
CMU-ITC-86-051

The C-MU PC Server Project

December, 1986

Larry K. Raper

Information Technology Center

Carnegie-Mellon University
CHULKR at PGHVHI

Tie line 363-6775

Unclassified

Unclassified

ii The C-MU PC Server Project

Unclassifieo

ABSTRACT

The C-HU Andrew System is a well-known result of a joint study project sponsored

by IBM at Carnegie-Mellon University. This paper discusses a related project

referred to as the "PC Server". The PC Server permits access to the Andrew net-

work, and a subset of its services, from the entire family of IBM personal com-
puters.

The PC Server provides a mapping of the PC-DOS file system onto the Andrew net-

work's VICE file system, such that existing PC software can transparently access

files using the campus network. This extends to PC users the advantages of a

large, centrally managed, shared file system that is functionally

indistinguishable from an ordinary local disk drive. The PC Server also pro-

vides peripheral capabilities for synchronizing the time in the local machine

with the campus network, changing account passwords, and accessing the Andrew

printing, mail, and bulletin board subsystems.

This paper discusses the rationale behind the PC Server and describes the organ-

ization and structure of its major components, as well as the interfaces and

protocols used among them.

ACKNOWLEDGEMENTS

The project described in this paper is the work of the author, with invaluable

assistance from the following people.

Nathaniel Borenstein for CUI, HS, and many suggestions for SNAP.

Hark Chance for enhancing CUI and porting it to the IBM PC environment.

John Leong for providing user documentation, expert guidance, and unfailing
enthusiasm.

Mark Lorence for device drivers for the IBM token ring.

Drew Perkins for the Microsoft C implementation of HIT's PC/IP.

Jon Rosenberg for the GUARDIAN, and help with the design of SNAP.

Bob Sidebotham for his early help with a prototype server.

F. Don Smith for advice and help with IB>| token ring problems.

Special thanks go to Paul Crumley, John Howard, Bob Kubiak, Jonathan _liller,

Barry Silverman, and Bryan Striemer for daring to be early users of the PC Serv-

er software and supplying valuable feedback. Thanks also to Mike West and

Mahadev Satyanarayanan for their support and advocacy of the intermediate server

approach for access to the VICE file servers.

Abstract iii

Unclassifiea

iv The C-MU PC Server Project

Unclassified

CONTENTS

Introduction 1

Overview 3
File System Services 3

Translated versus Imbedded Tile Systems 5
Differences between PC-DOS and VICE 6

Utility functions 9

Printing Services 9
Mail and Bulletin Board Services 9

PC Server Organization and Structure]]
SNAP 11

SNAP Client Services 13
SNAP Server Services 15

SNAP Data Exchange Services 17
Portability Considerations 18

GUARDIAN 19
VENUS 19
PCSERVER 20

PCVENUS 21

LOGIN _ 22
CUI 23

Current Status and Summary 25

Bibliography 27

Glossary 29

Contents v

Unclassified

_'i The C-NU PC Server Project

Unclassified

INTRODUCTION

In 1982 IBM and Carnegie-Mellon University began a large scale joint study

project to explore the design and implementation of a campus-wide network of

computer workstations. The goal of the campus network was to permit university

students, faculty, and staff to function as an extended community, having many

of the common bonds of a traditional time-sharing system, but without the accom-

panying limitations on system capacity and user community size.

To address the problems inherent in the project and oversee the orderly develop-

ment of solutions, IBM and C-MU established the Information Technology Center

(ITC). The ITC is housed in the University Computing Center and staffed with

full-time IBM and C-MU employees working together. An IBM site manager oversees

the local IBM personnel and reports directly to IBH's Academic Information Sys-

tems (ACIS) development organization in Milford, Connecticut, while also

reporting to the C-HU appointed ITC Director. The ITC's mission was to design
the network, oversee its implementation, and provide whatever software would be
needed.

The C-MU Andrew System is the principal result of this effort. Andrew consists

of a graphically oriented UNIX-based I environment (called VIRTUE) built on a

high performance LAN-based distributed file system (called VICE). The VIRTUE

software runs on a variety of engineering/scientific workstations that feature a

mouse and a large APA display, including the IBM RT. The VICE software is dis-

tributed among VIRTUE workstations and special file server machines that support

the attachment of large amounts of DASD. Interconnecting the many physical ele-

ments of the Andrew system is a series of local area networks (principally using

IBM token ring or Xerox Ethernet technology) that are joined by routers to a

backbone network. The packet format supported by the routers is the Department

of Defense standard Internet Protocol (IP); the same protocol used on the
ARPANET and by many research universities.

Work on the various components of the Andrew network has taken the ITC well over

three years. Andrew is currently in widespread use throughout C-MU, and all

incoming freshmen receive Andrew accounts. The network was officially dedicated

in November, 1986, and IBM (ACIS) has declared its intention to provide a prod-
uct based on Andrew for the general university market. The ITC continues to be

involved with refinements to the Andrew software and the expanding use of the
network within the university.

Andrew, however, presents only a partial solution to the original goals of the

joint study. Providing a network of computer workstations that spans an entire

university campus and serves users of many disciplines and skill levels requires

an acknowledgement that diverse machines and applications already exist there.

: UNIX is a trademark of AT&T Bell Laboratories. There are numerous versions.

In this paper UNIX always refers to Berkeley UNIX version 4.2. On the IBM RT

this corresponds to IBM's ACIS 4.2 operating system, and should not not be

confused with IBM's AIX, a derivative of UNIX System V.

Introduction I

Unclassified

It is seldom the case that users will simply abandon their existing computer

facilities to take on expensive, new, untried, systems - no matter how appealing
the new capabilities may seem. Consequently, now and for the foreseeable

future, the campus network needs to accommodate the attachment of many different
machines and network media.

The PC Server software described in this paper addresses the general problem of

how to attach non-Andrew workstations to the campus network for a specific set

of machines, namely, the IBM PC family. The IBM PC was selected as a particular-
ly important attachment case, due to its already pervasive presence on campus

and the enormous body of existing IBM PC application software.

2 The C-MU PC Server Project

_Jnclassifiea

OVERVIEW

The C-MU PC Server provides users of IBM PCs with access to three distinct types

of services that are normally available to direct users of the Andrew system.
These are:

i. File system services.

2. Printing services.

3. Mail and bulletin board services.

These services were chosen for initial implementation on the IBM PC machine fam-

ily because they address expressed needs of current users of these systems and

do not necessarily presume the availability of specialized graphics input or

output devices (such as the mouse and APA display found on all of the "advanced

function" workstations supported by Andrew). This second reason is of some

importance when one considers the variability of IBM PC configurations, the

widespread use of text-only displays, and the need to allow users with existing

systems to connect to the campus network with only a minimal cost outlay for
additional hardware. 2

For any service provided over the network for an IBM PC, there is at least one
Andrew advanced function workstation involved in the role of a server or host

machine. The PC and its server machine maintain one or more sessions for the

duration of time that service is to De provided. Sessions are established by a

special PC program called LOGIN and last until a long period of inactivity

causes the server to terminate automatically, or the PC user issues an explicit

LOGOUT. The LOGIN/LOGOUT process permits users to identify themselves and

allows the Andrew network to validate their right to access resources.

Although any Andrew workstation can potentially be used as a PC Server host, the

university has chosen to provide dedicated machines for use as public PC

Servers. Each PC Server machine can support between 15 and 20 PC users

simultaneously.

FILE SYSTEM SERVICES

Think of tile Andrew VICE file system as an enormous, global, UNIX file system,

accessible to all users an_'here on the network. With the PC Server software

installed, a PC DOS user is able to manipulate the VICE file system, as though it

consisted of additional instances of the local PC DOS file system. Each such

2 The PC Server software requires only the addition of a network adapter and

]00K to 140K of dedicated PC memory, depending on the type of adapter. All

versions of PC-DOS from 2.0 through 3.2 are supported.

Overview 3

Unclassified

network instance of the PC-DOS file system is assigned a unique drive

designator, with the root directory of that drive corresponding to a

user-selected VICE directory. That is, to a PC user, discrete portions (sub-

trees) of the VICE file system appear to be "network drives" where PC DOS files
and subdirectories of files are stored.

In general, all PC-DOS file system operations are translated to corresponding

actions in the VICE file system, so that from a PC the full functionality of

PC-DOS can be applied directly to VICE. This type of relationship is sometimes

described as an injective maDping, where all PC-DOS operations have a counter-

part in the host file system, but the inverse is not true. Some VICE operations

have no equivalent PC-DOS actions.

Unlike "store and forward" or file transfer systems (such as IBM's VNET and

SNADS, or the DARPA FTP utility), network drives permit a type of "hands on"

access that occurs in real time and allows the end user to manipulate the actual

host system. When a PC-DOS user (operating on a network drive) makes a new

directory, erases or renames a file, or simply updates a file with new data, the

VICE file system itself is changed, and direct users of the UNIX-based Andrew

system would see the same effect. Except for the use of additional drive desig-

nators, network drives are functionally indistinguishable from local disk

drives, differing primarily in speed and capacity.

Since the PC Server presents the illusion of VICE as a transparent extension of

PC-DOS, arbitrary subtrees in VICE may be designated as network drives and ordi-

nary commercial PC Software packages can be used directly to store, update, and

retrieve files kept in VICE. But despite the fact that the VICE file system is

ostensibly similar to a normal PC-DOS file system, it offers some important

advantages for PC-DOS users.

• Because the VICE file system is centrally managed by a professional computer

staff, PC files that are kept in VICE are automatically backed up by regular

VICE backup and archiving mechanisms.

• Files kept in VICE are accessible from other workstations (or other PCs)

attached to VICE anywhere on the network.

• Files may be kept in private or shared directories.

• The amount of space available for the storage of files is restricted only by

the quota limitations associated with the user's Andrew account.

• With some restrictions, text files may be used from both PC-DOS and Andrew

(i.e, UNIX) workstations.

These advantages are offset somewhat by the fact that the time to read a file

kept on a network drive is roughly comparable to the time it would take to read

the same file from a diskette. But for users willing to trade fixed disk per-

formance for diskette-like performance, or for users without a fixed disk, a

network drive can make an attractive repository for PC files.

4 The C-MU PC Server Project

Unclassified

PC-DOS users tend to find the concept of a network drive a relatively natural

extension of their environment. Each reference to a PC-DOS file already

includes either an explicit or implicit drive identifier. 3 PC-DOS also comes

with a device driver that permits a user to dedicate an area of memory to be used

as a high speed "virtual disk." The "virtual disk" is similarly distinguished

from an actual disk by the assignment of a unique drive designator. Thus the use

of new drive designators to specify independent instances of PC-DOS file systems

is a standard mechanism, and an obvious basis on which to redirect file system
references.

TRANSLATED VERSUS IMBEDDED FILE SYSTEMS

A PC Server network drive differs significantly from a virtual disk. Besides

being noticeably slower, it does not contain a PC-DOS partition record, BIOS

Parameter Block (BPB), or File Allocation Table (FAT). The reason is that

PC-DOS is not managing the implementation of network drives and internal DOS

constructs are not appropriate. The underlying functions of space management

and device management are actually performed by the host file system (VICE), and

are completely transparent to PC-DOS.

The PC Server software monitors all requests for PC-DOS services and diverts

those that are intended for network drives. This interception occurs at the

file system interface rather than the device driver _ level. With the exception

of PC-DOS utility functions than are actually implemented as application pro-

grams (themselves users of the file system interface), all PC-DOS components are

sheltered from any knowledge of the existence of network drives.

This is an important point because the PC Server software is able to maintain

the meaning of a file system operation by translating the high level

abstractions of the PC-DOS file system (drives, directories, and files) directly

into corresponding notions in the VICE file system. It is this forced corre-

spondence between the two systems that makes the actions of PC programs on what

are presumably PC-DOS files visible as equivalent operations on the same files

to normal VICE users, and vice versa.

At the file system interface, all the application-level semantics of a given

operation are well-defined and fully known. By the time PC-DOS passes the

request to a device driver its meaning has been reduced to underlying physical

operations of the form "read or write x blocks of data starting at block number

3 One drive is always designated as "current" and file names that do not

explicitly identify a drive are, by default, associated with the current
drive.

" A device driver is an architeeted means of adding device support to PC-DOS.

There are two types of device drivers, "block" and "character." A block

device driver supports a device that is capable of housing a PC-DOS file

system. Character device drivers support all other types of devices.

Overview 5

Unclassified

y" and the higher level request that was originally expressed in terms of files

or directories is no longer discernible. The difference in these interfaces is

illustrated in Figure i on page 7.

It would have been a considerably easier task to implement a PC Server con-

nection at the device driver level, since there are fewer, and more primitive,

services provided through this interface. The resulting system, however, would

be significantly different. The blocks or space of the host file system could

be used to hold the PC user's data, but these would have no meaningful relation-

ship to user-level objects in the host system (like files and directories).

Although imbedded within the host system, all of the data and its interrelation-

ships would be privately managed by means of remote PC-DOS operations, s

With this approach, the host system (VICE) would view the entire PC-DOS file

system as a single file of unknown internal structure. PC-DOS files and direc-

tories would not be accessible to normal VICE users except through the use of

specially constructed utility programs that understood the internal organiza-

tion of a PC-DOS file system and applied that interpretation to the data in the

VICE file. Similarly, PC-DOS users would not have direct access to normal VICE

files, but would require new and overt import/export mechanisms.

Since the PC Server software support applies to the file system interface, a

small number of special purpose DOS commands will not operate on network drives.

Among these are CHKDSK, DISKCOHP, DISKCOPY, FDISK, FORHAT, RECOVER, and SYS.

Typically these programs perform device-specific functions that require them to

access drives using lower level system interfaces. If applied by accident to a

network drive, they produce harmless error messages and terminate.

DIFFERENCES BETWEEN PC-DOS AND VICE

Because the original design of the PC-DOS file system was influenced by the pri-

or existence and widespread use of UNIX, and because the VICE file system pre-

serves most of the semantics of a true UNIX file system, there are many

similarities to begin with.

• Both systems have a hierarchical directory structure.

s Two examples of a PC-DOS file system imbedded within a different host file

system are IBH's PCVHBOND product (PC Bond - P/N 5664-298, VH Bond - P/N

6476128) and the RVDs (remote virtual disks) of HIT's Project Athena.

The IBH PC Local Area Network Program (P/N 6280083), on the other hand, pro-

vides another example of a network drive implemented at the file system

interface. An extension of PC-DOS called "the Redirector" traps file system

calls and transfers them to a host program called "the Receiver". In this

case, the host file system is a standard PC-DOS file system maintained on a

remote machine, and the translation between client and host file systems is

straightforward.

6 The C-._IUPC Server Project

Unclassified

Programming Operations Abstractions

Application Program

Open/Close Drives

Read/Write Files

Rename/Erase Directories

Mkdir/Rmdir Offset addressing
Directory lookup

V Intercept here
File System Interface (IN_ 21h) --> to translate to

a foreign file

PC-DOS Devices system.

Read/Write Clusters (FAT)

x blocks at y Logical block addressing

i
V Intercept here

Request Header Interface to imbed within

a foreign system.

Block Device Driver I/O Adapters
BIOS functions Sectors

Geometric addressing

Figure I. PC-DOS Interface Levels and Available Abstractions.

• Both systems allow arbitrary nesting of directories, and construct path

names for files as a succession of nested directory names separated by a
single character.

• Both systems use . and .. to refer to tile current directory and the parent
directory, respectively.

• Both systems provide only a basic "byte offset" access method. Higher level

access methods must be implemented as application subroutine libraries,
with operations ultimately expressed in terms of the basic functions. This

keeps the number of formal file system operations small and manageable.

More interesting, perhaps, are the ways that the two file systems differ.

• VICE file names, like UNIX, are case-sensitive; PC-DOS file names are not.

That is, File-X and file-× refer to two different VICE files, but would be
considered the name of the same file by PC-DOS.

• PC-DOS directory and file names are limited to be at most 8 characters in

length with an optional 3 character suffix, separated by the first portion

of the name with a period (.). VICE file names are a11owed to be much

longer, with imbedded periods having no particular significance.

• UNIX files have an "owner" based on the userid of the file's creator. The

owner of the file is a11owed to specify whether other users can access the

Overview 7

Unclassified

file, and the types of access that will be permitted. The VICE file system

differs slightly from standard UNIX in this respect. In VICE, access infor-
mation is maintained for directories rather than individual files.

Both VICE and UNIX support a richer set of access rights than PC-DOS, which

also lacks the concept of a file owner.

• PC-DOS and VICE have slightly different conventions about line delimiters in

text files (PC-DOS uses ASCII 13,10 - carriage return, line feed as a line

delimiter, while VICE/UNIX uses a single line feed).

• PC-DOS files may be marked as hidden, so that they will not appear in direc-

tory listings. In VICE and UNIX a similar effect is provided for files

whose names begin with a period (.).

• VICE and UNIX use a forward slash (/) as a separator for path name elements,

while PC-DOS uses a backward slash (\).6

• VICE and UNIX both support certain operations that have no corresponding

features in the PC-DOS file system, such as physical or logical links, and a

permission flag for "execute" access.

Some of these differences can be compensated for in obvious ways (or at least

ways that are transparent to a user), but others cannot. Those features of VICE

not present in PC-DOS are unsupported for network drives. Access to files or

directories in VICE that are restricted based on userid, is governed by the

information supplied by the PC user during the login process.

The two aspects of VICE that are most difficult to conceal are long file names
and the difference in text file formats. Neither of these differences are like-

ly to be noticed by PC users that use the PC Server software primarily as a means

of keeping their PC-DOS files in the VICE file system. But another class of
users, those who need to access VICE files from both PCs and VIRTUE workstations

will be aware of the differences.

For this second class of users the PC Server package includes the LS and CP com-

mands. These commands are PC programs that are modeled after UNIX commands with

the same names. They have the same syntax as their UNIX counterparts, perform

the same functions, and produce approximately the same output.

LS is the UNIX analog to the PC-DOS DIR command, but has many more outputoptions

and formats. When applied to a network drive from an IBM PC, LS will display the

same results that a VIRTUE user would see on a UNIX workstation, including the

real VICE file names, regardless of their length or case.

CP is the UNIX equivalent of the PC-DOS COPY command, but will accept target or

source file names (for files on network drives) without the name restrictions

6 Although PC-DOS uses the backward slash as a separator for external inter-

actions with users, all of the internal programming interfaces accept for-

ward or backward slashes interchangeably.

8 The C-MU PC Server Project

Unclassified

imposed by PC-DOS. In addition, if CP determines that you have requested it to

copy a text file from a PC-DOS drive to a network drive (or the other way

around): it will convert the text formats automatically. By using LS in con-

junction with CP, a PC user can determine the true name of a VICE file and create

a copy with a legal, and meaningfully chosen, PC-DOS file name.

UTILITY FUNCTIONS

For convenience, several utility functions are included in the PC Server

package. A SER_rlME command synchronizes the date and time information in the PC

with that maintained by the Andrew network. An ST (status) command reports the

version numbers of the installed PC Server software components and presents sum-

mary information abou_ network drives. A UNIX-style PASSWD program permits the

PC user to change the password associated with his Andrew account periodically.

Another utility program is currently under development that will a11ow PC users

to inspect and modify the default access control information associated with

their VICE directories (all Andrew accounts are automatically provided with both

public and private VICE directories). And the list of utility programs is like-

ly to grow further in the future.

PRINTING SERVICES

A wide variety of quality printers are available to users of the Andrew network,

including IBH 3820, IBM 3812, and IBM 6670 printers. Some printers serve par-

ticular campus organizations, while others are available for general use.

In the PC Server environment, a special application program (PR) provides PC

users with the means to ship a file to any of tile network printers. The PR com-

mand presents panels that permit the specification of file name, printer, deliv-

ery information, fonts, print styles, paper orientation (portrait or

landscape), duplex or simplex pagination, and detailed page layout information.

A batch mode of operation permits the PR command to be used in PC-DOS BAT files,

bypassing the interactive panel mode.

The PR command is simply a remote interface to the Andrew printing subsystem,

which queues the file for eventual output on the appropriate printer.

MAIL AND BULLETIN BOARD SERVICES

One of the most successful ways of building a sense of community among a large

scattered group of computer users is to provide an effective, reliable, and

Overview 9

Unclassifiea ,.

eas}_to-use mail and bulletin board system. Next to the VICE file system, the

Andrew mail and bulletin board programs are among the most heavily used, and
generally the first to be mastered by novice users.

Both private mail libraries and public or private bulletin boards have a common

underlying structure that is understood and maintained by a special Andrew sys-

tem component referred to as tlle "message server:' Users may interact with the

message server using either of two interface facilities. One has a graphic ori-

entation and relies heavily on pointing operations performed with a mouse; this
interface is for direct users of VIRTUE workstations. The other is called CUI

(for Common User Interface) and is a command-oriented interface that was specif-

ically designed so that it could be used from UNIX shell scripts, dial-up ASCII

terminals, VIRTUE workstations, and be easily ported to other computer systems.

The PC implementation of the CUI provides PC users with all of the same func-

tions available on a VIRTUE workstation, including the ability to compose, send,

and receive mail, review pending or old mail, and read, create, subscribe, or
contribute to any of the Andrew bulletin boards.

i0 The C-MU PC Server Project

Unclassihed

PC SERVER ORGANIZATION AND STRUCTURE

The PC Server consists of a suite of related programs, some of which run on IBM

PCs, X_s, or ATs, and others that reside and execute within the Andrew environ-
ment.

In general, the division of function between the PC portion and the Andrew por-

tion exhibits the same characteristics commonly seen in an application program

and a subroutine library. The purpose of the subroutine library is to provide a

convenient set of related services for many potential application programs,

while hiding the underlying complexities of their implementation. In a distrib-

uted system such as this, tile dividing line between application and subroutine

involves the insertion of a synchronizing communications protocol. The services

(subroutines) reside at a remote site, appropriate for access to the resources

they manipulate. The application deals directly with the end-user, accepting

input and producing the expected outputs, while invoking the services it needs

in the form of remote procedure calls.

The major components of the PC Server system are depicted in Figure 2 on page

12. The large box at the top of the figure illustrates the functional divisions

found within an IBH PC. The three smaller boxes shown beneath it, indicate the

related service components that execute in a UNIX workstation somewhere in the

Andrew network. These depict instances of three different processes, all of

which could normally operate within a single machine.

The _IS (Hessage Server) process is the standard Andrew component for storing and

retrieving the message entries that comprise the mail libraries and bulletin

board system. The elongated box labelled VICE represents the many service

machines that support the distributed VICE file system. A brief summary of the

other components is given in this section. Those that are unique to the PC Serv-

er environment itself and play no other role in the Andrew system are discussed

in greater detail. To begin with, _¢e turn our attention to the thread that binds

the pieces together.

SNAP

SNAP (for Simple Network Access Protocol) is the name of the private communi-

cations protocol used by the major components of the PC Server software. It is

an IP-based protocol that was specifically designed to provide the minimum set

of capabilities needed to implement a robust remote procedure call facility. It

provides a secure, reliable, sequenced, half duplex, low overhead connection

(referred to as a conversation) between a client and a server process.

SNAP is an asymmetric protocol, just as the procedure call relationship between

program and subroutine is asymmetric. The server process (subroutine) is pre-

sumed to be completely passive, responding only when invoked by a client (pro-

gram). }lessages of arbitrary (but predeclared maximum) length may be sent from

PC Server Organization and Structure ii

Unclassified

IBM PC / k_r / AT

Native I z CUI

PC LOGIN Mail &

Apps : BB App

PCVENUS : #
-#-- :--J #
: SNAP
-# -#-

PC-DOS # Socket Emulation

,r #--

: PC/IP
, #--: #

: _

:

UNIX Datagram
_ Socke_ [IP] _lh

#
,- SNAP _

UNIX Danagram UNIX Datagram

Socket [IP] Socket lIP]
Guardian

SNAP SNAP

/ : : MS

PCSERVER : : (Message

i [Server)
I l

VENUS i VENUS

VICE 1

!User Files I
] Msg Data Base

L ' ,' 4 JLJ
#####,r# SNAP Conversations SNAP BeginConv Flow

Figure 2. PC Server Block Diagram

12 The C-MU PC Server Project

Unclassified

tile client to the server, and received as a reply. Multiple conversations may

exist between one client and one server, one client and many servers, or one

server and many clients. A process may be both a SNAP client and a SNAP server,

but cannot be in conversation with itself.

SNAP services fall into three distinct categories: client, server, and data

exchange services. All SNAP services are synchronous; the invoking program

relinquishes control until they complete or time out.

SNAP CLIENT SERVICES

SNAP client services are employed at the user (i.e, main program) end of a dis-

tributed application.

SNAP Clientlnit must be requested once by each program prior to any other use of

a SNAP client service. This permits the SNAP protocol to perform any

global client initialization procedures. The external effects of

this operation are unspecified.

SNAP_BeginConv results in tile construction of a conversation between the cli-

ent and server processes, and may be performed multiple times. A cli-

ent may have several conversations simultaneously, all with the same
server or different servers.

In order to establish a conversation SNAP consults with a special

authentication component on the server machine referred to as the

GUARDIAN. The GUARDIAN, although not part of the SNAP protocol per

se, is involved in a three--w'ay exchange of information with the client

and server processes. This interaction is illustrated in Figure 3 on

page 14.

If the GUARDIAN can successfully authenticate the client process, it

locates or creates an appropriate instance of the server on the cli-
ent's behalf and returns the server's network address. The GUARDIAN

also supplies both the client and server processes with a 48-byte key,

that can be used (at the client's option) to encrypt all subsequent
conversation traffic.

To verify that the server process is ready to enter into a conversa-

tion an initial negotiation occurs between the client and server

regarding packet sizes, acknowledgement windows, and other internal

session parameters. Upon the successful completion of these

exchanges, a conversation exists between the client and server proc-
esses.

SNAP_SendWithRepl¥ provides the basic mechanism for a remote procedure call.

A message of arbitrary length containing an uninterpreted stream of

PC Server Organization and Structure 13

Unclassified

-- Client] Guardian

ISNAP_BeginConv

Authenticate >

Authenticate

user, fork
server if

necessary V

Server

< Reply SNAP ServerInit
[

Suggested session parameters >

t I
< Finalized session parameters

I L

Figure 3. Three-way Exchange during SNAP Begin Conversation

bytes is sent over a specified conversation and an answering message

(or reply) is returned. The reply is also an implicit acknowledgment

that the server program has received and processed the message.

SNAP_SendNoReply performs an unacknowledged transfer of a message over a

specified conversation. A series of one-way messages sent in this

fashion can be acknowledged by an application-level convention that

the last one would be sent using SNAP_SendWithReply and include summa-

ry information for the detection of missing messages. The subsequent

reply would acknowledge all messages up to that point or indicate
those that were not received.

SNAP_SetConvParms allows a client program to alter the encryption option or

time-out parameters associated with a specified conversation.

$NAP_EndConv terminates the specified conversation.

SNAP_ClientTerm must be used once prior to program termination. It automat-

ically performs SNAP EndConv processing for any conversations still

in progress and undoes the effects of SNAP ClientInit.

The general format of a client program is illustrated by the following piece of

C pseudo-code (arguments to SNAP functions are omitted for the sake of simplici-

ty). In this example, the mainline program uses the services of the subroutine

library as though they were available locally. In actuality only small stubs,

containing SNAP_SendWithReply calls are linked with the program.

14 The C-MU PC Server Project

Unclassified

main() {

SNAP Clientlnit(); /* Initialize SNAP support */

/* Interact with user to obtain required inputs. */

/* Perform the mainline application logic. */

/* Where needed manipulate remote resources using */

/* appropriate service routines. */

SNAP_BeginConv (); /* Establish a conversation */

resultl = service 1 (arguments);

result2 = service 2 (arguments);

result3 = service 3 (arguments);

SNAP EndConv (); /* Terminate the conversation */

/* Produce output for end user */

SNAP ClientTerm(); /* Terminate SNAP support */

}

service_l (arguments) (/* Stub for service_l subroutine. */

op code = I; /* construct message with op_code */

make message (op_code, arguments); /* and arguments */

SNAP SendWithReply (message, reply);

return (reply);

}

service 2 (arguments) { /* Stub for service 2 subroutine. */

op code = o. /* construct message with op code */

make_message (op_code, arguments); /* and arguments */

SNAP_SendWithReply (message, reply);

return (reply);

}

Etc.

SNAP SERVER SERVICES

These services are provided for use by server programs. They support the seman-

tics of message handling at the subroutine end of a remote procedure call.

SNAP Serverlnit initializes SNAP for server related processing and is required

prior to the use of other SNAP server functions.

SNAP_Accept waits until the next message has been received from any conversa-

tion. An optional time-out parameter may be specified to avoid an

indefinite wait. SNAP either returns with the message, an indication

of whether a reply is needed, and a token that identifies the associ-

ated conversation, or indicates that the optional time-out interval

has expired.

PC Server Organization and Structure 15

Unclasszfied

SNAP_Reply sends an answering message back over the specified conversation.

Unsolicited replies are not permitted•

SNAP_MsgPending can be used to determine whether the next SNAP_Accept call

will wait Or return immediately with a message.

SNAP ConvCount indicates the number of conversations in progress with all
clients.

SNAP ServerTerm forcibly shuts down all current conversations and undoes the
effects of SNAP Serverlnit.

The following piece of C pseudo-code illustrates the typical structure of a SNAP

server program (again, most arguments are omitted for simplicity). At this end

of a conversation the actual subroutines that perform the indicated services

would be linked into the server program.

main() {

SNAP Serverlnit(]; /* Initialize SNAP support. */

do { /* Process each message by */

SNAP Accept(); /* performing the requested */

Extract op_code from message; /* service. */

switch (op_code) {

case I: result = service_l(arguments_from message);
break;

case 2: result = service_2(arguments from message);

break;

case 3: result = service_3(arguments_from message);

break;

default: result = no such service;

}
If (reply needed) /* Send the results back to */

SNAP Reply (result); /* the client. */

} while (SNAP_ConvCount() != 0)

/* Terminate when all */

SNAP ServerTerm(); /* conversations have ended */

}

service l(arguments)

{ /* Actual subroutine code for service 1 goes here */ }

service 2(arguments)

{ /* Actual subroutine code for service 2 goes here */ }

service 3(arguments)

{ /* Actual subroutine code for service 3 goes here */ }

Etc.

16 The C-MU PC Server Project

Unclassified

It should be clear from these (admittedly sketchy) examples that an integrated
application can be produced from a distributed application by removing all the

SNAP calls, discarding all of the mainline code from the server and the stubs

supplied with the client, and linking the remaining portions into a single pro-

gram. The inverse is also true. With some care, a distributed application

(that can be invoked from machines removed from the program's actual resources)

can be created from a conventional application, by segregating all subroutines

that manipulate local resources, supplying stubs at the client end, adding the

main superstructure shown above for the server and some additional SNAP calls at

each end. The CUI and MS (Message Server) components were developed in this

fashion from a single, integral program.

SNAP DATA EXCHANGE SERVICES

None of the SNAP client or server operations are sensitive to the content of the

data they transmit over the network. To accommodate the fact that the network

is comprised of different kinds of computers, which may (and do) use differing

data representations, the SNAP protocol provides two policies for the exchange
of data.

I. All character data will be transmitted using 8-bit ASCII code and all binary

data as 32 bit integers with the bits arranged in a well-defined ordering

referred to as "network byte order".

2. All other types of data must either be coerced to one of the above types or

encapsulated as a sequence of uninterpreted 8-bit bytes with end-to-end

understanding of their representation.

These policies are expected to be observed voluntarily and are not enforced in

any way by SNAP. SNAP does, however, offer the following services (for both

client and server programs) that are designed to facilitate the data exchange

policies. All of the PC Server components use these services when packing

remote procedure call arguments into a message and unpacking the values returned

in the replying message.

SNAP_AppendlntToMsg places a 32 bit integer into a message buffer in network

byte order. Binary values of other lengths must first be coerced to
32-bit format.

SNAP_AppendStringToMsg transforms a zero-terminated character string to

8-bit ASCII _ and places it into a message buffer in an encapsulated
form.

SNAP_AppendBytesToMsg places a specified number of uninterpreted 8-bit

bytes into a message buffer in an encapsulated form.

At the present time this is a null transformation for all machines on the
Andrew network.

PC Server Organization and Structure 17

Unclassified

SNAP_ExtractlntFromMsg converts a 32-bit network byte order binary value from

a message buffer to a 32-bit integer with bit ordering appropriate to
the current machine.

SNAP_ExtractStringFromMsg returns a zero terminated character string from a
message buffer, transformed 7 to the native character code of the cur-
renn machine.

SNAP_E×t_actBytesFromMsg returns an uninterpreted sequence of 8-bit bytes

and their length from a message buffer.

The subroutine stubs shown previously with the client pseudo-code would use

these functions to marshal actual arguments into a message and extract the
results from the reply.

PORTABILITY CONSIDERATIONS

A communications protocol needs an implementation on every type of machine that

is to use it, consequently portability was an important consideration in the
design of SNAP.

SNAP is written entirely in C, a language for which complete implementations

exist for most computer systems. C is also known as a lo_level language whose

operations correspond well with the hardware capabilities of a broad class of

machines, and one that requires only the most primitive of run-time

environments. This makes it an ideal implementation language for many system
functions.

SNAP also makes only minimal assumptions about the capabilities of the operating

system beneath it. All of its actions are ultimately expressed in terms of the

following system functions (which are native to Berkeley UNIX, but easily emu-
lated on an IBM PC and other systems):

socket Creates a port for the sending and receiving of datagram packets.

select Waits for the arrival of a datagram packet subject to a time-out.

sendto Sends a datagram packet.

recvfrom Reads a datagram packet from a socket.

time Returns the elapsed time in seconds since a fixed reference point.

9ethostname

Returns the symbolic name of the current machine.

gethostbyname

Translates a symbolic machifie name to an IP station address.

18 The C-MU PC Server Project

Unclassified

getservbyname

Translates the name of a service to an IP port number.

These system functions define a specific interface to an implied, underlying IP

packet delivery mechanism.

For the IBM PC environment the MIT PC/IP package, also written in C, was used as

the basis for this capability. A small layer of code shown in the PC Server

Block Diagram as "Socket Emulation" provides the specific interfaces needed for

tile above services. These pieces are combined with the SNAP protocol layer to

form a single PC-DOS "terminate and stay resident" program. Once executed it

becomes an extension of the user's operating environment. The SNAP services are

exposed for general use as software interrupt functions, with language bindings

currently implemented for both C and Assembler programs.

GUARDIAN

The GUARDIAN is a daemon process that is started on all VIRTUE workstations dur-

ing their boot sequence, and a standard component of the Andrew system. It per-

forms authentication functions on behalf of programs that need to establish

communication sessions with server processes. In addition, it oversees the

operation of server processes, creating them as needed, and notifying clients

when they terminate. It is the GUARDIAN that determines whether or not a par-

ticular workstation may be used as a host machine for remote SNAP conversations,

and grants or denies access accordingly.

All PC Server users are required to have an Andrew account. When the GUARDIAN

creates an instance of the PCSERVER or MS (Message Server) programs in response

to a PC user's login request, these processes have the same capability to access

system resources as the user would have when logged into an Andrew workstation

directly. They become, in effect, agents than act as surrogate users on behalf

of particular PC clients.

VENUS

VENUS is the Andrew component in every VIRTUE workstation that understands the

VICE file system. It makes the interactions with VICE transparent to the other

Andrew system components, and gives the impression that each workstation has

access to a large shared UNIX file system. Special hooks in the UNIX kernel

allow VENUS to trap and inspect all file system calls. For efficient operation

VENUS manages a sizeable local file cache, so that commonly used files need not

be transmitted to or from the remote VICE file servers unless they have been
modified.

PC Server Organization and Structure 19

Unclassified

PCSERVER

PCSERVER offers a collection of generic file system services ana three special

operations that may be accessed as remote procedure calls using the SNAP proto-

col. When executed, these services operate on the UNIX file system of whatever

machine is hosting the PCSERVER process. In the Andrew environment, the VENUS

component of the local machine causes the operations to be applied to the VICE

file system. Access to VICE from an IBN PC is thus an indirect process, always
going first through the PCSERVER, rather than dealing directly with VICE file
servers.

This approach was chosen for several reasons.

i. Initially, it allowed the development of the PC Server software no be decou-

pled from concurrent VICE development work.

2. It allowed the specification of interfaces that were more appropriate for

PC-DOS use and cognizant of the limitations of the IBM PC family. As an

example, VICE supports only whole file transfers, whereas PCSERVER performs
partial file transfers.

3. It avoided the need for full duplication of function between VENUS and

PCVENUS (with the current design all _ile caching is performed only by
VENUS).

4. It permits the PC Server software to be hosted by a standard UNIX system,
without requiring the use of the VICE file system at all.

Of course, for PC users, this type of configuration lacks many of the advan-

tages that come from the use of VICE (such as global access to the same file

from any workstation in the network without regard to any particular server

machine). Still, it can offer access to larger DASD devices than can be

attached to IBM PCs, and also provide effective sharing mechanisms among
users of the same host file system.

The PCSERVER program provides the following file system services for use as

remote procedure calls. All date or time information is provided or returned in
standard PC-DOS formats.

PCS_Open opens a file for input, output, or unspecified access, given a fully

qualified filename, and returns a handle for subsequent access, along

with file mode, date, time, and size information. Special heuristics

are applied to the filename to compensate for the lack of
case-sensitivity by PC-DOS.

PCS Close closes the file associated with a given handle.

PC$_Read obtains data from an open file, given a handle, starting offset, and

length. A return length value indicates the number of bytes actually
read.

20 The C-MU PC Server Project

Unclassified

PCS_Write places data into an open file, given a handle, and starting offset.

If the length of the data supplied is zero, the file is truncated or

eytended to the size indicated by the starting offset value.

PCS_DirSearch obtains information about a file, given a fully qualified

pathname, a generic filename with optional pattern matching charac-

ters, and a starting filename (for iterative invocations). It returns

the name of the first matching file, along with mode, date, time, and
size information.

PCS RemoveFiles erases one or more files, given a fully qualified pathname, andM

a generic filename with optional pattern matching characters.

PCS RenameFiles changes the name of one or more files, given a fully qualified

old pathname, an old generic filename with optional pattern matching

characters, a fully qualified new pathname, and a new generic filename

with optional pattern.

PCS MkDir Creates anew directory given a fully qualified pathname.

PCS RmDir Removes an empty directory given a fully qualified pathname.

PCS ChMod Changes the mode properties of a file, given a fully qualified
filename.

PCS $paceOuery returns space accounting information from the host file

system.

PCS TimeStamp sets a file's last updated time and date information, given a

file handle, and appropriate time and date values.

The following three special purpose services are also provided for use as remote

procedure calls.

PCS_Execute synchronously or asynchronously executes the specified host com-

mand as a separate process.

PCS_TimeOfDay returns current time and date information from the host machine.

PCS GetHomeDir determines the home directory of a given user based on his host

account. For a brief discussion of home directory, see "LOGIN" on

page oo

PCVENUS

PCVENUS is the PC-DOS analog to the Andrew VENUS component. Its function is to

trap and monitor all PC-DOS file system calls and intercept those that reference

PC Server Organization and Structure 21

• Unclassified

network drives or files on network drives. The intercepted system calls are

then translated into an appropriate sequence of remote procedure calls to

PCSERVER functions. Forty-five separate PC-DOS operations are handled in this

fashion using the twelve file system services provided by PCSERVER.

PCVENUS has no direct interactions with users; all of its functions are per-

formed in response to PC-DOS file system calls from ordinary application pro-

grams or standard DOS commands. Once executed it makes itself an extension of

PC-DOS using the "terminate and stay resident" mechanism. It contains about
9000 lines of IBH PC Assembler code.

LOG IN

It is the LOGIN program that creates SNAP conversations for use by PCVENUS.

LOGIN may also be used to issue the SNAP BeginConv call on behalf of distributed

applications (such as CUI) as well.

When logging in, the user supplies the name of a service machine, the server

program to be used (currently PCSERVER or MESSAGESERVER), Andrew account infor-

mation, and optional conversation parameters governing the use of encryption and

protocol time-out intervals. >lany of these inputs can be defaulted.

The user's Andrew account designates him or her as the owner of a unique VICE

directory referred to as a "home directory". Unless the user specifically indi-

cates otherwise, files and directories subordinate to the home directory can be

examined by others but only updated by the user. Associated with the user's

home directory are

• VICE space quota limitations.

" A Mailbox directory. Arriving mail is deposited here, but only the user can
read it.

• A public directory. Files and directories subordinate to this one can be

both read or written by any user.

• A private directory. Completely invisible to all but the user.

• An Andrew "preferences" file, containing among other things, the name of a

default system printer for hard copy output.

When a user logs in to the PCSERVER, LOOIN selects the next available drive let-

ter and associates it with the user's home directory to create a network drive.

The user may override this process entirely by selecting a different drive des-

ignator or specifying any VICE directory for which his or her Andrew account

will permit access. 8

8 Host users have read access to most VICE directories.

22 The C-HU PC Server Project

Unclassified

LOOIN will create up to five network drives and establish a unique SNAP conver-

sation for each one. Typically, each conversation would provide access to dif-

ferent VICE subtrees, but this is not enforced ill any way. Since each

conversation requires a separate SNAP BeginConv call, different parameters may

he associated with each network drive. For instance, encryption could he speci-

fied for one network drive, but not for another. Or, different Andrew userids

may be used to obtain different access rights to tile same VICE directory,

depending on which drive designator one chose to use when referencing a file.

LOGIN supports both an interactive (panel-driven) interface and a command line

interface so that LOGIN commands may be included in DOS BAT files. A utility

program (called LOGGEDIN) that will set the DOS errorlevel indicator to reflect

whether or not a conversation with a given server already exists can also be

used in a BAT file to bypass the LOGIN command when it is not needed.

CUI

The CUI (Common User Interface) is a command-oriented interface to the Andrew

mail and bulletin board system. Most users with VIRTUE workstations use an

alternative visual interface program designed to work with the Andrew Window

Manager. The CUI was intended to provide equivalent function for users of
non-VIRTUE workstations. Both interfaces to the Andrew mail and bulletin board

system use the same server program (>IS). >IS is not aware of the distinct inter-

face styles employed by its clients. Although the CUI has also been available

to VIRTUE users for some time, it is a recent addition to the PC Server package.

For those functions that involve message composition the PC version of CUI per-

mits the user to select his favorite PC editor, which is supplied with a small

template file for the user to edit. In fact, using CUI, PC users may also use

their editor to inspect or modify any accessible VICE file, regardless of text

format or name length, without an explicit conversion step. This is because the

CUI does all of its VICE file manipulations directly using the SNAP remote pro-

cedure call protocol, not the PC-DOS file system interface provided by PCVENUS.

Prior to invoking the user's editor, the data is obtained, automatically con-

verned to PC text format if necessary, and placed in a temporary PC-DOS file.

This is the file the user's editor actually sees.

CUI is a good example of a user-level SNAP application program (PCVENUS,

although a SNAP application, appears to tile user to be an extension of PC-DOS,

and has no externals of its own). It is expected that over time additional SNAP

applications programs may appear, so that an increasing number of Andrew capa-

bilities will ultimately be available to PC-DOS users.

PC Server Organization and Structure 23

Unclassified

O!
.4 The C-MU PC Server Project

Unclassified

CURRENT STATUS AND SUMMARY

The PC Server has been available for general use at C-MU since the beginning of

November, 1986. Two PC diskettes and a user's manual may be purchased through
the C-MU Computer Store at a nominal cost. The diskettes contain all of the PC

components discussed in this paper with the exception of CUI. The CUI applica-

tion will be offered as part of an upcoming release.

The PC Server supports three type of local area network adapters, IBH token

ring, 3CON Etherlink (Ethernet) and Proteon ProNET. Extensions to the campus

network for new users and departments are generally based on IBM's token ring.

To date, over 500 PC users have obtained token ring adapters to connect their

IBM PCs to the campus network. Several departments are using private PC Server

host machines in addition to those that are publicly available.

The PC Server is an obvious migration step for users with IBM PC-style work-

stations. It presents them with a lo_,--cost opportunity to join the growing

Andrew community and enjoy the benefits of the campus network, without abandon-

ing the familiar PC-DOS environment and the current generation of application
software.

Current Status and Summary 25

Unclassified

26 The C-._IU PC Server Project

4

Unclassified

BIBLIOGRAPHY

i. Defense Advanced Research Projects Agency, Information Processing Tech-
niques Office. KFC 797: DARPA Internet Program Protocol Specification.

DARPA, September, 1981.

2. Leong. The PC Server: User's Guide. Carnegie-Mellon University, Informa-

tion Technology Center, October 27, 1986.

3. Morris, Satyanarayanan, Conner, Howard, Rosenthal, and Smith. Andrew: A
Distributed Personal Computing Environment. CACM, Volume 29 Number 3,

March, 1986.

4. Satyanarayanan, lloward, Nichols, Sidebotham, Spector, and West. The ITC
DisCributed File System: Principles and Design. ACM Operating Systems

Review, Volume 19 Number 5, December, 1985.

Bibliography 27

Unclassified

28 TlleC-MU PC Server Project

Unclass,fied

GLOSSARY

ACIS: Academic Information Daemon: A program or subroutine

Systems. A division of IBM with that performs its function in the

responsibility for university mar- background, usually without requir-

keting, development, and support, ing interaction with end users.

Andrew: The software system devel- DoD: The United States Department

oped at the ITC in support of the of Defense.

C-MU network, named for the universi-

ty's founder, Andrew Carnegie. FAT: File Allocation Table. The
mechanism used by PC-DOS to manage

APA: All Points Addressable. Tile the space available on a block

term is usually applied to plotters device.

or display devices designed for

graphics applications. FTP: File Transfer Program. A pro-

gram that provides the capability to

BIOS: Basic Input/Output System. transfer a file from one file system

Computer firmware used to define co another in real time using TCP/IP

formal, lo_--level interfaces to protocols.

physical system resources. In the

IBM PC product family the BIOS is IP: Internet Protocol. A low level

stored in a read-only memory and also DoD standard protocol that provides a

performs power-on self tests before basic, unsequenced, connectionless,

booting the operating system, end-to-end packet switching capabil-
ity.

BPB: BIOS Parameter Block. A

PC-DOS control block that describes ITC: information Technology Center.

the nature, layout, and size of the The organization put in place at C-MU

FAT, root directory, and other to fulfill the conditions of the 1982

internal file system elements. IB>I/C-MU joint study agreement.

C-MU: Carnegie-Mellon University. LAN: Local Area Network. The term
applied to a network of discrete com-

DARPA: Defense Advanced Research puters whose internal buses are

Projects Agency. joined by means of a high-speed, high
bandwidth connection.

DASD: Direct Access Storage

Device. A generic term originally MIT: Massachusetts Institute of

intended to apply to a variety of Technology.

devices such as disks, drums, data

cells, etc. Network Byte Order: A standard -
byte ordering used to exchange binary

Datagram: The logical unit of data among machines of differing

information transmitted by the IP architectures. It "just happens" to

protocol, coincide with IBM 360/370 byte order-
ing.

Network Drive: The term used with

tile PC Server software to describe a

Glossary 29

' Unclassified

connection to a host file system that UNIX: An operating system ori-

supports an injective mapping of the ginally developed by AT&T and dis-
PC-DOS file system, tributed in source form to

universities for a nominal charge.
RVD: Remote Virtual Disk. An exam-

ple of a PC-DOS file system imbedded VICE: The distributed file system

within a file of a foreign host file component of Andrew.
system.

VIRTUE: The user-interface compo-

SNAP: Simple Network Access Proto- nent of Anarew that requires the use
col. A private IP-based protocol of an advanced function workstation

that provides a secure, reliable, with a mouse and APA display.

sequenced, half duplex conversation

between PC Server components.

TCP: A high level protocol that

provides a reliable, sequenced, con-

nection between two programs over an
IP network.

30 The C-MU PC Server Project

