
WEWRA: An algorithm for Wrapper Verification

Charalampos E. Tsourakakis Georgios Paliouras†

March 2009
CMU-ML-09-100

VEWRA: An algorithm for Wrapper Verification

Charalampos E. Tsourakakis∗ Georgios Paliouras†

March 2009
CMU-ML-09-100

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
† Institute of Informatics & Telecommunications, NCSR “Demokritos”, 15310, Ag. Paraksevi, Attiki,
Greece, paliourg@iit.demokritos.

Abstract

Web wrappers play an important role in extracting information from distributed web sources and subse-
quently in the integration of heterogeneous data. Changes in the layout of web sources typically break the
wrapper, leading to erroneous extraction of infomation. Monitoring and repairing broken wrappers is an im-
portant hurdle for data integration, since it is an expensive and painful procedure. In this paper we present
VEWRA, a new approach to wrapper verification, which improves the successful family of trainable content
- based methods. Compared to its predecessors, the new method aims to capture not only the syntactic
patterns but the correlations that exist among them due to the underlying semantics of the extracted infor-
mation. Experiments show that our method achieves excellent performance, being always better or equal
than DATAPROG, the state-of-art related work.

Keywords: wrapper verification, wrapper maintenance, web wrappers

1 Introduction

The Web is an enormous source of information and increasing at a fast pace. However, the information that
is made available in Web pages is not always easily accessible, particularly for machines. The extraction and
integration of information from distributed web sources found on the web has attracted significant research
interest over the last years (e.g [2], [3], [5], [6], [8], [13]). This observation has also led to the very active
initiative of the Semantic Web ([1]), which aims to make the Web more machine-friendly.

The scarcity of machine-readable information on the Web is becoming paradoxical when considering
the proportion of dynamically - produced content. In [19] it was estimated that 80% of the Web’s content
was generated from databases. On the other hand, the automated generation of Web pages leads to the semi-
structured nature of Web content, which facilitates its fairly reliable parsing, based on the HTML formatting
tags. The parsing programs are usually called wrappers and are based on simple regular patterns, which
are specific to each particular site that the machine is expected to access. Due to the limited scope of these
extraction patterns, the manual construction and maintenance of Web wrappers is not scalable ([14]). For
this reason, the study of trainable and adaptive wrappers, with the use of machine learning methods, has
attracted significant interest.

In this context, we focus here on the task of automatic maintenance of Web wrappers and in particular
on the identification of potential changes to the layout of Web pages which lead to erroneous extraction
of information. This task is known as wrapper verification and is central to the automation of wrapper
maintenance, as it can trigger the process of wrapper updating, also known as wrapper re-induction. Since
integrating information from different web sources relies heavily on web wrappers1, wrapper verification
is an important practical problem. In this work, we present VEWRA, a novel wrapper verification system.
Figure 1 shows the performance of our algorithm versus DATAPROG 2, the state-of-art content based algo-
rithm (to the best of our knowledge) proposed in [12] on the same dataset. Evaluating both algorithms using
the widely used measures in information retrieval, we see that VEWRA outperforms DATAPROG, by having
always better or equal performance.

The main contributions of this work are the following:

• VEWRA: A new wrapper verification algorithm, which aims to capture successfully not only the
syntactic regularities of the extracted data but also the correlations among them. The key assumption
of VEWRA is that given the semantics of the extracted data there is a non-uniform probability distri-
bution among the possible patterns. This is achieved through several novel ideas, such as groups of
associated syntactic patterns and an intuitive penalty system. Furthermore, on the contrary to prior
work which relies heavily on HTML token density as an indicator of layout change, we remove this
reliance since it can be a potential source of false alarms as justified in section 2.

• Extensive Experimentation: We used the datasets of the previous work ([9], [12]) to validate our
method and obtain a clear picture of the performance of VEWRA compared to the state-of-art content-
based methods.

The rest of this paper is structured as follows. In section 2 we illustrate the concepts related to wrapper
maintenance and we briefly present previous work on the wrapper verification problem, emphasizing on
content-based methods. In section 3 we describe our new method, VEWRA. In section 4 we present initial

1Although XML is supposed to alleviate data integration problems, relatively few web sources for the time being support this
data format. Therefore, HTML web sources are still dominating.

2For convenience, we will call this wrapper verification system DATAPROG, even if DATAPROG is the algorithm that learns
syntactic patterns and not the whole verification system.

1

experimental evidence of the good performance of our method and finally in section 5 we conclude and
present some perspectives for future work.

Figure 1: Performance of VEWRA versus DATAPROG, the state-of-art wrapper verification algorithm. Our
method achieves equal or better performance for all widely used measures.

2 Background

2.1 Main Concepts

The envisioned automated wrapper construction and verification process, that is based on learning from
examples is illustrated in figure 2. According to this process, the training examples are initially provided
manually to a wrapper induction system, which produces the first version of the wrapper. Following that
point, wrapper verification and wrapper re-induction become responsible for generating new training exam-
ples, resulting in improved versions of the wrapper. Wrapper verification is a very important subproblem
of data integration from web sources: one can easily imagine extracting data from hundreds of different
web sources, using one wrapper per each. The ability to identify when a wrapper is broken leads to very
significant savings of time and makes wrapper-based data integration systems viable.

In order to illustrate the aforementioned concepts we present a simple example of what a wrapper is
and why maintenance is needed. Table 1 presents the source of a Web page (top), the rendered content
(top center), the wrapper that extracts the movie title and director attributes respectively (bottom
center), and the extracted information (bottom). If the layout of the page changes, as shown in table 2,

2

Figure 2: Automated wrapper maintenance.

the wrapper will cease to extract correct information from the Web site. In particular, information for the
attribute movie title would be incorrectly extracted, while for the attribute director no information
at all would be extracted.

In such a situation, a wrapper verification system should recognize that wrapper ccwrap1 is broken and
the wrapper reinduction system should produce examples and train a new wrapper. Such a wrapper could
be ccwrap2, shown in table 2.

Effectively, what has changed between ccwrap1 and ccwrap2 is the set of begin and end landmark
patterns that delimit the extracted fields. Thus, the goal of wrapper induction is to learn from appropriate
examples these landmarks, which in more realistic cases could take the form of regular expressions (e.g
[11], [17], [4]).

The main goal of our work was to develop a wrapper verification method that will identify reliably
and accurately when a wrapper is broken. More specifically, we present here a content-based verification
method, i.e., a method that is based on the extracted information to test whether the wrapper is broken or not.
The work on content-based wrapper verification so far has relied wholly or partly on HTML token density,
as a sign of a broken wrapper. By the term HTML token density we mean the ratio of the number of HTML

tokens (predefined tokens for the HTML language, such as , </i>, etc.) to the total number of tokens of
the extracted token sequence. HTML token density is a useful indicator of a broken wrapper, because HTML

tokens appear rarely in the information that one wants to extract, while due to their parsing nature wrappers
tend to extract HTML tokens when they are broken. Thus, a high HTML token density is a strong indicator
of a potential problem.

Despite the intuitive use of HTML token density as an indicator of potential problems, there are many
cases where this simple heuristic does not work, leading usually to false alarms, i.e., cases where the wrapper
is not broken, but still extracts HTML tokens. An indicative example of this fact can be demonstrated using

3

Web page source
Godfather <i>Scorzese</i>
Dogville <i>Lars von
Trier</i> Volver <i>
Pedro Almodovar </i>

Rendered Web page
Godfather Scorzese
Dogville Lars von Trier
Volver Pedro Almodovar

Initial wrapper
procedure ccwrap1(page P)

while there are more occurrences in P of

""

for each {<lk,rk>} in

{<"","">,<"<i>","</i>">}
scan in P to next occurrence of lk

save position as start of kth attribute

scan in P to next occurrence of rk

save position as end of kth attribute

return extracted {..; <movie title,

director> ;..} pairs

Extracted <movie title, director>
pairs
<Godfather, Scorzese>
< Dogville, Lars von Trier>
< Volver, Pedro Almodovar>

Table 1: Example of a wrapper.

table 3. One can imagine a case where the user wants to extract numerical values typically consisting of
an integer and a fraction. Previous content-based verification systems that rely significantly on the HTML

token density, are likely to produce a false alarm during the testing.
However, the crucial step towards the reduction of false alarms is the introduction of the penalty system.

The main reason that prior work suffers from false alarms is the reliance on the syntactic regularities of
the extracted data. One can easily imagine several examples of changes in the layout that would raise
false alarms using prior work: 320$ → 320USD, 120,000,000 → 120M. In other words, prior work has
not attempted to capture the semantics of the extracted data. This is the main goal of the penalty system
introduced in this work.

2.2 Related Work

There are two main approaches to wrapper verification: structure-based and content-based. Structure-based
methods rely on the positioning of interesting information, i.e., information that we want to extract, on the
DOM structure of the HTML pages. Assuming that the structure remains fixed, unless an important change

4

Web page source
Movie: Godfather,
Scorzese
Movie: Dogville,
Lars von Trier
Movie: Volver, Pedro
Almodovar

Rendered Web page
Movie: Godfather, Scorzese
Movie: Dogville, Lars von Trier
Movie: Volver, Pedro Almodovar
Erroneously extracted <movie title,
director> pairs using ccwrap1
< Scorzese, ∅ >
< Lars von Trier, ∅ >
< Pedro Almodovar, ∅ >

Modified wrapper
procedure ccwrap2(page P)

while there are more occurrences in P of

"Movie:"

for each {<lk,rk>} in

{<"Movie:",",">,<"","">}
scan in P to next occurrence of lk

save position as start of kth attribute

scan in P to next occurrence of rk

save position as end of kth attribute

return extracted {..; <movie title,

director> ;..} pairs

Table 2: Modification of the web page layout and of the wrapper.

of layout has occurred, they are looking for such changes at regular time intervals [18]. In contrast, content-
based methods, such as the one proposed in this paper, examine the content of the extracted information,
assuming that it presents regularities. A significant deviation in the type of extracted information signals a
potential change in the layout of the page that has resulted in the erroneous extraction of information. In this
section we focus on content-based verification approaches.

A common characteristic of the content-based methods is the use of a reference set of extracted infor-
mation, which is trusted to be correct. This set is often called training set, due to the fact that it is used to
induce regularities in the extracted information. This training set is constructed during the normal operation
of a wrapper that is known to be correct. In order to test whether the wrapper is working properly, at a later
point in time a second set of extracted information is generated that is called the test set. Figure 3 illustrates
this basic content-based approach to wrapper verification, where the verification system uses the training
and the test set to produce an indication of whether there is a potential problem with the wrapper or not.

The simplest content-based method is a simple regression tester, called EXACTMATCH [9]. This method

5

Training Data
83
53
51

57 ⁴₅

Test Data
45²<sub>5¡/sub>
61³<sub>7¡/sub>
103¹<sub>8¡/sub>
72¹<sub>8¡/sub>

Table 3: A real-world example where relying on HTML token density is likely to lead to a false alarm.

Figure 3: Basic approach to content-based wrapper verification.

assumes that Web sources return always the same results for a fixed query if there is no change in the dynamic
Web page generation. Thus, any changes to the response of a source to a query indicates a potential change.
This assumption is not valid since most Web sources are dynamic, changing continuously their content and
thus their response to query.

The first content-based approach that used machine learning techniques for wrapper verification was
RAPTURE [10]. RAPTURE uses a set of global numeric features to characterize the extracted information.
These features are word count, average word length and densities of various types of token, such as HTML

tokens, punctuation, upper case letters, etc. The algorithm assumes that these features are random variables,
following a normal distribution whose mean and variance are estimated from the training set. RAPTURE

uses these distributions to estimate the probability that the data extracted from the test set follow different
distributions over the feature variables. Based on these, a total verification probability is estimated, which
indicates whether the wrapper is correct or not. If this verification probability is greater than a threshold
the algorithm decides that the wrapper is correct, otherwise that it is broken. An interesting observation in
the experimental results of RAPTURE is that it achieves its best results by using HTML density as the single
numeric feature. Adding other numerical features reduces significantly its performance.

A similar set of global numeric features is used in [12]. The main improvement over RAPTURE is
achieved through DATAPROG, a syntactic pattern learning algorithm which describes how the extracted
data usually begin and end. DATAPROG searches for patterns, sequences of syntactic token types and single
tokens that happen to occur more frequently than what we would expect if token types were randomly
and independently generated. Initially each token is assigned one or more token types from a token type
hierarchy. Then a greedy iterative algorithm is used to learn a set of significant patterns from the token-type
data. The learned patterns are encoded in a prefix tree, where each node is either a token type or a token.
Every path from the root of the tree to a leaf corresponds to a significant syntactic pattern and is constructed

6

incrementally, starting from the root and finding significant specializations of patterns that do not subsume
each other.

By applying DATAPROG to both the training and test set, one obtains a set of significant syntactic
patterns for each of the two sets. The number of examples covered by each of these patterns, together with
the values of other numeric features, such as those mentioned for RAPTURE, are used to form a training
and a test vector. Thereafter, a goodness of fit test (Pearson’s chi-square test) is performed to decide if the
two vectors are correlated. The patterns are used in this test as follows: The wrapper verification algorithm
assumes that a syntactic pattern which is common between the training and test dataset will describe the
same proportion of data records in these datasets. Thus, the term (ti−nri/N)2

nri/N
is added to the Pearson’s

statistic for each pattern which is found to be common in the two datasets. Variables ti and ri correspond to
the observed number of data records expressed by the common pattern in the test and train set respectively,
while n and N are the total counts of data records in the two sets. The probability of the estimated value
of Pearson’s statistic for the given degrees of freedom, i.e., the cardinality of the two vectors, according to
the chi-square distribution is compared to the significance level of 0.05. If it is below the threshold, then the
response of the system is that the wrapper is broken.

A hybrid approach is presented in [15]. MAVERIC is a combination of both content and structure
based approaches since it takes into account both the HTML format of the query results and several similar
numerical features with those used in DATAPROG and RAPTURE.

DATAPROG, the state-of-art content-based method can detect syntactic changes. As we described pre-
viously, it is a common phenomenon that a slight syntactic change may result in a false alarm, since the
semantics of the extracted data remain the same. Another reason that the assumption made by DATAPROG
about similar coverage between training and test dataset for the common patterns is limiting is our wish to
train our system using a small amount of data, possibly not exhibiting all possible syntactic patterns. On
the contrary, VEWRA is designed having in mind the semantics of the extracted data. Our penalty system
is a step towards this direction: using the notion of correlated patterns and several other well-intuitioned
parameters, we were able to reduce significantly the false alarms, while maintaining the good performance
of prior work in all other aspects.

3 Proposed Method

In this section we present the new wrapper verification algorithm, VEWRA, which aims to reduce the number
of false alarms while maintaining high accuracy. At a macroscopic level, our approach is comprised of three
well-defined steps. This is shown in figure 4. In the following, we describe each step in detail, emphasizing
the contribution of our method with respect to past work. Table 4 gives a list of symbols used and their
definition.

Figure 4: The VEWRA wrapper verification process.

7

Symbol Definition
R Training dataset
T Test dataset

NR Number of training data records
NT Number of test data records
PR Patterns learned by algorithm 1

using R
PT Patterns learned by algorithm 1

using T
P ′

R Pruned PR

P ′
T Pruned PT

PC Common patterns, PC =
P ′

R

⋂
P ′

T

pu Pattern appearing during test but
not training, p ∈ P ′

T − P ′
R

nCT Number of test data records ex-
pressed by PC

χ2
ν,α Critical value of chi-square dis-

tribution with ν degrees of free-
dom at α significance level

X Value of Pearson’s χ2 statistic
TP (true positive) correctly identified changed

sources
TN (true negative) correctly recognized unchanged

sources
FP (false positive) false alarms
FN (false negative) unidentified changed sources

Table 4: Definitions of frequently used symbols.

8

3.1 Step 1: Creating features

Similar to prior content-based approaches, we encode the training and test sets into two feature vectors,
which we call the training and test vector respectively. Each vector is composed of a numerical and a
syntactic part. The numerical part comprises of the standard measures used in existing approaches, with the
exception of the HTML token density feature. As explained in section 2, we have chosen not to use this, in
order to avoid the false alarms that it tends to generate. Thus, the numerical part of our vectors consist of
the following features: a) letter density, b) punctuation density, c) digit density, d) mean word length and e)
mean number of tokens per data record.

The syntactic part of the vector takes the form of the prefix tree that was introduced in [12], i.e., a tree
is learned, based on the begin patterns of relevant data records. Each node of this tree corresponds to a
token type and each path from the root to a leaf to a syntactic pattern that occurs with sufficient statistical
significance in the data set.

VEWRA uses the token type hierarchy shown in figure 5. A lexical analyzer tokenizes and characterizes
the provided data records, according to this type hierarchy. In contrast to DATAPROG, each token is assigned
exactly one token type, namely the most specific one it can take, i.e., the type closest to the leaves of
our hierarchy. To illustrate this, the token “CS123” is assigned only the type ALPHANUMERIC, the token
“PeertoPeer” the type ALPHABETIC, the token “Greece” the type CAPITALIZED and the token“17.5” the
type DECIMAL. In contrast to DATAPROG, only token types and not tokens themselves are used in the
constructed patterns.

TOKEN

HTML NON-HTML

ALPHANUMERIC

ALPHABETIC

CAPITALIZED ALLLOWERCASE ALLUPPERCASE

NUMERIC

DECIMAL INTEGER

PUNCTUATION

Figure 5: The VEWRA token type hierarchy.

Using the types of Fig. 5, the pattern learning algorithm generates a prefix tree for each extracted data
field. The learning algorithm uses variable-length begin patterns. In particular, the number of tokens that
are considered to be the beginning of a token sequence is a logarithmic function of the average size of
the sequences extracted for a particular field, e.g. movie title or movie director. The rationale
behind this is that different fields differ significantly in the length of the extracted token sequences. Thus,
despite the fact that the starting tokens of a sequence are most important for pattern learning, the size of the

9

Node information Description
N .tokentype the token type of the node, ac-

cording to the hierarchy of Fig.
5

N .pattern the pattern of the node corre-
sponding to the path from the
root to this node

N .examples the set of data records that the
pattern of the node covers

N .children the set of children nodes

Table 5: Description of the information contained in each node in the pattern tree.

patterns should be slightly longer for those fields that are usually longer. VEWRA also makes use of the
WILDCARD token, which is used to produce significant patterns even when small differences occur in the
middle of otherwise similar token sequences.VEWRA pattern learning algorithm resembles DATAPROG.
There are important differences though. To illustrate an important difference between the VEWRA pattern
learning algorithm and DATAPROG imagine the following case: we want to find a pattern of length three
and in the second position there is no statistical important token type. DATAPROG will terminate producing
therefore a pattern of lenght one whereas our algorithm will produce a pattern of lenght three with the
WILDCARD token type in the middle. Finally, recall that in contrast to DATAPROG we do not make use
of tokens in our patterns but only of token types. Using tokens in syntactic patterns can be misleading and
thus lead to false alarms. For instance, if there are many addresses in the training data, but they are all from
Pittsburgh, tokens are not the best evidence for addresses, because it would not recognize addresses from
Athens.

Algorithm 1 describes the pattern learning process. The algorithm begins by constructing the root node
of an empty tree. Each node N in this tree is an object containing the information described in table 5.

The pattern learning algorithm iterates n times, equal to the estimated length of begin patterns for the
corresponding data field. In each of the n iterations the tree is extended by adding children nodes that
form significant sub-patterns. This is done, by examining each of the current leaves of the tree (set S) and
performing a statistical significance test for each token type in Fig. 5, excluding the type HTML.

For the sake of illustration, we will describe one step of the algorithm here. Let us assume that our
wrapper extracts information from Web pages that describe laptop computers. In particular, we will look
at the extraction of the field model of a laptop. Table 6 presents some example token sequences that
correspond to this field. First the algorithm determines that the appropriate length of begin patterns for
this field is n = 2. Thus the prefix tree will be two levels deep. If we further assume that the first level
of significant 1-token patterns has been generated and the node M with M .tokentype=CAPITALIZED, is
among the children of the root node, we examine which token types can be added as children of this node.
Evaluating the token type ALPHANUMERIC as a candidate, we create a new temporary node N , with the
following information:

N .tokentype : ALPHANUMERIC,

N .pattern : “CAPITALIZED ALPHANUMERIC”,

N .examples : {“Everex NM3500”, “Mitsubishi AA141XA01”,

10

Data Records
Sony VAIO Z600LEK
Toshiba Qosmio G35

Toshiba Tecra A8
Everex NM3500

Sony VAIO TXN17PB
HP Pavillion dv6227cl

Acer Aspire 5100
Mitsubishi AA141XA01

Panasonic EDTCB21QAF
IBM ITXG77C
IBM ITXG76E2
IBM ITSX68C

Sony VAIO VGN-FE41E00

Table 6: Example of extracted information for the field model from a laptop web site.

“Panasonic EDTCB21QAF”},

N .count : 3,

N .children : ∅.

After the creation of the temporary node, we form the null hypothesis that N’s pattern is not statisti-
cally significant. Null hypothesis testing is performed by the method significant(N.count, M.count, Oc-
curProb(N.tokentype)), where in our example N.count=3, M.cou- nt=9 and OccurProb(N.tokentype)=1

8 , as
there are 8 different token types and we have assumed that they are a-priori equiprobable3. Assuming that
the random variable of the number of occurrences of a token type follows a normal distribution, as an ap-
proximation of the binomial, we perform hypothesis testing with a significance level α = 0.05 ([7]). In this
particular example, the null hypothesis is rejected and thus we add the temporary node N as child of M .

ROOT

CAPITALIZED

ALL UPPERCASE ALPHANUMERIC CAPITALIZED

ALL UPPERCASE

ALPHANUMERIC

Figure 6: The corresponding pattern tree for the data records in table 6.

This procedure is repeated, adding a node for each token type that is considered significant. If none of
the token types leads to statistically significant patterns, we add a single child to M with a wildcard token

3In general, these prior probabilities could be specified by the user incorporating therefore prior qualitative knowledge about the
extracted data (e.g extracted information for the field stock prices would imply higher prior probabilities for the numerically
related token types).

11

type. Thus, a wildcard node indicates that there is no significant token type to continue the pattern from the
root to its parent. It is worth stressing again that HTML token types are excluded from this process and thus
they will never be added to the tree. Figure 6 shows the pattern tree that is created for the above example.

3.2 Step 2: Goodness-of-fit test

In this step, Pearson’s chi-square ([7]) is used to test the goodness of fit of the numerical part of the training
and testing vectors. If the testing vector frequency distributions differ significantly from the frequency
distributions of the training vector, our verification system concludes that the wrapper is broken and does
not move to the third step. As already mentioned, HTML token type density is not used in this test.

It is at this point that the most important difference between VEWRA and DATAPROG appears. In
[12], the goodness-of-fit test is also applied to the frequency of occurrence of the patterns that DATAPROG
discovers. Thus, if several patterns have very different frequency in the two vectors, the system will consider
the wrapper as broken. This handling of pattern frequencies is a major cause of the observed false alarms,
as it is very often the case that these frequencies are different, without necessarily meaning that the wrapper
must change. Therefore, we propose to avoid using the syntactic patterns in the goodness-of-fit-test as the
prior work did. We take advantage of the patterns via a penalty system, which forms the third and final step
of VEWRA.

3.3 Step 3: Penalty system

If X , the computed value for Pearson’s statistic from the previous step is less than the critical value, χ2
4,0,05

4,
the verification system enters the third step, which is the penalty system. It is called penalty system, since
it increases Pearson’s statistic without increasing the degrees of freedom and subsequently the critical value
χ2

4,0,05.5 This is described by the following equation:

X ← X + r*χ2
4,0,05, where 0 ≤ r ≤ 1,

Before we explain the penalty system, we present its “big” picture. On the one hand, the penalty system
relaxes the strict requirement of prior work for almost exactly same syntactical patterns between the train and
test datasets in order to avoid the false alarms. On the other hand, we want to retain the good performance
on all other aspects that prior work exhibits. Therefore, the penalty system assumes that if the wrapper is
working well on the test data, then the test and training vectors need to share several patterns in common.
Thus, the penalty system allows more differences between PR and PT than prior work. If these differences
are considered to be “fundamental”, then the penalty system decides that the wrapper is broken by imposing
a severe penalty to X . If however these changes are “small” and can be attributed to insufficient training6,
then the penalty system does not trigger an alarm. The question now is which differences are considered
“fundamental” and which “small”. This is answered through several new notions introduced in this work,
which aim to infer whether the train and test datasets have the same underlying semantics. The quantitative
details of the penalty system (all the cases and exact r values) will be presented in a longer version of this
paper. Here, we treat the penalty system rather qualitatively, showing with which criteria we distinguish the
different cases of the penalty system and how we choose the penalty values.

4There are four degrees of freedom since five numerical features in step 2.For α we use the typical value 0,05.
5As the degrees of freedom of the chi-square distribution increase so does the critical value χ2

4,0,05, provided that significance
level α remains the same.

6In the sense that not all patterns appeared during the training procedure.

12

Table 7 shows synoptically the parameters and the concepts used in the penalty system with the rationale
behind them in a “question-like”/motivating way. In the following, we explain them in more detail.

Let us denote with PR and PT the training and test pattern sets respectively. We recall here the manner in
which the length of these patterns is determined, which takes into account the average length of the extracted
data records. Due to this procedure, we expect the length of the patterns in the two vectors to be comparable
per extracted field. If this was not the case, the goodness-of-fit test, that compares the average length of the
extracted records, would have failed and we would not have entered step 3. Nevertheless, in order to make
the two pattern sets more comparable, we prune patterns in one of the sets if they are longer than the patterns
in the other set, resulting in the pruned versions of the sets P ′

R and P ′
T .

The first important concept that we introduce for the purposes of effective pattern comparison is the
concept of correlated pattern sets. Its goal is to predict cases where the differences between P ′

R and P ′
T

are due to insufficient training, which causes some patterns not to have been encountered in the training
dataset and therefore to be excluded from P ′

R. The characterization of pattern sets as correlated is based
on the determination of correlated token types, according to the hierarchy of Fig. 5. Based on this, three
correlation groups are formed according to table 8, associating different token types.

Token types in the same group are considered “interchangeable”, i.e., it is more probable that in the
position of a token type of a specific group we will encounter another token type from the same group than
one from another group. The WILDCARD and PUNCTUATION token types are included in all groups.

Based on this definition of the three correlation groups, two patterns are considered correlated if the
number of correlated token types in a one-to-one correspondence of the patterns exceeds a number which
is a non-decreasing function of the number of the token types of the smallest of the two patterns. The
philosophy of this function is that short patterns need to match almost exactly, while longer ones are far
less likely to match. Therefore, we can tolerate a higher degree of uncorrelated tokens in longer patterns.
Pattern correlation is clearly a reflexive relation. Based on this definition of correlated patterns, we define
also correlation at the level of the pattern sets, as the requirement for each pattern in each set to be correlated
with at least one pattern in the other set.

In order to illustrate the process of correlation, assume two pattern sets PR={< ALL UPPERCASE,
INTEGER>, <CAPITALIZED, INTEGER>} and PT ={<ALL LOWERCASE, INTEGER, ALL UPPERCASE>}.
The set with the shortest patterns is PR, since its patterns are of length two, and PT ’s single pattern will be
pruned to P ′

T ={<ALL LOWERCASE, INTEGER>}. Assuming that the correlation requirement for two pat-
terns of length two is to have both tokens correlated, each of the two patterns in P ′

R are correlated with the
single pattern in P ′

T and vice versa. As a result the sets P ′
T and P ′

R are correlated. This notion of partial
pattern matching can prevent many false alarms.

Penalty cases Based on the pruned pattern sets, we calculate the set of common patterns PC as the
intersection of the two sets PC = P ′

R

⋂
P ′

T . The penalty system considers several different cases based
primarily on the cardinalities of these three sets. For small cardinalities (≤ 4) which are more frequent, we
have created all possible different cases, whereas for larger cardinalities we have created closed regions of
length 3 (all but the last one which is open, i.e [10,∞)).

Penalty values The penalty values also depend on the relative size of PC . The larger it is, the higher
the similarity between the training and test data and thus the lower the penalty should be. In the case where
P ′

R = P ′
T , the penalty given to X is zero. At the other end of the spectrum, if PC = ∅, then the penalty

is the highest. The maximum value of the penalty, as all other penalty values too, differs according to the
values which the parameters in table 7 take for the given training and test datasets.

More specifically, the penalty system is based on the following criteria:

• Relative size of PR and PT : If there are no or very few patterns in PC , the more patterns in PR and

13

Concepts & Parameters Rationale
Correlated patterns Given the single train-

ing pattern CAPITALIZED,
why should we penal-
ize the same the test-
ing patterns DECIMAL and
ALLUPPERCASE?

Length of patterns in PR, PT For an unseen pattern pu,
why should we give the
same penalty when the
length of the patterns is
one (small potential pat-
tern diversity) and when it
is six (large potential pat-
tern diversity)?

NR Why should we give the
same penalty to an unseen
pattern pu when we have
10 and 104 training records
respectively?

|P ′
R|,|P ′

T |,|PC | Given that |PC |=1, should
we give the same penalty
when |PR|=|PT |=10 and
|PR|=|PT |=2?

nCT Given PR, PT , PC and
106 testing records, why
should we penalize the
same the case of 80%
of the testing records
satisfying some common
pattern with the case of
only 50%?

Table 7: Rationale behind the parameters that determine the penalty.

14

Association Group Token Types
ALPHABETIC ALPHABETIC, ALL UPPER-

CASE, ALL LOWERCASE,
CAPITALIZED, PUNCTUATION,
WILDCARD

NUMERIC NUMERIC, DECIMAL, INTE-
GER, PUNCTUATION, WILD-
CARD

ALPHANUMERIC ALPHANUMERIC,
PUNCTUATION,
WILDCARD

Table 8: Correlated token types.

PT the higher the penalty will be. For example, our system gives a higher penalty when

P ′
R={<ALL UPPERCASE, INTEGER>, <ALL UPPERCASE, CAPITALIZED>, <ALL UP-

PERCASE, DECIMAL>} and
P ′

T ={<DECIMAL, PUNCTUATION>, <WILDCARD, PUNCTUATION>, <INTEGER, ALPHABETIC>},

than when

P ′
R={ <ALPHABETIC> } and P ′

T ={<CAPITALIZED, INTEGER>}.

In both cases PC is empty but in the first case, P ′
R and P ′

T are large and so we can claim to be more
certain that it is not a coincidence not having seen any patterns in common.

• Length of patterns: Using this parameter we aim to capture the possible pattern diversity. The larger
the length is, the more patterns we assume that could possibly appear during the testing and therefore,
the smaller penalty we impose to an unseen pattern pu.

• nCT : The penalty will be low, if the test patterns that do not appear in the training patterns correspond
to only a small number of test records. For example, let us consider the case where P ′

R,P ′
T and PC

have 4, 5, 2 patterns respectively. If the two common patterns describe 40% of the test data records,
the penalty is higher than if they describe 50% of the test data.

• NR: The more data records we have seen during, the more certain we are that we have encountered
most of the existing patterns. Thus, when we encounter a low degree of similarity of the training and
test data, we are more confident that something is wrong with the wrapper and thus the penalty is
higher. To be more precise, we defined the number of training data records required to be sure that we
have seen almost all patterns proportional to km, where m is the number of starting tokens and k is a
constant7.

The above criteria aim to predict when there is high possibility that a pattern has the same underlying
semantics with another. When correlation is high, the penalty is low, despite the fact that the patterns do not
match exactly.

7k was set to 4, the cardinality of the largest group of associated token types,excluding PUNCTUATION and WILDCARD. This
is in accordance with the assumption that only correlated patterns can appear and with the miltiplicative counting principle.

15

Measure Definition
Accuracy A A = TP+TN

TP+TN+FP+FN

Changed precision Pc Pc = TP
TP+FP

Changed recall Rc Rc = TP
FN+TP

Changed F-measure Fc Fc = 2PcRc
Pc+Rc

Unchanged precision Pu Pu = TN
TN+FN

Unchanged recall Ru Ru = TN
TN+FP

Unchanged F-measure Fu Fu = 2PuRu
Pu+Ru

Overall F-measure F F = 2FcFu
Fc+Fu

Table 9: Measures commonly used to evaluate the performance of a wrapper verification system.

The value of the parameter r was set for each of the cases using 10-fold cross validation. The values
tested for r were all values from 0 to 1 using a 0,05 step. Since ties appeared for close values of r, we
resolved them randomly. For the cases that never appeared in the available data (for example pattern lengths
greater than 10) we set the r values by our intuition. The system has proved to be insensitive to small
perturbations of the cross-validated r values. These values yield in very good results presented in section 4.

Penalty system’s decision If by the end of the penalty system Pearson’s statistic X remains smaller
than χ2

ν,α, the system considers the wrapper to extract information correctly. In the opposite case, the
system suggests that the wrapper is broken.

4 Experimental Results

We evaluated the VEWRA algorithm on the two datasets used in [10] and [12], which we call the RAPTURE

and DATAPROG datasets respectively. For the evaluation we use the widely used measures in Information
Retrieval. These metrics are shown in 9.

In the following two subsections we present the results of VEWRA on the two datasets. STALKER ([16])
was used for wrapper induction, but it could easily be replaced by any other method.

4.1 Experiments with the RAPTURE dataset

4.1.1 Set-up of the experiment

For each Web source in the dataset, we are provided with a sequence of Web pages sampled at different time
points. Figure 7 provides an example of this process, where two changes to the Web source have occurred
at time points t2 and t4. The capital letters below the time line denote subsets of the data sampled over a
subperiod, e.g. subset A is sampled over the period [t0..t1). Each such subset typically contains a very small
number of Web pages.

Based on this sequence, a number of experiments are produced, each associated with a corresponding
triple (X, Y, Z) of subsets of the data. The first of the three subsets X is used to train the wrapper, which
is then applied to the second Y and the third Z subset to produce the training and test vector respectively
for VEWRA. For instance, the experiment (A,B, C) indicates that a wrapper is produced using subset A of
Fig. 7 and VEWRA is asked to compare the information extracted with this wrapper from subsets B and C.
Since the layout of the source has changed at t2, the result of the verification should be Changed.

16

time line

t0 t1 t2 t3 t4 t5 t6

A B C D E F

Figure 7: An example of a sequence of Web pages sampled from a data source.

Using this notation, the set of experiments and the expected outcome of VEWRA corresponding to the
example of Fig. 7 is the following:

• (A,A, B): Unchanged, (A,A, C
⋃

D): Changed,
(A,B, C

⋃
D): Changed

• (C,C,D): Unchanged, (C,C,E
⋃

F): Changed,
(C,D,E

⋃
F): Changed

• (E,E, F): Unchanged

In this manner, we test VEWRA on a variety of cases, including some cases where the training data of the
wrapper are used to produce the training vector for VEWRA, as well as cases where both the training and
the test vector are produced from data that were not used when training the wrapper.

4.1.2 Results

According to the above set-up and using 26 Web sources8 from the RAPTURE dataset, we generated 1713
experiments for VEWRA. In this set of experiments, VEWRA committed only 4 mistakes and these were of
the type FP , i.e., false alarms. This is the least severe type of error, as the wrapper induction system will be
asked to re-induce the correct wrapper. Using the measures introduced at the beginning of the section, we
have obtained the results shown in table 10. The results for RAPTURE in table 10 are the ones reported for
the best possible performance in [10]. We present our performance using the unreported measures as well.

Out of the four FP mistakes, two of them occurred in experiments from the altavista source and
the other two from the irti source. In the former case, the test dataset contained data records with many
more punctuation marks than the training dataset. As a result the mean number of tokens and the punctuation
density was highly increased in the test vector. The system did not enter the penalty system because Pear-
son’s statistic X was greater than the critical value χ2

ν,α. Thus, by the end of the second step our wrapper
verification system considered that the wrapper was broken. In the irti experiments, the test data records
contained many more tokens per record than in the training data. Thus, X exceeded again the critical value,
when the term that compares the mean number of tokens per record in the two datasets was added.

Regarding the evaluation of the penalty system itself, no errors were committed, i.e., the value of X
was always increased above the threshold value χ2

ν,α, when a change should be detected. It is worth noting
that in more than half of these cases, the result of the second step, i.e., the goodness-of-fit test on the global
numeric features, did not indicate that the wrapper was broken, but the use of the penalty system led to the
correct result. At the same time, the value of the Pearson’s statistic was maintained below the threshold,
in all cases in which no change had occurred. Thus, the penalty system exhibited excellent performance.
The results shown in table 10 for RAPTURE are the ones reported when using only HTML token density.

8The dataset contained 27 sources but our wrapper induction system did not generate a usable wrapper for the rain source.

17

VEWRA RAPTURE

A 0.998 0.9999
Pc 0.991 -
Rc 1.000 -
Fc 0.996 0.9999
Pu 1.000 -
Ru 0.997 -
Fu 0.998 0.93
F 0.997 0.96

Table 10: Performance of VEWRA and RAPTURE.

We observe that there is not a clear “knockout”. Notice also that according to [10], if any other numerical
feature except the HTML token density -which as explained can be a source of false alarms- is used, the
performance drops significantly.

4.2 Experiments with the DATAPROG dataset

4.2.1 Set-up of the experiment

The main difference of this from the RAPTURE dataset was that we did not need to generate any wrappers, as
the data is provided in the form of extracted tuples. In fact, using the example of Fig. 7, the tuples provided
for subsets A, B, D, F are extracted correctly, while these provided for the subsets just after the change,
i.e., subsets C, E, are incorrect, as they are extracted by the “old” wrapper. Based on this observation, and
removing the wrapper induction subset from the triple-notation used above, we generate the following set
of experiments for the data of Fig. 7:

• (A,B): Unchanged, (B,C): Changed, (B,D): Unchanged

• (D,E): Changed, (D,F): Changed

In other words, we generate experiments with correctly extracted data before and after a change, expecting
VEWRA to respond with Unchanged. Furthermore, since the data are provided already separated in chrono-
logically arranged samples, more than two samples may be provided between two change points. In this
case, only the first subset contains erroneous data, while the rest are extracted by the modified wrapper, e.g.
in the example of Fig. 7, subset D may be split further into subsets D1, D2, etc., all correctly extracted. In
this case, we generate the corresponding Unchanged experiments: (B,D1), (D1, D2), etc.

4.2.2 Results

According to the above set-up and using 17 Web sources9 from the DATAPROG dataset, we generated 184
experiments for VEWRA. In this set of experiments, VEWRA committed only 3 mistakes and these were of
the least severe FP type, i.e., false alarms. Using the same measures as above, we have obtained the results
shown in table 11(see also fig. 1).

Once again, the results are very encouraging, even more so due to the fact that the penalty system was
not responsible for any of the three errors. Two of the errors were due to a high increase in the frequency

9Unfortunately only a subset of the data were available and thus we were only able to conduct a subset of the experiments
reported in [12].

18

VEWRA DATAPROG
A 0.984 0.951
Pc 0.857 0.680
Rc 1.0 0.944
Fc 0.923 0.791
Pu 1.0 0.994
Ru 0.982 0.952
Fu 0.991 0.972
F 0.956 0.872

Table 11: Performance of VEWRA and DATAPROG.

of punctuation marks in the test dataset of the Web sources borders and whitepages. This has led to
a substantial increase in the mean number of tokens per data record and the punctuation density. The third
false positive was due to a high reduction in the letter density in the test dataset of the source quote.

On the 184 experiments we conducted, the DATAPROG system committed 9 errors, of which 8 FP and
1 more serious FN , which means that a change went unnoticed. The advantages of the proposed method
are apparent from the table 11: the number of false alarms is reduced drastically, without introducing any
costly false negatives.

5 Conclusions

The main contribution of this paper is VEWRA, a novel content based algorithm for wrapper verification.
The novelty of our method lies in the fact that it captures not only the syntactic patterns as its predecessors,
but also the correlations among them. Therefore, despite the simple underlying ideas of VEWRA, our
method compared to the prior work is more robust and its performance is almost ideal. The key ideas of our
work are the following: a) an intuitive penalty system which aims to compare the semantics of the training
and test information to decide whether the wrapper is broken or not. b) The notion of groups of associated
token types and patterns, which helps VEWRA to reduce significantly the false alarms and c) ignore the
density of HTML tokens in the information extracted by the wrappers, since it can be a potential source of
false alarms too.

The penalty system, introduced by VEWRA is an interesting approach to the problem of wrapper verifi-
cation. From a higher point of view, the penalty system adopts a bayesian-like approach to the problem of
wrapper verification in the following sense: using the notion of correlated patterns (“prior”) and the patterns
PR found to be significant during the training procedure (“likelihood”), it computes a “posterior” over the
unseen patterns pu’s. We think that this deserves further study, due to the clear intuition behind it and to the
good results that we obtained. Future work includes adopting this idea to a wrapper re-induction system and
also more experiments using data recently crawled to validate further the value of our approach.

Acknowledgements

We would like to thank Nicholas Kushmerick and Kristina Lerman for providing us with the datasets they
used.

19

References

[1] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer, 2nd Edition (Cooperative Infor-
mation Systems). The MIT Press, 2008.

[2] P. Atzeni, A. Masci, P. Merialdo, G. Sindoni, and Universit‘a Di Roma Tre. The araneus web-base
management system g. mecca.

[3] R. J. Bayardo, Jr., W. Bohrer, R. Brice, A. Cichocki, J. Fowler, A. Helal, V. Kashyap, T. Ksiezyk,
G. Martin, M. Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh, and
D. Woelk. InfoSleuth: Agent-based semantic integration of information in open and dynamic envi-
ronments. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
volume 26,2, pages 195–206, New York, 13–15 1997. ACM Press.

[4] Dayne Freitag and Nicholas Kushmerick. Boosted wrapper induction. In AAAI/IAAI, pages 577–583,
2000.

[5] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajaraman, Yehoshua Sagiv,
Jeffrey D. Ullman, Vasilis Vassalos, and Jennifer Widom. The TSIMMIS approach to mediation: Data
models and languages. Journal of Intelligent Information Systems, 8(2):117–132, 1997.

[6] Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Infomaster: An information inte-
gration system. In in proceedings of 1997 ACM SIGMOD Conference, pages 539–542, 1997.

[7] Roger L. Berger George Casella. Statistical Inference. Duxbury Advanced Series, 2001.

[8] Craig A. Knoblock, Steven Minton, José Luis Ambite, Naveen Ashish, Pragnesh Jay Modi, Ion
Muslea, Andrew G. Philpot, and Sheila Tejada. Modeling web sources for information integration.
In AAAI ’98/IAAI ’98: Proceedings of the fifteenth national/tenth conference on Artificial intelli-
gence/Innovative applications of artificial intelligence, pages 211–218, Menlo Park, CA, USA, 1998.
American Association for Artificial Intelligence.

[9] Nicholas Kushmerick. Regression testing for wrapper maintenance. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence (AAAI) and Eleventh Conference on Innovative Appli-
cations of Artificial Intelligence (IAAI), July 18-22, 1999, Orlando, Florida, USA. AAAI Press / The
MIT Press, pages 74–79, 1999.

[10] Nicholas Kushmerick. Wrapper verification. World Wide Web, 3(2):79–94, 2000.

[11] Nickolas Kushmerick, Daniel S. Weld, and Robert B. Doorenbos. Wrapper induction for information
extraction. In Intl. Joint Conference on Artificial Intelligence (IJCAI), pages 729–737, 1997.

[12] Kristina Lerman, Steven Minton, and Craig A. Knoblock. Wrapper maintenance: A machine learning
approach. Journal of Artificial Intelligence Research (JAIR), 18:149–181, 2003.

[13] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous information sources
using source descriptions. In Proceedings of the Twenty-second International Conference on Very
Large Databases, pages 251–262, Bombay, India, 1996. VLDB Endowment, Saratoga, Calif.

[14] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (Data-Centric Systems
and Applications). Springer, January 2007.

20

[15] Robert McCann, Bedoor AlShebli, Quoc Le, Hoa Nguyen, Long Vu, and AnHai Doan. Mapping main-
tenance for data integration systems. In VLDB ’05: Proceedings of the 31st international conference
on Very large data bases, pages 1018–1029. VLDB Endowment, 2005.

[16] Ion Muslea, Steven Minton, and Craig A. Knoblock. A hierarchical approach to wrapper induction.
In Proceedings of the Third Annual Conference on Autonomous Agents (AGENTS), May 1-5, 1999,
Seattle, WA, USA. ACM, pages 190–197, 1999.

[17] Ion Muslea, Steven Minton, and Craig A. Knoblock. Hierarchical wrapper induction for semistructured
information sources. Autonomous Agents and Multi-Agent Systems, 4(1/2):93–114, 2001.

[18] Enghuan Pek, Xue Li, and Yaozong Liu. Web wrapper validation. In Web Technologies and Appli-
cations, Proceedings of the Fifth Asian-Pacific Web Conference (APWeb), April 23-25, 2002, Xian,
China., pages 388–393, 2003.

[19] Arnaud Sahuguet and Fabien Azavant. Web ecology: Recycling html pages as xml documents using
w4f. In WebDB (Informal Proceedings), pages 31–36, 1999.

21

Algorithm 1 The VEWRA pattern learning algorithm
Require: A set of data records A
Require: A set of valid token types TT

µ← mean number of tokens per data record
n← log2(µ) + 1 {length of begin patterns}
root.tokentype←WILDCARD

root.examples← A
root.count← |A|
root.pattern← “WILDCARD”
root.children← ∅
for i = 1 to n do

S ← GetNodesOfTreeInDepth(root,i− 1) {depth 0 corresponds to the root}
for j = 1 to |S| do

Significant-exists← false
for k = 1 to |TT | do
{New node Nk}
Nk.tokentype← TTk

Nk.examples← sj .examples followed by tokens of type TTk {sj ∈ S}
Nk.count← |Nk.examples|
Nk.pattern← concat(sj .pattern,TTk)
Nk.children← ∅
if significant(Nk.count,sj .count,OccurProb(TTk)) then

sj .children← sj .children
⋃
{Nk}

Significant-exists← true
end if

end for
if Significant-exists=false then
{New node N}
N .tokentype←WILDCARD

N .examples← sj .examples
N .count← |N .examples|
N .pattern← concat(sj .pattern,WILDCARD)
N .children← ∅
sj .children← sj .children

⋃
{N}

end if
end for

end for
return root

22

Carnegie Mellon University does not discriminate and Carnegie Mellon University is
required not to discriminate in admission, employment, or administration of its programs or
activities on the basis of race, color, national origin, sex or handicap in violation of Title VI
of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section
504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the
Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay,
lesbian and bisexual students from receiving ROTC scholarships or serving in the military.
Nevertheless, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, telephone (412) 268-6684 or the
Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA
15213, telephone (412) 268-2056

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

	1 Introduction
	2 Background
	2.1 Main Concepts
	2.2 Related Work

	3 Proposed Method
	3.1 Step 1: Creating features
	3.2 Step 2: Goodness-of-fit test
	3.3 Step 3: Penalty system

	4 Experimental Results
	4.1 Experiments with the RAPTURE dataset
	4.1.1 Set-up of the experiment
	4.1.2 Results

	4.2 Experiments with the DataProG dataset
	4.2.1 Set-up of the experiment
	4.2.2 Results

	5 Conclusions

