+— Z(k)

that has exponential time-complexity in the worst case $wery efficient in practice due to its
carefully designed pruning techniques.

The optimization problem (3.42) is essentially convex gqatid programming (QP) under
linear and bound constraints. However, the number of vlsals quadraticin the number of
data points, and as the data size increases, directly agpdygeneral-purpose QP or nonlinear
programming solver may become inefficient or even infeasibiVe thus devise a simple and
efficientprojected gradient methatthat iteratively updates the rows and the columng of

The key idea of a projected gradient method is to move thenpetex vector along the nega-
tive gradient direction, and project the updated vectokbato the feasible regiof whenever
it goes out. The cost of a projected gradient procedure isidetermined by the projection
operation, so we need to compute efficiently the projecttep:s

7 — Tg(Z8 — v S(2Y), (3.43)
0={Z1=1,211=1,2;>0,Z; =0}, (3.44)
whereZ;. andZ.; denote a row and a column &f respectively, andl,(a) := arg min,{|la —

b|| | b € Q} is the Euclidean projection of a vecteronto a regiorf2. The gradient of5(7) is
given by



Algorithm 3.6 ¢;-Projection [Duchi et al., 2008]
Input: v € R”
Output: w := argmin||x — vy S.t.x"1 =1, 2; > 0 Vi.

1 Sortvinto g : py > g > ... > fip. '
2: Findp =max{j € {1,2,...,n} : p; — %( ke —1)>0}
3: Defined = (30, i — 1)
4: Outputw s.t. w; = max{v; — 6,0}
where

Qij = Qi — Qi
Q = X'X(diag(Z+Z"1)—(Z+2Z")).

Moreover, the feasible region (3.44) is the intersectiotwaf closed convex sef$; and(2,:

O = {Zi1=1, Z; >0,Z; =0,1 <14,j <n},
0, = {Z[1=1,2;>0,2;=0,1<i,j<n},

which correspond to the normalization constraints for ramsl columns, respectively. Using
Dykstra’s cyclic projection algorithm [Boyle and DykstiE86], we perform the projection op-
eration (3.43) by alternately projecting orflg and(2,. A very nice property of this procedure
is that projecting ont®2; or €2, alone can be further decomposed as doing row-wise (or calumn
wise) projections, and a single-row or single-column prog@n can be computed very efficiently
by the/; projection technique Duchi et al. [2008] proposed, whichom#ine in Algorithm 3.6.
The required operations are simply sorting and threshd@dimgorithm!ﬁ gives a summary
of the projected gradient method for the optimization penbl(3.42). As in all gradient-based
methods, we conduct back-tracking line search for the siepd0 ensure convergence.

3.4 Experiments on Synthetic Data

We consider five dynamical systems. The first three are lisgstems, while the last two are
nonlinear systems. Our experiments here focus on the uremt@pproximation (Section 3.2.1),
the partially-ordered approximation (Section 3/2.2), tHadr kernelized versions (Section 3.2.4),
referred to as UM, PM, KUM and KPM, respectively. For our exxpents here and in Section
3.5, we implement the proposed algorithms in MATLAB and Uierhaximum directed spanning
tree solver available &ttt p: / / ednonds- al g. sour cef or ge. net/, version 1.1.0.

3.4.1 Linear Systems
We consider the following three linear systems.

2For the ease of presentation, in Algorithm|3.6 we ignore thastraintZ;; = 0, which can be easily enforced
by settingZ;; = 0 and updating only the other— 1 entries.
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e 2D, a two-dimensional diverging system:

101 0 o [50
A= { 0 1.05]’X - {50]'
A sample of 200 points generated by Algorithm|3.1 is shownigufe 3.3(a).
e 3D-1, a three-dimensional diverging system:

1.1882  0.3732  0.1660 10
A= [-0.1971 0.8113 —0.0107|, x* = |10
—0.1295 —0.1886 0.9628 10

The Eigenvalues of the transition matrix are 1.0143 and329% 0.24 ¢, so the system
dynamics behaves like a diverging spiral in the 3-d spacearApde generated by Algo-
rithm (3.1 is shown in Figure 3.4(a), suggesting that temipodose points (those along
the spiral) can be spatially further away from each othentteanporally remote points
(those cutting across the spiral).

e 3D-2, another three-dimensional diverging system:

1.0686 —0.0893 0.3098 10
A= 104385 1.0091 —0.2884|,x"= |10
—0.0730 0.0405  0.9625 10

The Eigenvalues of the transition matrix are 1.0439 and&290 0.267i. A sample is

shown in Figure 3.5(a). Unlike in 3D-1, here temporal andtisp@roximity are more

consistent with each other.
While the results presented here are all on diverging systamslso experimented with con-
verging systems and got similar results. Using Algorithi, 8ve generated data under a variety
of settings. For 2D, we generated 40 data sets, each cargé200 observations, with = 0.2.
For 3D-1 and 3D-2, we varied both the sample sizes@&hdFor the small-sized experiments,
we generated 40 data sets, each containing 200 pointsowith0.2,0.4,0.6 and0.8. For the
large-sized experiments, we generated 20 data sets, eatdiréng 2,000 points, witlr in the
same range. We found that larger valueg @verwhelmed the dynamics to such an extent that
no algorithm performed well. In all of the data sets we'Bgt, = 100.

We applied UM and PM to these data sets, maximizing appraeiriieelihood functions
without any prior or regularization on the parameters ofiast, i.e., setting the hyper-parameters
a, 3, andX in (3.8) and((3.21) to zero. For every data set we ran Algor#l3.2 and 3.3 each with
M random initializations, and chose the model with the largeproximate likelihood as the
final estimate. The entries of these random matrices werplsanmdependently and uniformly
from [0,1]. We setM to be 20 and 10 for the small-sized and the large-sized expeits,
respectively.

In addition to random initializations, we also explored tee of manifold learning tech-
niques for finding initial estimates. The rationale is that,sample points generated by a linear
system, there should be a one-dimensional projection tithtates the correct order in time.
More specifically, we applied a manifold learning technitmeur data, and mapped the sample
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points to the most significant coordinate it found. Then, wdesl the data points according to
their one-dimensional projections and fitted a linear dyicahsystem by the usual least-square
estimation technique. The fitted system itself is alreadgstimate, and can be used to initialize
Algorithms/3.2 and 3.3. In our experiments, we found Maximamiance Unfolding (MVVU) by
Weinberger et al. [2004] to be the best manifold learning@had-inally, to indicate the baseline
performance, we report results from randomly generatedicest We used the same method
and generate the same numbhefr, of random matrices as we did to initialize PM and UM, and
selected the one with the highest score. We refer to thidibases Rand.

We consider two performance metrics. The first compares stinated system matrix
and the trued. To account for the ambiguities described in Section 3.1usethe following
rate-adjusted matrix error:

ME(A, A) = min || 4 - Alp, (3.45)

whereA! is A raised to the power. The minimum in[(3.45) is hard to solve, so we search for
{£1,+2,...,4+10,+1/2,4+1/3,...,4+1/10} and choose the one that minimizes (3.45). Such a
metric may overstate the quality of an estimate. We thusidenanother criterion that compares
system matrices based on one-step displacement vectors

n

CS(A, A) E% 3

=1

| Ax; — x| | Ax; — x| |

(3.46)

which we refer to as the cosine score. This criterion measinesimilarity between the one-step
displacement vectodx; — x; of the true system and that of the estimated system, aveyagar
all the sample points; a higher score (3.46) thus means arlesttimate. Note that cosine is a
normalized measure of similarity, and therefore alle\gdte issue of different system step sizes.
Also, since|(3.46) takes the absolute value after averagioigg forward and backward in time
are considered equally good as long as they do so consistentl

We tested the following methods: MVU, PM+MVU (PM initialidéy MVU), PM, UM+MVU
(UM initialized by MVU), UM, and Rand. Results on 2D are in kig 3.6. For this baseline
system, every approach performs quite well. Figure 3.3{o)s displacement vectork; — x;
estimated by UM in one of the 2D samples, which are quite stesi with the true dynamics.

Performance metrics on the more complex systems 3D-1 ané &f-in Figures 3.7 and
3.8, respectively. To qualitatively demonstrate the penfince, we also plot the one-step dis-
placement vectors by the true and the learnt dynamic modélgjures 3.4 and 3.5 for 3D-1 and
3D-2. Since Rand is independent of data, we only report g@slte on the small samples. We did
not apply MVU to the large-sized samples with 2,000 datagosince its underlying semidefi-
nite program requires a huge amount of time and memory. MeredVVU alone usually gave
cosine scores as low as Rand, and as an initialization, viged little or no improvement over
random initialization in most cases except UM in small-diexperiments for 3D-1. UM was
competitive with or better than PM in quite a few cases. Ha@veon the small samples of 3D-1,
PM performed much better than UM. We also see that as the sasigd grew, UM improved
more significantly than PM did. This suggests that imposimgationality constraints may im-
prove the estimation when samples are small, but it does @ a&xpense of introducing some
bias to the estimate.
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Figure 3.8: Results on 3D-2
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Figure 3.9: A 2000-points sample with small noise= 0.2 on which UM failed (cosine score
0.0108). For better visualization, only 1/3 of the points plotted.

Regarding the effects of different noise levels, most mashzecame worse as the noise level
increased. While UM was the most robust against noise in aevases, it performed very badly
on the large samples of 3D-1 when= 0.2, but dramatically improved as noise increased.
We found that for the 20 large samples of 3D-1 generated with 0.2, UM recovered the
true system matrix on nearly half of them, but totally failed the rest. When it failed, the
estimatedA was always nearly diagonal and exhibited dynamics as dmpintFigure 3.9. This
is a concrete example of the identifiability issue pointetio®ection 3.1.

3.4.2 Nonlinear Systems

We consider the following two systems.
e 3D-cony, a converging three-dimensional nonlinear system corsitdey Girard and Pappas
[2005], governed by the following differential equations:

dz(t)/dt = — (1+0.1y(t)*)z(t),
dy(t)/dt = — (1 —0.12(t)*)y(t)/2 + 2z(t), (3.47)
dz(t)/dt = — (1 —0.1z(t))2y(t) — 2(t)/2,

wherex(t), y(t), andz(t) are the three states at timeThe initial point is set td5 1 5] .
e Lorenz Attractor [Lorenz, 1963]:

da(t)/dt = 10(y(t) — =(1)),

dy(t)/dt = x(t)(28 — (1)) — y(t),

dz(t)/dt = z(t)y(t) — 8z(t)/3.
The initial point is set td0 1 1.05]. Figure 3.11(a) shows a trajectory of 800 points evenly
sampled in the time interval, 20].
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Figure 3.10: 3D-conv sample points

We generate data from these two systems as follows. For 3®we use Algorithm 3.1 with line
5 replaced by a discrete-time approximation of the systemagons|(3.47), where the derivatives
remain constant during a time stepAt = 0.1:

dx®

)= x4 0.1
X X+ o

+ €, (3.48)

The process noisé® follows a zero-mean Gaussian with standard deviatighsA¢, 0.5At}.
We generate 20 training data sets of 400 points With, = 100. Figure 3.10(a) shows one of
the data sets. For Lorenz Attractor we did not use Algorithindie to the chaotic nature of the
system. Instead, we add independent Gaussian noise tcearsiyajectory of 400 points evenly
sampled in the time interve{llO,QOﬁ with noise standard deviatiom,,;s. € {0.01,0.056},
whered is the median of all the pairwise distances of the 800 poimtsve in Figure 3.11(a). For
each noise level we generate 20 training data sets witheuttle temporal order.

Our evaluation scheme here is slightly different from Sat.4.1. Because our nonlinear
methods give nonparametric estimates and the true modeldescribed by differential equa-
tions, checking the model estimation error is difficult awd considered. We focus on evaluating
the prediction performance in terms of the cosine score.3B3conv we evenly sampled 200
points in the time interval, 10] as the testing sequence, shown in Figure 3.10(b) along héth t
true dynamics represented by vectors of displacement legtwensecutive points. For Lorenz
Attractor we use the noise-free trajectory of 400 pointhadesting sequence. Given a dynamic
model learnt from the training data, we predict for each gaiatx® in the testing sequence its
next observatio&**Y) and compute the testing cosine score:

(3.49)

1| (x0T — xO)T (D _ x(0)
T |2 [ = xx — 0] |

whereT' is the length of the testing sequence.

3This trajectory is the second half of the trajectory in FigiGr11(a). It preserves the butterfly shape but leaves
out the highly dense spirals in the core of the left wing.
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(a) System trajectory colored by time (b) Estimated dynamics by KUM, cosine score 0.98

Figure 3.11: Lorenz Attractor sample trajectory

Table 3.3: Cosine scores on noise-free data
MVU | UM PM | KUM | KPM

3D-conv|0.99540.99030.55700.99090.9225
Lorenz |0.13830.56440.21550.9884 0.334

We compare the two nonlinear versions of approximate liked methods, KUM and KPM,
against the Maximum Variance Unfolding [Weinberger et2004] based approach described in
Section 3.4.1 combined with kernel regression. We alsaithetesults by the linear methods UM
and PM. Hyper-parameter settings are as follows. We useskezgression with the Gaussian
kernelexp(—(||x—y/||?)/(2h)). For KUM and KPM, we set the kernel bandwidtho 504, where
¢ is the median of all pairwise distances in a training dataBet MVU we seth = §. Because
plain kernel regression tends to over-fit the training data regularize the model in two ways.
First we make use of the standard penalty in ridge regressedting the regularization parameter
Ain (3.36) to10~* and10~3 for the two noise levels for each nonlinear system. Seconahen
applying KUM and KPM, we use the low-rank approximation te kernel matrix described in
Section 3.2.4 with rankn = 5, reducing the model complexity. For each data set we run KUM
and KPM with 50 random initializations of the regressionftioent matrix B ando?. Entries
of B are drawn independently from a zero-mean Gaussian witlilatdrdeviation 100, ane
is drawn uniformly random between 0 and 100 times of the mredigairwise distances.

Results are in Table 3.3, Figures 3.12 and 3.13. Table 3@teposine scores obtained by
training (without temporal order) and predicting on thesssfree trajectories for both systems
(Figures 3.10(a) and 3.11(a)), bold-facing the best mefboeach system. For 3D-conv all
methods perform quite well except PM. Interestingly, UMfpans very well even if it learns a
linear model, suggesting 3D-conv may be well approximaied linear system in terms of one-
step predictions. For Lorenz Attractor, only KUM does weltlaother methods are significantly
worse. Figure 3.11(b) shows the estimated dynamics by KUMchvare very close to the true
dynamics. However, it takes hundreds of random initialareg of KUM to obtain such a high
cosine score, and many of the initializations led to degeteesr undesirable models.
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Figure 3.13: Results on Lorenz Attractor

Figure 3.12 gives boxplots of cosine scores for 3D-conviabthby training on the 20 noisy
data sets and predicting on the noise-free testing sequéimeproposed methods outperform
the MVU based approach significantly, but performances laalagge variance across different
training data sets. Linear and nonlinear methods achiengacable scores, showing again that
3D-conv may be well approximated by a linear model in a shoré tperiod.

Figure 3.13 shows cosine scores on Lorenz Attractor. MVU pgirforms poorly, but the
proposed methods all perform worse than in 3D-conv, es|hediM. This is not surprising
because Lorenz Attractor has more complex dynamics than®@D- We also see that although
the median score of PM across all the 20 training data setsttertthan those of KUM and
KPM, the nonlinear methods are able to reach a much highee slcan PM. This indicates that
the nonlinear methods are on the one hand more powerful tlatinear methods, but on the
other hand more vulnerable to overfitting and require cdieitialization/regularization based
on domain or prior knowledge.

3.5 Experiments on Real Data

We consider three real data sets. For the purpose of evahjate choose data whose temporal
orderings are known: a video stream of a swinging penduluzst{8n 3.5), gene expression time
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series of the yeast metabolic cycle (Section 3.5.2), and seties of HeLa cell images (Section
3.5.3). While the first one is for evaluation purposes onlg tither two data sets, as briefly
described in Chapter 1 and explained in more detail lateressmt application areas that would
truly benefit from the proposed methods of learning dynanmoclels from non-sequence data.

In real data we do not have true dynamic models to compare fuithknowing the temporal
order allows us to obtain reference models by applying exjstynamic model learning methods
with the available temporal order. Our main evaluation sohés then to compare the prediction
performances of the proposed methods against standardédssthlearning from sequence data.
We consider two performance metrics. One is the cosine 48048). However, since the real
data are higher-dimensional, when interpreting cosineescae need to account for the effect of
high dimensions. To see that effect, we consider the préhatiiat random prediction achieves
a cosine score of or greater. Let the random variabledenote the cosine between a vector
drawn uniformly at random from the unjt-sphere and an arbitrary fixeggdimensional unit
vector. Basic geometry shows that the probabilgy > s for somes > 0 is equivalent to two
times the ratio of the surface area of a cap with height on a unitp-sphere to the unji-sphere
surface area, which has the following closed-form [Li, 2P11

— 1
Proty|s| > ) = 7,_. (7’715) (3.50)

whereZ,(a,b) is the regularized incomplete beta function. Now consitierdosine score of
independent random predictiohS| := |%|, whereS;’s are independent copies 6f By
Bennett’s inequality [1962] and symmetry §f we have

Prol(|S| > s) = 2Proh(S > s) < 2exp (—nVar(S)h(s/Var(S))), (3.51)

whereh(z) := (14 z)log(1 + x) — x. To derive Vafs), we first obtain the p.d.f of:

pros<s) (130 (1Y) qo o)

fs(s) ds ds B(”Tl,% ’ (3.52)
whereB(z, y) is the beta function. Then we have
1 B4, 3)
Var(S) = /SQfs(S)dS = % =p ! (3.53)
el B(Tvﬁ)
leading to the following upper bound:
_ exXpis "
Proty|5] > 5) < 2exp<—nh<sp>/p>=2((1+sp—p()f/w) | (3.54)

which decreases in the order pfs" for fixed s. Figure 3.14 shows this upper bound for four
values ofs andn = 10 as a function op. We can see that when the dimensjois large, even if
the numben of predictions is small (as in Section 3.5.2) it is still diffit for random prediction
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Figure 3.14: Chance probability (3.54) for various cosineres against the dimensipn

to achieve some modest cosine score, say 0.3. In later seatie will use the upper bound
(3.54) to provide some sense of significance of the cosinesabtained in our experiments.
Our second performance metricrisrmalized error:

" [x D — gD

T— 12 <& =0 °
t=1

(3.55)

which measures how close the predictions are to the truestege vectors. A smaller normalized
error means a better prediction, and predicting with theemirobservation+?) = x(®)) gives
a normalized error of one.

In all three data sets we apply UM and PM, and in Section's 353a612 also use the tree-
based EM (TEM) method. For the experiments in Section 3.%318e random initialization,
while in Sections 3.5 and 3.5.2 we apply the temporal clusgehneuristics in Section 3.3 for
initialization with the following detailed settings.

We use the K-means method to cluster the data points and centgafollowing four meth-
ods for ordering the cluster centers:

1. MVU: Project the cluster centers to the one-dimensiopate found by Maximum Vari-

ance Unfolding, and then sort the cluster centers accotditige projections.

2. |11+TSP: Solve a TSP with the 1-norm pairwise distancesden the cluster centers.
3. 12+TSP: Solve a TSP with the 2-norm pairwise distancesden the cluster centers.

4. TSM+TSP: The two-step heuristics outlined in Section 3.3
Then, we learn a linear model (3.1) from the ordered clustetars, and initialize the proposed
methods with the learnt model. As mentioned in Section 3.8thwds based on TSP do not
decide the overall direction of time. Here we learn dynamaxeis using both directions, and
report the one that leads to a better prediction performahasolve a TSP, we use the state-of-
the-artConcorde TSP solvdApplegate et al.].

For UM and TEM, we not only initialize the estimation proceglwith clustering, but also
consider restricting the approximate likelihood funcgdwy the ordering of the cluster centers:
when summing over the latent variables in (3.8) and (3.2B)only include those consistent with
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Figure 3.15: A frame of the swinging pendulum video stream.

the ordering of the clusters. We refer to the restrictedivasof UM and TEM respectively as
“UM rest” and “TEM rest.”

We extend the proposed methods to allow each state variallave a different noise vari-
ance. The update rules can be easily derived from those iil8&:2 and have a similar form.
We choose the regularization parametéry leave-one-out cross validation on the ordered cluster
centers, but set and by manual selection. Our choice @fand is mainly to avoid numerical
issues caused by small values of the estimated noise vasahring the EM iterations. We find
the follow choice to be effectiver = 1 and§ ~ n, which correspond to a prior of noise variance
whose mean is around and in our experiments leads to a posterior mean around 2.

3.5.1 Video of Swinging Pendulum

Ouir first real data is a video analyzed by Siddigi et al. [200Bje video consists of 500 frames
of 240-by-240 colored images of a swinging pendulum. An ienagshown in Figure 3.15.
The underlying dynamics is highly periodic and stable agogredulum completes about 22 full
swings.. We center the pixel values to be zero across the 500 framesth@n apply Singular
Value Decomposition (SVD) to reduce the dimension fram0 x 240 x 3 = 172800 to 20

by projecting the data onto the subspace correspondinget@Q@Hargest singular values. Such
a subspace preserves ab@@tpercent of the total energy. We further normalize each of the
20 temporal sequences to be zero-mean and unit-varianan viia use the first 400 points as
training data and the last 100 points as testing data.

In the initialization step we combine the K-means methoth wie AIC criterion to determine
the number of clusters. For each possible number of clustersr search range, we run the K-
means method with 30 random restarts and choose the betdreiggto initialize the dynamic
model. We repeatedly train 30 linear dynamic models, all bick are initialized by K-means
combined with AIC. In most of the 30 runs the number of clusttermined by K-means and
AIC is 31, which is about the number of time steps one full gnekes. We then evaluate these
learnt models by their prediction performances on the tetd.d

4A full swing means the pendulum ended where it started.
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Figure 3.16: Cosine scores on the pendulum data by the linedeinLarger is better. The blue
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We present the box plots of the testing cosine scores andatiaed errors in Figures 3.16
and 3.17. The left most column in each plot, the “kmeans” mwlugives the performance of the
initial model found by K-means and some ordering method.alchebox-plot we also indicate
the performance of the reference model learnt with the kntasmporal ordering. There are two
main observations:

e Comparing the four ordering methods, we find that MVU is worsant I1+TSP and
|2+TSP, which are in turn worse than TSM+TSP. Moreover, TSP does almost as
well as the model learnt with the known temporal orderingisT@uggests that orderings
solely based on pairwise distances, such as those by MVUSP+and 12+TSP, may be
more sensitive to distances between cluster centers, vangchot always equally separated
in space. On the contrary, TSM+TSP is more robust agairegjutaer distances, suggest-
ing that the pairwise similarity learnt through solving tbenvex program/ (3.42) better
captures the dynamic nature of the data.

e The initial models learnt from ordered cluster centersalseperform quite well, and the
proposed methods result in only marginal improvements. ddeer, without the restric-
tion imposed by cluster orderings UM even performs worse tine initial model. This
suggests that our approximation to the likelihood functioety introduce too many unde-
sirable local maxima.

3.5.2 Gene Expression Time Series of Yeast Metabolic Cycle

To study gene expression dynamics of yeasts during the wietatycle, Tu et al. [2005] col-
lected expression profiles of about 6,000 yeast genes alwag tonsecutive metabolic cycles,
each containing 12 samples. Due to the destructive natuteeaheasurement technique, gene
expression profiles were measured on different yeast egltstherefore synchronization of yeast
cells in the metabolic cycle is necessary for obtainingatdé gene expression time series data.
To address this issue, Tu et al. [2005] developed a contsaoliure system that provides a sta-
ble environment for yeast cells to grow, and chose a padiaitain of yeasts that exhibit “unusu-
ally robust periodic behavior,” i.e., cells of that straiiyeasts are in a sense self-synchronizing.
However, Tu et al. [2005] noted that the periodic gene exgioesobserved in their experiment is
more robust than those in certain other species gcussionin [Tu et al., 2005]), suggesting
that in general it may be quite difficult to obtain reliableé series gene expression measure-
ments. In those cases, our proposed methods of learningrdymaodels from non-sequenced
data may be very useful.

We focus on a subset of 3,552 genes found by Tu et al. [2005}{Hdbi strong periodical
behaviors during the metabolic cycle. We normalize eacle gapression time series to be zero-
mean and unit-variance, and use the first two cycles (24 goat training data and the last
cycle (12 points) as testing data. Here the number of staiablas (genes) is much higher than
the sample size, and thus learning dynamic models is mucke difficult than in the previous
experiment.

Since the number of sample points is disproportionally snahan the dimension, in the
initialization step we specify the number of clusters in Krkeneans method to be 12, the number
of time steps in one cycle. This means each cluster will gondaly few data points. We
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Figure 3.18: Gene expression profiles in three major geneipgo MRPL10, POX1, and
RPL17B. Top row: original gene expression. Bottom row: gempression from estimated
cluster centers ordered by TSM+TSP.

repeatedly train 20 linear models, and in each of the 20 rumsandomly restart the K-means
method 30 times and choose the best clustering to initithi@enodel.

To evaluate the proposed methods, we first qualitativelyrexe our initial step of temporal
clustering and ordering. Among the 3,552 genes, MRPL10, Péxd RPL17B were found to
be strongly periodical and yet exhibit different dynamidgeating these three genes as fixed
seeds in clustering analysis, Tu et al. [2005] identifie@éhmajor clusters of genes. From each
cluster we pick the 24 most representative genes and plotaherage expression profiles over
the first two cycles in the top row of Figure 3/18. In the bottmw of the same figure we plot
the expression profiles of the same genes from the estimaitsigiccenters in the order found by
TSM+TSP. Comparing the two rows shows our initial step of terapclustering and ordering
effectively recovers the major trends of gene dynamics.

We then evaluate the proposed methods quantitatively. r€#g8.19 and 3.20 present box-
plots of cosine scores and normalized errors. The cosinesere between 0.6 and 0.7, which
by themselves do not seem impressive, but because of thedlmggnsion, the probability for
random predictions to achieve such scores, according%d)3s less than 13 even though the
testing sequence is short. Moreover, the improvementsaltletproposed EM-based methods
over the initial model are more significant here than in Sec8.5, though the gap between
the proposed methods and the sequential learning methadgerb Most of the performance
measures here are rather stable across different rungpjyolsecause on such a small sample
most initializations turn out to be similar. The only exaeptis TEM, which occasionally results
in extremely poor performance. This is due to numerical diffies encountered in its E-step;
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the main computation there is inverting a matrix of exporaatl negative distances, which
are numerically unstable for high dimensional data poirfiegarding the different ordering
methods, unlike in Section 3.5 TSM+TSP does not outperfévenother ordering methods; all
four methods perform equally well. Again, this may be atitéd to the training points being too
few for different ordering methods to behave differently.

3.5.3 CellImage Time Series

We apply the proposed method to a time series data set of HaLianages originally collected
by Zhou et al. [2009], and subsequently analyzed by Buck ¢2@09], who were interested in
the dependence of protein subcellular localization on #leoycle. Instead of relying on time-
series cell images as in most existing studies, they aimilimaustatic, asynchronous snapshots
taken from multiple cells at various phases of the cell cyigeause such images are easier to
obtain on a large scale than time-series images. To do soptbposed to find a one-dimensional
surrogate of cell cycle time from static cell image featusgsnanifold learning techniques, and
verified on real data that such a surrogate is well correlatia the cell cycle. However, it is
not clear how to use or augment their approach for predianaysis, which can be important
in understanding cell dynamics. In contrast, our work bgpaghe issue of estimating the cell
cycle time and focuses directly on learning dynamic models.

The data set consists of 100 time frames, and each framesfitam tens to a hundred or so
cell regions. Details regarding cell segmentation anckiregccan be found in [Zhou et al., 2009].
Each segmented cell region is represented by a 49 dimehseatare vector as in [Buck et al.,
2009]. During the 100 time frames, some cells went throughertttan one division while others
never divided. Buck et al. [2009] identified a total of 34 sewees of cells that completed at
least one full division-to-division cell cycle spanninglaast 30 time frames, and conducted
their analysis on these sequences. We instead treat thesezj@dnces, which contain a total of
1,740 data points, as testing data, and run UM and PM on tlee sitiort or incomplete sequences
as if they were non-sequence samples. Out of the 7,692 &ptumts in these partial cell cycle
sequences, 1,267 appear in only one time frame, fitting Bxaot non-sequence scenario. We
normalize the entire data set so that each feature has meamzeé standard deviation 1. To
obtain a performance reference from models learnt with sege information, we apply least
square ridge regression to partial sequences of lengttast & a total of 6099 feature points.
The regularization parameter for ridge regression wasamby training on the first half of each
training sequence and validating on the second half.

In applying UM and PM we made several changes. We allow eathrieto have a different
noise variance, but instead of optimizing over its value simeply set the noise variance of each
feature to be the median of pairwise distances betweenrigaoata points along that feature
dimension. Moreover, we add an extra regularization terri|A — I||% to our approximate
likelihood functions and set for the /5, penalty perm oA to be 1. We initialize UM and PM
with 20 different models, one being the identity matrix ahd pther 19 having entries drawn
independently from a standard normal distribution. We deothe final estimate based on the
regularized approximate likelihood functions for UM and Piespectively.

We compare with a baseline that uses manifold learning. ofmtlg Buck et al. [2009],
we use Isomap [Tenenbaum et al., 2000] to map all the 7,692rtgadata points to a two-
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Figure 3.21: Testing performances on cell image time series

dimensional space, sort the data points according to thappings along the first coordinate,
and then apply ridge regression with both the estimatedrimgi@nd the reverse ordering. At
test time, we apply both learnt models and report the beddopmance.

Figures 3.21(a) and 3.21(b) are boxplots of the two perfoceaneasures over the 34 testing
sequences. Again, although the cosine scores do not seeressiye, the chance probability
for achieving such scores, given by (3.50), is lower thanS. As expected, Ridge performs
the best, but the proposed UM and PM are quite close and ewenahsmaller variance in nor-
malized error. The baseline that uses Isomap is competitite UM in terms of cosine score,
but shows larger variability across different testing samees and has much larger normalized
errors. Unlike in the last two experiments, PM performs cedibly worse than UM here. We
suspect that PM’s strong approximation bias of enforcirggpanning-tree constraint hinders
effective use of this quite large data set, but do not havid sohpirical evidences. More gener-
ally, it requires further research to understand when UM Mr#ill be a better choice in terms
of quality of the learnt model, but UM certainly scales bettgh the data size: UM’s E step of
normalization is embarrassingly parallelizable, whereélkts maximum directed spanning tree
procedure is harder to parallelize. In this experiment, M&TLAB implementation of UM,
which performs efficient matrix normalization via paraitkation, is more than 10 times faster
than PM, which spends most of the running time in the maximirected spanning tree solver
(htt p: // ednonds- al g. sour cef orge. net/, version 1.1.0).

Another way of evaluating the proposed approximate liladithfunctions is to check whether
a better training likelihood leads to a better testing penfance. Figure 3.22 gives scatter plots
of the two testing performance measures against reguthtizd and PM training negative like-
lihood functions over the 20 initializations. Each curvpmesents results on a testing sequence
and is sorted by the training likelihood. We can see that tahllJM and PM, the training ap-
proximate likelihood has a rather small numerical rangel threre is no significant correlation
between the testing performance and the training likeiho®loreover, on most testing se-
guences the UM performances are similar across the 20limtdels, while the PM normalized
error has a larger variation. These results illustratethtions of our proposed methods when
applied to real data, and suggest that a different strateglgansing the final estimate is needed
in order to achieve better testing performance, which wedes an open issue for future work.
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Figure 3.22: Scatter plot of testing performance agaistitng approximate likelihood

3.6 Conclusion

In this chapter we consider learning fully observable dyitamodels from data drawn from
independent trajectories at unknown times. Acknowledgiageral identifiability issues, we
propose learning methods based on maximizing various appate likelihood functions via
EM-type algorithms, together with novel initialization theds. Experiments on synthetic and
real data demonstrate that the proposed methods can |lessonably good models from non-
sequence data, though their success requires some hyjengiar tuning, and more critically,
good initialization. We thus in later chapters considetisg$ requiring extra information or
assumptions, but leading to simpler learning problems.
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Chapter 4

Learning Vector Autoregressive Models
from Sequence and Non-sequence Data

As concluded by the previous chapter, the assumption ofi+tmajectory, independent samples
leads to several identifiability issues that compromiseatife learning. We thus consider mak-
ing stronger assumptions in several ways, starting in thépoter with the availability of a small
amount of sequence data in addition to the supposedly lamesequence data. Our goal is to
combine these two types of data to improve dynamic modehiegr As in the previous chapter,
we considep-dimensional vector auto-regressive models, but treastaee variables as a row
vector instead of a column vector:

X(t—i—l) — X(t)A—l—e(t+1)7 (4.1)

wheree® is again an independent Gaussian noise process with a itivagant variancer?1.
In addition, we assume that the process (4.1) is stablethe eigenvalues oft have modulus
less than one. As a result, the process/(4.1) has a statidisdnpution, whose covariana@ is
determined by the following discrete-time Lyapunov eqorati

ATQA + oI = Q. (4.2)

Linear quadratic Lyapunov theory (see e.g., [Antsaklis Einchel, 2005]) gives thad) is uniquely
determined if and only i&;(A)\;(A) # 1 for 1 <4, j < p, where);(A) is thei-th eigenvalue of
A. If the noise procesé’ follows a normal distribution, the stationary distributialso follows a
normal distribution, with covarianc@ determined as above. Since our goal is to estimita
more relevant perspective is viewing (4.2) as a system o$tcaimts onA. What motivates the
propose approach in this chapter is that the estimatio céquires only samples drawn from
the stationary distribution rather than sequence data. édevy even if we have the trug and
o2, we still cannot uniquely determiné because (4.2) is an under-determined s%ét@frm. We
thus rely on the few sequence samples to resolve the ampiguit

Let {x™}7_, be a sequence of observations generated by the process Thé)standard
least-square estimator for the transition matfixs the solution to the following minimization

Lif we further requireA to be symmetric, (4.2) would be a simplifi@bntinuous-time Algebraic Riccati Equa-
tion, which has a unique solution under some conditions (c.ft§Aklis and Michel, 2005]).
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problem:
min ||V — XA||}, (4.3)

whereY T = [(x®)T (x®)T - (x™)T], X7 = [(x®)T x®)7 - (xT)7], and]| - ||
denotes the matrix Frobenius norm. Wher T, which is often the case in modern time series
modeling tasks, the least square problem (4.3) has mukleions all achieving zero squared
error, and the resulting estimator overfitts the data. A cammemedy is adding a penalty term
on A to (4.3) and minimizing the resulting regularized sum of agad errors. Usual penalty
terms include the ridge penalfy||z. and the sparse penalfyl|l, := =, ; |A;;l.

Now suppose we also have a set of non-sequence observétigfis drawn independently
from the stationary distribution of (4.1). Note that we usperscripts for time indices and sub-
scripts for data indices. As described in Chapter 1, the sin&the non-sequence sample can
usually be much larger than the siZeof the sequence data. To incorporate the non-sequence
observations into the estimation procedure, we first olgaavariance estimatg of the station-
ary distribution from the non-sequence sample, and thenth& Lyapunov equation (4.2) into a
regularization term omd. More precisely, in addition to the usual ridge or sparseafigrierms,
we also consider the following regularization:

IATQA + oI — Q|3 (4.4)

which we refer to as theyapunov penaltyTo compare (4.4) with the ridge penalty and the sparse
penalty, we consider (4.3) as a multiple-response regnegsioblem and view théth column

of A as the regression coefficient vector for thhn output dimension. From this viewpoint, we
immediately see that both the ridge and the sparse penalfizdteat the regression problems as
unrelated. On the contrary, the Lyapunov penalty incorgsreelations between pairs of columns
of A by using a covariance estimaie In other words, although the non-sequence sample does
not provide direct information about the individual regges problems, it does reveal how the
regression problems are related to one another. To illigskraw the Lyapunov penalty may help

to improve learning, we give an example in Figure 4.1. The transition matrix is

—0.4280 0.5723
A= —1.0428 —0.7144 (4-5)

ande’ ~ N (0, I). We generate a sequence of 4 points, draw a non-sequenckes#raf points
independently from the stationary distribution and obthi@ sample covarianc@. We fix the
second column ofl but vary the first, and plot in Figure 4.1(a) the resultingelesets of the sum
of squared errors on the sequence (SSE) and the ridge péRadye), and in Figure 4.1(b) the
level sets of the Lyapunov penalty (Lyap). We also give coatds of the tru¢A,; Ay ]", the
minima of SSE, Ridge, and Lyap, respectively. To see the\behaf the ridge regression, we
trace out a path of the ridge regression solution by varyirggenalization parameter, as indi-
cated by the red-to-black curve in Figurre 4.1(a). This patpretty far from the true model, due
to insufficient sequence data. For the Lyapunov penalty,bgerve that it has two local minima,
one of which is very close to the true model, while the othksg @ghe global minimum, is very
far. Thus, neither ridge regression nor the Lyapunov pgraah be used on its own to estimate
the true model well. But as shown in Figure 4.1(c), the corathiobjective, SSERidgeJr%Lyap,
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Figure 4.1: Level sets of different functions in a bivariatie example

has its global minimum very close to the true model. This destrates how the ridge regression
and the Lyapunov penalty may complement each other: thediobyitself gives an inaccurate
estimation of the true model, but is just enough to identipad model from the many candidate
local minima provided by the latter.

In the following we describe our proposed methods for inooaging the Lyapunov penalty
(4.4) into ridge and sparse least-square estimation. Wedifsuss robust estimation for the
covariance)).

4.1 Ridge and Lyapunov penalty

Here we estimatel by solving the following problem:
o1 9 | A2 L A2 ATA 27 A2
min - [[Y - XA+ Al + F1ATQA + 0’1 - QI3 (4.6)

Where@ is a covariance estimate obtained from the non-sequengalsawie treat\;, \, ando?

as hyperparameters and determine their values on a validsgit. Given these hyperparameters,
we solve (4.6) by gradient descent with back-tracking liearsh for the step size. The gradient
of the objective function is given by

XY + XTXA+MA+MQAATQA + 021 — Q). (4.7)

As mentioned before| (4.6) is a non-convex problem and thgaires good initialization. We
use the following two initial estimates of:

At — (XTX)IXTYy and A" .— (XTX +MI)'XTY, (4.8)

where(-)' denotes the Moore-Penrose pseudo inverse of a matrix, gakifi the minimum-
norm solution to the least square problem (4.3). We run thdignt descent algorithm with these
two initial estimates, and choose the estimatetthat gives a smaller objective.
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4.2 Sparse and Lyapunov penalty

Sparse learning for vector auto-regressive models hasnbe@ouseful tool in many modern
time series modeling tasks, where the numbeaf states in the system is usually larger than
the lengthT” of the time series. For example, an important problem in agatponal biology is
to understand the progression of certain biological preeg$rom some measurements, such as
temporal gene expression data.

Using an idea similar to (4.6), we estimatedy

1 A ~ ~
min o[V — XA} + FATQA+ 0’1 - Q.
st [JAlL < A

Instead of adding a sparse penalty .4rto the objective function, we impose a constraint on
the ¢, norm of A. Both the penalty and the constraint formulations have lveasidered in the
sparse learning literature, and shown to be equivalentenctise of a convex objective. Here
we choose the constraint formulation because it can be dddyea simple projected gradient
descent method. On the contrary, the penalty formulatiaddd¢o a non-smooth and non-convex
optimization problem, which is difficult to solve with staand methods for sparse learning. In
particular, the soft-thresholding-based coordinate eeismethod for LASSO does not apply due
to the Lyapunov regularization term. Moreover, most of tbenmon methods for non-smooth
optimization, such as bundle methods, solve convex prablmd need non-trivial modification
in order to handle non-convex problems [Noll et al., 2008].

Let J(A) denote the objective function in (4.9) and*) denote the intermediate solution at
the k-th iteration. Our projected gradient method updatés to A+ by the following rule:

AR 1AW — g (AR, (4.10)

wheren® > 0 denotes a proper step siZ€,J(A*)) denotes the gradient of(-) at A®), and
I1(-) denotes the projection onto the feasible regjet|; < A\;. More precisely, for any-by-p
real matrixl” we define

(4.9)

(V) := arg min [|4— V3. 4.11
(V) = arg min A=V} (4.11)
To compute the projection, we use the efficiénprojection technique outlined in Algorithm 3.6

of Chapter 3.

For choosing a proper step sig&’, we consider the simple and effectidemijo rule along
the projection arcdescribed by Bertsekas [1999]. This procedure is given igoAthm 4.2,
and the main idea is to ensure a sufficient decrease in thetdgjevalue per iteration (4.13).
Bertsekas [1999] proved that there always exigts = 5™ > 0 satisfying (4.13), and every
limit point of { A} is a stationary point of (4.9). In our experiments we set 0.01 and
G = 0.1, both of which are typical values used in gradient descestinAhe previous section,
we need good initializations for the projected gradientcées method. Here we use these two
initial estimates:

~ ~ ~ 1
A = arg min ||A— A¥% and A® := arg min —

Y — XA|? 4.12
1A <M 4]1< 2” IF (4.12)

whereAs¢ is defined in[(4.8), and then choose the one leading to a snohijective value.
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Algorithm 4.1 Armijo’s rule along the projection arc

Input: A® VJ(AF) 0<B<1,0<c<1
Output: AC*+D

1: Findn® = max{g™*|r; € {0,1,...}} such thatA®*+V) .= TI(A®) —n*)¥ J(A®)) satisfies

J(AED) — J(AW) < e Tr (VJ(A®)T(AKTD — AR)y) (4.13)

4.3 Robust estimation of covariance matrices

To obtain a good estimator fof using the proposed methods, we need a good estimator for the
covariance of the stationary distribution of (4.1). Giveniadependent samplgz;}7_; drawn
from the stationary distribution, the sample covariancgeiined as

1 - \T - o i %
S = — ;(ZZ z) (z; —z), wherez := m— (4.14)
Although unbiased, the sample covariance is known to beevabie to outliers, and ill-conditioned
when the number of sample pointsis smaller than the dimensiom Both issues arise in
many real world problems, and the latter is particularly coom in gene expression analy-
sis. Therefore, researchers in many fields, such as statiftedoit and Wolf, 2004; Stein,
1975; Yang and Berger, 1994], finance [Ledoit and Wolf, 208Rjnal processing [Chen et al.,
2010a,b], and recently computational biology [&fdr and Strimmer, 2005], have investigated
robust estimators of covariances. Most of these resulfiraie from the idea o$hrinkage
estimators which shrink the covariance matrix towards some targeboamce with a simple
structure, such as a diagonal matrix. It has been shown &y, leedoit and Wolf [2003]; Stein
[1975] that shrinking the sample covariance can achieve alesmmean-squared error (MSE).
More specifically, Ledoit and Wolf [2003] consider the fallmg linear shrinkage:

Q = (1-a)S+aF (4.15)

for 0 < a < 1 and some target covariande, and derive a formula for the optimal that
minimizes the mean-squared error:

a” := arg min E(|Q - Q3), (4.16)

which involves unknown quantities such as true covariantés Schafer and Strimmer [2005]
propose to estimate* by replacing all the population quantities appearingvinby their un-
biased empirical estimates, and derived the resultingnastira* for several types of targeft.
For the experiments later in this chapter we use the estimpadbposed by Scifer and Strimmer
[2005] with the followingF:

i, =7, .
Fp=qo0 Mmooy ey (4.17)
0 otherwise

51



Denoting the sample correlation matrix & we give in below the final estimat(@ [Table 1,
Schafer and Strimmer, 2005]:

i e 450 fi=j 5 _ )L if i = j,

Y\ Rij\/SuS; otherwise Y | Ryymin(1, max(0,1 — @*)) otherwise
(4.18)
e i Var(Ri) Yoy it ke (Whiy — W) (4.19)

N Z#J R2 N Z#J R2 ’ -

where s
~ ~ _ —1 Wkij

wkij = (zk)i(zk)j, wij = %k], (420)

and{z;} , arestandardizedhon-sequence samples.

4.4 EXperiments

To evaluate the proposed methods, we conduct experimerstgntinetic and video data. We use
the same performance metrics as in Chapter 3 for evaluatiegratimodelA:

1 jot+l tA\
Normalized error: I x Al

T 14 =<
t=1
Ir— 1 t+1 t tA
Cosine score: (x ( x') )
1 i+t — xt|[|xt A — x|

t=1

In experiments on synthetic data we have the true transitiatrix A, so we consider a third

In all our experiments, we have a training sequence, a teséguence, and a non-sequence
sample. To choose the hyper-parametgrs\, and o2, we split the training sequence into
two halves and use the second half as the validation sequéhigee we find the best hyper-
parameters according to the validation performance, wia tanodel on the full training se-
quence and predict on the testing sequence. Xroand A\, we adopt the usual grid-search
scheme with a suitable range of values. Féywe observe tham 2) implie® — %1 should
be positive semidefinite, and thus search the{8&¥ min; \;(Q ) |1<j< 3}. In most of our
experiments, we find that the proposed methods are muchdasttigse too? than to); and\,.

4.4.1 Synthetic Data
We consider the following two VAR models with Gaussian naise- N'(0, I).

0.95M
Dense Model: A= —F————— M,;; ~N(0,1),1 < 14,5 < 200.
max(]\i(M)[)"

0.95(M ® B)

Sparse Model: A = ,
P max(|N(M © B)))

M;; ~ N(0,1), B;; ~ Bemn(1/8),1 < i, j < 200,
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Figure 4.2: Testing performances and eigenvalues in msdaluhe dense model

where Beriih) is the Bernoulli distribution with success probabilityand® denotes the entry-
wise product of two matrices. By settiig= 1/8, we make the sparse transition matrbhave
roughly40000/8 = 5000 non-zero entries. Both models are stable, and the stagiaiisgtribution

for each model is a zero-mean Gaussian. We obtain the caearia of each stationary distri-
bution by solving the Lyapunov equation (4.2). For a singlpegiment, we generate a training
sequence and a testing sequence, both initialized frontahiersary distribution, and draw a non-
sequence sample independently from the stationary disimitn. We set the length of the testing
sequence to bg&00, and vary the training sequence lengttand the non-sequence sample size
n: for the dense model; € {50, 100, 150, 200, 300, 400, 600, 800} andn € {50,400, 1600}; for

the sparse model; € {25, 75,150,400} andn € {50,400, 1600}. Under each combination of
T andn, we compare the proposed Lyapunov penalization method tivétbaseline approach
of penalized least square, which uses only the sequence datavestigate the limit of the
proposed methods, we also use the tur the Lyapunov penalization. We run 10 such exper-
iments for the dense model and 5 for the sparse model, andt iygooverall performances of
both the proposed and the baseline methods.

Experimental results for the dense model

We give boxplots of the three performance measures in thexg@renents in Figures 4.2(a) to
4.2(c). The ridge regression approach and the proposedibgappenalization method (4.6) are
abbreviated as Ridge and Lyap, respectively. For nornlereor and cosine score, we also
report the performance of the trueon testing sequences.

We observe that Lyap improves over Ridge more significantigrvthe training sequence
lengthT" is small £ 200) and the non-sequence sample sizis large ¢ 400). WhenT is
large, Ridge already performs quite well and Lyap does nptave the performance much. But
with the true stationary covariancg, Lyap outperforms Ridge significantly for all. Whenn
is small, the covariance estimadgis far from the true) and the Lyapunov penalty does not
provide useful information about. In this case, the value of, determined by the validation
performance is usually quite small (0.5 or 1) compared;t¢256), so the two methods perform
similarly on testing sequences. We note that if instead @fdbust covariance estimatein (4.18)
and (4.19) we use the sample covariance, the performancgpfd¢an be marginally worse than
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Ridge whem is small. A precise statement on how the estimation errgy mffects A is worth
studying in the future. As a qualitative assessment of thimated transition matrices, in Figure
4.2(d) we plot the eigenvalues in modulus of the tAu@nd theA’s obtained by different methods
whenT = 50 andn = 1600. The eigenvalues are sorted according to their modulush Balge
and Lyap severely under-estimate the eigenvalues in medbiu Lyap preserves the spectrum
much better than Ridge.

Experimental results for the sparse model

We give boxplots of the performance measures in the 5 exgertisrin Figures 4.3(a) to 4.3(c),
and the eigenvalues in modulus of the trdeand somed’s in Figure 4.3(d). The sparse least-
square method and the proposed method (4.9) are abbreamt®darse and Lyap, respectively.

We observe the same type of improvement as in the dense mgyaglimproves over Sparse
more significantly wher¥" is small andn is large. But the largest improvement occurs when
T = 75, not the shortest training sequence lerifitk- 25. A major difference lies in the impact
of the Lyapunov penalization on the spectrumAfas revealed in Figure 4.3(d). Whé&nis
as small as 25, the sparse least-square method shrinke aiganvalues but still keep most of
them non-zero, while Lyap with a non-sequence sample ofl69€ over-estimates the first few
largest eigenvalues in modulus but shrink the rest to hasesraall modulus. In contrast, Lyap
with the true() preserves the spectrum much better. We may thus need anettendovariance
estimate for the sparse model.

4.4.2 Video Data

We test our methods using a video sequence of a periodicaihgsg pendulum, which is cut

from the video used in Chapter 3 and consists of 500 frames 4ify780 grayscale images.
One such frame is given in Figure 4.4(a) The period is about&8es. To further reduce the
dimension we take the second-level Gaussian pyramiddtiresin images of size 9-by-11. We

then treat each reduced image as a 99-dimensional vectbn@malize each dimension to be
zero-mean and standard deviation 1. We analyze this seguatica 99-dimensional first-order
VAR model. To check whether a VAR model is a suitable choicegatimate a transition matrix
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Figure 4.4: Results on the pendulum video data

from the first 400 frames by ridge regression while choosheggenalization parameter on the
next 50 frames, and predict on the last 50 frames. The besatipation parameter is 0.0156, and
the testing normalized error and cosine score are 0.33 &7 @spectively, suggesting that the
dynamics of the video sequence is well-captured by a VAR ihode

We compare the proposed method (4.6) with the ridge regne$sr two lengths of the train-
ing sequencel’ € {6, 10,20,50}, and treat the last 50 frames as the testing sequence. For bot
methods, we split the training sequence into two halves aedhe second half as a validation
sequence. For the proposed method, we simulate a non-sexs@mple by randomly choosing
300 frames from between th{&" + 1)-st frame and the 450-th frame without replacement. We
repeat this 10 times.

The testing normalized errors and cosine scores of bothadsthre given in Figures 4.4(b)
and 4.4(c). For the proposed method, we report the meanrpefice measures over the 10
simulated non-sequence samples with standard deviationen\Wh< 20, which is close to
the period, the proposed method outperforms ridge regnessry significantly except when
T = 10 the cosine score of Lyap is barely better than Ridge. Howeavieen we increasé’ to
50, the difference between the two methods vanishes, ewemglhthere is still much room for
improvement as indicated by the result of our model sanigckhbefore. This may be due to
our use of dependent data as the non-sequence sample, or sisyfficient non-sequence data.
As for \; and \,, their values decrease respectively from 512 and 2,048swtlean 32 a§’
increases, but since we fix the amount of non-sequence Hatmteraction between their value
changes is less clear than on the synthetic data.

4.5 Conclusion

In this chapter we propose to improve penalized least-sgestimation of VAR models by incor-
porating non-sequence data independently drawn from #t®séary distribution of the under-
lying VAR model. We construct a novel penalization term labse the discrete-time Lyapunov
equation incorporating the covariance (estimate) of tagatary distribution. Although the re-
sulting optimization problems are non-convex, the stathdeast-square solution obtained by
using only sequence data often serves as a good initial,p@dticing the need for multiple
random initializations. Experimental results demonsttagt our methods can improve signifi-
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cantly over standard penalized least-square methods \ieea &re only few sequence data but
abundant non-sequence data and when the model assumptadidis-uture directions include
investigating the impact of) on A in a precise manner, generalizing the proposed Lyapunov
penalization scheme to handle general noise covarianedg@plying the proposed methods to
other real-world data.
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Chapter 5

Learning Hidden Markov Models from
Non-sequence Data

In this and the next chapters we turn to learning hidden Markedels (HMMs) from non-
sequence data. At first glance this seems to be an unthinkétielept because, as shown in
Chapter 3, it is not clear how to deal with the various idertiifity issues that can seriously
compromise learning of the fully observable VAR model, leth@ the more complicated HMM,
whose estimation is challenging even in the usual sequéediming setting. One major hurdle
lies in the use of the EM learning paradigm, which often clesdsning as a highly non-convex
optimization problem due to hidden variables and consetysaffers from multiple local op-
tima with no guarantee. Moreover, the EM approach usualsdet shed much light on ways
to reduce the ambiguity of the learning problem without mgkstrong assumptions, because
as long as the resulting optimization problem remains nam«ex, formal analysis of learning
guarantees is still formidable.

We thus propose to take a different approach, based on anotigestanding estimation
principle: the method of momen{MoM). The basic idea of MoM is to find model parameters
such that the resulting moments match or resemble the erapmoments. For some estimation
problems, this approach is able to give unique and consgist&imates while the maximum-
likelihood method gets entangled in multiple and potelytiahdesirable local maxima. Taking
advantage of this property, an emerging area of researclaahime learning has recently devel-
oped MoM-based learning algorithmsth formal guaranteefor some widely used latent vari-
able models, such as Gaussian Mixture Models [Hsu and Kakad&], Hidden Markov Models
[Anandkumar et al., 2012b], Latent Dirichlet Allocationpandkumar et al., 2013; Arora et al.,
2012], etc. Although many learning algorithms for these eisaxist, some having been very
successful in practice, barely any formal learning guaamas given until the MoM-based
methods were proposed. Such breakthroughs seem surpbsirigturns out that they are mostly
based on one crucial property: for quite a few latent vagabbdels, the model parameters can
be uniquely determined frospectral decompositionsf certain low-order moments of observ-
able quantities.

In this chapter we demonstrate that under the MoM and spéearaing framework, there are
reasonable assumptions on the generative process of gaessee data, under whithe tensor
decomposition methofAnandkumar et al., 2012a], a recent advancement in spdetmaing,
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can provably recover the parameters of certain typefrstforder Markov modelandhidden
Markov models To the best of our knowledge, ours is the first work that patesiformal guar-
antees for learning from non-sequence data in terms of peterastimation accuracy. Interest-
ingly, these assumptions bear much similarity to the usied behindopic modeling with the
bag-of-words representation whichimvariant to word orderingsthe task of inferring topics is
almost impossible giveane single documeriho matter how long it is!), but becomes easier as
more documents touching upon various topics become al&il&br learning dynamic models,
what we need in the non-sequence datanauétiple set®f observations, where each set contains
independent samples generated fritgnown initial distribution and the many different initial
distributions together cover the entire (hidden) statespin some of the scientific applications
described in Chapter 1, such as biological studies, this@§pssumptions might be realized by
running multiple experiments with different initial configations or amounts of stimuli.

This chapter consists of four sections. Section 5.1 revidgsessentials of the tensor de-
composition framework [Anandkumar et al., 2012a]; SectoB details our assumptions on
non-sequence data, tensor-decomposition based lealgogffams, and theoretical guarantees;
Section 5.3 reports some simulation results confirming lbeotetical findings, followed by con-
clusions in Section 5/4. Proofs of theoretical results arergin Appendix B.

5.1 Tensor Decomposition

We briefly introduce the tensor decomposition frameworkgAdkumar et al., 2012a], mainly
following their exposition and describing only the compotsenecessary for our work. We
first give some preliminaries and notations. A realh order tensord is a member of the
tensor product spac®?’_, R™ of p Euclidean spaces. For a vectorc R™, we denote by
X =xx®- - ®x € QY ,R™its p-th tensor power. A convenient way to represent
A e ®_, R™ is through ap-way array of real numbersi; ;,..;, 1<, is,...i,<m,» WhereA; ;,..;,
denotes theiy, is, . .., i,)-th coordinate of4 with respect to a canonical basis. With this repre-
sentation, we can view as a multi-linear map that, given a setpahatrices{ X; € R™*™}!_ |
produces another-th order tensord (X, X5, -+, X,) € Q"_, R™ with the following p-way
array representation:

A(Xb X27 e 7Xp)i1i2"'ip = Z Ajle"'jp (Xl)jlil (XQ)j2i2 T (X:D)jpip' (51)

1<j1,525--Jp<m

In this work we consider tensors that are up to the third-ofgde< 3) and, for most of the time,
alsosymmetricmeaning that theip-way array representations are invariant under permutatio
of array indices. More specifically, we focus on second aird-tbrder symmetric tensors in or
slightly perturbed from the following form:

k k
My = Zwiui Qp;, Ms = sz‘ll@ @y & by, (5.2)
i=1 i=1

satisfying the following non-degeneracy conditions:
Condition 1. w; >0V 1 <i <k, {u; € R™}¥_, are linearly independent, ard < m.
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Algorithm 5.1 Whitening transformation
input A symmetric matrix)M, € R™ ™, a symmetric third-order tensdi/; € R™*™*™ and
the target dimensioh.
output A reduced third-order tens@f ¢ R***** and a whitening transformatio’ ¢ R™**.
1: ComputelV := QD~'/2, where@Q € R™** denotes the top-orthonormal eigenvectors of
M,, andD € R*** is a diagonal matrix of the correspondihgositive eigenvalues.
2: Compute7 = Ms(W, W, W).

As described in later sections, the core of our learning taske problem of estimating
{w;}* | and {u,}*_, from perturbed or noisy versions dff, and M;, which we solve with
the tensor decomposition method recently proposed by Anandr et al. [2012a], summarized
below. Suppose the noiseles$, and M5 are available, we first perform ahitening stepon
them, as outlined in Algorithm 5.1, to obtain a whitened, éowlimensional tensdf € R**kxk
and a whitening transformatioi € R™** such that

k k
‘ 1 -
T = My(W,W, W) = > wi(Wip)® =% ——p”,
i=1 i=1 v

where the vectorg, := ,/w;W " u, form an orthonormal basis @&* becausd = W' MW =
S W (Vwip;) (Vo)W = S i, . Hence, the symmetric tens@r has a so-called
orthogonal decompositigrvhich may not exist for general symmetric tensors. ThenliyoFem
4.3 of [Anandkumar et al., 2012a], which establishes thiefohg results under Condition 1:
1. the set ofobust eigenvector&.f. Section 4.2 of [Anandkumar et al., 2012a])Dfcorre-
spond exactly td g, }*_;;
2. the eigenvalue associated wiihis equal tol /,/w;, ¥V 1 <17 < k;

3. if (v, \) is a pair of robust eigenvector/eigenvalue®f thenp, = \(WT)tv for some
1 <4 < k, wheret denotes the Moore-Penrose pseudo inverse;
we can reduce the original problem of recovering the stmecto (5.2) into a robust tensor
eigen-decomposition problem. Motivated by power itematfor matrix eigen computation,
Anandkumar et al. [2012a] verify that starting from almosery vectorf, € R*, the tensor
power iteration

0, — 7(1,0, 1,0, 1)

171,641,601’
where|| - || denotes the vector 2-norm, converges to some robust eigemaf 7 at a quadratic
rate, and thereforgé successive applications of tensor power iteration withadieih result in all
pairs of robust eigenvectors/eigenvalues.

In practice we almost never have the ex&tt and M5, but only noisy or perturbed versions
Moy and]\/fg, which are usually estimates from the data. Perturbationaeatroy the tensor struc-
ture (5.2), so the reduced tensbrresulting from applying Algorithm 5.1 td7, and M may no
longer be orthogonally decomposable, hindering the suls#qobust tensor eigendecomposi-
tion. Nevertheless, Anandkumar et al. [2012a] demonsthatiif the perturbatiort := T-T
is a symmetric tensor with a small operator norm defined a8 := supq_; |E(0,6,0)
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Algorithm 5.2 Robust tensor power method

input A symmetric tensoffl ¢ R¥***k number of iterations, N.
output the estimated eigenvector/eigenvalue pair; the deflatesbte
1: for r=1toLdo
Draw 0((]7) uniformly at random from the unit sphereRf.
for t =1toNdo

. 7(1,6{”,,6,",)

L relm L))

. end for

: Let7* := argmaxj << ’T(GI((), 01%7), 91(()).

: DoN power iteration updates (Line 4) starting frcﬂﬁ*) to obtaing, and sef\ := 7(0,6.,0)
3

~

2
3
4
5. end for
6
7
8
9: return the estimated eigenvector/eigenvalue pairﬂ); the deflated tensdf — A6 .

thenk successive applications of somadomizedensor power iteration coupled with deflation
yield accurate estimates of all robust eigenvector/eigervpairs with high probability. More
precisely, they proposene Robust tensor power methodtlined in Algorithm 5.2, which em-
ploys multiple random restarts, and provide a theoreticargntee on its robustness against the
input perturbation:

Theorem 1. (Theorem 5.1 of [Anandkumar et al., 2012a]) [ Bt= 7 + E € R¥*kxk \where

7T is a symmetric tensor with orthogonal decompositior= Zle \vP? where each\; > 0,
{Vv1,Va,...,vi} is an orthonormal basis, anél has operator norm := || E||. DefineA i, :=
min({\;}%,) and A\ := max({\;}¥_,). There exists universal constants cy,c; > 0 such
that the following holds. Pick any € (0, 1), and suppose

min

e<cy-

N > ¢ - (log(k) + log log(Amax/€)), and
)

In(L/ 10%2(%)) N In(In(L/ logZ(%)) o In(8) In(4)
J In(k) (1 TIn(L/ Tog,(5)) \/ 1n<L/1og2<§>>> = (” 1n<k>>'

(Note that the condition oh holds withL = poly(k)log(1/n).) Suppose that Algorithm 5.2 is
iteratively calledk times with numbers of iterationisand N, where the input tensor  in the

first call, and in each subsequent call, the input tensoresdéflated tensor returned by the previ-
ous call. Let(¥y, A1), (V2, \a2), - - -, (Vi, Ay ) be the sequence of estimated eigenvector/eigenvalue
pairs returned in thesé calls. With probability at least — 7, there exists a permutationon
{1,...,k} such that

k
Vo) = Vill < 8e/Aoiiys Aoty = Ajl < Be, VI<j<k, and |T = Av5%| < 55e
j=1

This result, together with existing perturbation theorgarling the whitening procedure
(e.g., Appendix C.1 of [Anandkumar et al., 2013]), allow ugramslate the perturbations i1,

and M into the estimation errors ia/s andu,’s, guaranteeing accurate estimation under small
input perturbation.

60



0.1 0.3
0.9

0.5 0.7

0.5

Figure 5.1: Running example of Markov chain with three state

5.2 Learning from Non-sequence Data

We first describe a generative process of non-sequence atdfiest-order Markov models and
demonstrate how to apply tensor decomposition methodsrforpeconsistent learning. Then
we extend these ideas to hidden Markov models and providedtieal guarantees on the sam-
ple complexity of the proposed learning algorithm. For tiotzal conveniences we define the
following vector-matrix cross produc®acriosy : (Vv @1 M)iji = vi( M)k, (V @2 M)j, =

Vi (M)ik, (v @3 M), = vg(M);;. For a matrix)/ we denote by, its i-th column.

5.2.1 First-order Markov Models

Let P € [0, 1]™*™ be the transition probability matrix of a discrete, firstier, ergodic Markov
chain withm states and a unique stationary distributienLet P be of full rank andL™ P = 17,

To give a high-level idea of what makes it possible to le&rirom non-sequence data, we
use the simple Markov chain with three states shown in Figuteas our running example,
demonstrating step by step how to extend from a very resgicfenerative setting of the data
to a reasonably general setting, along with the assumpti@ate to allow consistent parameter
estimation. In the usual setting where we have sequencelsseftions, sayx", x® .. .}
with parenthesized superscripts denoting time, it is ghtdrward to consistently estimate.
We simply calculate the empirical frequency of consecupaes of states:

5o S, 1(xt) =4 x® = j)

Alternatively, suppose for each stafewe have an.i.d. sampleof its immediate next state
= {x1 ,x2 ... | x = j1, where subscripts are data indices. Consistent estimation i

thls case is also easy: the empirical distributioripfconsistently estimates;, the j-th column

of P. For example, the Markov chain in Figure 5.1 may produce tiewing three samples,
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whose empirical distributions estimate the three colunfnB mespectively:

Dy = {2,1,2,2,2,2,2,2,2,2} = P, = [0.1 0.9 0.0],
D, = {3,3,2,3,2,3,3,2,3,3} = P, = [0.0 0.3 0.7],
Dy = {1,1,3,1,3,3,1,3,3,1} = P, = [0.5 0.0 0.5]".

A nice property of these estimates is that, unlike in the satjal setting, they do not depend
on any particular ordering of the observations in each seuelktheless, such data are not quite
non-sequenced because all observations are made at ekaatigxt time step. We thus consider
the following generalization: for each statewe haveD; := " x L x©@ = 51 e,
independent samples of states drawardénowrfuture times{t,, t,, . . .}. For example, our data
in this setting might be

Dy = {2,1,2,3,2,3,3,2,2,3},
Dy = {3,3,2,3,2,1,3,2,3,1}, (5.3)
Ds = {1,1,3,1,2,3,2,3,3,2}.

Obviously it is hard to extract information aboit from such data. However, if we assume
that the unknown time§t; } are i.i.d. random variables following some distributiod@pendent
of the initial statej, it can then be easily shown that;’s empirical distribution consistently
estimated’;, the j-th column of the thexpected transition probability matrik := E,[P’]:

Dy = {2,1,2,3,2,3,3,2,2,3} = T, = [0.1 0.5 0.4]",
D, = {3,3,2,3,2,1,3,2,3,1} = T, = [0.2 0.3 0.5,
Dy = {1,1,3,1,2,3,2,3,3,2} = Ty = [0.3 0.3 0.4] .

In general there exist mang’s that result in the samé&. Therefore, as detailed later, we make
a specific distributional assumption ¢t} } to enable unique recovery of the transition maitfix
from T" (Assumption A.1). Next we consider a further generaliaatihere the unknowns are
not only the time stamps of the observations, but also thmisitate;. In other words, we only
know each set was generated from the same initial state donbtknow the actual initial state.
In this case, the empirical distributions of the sets cdasity estimate the columns @fin some
unknown permutationl:

Du = {1,1,3,1,2,3,2,3,3,2} = Tue = [0.3 0.3 0.4]T.

Due = {3,3,2,3,2,1,3,2,3,1} = Tne = 0.2 0.3 0.5],

Dngy = {2,1,2,3,2,3,3,2,2,3} = Tua, = [0.1 0.5 0.4]T.
In order to be able to identifyl, we will again resort to randomness and assume the unknown
initial states are random variables following a certairtrihsition (Assumption A.2) so that the

data carry information aboui. Finally, we generalize from a single unknown initial stedean
unknowninitial state distribution where each set of observatiofhs:= {thl), xétQ), | w0}
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consists of independent samples of states drawn at randms from some unknown initial state
distribution7(®. For example, the data may look like:

Do = {1,331,232332},

D 0 = {3717273727173727371}7
K

Dﬂ.(o) - {27172a373737371a273}7
3

With this final generalization, most would agree that thegyated data are non-sequenced and
that the generative process is flexible enough to model sdntizeareal-world situations de-
scribed in Chapter 1. However, simple estimation with eroplrdistributions no longer works
because each set may now contain observations from muitipia states. This is where we
take advantage of the tensor decomposition frameworkradlin Section 5.1, which requires
proper assumptions on the initial state distributigf (Assumption A.3).

More formally, the aforementioned ideas motivate the fellg three assumptions:

e Assumption A.1. The missing timeq¢;} are i.i.d. according to a Geometric distribu-
tion. This makes it possible to uniquely recover the traoisitatrix P from the expected
transition matrix7'.

e Assumption A.2. The stationary distributionr of the Markov chain is such that; #
7j,4 # j. This allows recovering the correct column permutatiofi’of

e Assumption A.3. The initial state distributiont® is a random quantity following a
Dirichlet distribution, andE[nx(?)] = =, the stationary distribution. This allows the use
of tensor decomposition methods.

Now we are ready to give the definition of our entire geneggikocess. Assume we hawvesets
of non-sequence data each containingpbservations, and each set of observatipnig! , were
independently generated by the following:

e Draw an initial distribution

7 ~ Dirichlet(a), (Assumption A.3)
ErO=a/(X" ) =m, m#m;Vi#j (Assumption A.2)
e Fori=1,...,n,

= Draw a discrete time
t; ~ Geometric(r), t; € {1,2,3,...}. (Assumption A.1)
= Draw an initial state
s; ~ Multinomial(w©®), s; € {0,1}™.
= Draw an observation
x; ~ Multinomial( P's;), x; € {0,1}™.
As mentioned earlier, our generative process captures straecteristics of real-world situ-
ations. First, all the data points in the same set share tie gaitial state distribution but can

have different initial states; the initial state distritaurt varies across different sets and yet centers
around the stationary distribution of the Markov chain. Asntioned in the beginning of this
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Figure 5.2: Graphical models of the data generative prooedsst-order Markov models

chapter, this may be achieved in biological studies by nugmnultiple experiments with differ-
ent input stimuli, so the data collected in the same expeatiroan be assumed to have the same
initial state distribution. Second, each data point is dréwem an independent trajectory of the
Markov chain, a similar situation in the modeling of galax@ Alzheimer’s, and random time
steps could be used to compensate for individual variatioapeed: a small/largg corresponds

to a slowly/fast evolving individual object. Finally, thegmetric distribution can be interpreted
as an overall measure of the magnitude of speed variatioarga success probabilitywould
result in many smalt;’s, meaning that most objects evolve at similar speeds,endismallr
would lead tat;’s taking a wide range of values, indicating a large speettran.

Figure 5.2(a) shows the graphical model of our generativegss. Interestingly, this graph-
ical model is very similar to the widely-used topic model ésmit Dirichlet Allocation (LDA)
[Blei et al., 2003]. In fact, by summing out the random time&ve obtain a graphical model that
depends only on the expected transition probability mattiand, as shown in Figure 5.2(b),
has exactly the same structure as LDA. More specifically, are \dew a set of non-sequence
data points as a document generated by an LDA model, whelexgamrresponds to a word,
s; to a topic, the expected transition matfixto the word-topic matrix, the initial distribution
(¥ to the topic distribution of the document, and the statigrdistribution 7 to the overall
topic proportions. Such a structural equivalence to LDAw# us to take advantage of recent
advances in spectral learning [Anandkumar et al., 2012t mgorous guarantees on parameter
estimation. However, our generative process has a ciitidatinct property:the words are the
topics, both of which correspond to statesd as a result, unlike most topic models, is NOT
invariant to column permutations of the word-topic matii¥e thus need Assumption A.2 to be
able to recover the correct permutation.

Now we describe our spectral learning algorithm, which ¢stsf three main steps:

1. Compute certain low-order moments of the data;
2. Perform tensor decomposition of the empirical moments;

3. Recover model parameters from the factors given by tesscomposition.

The high-level idea is that according to our generative @ssccertain low-order moments of the
data have the tensor structure (5.2) with the factors bdiag\tarkov model parameters, so we
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can use the tensor decomposition method in Section 5.1 tactxhe model parameters from the
moments. The following theorem gives the desired low-ordements and their structure:
Theorem 2. Letay := ), o;. Define the expected transition probability matfix= E,[P’] =
rP(I —(1—-r)P)"tand

Cy = Elx; ®xy),
C; = E[x; ®xs®x3),
My = (ap+1)Cs — aE[x] @ Efx],
3
Ms = (a0+2)2(a0+1)03 - (aozl)ao ZE[Xl] ®q Ca + Q(Q)E[Xl]®3~

d=1
Then the following holds:
E[x;] = m,
02 —

hﬂ”+;ﬁr®n

_ 2 ®3 4 203 &3
Cs = (a0+2)(ao+1) Z mil; oco+2 Z R4 0 — (a0+2) (?10+1) 5
M, = Tdiag(m)T"
M3 = Z 7TZ‘,_TZ~®3.

We call M, and M; the adjusted moments because they are computed from thesavents
E[x;]|, C, andC5;. Because of the connection of our generative process to LtB& proof of
this theorem, given in Appendix B.1.1, mainly uses existiegults in spectral learning of LDA
[Anandkumar et al., 2013], which rely on the special streetn the moments of the Dirichlet
distribution (Assumption A.3). According to Theorem 2 stdlear that the adjusted momentfs
andM; have the desired tensor structure (5.2). Assuminig known, we can form estimaté@
and]\73 by computing empirical moments from the data. Note thatdJ® are exchangeable,
so we can use all pairs and triples of data points to compweegtimates. Since the tensor
decomposition method may retufih under any column permutation, we need to recover the
correct matching between its rows and columns. To do so, we that ther returned by the
tensor decomposition method undergoes the same permugatishe columns d¢f, and because
all ;’s have different values by Assumption A.2, we may recoverdbrrect matching by sorting
both the returned and the meanr of all data.

The last issue is recovering from 7T, for which we make the distributional assumption
A.1 on the random timeg$t;}. With such an assumption, we have reduced the search space
from all possible mappings betwe&nhand P to one single parameter, the success probability
Nevertheless, recovering andr is in general still difficult even when the exdttis available,
because multiple choices éf andr may result in the samé. In practical situations, however,
we can often assume the underlying transition probabiligrim P has some zero entries, e.g.,
when the true Markov chain is based on a graph, or when the statsition is under some
external or physical constraint. With this extra assumptie prove that unique recovery is
possible in the population case:
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Theorem 3. Let P*, r*, T* andn* denote the true values of the transition probability mattine
success probability, the expected transition matrix, dredgtationary distribution, respectively.
Assume that>* is ergodic and of full rank, and’; = 0 for some arbitraryi and j. LetS :=
{\/(A—=1) | Nis areal negative eigenvalue &} U {0}. Then the following holds:

e 0 <max(S) <r*<1.

e Forallr € (0,1]\ S, P(r) := (rI + (1 — r)T*)~'T* is well-defined and satisfies

1"P(r) = 17, P(r)m* = =, P* = P(r").
* P(r)y; >0Vi,j <<= r>r-

That is, P(r) is a stochastic matrix if and only if > r*.

The proof is in Appendix B.2, and the key step is to show thatziéro entries ilP* become
negative whem < r*. According to this theorem, binary search (cb‘hl] suffices to recover*
and P* from 7. However, it may fail when we replade* by an estimatd’ because eveﬁ’( )
might contain negative values. A more practical estimagimotedure is the following: for each
value ofr in a decreasing sequence starting from 1, we prafget) := (r7 + (1 — r)T)"'T
onto the space of stochastic matrices and record the pimjedistance. Then starting from
1, we search in the sequence of projection distances fortestidden increase, and take the
corresponding value of and (projected)P(r) as the final estimates. The idea is th({)
should be close to the space of stochastic matrices whenr*, but starts to move away by
having negative entries aggets smaller than*. Itis easy to see the estimates produced by such
a procedure converge to and P* asT gets closer tdl™ and the discrete search space for
becomes denser. However, a formal convergence rate is petittentified. Also, while lacking
a formal proof, we suspect that the more zero entfiebas, the easier itis to estimatebecause
P(r) for r < r* would be further away from the space of stochastic matrigekaving more
negative entries. Finally, although sparsity is sufficiiemtunique recovery of* andr*, more
investigation is needed to clarify whether it is also neagss

We summarize the entire learning procedure in Algorithm &8ich assumes the trueand
ap are known. Because the empirical moments are consistentatsts for the true moments
and the tensor decomposition method returns accurateassmnder small input perturbation,
we can conclude that the estimates output by Algorithm SliZenverge (with high probability)
to the true quantities as the sample s\zéncreases. Sample complexity bounds can be obtained
with techniques similar to those for Theorem 5 in the nextisac
Remarks on Identifiability. Unlike in Chapter 3, where some properties of the true dynami
model are not identifiable from non-sequence data, our Eeponethod here guarantees con-
sistent parameter estimation. The main reason, as one Ggine is that non-identifiability
is assumed away in our data generative model. For examphsjd=y the following transition
probability matrix and its transpose:

q 0 1—¢q q 1—¢q 0
P=|1-¢ ¢ 0o |, Pl =10 g 1—q,
0 1-q ¢ I—¢q¢ O q

which are ergodic fof) < ¢ < 1. The sequences of observations generated by these two
Markov chains will be in approximately opposite directiarf¥ime, and therefore causes non-
identifiability when time information is missing. Howeveych Markov chains are excluded by

66



Algorithm 5.3 Tensor decomposition method for learning Markov chainsnfrmon-sequence

data

input N sets of non-sequence data points, the success probabifity Dirichlet parametet,
and numbers of iteratiorisandN.

output Estimategr andP.

1. Compute empmcal averages (JQ and03

2: ComputeMz andM3

3: Run Algorithm 5.1 onl, and M3 with target dimensionn to obtain a symmetric tensor
7 € R™™xm and a whitening transformatidly’ € R™*™.

4: Run Algorlthmﬁgm times each with numbers of iteratiohsand N, the input tensor in
the first run set td/” and in each subsequent run set to the deflated tensor retoynie
previous run, resulting im pairs of elgenvalue/elgenvectb(r)\l,vl)}Z 1

5: Match{(\;, v;)}™, with observation symbols by sorting\;}™, and{7;~*/*},

6: Obtain estimate of the transition probability matrix:

~

P = (rI+(1—-r)T)"'T,

whereT := (WT)IVA,V := [ --- v, andA := diag([X; - - - An] 7).
7. (Optional) ProjectP onto the space of stochastic matrices.

our assumption that the stationary distributiosatisfiesr; # =, V ¢ # j becausé’1 = 1. More
generally, all Markov chains with a doubly-stochastic siéion probability matrix are excluded
by that assumption because their stationary distributaoesthe uniform distribution. Another
potentially non-identifiable class of models are timee-reversible Markov chain€hapter 6.5
Grimmett and Stirzaker, 2001], where the transition praligth” and the stationary distribution
7 satisfy

Wjﬂj == 7T1F)JZ A ’L,j

A well-known result is that the time direction of such a Markdhain cannot be distinguished
from the reverse direction after it fully mixes. According déur generative assumption, each
of the non-sequence data sets contains, with a positiveapilitly, observations madeeforethe
Markov chain fully mixes. Those observations make it pdsdibeliminate the non-identifiability
of time direction even in the case of time reversible models.

5.2.2 Hidden Markov Models

Equipped with the intuition and strategies for learningtfosder Markov models, we are now
ready to handle the more complicated hidden Markov modedsdetailed later, it turns out that
both the generative process and the learning procedureNtivslare quite similar to those for
Markov chains, with the main distinction beihgo applications of tensor decomposition, where
the extra one is due to the mapping from the hidden state spdbe observation space.

Let P andnw now be defined over the hidden discrete state space of cétgikaand have
the same properties as the first-order Markov model in Sed&i@.1. Again, we assume the
non-sequence data consists/ofsets of data points, where each set now contains continuous
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Figure 5.3: Graphical model of the data generative procasdMs

observations iMR™. The generative process for each set is almost identicahdotlaerefore
shares the same interpretation with the one for Markov chaixcept for an extra mapping from
the discrete hidden state space to a continuous obsengame:
e Draw an initial hidden state distribution
7w ~ Dirichlet(a),
En®) =o/(30 i) =7, m#m Vi)
e Fori=1,...,n,
= Draw a discrete time
t; ~ Geometric(r), t; € {1,2,3,...}.
= Draw an initial hidden state
s; ~ Multinomial(w (@), s; € {0, 1}*.

* Draw a hidden state at tinte
h; ~ Multinomial(P'is;), h; € {0, 1}*.
= Draw an observation:
X; = Uhl + €;,

whereU € R™** denotes a rank- matrix of mean observation vectors for the
k hidden states, and the random noise vectgssare i.i.d satisfyingE[e;] = 0,
Varle;] = 021, andE[(€;)3] = 0,1 < d < m.

A graphical model representation is in Figure 5.3. Comparith the graphical model in Figure
5.2(b), the observation model here is a mixture distributiather than a discrete state, which
makes learning more complicated, but still manageable. skoplicity we require a common
spherical noise covariance, but our method can be easilyfiaddo allow different spherical
covarianceSr]?I for different hidden states (c.f. Section 3.2 of [Anandkumigal., 2012a]). In
Section 5.4 we will discuss possible ways to handle more géneise covariances. Another
important requirement on the observation noise is zero sksg; i.e., zero third-order moment.
As discussed later, we need this condition to ensure thédinenoments have the desired ten-
sor structure. While zero skewness rules out some potgntiakful observation models, we
discuss in Section 5.4 how to handle one interesting claskefied observation noise: discrete
observations.

As in Section 5.2.1, we develop our spectral learning atgoriaround the tensor structure
(5.2) in low-order moments of the data:

68



Theorem 4. Letay := ), a;. Define the expected hidden state transition mafrix= E,[P'] =
rP(I —(1—-r)P)"'and

Vi = Elxq],
‘/2 = E[X1®X1],
VE% = E[X1®3]a
My = Vy—o?l,
3
My = Va=) Viey(o®l),
d=1
CQ = E[Xl ®X2],
Cg = E[X1®X2®X3],
M2 = (Oéo + 1)02 — 040‘/1 ® ‘/1,
3
M; = (ao+2)2(ao+1)03 _ (aogl)ao Z Vi 04 Cy + ang®3.
d=1
Then the following holds:
Vi = Um,
Vo = Udiag(m)U" +o°1,
3
Vs = > mUP+ Y Vi (o),
% d=1
M, = Udiag(m)U",
Mé = ZﬂiU’®3’
Cy, = aOHUleag( m)(UT)" + ;2 HV1®V1,

202
Cs = (a0+2)2(a0+1) Z Wi(UT)z@ @0 +2 Z Vi ®a Gy — (0+2)( (;0+1)V®3
M, = UTdiag(m)(UT)",
My = > m(UT)F.

The proof is in Appendix B.1.2. This theorem suggests thatMtEMequiretwo applications
of the tensor decomposition method: one on the adjusted ecrasnents)i/, and M3, as in
learning Markov chains, for extracting the matrix prodd€t’, and the other on the adjusted
covariance); and tri-variancel/; for extracting the mean observation vectéfs Just as the
low-order moments of first-order Markov models in Theoremr@ similar to those of LDA,
the tensor structures here also have connections to ottesrt keariable models. Firsty/; and
M3 are reminiscent of mixtures of spherical Gaussians. Indeadh set of observations can
be viewed as independent samples drawn from a mixture maduaeiereach mixture component
is a distribution with a spherical covariance and the mixtweights are/'z(®), 7(© denoting
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Algorithm 5.4 Tensor decomposition method for learning HMM from non-sauge data

input N sets of non-sequence data points, the success probabifity Dirichlet parametet,
the number of hidden statésand numbers of iteratiorisandN.

output Estimatesr, P andU possibly under permutation of state labels.

1: Compute emplrlcal averagés Vg,Vg,OQ,C’g, ando? = /\mm(Vg VﬂZT).

2: ComputeMz,Mg,Mé,M’

3: Run Algorithm 5.1 on\/, and]\//fg with the number of hidden statégo obtain a symmetric
tensor? € R**%*k and a whitening transformatiol’ € R™**.

4: Run Algorithm 5.2k times each with numbers of iteratiohsand N, the input tensor in

the first run set td and in each subsequent run set to the deflated tensor retoyni
previous run, resulting ik palrs ofelgenvalue/elgenvect{)(r)\z,vz) Z 1

5: Repeat Steps 4 and 5 Mz andM’ to obtainZ’, W’ and{(X;,v ) .

6: Match{(X;, v;)}%_, with {(X\,,v/)}*_, by sorting{\; }"_, and{\/}%_
7: Obtain estimates of HMM parameters

UT = (W)VR, U= @ VA,

P o= (U+0Q-nUDTT, 7= XN T,
whereV := [V --- 3], A := diag([\; - - Ak] ) V7 and A’ are defined in the same way.

8: (Optional) PrOJecﬁ onto the simplex and onto the space of stochastic matrices.

the initial hidden state distribution of that set. Therefowhen forming estimates fdv/; and
M}, which require an estimate for the noise variamée we may use the existing result for
spherical Gaussians (Theorem 3.2/in [Anandkumar et al.2@)%o obtain an estimate® =
Amin(Va—V1V,"). Also worth noting is that the zero skewness condition orotheervation noise,
as detailed in Appendix B.1.2, is needed so thdthas the desired tensor structure. Secadvdl,
and M3 can be viewed as cross moments of a topic model with contsobservations, i.e.,
a “word” is a real vector drawn from a topic-specific contimsaistribution, whose mean is a
column of UT. Interestingly, the proof of Theorem 4 in Appendix B.1.2icates that\/, and
Ms; always have the same form regardless of the observatiore moiglel. This property, as
discussed later in Section 5.4, allows the possibility afdieng more general noise covariances.

As in learning Markov chains, we need to resolve issueseaéléd permutation invariance
inherent in tensor decomposition. The situation is a bitermomplicated here. First note that
P = (rU + (1 — r)UT)'UT, which implies that permuting the columns Gfand the columns
of UT in the same manner has the effect of permuting both the rowstan columns ofP,
essentially re-labeling the hidden states. Hence we canexgect to recovel up to some
simultaneous row and column permutation. By the assum[tﬂmhr s are all different, we can
sort the two estimates’ and# to match the columns df andU T, and obtain? if r is known.
Whenr is unknown, a similar heuristic to the one for first-order K@ar models can be used to
estimater, based on the factthd@ = (rU + (1 — r)UT)'UT = (rI + (1 — r)T)~*T, meaning
Theorem 3 still holds when expressiitgby U andUT.
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Algorithm[5.4 gives the complete procedure for learning HMildm non-sequence data.
Combining the perturbation bound of the tensor decompasitiethod in Theorem 1, perturba-
tion theory on the whitening procedure (Appendix B.3.1) gr@matrix pseudo inverse [Stewart,
1977], and concentration bounds on empirical moments (Agpe’), we provide a sample com-
plexity analysis of the proposed algorithm:

Theorem 5. Suppose the numbers of iteratiodsand L for the tensor decomposition methods
satisfy the conditions in Theorem 1, and the number of hidtiesk, the success probability
and the Dirichlet parameteti, are known. For any) € (0,1) ande > 0, if the number of sets

12 max(k?, m)m3v3(ap + 2)?(a + 1)2.

N >
n
(225000 4600 42000201 (UT)? max(o1 (UT), o1 (U), 1)2
62 " min(oy (M), 01 (M2))? €04 (rU + (1 — r)UT)* min(ox(UT), 01(U),1)* )’

wherec is some constant; := max(o? + max; ;(|Ui|*), 1), Omin := ming ; |1//m — 1/ /7],
ando;(-) denotes the-th largest singular value, then there exists a permutatiaatrix IT such
that the? and U returned by Algorithm 5.4 satisfy

Prob(||P — ITT PTI|| < ¢) > 1 — 5 and Prob(||U _ g < oxlrU 4 (= n)UT) ) > 1,

601 (UT)

where|| - || denotes the matrix spectral norm.

The proof is in Appendix B.4. In this result, the sample sizexhibits a fairly high-order
polynomial dependency om, k, ¢! and scales with the inverse of the failure probabilify;
linearly instead of logarithmically, as is common in samgdenplexity results on spectral learn-
ing [Anandkumar et al., 2012a,b]. This is mainly because wendt impose boundedness or
sub-Gaussianity constraints on the observation modelpahlduse the weaker Markov inequal-
ity for bounding the deviation in the empirical moments. &lttat simply assuming the state-
conditioned observation noise to be sub-Gaussian doesnatieethe use of stronger bounds
such as Hoeffding bounds, because a mixture of sub-Gauds#ibutions may not be sub-
Gaussian. One possible strategy to strengthen our resaiplying the analysis techniques of
Hsu and Kakade [2013], who demonstrate that the sample esihpdf spectral learning of cer-
tain mixture models has a logarithmic dependency onp However, efforts beyond a direct use
of their results are likely needed due to our LDA-like monseit/, and M;. Also worth noting
is thatd_? acts as a threshold. As shown in our proof, as long as the wperarm of the tensor
perturbation is sufficiently smaller thap,;,,, which measures the gaps between differgist we
can correctly match the two sets of estimated tensor eigigesal astly, the lower bound af,
as one would expect, depends on conditions of the matrideg lestimated as reflected in the
various ratios of singular values.

An interesting quantity missing from the sample analysikéssize of each set To simplify
the analysis we essentially assuﬁgr’rme: 3, but understanding how might affect the sample
complexity may have a critical impact in practice: given aéixoudget on the total number of

To be rigorous, we assumeto be the smallest number so that we can compute from a siag#l she various
empirical moments with non-overlapping data points.
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observations that can be made, should we collect more s&sgger sets? What quantities may
this choice depend on? We do not have a formal result yetntwitively, more sets seem to be
always as good as, if not better than larger sets. Accordingut generative process, a larger
set provides more information only about a subsef'sf columns, those corresponding to the
hidden states on which the set-specific initial state distion 7(*) has large probability mass,

whereas more sets provide more information about the emto@el. A rigorous analysis is an

interesting direction for future work.

5.3 Simulation

We consider learning HMMs from non-sequence data produgdbdassumed generative pro-
cess. The true HMM has, = 40, k = 5 and spherical Gaussian noise with = 2. The mean
vectorsU were sampled from an independent univariate standard namdghen normalized to
lie on the unit sphere. The transition matéxand the stationary hidden state distributiomre

0.1088 0.3512 0.4114 0 0.0642 0.1858
0.1271 0.0411 0.0844 0.2125 0.4950 0.1747
P = 10.1310 0.0424 0.0251 0.5287 0.3770|, = = [0.2324] . (5.4)
0.5306 0.2957 0.4564 0.0489 0.0251 0.2730
0.1026 0.2697 0.0228 0.2100 0.0386 0.1340

The transition probability matrix has exactly one zero gni¥e conduct two experiments.

The first experiment is a sanity check on the consistencyeptbposed algorithm. We set
ap = 1 andr = 0.3 in the generative process, and consider different numbesets N €
1000{2°, 2%, ... 219}, while fixing the size of each set = 1000. The numbers of iterations
for the tensor decomposition method wéde= 200 andL = 1000. Figure|5.4(a) plots the
relative matrix estimation error (in spectral norm) agathe sample sizév for P, U, andUT,
showing that’ is the easiest to learn, followed Y7, and P is the most difficult, and that all
three errors converge to a very small value for sufficierdlgé N. Note that in Theorem 5 the
bounds forP andU are different. With the model used here, the extra multgtiie factor in
the bound folU is less than 0.007, suggesting thats indeed easier to estimate th&n Figure
5.4(b) demonstrates the heuristics for determininghowing projection distances (in logarithm)
versusr. As N increases, the take-off point gets closer to the true 0.3. The large peak
indicates a pole (the sétin Theorem 3).

The second experiment compares the proposed method witfothdar EM-based learning
paradigm. In Appendix A we derive a variational EM algoritfion learning HMM parameters
assuming the generative process in Section 5.2.2. In tiperarent, the generative process has
the same settings as in the first experiment except the nuohisetsN, which takes smaller val-
ues{125, 250, 500, 1000, 2000, 4000}. We repeat the experiment 20 times with different random
draws from the generative process. Figure 5.5 gives théwelestimation errors fol/ (in spec-
tral norm) andP (in entrywise 1-norm) for three methods: Algorithm 5.4 @&er), variational
EM initialized with the output of Algorithm 5.4 (tensor+vb, and variational EM initialized
with 100 random parameter values (rand+vbEM). Clearly, At 5.4 outperforms the ran-
domly initialized variation EM, and there is barely any irapement resulting from combining
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Figure 5.4: Simulation confirming consistency of the praggbalgorithm
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Figure 5.5: Comparison between Algorithm 5.4 and EM

the two methods, except whévi is very small. In terms of computational efficiency, we ob-
serve that Algorithm 5.4 is orders of magnitude faster thevariational EM algorithm. On our
platform with 48 cores (2.3 GHz each) and 512GB of memoryo#ithm|5.4 takes a couple of
hours to finish all 20 experiments, but the variational EM moetttakes days.

5.4 Discussion

We have demonstrated that under reasonable assumptiossy ecomposition methods can
provably learn first-order Markov models and hidden Markovd®ls from non-sequence data.
We believe this is the first formal guarantee on learning dyicamodels in a non-sequential
setting. There are several possibilities in improving angralizing our results.

Procedure for estimatingr with formal guarantees

Our current heuristics for estimatingrequires a good measure of sudden increase or take-off
spot in the curve of projection distance w:swhich is hard to define because, depending on the
true transition matrix?, the curve may be rather smooth near the true take-off pagghown in
Figure 5.4(b). We suspect that #sbecomes sparser, the curve shows a sharper increase at the
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true take-off point, but do not have a concrete result yesutfh results can be established, it is
then possible to develop a change-point detection base@quoe for estimating with formal
guarantees.

Other distributions for the missing times

No matter what distribution generates the random time stepsor decomposition methods can
always learn the expected transition probability maffixDepending on the specific modeling
task, one may replace the geometric distribution with sotherdistribution, such as Poisson.
HMMs with discrete observations

With extra assumptions on the state-observation prolbgbilatrix, we can modify our proposed
algorithm to guarantee consistent parameter learningdarcise of discrete observations. More
precisely, letD € [0, 1]™** denote the state-observation probability matrix, whe@hemlumn

is the observation probability vector for a hidden state. fiig apply our tensor decomposition
based method to recover the matrix prododt, and then obtain estimates 6f andT" with
the non-negative matrix factorization (NMF) algorithm posed by Arora et al. [2012], which
guarantees consistency under the “anchor word” assumptgpuiring that each column @
has a corresponding row whose only positive entry coincrdésitself.

Weaker assumption on Dirichlet parametersa

So far we have assumed that the normalized Dirichlet paemwettora/ ), « is equal to the
stationary hidden state distribution, allowing the colsnand rows of the expected transition
probability matrix7" to be correctly matched. However, a careful look into thes¢grstructures
in Theorems 2 and 4 reveals that the weaker conditions «; < (Ta); > (Ta); Vi # j
anda; # «; Vi # j are sufficient for correct matching. To interpret such ctinds, we note that
« is proportional to the average initial hidden state disttitn, while 7'« to the average hidden
state distribution that generates the observations. Ag &mthe hidden states, when sorted by
probability mass, are in the same unique order under thegalistributions, we can correctly
match the rows and columns ot

General observation noise covariance

As pointed out in Section 5.2.2, it is the tensor decompmsibased estimation of the mean
observation vector$/ that requires the assumption of a spherical noise covagjanbile the
estimation ofUT can always be carried out via tensor decomposition regssdd the noise
distribution. This property, together with the fact thatlkaet of non-sequence data can be
viewed as independent samples drawn from a mixture modggesis modifications for han-
dling more general noise covariances by using alternatiethads to estimaté’. For example,
under reasonable assumptions on the separation betweemetire observation vectofs, the
spectral projection based methods proposed by AchlioptddvcSherry [2005]; Kannan et al.
[2005] are guaranteed to return accurate parameter essnmitmixtures of log-concave dis-
tributions with general noise covariances. In the case afsSian mixtures, the approach by
Moitra and Valiant [2010] provably learns the parameterhwninimal assumptions that require
no separation between the mean vectors and allow generati@oges, though their algorithm,
despite its polynomial time and sample complexity, is fanirbeing practical. Or in the case
of the multi-view Gaussian mixture models considered by mktkamar et al. [2012b], where
the covariances of different mixture components sharedhgesblock diagonal structure, tensor
decomposition based methods can also provably learn tlaenaders.
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Chapter 6

Learning Hidden Markov Models from
Sequence and Non-sequence Data

In this chapter we consider learning HMMs when, in additiombn-sequence data, there are
also some sequence data. The non-sequence data here anecs$sibe independent samples
drawn from the stationary distribution of the underlying NMUnlike the methods proposed in
the last chapter, which give direct estimates of HMM pararsetour proposed methods here
learn anobservable representatiaf the underlying HMM. In the usual sequence-data only set-
ting, spectral learning of observable representation ofMV[Hsu et al., 2009; Siddiqi et al.,
2010; Song et al., 2010] is becoming an appealing altem&tithe popular EM method because
of its formal theoretical guarantee and more importantitgpeical success in several applica-
tions ranging from robot vision to music analysis [Song et2010]. Building on these recent
advances, we propose spectral methods that combine segaed@on-sequence data for learn-
ing HMMs. Unlike most spectral algorithms which apply SitegwWalue Decomposition (SVD)
to moments estimated by empirical averages of data, ouradstfirst solve a penalized least
square problem to get better estimates of moments, and m&yISVD. As one may imagine,
the penalized least square problem here has a similarsteuict the one in Chapter 4, where the
objective consists of a squaredor function on the sequence andegularizationterm based
on non-sequence data. But somewhat surprisingly, as weshalv in details later, the opti-
mization problems here turn out to be convex, even though dine dealing with a more com-
plex model than the VAR model in Chapter 4. Through experiment synthetic data and real
Inertia-Measurement Unit recordings of human activitiee, demonstrate that, as with VARS,
incorporating non-sequence data also improves estimafisiMMs.

This chapter is organized as follows. Section 6.1 brieflyews spectral learning algorithms,
and Section 6.2 details the proposed algorithms, followedXperiments and results in Section
and conclusions in Section 6.4.

! The general idea of invoking convex optimization in spdckearning has been proposed recently in the
sequential learning setting. Among others, Balle et al1@3Gsolve a convex program in place of SVD, while
Balle and Mohri [2012] use convex optimization to obtainuhmatrices to spectral algorithms.
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6.1 Spectral Learning of HMMs

We begin with discrete observations, and mainly follow thpasition by Siddiqi et al. [2010].
Instead of learning the original model parameters, i.étigirstate probabilities, state transition
probabilities, and state-conditioned observation prdligs, the spectral algorithm learns an
observable representatiaf the HMM, which consists of the following parameters:

b, = U'p, (6.1)
by, = (P),U)'p, (6.2)
B, = (U P3,1)(U Py, 1<2<N, (6.3)

wheret denotes the pseudo inversé,is the number of observation symbaojsis the stationary
distribution of observations, an#,; and P; , ; are joint observation probability matrices such
thatforl <i,x,7 < N,

(P271>7;j = Prot(mt+1 = i,ZEt = j), (6 4)
(P3,:v,1>ij = Prob(zi = 1,2y = 2,241 = j), .

z, being the observation symbol at timgandUU € RY** is column concatenation of the top
k left singular vectors of% ;. As the name suggests, the observable representatlon @ErEm
m) to (6.3) only depend on observable quantities, lepditurally to the estlmatelsl, boo,
andB based on empirical averagpsPZl, P37x71, andU the top# left singular vectors 0P271
These estimates allow us to perform inferences on a new sequé observationg,, . . . , y;:

¢ Predict whole sequence probability:

A~ o~

Prob(y,,...,y) = bl B,, - B,b. (6.5)

e Internal state updatds,,; := B, b;/(b_ B, b,).
e Conditional probability ofy; giveny,, ..., y;_1:
- B;B\ytgt
PrOt(yt|y17 s 7yt—1) Ca Zx B;Exgt (66)
Under some mild conditions, of which the most critical bethgt both the state transition and
state-conditioned observation probability matrices dreaak £, Siddigi et al. [2010] showed
that the whole sequence probability estimate (6.5) is stesi (with high probability) and gives
a finite-sample bound on the estimation error.

Based on the same idea, Song et al. [2010] developed a dagtnathm for learning HMMs
with continuous observations. Instead of operating on @bdly distributions directly, their al-
gorithm operates oHRlilbert space embeddings distributions of observable quantities (assum-
ing stationarity of the HMM):

o= Ego(x)]. 6.7)
Con = Exppix[0(Xe41) ® O(x4)], (6.8)
C3,x,1 = Ext+2(xt+1 X)Xr[¢(xt+2)®¢(xt)]

= P(Xt—X)CS,mﬁb(X)a (6.9)
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wherex; denotes the continuous observation vector at tigne(-) maps the real observation
space to a Reproducing Kernel Hilbert Space (RKk&)enotes the tensor product, aid » :=
Cx,.ox:|x:41 1S @conditional embedding operat¢Bong et al., 2009]. Using these embeddings,
they derived an observable representation of the embedi#d,lvhich consists of the follow-
ing parameters:

By = U, (6.10)
Bo = Co1(UU' C21) (6.11)
Bx = (uTCS,x,l)(uTCQ,l)Ty (612)

wherel/ is the topk left singular vectors o€, ;. They then showed that the embedding of the
predictive distributionP(x;|x, ..., x;—1) takes the formuy,x, ..., = BoBxi  Bx, 101
and, as in the case of discrete observations, proposedatsirhased on empirical averages
ul,CQ 1,ng1, andZ{, which is the topk left singular vectors of?z 1. Using the kernel trick
and techniques from Kernel Principle Component Analysi®i@opf et al., 1998], they gave
an estimation procedure that operates solely on finite-déio@al quantities. Moreover, to avoid
the difficulty of partitioning the observation space reegdiby estimation o3, they proposed
to estimate instead

By = (UTC3,1|2¢(X>>(UTCQ,1)T7 (6.13)

which is only a fixed multiplicative factdp(x) away fromBy, and havgi, |, , . x, , Proportional

to B, By, - - - Bx,_,3,. Under some mild conditions, they established the consigtéwith high
probability) of their estimator fofi,, |, , and gave a finite-sample bound on the estimation
error.

In addition to estimation, Song et al. [2010] also discugsessible ways to carry out pre-
diction. In particular, they showed that in the case of GamsRBF kernelfiy,|x,, . x, , takes
the form of a nonparametric density estimator after promemalization, and one may choose,
from training data or a pool of samples, the observation Wighhighest predictive density as the
prediction.

7777 Xt—

6.2 Spectral Methods for Learning HMMs from Sequence and
Non-sequence Data

Suppose in addition to sequence data, which can be timessgfriebservations or triples of
consecutive observations, we also have a sebafsequence data pointshich are drawrnnde-
pendentlyfrom the stationary distribution of the underlying HMM. Weopose to improve the
estimation of the observable representation of HMMs byisglvegularized least square prob-
lems, which minimize a squared error term on the sequeneeadata regularization term based
on the non-sequence data. As in existing work on spectratilegaof HMMs, we assume that
the sequence data are observed after the HMM has fully mixed.
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6.2.1 Discrete Observations

Our method has two main steps. We first estinfate, and therb,, b, andB,’s. Let NV denote
the number of unique observation symbols. To make use obegaence data in estimatify;,
we note that the marginal d?, ; is the stationary distribution of the discrete HMM. Moregve
from spectral learning methods we have the assumptidh pbeing low-rank. We thus propose

the following estimatorl5271 defined as

1 5
arg min §||W ® (P = Py)l% + 7| Pll+
Uu ~ ~
5 (15— PLIE + 115 - PT13). (644
st. 1"P1=1, P; >0,

wherep is the empirical observation distribution bbth the sequence and the non-sequence
data, W is an indicator matrix such thav;; = 1 <= (F»1);; > 0, ©® denotes the Hadamard
product,| - ||.. denotes the matrix nuclear norm, a standard convex retaxafimatrix rank,1 is a
vector of ones, and, 7 > 0 are regularization parameters. The objective in (6.14)mmiires the
squared error from the sequence-only estinfate while penalizing the rank and the deviation
from the marginap. It is easy to see that (6.14) is a convex but non-smooth eroldlue to the
matrix nuclear norm. Projected sub-gradient descent nasthoe a common way to solve such
problems, but are known to suffer from slow convergence f&as, 1999]. We solve (6.14)
by a variant of the smoothing proximal gradient (SPG) metpiagosed by Chen et al. [2012],
which achieves a provably faster convergence rate thaegieg sub-gradient methods but has
a similar per-iteration time complexity. In Section 6.2.2 wse SPG to solve the continuous
version of the estimation problem, which has a more generah,fand hence describe more
details there.

To setr in the right scale, we use the following fact about matrixmsr

[ Poll«/N < (T/N)\/sz,lHoosz,th (6.15)

wherer is the rank ofP,;, and|| - || and|| - ||; denote matrixoo-norm and 1-norm, respec-
tively. Assuming stationarity, we hayg 1|/ = ||P»1]/1 = max; p;, wherep is the stationary
distribution of observations. Thereforé,,’s average singular value i9((max; p;)/N). As
shown by Cai et al. [2010}; has an effect of soft-thresholding singular values’pf, so we let
T = Amax; p;/N and tune\ instead.

We then compute the SVD 07132,1, denoting its topk left singular vectors as aw-by-k
matrix U, and obtain estimates bf andb. in the same ways as (6.1) and (6.2) us}Eg, U,
andp. To derive our estimator oB,, we first note that the original estimator based|on|(6.3) is
the solution to the following problem:

B, := arg min |Pso1 — UBU T Pyyl|2, (6.16)

showing that@x is a low-dimensional representationE{mvl. As in (6.14), we aim to regularize
the least-square problem (6!16) with non-sequence dattedd of constructing a regularization
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term directly from non-sequence data, we use our new esl'mfagl based on the fact that
(1"Ps,1)j = (Po1)sj @and(Ps,11); = (Pa1)iss i-€., the marginals of P5 . ; } are equal ta> ;.
We thus propose the following estimatpoB, } defined as

1 ~ ~ ~
i Z|Wo© (UBVT — P12
argggﬁ; 2|| ®( 32.0) |+

53 ((Pedis - (ﬁBxVTl)i>2+
v , (6.17)
5 ((Pe)as = (ATTBVT))

st.(UB,V");; 20, 1TUBV 1 =1,

whereW,, is an indicator matrix such thatV,),; > 0 <= (]33@,1)@ > 0andV := Z7T§271.
Note that we not only add regularization terms but also qaitsthe fitted matrice§U B,V }
to lie on a simplex, mainly to reduce negative values in thesljgtive distribution|(6.6) during
inference. The simplex constraints may incur more bias thesired and may not always be
feasibl@, but in our experiments we do not observe any negative eftexter in Section 6.4 we
discuss the possibility of combining the two optimizatiaelgems|((6.14) and (6.17) into one,
which may fix some of these constraint-related issues buthgaprice of a bigger problem size.
Eg. (6.17) is a quadratic program &f N variables under one linear equality constraint
and N? linear inequality constraints. WheN is on the order of a few hundreds akds a
few tens, a reformulation that takes advantage of the btbagonal structure in the Hessian of
(6.17) can be solved quite efficiently with state-of-theagtimization software, such as MOSEK
(wwv. nosek. con). For larger problems, one possible solution is the AlténgaDirection
Method of Multipliers [Boyd et al., 2011], which handles straints by minimizing the original
objective augmented with a iteratively-refined constraiialation term. Our experiments in
Section 6.3.1 hav&/ = 100, so we solve (6.17) with MOSEK.

6.2.2 Continuous Observations

Our method for continuous observations builds on the Hilspace embedding approach by
Song et al. [2010], and consists of two main steps: estimdtie feature covarianaé,; and
then the observable representat@n 3., andBx. Let the feature mappings of the sequence
data be organized into three matriceg ®,, and ®; such that theii-th columns®i, @}, and

®% are consecutive and going forward in time. By the definitibthe feature covariance (6.8),
we haveCy; = [ ¢(x) ® é(y)px,,. x, (X, y)dxdy. If we have a set of feature points grouped
column-wise as a feature matrik, and know exactly which pairs of points are consecutive
in time via a (normalized) temporal adjacency maffix, we may then compute the quantity

®T,,®" as an unbiased estimator @f; It is easy to see thﬁm = L10,®] is one special

2When this happens one may choose the smalléisat makes the constraints feasible, and then solve (6.17).
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case of such an estimator. To incorporate non-sequencentiataur estimation procedure, we
denote its feature matrix b and consider another special case:

Co1 = Z,PZ], (6.18)

wherez, := [®; Z] and 2, := [®, Z]. It then suffices to estimate subject tol ' P1 = 1 and
P > 0.

Similar to Section 6.2.1, our estimation objective corssidtthree terms: the squared error
betweencgl and (32 1 penallzatlon orCz 1’s rank, and deviation 062 1'S marginal from the
mean of the stationary distribution. The last term is basethe fact that under the assumption
of stationarity,C, ;f = E[¢(X)] holds for some constant functidhin G such thatf(x) =

fT¢(x) = 1 Vx. Formally, our estimatof is the solution to the following convex program:
1 =
min | Z,PZ] = ConllGeg + 7I1Z2PZ] [+
812
3 ([l Sl + 2= 230) (019
2 mgllg

st. 1"P1=1,P; >0,

where we introduce andmg to denote the feature matrix and the size of the entire sebif n
sequence data and [tdenote a sub-sample of it, mainly to limit the number of Vialea when
the non-sequence dataset is very large. As shown in Appéhdixusing the kernel trick and
properties of the matrix trace and nuclear norm, we re-wtigeobjective function in (6.19) as
follows (dropping constants):

1
§Tr(PTM2PM1) —Tr(P"F) + 7| Ly PLy.+ (6.20)
ng(PTMQP + PMPT)L —ul" (P py + Ppay),

_ z2!s1

where TX-) is the matrix traceM; = Z," Z;, u, JF o= ZQT@,lZl, andL; is a finite
matrix such that\/; = ;L. To setr in a proper scale, we use an inequality similar to (6.15)
to upper-bound the average singular valueLgfP L, and then replace the unknowh by the
uniform distribution to have := (\/m?3)(||Ld 117 Ly||o || L4 117 Ly ||1)"/?, wherem is the size
of P and)\ > 0 takes values in some reasonable range.

As mentioned in Section 6.2.1, we solve (6.19) with a varidnhe smoothing proximal gra-
dient (SPG) method outlined in Algorithm 6.1, which minimsz,,(P), a smooth approximation
of (6.20) that approximates the non-smooth regularizatioh, PL ||, by

P) = Tr(Y L] PL) — 2 |v|32 6.21
gu(P) = max rTr( 1) = 5 IV, (6.21)
wherep > 0 is a smoothing parametdf, |2 and|| - || denote the matrix spectral and Frobe-
nius norms, respectively. Nesterov [2005] shows that (6itontinuously differentiable i

andVyg,(P) = 7L,Y*L{, whereY* is the optimal solution td (6.21) obtained by projecting
(/1) Lg PL; to the unit spectral-norm ball, i.e., truncating its sirayufalues at 1. The update
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Algorithm 6.1 Smoothing Proximal Gradient far (6.19)
Initialize Y© = P©) to some feasible point.
Sett := 0,0 := 1,7 := 10, andy® := 1.
repeat
Find the smallest € {0, 1, - - - } that satisfies

(t+1)

FulPD) = fu(Y ) < T
+Tr((PUY — YD) T £, (YD)

IPUD — YO

wherey 1 .= 5%4® and
P = argmin YO — ¥ £,(v ) /540 — P|j3
st.P; >0,1"P1=1. (6.22)
O = (1 + /1 + 4(6®)2) /2.
() —
Y(t—H) — p(t—H) + 99(t+1)1 (p(t—H) _ P(t))_

t=t+ 1.
until convergence or = T,,., an iteration limit.

(6.22) for P*+1 requires projection onto a simplex, for which several eiintialgorithms exist,
such as the sorting-based method proposed by Duchi et &I8[20°he convergence theory of
Chen et al. [2012] suggests setﬁr;g: ¢/m, m being the column dimension &, so that the
objective values (6.20) convergen(1/¢?) iterations to at most plus the minimum.

We then compute the topleft singular vectors 052,1 in a similar way to Kernel Principle
Component Analysis [Sckopf et al., 1998], starting with the fact that any leftgurar vector
of Coy = Z,PZ, can be expressed &a for somea € R™, and any left singular vector of
C,, is an Eigenvector of, ;C3, and vice versa. Thus we have

Z,PM, P Moo = Z,PZ] Z\ P 2] (Z20) = wZsa
< MzﬁMlﬁTMga = WMQC!, (623)

which is a generalized Eigensystem. Letdenote the diagonal matrix formed by the tbp
generalized Eigenvalues of (6.23), addlenote the column concatenation of the corresponding
generalized Eigenvectors. It is then clear that= (AT M,A)~'/? is diagonal, and we obtain a
concise form 0@71’5 top & left singular vectorg/ = Z9AD. We also have the following useful
identity:

MyPM,PTMyA = M, ASQ. (6.24)
3For solving(6.14) we set = ¢/N.
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Next we describe our estimators for the observable reptasen. First we have

B, :=U"81/mg= DA p,, (6.25)
B.. = Cor(UTCyn)' = Z,PMy PT M ADQ ™ (6.26)

by using the identity/"C,1)! = 2, PTM,ADQ™! established from properties of pseudo
inverse,|(6.24), and the definition 6f. To derive our estimator faB, defined in|(6.13), we start
from the conditional covariance operator defined by Sond. §@09]

C3i2 = C3,1,2C2_,21¢(X)’ where
C371,2 = EXt+2XtXt+l [(b(XtJrQ) ® (b(Xt) ® (b(XtJrl)]v
Cop = Ex, [0(Xis1) ® o(Xiq1)].

Using a similar idea to (6.18), we encode the empirical itistion of triples of consecutive
observations by a third-order tens@rand have the following estimator

~ , . 1 -1
C3p2 i= (Z QinZi ® 2] Z§> (EZQZ?T + yI) ,

/i7j7l

where Z; = [®3 Z], v > 0 is a regularization parameter, and superscripts denotercol
indices. We then define our estimator f8y as

By = (U (C31126(x))) U Co0) (6.27)
~1
—m zl: B ((M2 +uml) "' 2] gb(x))l, (6.28)

whereB; € R*** is a linear transformation af).; € R™*™, thelth slice of along the third
dimension:
B :=U"25Q..2] (U Cy1)T. (6.29)

Note that in the usual setting of learning from dynamic dtte third-order tensof) is diagonal
and B; becomes a rank-one matrix, $o (6.28) reduces to the estippaiposed by Song et al.
[2010].

The definitions above naturally lead to an estimation pracedhat first estimate® and
then applies (6.29) to estimaf®. However, such a procedure involves variables when the
quantities of interest consist of onkyn? variables. We thus propose to estiméaigs directly.
Viewing (6.29) as the solution to

argmin [|Q., — UBVT|%, where

1

U:=U"2)" = (DATZ] Z,)" = (DA M),
V= (2] U C)N = (M PTM,ADQ™ Y,
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we propose to estimatg;’s by the following:

15 N
arg min §HC3,1,2({BI}) — C31201Gegeg+ (6.30)
u ~ ~ ~ ~
5 (1G5, 2(BY) = Coallgog + 1C.2{BYT = Caallfeg)
in which
Con2({B}) =S (UBVT),Zi® 2] ® 2, (6.31)
4,7,
Cs.2({B1}) == Z(ﬁBlvT)ijZ:g ®f' 2 ® 2, (6.32)
0,7,
Co2({Bi}) =Y (UBV)yf' Zi® 2{ @ 2}, (6.33)

2,7,0
Again, our estimation objective consists of a squared ¢emn on the observed tri-variance and
two regularization terms on the deviation of the margirtals, andC', , from our estimated co-

variance@,l. As shown in Appendix C.2, we use kernel tricks to re-write dhgective function
(6.30) in terms of finite-dimensional quantities. Morequ®r re-defining the notatio® to be a
k2-by-m matrix whosel-th column denotes the column concatenation ofitH®y-k matrix B;,
we obtain the following succinct form of (6.30) (droppingnstants):

1
min §Tr(BTCBM2) —Tr(J'B) (6.34)

with an analytical solutio®—'.JM, !, whereC and.J are defineflin Appendix C.2.

6.3 Experiments

We compare our proposed methods with the original spedgatithms (Section 6.1) that only
use sequence data. In the case of discrete observationsndaata simulation study, and we
apply the algorithms for continuous observations to arvagtimonitoring dataset.

6.3.1 Simulation

We create a discrete HMM with 20 states and 100 observatiotbsis. The state transition
probability matrix is of rank nearly 7. The heatmaps of treestiransition probability and the
state-conditioned observation probability matrices ar&igures 6.1(a) and 6.1(b). From this
HMM we generate 50 datasets, each containing a trainingeseguof length 1000 initialized
from the stationary distribution as the sequence data, af961000 observations independently
drawn from the stationary distribution as the non-sequeélata, and a testing sequence of length
1000, also initialized from the stationary distribution.e\&et the dimensioh = 7, and for the
proposed estimate set= 100 and\ = 15. We then perform filtering and prediction along the
testing sequence. To give bounds on the prediction perfacmave also give prediction results
by the true observable representation and the stationatytalition.

“When the kernel is positive definite, it is easy to verify thathC' and M, are invertible.
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Figure 6.1: Discrete HMM model parameters

Table 6.1: Paired t test results. Each cell shows the numbtsting time points at which
the row method outperforms the column method statisticaitipificantly. The total number of
testing time points is 999.

true | proposed| sequence-only stationary
true 827 999 975
proposed 0 999 470
sequence-only 0 0 0
stationary 0 0 999

Figure 6.2 shows the median testing log-likelihood over ffegiments at each testing time
point. The proposed estimator outperforms the sequeniyeestimator at most time points. For
each pair among the four predictions, we performed pairtedts of their testing likelihoods at
all time points, and counted the number of time points at tioice prediction outperforms the
other statistically significantly. The results are in Tabld. The proposed estimator predicts
better than the sequence-only estimator at all time poimdstiae stationary distribution at many
time points, but these two other methods never predict fsogmitly better than the proposed
method. It is surprising that the sequence-only estimagdiopms even worse than the station-
ary distribution. As pointed out by Siddigi et al. [2010]gthiltering and prediction steps (6.6)
do not guarantee non-negativity of the probability estesatespecially when, as in the current
experiment, there is few dynamic data. Indeed, we obserite guew negative values in the
sequence-only estimates and replace them withH2. This is an indication of unreliable esti-
mates leading to poor prediction. On the contrary, the psedoestimates almost always take
non-negative values.
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Figure 6.2: Median testing log-likelihood. The y-axis laviienit is set to -6 for better visualiza-
tion; the red dashed line actually takes values as small/as -1

6.3.2 IMU Measurements of Human Activities

The PAMAP2 physical activity monitoring dataset [Reiss &tucker, 2012] contains recordings
of 18 different physical activities performed by 9 subjeetsaring 3 inertial measurement units
(IMUs) and a heart-rate monitor. Each subject follows a ot to perform a sequence of
activities with breaks in between. For our experiment we de& collected from subject 101
while walking and running. We focus our experiment on regugd from the three IMUs, and
for each IMU only use the 3D-acceleration data (A)swith scale+16g, as recommended by
the authors, and the 3D-gyroscope data (rad/s), resultiag iobservation space 6fx 3 = 18
dimensions. Subject 101 performs walking and running f@ragimately 3.5 minutes each, and
we discard the first and the last 10 seconds of data to remansitioning between activities. To
make the experiment more interesting, we break the IMU @inogs into short segments of 10
seconds each and interleave the walking segments with timéng ones to generate a sequence
of alternating activities. The IMUs operate at a sampliragtrency of 100Hz, so each segment
has 1000 data points and the entire sequence has 39265 ddta jd¢e normalize each of the 18
dimensions to be zero-mean and standard deviation 1. F&8rshows one of the dimensions
from the first 2000 data points, revealing significant di#feces between walking and running.

We take the last 4256 data points as the testing sequencgeaedate 10 training datasets
as follows. We randomly samptetriples of consecutive observations from the first 3500@dat
points as the sequence data, and another non-overlapgiofirse+ mg single observations as
the non-sequence data, in whichpoints are used to forr® and the restng points constitute
S in the proposed algorithm. The valuesafm, andmg are: n € {25,50,100,200}, m €
{500,1000}, andmg = 4000. We use the Gaussian RBF kerngk, x') := exp(||x — x'||?/0?),
and setr? to be half of the median squared pairwise distances of theeseg data. The dimen-
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Figure 6.3: First-axis acceleration from the wrist IMU
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Figure 6.4: Prediction performance on the IMU data. Thelbldashed line is obtained by using
n = 5000 dynamic data points, serving as a performance limit.

sionk, i.e., the number of top left singular vectors, is set to 20/fo= 25 and 50 for the rest.
The proposed algorithm has three regularization parasietgrand\ in (6.19) andup in (6.34).
We determine these parameters by minimizing 5atbss validation error on the sequence
data over a cube of valué®g, up,log, A\, log, ug) € {—8,—6,...,6} x {=9,-7,...,1} x
{-5,-3,...,9}.

After learning the model parameters, we perform filteringl @mediction along the testing
sequence. As mentioned in Section 6.1, the Hilbert spaceédihg of the predictive distribu-
tion takes the form of a non-parametric density estimatankis to the Gaussian RBF kernel,
and we predict the next observation by selecting f®nthemg static data points, the one with
the highest predictive density. For each predicted obsiervave compute the squared error
against the true observation, and for each predicted sequee take the median and the mean
of the squared prediction errors as sequence-wise perfarenadicators. Figure 6.4(a) gives the
boxplot of the 10 median prediction errors, showing thatphgposed method of incorporating
static data improves on the prediction performance moneifsigntly when the sequence data
sizen is small. Figure 6.4(b) gives the boxplot of the 10 means,afestrating a similar trend of

SWe only split the sequence data but not the static data.
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improvement except whem = 50. Looking more into that result, we find that it is the running
part of the testing sequence the proposed method fails thgpteetter, possibly due to the more
extreme values and changes in its IMU readings, as showrgur€6.3.

6.4 Discussions and Conclusions

We propose spectral learning algorithms for HMMs that ipooate static data as regularization.
Experiments on synthetic and real human activities dataotisirate a clear advantage of us-
ing static data when sequence data is limited. There areademteresting directions for future
work, including deriving theoretical guarantees for thegwsed methods and solving real prob-
lems where sequence data is much more difficult to obtain tlearsequence data. In terms of
methodology, a possible improvement is to combine the tagest in the proposed methods into
one optimization problem, where the optimization variabla three-way tensor representing the
joint probability of observation triples, and the objeetitakes a similar form of an error term
on sequence data plus regularization terms based on noeseef data. Given an estimate for
the three-way probability tensor, lower-order probalatcan be easily obtained by marginal-
ization, and then spectral learning algorithms in Sectidndan be applied. One advantage of
such a procedure is that the estimates of the probabilityixetd tensor are inherently consis-
tent, and therefore the sub-spaces computed by specti@ngesition are optimal with respect
to both, whereas in the proposed two-stage methods, themades are optimal with respect to
only the estimated joint probability matrix. The downsideobviously the optimization in the
space of three-way tensors, which is computationally sitenin terms of both time and storage.

Although not explicitly described in this chapter, it is pdse to extend the regular sequence-
based EM learning algorithm for HMMs to make use of non-segaedata drawn from the
stationary distribution. More specifically, such non-sexge data can be easily incorporated
into the EM estimation procedure for parameters in the olagiem model, e.g., the state-specific
mean observation vectors and noise covariances in a Gaugssarvation model, because these
parameters are time-independent. However, as with thdae§M approach, finding a good
local optimum is always an issue and may require a lot of @nin
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Chapter 7

Learning Bi-clustered Vector
Auto-regressive Model

In this chapter we return to the usual setting of learningfisequence data, and consider learn-
ing structured Vector Auto-regressive (VAR) models. Alligh not directly related to the main
theme of the thesis, the methods developed here, as we reXaiar, can benefit learning from
non-sequence data. Our motivation is from the use of VARsafalyzing the temporal de-
pendencies in multivariate time series data, knowGeanger causality [Granger, 1969]. For
example, recently researchers in computational biologygiideas from sparse linear regres-
sion, developed sparse estimation techniques for VAR nsdéeijita et al., 2007; Lozano et al.,
2009; Shojaie et al., 2011] to learn from high-dimensiorehanic time series a small set of
pairwise, directed interactions, referred to as gene s#gut networks, some of which lead to
novel biological hypotheses.

While individual edges convey important information abauteractions, it is often desir-
able to obtain an aggregate and more interpretable deiseript the network of interest. One
useful set of tools for this purpose are graph clusteringhiods [Schaeffer, 2007], which iden-
tify groups of nodes or vertices that have similar types afirexrtions, such as a common
set of neighboring nodes in undirected graphs, and sharezhipar child nodes in directed
graphs. These methods have been applied in the analysigiotiwdypes of networks, such
as [Girvan and Newman, 2002], and play a key role in graphalization tools [Herman et al.,
2000].

Motivated by the wide applicability of the above two threaflg/ork and the observation that
their goals are tightly coupled, we develop a methodology ithtegrates both types of analyses,
estimating the underlying Granger causal network and iisteting structuresimultaneously
One can image that such a structure, once estimated, couiskoeas prior knowledge for other
learning tasks in the same domain, and as suggested in CBaptarh prior knowledge may aid
learning VARs from non-sequence data by providing bettgulagization of the model.

In this chapter we use the following notation for a first-argalimensional VAR model:

x@ = Xe-nA+ew, €x ~ N(0,0%), (7.1)

More preciselygraphical Granger causality for more than two time series.
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wherex € R'*? denotes the vector of variables observed at timé € R*? is known as the
transition matrix, whose non-zero entries encode Grangasal relations among the variables,
ande’s denote independent noise vectors drawn from a zero-meas<tgn with a spherical

covariances21. Our goal is to obtain a transition matrix estimatehat is bothsparse leading
directly to a Granger-causal network, atldsteredso that variables sharing a similar set of con-
nections are grouped together. Since the rows and the cslafa indicate different roles of
the variables, the former revealing how variables affeetribelves and the latter showing how
variables get affected, we consider the more gen@ralusteringsetting, which allows two dif-
ferent sets of clusters for rows and columns, respectivélig take a nonparametric Bayesian
approach, placing ovet a nonparametric bi-clustered prior and carrying out fukfgoior infer-
ences via a blocked Gibbs sampling scheme. Our simulatiay stemonstrates that when the
underlying VAR model exhibits a clear bi-clustering stiuwet, our proposed method improves
over some natural alternatives, such as adaptive spanmsenganethods [Zou, 2006] followed
by bi-clustering, in terms of model estimation accuracysttring quality, and forecasting ca-
pability. More encouragingly, on a real-world T-cell aetilon gene expression time series data
set [Rangel et al., 2004] our proposed method finds an irttegelsi-clustering structure, which
leads to a biologically more meaningful interpretationrthhose by some state-of-the art time
series clustering methods.

Before introducing our method, we briefly discuss relatedknia Section 7.1. Then we
define our bi-clustered prior in Section 7.2, followed by sampling scheme for posterior infer-
ences in Section 7.3. Lastly, we report our experimentailtesn Section 7.4 and conclude with

Section 7.5.

7.1 Related work

There has been a lot of work on sparse estimation of Grarmesat networks under VAR mod-
els, and perhaps even more on graph clustering. Howevdretbdst of our knowledge, none of
them has considered the simultaneous learning scheme wegatere. Some of the more recent
sparse VAR estimation work [Lozano et al., 2009; Shojaid.e2@11] takes into account depen-
dency further back in time and can even select the right feogtistory, known as the order
of the VAR model. While focusing on first-order VAR models, waserve that it is possible to
extend our method to learn higher-order bi-clustered VARIgls, where the same bi-clustering
structure is shared by all the time-lagged transition magj an extension to the grouped graph-
ical Granger modeling approach of Lozano et al. [2009].

Another large body of related work [e.g., Busygin et al., 0Meeds and Roweis, 2007;
Porteous et al., 2008] concerns bi-clustering (or co-elust)) a data matrix, which usually con-
sists of relations between two sets of objects, such as asegs on items, or word occurrences
in documents. Most of this work models data matrix entriesrbytures of distributions with
different means representing, for example, different mean ratings byed#ht user groups on
item groups. In contrast, common regularization schemgwmior beliefs for VAR estimation
usually assume zero-mean entries for the transition mabiasing the final estimate towards
being stable. Following such a practice, our method modalssition matrix entries ascale
mixturesof zero-mean distributions.
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Finally, clustering time series data has been an activeareleopic in a number of areas,
in particular computational biology. However, unlike oura@ger causality based bi-clustering
method, most of the existing work, such as [Cooke et al., 2&REmoni et al., 2002] and the
references therein, focus on grouping togetsierilar time series, with a wide range of simi-
larity measures from simple linear correlation to compkchGaussian process based likelihood
scores. Differences between our method and existing sityHbased approaches are demon-
strated in Section 7.4 through both simulations and expErision real data.

7.2 Bi-clustered prior

We treat the transition matrid € RP*? as a random variable and place over it a “bi-clustered”
prior, as defined by the following generative process:

7, ~ Stick-Break(a,), m, ~ Stick-Break(«,),
{uiti<i<p ! Multinomial(7r.,), {vihi<j<p gl Multinomial(,),
{)\kl}lgk,lgoo Z}\Jd Gamma(h, C), (72)

Aij  ~ Laplace(0,1/Auy,), 1<i,j<p. (7.3

The process starts by drawing row and column mixture progastr, ands, from the “stick-
breaking” distribution [Sethuraman, 1994], denote®igk-Break(«) and defined on an infinite-
dimensional simplex as follows:

B ~ Beta(l, ),
T = By H(1 — B, 1Sk=oo (7.4)

m<k

wherea > 0 controls the average length of pieces broken from the stickl, may take different
valuesa,, anda, for rows and columns, respectively. Such a prior allows foirdinite number
of mixture components or clusters, and lets the data debel@@mber oeffectivecomponents
having positive probability masses, thereby increasingleling flexibility. The process then
samples row-cluster and column-cluster indicator vadabl’s andv;’s from mixture propor-
tionsw, andw,, and for thek-th row-cluster and théth column-cluster draws an inverse-scale,
or rate parametek,; from a Gamma distribution with shape paraméeieand scale parameter
c. Finally, the generative process draws each matrix edtryfrom a zero-mean Laplace dis-
tribution with inverse scale,,,,;, such that entries belonging to the same bi-cluster share th
same inverse scale, and hence represent interactions idrsmagnitudeswhether positive or
negative.

The above bi-clustered prior subsumes a few interestingiapeases. In some applications
researchers may believe the clusters should be symmeuiat atws and columns, which cor-
responds to enforcing = v. If they further believe that within-cluster interactioslsould be
stronger than between-cluster ones, they may adjust aogiydhe hyper-parameters in the
Gamma prior/(7.2), or as in the group sparse prior proposdddmin et al. [2009] for Gaussian
precision estimation, simply require all within-clusteatmx entries to have the same inverse
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Algorithm 7.1 Blocked Gibbs Sampler
Input: Data X and Y, hyper-parameters, c, a,, o, and initial valuesA©® L©®) u®),
v, (50)2
Output: Samples from the full joint posterig{ A, L,u, v, 0% | X,Y)
Set iterationt = 1
repeat
fori=1topdo
AL~ p(Ad] Ay Al Y VO, (0170)2), L0, X, Y)
end for
fori =1topdo
w o~ plus | AD ul g, vOY (0072 LD, XY
end for
for ‘(7t: l1topdo

t t—1 _ _
o\~ p(v; | A(t),u(t),vgzzjfl),vg. ): (o2 L1 X Y)

J
end for

(00)2 ~ p(o? | A, u®, v® LD X V)
L® ~ p(L | A(t),u(t)7v(t)’(g(t))Z’Xj Y)
Increase iteration
until convergence
Notations: superscriptt) denotes iterationd; denotes the-th row of A, A;; denotes the
sub-matrix inA from thei-th until the j-th row, andu,.; denotes{u,, }i<,<;.

scale constrained to be smaller than the one shared by alebatcluster entries. Our inference
scheme detailed in the next section can be easily adaptddhese special cases.

There can be interesting generalizations as well. For eligmdppending on the application
of interest, it may be desirable to distinguish positiveerattions from negative ones, so that
a bi-cluster of transition matrix entries possess not omtyilar strengths, but alseonsistent
signs However, such a generalization requires a more delicatemtey prior and therefore a
more complex sampling scheme, which we leave as an integeditiection for future work.

7.3 Posterior inference

Let L denote the collection ol,’s, u and v denote{u; }1<;<, and{v;}1<;<,, respectively.
Given one or more time series, collectively denoted as ©egX’ andY whose rows represent
successive pairs of observations, i.e.,

Y; = X;A+e, € ~ N(0,0%]),
we aim to carry out posterior inferences about the transitiatrix A, and row and column cluster
indicatorsu andv. To do so, we consider sampling from the full joint postefiod, L, u, v, o? |

X,Y), and develop an efficient blocked Gibbs sampler outlined ligoAthm [7.1. Starting
with some reasonable initial configuration, the algorithteratively samples rows aofl, row
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and column-cluster indicator variablesand v, the noise varianEeJQ, and the inverse scale
parameterd. from their respective conditional distributions. Next wesdribe in more details
sampling from those conditional distributions.

7.3.1 Sampling the transition matrix A

Let A_; denote the sub-matrix ot excluding thei-th row, X! and X’ , denote the-th column
of X and the sub-matrix oK excluding thei-th column. Algorithm 7.1 requires sampling from
the following conditional distribution:

p(AZ | A—i>u>V7027L7X7 Y) X H N(AZ] | Mij?azz)Laplace(Aij | 07 1/)\uivj)>

1<j<p

where
py = (XX (Y = XA, o = o /|IX%
Therefore, all we need is sampling from univariate dersitiethe form:
f(z) oc N(x| p,o%)Laplace(z | 0,1/N), (7.5)

whose c.d.f.F(x) can be expressed in terms of the standard normal @d.-f:

e B )

C o C o o
wherez~ := min(z,0), 2" := max(z,0), and
¢ = oo T Loy (1- (- E2TY),

We then sample fronf(x) with the inverse c.d.f. method. To reduce the potential Sengpjias
introduced by a fixed sampling schedule, we follow a randodewnng of the rows of4 in each
iteration.

Algorithm 7.1 generates samples from the full joint posterbut sometimes it is desirable
to obtain a point estimate of. One simple estimate is the (empirical) posterior mean;dvan
it is rarely sparse. To get a sparse estimate, we carry odbtlosving “sample EM” step after
Algorithm[7.1 converges:

~

ABICUSEM . 0 mijlogp(A | u®, v® ()2 L0 X V), (7.6)
t

wheret starts at a large number and skips some fixed number of b@sato give better-mixed
and more independent samples. The optimization proble) {§.in the form of sparse least
square regression, which we solve with a simple coordinaseeht algorithm.

20ur sampling scheme can be easily modified to handle diagowaliances.
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7.3.2 Sampling row and cluster indicators

Since our sampling procedures folandv are symmetric, we only describe the onefort can

be viewed as an instantiation of the general Gibbs samptingree studied by Meeds and Roweis
[2007]. According to our model assumption,is independent of the datd, Y and the noise
variances? conditioned on all other random variables. Moreover, uniderstick-breaking prior
(7.4) over the row mixture proportions, and some fixed, we can viewu and the rows ofd as
cluster indicators and samples drawn from a Dirichlet pssarixture model wittisamma(h, ¢)

as the base distribution over cluster parameters. Firtakyl_aplace distribution and the Gamma
distribution are conjugate pairs, allowing us to integra the inverse scale parametérand
derive the following “collapsed” sampling scheme:

p(u; = k" € existing row-cluster$ A, u_;, v)

D((N_(k] + Sae) MI + 1)/ (T(h)e") N[
(N—i[k] 40y ) M 1] +h —1 ” ’
o1 (1ASilR, Ul + S A0l + 1/c) pooTe

p(u; = anew row-clustef A,u_;,v)
D(N_i[K]M[l] + 1)/ (T (R)c")  T(M[I] + h)/(T(h)c") a,
N_;|k]M[l]+h M[l]+h — P
o1 (| Atk 0+ 1/c) (Al +1/¢) p—1+a

whereT'(-) is the Gamma function,, denotes the Kronecker delta functioM, ;[k] is the size
of the k-th row-cluster excludingl;, M[] is the size of thé-th column-cluster, and

lALlE O = Y Al A = ) 1Ayl

s#Lus=k,v;=l vj=l

As in the previous section, we randomly permuf&s andv,’s in each iteration to reduce sam-
pling bias, and also randomly choose to sampt& v first.

Just as with the transition matrit, we may want to obtain point estimates of the cluster
indicators. The usual empirical mean estimator does nokwere because the cluster labels
may change over iterations. We thus employ the followingpdure:

1. Construct a similarity matri¥ such that

1 .
Sij = T Zéqtgt)ug-t)’ 1 S 1,7 S p,
t

wheret selects iterations to approach mixing and independence €&6), andl’ is the
total number of iterations selected.

2. Run normalized spectral clustering [Ng et al., 2001]%nwvith the number of clusters set
according to the spectral gap 6f
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7.3.3 Sampling noise variance and inverse scale parameters

On the noise variance? we place an inverse-Gamma prior with shape 0 and scale? > 0,
leading to the following posterior:

o* | A, X,Y ~ I-Gamma(a + pT/2,2||Y — X A||> + 3), (7.7)

whereT is the number of rows iX and|| - || » denotes the matrix Frobenius norm. Due to the
conjugacy mentioned in the last section, the inverse scalanpeters\;;’s have the following
posterior:

M | A, v o~ Gamma(N[E] M1 + h, (|| Alk, 1|1 + 1/c) 7).

7.4 Experiments

We conduct both simulations and experiments on a real geggression time series dataset, and
compare the proposed method with two types of approaches:

Learning VAR by sparse linear regression, followed by bi-clustering

Unlike the proposed method, which makes inferences abeutamsition matrixA and cluster
indicators jointly, this natural baseline method first esties the transition matrix by adaptive
sparse ol linear regression [Zou, 2006]:

| A
’Aols|fy

Al = argm1n—||Y XAHF—i-/\Z (7.8)

where A% denotes the ordinary least-square estimator, and thetugtiecs AL by either the
cluster indicator sampling procedure in Section 7.3.2 andard clustering methods applied to
rows and columns separately. We compare the proposed matitbthis baseline in terms of
predictive capability, clustering performance, and in¢hse of simulation study, model estima-
tion error.

Clustering based on time series similarity

As described in Section 7.1, existing time series clusgenrethods are designed to group to-
gether time series that exhibit a similar behavior or depeig over time, whereas our proposed
method clusters time series based on their (Granger) caelsdions. We compare the pro-
posed method with the time series clustering method prapbgeCooke et al. [2011], which
models time series data by Gaussian processes and perf@yesiBn Hierarchical Clustering
[Heller and Ghahramani, 2005], achieving state-of-thecarstering performances on the real
genes time series data used in Section 7.4.

7.4.1 Simulation

We generate a transition matrik of size 100 by first sampling entries in bi-clusters:

Laplace(0,v60 i), 41 <i<70,51 < j < 80,
Ay ~ { Laplace(0,v70 '), T71<i<90,1<j< 50, (7.9)
Laplace(0,vII0 '), 91 <i<100,1 < j < 100,
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Figure 7.1: Heat maps of the synthetic bi-clustered VAR
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Figure 7.2: Prediction errors up to 10 time steps. Errorddnger horizons are close to those by
the mean (zero) prediction, shown in black dashed line, amdat reported.

and then all the remaining entries from a sparse back-grouwatdx:

By if |Byj| > Birj| br<iv jr ; . :
Ay = ! By L s ({1 By hiv<aoo) i, j not covered in/(7.9)
0 otherwise
where .
{Bz'j}lgi,j,gloo o Laplace(O, (5\/ 200)_1)

andqes(-) denotes the 98k percentile. Figure 7.1(a) shows the heat map of the actwed ob-
tain by the above sampling scheme, showing clearly fourctwsters and three column-clusters.
This transition matrix has the largest eigenvalue modufu3.@280, constituting a stable VAR
model.

We then sample 10 independent time series of 50 time stepstire VAR model/(7.1), with
noise variance? = 5. We initialize each time series with an independent samgaie/al from the
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Table 7.1: Model estimation error on simulated data
Normalized matrix erron Signed-support error

Ly 0.3133t0.0003 0.3012+:0.0008
Biclus EM 0.2419+:0.0003 0.0662+:0.0012

stationary distribution of (7!1), whose correlation mais shown in Figure 7.1(b), suggesting
that clustering based on correlations among time seriesmoayecover the bi-cluster structure
in Figure 7.1(a).

To compare the proposed method with the two baselines thesln the beginning of Section
7.4, we repeat the following experiment 20 times: a randobsstiof two time series are treated
as testing data, while the other eight time series are ustdiagg data. For., linear regression
(7.8) we randomly hold out two time series from the trainirgadas a validation set for choosing
the best regularization parametefrom {272 271 ... 219} and weight-adaption parameter
from {0,272,2-1, ..., 22}, with which the finalAX is estimated from all the training data. To
bi-clusterAL:, we consider the following:

e L,-+Biclus: run the sampling procedure in Section 7.3.24n.

o Refit+Biclus: refit the non-zero entries of’: using least-square, and run the sampling
procedure in Section 7.3.2.

e L, row-clus (col-clus): construct similarity matrices

S5o= D0 MARIARL S = X0 IARIAGL 1<ig<p

1<s<p 1<s<p

Then run normalized spectral clustering [Ng et al., 2001]56rand S”, with the number

of clusters set to 4 for rows and 3 for columns, respectively.
For the second baseline, Bayesian Hierarchical Clustendgzaussian processes (GPs), we use
the R packag®HC (version 1.8.0) with the squared-exponential covariamcesfaussian pro-
cesses, as suggested by the author of the package. Foll@emige et al. [2011] we normalize
each time series to have mean 0 and standard deviation 1. adkage can be configured to
use replicate information (multiple series) or not, and weezgiment with both settings, abbrevi-
ated aBBHC-SE reps andBHC-SE, respectively. In both settings we give tBeIC package the
mean of the eight training series as input, but additiorsligplyBHC-SE reps a noise variance
estimated from multiple training series to aid GP modeling.

In our proposed method, several hyper-parameters needsjuelodfied. For the stick-breaking
parametersy, anda,, we find that values in a reasonable range often lead to simdlsterior
inferences, and simply set both to be 1.5. We set the noisanea prior parameters in (7.7)
to bea = 9 and = 10. For the two parameters in the Gamma prior (7.2), wehset 2 and
¢ = /2p = /200 to bias the transition matrices sampled from the Laplacer §#i.3) towards
being stable. Another set of inputs to Algorithm 7.1 are thigal values, which we set as fol-
lows: A® = 0,u® =v® =1, (¢©)? = 1,andL® = (h — 1)c = /200. We run Algorithm
7.1 and the sampling procedures for+Biclus and Refit-Biclus for 2,500 iterations, and take
samples in every 10 iterations starting from the 1,501esttton, at which the sampling algo-
rithms have mixed quite well, to compute point estimatesfpn andv as described in Sections
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Figure 7.3: Adjusted Rand index on simulated data

7.3.1and 7.3.2.

Figure 2 shows the squared prediction errord.flinear regressioni(;) and the proposed
method with a final sample EM step (Biclus EM) for various pe&dn horizons up to 10. Pre-
dictions errors for longer horizons are close to those byliptang the mean of the series, which
is zero under our stable VAR model, and are not reported H&icdus EM slightly outperforms
L4, and paired t tests show that the improvements for all 1(zbas are significant at a p-value
< 0.01. This suggests that when the underlying VAR model does hawechustering struc-
ture, our proposed method can improve the prediction perdoice over adaptive, regression,
though by a small margin.

Another way to comparé; and Biclus EM is through model estimation error, and we repor
in Table 7.1 these two types of error:

Normalized matrix error ||A — Al /|| A||F,

Signed-support error% 3~ _, - I(sign(Aj;) # sign(Ay;)).

Clearly, Biclus EM performs much better thdn in recovering the underlying model, and in
particular achieves a huge gain in signed support erronkth#o its use of bi-clustered inverse
scale parameters.

Perhaps the most interesting is the clustering quality,ctvhwe evaluate by thAdjusted
Rand IndeXHubert and Arabie, 1985], a common measure of similarityMeen two cluster-
ings based on co-occurrences of object pairs across dhgtemwith correction for chance ef-
fects. An adjusted Rand index takes the maximum value of § whien the two clusterings
are identical (modulo label permutation), and is close tol&mvthe agreement between the
two clusterings could have resulted from two random clustgsr. Figure 7.3 shows the cluster-
ing performances of different methods. The proposed metlaietled as Biclus, outperforms
all alternatives greatly and always recovers the correstaad column clusterings. The two-
stage baseline methods+Biclus, Refit+Biclus, and.; row-clus (col-clus) make a significant
amount of errors, but still recover moderately accuratsteltings. In contrast, the clusterings
by the time-series similarity based methoBB|C-SE andBHC-SE reps, are barely better than
random clusterings. To explain this, we first point out tB&C-SE and BHC-SE reps are
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Figure 7.4: Heat maps of the Biclus-EM estimatedo&nd the inverse scale parametéraver-
aged over posterior samples; rows and columns permuteddacgdo clusters.

designed to model time series as noisy observations ofrdetistic, time-dependent “trends”
or “curves” and to group similar curves together, but theetiseries generated from our stable
VAR model all have zero expectati@t all time points(not justacross timg As a result, clus-
tering based on similar trends may just be fitting noise insinulated series. These results on
clustering quality suggest that when the underlying clustieicture stems from (Granger) causal
relations, clustering methods based on series similaréty give irrelevant results, and we really
need methods that explicitly take into account dynamicaudion patterns, such as the one we
propose here.

7.4.2 Modeling T-cell activation gene expression time series

We analyze a gene expression time series dataskected by Rangel et al. [2004] from a T-cell
activation experiment. To facilitate the analysis, theg-processed the raw data to obtain 44
replicates of 58 gene time series across 10 unevenly-sgeuegoints. Recently Cooke et al.
[2011] carried out clustering analysis of these time sedia®, with their proposed Gaussian
process (GP) based Bayesian Hierarchical Clustering (BH@)qaite a few other state-of-the
art time series clustering methods. BHC, aided by GP with accspline covariance func-
tion, gave the best clustering result as measured by the@adl Homogeneity Index (BHI)
[Datta and Datta, 2006], which scores a gene cluster basigd mnmber of gene pairs that share
certain biological annotations (Gene Ontology terms).

To apply our proposed method, we first normalize each timiesés have mean 0 and stan-
dard deviation 1 across both time points and replicatestlz “de-trend” the series by taking
the first order difference, resulting in 44 replicates of 58 series of gene expression dif-
ferences across 9 time points. We run Algorithm| 7.1 on thidreleded dataset, with all the
hyper-parameters and initial values set in the same way asirirsimulation study. In 3,000
iterations the algorithm mixes reasonably well; we let it far another 2,000 iterations and take

SAvailable in the R packagengitudinal.
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200 random permutations of cluster labels by those methgréen boxes are BHIs computed

on posterior cluster indicator samples from the proposetthate In parentheses are numbers of
clusters given by different methods.

samples from every 10 iterations, resulting in 200 postes@nples, to compute point estimates
for A, cluster indicatorax andv as described in Sections 7.3.1 and 7.3.2. Figures 7.4(a) and
7.4(b) show the heat maps of the transition matrix pointhestie and the inverse scale param-
eters)\;;'s averaged over the posterior samples, with rows and cadupenmuted according to
clusters, revealing a quite clear bi-clustering structure

For competing methods, we use the GP based Bayesian HiearChustering (BHC) by
Cooke et al. [2011], with two GP covariance functions: culpine BHC-C) and squared-
exponential BHC-SEﬂ. We also apply the two-stage methbgtBiclus described in our sim-
ulation study, but its posterior samples give an averagéafdsters, which is much more than
the number of clusters, around 4, from the spectral anatlessribed in Section 7.3.2, suggest-
ing a high level of uncertainty in their posterior inferes@bout cluster indicators. We thus do
not report their results here. The other two simple basslare: Corr, standing for normalized
spectral clustering on the correlation matrix of the 58 tseées averaged over all 44 replicates,
the number of clusters 2 determined by the spectral gap, diAd-Ane, which simply puts all
genes in one cluster.

Figure 7.5 shows the BHI scoﬁeg;iven by different methods, and higher-values indicate bet
tering clusterings. Biclus row and Biclus col respectivegnote the row and column clusterings
given by our method. To measure the significance of the cing® we report BHI scores com-
puted on 200 random permutations of the cluster labels dwesach method. For Biclus row
and Biclus col, we also report the scores computed on the @d@por samples. All-in-one has
a BHI score around 0.63, suggesting that nearly two-thifddl@ene pairs share some biolog-

4We did not report results obtained using replicate infoiorabecause they are not better. Cluster labels are
fromht t p: / / ww. bi omedcentral . conf 1471- 2105/ 12/ 399/ addi ti onal |

SWe compute BHIs by th&HI function in the R packagelValid (version 0.6-4) [Brock et al., 2008] and the
databaségul133plus2.db (version 2.6.3), following Cooke et al. [2011].
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2.85e-03 BP nucleatide-binding oligomerization domain containing signaling pathuay (3)
4.90e-02  BP regulation of binding oligomerization dowain containing sighalin... (4)

Figure 7.6: Gene functional profiling of the large BHC-C céurst

ical annotations. Corr puts genes into two nearly equaldsthesters (28 and 30), but does not
increase the BHI score much. In contreBHC-C and Biclus row achieve substantially higher
scores, and both are significantly better than those by ranglermutations, showing that the
improvements are much more likely due to the methods ratfar varying numbers or sizes of
clusters. We also note that even though Corr BRIC-C both give two clusters, the twBHC-C
clusters have very different sizes (48 and 10), which cadaegar variance in their BHI distri-
bution under random label permutations. LadB{fC-SE and Biclus col give lower scores that
are not significantly better than random permutations. Qussibple explanation for the differ-
ence in scores by Biclus row and Biclus col is that the formesds itself on how genesdfect
one another while the latter on how gerags affectedby others, and Gene Ontology terms, the
biological annotations underlying the BHI function, delsermore about genes’ active roles or
molecular functions in various biological processes thaatinfluence genes.
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term domain and name

EF regulation of macromoleculs biosunthetic process <1
EP death 1)
EF regulation of custeine—tupe endopeptidase activity (1)
EP [TRiare ToSCem ProcesT oL —_—
EP cell activation (1) - -
e Femnaen o o setivation (2> Cell Activation
EP positive regulation of cellular process (1)
EP positive resulation of cell activation ()
EF Cell death (1)
EF programmed cell death (2
EP apoptotic process €3)
EP resulation of cysteime—tupe endopeptidase activity involved in apoptotic pr... (a4
EP regulation of cell death ¢2)
EF regulation of programmed cell death (33 | | h
& eaniarion o smmis wenes 0. Cell Deat
EF negative regulation of cell death (2)
EP regative regulation of programmed cell death (33
EP negative regulation of apoptotic process (40
EP positive regulation of cell death (2)
EP positive regulation of programmed cell death (33
EF iti i L
EF regulation of immune system process (1)
EP regulation of leukocyte activation (23 . .
o T cell Activation
EP regulation of lymphocyte activation (1)
EP regulation of T cell activation ¢2)
EP activation-induced cell death of T cells (1)
EP regulation of molecular Fumction c13
EP regulation of sequence—specific DMA binding transcription factor activity (i)
EP regulation of anti-apoptosis (1)
EP response to biotic stimulus (1)
EP response to other organism (2)
EP regulation of primary metabolic process 1)
EP imtracellular signal tramscuction (13
EP intracellular protein kinase cascade (2
P-value  tern domain and name
1.75e-02  BP cellular component disassenbly involwed in apoptosis (1)
5.30e-03  BP regulation of defenze response (1)
2.22e-03  EP ositive regulation of defense response (23
1.8%-04 BP immune response (1)
1.9d4e-0z BP regulation of immune system process (1)
7.8%-03 EP pesitive reaulation of twure susten process 0 [y MUNe Res ponse
1.48e-03  BP regulation of immune response (1)
7.7%e-06 BP immune response-regulating signaling pathway (23
7.33=-05 BP positive regulation of immune response (23
1.7%e-05  BP activation of immune response (3)
5.50e-06  BP immune response-activating signal transduction (d4)
3.18e-03  BP regulation of innate immune response (2)
4.9%e-04 BF positive regulation of innate immune response (1)
1.47e-0d  BP activation of innate immune response ¢2)
1.32e-04  BP innate immune response-activating signal transduction 3
9.13e-05 BP pattern recoghition receptor signaling pathway (4)
2.76e-02  BP cytoplasmic pattern recognition receptor signaling pathway (5
5.14e-03  BP cytoplasmic pattern recognition receptor signaling pathuay in response to v... (8)
5.1de-03  BP RIG-I szignaling pathway ¢7)
5.14e-03  BP regulation of viral-induced cutoplasmic pattern recognition receptor signal... (72
5.14e-03  BP regulation of RIG-I sighaling pathuway (8
2.48e-03  BP toll-like receptor signaling pathway (5)
ﬂ—mL—Hﬂ—E — —
2.76e-02  BP nucleotide-binding oligomerization domain containing signaling pathuway 1)
1.54e-02  BP regulation of nuclectide-binding oligomerization domain containing signalin... (2)
1.98e-02  BP negative regulation of cell death ¢1)
1.66e-02 BP negative regulation of progranmed cell death (22 Ce | | Death
1.61e-02  BF rnegative regulation of apoptotic process (1)

(b) Third row cluster

Figure 7.7: Gene functional profiling of two large row clustey the proposed method

Finally, to gain more understanding on the cluster8bjC-C and Biclus row, we conduct
gene function profiling with the web-based tapProfiler [Reimand et al., 2011], which per-
forms “statistical enrichment analysis to provide inteftation to user-defined gene lists.” We
select the following three optionSignificant onlyHierarchical sorting andNo electronic GO
annotations ForBHC-C, 4 out of 10 genes in the small cluster are found to be assatigith
the KEGG cell-cycle pathway (04110), but the other 6 genesnat mapped to collectively
meaningful annotations. The profiling results of the laB¥#C-C cluster with 48 genes are in
Figure 7.6; for better visibility we show only the Gene Owigy (GO) terms and high-light sim-
ilar terms with red rectangles and tags. About a half of tmmsgeare related to cell death and
immune response, and the other half are lower-level dagmmgpinvolving, for example, signal-
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Table 7.2: Contingency table of row and column clusterings

coll v | o | 3| 4
row
1 0o 0| 3 | 2
2 177 2 ] 0 | 0
3 10 | 17 | 0 | 2
] 1 [ 21 0| 2

ing pathways. For Biclus row, we report the profiling reswit®nly the two larger clusters (the
second and the third) in Figure 7.7, because the two smélisters, each containing 5 genes, are
not mapped to collectively meaningful GO terms. Interagyinthe two large Biclus row clusters
are associated with T-cell activation and immune respoasgectively, and together they cover
41 of the 48 genes in the lar@@HC-C cluster. This suggests that our method roughly splits the
largeBHC-C cluster into two smaller ones, each being mapped to a moteséatset of biolog-
ical annotations. Moreover, these Biclus profiling resuhe heat map (Figure 7.4(a)), and the
contingency table between the row and column clusters €Tala) altogether constitute a nice
resonance with the fact that T-cell activation results froather than leading to, the emergence
of immune responses.

7.5 Conclusion

We develop a nonparametric Bayesian method to simultaheodsr sparse VAR models and

bi-clusterings from multivariate time series data, and destrate its effectiveness via simula-
tions and experiments on real T-cell activation gene exgwestime series, on which the pro-
posed method finds a more biologically interpretable chiusgethan those by some state-of-the
art methods. Future directions include modeling signs arfigition matrix entries, generaliza-
tions to higher-order VAR models, and applications to otieat time series.
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Chapter 8

Conclusions and Future Directions

Motivated by the difficulties in collecting reliable timerges data in a variety of modern dynamic
modeling tasks, we study in this thesis the problem of legymiynamic models from data that
lack time information but are easier to obtain. We obsera¢ $iich non-sequence data can often
be modeled as independent samples drawn from multiplepem#ent executions of the under-
lying dynamic process. Based on this assumption, we progpodeatudy learning algorithms for
several widely-used dynamic models, including fully olvadte linear and non-linear models,
and Hidden Markov Models.

For fully observable models, we first point out some modehidiability issues in learning
from non-sequence data. Then we develop several EM-typeitgpalgorithms based on max-
imizing approximate likelihood, and for the case where alsaraount of sequence data are
available, we propose a novel penalized least square agiptbat uses both sequence and non-
sequence data. Empirical evaluation on synthetic data eveta real data sets, including gene
expression and cell image time series, demonstrates thatoposed methods can learn reason-
ably accurate dynamic models with little or even no time infation. However, we also observe
several failure modes that are hard to overcome withouterformation or assumption. This
suggests that for the proposed methods to make impact iappétations, they should incorpo-
rate as much expert domain knowledge as possible. For egakipwing how the variables in
the dynamic model might interact with one another can hedpdigsign of a better regularization
scheme. This motivates us to develop methods for learnirgutered vector autoregressive
models. Or, in some applications there might be partial mmdeinformation about the data,
which can provide constraints in our EM-type algorithms.

For Hidden Markov Models, we build on recent advances in tsaklearning of latent vari-
able models and propose tensor factorization based methatguarantee consistent parameter
estimation, under reasonable assumptions on the undgmyMM and the generative process
of non-sequence data. These assumptions are inspired tiyadpearning of topic models, but
have a few key differences, such as conditions on the Detgbriior for the initial state distribu-
tion and modeling missing times as geometric random vaglihat are specific to the HMM
setting. Although these generative assumptions may ndtihabservational data, they may be
fairly easy to implement in some scientific experiments. e aonsider the situation when lit-
tle sequence data are available, and propose a spectrattagosing both types of data, which
outperforms sequence-only learning algorithms.
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Going forward, one interesting direction is to investigateether spectral methods can be
used to consistently learn first-order observable models fnon-sequence data, and under what
conditions. As demonstrated in Chapter 5, it is primarilydigereteness, or more generally, non-
Gaussianity of the hidden state space dynamics that leadsddensor structures in observable
moments and easy characterization of assumptions ensurigge parameter estimation. There-
fore, in the case of first-order models with continuous obetaons, we expect that non-Gaussian
initial distribution is needed for consistent spectrafiteag from non-sequence data. Moreover,
it is likely that extra assumptions on the initial distrilmrt, such as distinct variances or means in
different dimensions, are required to eliminate the irsacie to parameter permutation inherent
in spectral learning.

Another important future direction is to make impact in rapplications with our proposed
methods. In order for that to happen, we expect to see vainberesting extensions or modifica-
tions to our approaches that are tailored to the applicationterest. In particular, our proposed
modeling assumption of non-sequence data has several cemsahat can be replaced to bet-
ter suit different applications, such as the distributi@assumption on the missing times and the
observational noise model. More broadly, our work has destrated the possibility of using
cross sectional data to aid longitudinal study. As mentilonehe very beginning of the thesis,
it is common in medical and social sciences that cross sedtiata are much easier to collect
than longitudinal data, and yet a lot of cross sectional detee actually collected under some
longitudinal effect. With advances in large-scale senseapnology, this situation will likely
become more prevalent. We think there are several posibifior our work to make concrete
contributions. For example, at the initial stage of londihal studies, researchers often have
to pose reasonable hypotheses to guide the design of exgdsnar data collection protocols.
However, even forming good hypotheses may be difficult whengubject matter involves a
complicated system. In this situation, our methods mayesasva good hypothesis generator, us-
ing cross sectional data that are available to produce lpessiodels. Or, sometimes researchers
may want some immediate, preliminary assessment even hhitveglongitudinal study is still
ongoing and only produced limited data. If there are abuhdeoss sectional data in the same
domain, our methods of combining sequence and non-sequataenay be used to provide a
reasonable estimate of the dynamic model under study.

In conclusion, our work demonstrates the possibility ofiéag dynamic models from data
that lack time information, and we hope it stimulates moseegch in making better use of the
large amount of cross sectional data brought by modernmsgtschnology.
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Appendix A

A Variational EM algorithm for Learning
HMMs from Non-sequence Data
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Based on the generative process in Section 5.2.2, we dexigéaional EM algorithm for
parameter learning assuming the observation noise followgherical Gaussian with variance
o2. The full joint probability of data and latent variables ¢éakhe following form:

({Xj} {hj} {tj} {Sj} {776} | U, 0% P,r, )
_H (H (HN J | Ul,a f) )(H((Ptf)l,l)hfl,551>Geometl’ic(tz | T><H((7T€))Z)SZZ>> .

rl l
Dirichlet() | ),

in which we use super-script as set indices and sub-scigpiiaia indices within a set wherever
appropriate. The goal is to maximize the marginal likelidad the data w.r.t to the parameters.
We begin by marginalizing over the latent timgs}:

PR AB) Al (i} | U 0%, T )
=H<H(HN x| Ui, o )(Hm”s”)(H wz;msfz))Dirichlet(wé|a>,

j=1 \i=1

whereT denotes the expected transition probability matrix. Ashe tensor factorization ap-
proach, we recoveP andr from the estimated” using the proposed search heuristics. Because
the posterior distribution of the remaining latent varegbktill leads to an intractable E step, we
employ the following factorized approximation:

FUBY Ay A} |H{xD), U, 0%, T, @) = q({h]} {s]} | {25 }a({mo} | {B7}).

where

g({nl} sy [ {@) = T (@)™, @ e 0,1,

ivjvllvl

a({m} [ {B7}) = HDifiCNet(Wélﬁj),

and obtain the following lower bound on the log marginal lilkeod:

g({®1}, {6}, U0, T, )

=Ry (100 0y 187) llog (f({xg}-’ ). {s1). {mo} | U T, a)>]
A g({h}, {si} [ {®: Da({mo} [{B’})
:E{h{},{sg}|{<1>§'},{7rg}\{ﬁj}[1Og f({Xf}»{hZ}»{Sz},{ﬂ'f)} | Uv OQ,T,a)]—
By o100 108 0000} 457} 1{OT1] = By [loma(md} | {831)]

= _ (@) (log N(x! | Uy, 0*I) + log Tir) +Z(Z Do+ o = 1) ((8) = 6(5))

YRRN4 il

— N(Zlogf Oél> — log F(Oéo)) — Z (q)g)ll’ lOg((I)g)”/

j7i7l7l/

= D8 = D08 () + D (D osT(B) ~logT(5)).
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where(-) is the digamma function. The variational EM algorithm themoaints to maximizing
g iteratively, alternating between the following two stepdiliconvergence:

Variational E-step

Holding the model parameters fixed, repeat the updates

(@) o N(x | Uy, o) T exp(¢(B) — (57)),
B = Z(Qf)zfﬂraz,

il

until convergence.
M-step '
Holding the variational parameteré¢®; } and{g3,} fixed, update model parameters:

Z;V 1D i Zf’ (P j)ll’xj
Z] 1 Zz 1 Zl’ 1( )ll’
2 Zj:l > it Zl,l’(q)g)ll/HXi - U?

U =

T Nnm
Ty = Zjvlz?_( )i
| ZJ 12% 121 1( )u'
o = {132%(}22 o = 1)(@(B]) — (&) = N( D logT(ar) — logT(a)).

The update fokx is a convex optimization problem whose inverse Hessian eacomputed in
linear time Blei et al. [2003].

Finally, we have to match the columns Gfwith the columns ofl". Note that the updates
imply that the columns ot/ are aligned with the rows df’, so it suffices to matclis rows
with its columns. Using the assumptions thata, = 7« andm; # m; V i # j, we recover the
matching by sortingx/« andT e/ ay.
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Appendix B

Proofs of Theorems in Chapter 5
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B.1 Tensor structure in low-order moments

Here we give proofs of theorems on tensor structures in ladetomoments of observable data.
The proofs make repeated use the following facts:

e T'm = m, i.e., the stationary state distribution is invariant unthee expected transition
probability matrixT".

e The missing time steps’s are independent of everything else.

e Conditioned on the initial state distributioty, i.e., within the same set of data, the obser-
vations{x;} are mutually independent, so are the hidden stfites and the initial states

{si}.
e The low-order moments of the Dirichlet distribution havepeeaal form (c.f. Appendix
B.1 of Anandkumar et al. [2013]), which leads to the desingdmetric tensor structure.

B.1.1 Proof of Theorem 2

E[xi] = EgE[x:1 | m]
= E.E[P"s; | m]
= En [E[P"]m]
= Tm
= .
Cy, = Exix,]

= EnE[P"sis; (P?)" | ]
= Er,[E[P"]E[s1s, | mo]E[(P")"]]
= TEg[momy T
: T
_ 7 diag(m) L QT (B.1)
g + 1 g + 1
Tdia T T
_ iag() N QT ‘ (B.2)
ag + 1 oo + 1
C3 = E[x; ® xy ® x3]
= E.,E[(P"s)) ® (P"sy) ® (P"s3) | o)
= Ex, [(Tmo) @ (T'mo) @ (T'mo)]
_ ZZ-27T¢T¢®T¢®TZ'+ RBrTRmW (B.3)
(Oé() + 2)(0&0 + 1) (O./O + 2)(0./0 + 1)
a0 (Ly (e Te T+ Lo 0T+ 10 T @ T)m )
_I_
(a0 + 2)(a0 + 1)
Zi 27‘(1’7}@3 — 20&%7‘&'@)3 Oéo(ﬂ' ®3 CQ =+ 7T X9 C2 + T X Cg)

N (a0 +2)(a0 +1) i o + 2 . 49
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We obtain|(B.1) and (B.3) by using the expressions of Digtimhoments derived in Appendix
B.1 of Anandkumar et al. [2013]. Re-arranging (B.2) and [Be&ds to the adjusted moments
M, and Ms.

B.1.2 Proof of Theorem 4

Vi = Elx4]
= E[Uh; + €]
= UE[P"s]
= UTE[m]
= Um.
Va = E[xix|]
= E[(Uh; +€)(Uhy +¢)"]
= E[Uhh/U"] + %I
= UE[diag(h,)|U" + 0?1
= UE[diag(P"s)|U" + ¢*I
= UE[diag(Tm)|U" + o*I
= Udiag(m)U" + 1.
Vs = Elx; ®x @ x4
= E[(Uh; +€)® (Uh; +€) ® (Uh; + €))]
= E[(Uh)®]+E[(Uh) ®¢ ® €] +E[e; ® (Uh) ® e1] + E[e; ® 6, ® (Uhy)]
Y mU; @ Ui @ Uy + Vi @1 (0°) + Vi @, (0°1) + Vi @3 (1),

which relies on the assumption of zero skewriggg;)3] = 0,1 < d < m.

Cy = E[x1x]
= E[(Uh; +€)(Uhy +e)']
= E[UhhyU"] (B.5)
= UE[P"s;s, (P2)TUT
UTE[mom) |T"UT
UTdiag(m)(UT)"T ooV V)"

— o1 + P (B.6)
C; = E[x; ®x2 ® x3]
= E[(Uh; +¢€)® (Uhy + €) ® (Uhg + €3)]
= E[({Uhi) ® (Uhy) ® (Uhs)] (B.7)
= E[(UP"s;) ® (UP"sy) ® (UP"%s3)]
[(

= E[(UTmy) ® (UTmy) @ (UTT)]
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> 27Ti(UT)Z®3 — 204(2)‘/1(83 ap(Vi @3 Co + Vi ®9 Cy + V1 ®1 C)
+ .
(Oé0+2)(040+ 1) CYO—|—2
Note that due to the independence assumption, there arase mbated terms in (B.5) and (B.7),
indicating thatC;, andC5 are unaffected by the noise distribution. And again, (Br&) éB.8)

are established with the expressions of Dirichlet momen#sipendix B.1 of Anandkumar et al.
[2013]. As in Appendix B.1.1M,, M3, M}, and M}, result from adjusting the raw moments.

(B.8)

B.2 Proof of Theorem 3

We first prove the following lemma:
Lemmal. If P(r) := (rI+(1—r)T*)"'T* exists and is a stochastic matrix for some (0, 1],
thenP(r’) exists and is a stochastic matrix for all € [r, 1].

Proof. SinceP(r) exists we can writd™* = rP(r)(I — (1 — r)P(r))~!. By assumptionP* is
invertible, so7™ is invertible. We then have

r! !

P (=) = S0P T = (=)D + (=) = SPe) I = (1= ) P)),

which is invertible for all”’ € [r, 1]. Therefore, we can write
/ / *) — / — r / _
P(r) = ("(T) 7+ (L =) D)7 = S P = (L= r/r)P(r)) ™" = E[P(r)],
wheret ~ Geometric(r/r"), showing thatP(r’) is a stochastic matrix. O

To prove Theorem|3 we begin by noting ti&tontains all values of for whichr 7+ (1—r)T™*
is singular. ThereforeP(r) is well-defined and invertible for € (0, 1] \ S. From the identity
T*n* = 7« = (rl + (1 — r)T*)x* we haveP(r)nm* = =*, r ¢ S. Similarly, the identity
177* =17 =17 (rI+(1—r)T*) and the fact thatr [+ (1 —r)T*) 1 T* = T*(rI+(1—r)T*) "
imply that1" P(r) = 17, r ¢ S. Itis easy to verifyP(r*) = P* by plugging in the definition
of T*. Lemma 1 then implies thatax(S) < r* and thatP(r’) is a stochastic matrix far’ > r*.
To prove the last statement of the theorem we rew#ite) by plugging in the definition of™:

*

P(r) = 7’7 (I—(1—r*/r)P") P

and consider its first-order derivative w.nt.
2 _ * *
oP(r)  _ S(Lrs (1= L)) a=-rjp
or r* r* r*
which exists for- € (0,1] \ S. By assumption we have; = 0, and by ergodicity of>* we can
assumeg P*)?; > 0 (otherwise there exists # j such thatP;; = 0 and(P*)7, > 0). Then we
have .
oP(r)y)  _ (P 0.
or r=r* r*

implying that there exists > 0 such that for € [r* —c,r*), P(r);; < Pj; = 0. This and Lemma
then imply the last statement of the theorem.
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B.3 Sample Complexity Analysis

The analyses here mostly follow those in Anandkumar et 8l182. LetO denote the observa-
tion matrix, which can be th& matrix in First-order Markov models, tHé matrix or the product
UT in Hidden Markov Models. Define

O := Odiag([\/71 V72 - V7).

k
My = Odl&g(ﬂ')O—r = 66T and Ms = ZTFZOZ ® 0; ® 0.
=1

Let T, := min,; m;. We have

Uk(0> Tmin S Uk(O)v

01(0) < 01(0),

whereo;(-) denotes thgth largest singular value.
Denote byl| - || the spectral norm of a matrix or the operator norm of a symimétird-order
tensor induced by the vector 2-norm:

|M|| := sup [M(6,6,0)]
lloll2=1
Suppose
|My — M| = B,
| M5 — M3|| < Es,

for someFE, and E; to be determined.

B.3.1 Perturbation Lemmas

Let J\/fgk be the best rank approximation tall in terms of the matrix 2-norm. According to
Algorithm/5.1, we have

WAL = 1.

Let L
WTM,W = ADAT

be an SVD ofiV T M, W, whereA € R***. Define
W = WAD /24T

and notice that P
WTM,W = AD™V2ATW T MyWADY2AT = 1.

LetQ :=W'O andQ := W'O.
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Lemma 2. (Lemma C.1 of Anandkumar et al. [2013]) LH{;, be the orthogonal projection
onto the range ol andII be the orthogonal projection onto the range®f Supposer, <
or(Ms)/2. We have the following:

el = 1,
1ol < 2,
_ 2
Wi < —,
O'k(O)
Wi < 20,(0),
W < 301(0),
~ 4F5
_ < _ ,
lo-al < 22
it -wy < OB
o, (0)?
M= Thy|| < —22
0, (0)?

Lemma 3. Weyl's Theorem. (Theorem 4.11, p.204 in Stewart and Sun [L9%@t A, F €
R™™ with m > n be given. Then

max |0;(A + E) — 0i(A)] < [[E].

1<i<n

B.3.2 Reconstruction Accuracy

Throughout this section we assume that the number of i@rafl andL for Algorithm (5.2
satisfy the conditions in Theorem 1.

Lemma 4. Supposenax(Fs, F3) < o,(Ms)/2. Foranyn € (0,1), with probability at least
1 — n the following holds:

max(o1(0), 1)
732 min(ox(0)?,1)

min

0= (WTVA| <c

max(EQ, Eg)

for some constant > 0.

Proof. By Theorem 1, the following hold with probability at lealst- #:

V=l =[S - vu2<\/2 (64E2)/(1/y/momn)? = 8Es,

IA|| = maxl/\/ﬁ_z < max(1/y/Ti + 5E3) < mil* + 5Es.
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With the above two bounds and Lemma 2 we have
10— (WHIVA| < 0~ w0l + w0 — (WT)IVA
=[|TIO — Iy Ol| + (W) TVA — (WHTVA|
< = |[O]] + [[(WHTVA — (WHTVA| + |(WHTVA — (WHTVA|
<[ = Ty ||+ (IWHIVIIIA = Rl + (W) TVA = (WHTVA| + [(WHTVA — (W TVA|
<0 — Ty || + W Bs + W[V = VAL + 1w = WA

AE ~ . 60(O)E
2 1+ 301(0)E;3 + 301(0)||V = V||#||A| + 1(—)2
o1 (0)? 01(0)?

<c ((\/ii_m + 3>01(O)E3 + <4 T 6\(;;_(53) ak(Ob;zﬁmm)

2701(0)  10max(01(0), 1)

<

<c ( — W%i(fk(O)z max (Fs, Fs)
37 max(01(0), 1)

= 72 min(o,(0)2,1)

min

<

IV = Vllr+DA]

maX(EQ, Eg)

wherec > 0 is a constant large enough to dominate low-order termsHikes. [

Lemma 5. With a slight abuse of notation, &t denote a column permutation of the trle,
UT denote a column permutation of the trig", and P denote a column-and-row permutation
of the trueP, where the permutations involved are the same. Suppose

max(|U — U||, [UT = UT|)) < ox(rU + (1 = r)UT)/2.
We then have

60, (UT)
o,(rU + (1 = r)UT)?

1P = (rU + (1 — 1 UDUT|| < max(|U — U||, |UT — UT|)).

Proof. First notice that
(rU + (1 —r)UT)'(UT)

(rT+ (=)D TUTU(rT 4 (1 —#)T)) " (rI + (1 —#)T) U UT
=(rI+(1—-n)T)"'T = P.

Then we have

1P = U+ 1 —=nUD)UT| = ||(rU+ (1 =r)(UT)'UT = (U + (1 —r)UDITUT)|
<||(U + Q= UDUT) - (rU + (1 — r)UT) (UT)||+

1(rTU + (1 =) UDUT) = (U + (1 = r)UD)UT||
) —

<||(rU + (1 = r)UT)! (rU—I— (1-— r)UT) or| + ||(rU—|— (1 —r)UT) IUT — U{BH 0
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By Lemma 3 and the assumption of the lemma, we have
ou(rU + (1 = )UT)/2 < ou(rU + (1 = )UT) < 304(rU + (1 — r)UT)/2,
showing that ranfeU + (1 — r)ﬁ) =kand
1(rU + (1 — »)UD)!|| = 1/ox(rU + (1 — r)UT) < 2/ox(rU + (1 — r)UT).

Because rankl + (1 — r)UT) = rankrU + (1 — r)UT) = k, Theorem 3.4 in Stewart [1977]
indicates that

I(rU + (1 = r)UT) — (U + (1 — ) UT)||
<V2| (U + (1 =) UD) [T + (1 = )T |[|r(U = U) + (1 = r)(UT = UT)|
Va(r|U = Ul + (1 = nIIUT - UT|) _ 2v2(rllU = U] + (1 = n)|UT - UT)
" ou(rU + (1= 1)U o (rU + (1 — 1) UT) ~ or(rU + (1 = r)UT)?
Applying these bounds to (B.9) then leads to
1P — (U + (1 —r)UT)'UT|

_2V20,(UT) (r|U — U]l + (1 - )|UT — UTY) 2|UT — UT)|

- o(rU + (1 —r)UT)? o,(rU + (1 —=r)UT)
r220,(UT)|U =T (1 —)2v201(UT) + 204,(rU + (1 — r)UT)) |UT — UT]|
o (rU + (1 —1r)UT)2 op(rU + (1 —r)UT)?

<max(r2\/§, (1—=7)2v2+2)o (UT)

a o (rU + (1 —r)UT)? max(||U - U|[, [UT — UT||)

60, (UT) . __
U-U|,|lUT-UT
_Uk(TU+(1—T)UT)2 maX(H ”7” ”)7
in which we use the fact, (UT) > o1(rU + (1 — r)UT) > oy (rU + (1 — r)UT). O

B.3.3 Concentration of empirical averages

Lemma 6. Let {y,;}, be N i.i.d. random vectors irR™. Letu := Ely;],¥ := Var(y;) and
02 0 i= Maxy Ygq. Letp := (3, y;)/N. Then

max

mo?>

Prob(||z — > ) < X
([0 — pl]2 > €) < Ne?

Proof. This lemma is a straightforward consequence of the Markeguality:

Prolf[|a — pll2 > ) = Prol{f|a — pl; > €*)

Elllp — plf3]
_ ZdE(p’d_u’d)2 _ Tr<2) < maﬁlax
€2 Nez2 — Ne2 -~
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Lemma?. Leﬂ71, 172, 17},, 6‘;, @ denote averages df independent draws of;, x; ® x1,X; ®
X] ® X1,X; ® X9,X; ® Xy ® X3 from the generative process in Section 5.2.2. dgt, =
max; ; ’U'LJ| Then

R 2 2
Prob(| Vi — Vifls = ¢) < T £07)

2 ]2\[62 272
—~ m=\u g
Prob(||Vo — Vallp > €) < 3( ;I]l{lfxej 2)3=
—~ m-\u g
Prob(||Vs — Vs]|p > €) < ( H}ffxej ) ;
Prob([|Cs — Col|r > €) < s %@X; : )2’
N m?>(u? o?)3
Prob(||Cs — Cs]|r > €) < ( n}\a;;;— )

Proof. Based on Lemma 6, it suffices to boun], . in these five cases:

maxVar((x1);) < maxE[(x));] = maxEy, [0+ (Uhy)] < 0—2+maXUz‘2kv
Hgngar((xl)i(xl)j) < mf]iXE[(Xl) (x1)7] = mathl[(U + (Uhy)7) (o +(Uh1)?)]
< I{ljaf(a +UN(0* +Up) < (0 +T%2XU2‘23'>7
max Var((x,)i(xz);) < Hlf]lXE[(Xl) (x2)7] = max B, [E[(x1)7 7o) E[(x2)7 | o]
<

max sup E[(x, )7 |mo]E[(x2);|mo] < (mlaXS}TlopIf“i[(xl)?lﬂo])2

2¥) ™0

(mlax sup Z U (T7o)k + 02)2

= maxmaxZU Ty +0°) 7 < (max U] + o°).
2y

With similar arguments, we have that

max Var((x1)i(x1);(x1)1) < (max U + o),
i.J, i,j

max Var((x1);(x2);(x3);) < (maxU} +0°)".

1,7, 2%]

]

Lemma 8. Let]\//.l\g, ]\/4\3, ]\75, ]\Zg denote estimates of the population quantities defined im-The
rem/4 obtained by plugging in empirical averages of indegedamples as in Lemma 7, and

- ~ T . . .
75 = Amin(V2 — V1V1 ), where\,,;,(-) denotes the smallest eigenvalue in modulus. Define
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v :=max(c? +u2_ , 1). We then have the following:

— 75m2u?

Prob(|| M), — M| > <

(- M) 2 0 <

— 1000m*?

Prob(||M; — M;|| > ¢) < N2
— 50(c + 1)?m?v?

Prob(||[ My — Ms|| > ¢€) < e ,

1100k2m3(ap + 2)2(a + 1)%0/3

Prob My — M| > <
(M5 — My > ) < e

. _ . ~ A AT ~ .
Proof. We first note that it is easy verify" (1, — ViV, )z > 0 for any real vector, soo? is
always non-negative. By Lemma 3, we have

~ ~ ~T ~ ~ ~T
Vo= ViV, = (Vo = ViV || < Ve = Vol + V" =WV ]
Vo = Vol + [[Vi = VAl (1Al + IV D
Vo — Val| + 2[Vall[IVa — Vall + Vi — VA ||

|02 — 02|

VAN VANVAN

We also need the following
2
Vil? = o= = ) <ZUm> < Y omUs < ) maxUj < mug,,.
% 7 %]
Then we have
IVa = Val| +|o* — 0|

<
< 2|[Va — Vol + 2VillIVh = Wil + [V — VA
< 2|Vy — Vallp + 2[VAllIVi — V|| + V2 — WA P2,

M5 — M|

which implies

Prol(|| M — Mj|| > ¢)

< Prob(2||Va — Vallr + 2 VA[[[[V = Vil + Vi = VA[)” = ¢)

< Probf2||Vs — Va||r > €¢/3) + Probi2||Vi[|[Vi — Vi|| > €/3) + Prol(|[Vi — Vi[> > ¢/3)
o 36m*(una +0%)7 | B6IVAPm(upe +0%) | 3m(uga, +07)

- Ne? Ne? Ne

< 36m?(u?,, + 0%)? N 36m*u?, (v, +0?)  3m(ud,, +0?)

- Ne? Ne? Ne

< 75m2(ut . + 02)?

- Ne?
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Similarly, we have

1My — Ma|| < (Vs = Vallp + 3|V @1 (0%1) — Vi @1 (02]) 1
Vs — Val|r + 3v/ml|o*Vi — o2V
< |IVs = Vallp + 3vm(e®|Vi = Vall + |02 — a2|(IVal| + V2 — VAl]))
< Vs = Vallp + Vi = ValI3v/m(o® + 2mu,,) + Ve — Val[3tmaxm
Vi = Vil + 3vm(|Vi — Vi Va = Vall + [V = VA1),

implying

Prol( || M — Mj|| > ¢)

< Prolf||Vs — V|l» > €/6) + Prob(||[Vi — Vi|| > ¢/(18y/m(0” + 2mu?,,,)))
+Prol(|[Va — Va| > €/(18uaxm)) + Prol([|[Vi — Vi[* > €/(54umaxm))
+prob( Vi = Vil = \/e/1vm) ) +Prob Vs — il > </ (15im)
LPIOH||Vi — ilP* > ¢/ (18y/m))
< 36m(Upa +0°) N 324m?(0? + 2mus,, ) (0? +ui ) N 324ul, m*(0® + ul,,)?
- Ne? Ne? Ne?
Sumaxm?(0? +u2, )  18m32(0? +u2,)  18m*2(0? +u?,,)?
Ne Ne Ne
36Y3mA3 (02 +ul,)
N€2/3
1000m*(max(e? + u2,,1))3
- Ne? ’

Using similar arguments, we have

—~ AT
(ao + D]|Cy = Ca|lp + aolViV) = ViVA ||k
(ap + 1)[|Cy — Calp + 2a0 | VAl VE — VAl + aol|V2 — VA 1%,

| My — M| <
<

and therefore

Proky(|| M, — M| > e)

—~ ~ €
< Prol||Cy — Co||r > m)+Prod||V1—V1|| > m)
+PrOH(|Vy — Vi[[* > o)
0 P 4 ) Bbedmtud (ot 4 ud)  Bagm(o® + i)
- Ne? Ne? Ne
< 50(ap + 1)2m? (0% +u? ,.)*
- Ne? '
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Finally, we have

1M — Ms|
g+ 2) (g + 1 —~ 3(ag + o~
< (0 )2( 0 )||C3—03||F+%HV1®102 ‘/1®O2||F
+aVieVioVi - oV e Wlx
ag+ 2) (g + 1 — 3(ag + 3(ag +
< ot 2ot Do, G+ 20 D0y Gy + 20TV 50, - )
+30d[|VA[2(1V2 — VAl + 32 VallI Vi — VAl + o3[ Vi — VA )?
ap+2)(ap+ 1 — 3(ap + = 3(ap + —~
< 02200+ Dy, G+ 202Dy gy + 20T D00, - G
3(ag + 1) ~ — ~ ~ R
200t D00 DGy~ Calle + 303IAIPIV: — Tl + a3 VAllIVa — P41+ agl1vi — VAl
ap+2)(ag+1 — ~ 3(ag + 1) —~
< (00X D006 Gl + 5(a0 + Daokmad Vi - G+ 20T D0 w50, 7,
3(ap + D ~ o~ . -
+il7l%%—%W@—@M+&ﬁMW%—%WﬂﬁM—%W
using the fact that
dia T
1Collr = HUT( g + oo )TTUT < UTI < kmid,,
Oéo-'-l F
and thus
— — €
Prol( || M5 — Ms|| > < Prob|( ||C5 — C >
(s~ T 2 9 < Prob(la — Gallr > 3ot )
~ € —~ €
Prob( [|V; — W4 Prob|( ||C, — C >
+ (H ! ille = (ao—i—l)aokmuﬁlw) + (H 2 2llp > 9(a0+1)a0)
Prob( ||V, — V|2 > Prob( [|V; — ‘
- ProIVi — > ey ) + Prob(IV: P> o )
- Im? (g + 2)* (g + 1) (0? + u2,)? 900/<:2 3ap + 1)2dut (0% +u2,.)
- Ne? N€2
+81(a0 + 1)%2aim?(o? + u?,)? N 18a3m3/2umax(02 +u?,.) N 6ma§/3(0 +u?,)
Ne? Ne Ne2/3
- 1100k%*m3 (g + 2)* (g + 1)%(0? + u2,)?
- Ne? )
OJ

B.4 Proof of Theorem 5

Let 7 andUT be column-permuted as described in Algorithm 5.4. Let
Bin == min |1/ /7 — 1/ /5.
7/7]
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If max(FEs, EY) < dmin/15, Theorem 5.1 of Anandkumar et al. [2012a] implies that foy an
n € (0,1), with probability at least — 7, the columns of/ andUT are matched to the same
permutation of the columns of the trdéandUT, respectively. As in Lemma 5, léf, UT, and

P denote proper permutations of the true matrices. We thea hav

eor(rU + (1 —r)UT)?
601 (UT) )

Prob(max(HU — 0|, |luT = UT||) >

eo(rU + (1 —r)UT)?
60 (UT)

gprob(nU— Ul >

> + Prob(||UT 7| s U+ (1= T>UT)2) .

601(UT)

Let the failure probability for the tensor decompositionthul be set td!. Then by Lemma 4
we can bound the first term as follows:

eo(rU + (1 —r)UT)?
601 (UT) )
eop(rU + (1 — T)UT)QW%i min(o,(U)?, 1))

Prob(nU—ﬁH >

601 (UT)cmax(o1(U), 1)

+ Prot{max(E}, Ef) > 0(Mj)/2) + 7 + PrOH(E} > 6 /15),

<Prob (max(Eé, E3) >

where the firstterm in the r.h.s is based on Lemma 4 conditionghe event thahax(E,, EY) >
o,(M3)/2 and the tensor decomposition method succeeds, the secdnideattird terms bound
the probability that the event does not occur, and the last tounds the probability of incor-
rectly matching the columns &f andU. To continue bounding these terms we use Lemma 8 to
have

601 (UT)cmax(oy(U), 1)
(2700m?v?* + 36000m*v3)o1 (UT)*c* max(aq (U)?, 1)
Ne2op(rU + (1 — r)UT)473 . min(ox(U)*4, 1)
39000m*v30y (UT)?*c® max(o1(U)?, 1)
“Ne2op(rU + (1 — r)UT)*x3 . min(oy(U)*, 1)’
300m?v? + 4000m*v? < 4300m*v?
Noy(Msy)? = Nop(My)?’

prob<maX( B, E) > ear,(rU + (1 — r)UT)*m2i2 min(oy (U)?, 1))
2y H~3) —

Prob{max(E}, ) > 04(M3)/2) <

225000m*v3
N§2

min

Prob(E} > 6in/15) <

Thus, by setting the sample si2éso that

v o 2wt 225000 4300 390000, (UT)2e max(o1 (U2, 1)
max
- n 62, o (My)? €o(rU + (1 —r)UT)*w3, min(op(U)*,1) )’

min min

we have
(B.10)

N _ 2
Prob(HU— ol > eor(rU + (1 —r)UT) > < g’

601 (UT)
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where the randomness is from both the data and the algorittsing similar arguments, we have
that for sample sizéV such that

N > 12k*m3(ap + 2)2 (g + 1)21/3'

n
s 225000 4600 4200001 (UT)?(¢')* max(a1 (UT)?, 1)
62 T op(M'9)? 0y, (rU + (1 — r)UT)*w3, min(o,(UT)*,1) )’

the following holds:

. _ 2
Prob<||UT— o) > Cxrv+ U = n)UT) ) < (B.11)

601 (UT)
Combining the two bounds (B.10) and (B.11), we have for
N > 12max(k*, m)m’v?(ao + 2)* (a0 + 1)*

s <225000 Z17600 42000c?01 (UT)? max (o (UT), 0,(U),1)? )
Omin  Min(ok(M'2),04(M2))*" €04 (rU + (1 — r)UT)* min(ox(UT), 0, (U),1)* ) *
the following bound holds for any > 0 andn € (0, 1):

N3

R — eop(rU + (1 —r)UT)?
Prob - T-UTl) = =1
ro (maX(HU Ull, U uTll) < 601 (UT) "

which by Lemma 5 implies that

Prol(||P — (U + (1 - r)UT)UT| < ) > 1-n.
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Appendix C

Derivations in Chapter 6
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C.1 Derivation of (6.20)
Using properties of the matrix trace and the kernel trick immediately have
1 ~ 1
§||22leT — Ca1lgsg o §Tr(PTM2PM1) —Tr(P'F),
u S1 o, T S1 o,
5 (12:P1 = 22l + 12071 - 2 )
~ ng(PTMgP + PMPT)1 —ulT (P py + Ppuy).

Let \;(-) denotes the-th Eigenvalue of a matrix. We then rewrite the nuclear nagrmt

T 2PE . = 7Y \/M(ZPLT L PTZ])

=y VAN(LTPTLLL PLY) = 7| L] PLl.,

C.2 Derivation of (6.34)

We begin by defining some notations:
H = (7TM317, R = VTle/, u:= (7T1, V= ‘7T1,

®] Z,

F1 = <I>1TZJ7, F2 = y F3 = (I);Zg[’j

Let vec(X) be the vector resulting from column concatenation of a matij diag(x) be the
diagonal matrix with the vectat being its main diagonal. Superscripts denote column irsdice
Using properties of the matrix trace and the kernel trick rervrite the three terms in (6.34) as
follows. For the first term we have

ICs.12({B:}) = Cs12/8ege0
o T ( S (Eul 2V B UMD BV ) -
d

LU

~ o~ diag((P2)q.
2 ZTr( 3 VBZTUT(Zé)ngT%%@IZl)
d l

:Tr( S (My)uBHB/R -2 BZTF;diag(Fg)Fl),
w l
and then for the second term

1Cs.2({B1}) = Cat G o

Tr([Biv -+ Byuv] H[Biv -+ B,v]M,)—
oTr([Biv -+ Buv] U Mgy PMi,) =

Tr(> (My)a Bl HBvv' — 2> BJU" Mgy PM,v"),

il
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and finally for the third term

IC.12({B}) " = Canllgag

Tr([Bfu --- Blu|My[Blu --- Blu] R)-

2Tr([Bu -~ Blu] MyPM V) =

Tr() (M) Bl uu B;R — 2> " Blu(Mj)TPMV).
i i

To further simplify these expressions, we re-define thetimta3 to be ak?-by-m matrix whose
I-th columnB! denotes column concatenation of thdy-k matrix B; in the above expressions.
With the new notation and the identity:

vec(XYZ) = (Z" o X)vec(Y) (C.1)
whereo denotes the Kronecker product, we obtain the succinct fér84] in which

C:=RoH+u((vv')oH+ Ro(uu')),
J = (Fi o F)" [vec(diag(Fy)) --- vec(diag(F3"))]
+ u((v o (UT Mgy P)) Myy + (VT MPT) o u) MQ).
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