
Center-Piece Subgraphs: Problem Definition and
Fast Solutions

Hanghang Tong Christos Faloutsos

May 2006
CMU-ML-06-102

Center-Piece Subgraphs: Problem Definition and Fast
Solutions

Hanghang Tong Christos Faloutsos

May 2006
CMU-ML-06-102

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

GivenQ nodes in a social network (say, authorship network), how can we find the node/author that is the
center-piece, and has direct or indirect connections to all, or most of them? For example, this node could
be the common advisor, or someone who started the research area that theQ nodes belong to. Isomorphic
scenarios appear in law enforcement (find the master-mind criminal, connected to all current suspects), gene
regulatory networks (find the protein that participates in pathways with all ormost of the givenQ proteins),
viral marketing and many more. Connection subgraphs is an important first step, handling the case of
Q=2 query nodes. Then, the connection subgraph algorithm finds the b (say b=20) intermediate nodes,
that provide a good connection between the two original query nodes. Here we generalize the challenge
in multiple dimensions: First, we allow more than two query nodes. Second, we allow a whole family of
queries, ranging from ’OR’ to ’AND’, with ’softAND’ in-between. Finally, we design and compare a fast
approximation, and study the quality/speed trade-off. The experiments on the DBLP dataset confirm that
our proposed method naturally deals with multi-source queries and that the resulting subgraphs agree with
our intuition.

Keywords: Center-piece subgraph, goodness score, KsoftAND

1 Introduction

Graph mining has been attracting increasing interest recently, for community detection, partitioning, fre-
quent subgraph discovery and many more. Here we introduce and solvea novel problem, the “center-piece
subgraph” (CEPS) problem: GivenQ query nodes in a social network (e.g., co-authorship network), find
the node(s) and the resulting subgraph, that have strong connections toall or most of theQ query nodes. The
discovered nodes could contain a common advisor, or other members of the research group, or an influential
author in the research area that theQ nodes belong to. As mentioned in the abstract, there are multiple
alternative applications (law enforcement, gene regulatory networks).

Earlier work [6] focused on the so-called “connection subgraphs”. Although the inspiration for the
current work, the connection subgraph algorithm can only handle the case ofQ=2. This is exactly the major
contribution of our work: we allow not only pairs of query nodes, but any arbitrary numberQ of them.

Figure 1 gives screenshots of our system, showing our solution on a DBLP graph, withQ=4 query
nodes. All 4 researchers are in data mining, but the first two (Rakesh Agrawal and Jiawei Han) are more
on the database side, while Michael Jordan and Vladimir Vapnik are more on the machine learning and
statistical side. Figure 1(b) gives ourCEPS subgraph, when we request nodes with strong ties to all four
query nodes. The results make sense: researchers like Daryl Pregibon, Padhraic Smythe and Heikki Mannila
are vital links, because of their cross-disciplinarity and their strong connections with both the above sub-
areas. Figure 1(a) illustrates an important aspect of our work, theK softAND feature, which we will
discuss very soon. In a nutshell, in aK softAND query, our method finds nodes with connections to at
leastk of the query nodes (k = 2 in Figure 1(a)).

(a) “K softANDquery”:k = 2

(b) “AND query”

Figure 1: Center-piece subgraph among Rakesh Agrawal, Jiawei Han,Michael I. Jordan and Vladimir
Vapnik.

Thus, we define the center-piece subgraph problem, as follows:
Problem: Center-Piece Subgraph Discovery(CEPS)

Given: an edge-weighted undirected graphW, Q nodes as source queriesQ = {qi} (i = 1, ..., Q), the
softAND coefficientk and an integer budgetb

1

Find: a suitably connected subgraphH that (a) contains all query nodesqi (b) at mostb other vertices and
(c) it maximizes a “goodness” functiong(H).

Allowing Q query nodes creates a subtle problem: do we want the qualifying nodes to have strong
ties to all the query nodes? to at least one? to at least a few? We handle all of the above cases with our
proposedK softAND queries. Figure 1(a) illustrates the case where we want intermediate nodeswith
good connections to at leastk = 2 of the query nodes. Notice that the resulting subgraph is much different
now: there are two disconnected components, reflecting the two sub-communities (databases/statistics).

The contributions of this work are the following

• The problem definition, for arbitrary numberQ of query nodes, with careful handling of a lot of the
subtleties.

• The introduction and handling ofK softAND queries.

• EXTRACT, a novel subgraph extraction algorithm.

• The design of a fast, approximate method, which provides a6 : 1 speedup with little loss of accuracy.

The system is operational, with careful design and numerous optimizations, like alternative normaliza-
tions of the adjacency matrix, a fast algorithm to compute the scores forK softAND queries.

Our experiments on a large real dataset (DBLP) show that our method returns results that agree with our
intuition, and that it can be made fast (a few seconds response time), while retaining most of the accuracy
(about 90%).

The rest of the paper is organized as follows: in Section 2, we review somerelated work; Section 3
provides an overview of the proposed method:CEPS. The goodness score calculation is proposed Sec-
tion 4. The “EXTRACT” algorithm and the speeding up strategy are provided in Section 5 and Section 6,
respectively. We present experimental results in Section 7; and conclude the paper in Section 8.

2 Related Work

In recent years, there is increasing research interest in large graphmining, such as pattern and law min-
ing [2][5][7][20], frequent substructure discovery [27], influence propagation [18], community mining [8][11][12]
and so on. Here, we make a brief review of the related work, which can becategorized into four groups:
1) measuring the goodness of connection; 2) community mining; 3) random walk and electricity related
methods; 4) graph partition.

The goodness of connection.Defining a goodness criterion is the core for center-piece subgraph dis-
covery. The two most natural measures for “good” paths are shortestdistance and maximum flow. However,
as pointed out in [6], both measurements might fail to capture some preferred characteristics for social
network. The goodness function for survivable network [13], whichis the count of edge-disjoint or vertex-
disjoint paths from source to destination, also fails to adequately model social relationship. A more related
distance function is proposed in [19] [23]. However, It cannot describe the multi-faceted relationship in
social network since center-piece subgraph aims to discover collection ofpaths rather than a single path.

In [6], the authors propose an delivered current based method. By interpreting the graph as an electric
network, applying+1 voltage to one query node and setting the other query node0 voltage, their method
proposes to choose the subgraph which delivers maximum current between the query nodes. In [25], the
authors further apply the delivered current based method to multi-relational graph. However, the delivered

2

current criterion can only deal with pairwise source queries. Moreover, the resulting subgraph might be
sensitive to the order of the query nodes (See Figure 2 for an example).On the other hand, as we will
show very soon, connection subgraph can actually be viewed as a special case of the proposed center-piece
subgraph (“AND query” with pair source nodes).

Random walk related methods.The proposed importance score calculation is based on random walk
with restart. There are many applications using random walk and related methods, including PageRank [22],
personalized PageRank [14], SimRank [16], neighborhood formulationin bipartite graph [26], content-
based image retrieval [15], cross modal correlation discovery [24], BANKS system [1], ObjectRank [3],
RalationalRank [10] and so on.

Community detection. Center-piece subgraph discovery is also related with community detection, such
as [8][11][12]. However, we cannot directly apply community detection tosubgraph discovery especially
when the source queries are remotely related or they lie in different communities.

Graph partition and clustering. There are a bunch of graph partition and clustering algorithms pro-
posed in the literature, e.g. METIS [17], spectral clustering [21], flow simulation [9], co-clusterfing [4],
betweenness based method [12]. It is worth pointing out that the proposed method is orthogonal to the
specific graph partition algorithms.

3 Proposed Method: Overview

Let us first define the goodness score for nodes. For a given nodej, we have two types of goodness score
for it:

• Let r(i, j) be the goodness score of a given nodej wrt the queryqi;

• Let r(Q, j) be the goodness score of a given nodej wrt the query setQ.

A natural way to measure the goodness of the subgraphH is to measure the goodness of the nodes it
contains: the more ’good’/important nodes (wrt the source queries) it contains, the betterH is. Thus, the
goodness criterion ofH can be defined as:

(1) g(H) =
∑

j∈H

r(Q, j)

With the above goodness criterion, a straightforward way to choose the “best” subgraph should be the
one which maximizesg(H):

(2) H∗ = argmaxHg(H)

However, no connection is guaranteed in this way and the resulting subgraphH might be a collection
of isolated nodes. Thus, there are two basic problems in center-piece subgraph discovery: 1) how to define
a reasonable goodness scorer(Q, j) for a given nodej; 2): how to quickly find a connection subgraph
maximizingg(H). Moreover, since it might be very difficult to directly calculate the goodness scorer(Q, j),
we further decompose it into two steps. The pseudo code for the proposed method (CEPS) is listed as
follows:

3

Table 1:CEPS
Input : the weighted graphW, the query setQ, K softAND coefficientk and the budgetb
Output : the resulting subgraphH
Step 1: Individual Score Calculation.

Calculate the goodness scorer(i, j) for a single nodej wrt a single query nodeqi

Step 2: Combining Individual Scores.
Combine the individual scorer(i, j) to get the goodness scorer(Q, j) for a single
nodej wrt the query setQ

Step 3: “EXTRACT”.
Extract quickly a connection subgraphH with budgetb maximizing the goodness
criteriag(H)

4 Goodness Score Calculation

There are two basic concepts in goodness score calculation:

• Let ri,j be thesteady-state probability that a particle will find itself at nodej, when it does random
walk with restarts (RWR) from query nodeqi.

• Let r(Q, j, k) be themeeting probability, that is, the steady-state probability that at leastk-out-of-Q
particles, doing RWR from the query nodes ofQ, will all find themselves at nodej in the steady state;
k is the K softAND coefficient.

These two kinds of steady probability (ri,j andr(Q, j, k)) are the base of our goodness score calculation
(for bothr(i, j) andr(Q, j)). It’s basic idea is that: suppose there areQ random particles doing RWR from
each query node independently; then after convergency, each particle has somesteady-state probability
staying at the nodej; and different particles have somemeeting probability at the nodej. Thesteady-state
probability and themeeting probability provide some hints on how the nodej is related with the source
queries, and are used to compute the goodness score of nodej. Moreover, by designing differentmeeting
probability, we can get the specific type of goodness score tailored for the specificquery scenario. Table 2
lists all the symbols and definitions used throughout this paper.

4.1 Individual score calculation

Here we want to compute the goodness scorer(i, j) of a single nodej, for a single query nodeqi. We
propose to use random walks with restart, from the query nodeqi.

Suppose a random particle starts from queryqi, the particle iteratively transmits to its neighborhood
with the probability that is proportional to the edge weight between them, and also at each step, it has some
probabilityc to return to nodeqi. r(i, j) is defined as thesteady-state probability ri,j that the particle will
finally state at nodei:

r(i, j) , ri,j(3)

More formally, if we put all theri,j probabilities into matrix formR = [ri,j], then

R
T = cRT × W̃ + (1− c)E(4)

4

Table 2: Symbols
Symbol Description

N total number of nodes in the weighted graph
m iteration step
c fly-out probability for random walk with restart
~ei N × 1 unit query vector, with all zeros except one at rowqi

W = {wi,j} the edge weighted matrix (i, j = 1, ..., N)
D = {di,j} N ×N matrix,di,i = di, anddi,j = 0 for i 6= j

di the sum of theith row of W
H the chosen center-piece subgraph
Q number of source query nodes

Q = {qi} set of query nodes (i = 1, ..., Q)
Q́ the first(Q− 1) query nodes of query setQ, Q́ = {qi}, (i = 1, .., (Q− 1))

∅ null query set, which contains no query node
r(i, j) goodness score for a single nodej wrt query nodeqi

r(Q, j) goodness score for a single nodej wrt query setQ
r(Q, (j, l)) goodness score for a single edge(j, l) wrt query setQ

ri,j steady-state probability of a single nodej wrt query nodeqi

R Q×N matrix of [ri,j]

r(Q, j, k) meeting probability of a single nodej, wrt k or more of the query nodes ofQ
r(i, (j, l)) meeting probability of a single edge(j, l), wrt query nodeqi

r(Q, (j, l), k) meeting probability of a single edge(j, l), wrt k or more of the query nodes ofQ

whereE = [~ei](i = 1, ..., Q) is theN × Q matrix, c is the fly-out probability, andW̃ is the adjacency
matrixW appropriately normalized, say, column-normalized:

(5) W̃ = W ×D
−1

The problem can be solved in many ways - we choose the iteration method, iterating Eq. 4 until conver-
gence. For simplicity, in this paper, we iterate Eq. 4m times, wherem is a pre-fixed iteration number.

4.2 Combining individual scores

Here we want to combine the individual scorer(i, j)(i = 1, ..., Q) to getr(Q, j), the goodness score for a
single nodej wrt the query setQ. We propose to use themeeting probability r(Q, j, k) of random walk with
restart. Furthermore, by using different softAND coefficientk, we can deal with different types of query
scenario.

The most common query scenario might be that “givenQ query nodes, find the subgraphH the nodes
of which are important/good wrt ALL queries”. In this case,r(Q, j) should be high if and only if there is a
high probability that ALL particles will finally meet at nodej:

r(Q, j) , r(Q, j, Q) =

Q∏

i=1

r(i, j)(6)

5

Eq. 6 actually defines a logic AND operation in terms of individual goodnessscores: the nodej is
important wrt the query setQ if and only if it is important wrt every query node. Thus, we refer such query
type as “AND query”.

A complemental query scenario is “OR query”: “givenQ queries, find the subgraphH the nodes of
which are important wrt at least ONE query”. In this case,r(Q, j) should be high if and only if there is a
high probability that at least one particle will finally stay at nodej:

(7) r(Q, j) , r(Q, j, 1) = 1−

Q∏

i=1

(1− r(i, j))

Eq. 7 defines a logic OR operation in terms of individual importance scores:the nodej is important wrt
the source queries if and only if it is important wrt at least one source query.

Besides the above two typical scenarios, the user might also ask “givenQ queries, find the subgraph
H the nodes of which are important wrt at leastk(1 ≤ k ≤ Q) queries”. We refer such query type as
“K softAND query”. In this case,r(Q, j) should be high if and only if there is a high probability that at
leastk-out-of-Q particles will finally meet at nodej.

(8) r(Q, j) , r(Q, j, k)

To avoid exponential enumeration (which isO(2k)), Eq. 8 can be computed in a recursive manner:

(9) r(Q, j, k) = r(Q́, j, k − 1) · r(Q, j) + r(Q́, j, k)

wherer(∅, j, 0) = 1(j = 1, ..., Q).
Intuitively, Eq. 8 defines a logic operation in terms of individual importance scores that is between logic

AND and logic OR. In this paper, we refer it as logic KsoftAND: the nodej is important wrt the source
queries if and only if it is important wrt at leastk-out-of-Q source queries.

It is worth pointing out that both “AND query” and “OR query” can be viewed as special cases of
“K softAND query”: “AND query” is actually “QsoftAND query”; while “OR query” is actually “1softAND
query”

4.3 Variation: normalization on W

To compute the goodness scorer(i, j) andr(Q, j), we need to construct the transition matrix̃W for random
walk with restart. A direct way is to normalizeW by column as Eq. 5. However, as pointed out in [6], there
might be the so called “pizza delivery person” problem, that is, the node withhigh degree is prone to receive
too much attention (receiving too high individual goodness score in our case). To deal with this problem,
we propose to normalizeW as Eq. 10. The normalized weighted graphW will be further used to formulate
the transition matrixW̃ by Eq. 5.

(10) wj,l ← wj,l/(dj)
α

for all j, l = 1, ..., N .
The motivation of normalization is as follows: for the high degree nodej, every edge(j, l)(l = 1,, N)

is penalized by(di)
α and vice versa. The coefficientα control the penalization strength: biggerα indicates

stronger penalization. Note that the idea of penalizing the node with high degree is similar with that of
setting a universal sink node in [6].

6

5 The “Extract” Algorithm

The “EXTRACT” algorithm takes as input the weighted graphW, the importance scores on all nodes, the
budgetb and the softAND coefficientk; and produces as output a small, unweighted, undirected graphH.
The basic idea is similar with the display generation algorithm in [6]: 1) instead oftrying to find an optimal
subgraph maximizingg(H) directly, we decompose it into finding key paths incrementally; 2) by sorting
the nodes in order, we can quickly find the key paths by dynamic programmingin the acyclic graph.

However, we cannot directly apply the original display generation algorithm since it can only deal with
pair source queries (and also the resulting subgraph is sensitive to the order of the source queries). To deal
with this issue, we extend the original algorithm in the following aspects:

(1) Instead of finding a source-source path, at each step, the algorithm will pick up a most promising
destination nodepd; and try to find a source-destination path for each source query node.

(2) The order (which will be used in the dynamic programming) is specified witheach source query node.

(3) Key path discovery differs with the different query types: for “AND query” the algorithm will discover
Q paths for all source nodes at each step; for “KsoftAND query”, it only discoversk paths for the
first k source nodes; while for “OR query”, the algorithm will only find1 path at each step.

Before presenting the algorithm, we require the following definitions:

• SPECIFIED DOWNHILL NODE. Node u is downhill from nodev wrt sourceqi (v → di, u) if
r(i, v) > r(i, u);

• SPECIFIED PREFIX PATH. A specified prefix pathP (i, u) is any downhill path that starts from
sourceqi and ends at nodeu; that is,P (i, u) = (u0, u1, ..., un) whereu0 = qi, un = u, anduj →
di, uj+1;

• EXTRACTED GOODNESS. The extracted goodness is the total goodness score of the nodes within
the subgraphH: CF (H) =

∑
j∈H r(Q, j).

• EXTRACTED MATRIX. Cs(i, u) is the extracted goodness score from source nodeqi to nodeu along
the prefix pathP (i, u) so that:

1. P (i, u) has exactlys nodes not in the present output graphH

2. P (i, u) extracts the highest goodness score among all such paths that start from qi and end atu.

• ACTIVE SOURCE. ForK softAND, the source nodeqi is active wrt destination nodepd if r(i, pd) ≥
r(k)(i, pd), wherer(k)(i, pd) is thekth largest value amongr(i, pd), (i = 1, ..., Q). Note that the num-
ber of active source differs with the query type1: for “OR query”, there is only one active source while
for “AND query”, all sources are active. For a specific query type,an active sourceqi might turn into
inactive when the destination nodepd changes and vice versa.

The destination nodepd can be decided by Eq. 11:

(11) pd = argmaxj /∈Hr(Q, j)

1Since both “AND query” and “OR query” can be viewed as special cases of “K softAND query”, the number of active sources
is actuallyk for all query types.

7

whereH is the partially built output subgraph.
In order to discover a new path between the sourceqi and the promising nodepd, we arrange the nodes

in descending order ofr(i, j)(j = 1, ..., n): {u1 = qi, u2, u3, ..., pd = un}. (note that all nodes with smaller
r(i, j) thanr(i, pd) are ignored). Then we fill the extracted matrixC in topological order so that when we
computeCs(t, u), we have already computedCs(t, v) for all v → di, u. On the other hand, as the subgraph
is growing, a new path may include nodes that are already present in the output subgraph, our algorithm will
favor such paths as in [6]. The complete algorithm to discover a single path from source nodeqi and the
destination nodepd is given in table 3.

Table 3: Single Key Path Discovery
1. Let len be the maximum allowable path length
2. Forj ← [1, ..., n]

2.1. Letv = uj

2.2. Fors← [2, ..., len]
If v is already in the output subgraph

s′ = s
Else

s′ = s− 1
Let Cs(i, v) = maxu|u→di,v(Cs′(i, u) + r(Q, v))

3. Output the path maximizingCs(i, pd)/s, wheres 6= 0

Based on the previous preparations, theEXTRACT algorithm can be given in table 4.

Table 4: OurEXTRACT Algorithm
1. Initialize output graphH null
2. Let len be the maximum allowable path length
3. WhileH is not big enough

3.1. Pick up destination nodepd by Eq. 11
3.2. For each active source nodeqi wrt nodepd

3.2.1. use table 3 to discover a key pathP (qi, pd)
3.2.2. addP (qi, pd) toH

4. Output the finalH

6 Speeding up CEPS

To computer(i, j), we have to solve a linear system. When the data set is large (or more precisely, when
the total number of the edges in the graph is large), the processing time could be long.

Note that Eq. 4 can be solved in closed form:

R
T = (1− c)(I− cW̃)−1

E(12)

Thus, an obvious way to speed upCEPS is to pre-compute and store the matrixA = (I− cW̃)−1, then
R

T = (1 − c)AE can be computed on-line nearly real-time. However, in this way, we have to store the
wholeN ×N matrixA, which is a heavy burden whenN is big.

8

As suggested by [26], the goodness scorer(i, j)(j = 1, ..., N) is very skewed, that is, most values of
r(i, j) are near zero and only a few nodes have high value. Based on this observation, we propose to pre-
partition the original weighted graphW into several partitions and only use the partitions containing the
source queries to runCEPS. In this paper, we use METIS [17] as the partition algorithm.

The pseudo code for the acceleratedCEPS is summarized as follows:

Table 5: FastCEPS
Input : the weighted graphW, the query setQ, K softAND coefficientk, the budgetb, and

the number of partitionsp
Output : the resulting subgraphH
Step 0: pre-partitionW into p pieces (one-time cost)
Step 1: pick up partitions ofW that contain all the query nodes to construct the new weighted

graphnW

Step 2:. runCEPS as in table 1 onnW

7 Experimental Evaluation

In this section, we demonstrate some experimental results. The experiments are designed to answer the
following questions.

• Does the proposed goodness criterion make sense?

• Does theEXTRACT algorithm capture the most goodness score?

• Does the extra normalization step really help?

• how does the pre-partition balance the quality and response time?

Data SetWe use the DBLP data set to evaluate the proposed method. To be specific, the author-paper
information is used to construct the weighted graphW: every author is denoted as a node inW; and the
edge weight is the number of co-authored papers between the corresponding two authors. On the whole,
there is≈ 315K nodes and≈ 1, 834K non-zero edges inW.

Source QueriesTo test the proposed algorithm, we select several people from different communities
to compose the source-query repository:13 people from database and mining;13 people from statistical
and machine learning;11 people from information retrieval; and11 people from computer vision. Then the
source queries are generated by randomly selecting a small number of queries from the repository.

Parameter SettingThe re-starting coefficientc in Eq. 4 is set0.5 and the iteration numberm is set
50 since we do not observe performance improvement with more iteration steps.The maximum allowable
path lengthlen is decided by the budgetb and the number of active sourcesk as[b/k]. For normalization
coefficientα, a parametric study is provided in Section 7.3. For other experiments,α = 0.5.

Evaluation Criterion Firstly, the resultingg(H) can be evaluated by “Important Node Ratio (NRatio)”.
That is, “how many important/good nodes are captured byg(H)?”:

(13) NRatio =

∑
j∈H r(Q, j)

∑
j∈W

r(Q, j)

9

(a) by delivered current method (+1 voltage for Raymond and0 voltage for Soumen)

(b) by delivered current method (+1 voltage for Soumen and0 voltage for Raymond sink)

(c) by the proposed method

Figure 2: Connection subgraph between Soumen Chakrabarti and Raymond T. Ng.

Figure 3: Center-piece subgraph among Lise Getoor, George Karypis,and Jian Pei.

10

Complementally, we can also evaluate by “Important Edge Ratio (ERatio)”. That is, “how many im-
portant/good edges are captured byg(H)?”:

(14) ERatio =

∑
(j,l)∈H r(Q, (j, l))

∑
(j,l)∈W

r(Q, (j, l))

The goodness scorer(Q, (j, l)) of an edge(j, l) is defined similarly as the goodness score for a node:
what is the probability that the specific edge(j, l) will be traversed simultaneously by all (or at leastk) of
the particles. Firstly, we calculate the goodness scorer(i, (j, l)) for an edge(j, l) wrt a single query node
qi:

(15) r(i, (j, l)) =
1

2
· (r(i, j) · W̃l,j + r(i, l) · W̃j,l)

Based on Eq. 15, we can easily definer(Q, (j, l)) according to the specific query type. For example,
for “AND query”, r(Q, (j, l)) can be computed as Eq. 16; while for “OR query” and “KsoftAND query”,
r(Q, (j, l)) can be computed as Eq. 17 and Eq. 18, respectively.

r(Q, (j, l)) , r(Q, (j, l), Q) =

Q∏

qi=1

r(i, (j, l))(16)

r(Q, (j, l)) , r(Q, (j, l), 1) = 1−

Q∏

qi=1

(1− r(i, (j, l)))(17)

r(Q, (j, l)) , r(Q, (j, l), k)

= r(Q́, (j, l), k − 1) · r(Q, (j, l)) + r(Q́, (j, l), k)(18)

wherer(∅, (j, l), 0) = 1.
For all experiments except subsection 7.1, we run the proposed algorithmmultiple times and report the

meanNRatio as well as meanERatio.

7.1 Evaluation on the goodnessg(H): case study

As we mentioned before, connection subgraph is a special case of center-piece subgraph (“AND query” with
pair source nodes). Figure 2 shows the connection subgraph with budget 4 for “Soumen Chakrabarti” and
“Raymond T. Ng”. It can be seen that both our method and the delivered current method output somewhat
reasonable results. It is worth pointing out that the subgraph by the delivered current method is very sensitive
to the order of the source queries: comparing figure 2(a) and (b), there is only one common node (“S.
Muthukrishnan”). On the other hand, if we compare figure 2(b) and (c), while most nodes are the same for
the two methods, It is clear that our method captures more strong connection:compared with figure 2(b),
the different node (“H.V. Jagadish”) in figure 2(c), 1) has more connections (4 vs. 3) with the remaining
nodes and 2) has more co-authored papers with those connected neighbors than the corresponding node in
figure 2(b) (“Zhiyuan Chen”).

11

Figure 1 shows an example for multi-source queries. When the user asks for 2 − SoftAND, the
algorithm outputs two clear cliques (figure 1(a)), which makes some sense since “Vladimir Vapnik” and
“Michael I. Jordan” belong to statistical machine learning community; while “Rakesh Agrawal” and “Jiawei
Han” are database and mining people. On the other hand, if the user asks for “AND”, the resulting subgraph
shows a strong connection with all four queries.

Figure 3 shows an example for “AND query”, with “George Karypis”, “Lise Getoor” and “Jian Pei”
as source nodes. All three researchers are working on graphs. The nodes of the retrieved “center-piece
subgraph” are all database, data mining and graph mining people, forming three groups: the nodes close to
“Lise Getoor” are related to the University of Maryland (“V.S. Subrahmanian” is a faculty member there
and he was the advisor of “Raymond Ng”). The nodes close to “George Karypis” are faculty members
at Minnesota (“Vipin Kumar”, “Shashi Shekar”). The nodes close to “Jian Pei” are professors at Simon
Fraser (SFU) or University of British Columbia (UBC), which are geographically nearby, both in Vancouver:
“Jiawei Han” was a faculty member at SFU and thesis advisor of “Jian Pei” ;“Laks Lakshmanan” and
“Raymond Ng” are faculty members at UBC. Not surprisingly, the “center-pieces” of the subgraph consist
of “Raymond Ng”, “Jiawei Han”, “Laks Lakshmanan”, which all have direct, or strong indirect connections
with the three chosen query sources.

7.2 Evaluation on “EXTRACT” algorithm

The performance of the “EXTRACT” algorithm is evaluated by measuring bothNRatio andERatio as
functions of the budgetb. Here, we fix the query type as “AND query”.

Figure 4(a) shows the meanNRatio vs. the budgetb for different numbers of source queries; while
figure 4(b) shows the meanERatio vs. the budgetb for different numbers of source queries. Note that
in both cases, our method captures most of important nodes as well as edges by a small number of budget
b. For example, for2 source queries, the resulting subgraph with budget50 captures95% important nodes
and70% important edges on average; for 4 source queries, the resulting subgraph with budget20 captures
100% important nodes and70% important edges on average. An interesting observation is that for the
same budget, the subgraph with more source queries captures higherNRatio as well asERatio than those
with less source queries. This is consistent with the intuition: generally speaking, finding people that are
important wrt all source queries becomes more difficult when the number ofsource queries increases. In
other words,r(Q, j) becomes more skewed by increasing the number of source queries.

7.3 Evaluation on normalization step

Here we conduct the parametric study for normalization coefficientα. The meanNRatio vs. α is plotted
in figure 5(a); and the meaniERatio vs. α is plotted in figure 5(b).

It can be seen that in most cases, the normalization step does help to improve the performance of the
resulting subgraphg(H). For example, the normalization withα = 0.5 helps to capture17.7% more
important nodes and9.1% more important edges for 2 source queries on average; while for 3 source queries,
it captures18.1% more important nodes and7.6% more important edges on average.

7.4 Evaluation on speedup strategy

For large graph, the response time for importance score calculation could be long. By pre-partition the
original graph and performing subgraph discovery only on the partitionscontaining the source queries, we
could dramatically reduce the response time. On the other hand, we might miss a few important nodes if

12

10 15 20 25 30 35 40 45 50
0.75

0.8

0.85

0.9

0.95

1
Important Node Score

Subgraph Size
M

ea
n

N
R

at
io

2 Sources

3 Sources

4 Sources

5 Sources

(a) Important node ratio vs. budget

10 15 20 25 30 35 40 45 50

0.4

0.5

0.6

0.7

0.8

0.9

1
Important Edge Score

Subgraph Size

M
ea

n
E

R
at

io

2 Sources

3 Sources

4 Sources

5 Sources

(b) Important edge ratio vs. budget

Figure 4: Evaluation on “EXTRACT”

they do not lie in these partitions. To measure such kind of quality loss, we use“Relative Important Node
Ratio (RelRatio)”:

(19) RelRatio =
N̂Ratio

NRatio

whereN̂Ratio andNRatio are “Important Node Ratio” for the subgraph by pre-partition and by the origi-
nal whole graph, respectively.

We fix the budget20 and the query scenario as “AND query”. The meanRelRatio vs. response time
is shown in figure 6(a); and the mean response time vs. the number of partitions is shown in figure 6(b).
It can be seen that with a little quality loss, the response process is largely speeded up. For example, with
≈ 10% loss, the subgraph for2 source queries can be generated within5 seconds on average; with≈ 10%
quality loss, the subgraph for5 source queries can be generated within10 seconds on average. On the other
hand, it might take40s ∼ 60s without pre-partition. Note that in figure 6 (b), even with a small number of
partitions, we can greatly reduce the mean response time.

13

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.86

0.88

0.9

0.92

0.94

0.96

0.98
Important Node Ration Score

Normalized cofficient
M

ea
n

N
R

at
io

2 Sources (Normalized)
2 Sources (Not Normalized)
3 Sources (Normalized)
3 Sources (Not Normalized)

(a) Important node ratio vs.α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75
Important Edge Ration Score

Normalized cofficient

M
ea

n
E

R
at

io

2 Sources (Normalized)
2 Sources (Not Normalized)
3 Sources (Normalized)
3 Sources (Not Normalized)

(b) Important edge ratio vs.α

Figure 5: Evaluation on normalization step

8 Conclusion and Future Work

We have proposed the problem of “center-piece subgraphs”, and provided fast and effective solutions. In
addition to the problem definition, other contributions of the paper are the following:

• The introduction and handling ofK softAND queries, which includeAND andOR queries as
special cases.

• EXTRACT, a fast novel algorithm to quickly extract a subgraph with the appropriateconnectivity and
maximum “goodness” score

• The design and implementation of a fast, approximate algorithm that brings a 6:1 speedup

• Experiments on real data (DBLP), illustrating that our algorithm and “goodness score” indeed derive
results that agree with intuition.

A very promising research direction is the use of parallelism, to achieve fastresponses on huge graphs.
Another one is to extend the concepts and algorithms to “multi-graphs”, that is,graphs with different types

14

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Response Time (Sec)
M

ea
n

R
el

R
at

io

Qualisty vs. Rsponse Time

2 Source Queries

3 Source Queries

4 Source Queries

5 Source Queries

(a) Quality vs Time

0 50 100 150 200
0

10

20

30

40

50

60
Rsponse Time Vs. # of Partitions

of Partitions

R
sp

on
se

 T
im

e
(S

ec
)

2 Source Queries

3 Source Queries

4 Source Queries

5 Source Queries

(b) Time vs Number of partitions

Figure 6: Evaluation on speeding up strategy

of edges. For example, a social network, where one type of edge wouldindicate “e-mail correspondence”,
another would mean “telephone contact”, and so on.

References

[1] B. Aditya, Gaurav Bhalotia, Soumen Chakrabarti, Arvind Hulgeri, Charuta Nakhe, and S. Sudarshan
Parag. Banks: Browsing and keyword searching in relational databases. InVLDB, pages 1083–1086,
2002.

[2] Reka Albert, Hawoong Jeong, and Albert-Laszlo Barabasi. Diameterof the world wide web.Nature,
(401):130–131, 1999.

[3] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. Objectrank: Authority-based key-
word search in databases. InVLDB, pages 564–575, 2004.

15

[4] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha.Information-theoretic co-
clustering. InThe Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 03), Washington, DC, August 24-27 2003.

[5] S.N. Dorogovtsev and J.F.F. Mendes. Evolution of networks.Advances in Physics, 51:1079–1187,
2002.

[6] Christos Faloutsos, Kevin S. McCurley, and Andrew Tomkins. Fast discovery of connection subgraphs.
In KDD, pages 118–127, 2004.

[7] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the inter-
net topology.SIGCOMM, pages 251–262, Aug-Sept. 1999.

[8] Gary Flake, Steve Lawrence, C. Lee Giles, and Frans Coetzee. Self-organization and identification of
web communities.IEEE Computer, 35(3), March 2002.

[9] G.W. Flake, S. Lawrence, and C.L. Giles. Efficient identification of web communities. InKDD, pages
150–160, 2000.

[10] Floris Geerts, Heikki Mannila, and Evimaria Terzi. Relational link-based ranking. InVLDB, pages
552–563, 2004.

[11] David Gibson, Jon Kleinberg, and Prabhakar Raghavan. Inferring web communities from link topol-
ogy. InNinth ACM Conference on Hypertext and Hypermedia, pages 225–234, New York, 1998.

[12] Michelle Girvan and M. E. J. Newman. Community structure is social and biological networks.

[13] M. Grötschel, C. L. Monma, and M. Stoer. Design of survivable networks. InHandbooks in Operations
Research and Management Science 7: Network Models. North Holland, 1993.

[14] Taher H. Haveliwala. Topic-sensitive pagerank.WWW, pages 517–526, 2002.

[15] Jingrui He, Mingjing Li, HongJiang Zhang, Hanghang Tong, and Changshui Zhang. Manifold-ranking
based image retrieval. InACM Multimedia, pages 9–16, 2004.

[16] Glen Jeh and Jennifer Widom. Simrank: A measure of structural-context similarity. In KDD, pages
538–543, 2002.

[17] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning for irregular graphs.SIAM Review,
41(2):278–300, 1999.

[18] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network.
KDD, 2003.

[19] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. InProc.
CIKM, 2003.

[20] M. E. J. Newman. The structure and function of complex networks.SIAM Review, 45:167–256, 2003.

[21] A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. InNIPS, pages
849–856, 2001.

16

[22] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies Project, 1998.
Paper SIDL-WP-1999-0120 (version of 11/11/1999).

[23] Christopher R. Palmer and Christos Faloutsos. Electricity based external similarity of categorical
attributes.PAKDD 2003, April-May 2003.

[24] Jia-Yu Pan, Hyung-Jeong Yang, Christos Faloutsos, and Pinar Duygulu. Automatic multimedia cross-
modal correlation discovery. InKDD, pages 653–658, 2004.

[25] Cartic Ramakrishnan, William Milnor, Matthew Perry, and Amit Sheth. Discovering informative con-
nection subgraphs in multi-relational graphs.SIGKDD Explorations Special Issue on Link Mining,
2005.

[26] Jimeng Sun, Huiming Qu, Deepayan Chakrabarti, and Christos Faloutsos. Neighborhood formation
and anomaly detection in bipartite graphs. InICDM, pages 418–425, 2005.

[27] D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-pattern sets. InVLDB, pages
709–720, 2005.

17

Carnegie Mellon University does not discriminate and Carnegie Mellon University is
required not to discriminate in admission, employment, or administration of its programs or
activities on the basis of race, color, national origin, sex or handicap in violation of Title VI
of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section
504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the
Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay,
lesbian and bisexual students from receiving ROTC scholarships or serving in the military.
Nevertheless, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, telephone (412) 268-6684 or the
Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA
15213, telephone (412) 268-2056

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

