
CMU-ITC-90-090

August 1990

Building Hypertext on a Multimedia Toolkit:

An Overview of Andrew Toolkit Hypermedia Facilities

Mark SHERMAN, Wilfred J. HANSEN,

Michael MCINEKNY, and Tom NEUENDOR.FFER

Information Technology Center*

Carnegie Mellon University
4910 Forbes Ave

Pittsburgh, PA 15213, USA
Internet: mss @andrew.cmu.edu

ABSTRACT: This paper discusses several hypermedia facilities built on top of the An-
drew Toolkit (ATK) and their use in ATK applications. As a general-purpose, multimedia,
application-development system, ATK permits many kinds of links, references and other
connections to be made within pieces of content and between pieces of content, regardless
of the content's medium. We argue that starting with a multimedia architecture facil-
itates the construction of all forms of hypermedia. Four specific hypermedia facilities

implemented with ATK are discussed: an integrated web and indexing system (Help), a
simple multimedia link facility (Link), a cross reference (Textref) capability, and a link-
supporting embedded object language (Ness). As a toolkit, ATK is used to build other
applications which inherit ATK's hypermedia facilities. Therefore we consider briefly the
way that hypermedia facilities are used in conventional applications, such as mall systems.

KEY WORDS: Hypertext, Implementation, Multimedia.

1 Introduction
Considerable effort has been devoted to cataloging dozens of different forms

of links for hypertext [Meyrowitz 1989]. Unfortunately, if one sets out to

build a system incorporating each as a special case, the implementation effort

becomes unwieldy before the benefits become apparent. In this paper we

argue that it is preferable to begin by building a general-purpose multimedia

architecture; it is then trivial to integrate a variety of link types.

*This work was performed as a joint project of Carnegie Mellon University and the
IBM Corporation. Some of the work was supported by the National Science Foundation
under contract ASC-8617695. The views and conclusions contained in this document are

those of the authors and should not be interpreted as representing the official policies of
the IBM Corporation, the National Science Foundation, or Carnegie Mellon University.

2 Sherman, Hansen, McInerny, and Neuendorffer

The Andrew Toolkit (ATK) [ITC 1990, Palay et al. 1988] is a multi-
media application development system with which system builders can cre-
ate applications quickly. Its applications are in daily use by thousands of

people on the CMU campus, other universities, and several industrial re-

search laboratories. In its current release, the system provides support for

many media, including multifont text, raster images, structured graphics,
animations, spreadsheets, equations and audio. The system also provides

facilities for composing and connecting media, such as screen layout objects,

buttons, sliders, knobs, and linking facilities of various kinds. The linking
facilities provide the same service as hypertext links.

The Andrew Toolkit has three features that distinguish it from hyper-
text systems. First, ATK is a true multimedia architecture. The presence

of media other than simple text is commonplace. Second, ATK is a toolkit
for building other applications. Thus, it is not a hypertext system per se.

Instead, ATK allows any application built with it to use linking facilities.
Third, link facilities are optional and are implemented on top of the toolkit.

Even in the absence of linking facilities, ATK is a fully operational multi-

media authoring system, so both developers and users can ignore gratuitous
linking facilities. People may choose other hypertext systems precisely be-

cause of their linking facilities, but people choose ATK for its editing and
application construction capabilities and, as an added attraction, they can

use linking facilities as well. Therefore, ATK provides one of the few test

beds for empirical measurement of the utility of linking. In this paper, we
provide some preliminary statistics of hypermedia use in one ATK applica-
tion.

2 Multimedia Facilities

The primary composition mechanism in the Andrew Toolkit is inset nesting,
as can be observed on the right side of figure 1. The entire figure shows the

screen of an IBM t2.T running three ATK applications under the X Window

System. The upper-left displays console, a system monitoring application;

beneath it is typescript, a shell interface. To the right of both is the generic
object editor, in this case editing a spreadsheet object. Within which, the

left-side cells have been connected together to hold a multifont text object,
which in turn contains a raster image. Some right-side cells have been
grouped in two sections holding a collection of equations, and an animation.

The rest of the right column is used as a spreadsheet.

The nesting of one object in another, such as a raster in the text in

Building Hypertext on a Multimedia Toolkit 3

Figure 1: Three ArK applications: console, typescript, and ez editor.

the spreadsheet, can continue as deeply as desired. This nesting is the

central feature of ATK and is implemented as a set of protocols by which

a surrounding object can completely control the environment perceived by

an embedded object. In general terms, the protocols provide that events

propagate inward so the surrounding object can determine, for instance,

whether or not an inner object receives mouse hits.

The generic object editor does not understand the details of any object.

If no object type is specified, a multifont text object is used by default--

many casual users rely on this default and believe the object editor to be a

word processing system. Since the object editor works on any object, the

same program can be used to manipulate any medium, and thus forms the

basis of multimedia applications.

On top of these basic facilities, one can build many different, linking

paradigms, such as those described in the next section.

3 Hypermedia Facilities

In this section, we discuss four kinds of linking facilities that have been

implemented in ATK: an integrated web, simple links, cross references in

text, and fully programmable links.

4 Sherman, Hansen, McInerny, and Neuendorffer

3.1 Webs (Help)
The concept of webs was made popular by Intermedia [Meyrowitz 1986].
Webs define a collection of documents connected by references. In ATK, the
impetus for developing a web subsystem was to support the Help applica-

tion, which organizes and cross references help from many sources, including

locally written help files and Unix manual pages. Figure 2 shows Help with

the main area of the window--on the left--displaying one of the help docu-
ments. The top two panes in the right column list predefined collections of

articles, with general help on top, above help for commonly used programs.
Both panes represent precompiled collections of references and act as start-

ing points within a web. One can put together dynamically a collection of
references, as shown in the bottom-most pane in the right column where

we show the authors' attempts to learn how to make screen snapshots for
this paper. As various help information is found, bookmarks to locations in
specific documents may be added so that we can move from document to

document quickly to collate the necessary information. 1 Users can add or

remove the panes in the right-hand column as desired.

n_t of _e to _liy. _tet t_ ,_,_m,_

"--

-m _w,_mzcmwa_ c_l_ C_m,m

Figure 2: The Help application documenting the snapshot program.

The predefined lists provide starting points within the web; users navigate
from document to document through the use of marked links. In figure 3, we
see another help document with a link marked. When the link is followed,

the new document is displayed in the main part of the Help window. The
system uses auxiliary files to map link-names to help documents. Different

Currently, Help does not remember a user's bookmarks from one session to the next.

Building Hypertezt on a Multimedia Toolkit 5

auxiliary files can be used to provide different mappings and thus different

webs. For example, the mapping files used by ATK developers contain
references to local, obscure system programs while the mapping files used

by the main campus provide information on stable, released systems. Thus,
the use of new auxiliary files allows one to create webs of information for

any application, not just help files.

I11'1__1_N'p-Ill

f,tJJ*l_

_nl g
l._lu-t a

_-_u_r, Show H_lp *n ...

Send Comment On Help
smp

Gult

Figure 3: Following a link in the Help application.

3.2 Simple Links (kink)

The most common form of linking is a reference from one document to an-

other. The special object that contains a reference is called a link. When

followed, the link causes the reference to be displayed in a new window

employing the generic object editor, similar to the way a link works in Note-
Cards [Halasz 1987].

Figure 4 shows a document with three links in it. One link is contained
in the spreadsheet, another in the text and the third is within the drawing.

As an ATK object, a link can be placed anywhere other objects may be
placed. The link is followed by clicking the left mouse button on the link

symbol. Since it is a separate entity, the link object has no global knowledge
about the containing document or further links in referenced documents.

Consequently, there is no way to get global information about the web in
which the link is embedded, although a history of visited documents could

be built. Links are also unidirectional and contained only in the source
document: the target document has no way of knowing that it is a target of
a link.

The destination of a link is a filename. 2 Since our site uses a wide area

_We have several designs for pointing to a target within a file, but the simple solutions

6 Sherman, Hansen, McInerny, and Neuendorffer

Budget ProposalforNetwork Gate_s'ayInterface

_'t Supplier COSt II'nage
._ablinglAce Electronics <1

3oarOs!_MU Comp.Store 100 ,_
To_aJ 104

"l'htl b_dl_ 11ba_'d m the _,¢ll_tla_ made by the ¢0mmlt-m

(_1, WI_a e'_rythll_ Isput tOlpltl_r,It _ I_¢
I_aethta_ like;.

_'o_e_qle"_/Itudrewx:_u.t.a_u'asrS,_ctnerny/echl_/'bualet _'.

Figure 4: Simple links embedded in a spreadsheet, text, and drawing insets,
which comprise one document.

network distributed file system [Howard 1988], links can refer to documents

that exist across the country as easily as documents on the local worksta-

tion. However, moving a set of linked documents is difficult, since absolute
pathnames are encoded in the document. 3

3.3 Cross References (Textref)

While simple links provide a reference from one point in a document to

another file, cross references are used to provide references from within a

document to another point in the same document. Traditionally in printed

text, a cross reference appears as a label at the target, with an indication of

the target page and label at the source of the cross reference.

ATK provides support for the tradition_d use of cross references, but
also allows the user to interact with a reference when the document is on

the screen. Users define tags that denote destinations and references that
denote links. Clicking the left mouse button on a reference will make the

target (tag) visible and move the text caret to the target. In figure 5, we
show a document with its tags and references exposed so that the names are

visible. Normally, only icons indicating tags or references would be visible. 4

While cross references work only in text, this is not a serious limitation.

Since our text object can embed other objects arbitrarily, one simply places

are clumsy, and the better solutions would require modification of the toolkit, the target
documents, or both.

3For example, we use sed to install the help documents describing the link inset!
4The visibility of the name for a tag or a reference is toggled by clicking on the icon

with the right mouse button.

Building Hypertezt on a Multimedia Toolkit 7

The ule of tap sad l_m_n¢_ pl_v|dls • _e_rl_ purpmc
mecbamfm Ira-Lextt_ tnzn br_e wltJa_ • a_u_mt. Ll_-,i
mayd_lne uqll 1_3p_dnlt Itetapp¢opriateobjectst tl_e ckziredthe

_ Ot c_a_e, o_eCk_pl_e relea'eocmneonto_.her mecLta
u well, such itl a rulzl_

Inaddltion,jFtenmas away m re_-encea tsl,suchastb8_'stcat

shown, _ do this with • box that k_ • qu_lon mark: (_

Na¢_w_ly, Ol_eCamhave m_y _ncn to _ sa,_e _such U
an,other lnu'_iuct_m r_e_renceto the first tq:
One c=nr_mpm= t_lsand rtfm'ences.Fur example, her_ _-• re|
that rcm the mtrmluct_ _;+mpomml Ta_]_ m ===,,m.
T_S at_era _K.lre_e |e_syov.be._eoyoucaLn|_L_ptO_e _%_rence

wire,in _ mr.

Figure 5: Active cross references within a document: "@" is for targets, "?" is
for their references.

references adjacent to non-text objects.

3.4 Programmed Links (Ness)

The most sophisticated linking facilities in the Andrew Toolkit are provid-

ed by the embedded object language Ness [Hansen 1990]. This is essen-

tially an advanced Hypertalk-like language [Atkinson 1987], where the ele-

ments of an application are laid out utilizing the ADEW application builder

[Neuendorffer 1990]. The language can be used to extend objects in docu-

ments or to build entire applications, such as the quotation browser shown

in figure 6. The main portion of the window is devoted to a scrollable docu-

ment containing a number of quotations about birth. Across the bottom of

the window are buttons which perform various operations such as moving to
the next or previous quotation. These buttons are similar to the Next and

Previous buttons often found in Hypercard applications. Unlike Hypercard

stacks, the document is a norma_ text object and has all the behaviors that

users have come to expect from text; they can scroll, search for strings, and
copy text.

Within each entry, a mouse click on a reference in a "CF:" line scrolls

the text to display the referenced message. For example, if the mouse is

clicked on "Macbeth" in the middle of figure 6, the text scrolls to the entry

for Macbeth shown in figure 7. The cross referencing is accomplished with a

Ness routine which checks each mouse click to see if it is in a line beginning
with "CF:".

8 Sherman, Hansen, McInerny, and Neuendorffer

gw-- " " =J

=== =_-=
¢1/,_ tm

" I

Figure 6: A hypertext database driven by a Ne_ script.

The linking performed by the embedded language is simple and quite

general. If desired, one can use the full facility of an object-oriented, multi-

media manipulation language. For example, one can move within a docu-

ment, move to another document, move to multiple documents in multiple

windows, and search and llnk hazed on medi_ type and content. With a full

programming language, many tricks are possible.

3.5 Documents with a Variety of Link Types

The linking facilities we have discussed are not mutually exclusive. For

example, a document within the Help system can provide simple links to

other documents. The link facility itself is documented this way. Figure 8

shows the Help system in the top window displaying the documentation

for the link object, which contains a link to supplemental materials which

have been brought up in the bottom window. Another example is shown in

figure 9, which shows a database of _rticles on hypermedia and hypertext.

There are programmed links that connect together pieces of information,

supplemented by simple links that point to other collections of information.

4 Hypermedia Applications
All applications built with the Andrew Toolkit can utilize the above link

facilities. To get a feeling for how these features are used, we consider briefly

two applications now in general use: the Help and the Messages systems.

As used on the CMU campus, the Help system [Langston 1988,

Ogura & Robertson 1989] provides help on all aspects of the computing

environment, not just the Andrew system or programs on high-function

Building Hypertext on a Multimedia Toolkit 9

_m

_ LO,Bt

m
w_ w

m

Figure 7: The Macbeth quote referenced by the Moby Dick quote in figure 6.

workstations. Because users requesting help from low-function workstation-

s (IBM PCs and Macintoshes) and terminals would not have access to the

multimedia features of the Andrew Toolkit, the generally available help doc-

umentation does not contain multimedia information. The exceptions are

documentation used only by the developers, such as the link documenta-

tion illustrated in figure 8. Of the approximately 200 documentation files

written by our organization, there are over 3000 cross references and over

600 mappings between cross references and documentation files. Since these

files occupy about 1.8 megabytes of space, there is a reference for every 300

characters, or about 5 lines of documentation. In addition, the system au-

tomatically links together general documentation and Unix manual pages.
The Help system was designed, and the documentation was written, with

links in mind, so the prevalence of references is not surprising.

However, the message system built atop ATK [Borenstein et al. 1988]
had no a priori design for hypertext information. Indeed, the overwhelm-

ing majority of the 2500 bulletin boards it offers are generated by non-ATK

sources, and hence do not exploit any multimedia or linking facilities. Fortu-

nately, the private bulletin board used by our organization of 30 researchers

consists of posts made almost entirely by an ATK program. Because mem-

bers of our organization have both the knowledge of how to use the linking

features of ATK and access to ATK-based message creation programs, we

have an opportunity to examine the prevalence of linking.

Over a two month period, 369 messages were posted on our private bul-

letin board. Of those posted, 290 messages had some multimedia feature

in them. The most popular feature was multifont text--258 or 88% of the

10 Sherman, Hansen, _lclnerny, and Neuendorffer

d• • ul _ m

m Itrla _11_ AIINhIT_I_ _ C_
wa mla_l_ _ mb. _ _Im

i' m

u_

Figure 8: The Help application documenting the link inset, and the window
brought up by following the link.

multimedia messages used only that feature. However, of the 32 multimedia

messages that used more than multifont text, 22 contained some linking fea-

ture. While not an overwhelming endorsement of hypertext or hypermedia,

a 6% casual usage rate indicates some appreciation for linking.

5 Conclusions \
The Andrew Toolkit effort began not as a hypertext effort, but as a general

architecture for multimedia documents and applications. We have shown in

this paper that the resulting system is an excellent medium for hypertext

and hypermedia. Several linking styles have already been utilized in ATK

applications. Web-based linking was chosen for an application--the HeLp

system--which is large, but changes slowly enough to permit a perdefinition

of access paths. Simple links and cross references are used for casual refer-

ences, as might appear on a bulletin board, while computed links are used for

database-like applications. There does not appear to be a universal choice

for a linking mechanism and, even within the Andrew Toolkit, other choices

are possible. For example, a group at Olivetti has independently developed

a hypermedia system on top of the Andrew Toolkit [Olivetti undated].

We believe that our investigations indicate that one should not concen-

trate one's efforts on a single linking system or on trying to extend a simple

hypertext system into a hypermedia system. A better path is to investigate

different linking mechanisms within a general-purpose multimedia system,

such as ATK. This gives the hypertext implementor a clean architecture

Building Hypertext on a Multimedia Toolkit 11

:.-L
_.m _,m.l° m .,,.i_

i
.-. :
_ -12-1r ,

_o-

• w _ i* wm
m Imt _ t m

Figure 9: A Ness-driven hypertext with embedded simple links.

for embedding hypertext within documents and applications while freeing

the implementor from having to build a multimedia document authoring

system. By investigating many different linking mechanisms, we may find

the best ways that hypermedia can be used and add linking as another tool

in our arsenal for organizing information.

References

[Atkinson 1987] Atkinson, B., HyperCard, Version 1.0.1, M0556 / 690-5181-A,
Apple Computer, Cupertino, CA, 1987.

[Borenstein et al. 1988] Borenstein, Nathaniel, Craig Everhart, Jonathan
Rosenberg, Adam Stoller, "A Multi-media Message System for Andrew", Pro-
ceedings of the USENIX Winter Conference, Dallas, February, 1988, pp. 37-42.

[Halasz 1987] Halasz, Frank G., "Reflections on Notecards: Seven Issues for the
Next Generation of Hypermedia Systems," Hypertext '87 Proceedings, Nov. 13-
15, 1987, Chapel Hill, NC, pp. 345-365.

[Hansen 1990] Hansen, Wilfred J., "Enhancing documents with embedded pro-
grams: How Ness extends insets in the Andrew ToolKit," Proceedings of 19g0
International Conference on Computer Languages, March 12-15, 1990, New Or-
leans, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 23-32.

[Howard 1988] tIoward, John. H., "An Overview of the Andrew File System,"
Proceedings of the USENLV Winter Conference, Dallas, February, 1988, pp. 23-
26.

[ITC 1990] Andrew Toolkit Programmer's Manual, Information Technology Cen-
ter, Carnegie Mellon University, Pittsburgh, PA. 15213, USA, January 1990.

12 Sherman, Hansen, Mclnerny, and Neuendorffer

[Langston 1988] Langston, Diane, "Background and Initial Problems for the An-
drew Help System," Proceedings of the 35th ITCC, Society for Technical Com-
munications, 1988, pp. ATA-47-ATA-50.

[Meyrowitz 1986] Meyrowitz, N., "Intermedia: The Architecture and Construc-

tion of an Object-Oriented Hypermedia System and Applications Framework",
OOPSLA '86 Proceedings, Portland, OR, 1986, pp. 186-201.

[Meyrowitz 1989] Meyrowitz, N., "Hypertext--Does it Reduce Cholesterol,
too?", presented at Hypertext '89, Pittsburgh, PA, November, 1989, IRIS Tech-
nical Report 89-9, Brown University, Providence, RI, 1989.

[Neuendorffer 1990] Neuendorffer, Thomas P., "The Andrew Development En-
vironment Workbench: An Overview", The Andrew Project, Technical Report,
Information Technology Center, Carnegie Mellon University, 4910 Forbes Ave.,
Pittsburgh, PA 15213, 1990, pp. 65-72.

[Ogura _ Robertson 1989] Ogura, Ayami, Jennifer Robertson, "Designing Hy-
permedia Help Systems: Problems and Issues", Conference Proceedings, SIG-
DOC 89, Pittsburgh, PA, November 8-10, 1989, pp. 5-12.

[Olivetti undated] "Hypermedia Help System", Olivetti Internal Memo, Olivetti
S&N DOPe, Advanced Software Laboratory, via Palestro 30, 56100 Pisa, Italy,
undated.

[Palay et ai. 1988] Palay, A. J., et al., "The Andrew Toolkit--An Overview",
Proceedings of the USENIX Winter Conference, Dallas, February, 1988, pp. 9-
21.

