
No-Regret Learning and a Mechanism for
Distributed Multiagent Planning

Jan-P. Calliess* Geoffrey J. Gordon

February 2008
CMU-ML-08-102

No-Regret Learning and a Mechanism for
Distributed Multiagent Planning

Jan-P. Calliess∗ Geoffrey J. Gordon†

February 2008
CMU-ML-08-102

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Machine Learning Dept., Carnegie Mellon University, Pittsburgh, PA, USA. The author is
also a student at University of Karlsruhe, Germany.
†Machine Learning Dept., Carnegie Mellon University, Pittsburgh, PA, USA.

Keywords: Multiagent Planning, Multiagent Learning, No-Regret Learning, Online Convex Prob-
lems, Game Theory, Mechanism Design, Market-based Coordination.

Abstract

We develop a novel mechanism for coordinated, distributed multiagent planning. We consider
problems stated as a collection of single-agent planning problems coupled by common soft con-
straints on resource consumption. (Resources may be real or fictitious, the latter introduced as a
tool for factoring the problem). A key idea is to recast the distributed planning problem as learn-
ing in a repeated game between the original agents and a newly introduced group of adversarial
agents who influence prices for the resources. The adversarial agents benefit from arbitrage: that
is, their incentive is to uncover violations of the resource usage constraints and, by selfishly ad-
justing prices, encourage the original agents to avoid plans that cause such violations. If all agents
employ no-external-regret learning algorithms in the course of this repeated interaction, we are
able to show that our mechanism can achieve design goals such as social optimality (efficiency),
budget balance, and Nash-equilibrium convergence to within an error which approaches zero as
the agents gain experience. In particular, the agents’ average plans converge to a socially optimal
solution for the original planning task. We present experiments in a simulated network routing
domain demonstrating our method’s ability to reliably generate sound plans.

1 Introduction
In this work, we develop a novel, distributed multiagent planning mechanism. Our mechanism
coordinates the different, individual goals of participating agents P1, ..., Pk to achieve a globally
desirable plan. While the agents could in principle compute the optimal global plan in a centralized
manner, distributed approaches can improve robustness, fault tolerance, scalability (both in prob-
lem complexity and in the number of agents), and flexibility in changing environments [SD99].
We consider multiagent planning problems stated as k ∈ N single-agent convex optimization
problems that are coupled by n ∈ N linear, soft constraints with positive coefficients. (By a soft
constraint, we mean that violations are feasible, but are penalized by a convex loss function such
as a hinge loss.) This representation includes, for example, network routing problems, in which
each agent’s feasible region represents the set of paths from a source to a sink, its objective is to
find a low-latency path, and a soft constraint represents the additional delay caused by congestion
on a link used by multiple agents.
Since all coupling constraints (also referred to as inter-agent constraints) are soft, each agent’s
feasible region does not depend on the actions of the other agents.1 So, the agents could plan
independently and be guaranteed that their joint actions would be feasible. This interaction is a
convex game [SL07]: each player simultaneously selects her plan from a convex set, and if we hold
all plans but one fixed, the remaining player’s loss is a convex function of her plan. By playing
this convex game repeatedly, the players could learn about one another’s behavior and adjust their
actions accordingly. With appropriate learning algorithms they could even ensure convergence to
an equilibrium [BHLR07, GGMZ07]. Unfortunately, while distributed and robust, this naı̈ve setup
can lead to highly suboptimal global behavior: a selfish agent which can gain any benefit from
using a congested link will do so, even if the resulting cost to other agents would far outweigh its
own gain [Rou07].
To overcome this problem, a key idea of our approach is to introduce additional adversarial agents
A1, ..., An, each of which can influence the cost of one of the resources by collecting usage fees.
Like the original agents, the new agents are self-interested. But, collectively, they encourage the
original agents to avoid excessive resource usage: we show below how to define their revenue
functions so that they effectively perform arbitrage, allocating extra constraint-violation costs to
each original agent in proportion to its responsibility for the violations.
The way we define the adversarial agents’ revenues and payments effectively decouples the in-
dividual planning problems: an original agent perceives the other original agents’ actions only
through their effects on the choices of the adversarial agents. So, under our mechanism, the origi-
nal agents never need to communicate with one another directly. Instead, they communicate with
the adversarial agents to find out prices and declare demands for the resources they need to use.
If an original agent never uses a particular resource, it never needs to send messages to the cor-
responding adversarial agent. This decoupling can greatly reduce communication requirements
and increase robustness compared to the centralized solution: a central planner must communicate
with every agent on every time step, and so constitutes a choke point for communication as well as

1For a treatment on how our mechanism can be used in settings where inter-agent constraints are hard refer to
Appendix E.

1

a single point of failure.
Because we have decoupled the agents from one another, each individual agent no longer needs
to worry about the whole planning problem. Instead, it only has to solve a local online convex
problem (OCP) [Gor99, Zin03] independently and selfishly. To solve its OCP, an agent could
use any learning algorithm it desired; but, in this paper, we explore what happens if the agents
use no-regret learning algorithms such as Greedy Projection [Zin03]. No-regret algorithms are a
natural choice for agents in a multi-player game, since they provide performance guarantees that
other types of algorithms do not. And, as we will show, if all agents commit to no-regret learning,
several desirable properties result.
More specifically, if each agent’s average per-iteration regret approaches zero, the agents will learn
a globally optimal plan, in two senses: first, the average per-iteration cost, summed over all of the
agents, will converge to the optimal social cost for the original planning problem. And second,
the average overall plan of the original agents will converge to a socially optimal solution of the
original planning problem.
These two results lead us to propose two different mechanism variants: in the online setup, mo-
tivated by the first result, learning takes place online in the classic sense; all agents choose and
execute their plans and make and receive payments in every learning iteration. By contrast, in
the negotiation setup, motivated by the second result, the agents learn and plan as usual, but only
simulate the execution of their chosen joint plan. The simulated results (costs or rewards) from
this proposed joint plan provide feedback for the learners. After a sufficient number of learning it-
erations, each agent averages together all of its proposed plans and executes the average plan. One
can interpret either setup, but the negotiation setup in particular, as a very simple auction where
the goods are resources. A plan which consumes a resource is effectively a bid for that resource;
the resource prices are determined by the agents’ learning behavior in response to the bids.
Just as with any mechanism, because our agents are selfish, we need to consider the impact of in-
dividual incentives. Focusing on the negotiation setup, we provide (mainly asymptotic) guarantees
of Nash-equilibrium convergence of the overall learning outcome as well as classic mechanism
design goals such as budget balance, individual rationality, and efficiency.
This document is a long version of material that appeared in the proceedings of the 7th Inter-
national Conference of Autonomous Agents and Multiagent Systems (AAMAS 2008) [CG08] and
contains proofs that had to be omitted in the conference publication.

2 Preliminaries
In an online convex program [Gor99, Zin03], a possibly adversarial sequence (Γ(t))t∈N of convex
cost functions is revealed step by step. (Equivalently, one could substitute concave reward func-
tions.) At each step t, the OCP algorithm must choose a play x(t) from its feasible region F while
only knowing the past cost functions Γ(q) and choices x(q) (q ≤ t − 1). After the choice is made,
the current cost function Γ(t) is revealed, and the algorithm pays Γ(t)(x(t)).
To measure the performance of an OCP algorithm, we can compare its accumulated cost up through
step T to an estimate of the best cost attainable against the sequence (Γ(t))t=1...T . Here, we will
estimate the best attainable cost as the cost of the best constant play s(T) ∈ F , chosen with

2

knowledge of Γ(1) . . .Γ(T). This choice leads to a measure called external regret or just regret:
R(T) =

∑T
t=1 Γ(t)(x(t)) −

∑T
t=1 Γ(t)(s(T)). An algorithm is no-(external)-regret iff it guaran-

tees that R(T) grows slower than O(T), i.e., R(T) ≤ ∆(T) ∈ o(T). ∆(T) is a regret bound.
(The term no-regret is motivated by the fact that the limiting average regret is no more than zero,
lim supT→∞R(T)/T ≤ 0.)
We define the convex conjugate or dual [BV04] of a function Γ(x) to be Γ∗(y) = supx∈dom Γ[〈x,y〉−
Γ(x)]. The conjugate function Γ∗ is always closed and convex, and if Γ is closed and convex, then
Γ∗∗ = Γ pointwise.

2.1 Model and Notation
We wish to model interaction among k player agents, P1 . . . Pk. We represent player Pi’s individual
planning problem as a convex program: choose a vector pi from a compact, convex feasible set
FPi

to minimize the intrinsic cost 〈ci,pi〉. (In addition to the intrinsic cost, player Pi will attempt
to minimize cost terms which arise from interactions with other agents; we will define these extra
terms below and add them to Pi’s objective.) We assume that the intrinsic cost vector ci and
feasible region FPi

are private information for Pi—that is, Pi may choose to inform other players
about them, but may also choose to be silent or to lie.
We assume each feasible set FPi

is a subset of some finite-dimensional R-Hilbert space VPi
with

standard scalar product 〈·, ·〉VPi
. We write V = VP1 × . . . × VPk

and FP = FP1 × . . . × FPk

for the overall planning space and feasible region, and p = (p1; . . . ; pk) and c = (c1; . . . ; ck)
for the overall plan and combined objective. (We use ; to denote vertical stacking of vectors,
consistent with Matlab usage.) And, for any c,p ∈ V , we write 〈c,p〉V =

∑
i〈ci,pi〉VPi

for our
scalar product on V . (We omit subscripts on 〈·, ·〉 when doing so will not cause confusion.) For
convenience, we assume each feasible set only contains vectors with nonnegative components; we
can achieve this property by changing coordinates if necessary.
We model the coupling among players by a set of n soft linear constraints, which we interpret as
resource consumption constraints. That is, we assume that there are vectors lji ≥ 0 such that the
consumption of resource j by plan pi ∈ VPi

is 〈lji,pi〉. (So, the total consumption of resource j is
〈lj,p〉, where lj = (lj1; . . . ; ljk).) And, we assume that there are monotone increasing, continuous,
convex penalty functions βj(ν) and scalars yj ≥ 0 so that the overall cost due to consumption of
resource j in plan p is βj(〈lj,p〉 − yj). In keeping with the interpretation of βj as enforcing a
soft constraint, we assume βj(ν) = 0 for all ν ≤ 0. (For example, βj(ν) could be the hinge loss
function max{0, ν}.) We define

νj(p) = 〈lj,p〉 − yj (1)

to be the magnitude of violation of the jth soft resource constraint by plan p.2 Because the resource
constraints are soft, no player can make another player’s chosen action infeasible; conflicts result
only in high cost rather than infeasibility.
The function βj describes the overall cost to all players of usage of resource j. We will assume
that, in the absence of any external coordination mechanism, the cost to player i due to resource

2To enforce a hard constraint, we could choose a sufficiently small margin ε > 0, replace yj by yj − ε, and set
βj(ν) = max{0, ν/ε}.

3

j is given by some function βji(p) with
∑

i βji(p) = βj(νj(p)). We will call βji the natural
cost or cost in nature of Pi’s resource usage. A typical choice for βji is proportional to player i’s
consumption of resource j:

βji(p) =

{
0 , if 〈lj,p〉 = 0

βj(νj(p))〈lji,pi〉/〈lj,p〉 , otherwise (2)

So, including both her intrinsic costs and the natural costs of resource usage, player i’s objective is

ωPi
(p) = 〈ci,pi〉+

∑
j

βji(p) .

We will write ω(p) =
∑

i ωPi
(p) for the social cost; as stated above, our goal is to coordinate the

player agents to minimize ω(p). (With this notation, several facts mentioned above should now
be obvious: for example, since the individual objectives ωPi

depend on the entire joint plan p,
the players cannot simply plan in isolation. Nor do we want the players to compute and follow
an equilibrium: using the above choice for βji (which results in a setting similar to so-called
nonatomic congestion games), there are simple sequences of examples showing that the penalty
for following an equilibrium (called the price of anarchy) can be arbitrarily large [Rou07].)

3 Problem transformation
In this section, by dualizing our soft resource constraints, we decouple the problem of finding a
socially optimal plan. The result is a saddle-point or minimax problem whose variables are the
original plan vector p along with new dual variables a, defined below. By associating the new
variables a with additional agents, called adversarial agents, we arrive at a convex game with
comparatively-sparse interactions. Based on this game, we introduce our proposed learning-based
mechanism.

3.1 Introduction of adversarial agents
Write FAj

= dom β∗j . Since we have assumed that βj is continuous and convex, we know that
β∗∗j = βj pointwise, that is, βj(ν) = supaj∈FAj

[ajν − β∗j (aj)] for all ν ∈ R. Since β∗j will become
part of the objective function for the adversarial agents, and since many online learning algorithms
require compact domains, we will assume that FAj

= [0, uj] for some scalar uj . (For example, this
assumption is satisfied if the slope of βj is upper bounded by uj , and achieves its upper bound. The
lower bound of zero follows from our previous assumptions that βj is monotone and βj(ν) = 0 for
ν ≤ 0.) We will also assume that β∗j is continuous on its domain.
We define ΩAj

: V × FAj
→ R as

ΩAj
(p, aj) = ajνj(p)− β∗j (aj) . (3)

And, writing a = (a1; . . . ; an) ∈ FA = FA1 × . . .× FAn , we define3

3Note, in the AAMAS version [CG08] the explicit mention of the restriction of Ω to feasible plans was omitted.
However, whenever we considered saddle-points we also considered them with respect to this restricted function
Ω : FP × FA → R.

4

Ω :

{
FP × FA → R
(p, a) 7→ 〈c,p〉+

∑n
j=1 ΩAj

(p, aj)
(4)

(note the inclusion of the intrinsic cost 〈c,p〉). Because of the duality identity mentioned above,
along with our assumption about dom β∗j , we know that for all plans p, supaj∈FAj

ΩAj
(p, aj) =

βj(νj(p)), and so
ω(p) = max

a∈FA

Ω(p, a) ,∀p ∈ FP . (5)

Note that we have replaced sup by max in Eq. 5: since Ω(p, ·) is a closed concave function, it
achieves its supremum on a compact domain such as FA.
Remark 3.1. Note, Eq. 5 establishes the connection between saddle-points of Ω and overall player
plans that collectively minimize total cost in nature: If (p̃, ã) is a saddle-point then we have

p̃ = argminp∈FP
max
a∈FA

Ω(p, a) = argminp∈FP
ω(p). (6)

(Cf. [Roc70]).
Now, as promised, we can introduce the adversarial agents: the adversarial agent Aj controls the
parameter aj ∈ FAj

, and tries to maximize its revenue ΩAj
(p, aj)−βj(νj(p)). Note that βj(νj(p))

does not depend on aj , and so does not affect the choice of aj once p is fixed.
To give Aj this revenue, we will have player Pi pay adversary Aj the amount aj〈lji,pi〉−βji(p)−
djirj(a

j). Here the remainder function rj is defined as rj(a
j) = ajyj + β∗j (aj); the nonnegative

weights dji are responsible for dividing up the remainder among all player agents, so we require∑
i dji = 1 for each j. Given these definitions, it is easy to check that the sum of all payments to

Aj is indeed ΩAj
(p, aj)− βj(νj(p)) as claimed.

We can interpret the above payments as follows: Aj sets the per-unit price aj for consumption of
resource j. Pi pays Aj according to consumption, aj〈lji,pi〉, and is reimbursed for her share of the
actual resource cost, βji(p). For the privilege of setting the per-unit price,Aj pays a fee rj(a

j); this
fee is distributed back to the player agents according to weights dji. (We show in Appendix D that
the fee is always nonnegative.) Since the entire revenue for the agents Aj arises from payments
by the player agents, we can think of Aj as opponents for the players—this is qualitatively true
even though our game has many players and even though the player agent payoff functions contain
terms that do not involve a.
Including payments to adversaries, Pi’s cost becomes

ΩPi
(pi, a) = 〈ci,pi〉+

∑
j

(aj〈lji,pi〉 − djirj(a
j)). (7)

By the above construction, we have achieved several important properties:

• First, as promised, Pi’s cost does not depend on any components of p other than pi, andAj’s
revenue does not depend on any components of a other than aj . So, given an adversarial play
a, each player could plan by independently optimizing ΩPi

(pi, a). Similarly, given a plan p,
each adversary could separately optimize ΩAj

(p, aj). (Aj can ignore the term βj(νj(p)) if p
is fixed.) So, the players’ optimization problems are decoupled given a, and the adversaries’
optimization problems are decoupled given p.

5

• Second, if an adversarial agent plays optimally, her revenue will be exactly zero, since
maxaj∈[0,uj] ΩAj

(p, aj) = βj(νj(p)). (Suboptimal play will lead to a negative revenue, i.e.,
a loss or cost.)

• Third, the total cost to all player agents is∑
i

ΩPi
(pi, a) = Ω(p, a) . (8)

On the other hand, the total revenue to all adversaries is ΩA(p, a) = Ω(p, a) − 〈c,p〉 −∑
j βj(νj(p)). If the adversaries each play optimally, then ΩA(p, a) will be zero, so we will

have
Ω(p, a) = 〈c,p〉+

∑
j

βj(νj(p)) = ω(p) . (9)

Combining Eqs. 8 and 9, we find that if the adversaries play optimally, the total cost to the
player agents is ω(p), just as it was in our original planning problem.

• Finally, since Ω(p, a) is a continuous saddle-function on a compact domain [Roc70], it
must have a saddle-point (p̃, ã). (By definition, a saddle-point is a point (p̃, ã) such that
Ω(p, ã) ≥ Ω(p̃, ã) ≥ Ω(p̃, a) for all p ∈ FP and a ∈ FA.) By the decoupling argu-
ments above, we must have that p̃i ∈ arg minpi∈FPi

ΩPi
(pi, ã) for each i, and that ãj ∈

arg maxaj∈FAj
ΩAj

(p̃, aj) for each j. (The latter is true since Ω and ΩA differ only by terms
that do not depend on a.)

3.2 Planning as learning in a repeated game
If we consider our planning problem as a game among all of the agents Pi and Aj , we have just
shown that there exists a Nash equilibrium in pure strategies, and that in any Nash equilibrium,
the player plan p̃ must minimize ω(p̃) and therefore be socially optimal. To allow the agents to
find such an equilibrium, we now cast the planning problem as learning in a repeated game. We
will show that, if each agent employs a no-regret learning algorithm, the agents as a whole will
converge to a socially optimal plan, both in the sense that the average joint plan converges and in
the sense that the average social cost converges. (This result, while similar to well-known results
about convergence of no-regret algorithms to minimax equilibrium [FS96], does not follow from
these results, in part because our game is not constant-sum.) Note that, from the individual agent’s
perspective, playing in the repeated game is an OCP, and so using a no-regret learner would be a
reasonable choice; we explore the effect of this choice in more detail below in Sec. 4.
The repeated game is played between the k players and the n adversarial agents. Based on their
local histories of past observations, in each round t, each player Pi chooses a current pure strategy
pi(t) ∈ FPi

, and simultaneously, each adversary Aj chooses a current resource price aj
(t) ∈ FA.

We write p(t) = (p1(t); ...; pk(t)) and a(t) = (a1
(t); ...; a

n
(t)) for the joint actions of all players and

adversaries, respectively.
After choosing p(t) and a(t), the players send their current resource consumptions 〈lji,pi(t)〉 to the
adversaries, and the adversaries send their current prices to the players. In the online model, Pi

6

observes βji(p(t)) and sends it to Aj as well; in the negotiation model, we assume that βji is of
the form given in Eq. 2, so that Aji can compute βji(p(t)). The above information allows each
Pi to compute its current cost function ΩPi(t)(·) = ΩPi

(·, a(t)) and its cost ΩPi(t)(pi(t)). It also
allows each Aj to compute ΩAj(t)(·) = ΩAj

(p(t), ·) as well as βj(t) = βj(νj(p(t))), and thus, its
total revenue ΩAj(t)(a

j
(t)) − βj(t). (In fact, Aj may avoid computing or storing βj(t) if desired,

since it does not influence that term directly.) In Sec. 3.3 below, we discuss how to implement the
necessary communication efficiently.
Each player Pi then adds observation p(t),ΩPi(t)(·) to her local history, and each adversaryAj adds
a(t),ΩAj(t)(·) to her local history. Finally, the system enters iteration t+ 1, and the process repeats.

3.2.1 Game between two synthesized agents

For analysis, it will help to construe our setup as a fictitious game between a synthesized player
agent, P , and a synthesized adversarial agent, A. When each component agent Pi plays pi(t)

and each component agent Aj plays aj
(t), then we imagine P to play p(t) and A to play a(t). Ac-

cordingly, we understand P to incur cost Ω(p(t), a(t)), and A to have revenue ΩA(p(t), a(t)) −∑
j βj(νj(p(t))) in round t. These synthesized agents are merely theoretical notions serving to

simplify our reasoning; in practice there would never be a single agent controlling all players.
Using these synthesized agents, we will prove two results: first, immediately below, we show that
if the individual agents use no-regret algorithms, then the synthesized agents also achieve no regret.
And second, in Sec. 3.2.2, we show that if the synthesized agents achieve no regret, then they will
converge to an equilibrium of the game, in the two senses mentioned above.

Lemma 3.2. If each individual agent Pi achieves regret bound ∆Pi
(T), then the synthesized player

agent P achieves regret bound ∆P (T) :=
∑

i ∆Pi
(T). So, if ∆Pi

(T) ∈ o(T) for all i, then
∆P (T) ∈ o(T).

Proof. By definition, the regret RP (T) for agent P is

RP (T) =
∑T

t=1 Ω(p(t), a(t))−minp

∑T
t=1 Ω(p, a(t))

and the regret for Pi is RPi
(T) ≤ ∆Pi

(T):

RPi
(T) =

∑T
t=1 ΩPi(t)(pi(t))−minpi

∑T
t=1 ΩPi(t)(pi)

Owing to the decoupling effect of the adversary we have Ω(p, a(t)) =
∑k

i=1 ΩPi(t)
(pi). So, we can

7

expand RP (T) as

T∑
t=1

Ω(p(t), a(t))− min
p∈FP

T∑
t=1

Ω(p, a(t))

=
T∑

t=1

k∑
i=1

ΩPi(t)
(pi(t))− min

p∈FP

T∑
t=1

k∑
i=1

ΩPi(t)
(pi)

=
k∑

i=1

T∑
t=1

ΩPi(t)
(pi(t))−

k∑
i=1

min
pi∈FPi

T∑
t=1

ΩPi(t)
(pi)

=
k∑

i=1

(
T∑

t=1

ΩPi(t)
(pi(t))− min

pi∈FPi

T∑
t=1

ΩPi(t)
(pi))

=
k∑

i=1

RPi
(T) ≤

k∑
i=1

∆Pi
(T) .

So, RP (T) ∈ o(T) as desired.

Analogously, for the adversarial agent A we have the following lemma. The proof is very similar,
and is therefore omitted.

Lemma 3.3. If each adversarial agent Aj achieves regret bound ∆Aj
(T), then the synthesized

agent A achieves regret bound ∆A(T) :=
∑

j ∆Aj
(T). So, if ∆Aj

(T) ∈ o(T) for all j, then
∆A(T) ∈ o(T).

3.2.2 Social optimality

In this section, we investigate the behavior of the averaged strategies p̄[T] := 1
T

∑T
t=1 p(t) and

ā[T] := 1
T

∑T
t=1 a(t), as well as the averaged costs 1

T

∑T
t=1 Ω(p(t), a(t)). (Recall that the negoti-

ation version of our mechanism outputs the averaged strategies, while the online version of our
mechanism incurs the averaged costs.)
Starting with the averaged strategies, we show that if all players achieve no regret, we can guarantee
convergence of (p̄[T], ā[T]) to a set KP ×KA of saddle-points of Ω (where KP ⊂ FP , KA ⊂ FA).
(While the sequences p̄[T] and ā[T] may not converge, the distance of p̄[T] fromKP and the distance
of ā[T] from KA will approach zero; and, every cluster point of the sequence (p̄[T], ā[T]) will be in
KP × KA. Due to the convexity and compactness of the feasible sets, each average strategy and
each cluster point will be feasible.)

Theorem 3.4. Let p̄[T] = 1
T

∑T
t=1 p(t), ā[T] = 1

T

∑T
t=1 a(t) be the averaged, pure strategies of

synthesized player P and adversary A, respectively. If P , A each suffer sublinear external regret,
then as T → ∞, (p̄[T], ā[T]) converges to a (bounded) subset KP × KA of saddle-points of the
player cost function Ω : FP × FA → R.

Proof. Refer to Appendix C.

8

Since Ω is continuous on its domain, Thm. 3.4 lets us conclude that the outcome of negotiation is a
plan which approximately minimizes total player cost in nature: if we choose T sufficiently large,
then (p̄[T], ā[T]) must be close to a saddle-point, and so the costs must be close to the costs of the
of a saddle-point. (To determine how large we need to choose T , we can look at the regret bounds
of the learning algorithms of the individual agents.) As expressed in Rem. 3.1, the player part p̃
of a saddle-point incurs minimal total player cost in nature and, since the adversarial agents learn
to set prices as nature would, p̃ is socially optimal (w.r.t. to the player agents) with respect to both
nature and the mechanism.
If we choose to run our mechanism in online mode, we also need bounds on the average incurred
cost. Since ω(p) = maxa Ω(p, a), the following theorem tells us that the average social cost
approaches the optimal social cost in the long run.

Theorem 3.5. If P and A suffer sublinear external regret, then as T →∞,

1
T

∑T
t=1 Ω(p(t), a(t))→ minp maxa Ω(p, a) .

Proof. Refer to Appendix C.

3.3 Communication costs
So far we have assumed that all player agents broadcast their resource usages (and possibly their
natural costs) to all adversarial agents, and all adversarial agents broadcast their prices to all player
agents. With this assumption, on every time step, each player sends one broadcast of sizeO(n) (her
resource usages) and receives n messages of size O(1) (the resource prices), while each adversary
sends one broadcast of size O(1) and receives k messages of size O(n), for a total of n + k
broadcasts per step, and a total incoming bandwidth of no more than O(nk) at each agent.4 Even
under this simple assumption, the cost is somewhat better than a centralized planner, which would
have to receive k much larger messages describing each player’s detailed optimization problem,
and send k much larger messages describing each player’s optimal plan.
However, by exploiting locality, we can reduce bandwidth even further: in many problems we
can guarantee a priori that player Pi will never use resource j, and in this case, we never need to
transmit Aj’s price aj to Pi. Similarly, if Pi decides not to use resource j on a given trial, we never
need to transmit 〈lji,pi(t)〉 to Aj . (To take full advantage of locality, we must also set the weights
dji so that players do not receive payments from adversaries they would otherwise not need to talk
to.) So, by using targeted multicasts instead of broadcasts, we can confine each player’s messages
to a small area of the network; in this case, no single node or link will see even O(k + n) traffic.
We can sometimes reduce bandwidth even further by combining messages as they flow through
the network: for example, two resource consumption messages destined for Aj may be combined
by adding their reported consumption values.
Finally, any implementation needs to make sure that the agents cannot gain by circumventing the
mechanism: e.g., no player should find out another’s plan before committing to her own.5.

4Technically, the agents could multicast rather than broadcast, so that, e.g., one player would never see another
player’s messages, but in practice one would not expect this optimization to save much.

5One of the undesirable effects resulting if we would permit agents to wait until all other agents have sent their

9

4 Design goals
In designing our mechanism, we hope to ensure that individual, incentive-driven behavior leads
to desirable system-wide properties. Here, we establish some useful guarantees for the negotia-
tion version of our mechanism. The guarantees are convergence to Nash equilibrium, budget
balance, individual rationality, and efficiency.
These guarantees follow from the fact that the learned negotiation outcome approaches a set of
saddle-points of Ω(p, a) in the limit (Thm. 3.4). By continuity of Ω, we can therefore conclude
that, if we allow sufficient time for negotiation, the negotiation outcome is approximately a saddle-
point. (We will not address distributed detection of convergence, but merely assume that we use
our global regret bounds to calculate a sufficiently large T ahead of time; obviously efficiency
could be improved by allowing early stopping.)

Convergence to Nash equilibrium. When working with selfish, strategic agents, we want to
know whether a selfish agent has an incentive to unilaterally deviate from its part of the negotiation
outcome. The following theorems show that the answer is, at least approximately, no: in the limit
of large T , the negotiation outcomes p̄[T], ā[T] converge to a subset of Nash equilibria. So, by
continuity, (p̄[T], ā[T]) is an approximate Nash equilibrium for sufficiently large T—that is, each
agent has a vanishing incentive to deviate unilaterally.

Theorem 4.1. Let FPi
denote the feasible set of player agent Pi (i ∈ {1, ..., k}) and FAj

denote
the feasible set of adversarial agent Aj (j ∈ {1, ..., n}). We have:

∀i∀p′i ∈ FPi
∀ã ∈ KA, p̃ ∈ KP : ΩPi

(p′i, ã) ≥ ΩPi
(p̃i, ã).

Proof. Let p̃ ∈ KP , ã ∈ KA. We know (p̃, ã) is a saddle-point of Ω with respect to minimization over FP

and maximization overFA. Hence, ∀p′ ∈ FP : Ω(p̃, ã) ≤ Ω(p′, ã). Since Ω(p,a) =
∑

m ΩPm(pm,a),∀p,a,
we have in particular: ∀p′i ∈ FPi : ΩPi(p

′
i, ã) +

∑
m6=i ΩPm(p̃m, ã) = Ω(p′i, p̃¬i, ã) ≥ Ω(p̃, ã) =

ΩPi(p̃i, ã) +
∑

m6=i ΩPm(p̃m, ã). Thus, ΩPi(p
′
i, ã) ≥ ΩPi(p̃i, ã),

∀p′i ∈ FPi .

Theorem 4.2. Let (p̃, ã) be a saddle-point of Ω(p, a) with respect to minimizing over p and max-
imizing over a. We have: ΩAj

(ãj, p̃) = maxaj∈FAj
ΩAj

(aj, p̃),∀j ∈ {1, ..., n}.

Proof. Since
∑n

j=1 ΩAj (ãj , p̃) = ΩA(ã, p̃) = maxa ΩA(a, p̃)
= maxa∈FA

∑n
j=1 ΩAj (ãj , p̃) =

∑n
j=1 maxaj∈FAj

ΩAj (aj , p̃), we have
∑n

j=1(maxaj∈FAj
[ΩAj (aj , p̃)]−

ΩAj (ãj , p̃)) = 0. On the other hand, ∀j : maxaj∈FAj
[ΩAj (aj , p̃)] − ΩAj (ãj , p̃) ≥ 0. Hence, ∀j :

maxaj∈FAj
[ΩAj (aj , p̃)]− ΩAj (ãj , p̃) = 0.

Theorem 4.2 allows us to conclude that the individual part of an adversarial agent’s negotiation
outcome is a best-response action:

plans before choosing an own plan is that we could run into a deadlock. In general, we could enforce a commitment
to a certain plan prior to learning about the other agents’ current choices by employing cryptographic methods such as
commitment schemes [Blu81, Eve82, Nao91].

10

Corollary 4.3. Let FAj
denote the feasible set of adversarial agent Aj (j ∈ {1, ..., n}) and FPi

denote the feasible set of player agent Pi (i ∈ {1, ..., k}). We have:

∀j∀aj ∈ FAj
∀p̃ ∈ KP , ã ∈ KA : ΩAj

(aj, p̃) ≤ ΩAj
(ãj, p̃).

Budget balance. Since our overall goal is a socially optimal plan, we would hope that our mech-
anism neither siphons off money from the agents by running a surplus, nor requires continuous
investment to fund a deficit. This is the question of budget balance. Since the agents make pay-
ments only to one another (and not directly to the mechanism), in one sense our mechanism is
trivially budget balanced. However, a more interesting question is whether the mechanism is bud-
get balanced if we consider the adversarial agents to be part of the mechanism—this additional
property guarantees that the adversarial agents do not, in the long run, siphon off money or require
external funding. Since we showed (in Sec. 3.1) that the adversarial agents each have zero rev-
enue at any saddle point, and since the outcome of negotiation is an approximate saddle point, our
mechanism is (approximately) budget balanced in this sense as well.
Budget balance can be evaluated ex ante, ex interim, or ex post, depending on whether it holds
(in expectation) before the agents know their private information, after they know their private
information but before they know the outcome of the mechanism, or after they know the outcome
of the mechanism. Ex-post budget balance is the strongest property; our argument in fact shows
approximate ex-post budget balance.

Individual rationality. Strategic agents will avoid participating in a mechanism if doing so im-
proves their payoffs. A mechanism is individually rational if each agent is no worse off when
joining the mechanism than when avoiding it. Just as with budget balance, we can speak of ex-
ante, ex-interim, or ex-post individual rationality.
To make the question of individual rationality well-defined, we need to specify what happens if an
agent avoids the mechanism. If an adversarial agent refuses to participate, we will assume that her
corresponding resource goes unmanaged: no price is announced for it, and the player agents pay
their natural costs for it. The adversarial agent therefore gets no revenue, either positive or negative.
If a player agent refuses to participate, we will assume that she is constrained use no resources,
that is, 〈lji,pi〉 = 0 for all j. (So, we assume that there is a plan satisfying these constraints.)
Since we showed that supaj [ΩAj

(p, aj)− βj(νj(p))] = 0 (in Sec. 3.1), Aj has (approximately) no
incentive to avoid the mechanism when we play an (approximate) saddle point. So, the mechanism
is approximately ex-post IR for adversaries.
If a player agent does not participate in the mechanism, she has no chance of acquiring any re-
sources. Since she would not have to pay for joining and using no resources (the remainder rj(a

j)
is nonnegative), it is irrational not to join. So, the mechanism is ex-post IR for players.

Efficiency. A mechanism is called efficient if its outcome minimizes global social cost. Thm. 3.4
showed that the mechanism finds an approximate saddle-point of Ω. We showed in Sec. 3.1 that, in
any saddle-point, the player cost is minp ω(p) (the socially-optimal cost), and the adversary cost
is 0. So, in an approximate saddle-point, the social cost is approximately optimal; the mechanism
is therefore approximately efficient.

11

5 Related Work
The idea of using no-regret algorithms to solve OCPs in order to accomplish a planning task is
not new (e.g., [BBCM03]). It has, for instance, been proposed for online routing in the Wardrop
setting of multi-commodity flows [BEDL06], where the authors established convergence to Nash
equilibrium for infinitesimal agents. In contrast with this line of work, we seek globally good
outcomes, rather than just equilibria.
Another body of related work is concerned with selfish routing in nonatomic settings (with in-
finitesimal agents—e.g., [BEDL06, Rou07]). Many of these works provide strong performance
guarantees and price of anarchy results considering selfish agents. We consider a similar but not
identical setup, with a finite number of agents and divisible resources.
As mentioned before, our planning approach can be given a simple market interpretation: in-
teraction among player agents happens indirectly through resource prices learned by the adver-
saries. Many researchers have demonstrated experimental success for market-based planners (e.g.,
[SD99, GM02, SDZK04, Wel93, GK07, MWY04]). While these works experimentally validate
the usefulness of their approaches and implement distributivity, only a few provide guarantees of
optimality or approximate optimality (e.g., [LMK+05, Wel93]).
Guestrin and Gordon proposed a decentralized planning method using a distributed optimization
procedure based on Benders decomposition [GG02]. They showed that their method would pro-
duce approximately optimal solutions and offered bounds to quantify the quality of this approx-
imation. However, as with most authors, they assumed agents to be obedient, i.e., to follow the
protocol in every aspect. By contrast, we address strategic agents, i.e., selfish, incentive-driven
entities prone to deviating from prescribed behavior if it serves their own benefit. But, since the
trick of dualizing constraints to decouple an optimization problem is analogous to Benders de-
composition, we can view our mechanism as a generalization of Guestrin and Gordon’s method to
decentralized computation on selfish agents.
Designing systems that provably achieve a desired global behavior with strategic agents is exactly
the field of study of classic mechanism design. Many mechanisms, though, are heavy-weight and
centralized, and are concerned neither with distributed implementation nor with computational
feasibility. Attempting to fill this gap, a new strand of work under the label distributed algorithmic
mechanism design has evolved [FPS01, FPSS05, Wel93].
Our approach combines many advantages of the above branches of work for multiagent planning.
It is distributed, and provides asymptotic guarantees regarding mechanism design goals such as
budget balance and quality of the learned solution. If we consider the adversarial agents to be in-
dependent, selfish entities that are not part of the mechanism, the proposed mechanism is relatively
light-weight; it merely offers infrastructure for the participating agents to coordinate their planning
efforts through learning in a repeated game. And, as the following section shows, its theoretical
guarantees translate into reliable practical performance, at least in our small-scale network routing
experiments.

12

6 Experiments
We conducted experiments on a small multi-agent min-cost routing domain. We model our network
by a finite, directed graph with edges E (physical links) and vertices V (routers). Each edge e ∈ E
has a finite capacity γ(e), as well as a fixed intrinsic cost ce for each unit of traffic routed through
e. We assume that bandwidth is infinitely divisible.
Players are indexed by a source vertex s and a destination vertex r. Player Psr wants to send an
amount of flow dsr from s to r. Psr’s individual plan is a vector fsr = (f e

sr)e∈E , where f e
sr ∈ [0, U]

is the amount of traffic that Psr routes through edge e. (U is an upper bound, chosen ahead of time
to be larger than the largest expected flow.) Feasible plans are those that satisfy flow conservation,
i.e., the incoming traffic to each vertex must balance the outgoing traffic. We also excluded plans
which route flow in circles.
If the total usage of an edge e exceeds its capacity, all agents experience an increased cost for using
e. This extra cost could correspond to delays, or to surcharges from a network provider. We set
the global penalty for edge e to be a hinge loss function βe(ν) = max{0, ueν}, so the total cost of
e increases linearly with the amount of overuse. For convenience we also modeled each player’s
demand dsr as a soft constraint βsr(ν) = max{0, usrν}, although doing so is not necessary to
achieve a distributed mechanism.
Applying our problem transformation led to new, total player cost Ω(f , a) =

∑
s,r

∑
e∈E c

ef e
sr +∑

e∈E ΩAe(a
e
cap, f) +

∑
s,r ΩAsr(asr

d , f) in the mechanism. Here, for each edge e, we introduced
an adversarial agent Ae, who controls the cost for capacity violations at e by setting the price
ae

cap. And, as a slight extension to our general description in Section 3, we introduced additional
adversarial agents to implement the soft constraints on demand; agent Asr chooses a price asr

d for
failing to meet demand on route sr.
With this setup, we ran more than 2800 simulations, for the most part on random problem instances,
but also for manually-designed problems on graphs of sizes varying between 2 and 16 nodes. In
each instance there were between 1 and 32 player agents. For no-regret learning, we used the
Greedy Projection algorithm [Zin03] with (1√

t
)t∈N as the sequence of learning rates.

A simple example of an averaged player plan after a number of iterations is depicted in Figure 2(b).
In this experiment, we had a 6-node network and three players P2,3, P1,4, and P4,6 with demands
30, 70 and 110. We set c(2,3), c(3,2) = 10, and ce = 1 for all other edges e. Edges (5, 6) and (6, 5)
had capacities of 50, while all other capacities were 100. Our method successfully discovered that
P4,6 should send as much flow as possible through the cheap edge (5, 6), and the rest along the ex-
pensive path through (3, 2). Adversarial agents successfully discouraged the players from violating
the capacity constraints, while simultaneously making sure that as much demand as possible was
satisfied. Also note that player P2,3 served the common good by (on average) routing flow through
the pricey edge (2, 3) instead of taking the path through the bottleneck (6, 5); this latter path would
have been cheaper for P2,3 if we didn’t consider the extra costs imposed by the adversarial agents.
The plots in Figs. 1 and 2 validate our theoretical results: Figs. 1(a),(b) demonstrate that the re-
grets of the combined agents P and A converge to zero, as shown in Lem. 3.2 and Lem. 3.3.
Fig. 2(a) demonstrates convergence to a saddle-point of Ω. In the plot, the upper curve shows
maxa Ω(f̄[T], a), while the lower curve shows minf Ω(f , ā[T]). The horizontal, dashed line is the
minimax value of Ω (which was 30 in the corresponding experiment). As guaranteed by Thm. 3.4,

13

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800

1000

1200

1400

1600

(a) (b)

Figure 1: Average positive regret of synthesized player (a) and synthesized adversary (b), averaged
over 100 random problems, as a function of iteration number. Grey area indicates standard error.

the three curves converge to one another. While the fact of convergence in these figures is not a
surprise, it is reassuring to see that the convergence is fast in practice as well as in theory.

7 Discussion
We presented a distributed learning mechanism for use in multiagent planning. The mechanism
works by introducing adversarial agents who set taxes on common resources. By so doing, it
decouples the original player agents’ planning problems. We then proposed that the original and
adversarial agents should learn about one another by playing the decoupled planning game repeat-
edly, either in reality (the online setup) or in simulation (the negotiation setup).
We established that, if all agents use no-regret learning algorithms in this repeated game, several
desirable properties result. These properties included convergence of p̄[T], the average composite
plan, to a socially optimal solution of the original planning problem, as well as convergence of
p̄[T] and the corresponding adversarial tax-plan ā[T] to a Nash equilibrium of the game. We also
showed that our mechanism is budget-balanced in the limit of large T .
So far, we do not know in what cases our mechanism is incentive-compatible; in particular, we
do not know when it is rational for the individual agents to employ no-regret learning algorithms.
Certainly, we can invent cases where it is not rational to choose a no-regret algorithm, but we be-
lieve that there are practical situations where no-regret algorithms are a good choice. Investigating
this matter, and modifying the mechanism to ensure incentive compatibility in all cases, is left to
future work.
Compared to a centralized planner, our method can greatly reduce the bandwidth needed at the
choke-point agent. (The choke-point agent is the one who needs the most bandwidth; in a central-
ized approach it is normally the centralized planner.) In very large systems, agents Pi and Aj only
need to send messages to one another if Pi considers using resource j, so we can often use locality
constraints to limit the number of messages we need to send.

14

5050

50

50

20

20

50

50
70

50

1

2 6

3 5

4

30

100

(a) (b)

Figure 2: (a): Payoff Ω for the synthesized player (upper curve) and adversary (lower curve)
when P and A play their averaged strategy against a best-response opponent in each iteration.
Horizontal line shows minimax value. (b): Average plan for three agents in a 6-node instance after
10000 iterations, rounded to integer flows. The displayed plan is socially optimal.

Our method combines desirable features from various previous approaches: like centralized mech-
anisms and some other distributed mechanisms we can provide rigorous guarantees such as social
optimality and individual rationality. But, like prior work in market-based planning, we expect
our approach to be efficient and implementable in a distributed setting. Our experiments tend to
confirm this prediction.

Acknowledgements
We would like to thank Ram Ravichandran for his kind assistance with proofreading this technical
report. This research was funded in part by a grant from DARPA’s Computer Science Study Panel
program. All opinions and conclusions are the authors’.

15

References
[BBCM03] N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Online oblivious routing. In SPAA

’03: Proceedings of the fifteenth annual ACM symposium on Parallel algorithms and
architectures, pages 44–49, 2003.

[BEDL06] Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: on conver-
gence to nash equilibria of regret-minimizing algorithms in routing games. In PODC
’06: Proceedings of the twenty-fifth annual ACM symposium on Principles of dis-
tributed computing, pages 45–52, 2006.

[BHLR07] Avrim Blum, Mohammad Taghi Hajiaghayi, Katrina Ligett, and Aaron Roth. Regret
minimization and the price of total anarchy. Working paper, 2007.

[Blu81] Manuel Blum. Coin flipping by telephone. In Crypto ’81, 1981.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[CG08] Jan-P. Calliess and Geoffrey J. Gordon. No-regret learning and a mechanism for dis-
tributed multiagent planning. In Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS’08), 2008.

[Eve82] S. Even. A protocol for signing contracts. Technical Report Tech. Rep. 231, Technion,
Haifa, Israel, 1982.

[FPS01] Joan Feigenbaum, Christos H. Papadimitriou, and Scott Shenker. Sharing the cost of
multicast transmissions. J. Comput. Syst. Sci., 63(1):21–41, 2001.

[FPSS05] Joan Feigenbaum, Christos Papadimitriou, Rahul Sami, and Scott Shenker. A bgp-
based mechanism for lowest-cost routing. Distrib. Comput., 18(1):61–72, 2005.

[FS96] Yoav Freund and Robert E. Shapire. Game theory, on-line prediction and boosting. In
COLT, 1996.

[GG02] C. Guestrin and G. Gordon. Distributed planning in hierarchical factored mdps. In
UAI, 2002.

[GGMZ07] Geoffrey J. Gordon, Amy Greenwald, Casey Marks, and Martin Zinkevich. No-regret
learning in convex games. Technical Report CS-07-10, Brown University, 2007.

[GK07] E. Gomes and R. Kowalczyk. Reinforcement learning with utility-aware agents for
market-based resource allocation. In AAMAS, 2007.

[GM02] B. Gerkey and M. Mataric. Sold!: Auction methods for multirobot coordination. IEEE
Transactions on Robotics and Automation, 19(5):758–768, 2002.

16

[Gor99] Geoffrey J. Gordon. Regret bounds for prediction problems. In COLT: Workshop on
Computational Learning Theory, 1999.

[LMK+05] M. Lagoudakis, V. Markakis, D. Kempe, P. Keskinocak, S. Koenig, A. Kleywegt,
C. Tovey, A. Meyerson, and S. Jain. Auction-based multi-robot routing. In Proceed-
ings of the International Conference on Robotics: Science and Systems (ROBOTICS),
pages 343–350, 2005.

[MJHA05] Gerhard Illing Manfred J. Holler (Author). Einführung in die Spieltheorie. Springer
Akad. Verlag, 2005.

[MWY04] N. Muguda, P. R. Wurman, and R. M. Young. Experiments with planning and markets
in multi-agent systems. SIGecom Exchanges, 5:34–47, 2004.

[Nao91] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology: the jour-
nal of the International Association for Cryptologic Research, 4(2):151–158, 1991.

[Owe95] G. Owen. Game Theory. Academic Press, 1995.

[Roc70] R.Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[Rou07] T. Roughgarden. Selfish routing and the price of anarchy (survey). In OPTIMA, 2007.

[SD99] A. Stentz and M. B. Dias. A free market architecture for coordinating multiple
robots. Technical Report CMU-RI-TR-99-42, Carnegie Mellon, Robotics Institute,
Pittsburgh,PA,USA, 1999.

[SDZK04] Anthony (Tony) Stentz, M Bernardine Dias, Robert Michael Zlot, and Nidhi Kalra.
Market-based approaches for coordination of multi-robot teams at different granu-
larities of interaction. In Proc. ANS 10th Int. Conf. on Robotics and Rem. Sys. for
Hazardous Env., 2004.

[SL07] G. Stoltz and G. Lugosi. Learning correlated equilibria in games with compact sets of
strategies. Games and Economic Behavior, 59:187–208, 2007.

[SLBon] Y. Shoham and K. Leyton-Brown. Multiagent Systems- Draft of Dec. 2006. Cam.
Univ. Press, In preparation.

[vN28] J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische Annalen,
100:295–320, 1928.

[Wel93] M. P. Wellman. A market-orient programming environment and its application to
distributed multi-commodity flow problems. J. of Artifical Intelligence Research, 1:1–
23, 1993.

[Zin03] M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Twentieth International Conference on Machine Learning, 2003.

17

A Background

A.1 Convex Sets and Convex Functions
In this subsection we will list a couple of basic definitions and theorems regarding convex functions
for later use. The material was extracted from [BV04] and [Roc70].

Definition A.1 (Affine Function). A mapping φ between vector spaces V1 and V2 is called affine
iff ∃α ∈ hom(V1, V2), r ∈ V2∀v1 ∈ V1 : φ(v1) = α(v1) + r.

Definition A.2 (Affine Sets). A ⊂ Rd is :⇔ ∀a1, a2 ∈ a∀l ∈ R : (1− l)a1 + la2 ∈ A.

We can see that an affine set is a line through any two of its points by rewriting (1 − l)a1 + la2

as a1 + l(a2 − a1). This idea can be generalized to multiple points leading to the idea of an affine
hull.

Definition A.3 (Affine Hull). Let S ⊂ Rd be a subset of Rd. Its affine hull aff S is the smallest
(with respect to the inclusion operator ⊂) affine set containing S.

Note, aff S = {
∑n

i=1 risi|si ∈ S,
∑n

i=1 ri = 1, n ∈ N} (cf. [Roc70]).
Instead of asking that for any two points of a set the whole line through them is contained in the
set, we could be interested in sets with the property that only all points on the line segment between
any two of its points need to be contained as well. This leads to the important notion of convex
sets.

Definition A.4 (Convex Sets). A set of vectors C ⊂ Rd is convex :⇔ ∀c1, c2 ∈ C∀l ∈ [0, 1] :
(1− l)c1 + lc2 ∈ C.

As an example, we will describe the polyhedrons. Polyhedrons are solution sets of a collection of
linear inequalities and equalities [BV04]. An example for a polyhedron is the set{
v ∈ Rd|〈l1,v〉 ≤ y1, ..., 〈ln,v〉 ≤ yn, 〈e,v〉 = x

}
. Bounded polyhedrons are usually called poly-

topes. The convex hull of a set (the intersection of all convex supersets) is a polyhedron [Roc70].
Following standard literature we will usually consider functions φ of the form φ : S ⊂ Rd →
R ∪ {−∞,+∞}. We follow the customary convention to understand by −,∞+∞ mathematical
objects with the property ∀x ∈ R : −∞ < x < +∞. By this point of view a distinction between
φ’s domain S and its effective domain dom φ := {s ∈ S|φ(s) < +∞} is obtained. Instead of
considering functions on S we will extend them to all of Rd by setting the their values at all points
in Rd not in S to +∞. This has technical benefits which will not become apparent in this work but
it is done to make our assumptions consistent with the ones needed for theorems we will borrow
from [Roc70].
As we will see, another way to define the effective domain of a function is by its epigraph – the set
of all points lying on or above its graph.

Definition A.5 (Epigraph). The epigraph epi φ of a function φ : Rd → R∪{−∞,+∞} is epi φ :={
(s, r) ∈ Rd × R|r ≥ φ(s)

}
.

18

Note, points in the epigraph only have real components, i.e. points with −∞ or +∞ components
are not included. We can now define dom φ :=

{
s ∈ Rd|∃r ∈ R : (s, r) ∈ epi φ

}
.

Definition A.6 (Convex Function). A real-valued function is convex iff its epigraph is a convex
set.

Definition A.7 (Concave Function). A real-valued function is called concave iff -f is convex.

Theorem A.8 (Jensen’s Inequality for Convex Functions(Cf. [BV04])). If φ is a convex function
and z1, ..., zn are positive real numbers such that z1 + ...+ zn = 1, then:
∀x1, ...,xn ∈ dom φ : φ(z1x1 + ...+ znxn) ≤ z1φ(x1) + ...+ znφ(xn).

By multiplying both sides of the inequality by −1 we can conclude:

Corollary A.9 (Jensen’s Inequality for Concave Functions). If φ is a concave function and z1, ..., zn

are positive real numbers such that z1 + ...+ zn = 1, then:
∀x1, ...,xn ∈ dom φ : φ(z1x1 + ...+ znxn) ≥ z1φ(x1) + ...+ znφ(xn).

Remark A.10. It is to be noted that an affine function is both convex and concave. In particular,
Jensen’s inequality holds in both directions, i.e. Jensen’s inequality is actually an equality for affine
functions.

Remark A.11. dom φ results from the epigraph by projection on Rd which is a linear transforma-
tion. Since it is known that linear transformations conserve convexity (cf. [Roc70]) the effective
domain of a convex function must be convex.

Theorem A.12 (Cf. [Roc70]). The pointwise supremum of an arbitrary collection of convex func-
tions is convex.

Proof. The proof is following [Roc70]. Let I denote an index set, φi(i ∈ I) a collection of convex
functions. φ(x) := sup {φi(x)|i ∈ I} ⇒ epi φ = ∩iepi φi. It is known that the intersection of
convex sets results in a convex set again.

In order to be able to state the next theorem we will need to introduce more terminology.

Definition A.13 (Proper Convex Function). A convex function φ is called proper iff dom φ 6= ∅
and ∀x ∈ dom φ : φ(x) > −∞.

We could say proper convex functions represent the non-pathological case, they are the type of
functions we would normally consider.

Definition A.14 (Relative Interior). Let C be a convex set. Its relative interior ri C is defined is its
interior points relative to aff C: ri C = {x ∈ C|∃r > 0 : B(x, r) ∩ aff C ⊂ C}.

The motivation for introducing the concept of relative interior points can be best understood by an
example. Consider a line segment in R3. It does not have truly interior points in the whole metric
space R3. However the points between its two delimiting end points are interior points relative to
its affine hull R1.
Note, if we denote the closure of C by cl C we have : ri C ⊂ C ⊂ cl C ⊂ cl (aff C) = aff C
([Roc70]).

19

Theorem A.15. Let φ be a proper convex function and let S be any closed, bounded subset of
ri (dom φ). Then φ is Lipschitzian relative to S.

Proof. Confer to [Roc70].

A.2 Saddle Points and Game-Theoretic Essentials
This work uses some game-theoretic notions that will be briefly listed in this section. For a
proper game-theoretic introduction the reader is advised to refer to related textbooks such as
[Owe95, MJHA05]. The game-theoretic terminology we need for our exposition is very basic
and furthermore, our reduction to the synthesized agents allows us to restrict our attention to the
case of two-player games. A central aspect in two-player games are minimax-equilibria which
correspond to the general notion of saddle-points.

A.2.1 Saddle-points

Minimax theory treats a class of optimization problems which involve not just maximization or
minimization, but a combination of the two. We will confine our considerations to the case of
continuous functions on compact domains. A treatment of the more general case can be found in
[Roc70]. Let φ : X × Y → R where X, Y are compact sets.
We can consider a minimization problem for function maxy∈Y φ(x, ·) : X → R and a maximiza-
tion problem for function minx∈X φ(·, y) : Y → R.
It is well known, that we always have maxy∈Y minx∈X φ(x,y) ≤ minx∈X maxy∈Y φ(x,y).
If the values minx∈X maxy∈Y φ(x,y) and maxy∈Y minx∈X φ(x,y) coincide, the common value v
is called minimax- or saddle-value of function φ (with respect to minimizing over X and maximiz-
ing over Y).

Definition A.16 (Saddle-point). A point (x̃, ỹ) ∈ X × Y is a saddle-point (with respect to mini-
mizing over X and maximizing over Y) if
∀x ∈ X∀y ∈ Y : φ(x̃,y) ≤ φ(x̃, ỹ) ≤ φ(x, ỹ).

An adaptation of Lemma 36.2 in [Roc70] is:

Lemma A.17. (x̃, ỹ) ∈ X × Y is a saddle-point of φ (with respect to minimizing over X and
maximizing over Y) iff x̃ = arg minx∈X maxy∈Y φ(x,y), ỹ = arg maxy∈Y minx∈X φ(x,y) and
the minimax value v exists. If (x̃, ỹ) is a saddle-point then φ(x̃, ỹ) = v.

A.2.2 Some fundamental game-theoretic notions

Many game-theoretic problems can be reduced to a specific type of game called normal − form
game.

Definition A.18 (cf. [SLBon]). A finite n-player normal form game is a tuple (P,N,A,O,µ,$),
where P is a finite set of k players indexed by i, A = (A1, ..., Ak), where Ai is a finite set of
actions (or synonymously pure strategies) available to the ith player. Each a = (a1, ..., an) ∈ A

20

is called action profile. O denotes a set of outcomes, µ : A → O maps an action to an outcome,
$ = ($1, ..., $k) is the ordered set of individual payoff functions, where $i : O → R determines
the individual payoff for the ith player.

Note, a more wide-spread definition of normal-form games avoids the introduction of the outcome
set O and directly maps actions to payoffs. We can consider this as a special case of our definition
by setting O := A and µ to the identity mapping. Unless otherwise stated, we assume to work
with this latter configuration. Also note, we can easily extend the definition to handle infinite (but
compact) action sets as will be required for our treatment.
Agents are generally not required to always play the same, fixed action. Instead they may be
allowed to randomize over their action set. A distribution over an individual action set Ai is called
mixed strategy. A pure strategy can be considered as a special case of a mixed strategy. Many
times, agents playing actions generated according to mixed strategies can have higher expected
payoffs than if they would restrict themselves to deterministic behavior. The ordered set of all
mixed strategies s = (s1, ..., sk) of all agents is called strategy profile.
In game theory, it is standard to assume agents playing the game act rational, i.e. their behavior
is governed by the desire to maximize their individual payoff functions. Given the other agents’
strategy profile s¬i it is in the best interest of the ith rational player to play a best response s∗i to it.
The best response s∗i is given by s∗i = argmaxsi

$i(si, s¬i).
Certain types strategy profiles that can happen to be played are of special interest to strategic
agents. A famous one is the so-called Nash-equilibrium.

Definition A.19 (Nash-equilibrium). A strategy profile s̃ = (s̃1, ..., s̃k) is a Nash-equilibrium, if
for each i ∈ {1, ..., k} we have $i(si, s̃¬i) ≤ $i(s̃i, s̃¬i).

In other words, a Nash-equilibrium is a strategy profile where each player plays best-response to
the strategies of all other players. Hence, if every player knew that the current strategy profile is a
Nash-equilibrium, no single player would have an incentive to unilaterally deviate from its current
strategy.
As a special case, we now consider two-player (normal-form) games. Such a game is called zero-
sum, if $1(s1, s2) = −$2(s1, s2)∀s1, s2. Therefore, we can redefine say player 1’s desire to maxi-
mize its payoff by stating that its goal is to minimize its loss given by $:= $2 instead.

A famous result, called Minimax-Theorem or von Neumann’s Theorem, found by J. von Neumann
states that in every Nash-equilibrium of a finite, two-player zero-sum game the minmax-value is
attained and equals the maxmin-value and that in every such a game, a Nash-equilibrium exists.
So, a Nash-equilibrium in a two-player zero-sum game is given by a saddle-point (s̃1, s̃2) of $ (
which directly follows from Definition A.16 or with the Minimax-Theorem in conjunction with
Lemma A.17). Since $(s̃1, s̃2) equals the minimax value such a saddle-point forming the Nash-
equilibrium is commonly referred to as a minimax-equilibrium of the game.

21

B Supplementary prerequisites
Next, we will establish some properties needed in Appendix C. We do not suppose they are novel
since the material seems standard. However, we provide our own derivations.

Lemma B.1. Let Ω : X × Y → R be a continuous mapping (on X × Y) where X,Y are compact
subsets of Hilbert-spaces. We have:
Ψ : Y → R,y 7→ infx∈X Ω(x,y) is continuous.

Proof. Due to compactness we have Ψ(y) = minx∈X Ω(x,y),∀y. Let (yn) be a sequence in Y
converging to y ∈ Y as n → ∞. We wish to show that limn→∞Ψ(yn) = Ψ(y). Before we
proceed with the proof we need to establish two prerequisites.

(i) Let (an) be a sequence in H and a ∈ H where H is a Hilbert-space with norm ‖·‖.
CLAIM1: If every subsequence of (an) contains a subsequence converging to a then (an) itself
converges to a.
Proof (CLAIM1): Let an 9 a. Hence, ∃e ≥ 0∀n ∈ N∃m(n) ≥ n :

∥∥am(n) − a
∥∥ ≥ e. Then we can

define the subsequence (am(n)) where
∥∥am(n) − a

∥∥ ≥ e, ∀n ∈ N. This subsequence of (an) does
not contain a subsequence converging to a. q.e.d.

(ii) Let (yn) be a sequence in Y converging to y ∈ Y as n → ∞ and (an) be the sequence in R
defined as an = Ψ(yn), ∀n ∈ N.
CLAIM2: There exists a subsequence of (an) converging to Ψ(y).
Proof (CLAIM2): Define an arbitrary sequence (xn) such that Ω(xn,yn) = minx∈X Ω(x,yn), ∀n ∈
N. Note, such a sequence exists (owing to compactness of X) and we have ∀n ∈ N : Ψ(yn) =
Ω(xn,yn).
Since X × Y is a compact set in a complete metric space, there exists a convergent subsequence
(x′n,y

′
n) of sequence (xn,yn). Let x ∈ X such that (x′n,y

′
n)→ (x,y).

We have : ∀v ∈ X : Ω(v,y) = limn→N Ω(v,y′n) ≥6 limn→N Ω(x′n,y
′
n) = 7 Ω(x,y). Hence,

Ω(x,y) = minv∈X Ω(v,y) = Ψ(y).
Define (a′n) where a′n := Ψ(y′n). We know (a′n) is a subsequence of (an). Now, we have
limn→∞ a

′
n = limn→∞Ψ(y′n) = limn→∞Ω(x′n,y

′
n) = Ω(x,y) = Ψ(y). q.e.d.

The final argument completing the proof is the following: If (a′n) is any subsequence of (an) =
(Ψ(yn)) then there is a subsequence (y′n) of (yn) still converging towards y such that a′n =
Ψ(y′n),∀n ∈ N. Sequence (a′n) meets the preconditions of (ii) and thus, we know that there
is a subsequence of subsequence (a′n) which converges towards a = Ψ(y).

Hence, every subsequence of (an) contains a subsequence that converges to a. By (i), we know
that Ψ(yn) = an → a = Ψ(y) as n→∞.

6Since by definition x′n ∈ argminx∈XΩ(x,y′n).
7By continuity.

22

Providing an analogous argument one can prove the following lemma:

Lemma B.2. Let Ω : X × Y → R be a continuous mapping (on X × Y) where X,Y are compact
subsets of Hilbert-spaces. We have:
φ : X → R,x 7→ supy∈Y Ω(x,y) is continuous.

Proof. The proof is completely analogous to the one provided for Lemma B.1 and shall be omitted
here.

C Derivation of Theorems 3.4 and 3.5
In Section 3.2.2, we presented Theorems 3.4 and 3.5. Theorem 3.4 established the convergence
of the averaged plans p̄[T] = 1

T

∑T
t=1 p(t) and ā[T] = 1

T

∑T
t=1 a(t) to a set KP × KA of feasible

saddle points of the overall social player cost function Ω - an insight that served as a linchpin for
the ensuing theoretical argumentation regarding properties of the negotiation setup. Both theorems
enabled us to establish the connection of the original planning problem to the planning outcome
spawned by our mechanism and allowed us to infer social optimality results.
For the sake of a coherent exposition we decided to omit the respective proofs in Section 3.2.2.
This gap shall be closed now.

C.1 Maxmin and minmax inequalities
Before commencing with the proofs we need to establish some preliminary results. As always, we
assume that all agents employ no-regret learning and thus, the synthesized agents P and A have
sublinear regret bounds ∆P and ∆A, respectively.

Lemma C.1. Let p̄[T] := 1
T

∑T
t=1 p(t), ā[T] := 1

T

∑T
t=1 a(t) be the respective average strategies

until time step T.
We have:

min
p

max
a

Ω(p, a) ≤ max
a

Ω(p̄[T], a) ≤ max
a

min
p

Ω(p, a) +
∆P (T)

T
+

∆A(T)

T
.

and

min
p

max
a

Ω(p, a) ≤ min
p

Ω(p, ā[T]) +
∆P (T)

T
+

∆A(T)

T
≤ max

a
min

p
Ω(p, a) +

∆P (T)

T
+

∆A(T)

T
.

Proof. minp maxa Ω(p, a) ≤ maxa Ω(p̄[T], a)

= maxa Ω(1
T

∑T
t=1 p(t), a)

≤8 maxa
1
T

∑T
t=1 Ω(p(t), a)

8Ω(·,a) convex ∀a.

23

≤9 1
T

∑T
t=1 Ω(p(t), a(t)) + ∆A(T)

T

≤10 minp
1
T

∑T
t=1 Ω(p, a(t)) + ∆P (T)

T
+ ∆A(T)

T

≤11 minp Ω(p, ā[T]) + ∆P (T)
T

+ ∆A(T)
T

≤ maxa minp Ω(p, a) + ∆P (T)
T

+ ∆A(T)
T

Remark C.2. The proof of the above Lemma was inspired by Freund and Shapire’s alternative proof
for von Neumann’s minimax theorem which they presented in [FS96]. They considered a zero-sum
matrix game between a no-regret learning player and a best-response environment (adversary).
Their payoff-function model allowed them to leverage bi-linearity in their derivations. In contrast,
we consider both player and adversary to be no-regret learners and assume player cost Ω to be
merely continuous and convex-concave. (In addition, we tolerate the (synthesized) adversary A to
have a slightly different revenue function ΩA(p, a) = Ω(p, a)− 〈c,p〉).12

Remark C.3. It is standard knowledge that for any real-valued function κ on a nonempty product
set X × Y , we have supx∈X infy∈Y κ(x,y) ≤ infy∈Y supx∈X κ(x,y) [Roc70]. For our case, this
fact translates to maxa∈FA

minp∈FP
Ω(p, a) ≤ minp∈FP

maxa∈FA
Ω(p, a), since we work with

compact sets and continuous functions.
We now have the means to show that the minmax- and the maxmin value coincide. Such a result
was first proven in von Neumann’s well-known minimax theorem ([vN28]) for the case of two-
player, zero-sum matrix games (Theorem C.4).

Theorem C.4. Let Ω : FP × FA → R be the payoff function of the two- player game between
synthesized player P and adversary A (cf. Sec. 3.2).
Then we have: maxa minp Ω(p, a) = minp maxa Ω(p, a).

Proof. By construction of Ω we have: ∀a ∈ FA : Ω(·, a) : FP → R convex and ∀p ∈ FP :
Ω(p, ·) : FA → R concave.
We can learn to play the game employing our no-regret learning mechanism (with one synthesized
player agent P and one synthesized adversarial agent A). We can then apply Lemma C.1 to obtain
the inequality minp maxa Ω(p, a) ≤ maxa minp Ω(p, a) + ∆P (T)

T
+ ∆A(T)

T
. Letting T → ∞

we can conclude minp maxa Ω(p, a) ≤ maxa minp Ω(p, a). From Lemma C.3 we also know
maxa minp Ω(p, a) ≤ minp maxa Ω(p, a).

C.2 Proof of Theorem 3.5
With the help of the inequalities found above, we are able to prove Theorem 3.5. Remember, it
stated that

1

T

T∑
t=1

Ω(p(t), a(t))→ min
p

max
a

Ω(p, a) (as T →∞).

9Lemma 3.3.
10Lemma 3.2.
11Ω(p, ·) concave ∀p.
12Remember, the actual payoff of the entire collective of adversarial agents is ΩA(p,a)−

∑n
j=1 βj(νj(p)). How-

ever, since the player penalty βj(νj(p)) in nature for overconsumption of resource j is not controllable by adversarial
agents we could construe the game to be played by an adversary whose payoff function was given by ΩA.

24

if P and A incur no regret.

Proof. From the inequalities in the proof of Lemma C.1 we know:

min
p

max
a

Ω(p, a) ≤ 1

T

T∑
t=1

Ω(p(t), a(t)) +
∆A(T)

T
≤ max

a
min

p
Ω(p, a) +

∆P (T)

T
+

∆A(T)

T
.

Considering ∆P ,∆A ∈ o(T) and the result from Theorem C.4 completes the proof.

C.3 Proof of Theorem 3.4
Theorem 3.4 played a central role in our theoretical considerations. Remember, it stated the fol-
lowing:
If synthesized player P and synthesized adversary A suffer sublinear external regret, the average
strategies p̄[T] = 1

T

∑T
t=1 p(t) of P and ā[T] = 1

T

∑T
t=1 a(t) of A converge to a subset of saddle-

points of objective function Ω (as T →∞).

Proof. Remember, FP ⊂ V, FA ⊂ Rn denote the compact, convex feasible sets of the synthesized
player P and adversary A, respectively. Before proceeding, we establish some notation. Let
v := maxa minp Ω(p, a) . From Theorem C.4 we know that also v = minp maxa Ω(p, a). Let the
set of all saddle-points of Ω be denoted by E.
E = {(p, a) ∈ FP × FA|∀p̃ ∈ FP∀ã ∈ FA : Ω(p, ã) ≤ Ω(p, a) ≤ Ω(p̃, a)} is the set of all feasi-
ble saddle points of Ω (cf. [Roc70]) which correspond to the minimax-equilibria of the game.
Let KP :=

{
p ∈ V |∀e > 0, t ∈ N∃T > t :

∥∥p− p̄[T]

∥∥ < e
}

be the set of all cluster points of
sequence (p̄[T])T∈N, KA :=

{
a ∈ Rn|∀e > 0, t ∈ N∃T > t :

∥∥a− ā[T]

∥∥ < e
}

the set of all cluster
points of sequence (ā[T])T∈N . We could restate the definition and say KP consists of all vectors
being the limit of a subsequence (sT)T∈N of (p̄[T])T∈N. The same way, KA consists of all vectors
that are limit of a subsequence (uT)T∈N of (ā[T])T∈N. Since we operate in compact subsets of
Hilbert-spaces we know KP ⊂ FP , KA ⊂ FA and KA, KP 6= ∅ if FP , FA 6= ∅.
The setsKP , KA are of great interest because the sequences (p̄[T])T∈N, (ā[T])T∈N converge towards
them, respectively. With abuse of notation, we can write limT→∞ p̄[T] = KP , limT→∞ ā[T] = KA.

In order to prove the claim of this theorem, we will show KP ×KA ⊂ E, i.e. (p̃, ã) ∈ E,∀p̃ ∈
KP , ã ∈ KA.
To do so, it suffices to show

∀p̄ ∈ KP , ā ∈ KA : max
a

Ω(p̄, a) ≤ Ω(p̄, ā) ≤ min
p

Ω(p, ā).

We introduce the well-defined functions: ψ : FA → R, a 7→ minp Ω(p, a) and φ : FP → R,p 7→
maxa Ω(p, a) and note, ∀a,p : ψ(a) ≤ Ω(p, a) ≤ φ(p).
Combining the the well-known maxmin inequality (cf. Remark C.3) and the results from Lemma
C.1, we conclude for all T ∈ N:

25

maxa minp Ω(p, a)
≤ maxa Ω(p̄[T], a)

≤ maxa minp Ω(p, a) + ∆P (T)
T

+ ∆A(T)
T

and
maxa minp Ω(p, a)

≤ minp Ω(p, ā[T]) + ∆P (T)
T

+ ∆A(T)
T

≤ maxa minp Ω(p, a) + ∆P (T)
T

+ ∆A(T)
T

.

Hence, the following limits exist and are as follows:

lim
T→∞

φ(p̄[T]) = lim
T→∞

max
a

Ω(p̄[T], a) = max
a

min
p

Ω(p, a) = v (10)

v = max
a

min
p

Ω(p, a) = lim
T→∞

min
p

Ω(p, ā[T]) = lim
T→∞

ψ(ā[T]). (11)

Let p̃ ∈ KP , ã ∈ KA be arbitrary choices. By definition of the cluster sets there exists a sub-
sequence (sT)T of (p̄[T])T and a subsequence (uT)T of (ā[T])T , such that : sT → p̃ ∧ uT → ã
(T → ∞). We know Ω, φ, ψ are continuous (cf. Sec. 3 and Appendix B, respectively). Hence,
v = limT→∞ ψ(ā[T]) = limT→∞ ψ(u[T]) = ψ(ã). Analogously, we obtain: v = φ(p̃). Hence,
v = φ(p̃) ≥ Ω(p̃, a), ∀a and thus, v ≥ Ω(p̃, ã) ≥ ψ(ã) = v. (Since p̃, ã were arbitrary choices
we conclude Ω(KP , KA) = {v}.)
With the help of Eq. 10 and Eq. 11, we can now conclude that (p̃, ã) is a saddle point:
maxa Ω(p̃, a) = φ(p̃) = v = Ω(p̃, ã) = v = ψ(ã) = minp Ω(p, ã).
Since p̃, ã were arbitrary choices we conclude KP ×KA ⊂ E.

D Nonnegativity of remainder fee rj
As always, let aj be Aj’s plan and let p denote the overall player plan. In Sec. 3.1, we described
how each player agent Pi transfers a payment aj〈lji,pi〉 − βji(p) − djirj(a

j) to each adversarial
agent Aj . Furthermore, we mentioned that the magnitude of the remainder rj(a

j) = ajyj + β∗j (aj)
was always nonnegative. We will proof this claim now. As a first step, we show that conjugation
reverses inequalities:

Lemma D.1. Let d ∈ N, φ : Rd → R ∪ {−∞,∞}, γ : Rd → R ∪ {−∞,∞} be convex functions.
If ∀x ∈ Rd : φ(x) ≤ γ(x), then ∀y ∈ Rd : φ∗(y) ≥ γ∗(y).

Proof. According to the premise we have ∀x :φ(x) ≤ γ(x) and consequently, ∀x : −φ(x) ≥
−γ(x). Hence, ∀y : φ∗(y) = supx〈x,y〉 − φ(x) ≥ supx〈x,y〉 − γ(x) = γ∗(y).

We can now show the desired result13:

Lemma D.2 (Nonnegativity of remainder rj). For all aj ≥ 0, we have rj(a
j) ≥ 0.

13Remember, the feasible set was always contained in the positive half-space, i.e. FA ⊂ Rn
+. Therefore, we only

need to consider nonnegative taxes aj

26

Proof. Since aj, yj ≥ 0 we only have to show that β∗j (aj) ≥ 0. In Sec. 3.1, we required βj(x) ≤

0,∀x ∈ R. Thus, βj(x) ≤ χ(x) where χ(x) =

{
0, x ≤ 0
∞, otherwise is the convex indicator function

of the non-positive half-space.
According to Lemma D.1 we have ∀y ∈ R : β∗j (y) ≥ χ∗(y). Refering to the definition of a convex

function’s conjugate it is easy to verify that χ∗(y) =

{
0, y ≥ 0
∞, otherwise .

Hence, ∀aj ≥ 0 : β∗j (aj) ≥ 0.

E Hard Inter-Agent Constraints
Throughout the paper we assumed that all inter-agent constraints (resource constraints) in nature
were soft. That is, player agents can violate the constraints as much as they like - as long as they
are willing to pay the increased price for such a behavior. In the light of our resource interpretation
of these constraints this translates to the property of nature that resources are unlimited but tend
to become arbitrarily expensive with increasing demand once a certain level of overall resource
consumption is exceeded. As an example for a plausible domain where this model may be ac-
curate, consider our network routing example where the resources are bandwidth-limitations on
the communication links. In a conceivable scenario, we could imagine that once overall usage
of a particular link threatens to exceed the maximal bandwidth, the network provider rents addi-
tional bandwidth from competitors who charge at expensive rates monotonically increasing with
the rented bandwidth. Alternatively, the extra cost for resource constraint violation could encode
the delay due to congestion.
However, one may wish to apply our method to planning in environments with hard constraints,
i.e. in scenarios where a soft constraint model is not applicable but where the available resources
are strictly limited.
In such settings the individual objective functions are linear and the descriptions of the feasible
sets of each player agent contain the constraints {νj(p) ≤ 0}j=1...n where νj(p) = 〈lj,p〉 − yj (cf.
Eq. 1). In other words, instead of having minpi

ωPi
(p) s.t. : pi ∈ Fpi

as its individual convex
optimization problem, each player agent Pi should optimally solve:

min
pi

〈ci,pi〉 s.t. : pi ∈ Fpi
∩Hp¬i

(12)

whereHp¬i
:= {pi|ν1(p) ≤ 0, ..., νn(p) ≤ 0}. Note, subscript p¬i indicatesHp¬i

is parameterized
by p¬i being the overall plan of all players other than Pi. The socially optimal solution can be found
as the solution to the optimization problem:

min
p
〈c,p〉 s.t. : p ∈ Fp ∩H (13)

where H := {p|ν1(p) ≤ 0, ..., νn(p) ≤ 0}.
While our coordination mechanism needs to model the inter-agent constraints as being soft our
mechanism is also suitable to achieve approximate coordination in the hard constraint scenario.

27

That is, it can be set up such that the overall player part p̃ of a negotiation outcome is an approxi-
mate solution of optimization problem (13).
To achieve this, we simply need to define an artificial penalization function βj for each hard inter-
agent constraint νj(p) ≤ 0 and assign an adversarial agent Aj to it as before (j = 1, . . . , n). While
the true cost in nature is 〈c,p〉 we invoke the negotiation setup with the augmented social cost
function ω(p) = 〈c,p〉+

∑
j βj(νj(p)) and feasible set Fp. After learning in the repeated game is

concluded, we know that the negotiation outcome p̃ is optimal with respect to the regularized social
cost function we defined, i.e. we have p̃ = argminp∈Fp

ω(p) = argminp∈Fp
〈c,p〉+

∑
j βj(νj(p)).

In order to make sure that this solution is approximately optimal with respect to optimization
problem (13) we need to assert that minp∈Fp∩H〈c,p〉 ≈ 〈c, p̃〉 and that dist(p̃, Fp ∩ H) < ε for
some ε > 0 which we predefine to encode the extend to which we consider constraint violations to
be negligible.
Obviously, we can accomplish this by defining regularization functions βj to penalize constraint
violations accordingly. A simple yet perfectly suitable choice for βj may be the prominent hinge-
loss function which satisfies all the required model assumptions such as continuity, convexity and
monoticity. That is we define βj(νj(p)) = max(0, uj νj(p)) where uj is a parameter defining the
slope determining how much each unit of constraint violation is penalized.

28

Carnegie Mellon University does not discriminate and Carnegie Mellon University is
required not to discriminate in admission, employment, or administration of its programs or
activities on the basis of race, color, national origin, sex or handicap in violation of Title VI
of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section
504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the
Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay,
lesbian and bisexual students from receiving ROTC scholarships or serving in the military.
Nevertheless, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, telephone (412) 268-6684 or the
Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA
15213, telephone (412) 268-2056

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

	1 Introduction
	2 Preliminaries
	2.1 Model and Notation

	3 Problem transformation
	3.1 Introduction of adversarial agents
	3.2 Planning as learning in a repeated game
	3.2.1 Game between two synthesized agents
	3.2.2 Social optimality

	3.3 Communication costs

	4 Design goals
	5 Related Work
	6 Experiments
	7 Discussion
	A Background
	A.1 Convex Sets and Convex Functions
	A.2 Saddle Points and Game-Theoretic Essentials
	A.2.1 Saddle-points
	A.2.2 Some fundamental game-theoretic notions

	B Supplementary prerequisites
	C Derivation of Theorems 3.4 and 3.5
	C.1 Maxmin and minmax inequalities
	C.2 Proof of Theorem 3.5
	C.3 Proof of Theorem 3.4

	D Nonnegativity of remainder fee rj
	E Hard Inter-Agent Constraints

