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Abstract

Virtually all methods of learning dynamic models from data start from the same
basic assumption: that the learning algorithm will be provided with a single or mul-
tiple sequences of data generated from the dynamic model. However, in quite a few
modern time series modeling tasks, the collection of reliable time series data turns
out to be a major challenge, due to either slow progression ofthe dynamic process of
interest, or inaccessibility of repetitive measurements of the same dynamic process
over time. In most of those situations, however, we observe that it is easier to col-
lect a large amount of non-sequence samples, or random snapshots of the dynamic
process of interest without time information.

This thesis aims to exploit such non-sequence data in learning a few widely used
dynamic models, including fully observable, linear and nonlinear models as well as
Hidden Markov Models (HMMs). For fully observable models, we point out several
issues on model identifiability when learning from non-sequence data, and develop
EM-type learning algorithms based on maximizing approximate likelihood. We also
consider the setting where a small amount of sequence data are available in addition
to non-sequence data, and propose a novel penalized least square approach that uses
non-sequence data to regularize the model. For HMMs, we drawinspiration from
recent advances in spectral learning of latent variable models and propose spectral
algorithms thatprovably recover the model parameters, under reasonable assump-
tions on the generative process of non-sequence data and thetrue model. To the
best of our knowledge, this is the first formal guarantee on learning dynamic mod-
els from non-sequence data. We also consider the case where little sequence data
are available, and propose learning algorithms that, as in the fully observable case,
use non-sequence data to provide regularization, but does so in combination with
spectral methods. Experiments on synthetic data and several real data sets, includ-
ing gene expression and cell image time series, demonstratethe effectiveness of our
proposed methods.

In the last part of the thesis we return to the usual setting oflearning from
sequence data, and consider learning bi-clustered vector auto-regressive models,
whose transition matrix is both sparse, revealing significant interactions among vari-
ables, and bi-clustered, identifying groups of variables that have similar interactions
with other variables. Such structures may aid other learning tasks in the same do-
main that have abundant non-sequence data by providing better regularization in our
proposed non-sequence methods.
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Chapter 1

Introduction

Learning dynamic models from data is the traditional topic of system identification [Ljung, 1999]
in control theory and many algorithms have been proposed. Inthe machine learning literature, the
learning of temporal graphical models, such as dynamic Bayesian networks [Ghahramani, 1998a;
Murphy, 2002], and the learning of various types of Markov models [e.g., Abbeel and Ng, 2005;
Beal et al., 2002; Ghahramani, 1998b; Hsu et al., 2009; Rabiner, 1989; Song et al., 2010], have
been extensively studied.

Virtually all methods of learning dynamic models from data start from the same basic as-
sumption: that the learning algorithm will be provided witha single or multiple sequences of
data generated from the dynamic model. However, in quite a few modern dynamic modelling
tasks, a major difficulty turns out to be the collection of reliable time series data. In some of these
tasks, such as learning dynamic models of galaxy or star evolution, the dynamics of the processes
of interest are far too slow for researchers to collect successive data points showing any mean-
ingful changes. At more modest time scales, the same problemarises in the understanding of
slow-evolving human diseases such as Alzheimer’s or Parkinson’s, which may progress over a
decade or more. In other situations, the dynamic process of interest may not be able to undergo
repetitive measurements, so researchers have to measure multiple instances of the same process
while maintaining synchronization among these instances.One such example is gene expression
time series. In their study, Tu et al. [2005] measured expression profiles of yeast genes along
consecutive metabolic cycles. Due to the destructive nature of the measurement technique, they
collected expression data from multiple yeast cells. In order to obtain reliable time series data,
they spent a lot of effort developing a stable environment tosynchronize the cells during the
metabolic cycles. Yet, they point out in their discussion that such a synchronization scheme may
not work for other species, e.g., certain bacteria and fungi, as effectively as for yeast. Another
example is cell image time series. In a recent study [Buck et al., 2009] on cell cycle dependence
of protein subcellular location inferred from images, the authors discussed some challenges in
obtaining time series of cell images: “... time-lapse images can be more difficult to obtain than
single images of cells because many microscopes do not maintain a viable environment for the
cells they image (e.g., cells die after some time, and even while alive they are not under con-
stant conditions). Furthermore, repeated excitation of dyes for fluorescence imaging causes
photobleaching, reducing signal and leading to toxic chemical changes (phototoxicity), further
perturbing cells.”

1



Table 1.1: Summary of thesis work

While obtaining reliable time series can be difficult, it is often easier to collect non-sequence
samples, or snapshots of the dynamic process of interest. For example, the Sloan Digital Sky
Survey (SDSS)1 has collected images of millions of celestial objects, eachof which may be in a
different phase of its life cycle. In medical sciences, a scientist studying Alzheimer’s or Parkin-
son’s can collect samples from his or her current pool of patients, each of whom may be in a
different stage of the disease. Or in gene expression analysis, current technology already enables
large-scale collection of static gene expression data. It is also the case in cell image analysis,
as concluded by Buck et al. [2009]: “A method using un-synchronized cells with single-image
capture would have the advantages of avoiding repeated exposure to fluorescence excitation
(permitting higher-energy exposure to obtain better signal) and fewer environment viability re-
quirements.”

More broadly, in social and medical sciences it is usually the case thatlongitudinal study,
the collection and analysis of data from the same subjects over long periods of time, is more
powerful but also expensive thancross-sectional study, which uses observations collected from a
large or representative portion of the population within a short time frame. With recent advances
in sensing technology, there will likely be a large increasein cross-sectional data in various
domains, and it would be great if they can be used not only in cross-sectional study but also to
aid longitudinal study.

1.1 Thesis Summary

Motivated by challenges in time series data collection for avariety of modern dynamic modeling
tasks, we propose and study several methods for learning various dynamic models using non-

1http://www.sdss.org/

2



sequence data that lack time information but are easy to obtain. Table 1.1 summarizes our thesis
work and contributions. In brief, we consider learning two classes of dynamic models: first-order
observable models and hidden Markov models (HMMs), under two conditions on the input data.
When the input data consists of both sequence and non-sequence samples, our proposed methods
use non-sequence data as regularization to existing sequence-only learning methods, and achieve
significant improvement when sequence data is few. In the more challenging situation where all
the input data are non-sequence, our methods for learning first-order observable models maxi-
mize approximate likelihood functions via EM-type procedures, and obtain encouraging results
on synthetic data as well as several real data sets, including gene expression data and cell im-
ages. For HMMs, we take advantage of recent advances in spectral learning [Anandkumar et al.,
2012a] and identify reasonable generative assumptions on non-sequence data that lead to spectral
methods with consistent parameter learning guarantees. Tothe best of our knowledge, this is the
first theoretical statement on learning from non-sequence data.

1.2 Thesis Overview

After surveying related work in Chapter 2, we first consider inChapters 3 and 4 learning fully
observable dynamic models. In Chapter 3, we assume the only data available are snapshots
taken from multiple instantiations of a dynamic process at unknown times, and the dynamic pro-
cess falls in the class of fully observable, discrete-time,first-order linear or non-linear dynamic
models. Acknowledging several issues in model identifiability, we developed EM-type learn-
ing algorithms that maximize approximate likelihood functions, along with novel initialization
methods based on the idea of temporal smoothing. In a number of experiments on synthetic and
real data sets including gene expression data and cell images, the proposed algorithms are able to
learn moderately to highly accurate dynamic models, but at times suffer severely from the model
ambiguity inherent in this setting.

We thus in Chapter 4 consider slightly stronger assumptions:in addition to non-sequence
data, a small amount of sequence data are also available. We restrict the class of dynamic mod-
els to first-order discrete-time stable vector auto-regressive (VAR) models, and assume the non-
sequence data are independent samples drawn from the stationary distribution of the VAR model.
The latter assumption is valid when, for example, snapshotsare taken from multiple trajectories
of a VAR process after they have reached stationarity. Basedon these assumptions, we proposed
learning algorithms that minimize a new penalized least square objective, which incorporates
non-sequence data in a novel regularization term that quantifies violation of the Lyapunov equa-
tion relating the autoregressive model to the covariance ofits stationary distribution. Experiments
demonstrate that when the amount of sequence data is small, our proposed method of exploiting
non-sequence data can significantly improve over standard learning algorithms, which use only
the sequence data.

Although fully observable models like VAR are useful, in many applications only a subset
of the variables in the underlying dynamical system can be observed. Thus in Chapters 5 and
6 we turn to learning dynamic models with hidden states. At first glance this seems formidable
because even when sequence data are available, learning hidden-state models is in general dif-
ficult both statistically and computationally. However, anemerging line of research in machine

3



learning, known as spectral learning, has recently developed statistically consistent and computa-
tionally efficient algorithms for learning from sequence data perhaps the most widely-used class
of hidden-state models, hidden Markov models (HMMs) [Anandkumar et al., 2012b; Hsu et al.,
2009; Siddiqi et al., 2010; Song et al., 2010]. Unlike traditional EM-based learning methods,
which are vulnerable to bad local optima, these new methods are based on spectral decomposi-
tion, such as Singular Value Decomposition (SVD), of empirical moments computed from data,
and therefore result inunique, local-minima freeestimates of model parameters, allowing formal
statistical guarantees to be established. Building on these recent advances, we propose spectral
algorithms for learning HMMs that exploit non-sequence data.

In Chapter 5 we consider the case where only non-sequence dataare available. However,
unlike in Chapter 3 where all the data points are assumed to have the same initial condition, here
we needmultiple setsof non-sequence data, each generated from a different initial hidden-state
distribution. The main contribution of this chapter is to identify conditions on the initial hidden-
state distributions, by drawing connections to spectral learning of Latent Dirichlet Allocation
(LDA) models [Anandkumar et al., 2013], as well as distributional assumptions on the missing
time information that allow us to develop spectral algorithms with formal guarantees on HMM
parameter learning. To the best of our knowledge, these are the first theoretical guarantees in
learning from non-sequence data. Compared with EM-based methods in simulation, our spectral
algorithms perform significantly better in parameter estimation.

Then in Chapter 6 we look at the situation where, as in Chapter 4,some sequence data are
available and the non-sequence data consist of independentsamples from the stationary distri-
bution of the underlying HMM. Extending state-of-the art spectral algorithms for learningob-
servable representationof HMMs [Hsu et al., 2009; Siddiqi et al., 2010; Song et al., 2010], our
proposed methods obtain improved estimates of lower-ordermoments by minimizing estimation
error on the sequence data plus a regularization term on the non-sequence data, and then apply
spectral decomposition to the improved moment estimates. Interestingly, although the high-level
idea is similar to that of Chapter 4 and HMMs are more complex models than VARs, the opti-
mization problems in this chapter turn out to be convex whereas the ones in Chapter 4 are non-
convex. Experiments on simulated data and sensor recordings of human activities demonstrate
improvement over existing sequence-only spectral algorithms.

In the final part of the thesis, Chapter 7, we return to the traditional setting of learning from
sequence data and focus on learning structured vector auto-regressive models. Although this
chapter is not directly related to the main theme of the thesis, the methodology developed here
can aid learning in the non-sequence setting through its estimated structure of the VAR model,
which may guide the design of the regularization terms in theproposed EM-type methods (Chap-
ter 3) when applied to non-sequence data in the same domain. We are motivated by problems
in biological time series analysis, where dependency graphand clustering of variables, such as
expression levels of genes, are two of the most commonly sought structures. In spite of be-
ing closely related, these two structures are usually estimated in separate procedures. We thus
propose a fully Bayesian approach to simultaneous learningof these two structures for vector
auto-regressive models, using a novel bi-clustered and sparsity-promoting prior for the transition
matrix and an efficient blocked Gibbs sampling procedure forposterior inference. Applied to a
T-cell activation gene expression time series data set [Rangel et al., 2004], this new method finds
a more biologically meaningful clustering of genes than state-of-the art gene expression time
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series clustering methods.
This thesis contains our published work in several venues:
• Chapter 3 [Huang and Schneider, 2009; Huang et al., 2010]

• Chapter 4 [Huang and Schneider, 2011]

• Chapter 5 [Huang and Schneider, 2013b]

• Chapter 6 [Huang and Schneider, 2013a]

• Chapter 7 [Huang and Schneider, 2012]
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Chapter 2

Related Work

In a good number of applications, a critical issue is to understand the dynamics or temporal de-
pendency underlying observed data that lack temporal or sequential information. As a result,
various methods were proposed independently in different areas, but to the best of our knowl-
edge, no prior work studies the general problem of learning dynamic models from non-sequence
data as comprehensively as this thesis. In this chapter we survey several such applications and
briefly explain the methods developed therein.

As mentioned in Chapter 1, cell imaging has become a useful tool for studying certain
types of cell dynamics, such as variation in protein subcellular localization during the cell cycle
[Buck et al., 2009]. Instead of relying on time-series cell images as in most previous studies,
Buck et al. [2009] propose to utilize static, asynchronous snapshots taken from multiple cells at
various phases of the cell cycle because, as quoted in Chapter1, such images are easier to obtain
on a large scale than time-series images. Their approach is to first extract a one-dimensional
surrogate of cell cycle time from static cell image featuresby manifold learning techniques1, and
then use this surrogate in place of cell cycle time for subsequent cell-cycle dependence tests.
Through analysis of real data, they confirm that such a surrogate is well correlated with the cell
cycle. However, they did not perform explicit dynamic modeling, i.e, building models to predict
future observations.

A closely related problem studied in a number of disciplinesis that of ordering a set of ob-
jects. Depending on the domain of interest, an ordering can be interpreted as progression of
time, some coherent sequential structure or monotonic property. In natural language processing,
the task of multi-document summarization requires ordering of sentences selected from differ-
ent documents, and automatic title generation techniques construct a headline by selecting and
ordering words from the input text [Barzilay and Elhadad, 2002; Deshpande et al., 2007]. In
multimedia analysis and retrieval, automatic generation of video or slideshow from photos in-
volves laying down a coherent and smoothly transitioning sequence of scenes [Chen et al., 2006;
Hua et al., 2004]. Some of the techniques developed for thesetasks are tailored to a specific
problem domain, and most of them have access to some externalknowledge about orderings

1Manifold learning techniques have been used in dynamic model learning to identify a subspace where the
dynamics reside, leading to more accurate models. See, for example, [Boot and Gordon, 2011] and references
therein. Similar techniques can be used in combination withour proposed methods as a pre-processing step to make
the problem lower-dimensional and thus easier.
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of objects, such as time stamps of photos or grammatical rules for sentence compositions. In
contrast, we consider a more general problem setting which relies on no or little domain specific
knowledge, though our proposed methods make more explicit model assumptions.

The computational biology community has also studied the problem of ordering objects, in
the context of finding a temporal ordering of static, asynchronous microarray measurement data
[Gupta and Bar-Joseph, 2008; Magwene et al., 2003]. The proposed methods therein are less
domain dependent and fall in a large family of algorithms forsolving thecurve reconstruction
problem, which has been studied in various fields such as computational geometry (e.g., Giesen
[1999]), statistics [Hastie and Stuetzle, 1989], and machine learning [Smola et al., 2001]. More
specifically, Magwene et al. [2003] proposed to reconstructthe temporal ordering of microarray
samples through finding the minimum spanning tree on the graph formed by the sample points,
while Gupta and Bar-Joseph [2008] proposed to solve an instance of the traveling salesman prob-
lem (TSP) and proved that under certain conditions on the dynamics generating the samples, the
optimal TSP path accurately reconstructs the true ordering. A key assumption behind these two
methods is that temporally close sample points should also be spatially close. Both of these
methods are unable to choose an overall direction of time, a limitation due to the invariance to
time direction in their objective functions. Our problem setting differs from the aforementioned
in that we consider snapshots frommultiple trajectoriesof some dynamic process rather than out-
of-order samples from asingle sequence. Moreover, we focus more on learning a model for the
underlying dynamics than ordering the data points. Although the non-sequence data considered
in our settings, as formalized in later chapters, can be ordered based on their unobserved time
stamps, such an ordering may not be very useful to existing dynamic model learning methods
because these methods require as input sequences trackingthe same instancesover time. Nev-
ertheless, ordering objects is still a useful component in our proposed methods in Chapter 3, but
the objects being ordered, instead of raw data points, are some representative points discovered
by clustering algorithms.

Another problem involving learning dynamic models withouttemporal ordering is the net-
work structure inference problem considered by Rabbat et al. [2008]. The authors point out that
in many situations, ranging from telecommunication network tomography problems to construc-
tion of biological signal pathways or social networks, the goal is to reconstruct a directed graph
representing the underlying network structure, but the only available data are sets of nodesco-
occurring in random walks on the graph without the order in which they were visited. These
problem can be cast as learning a first-order Markov chain from data lacking ordering informa-
tion. To avoid the exponential-time complexity of enumerating all possible orderings, the authors
propose a polynomial-time, importance sampling based EM algorithm with convergence guar-
antee to estimate the parameters of the Markov chain. Inspired by Rabbat et al. [2008], several
researchers in computational linguistics study the problem of learning a bi-gram language model
from the commonly-used, order-invariant bag-of-words representation of text corpus [Zhu et al.,
2008], and develop a similar sampling-based EM algorithm. While empirically successful to
some extent, these algorithms, like most EM procedures, do not have guarantees on the quality
of their parameter estimates. Very recently, Gripon and Rabbat [2013] propose a combinatorial
algorithm for graph reconstruction from co-occurrence data and provide some theoretical guar-
antees on the reconstruction accuracy. However, their results apply only to undirected graphs
and require the input to the algorithm to be the exact set of triples of nodes that are connected but
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cycle-free in the graph. In Chapter 5 we also study the problemof learning first-order Markov
chains from data lacking temporal information. However, instead of data with hidden order-
ings, we consider data drawn from multiple, independent trajectories of the underlying Markov
chain, so there was no ordering to begin with. At first glance,learning in this setting may seem
more difficult than in the hidden-ordering setting, but as detailed in Chapter 5, the independence
assumption in our setting actually makes learning easier.

In addition to the above general problem areas, there are twospecific problems we find rel-
evant to our work. One is collective inference on Markov models [Sheldon et al., 2008], which
finds the most likely collection of paths on a trellis graph given observations on the collective be-
havior of a group of dynamic objects. Their motivation was totrace out trajectories of individual
birds from aggregate statistics of an entire species of migrating birds. The other is connecting the
dots between news articles [Shahaf and Guestrin, 2010], which aims to build a chronologicaland
coherent story line of news that connects a given pair of starting and end articles, thereby pro-
viding readers a detailed description of the causal relationship between two events. A common
feature in both problems is the need of identifying structures of sequentially matched objects
from partially ordered data. A similar situation arises in one component of our methods, where
the data points are put into ordered clusters for further processing (Section 3.3). But instead of
finding hard matchings between data points in adjacent clusters, we take a soft-matching type of
approach, updating the soft matching and the dynamic model alternatingly.

While our focus is on learning from data lacking time or ordering information, another com-
mon problem involving time in dynamic modeling is the misalignment of time measurements
across multiple sequences of observed data, due to internalvariation of the dynamic process of
interest or measurement error. This problem arises in many time series modeling tasks, such as
speech recognition [L. Rabiner, 1993; Vintsyuk, 1968], analysis of gene expression time series
[Aach and Church, 2001], activity recognition [Junejo et al., 2011], and audio information re-
trieval [Chapter 4, M̈uller, 2007], bringing forth a large body of research, knownin statistics as
curve registration [Ramsay and Li, 1998; Silverman, 1995] and in computer sciences as dynamic
time warping [Berndt and Clifford, 1994; Keogh and Ratanamahatana, 2005]. The general idea
in these works is to first postulate a class of possible time transformations or warping operations,
and then recover the most likely warping operation for each observation by optimizing some
global matching score across all the data sequences. The final result is time-warped sequences
of observations that are in better alignment with one another. While not directly related to our
thesis focus, these methods can potentially aid our work in,for example, an iterative, EM-like
manner, where time stamps and dynamic models are alternatingly re-estimated given the other
until convergence.

Finally, we briefly mention where our work lies in the vast space of research on dynamical
systems conducted in physics and mathematics. Most dynamical theories are concerned with
the asymptotic behavior of some dynamical system, under various assumptions on the phase or
state space of the system and the short-time evolution law [Katok and Hasselblatt, 1996]. But
our work studies in some sense the reverse problem, that is, given observations that reflect the
global status of a dynamical system, we try to develop methods that figure out the short-time or
local evolution law.
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Chapter 3

Learning Fully Observable Models From
Non-sequence Data

In this chapter, we are interested in learning first-order, discrete-time, fully observable linear
dynamic models described by the following transition function:

x(t+1) = Ax(t) + ǫ(t+1), (3.1)

wherex(t) ∈ Rp×1 is the state vector at timet, A ∈ Rp×p is the state transition matrix, andǫ(t)

is the noise vector at timet. Such a model is also known as a first-order vector auto-regressive
model (VAR) in the time series literature. For simplicity, we assume hereafter that∀t, ǫ(t) ∼
N (· | 0, σ2I), a Gaussian distribution with zero mean and covarianceσ2I, whereI is the identity
matrix. However, the proposed methods in later sections allcan be extended to handle general
covariance matrices. The dynamical system also has a start state, which we denote asx(0). Thus,
the linear dynamic models we consider are fully characterized byΘ = {A, σ2,x(0)}.

When sequenced observations are available, a basic learningmethod is least-square linear
regression of the observations at timet on the observations at timet − 1, whose properties
have been studied extensively (see e.g., [Hamilton, 1994]). The problem without observed state
sequences is much more difficult. We assume thatn executions of the dynamic model (3.1) have
taken place, and from each execution we have observed a single data point drawn at random from
the sequence of states generated in that execution. The result is n data points,{x1, . . . ,xn}, each
from a different trajectory and having occurred at an unknown point in time. To avoid confusion
in indices, hereafter we use parenthesized super-script, e.g., x(t), to denote the time index, but
sub-script, e.g.,xi, to denote the data index. A precise description of this generative process is
given in Algorithm 3.1 along with a graphical illustration.

We focus on estimatingA and σ2, and treat the start statex(0) as a nuisance parameter.
For an observationxi, if its immediate predecessor̃xi is known, then the likelihood is simply
N (xi | Ax̃i, σ

2I). But x̃i is unknown, so we integrate it out with respect to the distribution one
time step earlier thanxi and obtain the following likelihood:

L(xi | θ, ti) =

∫
exp(−‖xi−Ax‖2

2

2σ2 )

(2πσ2)
p
2

N (x | µ(ti−1),Σ(ti−1))dx, (3.2)

11



Algorithm 3.1 Sampling from multiple trajectories

1: Input: transition matrixA, σ2, x(0), Tmax, andn
2: for i = 1 to n do
3: Pick a random time stampti from {1, . . . , Tmax}.
4: for t = 1 to ti do
5: x(t) ← Ax(t−1) + ǫ(t), ǫ(t) ∼ N (·|0, σ2I).
6: end for
7: Setxi = x(ti).
8: end for
9: Output: A samplex1,x2, . . . ,xn.

4 1
3

2

5

b

b

b

b

b

x4

x1

x3

x2

x5

whereti denotes the true but unknown time ofxi, ‖ ·‖2 is the vector two-norm, and the predeces-
sor distribution, by the closure of Gaussian under linear transformation, is Gaussian with mean
µ(ti−1) and covarianceΣ(ti−1), where

µ(t) := Atx(0), Σ(t) :=

{
σ2
∑t−1

i=0 A
i (Ai)

⊤
, t ≥ 1,

0, t = 0.
(3.3)

Since then data points are drawn independently, we can factorize the likelihood of the sample
points as

L(x1, . . . ,xn|θ, t1, . . . , tn) =
n∏

i=1

L(xi|θ, ti). (3.4)

The maximization of (3.4) is a challenging task because, as suggested by (3.3), the transition
matrix A appears in (3.4) as polynomials whose degrees depend on the missing time indices
ti’s. In the following sections we proposed methods that avoidthis difficulty by various approx-
imations to (3.4), but before presenting our proposed methods, we first discuss several possibly
non-identifiable properties of the model when the true temporal information is missing.

3.1 Identifiability Issues

Consider a simple linear dynamic model with the following transition matrix and initial point:

A =

[
cos
(

2π
T

)
− sin

(
2π
T

)

sin
(

2π
T

)
cos
(

2π
T

)
]
, x(0) =

[
1
0

]
.

The ideal trajectory rolled out by this simple dynamic modellies on the unit circle in the two-
dimensional Euclidean space. Suppose we observe a set of points from the ideal trajectory, but
do not know their time indices. It is easy to see that all of thefollowing dynamic models:

A(t) =

[
cos
(

2πt
T

)
− sin

(
2πt
T

)

sin
(

2πt
T

)
cos
(

2πt
T

)
]
, t ∈ {±1,±2, . . . ,±(T − 1)},

as illustrated in Table 3.1, would explain the data equally well under any reasonable measure of
goodness of fit. In the presence of process noise, some of these models may become less likely,
but it would still be hard to uniquely determine the true dynamic model.
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Table 3.1: An example demonstrating unidentifiability of time direction and speed
Data Three equally possible dynamic models
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Table 3.2: An example demonstrating general unidentifiability.
Data Model 1 Model 2
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The above example suggests two possibly non-identifiable properties of the model: the over-
all direction in time and the speed of the underlying dynamics. In fact, Peters et al. [2009]
showed that under some linear dynamic models the true direction in time is not identifiable. The
methods proposed in subsequent sections thus do not resolvethese ambiguities; the learnt model
may follow either of the two directions in time, but usually corresponds to the slowest dynamics.

Another perhaps more intriguing example is depicted in Table 3.2, which presents a non-
sequenced and noiseless data set in the left column and two possible dynamic models in the right
column. On the one hand, according to our assumption of a single fixed start state as in Algorithm
3.1, Model 1 should be favored over Model 2 under any reasonable measure of goodness of fit
that incorporates such an assumption. On the other hand, under a certain level of noise and/or
some non-uniform sampling rate in the temporal domain, the data generated from Model 1 may
be more similar to a cylinder than to a spiral, making Model 2 equally or even more likely to
have generated the data. There are more examples of this type, such as a torus of points where
rotations around the short and the long circumferences can hardly be distinguished from each
other in the absence of any temporal information. Theoretical investigation into such issues as
conditions under which these ambiguities can or cannot be resolved is thus an important, but
challenging future direction.
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3.2 Approximate Likelihood and Expectation Maximization

We present three methods for estimatingA andσ2 in Sections 3.2.1 to 3.2.3, based on maximizing
various approximations to the likelihood (3.4). The optimization is carried out by Expectation
Maximization (EM) types of algorithms. Then Section 3.2.4 demonstrates extensions of these
three methods for learning nonlinear dynamic models, whichmake use of reproducing kernels.

3.2.1 Unordered Approximation

We first remove the problem of unknown time indices by marginalizing out the missingti’s.
According to the generative process in Algorithm 3.1, the distributions ofti’s are independent
from A andσ2, and also mutually independent. LetP (ti) denote the probability mass function
of ti ∈ {1, . . . , Tmax}. We then write

L(x1, . . . ,xn|θ) :=
Tmax∑

t1=1

· · ·
Tmax∑

tn=1

L(x1, . . . ,xn, t1, . . . , tn|θ)

=
Tmax∑

t1=1

· · ·
Tmax∑

tn=1

(
n∏

i=1

L(xi|θ, ti)P (ti)

)

=
n∏

i=1

Tmax∑

ti=1

L(xi|θ, ti)P (ti).

Plugging in the conditional likelihood (3.2), we obtain

L(x1, . . . ,xn|θ) =
n∏

i=1

Tmax∑

ti=1

(∫
exp(−‖xi−Ax‖2

2σ2 )

(2πσ2)
p
2

N (x|µ(ti−1),Σ(ti−1))dx

)
P (ti)

=
n∏

i=1

(∫
exp(−‖xi−Ax‖2

2σ2 )

(2πσ2)
p
2

(
Tmax∑

ti=1

N (x|µ(ti−1),Σ(ti−1))P (ti)

)
dx

)
.(3.5)

In the case ofP (ti) = 1/Tmax, i.e. ti’s are uniformly distributed, andTmax is large, we have

Tmax∑

ti=1

N (x|µ(ti−1),Σ(ti−1))P (ti) =
Tmax∑

ti=1

N (x|µ(ti−1),Σ(ti−1))

Tmax

≈
Tmax∑

ti=1

N (x|µ(ti),Σ(ti))

Tmax

, (3.6)

which is the density that the data points{x1, . . . ,xn} are generated from. This gives another
view of the generative process: a random sample point is drawn (approximately) from (3.6) and
an observation is created by applying (3.1) to it. However, (3.6) still depends on the unknown
ti’s. To remove this dependency, we replace (3.6) with its empirical estimate given by the sample
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points we have. This together with (3.5) leads to the following approximate likelihood:

L̂(x1, . . . ,xn|θ) :=
n∏

i=1

(∑

j 6=i

exp(−‖xi−Axj‖
2

2σ2 )

(n− 1)(2πσ2)
p
2

)
. (3.7)

We exclude the case thatxi generates itself to avoid the degenerate estimateA = I. To avoid
overfitting, we impose a zero-mean Gaussian prior onAwith precisionλI and an inverse Gamma
prior onσ2 with shape and scale parametersα andβ, leading to the approximate log-posterior:

log P̂UM(θ|x1, . . . ,xn) :=
n∑

i=1

log

(∑

j 6=i

exp(−‖xi−Axj‖
2

2σ2 )

(n− 1)(2πσ2)
p
2

)
− λ

2
‖A‖2F − (α+ 1) log σ2 − β

σ2
.

(3.8)
This is the representative form of the objective our first method aims to maximize. Later in the
experiments we may use variants of (3.8) such as allowing more general noise variances, but all
the associated methods can be easily derived from the methods based on (3.8), which we present
below. Since there is no notion of ordering involved in (3.8), we refer to it as the Unordered
Approximation.

Before introducing our optimization algorithm, we point out that (3.8) considers the data
points as if eachxi were generated from some otherxj in the sample by (3.1). However, accord-
ing to Algorithm 3.1 noxi was generated from any otherxj in the sample. Such a discrepancy is
due to our replacing (3.6) with its empirical estimate, and an immediate consequence is thatσ2

in (3.8) now accounts for not only the noiseǫ in the dynamic model (3.1), but also the approxi-
mation error introduced by replacing (3.6) with the empirical density.

To present our learning algorithm, we observe that the likelihood (3.7) is a product of summa-
tions of Gaussian densities. This structure is also shared by the likelihood of Gaussian Mixture
Models (GMM), for which Expectation Maximization (EM) algorithms are the common choice
for estimation. Although (3.8) is not a GMM, its similar structure allows us to derive an EM
procedure with analytical update rules. We first introduce alatent variable matrixZ ∈ {0, 1}n×n

such that

Zij =

{
1, xi was generated fromxj

0, otherwise
, j 6= i,

Zii = 0,
n∑

j=1

Zij = 1.

(3.9)

Again, here “xi was generated fromxj” is to be taken as an approximation due to our replacing
(3.6) with the data. We then rewrite (3.8) using the standardvariational equation (c.f. Section
9.4, [Bishop, 2006]):

log P̂UM(θ|x1, . . . ,xn) = log
∑

Z

P̂UM(θ, Z|x1, . . . ,xn), (3.10)

where

P̂UM(θ, Z|x1, . . . ,xn) :=




n∏

i=1

n∏

j=1

(
exp(−‖xi−Axj‖

2

2σ2 )

(n− 1)(2πσ2)
p
2

)Zij


 exp

(
−λ

2
‖A‖2F−σ2(α+1)−β/σ2

)
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Algorithm 3.2 Expectation Maximization for (3.8)
Input: Data pointsx1, . . . ,xn

InitializeA(0) andσ2
(0), setk = 0

repeat
UpdateZ̃(k+1) by (3.11) withA(k) andσ2

(k)

UpdateA(k+1) by (3.13) withZ̃(k+1) andσ2
(k)

Updateσ2
(k+1) by (3.14) withA(k+1) andZ̃(k+1)

k ← k + 1
until The approximate log posterior (3.8) does not increase

is referred to as the complete posterior. Following the standard EM derivation, in the E-step we
compute the posterior probability ofZ:

Q(Z|θ,x1, . . . ,xn) :=
P̂UM(θ, Z|x1, . . . ,xn)

P̂UM(θ|x1, . . . ,xn)
,

which simplifies as

Z̃ij := Q(Zij = 1|θ,x1, . . . ,xn) =





exp

„

−
‖xi−Axj‖

2

2σ2

«

P

s 6=i exp

„

−
‖xi−Axs‖2

2σ2

« , i 6= j,

0, i = j.

(3.11)

In the M-step we maximize the expectation of the log completeposterior with respect to the
posterior probabilityQ(Z|θ,x1, . . . ,xn):

max
θ′

∑

Z

Q(Z|θ,x1, . . . ,xn) log P̂UM(θ′, Z|x1, . . . ,xn) ⇐⇒

max
A,σ2

−
n∑

i=1

n∑

j=1

Z̃ij

(‖xi − Axj‖2
2σ2

+
p

2
log(2πσ2)

)
− λ

2
‖A‖2F − (α+ 1) log σ2 − β

σ2
, (3.12)

whose solution has a simple form:

A =

(
n∑

i=1

n∑

j=1

Z̃ijxix
⊤
j

)(
n∑

i=1

n∑

j=1

Z̃ijxjx
⊤
j + λσ2I

)−1

, (3.13)

σ2 =

∑n
i=1

∑n
j=1 Z̃ij‖xi − Axj‖2 + 2β

pn+ 2(α+ 1)
, (3.14)

A summary of the EM procedure is given in Algorithm 3.2. Note that (3.14) can be easily
generalized to handle general covariance structures.

According to (3.11) and (3.12), we can view Algorithm 3.2 as aversion of the iteratively
re-weighted least square (IRLS) procedure. Although it is simple and often computationally
efficient, one may worry that without enforcing any directional consistency in theZij ’s the EM
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(b) Degenerate estimate

Figure 3.1: Degenerate estimate by the unordered approximation on 200 data points

algorithm may lead to degenerate dynamic models, especially when the sample size is limited.
In fact, this happens in our experiments on simulated data. We thus propose a variant of (3.8)
that incorporates additional constraints in the next section.

Although our focus is learning first-order models, it is worth noting that the proposed EM
algorithm can be easily generalized to learn higher-order models. For example, consider the
second-order model

x(t+2) = Ax(t+1) +Bx(t) + ǫ(t+2), ǫ(t+2) ∼ N (· | 0, σ2I).

Using approximations similar to those in (3.7), we may obtain the following unordered approxi-
mate likelihood:

L̂(x1, . . . ,xn|θ) :=
n∏

i=1

(∑

k 6=j 6=i

exp(−‖xi−Axj−Bxk‖
2

2σ2 )

(n− 1)(2πσ2)
p
2

)
.

The corresponding EM algorithm then involves a latent three-way tensor variableZ ∈ {0, 1}n×n×n:
the E step computes posterior probabilities thatxi is generated fromxj andxk for all triples
i 6= j 6= k, and the M step solves weighted least square regression forA,B andσ2.

3.2.2 Partially-ordered Approximation

As mentioned before, the replacement of the true state spacedensity with the empirical density
results in the approximate likelihood (3.7), where the datapoints are treated as if each one were
actually generated from some other one. What might be more problematic is such an approxima-
tion ignores the fact that there is a latent temporal ordering induced by the unknown time indices
of the data points, even though the data points are drawn independently. A possible consequence
of ignoring the latent ordering is a degenerate estimate of the dynamic model, as illustrated in
Figure 3.1, which shows the true one-step displacement vectorsAxi − xi and the UM estimates.
On this data set, the UM likelihood of the true model is even worse than the degenerate estimate.
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In our experiments on synthetic data (Section 3.4), we find that such degeneracy issues usually
arise when the data is small, say a few hundred points. Thus inour second approach, we take
into account the ordering relation explicitly. To do so, we introduce a set of weight parameters
ωij ’s, collectively denoted as ann-by-n matrix ω, and modify the approximate likelihood (3.7)
as follows:

L̂2(x1, . . . ,xn|θ,ω) :=
n∏

i=1,
i/∈S

n∑

j=1

(
exp(−‖xi−Axj‖

2

2σ2 )

(2πσ2)
p
2

ωij

)
, (3.15)

in whichS := {i : ti ≤ tj ∀j},




ωij ≥ 0, tj < ti,

ωij = 0, tj ≥ ti,

ωii = 0, ∀ i,
and

n∑

j=1

ωij = 1, ∀ i /∈ S. (3.16)

The first set of constraints in (3.16) is to force the summation in (3.15) to be consistent with
a global direction of time, while the normalization constraints are to maintain the notion of
approximating the true state space density with an empirical density. The setS denotes the data
points that are the earliest in time (hence cannot be generated from other data points), which
can be viewed as rough estimates of the first state. If the underlying dynamic model exhibits a
periodic behavior (such as rotation on a plane), the true first state may not be identifiable butA
andσ2 still may be. In that case,S is chosen arbitrarily and the relative time offsets between
points may still be correct, thus leading to reasonable estimates ofA andσ2.

As mentioned before, the true time indicesti’s of the data points are missing, and even with
the above approximation (3.15) and (3.16) it is still unclear how to jointly estimate them and
the model parameters. We instead consider theωij ’s as unknown parameters to be estimated,
which we interpret as decomposing the global ordering information into parameters of pairwise
relations. Again, we make clear that as in Section 3.2.1, here we are also approximating the
likelihood as if each point in the data were actually generated from some other point in the data.
The set of constraints (3.16) can be restated only in terms ofω as follows:

1. ω is non-negative; each row ofω sums to one or zero.

2. As a weighted adjacency matrix,ω represents adirected acyclicgraph.
Note that for both constraints to hold at the same time, one ormore rows inω must sum to
zero, and the corresponding data points form the setS. However, it is hard to maximize (3.15)
with respect toω under these constraints because they define a non-convex set. Moreover,
Nicholson [1975] proved that a weighted adjacency matrixM contains no cycle if and only
if permanent(M + I) = 1, and Valiant [1979] showed that computing the matrix permanent is
#P-complete. We therefore consider a subset of the previous two constraints:

1. ω can only take values in{0, 1}.
2. As an adjacency matrix,ω forms adirected spanning tree.

The new constraints turn the problem into a combinatorial one, which at first glance seems even
more difficult. As we will show below, the fact that this discrete version is computationally
tractable depends entirely on our restrictingω to be a directed spanning tree. Under the new
constraints, the setS has only one data point, which is the root of the directed spanning tree.
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Algorithm 3.3 Alternating Maximization for (3.17)
Input: Data pointsx1, . . . ,xn.
InitializeA(0) andσ2

(0), setk = 0
repeat

Construct the weight matrixW(k) by (3.24) withA(k) andσ2
(k)

ω(k+1) ←OptimumBranch(W(k))
UpdateA(k+1) by (3.22) withω(k+1) andσ2

(k)

Updateσ2
(k+1) by (3.23) withA(k+1) andω(k+1)

k ← k + 1
until The approximate log posterior (3.17) does not increase

Combining these tree-based constraints with the approximate likelihood (3.15) and imposing
the same priors onA andσ2 as before, we propose maximizing the following approximatelog
posterior for estimation:

max
A,σ2,ω,

r∈{1,...,n}

n∑

i=1,
i6=r

log
n∑

j=1

(
exp(−‖xi−Axj‖

2

2σ2 )

(2πσ2)
p
2

ωij

)
− λ

2
‖A‖2F − (α+ 1) log σ2 − β

σ2
(3.17)

s.t. ωij = {0, 1}, (3.18)
n∑

j=1

ωij = 1, i 6= r,

n∑

j=1

ωrj = 0, (3.19)

ω forms a tree with rootxr. (3.20)

We refer to (3.17) as the Partially-ordered Approximation,and with the constraints (3.18) and
(3.19) it can be simplified as follows:

n∑

i=1,
i6=r

log
n∑

j=1

(
exp(−‖xi−Axj‖

2

2σ2 )

(2πσ2)
p
2

ωij

)
− λ

2
‖A‖2F − (α+ 1) log σ2 − β

σ2

=
n∑

i=1

log
n∏

j=1

(
exp(−‖xi−Axj‖

2

2σ2 )

(2πσ2)
p
2

)ωij

− λ

2
‖A‖2F − (α+ 1) log σ2 − β

σ2

=−
n∑

i=1

n∑

j=1

ωij

(‖xi − Axj‖2
2σ2

+
p

2
log(2πσ2)

)
− λ

2
‖A‖2F − (α+ 1) log σ2 − β

σ2
. (3.21)

Interestingly, this objective function is in the same form as the expected log complete posterior
(3.12) in Section 3.2.1 with̃Zij being replaced byωij. One may thus viewω as the latent variable
Z in Section 3.2.1 with additional constraints. However, there is a subtle difference:Z serves
only as a means to derive the EM algorithm and does not appear in the maximization objective
(3.7) of the Unordered Approximation, whereasω explicitly appears in the optimization problem
(3.17) as an unknown parameter to be estimated.

19



Next we discuss how to maximize (3.17). Since (3.21) has the same form as (3.12), the
optimalA andσ2 under a fixedω have the same form as (3.13) and (3.14):

A =

(
n∑

i=1

n∑

j=1

ωijxix
⊤
j

)(
n∑

i=1

n∑

j=1

ωijxjx
⊤
j + λσ2I

)−1

, (3.22)

σ2 =

∑n
i=1

∑n
j=1 ωij‖xi − Axj‖2 + 2β

p(n− 1) + 2(α+ 1)
. (3.23)

WhenA andσ2 are fixed, maximizing (3.21) with respect toω under (3.18), (3.19) and (3.20)
is equivalent to finding themaximum spanning tree on a directed weighted graph, in which each
data pointxi is a node, each pair of nodes is connected in both directions,and the weight on the
edge(i, j) is

Wij := −
(‖xi − Axj‖2

2σ2
+
p

2
log(2πσ2)

)
. (3.24)

The problem of finding maximum spanning trees on directed graphs is a special case of theopti-
mum branchingsproblem, which seeks a maximum or minimum forest of rooted trees (branch-
ing) on a directed graph. Chu and Liu [1965], Edmonds [1967], and Bock [1971] independently
developed efficient algorithms for the optimum branchings problem. The ones by the former two
are virtually identical, and are usually referred to as the Chu-Liu-Edmonds algorithm, for which
Tarjan [1977] gave an efficient implementation that runs inO(n2) time, wheren is the number
of nodes, for densely connected graphs. Camerini et al. [1979] pointed out an error by Tarjan
[1977] and provided a remedy retaining the same time complexity.

With these results, we present an alternate maximization procedure, Algorithm 3.3 for max-
imizing (3.17), whereOptimumBranch(·) taking an edge-weight matrix as the input argument
uses an implementation1 of Tarjan [1977] and Camerini et al. [1979]. Since Algorithm 3.3 al-
ways increases the objective (3.21), it converges to a localmaximum.

3.2.3 Expectation Maximization over Directed Spanning Trees

Recently in the Natural Language Processing community, researchers [Globerson et al., 2007;
Smith and Smith, 2007] have developed sum-product inference algorithms for directed spanning
trees, which make use of the matrix tree theorem [Tutte, 1984]. Based on their techniques,
we develop an EM procedure whose E-step computes the the expectation of the latent variableZ
over all directed spanning trees. Such a tree-based EM procedure can be viewed as being midway
between the previous two methods, the first of which averagesout entirely the latent sequential
nature of the data, while the second aggressively selects the single most likely partial order.

Consider the set of spanning trees,T (X), on the complete directed graph whose nodes are
the sample points. We represent a spanning tree by its adjacency matrix, whose rows correspond
to heads and columns correspond to tails. We also slightly abuse the notationZ to mean both a
predecessor matrix and the corresponding set of edges, so(i, j) ∈ Z meansZij = 1. We then

1Available athttp://edmonds-alg.sourceforge.net/
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maximize the following approximate log posterior:

log P̂tree(A, σ
2|X) (3.25)

∝ log


 ∑

Z∈T (X)

∏

(i,j)∈Z

exp

(
−‖xi − Axj‖2

2σ2

)
− λ

2
‖A‖2F −

(
p(n− 1)

2
+ (α+ 1)

)
log σ2 − β

σ2
,

where as before we place a zero-mean Gaussian prior onAwith hyper-parameterλ and an inverse
Gamma prior onσ2 with hyper-parametersα andβ. A major difference between (3.25) and the
unordered approximate log posterior (3.8) is that the former sums over “global” latent structures,
i.e., spanning trees, whereas the latter sums over “local” latent predecessor variables as shown in
(3.10). We thus expect (3.25) to be more robust against undesirable local maxima than (3.8).

To derive an estimation procedure based on maximizing (3.25), we first denote the posterior
distribution overZ ∈ T (X) by

Q(Z|A, σ2, X) :=
1{Z ∈ T (X)}∏(i,j)∈Z exp

(
−‖xi−Axj‖

2

2σ2

)

∑
Z′∈T (X)

∏
(i,j)∈Z′ exp

(
−‖xi−Axj‖2

2σ2

) . (3.26)

Then, by applying the standard variational equation we obtain the following lower bound:

log P̂tree(A, σ
2|X)

≥


 ∑

Z∈T (X)

Q(Z|A, σ2, X)


log

∏

(i,j)∈Z

exp

(
−‖xi − Axj‖2

2σ2

)


− λ

2
‖A‖2F −

β

σ2

−
(
p(n− 1)

2
+ (α+ 1)

)
log σ2

= −
(∑

i,j

Z̃ij
‖xi − Axj‖2

2σ2

)
− λ

2
‖A‖2F −

β

σ2
−
(
p(n− 1)

2
+ (α+ 1)

)
log σ2, (3.27)

where
Z̃ij := EQ[Z] =

∑

Z∈T (X)

1{(i, j) ∈ Z}Q(Z|A′, (σ′)2, X). (3.28)

The lower bound (3.27) holds for all choices ofA′ and(σ′)2 in the posterior mean (3.28), sug-
gesting an EM procedure that alternates between computingZ̃ij and maximizing (3.27) with
respect toA andσ2.

For the M-step, the lower bound (3.27), as a function ofA andσ2, is in the same form as the
complete log posterior (3.12), leading to update rules similar to (3.13) and (3.14):

A =

(
n∑

i=1

n∑

j=1

Z̃ijxix
⊤
j

)(
n∑

i=1

n∑

j=1

Z̃ijxjx
⊤
j + λσ2I

)−1

, (3.29)

σ2 =

∑n
i=1

∑n
j=1 Z̃ij‖xi − Axj‖2 + 2β

p(n− 1) + 2(α + 1)
. (3.30)
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Algorithm 3.4 Expectation Maximization for (3.25)
Input: Data pointsx1, . . . ,xn

InitializeA(0) andσ2
(0), setk = 0

repeat
UpdateZ̃(k+1) by (3.33) withA(k) andσ2

(k)

UpdateA(k+1) by (3.29) withZ̃(k+1) andσ2
(k)

Updateσ2
(k+1) by (3.30) withA(k+1) andZ̃(k+1)

k ← k + 1
until The approximate log posterior (3.25) does not increase

For the E-step, we resort to the techniques in Sections 3.1 and 3.2 of [Globerson et al., 2007].
Let

Wij :=

{
exp

(
−‖xi−Axj‖

2

2σ2

)
, i 6= j,

0, i = j.
(3.31)

denote the weight on the edgexj to xi. Based on the Laplacian of the corresponding weighted
directed graph, we define the following matrix:

L̃ij :=





ri, j = 1,∑n
j′=1Wij′ , i = j, j > 1,

−Wij, i 6= j, j > 1,

(3.32)

which replaces the first column of the Laplacian with a non-negative root selection score vector
r ∈ Rn. The values inr reflect how likely each sample pointxi would be the root of a spanning
tree. When prior knowledge is unavailable, we simply setri = 1, i = 1, . . . , n. Then, we
computeZ̃ij by

Z̃ij = (1− 1{1 = i})Wij(L̃
−1)ii − (1− 1{j = 1})Wij(L̃

−1)ji. (3.33)

We determine convergence of the algorithm by checking the value of the log posterior (3.25),
which is computed by

log P̂tree(A, σ
2|X) ∝ log |L̃| − λ

2
‖A‖2F −

(
p(n− 1)

2
+ (α+ 1)

)
log σ2 − β

σ2
.

A summary of the EM algorithm is in Algorithm 3.4.

3.2.4 Nonlinear Extension via Kernel Regression

To learn nonlinear dynamic models, we extend the aforementioned three methods through the
use of kernel regression. We consider nonlinear dynamic models of the following form:

x(t+1) = Bφ(x(t)) + ǫ(t), ǫ(t) ∼ N (·|0, σ2I). (3.34)
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whereφ(·) maps a point inRp into a Reproducing Kernel Hilbert Space (RKHS) endowed with
a kernel functionK(x,y) = φ(x)⊤φ(y), andB is a linear mapping from the RKHS toRp.
ReplacingAxj in (3.8), (3.17) and (3.25) byBφ(xj) then leads to nonlinear extensions of the
three approximate log posteriors.

Next we extend Algorithms 3.2, 3.3 and 3.4 for learningB andσ2. For the E-steps, we
only need to replaceAxj in (3.11), (3.24) and (3.31) byBφ(xj). For the M-steps, we solve the
weighted least squares problems (3.12), (3.21) and (3.27) with Axj replaced byBφ(xj). The
resulting three update rules forB andσ2 are very similar, so for brevity here we only give the
one for maximizing the unordered approximate posterior:

B =

(
n∑

i=1

n∑

j=1

Z̃ijxiφ(xj)
⊤

)(
n∑

i=1

n∑

j=1

Z̃ijφ(xj)φ(xj)
⊤ + λσ2I

)−1

= XZ̃φ(X)⊤
(
φ(X)Λ

eZφ(X)⊤ + λσ2I
)−1

(3.35)

= XZ̃
(
KΛ

eZ + λσ2I
)−1

φ(X)⊤, (3.36)

σ2 =

∑n
i=1

∑n
j=1 Z̃ij‖xi −Bφ(xj)‖2 + 2β

pn+ 2(α+ 1)
, (3.37)

whereX := [x1 · · · xn] collects the data into ap-by-n matrix, φ(X) := [φ(x1) · · · φ(xn)]

is the RKHS mapping of the entire data set,Λ
eZ is a diagonal matrix with(Λ

eZ)ii :=
∑n

j=1 Z̃ji,
andK := φ(X)⊤φ(X) is the kernel matrix. We obtain (3.36) from (3.35) by using the Matrix
Inversion lemma.

One issue with the above extensions is that we cannot computeB when the mappingφ(·) is
of infinite dimension. However, we observe that the EM procedures only make use ofBφ(X),
and according to (3.36)

Bφ(X) = XZ̃
(
KΛ

eZ + λσ2
)−1

φ(X)⊤φ(X)

= XZ̃
(
KΛ

eZ + λσ2
)−1

K.

Therefore, instead ofB we maintain and update ap-by-n matrixM := XZ̃
(
KΛ

eZ + λσ2
)−1

in
the EM iterations. To predict the next state for a new observation x, we computeMφ(X)⊤φ(x),
which also only requires kernel evaluations. Alternatively, we may compute a finite-dimensional
approximation toφ(X) by doing a low-rank factorization of the kernel matrixK ≈ φ̃(X)⊤φ̃(X),
and replaceφ(X) in the EM procedure with̃φ(X) ∈ Rm×n,m < n. This can be viewed as
dimensionality reduction in the RKHS. Then we can maintain and updateB ∈ Rp×m explicitly.
To do prediction on a set of new data points, we project them onto the basis found by factorizing
the training kernel matrix, thereby computing their finite-dimensional approximatioñφ, and then
apply the estimatedB to the mapped points.

3.3 Initialization of EM by Temporal Smoothing

All of the proposed methods are solving non-convex optimization problems, and avoiding local
optima is a critical issue. A common practice in applying EM methods is to run the algorithm
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multiple times, each with a randomly initialized model, andthen choose the best local optimum
as the final estimate. We follow this practice in our experiments on simulated data in Section 3.4,
but observe that the number of random restarts needed to obtain a good model is usually large,
meaning that a lot of random initializations lead to undesirable local optima. Moreover, our
simulated data are low dimensional, but the problem caused by local optima will only become
worse in a higher dimension, which is common with real data. We thus investigate an alternative
way of initialization.

We begin by observing that in the case of a linear dynamic model, the samples generated by
Algorithm 3.1 can be viewed as i.i.d. samples drawn from the following mixture of Gaussians:

x ∼
Tmax∑

t=1

π(t)N (·|µ(t),Σ(t)), (3.38)

whereµ(t) andΣ(t) are defined in (3.3) andπ(t) ≥ 0 is the probability thatx is drawn at timet.
Based on this view, we devise a heuristic to initialize the model:

1. Estimateµ(t)’s by fitting a GMM to or clustering the data

2. Estimate the true temporal order ofµ(t)’s based on their estimates from Step 1

3. Learn a dynamic model from the estimated sequence ofµ(t)’s by existing dynamic model
learning methods

For Step 1 we can use the standard EM algorithm for learning GMMs, or simply the k-means
algorithm since subsequent steps only need estimates of themeans. Step 2 in its own right is a
challenging problem. If we believe temporally closeµ(t)’s should be similar, we can compute
pairwise distances between estimates ofµ(t)’s and solve a traveling salesman problem (TSP).
Then we need to decide the direction of time on the TSP path, which is often impossible without
prior or expert knowledge. In our experiments in Sections 3.5 and 3.5.2 we simply try both
directions and report the one that performs better. In high dimensions, Euclidean distances suffer
from the curse of dimensionality and are vulnerable to noise. We thus propose an alternative way
to recover the true temporal order, which is based on the ideaof temporal smoothing.

Unlike methods proposed in previous sections, the method wepresent in the following does
not make any assumptions about the functional form of the underlying dynamic model. It only
assumes the underlying dynamics to besmooth, i.e., the curvature of the trajectory rolled out
by the dynamic model is small. More precisely, we quantify smoothness by the second order
differences of temporally adjacent points generated by thedynamic model:

S =
Tmax−1∑

t=2

‖(x(t+1) − x(t))− (x(t) − x(t−1))‖2, (3.39)

whereTmax is the maximum time. Small values ofS correspond to smooth trajectories. An ex-
ample is in Figure 3.2. Such a smoothness measure has been used as the regularization term in the
Hodrick-Prescott filter [Hodrick and Prescott, 1997; Lesser, 1961], a common tool in macroeco-
nomics for obtaining a smooth and nonlinear representationof a time series.

The quantity (3.39) cannot be computed on our data since the true time indices of the data
points are missing. Nevertheless, it can be succinctly expressed using the LaplacianL of the
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Figure 3.2: An example of smooth (left) v.s. non-smooth (right) trajectory

temporal adjacency graphobtained by connecting temporally adjacent pairs of data points. More
specifically, we letX := [x1 · · · xn] be thep-by-n data matrix as before, andZ be a directed
temporaladjacency matrix such thatZij = 1 if xj precedesxi immediately in time, and0
otherwise. Then, we defineZ := Z + Z⊤ to represent the undirected, symmetric temporal
adjacency of the data points. If the data points were sorted according to their true temporal order,
the matrixZ would consist of ones in the upper-first and lower-first off-diagonals and zeros
elsewhere. The graph Laplacian based on the adjacency matrix Z is thenL = diag(Z1) − Z,
where1 is a vector of ones anddiag(Z1) denotes the diagonal matrix with the vectorZ1 in the
main diagonal. Simple algebraic manipulation shows that the smoothnessS can be expressed in
terms ofL (henceZ) as follows:

S(Z) = ‖XL‖2F = Tr((diag(Z1)− Z)⊤X⊤X(diag(Z1)− Z)), (3.40)

which is a quadratic and convex function ofZ and henceZ. Since we assume the true dynamics
to be smooth, a natural way to reconstruct a temporal ordering would be to solve the following
problem:

Z∗ = arg min
Z

S(Z)

s.t.Z represents a directed Hamiltonian path through the data points. (3.41)

However, this problem is essentially a quadratic version ofTSP, and to the best of our knowledge,
no efficient solver exists for such problems. We thus consider the following two-step heuristics.
In the first step, we minimizeS(Z) under a modified set of constraints:

Ẑ = arg min
Z

S(Z)

s.t. Z1 = 1, Z⊤1 = 1, Zij ≥ 0, Zii = 0.
(3.42)

The constraints in (3.42) are not a proper relaxation of (3.41) becauseZ must have one zero row
and one zero column to represent a Hamiltonian path. Nevertheless, we can interpret solving
(3.42) as learning a pairwise similaritŷZ whose(i, j)-th entry reflects how likelyxj is to precede
xi temporally. Then in the second step, we solve an instance of TSP with1 − (Ẑ + Ẑ⊤)/2 as
the distance, and obtain an ordering from the optimal TSP path. In our experiments we use the
state-of-the artConcorde TSP solver[Applegate et al.], which implements an exact algorithm
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Algorithm 3.5 Projected Gradient Method for (3.42)
Input : Data matrixX = [x1 · · · xn]

Output : Ẑ
1: Setα = 0.1, ǫ = 10−6, σ = 10−2

2: InitializeZ(1), setk = 1
3: repeat
4: Compute the gradient∇(k) := ∇S(Z(k)), η ← 1.0
5: repeat
6: Z = Z(k) − η∇(k),Drow = Dcol = [0]n×n

7: repeat
8: Z̃ ← Z
9: Z ′

i·← ℓ1-Projection((Z −Drow)i·), ∀i
10: Drow ← Z ′ − (Z −Drow)
11: Z ′′

·j ← ℓ1-Projection((Z ′ −Dcol)·j), ∀j
12: Dcol ← Z ′′ − (Z ′ −Dcol)
13: Z ← Z ′′

14: until ‖Z − Z̃‖F ≤ ǫ
15: η ← αη

16: until S(Z)− S(Z(k)) ≤ σTr
(
∇(k)(Z − Z(k))

)

17: t← t+ 1, Z(k) ← Z
18: until ‖Z(k) − Z(k−1)‖F ≤ ǫ

19: Ẑ ← Z(k)

that has exponential time-complexity in the worst case but is very efficient in practice due to its
carefully designed pruning techniques.

The optimization problem (3.42) is essentially convex quadratic programming (QP) under
linear and bound constraints. However, the number of variables isquadratic in the number of
data points, and as the data size increases, directly applying a general-purpose QP or nonlinear
programming solver may become inefficient or even infeasible. We thus devise a simple and
efficientprojected gradient methodthat iteratively updates the rows and the columns ofZ.

The key idea of a projected gradient method is to move the parameter vector along the nega-
tive gradient direction, and project the updated vector back into the feasible regionΩ whenever
it goes out. The cost of a projected gradient procedure is mainly determined by the projection
operation, so we need to compute efficiently the projection step:

Zt+1 ← ΠΩ(Zt − η∇S(Zt)), (3.43)

Ω = {Zi·1 = 1, Z⊤
·,j1 = 1, Zij ≥ 0, Zii = 0}, (3.44)

whereZi· andZ·j denote a row and a column ofZ respectively, andΠΩ(a) := arg minb{‖a −
b‖ | b ∈ Ω} is the Euclidean projection of a vectora onto a regionΩ. The gradient ofS(Z) is
given by

∇S(Z) = 2(Q̃+ Q̃⊤),
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Algorithm 3.6 ℓ1-Projection [Duchi et al., 2008]
Input : v ∈ Rn

Output : w := arg min ‖x− v‖2 s.t.x⊤1 = 1, xi ≥ 0 ∀i.
1: Sortv into µ : µ1 ≥ µ2 ≥ . . . ≥ µn.
2: Findρ = max{j ∈ {1, 2, . . . , n} : µj − 1

j
(
∑j

r=1 µr − 1) > 0}
3: Defineθ = 1

ρ
(
∑ρ

i=1 µi − 1)

4: Outputw s.t.wi = max{vi − θ, 0}

where

Q̃ij := Qjj −Qij,

Q := X⊤X(diag((Z + Z⊤)1)− (Z + Z⊤)).

Moreover, the feasible region (3.44) is the intersection oftwo closed convex setsΩ1 andΩ2:

Ω1 = {Zi·1 = 1, Zij ≥ 0, Zii = 0, 1 ≤ i, j ≤ n},
Ω2 = {Z⊤

·,j1 = 1, Zij ≥ 0, Zii = 0, 1 ≤ i, j ≤ n},

which correspond to the normalization constraints for rowsand columns, respectively. Using
Dykstra’s cyclic projection algorithm [Boyle and Dykstra,1986], we perform the projection op-
eration (3.43) by alternately projecting ontoΩ1 andΩ2. A very nice property of this procedure
is that projecting ontoΩ1 or Ω2 alone can be further decomposed as doing row-wise (or column-
wise) projections, and a single-row or single-column projection can be computed very efficiently
by theℓ1 projection technique Duchi et al. [2008] proposed, which weoutline in Algorithm 3.6.
The required operations are simply sorting and thresholding2. Algorithm 3.5 gives a summary
of the projected gradient method for the optimization problem (3.42). As in all gradient-based
methods, we conduct back-tracking line search for the step sizeη to ensure convergence.

3.4 Experiments on Synthetic Data

We consider five dynamical systems. The first three are linearsystems, while the last two are
nonlinear systems. Our experiments here focus on the unordered approximation (Section 3.2.1),
the partially-ordered approximation (Section 3.2.2), andtheir kernelized versions (Section 3.2.4),
referred to as UM, PM, KUM and KPM, respectively. For our experiments here and in Section
3.5, we implement the proposed algorithms in MATLAB and use the maximum directed spanning
tree solver available athttp://edmonds-alg.sourceforge.net/, version 1.1.0.

3.4.1 Linear Systems

We consider the following three linear systems.

2For the ease of presentation, in Algorithm 3.6 we ignore the constraintZii = 0, which can be easily enforced
by settingZii = 0 and updating only the othern− 1 entries.
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Figure 3.5: 3D-2 sample points
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• 2D, a two-dimensional diverging system:

A =

[
1.01 0
0 1.05

]
, x0 =

[
50
50

]
.

A sample of 200 points generated by Algorithm 3.1 is shown in Figure 3.3(a).

• 3D-1, a three-dimensional diverging system:

A =




1.1882 0.3732 0.1660
−0.1971 0.8113 −0.0107
−0.1295 −0.1886 0.9628


 , x0 =




10
10
10


 .

The Eigenvalues of the transition matrix are 1.0143 and 0.9739± 0.24 i, so the system
dynamics behaves like a diverging spiral in the 3-d space. A sample generated by Algo-
rithm 3.1 is shown in Figure 3.4(a), suggesting that temporally close points (those along
the spiral) can be spatially further away from each other than temporally remote points
(those cutting across the spiral).

• 3D-2, another three-dimensional diverging system:

A =




1.0686 −0.0893 0.3098
0.4385 1.0091 −0.2884
−0.0730 0.0405 0.9625


 , x0 =




10
10
10


 .

The Eigenvalues of the transition matrix are 1.0439 and 0.9982± 0.267i. A sample is
shown in Figure 3.5(a). Unlike in 3D-1, here temporal and spatial proximity are more
consistent with each other.

While the results presented here are all on diverging systems, we also experimented with con-
verging systems and got similar results. Using Algorithm 3.1, we generated data under a variety
of settings. For 2D, we generated 40 data sets, each containing 200 observations, withσ = 0.2.
For 3D-1 and 3D-2, we varied both the sample sizes andσ2. For the small-sized experiments,
we generated 40 data sets, each containing 200 points, withσ = 0.2, 0.4, 0.6 and0.8. For the
large-sized experiments, we generated 20 data sets, each containing 2,000 points, withσ in the
same range. We found that larger values ofσ overwhelmed the dynamics to such an extent that
no algorithm performed well. In all of the data sets we setTmax = 100.

We applied UM and PM to these data sets, maximizing approximate likelihood functions
without any prior or regularization on the parameters of interest, i.e., setting the hyper-parameters
α, β, andλ in (3.8) and (3.21) to zero. For every data set we ran Algorithms 3.2 and 3.3 each with
M random initializations, and chose the model with the largest approximate likelihood as the
final estimate. The entries of these random matrices were sampled independently and uniformly
from [0, 1]. We setM to be 20 and 10 for the small-sized and the large-sized experiments,
respectively.

In addition to random initializations, we also explored theuse of manifold learning tech-
niques for finding initial estimates. The rationale is that,for sample points generated by a linear
system, there should be a one-dimensional projection that indicates the correct order in time.
More specifically, we applied a manifold learning techniqueto our data, and mapped the sample
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points to the most significant coordinate it found. Then, we sorted the data points according to
their one-dimensional projections and fitted a linear dynamical system by the usual least-square
estimation technique. The fitted system itself is already anestimate, and can be used to initialize
Algorithms 3.2 and 3.3. In our experiments, we found MaximumVariance Unfolding (MVU) by
Weinberger et al. [2004] to be the best manifold learning choice. Finally, to indicate the baseline
performance, we report results from randomly generated matrices. We used the same method
and generate the same number,M , of random matrices as we did to initialize PM and UM, and
selected the one with the highest score. We refer to this baseline as Rand.

We consider two performance metrics. The first compares the estimated system matrix̂A
and the trueA. To account for the ambiguities described in Section 3.1, weuse the following
rate-adjusted matrix error:

ME(A, Â) ≡ min
t
‖A− Ât‖F , (3.45)

whereÂt is Â raised to the powert. The minimum in (3.45) is hard to solve, so we search fort in
{±1,±2, . . . ,±10,±1/2,±1/3, . . . ,±1/10} and choose the one that minimizes (3.45). Such a
metric may overstate the quality of an estimate. We thus consider another criterion that compares
system matrices based on one-step displacement vectors

CS(A, Â) ≡ 1

n

∣∣∣∣∣
n∑

i=1

(Axi − xi)
⊤(Âxi − xi)

‖Axi − xi‖‖Âxi − xi‖

∣∣∣∣∣ , (3.46)

which we refer to as the cosine score. This criterion measures the similarity between the one-step
displacement vectorAxi−xi of the true system and that of the estimated system, averaging over
all the sample points; a higher score (3.46) thus means a better estimate. Note that cosine is a
normalized measure of similarity, and therefore alleviates the issue of different system step sizes.
Also, since (3.46) takes the absolute value after averaging, going forward and backward in time
are considered equally good as long as they do so consistently.

We tested the following methods: MVU, PM+MVU (PM initialized by MVU), PM, UM+MVU
(UM initialized by MVU), UM, and Rand. Results on 2D are in Figure 3.6. For this baseline
system, every approach performs quite well. Figure 3.3(c) shows displacement vectorŝAxi− xi

estimated by UM in one of the 2D samples, which are quite consistent with the true dynamics.
Performance metrics on the more complex systems 3D-1 and 3D-2 are in Figures 3.7 and

3.8, respectively. To qualitatively demonstrate the performance, we also plot the one-step dis-
placement vectors by the true and the learnt dynamic models in Figures 3.4 and 3.5 for 3D-1 and
3D-2. Since Rand is independent of data, we only report its results on the small samples. We did
not apply MVU to the large-sized samples with 2,000 data points, since its underlying semidefi-
nite program requires a huge amount of time and memory. Moreover, MVU alone usually gave
cosine scores as low as Rand, and as an initialization, it provided little or no improvement over
random initialization in most cases except UM in small-sized experiments for 3D-1. UM was
competitive with or better than PM in quite a few cases. However, on the small samples of 3D-1,
PM performed much better than UM. We also see that as the sample size grew, UM improved
more significantly than PM did. This suggests that imposing directionality constraints may im-
prove the estimation when samples are small, but it does so atthe expense of introducing some
bias to the estimate.
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Figure 3.6: Results on 2D,σ = 0.2
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Figure 3.7: Results on 3D-1
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Figure 3.8: Results on 3D-2
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Figure 3.9: A 2000-points sample with small noiseσ = 0.2 on which UM failed (cosine score
0.0108). For better visualization, only 1/3 of the points are plotted.

Regarding the effects of different noise levels, most methods became worse as the noise level
increased. While UM was the most robust against noise in several cases, it performed very badly
on the large samples of 3D-1 whenσ = 0.2, but dramatically improved as noise increased.
We found that for the 20 large samples of 3D-1 generated withσ = 0.2, UM recovered the
true system matrix on nearly half of them, but totally failedon the rest. When it failed, the
estimatedA was always nearly diagonal and exhibited dynamics as depicted in Figure 3.9. This
is a concrete example of the identifiability issue pointed out in Section 3.1.

3.4.2 Nonlinear Systems

We consider the following two systems.
• 3D-conv, a converging three-dimensional nonlinear system considered by Girard and Pappas

[2005], governed by the following differential equations:

dx(t)/dt = − (1 + 0.1y(t)2)x(t),

dy(t)/dt = − (1− 0.1x(t)2)y(t)/2 + 2z(t),

dz(t)/dt = − (1− 0.1x(t))2y(t)− z(t)/2,
(3.47)

wherex(t), y(t), andz(t) are the three states at timet. The initial point is set to[5 1 5]⊤.

• Lorenz Attractor [Lorenz, 1963]:

dx(t)/dt = 10(y(t)− x(t)),
dy(t)/dt = x(t)(28− z(t))− y(t),
dz(t)/dt = x(t)y(t)− 8z(t)/3.

The initial point is set to[0 1 1.05]. Figure 3.11(a) shows a trajectory of 800 points evenly
sampled in the time interval[0, 20].
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(a) Input data (b) True dynamics (c) KUM estimates, cosine score 0.98

Figure 3.10: 3D-conv sample points

We generate data from these two systems as follows. For 3D-conv we use Algorithm 3.1 with line
5 replaced by a discrete-time approximation of the system equations (3.47), where the derivatives
remain constant during a time step of∆t = 0.1:

x(t+1) := x(t) + 0.1
dx(t)

dt
+ ǫ(t). (3.48)

The process noiseǫ(t) follows a zero-mean Gaussian with standard deviations{0.1∆t, 0.5∆t}.
We generate 20 training data sets of 400 points withTmax = 100. Figure 3.10(a) shows one of
the data sets. For Lorenz Attractor we did not use Algorithm 3.1 due to the chaotic nature of the
system. Instead, we add independent Gaussian noise to a system trajectory of 400 points evenly
sampled in the time interval[10, 20]3 with noise standard deviationσnoise ∈ {0.01δ, 0.05δ},
whereδ is the median of all the pairwise distances of the 800 points shown in Figure 3.11(a). For
each noise level we generate 20 training data sets without the true temporal order.

Our evaluation scheme here is slightly different from Section 3.4.1. Because our nonlinear
methods give nonparametric estimates and the true models are described by differential equa-
tions, checking the model estimation error is difficult and not considered. We focus on evaluating
the prediction performance in terms of the cosine score. For3D-conv we evenly sampled 200
points in the time interval[0, 10] as the testing sequence, shown in Figure 3.10(b) along with the
true dynamics represented by vectors of displacement between consecutive points. For Lorenz
Attractor we use the noise-free trajectory of 400 points as the testing sequence. Given a dynamic
model learnt from the training data, we predict for each datapointx(t) in the testing sequence its
next observation̂x(t+1) and compute the testing cosine score:

1

T − 1

∣∣∣∣∣
T−1∑

t=1

(x(t+1) − x(t))⊤(x̂(t+1) − x(t))

‖x(t+1) − x(t)‖‖x̂(t+1) − x(t)‖

∣∣∣∣∣ , (3.49)

whereT is the length of the testing sequence.

3This trajectory is the second half of the trajectory in Figure 3.11(a). It preserves the butterfly shape but leaves
out the highly dense spirals in the core of the left wing.
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(b) Estimated dynamics by KUM, cosine score 0.98

Figure 3.11: Lorenz Attractor sample trajectory

Table 3.3: Cosine scores on noise-free data
MVU UM PM KUM KPM

3D-conv 0.99540.99030.55700.99090.9225
Lorenz 0.13830.56440.21550.9884 0.334

We compare the two nonlinear versions of approximate likelihood methods, KUM and KPM,
against the Maximum Variance Unfolding [Weinberger et al.,2004] based approach described in
Section 3.4.1 combined with kernel regression. We also include results by the linear methods UM
and PM. Hyper-parameter settings are as follows. We use kernel regression with the Gaussian
kernelexp(−(‖x−y‖2)/(2h)). For KUM and KPM, we set the kernel bandwidthh to50δ̃, where
δ̃ is the median of all pairwise distances in a training data set. For MVU we seth = δ̃. Because
plain kernel regression tends to over-fit the training data,we regularize the model in two ways.
First we make use of the standard penalty in ridge regression, setting the regularization parameter
λ in (3.36) to10−4 and10−3 for the two noise levels for each nonlinear system. Secondly, when
applying KUM and KPM, we use the low-rank approximation to the kernel matrix described in
Section 3.2.4 with rankm = 5, reducing the model complexity. For each data set we run KUM
and KPM with 50 random initializations of the regression coefficient matrixB andσ2. Entries
of B are drawn independently from a zero-mean Gaussian with standard deviation 100, andσ2

is drawn uniformly random between 0 and 100 times of the median of pairwise distances.
Results are in Table 3.3, Figures 3.12 and 3.13. Table 3.3 reports cosine scores obtained by

training (without temporal order) and predicting on the noise-free trajectories for both systems
(Figures 3.10(a) and 3.11(a)), bold-facing the best methodfor each system. For 3D-conv all
methods perform quite well except PM. Interestingly, UM performs very well even if it learns a
linear model, suggesting 3D-conv may be well approximated by a linear system in terms of one-
step predictions. For Lorenz Attractor, only KUM does well and other methods are significantly
worse. Figure 3.11(b) shows the estimated dynamics by KUM, which are very close to the true
dynamics. However, it takes hundreds of random initializations of KUM to obtain such a high
cosine score, and many of the initializations led to degenerate or undesirable models.
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Figure 3.12: Results on 3D-conv
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Figure 3.13: Results on Lorenz Attractor

Figure 3.12 gives boxplots of cosine scores for 3D-conv obtained by training on the 20 noisy
data sets and predicting on the noise-free testing sequence. The proposed methods outperform
the MVU based approach significantly, but performances havea large variance across different
training data sets. Linear and nonlinear methods achieve comparable scores, showing again that
3D-conv may be well approximated by a linear model in a short time period.

Figure 3.13 shows cosine scores on Lorenz Attractor. MVU still performs poorly, but the
proposed methods all perform worse than in 3D-conv, especially UM. This is not surprising
because Lorenz Attractor has more complex dynamics than 3D-conv. We also see that although
the median score of PM across all the 20 training data sets is better than those of KUM and
KPM, the nonlinear methods are able to reach a much higher score than PM. This indicates that
the nonlinear methods are on the one hand more powerful than the linear methods, but on the
other hand more vulnerable to overfitting and require careful initialization/regularization based
on domain or prior knowledge.

3.5 Experiments on Real Data

We consider three real data sets. For the purpose of evaluation, we choose data whose temporal
orderings are known: a video stream of a swinging pendulum (Section 3.5), gene expression time
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series of the yeast metabolic cycle (Section 3.5.2), and time series of HeLa cell images (Section
3.5.3). While the first one is for evaluation purposes only, the other two data sets, as briefly
described in Chapter 1 and explained in more detail later, represent application areas that would
truly benefit from the proposed methods of learning dynamic models from non-sequence data.

In real data we do not have true dynamic models to compare with, but knowing the temporal
order allows us to obtain reference models by applying existing dynamic model learning methods
with the available temporal order. Our main evaluation scheme is then to compare the prediction
performances of the proposed methods against standard methods of learning from sequence data.
We consider two performance metrics. One is the cosine score(3.49). However, since the real
data are higher-dimensional, when interpreting cosine scores we need to account for the effect of
high dimensions. To see that effect, we consider the probability that random prediction achieves
a cosine score ofs or greater. Let the random variableS denote the cosine between a vector
drawn uniformly at random from the unitp-sphere and an arbitrary fixedp-dimensional unit
vector. Basic geometry shows that the probability|S| ≥ s for somes > 0 is equivalent to two
times the ratio of the surface area of a cap with height1−s on a unitp-sphere to the unitp-sphere
surface area, which has the following closed-form [Li, 2011]:

Prob(|S| ≥ s) = I1−s2

(
p− 1

2
,
1

2

)
, (3.50)

whereIx(a, b) is the regularized incomplete beta function. Now consider the cosine score ofn
independent random predictions|S̄| := |

Pn
i=1 Si

n
|, whereSi’s are independent copies ofS. By

Bennett’s inequality [1962] and symmetry ofS, we have

Prob(|S̄| ≥ s) = 2Prob(S̄ ≥ s) ≤ 2 exp (−nVar(S)h(s/Var(S))) , (3.51)

whereh(x) := (1 + x) log(1 + x)− x. To derive Var(S), we first obtain the p.d.f ofS:

fS(s) =
dProb(S ≤ s)

ds
=

d
(
1− 1

2
I1−s2

(
p−1
2
, 1

2

))

ds
=

(1− s2)
p−3
2

B(p−1
2
, 1

2
)
, (3.52)

whereB(x, y) is the beta function. Then we have

Var(S) =

1∫

−1

s2fS(s)ds =
B(p−1

2
, 3

2
)

B(p−1
2
, 1

2
)

= p−1, (3.53)

leading to the following upper bound:

Prob(|S̄| ≥ s) ≤ 2 exp(−nh(sp)/p) = 2

(
exp(s)

(1 + sp)1/p+s

)n

, (3.54)

which decreases in the order ofp−sn for fixed s. Figure 3.14 shows this upper bound for four
values ofs andn = 10 as a function ofp. We can see that when the dimensionp is large, even if
the numbern of predictions is small (as in Section 3.5.2) it is still difficult for random prediction
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Figure 3.14: Chance probability (3.54) for various cosine scores against the dimensionp

to achieve some modest cosine score, say 0.3. In later sections we will use the upper bound
(3.54) to provide some sense of significance of the cosine scores obtained in our experiments.

Our second performance metric isnormalized error :

1

T − 1

T−1∑

t=1

‖x(t+1) − x̂(t+1)‖
‖x(t+1) − x(t)‖ , (3.55)

which measures how close the predictions are to the true nextstate vectors. A smaller normalized
error means a better prediction, and predicting with the current observation (̂x(t+1) = x(t)) gives
a normalized error of one.

In all three data sets we apply UM and PM, and in Sections 3.5 and 3.5.2 also use the tree-
based EM (TEM) method. For the experiments in Section 3.5.3 we use random initialization,
while in Sections 3.5 and 3.5.2 we apply the temporal clustering heuristics in Section 3.3 for
initialization with the following detailed settings.

We use the K-means method to cluster the data points and compare the following four meth-
ods for ordering the cluster centers:

1. MVU: Project the cluster centers to the one-dimensional space found by Maximum Vari-
ance Unfolding, and then sort the cluster centers accordingto the projections.

2. l1+TSP: Solve a TSP with the 1-norm pairwise distances between the cluster centers.

3. l2+TSP: Solve a TSP with the 2-norm pairwise distances between the cluster centers.

4. TSM+TSP: The two-step heuristics outlined in Section 3.3.
Then, we learn a linear model (3.1) from the ordered cluster centers, and initialize the proposed
methods with the learnt model. As mentioned in Section 3.3, methods based on TSP do not
decide the overall direction of time. Here we learn dynamic models using both directions, and
report the one that leads to a better prediction performance. To solve a TSP, we use the state-of-
the-artConcorde TSP solver[Applegate et al.].

For UM and TEM, we not only initialize the estimation procedures with clustering, but also
consider restricting the approximate likelihood functions by the ordering of the cluster centers:
when summing over the latent variables in (3.8) and (3.25), we only include those consistent with
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Figure 3.15: A frame of the swinging pendulum video stream.

the ordering of the clusters. We refer to the restricted versions of UM and TEM respectively as
“UM rest” and “TEM rest.”

We extend the proposed methods to allow each state variable to have a different noise vari-
ance. The update rules can be easily derived from those in Section 3.2 and have a similar form.
We choose the regularization parameterλ by leave-one-out cross validation on the ordered cluster
centers, but setα andβ by manual selection. Our choice ofα andβ is mainly to avoid numerical
issues caused by small values of the estimated noise variances during the EM iterations. We find
the follow choice to be effective:α = 1 andβ ≈ n, which correspond to a prior of noise variance
whose mean is aroundn, and in our experiments leads to a posterior mean around 2.

3.5.1 Video of Swinging Pendulum

Our first real data is a video analyzed by Siddiqi et al. [2010]. The video consists of 500 frames
of 240-by-240 colored images of a swinging pendulum. An image is shown in Figure 3.15.
The underlying dynamics is highly periodic and stable as thependulum completes about 22 full
swings4. We center the pixel values to be zero across the 500 frames, and then apply Singular
Value Decomposition (SVD) to reduce the dimension from240 × 240 × 3 = 172800 to 20
by projecting the data onto the subspace corresponding to the 20 largest singular values. Such
a subspace preserves about72 percent of the total energy. We further normalize each of the
20 temporal sequences to be zero-mean and unit-variance. Then we use the first 400 points as
training data and the last 100 points as testing data.

In the initialization step we combine the K-means method with the AIC criterion to determine
the number of clusters. For each possible number of clustersin our search range, we run the K-
means method with 30 random restarts and choose the best clustering to initialize the dynamic
model. We repeatedly train 30 linear dynamic models, all of which are initialized by K-means
combined with AIC. In most of the 30 runs the number of clustersdetermined by K-means and
AIC is 31, which is about the number of time steps one full swing takes. We then evaluate these
learnt models by their prediction performances on the test data.

4A full swing means the pendulum ended where it started.
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Figure 3.16: Cosine scores on the pendulum data by the linear model. Larger is better. The blue
dashed line is by a dynamic model learnt with the known temporal order.
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Figure 3.17: Normalized errors on the pendulum data by the linear model. Smaller is better. The
blue dashed line is by a model learnt with the known order.
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We present the box plots of the testing cosine scores and normalized errors in Figures 3.16
and 3.17. The left most column in each plot, the “kmeans” column, gives the performance of the
initial model found by K-means and some ordering method. In each box-plot we also indicate
the performance of the reference model learnt with the knowntemporal ordering. There are two
main observations:
• Comparing the four ordering methods, we find that MVU is worse than l1+TSP and

l2+TSP, which are in turn worse than TSM+TSP. Moreover, TSM+TSP does almost as
well as the model learnt with the known temporal ordering. This suggests that orderings
solely based on pairwise distances, such as those by MVU, l1+TSP, and l2+TSP, may be
more sensitive to distances between cluster centers, whichare not always equally separated
in space. On the contrary, TSM+TSP is more robust against irregular distances, suggest-
ing that the pairwise similarity learnt through solving theconvex program (3.42) better
captures the dynamic nature of the data.

• The initial models learnt from ordered cluster centers already perform quite well, and the
proposed methods result in only marginal improvements. Moreover, without the restric-
tion imposed by cluster orderings UM even performs worse than the initial model. This
suggests that our approximation to the likelihood functionmay introduce too many unde-
sirable local maxima.

3.5.2 Gene Expression Time Series of Yeast Metabolic Cycle

To study gene expression dynamics of yeasts during the metabolic cycle, Tu et al. [2005] col-
lected expression profiles of about 6,000 yeast genes along three consecutive metabolic cycles,
each containing 12 samples. Due to the destructive nature ofthe measurement technique, gene
expression profiles were measured on different yeast cells,and therefore synchronization of yeast
cells in the metabolic cycle is necessary for obtaining reliable gene expression time series data.
To address this issue, Tu et al. [2005] developed a continuous culture system that provides a sta-
ble environment for yeast cells to grow, and chose a particular strain of yeasts that exhibit “unusu-
ally robust periodic behavior,” i.e., cells of that strain of yeasts are in a sense self-synchronizing.
However, Tu et al. [2005] noted that the periodic gene expression observed in their experiment is
more robust than those in certain other species (c.f.Discussionin [Tu et al., 2005]), suggesting
that in general it may be quite difficult to obtain reliable time series gene expression measure-
ments. In those cases, our proposed methods of learning dynamic models from non-sequenced
data may be very useful.

We focus on a subset of 3,552 genes found by Tu et al. [2005] to exhibit strong periodical
behaviors during the metabolic cycle. We normalize each gene expression time series to be zero-
mean and unit-variance, and use the first two cycles (24 points) as training data and the last
cycle (12 points) as testing data. Here the number of state variables (genes) is much higher than
the sample size, and thus learning dynamic models is much more difficult than in the previous
experiment.

Since the number of sample points is disproportionally smaller than the dimension, in the
initialization step we specify the number of clusters in theK-means method to be 12, the number
of time steps in one cycle. This means each cluster will contain only few data points. We
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Figure 3.18: Gene expression profiles in three major gene groups: MRPL10, POX1, and
RPL17B. Top row: original gene expression. Bottom row: geneexpression from estimated
cluster centers ordered by TSM+TSP.

repeatedly train 20 linear models, and in each of the 20 runs we randomly restart the K-means
method 30 times and choose the best clustering to initializethe model.

To evaluate the proposed methods, we first qualitatively examine our initial step of temporal
clustering and ordering. Among the 3,552 genes, MRPL10, POX1 and RPL17B were found to
be strongly periodical and yet exhibit different dynamics.Treating these three genes as fixed
seeds in clustering analysis, Tu et al. [2005] identified three major clusters of genes. From each
cluster we pick the 24 most representative genes and plot their average expression profiles over
the first two cycles in the top row of Figure 3.18. In the bottomrow of the same figure we plot
the expression profiles of the same genes from the estimated cluster centers in the order found by
TSM+TSP. Comparing the two rows shows our initial step of temporal clustering and ordering
effectively recovers the major trends of gene dynamics.

We then evaluate the proposed methods quantitatively. Figures 3.19 and 3.20 present box-
plots of cosine scores and normalized errors. The cosine scores are between 0.6 and 0.7, which
by themselves do not seem impressive, but because of the highdimension, the probability for
random predictions to achieve such scores, according to (3.54), is less than 10−19 even though the
testing sequence is short. Moreover, the improvements due to the proposed EM-based methods
over the initial model are more significant here than in Section 3.5, though the gap between
the proposed methods and the sequential learning method is bigger. Most of the performance
measures here are rather stable across different runs, possibly because on such a small sample
most initializations turn out to be similar. The only exception is TEM, which occasionally results
in extremely poor performance. This is due to numerical difficulties encountered in its E-step;
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Figure 3.19: Cosine scores on the yeast time series. Larger isbetter. The blue dashed line is by
a dynamic model learnt using the known temporal order.
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Figure 3.20: Normalized errors on the yeast time series. Smaller is better. The blue dashed line
is by a dynamic model learnt using the known temporal order.
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the main computation there is inverting a matrix of exponentiated negative distances, which
are numerically unstable for high dimensional data points.Regarding the different ordering
methods, unlike in Section 3.5 TSM+TSP does not outperform the other ordering methods; all
four methods perform equally well. Again, this may be attributed to the training points being too
few for different ordering methods to behave differently.

3.5.3 Cell Image Time Series

We apply the proposed method to a time series data set of HeLa cell images originally collected
by Zhou et al. [2009], and subsequently analyzed by Buck et al. [2009], who were interested in
the dependence of protein subcellular localization on the cell cycle. Instead of relying on time-
series cell images as in most existing studies, they aim to utilize static, asynchronous snapshots
taken from multiple cells at various phases of the cell cyclebecause such images are easier to
obtain on a large scale than time-series images. To do so, they proposed to find a one-dimensional
surrogate of cell cycle time from static cell image featuresby manifold learning techniques, and
verified on real data that such a surrogate is well correlatedwith the cell cycle. However, it is
not clear how to use or augment their approach for predictiveanalysis, which can be important
in understanding cell dynamics. In contrast, our work bypasses the issue of estimating the cell
cycle time and focuses directly on learning dynamic models.

The data set consists of 100 time frames, and each frame contains from tens to a hundred or so
cell regions. Details regarding cell segmentation and tracking can be found in [Zhou et al., 2009].
Each segmented cell region is represented by a 49 dimensional feature vector as in [Buck et al.,
2009]. During the 100 time frames, some cells went through more than one division while others
never divided. Buck et al. [2009] identified a total of 34 sequences of cells that completed at
least one full division-to-division cell cycle spanning atleast 30 time frames, and conducted
their analysis on these sequences. We instead treat these 34sequences, which contain a total of
1,740 data points, as testing data, and run UM and PM on the other short or incomplete sequences
as if they were non-sequence samples. Out of the 7,692 feature points in these partial cell cycle
sequences, 1,267 appear in only one time frame, fitting exactly our non-sequence scenario. We
normalize the entire data set so that each feature has mean zero and standard deviation 1. To
obtain a performance reference from models learnt with sequence information, we apply least
square ridge regression to partial sequences of length at least 6, a total of 6099 feature points.
The regularization parameter for ridge regression was chosen by training on the first half of each
training sequence and validating on the second half.

In applying UM and PM we made several changes. We allow each feature to have a different
noise variance, but instead of optimizing over its value, wesimply set the noise variance of each
feature to be the median of pairwise distances between training data points along that feature
dimension. Moreover, we add an extra regularization term2−3‖A − I‖2F to our approximate
likelihood functions and setλ for the ℓ2 penalty perm onA to be 1. We initialize UM and PM
with 20 different models, one being the identity matrix and the other 19 having entries drawn
independently from a standard normal distribution. We choose the final estimate based on the
regularized approximate likelihood functions for UM and PM, respectively.

We compare with a baseline that uses manifold learning. Following Buck et al. [2009],
we use Isomap [Tenenbaum et al., 2000] to map all the 7,692 training data points to a two-
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Figure 3.21: Testing performances on cell image time series

dimensional space, sort the data points according to their mappings along the first coordinate,
and then apply ridge regression with both the estimated ordering and the reverse ordering. At
test time, we apply both learnt models and report the better performance.

Figures 3.21(a) and 3.21(b) are boxplots of the two performance measures over the 34 testing
sequences. Again, although the cosine scores do not seem impressive, the chance probability
for achieving such scores, given by (3.50), is lower than10−6. As expected, Ridge performs
the best, but the proposed UM and PM are quite close and even have a smaller variance in nor-
malized error. The baseline that uses Isomap is competitivewith UM in terms of cosine score,
but shows larger variability across different testing sequences and has much larger normalized
errors. Unlike in the last two experiments, PM performs noticeably worse than UM here. We
suspect that PM’s strong approximation bias of enforcing the spanning-tree constraint hinders
effective use of this quite large data set, but do not have solid empirical evidences. More gener-
ally, it requires further research to understand when UM or PM will be a better choice in terms
of quality of the learnt model, but UM certainly scales better with the data size: UM’s E step of
normalization is embarrassingly parallelizable, whereasPM’s maximum directed spanning tree
procedure is harder to parallelize. In this experiment, ourMATLAB implementation of UM,
which performs efficient matrix normalization via parallelization, is more than 10 times faster
than PM, which spends most of the running time in the maximum directed spanning tree solver
(http://edmonds-alg.sourceforge.net/, version 1.1.0).

Another way of evaluating the proposed approximate likelihood functions is to check whether
a better training likelihood leads to a better testing performance. Figure 3.22 gives scatter plots
of the two testing performance measures against regularized UM and PM training negative like-
lihood functions over the 20 initializations. Each curve represents results on a testing sequence
and is sorted by the training likelihood. We can see that for both UM and PM, the training ap-
proximate likelihood has a rather small numerical range, and there is no significant correlation
between the testing performance and the training likelihood. Moreover, on most testing se-
quences the UM performances are similar across the 20 initial models, while the PM normalized
error has a larger variation. These results illustrate limitations of our proposed methods when
applied to real data, and suggest that a different strategy of choosing the final estimate is needed
in order to achieve better testing performance, which we leave as an open issue for future work.
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Figure 3.22: Scatter plot of testing performance against training approximate likelihood

3.6 Conclusion

In this chapter we consider learning fully observable dynamic models from data drawn from
independent trajectories at unknown times. Acknowledgingseveral identifiability issues, we
propose learning methods based on maximizing various approximate likelihood functions via
EM-type algorithms, together with novel initialization methods. Experiments on synthetic and
real data demonstrate that the proposed methods can learn reasonably good models from non-
sequence data, though their success requires some hyper-parameter tuning, and more critically,
good initialization. We thus in later chapters consider settings requiring extra information or
assumptions, but leading to simpler learning problems.
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Chapter 4

Learning Vector Autoregressive Models
from Sequence and Non-sequence Data

As concluded by the previous chapter, the assumption of multi-trajectory, independent samples
leads to several identifiability issues that compromise effective learning. We thus consider mak-
ing stronger assumptions in several ways, starting in this chapter with the availability of a small
amount of sequence data in addition to the supposedly largernon-sequence data. Our goal is to
combine these two types of data to improve dynamic model learning. As in the previous chapter,
we considerp-dimensional vector auto-regressive models, but treat thestate variables as a row
vector instead of a column vector:

x(t+1) = x(t)A+ ǫ(t+1), (4.1)

whereǫ(t) is again an independent Gaussian noise process with a time-invariant varianceσ2I.
In addition, we assume that the process (4.1) is stable, i.e., the eigenvalues ofA have modulus
less than one. As a result, the process (4.1) has a stationarydistribution, whose covarianceQ is
determined by the following discrete-time Lyapunov equation:

A⊤QA+ σ2I = Q. (4.2)

Linear quadratic Lyapunov theory (see e.g., [Antsaklis andMichel, 2005]) gives thatQ isuniquely
determined if and only ifλi(A)λj(A) 6= 1 for 1 ≤ i, j ≤ p, whereλi(A) is thei-th eigenvalue of
A. If the noise processǫt follows a normal distribution, the stationary distribution also follows a
normal distribution, with covarianceQ determined as above. Since our goal is to estimateA, a
more relevant perspective is viewing (4.2) as a system of constraints onA. What motivates the
propose approach in this chapter is that the estimation ofQ requires only samples drawn from
the stationary distribution rather than sequence data. However, even if we have the trueQ and
σ2, we still cannot uniquely determineA because (4.2) is an under-determined system1 of A. We
thus rely on the few sequence samples to resolve the ambiguity.

Let {x(i)}Ti=1 be a sequence of observations generated by the process (4.1). The standard
least-square estimator for the transition matrixA is the solution to the following minimization

1If we further requireA to be symmetric, (4.2) would be a simplifiedContinuous-time Algebraic Riccati Equa-
tion, which has a unique solution under some conditions (c.f. [Antsaklis and Michel, 2005]).

47



problem:
min

A
‖Y −XA‖2F , (4.3)

whereY ⊤ := [(x(2))⊤ (x(3))⊤ · · · (x(T ))⊤], X⊤ := [(x(1))⊤ (x(2))⊤ · · · (x(T−1))⊤], and‖ · ‖F
denotes the matrix Frobenius norm. Whenp > T , which is often the case in modern time series
modeling tasks, the least square problem (4.3) has multiplesolutions all achieving zero squared
error, and the resulting estimator overfitts the data. A common remedy is adding a penalty term
on A to (4.3) and minimizing the resulting regularized sum of squared errors. Usual penalty
terms include the ridge penalty‖A‖2F and the sparse penalty‖A‖1 :=

∑
i,j |Aij|.

Now suppose we also have a set of non-sequence observations{zi}ni=1 drawn independently
from the stationary distribution of (4.1). Note that we use superscripts for time indices and sub-
scripts for data indices. As described in Chapter 1, the sizen of the non-sequence sample can
usually be much larger than the sizeT of the sequence data. To incorporate the non-sequence
observations into the estimation procedure, we first obtaina covariance estimatêQ of the station-
ary distribution from the non-sequence sample, and then turn the Lyapunov equation (4.2) into a
regularization term onA. More precisely, in addition to the usual ridge or sparse penalty terms,
we also consider the following regularization:

‖A⊤Q̂A+ σ2I − Q̂‖2F , (4.4)

which we refer to as theLyapunov penalty. To compare (4.4) with the ridge penalty and the sparse
penalty, we consider (4.3) as a multiple-response regression problem and view thei-th column
of A as the regression coefficient vector for thei-th output dimension. From this viewpoint, we
immediately see that both the ridge and the sparse penalizations treat thep regression problems as
unrelated. On the contrary, the Lyapunov penalty incorporates relations between pairs of columns
of A by using a covariance estimatêQ. In other words, although the non-sequence sample does
not provide direct information about the individual regression problems, it does reveal how the
regression problems are related to one another. To illustrate how the Lyapunov penalty may help
to improve learning, we give an example in Figure 4.1. The true transition matrix is

A =

[
−0.4280 0.5723
−1.0428 −0.7144

]
(4.5)

andǫt ∼ N (0, I). We generate a sequence of 4 points, draw a non-sequence sample of 20 points
independently from the stationary distribution and obtainthe sample covariancêQ. We fix the
second column ofA but vary the first, and plot in Figure 4.1(a) the resulting level sets of the sum
of squared errors on the sequence (SSE) and the ridge penalty(Ridge), and in Figure 4.1(b) the
level sets of the Lyapunov penalty (Lyap). We also give coordinates of the true[A11 A21]

⊤, the
minima of SSE, Ridge, and Lyap, respectively. To see the behavior of the ridge regression, we
trace out a path of the ridge regression solution by varying the penalization parameter, as indi-
cated by the red-to-black curve in Figure 4.1(a). This path is pretty far from the true model, due
to insufficient sequence data. For the Lyapunov penalty, we observe that it has two local minima,
one of which is very close to the true model, while the other, also the global minimum, is very
far. Thus, neither ridge regression nor the Lyapunov penalty can be used on its own to estimate
the true model well. But as shown in Figure 4.1(c), the combined objective, SSE+Ridge+1

2
Lyap,
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Figure 4.1: Level sets of different functions in a bivariateAR example

has its global minimum very close to the true model. This demonstrates how the ridge regression
and the Lyapunov penalty may complement each other: the former by itself gives an inaccurate
estimation of the true model, but is just enough to identify agood model from the many candidate
local minima provided by the latter.

In the following we describe our proposed methods for incorporating the Lyapunov penalty
(4.4) into ridge and sparse least-square estimation. We also discuss robust estimation for the
covarianceQ.

4.1 Ridge and Lyapunov penalty

Here we estimateA by solving the following problem:

min
A

1

2
‖Y −XA‖2F +

λ1

2
‖A‖2F +

λ2

4
‖A⊤Q̂A+ σ2I − Q̂‖2F , (4.6)

whereQ̂ is a covariance estimate obtained from the non-sequence sample. We treatλ1, λ2 andσ2

as hyperparameters and determine their values on a validation set. Given these hyperparameters,
we solve (4.6) by gradient descent with back-tracking line search for the step size. The gradient
of the objective function is given by

−X⊤Y +X⊤XA+ λ1A+ λ2Q̂A(A⊤Q̂A+ σ2I − Q̂). (4.7)

As mentioned before, (4.6) is a non-convex problem and thus requires good initialization. We
use the following two initial estimates ofA:

Âlsq := (X⊤X)†X⊤Y and Âridge := (X⊤X + λ1I)
−1X⊤Y, (4.8)

where(·)† denotes the Moore-Penrose pseudo inverse of a matrix, making Âlsq the minimum-
norm solution to the least square problem (4.3). We run the gradient descent algorithm with these
two initial estimates, and choose the estimatedA that gives a smaller objective.

49



4.2 Sparse and Lyapunov penalty

Sparse learning for vector auto-regressive models has become a useful tool in many modern
time series modeling tasks, where the numberp of states in the system is usually larger than
the lengthT of the time series. For example, an important problem in computational biology is
to understand the progression of certain biological processes from some measurements, such as
temporal gene expression data.

Using an idea similar to (4.6), we estimateA by

min
A

1

2
‖Y −XA‖2F +

λ2

4
‖A⊤Q̂A+ σ2I − Q̂‖2F ,

s.t. ‖A‖1 ≤ λ1.
(4.9)

Instead of adding a sparse penalty onA to the objective function, we impose a constraint on
theℓ1 norm ofA. Both the penalty and the constraint formulations have beenconsidered in the
sparse learning literature, and shown to be equivalent in the case of a convex objective. Here
we choose the constraint formulation because it can be solved by a simple projected gradient
descent method. On the contrary, the penalty formulation leads to a non-smooth and non-convex
optimization problem, which is difficult to solve with standard methods for sparse learning. In
particular, the soft-thresholding-based coordinate descent method for LASSO does not apply due
to the Lyapunov regularization term. Moreover, most of the common methods for non-smooth
optimization, such as bundle methods, solve convex problems and need non-trivial modification
in order to handle non-convex problems [Noll et al., 2008].

Let J(A) denote the objective function in (4.9) andA(k) denote the intermediate solution at
thek-th iteration. Our projected gradient method updatesA(k) toA(k+1) by the following rule:

A(k+1) ← Π(A(k) − η(k)∇J(A(k))), (4.10)

whereη(k) > 0 denotes a proper step size,∇J(A(k)) denotes the gradient ofJ(·) atA(k), and
Π(·) denotes the projection onto the feasible region‖A‖1 ≤ λ1. More precisely, for anyp-by-p
real matrixV we define

Π(V ) := arg min
‖A‖1≤λ1

‖A− V ‖2F . (4.11)

To compute the projection, we use the efficientℓ1 projection technique outlined in Algorithm 3.6
of Chapter 3.

For choosing a proper step sizeη(k), we consider the simple and effectiveArmijo rule along
the projection arcdescribed by Bertsekas [1999]. This procedure is given in Algorithm 4.2,
and the main idea is to ensure a sufficient decrease in the objective value per iteration (4.13).
Bertsekas [1999] proved that there always existsη(k) = βrk > 0 satisfying (4.13), and every
limit point of {A(k)}∞k=0 is a stationary point of (4.9). In our experiments we setc = 0.01 and
β = 0.1, both of which are typical values used in gradient descent. As in the previous section,
we need good initializations for the projected gradient descent method. Here we use these two
initial estimates:

Âlsq′ := arg min
‖A‖≤λ1

‖A− Âlsq‖2F and Âsp := arg min
‖A‖≤λ1

1

2
‖Y −XA‖2F , (4.12)

whereÂlsq is defined in (4.8), and then choose the one leading to a smaller objective value.
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Algorithm 4.1 Armijo’s rule along the projection arc

Input: A(k),∇J(A(k)), 0 < β < 1, 0 < c < 1
Output: A(k+1)

1: Findη(k) = max{βrk |rk ∈ {0, 1, . . .}} such thatA(k+1) := Π(A(k)−η(k)∇J(A(k))) satisfies

J(A(k+1))− J(A(k)) ≤ c Tr
(
∇J(A(k))⊤(A(k+1) − A(k))

)
(4.13)

4.3 Robust estimation of covariance matrices

To obtain a good estimator forA using the proposed methods, we need a good estimator for the
covariance of the stationary distribution of (4.1). Given an independent sample{zi}ni=1 drawn
from the stationary distribution, the sample covariance isdefined as

S :=
1

n− 1

n∑

i=1

(zi − z̄)⊤(zi − z̄), wherez̄ :=

∑n
i=1 zi

n
. (4.14)

Although unbiased, the sample covariance is known to be vulnerable to outliers, and ill-conditioned
when the number of sample pointsn is smaller than the dimensionp. Both issues arise in
many real world problems, and the latter is particularly common in gene expression analy-
sis. Therefore, researchers in many fields, such as statistics [Ledoit and Wolf, 2004; Stein,
1975; Yang and Berger, 1994], finance [Ledoit and Wolf, 2003], signal processing [Chen et al.,
2010a,b], and recently computational biology [Schäfer and Strimmer, 2005], have investigated
robust estimators of covariances. Most of these results originate from the idea ofshrinkage
estimators, which shrink the covariance matrix towards some target covariance with a simple
structure, such as a diagonal matrix. It has been shown by, e.g., Ledoit and Wolf [2003]; Stein
[1975] that shrinking the sample covariance can achieve a smaller mean-squared error (MSE).
More specifically, Ledoit and Wolf [2003] consider the following linear shrinkage:

Q̂ = (1− α)S + αF (4.15)

for 0 < α < 1 and some target covarianceF , and derive a formula for the optimalα that
minimizes the mean-squared error:

α∗ := arg min
0≤α≤1

E(‖Q̂−Q‖2F ), (4.16)

which involves unknown quantities such as true covariancesof S. Scḧafer and Strimmer [2005]
propose to estimateα∗ by replacing all the population quantities appearing inα∗ by their un-
biased empirical estimates, and derived the resulting estimatorα̂∗ for several types of targetF .
For the experiments later in this chapter we use the estimator proposed by Scḧafer and Strimmer
[2005] with the followingF :

Fij =

{
Sij, if i = j,

0 otherwise,
1 ≤ i, j ≤ p. (4.17)
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Denoting the sample correlation matrix asR, we give in below the final estimator̂Q [Table 1,
Scḧafer and Strimmer, 2005]:

Q̂ij :=

{
Sij, if i = j,

R̂ij

√
SiiSjj otherwise,

R̂ij :=

{
1, if i = j,

Rij min(1,max(0, 1− α̂∗)) otherwise,

(4.18)

α̂∗ :=

∑
i6=j V̂ar(Rij)∑

i6=j R
2
ij

=

∑
i6=j

n
(n−1)3

∑n
k=1(wkij − w̄ij)

2

∑
i6=j R

2
ij

, (4.19)

where

wkij := (z̃k)i(z̃k)j, w̄ij :=

∑n
k=1wkij

n
, (4.20)

and{z̃i}ni=1 arestandardizednon-sequence samples.

4.4 Experiments

To evaluate the proposed methods, we conduct experiments onsynthetic and video data. We use
the same performance metrics as in Chapter 3 for evaluating a learnt modelÂ:

Normalized error:
1

T − 1

T−1∑

t=1

‖xt+1 − xtÂ‖
‖xt+1 − xt‖ .

Cosine score:
1

T − 1

∣∣∣∣∣
T−1∑

t=1

(xt+1 − xt)⊤(xtÂ− xt)

‖xt+1 − xt‖‖xtÂ− xt‖

∣∣∣∣∣ .

In experiments on synthetic data we have the true transitionmatrix A, so we consider a third
criterion, the matrix error:‖Â− A‖F/‖A‖F .

In all our experiments, we have a training sequence, a testing sequence, and a non-sequence
sample. To choose the hyper-parametersλ1, λ2 and σ2, we split the training sequence into
two halves and use the second half as the validation sequence. Once we find the best hyper-
parameters according to the validation performance, we train a model on the full training se-
quence and predict on the testing sequence. Forλ1 andλ2, we adopt the usual grid-search
scheme with a suitable range of values. Forσ2, we observe that (4.2) implieŝQ − σ2I should
be positive semidefinite, and thus search the set{0.9j mini λi(Q̂) | 1 ≤ j ≤ 3}. In most of our
experiments, we find that the proposed methods are much less sensitive toσ2 than toλ1 andλ2.

4.4.1 Synthetic Data

We consider the following two VAR models with Gaussian noiseǫt ∼ N (0, I).

Dense Model: A =
0.95M

max(|λi(M)|) ,Mij ∼ N (0, 1), 1 ≤ i, j ≤ 200.

Sparse Model: A =
0.95(M ⊙B)

max(|λi(M ⊙B)|) ,Mij ∼ N (0, 1), Bij ∼ Bern(1/8), 1 ≤ i, j ≤ 200,

52



(a) (b) (c) (d) Eigenvalues in modulus

Figure 4.2: Testing performances and eigenvalues in modulus for the dense model

where Bern(h) is the Bernoulli distribution with success probabilityh, and⊙ denotes the entry-
wise product of two matrices. By settingh = 1/8, we make the sparse transition matrixA have
roughly40000/8 = 5000 non-zero entries. Both models are stable, and the stationary distribution
for each model is a zero-mean Gaussian. We obtain the covarianceQ of each stationary distri-
bution by solving the Lyapunov equation (4.2). For a single experiment, we generate a training
sequence and a testing sequence, both initialized from the stationary distribution, and draw a non-
sequence sample independently from the stationary distribution. We set the length of the testing
sequence to be800, and vary the training sequence lengthT and the non-sequence sample size
n: for the dense model,T ∈ {50, 100, 150, 200, 300, 400, 600, 800} andn ∈ {50, 400, 1600}; for
the sparse model,T ∈ {25, 75, 150, 400} andn ∈ {50, 400, 1600}. Under each combination of
T andn, we compare the proposed Lyapunov penalization method withthe baseline approach
of penalized least square, which uses only the sequence data. To investigate the limit of the
proposed methods, we also use the trueQ for the Lyapunov penalization. We run 10 such exper-
iments for the dense model and 5 for the sparse model, and report the overall performances of
both the proposed and the baseline methods.

Experimental results for the dense model

We give boxplots of the three performance measures in the 10 experiments in Figures 4.2(a) to
4.2(c). The ridge regression approach and the proposed Lyapunov penalization method (4.6) are
abbreviated as Ridge and Lyap, respectively. For normalized error and cosine score, we also
report the performance of the trueA on testing sequences.

We observe that Lyap improves over Ridge more significantly when the training sequence
lengthT is small (≤ 200) and the non-sequence sample sizen is large (≥ 400). WhenT is
large, Ridge already performs quite well and Lyap does not improve the performance much. But
with the true stationary covarianceQ, Lyap outperforms Ridge significantly for allT . Whenn
is small, the covariance estimatêQ is far from the trueQ and the Lyapunov penalty does not
provide useful information aboutA. In this case, the value ofλ2 determined by the validation
performance is usually quite small (0.5 or 1) compared toλ1 (256), so the two methods perform
similarly on testing sequences. We note that if instead of the robust covariance estimate in (4.18)
and (4.19) we use the sample covariance, the performance of Lyap can be marginally worse than
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(a) (b) (c) (d) Eigenvalues in modulus

Figure 4.3: Testing performances and eigenvalues in modulus for the sparse model

Ridge whenn is small. A precise statement on how the estimation error inQ affectsÂ is worth
studying in the future. As a qualitative assessment of the estimated transition matrices, in Figure
4.2(d) we plot the eigenvalues in modulus of the trueA and theÂ’s obtained by different methods
whenT = 50 andn = 1600. The eigenvalues are sorted according to their modulus. Both Ridge
and Lyap severely under-estimate the eigenvalues in modulus, but Lyap preserves the spectrum
much better than Ridge.

Experimental results for the sparse model

We give boxplots of the performance measures in the 5 experiments in Figures 4.3(a) to 4.3(c),
and the eigenvalues in modulus of the trueA and someÂ’s in Figure 4.3(d). The sparse least-
square method and the proposed method (4.9) are abbreviatedas Sparse and Lyap, respectively.

We observe the same type of improvement as in the dense model:Lyap improves over Sparse
more significantly whenT is small andn is large. But the largest improvement occurs when
T = 75, not the shortest training sequence lengthT = 25. A major difference lies in the impact
of the Lyapunov penalization on the spectrum ofÂ, as revealed in Figure 4.3(d). WhenT is
as small as 25, the sparse least-square method shrinks all the eigenvalues but still keep most of
them non-zero, while Lyap with a non-sequence sample of size1600 over-estimates the first few
largest eigenvalues in modulus but shrink the rest to have very small modulus. In contrast, Lyap
with the trueQ preserves the spectrum much better. We may thus need an even better covariance
estimate for the sparse model.

4.4.2 Video Data

We test our methods using a video sequence of a periodically swinging pendulum, which is cut
from the video used in Chapter 3 and consists of 500 frames of 75-by-80 grayscale images.
One such frame is given in Figure 4.4(a) The period is about 23frames. To further reduce the
dimension we take the second-level Gaussian pyramids, resulting in images of size 9-by-11. We
then treat each reduced image as a 99-dimensional vector, and normalize each dimension to be
zero-mean and standard deviation 1. We analyze this sequence with a 99-dimensional first-order
VAR model. To check whether a VAR model is a suitable choice, we estimate a transition matrix
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(a) The pendulum (b) Normalized error (c) Cosine score

Figure 4.4: Results on the pendulum video data

from the first 400 frames by ridge regression while choosing the penalization parameter on the
next 50 frames, and predict on the last 50 frames. The best penalization parameter is 0.0156, and
the testing normalized error and cosine score are 0.33 and 0.97, respectively, suggesting that the
dynamics of the video sequence is well-captured by a VAR model.

We compare the proposed method (4.6) with the ridge regression for two lengths of the train-
ing sequence:T ∈ {6, 10, 20, 50}, and treat the last 50 frames as the testing sequence. For both
methods, we split the training sequence into two halves and use the second half as a validation
sequence. For the proposed method, we simulate a non-sequence sample by randomly choosing
300 frames from between the(T + 1)-st frame and the 450-th frame without replacement. We
repeat this 10 times.

The testing normalized errors and cosine scores of both methods are given in Figures 4.4(b)
and 4.4(c). For the proposed method, we report the mean performance measures over the 10
simulated non-sequence samples with standard deviation. When T ≤ 20, which is close to
the period, the proposed method outperforms ridge regression very significantly except when
T = 10 the cosine score of Lyap is barely better than Ridge. However, when we increaseT to
50, the difference between the two methods vanishes, even though there is still much room for
improvement as indicated by the result of our model sanity check before. This may be due to
our use of dependent data as the non-sequence sample, or simply insufficient non-sequence data.
As for λ1 andλ2, their values decrease respectively from 512 and 2,048 to less than 32 asT
increases, but since we fix the amount of non-sequence data, the interaction between their value
changes is less clear than on the synthetic data.

4.5 Conclusion

In this chapter we propose to improve penalized least-square estimation of VAR models by incor-
porating non-sequence data independently drawn from the stationary distribution of the under-
lying VAR model. We construct a novel penalization term based on the discrete-time Lyapunov
equation incorporating the covariance (estimate) of the stationary distribution. Although the re-
sulting optimization problems are non-convex, the standard least-square solution obtained by
using only sequence data often serves as a good initial point, reducing the need for multiple
random initializations. Experimental results demonstrate that our methods can improve signifi-
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cantly over standard penalized least-square methods when there are only few sequence data but
abundant non-sequence data and when the model assumption isvalid. Future directions include
investigating the impact of̂Q on Â in a precise manner, generalizing the proposed Lyapunov
penalization scheme to handle general noise covariances, and applying the proposed methods to
other real-world data.
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Chapter 5

Learning Hidden Markov Models from
Non-sequence Data

In this and the next chapters we turn to learning hidden Markov models (HMMs) from non-
sequence data. At first glance this seems to be an unthinkableattempt because, as shown in
Chapter 3, it is not clear how to deal with the various identifiability issues that can seriously
compromise learning of the fully observable VAR model, let alone the more complicated HMM,
whose estimation is challenging even in the usual sequential learning setting. One major hurdle
lies in the use of the EM learning paradigm, which often castslearning as a highly non-convex
optimization problem due to hidden variables and consequently suffers from multiple local op-
tima with no guarantee. Moreover, the EM approach usually does not shed much light on ways
to reduce the ambiguity of the learning problem without making strong assumptions, because
as long as the resulting optimization problem remains non-convex, formal analysis of learning
guarantees is still formidable.

We thus propose to take a different approach, based on another long-standing estimation
principle: the method of moments(MoM). The basic idea of MoM is to find model parameters
such that the resulting moments match or resemble the empirical moments. For some estimation
problems, this approach is able to give unique and consistent estimates while the maximum-
likelihood method gets entangled in multiple and potentially undesirable local maxima. Taking
advantage of this property, an emerging area of research in machine learning has recently devel-
oped MoM-based learning algorithmswith formal guaranteesfor some widely used latent vari-
able models, such as Gaussian Mixture Models [Hsu and Kakade, 2013], Hidden Markov Models
[Anandkumar et al., 2012b], Latent Dirichlet Allocation [Anandkumar et al., 2013; Arora et al.,
2012], etc. Although many learning algorithms for these models exist, some having been very
successful in practice, barely any formal learning guarantee was given until the MoM-based
methods were proposed. Such breakthroughs seem surprising, but it turns out that they are mostly
based on one crucial property: for quite a few latent variable models, the model parameters can
be uniquely determined fromspectral decompositionsof certain low-order moments of observ-
able quantities.

In this chapter we demonstrate that under the MoM and spectral learning framework, there are
reasonable assumptions on the generative process of non-sequence data, under whichthe tensor
decomposition method[Anandkumar et al., 2012a], a recent advancement in spectral learning,
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can provably recover the parameters of certain types offirst-order Markov modelsandhidden
Markov models. To the best of our knowledge, ours is the first work that provides formal guar-
antees for learning from non-sequence data in terms of parameter estimation accuracy. Interest-
ingly, these assumptions bear much similarity to the usual idea behindtopic modeling: with the
bag-of-words representation which isinvariant to word orderings, the task of inferring topics is
almost impossible givenone single document(no matter how long it is!), but becomes easier as
more documents touching upon various topics become available. For learning dynamic models,
what we need in the non-sequence data aremultiple setsof observations, where each set contains
independent samples generated fromits own initial distribution, and the many different initial
distributions together cover the entire (hidden) state space. In some of the scientific applications
described in Chapter 1, such as biological studies, this typeof assumptions might be realized by
running multiple experiments with different initial configurations or amounts of stimuli.

This chapter consists of four sections. Section 5.1 reviewsthe essentials of the tensor de-
composition framework [Anandkumar et al., 2012a]; Section5.2 details our assumptions on
non-sequence data, tensor-decomposition based learning algorithms, and theoretical guarantees;
Section 5.3 reports some simulation results confirming our theoretical findings, followed by con-
clusions in Section 5.4. Proofs of theoretical results are given in Appendix B.

5.1 Tensor Decomposition

We briefly introduce the tensor decomposition framework [Anandkumar et al., 2012a], mainly
following their exposition and describing only the components necessary for our work. We
first give some preliminaries and notations. A realp-th order tensorA is a member of the
tensor product space

⊗p
i=1 Rmi of p Euclidean spaces. For a vectorx ∈ Rm, we denote by

x⊗p := x ⊗ x ⊗ · · · ⊗ x ∈ ⊗p
i=1 Rm its p-th tensor power. A convenient way to represent

A ∈ ⊗p
i=1 Rm is through ap-way array of real numbers[Ai1i2···ip ]1≤i1,i2,...,ip≤m, whereAi1i2···ip

denotes the(i1, i2, . . . , ip)-th coordinate ofA with respect to a canonical basis. With this repre-
sentation, we can viewA as a multi-linear map that, given a set ofp matrices{Xi ∈ Rm×mi}pi=1,
produces anotherp-th order tensorA(X1, X2, · · · , Xp) ∈

⊗p
i=1 Rmi with the followingp-way

array representation:

A(X1, X2, · · · , Xp)i1i2···ip :=
∑

1≤j1,j2,...,jp≤m

Aj1j2···jp
(X1)j1i1(X2)j2i2 · · · (Xp)jpip . (5.1)

In this work we consider tensors that are up to the third-order (p ≤ 3) and, for most of the time,
alsosymmetric, meaning that theirp-way array representations are invariant under permutations
of array indices. More specifically, we focus on second and third-order symmetric tensors in or
slightly perturbed from the following form:

M2 :=
k∑

i=1

ωiµi ⊗ µi, M3 :=
k∑

i=1

ωiµi ⊗ µi ⊗ µi, (5.2)

satisfying the following non-degeneracy conditions:
Condition 1. ωi ≥ 0 ∀ 1 ≤ i ≤ k, {µi ∈ Rm}ki=1 are linearly independent, andk ≤ m.
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Algorithm 5.1 Whitening transformation
input A symmetric matrixM2 ∈ Rm×m, a symmetric third-order tensorM3 ∈ Rm×m×m, and

the target dimensionk.
output A reduced third-order tensorT ∈ Rk×k×k and a whitening transformationW ∈ Rm×k.

1: ComputeW := QD−1/2, whereQ ∈ Rm×k denotes the top-k orthonormal eigenvectors of
M2, andD ∈ Rk×k is a diagonal matrix of the correspondingk positive eigenvalues.

2: ComputeT := M3(W,W,W ).

As described in later sections, the core of our learning taskis the problem of estimating
{ωi}ki=1 and {µi}ki=1 from perturbed or noisy versions ofM2 andM3, which we solve with
the tensor decomposition method recently proposed by Anandkumar et al. [2012a], summarized
below. Suppose the noiselessM2 andM3 are available, we first perform awhitening stepon
them, as outlined in Algorithm 5.1, to obtain a whitened, lower-dimensional tensorT ∈ Rk×k×k

and a whitening transformationW ∈ Rm×k such that

T := M3(W,W,W ) =
k∑

i=1

ωi(W
⊤µi)

⊗3 =
k∑

i=1

1√
ωi

µ̃
⊗3
i ,

where the vectors̃µi :=
√
ωiW

⊤µi form an orthonormal basis ofRk becauseI = W⊤M2W =∑k
i=1W

⊤(
√
ωiµi)(

√
ωiµi)

⊤W =
∑k

i=1 µ̃iµ̃
⊤
i . Hence, the symmetric tensorT has a so-called

orthogonal decomposition, which may not exist for general symmetric tensors. Then by Theorem
4.3 of [Anandkumar et al., 2012a], which establishes the following results under Condition 1:

1. the set ofrobust eigenvectors(c.f. Section 4.2 of [Anandkumar et al., 2012a]) ofT corre-
spond exactly to{µ̃i}ki=1;

2. the eigenvalue associated withµ̃i is equal to1/
√
ωi, ∀ 1 ≤ i ≤ k;

3. if (v, λ) is a pair of robust eigenvector/eigenvalue ofT , thenµi = λ(W⊤)†v for some
1 ≤ i ≤ k, where† denotes the Moore-Penrose pseudo inverse;

we can reduce the original problem of recovering the structure in (5.2) into a robust tensor
eigen-decomposition problem. Motivated by power iteration for matrix eigen computation,
Anandkumar et al. [2012a] verify that starting from almost every vectorθ0 ∈ Rk, the tensor
power iteration

θt :=
T (I,θt−1,θt−1)

‖T (I,θt−1,θt−1)‖
,

where‖ · ‖ denotes the vector 2-norm, converges to some robust eigenvector ofT at a quadratic
rate, and thereforek successive applications of tensor power iteration with deflation result in all
pairs of robust eigenvectors/eigenvalues.

In practice we almost never have the exactM2 andM3, but only noisy or perturbed versions
M̂2 andM̂3, which are usually estimates from the data. Perturbation may destroy the tensor struc-
ture (5.2), so the reduced tensorT̂ resulting from applying Algorithm 5.1 tôM2 andM̂3 may no
longer be orthogonally decomposable, hindering the subsequent robust tensor eigendecomposi-
tion. Nevertheless, Anandkumar et al. [2012a] demonstratethat if the perturbationE := T̂ − T
is a symmetric tensor with a small operator norm defined as‖E‖ := sup‖θ‖=1 |E(θ,θ,θ)|,
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Algorithm 5.2 Robust tensor power method

input A symmetric tensorT ∈ Rk×k×k, number of iterationsL, N.
output the estimated eigenvector/eigenvalue pair; the deflated tensor.

1: for τ = 1 to L do
2: Drawθ

(τ)
0 uniformly at random from the unit sphere inRk.

3: for t = 1 to N do
4: θτ

t :=
T (I,θ

(τ)
t−1,θ

(τ)
t−1)

‖T (I,θ
(τ)
t−1,θ

(τ)
t−1)‖

.

5: end for
6: end for
7: Let τ ∗ := arg max1≤τ≤L T (θ

(τ)
N
,θ

(τ)
N
,θ

(τ)
N

).
8: DoN power iteration updates (Line 4) starting fromθ(τ∗)

N
to obtainθ̂, and set̂λ := T (θ̂, θ̂, θ̂)

9: return the estimated eigenvector/eigenvalue pair(θ̂, λ̂); the deflated tensorT − λ̂θ̂⊗3
.

thenk successive applications of somerandomizedtensor power iteration coupled with deflation
yield accurate estimates of all robust eigenvector/eigenvalue pairs with high probability. More
precisely, they proposethe Robust tensor power methodoutlined in Algorithm 5.2, which em-
ploys multiple random restarts, and provide a theoretical guarantee on its robustness against the
input perturbation:
Theorem 1. (Theorem 5.1 of [Anandkumar et al., 2012a]) LetT̂ = T + E ∈ Rk×k×k, where
T is a symmetric tensor with orthogonal decompositionT =

∑k
i=1 λiv

⊗3
i where eachλi > 0,

{v1,v2, . . . ,vk} is an orthonormal basis, andE has operator normǫ := ‖E‖. Defineλmin :=
min({λi}ki=1) andλmax := max({λi}ki=1). There exists universal constantsc1, c2, c3 > 0 such
that the following holds. Pick anyη ∈ (0, 1), and suppose

ǫ ≤ c1 ·
λmin

k
, N ≥ c2 ·

(
log(k) + log log(λmax/ǫ)

)
, and

√
ln(L/ log2(

k
η
))

ln(k)
·
(

1−
ln(ln(L/ log2(

k
η
))) + c3

4 ln(L/ log2(
k
η
))

−
√

ln(8)

ln(L/ log2(
k
η
))

)
≥ 1.02

(
1 +

√
ln(4)

ln(k)

)
.

(Note that the condition onL holds withL = poly(k) log(1/η).) Suppose that Algorithm 5.2 is
iteratively calledk times with numbers of iterationsL andN, where the input tensor iŝT in the
first call, and in each subsequent call, the input tensor is the deflated tensor returned by the previ-
ous call. Let(v̂1, λ̂1), (v̂2, λ̂2), . . . , (v̂k, λ̂k) be the sequence of estimated eigenvector/eigenvalue
pairs returned in thesek calls. With probability at least1 − η, there exists a permutationρ on
{1, . . . , k} such that

‖vρ(j) − v̂j‖ ≤ 8ǫ/λρ(j), |λρ(j) − λ̂j| ≤ 5ǫ, ∀1 ≤ j ≤ k, and ‖T −
k∑

j=1

λ̂jv̂
⊗3
j ‖ ≤ 55ǫ.

This result, together with existing perturbation theory regarding the whitening procedure
(e.g., Appendix C.1 of [Anandkumar et al., 2013]), allow us totranslate the perturbations in̂M2

andM̂3 into the estimation errors inω′
is andµi’s, guaranteeing accurate estimation under small

input perturbation.
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Figure 5.1: Running example of Markov chain with three states

5.2 Learning from Non-sequence Data

We first describe a generative process of non-sequence data for first-order Markov models and
demonstrate how to apply tensor decomposition methods to perform consistent learning. Then
we extend these ideas to hidden Markov models and provide theoretical guarantees on the sam-
ple complexity of the proposed learning algorithm. For notational conveniences we define the
following vector-matrix cross product⊗d∈{1,2,3} : (v ⊗1 M)ijk := vi(M)jk, (v ⊗2 M)ijk =
vj(M)ik, (v ⊗3 M)ijk = vk(M)ij. For a matrixM we denote byMi its i-th column.

5.2.1 First-order Markov Models

Let P ∈ [0, 1]m×m be the transition probability matrix of a discrete, first-order, ergodic Markov
chain withm states and a unique stationary distributionπ. LetP be of full rank and1⊤P = 1⊤.
To give a high-level idea of what makes it possible to learnP from non-sequence data, we
use the simple Markov chain with three states shown in Figure5.1 as our running example,
demonstrating step by step how to extend from a very restrictive generative setting of the data
to a reasonably general setting, along with the assumptionsmade to allow consistent parameter
estimation. In the usual setting where we have sequences of observations, say{x(1),x(2), . . .}
with parenthesized superscripts denoting time, it is straightforward to consistently estimateP .
We simply calculate the empirical frequency of consecutivepairs of states:

P̂ij :=

∑
t 1(x(t+1) = i,x(t) = j)∑

t 1(x(t) = j)
.

Alternatively, suppose for each statej, we have ani.i.d. sampleof its immediate next state
Dj := {x(1)

1 ,x
(1)
2 , . . . | x(0) = j}, where subscripts are data indices. Consistent estimation in

this case is also easy: the empirical distribution ofDj consistently estimatesPj, thej-th column
of P . For example, the Markov chain in Figure 5.1 may produce the following three samples,
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whose empirical distributions estimate the three columns of P respectively:

D1 = {2, 1, 2, 2, 2, 2, 2, 2, 2, 2} ⇒ P̂1 = [0.1 0.9 0.0]⊤,

D2 = {3, 3, 2, 3, 2, 3, 3, 2, 3, 3} ⇒ P̂2 = [0.0 0.3 0.7]⊤,

D3 = {1, 1, 3, 1, 3, 3, 1, 3, 3, 1} ⇒ P̂3 = [0.5 0.0 0.5]⊤.

A nice property of these estimates is that, unlike in the sequential setting, they do not depend
on any particular ordering of the observations in each set. Nevertheless, such data are not quite
non-sequenced because all observations are made at exactlythe next time step. We thus consider
the following generalization: for each statej, we haveDj := {x(t1)

1 ,x
(t2)
2 , . . . | x(0) = j}, i.e.,

independent samples of states drawn atunknownfuture times{t1, t2, . . .}. For example, our data
in this setting might be

D1 = {2, 1, 2, 3, 2, 3, 3, 2, 2, 3},
D2 = {3, 3, 2, 3, 2, 1, 3, 2, 3, 1},
D3 = {1, 1, 3, 1, 2, 3, 2, 3, 3, 2}.

(5.3)

Obviously it is hard to extract information aboutP from such data. However, if we assume
that the unknown times{ti} are i.i.d. random variables following some distribution independent
of the initial statej, it can then be easily shown thatDj ’s empirical distribution consistently
estimatesTj, thej-th column of the theexpected transition probability matrixT := Et[P

t]:

D1 = {2, 1, 2, 3, 2, 3, 3, 2, 2, 3} ⇒ T̂1 = [0.1 0.5 0.4]⊤,

D2 = {3, 3, 2, 3, 2, 1, 3, 2, 3, 1} ⇒ T̂2 = [0.2 0.3 0.5]⊤,

D3 = {1, 1, 3, 1, 2, 3, 2, 3, 3, 2} ⇒ T̂3 = [0.3 0.3 0.4]⊤.

In general there exist manyP ’s that result in the sameT . Therefore, as detailed later, we make
a specific distributional assumption on{ti} to enable unique recovery of the transition matrixP
from T (Assumption A.1). Next we consider a further generalization, where the unknowns are
not only the time stamps of the observations, but also the initial statej. In other words, we only
know each set was generated from the same initial state, but do not know the actual initial state.
In this case, the empirical distributions of the sets consistently estimate the columns ofT in some
unknown permutationΠ:

DΠ(3) = {1, 1, 3, 1, 2, 3, 2, 3, 3, 2} ⇒ T̂Π(3) = [0.3 0.3 0.4]⊤.

DΠ(2) = {3, 3, 2, 3, 2, 1, 3, 2, 3, 1} ⇒ T̂Π(2) = [0.2 0.3 0.5]⊤,

DΠ(1) = {2, 1, 2, 3, 2, 3, 3, 2, 2, 3} ⇒ T̂Π(1) = [0.1 0.5 0.4]⊤.

In order to be able to identifyΠ, we will again resort to randomness and assume the unknown
initial states are random variables following a certain distribution (Assumption A.2) so that the
data carry information aboutΠ. Finally, we generalize from a single unknown initial stateto an
unknowninitial state distribution, where each set of observationsD := {x(t1)

1 ,x
(t2)
2 , . . . | π(0)}
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consists of independent samples of states drawn at random times from some unknown initial state
distributionπ(0). For example, the data may look like:

D
π

(0)
1

= {1, 3, 3, 1, 2, 3, 2, 3, 3, 2},
D

π
(0)
2

= {3, 1, 2, 3, 2, 1, 3, 2, 3, 1},
D

π
(0)
3

= {2, 1, 2, 3, 3, 3, 3, 1, 2, 3},
...

With this final generalization, most would agree that the generated data are non-sequenced and
that the generative process is flexible enough to model some of the real-world situations de-
scribed in Chapter 1. However, simple estimation with empirical distributions no longer works
because each set may now contain observations from multipleinitial states. This is where we
take advantage of the tensor decomposition framework outlined in Section 5.1, which requires
proper assumptions on the initial state distributionπ(0) (Assumption A.3).

More formally, the aforementioned ideas motivate the following three assumptions:
• Assumption A.1. The missing times{ti} are i.i.d. according to a Geometric distribu-

tion. This makes it possible to uniquely recover the transition matrixP from the expected
transition matrixT .

• Assumption A.2. The stationary distributionπ of the Markov chain is such thatπi 6=
πj, i 6= j. This allows recovering the correct column permutation ofT .

• Assumption A.3. The initial state distributionπ(0) is a random quantity following a
Dirichlet distribution, andE[π(0)] = π, the stationary distribution. This allows the use
of tensor decomposition methods.

Now we are ready to give the definition of our entire generative process. Assume we haveN sets
of non-sequence data each containingn observations, and each set of observations{xi}ni=1 were
independently generated by the following:
• Draw an initial distribution

π(0) ∼ Dirichlet(α), (Assumption A.3)
E[π(0)] = α/(

∑m
i=1 αi) = π, πi 6= πj ∀ i 6= j. (Assumption A.2)

• For i = 1, . . . , n,

Draw a discrete time
ti ∼ Geometric(r), ti ∈ {1, 2, 3, . . .}. (Assumption A.1)

Draw an initial state
si ∼ Multinomial(π(0)), si ∈ {0, 1}m.

Draw an observation
xi ∼ Multinomial(P tisi), xi ∈ {0, 1}m.

As mentioned earlier, our generative process captures somecharacteristics of real-world situ-
ations. First, all the data points in the same set share the same initial state distribution but can
have different initial states; the initial state distribution varies across different sets and yet centers
around the stationary distribution of the Markov chain. As mentioned in the beginning of this
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(a) In terms ofP andr (b) In terms ofT

Figure 5.2: Graphical models of the data generative processfor first-order Markov models

chapter, this may be achieved in biological studies by running multiple experiments with differ-
ent input stimuli, so the data collected in the same experiment can be assumed to have the same
initial state distribution. Second, each data point is drawn from an independent trajectory of the
Markov chain, a similar situation in the modeling of galaxies or Alzheimer’s, and random time
steps could be used to compensate for individual variationsin speed: a small/largeti corresponds
to a slowly/fast evolving individual object. Finally, the geometric distribution can be interpreted
as an overall measure of the magnitude of speed variation: a large success probabilityr would
result in many smallti’s, meaning that most objects evolve at similar speeds, while a smallr
would lead toti’s taking a wide range of values, indicating a large speed variation.

Figure 5.2(a) shows the graphical model of our generative process. Interestingly, this graph-
ical model is very similar to the widely-used topic model Latent Dirichlet Allocation (LDA)
[Blei et al., 2003]. In fact, by summing out the random timet, we obtain a graphical model that
depends only on the expected transition probability matrixT and, as shown in Figure 5.2(b),
has exactly the same structure as LDA. More specifically, we can view a set of non-sequence
data points as a document generated by an LDA model, where each xi corresponds to a word,
si to a topic, the expected transition matrixT to the word-topic matrix, the initial distribution
π(0) to the topic distribution of the document, and the stationary distributionπ to the overall
topic proportions. Such a structural equivalence to LDA allows us to take advantage of recent
advances in spectral learning [Anandkumar et al., 2012a] with rigorous guarantees on parameter
estimation. However, our generative process has a critically distinct property:the words are the
topics, both of which correspond to states, and as a result, unlike most topic models, is NOT
invariant to column permutations of the word-topic matrix.We thus need Assumption A.2 to be
able to recover the correct permutation.

Now we describe our spectral learning algorithm, which consists of three main steps:

1. Compute certain low-order moments of the data;

2. Perform tensor decomposition of the empirical moments;

3. Recover model parameters from the factors given by tensordecomposition.

The high-level idea is that according to our generative process, certain low-order moments of the
data have the tensor structure (5.2) with the factors being the Markov model parameters, so we
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can use the tensor decomposition method in Section 5.1 to extract the model parameters from the
moments. The following theorem gives the desired low-ordermoments and their structure:
Theorem 2. Letα0 :=

∑
i αi. Define the expected transition probability matrixT := Et[P

t] =
rP (I − (1− r)P )−1 and

C2 := E[x1 ⊗ x2],

C3 := E[x1 ⊗ x2 ⊗ x3],

M2 := (α0 + 1)C2 − α0E[x1]⊗ E[x1],

M3 := (α0+2)(α0+1)
2

C3 − (α0+1)α0

2

3∑

d=1

E[x1]⊗d C2 + α2
0E[x1]

⊗3.

Then the following holds:

E[x1] = π,

C2 = 1
α0+1

Tdiag(π)T⊤ + α0

α0+1
π ⊗ π,

C3 = 2
(α0+2)(α0+1)

∑

i

πiT
⊗3
i + α0

α0+2

3∑

d=1

π ⊗d C2 − 2α2
0

(α0+2)(α0+1)
π⊗3,

M2 = Tdiag(π)T⊤,

M3 =
∑

i

πiT
⊗3
i .

We callM2 andM3 the adjusted moments because they are computed from the raw moments
E[x1], C2 andC3. Because of the connection of our generative process to LDA,the proof of
this theorem, given in Appendix B.1.1, mainly uses existingresults in spectral learning of LDA
[Anandkumar et al., 2013], which rely on the special structure in the moments of the Dirichlet
distribution (Assumption A.3). According to Theorem 2, it is clear that the adjusted momentsM2

andM3 have the desired tensor structure (5.2). Assumingα0 is known, we can form estimateŝM2

andM̂3 by computing empirical moments from the data. Note that thexi’s are exchangeable,
so we can use all pairs and triples of data points to compute the estimates. Since the tensor
decomposition method may return̂T under any column permutation, we need to recover the
correct matching between its rows and columns. To do so, we note that theπ̂ returned by the
tensor decomposition method undergoes the same permutation as the columns of̂T , and because
all πi’s have different values by Assumption A.2, we may recover the correct matching by sorting
both the returned̂π and the mean̄π of all data.

The last issue is recoveringP from T̂ , for which we make the distributional assumption
A.1 on the random times{ti}. With such an assumption, we have reduced the search space
from all possible mappings betweenT andP to one single parameter, the success probabilityr.
Nevertheless, recoveringP andr is in general still difficult even when the exactT is available,
because multiple choices ofP andr may result in the sameT . In practical situations, however,
we can often assume the underlying transition probability matrix P has some zero entries, e.g.,
when the true Markov chain is based on a graph, or when the state transition is under some
external or physical constraint. With this extra assumption, we prove that unique recovery is
possible in the population case:
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Theorem 3. LetP ∗, r∗, T ∗ andπ∗ denote the true values of the transition probability matrix, the
success probability, the expected transition matrix, and the stationary distribution, respectively.
Assume thatP ∗ is ergodic and of full rank, andP ∗

ij = 0 for some arbitraryi and j. LetS :=
{λ/(λ− 1) | λ is a real negative eigenvalue ofT ∗} ∪ {0}. Then the following holds:
• 0 ≤ max(S) < r∗ ≤ 1.
• For all r ∈ (0, 1] \ S, P (r) := (rI + (1− r)T ∗)−1T ∗ is well-defined and satisfies

1⊤P (r) = 1⊤, P (r)π∗ = π∗, P ∗ = P (r∗).
P (r)ij ≥ 0 ∀ i, j ⇐⇒ r ≥ r∗.

That is,P (r) is a stochastic matrix if and only ifr ≥ r∗.
The proof is in Appendix B.2, and the key step is to show that the zero entries inP ∗ become

negative whenr < r∗. According to this theorem, binary search on(0, 1] suffices to recoverr∗

andP ∗ from T ∗. However, it may fail when we replaceT ∗ by an estimatêT because even̂P (r∗)
might contain negative values. A more practical estimationprocedure is the following: for each
value ofr in a decreasing sequence starting from 1, we projectP̂ (r) := (rI + (1 − r)T̂ )−1T̂
onto the space of stochastic matrices and record the projection distance. Then starting from
1, we search in the sequence of projection distances for the first sudden increase, and take the
corresponding value ofr and (projected)P̂ (r) as the final estimates. The idea is thatP̂ (r)
should be close to the space of stochastic matrices whenr ≥ r∗, but starts to move away by
having negative entries asr gets smaller thanr∗. It is easy to see the estimates produced by such
a procedure converge tor∗ andP ∗ as T̂ gets closer toT ∗ and the discrete search space forr
becomes denser. However, a formal convergence rate is yet tobe identified. Also, while lacking
a formal proof, we suspect that the more zero entriesP ∗ has, the easier it is to estimater∗ because
P̂ (r) for r < r∗ would be further away from the space of stochastic matrices by having more
negative entries. Finally, although sparsity is sufficientfor unique recovery ofP ∗ andr∗, more
investigation is needed to clarify whether it is also necessary.

We summarize the entire learning procedure in Algorithm 5.3, which assumes the truer and
α0 are known. Because the empirical moments are consistent estimators for the true moments
and the tensor decomposition method returns accurate estimates under small input perturbation,
we can conclude that the estimates output by Algorithm 5.3 will converge (with high probability)
to the true quantities as the sample sizeN increases. Sample complexity bounds can be obtained
with techniques similar to those for Theorem 5 in the next section.
Remarks on Identifiability . Unlike in Chapter 3, where some properties of the true dynamic
model are not identifiable from non-sequence data, our proposed method here guarantees con-
sistent parameter estimation. The main reason, as one can imagine, is that non-identifiability
is assumed away in our data generative model. For example, consider the following transition
probability matrix and its transpose:

P =




q 0 1− q
1− q q 0

0 1− q q


 , P⊤ =




q 1− q 0
0 q 1− q

1− q 0 q


 ,

which are ergodic for0 < q < 1. The sequences of observations generated by these two
Markov chains will be in approximately opposite directionsof time, and therefore causes non-
identifiability when time information is missing. However,such Markov chains are excluded by
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Algorithm 5.3 Tensor decomposition method for learning Markov chains from non-sequence
data
input N sets of non-sequence data points, the success probabilityr, the Dirichlet parameterα0,

and numbers of iterationsL andN.
output Estimateŝπ andP̂ .

1: Compute empirical averageŝπ, Ĉ2 andĈ3.
2: ComputeM̂2 andM̂3.
3: Run Algorithm 5.1 onM̂2 andM̂3 with target dimensionm to obtain a symmetric tensor
T̂ ∈ Rm×m×m and a whitening transformation̂W ∈ Rm×m.

4: Run Algorithm 5.2m times each with numbers of iterationsL andN, the input tensor in
the first run set tôT and in each subsequent run set to the deflated tensor returnedby the
previous run, resulting inm pairs of eigenvalue/eigenvector{(λ̂i, v̂i)}mi=1.

5: Match{(λ̂i, v̂i)}mi=1 with observation symbols by sorting{λ̂i}mi=1 and{π̂i
−1/2}mi=1.

6: Obtain estimate of the transition probability matrix:

P̂ := (rI + (1− r)T̂ )−1T̂ ,

whereT̂ := (Ŵ⊤)†V̂ Λ̂, V̂ := [v̂1 · · · v̂m], andΛ̂ := diag([λ̂1 · · · λ̂m]⊤).
7: (Optional) Project̂P onto the space of stochastic matrices.

our assumption that the stationary distributionπ satisfiesπi 6= πj ∀ i 6= j becauseP1 = 1. More
generally, all Markov chains with a doubly-stochastic transition probability matrix are excluded
by that assumption because their stationary distributionsare the uniform distribution. Another
potentially non-identifiable class of models are thetime-reversible Markov chains[Chapter 6.5
Grimmett and Stirzaker, 2001], where the transition probability P and the stationary distribution
π satisfy

πjPij = πiPji ∀ i, j.
A well-known result is that the time direction of such a Markov chain cannot be distinguished
from the reverse direction after it fully mixes. According to our generative assumption, each
of the non-sequence data sets contains, with a positive probability, observations madebeforethe
Markov chain fully mixes. Those observations make it possible to eliminate the non-identifiability
of time direction even in the case of time reversible models.

5.2.2 Hidden Markov Models

Equipped with the intuition and strategies for learning first-order Markov models, we are now
ready to handle the more complicated hidden Markov models. As detailed later, it turns out that
both the generative process and the learning procedure for HMMs are quite similar to those for
Markov chains, with the main distinction beingtwoapplications of tensor decomposition, where
the extra one is due to the mapping from the hidden state spaceto the observation space.

Let P andπ now be defined over the hidden discrete state space of cardinality k and have
the same properties as the first-order Markov model in Section 5.2.1. Again, we assume the
non-sequence data consists ofN sets of data points, where each set now contains continuous
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Figure 5.3: Graphical model of the data generative process for HMMs

observations inRm. The generative process for each set is almost identical to and therefore
shares the same interpretation with the one for Markov chains, except for an extra mapping from
the discrete hidden state space to a continuous observationspace:
• Draw an initial hidden state distribution

π(0) ∼ Dirichlet(α),
E[π(0)] = α/(

∑k
i=1 αi) = π, πi 6= πj ∀ i 6= j.

• For i = 1, . . . , n,

Draw a discrete time
ti ∼ Geometric(r), ti ∈ {1, 2, 3, . . .}.
Draw an initial hidden state
si ∼ Multinomial(π(0)), si ∈ {0, 1}k.

Draw a hidden state at timeti
hi ∼ Multinomial(P tisi), hi ∈ {0, 1}k.

Draw an observation:
xi = Uhi + ǫi,

whereU ∈ Rm×k denotes a rank-k matrix of mean observation vectors for the
k hidden states, and the random noise vectorsǫi’s are i.i.d satisfyingE[ǫi] = 0,
Var[ǫi] = σ2I, andE[(ǫi)

3
d] = 0, 1 ≤ d ≤ m.

A graphical model representation is in Figure 5.3. Compared with the graphical model in Figure
5.2(b), the observation model here is a mixture distribution rather than a discrete state, which
makes learning more complicated, but still manageable. Forsimplicity we require a common
spherical noise covariance, but our method can be easily modified to allow different spherical
covariancesσ2

j I for different hidden states (c.f. Section 3.2 of [Anandkumar et al., 2012a]). In
Section 5.4 we will discuss possible ways to handle more general noise covariances. Another
important requirement on the observation noise is zero skewness, i.e., zero third-order moment.
As discussed later, we need this condition to ensure that certain moments have the desired ten-
sor structure. While zero skewness rules out some potentially useful observation models, we
discuss in Section 5.4 how to handle one interesting class ofskewed observation noise: discrete
observations.

As in Section 5.2.1, we develop our spectral learning algorithm around the tensor structure
(5.2) in low-order moments of the data:

68



Theorem 4. Letα0 :=
∑

i αi. Define the expected hidden state transition matrixT := Et[P
t] =

rP (I − (1− r)P )−1 and

V1 := E[x1],

V2 := E[x1 ⊗ x1],

V3 := E[x1⊗3],

M ′
2 := V2 − σ2I,

M ′
3 := V3 −

3∑

d=1

V1 ⊗d (σ2I),

C2 := E[x1 ⊗ x2],

C3 := E[x1 ⊗ x2 ⊗ x3],

M2 := (α0 + 1)C2 − α0V1 ⊗ V1,

M3 := (α0+2)(α0+1)
2

C3 − (α0+1)α0

2

3∑

d=1

V1 ⊗d C2 + α2
0V

⊗3
1 .

Then the following holds:

V1 = Uπ,

V2 = Udiag(π)U⊤ + σ2I,

V3 =
∑

i

πiU
⊗3
i +

3∑

d=1

V1 ⊗d (σ2I),

M ′
2 = Udiag(π)U⊤,

M ′
3 =

∑

i

πiU
⊗3
i ,

C2 = 1
α0+1

UTdiag(π)(UT )⊤ + α0

α0+1
V1 ⊗ V1,

C3 = 2
(α0+2)(α0+1)

∑

i

πi(UT )⊗3
i + α0

α0+2

3∑

d=1

V1 ⊗d C2 − 2α2
0

(α0+2)(α0+1)
V ⊗3

1

M2 = UTdiag(π)(UT )⊤,

M3 =
∑

i

πi(UT )⊗3
i .

The proof is in Appendix B.1.2. This theorem suggests that HMMs requiretwo applications
of the tensor decomposition method: one on the adjusted cross momentsM2 andM3, as in
learning Markov chains, for extracting the matrix productUT , and the other on the adjusted
covarianceM ′

2 and tri-varianceM ′
3 for extracting the mean observation vectorsU . Just as the

low-order moments of first-order Markov models in Theorem 2 are similar to those of LDA,
the tensor structures here also have connections to other latent variable models. First,M ′

2 and
M ′

3 are reminiscent of mixtures of spherical Gaussians. Indeed, each set of observations can
be viewed as independent samples drawn from a mixture model where each mixture component
is a distribution with a spherical covariance and the mixture weights areTπ(0), π(0) denoting
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Algorithm 5.4 Tensor decomposition method for learning HMM from non-sequence data
input N sets of non-sequence data points, the success probabilityr, the Dirichlet parameterα0,

the number of hidden statesk, and numbers of iterationsL andN.
output Estimateŝπ, P̂ andÛ possibly under permutation of state labels.

1: Compute empirical averageŝV1, V̂2, V̂3, Ĉ2, Ĉ3, andσ̂2 := λmin(V̂2 − V̂1V̂1

⊤
).

2: ComputeM̂2, M̂3, M̂ ′
2, M̂

′
3

3: Run Algorithm 5.1 onM̂2 andM̂3 with the number of hidden statesk to obtain a symmetric
tensorT̂ ∈ Rk×k×k and a whitening transformation̂W ∈ Rm×k.

4: Run Algorithm 5.2k times each with numbers of iterationsL andN, the input tensor in
the first run set tôT and in each subsequent run set to the deflated tensor returnedby the
previous run, resulting ink pairs of eigenvalue/eigenvector{(λ̂i, v̂i)}ki=1.

5: Repeat Steps 4 and 5 on̂M ′
2 andM̂ ′

3 to obtainT̂ ′, Ŵ ′ and{(λ̂′i, v̂′
i)}ki=1.

6: Match{(λ̂i, v̂i)}ki=1 with {(λ̂′i, v̂′
i)}ki=1 by sorting{λ̂i}ki=1 and{λ̂′i}ki=1.

7: Obtain estimates of HMM parameters:

ÛT := (Ŵ )†V̂ Λ̂, Û := (Ŵ ′
⊤
)†V̂ ′Λ̂′,

P̂ := (rÛ + (1− r)ÛT )†ÛT , π̂ := [λ̂1

−2 · · · λ̂k

−2
]⊤,

whereV̂ := [v̂1 · · · v̂k], Λ̂ := diag([λ̂1 · · · λ̂k]
⊤); V̂ ′ andΛ̂′ are defined in the same way.

8: (Optional) Project̂π onto the simplex and̂P onto the space of stochastic matrices.

the initial hidden state distribution of that set. Therefore, when forming estimates forM ′
2 and

M ′
3, which require an estimate for the noise varianceσ2, we may use the existing result for

spherical Gaussians (Theorem 3.2 in [Anandkumar et al., 2012a]) to obtain an estimatêσ2 =
λmin(V̂2−V̂1V̂

⊤
1 ). Also worth noting is that the zero skewness condition on theobservation noise,

as detailed in Appendix B.1.2, is needed so thatM ′
3 has the desired tensor structure. Second,M2

andM3 can be viewed as cross moments of a topic model with continuous observations, i.e.,
a “word” is a real vector drawn from a topic-specific continuous distribution, whose mean is a
column ofUT . Interestingly, the proof of Theorem 4 in Appendix B.1.2 indicates thatM2 and
M3 always have the same form regardless of the observation noise model. This property, as
discussed later in Section 5.4, allows the possibility of handling more general noise covariances.

As in learning Markov chains, we need to resolve issues related to permutation invariance
inherent in tensor decomposition. The situation is a bit more complicated here. First note that
P = (rU + (1 − r)UT )†UT, which implies that permuting the columns ofU and the columns
of UT in the same manner has the effect of permuting both the rows and the columns ofP ,
essentially re-labeling the hidden states. Hence we can only expect to recoverP up to some
simultaneous row and column permutation. By the assumptionthatπi’s are all different, we can
sort the two estimateŝπ′ andπ̂ to match the columns of̂U andÛT , and obtainP̂ if r is known.
Whenr is unknown, a similar heuristic to the one for first-order Markov models can be used to
estimater, based on the fact thatP = (rU + (1− r)UT )†UT = (rI + (1− r)T )−1T , meaning
Theorem 3 still holds when expressingP byU andUT .
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Algorithm 5.4 gives the complete procedure for learning HMMfrom non-sequence data.
Combining the perturbation bound of the tensor decomposition method in Theorem 1, perturba-
tion theory on the whitening procedure (Appendix B.3.1) andthe matrix pseudo inverse [Stewart,
1977], and concentration bounds on empirical moments (Appendix 7), we provide a sample com-
plexity analysis of the proposed algorithm:
Theorem 5. Suppose the numbers of iterationsN andL for the tensor decomposition methods
satisfy the conditions in Theorem 1, and the number of hiddenstatesk, the success probabilityr,
and the Dirichlet parameterα0 are known. For anyη ∈ (0, 1) andǫ > 0, if the number of sets

N ≥ 12 max(k2,m)m3ν3(α0 + 2)2(α0 + 1)2

η
·

max

(
225000

δ2
min

,
4600

min(σk(M ′
2), σk(M2))2

,
42000c2σ1(UT )2 max(σ1(UT ), σ1(U), 1)2

ǫ2σk(rU + (1− r)UT )4 min(σk(UT ), σk(U), 1)4

)
,

wherec is some constant,ν := max(σ2 + maxi,k(|Uik|2), 1), δmin := mini,j |1/
√
πi − 1/

√
πj|,

andσi(·) denotes thei-th largest singular value, then there exists a permutationmatrix Π such
that theP̂ andÛ returned by Algorithm 5.4 satisfy

Prob(‖P −Π⊤P̂Π‖ ≤ ǫ) ≥ 1− η and Prob

(
‖U − ÛΠ‖ ≤ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)
≥ 1− η,

where‖ · ‖ denotes the matrix spectral norm.
The proof is in Appendix B.4. In this result, the sample sizeN exhibits a fairly high-order

polynomial dependency onm, k, ǫ−1 and scales with the inverse of the failure probability1/η
linearly instead of logarithmically, as is common in samplecomplexity results on spectral learn-
ing [Anandkumar et al., 2012a,b]. This is mainly because we do not impose boundedness or
sub-Gaussianity constraints on the observation model, andonly use the weaker Markov inequal-
ity for bounding the deviation in the empirical moments. Note that simply assuming the state-
conditioned observation noise to be sub-Gaussian does not enable the use of stronger bounds
such as Hoeffding bounds, because a mixture of sub-Gaussiandistributions may not be sub-
Gaussian. One possible strategy to strengthen our result isapplying the analysis techniques of
Hsu and Kakade [2013], who demonstrate that the sample complexity of spectral learning of cer-
tain mixture models has a logarithmic dependency on1/η. However, efforts beyond a direct use
of their results are likely needed due to our LDA-like moments,M2 andM3. Also worth noting
is thatδ−2

min acts as a threshold. As shown in our proof, as long as the operator norm of the tensor
perturbation is sufficiently smaller thanδmin, which measures the gaps between differentπi’s, we
can correctly match the two sets of estimated tensor eigenvalues. Lastly, the lower bound ofN ,
as one would expect, depends on conditions of the matrices being estimated as reflected in the
various ratios of singular values.

An interesting quantity missing from the sample analysis isthe size of each setn. To simplify
the analysis we essentially assume1 n = 3, but understanding hown might affect the sample
complexity may have a critical impact in practice: given a fixed budget on the total number of

1To be rigorous, we assumen to be the smallest number so that we can compute from a single set all the various
empirical moments with non-overlapping data points.
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observations that can be made, should we collect more sets orlarger sets? What quantities may
this choice depend on? We do not have a formal result yet, but intuitively, more sets seem to be
always as good as, if not better than larger sets. According to our generative process, a larger
set provides more information only about a subset ofT ’s columns, those corresponding to the
hidden states on which the set-specific initial state distributionπ(0) has large probability mass,
whereas more sets provide more information about the entiremodel. A rigorous analysis is an
interesting direction for future work.

5.3 Simulation

We consider learning HMMs from non-sequence data produced by the assumed generative pro-
cess. The true HMM hasm = 40, k = 5 and spherical Gaussian noise withσ2 = 2. The mean
vectorsU were sampled from an independent univariate standard normal and then normalized to
lie on the unit sphere. The transition matrixP and the stationary hidden state distributionπ are

P =




0.1088 0.3512 0.4114 0 0.0642
0.1271 0.0411 0.0844 0.2125 0.4950
0.1310 0.0424 0.0251 0.5287 0.3770
0.5306 0.2957 0.4564 0.0489 0.0251
0.1026 0.2697 0.0228 0.2100 0.0386



, π =




0.1858
0.1747
0.2324
0.2730
0.1340



. (5.4)

The transition probability matrix has exactly one zero entry. We conduct two experiments.
The first experiment is a sanity check on the consistency of the proposed algorithm. We set

α0 = 1 and r = 0.3 in the generative process, and consider different numbers of setsN ∈
1000{20, 21, . . . , 210}, while fixing the size of each setn = 1000. The numbers of iterations
for the tensor decomposition method wereN = 200 andL = 1000. Figure 5.4(a) plots the
relative matrix estimation error (in spectral norm) against the sample sizeN for P , U , andUT ,
showing thatU is the easiest to learn, followed byUT , andP is the most difficult, and that all
three errors converge to a very small value for sufficiently largeN . Note that in Theorem 5 the
bounds forP andU are different. With the model used here, the extra multiplicative factor in
the bound forU is less than 0.007, suggesting thatU is indeed easier to estimate thanP . Figure
5.4(b) demonstrates the heuristics for determiningr, showing projection distances (in logarithm)
versusr. As N increases, the take-off point gets closer to the truer = 0.3. The large peak
indicates a pole (the setS in Theorem 3).

The second experiment compares the proposed method with thepopular EM-based learning
paradigm. In Appendix A we derive a variational EM algorithmfor learning HMM parameters
assuming the generative process in Section 5.2.2. In this experiment, the generative process has
the same settings as in the first experiment except the numberof setsN , which takes smaller val-
ues{125, 250, 500, 1000, 2000, 4000}. We repeat the experiment 20 times with different random
draws from the generative process. Figure 5.5 gives the relative estimation errors forU (in spec-
tral norm) andP (in entrywise 1-norm) for three methods: Algorithm 5.4 (tensor), variational
EM initialized with the output of Algorithm 5.4 (tensor+vbEM), and variational EM initialized
with 100 random parameter values (rand+vbEM). Clearly, Algorithm 5.4 outperforms the ran-
domly initialized variation EM, and there is barely any improvement resulting from combining
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(a) Matrix estimation error (b) Projection distance

Figure 5.4: Simulation confirming consistency of the proposed algorithm

(a) U estimation error (b) P estimation error

Figure 5.5: Comparison between Algorithm 5.4 and EM

the two methods, except whenN is very small. In terms of computational efficiency, we ob-
serve that Algorithm 5.4 is orders of magnitude faster than the variational EM algorithm. On our
platform with 48 cores (2.3 GHz each) and 512GB of memory, Algorithm 5.4 takes a couple of
hours to finish all 20 experiments, but the variational EM method takes days.

5.4 Discussion

We have demonstrated that under reasonable assumptions, tensor decomposition methods can
provably learn first-order Markov models and hidden Markov models from non-sequence data.
We believe this is the first formal guarantee on learning dynamic models in a non-sequential
setting. There are several possibilities in improving or generalizing our results.
Procedure for estimatingr with formal guarantees
Our current heuristics for estimatingr requires a good measure of sudden increase or take-off
spot in the curve of projection distance v.s.r, which is hard to define because, depending on the
true transition matrixP , the curve may be rather smooth near the true take-off point,as shown in
Figure 5.4(b). We suspect that asP becomes sparser, the curve shows a sharper increase at the
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true take-off point, but do not have a concrete result yet. Ifsuch results can be established, it is
then possible to develop a change-point detection based procedure for estimatingr with formal
guarantees.
Other distributions for the missing times
No matter what distribution generates the random time steps, tensor decomposition methods can
always learn the expected transition probability matrixT . Depending on the specific modeling
task, one may replace the geometric distribution with some other distribution, such as Poisson.
HMMs with discrete observations
With extra assumptions on the state-observation probability matrix, we can modify our proposed
algorithm to guarantee consistent parameter learning in the case of discrete observations. More
precisely, letO ∈ [0, 1]m×k denote the state-observation probability matrix, where each column
is the observation probability vector for a hidden state. Wefirst apply our tensor decomposition
based method to recover the matrix productOT , and then obtain estimates ofO andT with
the non-negative matrix factorization (NMF) algorithm proposed by Arora et al. [2012], which
guarantees consistency under the “anchor word” assumption, requiring that each column ofO
has a corresponding row whose only positive entry coincideswith itself.
Weaker assumption on Dirichlet parametersα
So far we have assumed that the normalized Dirichlet parameter vectorα/

∑
i α is equal to the

stationary hidden state distribution, allowing the columns and rows of the expected transition
probability matrixT to be correctly matched. However, a careful look into the tensor structures
in Theorems 2 and 4 reveals that the weaker conditionsαi > αj ⇐⇒ (Tα)i > (Tα)j ∀i 6= j
andαi 6= αj ∀i 6= j are sufficient for correct matching. To interpret such conditions, we note that
α is proportional to the average initial hidden state distribution, whileTα to the average hidden
state distribution that generates the observations. As long as the hidden states, when sorted by
probability mass, are in the same unique order under these two distributions, we can correctly
match the rows and columns ofT .
General observation noise covariance
As pointed out in Section 5.2.2, it is the tensor decomposition-based estimation of the mean
observation vectorsU that requires the assumption of a spherical noise covariance, while the
estimation ofUT can always be carried out via tensor decomposition regardless of the noise
distribution. This property, together with the fact that each set of non-sequence data can be
viewed as independent samples drawn from a mixture model, suggests modifications for han-
dling more general noise covariances by using alternative methods to estimateU . For example,
under reasonable assumptions on the separation between themean observation vectorsU , the
spectral projection based methods proposed by Achlioptas and McSherry [2005]; Kannan et al.
[2005] are guaranteed to return accurate parameter estimates of mixtures of log-concave dis-
tributions with general noise covariances. In the case of Gaussian mixtures, the approach by
Moitra and Valiant [2010] provably learns the parameters with minimal assumptions that require
no separation between the mean vectors and allow general covariances, though their algorithm,
despite its polynomial time and sample complexity, is far from being practical. Or in the case
of the multi-view Gaussian mixture models considered by Anandkumar et al. [2012b], where
the covariances of different mixture components share the same block diagonal structure, tensor
decomposition based methods can also provably learn the parameters.
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Chapter 6

Learning Hidden Markov Models from
Sequence and Non-sequence Data

In this chapter we consider learning HMMs when, in addition to non-sequence data, there are
also some sequence data. The non-sequence data here are assumed to be independent samples
drawn from the stationary distribution of the underlying HMM. Unlike the methods proposed in
the last chapter, which give direct estimates of HMM parameters, our proposed methods here
learn anobservable representationof the underlying HMM. In the usual sequence-data only set-
ting, spectral learning of observable representation of HMMs [Hsu et al., 2009; Siddiqi et al.,
2010; Song et al., 2010] is becoming an appealing alternative to the popular EM method because
of its formal theoretical guarantee and more importantly, empirical success in several applica-
tions ranging from robot vision to music analysis [Song et al., 2010]. Building on these recent
advances, we propose spectral methods that combine sequence and non-sequence data for learn-
ing HMMs. Unlike most spectral algorithms which apply Singular Value Decomposition (SVD)
to moments estimated by empirical averages of data, our methods first solve a penalized least
square problem to get better estimates of moments, and then apply SVD 1. As one may imagine,
the penalized least square problem here has a similar structure to the one in Chapter 4, where the
objective consists of a squarederror function on the sequence and aregularizationterm based
on non-sequence data. But somewhat surprisingly, as we willshow in details later, the opti-
mization problems here turn out to be convex, even though they are dealing with a more com-
plex model than the VAR model in Chapter 4. Through experiments on synthetic data and real
Inertia-Measurement Unit recordings of human activities,we demonstrate that, as with VARs,
incorporating non-sequence data also improves estimationof HMMs.

This chapter is organized as follows. Section 6.1 briefly reviews spectral learning algorithms,
and Section 6.2 details the proposed algorithms, followed by experiments and results in Section
6.3 and conclusions in Section 6.4.

1 The general idea of invoking convex optimization in spectral learning has been proposed recently in the
sequential learning setting. Among others, Balle et al. [2012] solve a convex program in place of SVD, while
Balle and Mohri [2012] use convex optimization to obtain input matrices to spectral algorithms.
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6.1 Spectral Learning of HMMs

We begin with discrete observations, and mainly follow the exposition by Siddiqi et al. [2010].
Instead of learning the original model parameters, i.e., initial state probabilities, state transition
probabilities, and state-conditioned observation probabilities, the spectral algorithm learns an
observable representationof the HMM, which consists of the following parameters:

b1 := U⊤p, (6.1)

b∞ := (P⊤
2,1U)†p, (6.2)

Bx := (U⊤P3,x,1)(U
⊤P2,1)

†, 1 ≤ x ≤ N, (6.3)

where† denotes the pseudo inverse,N is the number of observation symbols,p is the stationary
distribution of observations, andP2,1 andP3,x,1 are joint observation probability matrices such
that for1 ≤ i, x, j ≤ N ,

(P2,1)ij := Prob(xt+1 = i, xt = j),

(P3,x,1)ij := Prob(xt+1 = i, xt = x, xt−1 = j),
(6.4)

xt being the observation symbol at timet, andU ∈ RN×k is column concatenation of the top
k left singular vectors ofP2,1. As the name suggests, the observable representation parameters
(6.1) to (6.3) only depend on observable quantities, leading naturally to the estimateŝb1, b̂∞,
andB̂x based on empirical averagesp̂, P̂2,1, P̂3,x,1, andÛ , the top-k left singular vectors of̂P2,1.
These estimates allow us to perform inferences on a new sequence of observationsy1, . . . , yt:
• Predict whole sequence probability:

P̂rob(y1, . . . , yt) = b̂⊤
∞B̂yt

· · · B̂y1b̂1. (6.5)

• Internal state update:̂bt+1 := B̂yt
b̂t/(b̂

⊤
∞B̂yt

b̂t).

• Conditional probability ofyt giveny1, . . . , yt−1:

P̂rob(yt|y1, . . . , yt−1) :=
b̂⊤
∞B̂yt

b̂t∑
x b̂⊤

∞B̂xb̂t

. (6.6)

Under some mild conditions, of which the most critical beingthat both the state transition and
state-conditioned observation probability matrices are of rank k, Siddiqi et al. [2010] showed
that the whole sequence probability estimate (6.5) is consistent (with high probability) and gives
a finite-sample bound on the estimation error.

Based on the same idea, Song et al. [2010] developed a spectral algorithm for learning HMMs
with continuous observations. Instead of operating on probability distributions directly, their al-
gorithm operates onHilbert space embeddingsof distributions of observable quantities (assum-
ing stationarity of the HMM):

µ1 := Ext
[φ(xt)], (6.7)

C2,1 := Ext+1xt
[φ(xt+1)⊗ φ(xt)], (6.8)

C3,x,1 := Ext+2(xt+1=x)xt
[φ(xt+2)⊗ φ(xt)]

= P(xt = x)C3,1|2φ(x), (6.9)
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wherext denotes the continuous observation vector at timet, φ(·) maps the real observation
space to a Reproducing Kernel Hilbert Space (RKHS),⊗ denotes the tensor product, andC3,1|2 :=
Cxt+2xt|xt+1 is a conditional embedding operator[Song et al., 2009]. Using these embeddings,
they derived an observable representation of the embedded HMM, which consists of the follow-
ing parameters:

β1 := U⊤µ1, (6.10)

β∞ := C2,1(U⊤C2,1)
†, (6.11)

Bx := (U⊤C3,x,1)(U⊤C2,1)
†, (6.12)

whereU is the top-k left singular vectors ofC2,1. They then showed that the embedding of the
predictive distributionP(xt|x1, . . . ,xt−1) takes the formµxt|x1,...,xt−1 = β∞Bx1 · · · Bxt−1β1

and, as in the case of discrete observations, proposed estimates based on empirical averages
µ̂1, Ĉ2,1, Ĉ3,x,1, and Û , which is the top-k left singular vectors of̂C2,1. Using the kernel trick
and techniques from Kernel Principle Component Analysis [Schölkopf et al., 1998], they gave
an estimation procedure that operates solely on finite-dimensional quantities. Moreover, to avoid
the difficulty of partitioning the observation space required by estimation ofBx, they proposed
to estimate instead

B̄x := (U⊤C3,1|2φ(x))(U⊤C2,1)
†, (6.13)

which is only a fixed multiplicative factorP(x) away fromBx, and haveµxt|x1,...,xt−1 proportional
to β∞B̄x1 · · · B̄xt−1β1. Under some mild conditions, they established the consistency (with high
probability) of their estimator forµxt|x1,...,xt−1 and gave a finite-sample bound on the estimation
error.

In addition to estimation, Song et al. [2010] also discussedpossible ways to carry out pre-
diction. In particular, they showed that in the case of Gaussian RBF kernel,̂µxt|x1,...,xt−1 takes
the form of a nonparametric density estimator after proper normalization, and one may choose,
from training data or a pool of samples, the observation withthe highest predictive density as the
prediction.

6.2 Spectral Methods for Learning HMMs from Sequence and
Non-sequence Data

Suppose in addition to sequence data, which can be time series of observations or triples of
consecutive observations, we also have a set ofnon-sequence data points, which are drawninde-
pendentlyfrom the stationary distribution of the underlying HMM. We propose to improve the
estimation of the observable representation of HMMs by solving regularized least square prob-
lems, which minimize a squared error term on the sequence dataanda regularization term based
on the non-sequence data. As in existing work on spectral learning of HMMs, we assume that
the sequence data are observed after the HMM has fully mixed.
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6.2.1 Discrete Observations

Our method has two main steps. We first estimateP2,1, and thenb1,b∞, andBx’s. LetN denote
the number of unique observation symbols. To make use of non-sequence data in estimatingP2,1,
we note that the marginal ofP2,1 is the stationary distribution of the discrete HMM. Moreover,
from spectral learning methods we have the assumption ofP2,1 being low-rank. We thus propose
the following estimator̃P2,1 defined as

arg min
P

1

2
‖W ⊙ (P − P̂2,1)‖2F + τ‖P‖∗+
u

2

(
‖p̃− P1‖22 + ‖p̃− P⊤1‖22

)
,

s.t. 1⊤P1 = 1, Pij ≥ 0,

(6.14)

wherep̃ is the empirical observation distribution ofboth the sequence and the non-sequence
data, W is an indicator matrix such thatWij = 1 ⇐⇒ (P̂2,1)ij > 0, ⊙ denotes the Hadamard
product,‖·‖∗ denotes the matrix nuclear norm, a standard convex relaxation of matrix rank,1 is a
vector of ones, andu, τ > 0 are regularization parameters. The objective in (6.14) minimizes the
squared error from the sequence-only estimateP̂2,1 while penalizing the rank and the deviation
from the marginal̃p. It is easy to see that (6.14) is a convex but non-smooth problem due to the
matrix nuclear norm. Projected sub-gradient descent methods are a common way to solve such
problems, but are known to suffer from slow convergence [Bertsekas, 1999]. We solve (6.14)
by a variant of the smoothing proximal gradient (SPG) methodproposed by Chen et al. [2012],
which achieves a provably faster convergence rate than projected sub-gradient methods but has
a similar per-iteration time complexity. In Section 6.2.2 we use SPG to solve the continuous
version of the estimation problem, which has a more general form, and hence describe more
details there.

To setτ in the right scale, we use the following fact about matrix norms:

‖P2,1‖∗/N ≤ (r/N)
√
‖P2,1‖∞‖P2,1‖1, (6.15)

wherer is the rank ofP2,1, and‖ · ‖∞ and‖ · ‖1 denote matrix∞-norm and 1-norm, respec-
tively. Assuming stationarity, we have‖P2,1‖∞ = ‖P2,1‖1 = maxi pi, wherep is the stationary
distribution of observations. Therefore,P2,1’s average singular value isO((maxi pi)/N). As
shown by Cai et al. [2010],τ has an effect of soft-thresholding singular values ofP2,1, so we let
τ = λmaxi p̃i/N and tuneλ instead.

We then compute the SVD of̃P2,1, denoting its top-k left singular vectors as anN -by-k
matrix Ũ , and obtain estimates ofb1 andb∞ in the same ways as (6.1) and (6.2) usingP̃2,1, Ũ ,
andp̃. To derive our estimator ofBx, we first note that the original estimator based on (6.3) is
the solution to the following problem:

B̂x := arg min
B
‖P̂3,x,1 − ÛBÛ⊤P̂2,1‖2F , (6.16)

showing thatB̂x is a low-dimensional representation ofP̂3,x,1. As in (6.14), we aim to regularize
the least-square problem (6.16) with non-sequence data. Instead of constructing a regularization
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term directly from non-sequence data, we use our new estimator P̃2,1 based on the fact that
(1⊤P3,x,1)j = (P2,1)xj and(P3,x,11)i = (P2,1)ix, i.e., the marginals of{P3,x,1} are equal toP2,1.
We thus propose the following estimator{B̃x} defined as

arg min
{Bx}

∑

x

1

2
‖Wx ⊙ (ŨBxṼ

⊤ − P̂3,x,1)‖2F +

u

2

∑

x,i

(
(P̃2,1)ix − (ŨBxṼ

⊤1)i

)2

+

u

2

∑

x,i

(
(P̃2,1)xi − (1⊤ŨBxṼ

⊤)i

)2

,

s.t. (ŨBxṼ
⊤)ij ≥ 0,

∑

x

1⊤ŨBxṼ
⊤1 = 1,

(6.17)

whereWx is an indicator matrix such that(Wx)ij > 0 ⇐⇒ (P̂3,x,1)ij > 0 andṼ := Ũ⊤P̃2,1.
Note that we not only add regularization terms but also constrain the fitted matrices{ŨBxṼ

⊤}
to lie on a simplex, mainly to reduce negative values in the predictive distribution (6.6) during
inference. The simplex constraints may incur more bias thandesired and may not always be
feasible2, but in our experiments we do not observe any negative effect. Later in Section 6.4 we
discuss the possibility of combining the two optimization problems (6.14) and (6.17) into one,
which may fix some of these constraint-related issues but paythe price of a bigger problem size.

Eq. (6.17) is a quadratic program ofk2N variables under one linear equality constraint
andN3 linear inequality constraints. WhenN is on the order of a few hundreds andk is a
few tens, a reformulation that takes advantage of the block-diagonal structure in the Hessian of
(6.17) can be solved quite efficiently with state-of-the artoptimization software, such as MOSEK
(www.mosek.com). For larger problems, one possible solution is the Alternating Direction
Method of Multipliers [Boyd et al., 2011], which handles constraints by minimizing the original
objective augmented with a iteratively-refined constraintviolation term. Our experiments in
Section 6.3.1 haveN = 100, so we solve (6.17) with MOSEK.

6.2.2 Continuous Observations

Our method for continuous observations builds on the Hilbert space embedding approach by
Song et al. [2010], and consists of two main steps: estimating the feature covarianceC2,1 and
then the observable representationβ1, β∞, andBx. Let the feature mappings of the sequence
data be organized into three matricesΦ1,Φ2, andΦ3 such that theiri-th columnsΦi

1,Φ
i
2, and

Φi
3 are consecutive and going forward in time. By the definition of the feature covariance (6.8),

we haveC2,1 :=
∫
φ(x) ⊗ φ(y)pXt+1Xt

(x,y)dxdy. If we have a set of feature points grouped
column-wise as a feature matrixΦ, and know exactly which pairs of points are consecutive
in time via a (normalized) temporal adjacency matrixT2,1, we may then compute the quantity
ΦT2,1Φ

⊤ as an unbiased estimator ofC2,1 It is easy to see that̂C2,1 := 1
n
Φ2Φ

⊤
1 is one special

2When this happens one may choose the smallestk that makes the constraints feasible, and then solve (6.17).
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case of such an estimator. To incorporate non-sequence datainto our estimation procedure, we
denote its feature matrix byZ and consider another special case:

C̃2,1 := Z2PZ⊤
1 , (6.18)

whereZ1 := [Φ1 Z] andZ2 := [Φ2 Z]. It then suffices to estimateP subject to1⊤P1 = 1 and
Pij ≥ 0.

Similar to Section 6.2.1, our estimation objective consists of three terms: the squared error
betweenC̃2,1 and Ĉ2,1, penalization onC̃2,1’s rank, and deviation of̃C2,1’s marginal from the
mean of the stationary distribution. The last term is based on the fact that, under the assumption
of stationarity,C2,1f = E[φ(X)] holds for some constant functionf in G such thatf(x) =

f⊤φ(x) = 1 ∀x. Formally, our estimator̃P is the solution to the following convex program:

min
P

1

2
‖Z2PZ⊤

1 − Ĉ2,1‖2G⊗G + τ‖Z2PZ⊤
1 ‖∗+

u

2

(∥∥∥Z2P1− S1
mS

∥∥∥
2

G
+
∥∥∥Z1P

⊤1− S1
mS

∥∥∥
2

G

)

s.t. 1⊤P1 = 1, Pij ≥ 0,

(6.19)

where we introduceS andmS to denote the feature matrix and the size of the entire set of non-
sequence data and letZ denote a sub-sample of it, mainly to limit the number of variables when
the non-sequence dataset is very large. As shown in AppendixC.1, using the kernel trick and
properties of the matrix trace and nuclear norm, we re-writethe objective function in (6.19) as
follows (dropping constants):

1

2
Tr(P⊤M2PM1)− Tr(P⊤F ) + τ‖L⊤

2 PL1‖∗+ (6.20)

u

2
1⊤(P⊤M2P + PM1P

⊤)1− u1⊤(P⊤µ2 + Pµ1),

where Tr(·) is the matrix trace,Mi := Z⊤
i Zi,µi :=

Z⊤
i S1

mS
, F := Z⊤

2 Ĉ2,1Z1, andLi is a finite
matrix such thatMi = LiL

⊤
i . To setτ in a proper scale, we use an inequality similar to (6.15)

to upper-bound the average singular value ofL⊤
2 PL1, and then replace the unknownP by the

uniform distribution to haveτ := (λ/m3)(‖L⊤
2 11⊤L1‖∞‖L⊤

2 11⊤L1‖1)1/2, wherem is the size
of P andλ > 0 takes values in some reasonable range.

As mentioned in Section 6.2.1, we solve (6.19) with a variantof the smoothing proximal gra-
dient (SPG) method outlined in Algorithm 6.1, which minimizesfµ(P ), a smooth approximation
of (6.20) that approximates the non-smooth regularizationτ‖L⊤

2 PL1‖∗ by

gµ(P ) := max
‖Y ‖2≤1

τTr(Y ⊤L⊤
2 PL1)−

µ

2
‖Y ‖2F , (6.21)

whereµ ≥ 0 is a smoothing parameter,‖ · ‖2 and‖ · ‖F denote the matrix spectral and Frobe-
nius norms, respectively. Nesterov [2005] shows that (6.21) is continuously differentiable inP
and∇gµ(P ) = τL2Y

∗L⊤
1 , whereY ∗ is the optimal solution to (6.21) obtained by projecting

(τ/µ)L⊤
2 PL1 to the unit spectral-norm ball, i.e., truncating its singular values at 1. The update
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Algorithm 6.1 Smoothing Proximal Gradient for (6.19)

Initialize Y (0) = P (0) to some feasible point.
Sett := 0, θ(0) := 1, η := 10, andγ(0) := 1.
repeat

Find the smallestκ ∈ {0, 1, · · · } that satisfies

fµ(P (t+1))− fµ(Y (t)) ≤ γ(t+1)

2
‖P (t+1) − Y (t)‖2F

+ Tr
(
(P (t+1) − Y (t))⊤∇fµ(Y (t))

)

whereγ(t+1) := ηκγ(t) and

P (t+1) := arg min
P
‖Y (t) −∇fµ(Y (t))/γ(t+1) − P‖2F

s.t.Pij ≥ 0,1⊤P1 = 1. (6.22)

θ(t+1) := (1 +
√

1 + 4(θ(t))2)/2.
Y (t+1) := P (t+1) + θ(t)−1

θ(t+1) (P
(t+1) − P (t)).

t := t+ 1.
until convergence ort = Tmax, an iteration limit.

(6.22) forP (t+1) requires projection onto a simplex, for which several efficient algorithms exist,
such as the sorting-based method proposed by Duchi et al. [2008]. The convergence theory of
Chen et al. [2012] suggests setting3 µ = ǫ/m, m being the column dimension ofZ2, so that the
objective values (6.20) converge inO(1/ǫ2) iterations to at mostǫ plus the minimum.

We then compute the topk left singular vectors of̃C2,1 in a similar way to Kernel Principle
Component Analysis [Schölkopf et al., 1998], starting with the fact that any left singular vector
of C̃2,1 = Z2P̃Z⊤

1 can be expressed asZ2α for someα ∈ Rm, and any left singular vector of
C̃2,1 is an Eigenvector of̃C2,1C̃

⊤
2,1 and vice versa. Thus we have

Z2P̃M1P̃
⊤M2α = Z2P̃Z⊤

1 Z1P̃
⊤Z⊤

2 (Z2α) = ωZ2α

⇐⇒ M2P̃M1P̃
⊤M2α = ωM2α, (6.23)

which is a generalized Eigensystem. LetΩ denote the diagonal matrix formed by the topk
generalized Eigenvalues of (6.23), andA denote the column concatenation of the corresponding
generalized Eigenvectors. It is then clear thatD := (A⊤M2A)−1/2 is diagonal, and we obtain a
concise form ofC̃2,1’s topk left singular vectors̃U = Z2AD. We also have the following useful
identity:

M2P̃M1P̃
⊤M2A = M2AΩ. (6.24)

3For solving (6.14) we setµ = ǫ/N .
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Next we describe our estimators for the observable representation. First we have

β̃1 := Ũ⊤S1/mS = DA⊤µ2, (6.25)

β̃∞ := C̃2,1(Ũ⊤C̃2,1)
† = Z2P̃M1P̃

⊤M2ADΩ−1 (6.26)

by using the identity(Ũ⊤C̃2,1)
† = Z1P̃

⊤M2ADΩ−1 established from properties of pseudo
inverse, (6.24), and the definition ofD. To derive our estimator for̄Bx defined in (6.13), we start
from the conditional covariance operator defined by Song et al. [2009]

C3,1|2 := C3,1,2C−1
2,2φ(x), where

C3,1,2 := EXt+2XtXt+1 [φ(Xt+2)⊗ φ(Xt)⊗ φ(Xt+1)],

C2,2 := EXt+1 [φ(Xt+1)⊗ φ(Xt+1)].

Using a similar idea to (6.18), we encode the empirical distribution of triples of consecutive
observations by a third-order tensorQ and have the following estimator

C̃3,1|2 :=

(∑

i,j,l

QijlZ i
3 ⊗Zj

1 ⊗Z l
2

)(
1

m
Z2Z⊤

2 + νI

)−1

,

whereZ3 := [Φ3 Z], ν > 0 is a regularization parameter, and superscripts denote column
indices. We then define our estimator forB̄x as

B̃x := (Ũ⊤(C̃3,1|2φ(x)))(Ũ⊤C̃2,1)
† (6.27)

= m
∑

l

Bl

((
M2 + νmI

)−1Z⊤
2 φ(x)

)
l
, (6.28)

whereBl ∈ Rk×k is a linear transformation ofQ··l ∈ Rm×m, the lth slice ofQ along the third
dimension:

Bl := Ũ⊤Z3Q··lZ⊤
1 (Ũ⊤C̃2,1)

†. (6.29)

Note that in the usual setting of learning from dynamic data,the third-order tensorQ is diagonal
andBl becomes a rank-one matrix, so (6.28) reduces to the estimator proposed by Song et al.
[2010].

The definitions above naturally lead to an estimation procedure that first estimatesQ and
then applies (6.29) to estimateBl. However, such a procedure involvesm3 variables when the
quantities of interest consist of onlykm2 variables. We thus propose to estimateBl’s directly.
Viewing (6.29) as the solution to

arg min
Bl

‖Q··l − ŨBlṼ
⊤‖2F , where

Ũ := (Ũ⊤Z3)
† = (DA⊤Z⊤

2 Z3)
† = (DA⊤M23)

†,

Ṽ ⊤ := (Z⊤
1 (Ũ⊤C̃2,1)

†)† = (M1P̃
⊤M2ADΩ−1)†,

82



we propose to estimateBl’s by the following:

arg min
{Bl}

1

2
‖C̃3,1,2({Bl})− Ĉ3,1,2‖2G⊗G⊗G+ (6.30)

u

2

(
‖C̃3,·,2({Bl})− C̃2,1‖2G⊗G + ‖C̃·,1,2({Bl})⊤ − C̃2,1‖2G⊗G

)

in which

C̃3,1,2({Bl}) :=
∑

i,j,l

(ŨBlṼ
⊤)ijZ i

3 ⊗Zj
1 ⊗Z l

2, (6.31)

C̃3,·,2({Bl}) :=
∑

i,j,l

(ŨBlṼ
⊤)ijZ i

3 ⊗ f⊤Zj
1 ⊗Z l

2, (6.32)

C̃·,1,2({Bl}) :=
∑

i,j,l

(ŨBlṼ
⊤)ijf

⊤Z i
3 ⊗Zj

1 ⊗Z l
2. (6.33)

Again, our estimation objective consists of a squared errorterm on the observed tri-variance and
two regularization terms on the deviation of the marginalsC̃3,·,2 andC̃⊤·,1,2 from our estimated co-

varianceC̃2,1. As shown in Appendix C.2, we use kernel tricks to re-write theobjective function
(6.30) in terms of finite-dimensional quantities. Moreover, by re-defining the notationB to be a
k2-by-m matrix whosel-th column denotes the column concatenation of thek-by-k matrixBl,
we obtain the following succinct form of (6.30) (dropping constants):

min
B

1

2
Tr(B⊤CBM2)− Tr(J⊤B) (6.34)

with an analytical solutionC−1JM−1
2 , whereC andJ are defined4 in Appendix C.2.

6.3 Experiments

We compare our proposed methods with the original spectral algorithms (Section 6.1) that only
use sequence data. In the case of discrete observations we conduct a simulation study, and we
apply the algorithms for continuous observations to an activity monitoring dataset.

6.3.1 Simulation

We create a discrete HMM with 20 states and 100 observation symbols. The state transition
probability matrix is of rank nearly 7. The heatmaps of the state transition probability and the
state-conditioned observation probability matrices are in Figures 6.1(a) and 6.1(b). From this
HMM we generate 50 datasets, each containing a training sequence of length 1000 initialized
from the stationary distribution as the sequence data, a setof 10000 observations independently
drawn from the stationary distribution as the non-sequencedata, and a testing sequence of length
1000, also initialized from the stationary distribution. We set the dimensionk = 7, and for the
proposed estimate setu = 100 andλ = 15. We then perform filtering and prediction along the
testing sequence. To give bounds on the prediction performance, we also give prediction results
by the true observable representation and the stationary distribution.

4When the kernel is positive definite, it is easy to verify that bothC andM2 are invertible.
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Figure 6.1: Discrete HMM model parameters

Table 6.1: Paired t test results. Each cell shows the number of testing time points at which
the row method outperforms the column method statisticallysignificantly. The total number of
testing time points is 999.

true proposed sequence-only stationary
true 827 999 975

proposed 0 999 470
sequence-only 0 0 0

stationary 0 0 999

Figure 6.2 shows the median testing log-likelihood over 50 experiments at each testing time
point. The proposed estimator outperforms the sequence-only estimator at most time points. For
each pair among the four predictions, we performed paired t-tests of their testing likelihoods at
all time points, and counted the number of time points at which one prediction outperforms the
other statistically significantly. The results are in Table6.1. The proposed estimator predicts
better than the sequence-only estimator at all time points and the stationary distribution at many
time points, but these two other methods never predict significantly better than the proposed
method. It is surprising that the sequence-only estimator performs even worse than the station-
ary distribution. As pointed out by Siddiqi et al. [2010], the filtering and prediction steps (6.6)
do not guarantee non-negativity of the probability estimates, especially when, as in the current
experiment, there is few dynamic data. Indeed, we observe quite a few negative values in the
sequence-only estimates and replace them with10−12. This is an indication of unreliable esti-
mates leading to poor prediction. On the contrary, the proposed estimates almost always take
non-negative values.
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Figure 6.2: Median testing log-likelihood. The y-axis lower limit is set to -6 for better visualiza-
tion; the red dashed line actually takes values as small as -17.

6.3.2 IMU Measurements of Human Activities

The PAMAP2 physical activity monitoring dataset [Reiss andStricker, 2012] contains recordings
of 18 different physical activities performed by 9 subjectswearing 3 inertial measurement units
(IMUs) and a heart-rate monitor. Each subject follows a protocol to perform a sequence of
activities with breaks in between. For our experiment we usedata collected from subject 101
while walking and running. We focus our experiment on recordings from the three IMUs, and
for each IMU only use the 3D-acceleration data (ms−2) with scale±16g, as recommended by
the authors, and the 3D-gyroscope data (rad/s), resulting in an observation space of6 × 3 = 18
dimensions. Subject 101 performs walking and running for approximately 3.5 minutes each, and
we discard the first and the last 10 seconds of data to remove transitioning between activities. To
make the experiment more interesting, we break the IMU recordings into short segments of 10
seconds each and interleave the walking segments with the running ones to generate a sequence
of alternating activities. The IMUs operate at a sampling frequency of 100Hz, so each segment
has 1000 data points and the entire sequence has 39265 data points. We normalize each of the 18
dimensions to be zero-mean and standard deviation 1. Figure6.3 shows one of the dimensions
from the first 2000 data points, revealing significant differences between walking and running.

We take the last 4256 data points as the testing sequence, andgenerate 10 training datasets
as follows. We randomly samplen triples of consecutive observations from the first 35000 data
points as the sequence data, and another non-overlapping set of m + mS single observations as
the non-sequence data, in whichm points are used to formZ and the restmS points constitute
S in the proposed algorithm. The values ofn,m, andmS are: n ∈ {25, 50, 100, 200}, m ∈
{500, 1000}, andmS = 4000. We use the Gaussian RBF kernelκ(x,x′) := exp(‖x− x′‖2/σ2),
and setσ2 to be half of the median squared pairwise distances of the sequence data. The dimen-
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Figure 6.3: First-axis acceleration from the wrist IMU

(a) Boxplots of median prediction errors (b) Boxplots of mean prediction errors

Figure 6.4: Prediction performance on the IMU data. The black-dashed line is obtained by using
n = 5000 dynamic data points, serving as a performance limit.

sionk, i.e., the number of top left singular vectors, is set to 20 for n = 25 and 50 for the rest.
The proposed algorithm has three regularization parameters: uP andλ in (6.19) anduB in (6.34).
We determine these parameters by minimizing 5-fold5 cross validation error on the sequence
data over a cube of values(log2 uP , log2 λ, log2 uB) ∈ {−8,−6, . . . , 6} × {−9,−7, . . . , 1} ×
{−5,−3, . . . , 9}.

After learning the model parameters, we perform filtering and prediction along the testing
sequence. As mentioned in Section 6.1, the Hilbert space embedding of the predictive distribu-
tion takes the form of a non-parametric density estimator thanks to the Gaussian RBF kernel,
and we predict the next observation by selecting fromS, themS static data points, the one with
the highest predictive density. For each predicted observation we compute the squared error
against the true observation, and for each predicted sequence we take the median and the mean
of the squared prediction errors as sequence-wise performance indicators. Figure 6.4(a) gives the
boxplot of the 10 median prediction errors, showing that theproposed method of incorporating
static data improves on the prediction performance more significantly when the sequence data
sizen is small. Figure 6.4(b) gives the boxplot of the 10 means, demonstrating a similar trend of

5We only split the sequence data but not the static data.
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improvement except whenn = 50. Looking more into that result, we find that it is the running
part of the testing sequence the proposed method fails to predict better, possibly due to the more
extreme values and changes in its IMU readings, as shown in Figure 6.3.

6.4 Discussions and Conclusions

We propose spectral learning algorithms for HMMs that incorporate static data as regularization.
Experiments on synthetic and real human activities data demonstrate a clear advantage of us-
ing static data when sequence data is limited. There are several interesting directions for future
work, including deriving theoretical guarantees for the proposed methods and solving real prob-
lems where sequence data is much more difficult to obtain thannon-sequence data. In terms of
methodology, a possible improvement is to combine the two stages in the proposed methods into
one optimization problem, where the optimization variableis a three-way tensor representing the
joint probability of observation triples, and the objective takes a similar form of an error term
on sequence data plus regularization terms based on non-sequenced data. Given an estimate for
the three-way probability tensor, lower-order probabilities can be easily obtained by marginal-
ization, and then spectral learning algorithms in Section 6.1 can be applied. One advantage of
such a procedure is that the estimates of the probability matrix and tensor are inherently consis-
tent, and therefore the sub-spaces computed by spectral decomposition are optimal with respect
to both, whereas in the proposed two-stage methods, the sub-spaces are optimal with respect to
only the estimated joint probability matrix. The downside is obviously the optimization in the
space of three-way tensors, which is computationally intensive in terms of both time and storage.

Although not explicitly described in this chapter, it is possible to extend the regular sequence-
based EM learning algorithm for HMMs to make use of non-sequence data drawn from the
stationary distribution. More specifically, such non-sequence data can be easily incorporated
into the EM estimation procedure for parameters in the observation model, e.g., the state-specific
mean observation vectors and noise covariances in a Gaussian observation model, because these
parameters are time-independent. However, as with the regular EM approach, finding a good
local optimum is always an issue and may require a lot of tuning.
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Chapter 7

Learning Bi-clustered Vector
Auto-regressive Model

In this chapter we return to the usual setting of learning from sequence data, and consider learn-
ing structured Vector Auto-regressive (VAR) models. Although not directly related to the main
theme of the thesis, the methods developed here, as we explain later, can benefit learning from
non-sequence data. Our motivation is from the use of VARs foranalyzing the temporal de-
pendencies in multivariate time series data, known asGranger causality1 [Granger, 1969]. For
example, recently researchers in computational biology, using ideas from sparse linear regres-
sion, developed sparse estimation techniques for VAR models [Fujita et al., 2007; Lozano et al.,
2009; Shojaie et al., 2011] to learn from high-dimensional genomic time series a small set of
pairwise, directed interactions, referred to as gene regulatory networks, some of which lead to
novel biological hypotheses.

While individual edges convey important information about interactions, it is often desir-
able to obtain an aggregate and more interpretable description of the network of interest. One
useful set of tools for this purpose are graph clustering methods [Schaeffer, 2007], which iden-
tify groups of nodes or vertices that have similar types of connections, such as a common
set of neighboring nodes in undirected graphs, and shared parent or child nodes in directed
graphs. These methods have been applied in the analysis of various types of networks, such
as [Girvan and Newman, 2002], and play a key role in graph visualization tools [Herman et al.,
2000].

Motivated by the wide applicability of the above two threadsof work and the observation that
their goals are tightly coupled, we develop a methodology that integrates both types of analyses,
estimating the underlying Granger causal network and its clustering structuresimultaneously.
One can image that such a structure, once estimated, could beused as prior knowledge for other
learning tasks in the same domain, and as suggested in Chapter3, such prior knowledge may aid
learning VARs from non-sequence data by providing better regularization of the model.

In this chapter we use the following notation for a first-order p-dimensional VAR model:

x(t) = x(t−1)A+ ǫ(t), ǫ(t) ∼ N (0, σ2I), (7.1)

1More precisely,graphicalGranger causality for more than two time series.
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wherex(t) ∈ R1×p denotes the vector of variables observed at timet, A ∈ Rp×p is known as the
transition matrix, whose non-zero entries encode Granger-causal relations among the variables,
andǫ(t)’s denote independent noise vectors drawn from a zero-mean Gaussian with a spherical
covarianceσ2I. Our goal is to obtain a transition matrix estimateÂ that is bothsparse, leading
directly to a Granger-causal network, andclusteredso that variables sharing a similar set of con-
nections are grouped together. Since the rows and the columns ofA indicate different roles of
the variables, the former revealing how variables affect themselves and the latter showing how
variables get affected, we consider the more generalbi-clusteringsetting, which allows two dif-
ferent sets of clusters for rows and columns, respectively.We take a nonparametric Bayesian
approach, placing overA a nonparametric bi-clustered prior and carrying out full posterior infer-
ences via a blocked Gibbs sampling scheme. Our simulation study demonstrates that when the
underlying VAR model exhibits a clear bi-clustering structure, our proposed method improves
over some natural alternatives, such as adaptive sparse learning methods [Zou, 2006] followed
by bi-clustering, in terms of model estimation accuracy, clustering quality, and forecasting ca-
pability. More encouragingly, on a real-world T-cell activation gene expression time series data
set [Rangel et al., 2004] our proposed method finds an interesting bi-clustering structure, which
leads to a biologically more meaningful interpretation than those by some state-of-the art time
series clustering methods.

Before introducing our method, we briefly discuss related work in Section 7.1. Then we
define our bi-clustered prior in Section 7.2, followed by oursampling scheme for posterior infer-
ences in Section 7.3. Lastly, we report our experimental results in Section 7.4 and conclude with
Section 7.5.

7.1 Related work

There has been a lot of work on sparse estimation of Granger-causal networks under VAR mod-
els, and perhaps even more on graph clustering. However, to the best of our knowledge, none of
them has considered the simultaneous learning scheme we propose here. Some of the more recent
sparse VAR estimation work [Lozano et al., 2009; Shojaie et al., 2011] takes into account depen-
dency further back in time and can even select the right length of history, known as the order
of the VAR model. While focusing on first-order VAR models, we observe that it is possible to
extend our method to learn higher-order bi-clustered VAR models, where the same bi-clustering
structure is shared by all the time-lagged transition matrices, an extension to the grouped graph-
ical Granger modeling approach of Lozano et al. [2009].

Another large body of related work [e.g., Busygin et al., 2008; Meeds and Roweis, 2007;
Porteous et al., 2008] concerns bi-clustering (or co-clustering) a data matrix, which usually con-
sists of relations between two sets of objects, such as user ratings on items, or word occurrences
in documents. Most of this work models data matrix entries bymixtures of distributions with
different means, representing, for example, different mean ratings by different user groups on
item groups. In contrast, common regularization schemes orprior beliefs for VAR estimation
usually assume zero-mean entries for the transition matrix, biasing the final estimate towards
being stable. Following such a practice, our method models transition matrix entries asscale
mixturesof zero-mean distributions.
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Finally, clustering time series data has been an active research topic in a number of areas,
in particular computational biology. However, unlike our Granger causality based bi-clustering
method, most of the existing work, such as [Cooke et al., 2011;Ramoni et al., 2002] and the
references therein, focus on grouping togethersimilar time series, with a wide range of simi-
larity measures from simple linear correlation to complicated Gaussian process based likelihood
scores. Differences between our method and existing similarity-based approaches are demon-
strated in Section 7.4 through both simulations and experiments on real data.

7.2 Bi-clustered prior

We treat the transition matrixA ∈ Rp×p as a random variable and place over it a “bi-clustered”
prior, as defined by the following generative process:

πu ∼ Stick-Break(αu), πv ∼ Stick-Break(αv),

{ui}1≤i≤p
i.i.d∼ Multinomial(πu), {vj}1≤j≤p

i.i.d∼ Multinomial(πv),

{λkl}1≤k,l≤∞
i.i.d.∼ Gamma(h, c), (7.2)

Aij ∼ Laplace(0, 1/λuivj
), 1 ≤ i, j ≤ p. (7.3)

The process starts by drawing row and column mixture proportionsπu andπv from the “stick-
breaking” distribution [Sethuraman, 1994], denoted byStick-Break(α) and defined on an infinite-
dimensional simplex as follows:

βk ∼ Beta(1, α),

πk := βk

∏

m<k

(1− βm), 1 ≤ k ≤ ∞, (7.4)

whereα > 0 controls the average length of pieces broken from the stick,and may take different
valuesαu andαv for rows and columns, respectively. Such a prior allows for an infinite number
of mixture components or clusters, and lets the data decide the number ofeffectivecomponents
having positive probability masses, thereby increasing modeling flexibility. The process then
samples row-cluster and column-cluster indicator variablesui’s andvj ’s from mixture propor-
tionsπu andπv, and for thek-th row-cluster and thel-th column-cluster draws an inverse-scale,
or rate parameterλkl from a Gamma distribution with shape parameterh and scale parameter
c. Finally, the generative process draws each matrix entryAij from a zero-mean Laplace dis-
tribution with inverse scaleλuivj

, such that entries belonging to the same bi-cluster share the
same inverse scale, and hence represent interactions of similar magnitudes, whether positive or
negative.

The above bi-clustered prior subsumes a few interesting special cases. In some applications
researchers may believe the clusters should be symmetric about rows and columns, which cor-
responds to enforcingu = v. If they further believe that within-cluster interactionsshould be
stronger than between-cluster ones, they may adjust accordingly the hyper-parameters in the
Gamma prior (7.2), or as in the group sparse prior proposed byMarlin et al. [2009] for Gaussian
precision estimation, simply require all within-cluster matrix entries to have the same inverse
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Algorithm 7.1 Blocked Gibbs Sampler

Input: Data X and Y , hyper-parametersh, c, αu, αv, and initial valuesA(0), L(0), u(0),
v(0), (σ(0))2

Output: Samples from the full joint posteriorp(A,L,u,v, σ2 | X,Y )
Set iterationt = 1
repeat

for i = 1 to p do
A

(t)
i ∼ p(Ai | A(t)

1:(i−1), A
(t−1)
(i+1):p,u

(t−1),v(t−1), (σ(t−1))2), L(t−1), X, Y )
end for
for i = 1 to p do
u

(t)
i ∼ p(ui | A(t),u

(t)
1:(i−1),u

(t−1)
(i+1):p,v

(t−1), (σ(t−1))2, L(t−1), X, Y )
end for
for j = 1 to p do
v

(t)
j ∼ p(vj | A(t),u(t),v

(t)
1:(j−1),v

(t−1)
(j+1):p, (σ

(t−1))2, L(t−1), X, Y )
end for
(σ(t))2 ∼ p(σ2 | A(t),u(t),v(t), L(t−1), X, Y )
L(t) ∼ p(L | A(t),u(t),v(t), (σ(t))2, X, Y )
Increase iterationt

until convergence
Notations: superscript(t) denotes iteration,Ai denotes thei-th row of A, Ai:j denotes the
sub-matrix inA from thei-th until thej-th row, andui:j denotes{un}i≤n≤j.

scale constrained to be smaller than the one shared by all between-cluster entries. Our inference
scheme detailed in the next section can be easily adapted to all these special cases.

There can be interesting generalizations as well. For example, depending on the application
of interest, it may be desirable to distinguish positive interactions from negative ones, so that
a bi-cluster of transition matrix entries possess not only similar strengths, but alsoconsistent
signs. However, such a generalization requires a more delicate per-entry prior and therefore a
more complex sampling scheme, which we leave as an interesting direction for future work.

7.3 Posterior inference

Let L denote the collection ofλkl’s, u and v denote{ui}1≤i≤p and {vj}1≤j≤p, respectively.
Given one or more time series, collectively denoted as matricesX andY whose rows represent
successive pairs of observations, i.e.,

Yi = XiA+ ǫ, ǫ ∼ N (0, σ2I),

we aim to carry out posterior inferences about the transition matrixA, and row and column cluster
indicatorsu andv. To do so, we consider sampling from the full joint posteriorp(A,L,u,v, σ2 |
X,Y ), and develop an efficient blocked Gibbs sampler outlined in Algorithm 7.1. Starting
with some reasonable initial configuration, the algorithm iteratively samples rows ofA, row
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and column-cluster indicator variablesu andv, the noise variance2 σ2, and the inverse scale
parametersL from their respective conditional distributions. Next we describe in more details
sampling from those conditional distributions.

7.3.1 Sampling the transition matrixA

Let A−i denote the sub-matrix ofA excluding thei-th row,X ′
i andX ′

−i denote thei-th column
of X and the sub-matrix ofX excluding thei-th column. Algorithm 7.1 requires sampling from
the following conditional distribution:

p(Ai | A−i,u,v, σ
2, L,X, Y ) ∝

∏

1≤j≤p

N (Aij | µij, σ
2
i )Laplace(Aij | 0, 1/λuivj

),

where
µij := (X ′

i/‖X ′
i‖22)⊤(Y −X ′

−iA−i)
′
j, σ2

i := σ2/‖X ′
i‖2.

Therefore, all we need is sampling from univariate densities of the form:

f(x) ∝ N (x | µ, σ2)Laplace(x | 0, 1/λ), (7.5)

whose c.d.f.F (x) can be expressed in terms of the standard normal c.d.f.Φ(·):

F (x) =
C1

C
Φ
(x− − (µ+ σ2λ)

σ

)
+
C2

C

(
Φ
(x+ − (µ− σ2λ)

σ

)
− Φ

(
− µ− σ2λ

σ

))
,

wherex− := min(x, 0), x+ := max(x, 0), and

C := C1Φ
(
− µ+ σ2λ

σ

)
+ C2

(
1− Φ

(
− µ− σ2λ

σ

))
,

C1 :=
λ

2
exp

(λ(2µ+ σ2λ)

2

)
, C2 :=

λ

2
exp

(λ(σ2λ− 2µ)

2

)
.

We then sample fromf(x) with the inverse c.d.f. method. To reduce the potential sampling bias
introduced by a fixed sampling schedule, we follow a random ordering of the rows ofA in each
iteration.

Algorithm 7.1 generates samples from the full joint posterior, but sometimes it is desirable
to obtain a point estimate ofA. One simple estimate is the (empirical) posterior mean; however,
it is rarely sparse. To get a sparse estimate, we carry out thefollowing “sample EM” step after
Algorithm 7.1 converges:

ÂBiclus-EM := arg max
A

∑

t

log p(A | u(t),v(t), (σ(t))2, L(t), X, Y ), (7.6)

wheret starts at a large number and skips some fixed number of iterations to give better-mixed
and more independent samples. The optimization problem (7.6) is in the form of sparse least
square regression, which we solve with a simple coordinate descent algorithm.

2Our sampling scheme can be easily modified to handle diagonalcovariances.
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7.3.2 Sampling row and cluster indicators

Since our sampling procedures foru andv are symmetric, we only describe the one foru. It can
be viewed as an instantiation of the general Gibbs sampling scheme studied by Meeds and Roweis
[2007]. According to our model assumption,u is independent of the dataX,Y and the noise
varianceσ2 conditioned on all other random variables. Moreover, underthe stick-breaking prior
(7.4) over the row mixture proportionsπu and some fixedv, we can viewu and the rows ofA as
cluster indicators and samples drawn from a Dirichlet process mixture model withGamma(h, c)
as the base distribution over cluster parameters. Finally,the Laplace distribution and the Gamma
distribution are conjugate pairs, allowing us to integrateout the inverse scale parametersL and
derive the following “collapsed” sampling scheme:

p(ui = k′ ∈ existing row-clusters| A,u−i,v)

∝



∏

k,l

Γ((N−i[k] + δkk′)M [l] + h)/(Γ(h)ch)
(
‖A−i[k, l]‖1 + δkk′‖Ai[l]‖1 + 1/c

)(N−i[k]+δkk′ )M [l]+h


 N−i[k

′]

p− 1 + αu

,

p(ui = a new row-cluster| A,u−i,v)

∝



∏

k,l

Γ(N−i[k]M [l] + h)/(Γ(h)ch)
(
‖A−i[k, l]‖1 + 1/c

)N−i[k]M [l]+h
· Γ(M [l] + h)/(Γ(h)ch)
(
‖Ai[l]‖1 + 1/c

)M [l]+h


 αu

p− 1 + αu

,

whereΓ(·) is the Gamma function,δab denotes the Kronecker delta function,N−i[k] is the size
of thek-th row-cluster excludingAi,M [l] is the size of thel-th column-cluster, and

‖A−i[k, l]‖1 :=
∑

s 6=i,us=k,vj=l

|Asj|, ‖Ai[l]‖1 :=
∑

vj=l

|Aij|.

As in the previous section, we randomly permuteui’s andvj ’s in each iteration to reduce sam-
pling bias, and also randomly choose to sampleu or v first.

Just as with the transition matrixA, we may want to obtain point estimates of the cluster
indicators. The usual empirical mean estimator does not work here because the cluster labels
may change over iterations. We thus employ the following procedure:

1. Construct a similarity matrixS such that

Sij :=
1

T

∑

t

δ
u
(t)
i u

(t)
j

, 1 ≤ i, j ≤ p,

wheret selects iterations to approach mixing and independence as in (7.6), andT is the
total number of iterations selected.

2. Run normalized spectral clustering [Ng et al., 2001] onS, with the number of clusters set
according to the spectral gap ofS.
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7.3.3 Sampling noise variance and inverse scale parameters

On the noise varianceσ2 we place an inverse-Gamma prior with shapea > 0 and scaleβ > 0,
leading to the following posterior:

σ2 | A,X, Y ∼ I-Gamma(a+ pT/2, 2‖Y −XA‖−2
F + β), (7.7)

whereT is the number of rows inX and‖ · ‖F denotes the matrix Frobenius norm. Due to the
conjugacy mentioned in the last section, the inverse scale parametersλkl’s have the following
posterior:

λkl | A,u,v ∼ Gamma(N [k]M [l] + h, (‖A[k, l]‖1 + 1/c)−1).

7.4 Experiments

We conduct both simulations and experiments on a real gene expression time series dataset, and
compare the proposed method with two types of approaches:
Learning VAR by sparse linear regression, followed by bi-clustering
Unlike the proposed method, which makes inferences about the transition matrixA and cluster
indicators jointly, this natural baseline method first estimates the transition matrix by adaptive
sparse orL1 linear regression [Zou, 2006]:

ÂL1 := arg min
A

1

2
‖Y −XA‖2F + λ

∑

i,j

|Aij|
|Âols

ij |γ
, (7.8)

whereÂols denotes the ordinary least-square estimator, and then bi-clustersÂL1 by either the
cluster indicator sampling procedure in Section 7.3.2 or standard clustering methods applied to
rows and columns separately. We compare the proposed methodand this baseline in terms of
predictive capability, clustering performance, and in thecase of simulation study, model estima-
tion error.

Clustering based on time series similarity
As described in Section 7.1, existing time series clustering methods are designed to group to-
gether time series that exhibit a similar behavior or dependency over time, whereas our proposed
method clusters time series based on their (Granger) causalrelations. We compare the pro-
posed method with the time series clustering method proposed by Cooke et al. [2011], which
models time series data by Gaussian processes and performs Bayesian Hierarchical Clustering
[Heller and Ghahramani, 2005], achieving state-of-the artclustering performances on the real
genes time series data used in Section 7.4.

7.4.1 Simulation

We generate a transition matrixA of size 100 by first sampling entries in bi-clusters:

Aij ∼





Laplace(0,
√

60
−1
i), 41 ≤ i ≤ 70, 51 ≤ j ≤ 80,

Laplace(0,
√

70
−1

), 71 ≤ i ≤ 90, 1 ≤ j ≤ 50,

Laplace(0,
√

110
−1

), 91 ≤ i ≤ 100, 1 ≤ j ≤ 100,

(7.9)
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(a) Transition matrix (b) Correlation matrix

Figure 7.1: Heat maps of the synthetic bi-clustered VAR

Figure 7.2: Prediction errors up to 10 time steps. Errors forlonger horizons are close to those by
the mean (zero) prediction, shown in black dashed line, and are not reported.

and then all the remaining entries from a sparse back-groundmatrix:

Aij =

{
Bij if |Bij| ≥ q98

(
{|Bi′j′|}1≤i′,j′≤100

)
,

0 otherwise,
i, j not covered in (7.9),

where
{Bij}1≤i,j,≤100

i.i.d.∼ Laplace(0, (5
√

200)−1)

andq98(·) denotes the 98-th percentile. Figure 7.1(a) shows the heat map of the actualA we ob-
tain by the above sampling scheme, showing clearly four row-clusters and three column-clusters.
This transition matrix has the largest eigenvalue modulus of 0.9280, constituting a stable VAR
model.

We then sample 10 independent time series of 50 time steps from the VAR model (7.1), with
noise varianceσ2 = 5. We initialize each time series with an independent sample drawn from the
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Table 7.1: Model estimation error on simulated data
Normalized matrix error Signed-support error

L1 0.3133±0.0003 0.3012±0.0008
Biclus EM 0.2419±0.0003 0.0662±0.0012

stationary distribution of (7.1), whose correlation matrix is shown in Figure 7.1(b), suggesting
that clustering based on correlations among time series maynot recover the bi-cluster structure
in Figure 7.1(a).

To compare the proposed method with the two baselines described in the beginning of Section
7.4, we repeat the following experiment 20 times: a random subset of two time series are treated
as testing data, while the other eight time series are used astraining data. ForL1 linear regression
(7.8) we randomly hold out two time series from the training data as a validation set for choosing
the best regularization parameterλ from {2−2, 2−1, . . . , 210} and weight-adaption parameterγ
from {0, 2−2, 2−1, . . . , 22}, with which the finalÂL1 is estimated from all the training data. To
bi-clusterÂL1 , we consider the following:
• L1+Biclus: run the sampling procedure in Section 7.3.2 onÂL1 .

• Refit+Biclus: refit the non-zero entries of̂AL1 using least-square, and run the sampling
procedure in Section 7.3.2.

• L1 row-clus (col-clus): construct similarity matrices

Su
ij :=

∑

1≤s≤p

|ÂL1
is ||ÂL1

js |, Sv
ij :=

∑

1≤s≤p

|ÂL1
si ||ÂL1

sj |, 1 ≤ i, j ≤ p.

Then run normalized spectral clustering [Ng et al., 2001] onSu andSv, with the number
of clusters set to 4 for rows and 3 for columns, respectively.

For the second baseline, Bayesian Hierarchical Clustering and Gaussian processes (GPs), we use
the R packageBHC (version 1.8.0) with the squared-exponential covariance for Gaussian pro-
cesses, as suggested by the author of the package. FollowingCooke et al. [2011] we normalize
each time series to have mean 0 and standard deviation 1. The package can be configured to
use replicate information (multiple series) or not, and we experiment with both settings, abbrevi-
ated asBHC-SE reps andBHC-SE, respectively. In both settings we give theBHC package the
mean of the eight training series as input, but additionallysupplyBHC-SE reps a noise variance
estimated from multiple training series to aid GP modeling.

In our proposed method, several hyper-parameters need to bespecified. For the stick-breaking
parametersαu andαv, we find that values in a reasonable range often lead to similar posterior
inferences, and simply set both to be 1.5. We set the noise variance prior parameters in (7.7)
to bea = 9 andβ = 10. For the two parameters in the Gamma prior (7.2), we seth = 2 and
c =
√

2p =
√

200 to bias the transition matrices sampled from the Laplace prior (7.3) towards
being stable. Another set of inputs to Algorithm 7.1 are the initial values, which we set as fol-
lows: A(0) = 0, u(0) = v(0) = 1, (σ(0))2 = 1, andL(0) = (h− 1)c =

√
200. We run Algorithm

7.1 and the sampling procedures forL1+Biclus and Refit+Biclus for 2,500 iterations, and take
samples in every 10 iterations starting from the 1,501-st iteration, at which the sampling algo-
rithms have mixed quite well, to compute point estimates forA, u andv as described in Sections
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(a) Row clusters (b) Column clusters

Figure 7.3: Adjusted Rand index on simulated data

7.3.1 and 7.3.2.
Figure 2 shows the squared prediction errors ofL1 linear regression (L1) and the proposed

method with a final sample EM step (Biclus EM) for various prediction horizons up to 10. Pre-
dictions errors for longer horizons are close to those by predicting the mean of the series, which
is zero under our stable VAR model, and are not reported here.Biclus EM slightly outperforms
L1, and paired t tests show that the improvements for all 10 horizons are significant at a p-value
≤ 0.01. This suggests that when the underlying VAR model does have abi-clustering struc-
ture, our proposed method can improve the prediction performance over adaptiveL1 regression,
though by a small margin.

Another way to compareL1 and Biclus EM is through model estimation error, and we report
in Table 7.1 these two types of error:
Normalized matrix error: ‖Â− A‖F/‖A‖F ,
Signed-support error: 1

p2

∑
1≤i,j≤p I(sign(Âij) 6= sign(Aij)).

Clearly, Biclus EM performs much better thanL1 in recovering the underlying model, and in
particular achieves a huge gain in signed support error, thanks to its use of bi-clustered inverse
scale parametersL.

Perhaps the most interesting is the clustering quality, which we evaluate by theAdjusted
Rand Index[Hubert and Arabie, 1985], a common measure of similarity between two cluster-
ings based on co-occurrences of object pairs across clusterings, with correction for chance ef-
fects. An adjusted Rand index takes the maximum value of 1 only when the two clusterings
are identical (modulo label permutation), and is close to 0 when the agreement between the
two clusterings could have resulted from two random clusterings. Figure 7.3 shows the cluster-
ing performances of different methods. The proposed method, labeled as Biclus, outperforms
all alternatives greatly and always recovers the correct row and column clusterings. The two-
stage baseline methodsL1+Biclus, Refit+Biclus, andL1 row-clus (col-clus) make a significant
amount of errors, but still recover moderately accurate clusterings. In contrast, the clusterings
by the time-series similarity based methods,BHC-SE andBHC-SE reps, are barely better than
random clusterings. To explain this, we first point out thatBHC-SE andBHC-SE reps are
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(a) Transition matrix (b) Average inverse scaleL

Figure 7.4: Heat maps of the Biclus-EM estimate ofA and the inverse scale parametersL aver-
aged over posterior samples; rows and columns permuted according to clusters.

designed to model time series as noisy observations of deterministic, time-dependent “trends”
or “curves” and to group similar curves together, but the time series generated from our stable
VAR model all have zero expectationat all time points(not justacross time). As a result, clus-
tering based on similar trends may just be fitting noise in oursimulated series. These results on
clustering quality suggest that when the underlying cluster structure stems from (Granger) causal
relations, clustering methods based on series similarity may give irrelevant results, and we really
need methods that explicitly take into account dynamic interaction patterns, such as the one we
propose here.

7.4.2 Modeling T-cell activation gene expression time series

We analyze a gene expression time series dataset3 collected by Rangel et al. [2004] from a T-cell
activation experiment. To facilitate the analysis, they pre-processed the raw data to obtain 44
replicates of 58 gene time series across 10 unevenly-spacedtime points. Recently Cooke et al.
[2011] carried out clustering analysis of these time seriesdata, with their proposed Gaussian
process (GP) based Bayesian Hierarchical Clustering (BHC) and quite a few other state-of-the
art time series clustering methods. BHC, aided by GP with a cubic spline covariance func-
tion, gave the best clustering result as measured by the Biological Homogeneity Index (BHI)
[Datta and Datta, 2006], which scores a gene cluster based onits number of gene pairs that share
certain biological annotations (Gene Ontology terms).

To apply our proposed method, we first normalize each time series to have mean 0 and stan-
dard deviation 1 across both time points and replicates, andthen “de-trend” the series by taking
the first order difference, resulting in 44 replicates of 58 time series of gene expression dif-
ferences across 9 time points. We run Algorithm 7.1 on this de-trended dataset, with all the
hyper-parameters and initial values set in the same way as inour simulation study. In 3,000
iterations the algorithm mixes reasonably well; we let it run for another 2,000 iterations and take

3Available in the R packagelongitudinal.
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Figure 7.5: BHI. Green dots show BHIs of different methods; blue boxes are BHIs obtained by
200 random permutations of cluster labels by those methods;green boxes are BHIs computed
on posterior cluster indicator samples from the proposed method. In parentheses are numbers of
clusters given by different methods.

samples from every 10 iterations, resulting in 200 posterior samples, to compute point estimates
for A, cluster indicatorsu andv as described in Sections 7.3.1 and 7.3.2. Figures 7.4(a) and
7.4(b) show the heat maps of the transition matrix point estimate and the inverse scale param-
etersλij ’s averaged over the posterior samples, with rows and columns permuted according to
clusters, revealing a quite clear bi-clustering structure.

For competing methods, we use the GP based Bayesian Hierarchical Clustering (BHC) by
Cooke et al. [2011], with two GP covariance functions: cubic spline (BHC-C) and squared-
exponential (BHC-SE)4. We also apply the two-stage methodL1+Biclus described in our sim-
ulation study, but its posterior samples give an average of 15 clusters, which is much more than
the number of clusters, around 4, from the spectral analysisdescribed in Section 7.3.2, suggest-
ing a high level of uncertainty in their posterior inferences about cluster indicators. We thus do
not report their results here. The other two simple baselines are: Corr, standing for normalized
spectral clustering on the correlation matrix of the 58 timeseries averaged over all 44 replicates,
the number of clusters 2 determined by the spectral gap, and All-in-one, which simply puts all
genes in one cluster.

Figure 7.5 shows the BHI scores5 given by different methods, and higher-values indicate bet-
tering clusterings. Biclus row and Biclus col respectivelydenote the row and column clusterings
given by our method. To measure the significance of the clusterings, we report BHI scores com-
puted on 200 random permutations of the cluster labels givenby each method. For Biclus row
and Biclus col, we also report the scores computed on the 200 posterior samples. All-in-one has
a BHI score around 0.63, suggesting that nearly two-thirds of all gene pairs share some biolog-

4We did not report results obtained using replicate information because they are not better. Cluster labels are
from http://www.biomedcentral.com/1471-2105/12/399/additional.

5We compute BHIs by theBHI function in the R packageclValid (version 0.6-4) [Brock et al., 2008] and the
databasehgu133plus2.db (version 2.6.3), following Cooke et al. [2011].
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Figure 7.6: Gene functional profiling of the large BHC-C cluster

ical annotations. Corr puts genes into two nearly equal-sized clusters (28 and 30), but does not
increase the BHI score much. In contrast,BHC-C and Biclus row achieve substantially higher
scores, and both are significantly better than those by random permutations, showing that the
improvements are much more likely due to the methods rather than varying numbers or sizes of
clusters. We also note that even though Corr andBHC-C both give two clusters, the twoBHC-C
clusters have very different sizes (48 and 10), which cause alarger variance in their BHI distri-
bution under random label permutations. Lastly,BHC-SE and Biclus col give lower scores that
are not significantly better than random permutations. One possible explanation for the differ-
ence in scores by Biclus row and Biclus col is that the former bases itself on how genesaffect
one another while the latter on how genesare affectedby others, and Gene Ontology terms, the
biological annotations underlying the BHI function, describe more about genes’ active roles or
molecular functions in various biological processes than what influence genes.
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(a) Second row cluster

(b) Third row cluster

Figure 7.7: Gene functional profiling of two large row clusters by the proposed method

Finally, to gain more understanding on the clusters byBHC-C and Biclus row, we conduct
gene function profiling with the web-based toolg:Profiler [Reimand et al., 2011], which per-
forms “statistical enrichment analysis to provide interpretation to user-defined gene lists.” We
select the following three options:Significant only, Hierarchical sorting, andNo electronic GO
annotations. ForBHC-C, 4 out of 10 genes in the small cluster are found to be associated with
the KEGG cell-cycle pathway (04110), but the other 6 genes are not mapped to collectively
meaningful annotations. The profiling results of the largeBHC-C cluster with 48 genes are in
Figure 7.6; for better visibility we show only the Gene Ontology (GO) terms and high-light sim-
ilar terms with red rectangles and tags. About a half of the terms are related to cell death and
immune response, and the other half are lower-level descriptions involving, for example, signal-
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Table 7.2: Contingency table of row and column clusterings
H

H
H

H
H

H
row

col
1 2 3 4

1 0 0 3 2
2 17 2 0 0
3 10 17 0 2
4 1 2 0 2

ing pathways. For Biclus row, we report the profiling resultsof only the two larger clusters (the
second and the third) in Figure 7.7, because the two smaller clusters, each containing 5 genes, are
not mapped to collectively meaningful GO terms. Interestingly, the two large Biclus row clusters
are associated with T-cell activation and immune response respectively, and together they cover
41 of the 48 genes in the largeBHC-C cluster. This suggests that our method roughly splits the
largeBHC-C cluster into two smaller ones, each being mapped to a more focused set of biolog-
ical annotations. Moreover, these Biclus profiling results, the heat map (Figure 7.4(a)), and the
contingency table between the row and column clusters (Table 7.2) altogether constitute a nice
resonance with the fact that T-cell activation results from, rather than leading to, the emergence
of immune responses.

7.5 Conclusion

We develop a nonparametric Bayesian method to simultaneously infer sparse VAR models and
bi-clusterings from multivariate time series data, and demonstrate its effectiveness via simula-
tions and experiments on real T-cell activation gene expression time series, on which the pro-
posed method finds a more biologically interpretable clustering than those by some state-of-the
art methods. Future directions include modeling signs of transition matrix entries, generaliza-
tions to higher-order VAR models, and applications to otherreal time series.
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Chapter 8

Conclusions and Future Directions

Motivated by the difficulties in collecting reliable time series data in a variety of modern dynamic
modeling tasks, we study in this thesis the problem of learning dynamic models from data that
lack time information but are easier to obtain. We observe that such non-sequence data can often
be modeled as independent samples drawn from multiple, independent executions of the under-
lying dynamic process. Based on this assumption, we proposeand study learning algorithms for
several widely-used dynamic models, including fully observable linear and non-linear models,
and Hidden Markov Models.

For fully observable models, we first point out some model identifiability issues in learning
from non-sequence data. Then we develop several EM-type learning algorithms based on max-
imizing approximate likelihood, and for the case where a small amount of sequence data are
available, we propose a novel penalized least square approach that uses both sequence and non-
sequence data. Empirical evaluation on synthetic data and several real data sets, including gene
expression and cell image time series, demonstrates that our proposed methods can learn reason-
ably accurate dynamic models with little or even no time information. However, we also observe
several failure modes that are hard to overcome without extra information or assumption. This
suggests that for the proposed methods to make impact in realapplications, they should incorpo-
rate as much expert domain knowledge as possible. For example, knowing how the variables in
the dynamic model might interact with one another can help the design of a better regularization
scheme. This motivates us to develop methods for learning bi-clustered vector autoregressive
models. Or, in some applications there might be partial ordering information about the data,
which can provide constraints in our EM-type algorithms.

For Hidden Markov Models, we build on recent advances in spectral learning of latent vari-
able models and propose tensor factorization based methodsthat guarantee consistent parameter
estimation, under reasonable assumptions on the underlying HMM and the generative process
of non-sequence data. These assumptions are inspired by spectral learning of topic models, but
have a few key differences, such as conditions on the Dirichlet prior for the initial state distribu-
tion and modeling missing times as geometric random variables, that are specific to the HMM
setting. Although these generative assumptions may not hold in observational data, they may be
fairly easy to implement in some scientific experiments. We also consider the situation when lit-
tle sequence data are available, and propose a spectral algorithm using both types of data, which
outperforms sequence-only learning algorithms.
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Going forward, one interesting direction is to investigatewhether spectral methods can be
used to consistently learn first-order observable models from non-sequence data, and under what
conditions. As demonstrated in Chapter 5, it is primarily thediscreteness, or more generally, non-
Gaussianity of the hidden state space dynamics that leads tonice tensor structures in observable
moments and easy characterization of assumptions ensuringunique parameter estimation. There-
fore, in the case of first-order models with continuous observations, we expect that non-Gaussian
initial distribution is needed for consistent spectral learning from non-sequence data. Moreover,
it is likely that extra assumptions on the initial distribution, such as distinct variances or means in
different dimensions, are required to eliminate the invariance to parameter permutation inherent
in spectral learning.

Another important future direction is to make impact in realapplications with our proposed
methods. In order for that to happen, we expect to see variousinteresting extensions or modifica-
tions to our approaches that are tailored to the applicationof interest. In particular, our proposed
modeling assumption of non-sequence data has several components that can be replaced to bet-
ter suit different applications, such as the distributional assumption on the missing times and the
observational noise model. More broadly, our work has demonstrated the possibility of using
cross sectional data to aid longitudinal study. As mentioned in the very beginning of the thesis,
it is common in medical and social sciences that cross sectional data are much easier to collect
than longitudinal data, and yet a lot of cross sectional datawere actually collected under some
longitudinal effect. With advances in large-scale sensingtechnology, this situation will likely
become more prevalent. We think there are several possibilities for our work to make concrete
contributions. For example, at the initial stage of longitudinal studies, researchers often have
to pose reasonable hypotheses to guide the design of experiments or data collection protocols.
However, even forming good hypotheses may be difficult when the subject matter involves a
complicated system. In this situation, our methods may serve as a good hypothesis generator, us-
ing cross sectional data that are available to produce possible models. Or, sometimes researchers
may want some immediate, preliminary assessment even though the longitudinal study is still
ongoing and only produced limited data. If there are abundant cross sectional data in the same
domain, our methods of combining sequence and non-sequencedata may be used to provide a
reasonable estimate of the dynamic model under study.

In conclusion, our work demonstrates the possibility of learning dynamic models from data
that lack time information, and we hope it stimulates more research in making better use of the
large amount of cross sectional data brought by modern sensing technology.

106



Appendix A

A Variational EM algorithm for Learning
HMMs from Non-sequence Data
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Based on the generative process in Section 5.2.2, we derive avariational EM algorithm for
parameter learning assuming the observation noise followsa spherical Gaussian with variance
σ2. The full joint probability of data and latent variables takes the following form:

f({xj
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i}, {tji}, {sj
i}, {πj
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i | Ul, σ

2I)h
j
il

)(∏

l′,l

((P tji )l′l)
h

j

il′
s
j
il

)
Geometric(tji | r)

(∏

l

((πj
0)l)

s
j
il

))
·

Dirichlet(πj
0 | α),

in which we use super-script as set indices and sub-scripts as data indices within a set wherever
appropriate. The goal is to maximize the marginal likelihood of the data w.r.t to the parameters.
We begin by marginalizing over the latent times{tji}:

f({xj
i}, {hj

i}, {sj
i}, {πj

0} | U, σ2, T,α)

=
N∏

j=1

(
n∏

i=1

( k∏

l=1

N (xj
i | Ul, σ

2I)h
j
il

)(∏

l′,l

T
h

j

il′
s
j
il

l′l

)(∏

l

((πj
0)l)

s
j
il

))
Dirichlet(πj

0 | α),

whereT denotes the expected transition probability matrix. As in the tensor factorization ap-
proach, we recoverP andr from the estimatedT using the proposed search heuristics. Because
the posterior distribution of the remaining latent variables still leads to an intractable E step, we
employ the following factorized approximation:

f({hj
i}, {sj

i}, {πj
0} | {xj

i}, U, σ2, T,α) ≈ q({hj
i}, {sj

i} | {Φi
j})q({πj

0} | {βj}),
where

q({hj
i}, {sj

i} | {Φj
i}) :=

∏

i,j,l′,l

((Φj
i )l′l)

h
j

il′
s
j
il , Φj

i ∈ [0, 1]k×k,

q({πj
0} | {βj}) :=

∏

j

Dirichlet(πj
0 | βj),

and obtain the following lower bound on the log marginal likelihood:

g({Φj
i}, {βj}, U, σ2, T,α)

:=E{hj
i},{s

j
i}|{Φ

j
i},{π

j
0}|{β

j}

[
log

(
f({xj

i}, {hj
i}, {sj

i}, {πj
0} | U, σ2, T,α)

q({hj
i}, {sj

i} | {Φj
i})q({πj

0} | {βj})

)]

=E{hj
i},{s

j
i}|{Φ

j
i},{π

j
0}|{β

j}

[
log f({xj

i}, {hj
i}, {sj

i}, {πj
0} | U, σ2, T,α)

]
−

E{hj
i},{s

j
i}|{Φ

j
i}

[
log q({hj

i}, {sj
i} | {Φj

i})
]
− E{πj

0}|{β
j
0}

[
log q({πj

0} | {βj
0})
]

=
∑

j,i,l,l′

(Φj
i )ll′(logN (xj

i | Ul, σ
2I) + log Tll′) +

∑

j,l

(∑

i,l′

(Φj
i )l′l + αl − 1

)(
ψ(βj

l )− ψ(βj
0)
)

−N
(∑

l

log Γ(αl)− log Γ(α0)
)
−
∑

j,i,l,l′

(Φj
i )ll′ log(Φj

i )ll′

−
∑

j,l

(βj
l − 1)(ψ(βj

l )− ψ(βj
0)) +

∑

j

(∑

l

log Γ(βj
l )− log Γ(βj

0)
)
,
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whereψ(·) is the digamma function. The variational EM algorithm then amounts to maximizing
g iteratively, alternating between the following two steps until convergence:
Variational E-step
Holding the model parameters fixed, repeat the updates

(Φj
i )ll′ ∝ N (xj

i | Ul, σ
2I)Tll′ exp(ψ(βj

l′)− ψ(βj
0)),

(βj)l =
∑

i,l′

(Φj
i )l′l + αl,

until convergence.
M-step
Holding the variational parameteres{Φj

i} and{βj} fixed, update model parameters:

Ul :=

∑N
j=1

∑n
i=1

∑k
l′=1(Φ

j
i )ll′x

j
i∑N

j=1

∑n
i=1

∑k
l′=1(Φ

j
i )ll′

,

σ2 :=

∑N
j=1

∑n
i=1

∑
l,l′(Φ

j
i )ll′‖xj

i − Ul‖2
Nnm

,

Tll′ :=

∑N
j=1

∑n
i=1(Φ

j
i )ll′∑N

j=1

∑n
i=1

∑k
l=1(Φ

j
i )ll′

,

α := arg max
{αl≥0}

N∑

j=1

k∑

l=1

(αl − 1)(ψ(βj
l )− ψ(βj

0))−N
( k∑

l=1

log Γ(αl)− log Γ(α0)
)
.

The update forα is a convex optimization problem whose inverse Hessian can be computed in
linear time Blei et al. [2003].

Finally, we have to match the columns ofU with the columns ofT . Note that the updates
imply that the columns ofU are aligned with the rows ofT , so it suffices to matchT ’s rows
with its columns. Using the assumptions thatα/α0 = π andπi 6= πj ∀ i 6= j, we recover the
matching by sortingα/α0 andTα/α0.
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Appendix B

Proofs of Theorems in Chapter 5
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B.1 Tensor structure in low-order moments

Here we give proofs of theorems on tensor structures in low-order moments of observable data.
The proofs make repeated use the following facts:
• Tπ = π, i.e., the stationary state distribution is invariant under the expected transition

probability matrixT .

• The missing time stepsti’s are independent of everything else.

• Conditioned on the initial state distributionπ0, i.e., within the same set of data, the obser-
vations{xi} are mutually independent, so are the hidden states{hi} and the initial states
{si}.

• The low-order moments of the Dirichlet distribution have a special form (c.f. Appendix
B.1 of Anandkumar et al. [2013]), which leads to the desired symmetric tensor structure.

B.1.1 Proof of Theorem 2

E[x1] = Eπ0E[x1 | π0]

= Eπ0E[P t1s1 | π0]

= Eπ0 [E[P t1 ]π0]

= Tπ

= π.

C2 = E[x1x
⊤
2 ]

= Eπ0E[P t1s1s
⊤
2 (P t2)⊤ | π0]

= Eπ0 [E[P t1 ]E[s1s
⊤
2 | π0]E[(P t2)⊤]]

= TEπ0 [π0π
⊤
0 ]T⊤

= T

(
diag(π)

α0 + 1
+
α0ππ⊤

α0 + 1

)
T⊤ (B.1)

=
Tdiag(π)T⊤

α0 + 1
+
α0ππ⊤

α0 + 1
. (B.2)

C3 = E[x1 ⊗ x2 ⊗ x3]

= Eπ0E[(P t1s1)⊗ (P t2s2)⊗ (P t3s3) | π0]

= Eπ0 [(Tπ0)⊗ (Tπ0)⊗ (Tπ0)]

=

∑
i 2πiTi ⊗ Ti ⊗ Ti

(α0 + 2)(α0 + 1)
+

α2
0π ⊗ π ⊗ π

(α0 + 2)(α0 + 1)
(B.3)

+
α0

(∑
ij

(
Ti ⊗ Ti ⊗ Tj + Ti ⊗ Tj ⊗ Ti + Tj ⊗ Ti ⊗ Ti

)
πiπj

)

(α0 + 2)(α0 + 1)

=

∑
i 2πiT

⊗3
i − 2α2

0π
⊗3

(α0 + 2)(α0 + 1)
+
α0(π ⊗3 C2 + π ⊗2 C2 + π ⊗1 C2)

α0 + 2
. (B.4)
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We obtain (B.1) and (B.3) by using the expressions of Dirichlet moments derived in Appendix
B.1 of Anandkumar et al. [2013]. Re-arranging (B.2) and (B.4) leads to the adjusted moments
M2 andM3.

B.1.2 Proof of Theorem 4

V1 := E[x1]

= E[Uh1 + ǫ1]

= UE[P t1s1]

= UTE[π0]

= Uπ.

V2 := E[x1x
⊤
1 ]

= E[(Uh1 + ǫ1)(Uh1 + ǫ1)
⊤]

= E[Uh1h
⊤
1 U

⊤] + σ2I

= UE[diag(h1)]U
⊤ + σ2I

= UE[diag(P t1s1)]U
⊤ + σ2I

= UE[diag(Tπ0)]U
⊤ + σ2I

= Udiag(π)U⊤ + σ2I.

V3 := E[x1 ⊗ x1 ⊗ x1]

= E[(Uh1 + ǫ1)⊗ (Uh1 + ǫ1)⊗ (Uh1 + ǫ1)]

= E[(Uh1)
⊗3] + E[(Uh1)⊗ ǫ1 ⊗ ǫ1] + E[ǫ1 ⊗ (Uh1)⊗ ǫ1] + E[ǫ1 ⊗ ǫ1 ⊗ (Uh1)]

=
∑

i

πiUi ⊗ Ui ⊗ Ui + V1 ⊗1 (σ2I) + V1 ⊗2 (σ2I) + V1 ⊗3 (σ2I),

which relies on the assumption of zero skewnessE[(ǫ1)
3
d] = 0, 1 ≤ d ≤ m.

C2 := E[x1x
⊤
2 ]

= E[(Uh1 + ǫ1)(Uh2 + ǫ2)
⊤]

= E[Uh1h
⊤
2 U

⊤] (B.5)

= UE[P t1s1s
⊤
2 (P t2)T ]U⊤

= UTE[π0π
⊤
0 ]T⊤U⊤

=
UTdiag(π)(UT )⊤

α0 + 1
+
α0V1V

⊤
1

α0 + 1
. (B.6)

C3 := E[x1 ⊗ x2 ⊗ x3]

= E[(Uh1 + ǫ1)⊗ (Uh2 + ǫ2)⊗ (Uh3 + ǫ3)]

= E[(Uh1)⊗ (Uh2)⊗ (Uh3)] (B.7)

= E[(UP t1s1)⊗ (UP t2s2)⊗ (UP t3s3)]

= E[(UTπ0)⊗ (UTπ0)⊗ (UTπ0)]
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=

∑
i 2πi(UT )⊗3

i − 2α2
0V

⊗3
1

(α0 + 2)(α0 + 1)
+
α0(V1 ⊗3 C2 + V1 ⊗2 C2 + V1 ⊗1 C2)

α0 + 2
. (B.8)

Note that due to the independence assumption, there are no noise-related terms in (B.5) and (B.7),
indicating thatC2 andC3 are unaffected by the noise distribution. And again, (B.6) and (B.8)
are established with the expressions of Dirichlet moments in Appendix B.1 of Anandkumar et al.
[2013]. As in Appendix B.1.1,M2,M3,M ′

2 andM ′
3 result from adjusting the raw moments.

B.2 Proof of Theorem 3

We first prove the following lemma:
Lemma 1. If P (r) := (rI+(1−r)T ∗)−1T ∗ exists and is a stochastic matrix for somer ∈ (0, 1],
thenP (r′) exists and is a stochastic matrix for allr′ ∈ [r, 1].

Proof. SinceP (r) exists we can writeT ∗ = rP (r)(I − (1 − r)P (r))−1. By assumptionP ∗ is
invertible, soT ∗ is invertible. We then have

r′(T ∗)−1 + (1− r′)I =
r′

r
(P (r)−1 − (1− r)I) + (1− r′)I =

r′

r
P (r)−1(I − (1− r/r′)P (r)),

which is invertible for allr′ ∈ [r, 1]. Therefore, we can write

P (r′) = (r′(T ∗)−1 + (1− r′)I)−1 =
r

r′
P (r)(I − (1− r/r′)P (r))−1 = Et[P (r)],

wheret ∼ Geometric(r/r′), showing thatP (r′) is a stochastic matrix.

To prove Theorem 3 we begin by noting thatS contains all values ofr for whichrI+(1−r)T ∗

is singular. Therefore,P (r) is well-defined and invertible forr ∈ (0, 1] \ S. From the identity
T ∗π∗ = π∗ = (rI + (1 − r)T ∗)π∗ we haveP (r)π∗ = π∗, r /∈ S. Similarly, the identity
1⊤T ∗ = 1⊤ = 1⊤(rI+(1−r)T ∗) and the fact that(rI+(1−r)T ∗)−1T ∗ = T ∗(rI+(1−r)T ∗)−1

imply that1⊤P (r) = 1⊤, r /∈ S. It is easy to verifyP (r∗) = P ∗ by plugging in the definition
of T ∗. Lemma 1 then implies thatmax(S) < r∗ and thatP (r′) is a stochastic matrix forr′ ≥ r∗.
To prove the last statement of the theorem we rewriteP (r) by plugging in the definition ofT ∗:

P (r) =
r∗

r
(I − (1− r∗/r)P ∗)−1 P ∗

and consider its first-order derivative w.r.t.r:

∂P (r)

∂r
= −

( r
r∗
I +

(
1− r

r∗

)
P ∗
)−2 (I − P ∗)P ∗

r∗
,

which exists forr ∈ (0, 1] \ S. By assumption we haveP ∗
ij = 0, and by ergodicity ofP ∗ we can

assume(P ∗)2
ij > 0 (otherwise there existsk 6= j such thatP ∗

ik = 0 and(P ∗)2
ik > 0). Then we

have
∂P (r)ij

∂r

∣∣∣
r=r∗

=
(P ∗)2

ij

r∗
> 0,

implying that there existsc > 0 such that forr ∈ [r∗−c, r∗), P (r)ij < P ∗
ij = 0. This and Lemma

1 then imply the last statement of the theorem.
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B.3 Sample Complexity Analysis

The analyses here mostly follow those in Anandkumar et al. [2013]. LetO denote the observa-
tion matrix, which can be theT matrix in First-order Markov models, theU matrix or the product
UT in Hidden Markov Models. Define

Õ := Odiag([
√
π1

√
π2 · · ·

√
πk]),

M2 := Odiag(π)O⊤ = ÕÕ⊤ and M3 :=
k∑

i=1

πiOi ⊗Oi ⊗Oi.

Let πmin := mini πi. We have

σk(O)
√
πmin ≤ σk(Õ),

σ1(Õ) ≤ σ1(O),

whereσj(·) denotes thejth largest singular value.
Denote by‖ · ‖ the spectral norm of a matrix or the operator norm of a symmetric third-order

tensor induced by the vector 2-norm:

‖M‖ := sup
‖θ‖2=1

|M(θ,θ,θ)|.

Suppose

‖M̂2 −M2‖ = E2,

‖M̂3 −M3‖ ≤ E3,

for someE2 andE3 to be determined.

B.3.1 Perturbation Lemmas

Let M̂2,k be the best rankk approximation toM̂2 in terms of the matrix 2-norm. According to
Algorithm 5.1, we have

Ŵ⊤M̂2,kŴ = I.

Let
Ŵ⊤M2Ŵ = ADA⊤

be an SVD of̂W⊤M2Ŵ , whereA ∈ Rk×k. Define

W := ŴAD−1/2A⊤

and notice that
W⊤M2W = AD−1/2A⊤Ŵ⊤M2ŴAD−1/2A⊤ = I.

LetQ := W⊤Õ andQ̂ := Ŵ⊤Õ.
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Lemma 2. (Lemma C.1 of Anandkumar et al. [2013]) LetΠW be the orthogonal projection
onto the range ofW andΠ be the orthogonal projection onto the range ofO. SupposeE2 ≤
σk(M2)/2. We have the following:

‖Q‖ = 1,

‖Q̂‖ ≤ 2,

‖Ŵ‖ ≤ 2

σk(Õ)
,

‖Ŵ †‖ ≤ 2σ1(Õ),

‖W †‖ ≤ 3σ1(Õ),

‖Q− Q̂‖ ≤ 4E2

σk(Õ)2
,

‖Ŵ † −W †‖ ≤ 6σ1(Õ)E2

σk(Õ)2
,

‖Π− ΠW‖ ≤
4E2

σk(Õ)2
.

Lemma 3. Weyl’s Theorem. (Theorem 4.11, p.204 in Stewart and Sun [1990]). Let A,E ∈
Rm×n withm ≥ n be given. Then

max
1≤i≤n

|σi(A+ E)− σi(A)| ≤ ‖E‖.

B.3.2 Reconstruction Accuracy

Throughout this section we assume that the number of iterations N and L for Algorithm 5.2
satisfy the conditions in Theorem 1.
Lemma 4. Supposemax(E2, E3) ≤ σk(M2)/2. For anyη ∈ (0, 1), with probability at least
1− η the following holds:

‖O − (Ŵ⊤)†V̂ Λ̂‖ ≤ c
max(σ1(O), 1)

π
3/2
min min(σk(O)2, 1)

max(E2, E3)

for some constantc > 0.

Proof. By Theorem 1, the following hold with probability at least1− η:

‖V − V̂ ‖F =

√∑

i

‖Vi − V̂i‖2 ≤
√∑

i

(64E2
3)/(1/

√
πmin)2 = 8E3,

‖Λ̂‖ = max
i

1̂/
√
πi ≤ max

i
(1/
√
πi + 5E3) ≤ π

−1/2
min + 5E3.
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With the above two bounds and Lemma 2 we have

‖O − (Ŵ⊤)†V̂ Λ̂‖ ≤ ‖O − ΠWO‖+ ‖ΠWO − (Ŵ⊤)†V̂ Λ̂‖
=‖ΠO − ΠWO‖+ ‖(W †)⊤V Λ− (Ŵ †)⊤V̂ Λ̂‖
≤‖Π− ΠW‖‖O‖+ ‖(W †)⊤V Λ− (W †)⊤V Λ̂‖+ ‖(W †)⊤V Λ̂− (Ŵ †)⊤V̂ Λ̂‖
≤‖Π− ΠW‖+ ‖W †‖‖V ‖‖Λ− Λ̂‖+ ‖(W †)⊤V Λ̂− (W †)⊤V̂ Λ̂‖+ ‖(W †)⊤V̂ Λ̂− (Ŵ †)⊤V̂ Λ̂‖
≤‖Π− ΠW‖+ ‖W †‖E3 + ‖W †‖‖V − V̂ ‖‖Λ̂‖+ ‖W † − Ŵ †‖‖V̂ ‖‖Λ̂‖

≤ 4E2

σk(Õ)2
+ 3σ1(Õ)E3 + 3σ1(Õ)‖V − V̂ ‖F‖Λ̂‖+

6σ1(Õ)E2

σk(Õ)2
(‖V̂ − V ‖F + 1)‖Λ̂‖

≤c
(( 24√

πmin

+ 3
)
σ1(O)E3 +

(
4 +

6σ1(O)√
πmin

) E2

σk(O)2πmin

)

≤c
(

27σ1(O)√
πmin

+
10 max(σ1(O), 1)

π
3/2
minσk(O)2

)
max(E2, E3)

≤c 37 max(σ1(O), 1)

π
3/2
min min(σk(O)2, 1)

max(E2, E3)

wherec > 0 is a constant large enough to dominate low-order terms likeE2E3.

Lemma 5. With a slight abuse of notation, letU denote a column permutation of the trueU ,
UT denote a column permutation of the trueUT , andP denote a column-and-row permutation
of the trueP , where the permutations involved are the same. Suppose

max(‖U − Û‖, ‖ÛT − UT‖) ≤ σk(rU + (1− r)UT )/2.

We then have

‖P − (rÛ + (1− r)ÛT )†ÛT‖ ≤ 6σ1(UT )

σk(rU + (1− r)UT )2
max(‖U − Û‖, ‖UT − ÛT‖).

Proof. First notice that

(rU + (1− r)UT )†(UT )

=
(
(rI + (1− r)T )⊤U⊤U(rI + (1− r)T )

)−1
(rI + (1− r)T )⊤U⊤UT

=(rI + (1− r)T )−1T = P.

Then we have

‖P − (rÛ + (1− r)ÛT )†ÛT‖ = ‖(rU + (1− r)(UT ))†UT − (rÛ + (1− r)ÛT )†ÛT‖
≤‖(rU + (1− r)UT )†(UT )− (rÛ + (1− r)ÛT )†(UT )‖+
‖(rÛ + (1− r)ÛT )†(UT )− (rÛ + (1− r)ÛT )†ÛT‖
≤‖(rU + (1− r)UT )† − (rÛ + (1− r)ÛT )†‖‖UT‖+ ‖(rÛ + (1− r)ÛT )†‖‖UT − ÛT‖.

(B.9)
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By Lemma 3 and the assumption of the lemma, we have

σk(rU + (1− r)UT )/2 ≤ σk(rÛ + (1− r)ÛT ) ≤ 3σk(rU + (1− r)UT )/2,

showing that rank(rÛ + (1− r)ÛT ) = k and

‖(rÛ + (1− r)ÛT )†‖ = 1/σk(rÛ + (1− r)ÛT ) ≤ 2/σk(rU + (1− r)UT ).

Because rank(rÛ + (1− r)ÛT ) = rank(rU + (1− r)UT ) = k, Theorem 3.4 in Stewart [1977]
indicates that

‖(rU + (1− r)UT )† − (rÛ + (1− r)ÛT )†‖
≤
√

2‖(rU + (1− r)UT )†‖‖(rÛ + (1− r)ÛT )†‖‖r(U − Û) + (1− r)(UT − ÛT )‖

≤
√

2(r‖U − Û‖+ (1− r)‖ÛT − UT‖)
σk(rU + (1− r)UT )σk(rÛ + (1− r)ÛT )

≤ 2
√

2(r‖U − Û‖+ (1− r)‖UT − ÛT‖)
σk(rU + (1− r)UT )2

.

Applying these bounds to (B.9) then leads to

‖P − (rÛ + (1− r)ÛT )†ÛT‖

≤2
√

2σ1(UT )
(
r‖U − Û‖+ (1− r)‖UT − ÛT‖

)

σk(rU + (1− r)UT )2
+

2‖UT − ÛT‖
σk(rU + (1− r)UT )

=
r2
√

2σ1(UT )‖U − Û‖
σk(rU + (1− r)UT )2

+

(
(1− r)2

√
2σ1(UT ) + 2σk(rU + (1− r)UT )

)
‖UT − ÛT‖

σk(rU + (1− r)UT )2

≤max(r2
√

2, (1− r)2
√

2 + 2)σ1(UT )

σk(rU + (1− r)UT )2
max(‖U − Û‖, ‖UT − ÛT‖)

≤ 6σ1(UT )

σk(rU + (1− r)UT )2
max(‖U − Û‖, ‖UT − ÛT‖),

in which we use the factσ1(UT ) ≥ σ1(rU + (1− r)UT ) ≥ σk(rU + (1− r)UT ).

B.3.3 Concentration of empirical averages

Lemma 6. Let {yi}Ni=1 beN i.i.d. random vectors inRm. Let µ := E[yi],Σ := Var(yi) and
σ2

max := maxd Σdd. Let µ̄ := (
∑

i yi)/N . Then

Prob(‖µ̄− µ‖2 ≥ ǫ) ≤ mσ2
max

Nǫ2
.

Proof. This lemma is a straightforward consequence of the Markov inequality:

Prob(‖µ̄− µ‖2 ≥ ǫ) = Prob(‖µ̄− µ‖22 ≥ ǫ2)

≤ E[‖µ̄− µ‖22]
ǫ2

=

∑
d E(µ̄d − µd)

2

ǫ2
=

Tr(Σ)

Nǫ2
≤ mσ2

max

Nǫ2
.
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Lemma 7. Let V̂1, V̂2, V̂3, Ĉ2, Ĉ3 denote averages ofN independent draws ofx1,x1 ⊗ x1,x1 ⊗
x1 ⊗ x1,x1 ⊗ x2,x1 ⊗ x2 ⊗ x3 from the generative process in Section 5.2.2. Letumax :=
maxi,j |Uij|. Then

Prob(‖V̂1 − V1‖2 ≥ ǫ) ≤ m(u2
max + σ2)

Nǫ2
,

Prob(‖V̂2 − V2‖F ≥ ǫ) ≤ m2(u2
max + σ2)2

Nǫ2
,

Prob(‖V̂3 − V3‖F ≥ ǫ) ≤ m3(u2
max + σ2)3

Nǫ2
,

Prob(‖Ĉ2 − C2‖F ≥ ǫ) ≤ m2(u2
max + σ2)2

Nǫ2
,

Prob(‖Ĉ3 − C3‖F ≥ ǫ) ≤ m3(u2
max + σ2)3

Nǫ2
.

Proof. Based on Lemma 6, it suffices to boundσ2
max in these five cases:

max
i

Var((x1)i) ≤ max
i

E[(x1)
2
i ] = max

i
Eh1 [σ

2 + (Uh1)
2
i ] ≤ σ2 + max

i,k
U2

ik,

max
i,j

Var((x1)i(x1)j) ≤ max
i,j

E[(x1)
2
i (x1)

2
j ] = max

i,j
Eh1 [(σ

2 + (Uh1)
2
i )(σ

2 + (Uh1)
2
j)]

≤ max
i,j,l

(σ2 + U2
il)(σ

2 + U2
jl) ≤ (σ2 + max

i,j
U2

ij)
2,

max
i,j

Var((x1)i(x2)j) ≤ max
i,j

E[(x1)
2
i (x2)

2
j ] = max

i,j
Eπ0

[
E[(x1)

2
i |π0]E[(x2)

2
i |π0]

]

≤ max
i,j

sup
π0

E[(x1)
2
i |π0]E[(x2)

2
i |π0] ≤

(
max

i
sup
π0

E[(x1)
2
i |π0]

)2

=
(
max

i
sup
π0

∑

k

U2
ij(Tπ0)k + σ2

)2

=
(
max

i
max

j′

∑

k

U2
ijTjj′ + σ2

)2 ≤ (max
i,j

U2
ij + σ2)2.

With similar arguments, we have that

max
i,j,l

Var((x1)i(x1)j(x1)l) ≤ (max
i,j

U2
ij + σ2)3,

max
i,j,l

Var((x1)i(x2)j(x3)l) ≤ (max
i,j

U2
ij + σ2)3.

Lemma 8. Let M̂2, M̂3, M̂ ′
2, M̂

′
3 denote estimates of the population quantities defined in Theo-

rem 4 obtained by plugging in empirical averages of independent samples as in Lemma 7, and

σ̂2 := λmin(V̂2 − V̂1V̂1

⊤
), whereλmin(·) denotes the smallest eigenvalue in modulus. Define
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ν := max(σ2 + u2
max, 1). We then have the following:

Prob(‖M ′
2 − M̂ ′

2‖ ≥ ǫ) ≤ 75m2ν2

Nǫ2
,

Prob(‖M ′
3 − M̂ ′

3‖ ≥ ǫ) ≤ 1000m4ν3

Nǫ2
,

Prob(‖M2 − M̂2‖ ≥ ǫ) ≤ 50(α0 + 1)2m2ν2

Nǫ2
,

Prob(‖M3 − M̂3‖ ≥ ǫ) ≤ 1100k2m3(α0 + 2)2(α0 + 1)2ν3

Nǫ2
.

Proof. We first note that it is easy verifyz⊤(V̂2 − V̂1V̂1

⊤
)z ≥ 0 for any real vectorz, so σ̂2 is

always non-negative. By Lemma 3, we have

|σ2 − σ̂2| ≤ ‖V2 − V1V
⊤
1 − (V̂2 − V̂1V̂1

⊤
)‖ ≤ ‖V2 − V̂2‖+ ‖V1V

⊤
1 − V̂1V̂1

⊤‖
≤ ‖V2 − V̂2‖+ ‖V̂1 − V1‖(‖V̂1‖+ ‖V1‖)
≤ ‖V2 − V̂2‖+ 2‖V1‖‖V̂1 − V1‖+ ‖V1 − V̂1‖2.

We also need the following

‖V1‖2 = ‖Uπ‖2 =
∑

i

(∑

j

Uijπj

)2

≤
∑

i,j

πjU
2
ij ≤

∑

i

max
j
U2

ij ≤ mu2
max.

Then we have

‖M̂ ′
2 −M ′

2‖ ≤ ‖V̂2 − V2‖+ |σ̂2 − σ2|
≤ 2‖V̂2 − V2‖+ 2‖V1‖‖V̂1 − V1‖+ ‖V̂1 − V1‖2

≤ 2‖V̂2 − V2‖F + 2‖V1‖‖V̂1 − V1‖+ ‖V̂1 − V1‖2,

which implies

Prob(‖M̂ ′
2 −M ′

2‖ ≥ ǫ)

≤ Prob(2‖V̂2 − V2‖F + 2‖V1‖‖V̂1 − V1‖+ ‖V̂1 − V1‖2 ≥ ǫ)

≤ Prob(2‖V̂2 − V2‖F ≥ ǫ/3) + Prob(2‖V1‖‖V̂1 − V1‖ ≥ ǫ/3) + Prob(‖V̂1 − V1‖2 ≥ ǫ/3)

≤ 36m2(u2
max + σ2)2

Nǫ2
+

36‖V1‖2m(u2
max + σ2)

Nǫ2
+

3m(u2
max + σ2)

Nǫ

≤ 36m2(u2
max + σ2)2

Nǫ2
+

36m2u2
max(u

2
max + σ2)

Nǫ2
+

3m(u2
max + σ2)

Nǫ

≤ 75m2(u2
max + σ2)2

Nǫ2
.
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Similarly, we have

‖M ′
3 − M̂ ′

3‖ ≤ ‖V3 − V̂3‖F + 3‖V1 ⊗1 (σ2I)− V̂1 ⊗1 (σ̂2I)‖F
= ‖V3 − V̂3‖F + 3

√
m‖σ2V1 − σ̂2V̂1‖

≤ ‖V3 − V̂3‖F + 3
√
m(σ2‖V1 − V̂1‖+ |σ2 − σ̂2|(‖V1‖+ ‖V̂1 − V1‖))

≤ ‖V3 − V̂3‖F + ‖V1 − V̂1‖3
√
m(σ2 + 2mu2

max) + ‖V2 − V̂2‖3umaxm

+‖V1 − V̂1‖29umaxm+ 3
√
m(‖V1 − V̂1‖‖V̂2 − V2‖+ ‖V1 − V̂1‖3),

implying

Prob(‖M ′
3 − M̂ ′

3‖ ≥ ǫ)

≤ Prob(‖V3 − V̂3‖F ≥ ǫ/6) + Prob(‖V1 − V̂1‖ ≥ ǫ/(18
√
m(σ2 + 2mu2

max)))

+Prob(‖V2 − V̂2‖ ≥ ǫ/(18umaxm)) + Prob(‖V1 − V̂1‖2 ≥ ǫ/(54umaxm))

+Prob

(
‖V1 − V̂1‖ ≥

√
ǫ/(18

√
m)

)
+ Prob

(
‖‖V2 − V̂2‖ ≥

√
ǫ/(18

√
m)

)

+Prob(‖V1 − V̂1‖3 ≥ ǫ/(18
√
m))

≤ 36m3(u2
max + σ2)3

Nǫ2
+

324m2(σ2 + 2mu2
max)

2(σ2 + u2
max)

Nǫ2
+

324u2
maxm

4(σ2 + u2
max)

2

Nǫ2

+
54umaxm

2(σ2 + u2
max)

Nǫ
+

18m3/2(σ2 + u2
max)

Nǫ
+

18m5/2(σ2 + u2
max)

2

Nǫ

+
361/3m4/3(σ2 + u2

max)

Nǫ2/3

≤ 1000m4(max(σ2 + u2
max, 1))3

Nǫ2
.

Using similar arguments, we have

‖M2 − M̂2‖ ≤ (α0 + 1)‖C2 − Ĉ2‖F + α0‖V1V
⊤
1 − V̂1V̂1

⊤‖F
≤ (α0 + 1)‖C2 − Ĉ2‖F + 2α0‖V1‖‖V̂1 − V1‖+ α0‖V̂1 − V1‖2,

and therefore

Prob(‖M2 − M̂2‖ ≥ ǫ)

≤ Prob(‖C2 − Ĉ2‖F ≥
ǫ

3(α0 + 1)
) + Prob(‖V̂1 − V1‖ ≥

ǫ

6α0‖V1‖
)

+Prob(‖V̂1 − V1‖2 ≥
ǫ

3α0

)

≤ 9(α0 + 1)2m2(σ2 + u2
max)

2

Nǫ2
+

36α2
0m

2u2
max(σ

2 + u2
max)

Nǫ2
+

3α0m(σ2 + u2
max)

Nǫ

≤ 50(α0 + 1)2m2(σ2 + u2
max)

2

Nǫ2
.
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Finally, we have

‖M3 − M̂3‖

≤ (α0 + 2)(α0 + 1)

2
‖C3 − Ĉ3‖F +

3(α0 + 1)α0

2
‖V1 ⊗1 C2 − V̂1 ⊗ Ĉ2‖F

+α2
0‖V1 ⊗ V1 ⊗ V1 − V̂1 ⊗ V̂1 ⊗ V̂1‖F

≤ (α0 + 2)(α0 + 1)

2
‖C3 − Ĉ3‖F +

3(α0 + 1)α0

2
‖V1 − V̂1‖‖C2‖F +

3(α0 + 1)α0

2
‖V̂1‖‖C2 − Ĉ2‖F

+3α2
0‖V1‖2‖V1 − V̂1‖+ 3α2

0‖V1‖‖V1 − V̂1‖2 + α2
0‖V1 − V̂1‖3

≤ (α0 + 2)(α0 + 1)

2
‖C3 − Ĉ3‖F +

3(α0 + 1)α0

2
‖V1 − V̂1‖‖C2‖F +

3(α0 + 1)α0

2
‖V1‖‖C2 − Ĉ2‖F

+
3(α0 + 1)α0

2
‖V1 − V̂1‖‖C2 − Ĉ2‖F + 3α2

0‖V1‖2‖V1 − V̂1‖+ 3α2
0‖V1‖‖V1 − V̂1‖2 + α2

0‖V1 − V̂1‖3

≤ (α0 + 2)(α0 + 1)

2
‖C3 − Ĉ3‖F + 5(α0 + 1)α0kmu

2
max‖V1 − V̂1‖+

3(α0 + 1)α0

2
‖V1‖‖C2 − Ĉ2‖F

+
3(α0 + 1)α0

2
‖V1 − V̂1‖‖C2 − Ĉ2‖F + 3α2

0‖V1‖‖V1 − V̂1‖2 + α2
0‖V1 − V̂1‖3

using the fact that

‖C2‖F =

∥∥∥∥UT
(

diagπ + α0ππ⊤

α0 + 1

)
T⊤U⊤

∥∥∥∥
F

≤ ‖UT‖2F ≤ kmu2
max,

and thus

Prob(‖M3 − M̂3‖ ≥ ǫ) ≤ Prob

(
‖C3 − Ĉ3‖F ≥

ǫ

3(α0 + 2)(α0 + 1)

)

+ Prob

(
‖V1 − V̂1‖F ≥

ǫ

30(α0 + 1)α0kmu2
max

)
+ Prob

(
‖C2 − Ĉ2‖F ≥

ǫ

9(α0 + 1)α0

)

+ Prob

(
‖V1 − V̂1‖2 ≥

ǫ

18α2
0‖V1‖

)
+ Prob

(
‖V1 − V̂1‖3 ≥

ǫ

6α2
0

)

≤ 9m2(α0 + 2)2(α0 + 1)2(σ2 + u2
max)

3

Nǫ2
+

900k2m3(α0 + 1)2α2
0u

4
max(σ

2 + u2
max)

Nǫ2

+
81(α0 + 1)2α2

0m
2(σ2 + u2

max)
2

Nǫ2
+

18α2
0m

3/2umax(σ
2 + u2

max)

Nǫ
+

6mα
4/3
0 (σ2 + u2

max)

Nǫ2/3

≤ 1100k2m3(α0 + 2)2(α0 + 1)2(σ2 + u2
max)

3

Nǫ2
.

B.4 Proof of Theorem 5

Let Û andÛT be column-permuted as described in Algorithm 5.4. Let

δmin := min
i,j
|1/√πi − 1/

√
πj|.
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If max(E3, E
′
3) ≤ δmin/15, Theorem 5.1 of Anandkumar et al. [2012a] implies that for any

η ∈ (0, 1), with probability at least1 − η, the columns of̂U andÛT are matched to the same
permutation of the columns of the trueU andUT , respectively. As in Lemma 5, letU,UT, and
P denote proper permutations of the true matrices. We then have

Prob

(
max(‖U − Û‖, ‖UT − ÛT‖) ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)

≤Prob

(
‖U − Û‖ ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)
+ Prob

(
‖UT − ÛT‖ ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)
.

Let the failure probability for the tensor decomposition method be set toη
4
. Then by Lemma 4

we can bound the first term as follows:

Prob

(
‖U − Û‖ ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)

≤Prob

(
max(E ′

2, E
′
3) ≥

ǫσk(rU + (1− r)UT )2π
3/2
min min(σk(U)2, 1)

6σ1(UT )cmax(σ1(U), 1)

)

+ Prob(max(E ′
2, E

′
3) ≥ σk(M

′
2)/2) +

η

4
+ Prob(E ′

3 ≥ δmin/15),

where the first term in the r.h.s is based on Lemma 4 conditioned on the event thatmax(E ′
2, E

′
3) ≥

σk(M
′
2)/2 and the tensor decomposition method succeeds, the second and the third terms bound

the probability that the event does not occur, and the last term bounds the probability of incor-
rectly matching the columns of̂U andU . To continue bounding these terms we use Lemma 8 to
have

Prob

(
max(E ′

2, E
′
3) ≥

ǫσk(rU + (1− r)UT )2π
3/2
min min(σk(U)2, 1)

6σ1(UT )cmax(σ1(U), 1)

)

≤(2700m2ν2 + 36000m4ν3)σ1(UT )2c2 max(σ1(U)2, 1)

Nǫ2σk(rU + (1− r)UT )4π3
min min(σk(U)4, 1)

≤ 39000m4ν3σ1(UT )2c2 max(σ1(U)2, 1)

Nǫ2σk(rU + (1− r)UT )4π3
min min(σk(U)4, 1)

,

Prob(max(E ′
2, E

′
3) ≥ σk(M

′
2)/2) ≤ 300m2ν2 + 4000m4ν3

Nσk(M2)2
≤ 4300m4ν3

Nσk(M2)2
,

Prob(E ′
3 ≥ δmin/15) ≤ 225000m4ν3

Nδ2
min

.

Thus, by setting the sample sizeN so that

N ≥ 12m4ν3

η
max

(
225000

δ2
min

,
4300

σk(M2)2
,

39000σ1(UT )2c2 max(σ1(U)2, 1)

ǫ2σk(rU + (1− r)UT )4π3
min min(σk(U)4, 1)

)
,

we have

Prob

(
‖U − Û‖ ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)
≤ η

2
, (B.10)
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where the randomness is from both the data and the algorithm.Using similar arguments, we have
that for sample sizeN such that

N ≥ 12k2m3(α0 + 2)2(α0 + 1)2ν3

η
·

max

(
225000

δ2
min

,
4600

σk(M ′
2)2

,
42000σ1(UT )2(c′)2 max(σ1(UT )2, 1)

ǫ2σk(rU + (1− r)UT )4π3
min min(σk(UT )4, 1)

)
,

the following holds:

Prob

(
‖UT − ÛT‖ ≥ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)
≤ η

2
. (B.11)

Combining the two bounds (B.10) and (B.11), we have for

N ≥ 12 max(k2,m)m3ν3(α0 + 2)2(α0 + 1)2

η
·

max

(
225000

δ2
min

,
4600

min(σk(M ′
2), σk(M2))2

,
42000c2σ1(UT )2 max(σ1(UT ), σ1(U), 1)2

ǫ2σk(rU + (1− r)UT )4 min(σk(UT ), σk(U), 1)4

)
,

the following bound holds for anyǫ > 0 andη ∈ (0, 1):

Prob

(
max(‖U − Û‖, ‖UT − ÛT‖) ≤ ǫσk(rU + (1− r)UT )2

6σ1(UT )

)
≥ 1− η,

which by Lemma 5 implies that

Prob(‖P − (rÛ + (1− r)ÛT )†ÛT‖ ≤ ǫ) ≥ 1− η.
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Appendix C

Derivations in Chapter 6
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C.1 Derivation of (6.20)

Using properties of the matrix trace and the kernel trick, weimmediately have

1

2
‖Z2PZ⊤

1 − Ĉ2,1‖2G⊗G ∝
1

2
Tr(P⊤M2PM1)− Tr(P⊤F ),

u

2

(
‖Z2P1− S1

mS

‖2G + ‖Z1P
⊤1− S1

mS

‖2G
)

∝ u

2
1⊤(P⊤M2P + PM1P

⊤)1− u1⊤(P⊤µ2 + Pµ1).

Let λi(·) denotes thei-th Eigenvalue of a matrix. We then rewrite the nuclear norm term:

τ‖Z2PZ⊤
1 ‖∗ = τ

∑

i

√
λi

(
Z2PL⊤

1 L1P⊤Z⊤
2

)

= τ
∑

i

√
λi

(
L⊤

1 P
⊤L2L⊤

2 PL1

)
= τ‖L⊤

2 PL1‖∗,

C.2 Derivation of (6.34)

We begin by defining some notations:

H := Ũ⊤M3Ũ , R := Ṽ ⊤M1Ṽ , u := Ũ⊤1, v := Ṽ ⊤1,

F1 := Φ⊤
1 Z1Ṽ , F2 :=

Φ⊤
2 Z2

n
, F3 := Φ⊤

3 Z3Ũ .

Let vec(X) be the vector resulting from column concatenation of a matrix X, diag(x) be the
diagonal matrix with the vectorx being its main diagonal. Superscripts denote column indices.
Using properties of the matrix trace and the kernel trick, were-write the three terms in (6.34) as
follows. For the first term we have

‖C̃3,1,2({Bl})− Ĉ3,1,2‖2G⊗G⊗G

∝
∑

d

Tr
(∑

l,l′

(Z l
2)d(Z l′

2 )dṼ B
⊤
l Ũ

⊤M3ŨBl′Ṽ
⊤M1

)
−

2
∑

d

Tr
(∑

l

Ṽ B⊤
l Ũ

⊤(Z l
2)dZ⊤

3 Φ3
diag((Φ2)d·)

n
Φ⊤

1 Z1

)

=Tr
(∑

ll′

(M2)ll′B
⊤
l HBl′R− 2

∑

l

B⊤
l F

⊤
3 diag(F l

2)F1

)
,

and then for the second term

‖C̃3,·,2({Bl})− C̃2,1‖2G⊗G ∝
Tr
([
B1v · · · Bmv

]⊤
H
[
B1v · · · Bmv

]
M2

)
−

2Tr
([
B1v · · · Bmv

]⊤
Ũ⊤M32P̃M12

)
=

Tr
(∑

il

(M2)ilB
⊤
i HBlvv⊤ − 2

∑

i

B⊤
i Ũ

⊤M32P̃M
i
12v

⊤
)
,
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and finally for the third term

‖C̃·,1,2({Bl})⊤ − C̃2,1‖2G⊗G ∝
Tr
([
B⊤

1 u · · · B⊤
mu
]
M2

[
B⊤

1 u · · · B⊤
mu
]⊤
R
)
−

2Tr
([
B⊤

1 u · · · B⊤
mu
]
M2P̃M1Ṽ

)
=

Tr
(∑

ij

(M2)ijB
⊤
i uu⊤BjR− 2

∑

i

B⊤
i u(M i

2)
⊤P̃M1Ṽ

)
.

To further simplify these expressions, we re-define the notationB to be ak2-by-m matrix whose
l-th columnBl denotes column concatenation of thek-by-k matrixBl in the above expressions.
With the new notation and the identity:

vec(XY Z) = (Z⊤ ◦X)vec(Y ) (C.1)

where◦ denotes the Kronecker product, we obtain the succinct form (6.34) in which

C := R ◦H + u((vv⊤) ◦H +R ◦ (uu⊤)),

J := (F1 ◦ F3)
⊤
[
vec(diag(F 1

2 )) · · · vec(diag(Fm
2 ))
]

+ u
((

v ◦ (Ũ⊤M32P̃ )
)
M12 +

(
(Ṽ ⊤M1P̃

⊤) ◦ u
)
M2

)
.
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B. Scḧolkopf, A. Smola, and K. M̈uller. Nonlinear component analysis as a kernel eigenvalue
problem.Neural computation, 10(5):1299–1319, 1998. 6.1, 6.2.2

J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639–650, 1994.
7.2

D. Shahaf and C. Guestrin. Connecting the dots between news articles. InProceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
623–632. ACM, 2010. 2

D. Sheldon, M. S. Elmohamed, and D. Kozen. Collective inference on Markov models for

134



modeling bird migration. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors,Advances in
Neural Information Processing Systems 20, pages 1321–1328. MIT Press, Cambridge, MA,
2008. 2

A. Shojaie, S. Basu, and G. Michailidis. Adaptive thresholding for reconstructing regulatory
networks from time-course gene expression data.Statistics in Biosciences, pages 1–18, 2011.
7, 7.1

S. M. Siddiqi, B. Boots, and G. J. Gordon. Reduced-rank hidden Markov models. InProceedings
of the 13th International Conference on Artificial Intelligence and Statistics, 2010. 1.2, 3.5.1,
6, 6.1, 6.1, 6.3.1

B. W. Silverman. Incorporating parametric effects into functional principal components analysis.
Journal of the Royal Statistical Society. Series B (Methodological), pages 673–689, 1995. 2

D. A. Smith and N. A. Smith. Probabilistic models of nonprojective dependency trees. In
Poceedings of the Conference on Empirical Methods in NaturalLanguage Processing and
Computational Natural Language Learning, pages 132–140, 2007. 3.2.3
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