
" CMU-ITC-86-053

Published in:

EUUG Conference Proceedings

Manchester, UK
Autumn 1986

Vohunes: The Andrew File System Data Structuring Primitive

Bob Sidebotham

The Information Technology Center
Carnegie-Mellon University

Pittsburgh, PA. 15213 (USA)
bob@andrew.cmu.edu.ARPA

A BS TRA CT

Volumes are the basic organizing mechanism for data in the Andrew file
system, a large distributed system designed to support thousands of workstations.
Volumes provide the basis for addressing, storing, and accessing the information
within the system. They are independent of the physical configuration of the
system, and may be freely moved about as the needs of the system dictate
without disrupting the ongoing work of users. Various other features of volumes
combine to make them a powerful mechanism supporting the administration of
this file system.

Introduction with possible overlap between the servers for

The Information Technology Center availability and pertbrmance reasons. Whole
was established in cooperation with the IBM file transfer is used in both systems to transfer
corporation to enhance the level of comput- files to and from workstations, and the
ing technolo_ r at CameNe-Mellon Univer- workstations are responsible for caching
sity[ll. One result of this collaboration is the entire files on their disks. The systcrns
Andrew file system, other, vise "known as attempt to emulate Unix semantics at the

Vice[2]. In Vice, dedicated servers cooperate workstation by intercepting file system calls
to provide user workstations and other corn- (such as open and close) and for_varding
puters access to a huge common tile system, them to a local process. This process, in

turn, is responsible for fetching iiles, or infor-
There have been two implementations mation about files, from the appropriate

of this file system, Vice l and Vice2. The servers, storing them back as necessary, and
current implementation, Vice2, was desiLmaed maintaining the local cache. Read and write
and rebuilt from scratch in response to

system calls are not trapped--they go directly
experience with our ftrst system. A major to the local, cached file.
feature of the new implementation is the con-
cept of a volume, a collection of files forming A critical difference between Vice l and
a partial subtree of the file system hierarchy. Vice2 is in the low-level naming of files. In
This paper will discuss the rationale for Vice l, the entire pathn:une of a file was
adopting volumes, the architectural issues, presented to the server on every request, and
and details of the implementation, the files were cached by the workstations

using the pathname as the key. This had a

The Redesign Ettbrt number of consequences, the most significant
of which was that directory, rename was, for

Vice l and Vice2 are architecturally very practical purposes, impossible to implement:
closely related. Both systems distinguish the rename of a directory, would invalidate all

between clients and servers; client worksta- the keys for entries below that directory'. In
tions are not file servers. The servers each Vice2 therefore, we decided to use low-level
store some subset of the fde system space,



_

iile identifiers, rids, in the interface between responsible for any given rid.

the file servers and clients. This had a At the same time that we were redesiml-
number of immediate, useful consequences: ing the interface between the client and

a general rename became possible, in fact server, we were also acutely aware of the need
easy, to implement; symbolic finks became for easy administration of the file system.
easy to implement (since the pathname reso- We had to a large extent ignored this prob-
lution now had to be done at the worksta- lem in Vice l, and now was the time to do
tion); the server load was reduced (for the something about it.
same reason); and cache management, in gen-
eral, became easier because of the fixed length These two forces together resulted in
nature of rids, as opposed to pathnames, the invention of volumes.

I lere is a description of the calls in the Volumt_
Vice2 client/server interface which directly

We decided to divide the rid into tworelate to file storage. Ancillary parameters,
such as access keys, are left out of this parts, a volume number and a file number

within the volume. All of the files in adescription. A dfid is a rid which happens to
refer to a directory: volume are located at the same server. The

workstation discovers the location of a

fetch(lid) volume by consulting the volume location
Returns the file status and, optionally, data base, which it does by making a Get Vo-
the data torrid, lumelnjb call to a randomly selected server.

store(lid, lile, status) The volume location data base is replicated
Replaces the existing file associated with to "allof the iile servers.

rid with the new file and status. An immediate consequence of this deci-

create(dfid, name, status) sion is that the rename function, which is
Creates an entry name in directory dfid directed to a single server, is applicable only
with initial status status, within a volume. Ordinary Unix has a similar

restriction (tiles cannot be renamed across file
remove(dtid, name) systems), so we decided that we could live

Removes the entry name from directory with this decision. This fact, however, dic-
dfid, releasing the underlying file from tates something about the nature of the files

storage if this is the last referencing in the volume: they need to be closely
entry, related, in order for rename to be useful, and

symlink(dfid, name, linkcontents) there should be enough of them so that the
Creates a symbolic link name in direc- restriction on rename is not perceived by
tory dfid. users as a problem.

makedir(dfid, dname, status) Each volume is, in tact, a piece of the
Make a new, empty directory dname in entire iile system hierarchy; in this respect it
directory dfid with initiM status status, is like a Unix "rile system". Like Unix file

removedir(dfid, dname) systems, the volumes are glued together at
Remove the directory name from direc- mount points to form the entire system hierar-
tory dfid. chy. Unlike Unix file systems, however, we

rename(olddfid, oldname, newdrid, newname) did not want volumes to conform one-to-one
with disk partitions. We decided thatRename the file, directory or symbolic

link in directory oMdfid called oMname volumes should normally be considerably

to newname in directory newdfid, smaller than disk partitions, so that many of
them can reside on a single partition, sharing

Each of these calls is directed to a single the available disk storage. By using this
server. At this point in our design discus- approach, the problem of disk space alloca-
sions we had not yet understood how the tion is minimized: if a partition becomes full,
workstation would decide which server to the system administrator merely has to move
contact with any given request. We had to one or more volumes to another partition on
devise an elficient mechanism to allow a the same server or on another server. This

workstation to discover which server was operation can be made with little or no disr-



-3-

uption to users of the system, as will be dis- reduces overhead. Two additional operations
cussed later in this paper. For now, however, have been provided: getvolinfo and setvolinfo
note that the volume location data base g_ves "allow the parameters associated with a
the current location of any volume in the volume (disk quota, etc.) to be queried or
system--the physical location of the volume is changed from a workstation. The setvolinfo
not related to its place in the frie system call is, of course, restricted to system adminis-
hierarchy, trators.

Given the desire to make rename a

usable operation, and the desire to maximize Administrative Operations
flexibility by keeping the sizes of volumes Administrative operations are not part
relatively small, we decided that a typical of the client/server interface definition;
volume would contain the fLiesbelonging to a instead they are initiated by the servers, by a
single user. As of this writing, CMU has server control machine, or by a staging
about 1200 users and a little more than 1200 machine. The servers initiate nightly volume
volumes, one for each of those users, plus a cloning operations; the server control
small number of system volumes, machine coordinates most other operations,

A number of other applications of such as moving volumes; and the staging
volumes were discovered during the course of machines control the automated volume
the design. In the present system, they are backup and retrieval mechanisms. The
used as the unit of quota enforcement (each administrative operations include create
user has a quota assigned to his or her volume, purge volume, make backup volume,
volume), and as the unit of accounting. An dump volume, restore volume, move volume.,
automated backup system backs-up each and release volume. Create and purge volume
volume every day; when a user needs fries do the obvious things, create ensures that the
restored, the entire volume is restored and the volume number assigned is unique. Make
user picks and chooses fries from this copy of backup volurne is invoked nightly by the file
his or her old volume. Volumes are "also servers themselves to create new read-only

cloned every day; the backups are actually backup volumes for each user. Copies of
made from the cloned volume and the user these volumes suitable tot storage on tape axe

also has access through the cloned volume to created by dump volume at the request of the
his or her previous day's work. [;inally, we sta_ng machines. Volume restore requests
decided that replication of frequently used are honored by the staNng machines and
system fries could be accomplished simply, by delivered to the file servers using the restore
freezing the state of selected read/write volume function. Move volume does the obvi-
volumes to produce read-only volumes, ldent- ous thing, and release volume is used to create
ical copies of the read-only volumes could be a read-only copy of a volume and propagate
made av',_able at multiple sites, further copies to designated replication sites.

All of these administrative operations can be

Client-lnitiated Volume ()perations pefl'ormed without disrupting usage of the
system.

There are two types of operations that
can be performed on volumes: client- Other functions can be implemented as
initiated operations which do something combinations of these operations. Functions

that are currently planned include: a loadwithin a volume, and administrative opera-
tions which operate on the volume as a balancing operation to distribute volumes

whole. The client-initiated operations, fetch, over the tile servers in an optimal way based
store, create, syrnlink, link, remove, rnakedir, on the sizes of the volumes and tralfic pat-
rernovedir and rename, are detined by the terns; an operation to distribute all of the
client/server interface. Note that none of volumes on a partition to other sites in the

these operations ever cause the tile server to system, to be used when a disk is suspect, or
traverse a tile system pathname: the directory is due for retormatting; and an operation to
operations always specify the directory' automatically restore any missing volumes in

the system, to recover, for example, from theinvolved and the name of the component

within the directory. "['his considerably toted failure of a disk.
simplilies the tile server and, of course,



-4-

One unexpected side effect of the vnode uniquifier is incremented every time a
administration of the file servers at the ganu- new file is created; the vnode number, on the

larity of a volume has been that the privacy other hand, can be reused. The uniquifier
of the owners of the information is safe- guarantees that there will be no confusion
guarded. For example, to honour a restore- between the server and client as to which file

file request the entire volume is restored. No is actually being referred to.

one but the original owner of the files needs The status information for a rid,
to have direct access to the files within the obtained from the appropriate vnode index,
volume, and the operations staff does not contains the type of the vnode, directory, file
need to be told precisely which files to or symbolic link, the mode, corresponding
restore, as is the case m many systems. In directly to the Unix mode bits, a cloned flag,
fact, no administrative operations are per- for directories in volumes that have been

formed on individual tiles. We avoid scan- cloned, used internally by the file server, the
ning directories to remove "core" files and link count of the file, which is the number of

the like, and instead use our ability to set directory references to it, the file length, in
quotas and use the available resources bytes, the uniqui[ier, the data version number,
efficiently (by locating volumes appropriately) incremented whenever the Iile is stored -and

to control disk usage. FinaUy, when a user's use bv clients for cache validation, the inode

account expires, his or her volume is purged number where the directory, iile, or symbolic
using the volume purge operation; ag',mn, no link is actually stored, the modification time
directories need to be scanned, of the file, as set bv the client workstation,

the server modification time of the file, the
Volume Representation author and owner of the tile, the user who last

There are many representations of stored the iile and the user who lirst created

volumes that we could have chosen to imple- the file, respectively, a lock structure, for
ment the function',dity described above. The implementation of the flock system call, and,
one we chose pertbrms adequately and has linally, the parent director>, rhode number for
the advantage that it can be implemented the file, used internally by the Iile ser_'er.
easily on a Unix system. A volume is Directory vnodes "also contain an access con-
represented as a collection of Unix inodes, trol list, used to control access to the direc-

which are round by starting at a sin_e iile in to W and files within the directory.

the root directory of a Unix partition. This The inode referenced by a vnode status
file lists three modes: a header inode, contain- block can contain a file, directory, or sym-
mg information about the volume (name, bolic link. The mode is used to store a file as
number, quota, etc.), and the inode numbers received from the workstation, to store a

of two index files, one for directories, and one directory m a hashed form, suitable for rapid
for files and symbolic links. The index liles lookups by the file server, or to store the text

contain fixed length entries for each directory of a symbolic link. In all cases the type of
or file or link. Directories are in a separate the inode is actually a regular Unix inode, not

index simply because the entries are biueer-- a directory or symbolic link. In order to sup-
each entry contains an access list for that port the clone function, described below, each
directory (files use the access list of the con- inode may be referenced from multiple
taining directory), volumes. The link count of the inode reflects

Each entry in an index contains status the number of volumes sharing the inode.

information for the corresponding lid, or it is In this representation of a volume, only
empty. A rid is mapped to an entry in the a single tile is present in the server's Unix
index by taking the t'ile number portion of name space; all the other files within the

the lid and splitting it into two parts: a rhode volume are located simply by their inode
number (rhode meant, historically, I'ice numbers. This rellects a conscious decision
inode), and a vnode uniquifier. 'Fhe vnode to make use of the lower-level functionality
number, if odd, is a direct index into the of the Unix file system, while avoiding the
directory vnode index, and otherwise into the costly pathname searches implicit in all
file rhode index. Together these two indices current Unix implementations. This required
will be referred to as the rhode index. The a minor modification to the kernel to support



-5-

direct access to inodes, and has turned out to would disengage an entire subtree from the
be well worth the trivial amount of work it volume's hierarchy. To support this, vnodes
required. The functions supported are: are chained backwards using the parent direc-
icreate, allocate an inode, iinc and idec, incre- tory vnode number lid& Without having to
ment or decrement the inode link count, actually read the contents of any directories,
deallocating the inode if the link count goes the server can quickly scan backwards from

to zero, iopen, get a descriptor for the inode, the target directory vnode to determine
iread, read directly from an inode at a whether the directory being moved is above it
specified offset, and iwrite, write directly to an in the hierarchy.
inode at a specified offset. The icreate call
also allows the inode to be stamped with four Implementation of Administrative Operations

parameters (in unused space in the inode), The administrative operations described
which are used for salvaging purposes. The above are supported by combinations of five
first parameter is always the volume number basic functions: create, purge, clone, dump
and is used as a check on the other calls to and restore. Create and purge do rather obvi-
prevent them from accidentally damaging ous things, setting up or tearing down a
inodes. Inodes that have not been allocated volume appropriately. The clone operation
by icreate are not normally accessible with makes an identical, read-only copy of a
these system calls, volume by copying the header and vnode

index and incrementing the count on all of
Support for the Client/Server Interface the i.nodes referenced by the index. This is a

Given this volume representation, it is relatively inexpensive way of getting a frozen
easy to see how the various calls in the copy of a volume without having to copy any
client/server interlace are implemented within of the data. The dump operation converts a
the server. The most common operations volume into a canonical, machine indepen-
turn out to be fetch (status only), fetch (with dent byte stream, and the restore operation
data), and store. All of these operations are reverses the operation to produce a volume.
perlormed in a straightforward, efficient Dumps can "also be incremental, in which
manner by the server, with no directory look- case only rids which have changed since a
ups or modifications required. Store is care- specified date are really dumped (although
ful to "allocate a new inode for the incoming directories are always dumped when making
file and decrement the link count on the old volume dumps tbr backup purposes, for
one "alter the operation. This has two useful robustness).

results: first, if a store is interrupted by a The administrative operations of create
crash and ensuing salvage operation, the ori- vohgme, purge vohLme, make backup voh_me,
ginal file will rem',dn intact, and second, if the dump voh#ne, and restore volume are imple-
inode was shared by another, read-only mented in a strai,ghtforward manner using
volume, then that volume will still retain a these primitive functions. Dumps are made
valid reference to the oriL_nal inode after the from backup volumes (which are cloned,
store. The read-only semantics of that read-only volumes), so that the volume does

volume are therefore preserved at essentially not need to be locked during the dump.
no cost. Move voh#ne and release vo&me are more

The remaining operations "all specify complicated.

one or two directories which are examined or To move a w)lume a new backup
modified appropriately. I:nlike lile updates, volume is tirst made. The backup volume is
directory updates are done in place; this then dumped over a stream socket to the
means that a copy of the directory has to be other site which uses the restore function to

made if the volume has been cloned since the recreate the volume. During this dump pro-
last update to the directory. The cloned flag cess, client workstations arc allowed to access

in the directory's vnode is used to determine and update the ori_nal w_lume. If ;my
if this should be done. lhe rename opera- updates are made, then the volume is locked,
lion is slightly complex: care has to be taken and incrementally dumped from the time the

to ensure that a directory is not being backup was made. This incremental dump is
rcnamed into a subdirectory of itself, which merged into the new volume at the other site.



-6-

A message exchange confirms that the the mount point is itself a readwrite vo&rne,
volume has been successfully moved and the in which case the read/write volume should

copy at the ori_nal site is purged along with be mounted. This makes it possible to build

its backup volume. A new backup volume is a hierarchy of read/write volumes, glued
made at the new site. l:inaLly, a note is left together with read-only mount points, and
with the file server at the ori_nal site, stating then to release the collection of volumes as

where the volume is now located: cfients are read-only volumes without altering the
redirected to the new site. The note is mount points within the hierarchy. At
required because the volume location data CMU, for example, the directory/cmu is the
base is not updated immediately, read-only, replicated root directory of the

To release a new read-only volume to Andrew file system, /cmu/rw is the read/write
multiple sites, the volume is first cloned at root of the same file system.
the site of the original, read/write volume. If

Read-Only Volumesa previous release of this volume exists at a

target site, then a clone is also made of that Read-only volumes are a simple way of
volume. The first read-only clone is then providing cheap and reliable access to system
incrementally dumped from the time that the files. They have several properties which are
previous release at the target site was made. desirable in a large scale distributed system
This incremental dump is merged into the such as Andrew. The primary rationale is
new clone at the target site. If a target site that read-only volumes can easily be repli-
has no previous release of the volume, then cated at multiple sites, without concern for

the new clone is dumped in its entirety and consistency between sites. This consistency is
transmitted to the target site. guaranteed since read-only volumes may not

be updated and because each new release of a

Nlount Points read-only volume is assi,=med a unique

,l[ount points are the mechanism by volume number. The workstation software
which volumes are _ued together to form the may freely contact any of the servers which
complete system hierarchy. There is no provide a given read-only volume at arty
direct provision for mount points within the time. This serves two purposes: it improves
structure of a volume. Originally, the mount the availability of the system sigmificantly by
points within a volume were kept in an asso- , ensuring that top level directones and system
ciated list; this was later discarded in favour files are not rendered inaccessible due to a

of a mechanism for directly distinguishing lids server crash, and it improves the performance
as mount points. The support for this was of the system by reducing the load at each
never actually implemented at the server, and site.

instead the implementor of the workstation System performance is also improved
software decided to use a hack: a symbolic by the use of read-only volumes because no

link beginning with a special symbol and pro- call backs need to be maintained by the
tected in a way which Unix does not nor- server. Call back is the Vice2 mechanism for
mally support (there is no lchrnod in Unix!), maintaining consistency between fries cached
sigmities a mount point. The contents of the by the workstation and files in Vice: when-
link guve the name or number of the volume, ever a file is changed, the server notifies those

When the workstation software encounters a workstations which have both a copy of the
mount point, it substitutes the root lid of the file :md an active call back on the file. By
appropriate volume, detinition, the files within read-only volumes

There are presently two types of mount cannot change, so call backs are unnecessary
points, a readwrite mount point and a read- for these files.
only mount point. A rea&write mount point Read-only volumes have other advarl-

signifies that the original, read/write volume tages tor the administration of a large system.
corresponding to the specilied name is to be A released read-only volume provides a
mounted at that point. A read-only mount frozen image of a set of system files. This
point specifies that, if it exists, the latest guarantees to users that the environment will

read-only clone of the volume should be not be changing under them as they work,

mounted instead unless the volume containing which is particularly important in a setting



where most users are distanced from the system.
administration of the system. New releases
of standard system software can be planned: Backup

the various components can be installed in An automated backup/retrieval system
the appropriate read/write volumes and only for Vice2 has been running since the system
released when everything is apparently under was first deployed. This system is consider-
control. This is an important consideration ably simplified by the use of volumes: the

when you realize that thousands of users may unit of backup is a single volume dump or
be affected by the changes! It is, of course, incremental dump, which is stored as a single
possible to back out from a disasterous file on tape. The system does not understand
release by simply purging the most recent the format of these dumps, and simply
version of the offending volume. The works- delivers the entire volume back to a file server

ration software will recover from this situta- whenever a restore request has to be handled.
tion by retreating to the previous (now the Since we always have a spare file server on
"latest") read-only volume, hand, for emergencies, there is always disk

space available for these restore operations.
Volume Location Data Base The restored volume is usually restored as a

The volume location data base lists all new, read-only volume mounted in a different
of the volumes in the iile system. For con- place, and the user is free to peruse it at his
venience, all of the volumes are indexed both or her leisure, copying back whatever tiles are
by name and by number. "Fo support repli- needed.

cation, the list of sites for any given volume The dumps are made from the users'
is returned on a query, and to support read- backup volumes. These backup volumes are
only mount points, the latest read-only cloned nightly at roughly the same time, and
volume and/or backup volume to be cloned the dumps are taken sometime later. This
from the specitied read/write volume is "also results in predictable loggcal dump times.
returned. The backup volumes are also made available

This data base is updated relatively directly to the users: within each user's home
slowly, currently once every 1/2 hour. The directory is a mount point to his or her
update is managed by the ser_'er control backup volume, usually called OldFiles.
machine, which reaches out to each server to This is in effect a window on "yesterday's"
get its current volume list, combines the list tiles. Since the implementation of this
together into a random access file, and pro- feature, the number of restore requests pro-
pogates the result back to the servers. When cessed has dropped to virtually zero.
a volume is moved, the affected server tem-

porarily modifies the information provided by Future Work

the data base. As previously mentioned, the adminis-
trative operations available will be enhanced

Salvaging further as the system continues to grow. In
In order to support the volume struc- addition, we are planning to experiment with

ture described here, the standard file system the possibility of different volume types for
consistency checker, fsck, had to be moditied different applications. For example, with
slightly to ignore inodes "allocated by Vice continued growth of the system, bulletin
when considering the connectivity of the file boards tor the entire campus may not fit well
system. It is still used, however, to veri_" the into either the sin_e site read/write volume

low-level intem-ity of the file system, and the model or the multiple site read-only volume
integrity of any Unix directory structures model. A bboard volume could be replicated
which may coexist on any of the server disk but have less stringent consistency guarantees.

partitions. In addition, a voh_rne salvager was During the design stage of this project
written to verify and repair the w_lumes we spent a _eat deal of time wrestling with
resident on any disk partition. "l'his program the idea of implementing read/write replicated
is straightforward. It does rely, however, on volumes with full consistency guarantees.
the ability to stamp Unix inodes with enough This was eventually rejected as being too
parameters to describe their role in the fde



_

difficult and unnecessary for that stage of the
project. A research project is now being set
up within the Department of Computer Sci-
ence at CMU to investigate this possibility.

Conclusions

Volumes are a surprisin_y powerful
abstraction that have made the administration

of a very large distributed file system consid-
erably easier than it might otherwise have
been. They provide a basic partitioning of
the system for tile addressing which is
independent of the partitioning of the system
implied by the hardware configuration. In
response to changing conditions, volumes can
easily be relocated within the hardware

environment, in a totally transparent manner,
and without disrupting service to the clients
of the system. Volumes provide the basis for
quota enforcement and accounting, and pro-
vide a high de_ee of privacy for users by
allowing admimstrative operations to be per-
formed at the volume level, rather than at the
file level. Volumes provide the basis for
replication of frequently used files. An
automated backup system is considerably
simpliiied by the concept of a volume, and,
arguably the most popular feature of Vice2,

tile volume cloning mechanism is an inexpen-
sive way of "allowing users direct access to
their previous day's work.

References

[1] Morris, J.H., Satyanarayanan, M.,
Conner, M.H., Howard, J. t I.,
Rosenthal, D.S.II., Smith, F.D.
Andrew: A Distributed Personal Com-

puting Environment.
In Communications of the A (L_l, March,
1986.

[2] Satyanarayanan, M., t toward, J.t t.,
Nichols, D.A., Sidebotham, R.N.,
Spector, A.Z., West, M.J.
The ITC Distributed File System:
Principles and Design.
In Proc. lOth Symposium on Operating
Systems Principles, ACM, December,
1985.


