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Abstract

This thesis argues that successful semi-supervised learning is improved by learning many functions

at once in a coupled manner. Given knowledge about constraints between functions to be learned

(e.g., f1(x) → ¬f2(x)), forcing the models that are learned to obey these constraints can yield a

more constrained, and therefore easier, set of learning problems. We apply these ideas to bootstrap

learning methods as well as semi-supervised logistic regression models, and show that considerable

improvements are achieved in both settings. In experimental work, we focus on the problem of

extracting factual knowledge from the web. This problem is an ideal case study for the general

problems that we study because there is an abundance of unlabeled web page data available, and

because thousands or millions of functions are discussed on the web.

Chapter 3 focuses on coupling the semi-supervised learning of information extractors that ex-

tract information from free text using textual extraction patterns (e.g., “mayor of X” and “Y star

quarterback X”). We present an approach in which the input to the learner is an ontology defining

a set of target categories and relations to be learned, a handful of seed examples for each, and a set

of constraints that couple the various categories and relations (e.g., Person and Sport are mutually

exclusive). We show that given this input and millions of unlabeled documents, a semi-supervised

learning procedure can, by avoiding violations of the constraints in how its learned extractors la-

bel unlabeled data, achieve very significant accuracy improvements over semi-supervised methods

that do not avoid such violations.

In Chapter 4, we apply the ideas from Chapter 3 to a different type of extraction method, wrap-

per induction for semi-structured web pages. We also consider how to couple multiple extraction



methods that typically make independent errors. To couple pattern-based extraction and wrapper-

based extraction, we use a strategy that only promotes instances extracted by both methods. Exper-

imental results on dozens of categories and relations demonstrate that coupling wrapper induction

improves the precision of the promoted facts, and that coupling multiple extraction methods leads

to higher precision than either of the methods alone.

In Chapter 5, we consider two questions: (1) Can we scale up the number and variety of

predicates in our ontology and still maintain high precision with coupled semi-supervised learning

methods? and (2) Should we consider adding additional extraction methods beyond textual patterns

and wrappers? We first describe a general architecture that can exploit many different extraction

methods. We then describe a prototype implementation of our architecture, called Multi-Extractor

Coupler (MEC). With an extended ontology of 123 categories and 55 relations, MEC has learned

to extract a knowledge base containing over 242,000 beliefs with an estimated precision of 74%.

Chapter 6 considers how to couple the semi-supervised learning of logistic regression models.

Specifically, we consider learning many binary logistic regression classifiers when many pairs of

classes are known to be mutually exclusive. We present a method that uses unlabeled data through

a penalty function that regularizes the training of classifiers by penalizing violations of mutual

exclusion. We apply this idea to training classifiers which decide if a noun phrase is a member

of some specific category. Semi-supervised training of such classifiers is shown to improve per-

formance relative to supervised-only training. We speculate that use of similar penalty functions

could provide an alternative to the methods for coupled semi-supervised learning presented in

previous chapters, with the advantage that the models being learned are principled, probablistic

models that are easy to train and can be applied to any example to provide a prediction of posterior

probabilities.
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Chapter 1

Introduction

1.1 Background

Great successes have been achieved with supervised machine learning methods. Such methods

involve training a model from a pool of labeled examples of some function to be learned. Such

methods are now the standard approach to a variety of problems where explicitly writing down a

program is not feasible but learning one from data is, such as speech recognition, machine transla-

tion, and classification of medical images. However, the practical application of machine learning

methods is greatly constrained by the lack of availability of large labeled training sets, and the

effort required to create them. This motivates the development of semi-supervised methods. Semi-

supervised methods exploit unlabeled data in addition to labeled data to learn models. When

successful, less labeled data is needed to reach a given level of performance using semi-supervised

methods rather than purely supervised methods.

Some of the earliest successes in semi-supervised learning came from bootstrap learning meth-

ods (also called self-training or self-supervised methods) [Yarowsky, 1995; Blum and Mitchell,

1998; Collins and Singer, 1999]. Bootstrap learning methods train on the available labeled data,
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2 CHAPTER 1. INTRODUCTION

use the current model to label some of the unlabeled data, train on the newly expanded labeled

data, and repeat. Such methods have shown promise, but suffer from issues of semantic drift,

where errors in the newly self-labeled data could cause the system to run off track [Curran et al.,

2007]. If methods could be developed to mitigate this drift, it could yield a significant step forward

for semi-supervised learning.

One approach to forestalling drift is learning several mutually exclusive functions together [Riloff

and Jones, 1999; Yangarber, 2003; Etzioni et al., 2005]. The idea is that if different classes are mu-

tually exclusive, then the classes can constrain each other through this relationship. Empirical

results demonstrated significantly higher accuracies using these methods, but drift still occurs.

Chapters 3, 4, and 5 of this thesis explore the idea that learning many different functions with

different types of constraints in addition to the mutual exclusion constraints will enable more ac-

curate bootstrap learning.

Another type of semi-supervised machine learning involves using unlabeled data and domain

knowledge to regularize the training of exponential models. Exponential models, such as logistic

regression and conditional random fields, are typically trained by maximizing an objective func-

tion that sums conditional likelihood with a regularization penalty to encourage small weights.

Semi-supervised methods have added an additional term, which penalizes undesired behavior on

unlabeled data. Penalties might enforce that the learned model matches known class priors [Mann

and McCallum, 2007], or that the model tends to predict a certain class when a certain feature is

active (e.g., the class “Hockey” when the word “puck” is in a document) [Druck et al., 2008].

Chapter 6 of this thesis explores how to learn many binary logistic regression models and

couple their semi-supervised training by exploiting the knowledge that certain pairs of classes

being learned are mutually exclusive by adding a regularization term that penalizes violations of

those mutual exclusion relationships to the objective function.
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1.2 Thesis Statement

The central thesis of this work is that it is possible to learn many accurate function approximators

with relatively little labeled data by leveraging semi-supervised learning methods, a large pool of

unlabeled data, and by using relationships that exist between the functions being learned to couple

the learning of those functions.

Figure 1.1: This thesis argues that in semi-supervised learning, coupling the training of many classifiers for
entities and relations (B) results in a more constrained, and therefore easier learning problem than training a
single classifier (A).

This idea is illustrated in Figure 1.1. Here arrows represent the functions being learned (specif-

ically, labeling a noun phrase as to whether or not it refer to an instance of a category like “coach”,

and labeling pairs of noun phrases as to whether or not some relation like “playsForTeam” holds

between them), and lines represent constraints between the outputs of the functions being learned

(e.g., “athlete” and “team” are the argument types of “playsForTeam”). At first glance, problem (B)

seems like the harder learning problem, because it looks much more complex. This thesis argues

that problem (B) is the easier semi-supervised learning problem, because it is more constrained.

More formally, assume that we have some instance space X . We are learning a collection of n

functions f1, f2, . . . , fn. fi : X → Yi, where Yi is some function-specific output space. Assume

that we also have m constraint functions χ1, χ2, . . . , χm that map from a vector of function outputs
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to a binary output. That is, χi : Y1 × Y2 × · · · × Ym → {0, 1}. These constraint functions put

constraints on the outputs of the functions so that only some function outputs are compatible.

Assume that data are generated from some data distribution D (the join distribution over

X, Y1, Y2, . . . , Yn). We further assume that the data distributionD only puts positive probability on

function outputs where all constraints are obeyed (signified by all constraint functions outputting

a value of 1). We are given a set of labeled pairs (x, yi) for each function fi. We also have a

collection of unlabeled examples. The goal is to learn accurate approximations of each function.

This class of problems is important because there are many real-world problems with many

functions to be learned and obvious constraints to use where not much labeled data is available for

each function and unlabeled data is abundant.

1.3 Case Study: Web Information Extraction

In experimental work, this thesis focuses on extracting facts about entities1 and relations between

entities from web text. This domain serves as an ideal case study for this work for several reasons:

• A vast collection (i.e., billions of documents) of unlabeled text that discusses entities and

relations between them exists on the web.

• This problem domain can be modeled using thousands of functions (e.g. City(·), IsMayorOf(·, ·))

and a rich network of constraints between them. Some examples of such constraints include:

– City(x)→ Location(x)

– IsMayorOf (x, y)→ City(x) ∧ Person(y)

– City(x)→ ¬Country(x)

1Entities are represented using strings; we do not resolve synonymous strings to real-world entities in this work.
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• The extracted knowledge from this work will be valuable to many downstream applications.

As an example of how to fit this problem into our framework, assume that our instance space X

is a set of pairs of some smaller space X , where the smaller space X describes noun phrases that

could potentially refer to entities. Let f1(x1, x2) be the Person(x1) predicate (which ignores the

value of x2), so that f1(x1, x2) is 1 if x1 refers to a person, and 0 otherwise. Let f2(x1, x2) be the

City(x2) predicate, so that f2(x1, x2) is 1 if x2 refers to a city, and 0 otherwise. Finally, f3(x1, x2)

the IsMayorOf(x1, x2) predicate, with value 1 if x1 refers to the mayor of a city referred to by x2,

and 0 otherwise. We could perform type checking of f3 by defining two constraint functions:

• χ1(f1(x1, x2), f2(x1, x2), f3(x1, x2)) is defined to be 1 if f3(x1, x2)→ f1(x1, x2) is satisfied,

and 0 otherwise.

• χ2(f1(x1, x2), f2(x1, x2), f3(x1, x2)) is defined to be 1 if f3(x1, x2)→ f2(x1, x2) is satisfied,

and 0 otherwise.

1.4 Supplementary Online Materials

Numerous materials from this thesis have been put online at http://rtw.ml.cmu.edu/

acarlson_thesis.

1.4.1 Ontologies

Two ontologies are available online. The first, smaller one was used in the experiments in Chapters

3 and 4, and the larger one was used in Chapters 5 and 6.

For categories, ontologies contain the following information:

• The parent category in the hierarchy of categories
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• Exceptions to mutual exclusion (all pairs of categories are assumed to be mutually exclusive

unless specified as exceptions or unless one is an ancestor of the other)

• Whether or not instances of the category are proper nouns, common nouns, or either

• Seed instances of the category

• Whether or not the system should try to populate the category (mostly “true” except for a few

categories like Continent)

• Seed extraction patterns

For relations, ontologies contain the following information:

• The categories that are the domain and range of the relation (to enforce type checking)

• Whether or not the relation is symmetric (MBL in Chapter 4 and the Knowledge Integrator in

Chapter 5 infer positive examples by swapping arguments if this is “true”)

• Whether or not the relation is antisymmetric (similarly to symmetric, but used to infer negative

examples)

• Negative examples of the relation

• Exceptions to mutual exclusion (all relations are assumed to be mutually exclusive unless spec-

ified as exceptions or unless one is an ancestor of the other)

• Seed instances of the relation

• The arity of the relation (one value vs. many) (if “1”, only one value will be promoted for any

given value in the domain of the relation)

1.4.2 Lists Used in Segmenting Noun Phrases

As described in Section 3.4.2 under “Category Instances,” part-of-speech tags are used to detect

and segment noun phrases in free text. To properly attach common prefixes (e.g., “St” and “Prof”)
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and suffixes (e.g., “Sr” and “Inc”) to noun phrases, lists of each were provided to the system. These

lists are available online. Also, noun phrases (as detected by the system) are ignored if they do not

contain a word that is not on a list of English stop words. This list is also available online. Finally,

proper noun phrases that contain prepositions or conjunctions are segmented using a list of phrases

that was generated using a reimplementation of the Lex algorithm [Downey et al., 2007]. This list

is posted online.

1.4.3 Other Materials

As much as possible, results from the experiments in each chapter have been posted online. The

specific materials posted are described toward the end of each chapter. These resources will hope-

fully be useful as a source of knowledge for future researchers. For example, the list of nearly a

quarter-million facts learned by MEC in Chapter 5 could be useful as a semantic resource, while

the extraction patterns learned by CPL in Chapter 3 could be used to bootstrap an information-

extraction system that annotates individual sentences.

1.5 Overview of the Thesis

1.5.1 Survey of Related Work

Chapter 2 surveys work related to this thesis. First, semi-supervised learning is discussed, focusing

on the sub-areas most relevant to this thesis: bootstrap learning, semi-supervised exponential mod-

els, and frameworks for semi-supervised learning. Second, we give an overview of techniques for

extracting factual information from the web. Finally, we discuss methods for multi-task machine

learning.
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1.5.2 Coupled Learning of Textual Extraction Patterns

In Chapter 3, we focus on methods of coupling the semi-supervised learning of information extrac-

tors that extract information from free text using textual extraction patterns (e.g., “mayor of X”

and “Y star quarterback X”). We identify three general types of coupling among target functions

that can be combined to form a dense network of coupled learning problems. We then present an

approach in which the input to the learner is an ontology defining a set of target categories and

relations to be learned, a handful of seed examples for each, and a set of constraints that couple

the various categories and relations (e.g., Person and Sport are mutually exclusive). We show that

given this input and millions of unlabeled documents, a semi-supervised learning procedure can

achieve very significant accuracy improvements by coupling the training of textual pattern-based

extractors for dozens of categories and relations. Based on results reported here, we hypothesize

that even greater accuracy improvements will be possible by forming a larger and more dense

network of inter-constrained learning tasks. The main research contributions of the chapter are:

(1) this work is the first to couple the simultaneous semi-supervised training of both category and

relation textual pattern-based extractors and (2) this work proposes that learning many tasks and

coupling them as much as possible leads to higher accuracy semi-supervised learning, and provides

web-scale experimental evidence to support that point.

1.5.3 Coupling Wrapper Induction and Multiple Extractors

In Chapter 4, we first consider applying the ideas presented in the previous chapter for coupling

pattern-based information extraction to a different type of extraction method, wrapper induction for

semi-structured web pages. We explore using coupling constraints based on mutual exclusion and

type checking of relation arguments to learn more accurate wrappers within a bootstrap learning

process. We then consider how to couple multiple extraction methods that typically make inde-

pendent errors: the method of pattern-based extraction from unstructured text performed in the
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previous chapter and the method for wrapper-based extraction from semi-structured documents

which we discuss first in this chapter. To couple these two methods, we use a strategy that only

promotes instances extracted by both methods. Experimental results on dozens of categories and

relations demonstrate that coupling wrapper induction improves the precision of the promoted

facts, and that coupling multiple extraction methods leads to higher precision than either of the

methods alone. The main research contributions of the chapter are: (1) this work is the first to

couple the simultaneous training of multiple wrapper inducers (2) this work is the first to couple

the simultaneous training of multiple extraction methods (rather than simply combining the output

of multiple extraction methods after training).

1.5.4 Scaling Up: More Predicates, More Extraction Methods

The results in previous chapters lead to two questions: (1) Can we scale up the number and va-

riety of predicates in our ontology to over 100 categories and 50 relations and still maintain high

precision with coupled semi-supervised learning methods? and (2) Should we consider adding ad-

ditional extraction methods to the two methods used in the previous two chapters, coupling more

than two techniques together? In Chapter 5, we explore these questions by learning to extract over

150 predicates, and by using four different extraction methods. We first describe a general archi-

tecture that can exploit many different extraction methods. The architecture uses coupled semi-

supervised learning methods, an ensemble of varied knowledge extraction methods, and a flexible

knowledge base that allows the integration of the outputs of those methods. We also discuss design

principles for implementing this architecture. We then describe a prototype implementation of our

architecture, called Multi-Extractor Coupler (MEC). With an extended ontology of 123 categories

and 55 relations, MEC has learned to extract a knowledge base containing over 242,000 beliefs

with an estimated precision of 74%. Analysis of the results shows that each of the four extraction

methods contributes positively to these results.
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1.5.5 Coupled Semi-Supervised Logistic Regression

In Chapter 6, we consider how to couple the semi-supervised learning of logistic regression models.

Specifically, we consider learning many binary logistic regression classifiers when many (but not

all) pairs of classes are known to be mutually exclusive. We present a method that uses unlabeled

data through a penalty function that regularizes the training of classifiers by penalizing violations

of mutual exclusion. We then apply this idea to training classifiers which decide if a noun phrase

is a member of some specific category. Semi-supervised training of such classifiers is shown to

improve performance relative to supervised-only training, and to slightly improve performance

relative to the Coupled Pattern Learner method presented in Chapter 3. We speculate that use of

similar penalty functions could provide an alternative to the methods for coupled semi-supervised

learning presented in previous chapters, with the advantage that the models being learned are

principled, probablistic models that are easy to train and can be applied to any noun phrase.



Chapter 2

Survey of Related Work

This chapter provides a review of work that is related to this thesis. The thesis is related to work

on a number of different active research topics, each of which are discussed below. First, semi-

supervised learning is discussed, focusing on the sub-areas most relevant to this thesis: bootstrap

learning, semi-supervised exponential models, and frameworks for semi-supervised learning. Sec-

ond, we give an overview of techniques for extracting factual information from the web. Finally,

we discuss methods for multi-task machine learning.

2.1 Semi-Supervised Learning

This thesis aims to learn from a small amount of labeled data and a large amount of unlabeled

data. This problem setting is called semi-supervised learning. A good overview of semi-supervised

learning is provided by Zhu [2008]. Several different families of semi-supervised learning methods

have been developed. For example, the EM algorithm can be used to deal with missing data in

probabilistic modeling settings [Dempster et al., 1977]. Nigam et al. [2006] use this technique

to learn text classifiers and show that using unlabeled data improvs accuracy. Other techniques

11
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assume that decision boundaries of classifiers should go through low-density regions of the input

space (e.g., Transductive Support Vector Machines [Vapnik, 1998]). Graph-based methods use a

graph structure that connects examples that are similar in the input space and assume that examples

that are close on the graph should have similar predictions [Zhu et al., 2003].

There are two specific families of semi-supervised learning techniques that are used in this

thesis. Both are discussed in detail below. The first, bootstrap learning, uses algorithms where

a model is learned from initial labeled data and then used to label additional data. The second,

regularized exponential models, uses traditional exponential models and supplements the objective

function with a regularizer that encourages desired behaviors on unlabeled data.

Finally, we will discuss some theoretical frameworks for semi-supervised learning that incor-

porate human-specified constraints.

2.1.1 Bootstrap Learning

A large portion of this thesis uses bootstrap learning approaches to semi-supervised learning.1

Bootstrap learning approaches2 start with a small number of labeled “seed” examples of the class

to be extracted, use those seed examples to train an initial model, then use this trained model to

label some of the unlabeled data. A new model is then trained, using labeled data consisting of

the original seed examples plus the new self-labeled examples. This process iterates, gradually

expanding the amount of labeled data. Such approaches have shown promise in applications such

as word sense disambiguation [Yarowsky, 1995], web page classification [Blum and Mitchell,

1998], named entity classification [Collins and Singer, 1999], parsing [McClosky et al., 2006],

and machine translation [Ueffing, 2006].

1The name “bootstrap learning” derives from the idea that such methods bootstrap themselves from a small amount

of labeled data. These methods have nothing in common with the bootstrap technique in statistics.
2Bootstrap learning methods are also called self-training or self-supervised methods.
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Early Work on Bootstrap Learning

One of the earliest approaches to bootstrap learning is by Yarowsky [1995]. This work focuses on

the problem of word sense disambiguation. For a given word like “plant,” the task is to label each

occurrence of that word with some set of senses (for “plant,” the senses are the biological sense and

the manufacturing sense). The system is seeded with a few words that are strongly indicative of a

specific sense when collocated with the target word. For example, “life” and “manufacturing” are

used as seed words for the two senses of “plant.” All occurrences of “plant” with these two words

are labeled, and crucially, all other occurrences of “plant” in documents with labeled occurrences

of the word are also assumed to be labeled the same way (this is referred to as the “one sense per

discourse” assumption). Then, using all labeled occurrences of “plant’, new indicative words are

learned that can be used to label yet more occurrences of the world “plant” based on cooccurrence.

This process iterates, labeling more and more unlabeled data.

The Co-Training algorithm uses a bootstrap learning method to classify web pages3 [Blum and

Mitchell, 1998]. Initially, one text classifier is trained over features describing the words on a

web page, and another is trained over features describing the words used in hyperlinks pointing to

that same web page. In each iteration of the algorithm, the most confident predictions from the

classifiers for each view are used to label more documents, and the models are retrained.

The approach used in the Co-Training algorithm is justified by the authors with a claim that it

maximizes agreement of the predictions from the two text classifiers over the unlabeled data. Ab-

ney [2002] argues that the Co-Training algorithm actually does not directly maximize this agree-

ment, and proposes a different algorithm, the Greedy Agreement Algorithm (GAA), which does.

GAA is shown to perform similarly to the Co-Training algorithm and the Yarowsky algorithm on

the data set used by Collins and Singer [1999] (which is discussed next).

3Note that the Co-Training setting does not assume any particular algorithm, but the algorithm used in experiments

in the paper was a bootstrap learning algorithm.
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Bootstrap Learning for Named Entities and Categories

One of the earliest applications of bootstrap learning in the named entity domain performs named

entity classification using parse-based context features [Collins and Singer, 1999]. One of the al-

gorithms presented by Collins and Singer is based on the earlier work of Yarowsky and Blum.

It learns rules based on spelling features (e.g., full-string=California → Location)

and contextual features (e.g., context=partner at→ Organization). Given a small set

of initial rules, more and more rules are learned through bootstrap learning, yielding impressive

named entity classification accuracies without much initial human effort. However, their approach

only covers a limited subset of the noun phrases in a given piece of text, because it only considers

noun phrases that occur in certain types of contexts: appositive modifiers (e.g., Maury Cooper, a

vice-president at S&P), and prepositional phrases (e.g., a federally funded sewage plant in Geor-

gia).

Another application of bootstrap learning to the named entity domain is that of Riloff and Jones

[1999]. This work describes a method for learning to extract named entity categories from text

that has been preprocessed with a shallow parser. Seed instances of each category of interest are

provided, which are used to learn new extraction patterns. Those extraction patterns are then used

to learn new instances. The process repeats, alternating between learning patterns and learning

instances. The idea of meta-bootstrapping is also introduced. Meta-bootstrapping runs many

iterations of bootstrap learning, then ranks learned patterns or learned words and promotes the

top few highest ranked items. The process then repeats. Categories considered in their evaluation

are locations, titles (e.g., ceo, cfo, president), and weapons. The results shown are promising, but

precision is below 80%.
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URL: dns.city-net.com/˜lmann/awards/hugos/1984.html
Extraction Template: “<i>title</i> by author (”

Table 2.1: An example extraction URL and template for extracting authors of books learned by the DIPRE
system. In the template, “title” is the placeholder where the title of a book is extracted, and “author”
is where the author is extracted.

Bootstrap Learning for Relation Extraction

One of the earliest examples of learning binary relations using bootstrap learning is the Dual Itera-

tive Pattern Relation Expansion (DIPRE) algorithm by Brin [1998]. This work starts with a small

set of AuthorOf(author, book) seed instances and bootstraps by discovering extraction templates

for web pages. For example, a seed pair is (Isaac Asimov, The Robots of Dawn), and an example

URL and extraction template learned are shown in Table 2.1.

Agichtein and Gravano [2000] build on DIPRE to learn the HeadquarteredIn(company, loca-

tion) relation with their Snowball system. Snowball improves on DIPRE with more flexible pat-

terns, additional methods of scoring potential patterns and relation instances, and a new evaluation

methodology. An experimental evaluation on 300,000 news articles demonstrated 76% precision

and recall of 45% for Snowball (a confidence threshold could be varied to emphasize precision

or recall). Paşca et al. [2006b] develop a web-scale approach for extracting the BornIn(person,

year) relation from web documents. One of their primary aims was to extract orders of magnitude

more relation instances than previous work. Their approach generalizes patterns based on semantic

classes of words. For example, their contextual patterns could include snippets like “CL4 written

by” where CL4 refers to any one of the set of words {is, was, has, does, could}. In their evalua-

tion, 998,992 instances of the target relation are extracted and ranked, with an estimated average

precision of 88.38% over that entire set of facts.
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Semantic Drift in Bootstrap Learning

After many iterations of running a bootstrap learning algorithm, results often start to exhibit “se-

mantic drift,” where errors in labeling during the learning process accumulate and the learned

concept drifts from what was initially intended [Curran et al., 2007]. This phenomenon is due to

the fact that the learning task is underconstrained: there are many hypotheses which are consistent

with the labeled seed data, and many of them are wrong. Coupling the learning of different func-

tions by using positive examples of one function as negative examples for other functions has been

shown in some cases to help limit this drift [Riloff and Jones, 1999; Yangarber, 2003]. Such an

approach constrains the learning task by providing seed negative examples for each function, and

by discovering new negative examples in each iteration of bootstrap learning.

When using bootstrap learning for relation extraction, ensuring that relation arguments are of

a certain, expected type can help mitigate the promotion of incorrect instances and thus curb se-

mantic drift. For example, Rosenfeld and Feldman [2007] assume that the argument types for

relations of interest are known, and that methods of recognizing those types are available (either

rule-based or Conditional Random Field-based sequence taggers). These classifiers are used to

validate arguments of potential relation extractions. Rosenfeld and Feldman also use corpus statis-

tics to compare potential arguments to the arguments of seed instances in order to validate them.

Paşca et al. validate relation arguments using distributional similarity to seed instance arguments.

2.1.2 Semi-Supervised Exponential Models

Logistic regression is an example of an exponential model. Later in the thesis, we discuss methods

of exploiting known relations between functions as well as unlabeled data to learn more accurate

logistic regression models. Here we review training exponential models on only labeled data, and

then review several methods of exploiting unlabeled data to perform semi-supervised learning of

exponential models. For a primer on logistic regression, see Mitchell [2006].
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Supervised Exponential Models

Exponential models (also called maximum entropy when fit using maximum likelihood and logistic

regression for binary classification problems) are a popular method for discriminative probabilistic

modeling. For a binary classifier, we could model the probability of a vector-valued instance x

being a positive example of a class y (where y is either 0 or 1) as

pθ(y = 1|x) = 1

1 + exp (
∑

k θkxk)

where θ is a parameter vector of the same dimensionality as an instance x.

For multiclass problems, this generalizes to:

pθ(yi|x) =
1

Z(x)
exp

(∑
k

θi,kxk

)
where Z(x) =

∑
i exp

∑
k θi,kxk normalizes the posterior distribution. This formulation is some-

times call softmax regression.

Given a collection of labeled training examplesL, θ is learned by maximizing the log-likelihood

of the labels of the training data:

l(θ, L) =
∑

(x,y)∈L

log pθ(y|x)

Typically the objective function contains the log-likelihood supplemented with a regulariza-

tion penalty. Here we add a Gaussian prior over the weights (this is commonly referred to as L2

regularization:

Obj(θ, L) =
∑

(x,y)∈L

log pθ(y|x)− λ
∑
i

∑
k

θ2i,k

This objective function can be maximized using gradient ascent-based methods, where the

gradient with respect to weight θi,k is:
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∂Obj(θ, L)

∂θi,k
=
∑

(x,y)∈L

xi [δ(y = k)− pθ(yk = 1|x)]− λθi,k

Semi-Supervised Exponential Models

Later in the thesis, we will present methods of modifying the supervised objective function dis-

cussed above to take advantage of unlabeled data. Several different methods have been proposed

by other researchers which fit this general description, and we describe several such methods be-

low. The general idea is to devise a regularization function which encourages some desired be-

havior over unlabeled examples by penalizing deviations from that behavior, and then add that

regularization penalty to the supervised objective function. Optimization can still be performed

using gradient-based methods, but the objective function is often no longer convex, so tools like

annealing and random restarts are used.

Entropy Regularization

The first example of a semi-supervised exponential model that we discuss here is the work of

Smith and Eisner [2007] on feature-based parsing. Their approach uses an exponential model

with a wide variety of features of a syntactic parse tree. They find parameters by maximizing

an objective function that sums the likelihood of labeled parse trees and a penalty term which

penalizes models based on their lack of confidence in their predictions on unlabeled sentences, a

method called Entropy Regularization [Brand, 1999; Grandvalet and Bengio, 2005].4 The penalty

term for an unlabeled sentence is the Rényi entropy of the predictions on that example. The authors

connect this approach to traditional bootstrap learning. They point out that the gradient for their

4This method is similar to Transductive SVMs [Vapnik, 1998], since predictions made for unlabeled data points

that are close to the decision boundary of an SVM are lower-confidence than those made for data points far from the

boundary.
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choice of entropy is much greater for the most confident unsupervised examples than the most

unconfident unsupervised examples, and so the most confident examples have the most influence.

Thus, it mimics bootstrap learning in that the most confident unsupervised examples influence the

learning process.

Label Regularization

Mann and McCallum [2007] consider a multi-class classification setting where few labeled exam-

ples are available, but estimates of the prior probability of each class are known. Parameters are fit

by optimizing an objective function which sums the conditional likelihood of the known labels, an

L2 regularization penalty, and the KL-divergence of the predicted prior probabilities of the different

classses from the known priors. Experimental results show that label regularization performs well

even with fewer than 10 examples, and generally outperforms supervised L2 logistic regression,

Naive Bayes, Naive Bayes with EM, and logistic regression with entropy regularization.

Labeled Features

Druck et al. [2008] focus on a setting where labeled features are available, rather than labeled

examples. For example, a human annotator can declare that 90% of documents that contain the

word puck should be labeled with class Hockey. An objective function consisting of a Gaussian

prior on weights plus a penalty on deviations from these declared priors for examples containing

the specified features is optimized. The gradient of this penalty is intuitive: it tends to put weight

on features which often co-occur with the labeled features. An empirical study shows that, given

equal time for labeling, it is more efficient to label features than individual text documents.
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Co-Regularization with Multiple Views

In some learning problems, multiple views are available, meaning that there are multiple sets of

features available. If each view is descriptive enough so that examples can be accurately classified

using only that view, then it is possible to use semi-supervised methods that exploit this fact, such

as Co-Training [Blum and Mitchell, 1998] (discussed above).

In such multiple-view settings, Sindhwani et al. [2005] propose regularizing models with a

function that penalizes disagreement in predictions for unlabeled examples. They specifically pro-

pose regularizing least squares regression with a penalty which squares the difference between the

predictions on each unlabeled example, but using a similar idea with logistic regression is straight-

forward.

Constraint-Driven Learning

Chang et al. [2007] present a framework for semi-supervised learning when domain knowledge is

available. For example, when learning a structured output classifier that segments bibliographic

citations into fields like author, title, and booktitle, domain knowledge could be expressed through

constraints like “Fields cannot end with stop words.”

These constraints are incorporated into learning through an objective function that is the sum

of a score function and constraint-based penalty terms:

argmax
y

[
λF (x, y)−

K∑
i=1

ρid(y, 1Ci(x))

]
where F (x, y) is a vector-valued feature function which maps an input/output pair to some feature

space, λ is a weight vector (the target of learning),K is the number of constraints, ρi is a weight for

constraint i, 1Ci(x) is the space of labelings which respect the constraint i, and d is some distance

between a labeling y and the space 1Ci(x).

Learning proceeds using a bootstrap learning algorithm which searches for the topK unlabeled
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examples which have the highest score function value. The process is “seeded” using a small

labeled set.

Their results show that constraints can indeed improve semi-supervised training by penalizing

implausible labelings during bootstrap learning. This thesis argues that this idea can be applied at

a large scale to couple the training of hundreds or thousands of models.

Posterior Regularization

Ganchev et al. [2009] describe a framework called Posterior Regularization (PR) which allows

domain knowledge to be specified in the form of constraints over allowable values of latent vari-

ables. For example, in semi-supervised learning of an HMM for POS tagging, a constraint can

require that the predicted posterior distribution over tag sequences for a sentence contains at least

one noun, in expectation. Constraints must be enforced in expectation to allow efficient algorithms

for parameter learning; enforcing the constraint so that every labeling with non-zero probability

contained a noun, for example, would be intractable. Parameters are estimated using a modifica-

tion of EM which projects the posterior distribution estimated in the E step onto a space where the

constraints are satisfied. The M step remains the same. While PR is a promising framework, for

the work with Coupled Logistic Regression (CLR) presented in Chapter 6, it is no more powerful

than the penalty used to enforce mutual exclusion for CLR. This is because PR would require con-

straints to be defined in expectation over the predicted posteriors for mutually exclusive classes,

and the latent variables for those posteriors are not connected in the model. Thus, the constraint

would be some function of the predicted posteriors, just like the penalty function used.
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2.1.3 Machine Learning Frameworks for Constrained Semi-Supervised Learn-

ing

Here we discuss a few frameworks for theoretical analysis of semi-supervised learning. These

frameworks shed light on what semi-supervised learning is possible and under what conditions it

works.

A PAC-style model for Semi-Supervised Learning

Balcan and Blum [2004] present a PAC-style model for learning when both labeled and unlabeled

data are available. They assume that in a learning problem, a concept class C is proposed along

with some notion of compatibility that the chosen concept should have with the data distribution.

Unlabeled data can then be useful because it can allow a learner to eliminate concepts in C that

violate the required notion of compatibility.

Let χ(h, x) be a notion of compatibility which is 1 if a hypothesis h is compatible with an

example x. Let the unlabeled error rate errunl(h) be defined as 1− Ex∈D[χ(h, x)] where D is the

underlying data distribution. Sample-complexity bounds are presented for the case where the target

concept c is in the specified concept class C, and the target concept c is also fully compatible with

the data distribution. In this case, the number of unlabeled examples necessary for PAC-learning

is logarithmic in |C| and the number of labeled examples necessary is logarithmic in |CD,χ(ε)|, the

size of the set of concepts in C with errunl ≤ ε. Thus, the more discriminative the constraint is,

the less labeled data required.

Cross-Task Learning with Hints

Daumé [2008] presents a formal model for learning two functions defined over the same instance

space when constraints exist between their outputs. If some notion of “compatibility” exists that

can identify compatible outputs between the two functions, then unlabeled data can be used to train
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the models by requiring that the two functions label unlabeled data in compatible ways.

For example, consider the problem of learning two functions f1(x) and f2(x) over the same

instance space x. Prior knowledge about the compatibility of two outputs y1 and y2 is formalized

as a constraint function χ(y1, y2) which has value 1 for all correct label pairs for all x with non-

zero probability. The usefulness of this constraint is called its discrimination, and is defined as:

Pr[χ(f1(x), f2(x)) = 1]−1. Results are presented that show that if the constraint has a discrimina-

tion that exceeds some lower bound, then the target functions are PAC-learnable. The lower bound

depends quadratically on the size of the output spaces.

2.2 Fact Extraction from the Web

The general problem of information extraction from textual data encompasses a broad range of

subproblems. Sarawagi [2008] provides a survey of information extraction techniques. For a

survey focusing on previous work on named entity recognition, refer to Nadeau and Sekine [2007].

The work in this thesis focuses on extracting general facts about entities from the web. An

extraction is considered correct if most humans would agree that it is true, given their background

knowledge about the world and a few moments to consult a search engine if they don’t immediately

know the answer. This is different from some information extraction research, where the task is to

annotate individual documents with assertions where they are stated. Thus, we focus our review

of previous work on methods for extracting general facts from a (possibly enormous) collection of

documents.

First, we discuss methods for extracting instances of categories: contextual extraction pattern-

based methods, methods which try to find lists of items on the web, and methods which use distri-

butional similarity. Then we will talk about relation extraction using contextual patterns, followed

by discussion of open relation extraction, which is not targetted at any specific relations. We then
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Used By Pattern
Hearst and Etzioni cities such as NPList
Hearst and Etzioni such cities as NPList
Hearst and Etzioni NPList {,} or other cities
Hearst and Etzioni NPList {,} and other cities
Hearst and Etzioni cities {,} including NPList
Hearst and Etzioni cities {,} especially NPList
Etzioni NP is a city
Etzioni NP is the city

Table 2.2: Extraction patterns used by Hearst and Etzioni instantiated for the “city” category. Braces
indicate optional commas. NPList denotes a list of one or more noun phrases.

survey methods of using facts extracted from the web to perform document-level information ex-

traction. Finally, we discuss methods which use ensembles of web extraction techniques.

2.2.1 High-Precision Patterns for Categories

Our approach to fact extraction is based on using high-precision contextual patterns (e.g., X oc-

curring in the context “is mayor of X” suggests that X is a city). One of the first pattern-based

approaches to information extraction is that of Hearst [1992]. This approach acquires hyponymy

(“is a”) relationships from a text corpus using generic extraction contextual patterns. For example,

using patterns like “X , such as Y” to extract candidate IsA(X,Y) pairs from an electronic copy

of an encyclopedia yields pairs like IsA(waterfowl, ducks) and IsA(protozoa, paramecium). Six

hand-coded patterns are used in experiments and are shown in Table 2.2. A method of learning

new patterns is sketched out, but not implemented.

KNOWITALL, a system which built on Hearst’s work, is created by Etzioni et al. [2005].

KNOWITALL uses eight generic extraction patterns to extract candidate hyponym relations from

the web using search queries. The eight patterns are shown in Table 2.2. The system then evalu-

ates candidate facts using an extension of the PMI-IR algorithm [Turney, 2001]. Candidates which
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occur more often with generic patterns are considered more likely to be true. These counts are

obtained using search engine hit count queries.

Etzioni et al. also present methods of extending the recall of KNOWITALL while maintaining

high precision. The methods include pattern learning, subclass extraction, and list extraction. Pat-

tern learning discovers category-specific patterns which are then used both to extract new candidate

instances and also to evaluate candidate instances. The pattern learning methods presented later in

this thesis are inspired by this pattern learning algorithm. Subclass extraction uses known category

instances in generic patterns. For example, if it is known that “biologist” is a type of scientist, then

we can use the pattern “biologists such as X” to extract more scientists. Finally, list extraction

uses wrapper induction techniques to discover lists of instances on the web, and then extract new

candidate instances of a category from the discovered lists. All of these methods improve the re-

call of KNOWITALL at equivalent levels of precision, and the results demonstrate that the different

techniques complement each other well. None of these methods are bootstrap learning methods,

because they do not iterate.

Given a collection of extraction patterns and a large corpus, it is not obvious how best to model

the probability of some fact being true given the number of times it is extracted by each pattern.

Downey et al. [2005] present a formal probabilistic model, called URNS, where each occurrence

of an instance extracted by a pattern is represented by a ball in an urn. The key question to

answer with the model is “If an instance occurs k times out of n draws from the urn, what is the

probability that it is a correct extraction?” If the distributions of the number of balls each correct

and incorrect extraction have in the urn are known, then this question can be answered with a

reasonably straightforward calculation. If not, then the distributions must be estimated, which is

done using EM and assumes Zipfian distributions. Multiple extraction patterns are handled using

multiple urns.

A pattern like “cities, such as X” is not a perfect extractor of city instances. Consider as
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an example the sentence “There are numerous problems in cities, such as pollution, crime, and

poverty.” This could lead us to believe that pollution, crime, and poverty are cities. Hovy et al.

[2009] use doubly-anchored generic patterns to increase precision over Hearst’s techniques. The

idea is to use known instances of a category in the pattern to increase precision. For example, the

pattern “cities, such as Pittsburgh and X” should have very high precision.

Talukdar et al. [2006] presents a method for inducing contextual patterns for extracting in-

stances of a category from a set of seed instances. Their method constructs a finite state automaton

which represents sequences of words observed near the seed instances in a text corpus. The au-

thors give the example: when trying to learn to extract gene names, one might observe the text

sequences: “increased expression of X in vad mice” “the expression of X mrna was greater” and

“expression of the X gene in mouse”. An automaton is built starting from the word “expression”

(which occurs frequently with seed instances) and is used to induce the patterns: “expression of X

in” “expression of X mrna” and “expression of the X gene”. While the example does not illustrate

this, their method allows induction of patterns which do not literally occur in the training data.

This particular work is of interest because there has been limited work on modeling sequences of

words in the domain of web-scale fact extraction.

2.2.2 Other Methods for Category Expansion

List Extraction using Wrapper Induction

As discussed earlier in this section, Etzioni et al. use list extraction methods to extend the recall of

KNOWITALL. Several other researchers have tried to discover lists and tables of items and learn

extraction templates to extract each item in the list or table, in order to expand some set of items

of interest. The general idea is to extend a set of instances of a category by using a small set of

instances as a query to a search engine, and assume that if they all occur on the same page, then

that page is likely to contain a list or table with other instances of that category. For the pages that
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are returned, typical methods try to find a “wrapper” that can be used to extract the instances used

in the query as well as other instances.

An early example of wrapper induction is the work of Doorenbos et al. [1997]. More general

methods are presented in the thesis work of Kushmerick [1997]. Cohen et al. [2002] extend this

work by exploiting the HTML structure of pages in wrappers, rather than just prefix and suffix

strings. Most of this previous work is focused on information extraction from semi-structured

sources. For example, wrappers can be learned to extract structured records containing the author,

title, and price of a book from web pages from a specific web site that sells books.

Later work has focused specifically on extending a set of instances of a category or a relation.

Etzioni et al. [2005] and Nadeau et al. [2006] use the HTML structure of a page to induce wrappers

for pages that are returned using search engine queries for known instances of a category. The

SEAL system of Wang and Cohen [2007] uses character-based prefixes and suffixes as templates

in wrappers that can be used to extract from a variety of markup languages. They show that lists of

items can accurately be extended in several different languages. They also show good results for a

novel ranking method: they rank candidate instances using a random walk-based technique over a

graph that connects seeds, web pages they occur on, and candidates extracted by those web pages.

Set Expansion using Distributional Similarity

The distributional hypothesis states that the meaning of a word can be characterized by the words

that that word co-occurs with in text [Harris, 1954]. This idea is applied computationally to a 6-

million word corpus of news stories by Hindle [1990]. Distributional statistics allow Hindle [1990]

to determine that, for example, the words “ruling” and “decision” are similar in meaning. Pantel

and Lin [2002] use corpus-based distributional similarity between pairs of words to form clusters

of words with similar meanings.

The work that exploits distributional similarity that is most relevant to this thesis is that of Pan-
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tel et al. [2009]. They present an approach to computing pairwise similarities between 500 million

terms which is efficient enough to operate in a few days on a 200-node cluster. The learned simi-

larities are then used in a set expansion task. They also study the effects of different variables on

the quality of the resulting expanded sets. They find that: the size of the corpus has a significant

positive effect on performance; random selections of seed sets of the same size yield wide swings

in performance; 5–20 seeds yield much better performance than 2, but going beyond 20 seeds does

not lead to additional extraction of correct instances.

2.2.3 Relation Extraction

In this section, we discuss two families of relation extraction methods. Here a relation is a predicate

with two arguments (e.g., LocatedIn(Carnegie Mellon, Pittsburgh)). First, we discuss pattern-based

methods of extracting relational facts from the web. These are similar to the pattern-based methods

for categories discussed above. Second, we discuss open relation extraction methods, which aim to

extract all relations stated in a collection of documents, rather than a pre-specified set of relations

of interest.

Pattern-Based Web Relation Extraction

Much previous work focuses on the task of extracting instances of a relation from the web given

some seed instances of that relation. These approaches often rely on contextual patterns that are

similar to the contextual patterns for extracting category instances discussed above, except that

they have two arguments instead of just one.

An early pattern-based web relation extraction approach is the DIPRE system [Brin, 1998].

This system was discussed in greater detail in Section 2.1.1, along with the later work of Agichtein

and Gravano and Paşca et al..

A classification-based approach to relation extraction was taken by Mintz et al. [2009]. Starting
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with relation instances from Freebase [Bollacker et al., 2008], sentences containing each known

pair of entities in each relation instance are collected, and then feature vectors are generated to

represent each relation instance. For example, given the instance (Dusa McDuff, Mathematician)

for the “profession” relation, features are extracted from the collection of sentences which mention

“Dusa McDuff” and “Mathematician.” Features are summed across all occurrences of the instance.

The actual features used are conjunctions of features from a dependency parse of the sentence,

named entity labels from an off-the-shelf NER package, and lexical features near each argument

in the instance. A classifier is then trained for each relation of interest. Average precisions in the

66%–69% range are shown in their evaluation. Mintz et al. [2009] built on earlier work by Bunescu

and Mooney [2007], which learned to recognize relations expressed in individual sentences using

sentences downloaded from the web that contained pairs of entities known to satisfy a relation.

In Section 2.1.1, we discussed the use of type checking to improve the results of relation ex-

traction.

Normand et al. [2009] present a bootstrap learning approach to relation extraction which ex-

ploits the known arity of each relation of interest (one-to-many or one-to-one). They demonstrate

that using an algorithm which leverages this knowledge improves performance.

Open Relation Extraction

Research towards Open Information Extraction (Open IE) aims to extract every relation of interest

in text, rather than relations from some predefined set of relations of interest. Shinyama and Sekine

[2006] discover relations between pairs of entities by clustering documents that mention similar

entities and/or express similar relationships between entities, and then aligning the entities in a

relational table. For example, given articles about hurricanes, the goal would be to discover a table

where one column is the name of a hurricane and the other column is a place damaged by that

hurricane. This approach is expensive because it requires pairwise clustering of documents.
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A web-scale approach to Open IE is taken by the TEXTRUNNER system [Banko et al., 2007].

The first implementation of TEXTRUNNER uses a Naive Bayes classifier to classify every pair of

noun phrases in an input sentence as to whether or not some interesting relation is being expressed

between the pair. Heuristics are used to decide which tokens between the pair express the relation-

ship. The Naive Bayes classifier is computationally efficient, so it was feasible to run on sentences

from 9 million web pages. This resulted in millions of tuples like (Oppenheimer, professor of,

theoretical physics) and (trade schools, similar to, colleges). Banko and Etzioni [2008] present an

updated implementation of TEXTRUNNER that uses a method called O-CRF, which replaces the

Naive Bayes classifier with a Conditional Random Field model. Experimental results show that,

with O-CRF, TEXTRUNNER achieves much higher recall and precision than with Naive Bayes.

Clustering of synonymous noun phrases (e.g., Mars and The Red Planet) and synonymous

relations (e.g., orbits and revolves around) present in the triples extracted by TEXTRUNNER is

tackled by the RESOLVER system [Yates and Etzioni, 2009]. RESOLVER uses a model inspired by

URNS to assess the probability that two strings are synonymous.

2.2.4 Document-level IE From Web IE

For reasons discussed earlier, this survey has not covered information extraction methods that an-

notate individual documents. However, there are a few methods that use corpus-level fact extrac-

tion techniques to create resources which are then used to annotate individual documents. These

are relevant not only because they use corpus-level fact extraction methods, but also because they

suggest how to leverage learned facts to perform document-level information extraction.

Nadeau et al. [2006] perform named entity recognition using a two step process. First, a seed

list of members of a category is expanded using wrapper induction methods. The seeds are used

in a query to a search engine to find pages which are potential lists, and then a wrapper is learned

for each page based on the HTML structure of the page. This process is iterated in a bootstrap-



2.2. FACT EXTRACTION FROM THE WEB 31

learning manner. Second, the expanded list of category instances is used in a dictionary-based

named entity recognition algorithm. Several heuristics are used to handle issues like cases where a

string matches dictionary entries for multiple categories and cases where only partial matches are

found. The full algorithm using all heuristics achieved F-scores in the 73–78 range on the MUC-7

corpus.5 The same approach has been applied to 100 entity types with high accuracies [Nadeau,

2007].

Whitelaw et al. [2008] describe a system which learns to annotate individual web documents

with named entity labels. The system is trained using a massive collection of training data gen-

erated with web IE methods. It starts with a small seed set of instances of entities and relations,

and learn patterns from occurrences of the seeds. These patterns are used to generate more labeled

instances in web documents. The set of labeled instances is expanded further by assuming that if

a labeled entity occurs elsewhere in a document, then the other occurrences should have the same

label. Also, if an entity is mentioned in a document that links to a document in which that entity is

labeled, then the label is propagated. This process generates hundreds of millions of labeled occur-

rences of entities in web documents. These labeled occurrences are used to train a classifier which

is then used to annotate web documents. The experimental evaluation showed that the system has

overall accuracy of 94%.

2.2.5 Ensembles of Web Extraction Systems

Several methods have been presented which extract facts by combining an ensemble of extraction

techniques. Ensembles of machine learning methods can yield very good results, often better than

the best single method in the ensemble [Dietterich, 2000].

Cafarella et al. [2008c] aggregate the outputs of TEXTRUNNER, WEBTABLES, and a deep-

web search system. As discussed before, TEXTRUNNER extracts triples of textual strings that

5This was a document-level annotation task, rather than a corpus-level task.
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express some relation between a pair of entities. WEBTABLES extracts tuples from HTML table

elements [Cafarella et al., 2008b,a]. The third method submits automatically fills out forms on

websites with search forms, and extracts the tables that are returned [Madhavan et al., 2008]. The

key idea is that pooling the output of the different extraction methods is worthwhile because they

have different strengths in terms of coverage and depth. However, the authors only describe the

different methods and point out the value of combining them. Issues like resolution of synomyms

are left for future work.

Pennacchiotti and Pantel [2009] present a framework for mixing fact extraction sources called

Ensemble Semantics. The framework generalizes several previous methods for fact extraction. Re-

sults are presented using two different extraction methods: a re-implementation the textual pattern

learner from Paşca et al. [2006b], and a distribution similarity-based learner [Pantel et al., 2009].

Extractions from these methods were ranked using a variety of feature sources. Results for the

categories actor, athlete, and musician showed significant gains from combining the extraction

methods and feature sources.

Information from web text and HTML tables is combined in a graph structure by Talukdar et

al. [2008]. The information from web text comes from open-domain extraction which yields a

collection of labeled sets of instances (e.g., “Billy Joel” is a “musician”; these come from the work

of Van Durme and Paşca [2008]). The information from HTML tables comes from data provided

by Cafarella et al. [2008a], and also provides labeled sets of instances. In the graph, instances

are connected to classes with weighted edges. For example, “Billy Joel” might be connected to

“musician” with weight 0.82, and to “singer” with weight 0.75. Random walks on this graph are

used to decide how associated classes are with instances. Since musicians are densely connected

with singers in the graph, the two classes reinforce each other in the random walk. An experimental

evaluation compares the random walk method with the results of Van Durme and Paşca [2008] and

finds that recall improves significantly at equivalent levels of precision.
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2.3 Multitask Learning

Multitask learning considers settings where multiple learning tasks are performed simultaneously.

The idea is that relationships between different tasks can be exploited by introducing bias based on

those relationships. There have been several successes which have demonstrated that supervised

learning of multiple related functions together can yield higher accuracy than learning the functions

separately with the same number of training examples [Thrun, 1996; Caruana, 1997]. These two

approaches both used neural networks with an output unit for each function being learned, and

shared hidden units that can leverage shared structure between the functions. The relationship

between tasks here is the assumption of some useful common “hidden features” which are useful

to multiple tasks. The hidden layers discover the features during training. Both works showed

experimental results where multitask learning yielded higher accuracies than independent learning.

In other work with neural networks, a large network was trained to perform many language

processing tasks in a multitask fashion by Collobert and Weston [2008]. Multitask learning was

accomplished by sharing weights in the first layer of the architecture. Raw input words are fed to

the first layer, which maps them into a real-valued space. Weights for this mapping are shared be-

tween tasks. In a manner similar to Thrun and Caruana’s work, then, this architecture uses different

tasks to discover representations for words which are useful to multiple tasks. Supervised training

of the network was performed for part-of-speech tagging, chunking, semantic role labeling, and

several other tasks. Semi-supervised training of a language model was performed on the text from

Wikipedia. Their results demonstrated that joint learning yielded significantly better performance

than the start-of-the-art in semantic role labeling.

A semi-supervised approach to multitask learning was presented by Liu et al. [2008]. Their

method assumed that the tasks to be learned should have similar parameters. Thus, a shared prior

was used for the parameters of all of the different tasks. This encouraged all tasks to have similar

parameter values. Positive results were shown on art image retrieval and landmine detection tasks.
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The work of Ando et al. [2005] learns good “predictive structures” for multiple problems. The

idea is that there is some “structural parameter” θ that parameterizes the hypothesis space of each

problem being learned. That is, for the l-th problem, the hypothesis space used for the learned

predictor is Hl,θ. The goal is to find an optimal parameter θ for which empirical risk for each

problem is minimized. For example, θ might map the initial feature space to a lower-dimensional

space, encouraging different pairs of features in the initial feature space to have similar weights. θ

can be discovered from the data, so that structure between problems can also be discovered from

the data, rather than needing to be specified a priori. Semi-supervised applications of Ando et al.’s

method are possible, but require that problems without labeled data can have labels automatically

generated somehow. This restricts the possible applications of their semi-supervised method.

This thesis takes inspiration from these demonstrations that coupling the supervised and semi-

supervised training of multiple functions can improve the learning of those functions. However, we

aim to take advantage of explicitly declared constraints that couple functions with more concrete

relationships than “these functions should share features” or “these functions should have similar

parameters.”



Chapter 3

Coupled Learning of Textual Extraction

Patterns

Abstract

In this chapter, we focus on methods of coupling the semi-supervised learning of information ex-
tractors that extract information (e.g., City(X) and AthletePlaysForTeam(X , Y )) from free text
using textual extraction patterns (e.g., “mayor of X” and “Y star quarterback X”). We identify
three general types of coupling among target functions that can be combined to form a dense net-
work of coupled learning problems. We then present an approach in which the input to the learner
is an ontology defining a set of target categories and relations to be learned, a handful of seed exam-
ples for each, and a set of constraints that couple the various categories and relations (e.g., Person
and Sport are mutually exclusive). We show that given this input and millions of unlabeled docu-
ments, a semi-supervised learning procedure can achieve very significant accuracy improvements
by coupling the training of textual pattern-based extractors for dozens of categories and relations.
Based on results reported here, we hypothesize that even greater accuracy improvements will be
possible by forming a larger and more dense network of inter-constrained learning tasks. The main
research contributions of the chapter are: (1) this work is the first to couple the simultaneous semi-
supervised training of both category and relation textual pattern-based extractors and (2) this work
proposes that learning many tasks and coupling them as much as possible leads to higher accuracy
semi-supervised learning, and provides web-scale experimental evidence to support that point.

35
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3.1 Introduction

In this chapter, we focus on methods of coupling the learning of information extractors that extract

information from free text. Machine learning approaches have been shown to be very useful for

such learning tasks, including approaches that learn to extract various categories of entities (e.g.,

Athlete, City, Hobby, Vehicle) and relations (e.g., CompanyProducesProduct, TeamPlaysSport)

from text [Bikel et al., 1999; Zelenko et al., 2003]. However, supervised training of accurate entity

and relation extractors is costly, requiring a substantial number of labeled training examples for

each type of entity and relation to be extracted. This requirement can lead to a large amount of

human effort being necessary for each predicate to be learned.

Because of this cost, many researchers have explored semi-supervised learning methods for

information extraction that use only a small number of labeled examples of the predicate to be

extracted, along with a large collection of unlabeled text [Brin, 1998; Riloff and Jones, 1999;

Agichtein and Gravano, 2000]. For example, one popular class of semi-supervised learning meth-

ods involves an iterative ”bootstrap learning” process1 in which initial positive seed examples of

the target category (e.g., examples of cities) are first used to search through unlabeled text to iden-

tify contextual patterns in which these examples commonly occur (e.g., “mayor of X”). These

contextual patterns are then used to find more examples of the predicate, and these steps are it-

erated to learn a growing set of example instances and corresponding contextual patterns. While

such semi-supervised learning methods are promising, they often exhibit unacceptable accuracy

because the limited number of initial labeled examples is insufficient to reliably constrain the

learning process [Curran et al., 2007].

The idea explored in this chapter is that we can achieve much higher accuracy in semi-supervised

learning of information extractors by coupling the simultaneous training of many extractors. The

intuition here is that the underconstrained semi-supervised learning task can be made easier by

1See Section 2.1.1 for a survey of bootstrap learning work.
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adding new constraints that arise from coupling the training of many extractors. We identify three

general types of coupling among target functions that can be combined to form a dense network of

coupled learning problems.

We present an approach in which the input to the semi-supervised learner is an ontology defin-

ing a set of target categories and relations to be learned, a handful of seed examples for each,

and a set of constraints that couple the various categories and relations (e.g., Person and Sport are

mutually exclusive). We show that given this input and millions of unlabeled documents, a semi-

supervised learning procedure can achieve very significant accuracy improvements by coupling

the training of extractors for dozens of categories and relations. Based on results reported here,

we hypothesize that even greater accuracy improvements will be possible by forming a larger and

more dense network of inter-constrained learning tasks.

The main research contributions of the chapter are: (1) this work is the first to couple the

simultaneous semi-supervised training of both category and relation extractors and (2) this work

proposes that learning many tasks and coupling them as much as possible leads to higher accuracy

semi-supervised learning, and provides experimental evidence to support that point. This chapter

presents material that was originally presented by Carlson et al. [2010b].

3.2 Patterns

Our approach uses textual patterns to perform information extraction from free text. In the litera-

ture, textual patterns have also been referred to as contextual patterns or lexicosyntactic patterns.

In this chapter, we will simply call them patterns.

By patterns, we mean literal strings with wildcards that match noun phrases.2 For example,

2Noun phrases are defined as strings of tokens that have certain sequences of part-of-speech tags and, in the case

of complex phrases like “Procter and Gamble,” pass statistical tests of association. See Section 3.4.2 for more details

on how noun phrases are defined.
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“is mayor of X” is a pattern with literal string “is mayor of” and placeholder X . When applied

to the sentence, “Daley is mayor of Chicago” the pattern will extract the noun phrase “Chicago”.

Patterns can be useful for information extraction because certain patterns are reliable extractors of

instances of specific predicates. For example, the previously mentioned pattern “is mayor of X”

reliably extracts cities. Patterns can have multiple wildcards, also. For example, in the pattern

“X HQ in Y ,” X is likely to refer to an organization with headquarters in location Y. Such multi-

wildcard patterns can be used for extracting relations.

Hearst [1992] presented one of the first pattern-based information extraction methods. This

approach acquires hyponymy (“is a”) relationships from a text corpus using patterns like “X ,

such as Y .” Applying this method to an electronic version of an encyclopedia yields pairs like

IsA(waterfowl, ducks) and IsA(protozoa, paramecium). Only hand-coded patterns are used; a

method of learning patterns is discussed but not implemented.

We choose to work with patterns rather than richer representations of context (e.g., patterns

with wildcards, or feature-based representations) because the specificity of patterns allows for

high precision. It has been shown that high-precision patterns can be learned well given web-scale

text. For example, patterns outperformed linguistically richer methods at web-scale in the work

of Pantel et al. [2004]. Banko and Brill [2001] was one of the first to show that simple methods

(like patterns) can perform very well given very large training corpora.

3.3 Bootstrapped Pattern Learning

In this chapter, we focus on a “bootstrapping” method for semi-supervised learning of textual

information extraction patterns. See Section 2.1.1 for a discussion of bootstrapping and related

work.
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3.3.1 Semantic Drift

Bootstrapping approaches to information extraction can yield impressive results [Brin, 1998; Collins

and Singer, 1999; Agichtein and Gravano, 2000]. However, after many iterations, accuracy typ-

ically declines because errors in labeling accumulate, a problem that has been called “semantic

drift” [Curran et al., 2007].

For example, given the category City, a bootstrapping algorithm might be given seeds Chicago,

Pittsburgh, Beijing, and Rome. By gathering statistics from occurrences of these seeds, the algo-

rithm can find contexts in which those seeds frequently occur, like “mayor of X” and “city square

of X”. These new patterns can be used to discover new instances of the City category, and so

on. The problem is that there are many patterns which occur frequently with City instances but

are too general. For example, the pattern “live in X” occurs frequently with all of the City seeds,

but also occurs with instances of other types of locations, like Europe (a continent) and California

(a state). Without extra constraints, bootstrapping algorithms frequently diverge because of these

overly general extraction patterns.

Example: Semantic Drift

To provide an additional example of the problem of semantic divergence, with real data, consider

learning patterns to extract instances of the category Country. We start from seed examples: Aus-

tria, Brasil, Canada, Egypt, France, Germany, Indonesia, Iraq, Mexico, Morocco, Netherlands,

New Zealand, South Africa, Togo, and United States.

We find all occurrences of these seeds, and extract all patterns that they occur with. We consider

the number of times each of those potential patterns occurs, and select the five patterns which

occur with at least two of our seeds, and which occur with seeds the largest fraction of all of their

occurrences. This is essentially what the UPL algorithm does, discussed later in this chapter in

Section 3.4.3.
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This strategy yields the five patterns shown in Table 3.1.

Pattern

war with X
ambassador to X
war in X
occupation of X
invasion of X

Table 3.1: Patterns promoted from Country seeds using an uncoupled pattern learning algorithm.

If we then use those patterns to extract new instances of the Country category, we find many

noun phrases that are not correct but occur with several of these new patterns. A few examples of

such incorrect instances are shown in Table 3.2.

Instance Patterns Instance Occurs With

planet Earth “invasion of X”, “occupation of X”, “war with X”
Freetown “occupation of X”, “war in X”, “invasion of X”, “ambassador to X”
North Africa “war in X”, “invasion of X”, “occupation of X”

Table 3.2: Instances promoted for the Country category using the patterns from Table 3.1. All are clearly
errors. The patterns learned using uncoupled learning are too general.

3.3.2 Coupled Bootstrapped Training

To reduce errors in underconstrained semi-supervised learning, several methods have been consid-

ered for adding additional constraints to the learning task. Coupling the learning of category ex-

tractors by using positive examples of one category as negative examples for others has been shown

to help limit this decline in accuracy [Riloff and Jones, 1999; Yangarber, 2003]. Type checking

relation arguments using available entity recognizers can help avoid incorrect labels [Paşca et al.,

2006a; Rosenfeld and Feldman, 2007]. Our work in this chapter builds on two ideas and uses
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them to couple the simultaneous bootstrapped training of many category and relation extractors in

multiple ways. Later in the thesis, we explore coupling multiple extraction techniques to further

constrain the learning problem. Next, we discuss general types of coupling that can be used to

constrain the bootstrapping process.

General Types of Coupling

We have used three general types of coupling:

1. Output constraints: For two functions fa : X → Ya and fb : X → Yb, if we know

some constraint on values ya and yb for an input x, we can require fa and fb to satisfy this

constraint. For example, if fa and fb are Boolean-valued functions and fa(x) → fb(x), we

could constrain fb(x) to have value 1 whenever fa(x) = 1.

2. Compositional constraints: For two functions f1 : X1 → Y1 and f2 : X1 ×X2 → Y2, we

may have a constraint on valid y1 and y2 pairs for a given x1 and any x2. We can require f1

and f2 to satisfy this constraint. For example, f1 could “type check” valid first arguments of

f2, so that ∀x1,∀x2, f2(x1, x2)→ f1(x1).

3. Multi-view-agreement constraints: For a function f : X → Y , ifX can be partitioned into

two “views” where we write X = 〈X1, X2〉 and we assume that both X1 and X2 can predict

Y , then we can learn f1 : X1 → Y and f2 : X2 → Y and constrain them to agree. For

example, Y could be a set of possible categories for a noun phrase, X1 could represent the

string content of that noun phrase, and X2 could represent the contexts in which that noun

phrase appears in web text (this setting is similar to that of Collins and Singer [1999]).
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  Country Company

Team 

City

   Athlete

HeadquarteredInLocatedIn

PlaysFor

Figure 3.1: Mutual exclusion constraints (solid lines) couple most pairs in the categories Country, City,

Company, Team, and Athlete (with City and Team being the exception), while type-checking constraints

(dashed lines) couple the relations LocatedIn, HeadquarteredIn, and PlaysFor to the categories specified as

their argument types.
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Coupling Constraints Used in this Chapter

In this work, the functions that we learn are category and relation extractors, which decide if a

noun phrase or pair of noun phrases is an instance of some category or relation (generally referred

to as a predicate in the rest of this thesis). The general types of coupling discussed above are used

to learn these functions in two specific ways:

1. Mutual Exclusion: The input to our learner has a list of pairs of predicates which are mu-

tually exclusive. These relationships are used to enforce an output constraint over instances:

mutually exclusive predicates cannot both be satisfied by the same input x. This is an exam-

ple of an output constraint.

2. Relation Argument Type Checking: We couple the learning of relation extractors with

the learning of category extractors using type checking. For example, the arguments of the

CompanyIsInEconomicSector relation are declared to be of the categories Company and

EconomicSector. This is an example of a compositional constraint.

Figure 3.1 illustrates some of the categories, relations, and coupling constraints used in this

work.

Example: Coupling Counters Semantic Drift

Continuing the example from above, if we filter out patterns that occur very frequently3 with noun

phrases that are known to be instances of any of the categories that are mutually exclusive with the

Country category, we select the five patterns shown in Table 3.3, which are clearly more specific

to the Country category than the patterns learned without coupling in Table 3.1. This is essentially

the strategy used by CPL, a coupled pattern learning algorithm discussed below.

3This is intentionally vague; for the precise criterion used, see the details of CPL in the next section.
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Pattern

nations like X
countries other than X
country like X
nations such as X
countries , like X

Table 3.3: Patterns promoted from Country seeds using a coupled pattern learning algorithm. These patterns
are clearly more Country-specific than those in Table 3.1, which were learned using uncoupled pattern
learning.

3.4 Algorithms

In this section, we present two algorithms with which we investigate the feasibility of improving

semi-supervised learning for information extraction with coupling. The general problem addressed

by these algorithms is to learn extractors to automatically populate the predicates of a specified on-

tology with high-confidence instances, starting from a small set of seed instances for each predicate

and a large corpus of web pages. We focus on extracting facts that are stated multiple times, which

we can assess probabilistically using corpus statistics. We do not resolve strings to real-world en-

tities: the problems of synonym resolution and disambiguation of strings that can refer to multiple

entities are left for future work. For example, our algorithms might learn that “Carnegie Mellon

University” and “Carnegie Mellon” are both strings that refer to universities, but the algorithms do

not learn that the two strings refer to the same entity. We focus our consideration of predicates on

unary relations (categories) and binary relations (ones with two arguments, referred to as relations

in this paper).

3.4.1 Algorithm Inputs

The specific inputs to our algorithms are a large text corpus, and an initial ontology containing the

information described in Section 1.4.1.
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Algorithm 1: Coupled Pattern Learner (CPL)
Input: An ontology O (see Section 3.4.1 for a description of the information contained in

the ontology), and text corpus C

Output: Proposed instances/contextual patterns for each predicate

for i = 1, 2, . . . ,∞ do

foreach predicate p ∈ O do
EXTRACT new candidate instances/contextual patterns using recently promoted

patterns/instances;

FILTER candidates that violate coupling;

RANK candidate instances/contextual patterns;

PROMOTE top candidate instances/contextual patterns;

end

end

3.4.2 Coupled Pattern Learner

The Coupled Pattern Learner (CPL) algorithm learns to extract category and relation instances

from unstructured text, and is summarized in Algorithm 1. CPL learns contextual patterns that are

high-precision extractors for each predicate (e.g., “X and other software firms” and “X scored a

goal for Y ”) and uses them to grow a set of high-precision predicate instances. Noun phrases that

fill in the “X” and “Y ” blanks of patterns in sentences in the text corpus are said to co-occur with

those patterns.

At the start of execution, CPL initializes sets of promoted instances and patterns with the seed

instances and patterns provided as input. In each iteration, CPL expands these sets of promoted

instances and patterns for each predicate while obeying mutual exclusion and type checking con-

straints. This is accomplished by filtering out candidates that co-occur with instances or patterns

from mutually exclusive classes and by requiring arguments of candidate relations to be candidates
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for the relevant categories. Each step of CPL is discussed in more detail below:

Extracting Candidates

To start each iteration, CPL finds new candidate instances by using the patterns promoted in the

last iteration to extract noun phrases that co-occur with those patterns in the text corpus (in the first

iteration, the seed patterns are used). To keep the size of this set manageable, for each predicate,

CPL selects the 1000 candidates that occur with the most patterns, ignoring instances that have

already been promoted. An analogous procedure is used to extract candidate patterns using recently

promoted instances.

We use part-of-speech-tag heuristics to limit extraction to instances that appear to be noun

phrases and patterns that are likely to be informative. These are described next:

• Category Instances: In the blank of a category pattern, CPL looks for a noun phrase by

using part-of-speech tags. Common noun phrases are sequences of adjectives (words tagged

JJ) and common nouns (tagged NN or NNS), which end in a noun. Proper noun phrases

contain proper nouns (tagged NNP or NNPS) and are allowed to start with a list of common

prefixes (e.g., “St.” and “Mr.”) and end with a list of common suffixes (e.g., “, Inc.”). Proper

noun phrases that contain prepositions or conjunctions are segmented using a reimplementa-

tion of the Lex algorithm [Downey et al., 2007]. Noun phrases that contain only stop words

are ignored. Category instances are required to obey the proper/common noun specification

of the category. To handle proper nouns like “iPod,” if a category has a “proper noun” in-

stance type, instances of that category must contain at least one capital letter. Similarly, if a

category has a “common noun” instance type, instances of that category cannot contain any

capital letters. 4

4The lists of common prefixes, common suffixes, stop words, and proper nouns containing prepositions or con-

junctions are available online.
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• Category Patterns: When a promoted category instance is found, CPL extracts the pre-

ceding words as a candidate pattern if they are verbs followed by a sequence of adjectives,

prepositions, or determiners and optionally preceded by nouns (e.g., “being acquired by X”

or “companies acquired byX”) or nouns and adjectives followed by a sequence of adjectives,

prepositions, or determiners (e.g., “former CEO of X”). CPL extracts the words following

the instance as a candidate pattern if they are verbs followed optionally by a noun phrase

(e.g., “X broke the home run record”), or verbs followed by a preposition (e.g., “X drove

to”).

• Relation Instances: If a promoted relation pattern (e.g., “X is mayor of Y ”) is found, a

candidate relation instance is extracted if both placeholders are valid noun phrases (according

to our part-of-speech-tag heuristics), and if they obey the proper/common specifications for

their categories.

• Relation Patterns: If both arguments from a promoted relation instance are found in a

sentence then the intervening sequence of words is extracted as a candidate relation pattern

if it contains no more than five tokens, contains at least one word that is not a stop word, and

contains an uncapitalized word.

Filtering Candidates using Coupling

Candidate instances and patterns are filtered to enforce mutual exclusion and type checking con-

straints. A candidate instance is rejected unless the number of times it co-occurs with a promoted

pattern is at least τ times more than the number of times it co-occurs with patterns from mutually

exclusive predicates, where τ is a parameter that controls how soft the filtering is.5 This soft con-

5In this chapter and the next, we used τ=3.0, but did not perform any sensitivity analysis to arrive at this value. In

the work described in Chapter 5, we used τ = 10.0 for more aggressive filtering, but never performed a formal study

to find a best value.
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straint is much more tolerant of the inevitable noise in web text as well as ambiguous noun phrases

than a hard constraint. Candidate patterns for predicates are filtered in the same manner using

promoted instances, except that negative instances for a predicate (optionally provided as input to

the system) are added to the instances of mutually exclusive predicates used in filtering.

Ranking Candidates

Next, for each predicate CPL ranks candidate instances using the number of promoted patterns that

they co-occur with so that candidates that occur with more patterns are ranked higher. Candidate

patterns are ranked using an estimate of the precision of each pattern p:

Precision(p) =

∑
i∈I count(i, p)

count(p)

where I is the set of promoted instances for the predicate under consideration, count(i, p) is the

number of times instance i co-occurs with pattern p in the text corpus, and count(p) is the number

of times pattern p occurs in the corpus.

Promoting Candidates

For each predicate, CPL then promotes at most 100 instances and 5 patterns according to the

rankings from the previous step. Instances and patterns are only promoted if they co-occur with

at least two promoted patterns or instances, respectively. Relation instances are only promoted

if their arguments are candidates for the specified categories (that is, they co-occur with at least

one promoted pattern for the category, and are not promoted instances of a mutually exclusive

category).

Large-Scale Implementation

CPL was designed to allow efficient learning of many predicates simultaneously from a large cor-

pus of sentences extracted from web text. Gathering the statistics needed from the text corpus is the
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most expensive part of the algorithm. The statistics needed come from two types of queries. First,

in the extraction step, CPL has a list of promoted instances and patterns, and needs to know which

patterns and instances co-occur with those instances and patterns. Second, in the filtering and rank-

ing steps, CPL needs to know which candidate patterns occur with which promoted instances, and

which candidate instances occur with which promoted patterns. CPL gathers these statistics from

a preprocessed text corpus which specifies how many times each noun phrase occurs with each

category pattern in the corpus, and also how many times each pair of noun phrases occurs with

each relation pattern. The preprocessing can be done quickly using using the MapReduce frame-

work [Dean and Ghemawat, 2008]. In each iteration of CPL, CPL gathers corpus statistics from

this dataset by scanning through the preprocessed data in two passes: one for extracting candidates

and one for counting co-occurrences. CPL can perform one pass in about 15 minutes from a data

set derived from 200 million web pages (see Section 3.5.1 for details on the corpus).

3.4.3 Uncoupled Pattern Learner

In our experiments, we use a variant of CPL called Uncoupled Pattern Learner (UPL) which re-

moves the coupling constraints from CPL. Candidates are not filtered using mutual exclusion with

other predicates, and relation arguments are not type checked. UPL is equivalent to independent

semi-supervised learning of each extractor. The common/proper noun specifications of arguments

are used to filter out implausible instances.

3.5 Experimental Evaluation

We designed experiments to explore the question: Does coupling learning using mutual-exclusion

and type-checking constraints (CPL) improve the performance relative to uncoupled, independent

learning (UPL)?
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To answer this question, we ran CPL and UPL for 10 iterations of learning. We then compared

performance between the pair of methods to see the effects of coupling.

Direct comparison to previous work is difficult for a number of reasons, including the lack of

availability of implementations and the lack of a large shared web corpus. However, our evaluation

directly tests the usefulness of the coupled approach that we are advocating in this thesis. We

believe that the uncoupled baseline is a reasonable and competitive large-scale uncoupled approach

to bootstrapped contextual pattern learning.

3.5.1 Experimental Methodology

Input Ontology

The ontology used in all experiments contained categories and relations from two main domains:

companies and sports. Extra categories were added to provide negative evidence to the domain-

related categories (e.g., Hobby for EconomicSector; Actor, Politician, and Scientist for Athlete

and Coach; and BoardGame for Sport) and also to provide wider variety for experiments (e.g.,

Shape, Emotion). Table 3.6 lists all of the categories in the leftmost column, and Table 3.7 lists

the relations in the leftmost column. Categories were initialized with 15 seed instances and 5 seed

patterns. The seed instances were specified by the author, and the seed patterns for each category

were derived from the generic patterns of Hearst [1992]. Relations were initialized with 15 seed

instances, 5 seed negative instances (typically incorrect variations of positive seed examples), and

no seed patterns (since it is not obvious how to generate good seed patterns from relation names).

Table 3.4 shows the seed instances provided for a few different predicates. Most predicates were

declared as mutually exclusive with one another (examples of exceptions include SportsTeam and

University; KitchenItem and ProductType; and Company and Product).
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Predicate Seed Instances

city Antwerp Baghdad Boston Brussels Chicago Frankfurt Hamburg Havana
Houston Indianapolis London Moline Moscow Patras Pittsburgh

clothing dresses shirts pants pant suits skirts gowns hats “ear muffs” socks mittens
dress shirt shoes underwear belts

food tomatoes steak “ice cream” “pumpkin pie” artichokes “cheddar cheese”
spinach cookies apples lettuce “bell peppers” popcorn pancakes yogurt cel-
ery

stadiumLocatedInCity (PNC Park, Pittsburgh) (Wrigley Field, Chicago) (Yankee Stadium, New
York City) (Wembley Stadium, London) (TD Banknorth Garden, Boston)
(Minute Maid Park, Houston) (Bradley Center, Milwaukee) (Wachovia Cen-
ter, Philadelphia) (Air Canada Centre, Toronto) (Progressive Field, Cleve-
land) (Coors Field, Denver) (Lambeau Field, Green Bay) (Qualcomm Sta-
dium, San Diego) (Reliant Stadium, Houston) (American Airlines Center,
Dallas)

competesWith (AMD, Intel) (Blockbuster, Netflix) (Citigroup, Morgan Stanley) (Ford,
Chrysler) (Ford, Toyota) (Google, Microsoft) (Hershey, Nestle) (Home
Depot, Lowes) (Honda, Toyota) (HP, Apple) (Microsoft, Yahoo) (Nestle,
Unilever) (Nikon, Canon) (Pfizer, Roche) (Yahoo, Google)

Table 3.4: Seeds used in the CPL evaluation for a few predicates. The full seed lists are available online
(see Supplementary Online Materials later in this section).
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The/DT people/NNS of/IN Boston/NNP reelected/VBD James/NNP
Michael/NNP Curley/NNP when/WRB he/PRP was/VBD in/IN jail/NN ./.

They/PRP were/VBD also/RB forbidden/VBN from/IN harvesting/VBG
right/NN to/TO the/DT very/JJ edge/NN of/IN their/PRP$ fields/NNS
./.

Barrels/NNPS to/TO the/DT back/NN may/MD stiffen/VB
frightened/VBN spines/NNS ./.

I/PRP use/VBP last/JJ ./. fm/JJ integrated/VBN with/IN Amarok/NNP
for/IN my/PRP$ music/NN recommendations/NNS ,/, and/CC I/PRP
highly/RB recommend/VBP it/PRP ./.

Table 3.5: Randomly chosen part-of-speech-tagged sentences extracted from the 200-million web page
corpus for CPL.

Corpus for CPL

The text corpus used by CPL was from a 200-million-page web crawl.6 We parsed the HTML,

filtered out non-English pages using a stop-word-ratio threshold, then filtered out web spam and

adult content using a black list of words. The pages were then segmented into sentences, tokenized,

and tagged with parts-of-speech using the OpenNLP7 package. The sentences were de-duplicated

at this point.8 Finally, we filtered the sentences to eliminate those that were likely to be noisy and

not useful for learning (e.g., sentences without a verb, without any lowercase words, with too many

words that were all capital letters). This yielded a corpus of roughly 514 million sentences.

As discussed in Section 3.4.2, we processed these sentences to create a data set of noun phrase

and contextual pattern co-occurrence counts. To manage the size of the data set, we filtered out

6This corpus was an unreleased preliminary version of the 500-million-page ClueWeb09 data set [Callan and Hoy,

2009].
7http://opennlp.sourceforge.net/
8Otherwise, sentences that are parts of templates used to generate pages on a web site can have very large counts

and skew the results.
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all noun phrases and contexts that only occurred once in the corpus. This yielded a data set that

contained 14.9 million unique contextual patterns for categories, 24.6 million unique noun phrases,

232.0 million unique pairs of noun phrases that co-occur together, and 35.7 million unique contex-

tual patterns for relations.

Experimental Procedure

To explore the effects of coupling predicates using mutual-exclusion and type-checking constraints,

we compared coupled and uncoupled methods for learning contextual patterns for freeform text:

CPL and UPL.

When comparing CPL and UPL, we ran each algorithm for 10 iterations of bootstrapping, and

then assessed the instances promoted by the algorithms.

Comparing “All Promotions” for a Predicate To evaluate the precision of all instances pro-

moted by an algorithm on a per-predicate basis, we sampled 30 instances from the set of promoted

instances for each predicate, pooled together the samples, and submitted the instances to Mechani-

cal Turk for labeling. This gave an estimate of how accurate all of the instances were and measured

the degree to which a particular method avoided “semantic drift”. We refer to this method of com-

parison as the All Promotions method in the results below.

Comparing Predicates at “Minimum Recall” We also compared algorithms at matching levels

of recall. For each predicate, we only considered the first k instances promoted by each algorithm,

where k was the minimum number of instances promoted for that predicate between the two algo-

rithms. For each algorithm and predicate, we sampled 30 instances from the first k promotions, and

also submitted them to Mechanical Turk. We refer to this method of comparison as the Minimum

Recall method in the results below.

While samples of 30 instances do not produce tight confidence intervals for individual estimates
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Figure 3.2: A screenshot of the interface used in gathering labels with Mechanical Turk. Each task requested

yes/no labels for 15 potential instances of a predicate.

of precision for a single predicate, they should be sufficient for testing for the aggregate effects in

which we are interested.

While CPL does not ignore case, our evaluation ignored case, and presented all instances to the

evaluators in lower case.

Mechanical Turk Labeling

The various estimates of precision required for our evaluation in this chapter and the next yielded

10717 unique instances. We submitted each of these instances to Mechanical Turk for labeling and

had three different individuals label each instance. Mechanical Turk has been shown to be an inex-

pensive and fast method for obtaining labels for language tasks [Snow et al., 2008]. A screenshot

of the UI presented to labelers is shown in Figure 3.2. The majority vote was used to decide the

correct label. To estimate the accuracy of the labels produced by this procedure, we sampled 100

instances at random, and manually judged the accuracy of their labels. We found that 96 out of
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the 100 were correctly labeled using the majority vote. The four errors were: a false positive with

“entomology there” labeled as an AcademicField (the labelers ignored the segmentation error),

and three false negatives: “informs” as a ProfessionalOrganization, “love seats” as Furniture, and

the relation instance “CompanyCompetesWithCompany(bhp, rio)”. This suggests that the labels

may be biased towards false negatives, which in turn suggests that our precision estimates in the

remainder of the paper may be pessimistic.

Results

Table 3.6 gives estimates of the precision of promoted instances for each category for CPL, UPL at

full recall (UPLfull), and UPL at recall matching CPL (UPLmatch), as well as the number of promoted

instances for each category after 10 iterations. The “Average” row averages across all predicates

for which instances were promoted. The “Weighted Average” is an estimate of the instance-level

precision across all predicates obtained by weighting the precision for each predicate by the num-

ber of instances promoted for that predicate.9 Table 3.7 gives this information for each relation,

as well. Across all categories and relations, CPL has higher average precision than UPLfull and

UPLmatch. These results suggest that coupling using type checking and mutual exclusion reduces

the error rates of the learned extractors.

Another method of comparing which algorithms perform the best is to use the sign test, which

is a non-parametric hypothesis test. The test statistic needed to compare CPL with UPL is obtained

by counting the number of predicates for which CPL performed better than UPL, and vice versa,

ignoring ties. This test gracefully handles predicates where only one method promoted instances:

we prefer the method which extracted some instances rather than none for such predicates.

In comparing CPL with UPL for the precision of all promoted instances for each predicate,

9The “Average” would be called the macro-average precision, while the “Weighted Average” is an estimate of the

micro-average precision.
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Estimated Precision (%) Promoted Instances (#)
Predicate CPL UPLmatch UPLfull CPL UPL

AcademicField 70 93 83 46 903
Actor 100 83 33 199 1000
Animal 80 43 50 741 1000
Athlete 87 47 17 132 930
AwardTrophyTournament 57 13 7 86 902
BoardGame 80 80 13 10 907
BodyPart 77 47 17 176 922
Building 33 30 50 597 1000
Celebrity 100 100 90 347 1000
CEO 33 100 30 3 902
City 97 100 100 1000 1000
Clothing 97 87 20 83 973
Coach 93 77 63 188 838
Company 97 80 83 1000 1000
Conference 93 70 53 95 990
Country 57 30 33 1000 1000
EconomicSector 60 40 23 1000 1000
Emotion 77 50 53 483 992
Food 90 53 70 811 1000
Furniture 100 83 0 55 963
Hobby 77 57 33 357 936
KitchenItem 73 27 3 11 900
Mammal 83 80 50 224 1000
Movie 97 70 57 718 1000
NewspaperCompany 90 80 60 179 1000
Politician 80 87 60 178 990
Product 90 67 83 1000 1000
ProductType 73 57 63 712 1000
Profession 73 53 53 916 973
ProfessionalOrganization 93 83 63 104 943
Reptile 95 58 3 19 912
Room 64 48 0 25 913
Scientist 97 97 30 83 971
Shape 77 57 7 43 985
Sport 77 47 13 283 1000
SportsEquipment 20 10 10 58 902
SportsLeague 100 27 7 11 901
SportsTeam 90 53 30 301 903
Stadium 93 90 57 102 767
StateOrProvince 77 60 63 202 1000
Tool 40 13 13 561 1000
Trait 53 63 40 234 1000
University 93 100 97 1000 1000
Vehicle 67 40 30 460 1000

Average 78 62 41 360 960
Weighted average 79 61 42

Table 3.6: Precision (%) (estimated from 30 random instances) and counts of promoted instances for each

category using CPL, UPL at the same level of recall as CPL (UPLmatch), and UPL with all promotions

(UPLfull). Since the number of promotions for a predicate was capped at 100 per iteration, 1000 is the

maximum number of instances that could have been promoted in the 10 iteration run.
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Estimated Precision (%) Promoted Instances (#)

Predicate CPL UPLmatch UPLfull CPL UPLfull

CompanyAcquiredCompany 97 87 77 93 230
AthletePlaysForTeam 100 100 93 9 269
AthletePlaysInLeague - - 78 0 18
AthletePlaysSport 100 73 47 83 258
CEOOfCompany 100 100 100 18 18
CityLocatedInCountry 93 47 57 185 787
CityLocatedInState 100 67 70 76 194
CoachCoachesInLeague - - - 0 0
CoachCoachesTeam 100 100 100 324 668
CompanyIsInEconomicSector 93 97 97 583 889
CompanyCompetesWithCompany 100 75 67 28 123
CompanyHasOfficeInCity - - 63 0 526
CompanyHasOfficeInCountry - - 90 0 195
CompanyHeadquarteredInCity 50 100 53 2 532
LeaguePlaysGamesInStadium - - - 0 0
CompanyProducesProduct 97 97 93 54 215
ProductInstanceOfProductType 73 77 67 153 484
SportUsesSportsEquipment 33 13 3 15 1330
StadiumLocatedInCity 100 86 20 7 600
StateHasCapitalCity 60 70 70 266 188
StateLocatedInCountry 97 53 40 194 1299
TeamHasHomeStadium 100 100 87 97 208
TeamPlaysAgainstTeam 100 90 80 238 2088
TeamHasHomeCity - - 57 0 680
TeamPlaysInLeague 100 86 67 7 255
TeamPlaysSport - - 70 0 177
TeamWonAwardTrophyTournament 90 57 70 128 262

Average 89 79 69 95 463
Weighted Average 91 81 61

Table 3.7: Precision (%) (estimated from 30 random instances) and counts of promoted instances for each

relation using CPL, UPL at the same level of recall as CPL (UPLmatch), and UPL with all promotions

(UPLfull).
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All Promotions Minimum Recall
Comparison Wins p-value Wins p-value

CPL vs. UPL 55 vs. 12 1.03e-07 46 vs. 10 1.25e-06

Table 3.8: CPL and UPL compared based on the precision of all promotions for each predicate (All Pro-
motions) and the precision of the instances promoted cut off at the minimum recall out of the pair for each
predicate (Minimum Recall). Wins record how many predicates had superior precision for each method,
and the p-value according to a sign test is given. All results are statistically significant at the 5% level.

Software
  isA: Product Type, Economic Sector
  productInstances: iTunes, Excel, Adobe 
      Photoshop, Microsoft Outlook, AutoCAD, 
      Kazaa
  companiesInSector: Infosys, SAP, Microsoft, 
      IBM, Wipro, Symantec

Tigers
  isA: Mammal, Sports Team
  teamHomeStadium: Comerica Park
  teamCoach: Les Miles
  teamWonTrophy: World Series
  teamPlaysAgainstTeam: Yankees, Royals, 
      Sox, White Sox, Red Sox, Warriors

Figure 3.3: Examples of promoted facts about two entities. The categories (listed under the “isA” slot)
of “Software” were given in the seed ontology; all other facts were discovered by CPL. Values shown for
“productInstances” and “companiesInSector” for “Software” are a subset of the full set of promoted values.

as well as the “minimum recall” sample discussed above, CPL performs statistically significantly

better than UPL for both methods of sampling. Comparing all promotions, 55 predicates have

higher precision for CPL, and 12 predicates have higher precision for UPL, giving a p-value of

1.03e-07. In comparing at Minimum Recall, 37 predicates are better for CPL vs. 8 for UPL, giving

a p-value of 1.54e-05. These results confirm that coupling yields significantly higher accuracies

across all predicates than using independent, uncoupled learning.

Figure 3.3 gives some examples of the type of information extracted in our experiments for

two noun phrases, “Software” and “Tigers.” The initial seed examples provided specified that

“software” is a ProductType and an EconomicSector; the rest of the information in the figure

was extracted by CPL. To provide more examples of facts learned by CPL, Table 3.9 shows facts

promoted during the run of CPL, selected uniformly at random, along with the iteration in which
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Predicate Iteration Instance

country 2 solomon islands
company 2 nbc universal
product 5 stuffit
economicSector 7 marine industry
clothing 9 collar shirt

cityLocatedInState 2 (charlotte, north carolina)
sportUsesEquipment 3 (soccer, player)
companyEconomicSector 3 (unocal, oil)
companyEconomicSector 4 (emc, storage)
productInstanceOf 5 (final cut pro, software)

Table 3.9: Example beliefs promoted by CPL at various iterations. All are correct, except for sportUsesE-
quipment(soccer,player).

Predicate Pattern

actor film version , starring X
athlete blockbuster trade for X
company airlines , including X
emotion personal feelings of X
hobby hobbies include X

acquired X announced plans to buy Y
athletePlaysSport X learned to play Y
ceoOf Y chairman X
companyEconomicSector Y giants X
teamPlaysInLeague X dominance in Y

Table 3.10: Example free-text patterns learned by CPL. X and Y represent placeholders for noun phrases
to be extracted.
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they were promoted.

Table 3.10 shows patterns learned by CPL during the run for selected categories and relations.

Supplementary Online Materials

Several different types of materials from our evaluation are posted online at http://rtw.ml.

cmu.edu/acarlson_thesis:

• The input ontology, containing all categories and relations. See Section 1.4.1 for a descrip-

tion of the information specified for each category and relation.

• The lists of common prefixes, common suffixes, stop words, and proper nouns connected by

prepositions or conjuctions, used to segment noun phrases.

• All instances promoted by CPL and UPL.

• All textual patterns promoted by pattern learning in the CPL and UPL experiments.

• Browseable knowledge bases in XML format of all promoted instances and candidate in-

stances from the runs of CPL, with patterns and URLs that extracted each instance.

• All judgments obtained from Mechanical Turk.

• An example screenshot from a Mechanical Turk task.

• Templates used to create the Mechanical Turk tasks, which may be of general use.

3.5.2 Discussion

Error Analysis

The categories for which CPL has the most difficulty (e.g., ProductType, SportsEquipment, Traits,

Vehicles) tend to be common nouns. We expect that a more complete hierarchy of common nouns
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would better constrain these categories and yield better accuracies.

CPL generally had high accuracies for relations, but suffered from sparsity. SportUsesSports-

Equipment suffered because the SportsEquipment category performed poorly, resulting in bad type

checking. StateHasCapital and CompanyHeadquarteredInCity drifted to the more general relations

of StateContainsCity and CompanyHasOperationsInCity. These latter two cases can be improved

by adding the ability to infer negative examples using the knowledge that these are functional

relations: patterns that extract multiple capitals for the same city could be filtered out using this

knowledge.

Our experiments included five relations for which no instances were promoted by any al-

gorithms: CoachCoachesAthlete, AthletePlaysInStadium, CoachWonAwardTrophyTournament,

SportPlaysGamesInStadium, and AthleteIsTeammateOfAthlete. These relations show that some

relations are not easy to extract using the extraction methods used in this paper. However, many

of these relations could be inferred from instances promoted for other relations. We investigate

learning to infer such relations later in the thesis, in Chapter 5.

CPL as a Case Study of Coupled Semi-Supervised Learning

The results presented above demonstrate that coupling improves the precision of CPL’s learned

extractors. A key question for discussion is: How does our work with CPL relate to general theory

on semi-supervised learning?

As discussed in Section 2.1.3, theory tells us that if we know that the target functions that we

are trying to learn must be compatible with some constraints, we can use unlabeled data to rule

out hypotheses that correctly label the labeled data but are incompatible with the constraints over

unlabeled data. By using unlabeled data in this way, we can reduce the amount of labeled data we

need to learn our target functions in the PAC sense. These general theoretical ideas are supported

by both Balcan and Blum [2004] and Daumé [2008].
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Our answer to the question posed above, then, is that our results with CPL serve as a case

study of coupled semi-supervised learning of dozens of classifiers, and are supported by theory on

semi-supervised learning. Our argument is presented next:

• Correctness of compatibility assumptions: In our case study with CPL, it is reasonable to

assume that accurate classifiers will be generally compatible with our coupling constraints.

This isn’t always true, particularly since we do not disambiguate between homonyms (entities

with same strings, e.g., “China” the country and “China” the dishes that people eat off of). CPL

uses mutual exclusion constraints in a fuzzy way when learning patterns to compensate.

• CPL rules out hypotheses incompatible with coupling constraints: CPL learns classifiers

that label noun phrases based on the contextual patterns that they co-occur with, and based on

their string content (these are rote classifiers that label a noun phrase like “Carnegie Mellon”

based solely on its identity). The bootstrapping process expands the set of patterns used in

the pattern-based classifiers, as well as the set of noun phrases that are labeled using the rote

learners. This process gradually labels the unlabeled data in ways consistent with the labeled

data and with the mutual exclusion and type-checking coupling constraints. By filtering out

instances and patterns that violate mutual exclusion and type checking constraints, CPL does

indeed rule out hypotheses that are incompatible with the coupling constraints.

Thus, we argue that our results with CPL serve as a case study of coupled semi-supervised

learning of dozens of classifiers, that our case study demonstrates that coupling can improve the

accuracy of the learned classifiers, and that our results agree with theoretical results on semi-

supervised learning.
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3.6 Conclusion

We have presented methods of coupling the semi-supervised learning of category and relation in-

stance extraction patterns and demonstrated empirically that coupling forestalls the problem of se-

mantic drift associated with bootstrap learning methods. This empirical evidence leads us to advo-

cate large-scale coupled training as a strategy to significantly improve accuracy in semi-supervised

learning.



64 CHAPTER 3. COUPLED LEARNING OF TEXTUAL EXTRACTION PATTERNS



Chapter 4

Coupling Wrapper Induction and Multiple

Extractors

Abstract

In this chapter, we first consider applying the ideas presented in the previous chapter for coupling
pattern-based information extraction to a different type of extraction method, wrapper induction for
semi-structured web pages. We explore using coupling constraints based on mutual exclusion and
type checking of relation arguments to learn more accurate wrappers within a bootstrap learning
process. We then consider how to couple multiple extraction methods that typically make inde-
pendent errors: the method of pattern-based extraction from unstructured text performed by CPL
and the method for wrapper-based extraction from semi-structured documents which we discuss
first in this chapter. To couple these two methods, we use a strategy that only promotes instances
extracted by both methods. Experimental results on dozens of categories and relations demonstrate
that coupling wrapper induction improves the precision of the promoted facts, and that coupling
multiple extraction methods leads to higher precision than either of the methods alone. The main
research contributions of the chapter are: (1) this work is the first to couple the simultaneous train-
ing of multiple wrapper inducers (2) this work is the first to couple the simultaneous training of
multiple extraction methods (pattern-based extraction from free text and wrapper-based extraction
from semi-structured documents), rather than simply combining the output of multiple extraction
methods after training.

65
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4.1 Introduction

In Chapter 3, we saw that coupled semi-supervised learning could improve extraction pattern learn-

ing for many categories and relations. A logical question that follows from this work is: Can the

same ideas of mutual exclusion and type checking be used to create coupling constraints that im-

prove a different extraction technique?

To answer this question, in this chapter, we first consider applying the ideas presented in the

previous chapter for coupling pattern-based information extraction to a different type of extraction

method, wrapper induction for semi-structured web pages. Semi-structured web pages are web

pages that contain lists or tables of information. Such pages are often generated from structured

data records by rendering them using a template. If regularities in the template can be found, they

can be exploited to extract the original structured data. The problem of discovering the template

and extracting the structured records is called wrapper induction, because the template wraps the

data presented in the page. Section 2.2.2 discusses some of the literature on wrapper induction.

We explore using the same types of coupling constraints used in the previous chapter for CPL,

mutual exclusion and type checking of relation arguments, to learn more accurate wrappers within

a bootstrap learning process.

Another logical question that follows from the work in Chapter 3 is: Are there other types of

coupling constraints that can be exploited to improve semi-supervised learning, beyond mutual

exclusion and type checking constraints?

To answer this question, we explore how to couple multiple extraction methods that typically

make independent errors: the method of pattern-based extraction from unstructured text performed

by CPL and the method for wrapper-based extraction from semi-structured documents which we

discuss first in this chapter. Noun phrases on the web appear in multiple types of contexts, including

freeform textual contexts and semi-structured contexts. For example, the noun phrase “Pittsburgh”

occurs on the web with a distribution of freeform textual contexts such as “mayor of X”, and it
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also appears with a distribution of semi-structured contexts such as the HTML tags for a list item

at a particular URL. We assume that either of these distributions is sufficient to classify a noun

phrase. We therefore employ a method that trains two noun phrase classifiers, one using each type

of context distribution, and requires that the two classifiers agree on the label for each given noun

phrase. This is an example of a multi-view constraint, as discussed in Section 3.3.2.

We experimentally evaluate these ideas by running three algorithms for 10 iterations using

the same methodology that was used to compare CPL and UPL in Chapter 3. First, we run

SEAL [Wang and Cohen, 2009], a state-of-the-art wrapper induction system, in an uncoupled

bootstrapping loop. Second, we run Coupled SEAL (CSEAL), which adds coupling to SEAL by

filtering out wrappers that extract candidates that violate mutual exclusion relationships, and by

checking the types of candidate relation instances using their respective categories. Finally, we

run Meta-Bootstrap Learner, which runs both CSEAL and CPL, and only promotes candidates

suggested by both methods. Results show that coupling SEAL improves its precision, and that

coupling CSEAL and CPL results in higher precision than either method alone.

The main research contributions of the chapter are: (1) this work is the first to couple the

simultaneous training of multiple wrapper inducers and demonstrate that mutual exclusion and

type checking constraints can improve extraction methods other than pattern learning, and (2) this

work is the first to couple the simultaneous training of multiple extraction methods (rather than

simply combining the output of multiple extraction methods after training, as in Cafarella et al.

[2008c] and Pennacchiotti and Pantel [2009]). This chapter presents material that was originally

presented by Carlson et al. [2010b].
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Algorithm 2: Set expansion using wrapper induction
Input: Seed instance set S, and text corpus C
Output: Candidate instances that extend the set

QUERY for documents in C containing seed instances in S;
foreach returned document d do

FIND occurrences of seeds in d;
if seeds occur in a consistent wrapper then

EXTRACT new candidates using wrapper and add them to the results;
else

DISCARD the document;
end

end

4.2 Coupled Wrapper Induction

In this section, we discuss SEAL [Wang and Cohen, 2009], an off-the-shelf, state-of-the-art method

for wrapper induction, and Coupled SEAL, an algorithm that calls SEAL as a subroutine and

couples the learning of functions using mutual exclusion and type checking constraints. To be

clear, wrapper induction refers to the problem of discovering a template and extracting structured

records from a document that contains structured records presented in an automatic, template-

driven way. A wrapper refers to the template used to generate the document, because the template

wraps the data presented in the page. Once the wrapper is discovered, it can be used to extract the

original structured data from a document. To ground the discussion, we start with a discussion of

how wrapper induction works and present an example.

4.2.1 A Wrapper Induction Example

Our methods of wrapper induction use the steps shown in Algorithm 2 and illustrated in Figure 4.1.

To show how these steps proceed, we present a simple example in the rest of the section. Imagine

that we want to find members of the category State, and that we already know that Illinois, Cali-

fornia, West Virginia, Hawaii, Alaska, and Florida are instances of the category. The first step is
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ford, toyota, nissan

honda

Seeds Extraction
http://www.curryauto.com

http://www.curryauto.com

http://www.curryauto.com

http://www.curryauto.com

Figure 4.1: An illustration of wrapper induction. Seeds are located in a retrieved document, a template
consisting of a prefix and a suffix is found, and new candidate instances are extracted using the template.

to find web pages that are likely to contain lists of other states. So, our program queries a search

engine with the (conjunctive) query “illinois california west virginia hawaii alaska florida”. Pages

that mention all of these entities are likely to contain a list or table that mentions other instances.

The top result is a document with URL: http://www.house.gov/house/MemberWWW_

by_State.shtml. This page lists members of the United States House of Representatives by

state. A screenshot of a portion of the page is shown in Figure 4.2.

Next, our program examines the HTML source of the page. The first seed, Illinois, is found in

multiple places in the source code, including these snippets:

• <H3><A name="il" id="il"></A>Illinois</H3>

• Bean, Melissa L.</A>, Illinois, 8th</LI>

• Biggert, Judy</A>, Illinois, 13th</LI>

The second seed, California, is also found in multiple places in the source code, including:

• <H3><A name="ca" id="ca"></A>California</H3>

• Baca, Joe</A>, California, 43rd</LI>
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Figure 4.2: An example of semi-structured web page content.

• Becerra, Xavier</A>, California, 31st</LI>

The other seeds are found in similar contexts.

Based on these snippets, our program can induce two different wrappers, where [X] represents

the placeholder used to extract items:

• ></A>[X]</H3>

• </A>, [X],

Applying these wrappers to the page yields all 50 states of the United States. This is a typical

example of how wrapper induction is done.

However, Guam, Puerto Rico, American Samoa, and Virgin Islands are also extracted, which

are territories of the United States, rather than states. It turns out that this page is too general; it
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URL: http://www.shopcarparts.com/

Wrapper: .html" CLASS="shopcp">[X] Parts</A> <br>

Content: acura, audi, bmw, buick, cadillac, chevrolet, chevy, chrysler, daewoo, daihatsu, dodge, eagle, ford, ...

URL: http://www.allautoreviews.com/

Wrapper: </a><br> <a href="auto reviews/[X]/

Content: acura, audi, bmw, buick, cadillac, chevrolet, chrysler, dodge, ford, gmc, honda, hyundai, ...

URL: http://www.hertrichs.com/

Wrapper: <li class="franchise [X]"> <h4><a href="#">

Content: buick, chevrolet, chrysler, dodge, ford, gmc, isuzu, jeep, lincoln, mazda, mercury, ...

Table 4.1: Examples of wrappers constructed by SEAL for various web pages given the seeds: Ford, Nissan,

Toyota. In the table, [X] is a placeholder for extracting instances.

lists states and territories of the United States, rather than just states. If we knew that Guam was not

a state, we could use that knowledge to decide that this web page is too general. We use this idea

below to couple the learning of wrapper inducers for multiple predicates using mutual exclusion

relationships.

It is often the case that seed instances will occur together on a page but not actually be em-

bedded in a semi-structured format. These cases are usually easily detected because there will not

be a consistent template which extracts all of the seeds. Wrapper induction methods will typically

ignore such pages and not extract anything from them.

4.2.2 SEAL

SEAL [Wang and Cohen, 2009] is a set-expansion system that accepts input elements (seeds) of

some target set S and automatically finds other probable elements of S in semi-structured doc-

uments such as web pages by querying the web using the seeds. The algorithm implemented in
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SEAL constructs page-specific extraction rules, or wrappers, that are independent of the human

language and markup language of the web pages. It uses methods based on those presented in

Algorithm 2. SEAL can expand sets of category instances as well as binary relation instances.

Every category wrapper is defined by character strings, which specify the left context and right

context necessary for an entity to be extracted from a page. Relation instance wrappers also are

defined using an infix context that separates the two arguments of the instance (e.g., a wrapper

might be “<li>[X] : [Y ]</li>” where “ : ” is the infix context which separates the two

arguments). These context strings are selected to be maximally-long contexts that bracket at least

one occurrence of every seed on a page. Table 4.1 shows a few examples of such wrappers for

categories. An instance is extracted by a wrapper if it is found anywhere in the document with left

and right context identical to that of the wrapper.

When given large sets of seeds, SEAL can be configured to “subsample” the seeds some num-

ber of times [Wang and Cohen, 2008]. Subsampling samples a subset of the seeds and uses that

subset as a query to a search engine, which is necessary because using all examples in one query

would typically not yield any matched results.

In our work, we used code for SEAL provided by its authors.

4.2.3 Coupled SEAL

SEAL does not have a mechanism for exploiting mutual-exclusion or type-checking constraints.

Wrappers for each predicate are learned independently in SEAL. Our algorithm, Coupled SEAL

(CSEAL), adds these constraints on top of SEAL. CSEAL is summarized in Algorithm 3. In each

iteration of bootstrapping, we invoke SEAL using the recently promoted instances. SEAL returns

a list of new candidate instances and documents that they were extracted from. CSEAL filters out

any document that extracts a candidate instance that is a member of a mutually exclusive predicate.

Additionally, CSEAL only considers candidate relation instances if their arguments are candidate
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Algorithm 3: Coupled SEAL (CSEAL)
Input: An ontology O, and text corpus C
Output: Trusted instances/wrappers for each predicate

for i = 1, 2, . . . ,∞ do
foreach predicate p ∈ O do

begin Call existing SEAL code to:
QUERY for documents containing recently promoted instances;
foreach returned document d do

LEARN wrapper for d;
if seeds occur in a consistent wrapper then

EXTRACT new candidates using wrapper;
else

DISCARD the document;
end

end
end
DISCARD wrappers that extract candidates that violate coupling;
RANK candidate instances;
PROMOTE top candidates;

end
end

instances for the respective category types, and are not already promoted instances of categories

that are mutually exclusive with the types. These forms of coupling should filter out cases where

a subsampled set of seeds happens to occur on a page but that page does not in fact contain a valid

list of predicate instances. They should also filter out cases where instances of a predicate that is

more general than the one being learned are listed (e.g., if a long list of locations of various types

is present on a page, but we are learning some specific type of location, such as “city”).

After filtering, CSEAL ranks all candidate instances by the number of unfiltered wrappers that

extracted them1, and promotes at most 100 instances that were extracted by at least two wrappers

1SEAL has other scoring and ranking methods available, but we found that they have modes of failure the led to

problems in our bootstrapping setting. Specifically, SEAL would often return long lists of common nouns with scores

very close to 1.0 for certain categories (e.g., Tools, Sports Equipment.
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(ties are broken arbitrarily). To deal with sets of web pages from the same domain that repeat

the same list, only one page from a domain is counted in ranking candidates. Without limiting

consideration to domains, navigational and other template-generated elements that repeat many

times can dramatically skew the results.

In our experiments below, CSEAL refers to the algorithm described here, and SEAL refers to

CSEAL without the filtering step: SEAL does not filter out wrappers that extract candidates that

violate mutual-exclusion relations, and SEAL does not enforce relation instance type checking.

4.3 Coupling Multiple Extractors

In this section, we present a method for coupling multiple extraction methods that typically make

independent errors: the method of pattern-based extraction from unstructured text performed by

CPL and the method for wrapper-based extraction from semi-structured documents which we dis-

cuss first in this chapter. CPL will often make errors due to improper noun phrase segmentation

(e.g., extracting only “Journal” from “publications such as the Journal of Artificial Intelligence”);

CSEAL does not tend to make such errors because CSEAL learns templates with prefixes and suf-

fixes. CPL will also make errors due to complex language (e.g., extracting “pollution” as a city

from “problems that affect cities, such as pollution” due to the pattern “cities , such asX”). CSEAL

will typically make errors when it thinks it has found a consistent context that indicates a list, but

actually has not. For example, if CSEAL learns a wrapper that consists of list item (<li>) tags,

CSEAL will often extract all list items on a page. These different error cases are quite different,

which makes it reasonable to assume that CPL and CSEAL make independent errors.
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Algorithm 4: Meta-Bootstrap Learner (MBL)
Input: An ontology O, a set of extractors E
Output: Trusted instances for each predicate

for i = 1, 2, . . . ,∞ do
foreach predicate p ∈ O do

foreach extractor e ∈ E do
EXTRACT new candidates for p using e with recently promoted instances;

end
FILTER candidates that violate mutual-exclusion or type-checking constraints;
PROMOTE at most 100 candidates that were extracted by all extractors;

end
end

4.3.1 Meta-Bootstrap Learner

To couple the learning of CPL and CSEAL, we use an algorithm called Meta-Bootstrap Learner

(MBL). MBL couples the training of multiple extraction techniques using a multi-view constraint

(as discussed in Section 3.3.2) that requires them to agree. Here textual pattern features and semi-

structured document features provide two different views.

MBL is summarized in Algorithm 4. In this chapter, the subordinate algorithms used with MBL

are CSEAL and CPL. When using CSEAL and CPL with MBL, the subordinate algorithms do not

promote instances on their own. Instead, they skip the promotion step and report evidence about

each candidate to MBL, and MBL is responsible for promoting instances. MBL uses a simple

combination method: MBL promotes any instance that has been recommended by both techniques

while obeying the mutual-exclusion and type-checking constraints specified in the ontology. MBL

will promote up to 100 instances of a predicate in each iteration. If more than 100 candidates are

eligible for promotion, the ones that occur with the largest sets of distinct patterns and wrappers

are chosen. The constraints added to the learning problem by MBL are illustrated in Figure 4.3.
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  Country Company

Team 

City

   Athlete

HeadquarteredInLocatedIn

PlaysFor

Pattern Learner (CPL)

Country Company

Team

City

 Athlete

HeadquarteredInLocatedIn

PlaysFor

Wrapper Inducer (CSEAL)

Figure 4.3: CPL and CSEAL each exploit coupling between their learned functions, indicated by lines
among them. Since CPL and CSEAL each learn approximations of the same functions, we can use a multi-
view constraint between each pair, illustrated by lines connecting each pair in this figure.

4.4 Experimental Evaluation

We devised experiments to explore the following questions:

• Do mutual-exclusion and type-checking constraints improve the performance of CSEAL

relative to the uncoupled methods of SEAL?

• Does MBL achieve better performance than CPL and CSEAL by combining their outputs

with a multi-view constraint?

To answer these questions, we ran CSEAL, SEAL, and MBL with CPL2 and CSEAL as sub-

ordinate extractors for 10 iterations of learning. We then compared the differences in performance

between several pairs of methods to see the effects of coupling.

2CPL used the same corpus of sentences extracted from 200 million web pages as in Chapter 3.
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4.4.1 Experimental Methodology

Input Ontology

We used the same ontology as the one used in Section 3.5.1. This allows us to directly compare

CSEAL, SEAL, and MBL to the results from CPL and UPL.

Experimental Procedure

The experimental procedure for comparing two algorithms was the same as that used and described

in Section 3.5.1. Each algorithm was run for 10 iterations of bootstrapping. Instances from each

run and for each predicate were sampled and evaluated using Mechanical Turk.

CPL can reliably extract the proper case of an instance (i.e., capitalized vs. uncapitalized), but

lists of items on the web often use arbitrary case conventions, so CSEAL cannot reliably extract

the proper case of an instance. Because of this, our evaluation ignored case, and presented all

instances to the evaluators in lower case.

Parameters for SEAL

In our experiments with CSEAL and SEAL, we used an implementation provided by the original

authors of SEAL. SEAL was configured to subsample the provided examples 5 times for categories

and 10 times for relations to mitigate the relatively higher sparsity of relations. SEAL downloaded

up to 50 web pages for each search query using results from the Google search engine. Thus, the

corpus for SEAL was the web as indexed by Google. The “minimum context length” for a wrapper

was set to 2, which meant that each part of a wrapper needed to be at least 2 characters long.

4.4.2 Results for CSEAL and SEAL

We compared coupled and uncoupled methods for learning wrappers to extract lists of instances

from semi-structured web pages:
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Estimated Precision (%) Promoted Instances (#)
Predicate CSEAL SEAL MBL CSEAL SEAL MBL

AcademicField 90 97 100 203 1000 181
Actor 100 97 100 1000 1000 380
Animal 90 70 97 144 974 307
Athlete 100 87 100 276 1000 555
AwardTrophyTournament 53 7 77 146 1000 79
BoardGame 70 77 90 126 1000 31
BodyPart 97 63 93 80 1000 61
Building 30 0 93 57 1000 14
Celebrity 100 100 97 72 747 514
CEO 100 77 100 322 1000 30
City 97 87 97 368 1000 603
Clothing 43 27 97 167 1000 102
Coach 100 83 100 619 1000 242
Company 100 100 97 245 1000 784
Conference 97 90 100 437 928 92
Country 97 37 93 130 1000 207
EconomicSector 100 10 77 34 1000 138
Emotion 87 60 83 183 1000 211
Food 97 80 100 89 1000 272
Furniture 57 57 90 215 1000 95
Hobby 77 50 90 77 1000 127
KitchenItem 88 13 100 8 960 2
Mammal 93 50 90 154 1000 169
Movie 97 100 100 566 1000 183
NewspaperCompany 60 97 100 1000 1000 241
Politician 97 37 100 30 1000 101
Product - 77 70 0 999 127
ProductType 27 63 50 31 1000 159
Profession - 57 93 0 1000 171
ProfessionalOrganization 100 77 87 58 1000 163
Reptile 90 27 100 149 1000 54
Room 33 7 100 12 643 3
Scientist 100 17 100 928 1000 130
Shape 7 7 85 28 733 26
Sport 63 83 73 225 1000 284
SportsEquipment 57 23 23 52 1000 174
SportsLeague 80 27 86 10 1000 14
SportsTeam 87 87 87 864 944 506
Stadium 53 63 90 944 1000 343
StateOrProvince 83 93 77 114 1000 161
Tool 93 90 97 713 1000 59
Trait 52 47 97 21 1000 44
University 100 90 93 961 1000 516
Vehicle 50 13 77 50 1000 98

Average 78 59 90 271 976 199
Weighted average 86 59 91

Table 4.2: Estimated precision (%) and counts of promoted instances for each category for different algo-

rithms. Precision for each predicate and method was estimated using 30 randomly sampled instances.
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Estimated Precision (%) Promoted Instances (#)

Predicate CSEAL SEAL MBL CSEAL SEAL MBL

CompanyAcquiredCompany - - - 0 0 0
AthletePlaysForTeam 100 76 100 4 17 96
AthletePlaysInLeague 100 57 - 14 82 0
AthletePlaysSport 100 100 100 1 1 109
CEOOfCompany - 100 100 0 1 1
CityLocatedInCountry 100 100 100 9 577 136
CityLocatedInState 100 93 100 34 537 54
CoachCoachesInLeague 0 - - 1 0 0
CoachCoachesTeam - - 100 0 0 6
CompanyIsInEconomicSector - - - 0 0 0
CompanyCompetesWithCompany - - - 0 0 0
CompanyHasOfficeInCity - 100 - 0 4 0
CompanyHasOfficeInCountry - - - 0 0 0
CompanyHeadquarteredInCity 100 100 - 1 2 0
LeaguePlaysGamesInStadium - 100 - 0 177 0
CompanyProducesProduct - - 100 0 0 8
ProductInstanceOfProductType - - - 0 0 0
SportUsesSportsEquipment 100 87 33 5 15 6
StadiumLocatedInCity 77 70 90 200 554 56
StateHasCapitalCity - 73 - 0 495 0
StateLocatedInCountry 100 97 100 46 653 61
TeamHasHomeStadium 100 100 100 179 106 92
TeamPlaysAgainstTeam - - - 0 0 0
TeamHasHomeCity - 93 100 0 29 11
TeamPlaysInLeague 100 100 100 104 749 23
TeamPlaysSport 100 100 100 30 30 37
TeamWonAwardTrophyTournament - - - 0 0 0

Average 91 91 95 23 149 26
Weighted Average 92 90 99

Table 4.3: Estimated precision (%) and counts of promoted instances for each relation for different algo-

rithms. Precision for each predicate and method was estimated using 30 randomly sampled instances.
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CSEAL vs. SEAL MBL vs. CSEAL MBL vs. CPL
Predicate SEAL CSEAL CSEAL MBL CPL MBL

AcademicField 97 93 93 100 90 100
Actor 97 97 100 100 100 100
Animal 100 83 93 100 97 93
Athlete 77 97 100 100 97 100
AwardTrophyTournament 33 57 77 67 73 67
BoardGame 87 87 97 90 80 100
BodyPart 80 90 93 87 63 90
Building 63 37 64 93 93 93
Celebrity 100 100 100 100 100 100
CEO 70 100 93 100 33 100
City 97 100 100 100 100 97
Clothing 57 57 47 90 100 100
Coach 60 83 93 100 97 100
Company 100 97 100 100 100 100
Conference 97 97 97 100 90 97
Country 100 97 97 97 97 90
EconomicSector 97 100 100 97 90 77
Emotion 73 70 90 83 70 87
Food 100 100 97 100 97 100
Furniture 63 70 57 93 93 97
Hobby 63 73 77 100 77 100
KitchenItem 88 88 100 100 50 100
Mammal 57 87 90 83 90 90
Movie 93 100 90 100 93 100
NewspaperCompany 97 63 67 93 97 90
Politician 80 97 97 100 90 100
Product - - - - 77 67
ProductType 50 30 30 43 83 37
Profession - - - - 73 100
ProfessionalOrganization 97 97 97 100 83 93
Reptile 57 77 90 97 95 95
Room 42 33 33 100 100 100
Scientist 10 97 97 100 100 100
Shape 14 7 8 85 73 85
Sport 97 60 83 63 87 87
SportsEquipment 53 60 57 57 20 43
SportsLeague 70 80 80 80 100 82
SportsTeam 87 100 97 83 97 100
Stadium 70 63 77 90 97 97
StateOrProvince 80 63 73 87 90 77
Tool 87 97 100 97 43 93
Trait 95 52 52 100 73 97
University 90 87 97 100 97 97
Vehicle 67 53 53 90 83 83

Average 76 78 82 92 85 91

Table 4.4: Comparing different pairs of algorithms at equivalent levels of recall, this table gives the es-

timated precision (%) of promoted instances for each category when only considering instances using the

“Minimum Recall” threshold. Each precision was estimated using 30 randomly sampled instances.
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CSEAL vs. SEAL MBL vs. CSEAL MBL vs. CPL
Predicate SEAL CSEAL CSEAL MBL CPL MBL

AthletePlaysForTeam 50 100 100 100 100 100
AthletePlaysInLeague 93 100 - - - -
AthletePlaysSport 100 100 100 100 100 100
CEOOfCompany - - - - 100 100
CityLocatedInCountry 100 100 100 100 87 100
CityLocatedInState 100 100 100 100 100 100
CoachCoachesTeam - - - - 100 100
CompanyHeadquarteredInCity 100 100 - - - -
CompanyProducesProduct - - - - 100 100
SportUsesSportsEquipment 60 100 100 20 17 33
StadiumLocatedInCity 90 67 77 90 100 100
StateLocatedInCountry 93 100 100 100 97 100
TeamHasHomeStadium 100 97 97 100 97 100
TeamPlaysInLeague 100 100 100 100 100 100
TeamPlaysSport 100 100 100 100 - -

Average 91 97 97 91 92 94

Table 4.5: Comparing different pairs of algorithms at equivalent levels of recall, this table gives the es-

timated precision (%) of promoted instances for each relation when only considering instances using the

“Minimum Recall” threshold. Precision for each predicate and method was estimated using 30 randomly

sampled instances.
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All Promotions Minimum Recall
Comparison Wins p-value Wins p-value

CSEAL vs. SEAL 36 vs. 15 0.00460 22 vs. 18 0.636
MBL vs. CPL 34 vs. 18 0.0365 25 vs. 10 0.0167
MBL vs. CSEAL 31 vs. 14 0.0161 26 vs. 10 0.0113

Table 4.6: Various pairs of methods compared based on the estimated precision of all promotions for each
predicate (All Promotions) and the estimated precision of the instances promoted cut off at the minimum
recall out of the pair for each predicate (Minimum Recall). Wins record how many predicates had superior
estimated precision for each method, and the p-value according to a sign test is given. All results are
statistically significant at the 5% level except for CSEAL vs. SEAL at minimum recall.

• CSEAL: The algorithm as described in Section 4.2.3.

• SEAL: This method uses the implementation of SEAL provided by the authors of SEAL and

described in Section 4.2.2. As in the UPL method, it does not couple the learning of predicates

using mutual-exclusion constraints or type checking.

Table 4.2 gives estimates of the precision of promoted instances for each category for CSEAL

and SEAL, as well as the number of promoted instances for each category after 10 iterations. The

“Average” row averages across all predicates for which instances were promoted. The “Weighted

Average” is an estimate of the instance-level precision across all predicates obtained by weighting

the estimated precision for each predicate by the number of instances promoted for that predicate.

Table 4.3 gives this information for each relation, as well. Across all categories, CSEAL has higher

average estimated precision than SEAL. For relations, there is no difference in average estimated

precision. These results suggest that coupling using type checking and mutual exclusion reduces

the error rates of the learned extractors for categories, but not relations.

Tables 4.4 and 4.5 compare CSEAL and SEAL at equivalent levels of recall for categories

and relations, respectively (see Section 3.5.1 for a description of the “Minimum Recall” method

of comparing predicates at equivalent recall). CSEAL improves over SEAL when looking at the

macro-average precision for both categories and relations.
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Table 4.6 uses Sign Tests to compare CSEAL vs. SEAL for the estimated precision of all

promoted instances for each predicate, as well as the “minimum recall” sample discussed in Sec-

tion 3.5.1. CSEAL performs significantly better than SEAL with respect to the estimated precision

of all promotions, but is not significantly better when thresholding recall to the minimum recall for

each predicate.

4.4.3 Results for Meta-Bootstrap Learner

Tables 4.2 and 4.3 give estimates of the precision of promoted instances for each predicate for MBL

after 10 iterations. Across both relations and categories, MBL has the highest estimated precision

of promoted instances out of all of the algorithms considered, which indicates that adding the

multi-view-agreement constraint results in further avoidance of semantic drift.

Tables 4.4 and 4.5 compare MBL to CSEAL and CPL equivalent levels of recall for categories

and relations. For categories, MBL clearly improves over both CSEAL and CPL when looking at

macro-average precision. For relations, MBL is worse than CSEAL, because “SportUsesSportsE-

quipment” fares so poorly (due to bad type-checking of sports equipment).

Table 4.6 gives sign test results for comparing MBL vs. CPL and MBL vs. CSEAL, which

allows us to judge whether or not MBL improves over its subordinate algorithms. All sign tests

show statistically significant differences: MBL is superior to both CPL and CSEAL when com-

paring both the estimated precision of all promoted instances as well as the estimated precision of

promoted instances at the minimum recall of either method. This suggests that coupling CPL and

CSEAL with a multi-view coupling constraint yields more accurate learning than either method

used alone.
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4.4.4 Discussion

We saw that CSEAL has higher estimated precision than SEAL for categories, but not relations.

We believe that this is because when a set of relation instances occur on a web page in a consistent

context, it is generally safe to assume that instances extracted from that web page are correct

instances of the target relation. There are two reasons to think that this is the case. First, the queries

are more restrictive; documents are found using pairs of arguments rather than single arguments

as in the case of categories. Second, wrappers for relations are more restrictive than those for

categories, since they have an infix string in addition to a prefix and suffix string. Categories are

more likely to have a set of instances occur on a page without it being a valid list or table, and

category templates are less restrictive. This appears to be why filtering using mutual exclusion

improves precision for categories significantly.

One of the biggest challenges in applying bootstrap learning algorithms is determining when

to stop the bootstrapping process. Ideally, an algorithm would be able to respect the boundaries

of a closed set. In this respect, the results for the Country category for MBL are particularly com-

pelling. MBL promoted 207 instances of countries with an estimated precision of 93%. CSEAL

promoted 130 instances with an estimated precision of 97%. Without coupling (UPL, SEAL),

Country performs poorly, drifting into a more general Location category.

While MBL has the highest estimated precision overall, its recall is relatively low when com-

pared to the other methods, particularly for relations. This is because there are many relations

for which only one of CSEAL and CPL has significant recall, and for these relations MBL will

not promote any instances. MBL demonstrates that when multiple extraction methods that make

independent errors extract an instance, we can be confident. In the next chapter, we consider a

more sophisticated strategy that promotes instances when a single method is very confident in that

extraction, as well as when multiple methods extract that instance. This leads to higher recall while

maintaining high precision.
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4.4.5 Supplementary Online Materials

In addition to the supplementary online materials from the evaluation in the previous chapter,

several different types of materials from the current evaluation are posted online at http://

rtw.ml.cmu.edu/acarlson_thesis:

• All instances promoted by MBL, CSEAL, and SEAL.

• All textual patterns promoted by pattern learning in the MBL experiments.

• Browseable knowledge bases in XML format of all promoted instances and candidate in-

stances from the runs of MBL and CSEAL, with patterns and URLs that extracted each

instance.

• All judgments obtained from Mechanical Turk used in estimates of precision.

4.5 Conclusion

In Chapter 3, we saw that coupled semi-supervised learning can improve learning of textual extrac-

tion patterns. In this chapter, we showed that the same ideas can improve an off-the-shelf, state-

of-the-art system that uses a different extraction method, wrapper induction from semi-structured

documents. This demonstrates that the ideas of coupled semi-supervised learning may have broad

applicability to a variety of learning problems. We also showed that a different type of coupling,

multi-view coupling, can improve the precision of semi-supervised learning by combining the pre-

dictions from two different extraction methods.
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Chapter 5

Scaling Up: More Predicates, More

Extraction Methods

Abstract

The results in previous chapters lead to two questions: (1) Can we scale up the number and vari-
ety of predicates in our ontology and still maintain high precision with coupled semi-supervised
learning methods? and (2) Should we consider adding additional extraction methods to CPL and
CSEAL, coupling more than two techniques together? In this chapter, we explore these questions
by learning to extract over 150 predicates (compared to 71 before), and by using four different ex-
traction methods. We first describe a general architecture that can exploit many different extraction
methods. The architecture uses coupled semi-supervised learning methods, an ensemble of varied
knowledge extraction methods, and a flexible knowledge base that allows the integration of the
outputs of those methods. We also discuss design principles for implementing this architecture.
We then describe a prototype implementation of our architecture, called Multi-Extractor Coupler
(MEC). With an extended ontology of 123 categories and 55 relations, MEC has learned to extract
a knowledge base containing over 242,000 beliefs with an estimated precision of 74%. Analysis
of the results shows that each of the four extraction methods contributes positively to these results.

87
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5.1 Introduction

In Chapter 3 and Chapter 4, we saw how coupled semi-supervised learning forestalls semantic

drift and improves the precision of pattern-based information extractors and wrapper inducers for

semi-structured web pages. We also saw that coupling the training of these two methods by only

promoting instances extracted by both methods can lead to very high precision. The results from

these chapters lead to the questions: (1) Can we scale up the number and variety of predicates in

our ontology and still maintain high precision with coupled semi-supervised learning methods?

and (2) Should we consider adding additional extraction methods to CPL and CSEAL, coupling

more than two techniques together?

To answer the first question, we scale up our ontology to 123 categories and 55 relations (com-

pared to 44 categories and 27 relations in previous chapters). This provides an opportunity to see

how well coupled semi-supervised learning methods can work on a larger number and variety of

predicates.

To answer the second question, we first describe a general architecture that can exploit many

different extraction methods. The architecture uses coupled semi-supervised learning methods, an

ensemble of varied knowledge extraction methods, and a flexible knowledge base that allows the

integration of the outputs of those methods. We also discuss design principles for implementing

this architecture.

We then describe a prototype implementation of our architecture, called Multi-Extractor Cou-

pler (MEC). At present, MEC acquires the two types of knowledge discussed earlier in this thesis:

(1) knowledge about what noun phrases refer to some specified semantic categories, such as cities,

companies, and universities, and (2) knowledge about what pairs of noun phrases satisfy some

specified semantic relations, such as hasOfficesIn(organization, location). MEC learns to acquire

these two types of knowledge in four ways: it learns free-form text patterns for extracting this

knowledge from sentences on the web, it learns to extract this knowledge from semi-structured
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web data such as tables and lists, it learns morphological regularities of instances of categories,

and it learns probabilistic horn clause rules that enable it to infer new instances of relations from

other relation instances that it has already learned. Compared to MBL from Chapter 4, MEC uses a

different strategy for combining evidence from multiple extractors: candidate facts that have high-

confidence from a single source are promoted, and lower-confidence candidates are also promoted

if they have been proposed by multiple sources independently. MBL only promoted instances that

satisfied the latter condition.

Finally, we present experiments showing that our implementation of MEC, given an initial

seed ontology defining 123 categories and 55 relations and left to run for six days, populates this

ontology over 242,000 new facts with estimated precision of 74%. This is well over an order of

magnitude more facts than those learned by MBL in the previous chapter, reflecting MEC’s ability

to leverage several different learning methods and a larger ontology to achieve higher recall while

still maintaining high precision. Analysis of the results shows that each of the four extraction

methods contributes positively to these results.

The material presented in this chapter was originally presented by Carlson et al. [2010a] and is

based on research done in collaboration with co-authors.

5.2 Approach

Our approach to coupling the learning of multiple extractors is organized around a shared knowl-

edge base (KB) that is incrementally and continuously grown and used by a collection of learning

subsystem components that implement complementary knowledge extraction methods. The start-

ing KB defines an ontology (a collection of predicates defining categories and relations), and a

handful of seed examples for each predicate in this ontology (e.g., a dozen example cities). The

goal of our approach is to continuously grow this KB.
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candidate 
facts

beliefs

Data 
Resources

(e.g., corpora)

Knowledge
Integrator

Subsystem Components

CPL CSEAL RLCMC

Knowledge Base

Figure 5.1: Our Multi-Extractor Coupler (MEC) architecture. See “Approach” for an overview of the
approach implemented in MEC, and “Implementation” for subsystem details.

Category and relation instances added to the KB are partitioned into candidate facts and be-

liefs. The subsystem components can read from the KB and consult other external resources (e.g.,

corpora or the Internet), and then propose new candidate facts. Components supply a probability

for each candidate and a summary of the source evidence supporting it. The Knowledge Integrator

(KI) examines these candidate facts and promotes the most strongly supported of these to belief

status. This flow of processing is depicted in Figure 5.1.

In our initial implementation, as detailed in the Implementation section, our approach operates

iteratively. On each iteration, subsystem components are run to completion given the current KB

and each outputs its proposed candidate facts. The KI then makes its decisions on which candidate

facts to promote. The KB grows, and this provides stronger training information to each compo-

nent, and this in turn allows each component to learn to read better. In this way, our approach can be

seen as implementing a coupled, semi-supervised learning method in which multiple components

learn and share complementary types of knowledge, overseen by the KI.

This kind of iterative learning approach can suffer if labeling errors accumulate. To help mit-

igate this issue, we envision that the system should be able to interact with a human for 10–15
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minutes each day, to help the learner stay “on track,” though the experiments reported here make

limited use of such human input.1

This approach was designed as a step toward never-ending learning, a paradigm where a sys-

tem can continually learn to improve its abilities in a performance task. In the future, we intend

to involve greater human interaction, and intelligent planning that could, for example, decide to

invoke specific extractors targetted toward specific predicates, or decide to extend its ontology with

new predicates.

The following design principles are important in implementing our approach to coupling the

learning of many extractors:

• Use subsystem components that make uncorrelated errors. When multiple components that

make uncorrelated errors propose the same candidate fact, we can typically be quite confi-

dent in that belief.

• Learn multiple types of inter-related knowledge. For example, we use one component that

learns to extract predicate instances from text resources, and another which learns to infer

relation instances from other beliefs in the KB. This provides multiple, independent sources

of the same types of beliefs.

• Use coupled semi-supervised learning methods to leverage constraints between predicates

being learned. To provide opportunities for coupling, arrange categories and relations into a

taxonomy, and declare most categories and relations to be mutually exclusive. Additionally,

specify the expected category of each relation argument to enable type-checking. Subsystem

components and the KI can benefit from methods that leverage coupling.

• Distinguish high-confidence beliefs in the KB from lower-confidence candidates, and retain

1A few minutes were spent by a human judging proposed rules 6 times during our experiments, as described in

Section 5.5.1.
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source justifications for each belief.

• Use a uniform KB representation to capture candidate facts and promoted beliefs of all types,

and use associated inference and learning mechanisms that can operate on this shared repre-

sentation.

5.3 Related Work

AI has a long history of research on autonomous agents, problem solving, and learning, e.g.,

SOAR [Laird et al., 1987], PRODIGY [Carbonell et al., 1991], EURISKO [Lenat, 1983], ACT-R

[Anderson et al., 2004], and ICARUS [Langley et al., 1991]. In comparison, our focus in this

chapter is on semi-supervised learning for information extraction, with less focus on problem-

solving search. Nevertheless, earlier work provides a variety of design principles upon which

we have drawn. For example, the role of the KB in our approach is similar to the role of the

“blackboard” in early systems for speech recognition [Erman et al., 1980], and the frame-based

representation of our KB is a reimplementation of the THEO system [Mitchell et al., 1991] which

was originally designed to support integrated representation, inference and learning. There is also

previous research on life-long learning, such as Thrun and Mitchell [1995], which focuses on using

previous learning tasks to bias new learning tasks. Banko and Etzioni [2007] consider a lifelong

learning setting where an agent is building a theory of a domain. Their work explores different

strategies for deciding which of many possible learning tasks to tackle next. Our implementation

operates on all predicates in each iteration of learning; as we consider methods of focusing attention

on specific predicates in the future, Banko and Etzioni’s work could be instructive.

Pennacchiotti and Pantel [2009] present a framework for combining the outputs of an ensem-

ble of extraction methods, which they call “Ensemble Semantics.” Multiple extraction systems

provide candidate category instances, which are then ranked using a learning function that uses
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features from many different sources (e.g., query logs, Wikipedia). Their approach uses a more

sophisticated ranking method than ours, but is not iterative. Thus, their ideas are complementary

to our work, as we could use their ranking method as part of our general approach.

5.4 Implementation

We have implemented a preliminary version of our approach. We call this implementation Multi-

Extractor Coupler (MEC). MEC uses four subsystem components (Figure 5.1):

• Coupled Pattern Learner (CPL): A free-text extractor which learns and uses contextual pat-

terns like “mayor of X” and “X plays for Y ” to extract instances of categories and relations.

CPL uses co-occurrence statistics between noun phrases and contextual patterns (both de-

fined using part-of-speech tag sequences) to learn extraction patterns for each predicate of

interest and then uses those patterns to find additional instances of each predicate. Relation-

ships between predicates are used to filter out patterns that are too general. CPL is described

in detail in Chapter 3. Probabilities of candidate instances extracted by CPL are heuristically

assigned using the formula 1−0.5c, where c is the number of promoted patterns that extract a

candidate. In our experiments, CPL was given as input a corpus of 2 billion sentences, which

was generated by using the OpenNLP package2 to extract, tokenize, and part-of-speech tag

sentences from the 500 million web page ClueWeb09 data set [Callan and Hoy, 2009]. CPL

was written by Andrew Carlson and Justin Betteridge. For more details, see Chapter 3.

• Coupled SEAL (CSEAL): A semi-structured extractor which queries the Internet with sets

of beliefs from each category or relation, and then mines lists and tables to extract novel in-

stances of the corresponding predicate. CSEAL uses mutual exclusion relationships to pro-

vide negative examples, which are used to filter out overly general lists and tables. CSEAL

2http://opennlp.sourceforge.net
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is described in Chapter 4. Given a set of seed instances, CSEAL performs queries by sub-

sampling beliefs from the KB and using these sampled seeds in a query. CSEAL was con-

figured to issue 5 queries for each category of interest and 10 queries for each relation of

interest, and to fetch 50 web pages per query. Candidate facts extracted by CSEAL are

assigned probabilities using the same method as for CPL, except that c is the number of un-

filtered wrappers that extract an instance. SEAL was written by Richard Wang and William

Cohen. CSEAL was written by Andrew Carlson and Estevam Hruschka. For more details,

see Chapter 4.

• Coupled Morphological Classifier (CMC): A set of binary L2-regularized logistic regression

models—one per category—which classify noun phrases based on various morphological

features (words, capitalization, affixes, parts-of-speech, etc.). Beliefs from the KB are used

as training instances, but at each iteration CMC is restricted to predicates which have at least

100 positives. As with CSEAL, mutual exclusion relationships are used to identify negative

instances. CMC examines candidate facts proposed by other components, and classifies

up to 30 new beliefs per predicate per iteration, with a minimum posterior probability of

0.75. These heuristic measures help to ensure high precision, generating increased support

for existing candidates and enforcing morphological constraints on other subsystems. CMC

was implemented in Java by Burr Settles.

• Rule Learner (RL): A first-order relational learning algorithm similar to FOIL [Quinlan and

Cameron-Jones, 1993], which learns probabilistic Horn clauses. These learned rules are

used to infer new relation instances from other relation instances that are already in the KB.

RL was implemented in Matlab by Tom Mitchell.

Our implementation of the Knowledge Integrator (KI) promotes candidate facts suggested by

the other components to the status of beliefs, using a hard-coded, intuitive strategy. Candidate
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facts that have high-confidence from a single source (those with posterior > 0.9) are promoted,

and lower-confidence candidates are promoted if they have been proposed by multiple sources

independently. KI exploits relationships between predicates by respecting mutual exclusion and

type checking information. In particular, candidate category instances are not promoted if they

already belong to a mutually exclusive category, and relation instances are not promoted unless

their arguments are at least candidates for the appropriate category types (and are not already

believed to be instances of a mutually exclusive category). In our current implementation, once a

candidate fact is promoted as a belief, it is never demoted. The KI is configured to promote up to

250 instances per predicate per iteration, but this threshold was rarely hit in our experiments.

The KB in MEC is a reimplementation of the THEO frame-based representation [Mitchell et

al., 1991] based on Tokyo Cabinet3, a fast, lightweight key/value store. The KB can handle many

millions of values on a single machine.

5.5 Experimental Evaluation

We conducted an experimental evaluation to explore the following questions:

1. Can MEC learn to populate many different categories (100+) and relations (50+) for 20+

iterations of learning and maintain high precision?

2. How much do the different components contribute to the promoted beliefs held by MEC?

5.5.1 Methodology

The input ontology used in our experiments included 123 categories each with 10–15 seed in-

stances and 5 seed patterns for CPL (derived from Hearst patterns [Hearst, 1992]). Categories

3http://1978th.net/tokyocabinet
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included locations (e.g., mountains, lakes, cities, museums), people (e.g., scientists, writers, politi-

cians, musicians), animals (e.g., reptiles, birds, mammals), organizations (e.g., companies, uni-

versities, web sites, sports teams), and others. 55 relations were included, also with 10–15 seed

instances and 5 negative instances each (typically generated by permuting the arguments of seed

instances). Relations captured relationships between the different categories (e.g., teamPlaysSport,

bookWriter, companyProducesProduct).

In our experiments, CPL, CSEAL, and CMC ran once per iteration. RL was run after each

batch of 10 iterations, and the proposed output rules were filtered by a human. Manual approval of

these rules took only a few minutes.

To estimate the precision of the beliefs in the KB produced by MEC, beliefs from the final

KB were randomly sampled and evaluated by several human judges. Cases of disagreement were

discussed in detail, with final decisions made by another judge. Facts which were once true but

are not currently (e.g., a former coach of a sports team) were considered to be correct for this

evaluation, as MEC does not currently deal with temporal scope in its beliefs. Spurious adjectives

(e.g., “today’s Chicago Tribune”) were allowed, but rare.

5.5.2 Results

After running for 67 days, MEC completed 66 iterations of execution. 242,453 beliefs were pro-

moted across all predicates, 95% of which were instances of categories and 5% of relations. Ex-

ample beliefs from a variety of predicates, along with the source components that extracted them,

are shown in Table 5.1.

Promotion Rates

Following an initial burst of almost 10,000 beliefs promoted during the first iteration, MEC con-

tinued to promote a few thousand more on every successive iteration, indicating strong potential
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Predicate Instance Source(s)

ethnicGroup Cubans CSEAL
arthropod spruce beetles CPL, CSEAL
female Kate Mara CPL, CMC
sport BMX bicycling CSEAL, CMC
profession legal assistants CPL
magazine Thrasher CPL
bird Buff-throated Warbler CSEAL
river Fording River CPL, CMC
mediaType chemistry books CPL, CMC

cityInState (troy, Michigan) CSEAL
musicArtistGenre (Nirvana, Grunge) CPL
tvStationInCity (WLS-TV, Chicago) CPL, CSEAL
sportUsesEquip (soccer, balls) CPL
athleteInLeague (Dan Fouts, NFL) RL
starredIn (Will Smith, Seven Pounds) CPL
productType (Acrobat Reader, FILE) CPL
athletePlaysSport (scott shields, baseball) RL
cityInCountry (Dublin Airport, Ireland) CPL

Table 5.1: Example beliefs promoted by MEC.

to learn more if it were left to run for a longer time. Figure 5.2 shows different views of the pro-

motion activity of MEC over time. The left-hand figure shows overall numbers of promotions for

categories and relations in each iteration. Category instances are promoted fairly steadily, while

relation instance promotions are spiky. This is mainly because the RL component only runs ev-

ery 10 iterations, and is responsible for many of the relation promotions. The right-hand figures

are stacked bar plots showing the proportion of predicates with various levels of promotion activ-

ity during different spans of iterations. These plots show that instances are promoted for many

different categories and relations during the whole run of MEC.
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Figure 5.2: Promotion activity for beliefs over time. Left: The number of beliefs promoted for all category

and relation predicates in each iteration. Periodic spikes among relation predicates occur every 10 iterations

after the RL component runs. Center and Right: Stacked bar plots detailing the proportion of predicates (and

counts of predicates, shown inside the bars) at various levels of promotion activity over time for categories

and relations. Note that, while some predicates become “dormant” early on, the majority continue to show

healthy levels of promotion activity even in later iterations of learning.

Estimates of Precision

To estimate the precision of beliefs promoted during various stages of execution, we considered

three time periods: iterations 1–22, iterations 23–44, and iterations 45–66. For each of these

time periods, we uniformly sampled 100 beliefs promoted during those periods and judged their

correctness. The results are shown in Table 5.2. During the three periods, the promotion rates are

very similar, with between 76,000 and 89,000 instances promoted. There is a downward trend in

estimated precision, going from 90% to 71% to 57%. Taking a weighted average of these three

estimates of precision based on numbers of promotions, the overall estimated precision across all

66 iterations is 74%.

Only a few items were debated by the judges: examples are “right posterior,” which was

judged to not refer to a body part, and “green leafy salad,” which was judged acceptable as a

type of vegetable. “Proceedings” was promoted as a publication, which we considered incorrect

(it was most likely due to noun-phrase segmentation errors within CPL). Two errors were due
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Iterations Estimated Precision (%) # Promotions

1–22 90 88,502
23–44 71 77,835
45–66 57 76,116

Table 5.2: Estimates of precision (from 100 sampled beliefs) and numbers of promoted beliefs across all
predicates during iterations 1–22, 23–44, and 45–66. Note that the estimates of precision only consider
beliefs promoted during a time period and ignore beliefs promoted earlier.

to languages (“Klingon Language” and “Mandarin Chinese language”) being promoted as ethnic

groups. (“Southwest”, “San Diego”) was labeled as an incorrect instance of the hasOfficesIn rela-

tion, since Southwest Airlines does not have an official corporate office there. Many system errors

were subtle; one might expect a non-native reader of English to make similar mistakes.

To estimate precision at the predicate level, we randomly chose 7 categories and 7 relations

which had at least 10 promoted instances. For each chosen predicate, we sampled 25 beliefs

from iterations 1–22, 23–44, and 45–66, and judged their correctness. Table 5.3 shows these

predicates and, for each time period, the estimates of precision and the number of beliefs promoted.

Most predicates are very accurate, with precision exceeding 90%. Two predicates in particular,

cardGame and productType, fare much worse. The cardGame category seems to suffer from the

abundance of web spam related to casino and card games, which results in parsing errors and

other problems. As a result of this noise, MEC ends up extracting strings of adjectives and nouns

like “deposit casino bonuses free online list” as incorrect instances of cardGame. Most errors for

the productType relation came from associating product names with more general nouns that are

somehow related to the product but do not correctly indicate what kind of thing the product is, e.g.,

(“Microsoft Office”, “PC”). Some of these productType beliefs were debated by the judges, but

were ultimately labeled incorrect, e.g., (“Photoshop”, “graphics”). In our ontology, the category

for the second argument of productType is a general “item” super-category in the hierarchy; we

posit that a more specific “product type” category might lead to more restrictive type checking.
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Analysis of Errors

To gain a deeper understanding of the errors made by MEC during a long run, a collaborator

looked at the instances promoted by MEC after 100 iterations of execution had been finished. The

annotator had two ways of making judgments: (1) Promoted instances could be explicitly marked

as incorrect, and (2) Predicates could be marked as untrustworthy after a specific point in time, in

which case all promotions after that were discarded.

During the run, 320,892 category instances were promoted. 5,762 were explicitly marked as

errors, while another 76,146 were marked to be discarded because the category had diverged.

Out of 24,132 relation instances, 247 were explicitly marked wrong, and 456 were marked to be

discarded due to divergence.

Appendix B lists many selected predicates with an informal description of major trends in

errors for each predicate. From this analysis, we see several trends:

• Near-Miss Negative Examples are Vital: Predicates need good sources of negative examples

through mutual-exclusion coupling constraints. When they are not available, the boundaries

of a predicate are poorly defined, and such predicates tend to diverge. For example, the re-

lations “teamPlaysInLeague” and “cityCapitalOfState” lack good negative examples of teams

that play football that are not in the NFL, and of states that are in cities but are not capital

cities. The category “ethnicGroup” diverged to include natural languages because there was no

“naturalLanguage” category.

• Every Component Fails Sometime: In the appendix, each of the four components used by

MEC causes divergence for at least one predicate. CPL learns patterns that lead to lots of

newspapers being incorrectly based in New York. CSEAL learns noisy segments of text like

“bivalves are filter feeders” for the “invertebrate” category. CMC learns a high weight for the

word “coffee” for the “beverage” category which leads to “metal coffee” being promoted. Fi-

nally, RL incorrectly concludes that every sports team that plays “football” plays in the league
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“NFL”. In many of these cases, the components were confident enough to cause MEC to pro-

mote these instances without corraboration from another source. Since MEC will promote

high-confidence candidates from a single source, these errors are promoted. A possible way to

reduce these errors would be to use other components to assess these instances to get a “second

opinion.”

• Noisy Noun Phrases are a Problem: The segmentation of noun phrases in CPL fails often,

leading to “Life Catering” being chopped off from the end of the full phrases “Spice of Life

Catering.” CSEAL learns templates that extract instances like “what plants grow in the moun-

tains”. It is worth investigating adding a filter to try to remove such noisy instances.

• Correlated Errors Happen: Our design principle of choosing components that tend to make

uncorrelated errors is sometimes violated in the results. For example, while CMC learns that

the word “sauce” is a good feature for the “condiment” category, if CPL and CSEAL were

perfect, this would not be a problem. However, CPL extracts “sauce teaspoon” as a candidate

instance, and these correlated errors lead to incorrect promotions.

These points lead us to conclude that we should try to filter out noisy NPs, design ontologies so

that every predicate has a good source of negative evidence, and refine our Knowledge Integrator to

deal with the fact that high-confidence single-source promotions can be incorrect. Also, we should

get a human involved in the loop in MEC; the regularity of the errors described in Appendix B

suggest that a few negative examples for a predicate at the right time could keep learning on track.

Contributions of Each Learning Component

As described in the Implementation section, MEC uses a Knowledge Integrator which promotes

high-confidence single-source candidate facts, as well as candidate facts with multiple lower-

confidence sources. Figure 5.3 illustrates the impact of each component within this integration

strategy. Each component is shown containing a count which is the number of beliefs that were
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Estimated Precision # Promotions
Predicate 1–22 23–44 45–66 1–22 23–44 45–66

cardGame 40 20 0 584 552 2,472
city 92 80 96 4,311 3,362 1,002
magazine 96 68 80 1,235 788 664
recordLabel 100 100 100 1,384 890 748
restaurant 96 88 92 242 568 523
scientist 96 100 100 768 1 404
vertebrate 100 100 96 1,196 1,362 714

athletePlaysForTeam 100 100 100 113 304 39
ceoOfCompany 100 100 100 82 8 9
coachesTeam 100 100 100 196 121 12
productType 28 44 20 35 156 195
teamPlaysAgainstTeam 96 100 100 283 553 232
teamPlaysSport 100 100 86 79 158 14
teamWonTrophy 88 72 44 119 104 174

Table 5.3: For selected categories (top) and relations (bottom), estimates of precision (from 25 sampled
beliefs) and counts for beliefs promoted during iterations 1–22, 23–44, and 45–66.
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CPL
48,786

CSEAL
51,987

CMC
423

RL
1,914

58,880

45,403

25 34,447
509

78

Figure 5.3: Source counts for beliefs promoted by MEC after 66 iterations. Numbers inside nodes indi-
cate the number of beliefs promoted based solely on that component. Numbers on edges indicate beliefs
promoted based on evidence from multiple components.

promoted based on that source alone having high confidence in that belief. Lines connecting com-

ponents are labeled with counts that are the number of beliefs promoted based on those components

each having some degree of confidence in that candidate. CPL and CSEAL each were responsible

for many promoted beliefs on their own. However, more than half of the beliefs promoted by KI

were based on multiple sources of evidence. While RL was not responsible for many promoted

beliefs, those that it did propose with high confidence appear to be largely independent from those

of the other components.

RL learned an average of 66.5 novel rules per iteration, of which 92% were approved. 12% of

the approved rules implied at least one candidate instance that had not yet been implied by another

rule, and those rules implied an average of 69.5 such instances.

To give a sense of what is being learned by the different components used in MEC, we provide

examples for each component. Table 5.4 shows contextual patterns learned by CPL. Table 5.5

shows web page wrappers learned by CSEAL. Example weights from the logistic regression clas-

sifiers learned by CMC are shown in Table 5.6. Finally, example rules induced by RL are shown

in Table 5.7.
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Predicate Pattern

emotion hearts full of X
beverage cup of aromatic X
newspaper op-ed page of X
teamPlaysInLeague X ranks second in Y
bookAuthor Y classic X

Table 5.4: Example free-text patterns learned by CPL. X and Y represent placeholders for noun phrases to
be extracted.

Predicate Web URL Extraction Template

academicField http://scholendow.ais.msu.edu/student/ScholSearch.Asp &nbsp;[X] -

bird http://www.michaelforsberg.com/stock.html <option>[X]</option>

bookAuthor http://lifebehindthecurve.com/ </li> <li>[X] by [Y ] &#8211;

Table 5.5: Examples of web page extraction templates learned by the CSEAL subsystem. [X] and [Y ]

represent placeholders for instances to be extracted (categories have only one placeholder; relations have

two).
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Predicate Feature Weight

mountain LAST=peak 1.791
mountain LAST=mountain 1.093
mountain FIRST=mountain -0.875
musicArtist LAST=band 1.853
musicArtist POS=DT NNS 1.412
musicArtist POS=DT JJ NN -0.807
newspaper LAST=sun 1.330
newspaper LAST=press 1.276
newspaper LAST=university -0.318
university LAST=college 2.076
university PREFIX=uc 1.999
university LAST=university 1.745
university FIRST=college -1.381
visualArtMovement SUFFIX=ism 1.282
visualArtMovement PREFIX=journ -0.234
visualArtMovement PREFIX=budd -0.253

Table 5.6: Example feature weights induced by the morphology classifier. Positive and negative weights
indicate positive and negative impacts on predicted probabilities, respectively. Note that “mountain” and
“college” have different weights when they begin or end an instance. The learned model uses part-of-speech
features to identify typical music group names (e.g., The Beatles, The Ramones), as well as prefixes to
disambiguate art movements from, say, academic fields and religions.

Probability Consequent Antecedents

0.95 athletePlaysSport(X , basketball) ⇐ athleteInLeague(X , NBA)
0.91 teamPlaysInLeague(X , NHL) ⇐ teamWonTrophy(X , Stanley Cup)
0.90 athleteInLeague(X , Y ) ⇐ athletePlaysForTeam(X , Z), teamPlaysInLeague(Z, Y )
0.88 cityInState(X , Y ) ⇐ cityCapitalOfState(X , Y ), cityInCountry(X , USA)
† 0.62 newspaperInCity(X , New York) ⇐ companyEconSect(X , media), generalizations(X , blog)

Table 5.7: Example horn clauses induced by the rule learner. Probabilities indicate the conditional proba-
bility that the literal to the left of⇐ is true given that the literals to the right are satisfied. Each rule captures
an empirical regularity among the relations mentioned by the rule. The rule marked with † was rejected
during human inspection.
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Supplementary Online Materials

Several types of supplementary materials from our evaluation are posted online4, including: (1)

all promoted instances, (2) all categories, relations, and seed instances, (see Section 1.4.1 for a

description of all of the information specified in the ontology) (3) all labeled instances sampled for

estimating precision, (4) all patterns promoted by CPL, and (5) all rules learned by RL.

5.5.3 Discussion

These results demonstrate that coupled semi-supervised learning can scale to learn hundreds of

thousands of facts for hundreds of predicates while maintaining 74% precision. They also demon-

strate that many different extraction techniques can be coupled together in a positive way; we saw

unique instances promoted when single sources were highly confident, as well as a number of

methods pairing together to promote instances when the individual methods were less confident.

In total, MEC learned 531 coupled functions, since 3 different subsystems (CMC, CPL, and

CSEAL) learn about 123 categories, and 3 different subsystems (CPL, CSEAL, and RL) learn

about 55 relations.

In the first 22 iterations, MEC learned 88,502 facts with an estimated precision of 90%, and

in 66 iterations, MEC learned over 242,000 facts with an estimated precision of 74%. In previous

chapters, MBL learned 9,463 facts with an estimated precision of 92%, CPL learned 18,310 facts

with an estimated precision of 81%, and CSEAL learned 12,522 facts with an estimated precision

of 86%. Thus, at similar levels of precision, MEC learned far more facts than previous methods.5

The importance of our design principle of using components which make mostly independent

errors is generally supported by the results. More than half of the beliefs were promoted based

4http://rtw.ml.cmu.edu/acarlson_thesis/
5To be fair, it should be noted that MEC started with an ontology that was roughly twice as large as the one used

by MBL, CPL, and CSEAL.
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on evidence from multiple sources. However, in looking at errors made by the system, it is clear

that CPL and CMC are not perfectly uncorrelated in their errors. As an example, for the category

bakedGood, CPL learns the pattern “X are enabled in” because of the believed instance “cookies.”

This leads CPL to extract “persistent cookies” as a candidate bakedGood. CMC outputs high

probability for phrases that end in “cookies,” and so “persistent cookies” is promoted as a believed

instance of bakedGood.

This behavior suggests an opportunity for leveraging more human interaction in the learning

process. Currently, such interaction is limited to approving or rejecting inference rules proposed by

RL. However, we plan to explore other forms of human supervision, limited to approximately 10–

15 minutes per day. In particular, active learning [Settles, 2009] holds much promise by allowing

MEC to ask “queries” about its beliefs, theories, or even features about which it is uncertain.

For example, a pattern like “X are enabled in” is only likely to occur with a few instances of

the bakedGood category. This could be a poor pattern that leads to semantic drift, or it could

be an opportunity to discover some uncovered subset of the bakedGood category. If MEC can

adequately identify such opportunities for knowledge, a human can easily provide a label for this

single pattern and convey a substantial amount of information in just seconds. Previous work has

shown that labeling features (e.g., context patterns) rather than instances can lead to significant

improvements in terms of reducing human annotation time [Druck et al., 2009].

5.6 Conclusion

We have proposed an architecture for coupling the learning of many extraction techniques, and

described a partial implementation of that architecture which uses four subsystem components that

learn to extract knowledge in complimentary ways. After running for 67 days, this implementation

populated a knowledge base with over 242,000 facts with an estimated precision of 74%. Analysis
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of the results shows that each of the four extraction methods contributes positively to these results.

These results confirm that our coupled semi-supervised learning approaches can scale to hun-

dreds of predicates and can benefit from using a diverse set of extraction methods.



Chapter 6

Coupled Semi-Supervised Logistic

Regression

Abstract

In this chapter, we consider how to couple the semi-supervised learning of a different kind of model
from those considered earlier in the thesis: logistic regression models. Specifically, we consider
learning many binary logistic regression classifiers when many (but not all) pairs of classes are
known to be mutually exclusive. We present a method that uses unlabeled data through a penalty
function that regularizes the training of classifiers by penalizing violations of mutual exclusion
constraints. We then apply this idea to training classifiers which decide if a noun phrase is a mem-
ber of some specific category. Semi-supervised training of such classifiers is shown to improve
performance relative to supervised-only training , and to slightly improve performance relative to
the Coupled Pattern Learner method presented in Chapter 3. We speculate that use of these and
other penalty functions could provide an alternative to the methods for coupled semi-supervised
learning presented in previous chapters, with the advantage that the models being learned are prin-
cipled, probabilistic models that are easy to train and can be applied to any noun phrase.

109



110 CHAPTER 6. COUPLED SEMI-SUPERVISED LOGISTIC REGRESSION

6.1 Introduction

In this chapter, we consider how to couple the semi-supervised training of logistic regression mod-

els. Specifically, we consider training many binary logistic regression classifiers when many (but

not all) pairs of classes being learned are known to be mutually exclusive. We present a method

that uses unlabeled data through a penalty function that is added to the typical L2-regularized lo-

gistic regression objective function. This penalty function regularizes the training of the classifiers

by penalizing violations of mutual exclusion constraints in the predictions of those classifiers on

unlabeled examples. This yields an objective function where the optimization of weights trades off

fitting the labeled data well, having weights with small magnitude, and avoiding labeling unlabeled

examples with non-zero posterior probabilities for pairs of mutually exclusive classes.

In an experimental evaluation, this general method is applied to training classifiers which de-

cide if a noun phrase is a member of some specific category, given features that describe how

strongly that noun phrase co-occurs with hundreds of thousands of different contextual patterns in

a large web corpus. Semi-supervised training of such classifiers is shown to improve performance

relative to supervised-only training, and to slightly improve performance relative to the Coupled

Pattern Learner method presented in Chapter 3.

We speculate that use of these and other penalty functions to couple the learning of logistic

regression models could provide an alternative to CPL, the method for coupled semi-supervised

learning presented in Chapter 3, with several advantages:

• The models being learned are principled, probabilistic models.

• The models can be trained easily using gradient-based optimization methods.

• The models easily leverage information about the strength of co-occurrence between a noun

phrase and a contextual pattern (compared to the binary features used by previous models in

the thesis).
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• The models offer higher recall because they can make predictions about any noun phrase.

• The models can easily incorporate new types of features (e.g., capitalization of noun phrases,

prefixes and suffixes of noun phrases, distributional similarity with seeds).

6.2 Approach

Our approach to coupling the semi-supervised training of many logistic regression models adds a

penalty function to the standard L2-regularized logistic regression objective function. In explaining

our approach, we start with a review of supervised binary logistic regression, and then explain our

penalty function and training method.

6.2.1 Supervised Logistic Regression

Logistic regression is a popular method for discriminative probabilistic modeling. For a binary

classification task, we model the probability of an instance x from instance space X = RD being

a positive example of a class y (where y ∈ Y = {0, 1}) as:

pθ(y = 1|x) = exp (
∑

i θixi)

1 + exp (
∑

i θixi)

where θ is a parameter vector in RD (the same dimensionality as the instance x), and θi and xi

refer to the ith value in the vectors θ and x, respectively1.

Given a collection L of labeled training examples that consist of (x, y) pairs, where x is a

training instance, and y is the label for that instance, θ is learned by maximizing the conditional

log-likelihood of the labels of the training data (thus obtaining a maximum conditional likelihood

estimate of θ):

1Many sources in the literature negate the product between θ and x; this has no effect on the results.
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l(θ, L) =
∑

(x,y)∈L

log pθ(y|x)

In practice, we minimize an objective function that is the negative conditional log-likelihood:

Obj(θ, L) = −
∑

(x,y)∈L

log pθ(y|x)

To combat overfitting, often the objective function contains the conditional log-likelihood sup-

plemented with a regularization penalty. In fact, in problems where the dimensionality of the

instance space exceeds the number of training examples, regularization is necessary for the prob-

lem to be well-posed. We add an L2 regularization penalty: (this is equivalent to a Gaussian prior

over the weights with mean 0):

Obj(θ, L) =
λR
2

∑
i

θ2i −
∑

(x,y)∈L

log pθ(y|x)

where λR is a parameter which trades off how well the model fits the training data with the prefer-

ence for small weights. Minimizing this objective will yield a MAP estimate of θ.

This objective function can be minimized using gradient descent-based methods, where the

gradient with respect to weight θi is:

∂Obj(θ, L)

∂θi
= λRθi −

∑
(x,y)∈L

xi [y − pθ(y = 1|x)]

Our objective function is convex, and so our gradient descent procedure will converge to the

global minimum.

This gradient can be interpreted intuitively. Training examples where the label is perfectly

predicted (i.e., p(y|x) = 1 or p(y|x) = 0) do not contribute to the gradient, while training examples

where the label is not perfectly predicted contribute to the gradient in proportion with the error in
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the prediction and the strength of each feature in that example. The regularization term for each

weight contributes to the gradient proportionally to the absolute value of that weight.

Learning Many Models Simultaneously

Consider the setting where we are learning K binary classifiers over the same instance space X .

We have a different set of training data for each classifier, and we denote the set of labeled data for

the kth classifier by Lk.

Let θ be a K ×D parameter matrix, where θk is the parameter vector for the kth classifier, and

θk,i is the ith entry in the parameter vector for the kth classifier.

We can learn parameters for all K classifiers simultaneously by summing their objective func-

tions to yield:

(6.1) Obj(θ, L) =
∑
k

[λR
2

∑
i

θ2k,i

]
−

∑
(x,y)∈Lk

log pθk(y|x)


The sum of convex functions is convex, so this function is convex, and optimization with

gradient descent will find the global minimum.

The partial derivative with respect to parameter θk,i is only affected by the training data for the

kth classifier:

(6.2)
∂Obj(θ, L)

∂θk,i
= λRθk,i −

∑
(x,y)∈Lk

xi [y − pθk(yk = 1|x)]

6.2.2 Coupled Semi-Supervised Logistic Regression

Consider the setting from the previous section where we are simultaneously learning parameters

for K binary classifiers. Assume that we have domain knowledge which states that some pairs

of classes among the K classes are mutually exclusive. Formally, we have some set of unordered
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pairs M ⊆ K × K where each pair specifies the indices of a pair of mutually exclusive classes.

For example, if the first and second classes are mutually exclusive, then the pair (1, 2) will be in

M .

Assume that we also have a collection of unlabeled data U that consists only of instances x

without labels. To use this unlabeled data in coupling the learning of our classifiers, our model

penalizes cases where two mutually exclusive classes predict high posterior probabilities for an

unlabeled instance by using a penalty function P (θ, U) that sums the product of the posteriors:

(6.3) P (θ, U) = λP
∑

(a,b)∈M

∑
x∈U

pθa(ya = 1|x)pθb(yb = 1|x)

For the kth class, letMk denote the set of classes that are mutually exclusive with class k. Then

the partial derivative of the penalty with respect to parameter θk,i is:

(6.4)
∂P (θ, U)

∂θk,i
= λP

∑
m∈Mk

∑
x∈U

xipθk(yk = 1|x)(1− pθk(yk = 1|x))pθm(ym = 1|x)

where λP is a parameter that controls the strength of P (θ, U) in the overall objective function.

This gradient has an intuitive interpretation. For some instance x, if classes a and b are mutually

exclusive and predict non-zero posterior probability for x, then the gradient will be negative for all

positive features in the instance (and positive for all negative features). This puts pressure on the

classifiers for both classes to decrease the predicted posterior for x. The gradient for a becomes

more negative as the degree of uncertainty of the label for class a increases (i.e., gets closer to 0.5),

and also as the predicted posterior for class b increases. Whichever class has the lower predicted

posterior is pressured to reduce its predicted posterior more than the other class.

The objective function is obtained by adding the mutual exclusion penalty (Equation 6.3) to

the supervised objective function (Equation 6.1), and the gradient of that objective function by
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adding the gradient of the mutual exclusion penalty (Equation 6.4) to the standard supervised

gradient (Equation 6.2). The constants λR and λP balance the contributions of the likelihood,

regularization, and penalty term in the objective function.

The new objective is not convex, because the penalty (Equation 6.3) is not convex. To see this,

consider one parameter θk,i in the objective (assume that class k is mutually exclusive with at least

one other class). If all other parameters are held fixed, and this parameter is varied, the resulting

function is a scaled and shifted sigmoid function, which is clearly not convex (this is obvious from

a plot of the sigmoid function).

Thresholding the Penalty

In practice, we found that it is desirable to only penalize cases where two classifiers for mutually

exclusive classes predict posterior probabilities greater than some threshold. Otherwise, weights

are driven down by pressure to predict a posterior of 0 on unlabeled examples, when in practice

we are most interested in penalizing larger values of the posteriors.

First, let U τ
a,b denote the subset of the unlabeled data U where the predicted posterior probabil-

ities for classes a and b both exceed τ (we use τ = 0.2 in the experiments that follow):

U τ
a,b = {x ∈ U |pθa(ya = 1|x) > τ ∧ pθb(yb = 1|x) > τ}

We define a thresholded penalty Pτ which ignores unlabeled examples where the posterior

probabilities do not exceed τ by summing over a subset of U :

(6.5) Pτ (θ, U) = λP
∑

(a,b)∈M

∑
x∈Uτa,b

pθa(ya = 1|x)pθb(yb = 1|x)

The partial derivative of this penalty with respect to θi,k is similar to Equation 6.4, with the

difference being that it sums over a subset of the unlabeled data U rather than all of it:
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(6.6)
∂Pτ (θ, U)

∂θk,i
= λP

∑
m∈Mk

∑
x∈Uτk,m

xipθk(yk = 1|x)(1− pθk(yk = 1|x))pθm(ym = 1|x)

This modified penalty term is discontinuous, which could cause issues during parameter learn-

ing. However, we did not observe problems during our experiments. This may be due to the fact

that parameters are initialized using the parameters learned by supervised logistic regression, and

then the mutual exclusion penalty is driven down. Since the penalty is monotonic, the gradient will

indicate a good direction for reducing the penalty, in spite of the discontinuity.

6.2.3 Parameter Estimation

In our experiments, we use L-BFGS2 [Byrd et al., 1994] to estimate parameters. L-BFGS is a

quasi-Newton optimization procedure which estimates the Hessian using the first derivative of

the objective function. L-BFGS uses limited memory by not estimating the full Hessian, which

would be infeasible due to the millions of parameters in our experiments. L-BFGS is widely used

for parameter estimation in exponential models such as Conditional Random Fields [Sutton and

Mccallum, 2006]. To use L-BFGS, we need only provide routines that calculate the objective and

gradient given a parameter vector.

6.3 Experimental Evaluation

We conducted an experimental evaluation to answer the following questions:

• Does semi-supervised learning of logistic regression classifiers using mutual exclusion penal-

ties to couple the learning of the classifiers improve the precision of the learned classifiers?

2We use the Java port of L-BFGS available at http://riso.sourceforge.net/
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• How do the results with semi-supervised logistic regression compare with results from Cou-

pled Pattern Learner from Chapter 3, since they provide alternative methods for semi-supervised

learning to extract new instances of categories from seed instances and mutual exclusion re-

lationships?

To answer these questions, we ran the following algorithms using the same ontology as the one

used in Chapter 5:

• LRSup: Supervised Logistic Regression, which uses Equation 6.1 as its objective function

• LRSemi-sup: Semi-Supervised Logistic Regression, which uses Equation 6.1 added to Equa-

tion 6.5 as its objective function

• CPL: Coupled Pattern Learner, as described in Chapter 3

In experiments with LRSup and LRSemi-sup, a classifier was learned for each category where

the classification task was to decide if a particular noun phrase was an instance of that category.

Thus, individual noun phrases corresponded to individual examples in our evaluation. Features

describing a noun phrase were generated based on co-occurrence of that noun phrase with the same

types of contextual patterns used by CPL in previous chapters over the same 2.5-billion sentence

corpus of text used in Chapter 5. The comparison between LRSup and LRSemi-sup used only the seeds

for categories (up to 15 seed instances). The comparison between LRSemi-sup and CPL used some

extra seed instances (CPL propagates seed instances from relations to categories, so LRSemi-sup was

allowed to use these instances for fairness). More details are given below.

6.3.1 Training the Logistic Regression Models

Features for Noun Phrases

For features, we started with the contextual patterns recognized by CPL (which are defined by part-

of-speech tag sequences), but, for efficiency reasons, used only the seed patterns plus the patterns
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Context n(c) loge(|P |/n(c))
X determine the feasibility 83 11.69
X please e-mail 664 9.61
X use like 125 11.28
I now know X 1411 8.86
I upgraded X 766 9.47
congress in X 2568 8.26
luggage of X 1771 8.63
motor for X 2931 8.12
public transportation in X 1216 9.00
year , due to X 1009 9.19

Table 6.1: 10 randomly chosen example contextual patterns used as features in LRSemi-sup, the number of
different noun phrases that each occurs with, and idf weight for the contextual pattern.

that occur at least 2,500 times in the ClueWeb09 data set. This yielded 237,074 contextual pattern

features.

Instead of using binary features that indicate whether or not a noun phrase and pattern co-

occur in the ClueWeb09 data, we wanted to use real-valued features that capture how strongly a

noun phrase and a pattern co-occur. During development with LRSup, we found that the obvious

method of using raw co-occurrence counts yielded poor results. To learn how text categorization

experts typically weight features, we looked at the pre-processing performed on the RCV1 col-

lection by Lewis et al. [2004]. RCV1 is a collection of over 800,000 Reuters newswire articles

released by Reuters [Rose et al., 2002]. Lewis et al. benchmarked numerous text categorization

methods on the data set, and described their pre-processing steps used to create feature vectors for

text documents in detail. Our method draws from Section 7 of their paper, which in turn uses the

Cornell ltc term weighting of Buckley et al. [1994]. The weight of a feature for contextual pattern

c in the feature vector for noun phrase p is 0 if c and p do not co-occur in the ClueWeb09 data. If

they do co-occur, the weight is:
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wp(c) = (1 + loge(n(c, p)))× loge(|P |/n(c))

where n(c, p) is the number of times contextual pattern c co-occurs with noun phrase p in our

corpus, n(c) is the number of unique noun phrases that c co-occurs with, and |P | is the number of

noun phrases in our data (in our experiments, 9,891,655, which is the number of noun phrases that

occur at least 50 times and with at least 10 unique contextual patterns).

Examples of contextual patterns and their IDF weights are shown in Table 6.1.

In addition to the 237,074 contextual pattern features, we used three additional features:

• A “default” feature, whose value is 1.0 for all noun phrases

• A “capitalized” feature, whose value is 1.0 if the noun phrase starts with a capital letter, and

0.0 otherwise

• An “uncapitalized” feature, whose value is 1.0 minus the value of the “capitalized” feature

Following common practice in text categorization research (including the methodology of Lewis

et al. [2004]), we divide the elements of each feature vector by the Euclidean norm of the vector,

so that each feature vector has unit length.

The regularization coefficients λR for the three non-contextual pattern features are divided

by 10, so that the models can more easily learn the class priors and capitalization preferences

(otherwise, these features can be drowned out by the hundreds of thousands of contextual pattern

features).

Training LRSup

Positive examples for training LRSup were obtained using the seeds for each category. Negative

examples were obtained by using the seeds for mutually exclusive categories, so that “Country”

seeds became negative examples for the “City” category, as in previous chapters.
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To train LRSup, we initialize all weights to 0, and run L-BFGS for up to 100 iterations. We found

that the default tolerance parameters were too coarse, which led to L-BFGS terminating before it

converged. Using a tolerance setting of 10−10, which controls how small the magnitude of the gra-

dient must be to terminate the optimization procedure early, prevented L-BFGS from terminating

too early. To select λR, we trained models for λR ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7},

and compared the predictions for the “Body Part” and “Writer” categories. 10−6 was a clear winner

in both cases, so we used that value in our final experiments.

Figure 6.1 shows the values of each component of the objective function after each iteration

of L-BFGS. Iterations might include line search steps which are retracted, so the curve does not

descend smoothly, but the optimization procedure appears to converge well. Training LRSup took

20 minutes.
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Figure 6.1: The LRSup objective function and its components versus iteration of L-BFGS. Spikes occur due
to the line search performed by L-BFGS. Since weights are initialized to 0, negative log-likelihood decreases
while the L2 penalty increases as the weights deviate from 0 to fit the training data.
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Training LRSemi-Sup

To train LRSemi-sup, we use the same value of λR as in the LRSup experiments, and use the learned

weights for LRSup as the starting point, since the objective for LRSemi-sup is not convex. The objec-

tive function to minimize for LRSemi-sup is the LRSup objective (Equation 6.1) plus the thresholded

penalty function (Equation 6.5). The unlabeled noun phrases used in the penalty function were

chosen by taking the noun phrases that occurred at least 5,000 times in the ClueWeb09 data, yield-

ing 177,181 noun phrases. During development of LRSemi-sup, we ran it on a small collection of

categories from the ontology in Chapter 3, and found that a λP value of 0.0001 and a threshold

τ = 0.2 worked well. We used these values in the final experiments.

We set up L-BFGS to learn weights for up to 50 iterations. Figure 6.2 shows the values of each

component of the objective function for LRSemi-sup after each iteration of L-BFGS. The mutual

exclusion penalty starts out large relative to the other components in the objective function, and is

driven down steadily as optimization proceeds. Training LRSemi-sup took 167 minutes.
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Figure 6.2: The LRSemi-sup objective function and its components versus iteration of L-BFGS, after initial-
izing the weights by running LRSup. The negative log-likelihood and L2 penalty do not change much as the
mutual exclusion penalty decreases.
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6.3.2 Training CPL

CPL was run for 40 iterations, and allowed to promote up to 250 instances per category per itera-

tion. This run took 100 hours, and 61,495 category instances were promoted in total.

6.3.3 Methodology for Comparing Different Methods

We compare two different pairs of methods in our evaluation: LRSup and LRSemi-sup, and CPL and

LRSemi-sup. In general, we use a methodology designed to detect differences between a pair of

methods.

For each method and for each category, we obtain a ranked list of noun phrases. For LRSup

and LRSemi-sup, this is done by classifying all of the noun phrases that occur at least 50 times and

with at least 10 unique context patterns in the ClueWeb09 data (of which there are 9,891,655), and

then ranking those noun phrases by their predicted posterior probabilities of being instances of the

category. Noun phrases that were seed instances for any category are removed from all ranked

lists. For CPL, a ranked list for each category is obtained by sorting all promoted noun phrases

by the iteration on which they were promoted, and breaking ties based on the number of promoted

contextual patterns that extracted that noun phrase.

The comparisons in this evaluation were designed to detect changes in the precision of the top

k noun phrases in these ranked lists for specific values of k. Generally, to compare the top k noun

phrases for some category for method A and method B, we consider the sets of noun phrases in

the top k noun phrases for the methods. Noun phrases which are in both sets are ignored. The

precision of the noun phrases unique to set A is estimated by labeling all of those noun phrases if

there are 25 or fewer, or 25 if there are more than 25, and then using the number of correct noun

phrases divided by the number considered as the estimated precision. The precision of the noun

phrases unique to set B is similarly estimated. Then the change in precision from method A to

method B is estimated as:
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(pB − pA) (k − |A ∩B|)
k

where pA is the estimated precision of noun phrases unique to set A, and pB is the estimated

precision of noun phrases unique to set B.

10 categories were randomly selected for the evaluation:

• Chef

• Country

• Currency

• Economic Sector

• Fruit

• Hotel

• Lake

• Professional Organization

• River

• Visual Artist

When judging the correctness of an instance, small typographical errors were acceptable. Plu-

rality was ignored, as was case. Adjectives were acceptable if they referred to a subcategory of the

target category (e.g., “luxury hotels” as an instance of the category “Hotel”) but not if they were

overly generic (e.g., “good hotel”). Counts of correct instances were not judged as correct (e.g., “3

apples” for the category “Fruit”). Labeling was not performed blind to the method producing the

ranked lists. All judgments performed in the process of the evaluation are available online in the

supplementary online materials for the thesis. Labeling was performed by the author.
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6.3.4 Results and Discussion

Results for LRSup and LRSemi-sup

Figure 6.3 shows estimated changes in precision for ten categories and six values of k that result

from moving from LRSup to LRSemi-sup. Across all categories and values of k, only three changes

were estimated to be negative, so LRSemi-sup rarely performs worse than LRSup. The results for

LRSemi-sup frequently show some gain in precision relative to LRSup, with some large gains for

categories like “Country,” “Currency,” and “Economic Sector.”
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Figure 6.3: Estimates of the absolute change in precision for the top k noun phrases ranked by their posterior
probabilities when moving from LRSup to LRSemi-sup for ten different categories.

Table 6.2 shows, for each value of k, how many categories had higher estimated precision for

LRSemi-sup, and how many categories had higher estimated precision for LRSup. The general trend

of LRSemi-sup improving precision relative to LRSup is clear. According to sign tests, the differences

for k equal to 500, 1,000, 2,500, and 5,000 are statistically significant at the 5% level.
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k # LRSup better # LRSemi-sup better Sign Test p-value

100 2 1 n/a
250 5 1 0.219
500 6 0 0.0313†
1,000 8 1 0.0391†
2,500 9 0 0.00391†
5,000 7 0 0.0156†

Table 6.2: Results of sign tests comparing the accuracy of the lists produced by LRSup and LRSemi-sup for ten
categories at various thresholds for the number of promotions. Statistically significant p-values are marked
by †. LRSemi-sup is significantly better than LRSup when considering the first 500, 1,000, 2,500, and 5,000
noun phrases for each category.

Figure 6.4 shows estimates of the precision of the noun phrases selected by LRSemi-sup when

considering the top k noun phrases for a category. Precision was estimated by sampling 25 noun

phrases uniformly at random from the top k noun phrases. As expected, as k increases, precision

tends to drop. Many categories perform quite well; “Economic Sector,” “Hotel”, “Professional

Organization,” “River,” and “Visual Artist” have quite good precisions for the top 2,500 and 5,000

noun phrases.

To examine the effect of semi-supervised training on feature weights relative to supervised

training, we looked at the contextual patterns which had their weights change the most between

the LRSup run and the LRSemi-sup run for the “Currency” category. Illustrative examples were picked

from these patterns and are shown in Table 6.3. The top five patterns shown had their weights de-

crease significantly, while the bottom five patterns shown had their weights increase significantly.

The patterns for which weights decrease the most are sensible, because they are overly general:

all of them co-occur frequently with noun phrases that are not currencies (e.g., “time” and “en-

ergy” with “X spent with, and “donations” with “X were collected at”). The patterns for which

the weights increase the most are also sensible, because they seem like reasonable high-precision

patterns for the “Currency” category.
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Figure 6.4: Estimates of the precision of LRSemi-sup for the top k noun phrases ranked by their posterior
probabilities, for a variety of values of k and a variety of categories.
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Context LRSup weight LRSemi-sup weight Change in weight

X are accepted for 0.81 0.28 -0.53
X were spent in 1.47 1.00 -0.47
X spent with 0.15 -0.29 -0.43
X were collected at 0.44 0.11 -0.33
X are allowed for 0.47 0.15 -0.32

worth thousands of X 4.18 4.34 0.15
many billions of X 3.16 3.29 0.13
X amount of 1.55 1.65 0.10
hard earned X 3.45 3.55 0.10
prices are in X 4.07 4.16 0.09

Table 6.3: Selected contextual patterns for which the weights for the “Currency” classifier decreased (top)
and increased (bottom) significantly between supervised and semi-supervised training.

Similarly, to see the effect of semi-supervised training on predictions of posterior probabili-

ties, we considered the noun phrase “More time” which incorrectly had a high predicted posterior

probability for the “Currency” category according to LRSup, but had a low predicated posterior

according to LRSemi-sup. Table 6.4 shows the posterior probabilities predicted by LRSup for the noun

phrase “More time” that exceeded 0.2, as well as the posterior probabilities predicted for the same

noun phrase and the same categories by LRSemi-sup. The predicted posterior probabilities decrease

as we would expect, and the category with highest posterior predicted by LRSemi-sup, “Abstract

Thing,” makes sense since “More time” is indeed an abstract thing3.

Broadly, LRSemi-sup clearly outperforms LRSup in these experiments. This provides support

for the conclusion that semi-supervised training of logistic regression classifiers using mutual ex-

clusion penalties results in more accurate classifiers than supervised training. Additionally, the

changes that occurred in the feature weights for the “Currency” classifier after adding the mu-

3“Abstract Thing” is a non-leaf node in our ontology of categories, with subcategories like “Emotion” and “Aca-

demic Field”
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Category LRSup Posterior LRSemi-sup posterior

Abstract Thing 0.90 0.55
Agent 0.42 0.23
Company 0.44 0.18
Currency 0.74 0.15
Magazine 0.68 0.19
Media Company 0.58 0.19
Organization 0.43 0.30
Publication 0.53 0.17

Table 6.4: Posterior probabilities for certain categories for the noun phrase “More time” predicted by the
supervised model and semi-supervised model.

tual exclusion penalty matched intuitive expectations; LRSemi-sup appears to prefer more specific

contextual patterns than LRSup.

Another question answered by this evaluation was: how do logistic regression methods perform

on this task, generally? It appears that they work well, and merit further consideration in future

work. The categories with high precision for the top 5,000 noun phrases (e.g., “River,” “Economic

Sector,” and “Hotel”) provide particularly compelling evidence for this point.

Results comparing CPL and LRSemi-sup

In comparing CPL and LRSemi-sup, we wanted to compare the precision of the two methods at low

and high levels of recall. To accomplish this, we compared the precision of the top k noun phrases

for the same ten categories as above, for k = 100 and also for k equal to the number of noun phrases

promoted by CPL for that category after 40 iterations. These counts are shown in Table 6.5.

Changes in precision were estimated for these values of k using the methodology described in

Section 6.3.3. The estimated changes in precision from CPL to LRSemi-sup are shown in Figure 6.5.

When comparing the top 100 noun phrases for each category, CPL performs better for 4 categories,

while LRSemi-sup performs better for 5. When comparing the top noun phrases using the number
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Category Number of CPL Promotions

Chef 134
Country 414
Currency 214
EconSector 350
Fruit 297
Hotel 418
Lake 1456
ProfOrg 1357
River 573
VisualArtist 809

Table 6.5: Numbers of instances promoted by CPL in the 40 iteration run used in the comparison with
LRSemi-sup. The precisions of these promotions was compared with LRSemi-sup.

of noun phrases promoted by CPL for each predicate, CPL performs better for 3 categories, while

LRSemi-sup performs better for 7 categories. This suggests that LRSemi-sup may have higher precision

than CPL at high levels of recall, but the difference is not significance according to a Sign Test.

An item worth noting is that CPL has an advantage due to its use of seed patterns. In the first

iteration of execution, CPL promotes noun phrases that occur with at least two seed patterns for

a category, because they are automatically treated as promoted patterns. LRSemi-sup, on the other

hand, only includes the seed patterns as features, and has a chance to learn high weights for them.

The fact that LRSemi-sup was competitive with CPL when considering the top 100 noun phrases for

each category is more impressive when taking this difference into account.

When compared to LRSemi-sup, CPL appears to have a preference for more frequent noun

phrases. For example, the average Google estimated hit count for 10 randomly selected noun

phrases in the first 100 promoted by CPL for the “Visual Artist” category was 1,013,110, while

the average hit count for 10 noun phrases in the top 100 for LRSemi-sup was 106,940, an order of

magnitude lower. This difference makes sense, because noun phrases that occur many times are

likely to co-occur with at least two patterns promoted by CPL. LRSemi-sup normalizes all feature
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Figure 6.5: Estimates of the absolute change in precision for the top 100 noun phrases ranked by their
posterior probabilities when moving from CPL to LRSemi-sup for ten different categories. Positive estimated
changes indicate that LRSemi-sup had estimated precision superior to CPL.
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vectors to unit length, so it has no preference for frequent noun phrases.

Generally, it appears that LRSemi-sup and CPL are competitive with each other. LRSemi-sup may

be superior to CPL in precision at high levels of recall, but our evaluation was not conclusive on

this point.

Supplementary Online Materials

Several types of supplementary materials from our evaluation are posted online4, including:

• The categories used and their seed instances (listed under that AAAI 2010 supplementary

online materials, because the same ontology was used)

• All weights learned by LRSup and LRSemi-sup

• All predictions made by LRSup and LRSemi-sup with posteriors exceeding 0.05

• All noun phrases promoted by CPL in the 40 iteration run used in the comparison with

LRSemi-sup

• All noun phrases sampled for the evaluation, with their manually assigned labels

6.4 Conclusion

We have described a novel method for coupling the semi-supervised learning of binary logistic

regression classifiers when some of the classes being learned are known to mutually exclusive. Our

method is simple to implement and can be optimized using gradient-based methods. Experimental

results demonstrate that our semi-supervised method, LRSemi-sup, is more precise than the standard

supervised method, LRSup, at several equivalent levels of recall. Additionally, results show that

LRSemi-sup is competitive with CPL, and may have higher precision at high levels of recall.

4http://rtw.ml.cmu.edu/acarlson_thesis/
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We consider these results encouraging. An obvious future direction is to add classifiers which

decide if two noun phrases are an instance of a binary relation, and to couple those classifiers with

the category classifiers using type-checking constraints.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have seen that coupled semi-supervised learning methods can improve the learn-

ing of textual patterns in Chapter 3 and web page wrapper inducers in Chapter 4. The high preci-

sion of facts that are independently extracted by both methods was also demonstrated in Chapter

4. Chapter 5 showed that we can scale to hundreds of predicates and several extraction methods,

and extract nearly 250,000 facts with 74% precision. Chapter 6 shows a way to couple the semi-

supervised learning of logistic regression models, offering an alternative to the bootstrap learning

methods of the previous chapters, as well as a high-recall probablistic model. Additionally, coupled

logistic regression appears to have equivalent, and possibly superior, precision.

Taking a broader perspective, the work in Chapters 3, 4, and 5 demonstrates that constraining

bootstrap learning through coupling shows significant promise as a way to achieve high-precision

semi-supervised learning. Our bootstrap learning methods are similar to Hard EM [Dempster et

al., 1977], where in each iteration we commit to assignments for latent variables where we are

most confident, and then retrain models based on all assigned variables.

133
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The success of these methods also provides support for the usefulness of the Constraint-Driven

Learning algorithm [Chang et al., 2007]. Their work has the same general spirit of using constraints

to limit the ways that unlabeled data can be labeled in a semi-supervised learning setting. In their

algorithm, though, the top K ways to segment a piece of text are added as labeled examples (rather

than just the highest-ranked way), and examples are relabeled at each iteration (rather than being

labeled only once).

The work in Chapter 6 demonstrates that simultaneous learning of many logistic regression

models can be improved using penalties that couple the learning of those functions. This work

suggests that further study of the use of penalty functions to couple the learning of exponential

models could be worthwhile.

7.2 Future Work

7.2.1 General Coupled Semi-Supervised Learning

General Study of Coupled Logistic Regression

In Chapter 6, Coupled Logistic Regression was shown to improve the precision of classifiers for

extraction of category instances. These results suggest that it could be worthwhile to apply CLR to

other problems where many classes are being learned and some are known to be mutually exclusive

(e.g., text classification, object recognition).

Theoretical Analysis of Coupled Semi-Supervised Learning

Study of the theoretical properties of coupled semi-supervised learning deserves consideration.

Questions that could be pursued include: How can we theoretically characterize the value of a

coupling constrant? How does sample complexity vary with the number of functions being learned

and the types and numbers of coupling constraints that are known about them?
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7.2.2 Future Work within our Case Study

Entity Resolution

In this thesis, we learn facts about strings. No connection is made between similar strings that refer

to the same real-world entities. For example, “Carnegie Mellon,” “Carnegie Mellon University,”

and “CMU” are all treated separately. Adding the task of entity resolution to our case study could

provide a new type of function to be learned that could be coupled with the category and relation

extraction tasks. For a possible starting point, a web-scale approach to entity resolution which

decides which pairs of strings refer to the same objects was presented by Yates and Etzioni [2009].

Relation Extraction with Coupled Logistic Regression

The Coupled Logistic Regression work in Chapter 6 learns classifiers that decide if a noun phrase

is an instance of specific categories. A clear next step is to add classifiers that decide if a pair of

noun phrases satisfy the relations learned in other chapters, and to couple the relation classifiers

which the category classifiers through type-checking constraints.

Run for a Very Long Time

The results in Section 5 in particular suggest the question: what would happen if we ran MEC

for months or years, especially with a human being in the loop to help keep the system on track?

While some semantic drift was evident after 66 iterations, the errors made by the system (many

of which are described in Appendix B) tended to have regularities that could perhaps be corrected

with just a few labels from a human judge (e.g., Airports promoted as Cities, Catalogs promoted as

Magazines). We suspect that with a human in the loop for just 15 minutes a day, millions of facts

could be learned at very high precision with minimal supervision.
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Appendix A

Ontology Used in Chapters 5 and 6

This appendix lists the categories and relations in the ontology used in Chapter 5 and Chapter

6. The full ontology is available online in spreadsheet form at http://rtw.ml.cmu.edu/

acarlson_thesis. For reference while reading the thesis, we include some information about

each category and relation in the ontology.

Category Parent Populate? Example Seed

abstractThing everyPromotedThing no
academicField abstractThing yes Astronomy
actor person yes Catherine Zeta-Jones
agent everyPromotedThing no
amphibian vertebrate yes frogs
animal agent yes ants
arthropod invertebrate yes ants
athlete person yes Alex Rodriguez
awardTrophyTournament abstractThing yes Stanley Cup
bakedGood food yes muffins
beverage food yes coffee
bird vertebrate yes robins
blog website yes Huffington Post

Table A.1: Categories in the ontology used in Chapters 5 and 6 (continued on the next page)
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Category Parent Populate? Example Seed

boardGame abstractThing yes backgammon
bodyPart item yes arm
book abstractThing yes Freakonomics
building location no barns
buildingFeature item yes arches
buildingMaterial abstractThing yes concrete
candy food yes Skittles
cardGame abstractThing yes Poker
celebrity person yes Tom Cruise
cellType abstractThing yes red blood cells
ceo person yes Alain Belda
characterTrait abstractThing yes courage
chef person yes Thomas Keller
chemical abstractThing yes ethylene glycol
city location yes Antwerp
clothing item yes coats
coach person yes Bobby Bowden
cognitiveActions abstractThing yes thinking
company organization yes AFLAC
condiment food yes ketchup
conference abstractThing yes ICML
consumerElectronicItem item yes video games
continent location no Africa
country location yes Austria
currency abstractThing yes dollars
date abstractThing no September 11 , 2001
dayOfWeek date no Monday
disease abstractThing yes lung cancer
economicSector abstractThing yes advertising
election event no 2004 presidential election
emotion abstractThing yes anxiety
ethnicGroup abstractThing yes Americans
event abstractThing no

Table A.1: Categories in the ontology used in Chapters 5 and 6 (continued on the next page)
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Category Parent Populate? Example Seed

eventOutcome abstractThing yes success
everyPromotedThing no
female person yes Madonna
fish vertebrate yes sharks
food item no tomatoes
fruit food yes apples
fungus item yes mushrooms
furniture item yes beds
geometricShape abstractThing yes squares
hobby abstractThing yes coin collecting
hotel building yes Grand Hyatt Dubai
householdItem item yes bells
invertebrate animal yes worms
item everyPromotedThing no
journalist person yes Ron Cook
kitchenItem item yes bottle
lake location yes Lake Michigan
landscapeFeatures location yes forests
location everyPromotedThing no Allegheny County
magazine publication yes Readers Digest
male person yes Barack Obama
mammal vertebrate yes bears
mediaCompany company no
mediaType item yes books
medicalProcedure abstractThing yes appendectomy
militaryEventType abstractThing yes attacks
mlAlgorithm abstractThing yes SVMs
mlArea abstractThing yes supervised learning
mlAuthor person yes Tom Mitchell
mlConference conference yes ICML
mlDataset abstractThing yes Iris
mlMetric abstractThing yes precision
mlSoftware abstractThing yes Minorthird

Table A.1: Categories in the ontology used in Chapters 5 and 6 (continued on the next page)
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Category Parent Populate? Example Seed

month date no January
monument building yes Eiffel Tower
mountain location yes Mount Everest
mountainRange location yes Rocky Mountains
movie abstractThing yes The Sound of Music
museum building yes Louvre
musicAlbum abstractThing yes Abbey Road
musicArtist agent yes Beatles
musicGenre abstractThing yes rock
musician person yes John Lennon
musicInstrument item yes guitar
newspaper publication yes Pittsburgh Post-Gazette
officeItem item yes staplers
organization agent no
park location yes Central Park
perceptionAction abstractThing yes listening
perceptionEvent abstractThing yes sound
person agent no
personalCareItem item yes toothpaste
physicalAction abstractThing yes hitting
physicalCharacteristic abstractThing yes hardness
physicsTerm abstractThing yes acceleration
plant item yes flowers
politician person yes Barack Obama
product item yes Accord
profession abstractThing yes cooks
professionalOrganization organization yes ACM
protein abstractThing yes ATP-binding cassette
publication mediaCompany yes Readers Digest
radioStation mediaCompany yes WBUR
recordLabel mediaCompany yes Atlantic Records
religion abstractThing yes Catholicism
reptile vertebrate yes alligators

Table A.1: Categories in the ontology used in Chapters 5 and 6 (continued on the next page)
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Category Parent Populate? Example Seed

restaurant building yes French Laundry
river location yes Nile River
room location yes kitchens
scientist person yes Albert Einstein
socioPolitical abstractThing yes democracy
sport abstractThing yes badminton
sportsEquipment item yes bats
sportsEvent event no 2004 Olympic Summer Games
sportsGame sportsEvent yes 2001 Super Bowl
sportsLeague organization yes NFL
sportsTeam organization yes Boston Celtics
stadiumOrEventVenue building yes PNC Park
stateOrProvince location yes Florida
street location yes Forbes Avenue
televisionNetwork mediaCompany no ABC
televisionStation mediaCompany yes WHDH
tool item yes chisels
university organization yes California Institute of Technology
vegetable food yes carrots
vehicle item yes airplanes
vertebrate animal yes
videoGame product yes Super Mario Brothers
visualArtForm abstractThing yes painting
visualArtist person yes Leonardo da Vinci
visualArtMovement abstractThing yes Italian Renaissance
weatherPhenomenon abstractThing yes fog
website company yes Google
writer person yes Stephen Dubner
zipCode location yes 60611

Table A.1: Categories in the ontology used in Chapters 5 and 6
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Appendix B

Descriptions of Errors Made by MEC

This appendix lists selected predicates with informal descriptions of errors made for those predi-

cates during the run of the MEC system described in Chapter 5. The contents of this appendix are

discussed in Section 5.5.2. The goal of this appendix is to list dominant trends in errors made by

MEC, and the discussion does not include every error made.

B.1 Categories

• academicField: CMC learned that starting with the words "resource" and "rights"

were strong positive features, leading to promotions like "Resource Industry" and "Rights

Protection".

• actor: In iteration 58, CSEAL returned many improperly formatted candidates that contained

markup and punctuation, like "{ options option value } sarah chalke",

which led to many incorrect promotions, but the category stayed on track after that.

• arthropod: CMC learned that the suffix "beetles" was a strong positive feature, which led

to promoting lots of instances like "what are beetles", "voltswagon beetles",

145
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and "research on beetles".

• awardTrophyTournament: The string "3-2" was promoted in iteration 10 based on ev-

idence from CPL, which then led to lots of similar strings like "7-1" and "6-5" being

promoted.

• bakedGood: In iteration 23, "cookie information", "encryption technology",

and "tracking cookies" were promoted, which led to lots of technology-related in-

stances being promoted. Also, strings ending in "recipe"were common, like "chocolate

chip cookie bars recipe". Finally, CMC learned that containing the word "cookie"

is a positive feature, so strings like "who stole cookie monsters cookies" were

promoted.

• beverage: CMC learned that containing the word "coffee" is a positive feature, and this led

to many promotions like "coffee this morning", "antique coffee", and "metal

coffee".

• boardGame: CMC learned that the word "life" is a positive feature, leading to lots of

promotions like "life catering", "life end", and "life band".

• bodyPart: Diverged to more general terms like "affected regions", "inner lining",

and "upper part".

• book: Became dominated by religious terms like "entire old testament" and "glorious

book".

• buildingMaterial: CMC learned the prefix "steel" which led many bad promotions to

"steel food", "steel forks", and "steel kegs".

• cardGame: Learned games that are not card games, like "american roulette" and

"slot machines", and then later learned many noisy strings like "play casino games"

and "free game play slot" which appear to be related to online poker.
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• cellType: CMC learned the suffix "cells"which led to dozens of promotions like "no red

blood cells" and "formation of memory cells".

• condiment: CMC learned the prefix "sauce"which led to many bad promotions like "sauce

engine", "sauce teaspoon", and "sauce world".

• economicSector: CMC learned the suffix "software" which led to many bad promotions

like "problem software", "need software", and "outcome software".

• ethnicGroup: Many instances like "300,000 Palestinians", where a number is present

at the start of the instance, were promoted, which were considered errors. Also, languages like

"Slovak language" and "Malay language" were also learned.

• female: Many male actors were learned. Apparently actors should have been specified as seeds

to the “male” category, too.

• fruit: "nut recipes" and "fruit recipes" were promoted in iteration 6. This led to

CMC learning the suffix "recipes", which then led to many bad promotions like "strawberry

recipes", "avocado recipes", and "apples recipes". After this, many recipes

were learned.

• geometricShape: Lots of instances learned like "8 pieces", "8 wedges", and "9 squares".

Also, learned words like "chunks" and "bite size cubes".

• invertebrate: CSEAL extracted many bad instances in the first iteration with high confidence,

like "shelled gastropods are herbivores" and "bivalves are filter feeders".

Later, invertebrate suffered a fate similar to the “arthropod” category when CMC learned the

prefix "beetle" and suffix "beetles".

• mountainRange: Similar to the “invertebrate” category, CSEAL extracted many high-confidence

incorrect instances in the first iteration, such as "panbiogeography", "list of basic

geography topics", and "mike 3". Later, CMC learned the suffix "mountains"
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which led to promotions like "what plants grow in the mountains".

• movie: In iteration 55, CMC learned the prefix "contact" which led to promotions like

"contact customer support" and "contact the director".

• plant: CMC learned the suffix "flowers"which led to "deliver flowers", "online

flowers", and "pictures flowers".

B.2 Relations

• cityCapitalOfState: Many correct “cityLocatedInState” instances (cities that are located in

states but are not capital cities) were promoted for this relation. The key problem is that there is

not a good source of near-miss negative examples available from a mutually exclusive relation

in the ontology (i.e., one that would provide ("Dallas", "Texas") as a negative example

for “cityCapitalOfState”).

• newspaperInCity: Incorrect patterns learned by CPL (e.g., "Y Times and X" and "Y

Stock Exchange and X") led to many incorrect instances where newspapers were thought

to be based in "New York".

• stateLocatedInCountry: Poor type-checking led to incorrect promotions like ("Air Force",

"U.S.") and ("DOE", "U.S."). Adding a “governmentOrganization” category could

prevent these first arguments from being allowed as cities.

• teamPlaysInLeague: A rule was learned in the 40th iteration that concluded that all teams

that played football played in the league "NFL". This led to many incorrect promotions like

"Aggies" (a college football team) and "Brazil" (a country with a national soccer team).

• productInstanceOf: Overly general patterns and poor type-checking led to incorrect instances

being promoted, like ("Microsoft Office", "PC") and ("Adobe Illustrator",

"computer").
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Fernando Pereira. Weakly-supervised acquisition of labeled class instances using graph random

walks. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language

Processing, 2008.

S. Thrun and T. Mitchell. Lifelong robot learning. In Robotics and Autonomous Systems, vol-

ume 15, pages 25–46, 1995.

Sebastian Thrun. Is learning the n-th thing any easier than learning the first? In Advances in Neural

Information Processing Systems, pages 640–646, 1996.

Peter D. Turney. Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In Proceedings

of the 12th European Conference on Machine Learning, pages 491–502, 2001.

Nicola Ueffing. Self-training for machine translation. In NIPS Workshop on Machine Learning for

Multilingual Information Access, 2006.
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