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Abstract

Markov random fields (MRFs), or undirected graphical models, are graphical rep-
resentations of probability distributions. Each graph represents a family of dis-
tributions – the nodes of the graph represent random variables, the edges encode
independence assumptions, and weights over the edges and cliques specify a par-
ticular member of the family.

There are three main classes of tasks within this framework:the first is to
perform inference, given the graph structure and parameters and (clique) feature
functions; the second is to estimate the graph structure andparameters from data,
given the feature functions; the third is to estimate the feature functions themselves
from data.

Key inference subtasks include estimating the normalization constant (also
called the partition function), event probability estimation, computing rigorous
upper and lower bounds (interval guarantees), inference given only moment con-
straints, and computing the most probable configuration.

The thesis addresses all of the above tasks and subtasks.
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Chapter 1

Introduction

The task of prediction; estimating an output or response given an input; predates
humans. Our large brains, evolutionary biologists insist,evolved in part to solve
this onerous task. These brains, though large, are very “stochastic” and fragile and
seem to have limited computational powers. This, and perhaps mere curiosity, led
to the conceit of Artificial Intelligence; to solve this prediction task using not the
evolved large brains but using mathematics. Unfortunately, due to the continuing
influences of the Enlightenment period, for a while AI scientists equated reasoning
with “rational” deduction; and tried to come up with if-then-else rules for various
prediction tasks. More modern influences such as quantum physics made many
appreciate the use of probabilistic machinery, not just formodeling uncertainty but
for making efficient inductive prediction possible at all.

Thus we arrive at the task of probabilistic inference: to predict using a sta-
tistical model; a model which describes the probabilistic relationship between the
input and the response. An elementary way to represent such arelationship is a
random field, or distribution, over the input and the response. A general stochastic
system has many variables of interest, not just a particularinput and response; such
a system then can be modeled by a random field over the variables characterizing
the system.

In [18], Pedro Domingos defines an “interface layer” for any field of research
as an intermediate layer that provides an easy language for applications above the
layer and which would be “implemented” by infrastructure below the layer. This
would make any innovation in the infrastructure immediately available to applica-
tions above the interface layer. In programming systems forinstance, high-level
languages act as an interface between the infrastructure ofcompilers and code op-
timizers below, and the application programs above. In AI and machine learning
then, a framework for representing a random field over the stochastic variables of
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a system, and which would allow efficient inference, can act as an interface layer.
Probabilistic graphical models, to a certain extent, servesuch a purpose.

Probabilistic graphical models, as the name suggests, borrow from both prob-
ability theory and graph theory. In this framework, the conditional independences
among the random variables of the system are represented by the edges of a graph;
in particular, a distribution is specified by functions overthe cliques (fully con-
nected components) of the graph. When this graph is undirected, these are called
undirected graphical models. This modular and graphical nature of the represen-
tation offers not only a visually intuitive view of the stochastic interactions in a
system, but also the ingredients enabling a good “infrastructure” layer: graph-
theoretic and related combinatorial techniques are naturally available for inference
and prediction. As befits an interface layer, applications abound, and include med-
ical diagnosis, error correcting codes, control and tracking problems, image and
speech processing, bio-informatics, statistical mechanics, social networks and con-
tingency table analysis: evolution would be most proud of this computational brain.
The next section gives an overview of this framework.

1.1 Representation theory

Another term for undirected graphical models is Markov random fields and the
reason why forms the essence of this representation theory section. Let us first
parse the “Markov random fields” phrase. In physics, a field isan assignment of
a physical quantity to points in space-time. For instance, agravitational field is
an assignment of a gravitational vector to points in space-time. Consider now a
p-dimensional space, spanned by values ofp random variables instead of just the
four of space and time. A random field is an assignment of a probability measure
to points in thep−dimensional space. Just as a gravitational field describes agrav-
itational system, a random field describes a stochastic system. Thus a random field
with a compact representation, and accessible inference procedures can be used as
an interface layer for stochastic system applications.

2p

X1 . . . Xp
P (X̄)

Figure 1.1: Random field over binary variables
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The key aspect is compact representation. Figure (1.1) shows a brute-force
“table” representation for a random field overp binary valued random variables
{X1, . . . ,Xp}. The number of configurations is2p, and storing an assignment of a
probability measure to each of these would lead to a table of size 2p. This is quite
large for largep, and this when variables are just binary valued, instead of taking
values from a larger set, or even being continuous valued. Even simple inference
tasks such as computingPr(X1 = 1) would require accessingO(2p) entries of the
table.

Markov random fields use Markov assumptions to give compact representa-
tions for random fields. A common example of a Markov propertyis the first order
Markov property of a Markov chain (Figure (1.2)). This asserts that the future vari-
ables are conditionally independent of the past variables given the present variable.
This can be generalized to graphs other than a chain. LetG = (V,E) denote an
undirected graph, withV the set of nodes andE the set of undirected edges. Let
Xi denote the variable associated with nodei, for i ∈ V ; giving a collated random
vectorX = {X1, . . . ,Xp}. The local Markov property for variableXi states that
Xi given its set of neighborsXN(i) is conditionally independent of the rest of the
variables. Figure (1.3) shows an example. This in turn is generalized by the global
Markov property which is defined as follows. Aseparating setof nodes in a graph
G is a set of nodes which when removed disconnect the graph. LetA andB be
the components a separating setS disconnects. The global Markov property states
that variablesXA in A are conditionally independent of variablesXB in B given
the separating variablesXS in S.

XA ⊥p XB |XS (1.1)

X1 X2 X3 X4

X3 ⊥ X1 |X2

Figure 1.2: First order Markov property

This brings us to the definition of a Markov random field over a graphG: it is
the set of distributions which satisfy the set of all global Markov properties for the
graphG.

As stated, it might be unclear how this conditional independence formalism,
while intuitive, leads to a compact representation; in fact, it might seem unwieldly
for the purposes of inference.
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X1

X4

X5

X7

X2

X3 X6

X1 ⊥ X5 | (X2, X3, X4)

Figure 1.3: Local Markov property

The following theorem by Hammersley and Clifford [35] however specifies an
equivalent algebraic condition that any distribution froma graphical model family
must satisfy.

Theorem 1. (Hammersley and Clifford) A positive probability distribution P over
X = {Xi, i ∈ V } satisfies the global Markov properties for a graphG = (V,E) if
and only if it factorizes according to the set of cliques (fully connected components)
C in G,

P (X) ∝
∏

C∈C

ψC(XC) (1.2)

whereψC is a function that depends only on the variables{Xi, i ∈ C}.

The Hammersley Clifford theorem translates the knowledge of conditional in-
dependencies in a stochastic system into a compact representation for a random
field. To see this, consider a distribution over|V | = p random variables – this is
ap− variate function, but the graphical model represents this distribution as a col-
lection of clique functions, each of which depends on a smaller subset of variables.
Figure (1.4) gives an example.

x1

x4ψ123(x1, x2, x3)

ψ34(x3, x4)
x2

x3

P (X) ∝ ψ123(x1, x2, x3)ψ34(x3, x4)

Four variate function→ Three, Two variate function

Figure 1.4: Hammersley Clifford theorem: compact representation
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G(X)

P1(X)

P4(X)

P2(X)

P3(X) {ψ(3)
C (XC)}

Figure 1.5: Undirected graphical models

The representation theory of graphical models is summarized in Figure (1.5).
A graph denotes a family of distributions, each of which satisfies the set of all
Markov properties of that graph. An instance of this family is specified by a set of
clique functions over the cliques of the graph.

1.1.1 Exponential Family Representation

A product of positive functions can also be written as the exponential of a sum of
functions,

P (X) ∝
∏

C∈C

ψC(xC)

∝ exp

(
∑

C∈C

logψC(XC

)
(1.3)

This motivates the exponential family representation. Letφ = {φα, α ∈ C} denote
a set of feature functions orpotentialfunctions, for an index setC. Associated with
φ is a vector of parametersθ = {θα, α ∈ C}. With this notation, the exponential
family of distributions ofX, associated withφ, is given by

P (x; θ) = exp

(
∑

α

θαφα − Φ(θ)

)
. (1.4)

whereZ = exp Φ(θ) is the normalization constant; also called the partition func-
tion. We will typically focus on the logarithm of this normalization constant, the
log-partition functionΦ(θ).

Equations (1.3),(1.4) show that a graphical model distribution with clique fac-
tors {ψC(XC)} can be represented by an exponential family distribution, with
feature functions{logψC}, and unit parameters. When the variables are discrete-
valued, we can represent any graphical model family – not just a distribution within
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that family – with an exponential family with indicator function features, as fol-
lows.

Let Xi denote the domain of variableXi. An indicator functionof an event
is one if that event occurs and zero otherwise. Node value indicator functions are
thus given by

Ik(Xi) =

{
1 if Xi = k
0 o.w.

(1.5)

Any potential functionφ(XC) can thus be represented as a linear combination of
indicator functions,

φC(XC) =
∑

xC

φC(xC) IxC
(XC) (1.6)

This allows us to represent any graphical model family, for agiven graph, by the
exponential family with the clique indicator functions{IxC

(XC)} as features,

p(X; θ) ∝ exp

(
∑

C

θC φC(XC)

)

∝ exp

(
∑

C

∑

xC

θC φC(xC) IxC
(XC)

)

∝ exp

(
∑

C

∑

xC

θ′C,xC
IxC

(XC)

)

1.2 Pairwise MRFs

As discussed in [68], at the expense in increasing the state space one can assume
without loss of generality that the graphical model is a pairwise Markov random
field, i.e., the set of cliquesI is the set of edges{(s, t) ∈ E}. In most of what
follows, we shall thus assume a pairwise random field. Note that this would allow
us to express the potential function and parameter vectors in more compact form
as matrices:

Θ :=




θ11 . . . θ1n
...

...
...

θn1 . . . θnn


Φ(x) :=




φ11(x1, x1) . . . φ1n(x1, xn)
...

...
...

φn1(xn, x1) . . . φnn(xn, xn)




(1.7)
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We will denote the trace of the product of two matricesA andB by the inner
product〈〈A,B〉〉. The normalization constant would thus be given byΦ(Θ) =∑

x∈χ exp 〈〈Θ,Φ(x)〉〉.
Till now we have referred only to undirected graphs and undirected graphical

models; graphical models can also have directed graph representations, these are
more commonly known as Bayesian networks. In this thesis we focus however
on undirected graphical models, and so in what follows, we continue to refer to
undirected graphical models even when we omit the phrase “undirected”.

1.3 Tasks in a graphical model

To use this graphical model framework for prediction, the main tasks are to first
build a graphical model from observed data, and then to perform the prediction
tasks using the built model. These tasks, which we now describe, are typically
intractable, and the contribution of this thesis is a set of techniques to perform
them tractably, if approximately.

A domain expert first lists the random variables of the given stochastic system.

X1

Xp

Data, consisting of multiple (perhaps partially observed)i.i.d. samples of the ran-
dom variables, is observed.

Then comes the specification of the feature functions, whichare the functions over
potential cliques of the graph. These are typically specified by the domain expert;
who either hand-designs them or uses standard functions such as Ising, Potts or
indicator functions for discrete-valued models; they can also be estimated from
data – this is the feature estimation task.
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S

T

XsXt

1jk(Xs, Xt)

1[Xs = Xt]

Given the features, the next task is to specify the graph structure. Here too, the
graph structure can either be specified by the domain expert (grid, chain, etc.), or
it can be learned from data – this is the structure learning task.

Given the features and the structure, the next task is to learn the parameters, which
are the weights over the clique feature functions. These aretypically learn from
data – this is the parameter learning task. These three tasksspecify the graphical
model distribution; which we can now use forinference.

Inference is the task of querying the graphical model. Not any query at large,
but queries about the distribution represented by the graphical model. The basic
inference tasks are as follows.

Computing the log partition function: The partition function is the normaliza-
tion constant of the graphical model distribution. While this serves an aes-
thetic purpose – a distribution without its normalization constant seems amiss
– it is also required to compute the probabilities of assignments.

Event probability estimation: This is the most natural query to a random field;
to compute the probability of an event involving the random variables of
the graphical model. A common example is the probability of amarginal,
which is the event of setting a subset of nodes to a particularvalue, e.g.
Pr(Xi = 1).

Computing upper and lower bounds: Applications might require some guaran-
tees for the approximate estimates of the event probabilities. Computing
rigorous upper and lower bounds for the event probabilitiesgives an interval
in which the true event probability lies – and provides just such a guarantee.
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Inference given moments:Here, we are not given the distribution parameters;
just the expected values (moments) of a given set of functions. The task
however is no less: that of computing event probabilities.

Estimating the MAP configuration: Given an assignment of values to a subset
of the random variables, the maximum a posteriori or MAP configuration is
the most probable assignment of values to the rest of the variables.

1.4 What this thesis is about

In this thesis, we address all the tasks listed above; the three inference tasks, the
structure learning task as well as the feature estimation task. The last two tasks
greatly lighten the load of the domain expert, who is now required to merely list
the random variables of the system; given data, the procedures detailed in this
thesis, as well as allied procedures in the literature, can then be used to construct
a graphical model, and perform efficient, albeit approximate, inference on those
estimated models.

In inference, as noted above, there are three basic subtasks. To approximate the
log partition function, we propose preconditioner approximations (Chapter 3). To
compute the MAP configuration, we propose a quadratic programming relaxation
(Chapter 4). To estimate general event probabilities, we propose (a) variational
Chernoff bounds and (b) variational Chebyshev-Chernoff bounds (Chapters 6 and
7). As the names suggest, we propose rigorous upper and lowerbounds for the
general event probabilities. Even approximation in graphical models is NP-hard;
if one requires a constant-factor approximation. Upper andlower bounds provide
an interval approximation instead; and specify an intervalin which the true event
probability lies. It is hoped that such guarantees enhance the appeal of graphical
models as an interface layer. The Chernoff bounds require the distribution parame-
ters, whereas the Chebyshev bounds require just the expected values or moments
of a given set of functions.

For structure learning, we investigate procedures based onedge-appearance
parameterizations (Chapter 8) and`1 regularized regression (Chapter 9). For fea-
ture estimation, we propose additive conditional random fields (aCRFs); a class
of models which allow efficient estimation of feature functions from data given
the structure (Chapter 11), and sparse additive models (SpAM); a class of mod-
els which allow simultaneous predictor selection and feature estimation from data
(Chapter 12).

All is joint work with John Lafferty. Thè 1 regularized regression work is also
joint with Martin Wainwright; aCRF with Douglas Vail; and SpAM with Han Liu
and Larry Wasserman.



10 Introduction



Part I

Approximate Inference





Chapter 2

Log Partition Function

In this chapter, we will briefly review the task of estimatingthe log-partition func-
tion, or normalization constant, of an undirected graphical model. Revisiting our
notation; letG = (V,E) denote an undirected graph, withV the set of nodes, and
E the set of edges, and letX = {Xs, s ∈ V } denote the random variable associ-
ated with the graphical model. LettingC denote the set of cliques of the graph, the
graphical model distribution ofX is given by,

p(X) =
1

Z

∏

C∈C

ψC(XC)

We focus on pairwise graphical models, so thatC = E, the set of edges;

p(X) =
1

Z

∏

(s,t)∈E

ψst(Xs,Xt) (2.1)

The task is to estimate the partition function,Z =
∑

x

∏
(s,t)∈E ψst(xs, xt). As it

stands this is a sum over exponentially many assignments; with p = |V | nodes, the
number of assignments is2p if the variables are binary valued.

At the very heart of the representation theory of graphical models lies a graph.
This suggests graph-theoretic techniques as the first line of attack. Variable elim-
ination [70] (and its extensions) is just such an algorithm.Consider the tree-
structured graphical model in the figure below with nodesX1, . . . ,X4 as the leaves,
X5,X6 as the first level nodes, andX7 as the root. The graphical model is pairwise,
with potential functions on the edges.
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ψ15 ψ25

ψ57 ψ67

ψ46ψ36

x1 x2
x3 x4

x5 x6

x7

∑

x1,...,x7

ψ15(x1, x5)ψ25(x2, x5)ψ36(x3, x6)

ψ46(x4, x6)ψ57(x5, x7)ψ67(x6, x7)

In variable elimination, instead of a blind-force sum over exponentially many
configurations, weeliminatevariables one at a time: we sum over the values of the
variable being eliminated to leave a new factor which only depends on the rest of
the variables. An appropriately constructed elimination order can greatly reduce
the computations required. In the given example, the graph suggests the following
elimination order. First we eliminate the leaves,

ψ15 ψ25

ψ57 ψ67

ψ46ψ36

x1 x2
x3 x4

x5 x6

x7

∑

x7

∑

x5

ψ57

(
∑

x1

ψ15

∑

x2

ψ25

)

∑

x6

ψ67

(
∑

3

ψ36

∑

x4

ψ46

)

Eliminating the leaf nodes leaves us with factors over the first level nodes,
which are now the new leaves.

x5 x6

x7

m5
m6

ψ57 ψ67

∑

x7

∑

x5

ψ57m5

∑

x6

ψ67 m6

where

m5(x5) =

(
∑

x1

ψ15(x1, x5)

)(
∑

x2

ψ25(x2, x5)

)

m6(x6) =

(
∑

x3

ψ36(x3, x6)

)(
∑

x4

ψ46(x4, x6)

)
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Eliminating these in turn leaves us with a factorm7 over the root, where

m7(x7) =

(
∑

x5

m5(x5)ψ57(x5, x7)

)(
∑

x6

m6(x6)ψ67(x6, x7)

)

Eliminating the root in the end, yields the partition function,

Z =
∑

x7

m7(x7)

In the computations above, we computed sums over assignments of single vari-
ables at a time, the time required is thus linear instead of exponential in the number
of nodes; we could do this because the graph was a tree. Gathering connected
nodes into clusters and forming a tree of such node clusters,over which one then
performs variable elimination, forms the main idea behind the junction tree algo-
rithm [35]. However its complexity is exponential in the size of the largest node
cluster formed, a quantity also called the tree-width. Thus, performing exact infer-
ence using graph-theoretic techniques is tractable only for sparse graphs.

This motivates the “projection optimization” paradigm: approximate the given
complex model by a simpler model, for which exact inference is possible. The task
of approximate inference, under this paradigm, reduces to the task of obtaining a
simpler graph and its parameters thereof, for a simpler graphical model. This is typ-
ically not that Faustian a bargain: even in complex graphs, averaging phenomena
can decouple nodes leading to good approximate simpler graphical models, per-
haps with altered parameter settings. In short, the combinatorial task of partition
function estimation is replaced with the following programme: given a complex
model; and a candidate set of simpler models, compute the model from the candi-
date set which minimizes a divergence measure with the original complex model.
A commonly used measure is the KL divergence measure; most approximate infer-
ence techniques are a combination of selecting candidate sets of simpler models,
and approximating the KL divergence measure itself. Adopting the notation of
[68], if {b(x)} is the simpler model distribution, and{p(x)} is the given complex
model, then the KL divergence measure is given by,

D({b}‖{p}) =
∑

x

b(x) log b(x)−
∑

x

b(x) log p(x) (2.2)

If {q(x)} is the given unnormalized distribution, then,

D({b}‖{p}) =
∑

x

b(x) log b(x)−
∑

x

b(x) log q(x) + log
∑

x

q(x) (2.3)
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Since the last term does not depend on{b}, we need optimize just the first two
terms; various approximation procedures such as belief propagation and mean field
thus have two components: approximation for the entropy term (which when added
with the second term is called the “free energy”), and a candidate set of approxi-
mate models. We refer to [68] for further details.
The process of obtaining a simpler model from a complex modelreduces the de-
grees of freedom. We would then want to simultaneously introduce extra “parame-
ters” to take up the slack. This loosely characterizes the methodology of variational
methods; the extra variational parameters are optimized over to obtain a candidate
simpler model. The earlier divergence minimization techniques can also be cast as
variational methods. In the next section, we give the convexdual characterization
of the log-partition function, which lies at the heart of variational methods.

2.1 Conjugate Dual of the log-partition function

An exponential family distribution with potential function φ(x) and parameterθ is
given by,

p(X; θ) = exp(θ>φ(X)− Φ(θ)) (2.4)

whereΦ(θ) is the logarithm of the normalizing constant of the model; the log-
partition function. It is a convex function ofθ satisfying∂Φ(θ)/∂θα = Eθ [φα(X)].
The convex conjugateΦ∗ is defined byΦ∗(µ) = supθ∈Rm 〈µ, θ〉 − Φ(θ). If
θ̂ = θ(µ) is the parameter attaining the supremum, a calculation shows thatΦ∗(µ)
can be expressed as a negative entropyΦ∗(µ) =

∑
x p(x | θ̂) log p(x | θ̂) andµα =

Eθ̂ [φα(X)]. These relations show that the dual parametersµ are the set of vectors
that can be realized as moments ofφ. The collection of such dual parameters is the
marginal polytope

MARG(G,φ) = (2.5){
µ ∈ R

m |
∑

x

p(x | θ)φ(x) = µ for someθ ∈ R
m

}

and plays a central role in the analysis ofΦ(θ). SinceX is finite, the closure of
MARG(G,φ) is a finite intersection of halfspaces, and is thus indeed a polytope.
It can be shown that

Φ(θ) = sup
µ∈MARG(G,φ)

〈θ, µ〉 − Φ∗(µ) (2.6)

= sup
µ∈M(φ)

〈θ, µ〉 − Φ∗(µ) (2.7)
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whereM(φ) = {µ ∈ R
n | ∑x φ(x)p(x) = µ for somep}. Variational approx-

imations then have the following programme: approximate the polytope to one
with a compact description, and approximate the dual entropy function. We refer
to [64] for a comprehensive introduction to these constructions and their relevance
to variational approximations.
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Chapter 3

Preconditioner Approximations

In the previous chapter, we described the “projection optimization” paradigm;
which reduces the log-partition function computation to anoptimization problem:
of estimating the “closest” simpler model from a candidate set of simple models.
The implementation of this programme however was largely restricted to approx-
imating the KL divergence measure; or the conjugate dual (entropy) of the log-
partition function. In what follows, we leverage recent scientific computing devel-
opments to propose a low time-complexity, non-variationalclass of approximation
techniques that implements the “projection optimization”paradigm differently. We
begin with some background on preconditioners and linear systems, give a high
level idea of the technique, and then move on to formal methodand experiments.

3.1 Preconditioners in Linear Systems

Consider a linear system,Ax = c, where the variablex is n dimensional, andA
is ann × n matrix with m non-zero entries. Solving forx via direct methods
such as Gaussian elimination has a computational complexity O(n3), which is
impractical for large values ofn. Multiplying both sides of the linear system by the
inverse of an invertible matrixB, we get an equivalent “preconditioned” system,
B−1Ax = B−1c. If B is similar toA, B−1A is in turn similar toI, the identity
matrix, making the preconditioned system easier to solve. Such an approximating
matrixB is called a preconditioner.

The computational complexity of preconditioned conjugategradient is given
by

T (A) =
√
κ(A,B) (m+ T (B)) log

(
1

ε

)
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whereT (A) is the time required for anε-approximate solution;κ(A,B) is the
condition numberof A andB which intuitively corresponds to the quality of the
approximationB, andT (B) is the time required to solveBy = c.

Recent developments in the theory of preconditioners are inpart based onsup-
port graph theory, where the linear system matrix is viewed as the Laplacian of
a graph, and graph-based techniques can be used to obtain good approximations.
While these methods require diagonally dominant matrices (Aii ≥

∑
j 6=i |Aij |),

they yield “ultra-sparse” (tree plus a constant number of edges) preconditioners
with a low condition number. In our experiments, we use two elementary tree-
based preconditioners in this family, Vaidya’s Spanning Tree preconditioner [54],
and Gremban-Miller’s Support Tree preconditioner [23].
One example is Vaidya’s preconditioner [54], which is essentially the maximum
spanning tree of the graph. Another is the support tree of [23], which introduces
Steiner nodes, in this case auxiliary nodes introduced via arecursive partitioning
of the graph. We present experiments with these basic preconditioners in the fol-
lowing section.

3.2 Graphical Model Preconditioners

We shall assume a pairwise random field, and thus can express the potential func-
tion and parameter vectors in more compact form as matrices:

Θ :=




θ11 . . . θ1n
...

...
...

θn1 . . . θnn


Φ(x) :=




φ11(x1, x1) . . . φ1n(x1, xn)
...

...
...

φn1(xn, x1) . . . φnn(xn, xn)




(3.1)

In the following we will denote the trace of the product of twomatricesA andB
by the inner product〈〈A,B〉〉. Assuming that eachXi is finite-valued, the partition
functionZ(Θ) is then given byZ(Θ) =

∑
x∈χ exp 〈〈Θ,Φ(x)〉〉. The compu-

tation ofZ(Θ) has a complexity exponential in the tree-width of the graphG and
hence is intractable for large graphs. Our goal is to obtain rigorous upper and lower
bounds for this partition function, which can then be used toobtain rigorous upper
and lower bounds for general event probabilities; this is discussed further in [45].

3.2.1 Main Idea

Consider the graphical model with graphG, potential-function matrixΦ(x), and
parameter matrixΘ. For purposes of intuition, think of the graphical model “en-
ergy” 〈〈Θ,Φ(x)〉〉 as the matrix normx>Θx. We would like to obtain a sparse



3.2 Graphical Model Preconditioners 21

approximationB for Θ. If B approximatesΘ well, then the condition numberκ is
small:

κ(Θ, B) = max
x

x>Θx

x>Bx

/
min

x

x>Θx

x>Bx
= λmax(Θ, B) /λmin(Θ, B)(3.2)

This suggests the following procedure for approximate inference. First, choose
a matrixB that minimizes the condition number withΘ (rather than KL diver-
gence as in mean-field). Then, scaleB appropriately, as detailed in the following
sections. Finally, use the scaled matrixB as the parameter matrix for approximate
inference. Note that ifB corresponds to a tree, approximate inference has linear
time complexity.

3.2.2 Generalized Eigenvalue Bounds

Given a graphical model with graphG, potential-function matrixΦ(x), and para-
meter matrixΘ, our goal is to obtain parameter matricesΘU andΘL, correspond-
ing to sparse graph approximations ofG, such that

Z(ΘL) ≤ Z(Θ) ≤ Z(ΘU). (3.3)

That is, the partition functions of the sparse graph parameter matricesΘU andΘL

are upper and lower bounds, respectively, of the partition function of the original
graph. However, we will instead focus on a seemingly muchstrongercondition; in
particular, we will look forΘL andΘU that satisfy

〈〈ΘL,Φ(x)〉〉 ≤ 〈〈Θ,Φ(x)〉〉 ≤ 〈〈ΘU ,Φ(x)〉〉 (3.4)

for all x. By monotonicity ofexp, this stronger condition implies condition (3.3) on
the partition function, by summing over the values ofX. However, this stronger
condition will give us greater flexibility, and rigorous bounds for general event
probabilities since then

exp 〈〈ΘL,Φ(x)〉〉
Z(ΘU)

≤ p(x; Θ) ≤ exp 〈〈ΘU ,Φ(x)〉〉
Z(ΘL)

. (3.5)

In contrast, while variational methods give bounds on the log partition function,
the derived bounds on general event probabilities via the variational parameters are
only heuristic.

Let S be a set of sparse graphs; for example,S may be the set of all trees.
Focusing on the upper bound, we for now would like to obtain a graphG′ ∈ S
with parameter matrixB, which approximatesG, and whose partition function
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upper bounds the partition function of the original graph. Following (3.4), we
require,

〈〈Θ,Φ(x)〉〉 ≤ 〈〈B,Φ(x)〉〉 , such thatG(B) ∈ S (3.6)

whereG(B) denotes the graph corresponding to the parameter matrixB. Now,
we would like the distribution corresponding toB to be as close as possible to the
distribution corresponding toΘ; that is,〈〈B,Φ(x)〉〉 should not only upper bound
〈〈Θ,Φ(x)〉〉 but should be close to it. The distance measure we use for thisis the
minimax distance. In other words, while the upper bound requires that

〈〈Θ,Φ(x)〉〉
〈〈B,Φ(x)〉〉 ≤ 1, (3.7)

we would like

min
x

〈〈Θ,Φ(x)〉〉
〈〈B,Φ(x)〉〉 (3.8)

to be as high as possible. Expressing these desiderata in theform of an optimization
problem, we have

B? = argmax
B: G(B)∈S

min
x

〈〈Θ,Φ(x)〉〉
〈〈B,Φ(x)〉〉 , such that 〈〈Θ,Φ(x)〉〉

〈〈B,Φ(x)〉〉 ≤ 1.

Before solving this problem, we first make some definitions, which are generalized
versions of standard concepts in linear systems theory.

Definition 1. For a pairwise Markov random field with potential function matrix
Φ(x); the generalized eigenvalues of a pair of parameter matrices (A,B) are de-
fined as

λΦ
max(A,B) = max

x: 〈〈B,Φ(x)〉〉6=0

〈〈A,Φ(x)〉〉
〈〈B,Φ(x)〉〉 (3.9)

λΦ
min(A,B) = min

x: 〈〈B,Φ(x)〉〉6=0

〈〈A,Φ(x)〉〉
〈〈B,Φ(x)〉〉 . (3.10)

Note that

λΦ
max(A,αB) = max

x: 〈〈αB,Φ(x)〉〉6=0

〈〈A,Φ(x)〉〉
〈〈αB,Φ(x)〉〉 (3.11)

=
1

α
max

x: 〈〈B,Φ(x)〉〉6=0

〈〈A,Φ(x)〉〉
〈〈B,Φ(x)〉〉 = α−1λΦ

max(A,B).(3.12)

We state the basic properties of the generalized eigenvalues in the following lemma.
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Lemma 1. The generalized eigenvalues satisfy

λΦ
min(A,B) ≤ 〈〈A,Φ(x)〉〉

〈〈B,Φ(x)〉〉 ≤ λ
Φ
max(A,B) (3.13)

λΦ
max(A,αB) = α−1λΦ

max(A,B) (3.14)

λΦ
min(A,αB) = α−1λΦ

min(A,B) (3.15)

λΦ
min(A,B) =

1

λΦ
max(B,A)

. (3.16)

In the following, we will useA to generically denote the parameter matrixΘ
of the model. We can now rewrite the optimization problem forthe upper bound in
equation (3.9) as

(ProblemΛ1) max
B: G(B)∈S

λΦ
min(A,B), such thatλΦ

max(A,B) ≤ 1(3.17)

We shall express the optimal solution of ProblemΛ1 in terms of the optimal solu-
tion of a companion problem. Towards that end, consider the optimization problem

(ProblemΛ2) min
C: G(C)∈S

λΦ
max(A,C)

λΦ
min(A,C)

. (3.18)

The following proposition shows the sense in which these problems are equivalent.

Proposition 1. If Ĉ attains the optimum in ProblemΛ2, thenC̃ = λΦ
max(A, Ĉ) Ĉ

attains the optimum of ProblemΛ1.

Proof. For any feasible solutionB of ProblemΛ1, we have

λΦ
min(A,B) ≤ λΦ

min(A,B)

λΦ
max(A,B)

(sinceλΦ
max(A,B) ≤ 1) (3.19)

≤ λΦ
min(A, Ĉ)

λΦ
max(A, Ĉ)

(sinceĈ is the optimum of ProblemΛ2)(3.20)

= λΦ
min

(
A,λΦ

max(A, Ĉ)Ĉ
)

(from Lemma 1) (3.21)

= λΦ
min(A, C̃). (3.22)

Thus,C̃ upper bounds all feasible solutions in ProblemΛ1. However, it itself is a
feasible solution, since

λΦ
max(A, C̃) = λΦ

max

(
A,λΦ

max(A, Ĉ)Ĉ
)

=
1

λΦ
max(A, Ĉ)

λΦ
max(A, Ĉ) = 1(3.23)

from Lemma 1. Thus,̃C attains the maximum in the upper bound ProblemΛ1.
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The analysis for obtaining an upper bound parameter matrixB for a given
parameter matrixA carries over for the lower bound; we need to replace a maximin
problem with a minimax problem. For the lower bound, we want amatrixB such
that

B? = min
B: G(B)∈S

max
{x: 〈〈B,Φ(x)〉〉6=0}

〈〈A,Φ(x)〉〉
〈〈B,Φ(x)〉〉 , such that

〈〈A,Φ(x)〉〉
〈〈B,Φ(x)〉〉 ≥ 1(3.24)

This leads to the following lower bound optimization problem.

(ProblemΛ3) min
B: G(B)∈S

λΦ
max(A,B), such thatλΦ

min(A,B) ≥ 1. (3.25)

The proof of the following statement closely parallels the proof of Proposi-
tion 1.

Proposition 2. If Ĉ attains the optimum in ProblemΛ2, thenC = λΦ
min(A, Ĉ)Ĉ

attains the optimum of the lower bound ProblemΛ3.

Finally, we state the following basic lemma, whose proof is easily verified.

Lemma 2. For any pair of parameter-matrices(A,B), we have

〈〈
λΦ

min(A,B)B,Φ(x)
〉〉
≤ 〈〈A,Φ(x)〉〉 ≤

〈〈
λΦ

max(A,B)B,Φ(x)
〉〉
. (3.26)

3.2.3 Main Procedure

We now have in place the machinery necessary to describe the procedure for solv-
ing the main problem in equation (3.4), to obtain upper and lower bound matrices
for a graphical model. Lemma 2 shows how to obtain upper and lower bound pa-
rameter matrices with respect to any matrixB, given a parameter matrixA, by
solving a generalized eigenvalue problem. Propositions 1 and 2 tell us, in princi-
ple, how to obtain the optimal such upper and lower bound matrices. We thus have
the following procedure. First, Obtain a parameter matrixC such thatG(C) ∈ S,
which minimizesλΦ

max(Θ, C)/λΦ
min(Θ, C). ThenλΦ

max(Θ, C)C gives the optimal
upper bound parameter matrix andλΦ

min(Θ, C)C gives the optimal lower bound
parameter matrix. However, as things stand, this recipe appears to be even more
challenging to work with than the generalized mean field procedures. The diffi-
culty lies in obtaining the matrixC. In the following section we offer a series of
relaxations that help to simplify this task.
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3.3 Generalized Support Theory for Graphical Models

In what follows, we begin by assuming that the potential function matrix is positive
semi-definite,Φ(x) � 0, and later extend our results to generalΦ.

Definition 2. For a pairwise MRF with potential function matrixΦ(x) � 0, the
generalized support number of a pair of parameter matrices(A,B), whereB � 0,
is

σΦ(A,B) = min {τ ∈ R | 〈〈τB,Φ(x)〉〉 ≥ 〈〈A,Φ(x)〉〉 for all x} (3.27)

The generalized support number can be thought of as the “number of copies”
τ of B required to “support”A so that〈〈τB −A,Φ(x)〉〉 ≥ 0. The usefulness of
this definition is demonstrated by the following result.

Proposition 3. If B � 0 thenλΦ
max(A,B) ≤ σΦ(A,B).

Proof. From the definition of the generalized support number for a graphical model,
we have that

〈〈
σΦ(A,B)B −A,Φ(x)

〉〉
≥ 0. Now, since we assume thatΦ(x) �

0, if alsoB � 0 then 〈〈B,Φ(x)〉〉 ≥ 0. Therefore, it follows that〈〈A,Φ(x)〉〉
〈〈B,Φ(x)〉〉 ≤

σΦ(A,B), and thus

λΦ
max(A,B) = max

x

〈〈A,Φ(x)〉〉
〈〈B,Φ(x)〉〉 ≤ σ

Φ(A,B) (3.28)

giving the statement of the proposition.

This leads to our first relaxation of the generalized eigenvalue bound for a
model. From Lemma 1 and Proposition 3 we see that

λΦ
max(A,B)

λΦ
min(A,B)

= λΦ
max(A,B)λΦ

max(B,A) ≤ σΦ(A,B)σΦ(B,A) (3.29)

Thus, this result suggests that to approximate the graphical model (Θ,Φ) we can
search for a parameter matrixB?, with corresponding simple graphG(B?) ∈ S,
such that

B? = argmin
B

σΦ(Θ, B)σΦ(B,Θ) (3.30)

While this relaxation may lead to effective bounds, we will now go further, to
derive an additional relaxation that relates our generalized graphical model support
number to the “classical” support number.

Proposition 4. For a potential function matrixΦ(x) � 0, σΦ(A,B) ≤ σ(A,B),
whereσ(A,B) = min{τ | (τB −A) � 0}.
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Proof. Sinceσ(A,B)B − A � 0 by definition andΦ(x) � 0 by assumption, we
have that〈〈σ(A,B)B −A,Φ(x)〉〉 ≥ 0. Therefore,σΦ(A,B) ≤ σ(A,B) from
the definition of generalized support number.

The above result reduces the problem of approximating a graphical model to
the problem of minimizing classical support numbers, the latter problem being
well-studied in the scientific computing literature [6, 3],where the expression
σ(A,C)σ(C,A) is called thecondition number, and a matrix that minimizes it
within a simple family of graphs is called apreconditioner. We can thus plug in
any algorithm for finding a sparse preconditioner forΘ, carrying out the optimiza-
tion

B? = argmin
B

σ(Θ, B)σ(B,Θ) (3.31)

and then use that matrixB? in our basic procedure.
Before turning to the experiments, we comment that our generalized support

number analysis assumed that the potential function matrixΦ(x) was positive
semi-definite. The case when it is not can be handled as follows. We first add
a large positive diagonal matrixD so thatΦ′(x) = Φ(x) + D � 0. Then, for
a given parameter matrixΘ, we use the above machinery to get an upper bound
parameter matrixB such that

〈〈A,Φ(x) +D〉〉 ≤ 〈〈B,Φ(x) +D〉〉 ⇒ 〈〈A,Φ(x)〉〉 ≤ 〈〈B,Φ(x)〉〉+ 〈〈B −A,D〉〉 .
(3.32)

Exponentiating and summing both sides over x, we then get therequired upper
bound for the parameter matrix A; the same can be done for the lower bound.

3.4 Experiments

As the previous sections detailed, the preconditioner based bounds are in principle
quite easy to compute—we compute a sparse preconditioner for the parameter ma-
trix (typically O(n) toO(n3)) and use the preconditioner as the parameter matrix
for the bound computation (which is linear if the preconditioner matrix corresponds
to a tree). This yields a simple, non-iterative deterministic procedure as compared
to the more complex propagation-based or iterative update procedures. In this sec-
tion we evaluate these bounds on small graphical models for which exact answers
can be readily computed, and compare the bounds to variational approximations.

We show simulation results averaged over a randomly generated set of graph-
ical models. The graphs used were 2D grid graphs, and the edgepotentials were
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Figure 3.1: Comparison of lower bounds (left), and upper bounds (right) for small
grid graphs

selected according to a uniform distribution Uniform(−2dcoup, 0) for various cou-
pling strengthsdcoup. We report the relative error,

rel. error= (bound− log-partition-function)/log-partition-function

As a baseline, we use the mean field and structured mean field methods for the
lower bound, and the [59] tree-reweighted belief propagation approximation for
the upper bound. For the preconditioner based bounds, we usetwo very simple
preconditioners, (a) Vaidya’s maximum spanning tree preconditioner [54], which
assumes the input parameter matrix to be a Laplacian, and (b)[23]’s support tree
preconditioner, which also gives a sparse parameter matrixcorresponding to a tree,
with Steiner (auxiliary) nodes. To compute bounds over these larger graphs with
Steiner nodes we average an internal node over its children;this is the technique
used with such preconditioners for solving linear systems.We note that these pre-
conditioners are quite basic, and the use of better preconditioners (yielding a better
condition number) has the potential to achieve much better bounds, as shown in
Propositions 1 and 2. We also reiterate that while our approach can be used to
derive bounds on event probabilities, the variational methods yield bounds only
for the partition function, and only apply heuristically toestimating simple event
probabilities such as marginals.

As the plots in Figure (3.1) show, even for the simple preconditioners used,
the new bounds are quite close to the actual values, outperforming the mean field
method and giving comparable results to the tree-reweighted belief propagation
method. The spanning tree preconditioner provides a good lower bound, while the
support tree preconditioner provides a good upper bound, however not as tight as
the bound obtained using tree-reweighted belief propagation. Although we cannot
compute the exact solution for large graphs, we can compare bounds. Figure (3.2)
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Figure 3.2: Lower bounds for grid graphs of increasing size

compares lower bounds for graphs with up to 900 nodes; a larger bound is neces-
sarily tighter, and the preconditioner bounds are seen to outperform mean field and
structured mean field.



Chapter 4

Quadratic Programming
Relaxations for MAP

4.1 MAP Estimation

In this chapter, we consider the inference problem of computing the maximum a
posteriori (MAP) configuration – the most probable assignment of values to the
nodes – for undirected graphical models.

For tree-structured distributions, the MAP estimate for random fields can be
computed efficiently by dynamic programming. It can also be computed in poly-
nomial time using graph cuts [22] when the parameter settings yield a submodular
energy function. In the general setting, a widely used approximation technique is
max-product belief propagation [42]. The algorithm is convergent on trees, and
its fixed point configuration upon convergence can be shown tobe locally optimal
with respect to a large set of moves [66]. A similar message passing algorithm,
tree-reweighted max product [57], has stronger correctness and convergence guar-
antees. [8] have proposed graph-cut based algorithms that efficiently find a local
energy minimum with respect to two types of large moves. A different direction
has been taken in recent work on linear program relaxations for the MAP problem
in the specific setting of metric labeling. In the metric labeling formulation, the
goal is to find a minimum cost labeling of a set of objects, where the energy or cost
of different labelings is the sum of node and edge costs specified by by a weighted
graph and a metric over the labels. Casting this as an integerlinear program, [28]
proposed linear relaxations for specific metrics. [10] recently extended these tech-
niques using the natural linear relaxation of the metric labeling task, and obtained
stronger approximation guarantees.

We propose a quadratic programming (QP) relaxation to the MAP or metric la-
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beling problem. While the linear relaxations haveO(|E|K2) variables, where|E|
is the number of edges in the graph andK is the number of labels; in our QP for-
mulation there arenK variables, and yet we show that the quadratic objective func-
tion more accurately represents the energy in the graphicalmodel. In particular, we
show that the QP formulation computes the MAP solution exactly. Under certain
conditions however, the relaxation results in a non-convexproblem, which requires
an intractable search over local minima. This motivates an additional convex ap-
proximation to the relaxation, which we show satisfies an additive approximation
guarantee. We also extend the relaxation to general variational “inner polytope”
relaxations which we also show to compute the MAP exactly. Experiments indi-
cate that our quadratic relaxation with the convex approximation outperforms or is
comparable to existing methods under most settings.

We were made aware recently of an unpublished manuscript by T. Wierschin
and D. Fuchs, where they investigate a quadratic approach tothe labeling problem,
and where they show that the quadratic program relaxation ofthe quadratic integer
program formulation of the labeling problem, is tight; justas we do in Section 4.4
for the general MRF MAP problem. Also, [51] and [31] investigate semidefinite
programming (SDP) and second order cone programming (SOCP)approaches to
the MAP problem, which fall between the QP and the LP in restricting the con-
straint set. While we shall formulate the LP and QP in detail in the next section,
we now describe the differences between these approaches ata high level. The LP
is of the form,

min
x,X

a>x+ Tr(BX) (4.1)

s.t.
∑

i

xi = 1 (4.2)

0 ≤ xi ≤ 1 (4.3)

wherex is nK × 1 andX is nK × nK. The QP dispenses away with the hugeX
parameter matrix as follows,

min
x,X

a>x+ x>Bx (4.4)

s.t.
∑

i

xi = 1 (4.5)

0 ≤ xi ≤ 1 (4.6)

As to why this makes sense will be clear from the next section,but note that this
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can be rewritten as a quadratic constraint,

min
x,X

a>x+ Tr(BX) (4.7)

s.t.
∑

i

xi = 1 (4.8)

0 ≤ xi ≤ 1 (4.9)

X = xx> (4.10)

Note that the LP throws away the quadratic constraint; merely relaxing it gives the
SDP below,

min
x,X

a>x+ Tr(BX) (4.11)

s.t.
∑

i

xi = 1 (4.12)

0 ≤ xi ≤ 1 (4.13)

X � xx> (4.14)

The SOCP lies between even the SDP and the LP in restricting the constraint set.
The key observation is thatM � 0 is equivalent to a large set of constraints:
Tr(SM) ≥ 0 for all S � 0. The SOCP explicitly lists a few such linear constraints
with matricesS ∈ S instead of the semi-definite constraint,

min
x,X

a>x+ Tr(BX) (4.15)

s.t.
∑

i

xi = 1 (4.16)

0 ≤ xi ≤ 1 (4.17)

Tr(SX) ≥ 0, S ∈ S (4.18)

4.2 Problem Formulation

Consider the pairwise graphical model with potentialsφ(x) and parametersθ,

p(x; θ) ∝ exp



∑

s

θsφs(xs) +
∑

(s,t)∈E

θstφst(xs, xt)


 .

If eachXs takes values in a discrete setXs, we can represent any potential function
as a linear combination of indicator functions,φs(xs) =

∑
j φs(j)Ij(xs) and
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φst(xs, xt) =
∑

jk φst(j, k)Ij,k(xs, xt) where

Ij(xs) =

{
1 xs = j

0 otherwise .

and

Ij,k(xs, xt) =

{
1 xs = j andxt = k

0 otherwise

We can thus, without loss of generality, consider pairwise MRFs with indicator
potential functions as

p(x|θ) ∝ exp



∑

s,j

θs;jIj(xs) +
∑

s,t;j,k

θs,j;t,kIj,k(xs, xt)


 .

The MAP problem is then given by

x∗ = argmax
x

∑

s,j

θs;jIj(xs) +
∑

s,t;j,k

θs,j;t,kIj,k(xs, xt). (4.19)

4.3 Linear Relaxations

MAP estimation in the discrete case is essentially a combinatorial optimization
problem, and it can be cast as an integer program. Recent workhas studied ap-
proximate MAP estimation using linear relaxations [4]. Letting variablesµ(s; j)
andµ(s, j; t, k) correspond to the indicator variablesIj(xs) andIj,k(xs, xt), we
obtain the following integer linear program (ILP),

max
∑

s;j

θs;j µ1(s; j) +
∑

s,t;j,k

θs,j;t,k µ2(s, j; t, k)

such that
∑

k

µ2(s, j; t, k) = µ1(s; j)

∑

j

µ1(s; j) = 1

µ1(s; j) ∈ {0, 1}
µ2(s, j; t, k) ∈ {0, 1}.
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This ILP can then be relaxed to the following linear program (LP),

max
∑

s;j

θs;j µ1(s; j) +
∑

s,t;j,k

θs,j;t,k µ2(s, j; t, k)

(4.20)

such that
∑

k

µ2(s, j; t, k) = µ1(s; j)

∑

j

µ1(s; j) = 1

0 ≤ µ1(s; j) ≤ 1

0 ≤ µ2(s, j; t, k) ≤ 1.

[10] propose the above LP relaxation as an approximation algorithm for the metric
labeling task, which is the MAP problem with spatially homogeneous MRF para-
meters; thus,θs,j;t,k = wst d(j, k), wherewst is a non-negative edge weight and
d is a metric that is the same for all the edges. [28] proposed related linear re-
laxations for specific metrics. The above LP relaxation was also proposed for the
general pairwise graphical model setting by [61]. Lettingθ andφ(x) denote the
vectors of parameters and potential functions, respectively, and letting〈θ, φ(x)〉
denote the inner product

〈θ, φ(x)〉 =
∑

s;j

θs;jIj(xs) +
∑

(s,t)∈E; j,k

θs,j;t,kIj,k(xs, xt)

the MAP problem is then given by

x∗ = argmax
x

〈θ, φ(x)〉 = sup
µ∈M

〈θ, µ〉

whereM is the set of moment parameters

M =

{
µ :

∑

x

p(x)φ(x) = µ for some distributionp

}
.

The polytopeM can be seen to be upper-bounded by the set LOCAL(G) of all
single and pairwise vectorsµ1 andµ2 that satisfy the local consistency constraints

∑
k µ2(s, j; t, k) = µ1(s; j)∑

j µ1(s, j) = 1

0 ≤ µ1(s; j) ≤ 1

0 ≤ µ2(s, j; t, k) ≤ 1.
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[61] thus proposed the upper-bounding relaxation of usingLOCAL(G) as an outer
bound for the polytopeM,

µ∗ = sup
µ∈LOCAL(G)

〈θ, µ〉 , (4.21)

which is the same LP formulation as in equation (4.20). Furthermore, [57] show
that under certain conditions, the tree-reweighted beliefpropagation updates solve
the dual of the LP in equation (4.21); since strong duality holds, the tree updates
also give the optimal primal value for the LP.

4.4 Quadratic Relaxation

In the linear relaxation of equation (4.20), the variablesµ2(s, j; t, k) are relax-
ations of the indicator variablesIj,k(xs, xt), with a value of one indicating that
for edge(s, t) ∈ E, variableXs is labeledj and variableXt is labeledk. These
pairwise variables are constrained by demanding that they be consistent with the
corresponding “marginal” variablesµ1(s, j). Note, however, that the binary indi-
cator variables satisfy the additional “independence” constraint

Ij,k(xs, xt) = Ij(xs)Ik(xt). (4.22)

This then suggests that constraining the relaxation variables in a similar manner,
µ2(s, j; t, k) = µ1(s; j)µ(t; k), might yield a tighter relaxation. This leads to the
following quadratic program

max
∑

s;j

θs;jµ(s; j) +
∑

s,t;j,k

θs,j;t,k µ(s; j)µ(t; k)

subject to
∑

j

µ(s; j) = 1 (4.23)

0 ≤ µ(s; j) ≤ 1

The following result shows that the relaxation is in fact tight; our proof uses the
probabilistic method.

Theorem 2. The optimal value of problem(4.23) is equal to the optimal value of
the MAP problem(4.19).

Note that the theorem just states the existence of a discretesolution with the
same energy as that of the optimal real relaxation. The problem of efficiently ob-
taining such a discrete solution from the relaxed solution is considered next.
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Theorem 3. Any solution of the MAP problem(4.19)efficiently yields a solution
of the relaxation(4.23)and vice versa. Thus the relaxation(4.23) is equivalent to
the MAP problem(4.19).

Proof. From theorem 2, the optimal values of problems (4.19) and (4.23) are equal;
let e∗ denote this maximum energy. Letx̂ be an optimal solution of the MAP
problem (4.19). As problem (4.23) is a relaxation of the MAP problem,µ(s; j) =
I(x̂; j) is also a feasible and optimal solution for (4.23).

For the converse, letµ∗ be an optimal solution of problem (4.23). Its energy is
given by

e∗ =
∑

s;j

θs;jµ
∗(s; j) +

∑

(s,t)∈E;j,k

θs,j;t,kµ
∗(s; j)µ∗(t; k) (4.24)

If eachµ∗(s; j) is integer valued, that is, in{0, 1}, then we can useµ∗ itself as the
feasible optimal solution for the MAP problem (4.19). Otherwise, considerµ∗ to
be real valued; we (efficiently) construct a labelingy with the maximum energye∗.

Consider an unlabeled nodes. Assign it label

ys = argmax
j

θs;j +
∑

t:(s,t)∈E;k

θs,j;t,kµ
∗(t; k)

Now, setµ∗(s; ys) = 1 andµ∗(s; k) = 0 ; k 6= ys. Continue with this labeling
process until all nodes are labeled. It can be shown that the energy of this assign-
menty is equal to the energye∗ of the optimal MAP assignment. In particular, each
time we take up an unlabeled nodet, we select a labeling that does not decrease the
expected energy of the unlabeled nodes given the labelings of the labeled nodes.
Given that the initial expected energy of all unlabeled nodes wase, the energy at
the end of the process, that is, of the assignmenty, is thus at leaste∗.

4.5 Convex Approximation

The previous section showed that the relaxation in equation(4.23), while a simple
extension of the LP in equation (4.20), is actually equivalent to the MAP problem.
This yields the interesting result that the MAP problem is solvable in polynomial
time if the edge parameter matrixΘ = [θs,j;t,k] is negative definite, since in this
case the QP (4.23) is a convex program. Note also that the quadratic program has
a simple set of constraints (only linear and box constraints), which are also small
in number, and is thus a simple problem instance of general convex optimization.
It should also be stressed that for ann node graph, the QP has onlykn variables
while the LP hasO(k2|E|) variables.
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The case where the edge parameter matrixΘ is not negative definite yields a
non-convex program; and while we could do an iterative search procedure upto a
local maximum as max-product does, we now describe a convex approximation
which provides a polynomial time solution with additive bound guarantees.

Consider the quadratic integer program (QIP) corresponding to the QP, given
by

max
µ

∑

s;j

θs;j µ(s; j) +
∑

s,t;j,k

θs,t;j,k µ(s; j)µ(t; k)

subject to
∑

j

µ(s; j) = 1 (4.25)

µ(s; j) ∈ {0, 1}
µ(s, j; t, k) ∈ {0, 1}.

This is clearly equivalent to the MAP problem in equation (4.19). LetΘ = [θs,j;t,k]
be a parameter matrix that is not negative semi-definite. Letd(s, i) be the (positive)
diagonal terms that need to be subtracted from the matrix to make it negative semi-
definite. An upper bound ford is d(s, i) ≤∑(t,k) |θs,j;t,k| (since the negative of a
diagonally dominant matrix is negative semi-definite). LetΘ′ = Θ−diag{d(s; i)}
be the negative semi-definite matrix obtained by subtracting off diagonal elements
d(s; i). Also, let

θ′s;j = θs;j + d(s; j). (4.26)

Now, for binaryµ(s; i) ∈ {0, 1}, we have thatµ(s; i)2 = µ(s; i); in particular,
d(s; i)µ(s; j) − d(s; i)µ(s; j)2 = 0. We thus get that the following QIP is equiva-
lent to the QIP (4.25),

max
µ

∑

s;j

θ′s;j µ(s; j) +
∑

s,t;j,k

θ′s,j;t,k µ(s; j)µ(t; k)

such that
∑

j

µ(s; j) = 1

µ(s; j) ∈ {0, 1}

Relaxing this QIP as before, we obtain the following convex program.

max
µ

∑

s;j

θ′s;j µ(s; j) +
∑

s,t;j,k

θ′s,j;t,kµ(s; j)µ(t; k)

such that
∑

j

µ(s; j) = 1

µ(s; j) ∈ [0, 1]
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This is a convex program solvable in polynomial time. The optimality results
of the previous section do not follow, however, and the relaxation (4.27) is not
always tight. But as shown next, we can get an additive approximation bound
for the discrete solution obtained using the rounding procedure described in the
previous section.

Theorem 4. Let µ∗ be the optimal solution for the convex QP(4.27); and e∗ be
the optimal MAP energy. Then there is a discrete configuration y (from µ∗) with
energyE(y) satisfying

E(y) ≥ e∗ −
∑

s,i

d(s; i)µ∗(s; i)(1 − µ∗(s; i))

≥ e∗ − 1

4

∑

s,i

d(s; i).

This result shows that if eitherΘ is close to negative definite, so that
∑

s,i d(s; i)
is small, or if the solution is close to integral, so thatµ∗(s; i) is close to zero or one,
then the convex relaxation achieves a solution that is closeto the optimal MAP so-
lution.

4.6 Iterative Update Procedure

Just as tree-reweighted max product gives a set of iterativeupdates for solving the
LP in equation (4.21), we might ask if there is an iterative update counterpart for the
QP. Max-product is a co-ordinate ascent algorithm in the dual (Lagrangian) space
for the LP; however, since the dual space of the QP (4.23) is more complicated, we
look at a set of fixed point co-ordinate ascent updates in its primal space.

The QP is given by

µ∗ = max
µ

∑

s;j

θs;jµ(s; j)

+
∑

s,t;j,k

θs,j;t,k µ(s; j)µ(t; k) (4.27)

subject to

∑

j

µ(s; j) = 1

µ(s; j) = [0, 1].
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Consider nodes, and suppose that values forµ(t; .) are fixed for other nodest 6= s.
Then the optimal parameter valuesµ(s; .) for nodes are given by

µ(s; .) = max
µ(s;.)

∑

j

θs;jµ(s; j)

+
∑

t;j,k

θs,j;t,k µ(s; j)µ(t; k)

subject to
∑

j µ(s; j) = 1. This is easily seen to be solved by taking

j∗(s) = argmax
j

θs;j +
∑

t;j,k

θs,j;t,kµ(t; k)

and settingµ(s, j) = Ij∗(s)(j). This is essentially the iterative conditional modes
algorithm [5], which iteratively updates each node with a labeling that most in-
creases the energy, holding fixed the labels of the other nodes.

A better iterative procedure, with stronger and faster convergence properties,
albeit for convex programs, is projected conjugate gradient ascent [2]. Thus, an-
other advantage of our convex approximation is that we can use conjugate gradient
ascent as a simple iterative procedure that is guaranteed toconverge (unlike co-
ordinate ascent for max product). This makes our convex approximation to the QP
applicable to large scale problems.

4.7 Inner Polytope Relaxations

In the previous section, we obtained a quadratic relaxationby imposing an “inde-
pendence” constraint on the parametersµ(s, j; t, k) in equation (4.22). We also
showed that this relaxation is actually tight, and is equivalent to the MAP problem.
In this section, we show how one can think of this relaxation as the counterpart of
mean-field for MAP, and how any of the corresponding relaxation counterparts of
structured mean-field are also tight.

Consider [61]’s polytope formulation of MAP in equation (4.21), given by

µ∗ = max
x
〈θ, φ〉 = sup

µ∈M
〈θ, µ〉

whereM is the convex hull of all configuration potentialsφ(x). The second equal-
ity follows from the fact that in a linear program, the optimum occurs at an extremal
pointφ(x∗). Thus, ifMI ⊂M is any subset of the marginal polytope that includes
all of the vertices, then the equations

µ∗ = max
x
〈θ, φ〉 =

∑

µ∈MI

〈θ, µ〉
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still hold. In other words, any relaxation of the indicator variables toµ(s, j; t, k) ∈
MI would lead to a tight relaxation, as long asMI contains all vertices. In con-
trast, tree-reweighted max product is not tight, since the domain set for its relaxed
parameters isLOCAL(G) ⊇M; see Section 4.3.

As described in [61], one can think of structured mean field methods as inner
polytope approximations. For the given graphG and a subgraphH, let E(H) =
{θ | θst = 0, ∀(s, t) /∈ H}, whereθst is the vector of natural parameters associated
with edge(s, t). Now for the subgraphH, we can define the following set of
moment parameters:

M(G;H) = {µ |µ = Eθ[φ(x)] for someθ ∈ E(H)} .

In essence, the moment parameters inM(G;H) must be realizable by a distribu-
tion that respects the structure ofH. For anyH ⊆ G, the relationM(G;H) ⊆
M(G) thus always holds, andM(G;H) is an inner polytope approximation toM.
In particular, takingH to be the completely disconnected graph (i.e. no edges)H0,
we have,

M(G;H0) = {µ(s; j), µ(s, j; t, k) |
0 ≤ µ(s; j) ≤ 1

µ(s, j; t, k) = µ(s; j)µ(t; k)}

which can be seen to be equal to the feasible set of the QP relaxation (4.23). For
this subgraphH = H0, the mean field relaxation thus becomes

sup
µ∈M(G;H0)

〈θ, µ〉

= sup
µ∈M(G;H0)

∑

s;j

θs;jµ(s; j) +
∑

st;jk

θs,j;t,kµ(s, j; t, k)

= sup
µ∈M(G;H0)

∑

s;j

θs;jµ(s; j) +
∑

st;jk

θs,j;t,kµ(s; j)µ(t; k)

which is equivalent to the quadratic relaxation in equation(4.23). Thus, we can, in
principle, use any “structured mean-field” relaxation of the formsupµ∈M(G;H) 〈θ, µ〉
to solve the MAPexactly. The caveat is that this problem, like structured mean
field, is a non-convex problem. However, while structured mean field only solves
for an approximate value of the log-partition function, theresults from Section 4.4
show that its counterpart for the MAP problem is exact, if theglobal optimum can
be found.



40 Quadratic Programming Relaxations for MAP

0 0.5 1 1.5 2
50

100

150

200

250

300

350

400

Coupling Strength

E
ne

rg
y

Ising Mixed Coupling

 

 

 Chekuri LP
 ICM
 TRW
 QP Convex

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

Coupling Strength

E
ne

rg
y

Ising Positive Coupling

 

 

 Chekuri LP
 ICM
 TRW
 QP Convex

0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

800

Coupling Strength

E
ne

rg
y

Ising Negative Coupling

 

 

 Chekuri LP
 ICM
 TRW
 QP Convex

0 0.5 1 1.5 2
10

20

30

40

50

60

70

80

90

100

Coupling Strength

E
ne

rg
y

Uniform Mixed Coupling

 

 

 Chekuri LP
 ICM
 TRW
 QP Convex

0 0.5 1 1.5 2
0

50

100

150

200

250

Coupling Strength
E

ne
rg

y

Uniform Positive Coupling

 

 

 Chekuri LP
 ICM
 TRW
 QP Convex

0 0.5 1 1.5 2
−100

−80

−60

−40

−20

0

20

40

Coupling Strength

E
ne

rg
y

Uniform Negative Coupling

 

 

 Chekuri LP
 ICM
 TRW
 QP Convex

Figure 4.1: Comparison of linear relaxation (LP), iterative conditional modes
(ICM), tree-reweighted max product (TRW), and quadratic programming relax-
ation (QP) on10 × 10 grid graphs using Ising potentials (top row) and uniform
potentials (bottom) with mixed (left), positive (center) and negative (right) cou-
plings. A better MAP estimate has a higher value.

4.8 Experiments

We evaluated our quadratic relaxation with the convex approximation by com-
paring it against three competing methods: the linear programming relaxation
[10], the tree-reweighted max product algorithm [57], and iterative conditional
modes (ICM) [5]. For tree-reweighted max product, we use thesequential update
variant detailed in [29], which has better convergence properties than the originally
proposed algorithm.

The approximate MAP algorithms were compared on different potential func-
tions and coupling types for 2D nearest neighbor grid graphswith 100 nodes and
a label set of size four. The node potentials were generated uniformly U(−1, 1),
while the edge potentials were generated as a product of an edge weight and a
distance function on labels. For different settings of an edge coupling-strength pa-
rameter,dcoup, the edge weight was selected fromU(−dcoup, dcoup) for the mixed
coupling, fromU(0, 2 dcoup) for the positive coupling, and fromU(−2 dcoup, 0) for
the negative coupling. The following four commonly used distances were used for
the distance function: Ising,φ(l,m) = lm; uniform, or Potts,φ(l,m) = I(l = m);
quadratic,φ(l,m) = (l −m)2; linearφ(l,m) = |l −m|.
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Figure 4.2: Comparison of linear relaxation (LP), iterative conditional modes
(ICM), tree-reweighted max product (TRW), and quadratic programming relax-
ation (QP) on10 × 10 grid graphs using linear potentials (top row) and quadratic
potentials (bottom) with mixed (left), positive (center) and negative (right) cou-
plings. A better MAP estimate has a higher value.

Figures (4.1) and (4.2) show plots of the value (energy) of the MAP estimates
using the different algorithms for a range of model types. For any given setting of
parameters and potential functions, a higher value is closer to the MAP estimate
and is thus better. As the plots show, the quadratic relaxation clearly beats the tree-
reweighted max product for mixed and positive couplings, and is comparable for
the negative coupling. The quadratic approximation also typically beats both ICM
and the linear relaxation.

In Figure (4.3) we compare the MAP estimates from different algorithms on
larger graphs, using the Ising potential function with mixed coupling. The quadratic
relaxation is seen to outperform ICM and tree-reweighted max product, even as the
number of nodes increases.

We note that since the convex approximation to the QP is a convex program, it
can be solved (in polynomial time) using standard QP solversfor small problems,
and for larger-scale problems one can use iterative projected conjugate gradient,
which provides a fast iterative method that is guaranteed toconverge. In our exper-
iments, the computation time for the QP method was comparable to that required
by tree-reweighted max product, which in turn required muchless time to solve
than the linear programming relaxation. This is due primarily to the fact that the
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Figure 4.3: Comparison of ICM and TRW on larger graphs, usingIsing po-
tentials with mixed coupling. The right plot shows(eICM − eQP)/eICM and
(eTRW − eQP)/eTRW.

linear program has|E|k2 variables, while the convex quadratic relaxation has only
nk variables, wheren is the number of nodes in the graph,|E| is the number of
edges, andk is the number of labels.



Chapter 5

General Event Probabilities,
Bounds

In medical diagnosis, the task is to diagnose a disease givengeneral features of
the patient, such as sex and age, and measurements – such as body temperature
– from physical examinations and medical equipments. In addition to the ob-
served measurement and feature variables, there are unobserved “cause” variables;
the given graphical model encodes the probabilistic relationship between all these
variables. The task of medical diagnosis is then the inference task of estimating
the probability of disease variables being true or false given the observed values
for the measurement and feature variables.
With many intertwined latent causes, the network ends up having a large treewidth,
which naturally motivates approximate inference procedures. There is however an
additional demand: that of guarantees for the approximation; it is not enough to
report just the “approximate” estimate for probability of the disease. There are two
classes of guarantees we might provide for event probabilities: (a) constant factor
guarantees: that the true values are within a specified constant factor of the approx-
imate value. (b) additive or interval guarantees: that the true values are within a
specified interval around the reported approximate value. [16] and others however
dash hopes of the first class of guarantees; they show that constant factor approxi-
mations of event probabilities is NP-hard. In the next few chapters, we investigate
the second kind of guarantees: providing rigorous upper andlower bounds for
event probabilities.

In the quest for bounds, variational methods as well as the preconditioner approx-
imation introduced in Chapter 3 are not without use: they provide bounds for the
log partition function. Additionally, variational boundsoften have associated dual
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parameters, and these parameters can be used as heuristic estimates of marginal
probabilities. Unfortunately, there is a gap in understanding how such dual para-
meters can be quantitatively related to the actual marginalprobabilities. For events
more complicated than single or pairwise marginal probabilities, the variational
machinery is not well-suited; in particular it might be difficult to obtain approx-
imate estimates at all. In the next couple of chapters, we propose two classes of
bounds: (a) variational Chernoff bounds, and (b) variational Chebyshev-Chernoff
bounds.



Chapter 6

Variational Chernoff Bounds

In this chapter, we develop a class of bounds on event probabilities; variational
Chernoff bounds; which combines the machineries of variational methods, and
generalized Chernoff bounds. Consider ap-dimensional discrete random variable
X = (X1,X2, . . . ,Xp) whose distribution is governed by a parameterθ. Let
Xs = {1, . . . ,ms} be the domain of variableXs, and denoteX = ⊕p

s=1Xs. A
single node marginal probability is the probability of an event such asCi = {X :
Xi = 1}; a pairwise marginal is the probability of an event such asCij = {X :
Xi = 1&&Xj = 1}. In general, the events could involve all variables,Csum =
{X :

∑
iXi ≤ δ(

∑
i pi)}, where{pi} are the single node marginals. LetC ∈ X

denote a general event. The mandate of this chapter is to estimate the probability
of this event,Pθ(X ∈ C).
Let us attempt to variationally estimate this event probability for a graphical model;
represented by an exponential family distribution with sufficient statisticsφ(X) ∈
R

d: Pθ(X) = exp(〈θ, φ(X)〉 − Φ(θ)). The event probability to be estimated is

Pθ(X) =
∑

X∈C

exp(〈θ, φ(X)〉 − Φ(θ)) (6.1)

whereΦ(θ) is the log partition function. We will denote byΦ(f, θ) the log partition
function for the (generally non-graphical) model with probabilities proportional to
exp (〈θ, φ(x)〉+ f(x)); thus,

Φ(f, θ) =
∑

x

exp (〈θ, φ(x)〉+ f(x)) (6.2)

The indicator functionδC of the setC is defined as

δC(x) =

{
0 if X ∈ C
∞ otherwise

(6.3)
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This allows us to write the event probability as,

log p(x ∈ C | θ) = Φ(−δC , θ)− Φ(θ) (6.4)

DenotingΦ(−δC , θ) = ΦC(θ), the task of estimating the event probability reduces
to estimatingΦ(−δC , θ).

To obtain upper and lower variational bounds; letΦ(U)(θ) andΦ(L)(θ) be upper
and lower bounds onΦ(θ), respectively. Then,

log pθ(X ∈ C) ≤ Φ
(U)
C (θ)− Φ(L)(θ) (6.5)

log pθ(X ∈ C) ≥ Φ
(L)
C (θ)− Φ(U)(θ) (6.6)

For simple events like marginals,{X1 = 1}, ΦC(θ) can be written as the log-
partition function of a simple exponential family distribution,

ΦC(θ) =
∑

X−1

exp(〈θ, φ−1(X−1)〉) (6.7)

whereφ−1(X−1) = φ([1X−1]). Variational methods can then be naturally
applied to obtain bounds. It is not obvious however, how to apply the variational
machinery to get boundsΦ(U)

C (θ) for complicated eventsC.
A complementary mode of attack is to “separate” the contribution of the eventC
from the partition function, so as to make it more amenable tovariational machin-
ery. To obtain further intuition for this, let us consider the independent graphical
model, which corresponds toX1, . . . ,Xp being i.i.d random variables. Bounding
event probabilities for this case is a classical problem, a classical technique for
which is that of Chernoff bounds. We first review Chernoff bounds, and show how
they can be adapted to yield “variational Chernoff” bounds.

6.1 Classical and Generalized Chernoff Bounds

LetX be a real-valued random variable with distribution determined by some pa-
rameterθ. The Markov inequality implies that for anyλ > 0,

pθ(X ≥ u) = pθ

(
eλX ≥ eλu

)
(6.8)

≤ Eθ[e
λ(X−u)] (6.9)

From this it follows that

log pθ(X ≥ u) ≤ inf
λ≥0

(
−λu+ logEθ

[
eλX

])
(6.10)
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In the classical formulations of Chernoff bounds that are sowidely used in prob-
abilistic analysis, the cumulant functionlogEθ

[
eλX

]
in relation (6.10) is further

manipulated so that the upper bound has an analytic form. Forexample, if the ran-
dom variable isX ∼ Binomial(n, p), it can easily be shown (derived in the next
section) that

pθ (X < np (1− δ)) ≤ e−nδ2/2 (6.11)

[7] observe that the basic idea behind inequality (6.10) canbe considerably
generalized in a way that involves convex optimization. LetX now denote aRm-
valued random variable, whose distribution is indicated bya parameterθ, and let
C ⊂ R

m. To bound the probabilitypθ(X ∈ C), consider a parameterized family
of upper boundsfλ(x) on the indicator function−δC ; fλ(x) ≥ 0 if x ∈ C. Then
clearly

−δC ≤ fλ (6.12)

pθ(X ∈ C) ≤ inf
λ
Eθ

[
efλ

]
(6.13)

Where we get the second inequality from the first, by exponentiating both sides
and then taking an expectation overX.

In casefλ = 〈λ, x〉 + u is affine, whereλ andu are chosen subject to the
constraint that〈λ, x〉+ u ≥ 0 for x ∈ C, we get

log pθ(X ∈ C) ≤ inf
λ,u

logEθ

[
e〈λ,x〉+u

]
(6.14)

= inf
λ,u

(
u+ logEθ

[
e〈λ,x〉

])
(6.15)

Now, sinceu ≥ 〈−λ, x〉 − δC(x), it follows that

inf u = sup
x
〈−λ, x〉 − δC(x) (6.16)

= δ∗C(−λ) (6.17)

whereδ∗C(−λ) is the fenchel conjugate dual ofδC(x). Therefore,

log pθ(X ∈ C) ≤ inf
λ

(
δ∗C(−λ) + logEθ

[
e〈λ,x〉

])
(6.18)

Let us now examine this conjugate dualδ∗C(λ). It can be seen that

δ∗C(λ) = sup
x
〈λ, x〉 − δC(x) (6.19)

= sup
x∈C
〈λ, x〉 (6.20)



48 Variational Chernoff Bounds

From equation 6.20; ifx lies in C, 〈x, λ〉 ≤ δ∗C(λ) for everyλ; the conjugate
dual δ∗C(λ) is thus also called the support function of the setC. If C is convex,
then(δ∗C)∗ = δclC . This shows that a closed convex setC can be represented as
the solution set of a family of linear inequalities, and thusthe support function
characterizesC. We will also denote the support function bySC(λ).

6.2 Graphical Model Chernoff Bounds

For exponential family models, the line of argument of the previous section leads
to the following bounds.

Proposition 1. Suppose thatX = (X1, . . . ,Xm) is an exponential model with
(non-minimal) sufficient statisticφ(x) ∈ R

n, and letC ⊂ R
m. Then

log pθ(X ∈ C) = Φ(−δC , θ)− Φ(θ) (6.21)

≤ inf
λ

Φ(fλ, θ)− Φ(θ) (6.22)

for any family of functionsfλ ≥ −δC bounding the indicator function.

Proof. The equality in (6.21) follows from

log pθ(X ∈ C) = log
∑

x∈C

e〈θ,φ(x)〉 − Φ(θ)

= log
∑

x

e−δC(x)+〈θ,φ(x)〉 − Φ(θ)

= ΦC(θ)− Φ(θ)

≤ log
∑

x

efλ+〈θ,φ(x)〉 − Φ(θ)

= Φ(fλ, θ)− Φ(θ)

Proposition 2.

log pθ(X ∈ C) ≤ inf
λ∈Rn

SC,φ(−λ) + Φ(λ+ θ)− Φ(θ) (6.23)

whereSC,φ(y) = supx∈C 〈y, φ(x)〉, for y ∈ R
n.

Proof. Let fλ(x) = 〈λ, φ(x)〉 + u be an affine upper bound on−δC . The bound
in (6.23) then follows from Proposition 1 and (6.18) by observing that

log Eθ

[
e〈λ,φ(X)〉

]
= Φ(λ+ θ)− Φ(θ)
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In contrast to the initial attempt to apply variational machinery directly to
pθ(X ∈ C), the bound in the above proposition “separates” the eventC contribu-
tion from the log-partition function; a form now amenable tolog-partition function
approximations. The separation is in terms of thegraphical model support function
of a set C,SC,φ(y) = supx∈C 〈y, φ(x)〉.

In case the vector of sufficient statistics includes eachXi, by restricting the
linear function to one of the formfλ = 〈λ, x〉+ u rather thanfλ = 〈λ, φ(x)〉+ u,
we obtain a generally weaker bound of the form

log pθ(X ∈ C) ≤ inf
λ∈Rm

SC(−λ) + Φ(λ+ θ)− Φ(θ) (6.24)

where nowSC = δ∗C is the standard support function.
Before we go on to incorporating variational machinery, letus look at an ex-

ample each of classical and the graphical model Chernoff bounds.

6.3 Examples of Classical and Graphical Model Chernoff
Bounds

6.3.1 Example: Classical Chernoff bounds

Classical Chernoff bounds [11, 40] are widely used to obtainrough, analytically
convenient bounds on tail probabilities for iid observations. LetX1,X2, . . . ,Xn

are independent Bernoulli(p) trials, the upper Chernoff bound is established by
using the Markov inequality to obtain

log p(X ∈ Cδ) ≤ inf
λ

(
−λnp (1 + δ) + E

[
eλ
�

i X
])

for Cδ = {X | ∑iXi ≥ np (1 + δ)}; this is equivalent to using the linear approx-
imation to the indicator function employed above. Using theconvexity ofexp, in
the form1 − x < e−x, the moment generating functionE[eλ

�
i Xi ] is bounded

from above as

logE[eλ
�

i Xi ] =
∑

i

log
(
eλp+ 1− p

)
(6.25)

≤ np (1− eλ) (6.26)

This upper bound is then minimized to obtain the optimalλ = log(1+ δ), and thus
the Chernoff bound

p(X ∈ Cδ) ≤
(

eδ

(1 + δ)(1+δ)

)np

(6.27)
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Figure 6.1: Classical and optimized Chernoff bounds for independent Bernoulli
trials (left) and a Markov model (right) forCδ = {X | ∑Xi > np (1 + δ)} with
p = 1

2 andδ = 1
2 . Left: n = 30 Bernoulli trials—the classical Chernoff bound

log P (X ∈ Cδ) < −npδ2/4 (top horizontal line),log P (X ∈ Cδ) < np (δ− (1 +
δ) log(1+δ)) (second horizontal line), and true probability (lower horizontal line);
the curve shows the variational approximationlogP (X ∈ Cδ) < −λnp(1 + δ) −
Φ(θ + λ) − Φ(θ). Right: bounds for a Markov model withn = 30, θ1,1 = −1
andθ1 = log p/(1 − p). The curved line is the variational approximation, where
the log partition functions are computed exactly using dynamic programming; the
bottom horizontal line is the true probability. The dashed curve is the variational
approximation that assumes independentXi (same as curve in left plot).

A more commonly used form, because of its simplicity, is the weaker bound

p(X ∈ Cδ) ≤ e−np δ2/4 (6.28)

which is valid whenδ < 2e− 1.

6.3.2 Example: Chernoff bounds for Markov models

One of the simplest extensions of the classical Chernoff bounds for independent
Bernoulli trials is the case of a Markov or hidden Markov model. For illustra-
tion we consider a Markov model on two states, where the jointdistribution for
X1, . . . ,Xm with Xi ∈ {0, 1} is given by

p(X1, . . . ,Xn) ∝ exp

(
n∑

i=1

θXi
+

m−1∑

i=1

θXi,Xi+1

)
(6.29)

Thusθ = (θ0, θ1, θ0,0, θ0,1, θ1,0, θ1,1), with the caseθ0,0 = θ0,1 = θ1,0 = θ1,1 = 0
corresponding to independent Bernoulli(p) trials withp = eθ1/(eθ0 + eθ1).
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Since the random variables are not independent, the classical Chernoff bound
for pθ(

∑
iXi > np (1+δ)) will be highly biased. The generalized Chernoff bound

for the eventCδ = {X | ∑iXi ≥ np(1 + δ)} is

pθ(X ∈ Cδ) ≤ inf
λ
−λnp (1 + δ) + Φ(θ + λ̄)− Φ(θ)

whereλ̄ = (0, λ, 0, 0, 0, 0). In this case the log partition functionsΦ(θ + λ) and
Φ(θ) are easily computed inO(n) time using dynamic programming. However,
computing the probabilitypθ(X ∈ Cδ) exactly using dynamic programing requires
O(n2) time—auxiliary states to count

∑
iXi must be introduced, requiringO(n)

states at each position. Similar statements can be made for graphical models where
the underlying graph is a tree.

An example of these bounds for a simple Markov model is shown in Figure 6.1,
where the bounds are compared to the classical bounds for theiid case. The left
plot shows bounds for Bernoulli trials withp = 1

2 ; the right plot shows bounds
for a Markov model of the form (6.29) withθ1 = log p

1−p andθ1,1 = −1, which
discourages neighboring 1s.

Such a chain-structured graphical model is the simplest case of the generalized
Chernoff bounds we consider. For more general graphical models, where dynamic
programming may not be available, we must resort to more elaborate approxima-
tions.

6.4 Variational Chernoff Bounds

The exact log probability (6.21) and the generalized Chernoff bounds (6.23) require
computation of log partition functions. In order to derive tractable bounds, we
apply upper and lower variational bounds. LetΦ(U)(θ) andΦ(L)(θ) be upper and
lower bounds onΦ(θ), respectively. Then clearly

log pθ(X ∈ C) ≤ Φ
(U)
C (θ)− Φ(L)(θ) (6.30)

log pθ(X ∈ C) ≥ Φ
(L)
C (θ)− Φ(U)(θ) (6.31)

Applying the bounds to the graphical model Chernoff bounds (6.23) gives

log pθ(X ∈ C) ≤ (6.32)

inf
λ∈Rn

SC,φ(−λ) + Φ(U)(λ+ θ)− Φ(L)(θ)

For upper bounds on the log-partition function, we employ (a) the log-determinant
relaxations of [65] and (b) the tree-reweighted belief propagation algorithms of
[63]. For the lower bounds, we use structured mean field approximations andM -
best approximations using belief propagation [67].
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6.4.1 Collapsing the Nested Optimization

Note however that (6.32) is a nested optimization problem: given any value ofλ,
the variational method solves an optimization problem to get a boundΦ(U)(λ+θ);
the overall bound requires optimizing overλ in turn. It is possible however to
collapse this nested optimization into into a single level optimization by “unravel-
ing” the variational optimization. In this section, we investigate this for the log-
determinant relaxations of [65].
[65] develop a semidefinite relaxation ofΦ(θ) which leads to a log determinant
optimization problem. The idea behind this approach is to bound the dual function
Φ∗, which is a negative entropy, in terms of the entropy of a Gaussian. Since the
entropy of a Gaussian is a log determinant, the semidefinite upper bound follows.
The analysis in [65] focuses onX = {0, 1} and vertex and pairwise interaction
potentials on the complete graphKn; this is the case we now assume, although the
approach generalizes.

Recalling some of the notation of [65], forµ ∈ R
m, M1[µ] is the(n + 1) ×

(n+ 1) matrix

M1[µ] =




1 µ1 · · · µn

µ1 µ1 · · · µ1n

µ2 µ21 · · · µ2n
...

...
...

...
µn−1 µ(n−1),1 · · · µ(n−1),n

µn µn1 · · · µn




(6.33)

and SDEF1(Kn) = {µ |M1[µ] � 0}. LetM ⊃ MARG(Kn) be any convex set
that contains SDEF1(Kn), and letA(µ) = M1[µ] + 1

12 Ĩ, whereĨ = [0, In] is an
(n+ 1)× (n+ 1) block diagonal matrix, andcn = n

2 log(2πe).
Theorem 1 of [65] states,

Proposition 3.

Φ(θ) ≤ sup
µ∈M M1[µ]�0

{〈θ, µ〉+ 1

2
log detA(µ)}+ cn (6.34)

The outer-loop optimization overλ in (6.32) can be collapsed as in the fol-
lowing proposition, to yield a single-level optimization for the graphical model
Chernoff bound,

Proposition 4.

log pθ(X ∈ C) ≤ (6.35)

sup
µ∈M

{
〈θ, µ〉+ 1

2
log detA(µ)− S∗

C,φ(µ)

}
+ cn − Φ(θ)
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The proof of this proposition follows from inequality (6.32) and the previous
theorem, after observing thatSC,φ(λ), as a supremum of linear functions, is a
convex function even ifC is not convex, and that

S∗
C,φ(µ) = sup

λ
〈λ, µ〉 − SC,φ(λ) (6.36)

= − inf
λ
〈λ, µ〉+ SC,φ(−λ) (6.37)

Solving the log determinant optimization problem above andreplacingΦ(θ)
with any lower boundΦ(L)(θ) gives an upper bound onpθ(X ∈ C).

6.5 Tightness of Chernoff Bounds

The generalized Chernoff bounds with linear approximations to the indicator func-
tion are actuallyexactexpressions of event probabilities in an exponential family
graphical model in certain cases. While the actual computation of the Chernoff
bounds may be highly nontrivial, this result gives an indication of the power of the
framework.

Proposition 5. Let pθ(X) = exp(〈θ, φ(X)− Φ(θ)〉) be an exponential model
withX = (X1, . . . ,Xm), whereX 7→ φ(X) ∈ R

n is a one-to-one mapping. Then
for C ⊂ R

m,

log pθ(X ∈ C) = inf
λ∈Rn

SC,φ(−λ) + Φ(λ+ θ)− Φ(θ)

[45] gives the detailed proof; we run through a particular example where we
show the bounds are exact, and which gives some intuition.
Consider a mean-field graphical model,

p(X; θ) = exp

(
∑

i

θiXi − Φ(θ)

)
(6.38)

where the nodesXi take values in{−1,+1}. Φ(θ) =
∑

i log(exp(θi)+exp(−θi))
is the log-partition function. Consider the eventC = [x1 = 1]. The event proba-
bility Pr(X ∈ C) = Pr(X1 = 1) is given by,

log pθ(X1 = 1) = θ1 − log(exp(θ1) + exp(−θ1)) (6.39)

The graphical model support functionSC(−λ) can be calculated as,

SC(−λ) = sup
x1=1
−λTx = −λ1 +

n∑

i=2

|λi| (6.40)
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The graphical model Chernoff bound is given by,

log pθ(X ∈ C) ≤ inf
λ

(−λ1 +
∑

i6=1

|λi|)

+
∑

i

log(exp(θi + λi) + exp(−θi − λi))− Φ(θ)

≤ inf
λ1

−λ1 + log(exp(θ1 + λ1) + exp(−θ1 − λ1))− Φ(θ)

+
∑

i6=1

inf
λi

(|λi|+ log(exp(θi + λi) + exp(−θi − λi)))

≤ θ1 +
∑

i6=1

log(exp(θi) + exp(−θi))− Φ(θ)

≤ θ1 − log(exp(θ1) + exp(−θ1))
= log pθ(X ∈ C) (6.41)

which shows that the Chernoff bound is exact for this model.
The third inequality follows by by noting that

inf
λ1

−λ1 + log(exp(θ1 + λ1) + exp(−θ1 − λ1)) = θ1 (6.42)

the infimum being obtained asλ1 →∞; and that

inf
λi

(|λi|+ log(exp(θi + λi) + exp(−θi − λi))) ≤ log(exp(θi) + exp(−θi))

since the infimum is upper bounded by the value atλi = 0.

6.6 Experimental Results

To test the performance of the upper and lower bound methods,we performed
experiments for binary random fields on both a complete graphand a 2-D nearest-
neighbor grid graph, closely following the experiments in [65]. In order to be
able to compare the bounds with the exact probabilities, we show results for small
graphs with 9 nodes. For different qualitative characteristics of the exponential dis-
tributions (repulsive, mixed, or attractive), we construct many randomly generated
models, and compute the mean error for each type of graph.

The graphical models were randomly generated according to the following
specification. First, the parameters were randomly generated in the following man-
ner:

Single node potentials: For each trial, we sampleθs ∼ Uniform(−dpot,+dpot)
independently for each node, wheredpot =

1
4 .



6.6 Experimental Results 55

AverageL1 error± std
Problem type

Approximation method

Graph Coupling Strength MF/Tree lower MF/SDP lower Tree/MF upper SDP heuristic

Repulsive (0.25,1.0) 0.093± 0.003 0.297± 0.009 0.166± 0.008 0.010± 0.002

Repulsive (0.25,2.0) 0.127± 0.009 0.290± 0.007 0.327± 0.059 0.024± 0.002

Grid Mixed (0.25,1.0) 0.054± 0.028 0.452± 0.047 0.070± 0.038 0.026± 0.002

Mixed (0.25,2.0) 0.095± 0.012 0.421± 0.053 0.138± 0.011 0.017± 0.003

Attractive (0.25,1.0) 0.026± 0.001 0.770± 0.019 0.025± 0.002 0.023± 0.001

Attractive (0.25,2.0) 0.001± 0.001 0.791± 0.026 0.001± 0.001 0.016± 0.002

Repulsive (0.25,0.25) 0.072± 0.010 0.290± 0.006 0.069± 0.011 0.021± 0.001

Repulsive (0.25,0.50) 0.132± 0.009 0.238± 0.007 0.156± 0.016 0.016± 0.001

Full Mixed (0.25,0.25) 0.032± 0.001 0.393± 0.014 0.029± 0.001 0.013± 0.004

Mixed (0.25,0.50) 0.120± 0.027 0.450± 0.037 0.127± 0.034 0.024± 0.004

Attractive (0.25,0.06) 0.009± 0.001 0.445± 0.009 0.007± 0.001 0.019± 0.003

Attractive (0.25,0.12) 0.037± 0.006 0.520± 0.023 0.033± 0.006 0.040± 0.003

Table 6.1:L1 approximation error of single node marginals for the fully connected
graphK9 and the 4 nearest neighbour grid with 9 nodes, with varying potential
and coupling strengths(dpot, dcoup). Three different variational methods are com-
pared: MF/Tree derives a lower bound with mean field approximation forΦC and
tree-reweighted belief propagation forΦ; MF/SDP derives a lower bound with the
SDP relaxation used forΦ; Tree/MF derives an upper bound using tree-reweighted
belief propagation forΦC and mean field forΦ. SDP denotes the heuristic use of
the dual parameters in the SDP relaxation, with no provable upper or lower bounds.

Edge coupling potentials: For a given coupling strengthdcoup, three types of cou-
pling are used:

Repulsive: θst ∼ Uniform(−2dcoup, 0)

Mixed: θst ∼ Uniform(−dcoup,+dcoup)

Attractive: θst ∼ Uniform(0, 2dcoup)

For a given model, the marginal probabilitiespθ(Xs = 1) andpθ(Xs = 1,Xt = 1)
are computed exactly for each node and edge by calculating the log partition func-
tion exactly. Then, the variational Chernoff bounds on these probabilities are com-
puted using different approximations to the log partition functions. As described
in Section 6.4, we havelog pθ(X ∈ C) = ΦC(θ) − Φ(θ). In the case of the mar-
ginal at a single node,C = {x ∈ R

n |xs = 1}. We compute the bounds using the
following methods:

MF/Tree: A lower bound onlog pθ(X ∈ C) is computed by applying the struc-
tured mean field approximation toΦC(θ) and the tree-reweighted belief propaga-
tion approximation toΦ(θ).
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AverageL1 error± std
Problem type

Approximation method

Graph Coupling Strength MF/Tree lower MF/SDP lower Tree/MF upper SDP heuristic

Repulsive (0.25,1.0) 0.025± 0.003 0.118± 0.012 0.047± 0.008 0.005± 0.003

Repulsive (0.25,2.0) 0.034± 0.005 0.108± 0.010 0.101± 0.022 0.013± 0.001

Grid Mixed (0.25,1.0) 0.026± 0.004 0.243± 0.022 0.037± 0.009 0.019± 0.005

Mixed (0.25,2.0) 0.056± 0.024 0.250± 0.035 0.087± 0.031 0.021± 0.006

Attractive (0.25,1.0) 0.029± 0.008 0.621± 0.076 0.043± 0.015 0.016± 0.012

Attractive (0.25,2.0) 0.002± 0.001 0.791± 0.012 0.003± 0.001 0.036± 0.007

Repulsive (0.25,0.25) 0.011± 0.002 0.081± 0.024 0.015± 0.001 0.021± 0.004

Repulsive (0.25,0.50) 0.008± 0.005 0.046± 0.003 0.021± 0.002 0.021± 0.003

Full Mixed (0.25,0.25) 0.040± 0.006 0.216± 0.013 0.014± 0.001 0.012± 0.007

Mixed (0.25,0.50) 0.068± 0.011 0.250± 0.033 0.052± 0.005 0.016± 0.011

Attractive (0.25,0.06) 0.020± 0.004 0.257± 0.017 0.003± 0.001 0.026± 0.007

Attractive (0.25,0.12) 0.061± 0.009 0.367± 0.019 0.015± 0.003 0.061± 0.005

Table 6.2:L1 approximation error of pairwise node marginals. Approximation
methods are as described for Table 1.

MF/SDP: A lower bound onlog pθ(X ∈ C) is computed by the applying struc-
tured mean field approximation toΦC(θ) and the semidefinite relaxation, resulting
in a log determinant problem forΦ(θ).

Tree/MF: An upper bound is derived using tree-reweighted belief propagation to
upper boundΦC(θ), and using structured mean field to derive a lower bound on
Φ(θ).

SDP: The semidefinite relaxation is used to heuristically estimate the marginal
probability, as in [65], with no provable upper or lower bound.

To assess the accuracy of each approximation, we use theL1 error, defined as

1

n

n∑

s=1

|pθ(X ∈ C)− p̂θ(X ∈ C)| (6.43)

wherep̂θ denotes the estimated marginal. The results are shown in Table 1 for the
single node case, and in Table 2 for the case of node pairs.



Chapter 7

Variational Chebyshev Bounds

The inference tasks of the earlier chapters all had a completely specified model;
we were given the exponential family parameters, and we had to estimate the log-
partition function or an event probability. In this chapter, we consider the case
where we have to perform inference but we are given only partial information. In
particular, we are given the expected values (moments) of some known functions,
and we have to estimate an event probability; like in the previous chapter.
Formally, letX be ap−dimensional random variable, with domainX , and distrib-
uted according to an unknown distributionp . Let C ⊆ X be an event; we wish
to boundp(X ∈ C). The only information we have aboutp is a set of moments:
Epfi = σi, i = 1, . . . , k.

Such a moment-matching problem arises naturally in MLE parameter estima-
tion. Consider an exponential family distribution,pθ(X) = exp (θ>φ(X) − Φ(θ)),
with feature functionφ(X) and unknown parameterθ. Given data,
D := {x(1), . . . , x(n)}, the MLE parameterŝθ are obtained by maximizing the
log-likelihood,

max
θ
θ>φ̄− Φ(θ) (7.1)

where φ̄ = 1
n

∑n
j=1 φ(X(j)). Setting the gradient to zero, we get the moment

equations,

µ(θ̂) = Eθ̂[φ] = φ̄ (7.2)

In this case, the (MLE) parameters are completely specified by the moments; we
investigate however the general case where such moment information need not
completely specify the model.
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A classical technique for this moment matching task is the Chebyshev bound. As
in the Chernoff bound chapter, this is obtained by bounding the indicator function.
Let1C(x) be the indicator function of the setC. Consider the following parameter-
ized affine family of bounds on the indicator function,〈λ, f(x)〉+u ≥ 0 if x ∈ C.
Taking an expectation of the affine expression gives,

〈λ, σ〉 + u ≥ p [X ∈ C] (7.3)

Thus we get the Chebyshev bound,

inf
λ,u

〈λ, σ〉+ u (7.4)

s.t. 〈λ, f(x)〉+ u ≥ 1C(x) (7.5)

This can be simplified, for instance by,

inf
λ

〈λ, σ〉 + max{ sup
x∈Cc

−λ>f, 1 + sup
x∈C
−λ>f} (7.6)

For simple eventsC, such as a set given by polynomial inequalities, the con-
straint can be substituted with conditions for positivity of expressions. Consider
an example from [7]: given the first and second moments,µ = E(x) andΣ =
E(xx>), the Chebyshev bound for the event probabilityPr(X ∈ C) can be writ-
ten as

min
P,q,r

tr(ΣP ) + 2µ>q + r

s.t. tr(Pxx>) + 2q>x+ r ≥ 1C(x)

Consider the eventC = R
p\Y, whereY = {x|a>

i x < bi, i = 1, . . . , k}.
[7] show that the Chebyshev bound problem can be rewritten asthe following SDP,

min tr(ΣP ) + 2µ>q + r

s.t.

[
P q
q> r − 1

]
� τi

[
0 ai/2

aT
i /2 −bi

]
, i = 1, . . . , k

τi ≥ 0, i = 1, . . . , k[
P q
q> r

]
� 0

7.1 Graphical Model Chebyshev bounds

The Chebyshev bound in (7.4) bounds the event probabilityp(X ∈ C) given mo-
ment informationEp (f) = σ. In the task we now consider, in addition to the mo-
ment information, we are also informed that the distribution belongs to a specified
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graphical model family; in particular, the graph structureof the model is known.
We have already seen an example where the specification of thegraphical model
family would allow us to improve upon the Chebyshev bound: inMLE parameter
estimation for an exponential family, given the moments of the feature functions,
we can estimate the exact distribution parameters. In the general case however,
we cannot estimate the parameters exactly, and we would liketo incorporate the
graphical model information into the Chebyshev machinery in (7.4). At first glance
however, the bound in (7.4) does not have any remnant of the distribution left after
taking the moments. Consider, on the other hand, its dual,

sup
p

∑

x

p(x)1C(x) (7.7)

s.t.
∑

x

p(x)fi(x) = σi, i = 1, . . . , k (7.8)

∑

x

p(x) = 1 (7.9)

p(x) ≥ 0 (7.10)

The dual form is very intuitive: it take the supremum ofp(X ∈ C) over all dis-
tributionsp with the given moments. This thus suggests that instead of taking a
supremum overall distribution p , we only take the supremum over distributions
belonging to the specified graphical model family.
We first run through an example where we show that modifying the Chebyshev
bound according to the above programme helps. Consider a chain-structured graph-
ical model with three nodes;X = (X1,X2,X3), where the nodes are binary val-
ued, taking values in{0, 1}. The graph structure is a chain withX2 as the middle
node. We are given the following moments:

E(x1x2) = q 12 (7.11)

E(x2x3) = q 23 (7.12)

E(x2) = q 2 (7.13)

We wish to calculate a bound on the event probabilityp(xi = 1, i = 1, 2, 3).
Using the Chebyshev bound without graph-structural information, we get,

infλ λ12q 12 + λ23q 23 + λ2q 2 + λ4

s.t. λ12x1x2 + λ23x2x3 + λ2x2 + λ4 ≥ x1x2x3

This yields the bound:min{q 12, q 23, q 2}.
The graphical model information stipulates,

p = p12(x1, x2) p23(x2, x3) /p2(x2) (7.14)
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Modifying (7.7) to incorporate this, we get

sup p12(x1 = x2 = 1) p23(x2 = x3 = 1) /p2(x2 = 1)

s.t. p12(x1 = x2 = 1) = q 12, p23(x2 = x3 = 1) = q 23, p2(x2 = 1) = q 2

which trivially gives the exact value for the event probability q 12 q 23 /q 2.

7.2 Chebyshev-Chernoff Bounds

To formalize the intuition of the previous example, supposewe are informed that
the distributionp belongs to an exponential family with feature functionφ, so that,
pθ(X) = exp(θ>φ(X) − Φ(θ)). Let us first rewrite the dual Chebyshev bound in
(7.7) as follows,

sup
p

log Ep1C(x) (7.15)

s.t. log Epf = σ (7.16)

whereσ is now the logarithm of the moments. Since we know the parametric
form of p , we can rewrite this as,

sup
θ

Φ(θ; 1C)−Φ(θ) (7.17)

s.t. Φ(θ; fi)− Φ(θ) = σi, i = 1, . . . , k (7.18)

whereΦ(θ; g) = log
∑

x exp(θ>φ(x))g(x). Its dual is given by,

inf
ρ

sup
θ
ρ>σ + Φ(θ; 1C) +

(
∑

i

ρi − 1

)
Φ(θ) +

∑

i

ρiΦ(θ; fi) (7.19)

While this form could be optimized as is for simple eventsC, we can use the
Chernoff bound results of the previous chapter to “separate” the contribution from
the eventC, to give aChebyshev-Chernoffbound.

inf
ρ

sup
θ

inf
λ

ρ>σ + SC,φ(−λ) + Φ(λ+ θ)

+

(
∑

i

ρi − 1

)
Φ(θ) +

∑

i

ρiΦ(θ; fi) (7.20)

We note that this can be solved by co-ordinate descent, alternating betweenρ, θ and
λ. The gradients with respect toθ involve computing the graphical model moments
(for the current estimate ofθ); these can be approximated by approximate inference
procedures. We formally state the Chebyshev-Chernoff bound in the following
proposition,
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Proposition 6. Suppose thatX = (X1, . . . ,Xm) is distributed according to an
exponential modelp with (non-minimal) sufficient statisticφ(x) ∈ R

n, and let
C ⊂ R

m. Suppose the distributionp satisfies the following moment constraints,
Ep (fi) = exp(σi), i = 1, . . . , k. LetC ⊂ R

m. Then,

p(X ∈ C) ≤ inf
ρ

sup
θ

inf
λ

ρ>σ + Sφ
C(−λ) + Φ(λ+ θ)

+(
∑

i

ρi − 1)Φ(θ) +
∑

i

ρiΦ(θ; fi) (7.21)
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Part II

Structure Learning





Chapter 8

Structure From Data

The graph structure is a primary ontological component of a graphical model,
and consequently estimating it from data is of utmost importance. Consider a
p-dimensional discrete random variableX = (X1,X2, . . . ,Xp) whose distribu-
tion is governed by an unknown undirected graphical model. We investigate es-
timating the graph structure from an i.i.d. sampleD of n data points{x(i) =

(x
(i)
1 , . . . , x

(i)
p }ni=1)}.

The representation theory of graphical models is built on the back of conditional
independences: the lack of an edge(i, j) represents the Markov independence as-
sumption,Xi ⊥ Xj |XV \i,j. This motivates “constraint based approaches” which
use hypothesis testing to estimate the set of conditional independences in the data,
and then determine a graph that most closely represents those independences [47].
These approaches however work best in settings with more data and less nodes. An
alternative approach is to view the graph structure estimation as a search problem.
This has two components: (a) a graph scoring metric; that combines a goodness of
fit measure of the graph to the data (likelihood of the MLE parameters given the
graph for instance) and a graph complexity penalty; and (b) aheuristic search pro-
cedure that generates candidate graph structures to be scored. The number of undi-

rected graphs withp nodes is2(
p
2) however; Chickering [12] shows that this search

problem is NP-hard. Note that there are two complexity roadblocks in search based
procedures: one is the combinatorial search, and the other is the computation of the
score for any graph. The computation of typical score metrics however involves
computing the normalization constant of the graphical model distribution, which is
intractable for general undirected models. The space of candidate structures in such
scoring based approaches is thus typically restricted to directed models (Bayesian
networks), for which the normalization constant is trivially one.
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This depleted armory has thus restricted the estimation of graph structures in undi-
rected models to simple graph classes such as trees [13], polytrees [17] and bounded
tree-width hypertrees [48].
We now investigate the use of the “optimization” paradigm, which had proved to
be of such good use in various inference tasks. This demands we parametrize
the search space of graph structures: we can then cast the search procedure as a
parametrized optimization problem. In the next section we investigate the use of
a natural edge selection parametrization, and show how it leads to`1 regularized
MLE estimation.

8.1 Parameterizing edge selection

We focus on the setting of discrete undirected graphical models. Revisiting our
standard notation, letXs = {1, . . . ,ms} be the domain of variableXs; for j ∈ Xs

let Ij(xs) be the indicator function for the event{xs = j}. A pairwise undirected
graphical model forX = (X1,X2, . . . ,Xp) with graph structureG and indicator
function potentials is then given by,

p(X; θ;G) = exp



∑

s;j

θs;jIj(Xs) +
∑

(s,t)∈E;j,k

θst;jkIj,k(Xs,Xt)− Φ(θ)




(8.1)

The maximum likelihood estimate of the parametersθ, given the i.i.d observations
D and graph structureG, is given by

θ̂G = argmax
θ

1

n

n∑

i=1

log p(X(i); θ;G) (8.2)

The structure estimation problem can then be written as,

Ĝ = argmax
G

1

n

(
n∑

i=1

log p(X(i); θ̂G;G)

)
+ c(G) (8.3)

wherec(G) is a function that penalizes the complexity of the graph. Typi-
cal penalty functions, including the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC) [9], are proportional to the number of “free
parameters”; which in a pairwise graphical model is proportional to the number
of edges. We thus write the penalty function asc(G) = λ|E(G)|. From equa-
tions (8.2),(8.3), the structure learning task can be written as the joint regularized
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MLE estimation of(θ,G),

sup
θ,G

1

n

n∑

i=1

log p(X(i); θ;G) + c(G) (8.4)

The mandate of this section was to parametrize the graph structureG to a form
more amenable to optimization. A natural parametrization is the edge-appearance
vector{zst(G) = I[(s, t) ∈ E(G)]}. Under this parametrization, the likelihood
can be written as,

p(x; θ;G) := p(x; θ; z) (8.5)

= exp



∑

s;j

θs;jIj(xs) +
∑

s,t;j,k

zstθst;jkIj,k(xs, xt)− Φ(θ; z)




(8.6)

whereΦ(θ; z) is the log-partition function

Φ(θ; z) = log
∑

x

exp



∑

s;j

θs;jIj(xs) +
∑

s,t;j,k

zstθst;jkIj,k(xs, xt)




Noting that the penalty functionc(G) = λ|E(G)| becomesc(z) = λ
∑

st zst; the
structure estimation problem in Equation 8.4 can thus be written as,

sup

θ; z∈{0,1}(
p
2)

∑

s;j

θs;jµ̄s;j +
∑

s,t;j,k

zstθst;jkµ̄st;jk − Φ(θ; z) + λ
∑

st

zst (8.7)

whereµ̄ are the average counts;µ̄s;j = 1
n

∑
i I[x

(i)
s = j].

There are two sources of complexity; the log-partition function, and the optimiza-

tion of the discrete vectorz over the{0, 1}(p
2) hypercube. With the aim of ap-

proximating the log-partition function; substitute in theconjugate dualΦ∗(µ̄; z) =
supθ

∑
s;j θs;jµ̄s;j +

∑
s,t;j,k zstθst;jkµ̄st;jk − Φ(θ; z) in equation 8.7, to get,

sup
z

Φ∗(µ̄; z) + λ
∑

st

zst (8.8)

We can then use variational approximations of the entropy functionΦ∗(µ) to obtain
approximate solutions toz.
As a canonical example, consider the Bethe approximation tothe dual entropy
function; which is exact if the graph corresponding toz is tree-structured,

Φ∗(µ̄; z) = −
∑

s

Hs(µ̄s) +
∑

st

zstIst(µ̄st) (8.9)
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whereHs is the single node entropy andIst is the mutual information,

Hs(µs) := −
∑

j

µs;j log µs;j (8.10)

Ist(µst) :=
∑

jk

µst;jk log
µst;jk

µs;jµt;k
(8.11)

Equation 8.8 can then be written as,

sup
z

∑

st

zst(λ+ Ist(µ̄st)) (8.12)

Optimizing overz ∈ {0, 1}(p
2) gives:

zst = I[Ist(µ̄st) > −λ] (8.13)

Optimizing over tree-structuredz: Equation (8.12) suggests we weight each edge
(s, t) with Ist(µ̄st) and solve for the maximum spanning tree; this is also the Chow
Liu algorithm [14].
More complicated variational approximations to the dual entropy function in Equa-
tion 8.8 still leaves us with the intractable optimization over the discrete valuedz;
so let us go back to Equation 8.7 and attempt to “relax” the discrete optimization
overz. A natural relaxation is to allow optimization ofzst over positive reals, and
scale{θst;jk, j ∈ Xs, k ∈ Xt} for identifiability (of z),

(SE : I) sup
θ;z

∑

s;j

θs;jµ̄s;j +
∑

s,t;j,k

zstθst;jkµ̄st;jk − Φ(θ; z) + λ
∑

st

zst

s.t.
∑

jk

θ2
st;jk = 1, z ≥ 0 (8.14)

It can be seen that the constraint set in Equation 8.14 is a relaxation of the hyper-

cube set{0, 1}(p

2). The problem is convex inz andθ separately, and can be solved
by an alternating ascent procedure, optimizing overθ andz in turn. Let us however
simplify the problem further. Consider the following optimization problem,

(SE : II) sup
θ

∑

s;j

θs;jµ̄s;j +
∑

s,t;j,k

θst;jkµ̄st;jk − Φ(θ) + λ
∑

st

√∑

jk

θ2
st;jk

(8.15)

It can be seen that problems (SE: I) and (SE: II) are equivalent



8.1 Parameterizing edge selection 69

({z∗st}, {θ∗s}, {θ∗st}) optimizes(SE : I) implies
({θ∗s}, {β∗st = z∗st θ

∗
st}) optimizes(SE : II);

({θ∗s}, {β∗st}) optimizes(SE : II) implies(
{z∗st =

√∑
jk θ

2
st;jk}, {θ∗s}, {θ∗st = β∗st/z

∗
st}
)

optimizes(SE : I)

The penalty term in Problem (SE: II) is a sum or`1 norm over edges of the
`2 norms of parameters of a single edge. This`1 norm penalty over edges, while
derived as a relaxation, possesses many sparsity (structure) recovering properties.
The problem is still not tractable however; the log-partition function still needs to
be approximated. In the next chapter, we focus on the Ising model, where there is
a single parameter per edge, so that the penalty is a simple`1 norm of the para-
meters; and analyze its structure recovering properties under a pseudo-likelihood
approximation to the partition function.
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Chapter 9

`1 regularized regression

We now focus on the problem of estimating the graph structureof a discrete Markov
random field with Ising potentials. In the previous chapter,we reduced this to an
`1 penalized MLE estimation problem, by first relaxing an edge-selection parame-
trization, and parameterizing to an equivalent problem. The edge-selection para-
metrization suggests viewing structure estimation as a “sparsity recovery” problem.
An unknown “signal” of parameters or weights enters into generalized linear com-
binations with feature functions. What we observe are just noisy samples of these
generalized linear combinations, but from which we have to recover the “sparsity
pattern” of the signal: the locations of its non-zeros, which are the edges.
This “signal recovery” paradigm – recovering the signal from noisy samples of
linear combinations – has been used in many fields; and a technique with a long
history for the estimation of these sparse models or signalsis `1 regularization; we
refer to Tropp [52] for a recent survey. A surge of recent workhas shown that
`1-regularization can lead to practical algorithms for signal recovery with strong
theoretical guarantees (e.g., [19, 41, 52]).
In the allied problem of sparsity recovery – the task of recovering the zero-pattern
of the signal – the use of̀1 regularization has been shown to give strong guar-
antees [58, 71] as well. To see why separate guarantees are required for sparsity
recovery, aside from those for signal recovery, consider the setsA = {1, 1/n}
andB = {1, 0}. It can be seen that‖A − B‖2 → 0, so that the “estimate”A
recovers the “signal”B convergently. But, denoting byS(H) the support of setH,
S(A) = {1, 2} andS(B) = {1} andS(A) 6→ S(B); so that the estimate does not
recover the sparsity pattern convergently. The rest of the chapter starts on where
the last chapter left off, and analyzes the use of`1 regularized MLE estimation for
structure estimation in Ising graphical models. Since MLE estimation is intractable
for the fully connected graphical model; we consider the equivalent problem of es-
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timating the neighborhood of each node: this would then suggest maximizing the
`1 regularizedconditional likelihood at each node, which is tractable. We then
show that under suitable conditions this neighborhood estimation recovers the true
graph structure with probability one. The consistency analysis is in the high dimen-
sional setting, where the number of nodes in the graph, as well as the maximum
neighborhood size is allowed to grow to infinity with the number of samples. This
mode of analysis might at first seem discomfiting; are we getting samples from a
“growing” truth, and more importantly how can one be consistent to this growing
truth; to clear the confusions it is helpful to think of the setup as triangular. Given
a sequence of graph parametersθn, graph structureEn, and samplesDn, with the
subscripts denoting the number of samplesn, we show that our sequence of esti-
matesÊn, satisfyp [Ên = En]→ 1. This non-classical mode of analysis provides
a theoretical framework for studying very high dimensionalproblems where the
sample size may be large absolutely, and yet small relative to the dimension of the
problem; and is of considerable contemporary interest in statistics.

9.1 Problem Formulation and Notation

Let G = (V,E) denote a graph with vertex setV of size |V | = p and edge set
E. We denote byN(s) the set of neighbors of a vertexv ∈ V ; that isN(s) =
{(s, t) ∈ E}. A pairwise graphical model with graphG is a family of probabil-
ity distributions for a random variableX = (X1,X2, . . . ,Xp) given byp(x) ∝∏

(s,t)∈E ψst(xs, xt). We restrict our attention to the case where eachxs ∈ {0, 1}
is binary, and the family of probability distributions is given by the Ising model

p(x; θ) = exp
(∑

s∈V θsxs +
∑

(s,t)∈E θstxsxt −Ψ(θ)
)
. (9.1)

Given such an exponential family in a minimal representation, the log partition
functionΨ(θ) is strictly convex, which ensures that the parameter matrixθ is iden-
tifiable.

Givenn samplesx(i) ∈ {0, 1}p drawn from an unknown distributionp(x; θ∗)
of the form (9.1), letÊn be an estimated set of edges. Our set-up includes the
important situation in which the number of variablesp may be large relative to
the sample sizen. In particular, we allow the graphGn = (Vn, En) to vary
with n, so that the number of variablesp = |Vn| and the sizes of the neigh-
borhoodsds := |N(s)| may vary with sample size. (For notational clarity we
will sometimes omit subscripts indicating a dependence onn.) The goal is to
construct an estimator̂En for which p [Ên = En] → 1 asn → ∞. Equiva-
lently, we consider the problem of estimating neighborhoods N̂n(s) ⊂ Vn so that
p [ N̂n(s) = N(s), ∀ s ∈ Vn] −→ 1. For many problems of interest, the graphical
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model provides a compact representation where the size of the neighborhoods are
typically small—sayds � p for all s ∈ Vn. Our goal is to usè1-regularized logis-
tic regression to estimate these neighborhoods; the actualvalues of the parameters
θij is a secondary concern.

Given input data{(z(i), y(i))}, wherez(i) is a p-dimensional covariate and
y(i) ∈ {0, 1} is a binary response, logistic regression involves minimizing the
negative log likelihood

fs(θ;x) =
1

n

n∑

i=1

{
log(1 + exp(θT z(i)))− y(i)θT z(i)

}
. (9.2)

We focus on regularized version of this regression problem,involving an`1 con-
straint on (a subset of) the parameter vectorθ. For convenience, we assume that
z
(i)
1 = 1 is a constant so thatθ1 is a bias term, which is not regularized; we de-

note byθ\s the vector of all coefficients ofθ except the one in positions. For
the graph learning task, we regress each variableXs onto the remaining variables,
sharing the same datax(i) across problems. This leads to the following collection
of optimization problems (p in total, one for each graph node):

θ̂s,λ = arg min
θ∈Rp

{
1

n

n∑

i=1

[
log(1 + exp(θT z(i,s)))− x(i)

s θT z(i,s)
]

+ λn‖θ\s‖1
}
.

(9.3)
wheres ∈ V , andz(i,s) ∈ {0, 1}p denotes the vector wherez(i,s)

t = x
(i)
t for t 6= s

andz(i,s)
s = 1. The parameterθs acts as a bias term, and is not regularized. Thus,

the quantityθ̂s,λ
t can be thought of as a penalized conditional likelihood estimate

of θs,t. Our estimate of the neighborhoodN(s) is then given by

N̂n(s) =
{
t ∈ V, t 6= s : θ̂s,λ

t 6= 0
}
.

Our goal is to provide conditions on the graphical model—in particular, relations
among the number of nodesp, number of observationsn and maximum node de-
greedmax—that ensure that the collection of neighborhood estimates(9.1), one for
each nodes of the graph, is consistent with high probability.

We conclude this section with some additional notation thatis used through-
out the sequel. Defining the probabilityp(z(i,s); θ) := [1 + exp(−θT z(i,s))]−1,
straightforward calculations yield the gradient and Hessian, respectively, of the



74 `1 regularized regression

negative log likelihood (9.2):

∇θfs(θ;x) =
1

n

n∑

i=1

p(z(i,s); θ) z(i,s) − θT

(
1

n

n∑

i=1

x(i)
s z(i,s)

)
(9.4a)

∇2
θfs(θ;x) =

1

n

n∑

i=1

p(z(i,s); θ) [1− p(z(i,s); θ)] z(i,s) (z(i,s))T . (9.4b)

Finally, for ease of notation, we make frequent use the shorthand

Qs(θ) = ∇2fs(θ;x)

9.2 Main Result and Outline of Analysis

In this section, we begin with a precise statement of our mainresult, and then
provide a high-level overview of the key steps involved in its proof.

9.2.1 Statement of main result

We begin by stating the assumptions that underlie our main result. A subset of
the assumptions involve the Fisher information matrix associated with the logistic
regression model, defined for each nodes ∈ V as

Q∗
s = E

[
ps(Z; θ∗) {1− ps(Z; θ∗)}ZZT

]
, (9.5)

Note thatQ∗
s is the population average of the HessianQs(θ

∗). For ease of notation
we useS to denote the neighborhoodN(s), andSc to denote the complementV −
N(s). Our first two assumptions (A1 and A2) place restrictions on the dependency
and coherence structure of this Fisher information matrix.We note that these first
two assumptions are analogous to conditions imposed in previous work [38, 52,
58, 71] on linear regression. Our third assumption is a growth rate condition on the
triple (n, p, dmax).

[A1] Dependency condition: We require that the subset of the Fisher infor-
mation matrix corresponding to the relevant covariates hasbounded eigenvalues:
namely, there exist constantsCmin > 0 andCmax < +∞ such that

Cmin ≤ Λmin(Q∗
SS), and Λmax(Q∗

SS) ≤ Cmax. (9.6)

These conditions ensure that the relevant covariates do notbecome overly depen-
dent, and can be guaranteed (for instance) by assuming thatθ̂s,λ lies within a com-
pact set.
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[A2] Incoherence condition: Our next assumption captures the intuition that the
large number of irrelevant covariates (i.e., non-neighbors of nodes) cannot exert
an overly strong effect on the subset of relevant covariates(i.e., neighbors of node
s). To formalize this intuition, we require the existence of an ε ∈ (0, 1] such that

‖Q∗
ScS(Q∗

SS)−1‖∞ ≤ 1− ε. (9.7)

Analogous conditions are required for the success of the Lasso in the case of linear
regression [38, 52, 58, 71].

[A3] Growth rates: Our second set of assumptions involve the growth rates of
the number of observationsn, the graph sizep, and the maximum node degree
dmax. In particular, we require that:

n

d5
max

− 6dmax log(dmax)− 2 log(p) → +∞. (9.8)

Note that this condition allows the graph sizep to grow exponentially with the
number of observations (i.e.,p(n) = exp(nα) for someα ∈ (0, 1). Moreover, it
is worthwhile noting that for model selection in graphical models, one is typically
interested in node degreesdmax that remain bounded (e.g.,dmax = O(1)), or grow
only weakly with graph size (saydmax = o(log p)).

With these assumptions, we now state our main result:

Theorem 1. Given a graphical model and triple(n, p, dmax) such that condi-
tions A1 through A3 are satisfied, suppose that the regularization parameter
λn is chosen such that (a)nλ2

n − 2 log(p) → +∞, and (b)dmaxλn → 0. Then
p [ N̂n(s) = N(s), ∀ s ∈ Vn]→ 1 asn→ +∞.

9.2.2 Outline of analysis

We now provide a high-level roadmap of the main steps involved in our proof of
Theorem 1. Our approach is based on the notion of aprimal witness: in particular,
focusing our attention on a fixed nodes ∈ V , we define a constructive proce-
dure for generating a primal vectorθ̂ ∈ R

p as well as a corresponding subgradient
ẑ ∈ R

n that together satisfy the zero-subgradient optimality conditions associated
with the convex program (9.3). We then show that this construction succeeds with
probability converging to one under the stated conditions.A key fact is that the
convergence rate is sufficiently fast that a simple union bound over all graph nodes
shows that we achieve consistent neighborhood estimation for all nodes simultane-
ously.
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To provide some insight into the nature of our construction,the analysis in Sec-
tion 9.3 shows the neighborhoodN(s) is correctly recovered if and only if the pair
(θ̂, ẑ) satisfies the following four conditions: (a)θ̂Sc = 0; (b) |θ̂t| > 0 for all t ∈ S;
(c) ẑS = sgn(θ∗S); and (d)‖ẑSc‖∞ < 1. The first step in our construction is to
choose the pair(θ̂, ẑ) such that both conditions (a) and (c) hold. The remainder
of the analysis is then devoted to establishing that properties (b) and (d) hold with
high probability.

In the first part of our analysis, we assume that the dependence (A1) mutual in-
coherence (A2) conditions hold for thesample Fisher information matricesQs(θ

∗)
defined below equation (9.4b). Under this assumption, we then show that the con-
ditions onλn in the theorem statement suffice to guarantee that properties (b) and
(d) hold for the constructed pair(θ̂, ẑ). The remainder of the analysis, provided in
the full-length version of this paper, is devoted to showingthat under the specified
growth conditions (A3), imposing incoherence and dependence assumptions on the
population versionof the Fisher informationQ∗(θ∗) guarantees (with high prob-
ability) that analogous conditions hold for the sample quantitiesQs(θ

∗). While it
follows immediately from the law of large numbers that the empirical Fisher infor-
mationQn

AA(θ∗) converges to the population versionQ∗
AA for anyfixedsubset, the

delicacy is that we require controlling this convergence over subsets of increasing
size. Our analysis therefore requires the use of uniform laws of large numbers [44].

9.3 Primal-Dual Relations for`1-Regularized Logistic Re-
gression

Basic convexity theory can be used to characterize the solutions of `1-regularized
logistic regression. We assume in this section thatθ1 corresponds to the unregu-
larized bias term, and omit the dependence on sample sizen in the notation. The
objective is to compute

argmin
θ∈Rp

L(θ, λ) = argmin
θ∈Rp

{
f(θ;x) + λ

(
‖θ\1‖1 − b

)}

= argmin
θ∈Rp

{
f(θ;x) + λ‖θ\1‖1

}
(9.9)

The functionL(θ, λ) is the Lagrangian function for the problem of minimizing
f(θ;x) subject to‖θ\1‖1 ≤ b for someb. The dual function ish(λ) = infθ L(θ, λ).

If p ≤ n thenf(θ;x) is a strictly convex function ofθ. Since thè 1-norm is
convex, it follows thatL(θ, λ) is convex inθ and strictly convex inθ for p ≤ n.
Therefore the set of solutions to (9.9) is convex. Ifθ̂ and θ̂′ are two solutions,
then by convexityθ̂ + ρ(θ̂′ − θ̂) is also a solution for anyρ ∈ [0, 1]. Since the



9.4 Constructing a Primal-Dual Pair 77

solutions minimizef(θ;x) subject to‖θ\1‖1 ≤ b, the value off(θ̂ + ρ(θ̂′ − θ̂)) is

independent ofρ, and∇θf(θ̂;x) is independent of the particular solutionθ̂. These
facts are summarized below.

Lemma 1. If p ≤ n then a unique solution to(9.9)exists. Ifp ≥ n then the set of
solutions is convex, with the value of∇θf(θ̂;x) constant across all solutions. In
particular, if p ≥ n and |∇θt

f(θ̂;x)| < λ for some solution̂θ, thenθ̂t = 0 for all
solutions.

The subgradient∂‖θ\1‖1 ⊂ R
p is the collection of all vectorsz satisfying

|zt| ≤ 1 and

zt =

{
0 for t = 1

sign(θt) if θt 6= 0.

Any optimum of (9.9) must satisfy

∂θL(θ̂, λ) = ∇θf(θ̂;x) + λz = 0 (9.10)

for somez ∈ ∂‖θ\1‖. The analysis in the following sections shows that, with

high probability, a primal-dual pair(θ̂, ẑ) can be constructed so that|ẑt| < 1 and
thereforeθ̂t = 0 in caseθ∗t = 0 in the true modelθ∗ from which the data are
generated.

9.4 Constructing a Primal-Dual Pair

We now fix a variableXs for the logistic regression, denoting the set of variables
in its neighborhood byS. From the results of the previous section we observe that
the`1-regularized regression recovers the sparsity pattern if and only if there exists
a primal-dual solution pair(θ̂, ẑ) satisfying the zero-subgradient condition, and the
conditions (a)̂θSc = 0; (b) |θ̂t| > 0 for all t ∈ S andsgn(θ̂S) = sgn(θ∗S); (c)
ẑS = sgn(θ∗S); and (d)‖ẑSc‖∞ < 1.

Our proof proceeds by showing the existence (with high probability) of a primal-
dual pair(θ̂, ẑ) that satisfy these conditions. We begin by settingθ̂Sc = 0, so that
(a) holds, and also settinĝzS = sgn(θ̂S), so that (c) holds. We first establish a
consistency result when incoherence conditions are imposed on the sample Fisher
informationQn. The remaining analysis, deferred to the full-length version, es-
tablishes that the incoherence assumption (A2) on the population version ensures
that the sample version also obeys the property with probability converging to one
exponentially fast.
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Theorem 2. Suppose that

‖Qn
ScS(Qn

SS)−1‖∞ ≤ 1− ε (9.11)

for someε ∈ (0, 1]. Assume thatλn → 0 is chosen thatλ2
nn− log(p)→ +∞ and

λnd→ 0. ThenP

(
N̂(s) = N(s)

)
= 1−O(exp(−cnγ)) for someγ > 0.

Proof. Let us introduce the notation

W n :=
1

n

n∑

i=1

z(i,s)

(
x(i)

s −
exp(θ∗T z(i,s))

1 + exp(θ∗T z(i,s))

)

Substituting into the subgradient optimality condition (9.10) yields the equivalent
condition

∇f(θ̂;x)−∇f(θ;x)−W n + λnẑ = 0. (9.12)

By a Taylor series expansion, this condition can be re-written as

∇2f(θ∗;x) [θ̂ − θ∗] = W n − λnẑ +Rn, (9.13)

where the remainderRn is a term of order‖Rn‖2 = O(‖θ̂ − θ∗‖2).
Using our shorthandQn = ∇2

θf(θ∗;x), we write the zero-subgradient condi-
tion (9.13) in block form as:

Qn
ScS [θ̂s,λ

S − θ∗S] = W n
Sc − λnẑSc +Rn

Sc , (9.14a)

Qn
SS [θ̂s,λ

S − θ∗S] = W n
S − λnẑS +Rn

S . (9.14b)

It can be shown that the matrixQn
SS is invertible w.p. one, so that these conditions

can be rewritten as

Qn
ScS (Qn

SS)−1 [W n
S − λnẑS +Rn

S ] = W n
Sc − λnẑSc +Rn

Sc. (9.15)

Re-arranging yields the condition

Qn
ScS (Qn

SS)−1 [W n
S −Rn

S ]− [W n
Sc −Rn

Sc ] + λnQ
n
ScS (Qn

SS)−1ẑS = λnẑSc .(9.16)
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Analysis of condition (d): We now demonstrate that‖ẑSc‖∞ < 1. Using trian-
gle inequality and the sample incoherence bound (9.11) we have that

‖ẑSc‖∞ ≤ (2− ε)
λn

[‖W n‖∞ + ‖Rn‖∞] + (1− ε) (9.17)

We complete the proof that‖ẑSc‖∞ < 1 with the following two lemmas, proved
in [62].

Lemma 2. If nλ2
n − log(p)→ +∞, then

P

(
2− ε
λn
‖W n‖∞ ≥

ε

4

)
→ 0 (9.18)

at rateO(exp
(
−nλ2

n + log(p)
)
).

Lemma 3. If nλ2
n − log(p)→ +∞ anddmaxλn → 0, then we have

P

(
2− ε
λn
‖Rn‖∞ ≥

ε

4

)
→ 0 (9.19)

at rateO(exp
(
−nλ2

n + log(p)
)
).

We apply these two lemmas to the bound (9.17) to obtain that with probability
converging to one at rateO(exp

{
exp

(
nλ2

n − log(p)
})

, we have

‖ẑSc‖∞ ≤ ε

4
+
ε

4
+ (1− ε) = 1− ε

2
.

Analysis of condition (b): We next show that condition (b) can be satisfied, so
that sgn(θ̂S) = sgn(θ∗S). Defineρn := mini∈S |θ∗S|. From equation (9.14b), we
have

θ̂s,λ
S = θ∗S − (Qn

SS)−1 [WS − λnẑS +RS ] . (9.20)

Therefore, in order to establish that|θ̂s,λ
i | > 0 for all i ∈ S, and moreover that

sign(θ̂s,λ
S ) = sign(θ∗S), it suffices to show that

∥∥(Qn
SS)−1 [WS − λnẑS +RS ]

∥∥
∞
≤ ρn

2
.

Using our eigenvalue bounds, we have
∥∥(Qn

SS)−1 [WS − λnẑS +RS ]
∥∥
∞
≤ ‖(Qn

SS)−1‖∞ [‖WS‖∞ + λn + ‖RS‖∞]

≤
√
d ‖(Qn

SS)−1‖2 [‖WS‖∞ + λn + ‖RS‖∞]

≤
√
d

Cmin
[‖WS‖∞ + λn + ‖RS‖∞] .
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In fact, the righthand side tends to zero from our earlier results onW andR, and
the assumption thatλnd → 0. Together with the exponential rates of convergence
established by the stated lemmas, this completes the proof of the result.

9.5 Experimental Results

We briefly describe some experimental results that demonstrate the practical vi-
ability and performance of our proposed method. We generated random Ising
models (9.1) using the following procedure: for a given graph sizep and maxi-
mum degreedmax, we started with a graph with disconnected cliques of size less
than or equal to ten, and for each node, removed edges randomly until the spar-
sity condition (degree less thandmax) was satisfied. For all edges(s, t) present
in the resulting random graph, we chose the edge weightθst ∼ U [−3, 3]. We
drew n i.i.d. samples from the resulting random Ising model by exact methods.
We implemented thè1-regularized logistic regression by setting the`1 penalty as
λn = O((log p)3

√
n), and solved the convex program using a customized primal-

dual algorithm. In each case, we evaluate a given method in terms of its average
precision (one minus the fraction of falsely included edges), and itsrecall (one
minus the fraction of falsely excluded edges). Figure 9.1 shows results for the case
of constant degrees (dmax ≤ 4), and graph sizesp ∈ {100, 200, 400}, for the AND
method (respectively the OR) method, in which an edge(s, t) is included if and
only if it is included in the local regressions at both nodes and (respectivelyor)
nodet. Note that both the precision and recall tend to one as the number of samples
n is increased.
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Figure 9.1: Precision/recall plots using the AND method (top), and the OR
method (bottom). Each panel shows precision/recall versusn, for graph sizes
p ∈ {100, 200, 400}.
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Part III

Feature Estimation





Chapter 10

Features from data

The graphical models in previous chapters all belonged to a parametric family; in
particular, the exponential family of distributionsp(X) ∝ exp(θ>φ(X)). Given
the feature functionsφ(X), the structure and weightsθ were then learned from
data. It is typically a domain expert who specifies these feature functions; she either
hand-designs them, or uses standard functions such as Ising, Potts, or indicator
functions for discrete-valued models. The prediction accuracy of these models are
then typically highly dependent on these expert-specified features; using the “raw”
observations as features performs poorly [55]. It is thus ofinterest to develop
techniques that can perform this feature estimation task ina data-driven fashion.
Over the next two chapters, we propose techniques to (a) estimate feature functions
from data, given the structure; and (b) for a restricted class of models, estimate the
structure as well as feature functions simultaneously.

For the task of feature estimation given the structure, we are motivated in par-
ticular by structured prediction. Prediction tasks with known input and response
variables, motivate discriminative models, which model the conditional distribu-
tion of the response given the input. In a structured prediction task, the response is
multi-dimensional, with some inherent graphical structure, such as a linear chain
for label sequences. It can be thought of as a multi-class problem with a large
number of class labels, typically exponential in the numberof variables, where for
efficient estimation, the structure of the set of labels mustbe taken into account.
For such a structured responseY = (Y1, . . . , YT ) then, instead of treating eachYt

as a separate prediction problem, it is important to estimate the model jointly across
{Yt}. A commonly used graphical model approach to this is conditional random
fields, CRFs [33], which model the conditional distributionof the structured re-
sponseY by a Markov random field over the response variablesY = (Y1, . . . , YT ),
globally conditioned on observationX. We extend CRFs to a new class of mod-
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els, additive conditional random fields (aCRFs), which allow efficient estimation
of the feature functions from data given the structure. In particular, we propose
two feature-estimation procedures. One is a “dynamic” variant of boosting we call
aDyBoost, which performs functional gradient descent in a smooth Hilbert space of
functions. The second, called “dynamic backfitting,” performs functional Gauss-
Newton descent. The new methods give a flexible set of tools for nonparametric
graphical models that complements those considered previously [34, 1, 53].

In Chapters 8,9, we used a technique based on`1 regularization to estimate
the structure of a graphical model, given the feature functions; we focused in par-
ticular on models with Ising and indicator feature functions. We now propose a
class of models, sparse additive models (SpAM) which allow us to do both struc-
ture and feature estimation simultaneously. Consider a linear regression model;
Yi = XT

i β + εi, for i = 1, . . . , n; whereYi is a real-valued response,Xi is a
p-dimensional predictor andεi is a mean zero error term. For high-dimensional
problems, where the number of predictorsp is very large, for both statistical and
computational performance reasons, it is necessary to firstestimate the relevant set
of predictors (predictor selection). Substantial progress has been made recently on
this problem; in particular with the lasso [50]. The lasso estimatorβ̂ minimizes the
`1-penalized sums of squares

∑

i

(Yi −XT
i β) + λ

p∑

j=1

|βj | (10.1)

with the`1 penalty‖β‖1 encouraging sparse solutions, where many componentsβ̂j

are zero. In other words, the lasso performs predictor selection as well as parameter
estimation simultaneously. The good empirical success of this estimator has been
recently backed up by results confirming that it has strong theoretical properties;
see [21, 72, 39, 56]. These models have a strong bias however –the features are
linear. [25] thus introduced the class of additive models ofthe form

Yi =

p∑

j=1

mj(Xij) + εi (10.2)

which extend linear models non-parametrically, but are still easy to fit and inter-
pretable; in particular, an additive model can be estimatedusing a coordinate de-
scent Gauss-Seidel procedure called backfitting (described in the next section). An
extension of the additive model is the functional ANOVA model

Yi =
∑

1≤j≤p

mj(Xij)+
∑

j<k

mj,k(Xij ,Xik)+
∑

j<k<`

mj,k,`(Xij ,Xik,Xi`)+ · · ·+εi

(10.3)
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which allows interactions among the variables. Unfortunately, as was the case
with linear models, additive models only have good statistical and computational
behavior when the number of variablesp is not large relative to the sample sizen.

We introduce sparse additive models (SpAM), a class of models which allow
predictor selection as well as component function estimation simultaneously; just
as the lasso performs simultaneous predictor selection andweight estimation with
(parametric) linear features. The underlying model is the same as in (10.2), but
constraints are placed on the component functions{mj}1≤j≤p to simultaneously
encourage smoothness of each component and sparsity acrosscomponents. It also
naturally extends to classification problems using generalized additive models.

The next two chapters develop and analyze aCRFs and SpAM; at the heart of
these methods are the concepts of smoothing and additive andgeneralized additive
models, which we briefly review in the next section.

10.1 Smoothing and Additive Models

A nonparametric regression model is given by,

Y = m(X) + ε, E(ε) = 0 (10.4)

hereY is a real-valued response,X is a p-dimensional predictor; andm(x) =
E(Y |X = x) is the regressionfunction; assumed to lie in a smooth function
space such as a Sobolev space. The task in non-parametric regression is to esti-
mate this regression functionm(X) givenn observations{(Xi, Yi), i = 1, . . . , n}.
Such a non-parametric estimatem̂(x) of the regression function is referred to as a
smoother, since it “smooths” the noisy function values at given input points into a
function over the entire domain. Common smoothers include basic kernel regres-
sion, local linear and local polynomial smoothing, binning, scatterplot smoothing,
or even techniques such as wavelet regression.

We briefly describe cubic splines and kernel smoothers below. A cubic spline
is the solution of the following penalized likelihood problem,

min
m∈S

n∑

i=1

(Yi −m(Xi))
2 + λ

∫
(m′′(x))2dx (10.5)

whereS = {m :
∫

(m′′(x))2dx < ∞} is the sobolev space of order two. The
penaltyJ(m) =

∫
(m′′(x))2dx penalizes rough functions; in particular the solu-

tion of the above optimization problem is a cubic polynomialthat interpolates the
given data points.
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A kernel smoother is a local weighted average estimator, defined as

m̂(x) =

∑n
i=1K(x−Xi

h ) Yi∑n
i=1K(x−Xi

h )
(10.6)

whereK is a kernel function, and gives a large weight to data pointsXi close tox
and a small weight to points which are farther.

A smoother which when evaluated at anyx is a linear combination of the
training responses,̂m(x) =

∑
i siYi = SxY , is referred to as a linear smoother.

The linear combination coefficients depend on the evaluation pointx. Both cubic
splines and kernel estimators are linear smoothers.

Since non-parametric smoothing procedures become challenging whenX is
very high dimensional, [25] introduced the class of additive models,

Yi =

p∑

j=1

mj(Xij) + εi (10.7)

To see how we can fit such a model, consider the population objective function for
an additive model,

1

2
E

(
Y −∑p

j=1mj(Xj)
)2

(10.8)

Let Rj = Y −∑k 6=j mk(Xk) be thejth residual. Then the stationary condition
for minimizing the objective as a function ofmj, holding the other components
mk fixed fork 6= j, is simply

0 = E


mj(Xj) +

∑

k 6=j

mk(Xk)− Y
∣∣∣Xj


 (10.9)

mj(Xj) = E (Rj |Xj) (10.10)

The backfitting procedure replaces this population expectation by a sample version
that uses a smoother (or smoothing matrix in the case of a linear smoother)Sj :
m̂j(Xj) = SjRj. It can be summarized as follows:

Iterateuntil convergence:

For eachj = 1, . . . , p:

Compute the residual:Rj = Y −∑k 6=j mk(Xk);

Estimate the projectionPj = E[Rj |Xj ] by smoothing: P̂j =
SjRj ;
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Update thej−th component:mj ← P̂j .

In the case of the additive logistic regression, the model takes the form

p(Y = 1|X;β) = exp




p∑

j=1

mj(Xj)


/1 + exp




p∑

j=1

mj(Xj)


 (10.11)

where the functions{mj} take the place of the linear combinations{βjXj} in
logistic regression. In this case, whenY ∈ {0, 1}, the population log-likelihood is

`(m) = E [Y m(X)− log (1 + expm(X))] (10.12)

The stationary condition for component functionmj is

E (p− Y |Xj) = 0 (10.13)

However, this condition is nonlinear inm, and so we linearize the gradient of the
log-likelihood around a current estimatem0. This yields the linearized condition

E [w(X)(m(X) − Z) |Xj ] = 0 (10.14)

whereZ is a transformed response for the current estimatem0:

Zi = m0(Xi) +
Yi − p(Xi;m0)

p(Xi;m0)(1 − p(Xi;m0))
(10.15)

and the weights arew(Xi) = p(Xi;m0)(1 − p(Xi;m0). The weighted smooth is
given by

P̂j =
Sj(wRj)

Sjw
. (10.16)

which is a backfitting of(Z,X) with weightsw. This yields a local scoring algo-
rithm which runs the backfitting procedure within Newton’s method.

Iterateuntil convergence:

Evaluate as above the transformed response and weight(Z,W ) around
current estimate.

Iterateuntil convergence:

For eachj = 1, . . . , p:

Compute the residual:Rj = Z −∑k 6=j mk(Xk);

Estimate the weighted projectionPj =
E[wRj |Xj ]

E[w|Xj ]
by smooth-

ing: P̂j =
Sj(wRj)

Sjw .



90 Features from data

Update thej−th component:mj ← P̂j

Another technique commonly used to fit additive logistic regression models is Ad-
aBoost and its variants; see [20].

The smoothing matricesSj can be derived from any of a wide range of non-
parametric smoothers. The backfitting procedure can be viewed as a Gauss-Seidel
coordinate descent algorithm. It can be seen as trading off convergence speed for
ease of implementation and scalability to high dimensions.We refer to [25] for an
extensive introduction.

An extension of the additive model is the functional ANOVA model where the
functions take the form

m(X) =
∑

1≤j≤p

mj(Xij)+
∑

j<k

mj,k(Xij ,Xik)+
∑

j<k<`

mj,k,`(Xij ,Xik,Xi`)+ · · ·

(10.17)
Such an extension is naturally applicable to the aCRF modelsthat we discuss next.



Chapter 11

Additive Conditional Random
Fields

11.1 Introduction

In this chapter, we propose a new class of models, additive conditional random
fields (aCRFs), which allow efficient estimation of the feature functions from data
given the structure. The motivating task is structured prediction. In a structured
prediction task, the response is multi-dimensional, with some inherent graphical
structure, such as a linear chain for label sequences. It canbe thought of as a
multi-class problem with a large number of class labels, typically exponential in
the number of variables, where for efficient estimation, thestructure of the set of
labels must be taken into account. Problems such as speech recognition, image de-
noising, object recognition, natural language parsing, information extraction, hand-
writing recognition, gene prediction, machine translation and many others can be
naturally cast as structured prediction problems. A small sample of recent work in
this direction includes [15, 43, 33, 37, 32, 46, 49, 1, 53].

A commonly used graphical model approach to structured prediction is con-
ditional random fields, CRFs [33], which model the conditional distribution of
the structured responseY by a Markov random field over the response variables
Y = (Y1, . . . , YT ), globally conditioned on observationX. We extend CRFs
to a new class of models, additive conditional random fields (aCRFs), which as
stated previously, allow efficient estimation of feature functions from data. In
particular, we propose two feature estimation procedures.One is a “dynamic”
variant of boosting we call aDyBoost, which performs functional gradient de-
scent in a smooth Hilbert space. The second is an extension ofadditive model
backfitting, which we call “dynamic backfitting,” and which performs functional
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Gauss-Newton descent. These procedures allow the use of arbitrary smoothing
techniques, and are easy to implement. While we focus here onsequence models,
for which the underlying graph is a chain, the methods generalize naturally to gen-
eral (conditional) graphical models. The new methods give aflexible set of tools
for nonparametric graphical models that complements thoseconsidered previously
[34, 1, 53].

11.2 Additive Conditional Random Fields

LetX = {X1, . . . ,XT } be a sequence of observation variables, and
Y = {Y1, . . . , YT } be the corresponding sequence of label variables. A conditional
random field models the conditional distribution of the label sequenceY given the
observation sequenceX by an undirected graphical model over the label variables.
The feature functions over cliques of the label graph are allowed to depend on the
entire observation sequenceX. In what follows, we start off with a canonical CRF
formulation and then extend it to our aCRF formulation.

Consider a CRF where the graph over the labels is a chain as in HMMs, so that
the neighbors ofYt areYt−1 andYt+1.

X

Y1 YT. . .

p(Y |X) ∝ exp
∑

t

∑

j

wj,tgj,t(Yt,X) +
∑

t

∑

k

wk,tfk,t(Yt−1, Yt,X) (11.1)

where{gj,t, fj,t} are the features, and{wj,t, wk,t} are the corresponding weights.
Assuming the features are time-independent, and absorbingthe weights into the
features, we can write

p(Y |X) ∝ exp
∑

t

∑

j

gj(Yt, hj,t(X)) +
∑

t

∑

k

fk(Yt−1, Yt, hk,t(X)) (11.2)

wherehl,t(X) is a feature-specific history window of the observation sequence,
e.g. (Xt,Xt−1). Consider further a “tensor product” assumption, namely that the
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feature functions can be written as a product of functions ofY and functions ofX
as

p(Y |X) ∝ exp
∑

t

∑

j

wj qs(Yt)gj(hj,t(X))

+
∑

t

∑

k

wk qp(Yt−1, Yt)fk(hk,t(X)) (11.3)

Consider now an ANOVA type additive expansion of the observation feature
functions. Letmk(Xt,k),mp,kk′(Xt−1,k,Xt,k′),ms,kk′(Xt,k,Xt,k′) be the first and
second-order feature functions, wherek ranges over the dimension of covariates
Xt.

p(Y |X) ∝ exp
∑

t

∑

k

qs(Yt)mk(Xt,k) +
∑

t

∑

k,k′

qs(Yt)ms,kk′(Xt,k,Xt,k′)

+
∑

t

∑

k,k′

qp(Yt−1, Yt)mp,kk′(Xt−1,k,Xt,k′)

(11.4)

This, then, is our aCRF formulation. In CRFs, the functionalform of the features is
fixed and assumed, and only multiplicative weights are learned. In aCRFs, we learn
the features themselves from data. The additive nature of the observation feature
functionsm(Xt) =

∑
k mk(Xtk) allows us to finesse the curse of dimensionality

and retain applicability in high dimensions. Note that since the label domain is
categorical, learning the label functionsq reduces to parametric learning of weights
qij, which can be seen by lettingq(y, y′) =

∑
ij qijIij(y, y

′).

Y1 Y2 YT

X11

X1k
XTk

Figure 11.1: First order aCRF

Figure (11.1) shows a first order chain aCRF, with observation functions
mk(Xt,k); we now formalize the above descriptions for this first orderchain aCRF;
the details generalize to higher order aCRFs.



94 Additive Conditional Random Fields

For j = 1, . . . , p ranging over the dimension of observations; let{Xtj , t =
1, . . . , T}, be random variables with a common domainXj ⊆ R. Let Htj be
smooth Hilbert spaces of measurable functionsmtj(Xtj), with E(mtj(Xtj)) = 0,

andE(m2
tj(Xtj)) < ∞, and inner product

〈
mtj ,m

′
tj

〉
= E(mtj(Xtj)m

′
tj(Xtj)).

Let Ht+ = ⊕p
j=1Htj denote the Hilbert space of functions of(Xt,1, . . . ,Xt,p)

with an additive form:mt(Xt) =
∑p

j=1mtj(Xtj). DenoteHj = ∩T
t=1Htj , and

H+ = ∩T
t=1Ht+ = ⊕p

j=1Hj. Then, the first order aCRF is given by

p(Y |X) ∝ exp
∑

t

α(Yt−1, Yt) +
∑

t

q(Yt−1, Yt)m(Xt) (11.5)

wherem(Xt) =
∑

j mj(Xtj) lies inH+.
We remark that the above formulation is primarily intended for the case where

the inputsXj are real valued, or categorical with many values. In the casewhere
theXj are binary, the standard linear CRF is already effectively nonparametric.

11.3 Backfitting and Boosting

LetX = (X1, . . . ,XT ) be the observation sequence, where each
Xt = (Xt1, . . . ,Xtp) ∈ R

p andY = (Y1, . . . , YT ) be the label sequence, where
eachYt ∈ C, for a categorical setC. Letmt(Xt) =

∑p
j=1mtj(Xtj) be the obser-

vation feature function at timet. We assume that the feature functions are time-
independent, so thatmt = m, mtj = mj, t = 1, . . . , T .

Let `(m,X, Y ) denote the aCRF log-likelihood functional at a sequence in-
stance(X,Y ). Note that the aCRF log-likelihood uses the same observation fea-
ture functionm atT time steps, and thus can also be written as`(m, . . . ,m,X, Y )
wherem is used as the firstT arguments. We present a canonical example below
for illustrating this form of the aCRF log-likelihood

l(m,X, Y ) =
∑

t

αYt−1,Ytm(Xt)− logZ(m,X) (11.6)

whereZ(m,X) = log
∑

Y exp
(∑

t αYt−1,Ytm(Xt)
)

We require an estimate of
{mj} from n training sequences{X(1), . . . ,X(n)}. We propose two estimation
procedures for aCRF. One is a dynamic variant of boosting we call aDyBoost, and
the second is a backfitting procedure we call “dynamic backfitting”. In the next
section, we derive these as the sample analogues of gradientdescent and Gauss-
Newton descent of the population aCRF log-likelihood over an additive Hilbert
space of functions.
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Figure 11.2 details the aDyBoost algorithm for a general aCRF. We illustrate
the computation of the gradient with the following example,where the model is
simplified for clarity:

p(Y |X) ∝ exp



∑

t

αYt−1,Yt + Yt



∑

j

mj(Xtj)




 (11.7)

The (functional) gradient contribution at time stept for this model is then

Vt =
∂`

∂mt
= Yt − P (Yt = 1). (11.8)

As [20] showed, additive logistic regression models can be fit by Adaboost, which
performs functional gradient descent. Here, we estimate the feature functions
shared across time steps by a dynamic variant of boosting. The gradient is com-
puted by a double smoothing procedure. At each time step, thecontribution for
that time step is computed by smoothing the functional gradient, then the kernel
average of the contributions from all time steps is computedto obtain the gradient.

Figure (11.3) describe a “backfitting” procedure that uses second-order infor-
mation. Called dynamic backfitting, it is an extension of thelocal scoring based
backfitting procedure for generalized additive models. TheGauss-Newton de-
scent direction–as with aDyBoost–is computed by a two-foldsmoothing proce-
dure. Weighted contributions from each time step is computed by smoothing the
weighted gradients, and finally the contributions from all time steps are smoothed
by kernel averaging to yield the descent direction.

11.4 Derivation of aDyBoost and Dynamic Backfitting

Let ` : ⊗T
t=1Ht+ ⊗p

j=1 X T
j × Y → R be the aCRF log-likelihood whose firstT

arguments are functions inHt+, for t = 1, . . . , T .
Now consider the expected log-likelihoodE` : H+ → R,

E`(m) = E[`(m,X, Y )] =

∫
`(m, . . . ,m,X, Y ) p(X,Y ) dXdY (11.9)

whereX = {Xtj , t = 1, . . . , T, j = 1, . . . , p}, andp(X,Y ) is the population
density over(X,Y ). LetZ = (X,Y ). Form̂ = m+ εηj, whereηj ∈ Hj ,

E`(m̂) = E`(m) + ε

∫ ∑

t

∂`

∂mt

∣∣∣
mt=m

ηj(Xtj)p(Z) dZ +O(ε2) (11.10)
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Thus the first variation ofE` is given by

δE`(m, ηj) =
∑

t

∫
E

[
∂`

∂mt

∣∣∣
mt=m

∣∣∣∣∣Xtj = xj

]
p(Xtj = xj)ηj(xj) dxj

and the gradient∂E`
∂m is given by

∂E`

∂m
(xj) =

∑

t

E

[
∂`

∂mt

∣∣∣
mt=m

∣∣∣∣∣Xtj = xj

]
p(Xtj = xj). (11.11)

In the finite sample case, the conditional expectation of thegradient givenXtj

at each time step is estimated by a smoother, whilep(Xtj = xj) by any density
estimator. Using the Nadaraya-Watson kernel density estimator yields a kernel av-
eraging of the contributions from different steps. Thus, weget the dual-smoothing
procedure of aDyBoost.

For the Gauss-Newton update, note that form to be an optimum it is required
that

∂`

∂m
=
∑

t

E

[
∂`

∂mt

∣∣∣
mt=m

∣∣∣∣∣Xtj = xj

]
ptj(xj) = 0 (11.12)

A partial linearization around a current guessm = m0, restricted to each time step,
gives

0 =
∑

t

ptj(xj)E

[
∂`

∂mt0
+

∂2l

∂m2
t0

(m(Xt)−m0(Xt))

∣∣∣∣∣Xtj = xj

]

LettingWt0 = − ∂2`
∂m2

t0

, andVt0 = m0(Xt) +W−1
t0

∂`
∂mt0

, the linearization becomes

0 =
∑

t

ptj(xj)E


Wt0


Vt0 −

∑

k 6=j

mk(Xtk)−mj(xj)



∣∣∣∣∣Xtj = xj




We have thus derived the dynamic backfitting procedure, since

mj(xj) =

∑
t ptj(xj)E

[
Wt0 (Vt0 −

∑
k 6=j mk(Xtk))

∣∣∣Xtj = xj

]

∑
t ptj(xj)E

[
Wt0

∣∣∣Xtj = xj

] (11.13)
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11.5 Experiments

In this section, we present three sets of experiments. First, we provide a synthetic
example to motivate the use of a nonparametric model for structured classification
tasks. In the second experiment, we use synthetic data to demonstrate that our back
fitting procedure can accurately recover a generative modelfrom sequences sam-
pled from the generative model. In the third set of experiments, we present results
using speech data from the UCI KDD archive to contrast aCRFs with traditional
CRFs on a more realistic data set.

11.5.1 Multi-modal observations

We sampled sequences from a hidden Markov model with two hidden states and
single, continuous emission term. The transition dynamicsof the Markov chain
were biased towards self-transitions, specificallyp(Yt = i |Yt−1 = j) = .75 when
i = j. The emissions were drawn from two component Gaussian mixture models
as shown in Figure (11.4) (left). The key property of the emission model is that
the components corresponding to different states are interleaved. This represents a
pathological case for simple sequence models because the mode of the observations
produced by each state falls inside of a mixture component corresponding to the
other state.

We compared an aCRF to a parametric CRF having first-, second-, or third-
order features of the observed variable. For example, the second-order CRF in-
cludes the features{f1 = Yt, f2 = YtXt, f3 = YtX

2
t } in addition to the usual

features associated with state transitions. The additive CRF fit m using a kernel
smoother with an Epanechnikov kernel, with a bandwidthh = .25. The results
of fitting these models to a sequence of 500 training points are presented in Fig-
ure 11.4 (right). Specifically, the figure shows fitted functions and the values of
βT f for the relevant features of the various CRFs asXt is varied andYt is held
fixed at1. The CRFs with linear and quadratic features perform poorly, producing
error rates of30.46% and30.54% respectively. The nonparametric aCRF and the
CRF that includes third-order terms both perform well and produce error rates of
2.46% and2.56% respectively.

11.5.2 Reconstructing known functions

In this experiment, we generated synthetic data from an aCRFusing known func-
tions. The goal is to recover an accurate approximation to the true functions used
to generate data from a sequence sampled from the true model.The generative
model contained two states and included features equivalent to a transition model
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of p(Yt = i |Yt−1 = j) = .75 wheni = j. To sample sequences from an aCRF, we
generated a sequence of observationsX, where in each time stepXt consisted of
two covariates drawn fromUniform(−2, 2). We then used these observed values
in conjunction with the model containing knownmj to sample a label sequence
consistent with the observation sequence. Figure 11.5 shows the resulting learned
m̂j when an aCRF is trained on a sequence of 5,000 time steps sampled from the
generative model versus the true functions used in the generative model. There is
a good correspondence between the true and estimated functions.

11.5.3 Speaker identification

Our third set of experiments tested the aCRF in a speaker identification task using
speech data from the UCI KDD archive that were donated by [30]. The data are a
collection of discrete utterances made by nine male Japanese speakers. A single ut-
terance consists of the vowelsaespoken together, and each utterance is represented
as a series of twelve cepstral coefficients. To generate longer sequences with tran-
sition dynamics between speakers, we defined a Markov chain over speakers and
sampled from this chain to identify a speaker. The training set contained 30 ut-
terances per speaker. A single transition between speakersin the Markov chain
produces observations across multiple time steps—sampling 10 speakers from the
Markov chain would produce a sequence of approximately 150 label/observation
pairs where the label identifies the speaker at any given moment and each obser-
vation consists of 12 cepstral coefficients. Figure 11.6 presents results comparing
an aCRF with a CRF built with first order features over the covariates inX as the
length of the training sequence was varied. For these experiments, we reduced the
classification problem described above to the binary case byremapping the labels
Yt to Y ′

t = Yt mod 2. Each training sequence length was tested 50 times. On
average, the nonparametric model produced a lower error rate on test data across
all of the training lengths we considered.
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Input: Data(X(i), Y (i)).

Initializemj = m(0)j, for j = 1, . . . , p.

Iterateuntil convergence:

For each dimensionj = 1, . . . , p:

Smoothing at each time step:

For each time stept = 1, . . . , T

Compute the gradient contribution of timet: Vt = ∂`
∂mt

.

Estimate the conditional expectationGtj = E[Vt |Xtj = xj]
by smoothing:Ĝtj = StjVt.

Smoothing across time steps:

For each time stept = 1, . . . , T

Estimate the densityp(Xtj = xj) at time t by a smoothed
kernel density estimate:̂ptj(xj) = Ktj(xj)

Compute the gradient forj by adding weighted contributions from
all time steps:
gj(xj) =

∑T
t=1 p̂tj(xj)Ĝtj

Descend along gradient:mj ← mj − αgj .

Output: Component functionsmj and estimator̂m(X
(i)
t ) =

∑
j mj(X

(i)
tj ).

Figure 11.2:ADYBOOST
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Input: Data(X(i), Y (i)).

Initializemj = m(0)j, for j = 1, . . . , p.

Iterateuntil convergence:

For each time stept = 1, . . . , T

Compute the gradient contribution of timet: Vt = ∂`
∂mt

.

Compute the Hessian contribution of timet: Wt = ∂2`
∂m2

t

For each dimensionj = 1, . . . , p:

Smoothing at each time step:

For each time stept = 1, . . . , T

Compute the weighted residualRjt = Wt(Vt −
∑

k 6=j mkt).

Estimate the conditional expectationGtj = E[Rtj |Xtj = xj ]
by smoothing:Ĝtj = StjGtj .

Estimate the expected weightsHtj = E[Wt |Xtj = xj] by
smoothing:Ĥtj = StjHtj .

Smoothing across time steps:

For each time stept = 1, . . . , T

Estimate the densityP (Xtj = xj) at time t by a smoothed
density estimate:̂Ptj(xj) = Ktj(xj)

Compute the Gauss-Newton update forj by adding weighted con-
tributions from all time steps:

mj(xj) =
�T

t=1 P̂tj(xj)Ĝtj
�T

t=1 P̂tj(xj)Ŵtj
.

Output: Component functionsmj and estimator̂m(X
(i)
t ) =

∑
j mj(X

(i)
tj ).

Figure 11.3: DYNAMIC BACKFITTING
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Figure 11.5: Experiment 2:m1 (left) andm2 (right) and the estimated functions
m̂1 andm̂2.
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Chapter 12

SpAM: Sparse Additive Models

12.1 Introduction

In this chapter, we introduce sparse additive models (SpAM), a class of models
which allow simultaneous structure and feature estimation. We restate the moti-
vating discussion of Chapter 10 for continuity. Consider a linear regression model,
Yi = XT

i β + εi, for i = 1, . . . , n; whereYi is a real-valued response,Xi is a
p-dimensional predictor andεi is a mean zero error term. For high-dimensional
problems, where the number of predictorsp is very large, for both statistical and
computational performance reasons, it is necessary to firstestimate the relevant set
of predictors (predictor selection). Substantial progress has been made recently on
this problem; in particular with the lasso [50]. The lasso estimatorβ̂ minimizes the
`1-penalized sums of squares

∑

i

(Yi −XT
i β) + λ

p∑

j=1

|βj | (12.1)

with the`1 penalty‖β‖1 encouraging sparse solutions, where many componentsβ̂j

are zero. In other words, the lasso performs predictor selection as well as parameter
estimation simultaneously. The good empirical success of this estimator has been
recently backed up by results confirming that it has strong theoretical properties;
see [21, 72, 39, 56]. These models have a strong bias however –the features are
linear. [25] thus introduced the class of additive models ofthe form

Yi =

p∑

j=1

mj(Xij) + εi (12.2)

which extend linear models non-parametrically, but are still easy to fit and inter-
pretable; in particular, an additive model can be estimatedusing a coordinate de-
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scent Gauss-Seidel procedure called backfitting (described in the next section). An
extension of the additive model is the functional ANOVA model

Yi =
∑

1≤j≤p

mj(Xij)+
∑

j<k

mj,k(Xij ,Xik)+
∑

j<k<`

mj,k,`(Xij ,Xik,Xi`)+ · · ·+εi

(12.3)
which allows interactions among the variables. Unfortunately, as was the case
with linear models, additive models only have good statistical and computational
behavior when the number of variablesp is not large relative to the sample sizen.

We introduce sparse additive models (SpAM), a class of models which allow
predictor selection as well as component function estimation simultaneously; just
as the lasso performs simultaneous predictor selection andweight estimation with
(parametric) linear features. The underlying model is the same as in (12.2), but
constraints are placed on the component functions{mj}1≤j≤p to simultaneously
encourage smoothness of each component and sparsity acrosscomponents. The
SpAM estimation procedure we introduce allows the use of arbitrary nonparametric
smoothing techniques, and in the case where the underlying component functions
are linear, it reduces to the lasso. It naturally extends to classification problems
using generalized additive models. Our main results are (i)the formulation of a
convex optimization problem for estimating a sparse additive model, (ii) an effi-
cient backfitting algorithm for constructing the estimator, (iii) simulations showing
the estimator has excellent behavior on some simulated and real data, even whenp
is large, and (iv) a statistical analysis of the theoreticalproperties of the estimator
that support its good empirical performance.

12.2 The SpAM Optimization Problem

In this section we describe the key idea underlying SpAM. We first present a pop-
ulation version of the procedure that intuitively suggestshow sparsity is achieved.
We then present an equivalent convex optimization problem.In the following sec-
tion we derive a backfitting procedure for solving this optimization problem in the
finite sample setting.

To motivate our approach, we first consider a formulation that scales each com-
ponent functiongj by a scalarβj , and then imposes aǹ1 constraint onβ =
(β1, . . . , βp)

T . For j ∈ {1, . . . , p}, let Hj denote the Hilbert space of measur-
able functionsfj(xj) of the single scalar variablexj, such thatE(fj(Xj)) = 0 and
E(fj(Xj)

2) <∞, furnished with the inner product

〈
fj, f

′
j

〉
= E

(
fj(Xj)f

′
j(Xj)

)
. (12.4)
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LetHadd = H1+H2+. . . ,Hp denote the Hilbert space of functions of(x1, . . . , xp)
that have an additive form:f(x) =

∑
j fj(xj). The standard additive model opti-

mization problem, in the population setting, is

min
fj∈Hj , 1≤j≤p

E

(
Y −∑p

j=1 fj(Xj)
)2

(12.5)

andm(x) = E(Y |X = x) is the unknown regression function. Now consider the
following modification of this problem that imposes additional constraints:

(P ) min
β∈Rp,gj∈Hj

E

(
Y −∑p

j=1 βjgj(Xj)
)2

(12.6a)

subject to
p∑

j=1

|βj | ≤ L (12.6b)

E
(
g2
j

)
= 1, j = 1, . . . , p (12.6c)

E (gj) = 0, j = 1, . . . , p (12.6d)

noting thatgj is a function whileβ is a vector. Intuitively, the constraint thatβ
lies in the`1-ball {β : ‖β‖1 ≤ L} encourages sparsity of the estimatedβ, just
as for the parametric lasso. Whenβ is sparse, the estimated additive function
f(x) =

∑p
j=1 fj(xj) =

∑p
j=1 βjgj(xj) will also be sparse, meaning that many

of the component functionsfj(·) = βjgj(·) are identically zero. The constraints
(12.6c) and (12.6c) are imposed for identifiability; without (12.6c), for example,
one could always satisfy (12.6a) by rescaling.

While this optimization problem makes plain the role`1 regularization ofβ
to achieve sparsity, it has the unfortunate drawback of not being convex. More
specifically, while the optimization problem is convex inβ and{gj} separately, it
is not convex inβ and{gj} jointly.

However, consider the following related optimization problem:

(Q) min
fj∈Hj

E

(
Y −∑p

j=1 fj(Xj)
)2

(12.7a)

subject to
p∑

j=1

√
E(f2

j (Xj)) ≤ L (12.7b)

E(fj) = 0, j = 1, . . . , p. (12.7c)

This problem is convex in{fj}, as a quadratically constrained quadratic program
(QCQP). Moreover, the solutions to problems(P ) and(Q) are equivalent:

(
β∗,
{
g∗j

})
optimizes(P ) implies

{
f∗j = β∗j g

∗
j

}
optimizes(Q);
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{
f∗j

}
optimizes(Q) implies

(
β∗ = (‖fj‖2)T ,

{
g∗j = f∗j /‖f∗j ‖2

})
optimizes

(P ).

While optimization problem(Q) has the important virtue of being convex, the
way it encourages sparsity is not intuitive; the following observation provides some
insight. Consider the setC ⊂ R

4 defined by

C =

{
(f11, f12, f21, f22)

T ∈ R
4 :

√
f2
11 + f2

12 +
√
f2
21 + f2

22 ≤ L
}

(12.8)

Then the projectionπ12C onto the first two components is an`2 ball. However, the
projectionπ13C onto the first and third components is an`1 ball. In this way, it
can be seen that the constraint

∑
j ‖fj‖2 ≤ L acts as aǹ1 constraint across com-

ponents to encourage sparsity, while it acts as an`2 constraint within components
to encourage smoothness, as in a ridge regression penalty. It is thus crucial that the
norm ‖fj‖2 appears in the constraint, and not its square‖fj‖22. For the purposes
of sparsity, this constraint could be replaced by

∑
j ‖fj‖q ≤ L for anyq ≥ 1. In

case eachfj is linear,(fj(x1j), . . . , f(xnj)) = βj(x1j , . . . , xnj), the optimization
problem reduces to the lasso.

The use of scaling coefficients together with a nonnegative garrote penalty, sim-
ilar to our problem(P ), is considered by [69]. However, the component functions
gj are fixed, so that the procedure is not asymptotically consistent. The form of
the optimization problem(Q) is similar to that of the COSSO for smoothing spline
ANOVA models [36]; however, our method differs significantly from the COSSO,
as discussed below. In particular, our method is scalable and easy to implement
even whenp is much larger thann.

12.3 A Backfitting Algorithm for SpAM

We now derive a coordinate descent algorithm for fitting a sparse additive model.
We assume that we observeY = m(X) + ε, whereε is mean zero Gaussian noise.
We write the Lagrangian for the optimization problem(Q) as

L(f, λ, µ) =
1

2
E

(
Y −∑p

j=1 fj(Xj)
)2

+ λ

p∑

j=1

√
E(f2

j (Xj)) +
∑

j

µjE(fj).

(12.9)
Let Rj = Y −∑k 6=j fk(Xk) be thejth residual. The stationary condition for
minimizingL as a function offj, holding the other componentsfk fixed fork 6= j,
is expressed in terms of the Frechet derivativeδL as

δL(f, λ, µ; δfj) = E [(fj −Rj + λvj)δfj ] = 0 (12.10)
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for any δfj ∈ Hj satisfyingE(δfj) = 0, wherevj ∈ ∂
√

E(f2
j ) is an element

of the subgradient, satisfying
√

Ev2
j ≤ 1 andvj = fj

/√
E(f2

j ) if E(f2
j ) 6= 0.

Therefore, conditioning onXj, the stationary condition (12.10) implies

fj + λvj = E(Rj |Xj). (12.11)

LettingPj = E[Rj |Xj ] denote the projection of the residual ontoHj, the solution
satisfies 

1 +
λ√

E(f2
j )


 fj = Pj if E(P 2

j ) > λ (12.12)

andfj = 0 otherwise. Condition (12.12), in turn, implies

1 +

λ√
E(f2

j )



√

E(f2
j ) =

√
E(P 2

j ) or
√

E(f2
j ) =

√
E(P 2

j )− λ.

(12.13)

Thus, we arrive at the following multiplicative soft-thresholding update forfj:

fj =


1− λ√

E(P 2
j )




+

Pj (12.14)

where[·]+ denotes the positive part. In the finite sample case, as in standard back-
fitting [25], we estimate the projectionE[Rj |Xj ] by a smooth of the residuals:

P̂j = SjRj (12.15)

whereSj is a linear smoother, such as a local linear or kernel smoother. Let ŝj be

an estimate of
√

E[P 2
j ]. A simple but biased estimate is

ŝj =
1√
n
‖P̂j‖2 =

√
mean(P̂ 2

j ). (12.16)

More accurate estimators are possible; an example is given in the appendix. We
have thus derived the SpAM backfitting algorithm given in Figure 12.1.

While the motivating optimization problem(Q) is similar to that considered in
the COSSO [36] for smoothing splines, the SpAM backfitting algorithm decouples
smoothing and sparsity, through a combination of soft-thresholding and smooth-
ing. In particular, SpAM backfitting can be carried out with any nonparametric
smoother; it is not restricted to splines. Moreover, by iteratively estimating over
the components and using soft thresholding, our procedure is simple to implement
and scales to high dimensions.
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Input: Data(Xi, Yi), regularization parameterλ.

Initialize fj = f
(0)
j , for j = 1, . . . , p.

Iterateuntil convergence:

For eachj = 1, . . . , p:

Compute the residual:Rj = Y −∑k 6=j fk(Xk);

Estimate the projectionPj = E[Rj |Xj ] by smoothing: P̂j =
SjRj ;

Estimate the normsj =
√

E[Pj ]2 using, for example, (12.16) or
(12.38);

Soft-threshold:fj =

[
1− λ

ŝj

]

+

P̂j ;

Center:fj ← fj −mean(fj).

Output: Component functionsfj and estimator̂m(Xi) =
∑

j fj(Xij).

Figure 12.1: THE SPAM B ACKFITTING ALGORITHM

12.3.1 SpAM for Nonparametric Logistic Regression

The SpAM backfitting procedure can be extended to nonparametric logistic regres-
sion for classification. The additive logistic model is

p(Y = 1 |X) ≡ p(X; f) =
exp

(∑p
j=1 fj(Xj)

)

1 + exp
(∑p

j=1 fj(Xj)
) (12.17)

whereY ∈ {0, 1}, and the population log-likelihood is

`(f) = E [Y f(X)− log (1 + exp f(X))] (12.18)

Recall that in the local scoring algorithm for generalized additive models [25] in
the logistic case, one runs the backfitting procedure withinNewton’s method. Here
one iteratively computes the transformed response for the current estimatef0

Zi = f0(Xi) +
Yi − p(Xi; f0)

p(Xi; f0)(1− p(Xi; f0))
(12.19)
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and weightsw(Xi) = p(Xi; f0)(1− p(Xi; f0), and carries out a weighted backfit-
ting of (Z,X) with weightsw. The weighted smooth is given by

P̂j =
Sj(wRj)

Sjw
. (12.20)

To incorporate the sparsity penalty, we first note that the Lagrangian is given by

L(f, λ, µ) = E [log (1 + exp f(X))− Y f(X)]+λ

p∑

j=1

√
E(f2

j (Xj))+
∑

j

µjE(fj)

(12.21)
and the stationary condition for component functionfj is E (p− Y |Xj)+λvj = 0

wherevj is an element of the subgradient∂
√

E(f2
j ). As in the unregularized

case, this condition is nonlinear inf , and so we linearize the gradient of the log-
likelihood aroundf0. This yields the linearized condition

E [w(X)(f(X) − Z) |Xj ] + λvj = 0 (12.22)

WhenE(f2
j ) 6= 0, this implies the condition
(

E (w |Xj) +
λ√

E(fj)2

)
fj(Xj) = E(wRj |Xj). (12.23)

In the finite sample case, in terms of the smoothing matrixSj , this becomes

fj =
Sj(wRj)

Sjw + λ
/√

E(f2
j )
. (12.24)

If ‖Sj(wRj)‖2 < λ, thenfj = 0. Otherwise, this implicit, nonlinear equation for
fj cannot be solved explicitly, so we propose to iterate until convergence:

fj ←
Sj(wRj)

Sjw + λ
√
n /‖fj‖2

. (12.25)

Whenλ = 0, this yields the standard local scoring update (12.20). An example of
logistic SpAM is given in Section 12.5.

12.4 Properties of SpAM

12.4.1 SpAM is Persistent

The notion of risk consistency, or persistence, was studiedby [27] and [21] in
the context of linear models. Let(X,Y ) denote a new pair (independent of the
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observed data) and define the predictive risk when predicting Y with f(X) by

R(f) = E(Y − f(X))2. (12.26)

Since we consider predictors of the formf(x) =
∑

j βjgj(xj) we also write the
risk asR(β, g) whereβ = (β1, . . . , βp) andg = (g1, . . . , gp). Following [21], we
say that an estimator̂mn is persistentrelative to a class of functionsMn if

R(m̂n)−R(m∗
n)

P→ 0 (12.27)

wherem∗
n = argminf∈Mn

R(f) is the predictive oracle. [21] showed that the lasso
is persistent for the class of linear modelsMn = {f(x) = xTβ : ‖β‖1 ≤ Ln} if
Ln = o((n/ log n)1/4). We show a similar result for SpAM.

Theorem 5. Suppose thatpn ≤ en
ε

for someε < 1. Then SpAM is persistent rela-

tive to the class of additive modelsAn =
{
f(x) =

∑p
j=1 βjgj(xj) : ‖β‖1 ≤ Ln

}

if Ln = o
(
n(1−ε)/4

)
.

12.4.2 SpAM is Sparsistent

In the case of linear regression, withmj(Xj) = βT
j Xj , [56] shows that under

certain conditions onn, p, s = |supp(β)|, and the design matrixX, the lasso
recovers the sparsity pattern asymptotically; that is, thelasso estimator̂βn is spar-

sistent: p
(

supp(β) = supp(β̂n)
)
→ 1. We show a similar result for SpAM with

the sparse backfitting procedure.
For the purpose of analysis, we use orthogonal function regression as the smooth-

ing procedure. For eachj = 1, . . . , p let ψj be an orthogonal basis forHj. We
truncate the basis to finite dimensiondn, and letdn →∞ such thatdn/n→ 0. Let
Ψj denote then × d matrix Ψj(i, k) = ψjk(Xij). If A ⊂ {1, . . . , p}, we denote
by ΨA then× d|A| matrix where for eachi ∈ A, Ψi appears as a submatrix in the
natural way. The SpAM optimization problem can then be written as

min
β

1

2n

(
Y −∑p

j=1 Ψjβj

)2
+ λn

p∑

j=1

√
1

n
βT

j ΨT
j Ψjβj (12.28)

where eachβj is ad-dimensional vector. LetS denote the true set of variables{j :

mj 6= 0}, with s = |S|, and letSc denote its complement. Let̂Sn = {j : β̂j 6= 0}
denote the estimated set of variables from the minimizerβ̂n of (12.28).
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Theorem 6. Suppose thatΨ satisfies the conditions

Λmax

(
1

n
ΨT

SΨS

)
≤ Cmax<∞ and Λmin

(
1

n
ΨT

SΨS

)
≥ Cmin > 0 (12.29)

∥∥∥
(

1
nΨT

ScΨS

) (
1
nΨT

SΨS

)−1
∥∥∥

2

2
s log s ≤ 1− δ < 1. (12.30)

Let the regularization parameterλn → 0 be chosen to satisfy

λn

√
s→ 0,

s

dnλn
→ 0, and

dn(log dn + log(p − s))
nλ2

n

→ 0. (12.31)

Then SpAM is sparsistent:p
(
Ŝn = S

)
−→ 1.

12.5 Experiments

In this section we present experimental results for SpAM applied to both synthetic
and real data, including regression and classification examples that illustrate the be-
havior of the algorithm in various conditions. We first use simulated data to inves-
tigate the performance of the SpAM backfitting algorithm, where the true sparsity
pattern is known. We then apply SpAM to some real data. If not explicitly stated
otherwise, the data are always rescaled to lie in ad-dimensional cube[0, 1]d, and a
kernel smoother with Gaussian kernel is used. To tune the penalization parameter
λ, we use aCp statistic, which is defined as

Cp(f̂) =
1

n

n∑

i=1

(
Yi −

∑p
j=1 f̂j(Xj)

)2
+

2σ̂2

n

p∑

j=1

trace(Sj)1[f̂j 6= 0] (12.32)

whereSj is the smoothing matrix for thej-th dimension and̂σ2 is the estimated
variance.

12.5.1 Simulations

We first apply SpAM to an example from [24]. A dataset with sample sizen = 150
is generated from the following 200-dimensional additive model:

Yi = f1(xi1) + f2(xi2) + f3(xi3) + f4(xi4) + εi (12.33)

f1(x) = −2 sin(2x), f2(x) = x2 − 1
3 , f3(x) = x− 1

2 , f4(x) = e−x + e−1 − 1
(12.34)

andfj(x) = 0 for j ≥ 5 with noiseεi ∼ N (0, 1). These data therefore have 196
irrelevant dimensions. The results of applying SpAM with the plug-in bandwidths
are summarized in Figures (12.2),(12.3),(12.4).
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Figure 12.2: (Simulated data) left: The empirical`2 norm of the estimated com-
ponents as plotted against the tuning parameterλ; the value on thex-axis is pro-
portional to

∑
j ‖f̂j‖2. right: TheCp scores against the tuning parameterλ; the

dashed vertical line corresponds to the value ofλ which has the smallestCp score.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size

pr
ob

. o
f c

or
re

ct
 r

ec
ov

er
y

0 10 20 30 40 50 60 70 80 90 110 130 150

p=128 p=256

Figure 12.3: (Simulated data) The proportion of 200 trials where the correct rele-
vant variables are selected, as a function of sample sizen.
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Figure 12.4: (Simulated data) Estimated (solid lines) versus true additive compo-
nent functions (dashed lines) for the first 6 dimensions; theremaining components
are zero.
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12.5.2 Boston Housing

The Boston housing data was collected to study house values in the suburbs of
Boston; there are altogether 506 observations with 10 covariates. The dataset
has been studied by many other authors [24, 36], with varioustransformations
proposed for different covariates. To explore the sparsistency properties of our
method, we add 20 irrelevant variables. Ten of them are randomly drawn from
Uniform(0, 1), the remaining ten are a random permutation of the original ten co-
variates, so that they have the same empirical densities.

The full model (containing all 10 chosen covariates) for theBoston Housing
data is:

medv = α+ f1(crim) + f2(indus) + f3(nox) + f4(rm) + f5(age)

+ f6(dis) + f7(tax) + f8(ptratio) + f9(b) + f10(lstat) (12.35)
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Figure 12.5: (Boston housing) Left: The empirical`2 norm of the estimated com-
ponents versus the regularization parameterλ. Right: TheCp scores againstλ; the
dashed vertical line corresponds to bestCp score.

The result of applying SpAM to this 30 dimensional dataset isshown in Fig-
ures (12.5),(12.6). SpAM identifies 6 nonzero components. It correctly zeros out
both types of irrelevant variables. From the full solution path, the important vari-
ables are seen to berm, lstat, ptratio, andcrim. The importance of vari-
ablesnox andb are borderline. These results are basically consistent with those
obtained by other authors [24]. However, usingCp as the selection criterion, the
variablesindux, age, dist, andtax are estimated to be irrelevant, a result not
seen in other studies.
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Figure 12.6: (Boston Housing) Additive fits for four relevant variables.
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12.5.3 SpAM for Spam

Here we consider an email spam classification problem, usingthe logistic SpAM
backfitting algorithm from Section 12.3.1. This dataset hasbeen studied by [26],
using a set of 3,065 emails as a training set, and conducting hypothesis tests to
choose significant variables; there are a total of 4,601 observations withp = 57
attributes, all numeric. The attributes measure the percentage of specific words
or characters in the email, the average and maximum run lengths of upper case
letters, and the total number of such letters. To demonstrate how SpAM performs
well with sparse data, we only samplen = 300 emails as the training set, with the
remaining4301 data points used as the test set. We also use the test data as the
hold-out set to tune the penalization parameterλ.

λ(×10−3) Error # zeros selected variables
5.5 0.2009 55 { 8,54}

5.0 0.1725 51 { 8, 9, 27, 53, 54, 57}

4.5 0.1354 46 {7, 8, 9, 17, 18, 27, 53, 54, 57, 58}

4.0 0.1083 (
√

) 20 {4, 6–10, 14–22, 26, 27, 38, 53–58}

3.5 0.1117 0 all
3.0 0.1174 0 all
2.5 0.1251 0 all
2.0 0.1259 0 all

Figure 12.7: (Email spam) Classification accuracies and variable selection for lo-
gistic SpAM.

The results of a typical run of logistic SpAM are summarized in Figures (12.7)
and (12.8) using plug-in bandwidths. It is interesting to note that even with this
relatively small sample size, logistic SpAM recovers a sparsity pattern that is con-
sistent with previous authors’ results. For example, in thebest model chosen by
logistic SpAM, according to error rate, the 33 selected variables cover 80% of the
significant predictors as determined by [26].

12.6 Estimating
√

E[P 2
j ]

To construct a more accurate of estimator of
√

E[P 2
j ], let

Sj(x) = (S(x,X1j), . . . , S(x,Xnj))
T



12.7 Proof of Theorem 5 117

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

0.
12

0.
14

0.
16

0.
18

0.
20

penalization parameter

E
m

pi
ric

al
 p

re
di

ct
io

n 
er

ro
r

Figure 12.8: (Email Spam) TheCp scores againstλ; the dashed vertical line corre-
sponds to bestCp score.

denote thexth column of the smoothing matrix, andGx = Sj(x)Sj(x)
T . Then

P̂j(x) = Sj(x)
TRj , andP̂j(x)

2 = RT
j GxRj . To estimateE[P 2

j (x)], we use the
quadratic form identity

E(XTQX) = tr(ΣQ) + µTQµ in caseX ∼ N(µ,Σ). (12.36)

Thus, if the noiseεi ∼ N(0, σ2) is Gaussian, then

E(RT
j GxR

T
j |Xj) = σ2tr(Gx) + E(Rj |Xj)

TGx E(Rj |Xj). (12.37)

DefiningG = 1
n

∑
i GXi

and plugging in our estimatêPj for E(Rj |Xj) yields the
estimator

ŝj =
√
σ2tr(G) + P̂ T

j GP̂j. (12.38)

12.7 Proof of Theorem 5

Proof of Theorem 5.
Let (Y1,X1), . . . , (Yn,Xn) ben data points whereXi ∈ R

p andYi ∈ R. The
model is

Yi = α+m(Xi) + εi (12.39)



118 SpAM: Sparse Additive Models

where

m ∈ An(Ln) =

{
m =

p∑

j=1

βjmj(xj), mj ∈ Tj,
p∑

j=1

|βj | ≤ Ln

}
, (12.40)

Tj =

{
mj ∈ Hj :

∫
mj(xj)dxj = 0,

∫
m2

j (xj)dxj = 1, sup
x
|mj(x)| ≤ C

}

(12.41)
andHj is a class of smooth functions such as the Sobolev space:

Hj =

{
mj :

∫
m′′

j (xj)
2 dxj <∞, mj,m

′
j are absolutely continuous

}
.

(12.42)
We begin with some notation. IfM is a class of functions then theL∞ brack-

eting numberN[ ](ε) is smallest number of pairsB = {(`1, u1), . . . , (`k, uk)} such
that ‖uj − `j‖∞ ≤ ε, 1 ≤ j ≤ k, and such that for everym ∈ M there exists
(`, u) ∈ B such that̀ ≤ m ≤ u. For the Sobolev spaceTj,

logN[ ](ε,Tj) ≤ K
(

1

ε

)1/2

(12.43)

for someK > 0. The bracketing integral is defined to be

J[ ](δ) =

∫ δ

0

√
logN[ ](u)du. (12.44)

A useful empirical process inequality (see Corollary 19.35of van der Vaart 1998,
for example), is

E

(
sup
g∈M

|µ̂(g)− µ(g)|
)
≤ C J[ ](‖F‖∞)√

n
(12.45)

for someC > 0, whereF (x) = supg∈M |g(x)|, µ(g) = E(g(X)) and µ̂(g) =
n−1

∑n
i=1 g(Xi).

SetZ ≡ (Z0, . . . , Zp) = (Y,X1, . . . ,Xp) and note that

R(β, g) =

p∑

j=0

p∑

k=0

βjβkE(gj(Zj)gk(Zk)) (12.46)

where we defineg0(x) = z0 andβ0 = −1. Also define

R̂(β, g) =
1

n

n∑

i=1

p∑

j=0

p∑

k=0

βjβkgj(Zij)gk(Zik). (12.47)
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Note that the SpAM estimator is the minimizer ofR̂(β, g) subject to
∑

j βjgj(xj) ∈
An(Ln). For all (β, g),

|R̂(β, g) −R(β, g)| ≤ ‖β‖21 max
jk

sup
gj∈Tj ,gk∈Tk

|µ̂jk(g)− µjk(g)| (12.48)

where

µ̂jk(g) = n−1
n∑

i=1

∑

jk

E(gj(Zij)gk(Zik))

µjk(g) = E(gj(Zj)gk(Zk))

From (12.43) it follows that

logN[ ](ε,An) ≤ 2 log pn +K

(
1

ε

)1/2

. (12.49)

Hence,J[ ](C,A) = O(
√

log pn) and it follows from (12.45) that

max
jk

sup
gj∈Tj ,gk∈Tk

|µ̂jk(g)−µjk(g)| = O

(√
log pn

n

)
= O

(
1

n(1−ε)/2

)
. (12.50)

We conclude that

sup
g∈A

|R̂(g) −R(g)| = O

(
L2

n

n(1−ε)/2

)
= o(1). (12.51)

Therefore,

R(m∗) ≤ R(m̂n) ≤ R̂(m̂n) + oP (1)

≤ R̂(m∗) + oP (1) ≤ R(m∗) + oP (1)

and the conclusion follows.

12.8 Proof of Theorem 6

Proof of Theorem 6.
There exists an orthonormal basis (the Fourier basis)Bj = {ψj1, ψj2, . . .} for

the second-order Sobolev spaceHj such thatmj ∈ Hj if and only if

mj =

∞∑

k=1

βjkψjk (12.52)
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and
∑∞

k=1 β
2
jkk

4 < C2, for someC <∞. The basis is bounded, with

sup
X
|ψjk(X)| ≤ B, for a constantB <∞.

Thus we can write

Yi =

p∑

j=1

∞∑

k=1

β∗jkψjk(Xij) + εi (12.53)

It can be shown that the sparse backfitting procedure with an orthogonal func-
tion regression smoother, with a truncated basis of sizedn, solves the following
optimization problem,

min
β

n∑

i=1

1

2n

(
Yi −

p∑

j=1

dn∑

k=1

βjkψjk(Xij)

)2

+λ

p∑

j=1

√
1

n

∑

i

∑

k,k′

βjkβjk′ψjk(Xij)ψjk′(Xij) (12.54)

To simplify notation, letβj be thedn dimensional vector{βjk, k = 1, . . . , dn},
andΨj then× dn matrix,Ψj[i, k] = ψjk(Xij). If A ⊂ {1, . . . , p}, we denote by
ΨA then × d|A| matrix where for eachi ∈ A, Ψi appears as a submatrix in the
natural way.

The optimization task can then be written as

min
β

1

2n

(
Y −

p∑

j=1

Ψjβj

)2

+ λ

p∑

j=1

√
1

n
β>

j Ψ>

j Ψjβj (12.55)

We now state assumptions on the design and design parameters. Let S be the
true sparsity pattern, and letSc = {1, . . . , p}\S be the set of irrelevant covariates.

(A1) Dependence conditions:

Λmax

(
1

n
Ψ>

SΨS

)
≤ Cmax <∞ (12.56)

Λmin

(
1

n
Ψ>

SΨS

)
≥ Cmin > 0 (12.57)

(A2) Incoherence conditions:
∥∥∥∥∥

(
1

n
Ψ>

ScΨS

)(
1

n
Ψ>

SΨS

)−1
∥∥∥∥∥

2

2

s log s ≤ (1− ε) (12.58)

for someε > 0.
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(A3) Truncation conditions:

dn →∞ (12.59)

dn

n
→ 0 (12.60)

(A4) Penalty conditions:

λn

√
s→ 0 (12.61)

dn(log dn + log(p− s))
nλ2

n

→ 0 (12.62)

s

dn

1

λn
→ 0 (12.63)

Theorem 7. Given the model in(12.53), and design settings(n, p, s, d, λ) such

that conditions (A1) through (A4) are satisfied, thenP

(
Ŝn = S

)
→ 1.

A commonly used basis truncation size isdn = n1/5, which achieves the min-
imax error rate in the one-dimensional case. The theorem under this design setting
gives,

Corollary 12.8.1.. Given the model in(12.53), penalty settings such that

λn

√
s→ 0,

log n(p− s)
n4/5λ2

n

→ 0,
s

n1/5
λn → 0 (12.64)

and design settings such thatd = O(n1/5) and conditions (A1) and (A2) are satis-

fied, thenP

(
Ŝn = S

)
→ 1.

LetF (β) denote the objective function of the optimization problem in (12.54),

and letG(β) =
∑p

j=1

√
1
nβ

>

j Ψ>

j Ψjβj denote the penalty part, Then a vectorβ̂ ∈
R

dnp is an optimum of the above objective function if and only if there exists a
subgradient̂g ∈ ∂G(β̂), such that

1

n
Ψ>



∑

j

Ψjβj − Y


+ λnĝ = 0 (12.65)
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The subdifferential̂g of G(β) takes the form

ĝj =
1
nΨ>

j Ψjβ̂j√
1
n β̂

>

j Ψ>

j Ψj β̂j

, for β̂j 6= 0 (12.66)

ĝ>

j

[
1

n
Ψ>

j Ψj

]−1

ĝj ≤ 1 for β̂j = 0 (12.67)

We now proceed by a “witness” proof technique. We setβ̂Sc = 0 and ĝS =
∂GS(β̂S), and, obtaininĝβS andĝSc from the stationary condition in (12.65), we
show that with high probability,

ĝ>

j

(
1

n
Ψ>

j Ψj

)−1

ĝj ≤ 1, j ∈ Sc (12.68)

β̂S 6= 0 (12.69)

This shows that there exists a optimal solution to the optimization problem in (12.54)
which has the same sparsity pattern as the model. Since it canbe shown that every
solution to the optimization problem has the same sparsity pattern, this will prove
the required result.

Settingβ̂Sc = 0 andĝS = ∂GS(β̂S) in the stationary condition forβS gives

1

n
Ψ>

j (ΨSβS − Y ) + λngj = 0, j ∈ S (12.70)

which can be summarized as

1

n
Ψ>

S [ΨSβS − Y ] + λngj = 0 (12.71)
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Let Vn = Y −ΨSβ
∗
S −Wn, whereWn denotes the noise vector. Then

|Vi| = |
∑

j∈S

∞∑

k=d+1

βjkΨjk(Xij)| (12.72)

≤ B
∑

j∈S

∞∑

k=d+1

|βjk| (12.73)

= B
∑

j∈S

∞∑

k=d+1

|βjk|k2

k2
(12.74)

≤ B
∑

j∈S

√√√√
∞∑

k=d+1

β2
jkk

4

√√√√
∞∑

k=d+1

1

k4
(12.75)

≤ sBC

√√√√
∞∑

k=d+1

1

k4
(12.76)

≤ sB′

d
3/2
n

for some constantB′ > 0 (12.77)

Therefore

‖Vn‖∞ ≤ B′sd−3/2, (12.78)

LettingΣSS = 1
n [Ψ>

SΨS ], we have

βS − β∗S = Σ−1
SS

[
1

Ψ

>

S
Wn

]
+ Σ−1

SS

[
1

n
Ψ−1

S Vn

]
− λnΣ−1

SSgS (12.79)

This allows us to get thè∞ bound,

‖βS − β∗S‖∞ =

∥∥∥∥Σ
−1
SS

[
1

n
Ψ>

SWn

]∥∥∥∥
∞

+
∥∥Σ−1

SS

∥∥
∞

∣∣∣∣
1

n
Ψ>

SVn

∣∣∣∣
∞

+λn

∥∥Σ−1
SSgS

∣∣
∞

(12.80)

Let ρn = minj∈S maxk∈{1,...,dn}} |β∗jk| > 0. It suffices to show that‖βS −
β∗S‖∞ < ρn

2 to ensure thatβj 6≡ 0, j ∈ S. We now proceed to bound the quantities
in (12.80).

‖Σ−1
SS‖∞ ≤ ‖Σ−1

SS‖2
√
sd (12.81)

≤
√
sd

Cmin
(12.82)
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1 ≥ g>

j

[
1

n
Ψ>

j Ψj

]−1

gj (12.83)

≥ 1

Cmax
‖gj‖22 (12.84)

‖gj‖2 ≤
√
Cmax (12.85)

This gives the following bounds,

‖gS‖∞ = max
j∈S
‖gj‖∞ (12.86)

≤ max
j∈S
‖gj‖2 (12.87)

≤
√
Cmax (12.88)

Also,

∥∥Σ−1
SSgS

∥∥
∞
≤

∥∥Σ−1
SSgS

∥∥
2

(12.89)

≤
∥∥Σ−1

SS

∥∥
2
‖gS‖2 (12.90)

≤
√
Cmaxs

Cmin
(12.91)

From (12.78), we get

1

n
Ψ>

jkVn ≤
∣∣∣∣∣
1

n

∑

i

Ψjk(Xij)

∣∣∣∣∣ ‖Vn‖∞ (12.92)

≤ B′2sd−3/2 (12.93)

(12.94)

Finally, considerZ := Σ−1
SS

[
1
nΨ>

SWn

]
. Note thatWn ∼ N(0, σ2I), so thatZ

is Gaussian as well, with mean zero. Consider itsl-th component,Zl = e>l Z. Then

E[Zl] = 0, and Var[Zl] = σ2

n e
>

l Σ−1
SSel ≤ σ2

Cminn . It can then be shown (Ledoux and
Talagrand, 1991) that

E[‖Z‖∞] ≤ 3
√

log(sd)max
l

Var[Zl] (12.95)

≤ 3

√
σ2 log(sd)

nCmin
(12.96)
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An application of Markov’s inequality then proves the desired result,

p
[
‖βS − β∗S‖∞ >

ρn

2

]
≤ p

[
‖Z‖∞ + λn

√
Cmaxs

Cmin
+
√
sB′2sd−1 ≥ ρn

2

]

≤ 1

ρn

{
E [‖Z‖∞] + λn

√
Cmaxs

Cmin
+B′2(s3/2/d)

}

≤ 1

ρn



3

√
σ2 log(sd)

nCmin
+ λn

√
Cmaxs

Cmin
+B′2(s3/2/d)





which converges to zero under the given assumptions.
We now analyzêgSc . The stationary condition forq ∈ Sc is given by

1

n
Ψ>

q [ΨSβS −ΨSβ
∗
S −Wn − Vn] + λngq = 0 (12.97)

Thus,

λngq = −
[

1

n
Ψ>

q ΨS

]
[βS − β∗S ] +

(
1

n
Ψ>

q

)
[Wn + Vn] (12.98)

= −ΣScS [βS − β∗S ] +

(
1

n
Ψ>

q

)
[Wn + Vn] (12.99)

= ΣScSΣ−1
SSλngS + ΣScSΣ−1

SS

[(
1

n
Ψ>

S

)
(Wn + Vn)

]

+

(
1

n
Ψ>

q

)
[Wn + Vn] (12.100)

LettingΣqq = 1
nΨ>

q Ψq, we wantg>

q Σ−1
qq gq ≤ 1. Since

√
g>

q Σ−1
qq gq ≤

√
λmax

[
Σ−1

qq

]
‖gq‖2 (12.101)

≤ 1√
lmin
‖gq‖2 (12.102)

it suffices to show thatsupq∈Sc ‖gq‖2 ≤
√
lmin. From (12.98), we have,

λn ‖gq‖2 ≤
∥∥ΣScSΣ−1

SS

∥∥
2
λn ‖gS‖2 +

∥∥ΣScSΣ−1
SS

∥∥
2{∥∥∥∥

1

n
Ψ>

SWn

∥∥∥∥
2

+

∥∥∥∥
1

n
Ψ>

SVn

∥∥∥∥
2

}
+

{∥∥∥∥
1

n
Ψ>

qWn

∥∥∥∥
2

+

∥∥∥∥
1

n
Ψ>

q Vn

∥∥∥∥
2

}

≤ λnδ
√
sCmax + δ

√
sd

{∥∥∥∥
1

n
Ψ>

SWn

∥∥∥∥
∞

+

∥∥∥∥
1

n
Ψ>

SVn

∥∥∥∥
∞

}

+
√
d

{∥∥∥∥
1

n
Ψ>

qWn

∥∥∥∥
∞

+

∥∥∥∥
1

n
Ψ>

q Vn

∥∥∥∥
∞

}

≤ λnδ
√
sCmax + δ

√
sdZ1 +

√
dZ2q + δ

√
sdR1 +

√
dR2 (12.103)
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whereZ1 :=
∥∥ 1

nΨ>

SWn

∥∥
∞

andZ2q :=
∥∥ 1

nΨ>

q Wn

∥∥
∞

are the Gaussian residu-

als, andR1 =
∥∥ 1

nΨ>

SVn

∥∥
∞

, andR2 :=
∥∥ 1

nΨ>

q Vn

∥∥
∞

are the basis residuals.

From (12.78), we haveR1, R2 ≤
√

2B2sd−3/2. Thus,

1

λn

[
δ
√
sdR1 +

√
dR2

]
≤
√
dB′2sd−3/2(δ

√
s+ 1)

λn
(12.104)

≤ B′2d−1s(δ
√
s+ 1)

λn
(12.105)

→ 0 (12.106)

For the Gaussian residuals, proceeding as earlier,

E [Z1] ≤ 3

√
σ2 log(sd)Cmax

n
(12.107)

E

[
sup
q∈Sc

Z2q

]
≤ 3

√
σ2 log(d(p − s))Cmax

n
(12.108)

Thus,

P

[
1

λn

√
d

(
δ
√
sZ1 + sup

q∈Sc

Z2q

)
>
ε

2

]
(12.109)

≤
√
d

ελn

(
δ
√
sE [Z1] + E[ sup

q∈Sc

Z2q]

)
(12.110)

≤
√
d

ελn

(
δ
√
s3

√
σ2 log(sd)Cmax

n
+ 3

√
σ2 log(d(p − s))Cmax

n

)

≤ 1

ε

[
3

√
σ2Cmaxδ2sd log(sd)

nλ2
n

+ 3

√
σ2Cmaxd log(d(p − s))

nλ2
n

]

→ 0 (12.111)

Thus,p
(
supq∈Sc ‖gq‖2 ≤

√
lmin

)
→ 1, which proves the result.



Chapter 13

Concluding thoughts

This thesis is about using the tool of the Markov random field framework for the
goal of prediction. To use a built graphical model for prediction is the task of in-
ference. To build said graphical model from data comprises the tasks of feature
estimation – which fixes the underlying form of the MRF – and structure and pa-
rameter learning – which then instantiates a particular MRF. The thesis proposes
techniques for all three of those stages.

Inference: A primary inference task is to estimate the log partition function
– the normalization constant of the graphical model distribution. For a discrete-
valued model, this requires computing the sum of the unnormalized probabilities
of exponentially many configurations. Graph-theoretic techniques such as clique-
tree elimination reduce this complexity to being exponential only in the tree-width
of the graph. This is small for sparse graphs such as trees, but even a 2D grid graph
has a tree-width ofO(

√
n). Computing the normalization constant is thus tractable

only for sparse graphs. The projection paradigm starts off with this observation
and reduces the log-partition function computation to an optimization problem:
that of finding the “optimal” sparse graphical model from a candidate set of sparse
models. The “optimal” model minimizes, over the candidate set of sparse models,
a divergence measure with the given complex model. The divergence measure
used is the KL divergence measure; however minimizing this over even simple
graph classes like trees is difficult and typically a non-convex problem. Variational
and free-energy based approximations [60, 68] tackle this by first approximating
the KL divergence measure; and then minimizing this approximated divergence
measure. We propose preconditioner approximations, whichminimize, in place of
the KL divergence measure, a “graphical model condition number” instead. Recent
scientific computing developments have made possible the efficient computation of
ultra-sparse preconditioners, which we are able to leverage for our preconditioner
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class of approximations.
Another key inference task is to compute the configuration with the most prob-

ability – the MAP configuration. The problem can be cast as an integer linear pro-
gram; the relaxation of this to a linear program was analyzedin detail by [10] who
gave rounding schemes with good approximation guarantees for specific feature
functions and negative weights. For general problem settings, with general features
functions, and general weights, [57] proposed tree-reweighted max product, which
was showed to solve for the dual of the linear program under certain conditions.
There is a lacuna with the LP relaxation approach however: the number of vari-
ables is quadraticO(|E|K2), whereK is the number of labels, and|E| = O(n2)
for dense graphs. For even small image applications,n is in the tens of thousands,
andK is in the hundreds. The number of variables are so large as to necessitate
the use of iterative algorithms to solve the LP, such as the message passing up-
dates for tree-reweighted max-product. We propose formulating the MAP problem
as a quadratic integer program instead; this reduces the number of variables from
quadraticO(|E|K2) to linearO(nK). We also show that relaxing the quadratic
integer program to a quadratic program – with a simple quadratic objective and
linear box constraints – does not introduce any gap, and thatthe relaxation is tight.
That MAP is not in P suggests we would not always be able to tractably solve the
QP – the reason is that the QP might be non-convex. To address this, we propose a
convex approximation to the QP, which can be solved tractably; and for which we
give an additive approximation guarantee. Finally, we showthat the QP is equiv-
alent to solving the MAP problem under a mean field relaxationof the marginal
polytope; and that it can be extended to structured mean-field relaxations and other
inner polytope approximations of the marginal polytope.

The third inference task this thesis is concerned with, is rigorous upper and
lower bounds for general event probabilities. Not just inference, but also constant
factor approximation guarantees for inference, have been shown to be intractable
for general graphical models. In this thesis, we propose instead to provide inter-
val guarantees: we provide the left and right intervals within which the true event
probability is guaranteed to lie in. Variational methods donot provide much help
here; they provide bounds for the partition function and very simple events like
marginals. In variational Chernoff bounds, we extend the machinery of classi-
cal Chernoff bounds – which provide event probability bounds for i.i.d random
variables – to the graphical model framework. At a high level, it involves using
parameterized exponential family bounds for the event indicator function. An im-
portant subtask arises when we do not have complete distribitional information:
we know only that the distribution belongs to a particular graphical model family
(that is we know only the feature functions, not the parameters), as well as the
expected values (moments) of a given set of functions. This arises naturally for
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instance in MLE parameter estimation, which involves matching moments to the
empirical averages of the feature functions. We propose variational Chebyshev
and Chebyshev-Chernoff bounds, which port the Chebyshev bound machinery to
the graphical model framework. As it stands, the Chebyshev bound is distribu-
tion independent, but its dual optimizes over distributions satisfying the moment
constraints; adding in a graphical model family constraint, and then taking its dual
gives us the variational Chebyshev bounds.

Structure learning:This is the task of estimating the graph structure of the
graphical model from i.i.d. samples. Score based approaches involve two com-
ponents: a score metric, which is typically a sum of a goodness of fit measure
of the graph to the data, and a graph complexity penalty; and asearch procedure
which searches through the candidate space of graphs with the goal to ouput the
graph with the highest score. [12] show that the search procedure is hard; while for
undirected models, even the score computation is hard sinceit involves computing
the partition function. The score-based approaches are thus restricted to searching
through very simple graph classes like trees, when used for learning undirected
models. We seek to transform the search over the space of objects as structured
as graphs, into a real-valued optimization problem; for this we need to transform
the graph structure variable into a form more amenable to optimization. We thus
propose edge-appearance relaxations, which parameterizethe graph structure into
an indicator vector over all node-pairs for an edge-set. We then show how a natural
relaxation leads to a penalized likelihood maximization, with the penalty being a
sum over edges of thè2 norms of the parameters of a single edge. For a model
with a single parameter per edge, this leads to an`1 penalty on edge parameters.
An Ising model is just such a model: the feature function overedges(s, t) isXsXt,
and the edges(s, t) have a single parameterθst. We thus analyzè1 penalized max-
imum likelihood for the completely connected Ising model. But the likelihood of
the completely connected Ising model involves the partition function – to finesse
this, we propose, as in [38], to estimate the graph structureas a consistent union
of the neighborhood of each node. The counterpart of`1 penalized maximum like-
lihood for estimating the local neighborhood of a node is`1 regularized logistic
regression, of the node on the rest of the nodes; the support of the parameter vector
so obtained gives the node neighborhood. We show that this procedure consistently
recovers the graph structure even in high dimensional settings where the number
of samples could even be logarithmic in the number of nodes.

Feature estimation:In this thesis, we also provide the tools to automate the
feature estimation task in MRFs; normally the preserve of the MRF domain ex-
pert. We propose additive conditional random fields (aCRFs), a non-parametric
extension of conditional random fields (CRFs) in which we learn the feature func-
tions themselves from data. This is in contrast to learning from data the weights
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of given features in CRFs. We also propose sparse additive models (SpAM), a
class of models which allow simultaneous predictor selection and feature estima-
tion. For predictor selection in linear regression,`1 penalized linear regression, or
lasso, has enjoyed good empirical success and has been shownto have strong the-
oretical properties [21, 72]. Nonparametric additive regression is a non-parametric
extension of linear regression, where instead of learning the weights of linear fea-
tures, we learn the additive functions themselves. In SpAM,we perform predictor
selection in non-parametric (generalized) additive models in addition to learning
the component functions; just as the lasso did for parametric linear regression. In
fact, when the underlying component functions are linear, SpAM reduces to the
lasso. We demonstrate excellent empirical behavior on somesimulated as well as
real data, and give a statistical analysis of the theoretical properties of the estimator
that support its empirical behavior.

13.1 Future Work

For structure learning with given features (parametric graphical models), we pro-
posed using̀1 regularized regressions to recover the graph structure. Weextended
sparse generalized linear regression to the non-parametric setting with SpAM. It re-
mains then to “complete the story” of “non-parametric graphical models” by using
SpAM as the local sparse regressors to recover the graph structure. It also remains
to complete the combining of structure and feature estimation for discriminative
MRFs, by extending aCRFs to include learning the graph structure over the dis-
crete label variables, and learning the additive features under sparsity assumptions.

Lateral extensions include learning features simultaneously across tasks, and
formulating hierarchically structured features. The latter can be motivated by our
own biology since humans are suspected to use hierarchical feature filters for vari-
ous cognitive processes like vision.

13.2 Futurer work

Inspite of all recent advances in approximate inference forMarkov random fields,
it remains a fact that it is intractable to obtain arbitrarily close estimates for event
probabilities. Until recently, even structure learning was formulated as an in-
tractable problem, which was then approximated by heuristic search procedures.
The recent explosion in the understanding of`1 penalties have allowed us to for-
mulate a tractable structure learning task which, we show, consistently recovers
the true graph structure. A further “organic” approach was reflected in our pre-
sented procedures for feature estimation; there we proposed additive subclasses of
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Markov random fields where it is possible to estimate both features and the struc-
ture simultaneously. These raise the question of whether wecan construct from
the ground up a class of random fields that allow efficient inference in addition to
efficient model creation. At the moment this niche has been occupied by simple
graphical models like trees, which in turn have a strong model bias, which could
manifestly not be reflected by the data and the domain. Note however, that “real
world” biases need not take the form of simple models like trees. The entire lat-
ter part of this thesis, on structure and feature estimation, formulates and milks
biases that make things tractable. We have seen how a sparsity bias allows us to
estimate the graph structure tractably. Similarly, non-parametric techniques make
smoothness assumptions that make feature estimation tractable. It is hoped that an
increasing understanding of incorporating “real-world” biases into non-parametric
approaches would allow us to construct such tractable random fields, and unify
tractable inference with tractable model creation.



132 Concluding thoughts



Bibliography

[1] Yasemin Altun, Thomas Hofmann, and Alexander J. Smola. Gaussian process
classification for segmenting and annotating sequences. InICML-04, 21sth
International Conference on Machine Learning, 2004.

[2] Owe Axelsson and Vincent A. Barker.Finite element solution of boundary
value problems: theory and computation. Society for Industrial and Applied
Mathematics, 2001.

[3] Marshall Bern, John R. Gilbert, Bruce Hendrickson, NhatNguyen, and Sivan
Toledo. Support-graph preconditioners. Submitted toSIAM J. Matrix Anal.
Appl., 2001.

[4] Dimitris Bertsimas and John Tsitsiklis.Introduction to Linear Optimization.
Athena Scientific, 1997.

[5] J. Besag. On the statistical analysis of dirty pictures.Journal of the Royal
Statistical Society, Series B, 1986.

[6] Erik G. Boman and Bruce Hendrickson. Support theory for preconditioning.
SIAM Journal on Matrix Analysis and Applications, 25, 2003.

[7] Stephen Boyd and Lieven Vandenberghe.Convex Optimization. Cambridge
University Press, 2004.

[8] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy min-
imization via graph cuts.IEEE Trans. Pattern Anal. Mach. Intell., 23(11),
2001.

[9] K. P. Burnham and D. R. Anderson.Model Selection and Multimodel Infer-
ence: A Practical-Theoretic Approach. Springer-Verlag, 2002.

[10] Chandra Chekuri, Sanjeev Khanna, Joseph Naor, and Leonid Zosin. A lin-
ear programming formulation and approximation algorithmsfor the metric



134 BIBLIOGRAPHY

labeling problem.SIAM Journal on Discrete Mathematics, 18(3):608–625,
2005.

[11] Herman Chernoff. A measure of asymptotic efficiency fortests of a hypoth-
esis based on the sum of observations.Annals of Mathematical Statistics,
23(4):493–507, December 1952.

[12] D. Chickering. Learning Bayesian networks is NP-complete.Proceedings of
AI and Statistics, 1995.

[13] C. Chow and C. Liu. Approximating discrete probabilitydistributions with
dependence trees.IEEE Trans. Info. Theory, 14(3):462–467, 1968.

[14] C. K. Chow and C. N. Liu. Approximating discrete probability distributions
with dependence trees.IEEE Transactions on Information Theory, IT-14(3),
pages 462–467, 1968.

[15] Michael Collins. Discriminative training methods forhidden Markov mod-
els: Theory and experiments with perceptron algorithms. InProceedings of
EMNLP, 2002.

[16] P. Dagum and M. Luby. Approximating probabilistic inference in bayesian
belief networks is np-hard.Artificial Intelligence 60(1), pages 141–153, 1993.

[17] S. Dasgupta. Learning polytrees. InUncertainty on Artificial Intelligence,
pages 134–14, 1999.

[18] P. Domingos.What’s Missing in AI: The Interface Layer, In P. Cohen (ed.),
Artificial Intelligence: The First Hundred Years. AAAI Press, Menlo Park,
CA, 2006.

[19] D. Donoho and M. Elad. Maximal sparsity representationvia `1 minimiza-
tion. Proc. Natl. Acad. Sci., 100:2197–2202, March 2003.

[20] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic
regression: a statistical view of boosting.Ann. Statist., 28:337–407, 2000.

[21] E. Greenshtein and Y. Ritov. Persistency in high dimensional linear predictor-
selection and the virtue of over-parametrization.Journal of Bernoulli,
10:971–988, 2004.

[22] D.M. Greig, B.T. Porteous, and A.H. Seheult. Exact maximum a posteriori
estimation for binary images.Journal of the Royal Statistical Society, Series
B, 51, 1989.



BIBLIOGRAPHY 135

[23] K. Gremban. Combinatorial preconditioners for sparse, symmetric, diago-
nally dominant linear systems.Ph.D. Thesis, Carnegie Mellon University,
1996, 1996.
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