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Abstract

No-regret algorithms are powerful tools for learning in online convex problems that have received
increased attention in recent years. Considering affine and external regret, we investigate what
happens when a set of no-regret learners (voters) merge their respective strategies in each learn-
ing iteration to a single, common one in form of a convex combination. We show that an agent
who executes this merged decision in each iteration of the online learning process and each time
feeds back a reward function to the voters that is a correspondingly weighted version of its own
reward, incurs sublinear regret itself. As a by-product, we obtain a simple method that allows us
to construct new no-regret algorithms out of known ones.
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1 Introduction
Regret minimizing algorithms are known since Hannan [12] presented the first one for repeated
two-player games over 60 years ago. Regret is a measure of the quality of a sequence of actions
that may be taken in the course of an online learning situation such as a repeated game or an online
convex problem (OCP) [19]. Regret measures the difference of cumulative rewards between an
actual sequence of actions taken and the best possible sequence one could have chosen from a
predefined class. There are different types of regret that have been subject to investigations in the
past years and vary with the definition of the before-mentioned class of reference action sequences
(c.f. [6, 11]).
As the perhaps most prominent example, the external regret of a sequence of actions is defined as
the cumulated reward incurred by their execution subtracted from the cumulative reward that would
have been incurred had one chosen one single, optimal static solution instead, with the benefit of
hindsight.
A no-regret algorithm is a procedure that learns (online) to generate a sequence of actions incur-
ring regret that grows sublinearly with sequence length (i.e. with increasing learning experience).

No-regret algorithms have been proven to be powerful online learning tools that can distributively
learn equilibrium points in multiagent game playing, planning scenarios and auctions (e.g. [6, 7,
13, 5, 3, 11]).
There are several recent works featuring the development of concrete no-regret algorithms such as
Greedy Projection [19], Lagrangian Hedging [8] or Follow the Perturbed Leader [14].

Despite more recent advances (e.g. [2]) towards an understanding of general construction methods
of no-regret algorithms for online convex problems, current knowledge is still limited. This is
especially true when it comes to the nature of the underlying no-regret algorithm spaces.
This work aims at helping to close this gap to some extent. We show that a fixed convex combi-
nation of the output of an ensemble of no-external-regret learners results in a no-external-regret
exhibiting learner again (provided each member of the ensemble is fed appropriate inputs). For
restrictions to affine objective functions, an analogous statement is then derived for the class of
what we named no-affine-regret learners. If we construe algorithms as points in a suitable space
this insight spawns the intuition that the set of no-external-regret and no-affine-regret learning al-
gorithms suitable for the same type of problems are each convex. Consequently, our findings will
allow the construction of new no-regret algorithms as a combination of known ones.

Although the general idea of considering weighted sums of different learning entities is far from
new the scope of the common multiplicative weights-based ensemble learning methods (e.g. [17,
7, 15]) is significantly different from ours. The latter strand of works is chiefly concerned with the
problem of how to adapt the weights in order to combine different votes. For instance, Freund and
Shapire provided a no-regret algorithm that, as a variation of Weighted Majority [15], adaptively
learned weights of a weighted sum of pure strategies which corresponded to the voters (experts)
[7]. In contrast, we consider settings where the adaptive behavior occurs only in the combined
learning algorithms (solving online convex problems) while the weights are fixed. We do not focus
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on finding a clever procedure to combine an arbitrary set of votes or class of learning algorithms but
provide guarantees for a specific class (i.e. no-regret learners for OCPs) given constant weights.

2 Preliminaries
Before proceeding, we will briefly review the notions of online convex programming problems
(OCPs) and no-regret assuming an underlying maximization problem. The corresponding state-
ments for minimizations are analogous.
Online convex programming (OCP) [19, 10] is a useful paradigm for designing and analyzing
learning algorithms. While first approaches addressing this setting date back to Hannan [12], the
name online convex problem was later coined by Zinkevich [19]. He also contributed a gradient-
ascent based no-regret algorithm solving a general OCP that is similar to another one introduced in
[9]. Learning algorithms solving online convex problems are tools applicable in problem domains
not amenable to other machine learning methods and have become subject to increasingly active
research over the past years.

2.1 Online Convex Problems
A convex programming problem can be stated as follows 1: Given a convex feasible set F ⊆ Rd

and a convex mapping Γ : F → R find the optimal solution given by the optimization problem
infx∈F Γ(x). If objective function Γ determines a cost, the optimization task translates to finding a
cost-optimal feasible strategy. Acknowledging that γ := −Γ is concave, we can restate the prob-
lem as a maximization problem of a concave function γ over a convex set. That is, the problem
becomes to solve supx∈F γ(x). In this context, γ is interpreted as a reward or revenue function.
Since both problems are completely analogous, we will limit our descriptions to the case where our
problem is stated in terms of reward maximization. Notice, this choice also affects the definitions
of regret given below but the emerging results are equivalent.

In an online convex program [19, 9], a (possibly adversarial) sequence (γ(t))t∈N of concave reward
functions is revealed step by step. (Equivalently, one could substitute convex cost functions.) At
each time step t, the convex programming algorithm must choose x(t) ∈ F while only knowing the
past reward functions γ(τ) and choices x(τ) (τ ∈ {1, ..., t− 1}). After the choice is made, the cur-
rent reward function γ(t) is revealed, and the algorithm receives a revenue amounting to γ(t)(x(t)).

Note, there is a close connection between learning in an online convex problem and learning to play
in repeated games. For instance, consider an individual agent playing a repeated matrix-game. In
each round it picks a mixed strategy as a distribution over actions and receives a reward according
to its choice of strategy in return. Then the process starts over. We can model this setting as an
OCP: if the local convex set F is a polytope and we interpret its corners as pure strategies then we
can construe the choice x(t) of an interior feasible point as a mixed strategy. We then let γ(t) be the

1For detailed background regarding convex optimization cf. e.g. [4].

2



resulting payoff function of the game such that γ(t)(x(t)) reflects the current expected payoff of the
player in round t.

2.2 No-Regret
To measure the performance of an OCP algorithm, we can compare its accumulated cost until
step T to an estimate of the best cost attainable against the sequence (γ(t))t=1...T . The notion
best can be situation dependent. It could be expressed in rules such as whenever action a ∈ F
was chosen one should have chosen φ(a) ∈ F instead where φ : F → F originates from a
predefined class Φ of mappings on feasible set F . This idea leads to a measure called Φ-regret
RΦ(T ) := supφ∈Φ

∑T
t=1 γ(t)(φ(x(t)))−

∑T
t=1 γ(t)(x(t)) [18, 11]. An algorithm is no-Φ-regret with

regret bound ∆ iff ∀T ∈ N : RΦ(T ) ≤ ∆(T ) ∈ o(T ).

The choice of the transformation class Φ leads to different types of no-regret algorithms. For
instance, if Φ is chosen to be the set of all endomorphisms on F we obtain the class of the so-
called no-linear-regret algorithms [11].
Perhaps the most prominent case arises if Φ is restricted to all constant transformations on F . Then,
the best attainable reward corresponds to the reward gained by the best constant choice s(T ) ∈ F ,
chosen with knowledge of γ(1) . . . γ(T ), i.e. s(T ) ∈ arg supx∈F

∑T
t=1 γ(t)(x). This choice leads

to a measure called external regret R(T ) :=
∑T

t=1 γ(t)(s(T )) −
∑T

t=1 γ(t)(x(t)). Consequently, a
no-external-regret algorithm for a maximizing OCP is defined as an algorithm that generates a
sequence of feasible vectors x(1),x(2),x(3), . . . such that

∃∆ ∈ o(T )∀T ∈ N : ∆(T ) +
T∑
t=1

γ(t)(x(t)) ≥ sup
x∈F

T∑
t=1

γ(t)(x). (1)

If Φ is composed of all affine functions we could speak of no-affine-regret properties. Obviously,
the set of all no-affine-regret algorithms comprises both the set of no-external-regret and the set of
no-linear-regret algorithms and may therefore be an important class to consider.

In order to ensure that a no-regret algorithm can even exist in principle it is common to introduce
further restrictions to the OCP such as requiring a compact feasible set and continuous reward
functions. Doing so implies that supx∈F γ(x) exists and equals maxx∈F γ(x). We will assume this
condition to hold throughout the most part of this paper.

3 Convex Combinations of No-Regret Learners
Consider a society of q ∈ N agents A1, ..., Aq. Each agent Av is capable of no-external-regret
learning in an online convex problem and shares the same feasible set F with its peers Aj (j 6= v).
That is: If in every time step t, each Av chooses a vector av(t) ∈ F and then observes a reward
function Ωv(t) which is both additional learning experience and used to calculate the magnitude
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Ωv(t)(av(t)) of Av’s reward for round t, then we can guarantee that its external regret Rv(T ) is
always sublinear, i.e. Rv(T ) = maxx∈F

∑T
t=1 Ωv(t)(x)−

∑T
t=1 Ωv(t)(av(t)) ∈ o(T ).

The interpretation of the generated vectors av(t) is application dependent. They may constitute
strategies in a repeated game (e.g. [7]) or even represent plans. For instance, av(t) could be a
routing plan in a network with each vector component entry representing the magnitude of traffic
the agent intents to send through a corresponding link (e.g. [1, 5]). Alternatively, it may be a price
for an item the agent sells or, it could conceivably be a representation of a tactical decision in a
game of robotic soccer [16]. Regardless of the concrete interpretation, we will refer to av(t) as a
vote and to agent Av as the corresponding voter.
Let A be a proxy agent faced with the problem of having to solve an online convex problem: In
each time step t it has to choose an action a(t) ∈ F and receives a concave reward function ΩA(t)

in return. If A is able to consult the voters, i.e. to feed them learning experience in form of
reward functions and to receive their votes in return, is it in the position to benefit from the voters’
no-regret learning capabilities?
One trivial way to accomplish this is for A to choose one single Av and let her solve his own
OCP: In time step t, A executes vote av(t) he was recommended by selected voter Av and after
perceiving reward function ΩA(t) this is sent back as further learning experience to Av (i.e. she
perceives ΩAv(t) = ΩA(t) as her reward feedback) so she can generate a new recommendation
av(t+1) in the next time step,... and so on. In the robotic soccer example, this could translate to a
coach who selects a single agent (e.g. player) and leaves the tactical decision making to her from
then on.
However, this approach may be less than optimal. Assume, the decision of which voter to select
was made according to some distribution. Let pv denote the probability that A chooses voter Av.
Then A’s expected reward in the first time step equals

∑q
v=1 pvΩA(1)(av(1)). As an alternative

option, A could have consulted all voters and executed a compromise
∑q

v=1 pvav(1) of their votes.
Due to concavity we have by Jensen’s inequality (e.g. [4])

q∑
v=1

pvΩA(1)(av(1)) ≤ ΩA(1)(

q∑
v=1

pvav(1)). (2)

Thus, consulting all voters and executing the convex combination of their votes
∑q

v=1 pvav(1)

would have gained him a higher reward2 than the expected reward A received in the first round
otherwise.
Of course, depending on the nature of the OCP, future reward functions may depend on past choices
of feasible vectors. Therefore, without further assumptions it would become more involved to
generally assess whether relying on a convex combination of the individual votes would necessarily
be a superior approach in the long run. Still, this simple example should already motivate that the
execution of convex combinations of votes may be an approach worth examining - which we will
start doing next.

2Or, at least not a lower reward.
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Figure 1: Illustration of a strategy voting situation with proxy agent A and two voters A1 and A2.

3.1 Setup and Theorems
Let z1, ..., zq be nonnegative constants such that

∑q
v=1 zv = 1. If each voter Av submits vote av(t)

then we will refer to a(t) := z1a1(t) + ... + zqaq(t) as their compromise strategy. How well would
A perform in an OCP if it would always execute such a compromise strategy after providing each
voter with learning experience depending on its own reward function ΩA(t) in each round t? Of
course this does not only depend on the individual learning algorithms each of the voters employs
but also on the learning experience they are exposed to in the course of the online process.
We consider the following setup: In every round t,A calls each voterAv and provides him a reward
function which is a weighted split of her own, i.e. she sets ΩAv(t) = zvΩA(t). Upon receiving the
outputs av(t) (t = 1, ..., q) of the voters A executes the compromise strategy of these votes. (The
setup is depicted in Fig. 1 for q = 2, z1 = z2 = 1

2
.)

3.1.1 External Regret

The next theorem tells us that as a result of this setup, A will incur sublinear external regret if
A1, ..., An do.

Theorem 3.1 (Preservation of No-External-Regret). Let F be a convex set, A be a proxy agent al-
ways executing a = z1a1 + ...+ zqaq where av ∈ F denotes the strategy of agent Av (v = 1, ..., q)
and z1, ..., zq are nonnegative weights such that

∑q
v=1 zv = 1. Let ΩA(t)(·) be A’s concave - and

for all v ∈ {1, ..., q} let ΩAv(t)(·) be Av’s individual revenue function for iteration t where ∀t ∈
N∀v ∈ {1, ..., q} : zvΩA(t)(·) = ΩAv(t)(·). Let A1, ..., Aq each solve a maximizing online convex
problem employing no-external-regret algorithms with regret bounds ∆1, ...,∆q ∈ o(T ), respec-
tively. Furthermore, let each element in the sequence of A’s revenue functions (ΩA(1),ΩA(2), ...) be
concave and A solve a maximizing online convex problem observing the elements of this sequence
one by one.
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Then we have: A is guaranteed to incur sublinear external regret, i.e. it effectively employs no-
external-regret learning. A regret bound is

∑q
v=1 ∆v.

Proof. First, we note ∆1, ...,∆q ∈ o(T ) ⇒ ∆ :=
∑q

v=1 ∆v ∈ o(T ). Let (av(t))t∈N denote Av’s
sequence of strategies generated by a no-regret algorithm. Due to the no-regret property (cf. Eq.
1), we know:
∀v ∈ {1, ..., q} ∀T ∈ N :

∑T
t=1 ΩAv(t)(av(t)) ≥ maxav

∑T
t=1 ΩAv(t)(av)−∆v(T ).

For all T ∈ N we have:∑T
t=1 ΩA(t)(a(t))

=
∑T

t=1 ΩA(t)(z1a1(t) + ...+ zqaq(t))

≥ 3 ∑T
t=1

∑q
v=1 zvΩA(t)(av(t))

=
∑T

t=1

∑q
v=1 ΩAv(t)(av(t))

=
∑q

v=1

∑T
t=1 ΩAv(t)(av(t))

≥ 4 ∑q
v=1 ( maxav

∑T
t=1 ΩAv(t)(av)−∆v(T ))

=
∑q

v=1 maxav

∑T
t=1 zvΩA(t)(av)−

∑q
v=1 ∆v(T )

= (
∑q

v=1 zv maxav

∑T
t=1 ΩA(t)(av))−∆(T )

= (
∑q

v=1 zv maxa

∑T
t=1 ΩA(t)(a))−∆(T )

= (maxa

∑T
t=1 ΩA(t)(a))−∆(T ).

We can easily derive the analogous statement for convex cost functions and minimizing OCPs but
chose to omit such redundant considerations in order to keep the exposition concise.

3.1.2 Affine and Linear Regret

We will now assume that each individual voter Av incurs sublinear affine regret, i.e it incurs sub-
linear Φ − regret where Φ is the class of affine mappings on the feasible set F . Furthermore,
we restrict our considerations to the case where the aggregate reward function ΩA(t) is affine. An
example for a situation where the latter assumption holds is the case of the adversarial revenue
functions considered in [5].

Theorem 3.2 (Preservation of No-Affine-Regret). Let F be a convex set,A be a proxy agent always
playing a = z1a1 + ... + zqaq where av ∈ F denotes the strategy of agent Av (v = 1, ..., q) and
z1, ..., zq are nonnegative weights such that

∑q
v=1 zv = 1. Let ΩA(t)(·) be A’s affine - and for all

v ∈ {1, ..., q} let ΩAv(t)(·) be Av’s individual revenue function for iteration t where ∀t ∈ N∀v ∈
{1, ..., q} : zvΩA(t)(·) = ΩAv(t)(·). Let A1, ..., Aq each solve a maximizing online convex problem
employing no-regret algorithms with regret bounds ∆1, ...,∆q ∈ o(T ), respectively. Furthermore,
let each element in the sequence of A’s revenue functions (ΩA(1),ΩA(2), ...) be affine and A solve a
maximizing online convex problem observing the elements of this sequence one by one.
Then we have: A is guaranteed to experience sublinear affine regret. A regret bound is

∑q
v=1 ∆v.

3Owing to concavity.
4Due to individual no-regret learning.
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Proof. First, we note ∆1, ...,∆q ∈ o(T ) ⇒ ∆ :=
∑q

v=1 ∆v ∈ o(T ). Let (av(t))t∈N denote Av’s
sequence of strategies generated by a no-regret algorithm. Furthermore, let Φ be the set of affine
mappings on feasible set F . Due to the assumption that each individual learner A1, ..., Aq incurs
sublinear affine regret, we know:
∀v ∈ {1, ..., q} ∀T ∈ N :

∑T
t=1 ΩAv(t)(av(t)) ≥ supφ∈Φ

∑T
t=1 ΩAv(t)(φ(av(t)))−∆v(T ).

For all T ∈ N we have:∑T
t=1 ΩA(t)(a(t))

=
∑T

t=1 ΩA(t)(z1a1(t) + ...+ zqaq(t))

≥ 5 ∑T
t=1

∑q
v=1 zvΩA(t)(av(t))

=
∑q

v=1

∑T
t=1 ΩAv(t)(av(t))

≥ 6 ∑q
v=1 ( supφ∈Φ

∑T
t=1 ΩAv(t)(φ(av(t)))−∆v(T ))

= −
∑q

v=1 ∆v(T ) +
∑q

v=1 supφ∈Φ

∑T
t=1 zvΩA(t)(φ(av(t)))

≥ −
∑q

v=1 ∆v(T ) + supφ∈Φ

∑q
v=1

∑T
t=1 zvΩA(t)(φ(av(t)))

= −∆(T ) + supφ∈Φ

∑T
t=1

∑q
v=1 zvΩA(t)(φ(av(t)))

= 7 −∆(T ) + supφ∈Φ

∑T
t=1 ΩA(t)(φ(

∑q
v=1 zvav(t)))

Note, since any linear function is also affine we can conclude that a convex combination of no-
linear-regret learners [11] results in a learner that exhibits no-linear-regret again as well (in settings
with affine objective functions). Why is it worthwhile to consider affine regret properties? Of
course, affinity is generally a handy property since for affine mappings, Jensen’s inequality is
tight. In fact, this was explicitly leveraged in the last line of the proof of Theorem 3.2. On the
other hand, no-affine-regret is still a quite general notion that, as mentioned above, comprises the
important cases of both no-linear-regret and no-external-regret. Unfortunately, Theorem 3.1 could
not be stated as a corollary building upon Theorem 3.2 since the latter requires each member of the
sequence of objective functions to be affine8, while the former merely assumes them to be concave.

3.2 Convexity of No-Regret Algorithm Spaces
Of course, the above result is not restricted to cases where A1, . . . , Aq are agents.
If A1, . . . , Aq are different algorithms on respective problem domains D1, . . . , Dq then following
above procedure is a prescription of how to construct a new learning algorithm A for domain
D1 ∩ . . . ∩ Dq as a convex combination of these previously known ones. If each Av exhibits no-
external-regret Theorem 3.1 implies that the resulting algorithm A exhibits no-external-regret as
well. In case each Av solves an OCP with affine rewards and is guaranteed to incur sublinear affine
regret, then by Theorem 3.2, combined algorithm A will constitute a no-affine-regret algorithm.
Note, we can construe no-regret algorithms as points in a common vector space where the Abelian
group operation (+) is constituted by pointwise addition of the algorithms’ outputs and the scalar

5Owing to concavity.
6Due to individual no-regret learning.
7Leveraging that φ,ΩA(t) were assumed to be affine.
8That is, both concave and convex.
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operation (∗) is simply pointwise multiplication with elements of a field (typically R) that com-
prises the range of the reward functions. In this light, our results state that the set of all no-regret
algorithms of the same type9 is convex.

4 Discussion and Future Work
This paper developed a general no-regret property regarding convex combinations of learners. For
the class of no-external- and no-affine -regret learners, we established how a convex combination
of a finite number of such learners (voters) can be employed to commonly solve an online convex
problem in a manner that is guaranteed to incur sublinear regret, provided each of the voters does.10

More specifically, the proofs of Theorem 3.1 and 3.2 reveal that the convex combination of no-
regret learners results in a new one whose regret bound is not growing faster than the sum of the
regret bounds of the voters. It may be worthwhile to explore conditions under which this sum is an
overly conservative bound.
For instance, one could investigate whether convergence can be sped up by iteratively adapting the
combing weights with a meta-learning algorithm such as Weighted Majority [15].
As this work derived the insight that no-regret algorithms of the same class suitable for the same
problems constitute a convex set, exploring additional of its properties may be an interesting di-
rection of future efforts. For instance, does this set have border points? That is, are there no-regret
algorithms that inherently cannot be (nontrivially) found by the construction method we presented?
In conclusion, we believe the insights gained in this work may not only be of theoretical interest
but also hope that they have the potential to serve as the outset for fruitful future efforts.
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