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ABSTRACT 

Geographically distributed software development (GDSD) is becoming pervasive. 

Hence, the constraints in communication and its negative impact of developers’ ability to 

coordinate effectively is a growing problem that consistently results in sub-par 

performance of GDSD teams. Past research argues that geographically distributed teams 

do better when their work is almost independent from each other. In software 

engineering, modularization is the traditional technique intended to reduce the 

interdependencies among modules that constitutes a system. The modular design 

argument suggests that by reducing the technical dependencies, the work dependencies 

between teams developing interdependent modules are also reduced. Consequently, a 

modular product structure leads to an equivalent modular task structure. This dissertation 

argues that modularization is not a sufficient representation of work dependencies in the 

context of software development and it proposes a method for measuring socio-technical 

congruence, defined as the relationship between the structure of work dependencies and 

the coordination patterns of the organization doing the technical work. Two empirical 

studies assessed the impact of socio-technical congruence on development productivity 

and product quality. In addition, a third empirical study explores how developers in a 

geographically distributed software development organization evolve their coordination 

patterns to overcome the limitations of the modular design approach.  

Collectively, this dissertation has important contributions to software engineering, 

CSCW and organizational literatures. First, the empirical evaluation of the congruence 

framework showed the importance of understanding the dynamic nature of software 

development. Identifying the “right” set of product dependencies that determine the 
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relevant work dependencies and coordinating accordingly has significant impact on 

reducing the resolution time of modification requests. The analyses showed traditional 

software dependencies, such as syntactic relationships, tend to capture a relatively stable 

view of product dependencies that is not representative of the dynamism in product 

dependencies that emerges as software systems are implemented. On the other hand, 

logical dependencies provide a more accurate representation of the most relevant product 

dependencies in software development projects. Secondly, this dissertation moves 

forward our understanding of the relationship between product and work dependencies 

and software quality. Logical dependencies among software modules and work 

dependencies were found to be two very significant factors affecting the failure proneness 

of software modules. Finally, the longitudinal analysis of coordination activities in a 

GDSD project showed that developers centrally positioned in the social system of 

information exchanges and coordination activities performed a critical bridging function 

across formal teams and geographical locations. Moreover, those same individuals 

contributed an average of 57% of development effort in terms of implementing the 

software system in each release covered by the data.  
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CHAPTER 1: INTRODUCTION 

 

Over the past couple of decades, geographically distributed work has become 

pervasive and software development organizations are no exception. Factors such as 

access to talent, acquisitions and the need to reduce the time-to-market of new products 

are the driving forces for the increasing number of geographically distributed software 

development (GDSD) projects (Herbsleb & Moitra, 2001; Karolak, 1998). Unfortunately, 

this new trend has its costs. Distance leads to numerous problems in communication and 

coordination, and ultimately, impacts the performance of software development teams 

(Herbsleb et al, 2000; Herbsleb & Mockus, 2003). The failure to identify work 

dependencies among developers or development teams results in coordination problems. 

A growing body of work on coordination in software development suggests that the 

identification and the management of dependencies is a fundamental challenge in 

software development organizations, particularly in those that are geographically 

distributed (some examples are: Cataldo et al, 2007; de Sourza, 2005; Grinter et al, 1999; 

Herbsleb et al, 2000; Herbsleb & Mockus, 2003). The modular product design literature 

has developed an important body of research on interdependency, for instance, the work 

on design structure matrices to find alternative structures that reduce dependencies 

among the various components of the system (Eppinger et al, 1994; Sullivan et al, 2001). 

Interdependency is central to organizations and it has also been a perennial research topic 

in organizational theory (DeSanctis et al, 1999; Staudenmeyer, 1997). Those research 

streams could inform the design of software development organizations so they are better 

able to identify and manage work dependencies. However, we first need to understand 
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the assumptions of the different theoretical views and how those assumptions relate to the 

characteristics of software development tasks.  

 

The Nature of Software Development and Modular Design 

The idea of dividing a complex task into smaller manageable units is consistent 

with the reductionist view (Simon, 1962; von Hippel, 1990) which is well developed in 

the product development literature (Eppinger et al, 1994). Projects, typically, have a 

general description of the system’s components and their relationships or a more detailed 

report such as architectural or high-level design document. Managers use the information 

in those documents to divide the development effort into work items that are assigned to 

specific development teams minimizing the interdependencies among those teams 

(Conway, 1968; Eppinger et al, 1994; Sullivan et al, 2001). In the system design 

literature, it has long been speculated that the structure of a product inevitably resembles 

the structure of the organization that designs it (Conway, 1968).  In Conway’s original 

formulation, he reasoned that coordinating product design decisions requires 

communication among the engineers making those decisions.  If everyone needs to talk to 

everyone, the communication overhead does not scale well for projects of any size.  

Therefore, products must be split into components, with limited technical dependencies2 

among them, and each component assigned to a single team.  Conway (1968) proposed 

that the component structure and organizational structure stand in a homomorphic 

relation, in that more than one component can be assigned to a team, but a component 

must be assigned to a single team.   

                                                 
2 The terms “technical dependency” and “product dependency” are used interchangeably 
through this dissertation. 
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A similar argument has been proposed in the strategic management literature. 

Baldwin and Clark (2000, page 90) argued that modularization makes complexity 

manageable, enables parallel work and tolerates uncertainty. The design decisions are 

hidden within the modules which communicate through standard interfaces, then, 

modularization adds value by allowing independent experimentation of modules and 

substitution (Baldwin & Clark, 2000). Moreover, Baldwin and Clark (2000, page 89) 

argued that a modular design structure leads to an equivalent modular task structure. 

Then, their view aligns with Conway’s idea that one or more modules can be assigned to 

one organizational unit and work can be conducted almost independently of others. In the 

context of software engineering, a similar approach was first articulated by Parnas (1972) 

as modular software design. Parnas (1972) argued that modules ought to be considered 

work items instead of just a collection of subprograms. Then, development work can 

continue independently and in parallel across different modules. Parnas’ views also 

coincide with the theoretical arguments from product design and strategic management 

literatures.  

All three theoretical views rely on two interrelated assumptions. The authors 

assume a simple and obvious relationship between product modularization and task 

modularization. Hence, reducing the technical interdependencies among modules, the 

modularization theories argue, task interdependencies are reduced, which consequently, 

reduces the need for communication among work groups. Unfortunately, there are several 

problems with these assumptions. First, existing software modularization approaches 

only use a subset of the technical dependencies, typically syntactic relationships, of a 

software system (Garcia et al, 2007). Then, potentially relevant work dependencies might 
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be ignored. Secondly, recent empirical evidence indicates that the relationship between 

product structure and task structure is not as simple as previously assumed. Moreover, the 

theorized similarity between product and task structures diminishes over time (Cataldo et 

al, 2006).  

Thirdly, promoting minimal communication between teams responsible for 

interdependent modules is problematic. The computer-mediated communication literature 

suggests that loose-coupling tasks is the appropriate approach when teams are 

geographically distributed (Olson & Olson, 2000). However, recent studies suggest that 

minimal communication between teams, collocated or distributed, is detrimental to the 

success of projects. The product development literature argues that information hiding, 

which leads to minimal communication between teams, is an inevitable antecedent of 

variability in the evolution of projects resulting, typically, in integration problems 

(Yassine et al, 2003). In context of software development, de Souza and colleagues 

(2004) found that information hiding led development teams to be unaware of others 

teams’ work resulting in coordination problems. Grinter and colleagues (1999) reported 

similar findings for geographically distributed software development projects. The 

authors highlighted that the main consequence of reducing the teams’ need to 

communicate was to increase costs because problems were discovered too late in the 

development process. Those findings do not suggest that modularization is not useful. 

They highlight the need to supplement it with coordination mechanisms to allow 

developers to deal correctly with the assumptions that are not captured in the 

specification of the dependencies. 
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  Another problem associated with the assumptions of modular design is the nature 

and stability of the interfaces between software modules. Although, the program 

dependency literature defines technical dependencies as a syntactic or semantic 

relationship between statements (Podgurski & Clarke, 1990), the same ideas are applied 

at the level of modules. Then, relationships among modules could also range from 

syntactic, for instance a function call from module A to module B, to more complex 

semantic dependencies where, for example, the computations done in one module affects 

the behavior of another module. Some authors refer to those types of semantic 

dependencies as dynamic (Bass et al, 2003) or logical (Gall et al, 1998). Even in the 

simple case of a function call between two modules, the complexity and the degree of 

dependency varies, for instance, if we consider the number of parameters of a function 

call or we compare parameters passed by value versus parameters passed by reference. 

Cataldo et al (2007) presented case studies where even simple interfaces between 

modules developed by remote teams create coordination breakdown and integration 

problems. The authors reported that semantic dependencies were even more problematic 

and they argued that the developers’ ability to identify and manage dependencies was 

hindered by several inter-related factors such as development processes, organizational 

attributes (e.g. structure, management style) and uncertainty of the interfaces. In a field 

study of a large software project, de Souza (2005) encountered that interfaces tended to 

change often and their design details tended to be incomplete, leading to serious 

integration problems. These findings argue that the interfaces between software modules 

might differ in complexity and, often, it is not possible to specify those interfaces at the 
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necessary level of detail, increasing the likelihood of future changes to them. This lack of 

stability represents a constant challenge for software development organizations.  

In sum, the modularization approach is a very useful tool for dividing the 

development of a complex software system into manageable units. However, 

modularization is not a sufficient representation of work dependencies in software 

development activities. The relationship between the task dependency structure and the 

product structure is not as simple as theorized. Appropriate mechanisms are then required 

to identify relevant work dependencies and, consequently, maintain suitable levels of 

communication and coordination among teams developing interdependent modules, 

particularly, in the case of geographically distributed software development.  

 

The Nature of Software Development and Interdependency Theories 

Coordination is a central concept in organizations, the idea of division of labor 

into interdependent units is a well developed and mechanisms for coping with the varying 

degree of interdependency have been proposed in the traditional organizational literature 

(for instance, March & Simon, 1958; Thompson, 1967; Galbraith, 1973; Staudenmayer, 

1997). More recent work, particularly in organizational design, has focused on 

computational and mathematical approaches to examine how organizational designs, that 

use different models of communication and coordination, are affected by factors such as 

stress, task decomposition, quality of information exchanged, and ability to adapt (for 

instance, Carley and Lin, 1995, 1997; Handley & Levis, 2001; Perdu & Levis, 1998). 

Then both streams of work, traditional organizational theory and computational and 
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mathematical organizational theory (CMOT), are relevant to the problem of coordination 

in software development projects. 

 In the traditional organizational theory, March and Simon (1958) argued that 

coordination encompasses more than just a traditional division of labor and assignment of 

tasks. The authors proposed numerous mechanisms such the division of the task into 

nearly independent parts and they also argued that schedules and feedback mechanisms 

are required when interdependence is unavoidable. Thompson (1967) extended March 

and Simon’s work by matching three mechanisms: standardization, plan, and mutual 

adjustment, to stylized categorizations of dependencies such as pooled, sequential, and 

reciprocal. Galbraith (1973) argued that low levels of interdependency can be managed 

by traditional mechanisms such as rules and programs. However, as the level of 

interdependency increases additional mechanisms are required such as slack resources 

and lateral communication (Galbraith, 1973). Mintzberg (1979) took an organizational-

level perspective and argued that specific coordination mechanisms are properties of 

particular kinds of organizations and environments. Crowston (1991) developed a 

typology of coordination problems to catalog coordination mechanisms that address 

specific types of interdependencies. Staudenmayer (1997) grouped the contributions of 

March and Simon, Thompson, and others into the information processing theories of 

interdependency which, she argued, rely on the assumptions of determinism and stability. 

In other words, those theoretical views focus on predictable and static tasks 

(Staudenmayer, 1997). This limitation of the information processing argument is not 

problematic if software development tasks can be identified a priori and the set of 

interdependencies that arise from the division of labor are managed with the appropriate 
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set of mechanisms. If we think in terms of project management activities, coarse-grain 

development activities such as “develop component A” or “implement feature X” can 

typically be identify at relatively early stages of the projects. Some dependencies among 

those development tasks are typically easy to identify. For instance, particular work items 

need to be finished before other work items can start. Work items that can only be 

assigned to specific teams because of the skill set required would represent another 

example. Then, specific organizational forms can be used to manage the dependencies 

among those coarse-grain development tasks (Malone & Crowston, 1991), even in the 

case of geographically distributed development organizations (Grinter et al, 1999).  

Unfortunately, there are several characteristics of software development activities 

that limit the applicability of traditional organizational theories as well as the more recent 

CMOT work. First, it is widely accepted among software engineering researchers and 

practitioners that the requirements of the system become known over time or those 

requirements change as time progresses (Leffingwell & Widrig, 2003). In some cases the 

changes in the requirements result in minor alterations of specific development tasks. In 

other cases, new features have to be added or features under development are eliminated. 

These events introduce a certain level of dynamism in software development that 

challenges the determinism and stability assumptions of the information processing views 

of interdependency.  

Secondly, the dynamic nature of finer-grain dependencies that arise as part of the 

development of a piece of code is not well suited for traditional organizational theories of 

coordination. The act of developing a software system consists of a collection of design 

decisions, either at the architectural level or at the implementation level. Those design 
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decisions introduce constraints that might establish new dependencies among the various 

parts of the system, modify existing ones or even eliminate dependencies. The changes in 

dependencies can generate new coordination requirements that are quite difficult to 

identify a priori, particularly when they are not obvious, or as a project matures over time 

(Henderson & Clark, 1990; Sosa et al, 2004). Failure to discover the changes in 

coordination needs might have a profound impact on the quality of the product (Curtis et 

al, 1988), on productivity (Herbsleb & Mockus, 2003) and even on the projects’ overall 

design (Bass et al, 2006). In addition, little is known about the specific impact of the 

various types of dependencies that arise among parts of a software system such as explicit 

versus implicit dependencies or syntactic versus logical dependencies. Then, the use of 

the computational and mathematical organizational theory approaches is limited because 

of the lack of theoretical framework that guides the modeling of the relationships 

between the organizational tasks, their dependencies and the need to communicate and 

coordination. 

In sum, software development tasks are embedded in an evolving network of 

coordination requirements that need to be satisfied. The coarse-grain and idealized 

approaches suggested by the organization theory literature are not appropriate to identify 

and manage such a dynamic web of interdependencies. A finer-grain view of 

coordination would provide a better framework in dynamic knowledge-intensive tasks 

such as software development. 
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Research Questions 

In the previous sections, I highlighted the limitations of the current mechanisms 

for identifying and managing dependencies in geographically distributed software 

development organizations. Product modularization does not necessarily yield an 

equivalent task modularization structure and additional mechanisms are required to 

maintain appropriate levels of coordination among workgroups. The nature of software 

development such as the attributes and stability of interfaces among modules and the 

dynamics of technical dependencies, limit the applicability of established task 

decomposability and coordination approaches.  Moreover, these characteristics are a 

constant challenge for software development organizations, particularly, for those 

geographically distributed. This dissertation addresses the problem of work dependencies 

in software development by examining how to use technical dependencies to determine 

work dependencies and by investigating the impact of those work dependencies in the 

development process. Specifically, I address the following general research questions: 

 

RQ 1: How relevant task dependencies can be identified from technical 

dependencies? 

RQ 2: What is the impact of those task dependencies on traditional outcome 

variables such as productivity and quality? 

 

The rest of this document is organized as follows. Chapter 2 presents a framework 

for identifying and managing dependencies. Chapter 3 introduces terminology used in 

this dissertation and describes the various datasets used in the empirical studies. In 
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chapter 4, I examine different methods of identifying work dependencies from technical 

dependencies. Chapter 5 presents the first empirical study that examines the impact on 

development productivity of the mismatches between coordination requirements and 

coordination behavior. In chapter 6, I study the impact of the structure of technical and 

work dependencies on software quality. The last empirical study which explores the 

usage of the proposed framework for examining the relationship between coordination 

behavior and developer-level performance is described in chapter 7. Chapter 8 describes 

developer and managerial applications of the results reported in this dissertation. Finally, 

chapter 9 describes the contributions of this research endeavor, its limitations as well as 

future research directions. 
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CHAPTER 2: A FRAMEWORK FOR IDENTIFICATION OF WORK 

DEPENDENCIES 

 

It has long been observed that organizations carry out complex tasks by dividing 

them into smaller interdependent work units assigned to groups and coordination arises as 

a response to those interdependent activities (March & Simon, 1958). Communication 

channels emerge in the formal and informal organizations. Over time, those information 

conduits develop around the interactions that are most critical to the organization’s main 

task (Galbraith, 1973). This is particularly important in product development 

organizations which organize themselves around their products’ architectures because the 

main components of their products define the organization’s key subtasks (von Hippel, 

1990). Organizations also develop filters that identify the most relevant information 

pertinent to the task at hand (Daft & Weick, 1990). Changes in task dependencies, 

however, jeopardize the appropriateness of the information flows and filters and can 

disrupt the organization’s ability to coordinate effectively. For example, Henderson & 

Clark (1990) found that minor changes in product architecture can generate substantial 

changes in task dependencies, and can have drastic consequences for the organizations’ 

ability to coordinate work. If effective ways of identifying detailed work dependencies 

and tracking their changes over time exist, we would be in a much better position to 

design mechanisms that could help to align information flow with work dependencies. 

Identifying work dependencies and determining the appropriate coordination 

mechanism to address the dependencies is not a trivial problem. Coordination is a 

recurrent topic in the organizational theory literature and many stylized types of task 
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dependencies and coordination mechanisms have been proposed over the past several 

decades (Crowston, 1991; Galbraith, 1973; Malone & Crowston, 1994; March & Simon, 

1958; Mitzberg, 1979; Thompson, 1968). However, numerous types of work, in 

particular non-routine knowledge-intensive activities, are potentially full of fine-grain 

dependencies that might change on a daily or hourly basis. Conventional coordination 

mechanisms like standard operating procedures or routines would have very limited 

applicability in these dynamic contexts. Therefore, designing mechanisms to handle 

rapidly shifting coordination needs requires a more fine-grained level of analysis than 

what the traditional views of coordination provide. 

In the context of software development, a technical dependency in the software 

system represents a coordination need that relevant software developers might need to 

address. The result of ignoring coordination requirement could lead to increased number 

of defects, problems in integration and longer development time (Curtis et al, 1988; 

Espinosa et al, 2002; Kraut et al, 1995; Herbsleb & Mockus, 2003). When members of a 

team are physically collocated and coordination requirements involve individuals from 

the same team, there are numerous ways for team members to identify the needs to 

coordinate and act on them such as group and status meetings and managerial 

intervention. The problem of identifying the need to coordinate is further complicated 

when coordination requirements change rapidly (Cataldo et al, 2006). In this chapter, I 

present a framework to determine the coordination requirements among developers. The 

objective of the framework is two-fold. First, provide a fine-grain level of analysis of 

coordination. The second objective is to allow for identification of work dependencies 

from alternative representations of technical dependencies of the system. I also propose a 
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measure of “fit” between work dependencies and the coordination activities performed by 

the software developers.  

 

The Concept of Socio-Technical Congruence 

Product development endeavors involve two fundamental elements: a technical 

and a social component. The technical properties of the product to develop, the processes, 

the tasks, and the technology employed in the development effort constitute the technical 

component. The second element is composed by the organizational individuals involved 

in the development process, their attitudes and behaviors. In other words, a product 

development project can be thought of a socio-technical system where the two 

components, the technical and the social elements, need to be aligned in order to have a 

successful project. Then, a key issue is to understand how we can examine the 

relationship between those two, the technical and the social, dimensions. Two lines of 

work are particularly relevant in this context. First, the concept of “fit” from 

organizational literature refers to the match between a particular organizational design 

and the organization’s ability to carry out a task (Burton & Obel, 1998). The work in this 

line of research has, traditionally, focused on two factors: the temporal dependencies 

among tasks that are assigned to organizational groups and the formal organizational 

structure as a means of communication and coordination (Carley & Ren, 2001; Levchuck 

et al, 2004). Secondly, the research on dynamic analysis of social networks provides an 

innovative approach, called the meta-matrix, to examine the dynamic co-evolution of 

relationships among multiple types of entities such as resources, tasks, and individuals 

(Carley, 2002; Krackhardt & Carley, 1998). The concept of socio-technical congruence 
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presented in this chapter builds on the idea of “fit” from the organizational theory 

literature and from a mathematical stand point builds on the meta-matrix model from the 

dynamic network analysis literature. Combining those two lines of research allows for 

two important contributions to the literature. First, the socio-technical congruence 

framework presented here provides a fine-grain level of analysis. Secondly, the measure 

facilitates assessing the role of coordination activities in multiple and complementary 

ways as well as examining the impact of several types of dependencies.  

Figure 1 presents an intuitive representation of the measure of congruence 

formally defined later in this chapter. A group of workers have a set of work 

dependencies which defines a set of coordination requirements. When the coordination 

activities carried out by those workers define a pattern of coordination similar to those 

defined by the coordination requirement (case A in Figure 1), we have high levels of 

congruence or “good fit”.  If the patterns of coordination requirements and coordination 

activities do not match, we have low levels of congruence or a “poor fit” (case B in 

Figure 1). 

Formally, socio-technical congruence is defined as the match between the 

coordination requirements established by the dependencies among tasks and the actual 

coordination activities carried out by the workers. In other words, the concept of 

congruence has two components, coordination needs and coordination activities, and the 

following sections discuss the mathematical framework to measure them. 
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Figure 1: The Concept of Congruence 

 

Identification of Coordination Requirements 

In order to identify which set of individuals should be coordinating their 

activities, we need to represent two sets of relationships. One set is represented by which 

individuals are working on which tasks. The relationships or dependencies among tasks 

represent the second element. Past research has used a matrix formalization to capture 

and relate those two pieces of information. For instance, Carley and Ren (2001) proposed 

a metric, called resource congruence, to measure the relationship between the resources 

required to perform a task and workers’ access to those resources.  The same metric was 

further examined by Carley and colleagues (2003) in the context of covert networks. 

In the framework proposed in this chapter, assignments of individuals to 

particular work items is be represented by a people by task matrix where a one in cell ij 
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indicates that worker i is assigned to task j. I will refer to this matrix as Task Assignments 

(TA). Following the same approach, the set of dependencies among tasks can be 

represented as a square matrix where a cell ij (or cell ji) indicates that task i and task j are 

interdependent. I will refer to this matrix as Task Dependencies (TD).  Now, if the Task 

Assignment and Task Dependencies matrices are multiplied, a people by task matrix is 

obtained that represents the set of tasks a particular worker should be aware of, given the 

work items the person is responsible for and the dependencies of those work items with 

other tasks.  Finally, a representation of the coordination requirements among the 

different workers is obtained by multiplying the product of the Task Assignment and Task 

Dependencies matrices by the transpose of the Task Assignment matrix. This product 

results in a people by people matrix where a cell ij (or cell ji) indicates the extent to 

which person i works on tasks that share dependencies with the tasks worked on by 

person j. In other words, the resulting matrix represents the Coordination Requirements 

or the extent to which each pair of people needs to coordinate their work.  Formally, the 

Coordination Requirements matrix is determined by the following product: 

 

                                           CR = TA * TD * TA
T                                      (Equation 1) 

 

where, TA is the Task Assignments matrix, TD is the Task Dependencies matrix and TA
T 

is the transpose of the Task Assignments matrix. 

This framework provides alternatives ways of thinking about coordination 

requirements among workers depending on what type of data is used to populate the Task 

Dependencies matrix. Past work had focused on temporal relationships between tasks, for 
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instance, task A needs to be done before task B (e.g. Levchuk et al, 2003). In the context 

of software development, such way of thinking about task dependencies is quite common. 

Alternative views could be based on high level roles in the development organizations 

(e.g. integration and testing depends on development) or task dependencies based on 

product dependencies in the actual software code (e.g. function calls between modules). 

The focus on this dissertation is on the work dependencies structure-product dependency 

structure relationship because, as argued in chapter 1, the difficulty of identifying and 

managing certain types of product dependencies is a critical factor in coordination 

success and ultimately in productivity and quality.  

 

Measuring Socio-Technical Congruence 

Given a particular Coordination Requirements matrix constructed from relating 

product dependencies to work dependencies, we can compare it to an Actual 

Coordination (CA) matrix that represents the interactions workers engaged in through 

different means of coordination. I refer to the match between those to matrices as socio-

technical congruence. Then, given a particular set of dependencies among tasks, 

congruence is the proportion of coordination activities that actually occurred (given by 

the Actual Coordination matrix) relative to the total number of coordination activities that 

should have taken place (given by the Coordination Requirements matrix). For example, 

if the Coordination Requirements matrix shows that 10 pairs should coordinate, and of 

these, 5 show Actual Coordination interactions, then the congruence is 0.5. Formally, we 

define congruence as follows:  
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Diff (CR, CA) = card { diffij | crij > 0 & caij > 0 } 

|CR| = card { crij > 0 } 

 

We have,  

                         Congruence (CR, CA) = Diff (CR, CA) / |CR|                       (Equation 2) 

 

In sum, the value of congruence belongs to the [0,1] interval that represents the 

proportion of coordination requirements that were satisfied through some type of 

coordination activity or mechanism. The measure of socio-technical congruence proposed 

here provides a new way of thinking about coordination, particularly, by providing a fine-

grain level of analysis of different types of product dependencies and allowing us to 

examine how coordination needs are impacted by them. 
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CHAPTER 3: TERMINOLOGY AND DESCRIPTION OF THE 

DATASETS 

 

Terminology 

In this section, I define several terms are used through out the empirical studies as 

well as the description of the datasets: 

 

Source code file: A source code file represents a collection of functions, methods, and 

data type declarations and definitions that implement part of or an entire functionality of 

a software system. In this dissertation, I will use the terms source code file and module 

interchangeably. This definition does not refer or imply any specific way of partitioning a 

system into implementation modules. 

 

Commit: A commit represents an actual modification to one or more source code files in 

the version control system. A particular commit contain at least the following attributes: a 

date of submission, an author or developer responsible, a list of one or more files and the 

modifications to those files. The terms submission and changelist are used as synonyms 

of a commit through out this document.  

 

Modification request (MR): A modification request represents a work item that refers to a 

conceptual change to the software that involves modifications to a set of source code files 

(Mockus & Weiss, 2000). The changes could represent the development of new 

functionality or the resolution of a defect encountered by a developer, the quality 
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assurance organization or reported by a customer. A modification request consists of one 

or more commits from a version control system. 

 

Lines of code (LOC): In various parts of the dissertation, we refer to lines of code as a 

measure of size of a system or a module. The measure refers to non-blank non-comment 

lines of code. 

 

Datasets 

 In order to address the research questions outlined in chapter 1, data from several 

geographically distributed software development projects was collected. The 

characteristics of those projects and the data are described in the rest of this chapter. 

 

Project A 

I collected data from a software development project of a large distributed system 

produced by a company that operates in the data storage industry. The data covered a 

period of 39 months of development activity and the first four releases of the product. 

The company had one hundred and fourteen developers grouped into eight development 

teams distributed across three development locations. All the developers worked full time 

on the project during the time period covered by the data. The system was composed of 

about 5 million lines of code distributed in 7737 source code files mostly in C language 

and a small portion (117 files and less than 96000 lines of code) in C++ language.  The 

data corresponding to a total of 8,257 resolved modification requests were identified. 

Those MRs involved 67,652 commits to the version control system.  
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Software developers communicated and coordinated using various means. 

Opportunities for interaction exist when working in the same formal team or when 

working in the same location. Developers also use tools such as Internet Relay Chat 

(IRC) and a MR tracking system to interact and coordinate their work. For instance, the 

MR tracking system keeps track of the progress of the task, comments and observations 

made by developers as well as additional material used in the development process. I 

collected communication and coordination information from these two systems. Finally, I 

also collected demographic data about the developers such as their programming and 

domain experience and level of formal education. 

Project A represents the main source of data for the various empirical studies 

presented in this dissertation. In order to address potential external validity concerns, data 

from additional projects was used in each empirical study. Those projects are described in 

the following paragraphs. 

 

Project B 

Version control data from three open source projects from the Apache Software 

Foundation was collected. I focused on changes to the software that were associated with 

a modification request that were resolved between February of 2001 and January of 2003. 

There were a total of 1068 modification requests resolved in that timeframe involving 

1972 commits in the version control system. Those modification requests were related to 

three different projects, Ants, Tomcat and Structs, where a total of seventy five engineers 

participated in the development effort. 
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Project C 

The project involved the development of an embedded software system for a 

communications device developed by a major telecommunications company. Forty 

engineers participated in the project. The data covered a period of five years and the last 

six releases of the product. All the developers but one worked in the same development 

facility located in the United States. The remote developer worked in Australia. The 

system was composed of approximately 1.2 million lines of C and C++ code distributed 

in 1224 modules with 427 modules written using in C++ language. Data associated with 

about 7000 modification requests constituted the dataset.  

 

Project D 

This project was a large medical device system where the development 

organization had eighty three engineers grouped into 10 teams distributed across for 

development locations, one in India, one in Eastern Europe and two in the United States. 

Architects, some of the technical leads and managers were also in the development 

facilities located in the United States. All the developers worked full time on the project 

during the time period covered by the data. Engineers had formal roles such as architect, 

team lead, tester or developer. The project was organized into iterations which constitute 

fixed periods of time, about 8 weeks, focused on the development of a set of 

requirements defined at the beginning of the iteration. The data covered the 7th iteration 

of the project. A survey instrument based on a roster approach was used to collect 

coordination activity twice during the development iteration. 
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CHAPTER 4: METHODS FOR IDENTIFYING WORK 

DEPENDENCIES IN SOFTWARE DEVELOPMENT PROJECTS 

 

In this chapter, I explore different methods of determining work dependencies 

from product dependencies (e.g. relationships among the source code files of a software 

system). Then, those work dependencies will allow us to identify coordination 

requirements among software developers as proposed in the congruence framework 

introduced in chapter 2. 

 

Two Approaches to Determine Product Dependencies in Software Systems  

The traditional view of software dependency has its origins in compiler 

optimizations and they focus on control and dataflow relationships (Horwitz et al, 1990). 

This approach extracts relational information between specific units of analysis such as 

statements, functions or methods, as well as modules, typically, from the source code of a 

system or from an intermediate representation of the software code such as bytecodes or 

abstract syntax trees. These relationships can represent either a data-related dependency 

(e.g. a particular data structure modified by a function and used in another function) or a 

functional dependency (e.g. method A calls method B). This type of dependency analysis 

techniques has been widely used in a research context to examine the relationship 

between coupling and quality of a software system (e.g. Hutchins & Basili, 1985; Selby 

& Basili, 1991). Syntactic dependency analysis are also used by software developers to 

improve their understanding of programs and the linkages among the various parts of 

those programs (Murphy et al, 1998).  
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One characteristic of these relational structures such as a call-graph, and for that 

matter other graphs such as inheritance and data dependencies graphs, is that they provide 

a particular view of the system-wide structure. Moreover, the accuracy of the information 

represented in these graphs depends on the ability of the tool used to identify all the 

appropriate types of syntactic relationships allowed by the underlying programming 

language (Murphy et al, 1998).  

An alternative mechanism of identifying dependencies consists of examining the 

set of source code files that are modified together as part of a modification request. This 

approach is equivalent to the approach proposed by Gall and colleagues (1998) in the 

software evolution literature to identify logical dependencies between modules. A source 

code file can be viewed as representing a “bundle” of technical decisions. If a 

modification request can be implemented by changing only one file, it provides no 

evidence of any dependencies among files.  However, when a modification request 

requires changes to more than one file, it can be assumed that decisions about the change 

to one file in a modification request depend in some way on the decisions made about 

changes to the other files involved in implementing the modification request.  

Dependencies could range from syntactic, for instance a function call between files, to 

more complex semantic dependencies where the computations done in one files affects 

the behavior of another files. This approach would represent a better estimate for 

semantic dependencies relative to call graphs or data graphs because it does not rely on 

language constructs to establish the dependency relationship between source code files. 

The remainder of this dissertation refers to this approach to identify dependencies as the 

“Files Changed Together” (FCT) method. I will refer to the method to identify 
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dependencies based on syntactic functional and data relationship described earlier as the 

CGRAPH method. 

The Task Dependency (TD) matrices produced by the techniques described in the 

previous paragraphs could change over time as new product dependencies are created or 

existing ones are removed. Moreover, the information captured by the TD matrix 

constructed with the FCT method might differ from the TD matrix constructed with the 

CGRAPG method. Those changes or differences could potentially impact the measures of 

coordination requirements (equation 1) and congruence (equation 2). Then, 

understanding the general properties of the task dependency matrices, how they evolve 

over time and how the differ from each other is critical to assess the impact of socio-

technical congruence on outcome variables such as development productivity and 

software quality. The following sections address these issues using the data from Project 

A.  

 

General Properties and Evolution of the FCT Task Dependency Matrix 

Using the FCT method, I constructed monthly TD matrices which captured all the 

changes to the code associated with the set of modifications resolved on each month. 

Since a graph and a matrix are equivalent representations of a set of relational data, I can 

use widely accepted graph measure to examine the general properties of the TD matrices3. 

One basic measure is the density of the graph which provides a general idea of the level 

of interconnectivity among the nodes of the graph. In this research context, density 

translates to the overall degree of interdependence amongst the source code files in the 

                                                 
3 I use the terms graph and network interchangeably throughout the dissertation 
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system. A second useful network measure is the clustering coefficient (Watts, 1999) and 

indicates the extent to which there are clusters of interdependent source code files that are 

also interdependent amongst themselves. Those two measures, density and clustering 

coefficient, provide a general view of the structural properties of the TD matrices.  

Figure 2 shows the evolution of the density and clustering coefficient measures 

over the time covered by the data. The density of the monthly TD matrices is relatively 

low, with a few exceptions where the levels of density exceed 0.01 (avg=0.0033, 

min=0.0004, max=0.0204). The clustering coefficient measure shows modest levels 

(avg=0.0925, min=0.0023, max=0.1774) suggesting a small degree of interdependent 

clusters of files in the TD matrices. In sum, the results indicate that, on a monthly basis, a 

small set of dependencies are identified, and those dependencies tend to be modestly 

clustered.  
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Figure 2: Evolution of the Density and Clustering level of the TD matrices (FCT 

method) 
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An instance of a set of source code files changing together as part of a 

modification request represents a piece of evidence indicating the existence of a product 

dependency, potentially logical or implicit in nature. In order to capture the representative 

set of product dependencies, an understanding of the degree of change in the information 

contained in the TD matrices is required. If the matrices are relatively stable that suggests 

that considering a short time slice could suffice to capture all relevant product 

dependencies. On the other hand, if the information contained in the monthly TD matrices 

changes significantly from time t to time t+1, it is necessary to identify the appropriate 

time window size that would yield an accurate representation of the product 

dependencies. Figure 3 shows the percentage of change in the information contained in a 

TD matrix from time t relative to the TD matrix from time t-1. The set of technical 

dependencies captured differ significantly from month to month with an average change 

of 37% (min=5.11%, max=49.94%). These results suggest that the changes to the source 

code are affecting different sets of source code files over time. Hence, it is necessary to 

explore how many months of information would constitute an accurate and representative 

set of technical dependencies that could be used to compute the Coordination 

Requirement matrices. 



 
 

 30

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Month in the Dataset

Pe
rc

en
ta

ge
 o

f C
ha

ng
e

 

Figure 3: Evolution of the Change in the Information Contained in the TD matrices 

(FCT method) 

 

The following procedure was used to explore the time window size necessary to 

capture the relevant product dependencies. First, the union of all the k-tuples of 

consecutive TD matrices is computed, where k represents the number of months of data 

used to compute the new TD matrices and it ranges from 2 to 39 months. For instance, in 

the case of k=2, this computation outputs TD matrices that contain all the dependencies 

based on the changes made to the software between months 1 and 2, month 2 and 3, 

months 3 and 4, and so forth. The second step is to average the network density value of 

all the matrices associated with a particular value of k. Finally, I plotted that average 

value of network density for each value of k. Figure 4 depicts the results of this 

procedure. As the number of months of data considered to compute the TD matrix 
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increases, the density level of that TD matrix increases monotonically until month 19 

where a density value of 0.0109 is reached. The remaining 20 months of data increase the 

density of the TD matrix from 0.0109 up to 0.01151. In other words, any additional month 

of data beyond 19 month does not yield a significant increase in the value of the density 

of the TD matrix, indicating that any additional month of data does not contribute any 

additional information value in terms of technical dependencies. In view of this result, I 

used a time period of 19 months to compute the TD matrix used in the calculations of the 

coordination requirements.  
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Figure 4: Average Cumulative Density of the TD matrix (FCT method) 

 

General Properties and Evolution of the CGRAPH Task Dependency Matrix 

In this case of the CGRAPH, the dependencies between source code files are 

determined based on data and functional references. Data references are represented by 

relationships were a source code file, A, references a data object in a second source code 

file B. Functional references are represented by relationships where a source code file, A, 
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invokes a function or a method declared in a second source code file B. Unlike the 

relationships in the FCT methods, data and functional references are directional, that is, 

the pair of source code files (A,B) is considered different from the pair (B,A).  

I collected quarterly data for this type of dependency information, mapping each 

quarter to the corresponding 3 months of the data discussed in the previous paragraphs. I 

used the C-REX tool (Hassan and Holt, 2004) to identify programming language tokens 

and references in each entity of each source code file. This analysis was performed over 

the entire source code of the system4 at the end of the 3rd month of each quarter. Using 

the resulting data, I computed dependencies between source code files by identifying 

data, function and method references that cross the boundary of each source code file. In 

other words, each cell ij of the TD matrix computed with the CGRAPH method represents 

the number of data/function/method references that exist from file i to file j. 

Figure 5 shows the evolution of the network density measure over each quarter. 

The TD matrices have higher levels of density (avg=0.0311, min=0.0261, max=0.0322) 

relative to those obtained using the FCT method5. In terms of the evolution of the 

clustering coefficient measure, we see that the level are also very stable over time, and 

higher (avg=0.1862, min=0.1738, max=0.1909) than those reported for the TD matrices 

created with the FCT method. The density of the TD matrices produced by the CGRAPH 

is significantly higher than the density of the matrices produced by the FCT method. This 

difference could stem primarily from two characteristics of the source code of a system. 

First, the CGRAPH method identifies numerous technical dependencies that involve files 

                                                 
4 The set of files used in the analysis also included the automatically generated source 
code files from functionality such as remote procedure calls. 
5 The maximum level of density of a TD matrix produced by the FCT is 0.01151 if all 39 
months of development activity are considered. 
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that once developed, are rarely modified. Cross-cutting concerns such as logging, tracing 

and security are good examples. Commonly used low level functionality such memory 

and thread management and basic storage types such as lists and queues are another 

example. A second factor that might contribute to higher levels of density of the TD 

matrices is the technical dependencies that exist with and between automatically 

generated source code files. One such example is the source code for remote procedure 

calls (RPCs). The FCT method would capture dependencies between caller and callee of 

an RPC if there changes to the RPC specification or functionality. On the other hand, the 

CGRAPH method would capture the complete path of dependencies from the caller 

through the RPC stubs, marshalling and communication code all the way to the callee. 

Given the potential bias that these two factors could have in the computations of 

dependencies, I removed them from the quarterly call graphs and recomputed the density 

measures for each quarterly TD matrices. The results showed a reduction in the density 

(avg=0.0289, min=0.0241, max=0.0299). However, the density levels remained 

significantly higher than those for TD matrices created with the FCT method when 

considering the 19 month window for development activity. 
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Figure 5: Evolution of the Density level of the TD matrices (CGRAPH method) 

 

We also examined the percentage of change in the information contained in a TD 

matrix from quarter t relative to the TD matrix from quarter t-1. Figure 6 shows that rate 

of change is relatively low (avg=0.24%, min=0.1%, max=0.9%). Those rates of change 

indicate whether the relationship between files exists or not. If we extend the idea of 

change to also consider a modification in the weight of the relationship (e.g. number of 

calls between files), the rate of change increases (avg=1.1%, min=0.4%, max=3%), 

however, they remain relatively stable over time. This result it is not particularly 

surprising since significant changes in the overall syntactic dependency structure of a 

system would imply major code refactoring efforts or architectural changes, events that 

do not occur often. A similar pattern of stability was found in the TD matrices produced 

by the FCT method when I accumulated the commit information from 19 consecutive 

months. Then, we could think of the volatility that the monthly TD matrices produced by 
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the FCT method showed as an indication of how the development work evolves over time 

rather than just focusing how the overall structure of the technical dependencies changes 

over time. In sum, the CGRAPH method produces TD matrices that contain significantly 

more product dependency information relative to those produced by the FCT method. 

Moreover, a fraction of the product dependencies identified by both methods identified 

differed significantly. 
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Figure 6: Evolution of the Change in the Information Contained in the TD matrices 

(CGRAPH method) 

 

Comparative Analysis of the Task Dependency Matrices 

 Although the analyses described above provides valuable information about the 

various TD matrices, they do not tell us anything regarding the similarity in the sets of 

technical dependencies identified by both, FCT and CGRAPH, methods. One of the 

advantages of the FCT method is the potential to identify technical dependencies that 
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might not necessarily be captured by a simple syntactic dependency among modules of a 

software system such as semantic dependencies (Gall et al, 1998). This argument 

suggests that a comparison between the TD matrices generated by the two methods, FCT 

and CGRAPH, might show differences, possibly significant. The first step of this analysis 

was to compute the following two operations: TD
(FCT) - TD

(CGRAPH) and TD
(CGRAPH) - 

TD
(FCT). These operations, which are equivalent to the set difference operation, allow us to 

determine which dependencies that are identified by the FCT methods are not identified 

by the CGRAPH method and vice versa. The focus is to identify whether a relationship 

between two modules exists on one matrix, the other or in both. Hence, I do not consider 

the differences in the weight on the linkages. I compared quarterly TD
(CGRAPH) matrices 

against the TD
(FCT) computed for a period of time of the 19 months prior to the end of the 

quarter. For the first two quarters, I did not have 19 month worth of past data to compute 

the TD
(FCT) matrices. Therefore, I used 13 months to construct the TD

(FCT) that compared 

to the TD
(CGRAPH) matrix from the first quarter, and 16 months in the case of the second 

quarter comparison. 

 Figure 7 shows the comparison between the TD matrices. The TD matrix computed 

using the FCT method has an average of 14.6% of the dependencies that were not 

identified by the CGRAPH methods (min=12.4%, max=17.1%). As discussed earlier, the 

TD matrices computed using the CGRAPH method are denser and that situation is clearly 

reflected in this comparison. On average, the TD matrix computed using the CGRAPH 

had 74.3% of product dependencies that were not identified by the FCT method 

(min=70.6%, max=79.2%).  
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Figure 7: Comparison between TD matrices generated by the FCT and CGRAPH 

methods 

 

Comparative Analysis of the Coordination Requirement Matrices 

As described in chapter 2, the Coordination Requirements matrix (CR) is a 

function of two elements: the TA matrix and the TD matrix. Using the different methods 

for identifying technical dependencies to construct TD matrices will result in different CR 

matrices. Hence, we also need to examine the general properties of the both types of CR 

matrices. Using the data from the modification requests resolved in each month to 

compute the TA matrix. In terms of computing the TD matrix, we use a 19 month moving 

windows in the case of the FCT method or the corresponding quarterly TD matrix in the 

case of the CGRAPH method. Figure 8 shows the evolution of the density and clustering 

coefficient measures for the CR matrices constructed based on the FCT method. We 

observe that the density of the monthly CR matrices is low (avg=0.0655, min=0.0005, 
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max=0.1429) while the clustering coefficient measure shows relatively high levels 

(avg=0.3179, min=0.0308, max=0.4331) suggesting an important degree of 

interdependent clusters of files in the CR matrices.  
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Figure 8: Evolution of Density and Clustering level of the CR matrices (FCT 

method) 

 

Figure 9 shows evolution of the density and clustering coefficient measures for 

the CR matrices constructed based on the CGRAPH method. Although, the clustering 

coefficient values (avg=0.3979, min=0.0312, max=0.5402) are relatively similar to those 

shown in Figure 8. On the other hand, the CR matrices created using the CGRAPH 

methods are significantly more dense (avg=0.1509, min=0.0009, max=0.2408) than those 

created using the FCT method. In other words, CR matrices constructed with the 

CGRAPH method would suggest significantly levels of coordination requirements for the 
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developers. Then, it is important to understand if the additional coordination needs are 

indeed necessary. The question is addressed in chapter 5. 
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Figure 9: Evolution of Density and Clustering level of the CR matrices (CGRAPH 

method) 

 

Chapters 5 and 6 present two empirical studies that use the dependency 

identification techniques discussed in the previous paragraphs (FCT and CGRAPH) to 

examine the mismatch between coordination needs and coordination activities and their 

impact of two traditional outcome variables: development productivity and product 

quality.  
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CHAPTER 5: DEPENDENCIES, CONGRUENCE AND THEIR 

IMPACT ON DEVELOPMENT PRODUCTIVITY  

 

Identifying work dependencies and determining the appropriate coordination 

mechanisms to address the dependencies is not a trivial problem. Coordination is a 

recurrent topic in the organizational theory literature and, as discussed in chapters 1 and 

2, many stylized types of task dependencies and coordination mechanisms have been 

proposed over the past several decades. These perspectives are useful in the context of 

enduring structures. However, numerous types of work, for instance non-routine 

knowledge-intensive activities such as software development, are potentially full of fine-

grain dependencies that might change on a daily or hourly basis. Conventional 

coordination mechanisms like standard operating procedures or routines would have very 

limited applicability in these dynamic contexts. Failure to identify the new needs for 

coordination and information exchange might hinder the organization’s ability to adapt to 

changes in their competitive environment (Henderson & Clark, 1990). The study reported 

in this chapter represents the first step in the examination of how the gaps between 

coordination needs and actual coordination activity impact outcome variable, such as 

development productivity, in the context of software development activities. 

 

Study I: Congruence and Development Productivity 

Software development is populated with rapidly changing dependencies and this 

attribute of software development tasks is a potential source of coordination problems 

which impacts productivity. The analysis presented in this study focuses, first, in 
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exploring the dynamism in the coordination requirements and, secondly, examining the 

impact that coordination activity congruent with coordination needs has on development 

performance. 

 

Research Questions 

When members of a team are physically collocated and coordination requirements 

within the team change, there are numerous ways for team members to identify the new 

needs and act on them such as group and status meetings and managerial intervention. 

However, social and communicational barriers pose important obstacles for coordination 

among individuals from different formal teams. Given these challenges, if the 

coordination requirements always involve the same set of developers, it is expected that 

over time individuals would develop common knowledge or a shared mental model that 

would reduce the possibility of coordination breakdowns (Espinosa, 2002). 

Unfortunately, rapidly changing coordination requirements would represent a more 

demanding environment. Therefore, it is also important to understand how the 

coordination requirements differ over time. This discussion leads to our first research 

question: 

 

RQ 1: How stable are coordination requirements? 

 

The organizational literature suggests that congruence is an important factor 

affecting task performance (Burton & Obel, 1998; Carley & Ren, 2001). For instance, 

mismatch between interdependent design tasks and coordination might have impact on 
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the quality of airplane engines (Sosa et al, 2004). Moreover, in software engineering, 

coordination breakdowns can lead to longer development times (Espinosa, 2002; 

Herbsleb & Mockus, 2003) and higher number of defects and higher costs (Curtis et al, 

1986). Then, higher levels of task performance associated with higher levels of 

congruence are expected, leading to the following research question: 

 

RQ 2: Is higher congruence associated with better task performance?  

 

Numerous factors such as the attributes of the task and individual-level 

characteristics drive communication and coordination patterns. As these factors evolve 

over time, it is crucial to understand the impact on the development of congruence, 

raising our third research question: 

 

RQ 3: How do various types of congruence change over time? 

 

Method 

Data from Project A was used to examine the research questions addressed in this 

study. The unit of analysis is the modification request. A total of 2375 multi-team 

modification requests were identified. Those modification requests belonged to the first 

four releases of the product. Software development involves making a set of technical 

decisions that result in modifications to parts of the software. In order for the software to 

function correctly, the technical decisions made by the various developers must be 

compatible. Consequently, some type of coordination is required.  Empirical research has 
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shown that difficulties in communication and coordination breakdowns are recurring 

problems in software development (Curtis et al, 1988; Herbsleb & Mockus, 2003; Kraut 

& Streeter, 1995), particularly when the work items are geographically distributed 

(Herbsleb & Mockus, 2003) and the task involves more than one team (Curtis et al, 1988; 

Espinosa, 2002; Kraut & Streeter, 1995). For these reasons, the analysis focuses on the 

set of modification requests that involved more than one software development team.  

 

Description of the Measures 

The literature has identified a number of factors that affect development time and, 

consequently, the resolution of modification requests. Some of those factors are related to 

characteristics of the task such as the amount of code to be written and the priority of the 

task, whereas other factors capture relevant attributes of the individual developers and the 

teams that participate in the development task. In the following paragraphs, I first 

describe our dependent variable, resolution time of modification requests. Secondly, the 

procedures used to construct the measures of congruence are described. Finally, I 

describe a number of control measures that were also included in the statistical models. 

Productivity Measure: The measure of task performance is Resolution Time 

which captures the time it took to resolve a particular modification request, and it 

accounts for all the time that the MR was assigned to developers. The modification 

requests reports contain records of when the MR was opened and resolved as well as 

every time the MR was assigned to a particular developer. Given this information, I can 

compute the amount of time that developers were actually working on the task.  
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Congruence Measures: The data for building the Coordination Requirements 

matrix was extracted from several data sources such as the modification request reports, 

the version control system as well as the software code itself. A modification request 

provides the “developer i modified file j” relationship that constitutes our Task 

Assignment matrix. Since, two different methods for identifying dependencies were used, 

FCT and CGRAPH, I constructed two different Task Dependency matrices. In the case of 

the FCT method, the cell cij of the Task Dependency matrix represents the number of 

times a particular pair of source code files changed together as part of the work 

associated with a modification request. As described in chapter 3, a moving window of 

19 months was used to capture the relevant set of logical dependencies among the 

software modules. The resolution date of the modification request was paired with the 

end of the time window used to collect the task dependency information. In the case of 

the CGRAPH method, the cell cij of the Task Dependency matrix represents the number 

of data/function/method references from file i into file j. The data from the quarter 

associated with the resolution date of the modification request was used to collect the task 

dependency information. Then, using those Task Assignments and Task Dependencies 

matrices, the Coordination Requirement matrix is computed using equation 1. 

In order to compute a measure of congruence, I also need to build the Actual 

Coordination matrix which represents the coordination activities that took place during 

the work associated with a modification request. These activities could take numerous 

forms and the communication and information exchanges could occurs over different 

means. Hence, four coordination paths were used to construct the Actual Coordination 

matrices. First, Structural Congruence captures the potential paths of communication and 
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coordination that members of a formal team have through various mechanisms such as 

team meetings and other work-related activities. I built the actual coordination matrix 

where a coordination activity between engineers i and j exists if they belong to the same 

formal team. Geographical congruence, similarly to the case of organization structure, is 

built around the idea of potential paths of communication and coordination that exist 

when individuals work in the same physical location (Allen, 1997; Olson & Olson, 2000). 

Then, in terms of the matrix of coordination activities, engineers i and j have a linkage if 

they work in the same location. Higher levels of congruence would mean that the 

geographic location of people matches their coordination needs so that relatively little 

coordination is required across sites.  MR communication congruence considers an 

exchange of technical information between engineers i and j only when both i and j 

explicitly commented in the modification request report. Multiple modification requests 

might refer to the same problem and later be marked as duplicates of a particular 

modification request. All duplicates of the focal MR were also used to capture the 

interactions among developers.  Finally, IRC communication congruence was computed 

based on interaction between developers from the IRC logs. Three raters, blind to the 

research questions, examined the IRC logs corresponding to the period of time associated 

with each MR and established an interaction between engineers i and j if they made 

reference to the bug ID or to the task or problem represented by the MR in their 

conversations. In order to assess the reliability of the raters’ work, 10% of the MRs where 

coded by all raters. Comparisons of the obtained networks showed that 98.2% of the 

networks had the same set of nodes and edges. All four Actual Coordination matrices 

were symmetric.  
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Control Measures: Past research has proposed several additional factors that 

impact development time (Espinosa, 2002; Herbsleb & Mockus, 2003; Kraut & Streeter, 

1995). I collected a number of control variables that capture attributes of the task, the 

individuals and the teams associated with the development work. Several task-specific 

factors such as task dependency, priority and task re-assignments could have an inportant 

effect on development time. Temporal Dependency was measured as the number of 

modification requests that the focal MR depends on in order for the task to be performed. 

Management prioritized the activities of the developer by using a scale from 1 to 5 in the 

modification request report where level 5 as the highest priority and level 1 as the lowest 

priority. This rating constituted our measure of priority of the MR. Task re-assignment 

was measured as the number of times an MR was re-assigned to a different engineer or 

team. Re-assignment impacts resolution time because each new developer needs to build 

up contextual information about the task. In addition, MRs opened by customers could 

represent work items with higher importance consequently affecting the resolution time.  

A dummy variable was used to indicate if the MR is associated with the service request 

from a customer. Multiple Locations is a binary variable that indicates whether the all the 

developers that worked on a particular MR were in the same geographical location (a 

value of 0) or were distributed across the development labs (a value of 1). Finally, the 

release variable identifies the release of the product that the modification request is 

associated with. This variable could also be considered as a proxy for time to control for 

efficiencies that might develop over time and, consequently, affect the resolution time of 

the modification requests.   
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The amount of code written or changed is a proxy for the actual amount of 

development work done. The change size was computed as the number of files that were 

modified as part of the change for the focal MR. Prior research (Espinosa, 2002) has used 

lines of code changed as a measure of the size of the modification; however, a 

comparative analysis of both measures showed equivalent results in the statistical model 

used in this study. Therefore, the results presented in this chapter are based on the 

measure computed from the number of files modified. The change size measure was 

highly skewed so a log transformation was applied to satisfy the normality requirements 

of the regression model used in our analysis. 

An experienced software engineer familiar with tools and programming languages 

can be substantially more productive than an inexperienced developer (Brooks, 1995; 

Curtis, 1981; Curtis et al, 1986). Furthermore, experience with the domain area and the 

technical characteristics of the application being developed help accelerate development 

time (Curtis et al, 1986). I used archival information as well as data from the software 

repositories to compute several individual level measures of experience. First, 

programming experience was computed as the average number of years of programming 

experience prior to joining the company of all the engineers involved in the modification 

request. Tenure was measured as the average number of months in the  company of  all 

the engineers that  worked in the modification request at the time the  work  associated  

with  the  MR  was  completed.  Component experience was computed as the average 

number of times that the engineers responsible for the modification request have worked 

on the same files affected by the focal modification request. This measure was also log-

transformed to satisfy normality requirements. Finally, Team load is a measure of the 
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average work load of the teams responsible for the components associated with the 

modification request. This control variable was computed as the ratio of the average 

number of modification requests in open or assigned state over the total number of 

engineers in the groups involved in the focal modification request during the period of 

time the MR was in assigned state. 

 

Description of the Model and Preliminary Analysis 

Past research has found that linear (Espinosa, 2002; Herbsleb et al, 2006) and 

hierarchical linear (Espinosa, 2002; Kraut & Streeter, 1995) models are appropriate 

techniques for examining the effects of different factors on development productivity. In 

this study, I examined the effect of the various congruence measures on task performance 

using the following linear regression model: 

 

                  
∑ +

+∑=

j jiableControlVarj
i iMeasureCongruenceieolutionTimRes

εδ

β

*

*
                  (Equation 3) 

 

An examination of descriptive statistics and Q-Q plot indicated that several of the 

variables (Resolution Time, Chang Size and Component Experience) were highly skewed 

to the left. The log transformation provided the best approximation to a normal 

distribution. Table 1 summarizes the descriptive statistics of the dependent and control 

variables included in our model. Table 2 summarizes the descriptive statistics of the 

congruence measures computed using the FCT method. Table 3 presents the descriptive 

statistics for the congruence measures computed using the CGRAPH method. The 
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analysis of the pair-wise correlations amongst the variables in the model (Table 4) 

suggested no relevant collinearity problems. Only a small set of correlations were 

statistically significant but their levels did not exceed +/- 0.343. 

 

Table 1: Descriptive Statistics for Dependent and Control Variables 

 Mean SD Min Max Skew Kurtosis 

Resolution Time (log)  3.260  1.236  0  6.490 -0.809  3.127 

Temporal Dependency  0.834  1.721  0  7  2.144  6.759 

Priority  3.388  1.111  1  5  0.115  1.694 

Re-assignment  1.457  1.599  0  6  0.481  1.605 

Customer MR  0.483  0.499  0  1  0.067  1.004 

Release  2.323  1.093  1  4  0.269  1.769 

Change Size (log)  1.163  1.781  0  4.741  0.302  4.005 

Team Load  9.104  2.938  1.016 58.800 -0.361  2.342 

Multiple Locations  0.779  0.414  0  1 -1.346  2.814 

Programming Exp.  4.429  3.654  2 22  1.074  4.462 

Tenure 23.921 17.107  0 76  0.175  1.685 

Component Exp.  (log)  3.051  0.958  0  5.601  -0.015  2.145 
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Table 2: Descriptive Statistics for Congruence Measures (FCT method) 

 Mean SD Min Max Skew Kurtosis 

Structural Cong.   0.663  0.217  0.156  0.995  -0.931  3.754 

Geographical Cong.  0.684  0.237  0.142  0.993  -0.863  3.201 

MR Cong.   0.567  0.283  0.070  0.982  -0.319  1.965 

IRC Congr.  0.599  0.274  0.079  0.982  -0.506  2.233 

 

Table 3: Descriptive Statistics for Congruence Measures (CGRAPH method) 

 Mean SD Min Max Skew Kurtosis 

Structural Cong.   0.544  0.273   0.111  0.614 -0.322  1.849 

Geographical Cong.  0.571  0.266  0.193  0.967 -0.062  2.048 

MR Cong.   0.093  0.086  0.002  0.348  1.434  4.114 

IRC Cong.  0.133  0.142  0.001  0.313  1.324  3.448 
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Table 4: Pair-wise Correlations 
(N=2375, bold values are significant at p < 0.05). 

  1 2 3 4 5 6 

1 Temporal Dependency -      

2 Priority  0.341 -     

3 Re-assignment -0.013  0.029 -    

4 Customer MR  0.012 -0.031 -0.224 -   

5 Release  0.004  0.001  0.025 -0.019 -  

6 Change Size  0.113  0.332  0.031 -0.046  0.003 - 

7 Team Load -0.001 -0.029 -0.329  0.103 -0.008 -0.044 

8 Programming Exp.  0.314  0.343  0.033 -0.021 -0.015  0.218 

9 Tenure  0.243  0.023  0.009  0.001 -0.026 -0.216 

10 Component Exp. -0.043 -0.013  0.016 -0.001 -0.002 -0.122 

11 Multiple Locations -0.160 -0.013 -0.006  0.002  0.037  0.014 

12 Struct. Cong. (FCT) -0.030  0.022 -0.031  0.032 -0.015  0.049 

13 Geo. Cong. (FCT) -0.097 -0.035  0.008 -0.013  0.024 -0.008 

14 MR Cong. (FCT)  0.007 -0.014 -0.003 -0.032 -0.013 -0.001 

15 IRC Cong. (FCT) -0.019 -0.006  0.079 -0.129 -0.016 -0.021 

16 Struct. Cong. (CGR) -0.024 -0.001  0.124 -0.196  0.035  0.055 

17 Geo. Cong. (CGR)  0.004 -0.034  0.094 -0.064  0.002 -0.045 

18 MR Cong. (CGR)  0.007 -0.014 -0.003 -0.032 -0.012 -0.001 

19 IRC Cong. (CGR) -0.063  0.010  0.058 -0.051  0.039  0.013 
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  7 8 9 10 11 12 

7 Team Load -      

8 Programming Exp. -0.012 -     

9 Tenure  0.011  0.266 -    

10 Component Exp.  0.018  0.161  0.245 -   

11 One Location  0.010  0.012 -0.022  0.041 -  

12 Struct. Cong. (FCT)  0.031 -0.021 -0.052 -0.038  0.049 - 

13 Geo. Cong. (FCT) -0.009 -0.005  0.003 -0.003  0.087  0.127 

14 MR Cong. (FCT) -0.062 -0.004 -0.009  0.007 -0.040  0.033 

15 IRC Cong. (FCT) -0.044 -0.003 -0.022 -0.011 -0.003  0.028 

16 Struct. Cong.(CGR) -0.062 -0.021 -0.053 -0.003  0.059  0.041 

17 Geo. Cong. (CGR) -0.085 -0.004 -0.016 -0.010  0.072  0.015 

18 MR Cong.(CGR) -0.051 -0.014 -0.093 -0.039 -0.021  0.032 

19 IRC Cong.(CGR) -0.029 -0.008  0.002  0.001 -0.008  0.021 

  13 14 15 16 17 18 

13 Geo. Cong. (FCT) -      

14 MR Cong. (FCT)  0.017 -     

15 IRC Cong. (FCT)  0.005  0.009 -    

16 Struct. Cong.(CGR)  0.009  0.009  0.027 -   

17 Geo. Cong. (CGR)  0.035  0.004  0.041  0.188 -  

18 MR Cong.(CGR)  0.032  0.039  0.001  0.021  0.044 - 

19 IRC Cong.(CGR)  0.003  0.002  0.014  0.064  0.073  0.019 
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Results 

In this section, the results of the various analyses performed to examine the three 

research questions addressed by this study are reported.  

 

The Evolution of Coordination Requirements 

I analyzed the evolution of the coordination requirements in order to address the 

first research question of this study. I seek to assess whether the needs to coordinate, in 

fact, change over time and how rapidly they change. I first focus our attention to two key 

aspects of the coordination requirements: the average change in an individual’s 

coordination needs and the amount of coordination needed that crosses team boundaries. 

Figure 10 depicts the evolution of both factors on a monthly basis over the time period 

covered by the dataset.  The average change in an individual’s coordination needs (blue-

diamond line in Figure 10) is computed by comparing the Coordination Requirements 

matrices (constructed using the FCT method) from month t against month t-1 and 

averaging the amount of change in the coordination needs across all the individuals. As 

an example, a 10% value of change in the coordination needs in month t means that 10% 

of the coordination requirements of any particular developer did not exist in the previous 

month (t-1). The amount of coordination requirements that involve developers from other 

formal organizational groups is represented by the green-square line in Figure 10. The 

values are computed by identifying those coordination requirements that cross the 

boundaries of an individual’s team and averaging those specific coordination needs. 

Figure 10 shows significant volatility in the coordination requirements over time. There 
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are several instances where the level of change in the coordination requirements is above 

30%. A similar pattern also occurs for the amount of coordination needs that cross the 

team boundary. 
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Figure 10: The Evolution of Coordination Requirements on a Monthly Basis 

 

 The variability of the coordination requirements using the CGRAPH method was 

also examined. I found that the coordination needs tend to be quite stable which is not a 

surprising finding given the very low variability of the information contained in the TD 

matrix computed using the CGRAPH method (see Figure 6 in Chapter 4).  

A second factor that could affect the variability of the coordination needs is the 

technical properties or organizational factors of project A. In order to assess if these 

patterns of coordination needs are found in other projects, I used data from three different 

projects of the Apache Software Foundation, described in chapter 3 as project B. Figure 
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11 shows the average change in an individual’s coordination needs for each of the three 

Apache projects: Ants, Tomcat and Struts. I did not examine the change in the amount of 

coordination needs that cross the team boundary because these open source projects do 

not have a formalized organizational structure as traditional closed source project 

typically have. In this case, the observed variability in the coordination requirement is 

significantly lower relative to the magnitudes reported in figure 10 for the closed source 

project.  
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Figure 11: The Evolution of Coordination Requirements in Open Source Projects 

 

There are several characteristics of the open source projects that could explain the 

difference in the volatility of coordination needs between the closed source project and 

the Apache Foundation projects. First, there were 24 time periods where the rate of 

change was zero, in 6 of those 24 months there were no commits into the version control 

system and in 8 other months, the commits were done by only 2 individuals. On the other 
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hand, in the closed source project, there were a minimum of 587 commits in any month 

contributed by a minimum of 71 developers. This exemplifies the significant differences 

between the projects in terms to size, the amount of source changed and the overall 

amount of development activity during the period of time covered by the data.  

Secondly, identifying modification requests in open source project such as Ant, 

Tomcat and Struct, is quite a complex endeavor because the nature of the procedures 

used by developers. Open source projects, typically, do not associate the information in 

defect tracking tools (e.g. Bugzilla) with the data in the version control systems (e.g. 

CVS). Researchers attempt to construct synthesized modification request by grouping a 

collection of changes to source code files when those changes are made within a 

particular period of time, for instance within a few minutes (Zimmermann & Weibgerber, 

2004). Unfortunately, this type of approach has several limitations which reduce the 

reliability of the data. First, the approach assumes that a modification request is resolved 

by just one bundle of changes the software system. Secondly, the approach also assumes 

that only one developer is involved in resolving a particular modification request. I have 

observed several projects (such as Projects A, C and D) where that assumption held only 

for a fraction of the modification requests. 

Albeit the differences in the characteristics of the projects and the limitations of 

the data, I think that all four projects show that the coordination requirements shift quite 

often. As it was argued in chapter 1, traditional coordination mechanisms do not provide 

an appropriate framework for handling rapidly changing work dependencies. Then, 

understanding how the actual coordination activities carried out by the developer match 
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those and what are the implications in terms of development productivity becomes an 

important research question. 

 

The Impact of Congruence on Resolution Time of MRs 

I performed several linear regression analyses to assess the effect of the 

congruence measures on resolution time. The results are presented in Table 5. Models I is 

a baseline regression considering only the control factors. Models II introduces the 

measures of congruence in the analysis computed using the FCT method. Model IV 

introduces the measures of congruence in the analysis computed using the CGRAPH 

method. Finally, models III and V also include several interaction factors to assess 

whether the role of congruence changes across the different releases of the product and 

when the groups involved in a particular MR are geographically distributed. The 

measures of structural and geographical congruence could be affected by personnel 

turnover and mobility across teams. In order to assess whether these factors contributed 

to the results, I examined archival data collected from the company and I determined a 

yearly turnover rate of only 3% and an inter-group mobility rate of less than 1%. The 

modification requests that involved individuals that left the company or changed group 

membership were eliminated from the analysis. However, an analysis including those 

modification requests showed results consistent with those reported in tables 5 and 6. 

Model I reports results consistent with previous empirical work in software 

engineering. Factors such as the size of the modification, familiarity with the software 

components, and general programming experience are significant elements that affect 

resolution time of MRs (Espinosa, 2002; Herbsleb & Mockus, 2003). Task-specific 
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characteristics such as temporal dependencies with other modification requests and the 

priority of the task increased development time. As it has been reported in previous 

research (Espinosa, 2002; Herbsleb & Mockus, 2003), the results also show that when 

developers are geographically distributed, the amount of time required to resolve 

modification requests increases.  

The results indicated that time, captured by the variable Release, had no statistical 

effect. Since the Release measure is in fact a categorical variable, I also examined its 

impact using two dichotomous variables to represent the four possible values. The results 

were identical to defining Release as an integer from 1 to 4 to represent the four releases 

of the product. 
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Table 5: Results from OLS Regression of Effects on Resolution Time (FCT method) 

 Model I Model II Model III

(Intercept)  4.814**  4.626**  4.485** 

Temporal Dependency  0.592**  0.591**  0.591** 

Priority -0.401** -0.404** -0.404** 

Re-assignment  0.011  0.013  0.011 

Customer MR  0.091  0.098  0.091 

Release -0.018 -0.018 -0.031 

Change Size (log)  0.306**  0.311**  0.310** 

Team Load -0.006 -0.006 -0.005 

Multiple Locations  0.128**  0.131**  0.128** 

Programming Experience -0.166** -0.166** -0.166** 

Tenure -0.002+ -0.002+ -0.002 

Component Experience (log) -0.065** -0.065** -0.066** 

Structural Congruence (FCT)  -0.137* -0.184* 

Geographical Congruence (FCT)  -0.014* -0.041* 

MR Congruence (FCT)  -0.057* -0.051* 

IRC Congruence (FCT)  -0.066* -0.205* 

Release X Structural Congruence (FCT)    0.020 

Release X Geographical Congruence (FCT)   -0.027 

Release X MR Congruence (FCT)   -0.041 

Release X IRC Congruence (FCT)   -0.065* 

Multiple Locations X MR Congruence (FCT)    0.133 

Multiple Locations X IRC Congruence (FCT)   -0.274* 

N 2375 2375 2375 

Adjusted R2 0.718 0.819 0.831 

(+ p < 0.10, * p < 0.05, ** p < 0.01)    
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Table 6: Results from OLS Regression of Effects on Resolution Time (CGRAPH 

method) 

 Model I Model IV Model V

(Intercept)  4.814**  4.876**  4.976** 

Temporal Dependency  0.592**  0.592**  0.591** 

Priority -0.401** -0.402** -0.401**

Re-assignment  0.011  0.034  0.037 

Customer MR  0.091  0.188  0.183 

Release -0.018 -0.016 -0.051 

Change Size (log)  0.306**  0.306**  0.305** 

Team Load -0.006 -0.005 -0.006 

Multiple Locations  0.128**  0.125**  0.176** 

Programming Experience -0.166** -0.167** -0.166**

Tenure -0.002+ -0.003+ -0.001 

Component Experience (log) -0.065** -0.064** -0.065**

Structural Congruence (CGRAPH)  -0.205+ -0.231+ 

Geographical Congruence (CGRAPH)  -0.113* -0.031* 

MR Congruence (CGRAPH)   0.412  0.480 

IRC Congruence (CGRAPH)  -0.002  0.019 

Release X Structural Congruence (CGRAPH)    0.218 

Release X Geographical Congruence (CGRAPH)   -0.002 

Release X MR Congruence (CGRAPH)   -0.035 

Release X IRC Congruence (CGRAPH)    0.131 

Multiple Locations X MR Congruence (CGRAPH)    0.044 

Multiple Locations X IRC Congruence (CGRAPH)   -0.424 

N 2375 2375 2375 

Adjusted R2 0.718 0.731 0.722 

(+ p < 0.10, * p < 0.05, ** p < 0.01)    
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  Model II in table 5 shows statistically significant effects on all the congruence 

measures computed using the FCT method.  The estimated coefficients of the congruence 

measures have negative values which are associated with a reduction in resolution time. 

The results highlight the important role of congruence on task performance as well as the 

complementary nature of all communication paths. Structural congruence is associated 

with shorter development times suggesting that when coordination requirements are 

contained within a formal team and appropriate communication paths exists, task 

performance increases. Geographical congruence had a positive effect on resolution time, 

consistent with past research that argued distance has detrimental effects on 

communication (see Herbsleb & Mockus, 2003 and Olson & Olson, 2000 for reviews). 

Communication congruence based on the interactions amongst engineers through the MR 

reports as well as IRC were also statistically significant suggesting the usefulness of these 

tools in facilitating coordination among individuals that belong to different teams and 

could potentially be geographically distributed. Model III includes several interaction 

terms. The results showed statistical significance only in the Release X IRC congruence 

and Multiple Locations X IRC congruence interactions. The negative coefficients in both 

interactions suggest that in later releases or when developers are geographically 

distributed the impact of IRC congruence on resolution time is higher above and beyond 

the direct effect. 

Model IV in table 6 shows the results obtained when the congruence measures are 

computed using the CGRAPH method. In this case, only geographical congruence is 

statistically significant and its coefficient is negative indicating a reduction in the 

resolution time as congruence increases. Structural congruence was marginally 
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significant. These results support the argument that the two dependency identification 

methods, FCT and CGRAPH, are capturing different sets of technical dependencies that 

impact the development tasks differently. From an analytical point of view, the difference 

between the results from model IV (table 6) and model II (table 5) could stem from 

higher levels of density in the CR matrices when using the CGRAPH method as discussed 

in the “preliminary analysis” section. Higher levels of density in the CR matrices imply 

higher numbers of coordination requests that have to be matched by the actual 

coordination matrices (CA). In the cases of structural and geographical congruence the 

resulting CA matrices would tend to be denser than those in the case of MR and IRC 

communication because I assumed coordination activity amongst all members of team or 

a location, respectively. Then, CA matrices for structural and geographical congruence 

would provide a “better fit” to the denser CR matrices. This argument is supported by the 

descriptive statistics from table 3 that indicate that the range of values for MR and IRC 

congruence is significantly smaller than those for structural and geographical congruence. 

Finally, Model V in table 6 shows that interaction terms were not statistically significant 

when considering congruence measures computed using the CGRAPH method.  

 

The Evolution of Congruence over Time 

The previous section showed that when communication amongst individuals 

matches the communication requirements imposed by the task dependencies, task 

performance is improved. The next step is to explore the evolution of the measures of 

congruence over time. In this analysis, I used the FCT method to compute the four 

different measures of congruence because these measures had a statistically significant 
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effect in the empirical analysis reported in the previous section. The communication 

networks were built on a weekly basis. Congruence was computed comparing the 

Coordination Requirements matrix from week tn to the Actual Coordination matrix from 

week tn-1, because I assumed that developers would discuss a particular problem before 

making the actual changes in the source code. I also computed the congruence measures 

using week tn for both required and actual coordination, and the trends remained the 

same. The communication network based on IRC or modification requests represents an 

aggregate measure across all MRs resolved in a particular week. One difficulty when 

doing a longitudinal analysis of a software project is the changing nature of the tasks. For 

instance, in the first release, an important amount of feature development activity took 

place during the period of analysis. By the third and fourth releases, the modification 

requests were mostly related to defect resolution. Therefore, I also explored the 

relationship between the characteristics of the task, i.e. feature development or defect 

resolution, and the evolution of the congruence measures. 

The analysis showed that the different measures of congruence varied 

significantly across releases. Figure 12 shows the average level of each measure of 

congruence across the different releases. In the first release, structural and geographical 

congruence dominate while communication congruence based on MRs or IRC are almost 

absent. In later releases, structural congruence decreases significantly, particularly in the 

third and forth releases. This result is consistent with the results on the volatility of 

coordination requirements discussed earlier in this chapter, suggesting that the 

dependencies among the various components of the software system are changing over 

time and the work requires the contribution of individuals from different teams. The 



 
 

 64

decline in structural congruence could also be interpreted as a deterioration of the 

homomorphic relationship between product and work structures posited by the 

modularity theoretical argument (Baldwin & Clark, 2000; Conway, 1968; Parnas, 1972). 

The measures of communication congruence based on MR and IRC increase in release 2 

and they remain high during the last two releases. The increase in communication 

congruence coincides with the gradual decrease of structural congruence. A possible 

interpretation of this result is that developers are learning to substitute the lack of formal 

communication paths with interactions through other means such as IRC and MR reports.  
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Figure 12: Evolution of the Congruence Measures across Releases 

 
I also examined the evolution of congruence from a statistical point of view using 

a repeated measures type of analysis. Congruence was considered as the dependent 

variable and I considered the main effect of time, type of task and type of congruence 

measure as well as the interaction terms. Type of task refers to whether the modification 

request refers to a feature development or a defect task. Table 7 shows a significant main 
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effect of time on congruence as well as the type of congruence. Moreover, the interaction 

of time and type of congruence is significant suggesting that the various measures are 

changing over time in different ways as shown in Figure 12. Type of task has a main 

positive effect on congruence which is higher for feature development tasks. However, 

the effect of type of task remains the same over time as suggested by the lack of 

significant in the “Time-Type of Task” interaction effect. 

 
Table 7: Effect of Time on Congruence. 

  F p 

Main Effects Time 107.028 <0.001 

 Type of Congruence 112.208 <0.001 

 Type of Task     8.465   0.004 

Interactions Time * Type of Congruence 116.051 <0.001 

 Time * Type of Task     0.387   0.742 

 

Appropriate communication and coordination is an integral part of the software 

development process (Herbsleb & Mockus, 2003; Kraut & Streeter, 1995). The 

significant changes in communication patterns shown by Figure 12 raise an interesting 

question: are all developers able to identify the changes in coordination requirements and 

adapt their communication paths accordingly? Mockus and colleagues (2002) reported 

that in open source and commercial projects most of the modifications to the software are 

made by a small number of developers. These findings provide a useful framework to 

identify the most productive developers, in order to compare their coordination behaviors 

with the less productive developers.  
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I computed the contributions of the developers in project A and I found that 50% 

of the modifications made to the software system were done by only 18 (15%) developers 

(see Figure 13).  I then separated the developers and their interactions into two groups 

and repeated the analysis reported above. Figure 14 shows the evolution of congruence 

for the top 18 contributors across releases. The general patterns are similar to the overall 

results shown in Figure 12. Structural congruence decays over time while MR and IRC 

communication congruence increase considerably in the last two releases. 
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Figure 13: Proportion of Changes per Developer per Release 

 

On the other hand, Figure 15 depicts a very different result for the rest of the 

developers. Structural congruence decreases over time but not as drastically as in the case 

of the top performers. Moreover, these developers do not seem to use the computer-

mediated communication means to interact with the right set of people. Consequently, 

they never achieve high levels of congruence in the IRC and MR congruence measures. 
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The software engineering literature suggests that top developers typically have an order 

of magnitude better performance than average developers and the sources of that 

disparity are usually attributed to differences in experience and cognitive ability (Curtis, 

1981; Curtis et al, 1986). The results reported in this chapter did not provide evidence 

that differences in experience and familiarity with the system or attributes of the tasks 

were significant sources of difference in performance. 
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Figure 14: Congruence Measures across Releases based on Top Contributors 

Interactions 
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Figure 15: Congruence Measures across Releases for the Rest of the Developers 

 

Table 7 shows the results of comparing the other developers against the top 

performers. The two groups of individuals do not differ in terms of domain experience, 

their level of education and their tenure in the company. The disparity in programming 

experience is marginally significant, suggesting that the top performers might have 

slightly deeper programming experience than the rest of the developers. I also compared 

some of the attributes of the modifications requests that the two groups of developers 

worked on such as the average size of the changes made to the software and the average 

number of lines added to and removed from the software. The comparison of the average 

size of the modification request was marginally significant, suggesting that top 
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performers tended to work on slightly larger changes to the software. However, there was 

no statistically significant difference in terms of lines of code added or deleted. 

 

Table 8: Differences between developers’ population 

 t p 

Programming Experience -1.85 0.073 

Domain Experience -0.59 0.556 

Graduate Education  1.03 0.311 

Tenure in the company  1.21 0.239 

Avg. Size of Changes -1.79 0.072 

Avg. Lines Added -1.51 0.148 

Avg. Lines Deleted  0.95 0.341 

 

The analysis and results reported in this chapter do not present any evidence of 

causality between patterns of communication and developer’s performance. The results 

suggest that the traditional perspective in software engineering relating only cognitive 

ability and experience to contributions (Curtis, 1981) may not capture all of the important 

attributes of top-performing developers, since their performance seems to have a 

substantial social component. Chapter 7 explores in more detail the interesting questions 

raised by figures 14 and 15 regarding the relationship between patterns of coordination 

and individual-level development performance.  
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Discussion 

This study evaluated a measure of coordination that extends traditional 

conceptualizations of coordination by taking a fine-grain level of analysis to better 

examine the mismatches between dependencies and coordination activities. Those gaps 

could have major implications for the productivity and the quality of the output of 

product development organizations (Curtis et al, 1986; Espinosa, 2002; Herbsleb & 

Mockus, 2003; Sosa et al, 2004) and for non-routine intellectual work more generally. 

The empirical results suggest that the technique described in chapter 2 provides a useful 

framework to examine how coordination needs that are not satisfied impact software 

development productivity. When the developers coordinate their task with the relevant set 

of workers, productivity increases.  I also addressed the dynamic nature of dependencies 

that exist in complex tasks such as software development. Individuals have difficulties 

identifying task interdependencies that are not obvious or explicit (Sosa et al, 2004) and 

the developers’ ability to recognize dependencies diminish as coordination requirements 

change over time (Henderson & Clark, 1990). For these reasons, volatility in the 

coordination requirements represents a major hurdle for work groups and, particularly, 

for those that are geographically distributed. Collaborative tools could play an important 

role in reducing the gap between recognized and actual interdependencies. It would be 

highly desirable for future tools to be able to assess the characteristics of the task and 

assist the users in identifying and dealing with dependencies unknown a priori or that 

emerged as a consequence of the evolving characteristics of tasks. The congruence 

measure provides a framework for those future tools.  
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The results showed the product structure-task structure relationship is not as 

simple as theorized. Modularization techniques in software development only consider 

one type of technical dependencies, syntactic relationships (Garcia et al, 2007). That 

limitation manifested clearly in the results. The empirical evaluation of the congruence 

framework showed the importance of understanding the dynamic nature of software 

development. Identifying the “right” set of technical dependencies that determine the 

relevant work dependencies and coordinating accordingly has significant impact on 

reducing the resolution of modification requests. The analyses showed traditional 

software dependencies, such as syntactic relationships, tend to capture a relatively stable 

view of product dependencies that is not representative of the dynamism of software 

development activities. On the other hand, logical dependencies provide a more accurate 

representation of the most relevant technical dependencies in software development 

projects. 
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CHAPTER 6: DEPENDENCIES, CONGRUENCE AND THEIR 

IMPACT ON SOFTWARE QUALITY  

  

Quality is a fundamental topic in software engineering. The multidimensional 

nature of the concept has led prolific research across many areas in the software 

engineering literature. For instance, an extensive literature in software reliability and 

related areas has focused on developing pragmatic failure prediction models as well as 

estimation of the reliability of a system in terms of time to failure (Fenton & Neil, 1999). 

The work on software process is another area that had examined how multiple factors 

relate to software quality (e.g. Paulk et al, 1995; Pressman, 2004). A growing body of 

empirical work in software dependencies has examined the relation between the structure 

of software systems and their proneness to failure. Early research explored approaches to 

measuring reference coupling among components or modules and it showed a positive 

relationship between high levels of coupling and failure proneness of a software system 

(see Chidamber & Kemerer, 1994 and Arisholm et al, 2004 for reviews). Those findings 

apply to systems built based on a structured design approach (Selby & Basili, 1991) as 

well as object-oriented systems (Briand et al, 2000). The work on software dependencies 

has focused on syntactic relationships between modules, ignoring implicit or logical 

dependencies which could potentially be more relevant in the context of failure 

proneness. 

The study described in this chapter examines the relationship of failure proneness 

and various representations of product dependencies, syntactic and logical relationships. 
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The study also examines the impact of work dependencies and patterns of coordination 

on failure proneness, factors that have been neglected by the literature.  

 

Study II: The Structure of Dependencies, Congruence and Product Quality 

Customer reported software faults are, arguably, caused by violation of 

dependencies that are not recognized by the developers implementing a software system. 

Those dependencies could stem from various sources such as technical properties of the 

system under development and how the development work is organized. The software 

engineering literature suggests several types of technical dependencies. One form of 

software dependencies are syntactic relationships among modules of a system that are 

reflected in the code by the definition and use of functions, methods, variables and other 

programming language constructs. This line of work found that higher levels of coupling 

are related to higher levels of failure proneness of a software system. However, syntactic 

dependencies are only one approach for representing the structure of a software system. 

In more recent work in the software evolution literature, Gall and colleagues (1998) 

examined the evolution of changes to modules to identify logical dependencies. The 

approach attempts to uncover dependencies among modules that are not explicitly 

identified by traditional syntactic approaches. Unfortunately, our understanding of the 

relationship between the structure of logical dependencies and failure proneness of a 

system is very limited. Yu (2006) reported a positive correlation between logical and 

syntactic dependencies which would suggest that higher numbers of logical dependencies 

would increase the likelihood of failure. However, those results are based on only one 

system and generalizing of the relationship between syntactic and logical dependencies is 
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difficult. Moreover, the results presented in chapters 4 and 5 suggest the two types of 

product dependencies capture different set of relationships between components of the 

system.  Hence, further study of this relationship is required in order to understand the 

implications of different types of product dependencies on the failure proneness of a 

software system. 

Human and organizational factors may also affect the quality of a software 

system. The level of interdependency between tasks tends to drive communication and 

coordination among workers (Galbraith, 1973; von Hippel, 1990).  However, recent 

studies of coordination in software development suggest that the identification and 

management of technical dependencies is a challenge in software development 

organizations, particularly, when those dependencies are semantic rather than syntactic 

(Bass et al, 2006; Cataldo et al, 2007; de Souza, 2005; Grinter et al, 1999). Then, 

appropriate levels of communication and coordination may not occur, potentially 

decreasing the quality of a system (Curtis et al, 1988; Herbsleb et al, 2006). 

Consequently, it is important to understand how work dependencies and the coordination 

behavior of developers impact the failure proneness of a system. 

The primary contribution of this study is the examination of the impact that 

syntactic, logical and work dependencies have, simultaneously, on the failure proneness 

of a software system.  I also focus on enhancing external validity by replicating the study 

on two distinct projects from two unrelated companies. First, I examine how syntactic 

and logical dependencies relate to a software system’s failure proneness. Secondly, I 

incorporate in the analysis of failure proneness the role of work development. Thirdly, 

the developers’ ability to coordinate their work congruently with regards to the 
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coordination needs is considered. In sum, I examine how work-related factors affect the 

quality of software system above and beyond the technical dependencies among the 

various parts of that software system. 

 

Research Questions 

The traditional view of software dependency, syntactic dependencies, had its 

origins in compiler optimizations and they focus on control and dataflow relationships 

(Horwitz et al, 1990). This approach extracts relational information between specific 

units of analysis such as statements, functions or methods, as well as modules, typically, 

from the source code of a system or from intermediate representations of software code 

such as bytecodes or abstract syntax trees. These relationships can represent either a data-

related dependency (e.g. a particular data structure modified by a function and used in 

another function) or a functional dependency (e.g. method A calls method B). The 

pioneering work by Basili and colleagues (Hutchins & Basili, 1985; Selby & Basili, 

1991) represents the first attempt to use of this type of data in the context of failure 

proneness of a system. Building on the concepts of coupling and cohesion proposed by 

Stevens, Myers and Constantine (1974), Hutchins and Basili (1985) presented metrics to 

assess the structure of a system in terms of data and functional relationships which were 

called bindings. The authors used clustering methods to evaluate the modularization of a 

particular system. Selby and Basili (1991) used the data binding measure to relate system 

structure to errors and failures in a software system. Using a comparison of means 

approach, the authors argued that routines and subsystems with lower coupling were less 

likely to exhibit defects than those with higher levels of coupling. Similar results have 
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been reported in object-oriented systems. Chidamber and Kemerer (1994) proposed a set 

of measures that captures different aspects of the system of relationships between classes 

in an object-oriented design. Briand and colleagues (2000) found that the measures of 

coupling proposed by Chidamber and Kemerer were positively associated with failure 

proneness of classes of objects.   

A second, and more recent, view of dependency has been developed in the 

software evolution literature. This approach focuses on deducing dependencies between 

modules of a system that are changed together as part of the software development effort. 

Gall and colleagues (1998) called this type of relationships “logical” dependencies. They 

differ from traditional syntactic dependencies because they are able to identify indirect or 

semantic relationships between modules that are not explicitly deducible from the 

programming language constructs (Gall et al, 1998). Remote procedure calls (RPC), 

infrastructure code (e.g. memory management, basic libraries) or cross-cutting concerns 

like logging and security represents cases where logical dependencies provide more 

valuable information than syntactic dependencies. For instance, in the case of RPCs, the 

syntactic dependency approach would provide a long path of connections because a call-

graph would identify the sequence of functional relationships from the module invoking 

the RPC through the RPC stubs all the way to the RPC server module. On the other hand, 

logical dependencies would show a direct dependency between the module invoking the 

RPC and the server module or the RPC specification if those pieces of the system 

changed together. In the case of cross-cutting concerns, the information provided by the 

syntactic dependencies approach would highlight highly coupled modules (the ones that 

implementing the logging or security functionality) that tend to be very stable, and 
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consequently, very unlikely to be prone to failures although the high coupling would 

suggest otherwise. The logical dependency approach eliminates these problems because 

the likelihood of modules that implement cross-cutting concern changing together with 

other modules is very low, hence, a logical dependency would not be established.  

Unlike the case of syntactic dependencies, limited work has focused on the 

relationship between logical dependencies and failure proneness of a system. Yu (2006) 

reported positive correlations between logical and syntactic dependencies in the Linux 

operating system. Nagappan & Ball’s (2007) study found that logical coupling metrics 

are correlated with post-release failure proneness of programs. However, these studies 

have important limitations. First, the studies examined only one system, hence, there are 

threats to external validity. Secondly, these studies did not examine the impact of the 

structure of the logical dependencies. Thirdly, Nagappan and Ball (2007) computed the 

metrics using a coarse-grain approach at the level of program bundles, called areas, and 

the measures were all highly correlated which did not allow the authors to assess the 

actual impact on failure proneness of each metric relative to other factors that might also 

contribute.  

The work on syntactic dependencies suggests that higher levels of coupling 

between modules of a systems, the higher the level of failure proneness of a systems. The 

limitations of the current work on logical dependencies do not allow us to reach the same 

conclusion. More importantly, the majority of the research on software dependencies 

tends to examine correlation between variables of interest, consequently, such analysis do 

not explore the effects of the various factors simultaneously. These gaps in the literature 

lead to the following research question addressed by this study: 
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RQ 1: How does the structure of dependencies, syntactic and logical, 

affects the failure proneness of a system?  

 

The literature on failure proneness has focused on the role of technical properties 

of a software system neglecting the impact of human and organizational factors on the 

quality of a software system. The work on coordination in software development suggests 

that the identification and the management of work dependencies is a challenge in 

software development organizations (Grinter et al, 1999; Herbsleb et al, 2000; Herbsleb 

& Mockus, 2003). Unfortunately, modularization is not a sufficient representation of 

work dependencies in software development for several reasons. First, recent empirical 

evidence indicates that the relationship between product structure and task structure is not 

as simple as previously assumed (Cataldo et al, 2006). Secondly, software modularization 

techniques only consider one type of product dependency, syntactic relationships (Garcia 

et al, 2007). Thirdly, promoting minimal communication between teams responsible for 

interdependent modules is problematic because it significantly increases the likelihood of 

occurrence of integration problems (de Souza et al, 2004; Grinter et al, 1999). Herbsleb 

and colleagues (2006) theorized that the irreducible interdependence among software 

development tasks can be thought of as a distributed constrain satisfaction problem 

(DSCP) where coordination is a solution to the DSCP. Within that framework, the 

authors argued that the patterns of task interdependencies among the developers as well 

as the density of the dependencies in the constraint landscape are important factors 
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affecting coordination success, consequently, affecting the quality of a software system 

and the productivity of the software development organization.  

In sum, the quality of a software system depends on technical properties of the 

system such as the structure of dependencies between the modules or relevant parts of the 

system as well as the ability of the developers to identify and manage work dependencies, 

which leads to the following research question: 

 

RQ 2: How does the structure of work dependencies affects the failure 

proneness of a system?  

 

Finally, mismatches between coordination requirements and coordination 

behavior might have negative implications on the quality of the product (Sosa et al, 

2004). Moreover, in software engineering, coordination breakdowns can lead to higher 

number of defects and higher costs (Curtis et al, 1988; Herbsleb et al, 2006). Then, if 

developers coordinate their work effort in a congruent way given a particular set of work 

dependencies, lower levels of failure proneness associated with higher levels of 

congruence are expected, leading to the following research question: 

 

RQ 3: Is a higher level of congruence associated with lower levels of 

failure proneness?  
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Method 

I examined the research questions using data from 8,257 modification requests 

from project A and 7000 modification requests from project C. In the rest of this section, 

I first describe the various measures followed by a description of the statistical model 

used in the analysis. 

 

Description of the Data and Measures 

In order to study the research questions outlined in the previous section, several 

sources of data from projects A and C, such as source code, version control systems and 

defect tracking data, were used. The following paragraphs describe the measures as well 

as the statistical models used in the analysis. Tables 9 and 10 present the descriptive 

statistics of the measures used in this study. 

Measuring Failure: The dependent variable, File Buggyness, is a binary measure 

indicating whether a file has been modified as part of the resolving a field defect. 

Therefore, the unit of analysis is the source code file. In the datasets, there were four 

releases available to customers in project A and six releases were available to customers 

in project C. Using the modification requests from projects A and C, the dataset of source 

code files was constructed in the following way. First, the dataset included all the files 

that were modified as part of the development effort or as part of resolving a defect in a 

particular release. For each one of those files, I determined if they were associated with a 

field defect in any of the releases of the product covered by the data. Secondly, I included 

all files that were associated with field defects that did not change during the 
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development of a release under study.  The following logistic regression model was used 

to assess the effect of the various independent factors: 
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       (Equation 4) 

The independent variables indicated in the model are described in the following 

paragraphs. 

Syntactic Dependencies: Syntactic dependency information was collected using 

the C-REX tool (Hassan and Holt, 2004) to identify programming language tokens and 

references in each entity of each source code file. This analysis was performed over the 

entire source code of the two systems at the end of the 3rd month of each calendar quarter. 

Using the resulting data, I computed dependencies between source code files by 

identifying data, function and method references that cross the boundary of each source 

code file. If we think in terms of a matrix of source code files, each cell ij represents the 

number of data/function/method references that exist from file i to file j. I refer to data 

references as data dependencies and function/method references as functional 

dependencies. A comparative analysis of the quarterly syntactic dependency information 

showed minimal variability (less than 0.5% across quarters) over time. Consequently, the 

information from the last quarter of each release covered by the data was used to compute 

all the syntactic dependency measures. 
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In the case of project A, a random sample of 100 files was selected to verify that 

the dependencies identified by the CREX tool were correct. The only problem 

encountered was missing dependencies in the cases of usage of function pointer, a 

traditional problem of most of the syntactic dependency identification tools (Murphy et 

al, 1998). Giving this particular problem, I searched for all the source code files of project 

A that used function pointers and a total of 279 files were identified. I manually updated 

the functional dependencies measures for that set of files. A similar analysis was 

performed on the dataset from project C. 

I constructed an inflow, outflow and total count measure of both data and 

functional syntactic dependencies. Tables 9 and 10 report the pair-wise correlations of the 

various syntactic dependency measures with the other variables used in the statistical 

models. In order to select the appropriate set of syntactic dependency measures, two 

factors were evaluated: the predictive value of the measures and the pair-wise 

correlations to minimize collinearity problems. Based on those criteria, the inflow data 

dependency measure was selected.  

Logical Dependencies: An alternative mechanism for identifying software 

dependencies considers the set of source code files that are modified together as part of a 

modification request as sharing technical dependencies. This approach was proposed by 

Gall and colleagues (1998) in the software evolution literature to identify logical 

dependencies between modules. One advantage of this approach is that it provides a 

better estimate for semantic dependencies relative to call graphs or data graphs because it 

does not rely on language constructs to establish the dependency relationship between 
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source code files (Gall et al, 1998). The literature also refers to these software 

dependencies as evolutionary dependencies. 

For both projects, the FCT method described in chapter 4 was used to construct 

the logical dependency matrix. In this study, the information from all the changes across 

all releases under consideration was accumulated in the logical dependency matrix. The 

data was accumulated because files that are changed together in a MR represent evidence 

of the existence of a logical dependency. The longer the period of time considered, the 

more changes take place, consequently, the accuracy of the identified logical 

dependencies increases.  

Two file-level measures were extracted from the logical dependency matrix. First, 

the Amount of Logical Dependencies measure for file i was computed as the number of 

non-zero cells on column i of the matrix. The information in the diagonal of the matrix is 

ignored because it does not provide relational information. The diagonal just indicates the 

number of times a particular file was modified as part of modification requests. Since the 

matrix of logical dependencies is symmetric, this measure is equivalent to the degree of a 

node in undirected graphs terminology without considering self-loops. 

A second measure, the Clustering of Logical Dependencies measure for file i was 

computed as the density of connections among the direct neighbors of file i. Unlike the 

amount of logical dependencies measure, this measure captures the nature of the 

interdependencies among the files that are interdependent with the focal file which is 

consistent with Herbsleb and colleagues’ (2006) argument that the density of 

dependencies increases the likelihood of coordination breakdowns. This measure is 

equivalent to Watt’s (1999) local clustering measure. 
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Work Dependencies: I constructed two different measures of work 

dependencies. A traditional measure, Workflow Dependencies, captures the temporal 

aspects of interdependencies in development tasks. For instance, sub-tasks of a particular 

development effort might need to be performed sequentially, therefore, imposing a 

temporal dependency, for instance, where sub-task A must be done before sub-task B can 

be started. In earlier chapters, I discussed the need for a richer measure of work 

dependencies that is able to capture the dynamism and complexity of software 

development work. In chapter 5, I showed that the coordination requirements measure 

has those attributes. Hence, it is also important to examine it impact on software quality. 

Workflow Dependencies: Both projects used tools to track the progress of 

development tasks. The information stored in these tools provided the data necessary to 

construct the workflow followed by each modification request. A workflow is a 

traditional approach to identify work dependencies where two developers i and j are 

interdependent if the development task has to be transferred from developer i to 

developer j at some point in time. For instance, a modification request requires changes to 

two subsystems. Developer i completes the work on one of the subsystems and then 

he/she hands over the development task to developer j to finish the work on the second 

subsystem. Using the work dependency relationships between developers from all the 

modification requests considered in the study, I constructed a developer to developer 

matrix where a cell ij represents the number of work dependencies developer i has on 

developer j. In order to study the implications of the work dependencies on the 

development process, it is useful to think if those dependencies as a system of social 

relationships amongst developers. Then, social network analysis provides the 
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methodological framework and the theoretical background to guide us in examining the 

implications of particular structures of those social relationships (Wasserman & Faust, 

1993). One consistent result in the social network literature is that being centrally 

positioned in the system of social relationships has implications on the actor’s ability to 

perform his/her tasks.  

Although several measures have been developed to capture how central an 

individual is in a network, one measure has been widely explored: degree centrality 

(Freeman, 1979). Degree centrality attempts to identify central individuals based on the 

number of ties to other actors in the network. The idea is that more connections or ties 

benefits individuals because they provide numerous conduits to information and other 

resources. On the other hand, an increasing number of ties involves more effort dedicated 

to the communication. In the context of this study, increasing the number of ties involves 

augmenting the number of work dependencies associated with a developer. In turn, a 

developer requires increased effort and dedication to manage those relationships. 

Consequently, the quality of the produced software code could suffer. Mathematically, 

this idea of degree centrality is captured by the following formula: 

                                                 1−= n
)id(n

)iDC(n                                               (Equation 5) 

Where n is the number of nodes in the network and d(ni) is the number of 

connections of node ni, The values of this measure range from 0, which indicates the 

node is an isolate or it is not connected to any other node, to 1 which indicates that a 

particular node i has a ties to all other n - 1 nodes. The degree centrality measure 

described above was used to relate the impact of work dependencies on the failure 

proneness of a source code file.  
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The Workflow Dependencies measure was constructed in the following way. For 

each file, I identified the developer that worked on the file that had the highest value of 

degree centrality in the workflow network. Using the maximum value of degree centrality 

is based on the idea that a single highly constrained developer that modified a particular 

file could be sufficient to introduce a defect into the system. An alternative approach 

would be to compute this measure as an average of the degree centrality of the set of 

developers that worked on each particular file. However, the number of developers that 

modified a file was highly correlated with other measures. Hence, it was more 

appropriate to use the measure based on the maximum value of degree centrality and 

network constraint measures. 

Coordination Requirements: A developer by developer matrix was constructed 

using equation 1 as it was described in chapter 2. The TA matrix was built using the 

information from the MR reports. The logical dependency matrix described in previous 

paragraphs constituted the TD matrix. Then, the developer to developer linkage 

information was related to the files using the same procedure used to compute the 

workflow dependencies measure. In other words, for each file, I identified the developer 

that worked on the file that had the highest value of degree centrality in the coordination 

requirements matrix. 

Congruence measures: In order to construct these measures, I used the same 

procedure described in chapter 5. Since coordination data over IRC was only available 

for a subset of the modification requests considered in this study, I computed only 

structural, geographical and MR congruence measures for each modification request.  
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The congruence measures at the file level were constructed in the following way. 

For each file, I identified all the modification requests that touched the file. Then, the 

median value of each congruence measure was associated with that particular file. An 

alternative approach would be to compute the measure as an average of level of 

congruence across all modification requests that affected each particular file. However, 

the number of MRs that affected a file was highly correlated with other measures and it 

was also a significant predictor of failures. Hence, it was more appropriate to use the 

measure based on the median value of congruence. 

Additional Predictors: The objective of the study is to examine the relative 

impact that important conceptual factors such as technical and work dependencies have 

on failure rather than improving existing predictive model of failures. However, the 

analysis cannot neglect those factors that past research have found associated to failures. 

Over the past decades, numerous measures have been used to predict failures (see for 

instance Graves et al, 2000; Fenton & Neil, 1999; Nagappan & Ball, 2007; Ostrand et al, 

2005). As suggested by Graves and colleagues (2000), those measures could be grouped 

in two sets: process measures and product measures. Process measures such as number of 

previous faults, number of deltas, age of the code and the number of developers that 

modified the files have been shown to be very good predictors of failures (Graves et al, 

2000; Nagappan & Ball, 2007). These measures are also referred to in the literature as 

churn metrics. In this study, I measured the number of MRs, which is similar to the 

number of past failures a file had, as well as the average number of lines changed in a 

particular file as part of modification requests. One problem with the process measures is 

they tend to be highly correlated with other measures (Nagappan & Ball, 2007), and this 
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study was not an exception. Tables 11 and 12 show that the number of MRs measure is 

highly correlated with LOC, Average Lines Changed and with the measures of logical 

dependencies, particularly in project C. In order to minimize collinearity problems, only 

LOC and Average Lines Changed were used in the models. 

On the other hand, the results for product measures such as size of the code and 

complexity measures are mixed. Researchers have found a positive relationship between 

lines of code and failures (Briand et al, 2000; Graves et al, 2000). However, other work 

has found a negative relationship between lines of code and failures, that is, a larger 

number of LOC decreases the likelihood of failures (Basili & Perricone, 1984). In this 

study, the size of the module was measured as the number of non-blank non-comment 

lines of code.  
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Table 9: Descriptive Statistics for Last Release of Project A 

 Mean SD Min Max Skew Kurtosis 

FileBuggyness 0.458 0.498 0 1  0.167 1.028 

LOC 496.8 919.1 23 17853  6.090 71.51 

Avg. Lines Changed 12.19 39.35 0 671  8.171 92.35 

Syntactic Dep.  5.158 66.56 0 1741  21.82 509.8 

Num. Logical Dep.  102.6 114.3 0 836  1.883 7.525 

Clustering Logical Dep. 0.751 0.284 0 1 -0.996 3.155 

Workflow  Dep. 0.227 0.115 0 0.386 -0.174 1.728 

Coordination Req. 0.137 0.121 0 0.623  2.655 11.91 

Structural Congruence 0.151 0.271 0 0.376  1.012 5.939 

Geo. Congruence 0.231 0.304 0 0.476 -3.362 6.943 

MR Congruence 0.152 0.205 0 0.584  2.048 2.933 
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Table 10: Descriptive Statistics for Last Release of Project C 

 Mean SD Min Max Skew Kurtosis 

FileBuggyness 0.103 0.305 0 1  2.598 7.753 

LOC 838.2 3515.1 16 65542  16.09 288.1 

Avg. Lines Changed 18.14 55.99 0 949  10.79 154.5 

Syntactic Dep. 42.69 170.2 0 1979  8.177 83.16 

Num. Logical Dep. 23.95 26.09 0 233  2.916 16.61 

Clustering Logical Dep. 0.220 0.239 0 1  2.013 6.618 

Workflow  Dep. 0.347 0.142 0.010 0.704 -0.133 2.725 

Coordination Req. 0.814 0.188 0 0.976 -2.067 7.677 
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Table 11: Pair-wise Correlations for Last Release of Project A (* p < 0.01) 

 1 2 3 4 5 6 

1.FileBugyness -      

2.LOC (log)  0.282* -     

3.Number MRs (log)  0.371*  0.241* -    

4.Avg. Lines Chg. (log)  0.185*  0.274*  0.303* -   

5.In-Data Dep. (log)  0.065*  0.001  0.079*  0.033 -  

6.Out-Data Dep. (log)  0.183*  0.479*  0.190*  0.191* -0.263* - 

7.Total-Data Dep. (log)  0.222*  0.448*  0.235*  0.199*  0.344*  0.796* 

8.In-Funct. Dep. (log)  0.041*  0.271*  0.090*  0.091* -0.099*  0.370* 

9.Out-Funct. Dep. (log)  0.118*  0.433*  0.149*  0.159* -0.240*  0.778* 

10.Total-Funct. Dep. (log)  0.086*  0.416*  0.135*  0.142* -0.218*  0.702* 

11.Num. Logic. Dep. (log)  0.491*  0.335*  0.454*  0.161*  0.043*  0.233* 

12.Cluster Logic. Dep. (log) -0.322* -0.217* -0.293* -0.132* -0.056* -0.167* 

13.Workflow Dep. (log)  0.336*  0.078*  0.378*  0.122*  0.019  0.073* 

14.Coordination Req. (log)  0.244*  0.095*  0.408*  0.148*  0.025  0.070* 

15.Structural Cong (log)  0.161*  0.180*  0.392*  0.141*  0.037  0.153* 

16.Geo. Cong. (log)  0.111*  0.182*  0.314*  0.124*  0.042  0.119* 

17.MR Cong. (log)  0.177*  0.187*  0.418*  0.104*  0.012  0.095* 
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 7 8 9 10 11 12 

7.Total-Data Dep. (log) -      

8.In-Funct. Dep. (log)  0.292* -     

9.Out-Func. Dep. (log)  0.596*  0.436* -    

10.Total-Funct. Dep. (log)  0.538*  0.736*  0.892* -   

11.Num. Logic. Dep. (log)  0.258*  0.061*  0.188*  0.163* -  

12.Cluster Logic. Dep. (log) -0.202* -0.099* -0.138* -0.126* -0.052* - 

13.Workflow Dep. (log)  0.103* -0.063* -0.018 -0.041*  0.348* -0.135* 

14.Coordination Req. (log)  0.092* -0.013  0.007 -0.004  0.266* -0.164* 

15.Structural Cong (log)  0.173*  0.148*  0.154*  0.161*  0.223* -0.242* 

16.Geo. Cong. (log)  0.115*  0.113*  0.097*  0.101*  0.322* -0.197* 

17.MR Cong. (log)  0.108*  0.163*  0.076*  0.150*  0.305* -0.151* 

 13 14 15 16   

13.Workflow Dep. (log) -      

14.Coordination  Req. (log)  0.257* -     

15.Structural Cong (log)  0.157*  0.212* -    

16.Geographical Cong. (log)  0.219*  0.187*  0.313* -   

17.MR Cong. (log)  0.301*  0.183*  0.249*  0.282*   
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Table 12: Pair-wise Correlations for Last Release of Project C (* p < 0.01) 

 1 2 3 4 5 6 

1.FileBugyness -      

2.LOC (log)  0.269* -     

3.Number MRs (log)  0.502*  0.413* -    

4.Avg. Lines Chg. (log)  0.168*  0.422*  0.346* -   

5.In-Data Dep. (log)  0.129*  0.269*  0.155*  0.136* -  

6.Out-Data Dep. (log)  0.211*  0.599*  0.295*  0.376*  0.081* - 

7.Total-Data Dep. (log)  0.195*  0.583*  0.293*  0.346*  0.599*  0.759* 

8.In-Funct. Dep. (log)  0.171*  0.370*  0.233*  0.199*  0.225*  0.528* 

9.Out-Funct. Dep. (log)  0.239*  0.600*  0.374*  0.389*  0.119*  0.890* 

10.Total-Funct. Dep. (log)  0.218*  0.542*  0.362*  0.358*  0.107*  0.848* 

11.Num. Logic. Dep. (log)  0.272*  0.245*  0.631*  0.251*  0.109*  0.192* 

12.Cluster Logic. Dep. (log) -0.218* -0.143* -0.322* -0.089* -0.094* -0.153* 

13.Workflow Dep. (log)  0.285*  0.149*  0.400* 0.049  0.169*  0.122* 

14.Coordination Req. (log)  0.174*  0.023  0.278* -0.060  0.159* 0.032 
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 7 8 9 10 11 12 

7.Total-Data Dep. (log) -      

8.In-Funct. Dep. (log)  0.379* -     

9.Out-Funct. Dep. (log)  0.669*  0.557* -    

10.Total-Funct. Dep. (log)  0.603*  0.785*  0.916* -   

11.Num. Logic. Dep. (log)  0.238*  0.109*  0.201*  0.203* -  

12.Cluster Logic. Dep. (log) -0.132* -0.184* -0.187* -0.190*  0.161* - 

13.Workflow Dep. (log)  0.146*  0.140*  0.164*  0.143*  0.287* -0.186* 

14.Coordination Req. (log)  0.092*  0.124*  0.087*  0.090*  0.207* -0.144* 

 13      

13.Workflow Dep. (log) -      

14.Coordination Req. (log)  0.611*      

 

 

Results 

The analysis was organized in three stages. First, I focused on examining the 

relative impact of each of the types of dependencies on failure proneness of source code 

files. The data corresponding to the last release from each project was used in this 

analysis. Secondly, a stability analysis across all the releases of both projects was 

performed to verify the consistency of the results found in the first step. Finally, 

additional confirmatory analysis was done considering the data from all the releases of 

each project into a single longitudinal model.  
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The Impact of Dependencies 

Several logistic regression models were constructed to examine the impact of 

each class of independent variables on failure proneness of a software system using the 

data from the last release of each project. I started the analysis with a baseline model that 

contains only traditional predictors. In subsequent models, I added the measures for 

syntactic, logical and work dependencies as well as congruence described in the previous 

section. It is important to assess the fitness of the model to evaluate whether each 

measure in fact has a tangible impact on failure. Therefore, for each statistical model I 

report the Akaike’s Information Criteria (AIC) and the percentage of deviance explained 

by the model. The AIC is an indicator of the fit and the explanatory power of the model. 

Lower values of the AIC indicate better fit of the model to the data. The AIC also adjust 

for the number of variables in the model. Hence, as more independent variables are added 

to the model, the AIC would decrease if those additional variables do not have a tangible 

contribution to the explanatory power of the model.  Logistic regressions were estimated 

with a maximum-likelihood method and the deviance is defined as -2 times the log-

likelihood of the model. The percentage of the deviance explained compares the log-

likelihood of the null model with the log-likelihood of the full model. Using the AIC and 

the percentage of deviance explained, I can compare the contribution that each 

independent variable has on explaining the variance exhibited by our dependent variable 

FileBuggyness. 

The first model is a baseline model which includes the size of the module in lines 

of code (LOC) and the average number of lines changed as predictors. Table 13 shows 

the estimated coefficients of the logistic regression. In both projects, LOC is positively 
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associated with failure proneness. These results agree with those found by Briand and 

collegues (2000). Past research has found conflicting results relating LOC to failures. 

Two studies (Basili & Perricone, 1984; Moeller & Paulish, 1993) found evidence 

suggesting that a larger file tends to have lower defect densities possibly because larger 

modules tend to be developed more carefully (Moeller & Paulish, 1993). The measure of 

Average Lines Changed is positively related to failure proneness in both projects 

suggesting the higher the amount of modification that occurs in a source code file, the 

higher the likelihood of encountering field defects associated with that file. Finally, based 

on the values of the AIC, the baseline model has a much better fit in the case of project C 

(lower AIC) relative to project A. Also, the two traditional predictors explain almost 50% 

more deviance in project C relatively to the model for project A. 

 

Table 13: Baseline Model for Failure Proneness 

 Project A Project C 

Intercept -2.158** -6.471** 

LOC (log)  0.333**  0.641** 

Avg. Lines Changed (log)  0.189**  0.171* 

AIC 5100 725 

Deviance Explained 7.2% 11.8% 

Nagelkerke R2 0.126 0.156 

(+ p < 0.10; * p < 0.05; ** p < 0.01) 
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The second model includes the syntactic dependency measure. Table 14 shows 

the results of the logistic regression. Consistent with previous research, syntactic 

dependencies increase the likelihood of failure on the source code. It is important to 

highlight that syntactic dependencies provide a small contribution to the explanatory 

power of the model, particularly in project A. However, its impact is still statistically 

significant. As described earlier in the chapter, several measures of syntactic 

dependencies were evaluated (inflow/outflow data and functional syntactic 

dependencies). The ones used in this regression model were inflow data dependencies for 

both projects. That choice was based on the contributions of those particular measures to 

the explanatory power of the model as well as minimizing collinearity problems. 

 

Table 14: Impact of Syntactic Dependencies on Failure Proneness 

 Project A Project C 

Intercept -2.213** -6.499** 

LOC (log)  0.336**  0.611** 

Avg. Lines Changed (log)  0.185**  0.167* 

Syntactic Dep. (log)  0.162**  0.112* 

AIC 5084 722 

Deviance Explained 7.5% 12.4% 

Nagelkerke R2 0.132 0.164 

(+ p < 0.10; * p < 0.05; ** p < 0.01) 
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In the next step, I included the two measures of logical dependencies in the 

model.  Table 15 shows the results. Higher number of logical dependencies increases the 

likelihood of failure as expected. The pair-wise correlations reported in tables 11 and 12 

showed relatively low levels of correlation between syntactic and logical dependency 

measures. Those results combined with the ones reported on table 15, suggests the effect 

of logical dependencies on failure proneness is complementary to the impact of syntactic 

dependencies. The impact of clustering of logical dependencies reduces the likelihood of 

failures suggesting that as clusters of interrelated files emerge, developers might become 

more cognizant of such relationships and, consequently, they increase their effort making 

sure that changes to the system do not introduce additional problems. The contribution of 

the logical dependencies measures to the explanatory power of the model is quite 

important in both projects, particularly, in relation to the contribution of the traditional 

syntactic dependency measures. 
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Table 15: Impact of Logical Dependencies on Failure Proneness 

 Project A Project C 

Intercept -1.569** -5.906** 

LOC (log)  0.102**  0.498** 

Avg. Lines Changed (log)  0.133**  0.044 

Syntactic Dep. (log)  0.104*  0.029 

Number Logical Dep. (log)  0.831**  0.780** 

Clustering Logical Dep. (log) -4.700** -3.902** 

AIC 3868 621 

Deviance Explained 29.7% 25.2% 

Nagelkerke R2 0.450 0.319 

(+ p < 0.10; * p < 0.05; ** p < 0.01) 

 

 

Interestingly, in project C the measure of average lines changed loses statistical 

significance once syntactic dependencies enters the model. One possible explanation for 

this result could be related to the level of correlation between Average Lines Changed 

and the variables LOC (0.4223) and Syntactic Dependencies (0.3364). Unfortunately 

other churn metrics such as average lines of code added or number of previous faults 

were even more correlated with those variables, hence, the selection of Average Lines 

Changed. 

Next, the measures of work dependencies are introduced into the model. First, I 

examined the impact of workflow dependencies. Table 16 shows consistent results across 

projects. The higher the amount of workflow dependencies developers that modified a 
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file has, the higher the likelihood of source code files to be associated with field defects. 

As expected, these results suggest when developers become more constrained by their 

work dependencies, they become more prone to make mistakes and, consequently, 

introduce defects into the software system. Table 17 shows the impact of the second work 

dependency measure: coordination requirements. This work dependency measure 

combines the logical dependency information and data regarding which developers 

participated in the effort associated with each modification request in order to determine 

which developers should coordinate with.  In project A, the coordination requirement 

measure also increases the likelihood of failures. However, in project C, its effect is not 

statistically significant. This is not surprising given the high correlation between the two 

work dependency measures (0.661) found in project C (see table 12). 
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Table 16: Impact of Workflow Dependencies on Failure Proneness 

 Project A Project C 

Intercept -2.259** -8.664** 

LOC (log)  0.127**  0.508** 

Avg. Lines Changed (log)  0.117**  0.071 

Syntactic Dep. (log)  0.102*  0.001 

Number Logical Dep. (log)  0.742**  0.555** 

Clustering Logical Dep. (log) -4.464** -2.695** 

Workflow  Dep. (log)  4.099**  8.297** 

AIC 3783 588 

Deviance Explained 31.3% 29.6% 

Nagelkerke R2 0.469 0.368 

(+ p < 0.10; * p < 0.05; ** p < 0.01) 

 

In sum, the previous analysis showed that syntactic, logical and work 

dependencies impact failures in a software system. More importantly, their role is 

complementary suggesting the various types of dependencies capture different relevant 

aspects of the technical properties of a software system as well as elements of the 

software development process. 
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Table 17: Impact of Coordination Requirements on Failure Proneness 

 Project A Project C 

Intercept -2.367** -10.03** 

LOC (log)  0.134**  0.511** 

Avg. Lines Changed (log)  0.107**  0.075 

Syntactic Dep. (log)  0.101* -0.008 

Number Logical Dep. (log)  0.724**  0.545** 

Clustering Logical Dep. (log) -4.369** -2.560** 

Workflow  Dep. (log)  3.867**  7.370** 

Coordination Requirements (log)  2.156**  2.609 

AIC 3771 588 

Deviance Explained 31.5% 29.8% 

Nagelkerke R2 0.472 0.370 

(+ p < 0.10; * p < 0.05; ** p < 0.01) 

 

 Finally, I examined the impact of congruence measures on failure. Coordination 

activity data was not available for project C, so Table 18 only reports results associated 

with project A. As expected, when developers coordinate their work appropriately, the 

likelihood of failures is reduced. However, unlike the productivity study (chapter 5), the 

results showed that only MR congruence is relevant. Structural and geographical 

congruence did not reach statistical significance. These results suggest that in the case of 

project A, the coordination activities over the MR tracking system were critical in terms 

of quality relative to other means of communication and coordination. 
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Table 18: Impact of Congruence on Failure Proneness 

 Project A 

Intercept -2.136** 

LOC (log)  0.141** 

Avg. Lines Changed (log)  0.112** 

Syntactic Dep. (log)  0.109* 

Number Logical Dep. (log)  0.758** 

Clustering Logical Dep. (log) -4.522** 

Workflow  Dep. (log)  4.237** 

Coordination Requirements (log)  2.191** 

Structural Congruence (log) -14.41+ 

Geographical Congruence (log) -0.947 

MR Congruence (log) -3.888** 

AIC 3759 

Deviance Explained 31.9% 

Nagelkerke R2 0.474 

(+ p < 0.10; * p < 0.05; ** p < 0.01)  

 

 
Stability Analysis 

The previous section showed that the different types of dependencies as well as 

congruence impacted failure proneness in the last release covered by the data in both 

projects. Now, I turn the attention to examining the robustness of those results across all 
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the releases in each project. In the case of project A, the measures of congruence are also 

included in the models. In the case of project C, given the high correlation between 

workflow dependencies and coordination requirements (avg=0.6032, min=0.3736, 

max=0.6869), I opted for including only workflow dependencies in the models. Table 19 

reports the coefficients for all the measures from the logistic regression using the data 

from the three remaining releases of project A. Overall, the results are consistent with 

those reported in table 16. There are a few exceptions. First, the traditional predictors, 

LOC and Average Lines Changed, do not show consistent results across releases. This is 

not particularly surprising giving the inconsistency of results reported in past research, 

particularly in relation to the impact of LOC (Fenton & Neil, 1999). A second exception 

is the first release, where workflow dependencies and congruence also lack statistically 

significant effects. A possible explanation for these results is the difference in the nature 

of the development work across releases. In the first release of project A, most of the 

development work is dominated by feature development. Then, the amount of workflow 

dependencies is lower because each modification request represents larger development 

tasks. As the product matures, the development work involved more defect resolution and 

less feature development. This situation would increase the workflow dependencies and 

the importance of using coordination tools such as the MR tracking system. 
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Table 19: Impact of Technical Dependencies, Work Dependencies and Congruence 

across Releases in Project A 

 
 Release 1 Release 2 Release 3

Intercept  2.987  2.809 -2.216** 

LOC  0.015  0.022  0.114** 

Avg. Lines Changed  0.064 -0.029 -0.021 

Syntactic Dep.   0.176*  0.171**  0.102+ 

Number Logical Dep.  0.977**  0.876**  0.834** 

Clustering Logical Dep. -5.124** -4.437** -4.017** 

Workflow  Dep.  0.648  1.234*  5.497** 

Coordination Requirements  7.176*  2.892**  4.670+ 

Structural Congruence -11.36  -13.71  -11.08 

Geographical Congruence -1.480  -1.249 -0.822 

MR Congruence -0.477 -1.377** -7.920** 

AIC 2462 3020 3440 

Deviance Explained 34.6% 30.1% 32.2% 

Nagelkerke R2 0.516 0.489 0.495 

(+ p < 0.10; * p < 0.05; ** p < 0.01) 

 

Table 20 shows the results for the remaining five releases of project C. In this 

case, the results are very consistent across all releases confirming the original findings 

reported in table 16. Interestingly, the explanatory power of the model is about 50% 

higher for the first two releases of project C. It is possible that over time, the system 
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structure evolves increasing the importance of other factors such as the ability of 

developers to coordinate their work in a congruent fashion. Unfortunately, the lack of 

coordination activity data from project C does not allow me to evaluate such a claim. 

 

Table 20: Impact of Technical Dependencies, Work Dependencies and Congruence 

across Releases in Project C 

 Release 1 Release 2 Release 3

Intercept -7.258** -9.615** -7.298** 

LOC  0.673**  0.681**  0.626** 

Avg. Lines Changed -0.214 -0.465 -0.291* 

Syntactic Dep. -0.003  0.058 -0.021 

Number Logical Dep.  1.124*  1.286*  0.795** 

Clustering Logical Dep. -6.284* -5.012** -3.241** 

Workflow  Dep.  2.563*  5.695**  4.195** 

AIC 118 145 437 

Deviance Explained 42.4% 47.3% 28.8% 

Nagelkerke R2 0.523 0.543 0.367 

 Release 4 Release 5  

Intercept -7.111** -8.060**  

LOC  0.480**  0.512**  

Avg. Lines Changed -0.015  0.036  

Syntactic Dep. -0.016 -0.007  

Number Logical Dep.   0.606**  0.625**  

Clustering Logical Dep. -3.123** -3.028**  

Workflow  Dep.   6.310**  7.003**  

AIC 545 566  

Deviance Explained 27.8% 28.9%  

Nagelkerke R2 0.355 0.365  
(+ p < 0.10; * p < 0.05; ** p < 0.01) 



 
 

 107

 

Checks for Random Temporal Effects 

The final step of the analysis consisted of considering all releases into a single 

model. This approach allows for controlling any random effects associated with the 

passage of time or effects that are specific to each release, providing an additional 

confirmatory test of the results reported in tables 16 and 17. The longitudinal nature of 

this analysis breaks the assumptions of a traditional linear or logistic regression statistical 

model. The dataset contains multiple observations of the same source code file which 

results in lack of independence of the observations. In order to correctly deal with that 

lack of independence, I used a random effects logistic model to examine the effect of the 

various class of dependencies on failure proneness.  Table 21 reports the results. Overall, 

the results are consistent with those reported in table 17, confirming the reliability of the 

effects and the findings reported earlier. 

 



 
 

 108

Table 21: Random-effects Model of Failure Proneness 

 Project A Project C 

Intercept -2.903** -13.32** 

LOC  0.131**  0.933** 

Avg. Lines Changed  0.057 -0.121 

Syntactic Dep.  0.259**  0.014 

Number Logical Dep.  1.939**  1.409** 

Clustering Logical Dep. -10.94** -7.221** 

Workflow  Dep.  2.083**  7.586** 

Coordination Requirements  0.555* - 

AIC 6277 1063 

Deviance Explained 27.7% 31.9% 

(+ p < 0.10; * p < 0.05; ** p < 0.01) 

 
 

Discussion 

The study reported in this chapter has several important contributions to the 

software engineering literature. First, the study examined the impact that syntactic, 

logical and work dependencies have, simultaneously, on the failure proneness of a 

software system.  All three types of dependencies are relevant and their effect is 

complementary suggesting their independent and important role in the development 

process. Consistent with past results, the analysis showed that source code files with 

higher number of syntactic dependencies were more prone to failure. More importantly, 

the results also showed that source code files with higher number of logical dependencies 
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are more likely to exhibit field defects. In addition, this study is the first analysis that 

highlights the importance of the structure of the logical relationships. The results showed 

that software modules with logical dependencies to other highly interconnected files were 

less likely to exhibit customer-reported defects. Then, this finding suggests a new view of 

product dependencies with significant implications regarding how we think about 

modularizing the system and how development work is organized. The effect of the 

structure of the network of product dependencies elevates the idea of modularity in a 

system to the level of “clusters” of source code files. Then, those highly inter-related sets 

of files become the relevant unit to consider when development tasks and responsibilities 

are assigned to organizational groups. 

A second significant contribution of the study reported in this chapter is the 

recognition and the assessment of the impact the engineers’ social network has on the 

software development process. The results showed that individuals that exhibited a higher 

number of workflow dependencies and coordination requirements were more likely to 

introduce defects in the files they worked on. These findings suggest the potentially 

detrimental effect of the additional effort on the part of a developer that needs to receive 

work from or coordinate with multiple people and manage those relationships 

accordingly in order to perform the tasks. 

Finally, the study has two additional important contributions. The empirical 

analysis was replicated across two distinct projects from two unrelated companies 

obtaining consistent results. Then, this study exhibits strong external validity, a factor 

typically neglected in the software engineering literature. In addition, the statistical 

models proposed in this chapter showed significantly higher level of predictive power 
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than recent proposed models of failure proneness (Nagappan & Ball, 2007) that focused 

on the role of traditional factors such as syntactic dependencies and churn metrics. 
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CHAPTER 7: THE EVOLUTION OF COORDINATION BEHAVIOR 

 

Over the past couple of decades, geographically distributed work has become 

pervasive and product development organizations are no exception. Unfortunately, this 

new trend has its costs. It is well established that physical proximity facilitates 

interactions among individuals working in R&D organizations (e.g. Allen, 1977; 

Herbsleb & Mockus, 2003). Distance leads to numerous problems in communication and 

coordination, and ultimately, impacts the performance of product development teams 

(Brown & Eisenhardt, 1995; Herbsleb & Mockus, 2003; McDonough et al, 2001). A 

reduction in communication has been linked to failure to identify dependencies among 

work teams resulting in coordination problems (de Souza et al, 2004; Grinter et al, 1999; 

Herbsleb & Mockus, 2003; Yassime et al, 2003).  The results reported in previous 

chapters showed that neglecting coordination needs have detrimental effect on software 

development and quality of the software system produced. In chapter 5, I showed that 

more productive developers tend to coordinate their work more effectively highlighting 

the importance of social factors in software development. In order to support distributed 

teams appropriately, it is important to understand how information flows among teams 

and across sites, and the characteristics of the individuals that occupy key roles in the 

communication network.  In this chapter, I present a longitudinal examination of 

coordination patterns among developers using data collected from project A. In addition, 

data from project D was used to replicate a portion of the statistical analysis that explored 

the relationship between coordination patterns and individual-level productivity. 
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Study III: The Evolution of Coordination Behavior 

March and Simon (1958) argued that tasks should be divided into nearly 

independent parts and when interdependence is unavoidable, appropriate coordination 

mechanisms should be put in place. In the context of product development organizations, 

there is a close relationship between dividing development tasks into nearly independent 

parts and partitioning the system to be developed into nearly independent parts. 

Modularization is the approach typically used to minimize technical dependencies among 

the parts of a system (Conway, 1968; Eppinger et al, 1994; Sullivan et al, 2001). As I 

argued earlier in this dissertation, the modular design approach has important limitation 

when applied to the context of geographically distributed software development. Those 

limitations suggest that communication among teams will be essential in order to 

coordinate project work.  Organizational and geographic barriers to communication can 

be overcome by individuals in key roles who facilitate and promote the interaction 

between teams (Allen, 1977; Ancona & Caldwell, 1992; Hauschildt & Schewe, 2000). 

Several definitions of those key positions have been proposed in the product development 

literature (Hauschildt & Schewe, 2000). Examples are “alliance champion”, “external 

liaison”, “gatekeeper”, and “process promoter”. Although those definitions differ slightly 

from each other in their theoretical underpinnings, the overarching theme is that those 

individuals perform a different type of activity than the rest of the members of a R&D 

group and their task is critical for the success of a project. Those key people have access 

to different sources of information and they are capable of synthesizing the information 

in a way useful for the various groups so they can to better perform their development 

activities (Hauschildt & Schewe, 2000).  



 
 

 113

The use of “liaison” or “gatekeepers” to manage the dependencies between teams 

has also been proposed as a mechanism for facilitating coordination in geographically 

distributed software development (Sangwan et al, 2006).  As engineers perform their 

development tasks, critical information and knowledge about the parts of the system 

involved in the tasks at hand is exchanged. As software development tasks change over 

time, developers get the opportunity to gain access to new information and knowledge 

about the technical properties of different parts of the system. This system of social 

relationships, which I will refer to as a Coordination Network, is an evolving entity. If 

gatekeepers are strategically embedded in the coordination networks, they can acquire the 

necessary knowledge to discover the relevant technical and task dependencies.  

This study attempts to shed light on how coordination networks evolve in a 

geographically distributed software development projects in order to address the limits of 

the design modularity strategy.  

 

Research Questions 

Past research on communication patterns in R&D organizations (Allen, 1977; 

Hauschildt & Schewe, 2000) suggests that a “gatekeeper” type of communication 

network will emerge: 

 

RQ1: Does a relatively small group of people take on a disproportionate 

share of overall communication?  

RQ2: Does a relatively small group of people take on a disproportionate 

share of cross-team, cross-site communication? 
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Gatekeepers in R&D organizations are also perceived as very technically 

competent individuals who are able to interpret several sources of information, translate 

them and synthesize them to be consumed by development teams (Allen, 1977; 

Hauschildt & Schewe, 2000). Work in social networks argues that maintaining 

connections involves important amounts of energy (e.g. Burt, 1992). Then, individual-

level contributions to the project, in terms of direct labor, might be detrimentally affected. 

It is also important to understand the characteristics of the people who assume a 

gatekeeper role in software development organizations.  

 

RQ3: Are the most productive technical people part of the core of the 

coordination networks?   

RQ4: What other characteristics can lead to a technical person 

becoming part of core the coordination networks? 

 

As tasks are performed in organizations, communication channels emerge. Over 

time, organizations also develop filters that identify the most relevant information 

pertinent to the task at hand (Daft & Weick, 1984). In other words, organizations develop 

stable communication and coordination patterns. If the task dependencies of the product 

development effort change, those established information flows and filters might become 

inadequate and, consequently, disrupt the organization’s ability to coordinate effectively. 

For example, Henderson & Clark (1990) found that minor changes in product 
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architecture can generate substantial changes in task dependencies, and drastically affect 

the organizations’ ability to coordinate work.  

 

RQ5: How stable are the communication roles and positions in the 

coordination networks over time? 

 

On a related issue, the studies that examined drivers of communication in product 

development organizations (e.g. Morelli et al, 1995; Sosa et al, 2004) argue that the 

technical dependencies between parts of system developed by different organizational 

units tend to be a main driver of interactions between those organizational entities. Since 

identifying dependencies in software development is more challenging than in many 

other types of product development efforts, I seek to understand if the findings from the 

product development literature will hold in the context of software development 

organizations. Therefore, the evolution of patterns in the coordination networks is also a 

concern, in particular: 

 

RQ6: Do coordination requirements drive communication patterns? 

 

Method 

The data associated with 2375 multi-group modification requests from project A 

was used to examine the research questions presented in the previous section. The data 

covered the development effort of the first four releases of the product. 
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Description of the Data 

Software developers communicated and coordinated their development tasks 

using various means of communication. Opportunities for interaction exist when 

individuals work in the same formal team or in the same location. For instance, all the 

development teams had periodic meeting as frequent as once or more times a week. 

Developers also used a range of communication tools to interact and coordinate their 

work such as email, IRC, video conference, and the MR tracking system. I met with 

several developers, who identified IRC as the primary communication means for 

development and debugging work. The second most commonly used tool was the MR 

tracking system. Developers also used email and video-conferences primarily for design 

and architectural definition type of activities. Given those patterns of communication 

means usage, communication and coordination information was collected from IRC logs 

and the MR tracking system. 

On a daily basis, developers interacted with other engineers in the same or other 

laboratories using IRC. The company established several channels based on formal teams 

as well as special projects. For example, team name “A” is responsible for components 1 

and 2, then there is a channel name “A” in IRC. Any engineer that requires information 

about components 1 and 2 would typically communicate with other engineers in channel 

“A”. In order to preserve the valuable technical information discussed on IRC, the 

company logged the channels associated with formal teams and special projects. This 

repository provided historical data that allowed me to reconstruct the patterns of 

interaction and coordination amongst the developers. The set of MRs guided the 

identification of the relevant interactions. Three raters, blind to the research questions, 
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examined the IRC logs corresponding to all the recorded channels. Since the work on a 

MR could extend over days, weeks or even months, the raters were instructed to examine 

IRC logs through out the entire period of time  associated with each MR. When 

interacting, developers could refer to the MR id number (e.g. “<developer01> 

developer02: have you looked at bug 12345”) or to the problem the MR represents 

without any explicit reference to the MR (e.g. “<developer01> does anyone know why 

would RPC call 123 returns the error code 12345?”). The raters were given a description 

of the problem associated with each modification request in other to be able to identify 

the latter type of interactions. I assessed the reliability of the raters’ work by having them 

code 10% of the MRs by all three raters. Comparisons of the obtained networks showed 

that 98.2% of the networks had the same set of nodes and edges. Based on that data, I 

constructed the coordination networks on a monthly basis. The networks contain all one 

hundred and fourteen developers. If any of the developers did not participate in any 

discussion on the IRC logs for a particular month, he or she would be represented in the 

network as a node without connections, in other words, an isolate. 

The company also used a MR tracking system to monitor the progress of 

development tasks and to facilitate the exchange of information and discussion about the 

development tasks. For example, as defects are debugged, developers post information 

regarding their findings and might request information from other developers that would 

provide useful feedback. I defined an interaction between developers i and j only when 

both i and j explicitly commented in the MR report. The focus was on the developers that 

explicitly commented on the MR report because the MR tracking system sent email to all 

the addresses in a CC list every time an MR is updated. Therefore the recipients of 



 
 

 118

updates could be significantly larger than the set of people actually providing information 

to the MR. Comments automatically generated by the workflow tool were also ignored 

(e.g. changes to the status of the task). Then, I used the exchanges of information to 

construct coordination networks amongst developers. In this case, the data collection 

process was automated by using a script that interacted with the modification request 

tracking system and constructed the monthly social networks.  

 

Description of Measures 

I computed several individual level measures such as individual-level 

performance, traditional factors that have been found to predict development 

performance (e.g. programming and domain experience) and network measures that 

capture different structural properties of the individuals’ position in the coordination 

networks.  

Individual-level Performance: Measuring individual-level performance in 

software development is a challenging task. The concept of performance could be 

interpreted across different dimensions such as the amount of code produced, the quality 

of that produced code in terms of lack of defects, efficiency and maintainability as well as 

the adherence of the system’s functionality to the requirements. Previous research had 

taken different approaches and each one has its benefits and drawbacks. The pioneering 

work on programmers’ productivity (Curtis, 1981) focused on the amount of code 

produced and its relationship with the cognitive ability and programming experience of 

developers. The “amount of code” measures such as SLOC are programming language 

dependent so comparisons across projects are not feasible. If a project involves 
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significant portions to be developed in significantly different programming languages, a 

SLOC-type of measure is also problematic. On the other hand, the information systems 

literature tends to focus on measures of performance collected through self-assessment 

questionnaires or from managerial ratings records (Rasch & Tosi, 1992).  In both cases, 

the measures are subjective, however, they could be used to draw comparisons across 

projects. 

The project under analysis in the study was mostly developed in the same 

programming language (C language). There was a small portion of the system developed 

in C++ language, however, it was a module of the system that ran in the kernel so the 

coding style was very similar to a program written in the C language. Given these 

characteristics of the project, I used two sources of performance data. First, a measure of 

contribution to the development effort is defined in terms of amount of code produced, 

NumChanges. A measure based on number of changes, instead of a more traditional 

lines-of-code measure, allows us to control for variability in developers’ coding style 

(e.g. developers who might have a more verbose versus a more compact coding style). 

Moreover, the development organization studied encouraged developers to submit 

changes to the version control system that constituted logical pieces of work as a single 

commit. Hence, the measure NumChanges represents an appropriate measure of task 

performance. A second measure of performance is represented by the number of 

modification requests resolved by each developer, NumMRs. In the dataset, both 

performance measures were highly correlated because all changes to the source code 

were represented by a modification request. 
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Network Measures: Over the years, numerous measures have been proposed to 

capture different aspects of the structure of the social networks and the individuals’ 

position within those networks. In this analysis, I selected network measures that have 

been empirically examined and previous research has found to have a direct relationship 

with individual-level performance. The differences among these measures are subtle but 

important.  They suggest different strategies an individual might take toward constructing 

an effective communication network, and they also differ in the extent to which they 

view this process as cooperative or competitive.  The ORA program (Carley & De Reno, 

2006) was used to compute the network measures described below out of the monthly 

coordination networks. 

Degree centrality (Freeman, 1979): The simplest definition of actor centrality is 

that central individuals must be the most active in the sense that they have the most ties to 

other actors in the network. The idea is that more connections or ties benefits individuals 

because they provide numerous conduits to information and other resources. 

Mathematically, this idea is captured by the formula described in equation 5 (Chapter 6). 

Eigenvector centrality (Bonacich, 1987): Bonacich proposed a measure to assess 

the degree to which an individual’s status is a function of the status of those to whom he 

or she is connected. This measure builds on the idea of degree centrality, but seeks to 

identify not only the individuals that have numerous ties but also those individuals that 

have numerous ties to other individuals who are also highly connected. Then, it could be 

argued that the benefits stemming from access to information (and other resources) are 

augmented because the ties to already resourceful individuals. The formulation presented 

by Bonacich (1987) for computing the eigenvector centrality of node i is the following: 
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                                      Reeor
j jeijRie =∑= λλ                               (Equation 6) 

Where, R is the matrix of relationships, e is eigenvector of R and λ is a constant for the 

equations to have a non-zero solution, in other words, the eigenvalue associated with e. 

The values of this measure range from 0 to 1. 

Betweenness centrality (Freeman, 1977): This view of centrality diverges from 

degree and eigenvector centralities because it focuses on control of the flow of 

information rather than just access to information. More specifically, this measure 

examines the role of a node in the network by considering the probability that a 

communication from actor j to actor k takes a particular route. The betweenness measure 

proposed by Freeman (1977) assumes that the lines have equal weight and that 

communications will travel along the shortest route, hence the geodesics are considered 

in the following formula: 
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Where n is the number of nodes in the network, gjk is the number of geodesics or shortest 

path between nodes j and k, and gjk(ni) refer to the number of shortest paths between j and 

k that include node i. Then, gjk(ni)/ gjk is the probability of node i being in “between” in 

the communication between j and k. The denominator is the sum of probabilities over all 

pairs and it ranges from 0 when node i is not part of any geodesic to a maximum of (n-

1)(n-2)/2 which accounts for all pairs of nodes not including node i. Then, betweenness 

centrality’s values range from 0 to 1. 

Network constraint [Burt, 1992 – page 57]: Burt (1992) argued that individuals 

that bridge a gap between other individuals or groups have an advantage because they 
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have access to unique information and resources. Those advantages dilute as the number 

of connections between the direct contacts of a node increase. The network constraint 

measure captures the degree to which a node i bridges disconnected individuals. The 

more interconnected the neighbors of node i are, the higher the node i’s constraint is, 

hence the lower the likelihood of accessing unique information.. This measure is similar 

in spirit to betweenness centrality. However, network constraint focuses on the structure 

of direct ties and the two-hop ties to a particular node. More importantly, unlike 

betweenness centrality, network constraining suggests that there is a competitive element 

in having a good position in the network.   The value of being a link between 

disconnected groups is significantly reduced if there are other people who also connect 

the groups. Network constraint is mathematically defined by the following formula: 

                                    ∑ ∑
≠≠
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Where eij represents the “energy” dedicated by node i to maintain the connection node j. 

The energy is typically assumed to be equally distributed across all connections of a node 

and it is computed as the reciprocal of the number of connections of that node. The 

minimum value of the network constraint measure is 0 and the maximum is a function of 

the number of neighbors a particular node has. 

Traditional Factors Affecting Individual-level Development Performance: 

The software engineering literature emphasizes the role of cognitive and technical skills 

(Curtis, 1981). The work related to development time estimation models (see Kemerer, 

1986 for a review) takes a more integrative approach relating the amount of time it would 

take to develop a particular piece of code to several classes of factors such as task and 

project characteristics as well as individual-level attributes. Finally, the work in the 
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information systems literature (e.g. Rasch & Tosi, 1992) suggested additional socio-

psychological factors (role ambiguity and goal attributes) that affect individual-level 

software development productivity. 

In this study, I collected data on the developer’s ability and skill using three 

variables: programming experience, domain experience and formal training in computer 

science or related field. I also collected attributes of the development tasks. Programming 

Experience was collected from archival data provided by the human resources 

department and it represented the number of years of programming experience the 

developer had prior to joining the company. I transformed the variable into a monthly 

measure and it was incremented on a monthly basis through out the time period covered 

by the study. Domain Experience was collected from archival data provided by the 

human resources department and it represented the number of years of developing 

software in the same domain prior to joining the company. As with the case of 

programming experience, I transformed the variable into a monthly measure and it was 

incremented on a monthly basis through out the time period covered by the study. All 

developers had at least a Bachelor level Education in computer science or a related field. 

This variable was measured in years and the following formula was used to account for 

graduate degrees: Education = 4 + 2 * MSc + 5 * PhD, where MSc and PhD are 

dichotomous variables indicating whether the developer completed a Masters (or 

equivalent) degree and a Doctoral level degree.  

Some of the developers could work in more complex areas of the system, hence 

requiring more code to be developed as part of a modification request or a particular 

change to the software. I captured that variability by computing the Average Change Size 
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in non-blank-non-comment lines of code for each developer’s work based on the set of 

modification requests resolved in each month. I also considered the variable Group, 

which represents the formal team developers belong to, because the technical properties 

of the components developed by each team differ, potentially, the outcome variables 

considered in this study. These last two measures captures an important part of the 

“technical properties” of the development work that the productivity estimation models 

(e.g. Kemerer, 1986) argue are important factors to consider.  

Unfortunately, I was not able to collect any of the socio-psychological factors 

mentioned in the information systems literature. However, considering the Group 

measure as a random-effect in the multi-level model, described later in the chapter, 

should address some of the variability that might exists across teams in terms of 

definitions of goals and the ambiguity of the roles that each developer have in each 

specific team. 

  Other Control Variables: Since the network data is based on actual interactions 

through a communication means (IRC), the developer’s propensity to use that 

communication tool is a potential factor that affects the individual’s ability to coordinate 

his or her work and ultimately the individual’s performance. Hence, a control variable 

CommUsage that captures the number of conversations the developer participated in IRC 

across all channels and across all topics during a particular time period was added. The 

tool PieSpy (Mutton, 2004) was used to construct the relational data from the IRC logs. 

PieSpy uses the temporal density approach to detect non-directly addressed interactions. 

This variable differs significantly from the network measures on the coordination 

networks because CommUsage also accounts for any other interactions related to 
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modification requests not included in the dataset or any other non-work related 

communication. A similar approach was used to compute the CommUsage measure from 

the MR tracking system data. In this case, I also included all the modification requests 

available from project A and I also considered the communication carried out through the 

CC-list as a proxy for propensity to use the tool. Finally, the Time variable indicates how 

many months have passed since the starting point of the analysis and captures variability 

on performance related to the passage of time. The values of this variable range from 

month j = 0 corresponding to November 2001 to month j = 38 corresponding to February 

2005. It is important to highlight that a measure of familiarity with the system under 

development, Tenure, was also computed. However, it was highly correlated with the 

Time measure, so I did not include it in the analysis. 

 

Results 

General Patterns of Coordination Behavior 

Using the interaction data from IRC and the MR-tracking system, I constructed 

monthly coordination networks. Figure 16 shows months 10, 20 and 30 from the MR-

tracking system data. The general pattern of the coordination networks is a core-

periphery structure (Borgatti & Everett, 1999) suggesting that a particular group of 

developers are at the center of the coordination activities and the exchange of information 

among engineers. The rest of the developers seem to rely solely on interactions with the 

centrally positioned developers for coordinating their tasks. Our IRC coordination data 

showed the same core-periphery pattern (see figure 17). The strong core-periphery 

patterns were analytically confirmed by using Borgatti and Everett’s methods for fitting 
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network patterns to a core-periphery structure. The average fit, based on the continuous 

model, across all 39 months was 0.721 with a minimum fit of 0.568 and a maximum one 

of 0.858. These results confirm coordination networks feature a relatively small number 

of people who play a special role as communication hubs. 

 

 
Figure 16: Over Time Coordination Patterns from the MR system data 

 

 
Figure 17: Over Time Coordination Patterns from the IRC data  

 

In the next step of the analysis, the structural position of the developers in the 

coordination network was related to the developers’ membership to formal teams and 

geographical locations. Figure 18 shows the coordination network from month 17 from 

the IRC coordination data where the developers are color-coded for membership to 
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formal teams (left hand-side picture) and based on geographical location (right hand-side 

picture).  

 

Figure 18: Coordination Patterns across Formal Teams and Geographical Locations 

 

Figure 18 shows developers from all eight teams are represented in the highly 

interconnected core of the coordination network. In addition, a large portion of the 

developers are in the periphery and most of the communication and coordination involves 

developers in the core. Figure 18 also shows developers in the core seem to act as 

gateways or gatekeepers to other teams and other geographical locations for the 

developers in the periphery as suggested in figures 16 and 17.  The existence of 

gatekeepers replicates the findings Allen (1977) encountered in R&D organizations, and 

extends them to geographically distributed teams.  

The role of the core group in terms of coordination across geographical locations 

was statistically examined using an ANOVA analysis to evaluate the frequency of 
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interaction in a 2 x 3 factorial design where dyads were classified along two dimensions: 

same geographical location (yes or no) and position in the coordination network (both 

nodes in the core, both nodes in the periphery or a node from each group). I used the MR 

and IRC coordination data aggregated at the level of product release. Since the 

observations (the dyads) are not independent, I assessed the ANOVA results using a 

random replication procedure.  I used 1000 and 5000 replications and all ANOVA results 

were consistent.  I found statistically significant effects of geographical location 

(F=74.70, p<0.001), position in the network (F=93.95, p<0.001) and the interaction term 

on the frequency of communication (F=15.51, p<0.001). In the first release of the 

product, for instance, dyads within the same location (mean=137.43, sd=119.31) were 

more frequent than those across geographical locations (mean=67.84, sd=24.60).  Those 

individuals in the core (mean=127.81, sd=98.65) communicated more frequently than 

those dyads in the periphery (mean=53.17, sd=23.87) or those dyads had one node in the 

periphery and one in the core (mean=93.08, sd=68.03). Considering the dyads where the 

individuals are not in the same geographical location, more frequent communication 

occurs when dyads have both developers in the core (mean=117.23, sd=80.96) relative to 

the cases where both individuals are in the periphery (mean=3.56, sd=2.97) or one 

developer is in the periphery and the other in the core (mean=47.95, sd=34.21). On the 

other hand, if the individuals in the dyads are in the same geographical location the mean 

frequency of communication is significantly higher. When dyads have both developers in 

the core, the mean frequency of interaction is 179.91 (sd=98.17), while in the case where 

both individuals are in the periphery the mean frequency of interaction is 75.06 

(sd=42.53). Finally, if one developer is in the periphery and the other in the core the 
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mean frequency of interaction is137.41 (sd=69.47). Figure 19 depicts the frequency of 

interaction residuals after correcting for the location and the network position effects as 

well as for the grand mean. Then, the interaction effect becomes clear, indicating 

developers in the core handle more of the coordination activity that crosses the 

geographical boundaries.  

The analysis showed consistent results across all four releases of the product. I 

also replicated the ANOVA analysis in a random sample of 10 months to verify that 

aggregating the data at the release level was not influencing the findings. The results 

were consistent with those from the release-level analyses. In sum, the analysis suggests 

developers in the core carry more of the load of handling the communication and 

coordination across sites. The next step of the analysis examines whether this “bridging” 

role comes at the cost of reducing the direct contribution to the development effort. 
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 Figure 19: Location X Network Position Interaction Effect 
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On the Relationship between Network Position and Productivity 

I examined the question of whether the most productive developers are part of the 

core group of the coordination networks both qualitatively and quantitatively.   

 

Qualitative Analysis 

In order to gain a better understanding of the composition of the core group in the 

coordination networks, I related membership to the core group to the developers’ 

contribution to the development effort. For each month, the developers were ranked in 

terms of the amount of code contributed to the project and I divided the ranking into five 

groups: “highest” performers to “lowest” performers. Figure 20 shows an example of a 

coordination network (month 17) where each developer is categorized into a productivity 

group. The graph suggests that the majority of the developers in the core are high 

performers (cyan nodes), while less performing developers tend to remain in the 

periphery of the coordination network. However there are several interesting cases. There 

are several high performing engineers that are in the periphery (yellow nodes) and they 

seem to coordinate their work minimally. On the other hand, there are low performing 

individuals positioned very centrally in the coordination network (three green nodes in 

the core).    
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Figure 20: Coordination Patterns and Productivity 

 

In order to evaluate if the pattern suggested by figure 20 persisted over time, 

additional analyses were performed. First, I compared the monthly coordination networks 

along two dimensions: how many developers were in the core of the coordination 

network in each month, and how many top performing developers were part of the core in 

each month. Borgatti & Everett’s (1999) method to identify the core group in each 

monthly network was used. Figure 21 shows the number of developers in the core group 

averaged 30, with a minimum number of 14 and maximum of 42 engineers. In addition, 

the number of engineers from the highest productivity group ranged from 15 to 21 over 

the 39 months of data.   
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Figure 21: The Size of the Core Group over Time and Top Performers Membership 

 

In addition, during the first 1/3 of the time covered by the data, the composition of 

the core group varied significantly. However, after month 15 most of the top performers 

consistently belong to the core on the coordination network. Interestingly, there are 

several instances where low productivity developers are also part of the core coordination 

group (see Figure 22). An examination of the characteristics of the development tasks 

performed by the engineers suggested significant differences across productivity groups 

in terms of the average number of source code files affected by modification requests. In 

several months (e.g. 3, 8, 17, 27, and 38), developers in the lowest two productivity 

groups worked on modification requests that affected, on average, the highest number of 

source code files. The examination of the modification requests and changes to the source 

code indicated that those developers tended to focus on developing features of the system 

that cut across numerous subsystems such as tracing and security functionalities. Then, 

modifications to those files would require coordinating work across several groups of 
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individuals. In fact, it is that need to interact with many other engineers that seems to 

drive some of the lower performing developers to the core of the coordination network as 

figure 22 shows. 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Month

C
om

po
sit

io
n 

of
 C

or
e 

G
ro

up
Highest High Average Low Lowest

 
Figure 22: Composition of the Core Group over Time by Productivity Levels 

 

Quantitative Analysis 

The longitudinal dataset used in this study has characteristics that render 

traditional linear regression models inadequate for statistical analysis. As is the case with 

any longitudinal dataset, the autocorrelation between the observations of the same 

measures over time will violate the independence assumptions of a traditional linear 

model. Hence, a multi-level model (Singer & Willet, 2003), also known in the literature 

as mixed models, was used to examine the effect of coordination behavior on individual-

level performance and its evolution over time. 

The multi-level modeling approach allows variation at several levels within the 

model. The specification of a multi-level model includes fixed effects and random effects 
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that may be applied to multiple variables for a given stream of longitudinal data. For 

instance, the impact of time may vary across individuals – a multi-level model allows an 

analysis that accounts for this type of variability. In this dataset, I have a stream of data 

for each developer and the model allows variation of both the intercept, the influence of 

time and the impact of working in a particular development team on the productivity of 

the individual. In this way, I account for the effects of individual-level factors (e.g. 

domain experience), characteristics of the development work that are specific to a 

development group as well as seasonal and other time-related variability in our 

population.  

Formally and based on Singer and Willet’s (2003) notation, the statistical model 

is described by equations 1 and 2. First, level-one model (equation 1) is created, which 

represents a basic linear regression for each individual. In this level-one model, there are j 

observations over time for each individual i. The variable Timej indicates how many 

months have passed since the starting point of the analysis. The variable Groupj indicates 

the formal team the developer i belongs to. TraditionalMeasuresj refer to the set of 

traditional factors that affect individual level performance described in the previous 

section, and NetworkMeasuresj represent the set of network measures also described in 

the previous sections. It is important to clarify that this is a descriptive equation and it 

does not imply that all 6 network measures are included in the analysis. As discussed 

later in the results section, the correlation among the independent variables drives the 

selection and inclusion of specific variables into each statistical model.  
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The coefficients of the model that are specific to each individual can then be 

further expanded for additional insight by defining the level-two model. At this level, 

variations at each time period are allowed. Inserting equation 10 into equation 9 results in 

the basic model used in the analysis.  
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               (Equation 10)    

In this multi-level model, I assumed the effects of the network measures (π2) and 

traditional variables (π3) were constant across all individuals. On the other hand, the 

effects of time and group membership were allowed to fluctuate across developers. 

The normality assumptions in the multi-level model described in the previous 

paragraphs are similar to the assumptions required by traditional linear regression 

models. In order to satisfy those assumptions it was necessary to perform a log-

transformation in the dependent variables, NumChanges and NumMRs, as well as some of 

the independent variables as indicated in table 22. It is important to highlight that the 

statistics presented in table 22 are computed across all 39 months. 

I evaluated the pair-wise correlations among all the independent variables to 

identify potential collinearity problems. Overall, the pair-wise correlations had 

acceptably low levels (below 0.20) with the exception of the pairs Programming 

Experience-Domain Experience, Degree and Eigenvector Centrality with all other 

network measures. These correlations were all statistically significant and with values 

higher than 0.45. Given these collinearity issues, I assessed the effect of each network 
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measure separately using different multi-level statistical models that only have the 

traditional factors plus one network measure (see table 23). For each statistical model, I 

report the Akaike’s Information Criteria (AIC) which is an indicator of the explanatory 

power of the model. Then, using a different model for each network measure allows us to 

compare the explanatory value of each network measure separately. 

 

Table 22: Descriptive Statistics for IRC dataset 

 Mean SD Skew Kurt. Min Max 

NumBugs (log)   0.518   0.911  0.083 2.139 0.000    4.189 

NumChanges (log)   1.317   1.575 -0.592 2.976 0.000    5.298 

Education (log)   1.626   0.288  0.873 2.174 1.386    2.397 

Programming Exp. (log)   4.158   1.002 -0.264 1.901 2.484    6.095 

Domain Exp. (log)   3.306   0.801  0.163 2.808 2.484    5.318 

Avg. Change Size (log)   2.808   0.976 -0.128 4.144 0.000    6.873 

Comm. Usage 23.758 35.159  1.364 3.697 2.000 165.000 

Degree Centrality   0.082   0.122  1.228 3.076 0.000    0.473 

Betweenness Centrality   0.072   0.021  1.178 2.973 0.000    0.282 

Eigenvector Centrality   0.078   0.059  1.113 3.117 0.000    0.991 

Network Constraint   0.230   0.321  1.363 4.417 0.000    1.941 

Local Clustering   0.354   0.418  0.405 1.297 0.000    1.000 

 

Table 23 reports the results of the analysis using the dataset collected from 

communication and coordination activity using the online-chat tool (IRC). There are two 
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baseline models that examined the effects of Time, Education, Programming Experience, 

Domain Experience and the Average Size of Changes for each dependent variable. The 

results indicate that over time, developers become more productive in terms of changes 

submitted as the statistically significant and positive coefficient on the variable Time 

indicates. However, Time does not have a statistically significant effect on the number of 

modification requests resolved. One possible explanation of this finding is that, as the 

system matures, modification requests become more difficult to resolve and they might 

involve more software changes as well. As expected, the larger the average size of the 

changes to the software developers submit, the lower the number of changes those 

developers submit and the lower the number of modification requests they resolve. As 

indicated earlier, Programming Experience and Domain Experience are highly 

correlated, as a result their effects was separately explored in Models 1, 2, 8 and 9. 

Consistent with prior research, higher levels of programming and domain experience 

increased the number of modifications requests resolved per developer and the number of 

changes submitted by the developers on a monthly basis. The value of the AIC of a 

model tells us the explanatory power of the model. In the case of comparing two models 

with the same number of predictors, the lower the AIC the more variance is explained by 

a particular model. In the case of models 1, 2, 8 and 9, Domain Experience has a higher 

explanatory value than Programming Experience. Given this difference, in the remaining 

models (3 through 7 and 10 through 14) of table 23, I included Domain Experience when 

evaluating the effects of the network measures. 

In models 3 through 7 and 10 through 14 from table 23, the effects of position in 

the coordination network were explored. In models 3 through 6 and 10 through 13, I 
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assessed the role of one network measure at a time so the explanatory power of each 

individual network measure could be examined. All network measures had a statistically 

significant and positive effect on individual-level performance. However, an examination 

the AIC values for each of the models, indicated that the impact of each measure varies 

substantially which suggests that specific structures of the social system of interactions 

are more beneficial than others. For instance, being highly connected (high Degree 

Centrality or high Eigenvector Centrality) has a higher impact on performance (based on 

a lower AIC of the model) relative to brokering information between disconnected groups 

(low Network Constraint). In the context of software development, these results suggest 

individuals benefit by ample access to information rather than by controlling the flow of 

information. 
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Table 23: Results of the Multi-level Regression Model using the IRC data 

Effects on MRs Resolved 

 

Model  

1 

Model  

2 

Model  

3 

Model  

4 

Model  

5 

Model  

6 

Model  

7 

Intercept  0.871*  0.473*  0.155*  0.407*  0.452*  0.570*  0.499* 

Time -0.003* -0.004* -0.003* -0.004* -0.004* -0.004* -0.004* 

Education (log) -0.021 -0.011 -0.016 -0.011 -0.011 -0.012 -0.011 

Prog. Exp. (log) -0.017       

Dom. Exp. (log)   0.057+  0.054+  0.058+  0.060+  0.056+  0.056+ 

Comm. Usage  0.015*  0.015*  0.014*  0.015*  0.016*  0.015*  0.015* 

Chg. Size (log) -0.10* -0.09* -0.054* -0.089* -0.097* -0.111* -0.101* 

Degree Cent.    1.491*     

Between. Cent.     1.768*    1.733* 

Eigen. Cent.      0.414*   

Network Const.       0.112*  0.106* 

AIC 7578 7574 7361 7548 7566 7571  

Effects on Changes Committed 

 

Model  

8 

Model  

9 

Model 

10 

Model 

11 

Model 

12 

Model 

13 

Model 

14 

Intercept  3.537*  3.311*  2.862*  3.147*  3.254*  3.186*  3.005* 

Time  0.004*  0.006*  0.009*  0.006*  0.007*  0.007*  0.006* 

Education (log) -0.024 -0.016 -0.025 -0.015 -0.016 -0.014 -0.012 

Prog. Exp. (log)  0.064+       

Dom. Exp. (log)   0.101*  0.086*  0.097*  0.106*  0.104*  0.100* 

Comm. Usage  0.004*  0.004*  0.002*  0.004*  0.004*  0.004*  0.004* 

Chg. Size (log) -0.538* -0.537* -0.468* -0.512* -0.533* -0.522* -0.494* 

Degree Cent.    2.383*     

Between. Cent.     5.101*    5.156* 

Eigen. Cent.      1.290*   

Network Const.      0.140*  0.160* 

AIC 7578 7537 6955 7293 7421 7528 7278 

(+ p < 0.05, * p < 0.01)      
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On the other hand, the relatively high impact of Betweennes Centrality would 

suggest an opposite interpretation: brokering disconnected individuals or groups could be 

beneficial for a developer.  However, the role of Betweenness Centrality can be explained 

by examining the differences in the scope of the structural properties captured by 

Betweenness Centrality and Network Constraint. The later two measures only consider 

the immediate connections of a particular node. In contrast Betweenness Centrality 

considers the entire network.  Therefore, an individual could have high Betweenness 

Centrality if he/she is part of a highly interconnected sub-group within the network as it 

would be the case in a core/periphery type of structure. In this case, Betweenness 

Centrality and Degree Centrality would have similar effect.  

I examined the relationship between Betweenness Centrality and Network 

Constraint in more detail. First, the pair-wise correlations between Betweenness 

Centrality and Network Constraint was positive and below 0.15. This is contrary to what 

is expected if high values Betweenness Centrality stemmed only from brokering 

disconnected individuals or groups. A more rigorous analysis is reported in models 8 and 

14 (table 23).  A comparison of the results from model 6 and 7 indicates that including 

Betweenness Centrality does not alter the sign and statistical significance of the estimated 

coefficient for Network Constraint. A similar observation can be made comparing model 

13 versus model 14. Then, these results indicate that the effect of Betweenness Centrality 

is complementary to the effects of Network Constraint. This finding is consistent with the 

argument that Betweenness Centrality is similar to the effect of Degree Centrality as 

figures 16, 17, and 18 suggest. Hence, access to information is more beneficial than 

controlling the flow of information.   
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Finally, this analysis was also performed on the coordination data from the MR 

tracking system. Table 24 reports the results and, overall, they are all consistent with 

those reported in table 23. In the case of the MR data, all network measures were highly 

correlated, hence, the models containing multiple network measures were not feasible. 

I also used data from project D to quantitatively examine the relationship between 

network position and individual-level productivity. In the case of project D, the 

coordination activity data was collected through a survey instrument (see appendix A). A 

self-assessed measure of productivity was also collected using the survey. Forty seven of 

the eighty three developers completed the survey resulting in a response rate of 56.62%. 

A second measure of productivity, number of modification requests resolved, was 

collected from software repositories corresponding to the two development iterations of 

project D under study. Unfortunately, data associated only with nineteen of the eighty 

three engineers was available. 
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Table 24: Results of the Multi-Level Regression Model using the MR data 

Effects on MRs Resolved 

 

Model  

1 

Model  

2 

Model  

3 

Model  

4 

Model  

5 

Model 

6  

Intercept  0.871*  0.473*  0.393*  0.488*  0.475*  0.534*  

Time -0.006* -0.004*  0.001* -0.003* -0.004* -0.001*  

Education (log) -0.021 -0.011 -0.004 -0.010 -0.009 -0.008  

Prog. Exp. (log) -0.017       

Domain Exp. (log)    0.057+  0.087+  0.061+  0.058+  0.063+  

Comm. Usage  0.026*  0.026*  0.048*  0.028*  0.027*  0.025*  

Avg. Chg. Size (log) -0.101* -0.099* -0.116* -0.103* -0.099* -0.115*  

Degree Centrality    4.481*     

Betweenness Cent.     2.381*     

Eigenvector Cent.      0.473*   

Network Constraint       0.504*  

AIC 7577 7573 7262 7525 7572 7463  

Effects on Changes Committed 

 

Model  

7 

Model  

8 

Model  

9 

Model  

10 

Model  

11 

Model  

12  

Intercept  3.356*  3.310*  3.374*  3.314*  3.316*  3.307*  

Time  0.004*  0.007*  0.004*  0.006*  0.007*  0.006*  

Education (log) -0.024 -0.016 -0.018 -0.017 -0.017 -0.016  

Prog. Exp. (log)  0.064+       

Domain Exp. (log)   0.101*  0.083*  0.096*  0.098*  0.098*  

Comm. Usage  0.006*  0.007*  0.002+  0.005*  0.007*  0.007*  

Avg. Chg. Size (log) -0.538* -0.537* -0.531* -0.534* -0.537* -0.534*  

Degree Centrality    1.767*     

Betweenness Cent.     1.870*    

Eigenvector Cent.      0.881*   

Network Constraint       0.114*  

AIC 7541 7536 7491 7507 7524 7536  

(+ p < 0.05, * p < 0.01)      
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Table 25: Results from Multi-Level Regression Model using Project D data 

Effects on Self-assessed Productivity 

 Model I Model II 

Intercept 0.3092** 0.0730* 

Degree Centrality 6.6629** 3.5074** 

Network Constraint  4.7381** 

N 43 43 

AIC 137 71 

Effects on MR resolved 

 Model III Model IV 

Intercept 0.0996 0.0462 

Degree Centrality 4.3239** 3.6196* 

Network Constraint  1.0711* 

N 19 19 

AIC 213 209 

(* p < 0.05, ** p < 0.01) 

 

Table 25 reports the results which are consistent with those reported in table 23 

and table 24. Developers that are centrally positioned in the coordination network and 

interact with other highly interconnected engineers tend to be more productive. 
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Stability of Coordination Patterns 

In this section, I examine the stability of the coordination patterns exhibited by the 

coordination networks using several approaches. First, I look at the overall change in the 

networks. Secondly, changes in the structural position of the developers are examined. 

Finally, I explore the relationship between coordination needs and coordination activities 

and how that relationship impacts the stability of the coordination patterns. Since a 

product release represents a clearly identifiable unit of analysis, I aggregated all the 

coordination activity at the level of a release of the product.  

In the first step of the analysis, the equivalent of the Hamming distance between 

networks of each release of the product was computed. This approach identifies the 

linkages between developers that exist only in one of the two graphs, then, dividing that 

number over the total number of linkages possible gives the rate of change. Figure 23 

shows the results and, overall, the rate of change in the coordination patterns is small in 

both communication means. For instance, the average change in the IRC coordination 

from release to release is about 3% which corresponds to 193 different dyadic 

connections or 1.7 connections per developer. The coordination activity over the MR 

tracking system has a higher rate of change than IRC coordination. However, in both 

cases, the rate of change decreases over time to relatively low levels.  
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Figure 23: Amount of Change in Dyads Connections 

 
The second approach to examine the stability of the coordination patterns 

consisted on comparing the ranking of the developers’ degree centrality in the 

coordination network. For each release, the degree centrality measure of each developer 

was computed and a rank based that network measure was constructed. Then, I compared 

the ordered sets of developers using Kendall’s tau which represents the probability that 

the rankings are the same. Table 25 reports the results of the analysis. The rankings in the 

MR-based coordination network are very stable, particularly in the last three releases 

where the probability of developers exhibiting the same pattern of coordination activities 

was above 0.78. The stability of the IRC coordination pattern is lower than those of the 

MR coordination patterns, but it is still quite significant 
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Table 26: Stability of the Coordination Networks 

 MR Coordination IRC Coordination   

Release 1 vs. Release 2 0.6704** 0.5307**   

Release 2 vs. Release 3 0.8092** 0.6284**   

Release 3 vs. Release 4 0.7863** 0.5541**   

(* p < 0.05, ** p < 0.01) 

 

Drivers of Coordination Patterns 

Finally, I examined the relationship between coordination requirements of a 

particular release and the corresponding coordination activities for that release. The 

coordination needs were computed using the FCT method described in chapter 4. 

Considering the coordination networks and the coordination requirements in matrix form, 

I used Matrix Regression QAP (Krackhardt, 1988) to examine the relationship between 

them.  MRQAP uses the dyadic relationship information contained in a set of matrices as 

independent variables to predict the linkages on a matrix considered as the dependent 

variable. In the analysis, I used the coordination requirements from a particular release to 

predict the coordination activity in that release. I also examined the impact of the 

coordination activity and coordination requirements from a previous release. For 

instance, for the 4th release of the product, I examined how the coordination activity of 

release 4 was impacted by the coordination requirements from releases 4 and 3 as well as 

by the coordination activity from release 3. Table 26 shows the standardized coefficients 

and the R2 from the MRQAP analysis. 
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Table 27: Predicting Coordination Activities 

MR-based Coordination 

 Rel. 1 Rel. 2 Rel. 3 Rel. 4

Previous Release Coord. Activities -- 0.47* 0.75* 0.66* 

Previous Release Coord. Needs -- 0.09* 0.06* 0.07* 

Current Release Coord. Needs 0.47* 0.21* 0.38* 0.44* 

R2 0.162 0.567 0.621 0.579 

IRC-based Coordination 

 Rel. 1 Rel. 2 Rel. 3 Rel. 4

Previous Release Coord. Activities -- 0.31* 0.53* 0.49* 

Previous Release Coord. Needs -- 0.09* 0.14* 0.15* 

Current Release Coord. Needs 0.37* 0.34* 0.37* 0.48* 

R2 0.228 0.629 0.747 0.714 

(* p < 0.01)     

 

Table 26 shows that coordination requirements from release N have a statistically 

significant effect on predicting coordination activity for release N. However, the most 

significant factor predicting coordination activity in release N is the coordination activity 

patterns from the previous release N-1. Given the results reported in the previous section 

in relation to the stability of the coordination networks, this particular finding is not 

surprising. The results suggest that once particular coordination and communication paths 

are established, they tend to persist over time even though there might be an explicit 

coordination need that would justify the existence of such information conduit. 
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Discussion 

In this chapter, I presented a longitudinal analysis of coordination activities in a 

geographically distributed software development project. The results showed that 

developers that are positioned centrally in the social system of information exchanges and 

coordination perform a critical bridging activity across formal teams and geographical 

locations. These findings are consistent with past research highlighting the critical role 

“liaisons” individuals play in the performance of teams and projects (Ancona & 

Caldwell, 1992; Hauschildt & Schewe, 2000). However, the analysis also revealed those 

same individuals contributed the most to the development effort. More interestingly, in 

the research setting, the “liaisons” emerged over time from each development group, 

contrary to view typically discussed in the literature where these key roles are formally 

established (Ancona & Caldwell, 1992; Hauschildt & Schewe, 2000, Sangwan et al, 

2006). Individuals in such formal roles, with different expectations and responsibilities 

from the rest of the engineers in a software development effort, might face important 

challenges stemming from the dynamic nature of technical and task dependencies. Future 

research should examine the differential impact, if any, of formal versus emergent 

“liaisons” roles. 

The analysis also showed that the patterns of coordination were relatively stable. 

In fact, the stability of the coordination patterns increased over time on both 

communication means, MR and IRC, used by the development organization. These 

findings are consistent with past research indicating once established patterns of 

communication and coordination resist change (Henderson & Clark, 1990). Moreover, 
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Henderson and Clark (1999) argued that the stability of the communication paths could 

be detrimental to the development organization because those communication conduits 

might not be the appropriate ones when the product structure changes. This line of 

research highlights the potential detrimental effects of the stability of patterns of 

communication and coordination.  

However, past research has overlooked the potential positive impact of the 

structure of those communication and coordination patterns, particularly, in relation to 

their stability against organizational changes. Particular structures of coordination 

patterns might be more resilient to changes in the organization such as turnover. For 

instance, social network research has shown that communication patterns can be 

drastically affected by removing particular individuals from the network (Carley et al, 

2001). However, those effects are contingent on the topological attributes of the network 

(Frantz et al, 2007). For instance, core-periphery networks tend to be more resilient than 

other structures (Frantz et al, 2007). In our research setting, there were negligible levels 

of turnover which could have benefited the stabilization of communication and 

coordination patterns, particularly across geographical locations. Further research is 

required to explore the relationship between the stability of communication and 

coordination patterns and turnover as well as changes in the architecture of software 

systems.  

In addition, stable patterns of communication and coordination with particular 

structure might have benefits in relation to changes in the product structure. For instance, 

the core-periphery structure found in our research setting involved members of all 

development teams. One could argue that such structure could act as a “council” where 
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relevant pieces of information from all parts of the system are shared and understood. 

Then, the changes in dependencies introduced by modifications in the product could be 

more easily identified. Recognizing the changes in dependencies might be significantly 

more challenging in other types of communication structures such as hierarchical because 

such tasks would reside in a group or individual not involved directly in the software 

development process.  
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CHAPTER 8: APPLICATIONS 

 

Collaboration and communication tools are an integral part of the software 

development process (Sarma, 2005). Sarma (2005) argued the various types of tools 

could be grouped in terms of the role they play in the development process: 

communication, artifact management, and task management. Communication tools, such 

as email, instant messaging, and on-line chat systems (e.g. Internet Relay Chat), provide 

the basis for coordination of activities in geographically product development project 

(Karolak, 1998). Tools such as document management systems and software 

configuration management systems constitute the traditional artifact management tool. 

Finally, task management tools, such as Bugzilla or Manthis, provide the mechanisms to 

allocate tasks and monitor their progress. Researchers have claimed that using a 

combination of tools from all those three groups is considered a good practice that leads 

to higher quality software products (Halloran & Scherlis, 2002). However, those tools 

ought to be integrated appropriately with software development processes and 

organizational structures in order for GDSD organizations to experience the benefits of 

such tools (Cataldo et al, 2007). 

In recent years, researchers have focused on providing development environments 

that facilitates communication, collaboration and coordination. One approach has been to 

integrate simple collaborative components into team-centric IDEs (Booch and Brown, 

2003). An example of such approach is Jazz developed at IBM Research and originally 

proposed as a collaborative extension to Eclipse (Cheng et al, 2003). It later evolved into 

an independent application that combined the original team-centric concepts with a 
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process-centric approach (Jazz, 2007). A related and complementary research approach 

has focused on assisting developers in identifying dependencies among parts of the 

software systems as well as dependencies among development tasks. Tools such as 

TUKAN (Schummer et al, 2003), Palantir (Sarna et al, 2003) and Ariadne (Trainer et al, 

2005) provide visualization and awareness mechanisms to aid developers identify and 

handle modifications to the same software artifacts such as source code files. In addition, 

Ariadne (Trainer et al, 2005) uses syntactic dependencies graphs to relate technical to 

social dependencies.  

Unfortunately, existing IDEs or collaborative tools, such as those described in the 

previous paragraphs, do not help on identifying fine-grained implicit product 

dependencies as well as their related work dependencies. The results reported in this 

dissertation showed that failing to identify those types of dependencies are critical factors 

negatively affecting development productivity and software quality. The framework 

proposed in chapter 2 provides a mechanism that facilitates the identification of fine-

grain work dependencies. Moreover, existing tools focused on software developers, 

however, the mechanism and measures proposed in this dissertation are also valuable for 

managers and other stakeholders such as project leads. The rest of this chapter discusses 

how the approaches to measure product and work dependencies used in this dissertation 

can be used to extend existing collaborative and coordination tools or implement new 

ones. The discussion is organized around the target users of those potential tools: 

software developers and stakeholders with managerial responsibilities in software 

projects. 
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Applications for software developers 

 The studies reported in this dissertation showed that coordination behavior on the 

part of software engineers that is congruent with coordination needs improves the 

resolution time of modification requests. In addition, the results indicated that explicit 

product dependencies such as syntactic relationships as well as implicit product 

dependencies (e.g. semantic or logical relationships) have an important and 

complementary effect on the failure proneness of software systems. In the following 

paragraphs, I describe how the congruence framework proposed in this dissertation could 

be utilized as part of collaborative and coordination tools to assist software developers. 

 

Enhancing coordination needs awareness  

Collaboration and task awareness tools are a natural application for the 

coordination requirements measure proposed in chapter 2. Part of the research effort of 

the CSCW community has been on improving traditional tools, such as email and instant 

messaging, which have become an integral part of work in the vast majority of 

organizations (Belotti et al, 2003; Wattenberg et al, 2005). The coordination requirements 

measure provides a way of identifying the email exchanges that are more relevant given 

the task interdependencies among individuals. This information would enable tools to 

provide an enhanced task management experience by, for instance, prioritizing to-do-lists 

and generating reminders to respond to task-specific emails based on the coordination 

requirements. This email sorting approach could be thought as a task-specific alternative 

to other social-based sorting techniques such as the one proposed by Fisher and 

colleagues (2006). A more recent set of tools, such as sidebars (Cadiz et al, 2002) and 
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productivity assistants (Geyer et al, 2007), would also benefit from the congruence 

framework. These types of tools focus on activity-centric collaboration and, as argued by 

Geyer and colleagues (2007), the majority of the tools assume user intervention in terms 

of deciding what type of information to make part of the sidebar. The congruence 

framework would provide an automatic mechanism to identify people of interest giving a 

particular set of task dependencies among the workers. 

In the context of software development projects, particularly those that involve 

tens or hundreds of engineers, identifying the right person to interact with and coordinate 

interdependent activities might not be a straightforward task. In fact, it is well established 

that software developers have serious difficulties identifying the right set of individuals to 

coordinate with (de Souza et al, 2004; de Souza et al, 2007; Grinter et al, 1999). The 

coordination requirement measure provides a mechanism to augment awareness tools that 

provide real-time information regarding the likely set of workers that a particular 

individual might need to communicate with. For instance, integrated development 

environments, such as Eclipse or Jazz, could use the coordination requirement 

information to recommend a dynamic “coordination buddy list” every time particular 

parts of the software are modified. In this way, the developer becomes aware of the set of 

engineers that modified parts of the system that are interdependent with the one the 

developer is working on. The concept of the “buddy list” in communication and 

collaboration tools is not a new idea. However, the novel contribution is to construct the 

“buddy list” from accurate estimates of the set of individuals more likely to be relevant to 

a particular developer in relations to the work dependencies, information which is 

captured by the coordination requirements measure. 
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Enhancing awareness of product dependencies  

The software engineering literature suggests several types of technical 

dependencies in software systems. The earliest form of software dependencies (see, e.g., 

Stevens, Myers and Constantine, 1974) are syntactic relationships among modules of a 

system that are reflected in the software code by the use of functions, methods, variables 

and other programming language constructs. In more recent work in the software 

evolution literature, Gall and colleagues (1998) showed it is possible to uncover logical 

dependencies among modules that are not explicitly identified by traditional syntactic 

approaches. These two approaches correspond to the CGRAPH and FCT methods, 

respectively, discussed in chapter 4. The results reported in this dissertation showed that 

logical dependencies, such as those identified using the FCT method, are able to capture 

the dynamic nature of the software development process and they provide a better way of 

determining work dependencies among developers relative to syntactic dependencies. In 

chapter 5, I reported the implications of logical dependencies in the context of 

development productivity. In addition, chapter 6 reported in relevance of logical 

dependencies in relation to the failure proneness of a software system. These findings 

suggest that providing information (e.g. through visualizations) about product 

dependencies, particularly logical relationships, could have important benefits in terms of 

coordination and awareness among developers, and consequently, impact productivity 

and quality. 

Tools such as TUKAN (Schummer & Haake, 2003), Palantir (Sarma et al, 2003) 

and Ariadne (Trainer et al, 2005; de Souza et al, 2007) provide visualization and 
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awareness mechanisms to aid developers coordinate their work. Those tools achieve their 

goal by monitoring concurrent access to software artifacts, such as source code files, and 

by identifying syntactic relationships among source code files. Then, information is 

visualized to assist the developers in resolving potential conflicts in their development 

tasks. Using the measures proposed in this dissertation, these tools could be enhanced 

along two dimensions. First, they could provide an additional view of product 

dependencies. Using an approach such as the FCT method to identify logical 

dependencies, these tools would be in a position to provide complementary product 

dependency information to the developers which, as suggested by this dissertation, could 

be more valuable in terms of raising awareness among developers about the potential 

impact of their changes in the software system. Secondly, these tools could also provide a 

more precise view of coordination needs among developers. These tools focused on 

artifacts shared or modified by multiple developers. The coordination requirements 

measure goes beyond the identifying such dependencies, allowing developers to identify 

those files that have dependencies among themselves when those dependencies are not 

explicitly determined.  

 

Other applications of the congruence framework 

 The congruence framework presented in chapter 2 has been utilized in other 

applications in the context of software engineering. Minto and Murphy (2007) proposed a 

technique that recommends experts to developers based on the emergent team 

information provided by the coordination requirements matrix (see equation 1). The 

authors found their approach have a positive and significant effect on the quality of the 
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expertise recommendation over traditional approaches such as “who modified the module 

last”. 

 The congruence framework has also been applied to requirements engineering to 

maintain awareness amongst engineers working on related software requirements. Kwan 

and colleagues (2006) proposed an approach to visualize dependencies among software 

requirements and communication patterns among the engineers involved in those 

requirements. The authors argued that the visualization method would provide the 

necessary mechanism to promote coordination and maintain awareness of changes in 

requirements; however, they did not empirically evaluate those claims. 

 

Managerial applications 

Collaboration and communication tools used in software development provide 

very valuable awareness information as well as various communication and coordination 

mechanisms to developers. However, the effectiveness of those tools depends, in most 

cases, on the developers’ willingness and ability to adjust their coordination behavior 

based on the information provided by the tools. Even if developers modify their 

coordination behaviors, organizational and social barriers could still limit or impede 

establishing a useful interaction with other individuals in the project. Then, it is also 

important to provide managers and other decision-makers with appropriate types of 

information in order to enable them to identify patterns of communication and 

coordination that might be detrimental to the success of software projects. The work 

presented in this dissertation is a step forward in that direction and the following 

paragraphs discuss managerial applications of the results from this dissertation. 



 
 

 158

 

Project-wide view of coordination patterns 

The analyses reported in chapter 7 suggested an approach to collect coordination 

activity from existing data repositories, such as a workflow tool, and provide a project-

view of patterns of coordination behavior. Coupling visualizations of project-wide 

coordination patterns with statistical analysis of such data could be a powerful tool for 

different stakeholders in geographically distributed software development projects. For 

instance, in the project studied in chapter 7, the analyses found that developers that are 

positioned centrally in the social system of information and coordination exchanges tend 

to perform better than those in the periphery. But more interestingly, those centrally 

positioned individuals played a key role in promoting communication across 

development teams and locations, ultimately increasing the likelihood of success in the 

project. 

The identification of unusual patterns of communication and coordination could 

be critical to the success of a product development project. For instance, in a study of 

communication and coordination in a jet engine design project, Sosa et al. (2004), 

highlighting the difficulty of managing cross-boundary interdependencies, provides 

examples of interdependent teams that did not interact. The lack of appropriate 

communication resulted in difficulties at the time of integrating the various subsystems. 

A project-wide view of coordination facilitates the identification of unexpected patterns 

such as the (a) lack of communication and coordination amongst teams or locations, (b) 

levels of communication and coordination that could be considered excessively high or 

(c) the existence of indirect coordination patterns. When managers and decision-makers 
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combine those types of information with an assessment of the coordination requirements 

that are expected in the project, they are in a position to intervene in the project by 

sponsoring change in the patterns of coordination, modifying the structure of the product 

to reduce certain coordination requirements or both.  

 Another useful approach for managers and other decision-makers to identify 

potential sources of problems or difficulties is to compare a historical assessment of 

general coordination patterns against milestones or other critical events in a project. The 

organizational behavior literature showed the importance of time on how work evolves 

within workgroup projects of varying length (Gersick, 1988; Gersick, 1989). The 

research established that even though groups had widely varying amounts of time for 

their projects and progressed at different rates, workgroups tended to select the midpoint 

as a heuristic milestone and use it as a triggering mechanism to help ensure they will 

move fast enough to finish by their deadlines. A related finding was reported by Bass and 

colleagues (2007) in the context of global software development. The authors found that 

defects were given higher levels of attention the closer the reporting date was to the end 

of the development iteration. On the other hand, defects reported early in the 

development iteration tended to remain unresolved for extended periods of time, in 

several cases beyond the development iteration in which they were reported. Then, 

relating past patterns of coordination to relevant points in time in a development project 

could provide managers and other decision-makers with the information to understand 

where communication and coordination among developers or teams should be promoted 

in order to increase the quality of the product and the likelihood of success in the project. 
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Identifying critical software and organizational agents and units 

 The identification of key individuals in a system of social relationships has 

received significant attention from the sociology and social networks communities. 

Examples are the work on actor centrality that focuses on understanding the structural 

relevance of individuals in networks (e.g. Freeman, 1979; Bonacich, 1987), the work on 

identifying core and periphery structures formalized by Borgatti and Everett (1999) and 

the work on measurement of social capital (e.g. Burt, 1992). Borgatti (2006) extended the 

traditional concept of “key players” to highlight two distinctive perspectives: one focuses 

on the key player as maintaining the cohesiveness in the system of relationships and the 

second one focuses on the key player as connected to and embedded in the social 

network. The analyses reported in this dissertation apply two both perspectives. The 

results in chapter 7 showed the developers’ structural position in the coordination 

network relates to the developers’ contributions to the project as well as their role in 

bridging organizational teams and geographical locations. In fact, the analysis revealed 

that approximately 20% of the developers acted as bridges between formal teams and 

geographical locations and, simultaneously, those same individuals contributed an 

average of 57% of the implementation of the software system. Then, those results have 

several important managerial implications in term of (a) understanding who those 

individuals are in order to maintain those individuals motivated to continue to contribute 

and perform their roles are liaisons, (b) understanding the impact of developer turnover or 

organizational mobility in the flow of information exchange and coordination, and (c) 

identifying other developers that could be good candidates to perform those bridging 

functions. Tools could build on the qualitative and quantitative analysis presented in 



 
 

 161

chapter 7 that identified key individuals groups using core-periphery models and 

traditional centrality measures. Moreover, tools could use the same type of data, such as 

coordination carried over a defect-tracking system, and apply other network measures to 

identify key individuals such cognitive demand (Carley et al, 2003) or the measures 

proposed by Borgatti (2006). This collection of network measures would provide 

valuable information regarding the three managerial implications outlined earlier in this 

paragraph. 

The idea of “key players” could also be applied in the context of software artifacts 

such as source code files. The study of the impact of product dependencies on the failure 

proneness of software systems used the concept of node centrality in the set of 

relationships among source code files. The results showed that files with higher number 

of syntactic and logical dependencies were more prone to failure. However, the results 

also indicated that those source code files that had logical dependencies with other highly 

interconnected files were less likely to exhibit customer-reported defects. Then, these 

findings suggest an extension to the idea of modularity of a system to the level of 

“clusters” of source code files. Combining that relational information between software 

artifacts with pieces of information with developers’ relational data, such as coordination 

patterns, a manager or other stakeholders would be able to better understand numerous 

critical aspects associated with the evolution of development projects such as the 

implications of task or role assignments among developers as well as the implications of 

major modifications to specific parts of the system. 
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CHAPTER 9: CONCLUSIONS 

 

The identification and management of software dependencies is a fundamental 

problem in software development, particularly when development organizations are 

geographically distributed. This dissertation argued that modularization, the traditional 

approach used to reduce technical dependencies, is not a sufficient representation of work 

dependencies in the context of software development mainly for three reasons. First, as 

the results in chapter 5 show, the product structure-task structure relationship is not as 

simple as theorized. Second, the modularization techniques used in software development 

only consider one type of technical dependencies, syntactic relationships (Garcia et al, 

2007). Those techniques disregard the technical relationships, such as logical 

dependencies, most relevant in determining work dependencies in software development. 

Thirdly, dynamic nature of the software development activities is better captured by 

logical product dependencies, as discussed in chapters 5 and 6. Hence, a new way of 

thinking about work dependencies in software development is needed. I proposed a 

method for measuring socio-technical congruence defined as the relationship between the 

structure of work dependencies and the coordination patterns of the organization doing 

the technical work. Two empirical studies assessed the impact of socio-technical 

congruence on development productivity and product quality. In addition, I explored how 

developers in a geographically distributed software development organization evolve 

their coordination patterns to overcome the limitations of the modular design approach.  

The results indicated that higher levels of congruence were associated with lower 

levels of customer defects. However, the more product dependencies a module had with 
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other parts of the system and the higher the amount of coordination requirements 

associated with each developer were found to be detrimental to the quality of the system. 

Higher levels of congruence were also associated with higher levels of development 

productivity. Moreover, the most productive developers exhibited two distinct 

characteristics: they coordinated their work more congruently than less productive 

developers and they played a critical role in coordination across teams and geographical 

locations. Collectively, these results have important implications for the design of 

collaborative tools as well as for organizing GDSD teams. 

The rest of this chapter discuss the contributions and limitation of the work 

reported in this dissertation. I also present several research questions that the results from 

this dissertation suggest as promising areas for future work.  

 

Contributions 

This dissertation has important theoretical and empirical contributions to the 

software engineering, CSCW and organizational literatures. In terms of theoretical 

contributions, this dissertation presented a fine-grain view of coordination that addresses 

the limitations of traditional approaches from the organizational theory literature. The 

proposed framework for measuring socio-technical congruence provides the necessary 

machinery to examine the consequences of coordination requirements that are not 

satisfied. In addition, the congruence framework provides the sufficient flexibility to 

consider multiple types of product dependencies and their implications on the work 

dependencies encountered by product development organizations. 
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This dissertation also has significant empirical contributions. First, the empirical 

evaluation of the congruence framework showed the importance of understanding the 

dynamic nature of software development. Identifying the “right” set of product 

dependencies that determine the relevant work dependencies and coordinating 

accordingly has significant impact on reducing the resolution time of modification 

requests. The analyses showed traditional software dependencies, such as syntactic 

relationships, tend to capture a relatively stable view of product dependencies that is not 

representative of the dynamism in product dependencies that emerges as software 

systems are implemented. On the other hand, logical dependencies provide a more 

accurate representation of the most relevant product dependencies in software 

development projects. The statistical analyses showed that when developers’ coordination 

patterns are congruent with their coordination needs, the resolution time of modification 

requests was, on average, reduced by 32% when considering the collective effect of all 

four measures of congruence. Generalizing, the empirical examination of the congruence 

framework and coordination patterns showed the tight relationship between team design, 

coordination and performance providing an important contribution to the organizational 

literature. 

Secondly, this dissertation moves forward our understanding of the relationship 

between product and work dependencies and software quality. The empirical study 

reported in chapter 6 showed that logical dependencies among software modules and 

work dependencies are two of the most relevant factors affecting the failure proneness of 

software modules. For instance, the statistical analyses indicated that a unit increase in 

logical dependencies increased twice as much the likely of failure relative to the impact 
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of syntactic dependencies. In addition, the proposed statistical models that included the 

different types of technical and work dependencies exhibit significantly better predictive 

power than recent models (e.g. Nagappan & Ball, 2007) that consider traditional factors 

such syntactic dependencies and churn metrics. 

Finally, I presented a longitudinal analysis of coordination activities in a 

geographically distributed software development project. The results showed that 

approximately 20% of the developers were positioned centrally in the social system of 

information exchanges and coordination activities performing a critical bridging function 

across formal teams and geographical locations. In addition, those same individuals 

contributed the between 50% and 65% to the development effort in terms of 

implementing the software system in each released covered by the data. The analysis also 

revealed that the patterns of coordination become stable over time, and those patterns 

were only partially driven by the coordination requirements of the development tasks.  

 

Limitations 

It is also important to highlight some of the limitations of the work reported in 

this dissertation. First, the measures proposed as part of the congruence framework are 

contingent on assumptions about the software development processes used in the 

development organization as well as usage patterns of tools that assist the development 

effort such as defect tracking and version control systems. One key assumption is the 

possibility to identify (1) the set of source code files that were changed as part of a 

modification request and (2) the developers that made those changes. For instance, a 

policy of source code file ownership by particular developers could potentially bias the 
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congruence measures. Developers that own a particular source code might appear as 

participants in the development effort associated with a modification request, however, 

that might not be the case. In other cases, such as open source projects (e.g. project B), 

the nature of the work in certain project is such that the information about which files 

changed together as part of a modification request is almost impossible to reconstruct in a 

reliable way.  

The alternative approach of computing coordination requirements based on 

syntactic relationships also has its limitations. The method relies on tools that can reliably 

extract the dependency information among software modules for a specific programming 

language. More importantly, projects that use multiple programming languages will 

represent a challenge, particularly, in terms of determining syntactic dependencies that 

involve modules written in different programming languages. 

  Another limitation of the work presented in this dissertation is a potential concern 

for external validity of some of the empirical analyses. For instance, the study reported in 

chapter 5 examined only one system with particular properties that might be conducive to 

support the results found by the analysis. However, the processes and tools used by the 

development organization are commonplace in the software industry. Moreover, the 

general technical characteristics of the system are similar to other types of distributed 

systems developed into products in the software industry. Hence, I think the results are 

generalizable, particularly, in the context of development organizations responsible for 

delivering complex software systems. 
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Future Work 

The work presented in this dissertation has also raised interesting questions to be 

addressed in future research work and the following paragraphs discuss them in detail. 

 

Identification of coordination requirements in early stages of software projects 

The empirical examination of the congruence framework showed the relevance of 

matching coordination activity with the fine-grained coordination needs that emerge in 

the development of software systems. However, the measure of congruence, as computed 

in the studies, relied on archival data to capture the appropriate product dependency 

information, the task assignment information as well as coordination activity carried out 

by the development organization. The promising results reported in this dissertation 

highlight the importance of identifying potential coordination needs as early as possible 

in the development process in order to provide the development organization with the 

appropriate communication and coordination mechanisms. Certainly such a task is a 

challenging one.  

In early stages of a project, only architectural or high level design specifications 

of a system are available. Those documents by definition abstract a significant portion of 

the technical details of software systems in order to understand the overall attributes and 

relationships among the main components of a system. A higher level of abstraction 

could potentially hinder the identification of relevant technical dependencies and 

consequently, important coordination requirements. However, the use of standardized 

design and modeling languages, such as UML, might represent a way of overcoming 

these challenges. Researchers have proposed standard graphical representations of 
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software architectures, called views, that capture different technical aspects of a software 

system (Clements et al, 2002). Examples of those graphical representations are the 

module view and the components-and-connectors view. Then, one approach is to 

construct a coordination view of the architectures that combines the product’s technical 

dependencies with relationships among the organizational units responsible for carrying 

out the development work. In order to generate such representations, methods of 

identifying relevant dependencies from the technically focused views of the architecture 

are to be devised. One potentially promising approach is to synthesize the dependencies 

represented in the various types of UML diagrams (e.g. class diagrams, sequence 

diagrams, collaboration diagrams, etc) into a single set of technical relationships among 

modules. Such a method could be able to identify logical relationships (e.g. temporal 

relationships) among parts of the systems which, as shown in this dissertation, are an 

important factor driving the work dependencies in software development organizations. 

 

The impact of formal roles in development organizations 

The longitudinal analysis reported in chapter 7 showed developers positioned 

centrally in the social system of information exchanges and coordination activities 

performed a critical bridging activity across formal teams and geographical locations. 

The analysis also revealed those same individuals contributed the most to the 

development effort. More interestingly, and contrary to the views typically discussed in 

the literature (Ancona & Caldwell, 1992; Hauschildt & Schewe, 2000, Sangwan et al, 

2006), the “liaisons” emerged over time from each development group.  
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In addition, these results challenge traditional thinking in the software engineering 

literature. As developers become more knowledgeable of the system and increase their 

productivity, they tend to be positioned in specific roles such as team leads. Those formal 

roles make the developers more visible to the overall organization, hence, it is expected 

that they would be involved in more communication, and coordination activities that 

facilitates the flow of information among teams. The additional responsibilities would 

negatively impact the individuals’ direct contributions in the production of software code. 

However, the findings reported in this dissertation suggest an opposite situation where 

centrally positioned individuals in terms of communication and coordination are also 

highly productive individuals. Then, future work research is required to understand more 

closely the impact of formal roles on coordination in development organizations as well 

as the relationship between formal roles, coordination behavior and individual-level 

productivity. 

 

Communication beyond team and location boundaries and individual-level performance 

 In addition to the issue of formal versus emergent roles, study III highlighted an 

interesting relationship between characteristics of the software development tasks and the 

developers’ position in the coordination network. Although high-performers were more 

likely to be centrally positioned in the coordination networks, the longitudinal analysis 

showed that low-performing developers were also part of that core group at different 

points in time through the period covered by the data. An examination of the 

modification request reports revealed a particular set of developers worked on cross-

cutting concerns such as logging, tracing and security. Those functionalities affected 
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multiple parts of the system. The data suggested the developers implementing or 

modifying the cross-cutting concerns engaged in communication and coordination 

activities with several developers from other formal teams and geographical locations. 

Those findings raise several interesting questions. These developers had the opportunity 

to exchange information with developers working in different components of the system, 

then, do those information exchanges translate into an increase in the knowledge about 

the system and, consequently, higher development productivity? The data from project A 

examined in chapter 7 suggested that some improvements in productivity took place. The 

developers that worked on cross-cutting concerns tended to move up one or two 

categories in the productivity ranking after the months where they were part of the core 

group of the coordination network. However, the improvement in productivity did not 

translate into a consistent over time membership in the core group of the coordination 

networks. It is important to highlight that these findings are based on just five developers. 

Hence, more research is required to better understand the relationship between 

development tasks that promote interactions among engineers and the potential gains in 

development productivity. In addition, future research should examine if tasks, such as 

the implementation of cross-cutting concerns, are mechanisms that could promote the 

development of communication and coordination conduits among formal teams and 

development locations. 

 

Applying the congruence framework in other types of tasks 

This dissertation showed the congruence framework provided the appropriate 

machinery to measure the dynamic nature of work dependencies in software development 
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and assess its impact on productivity and product quality. Although a natural progression 

of this work is to apply the congruence measures in other task settings, it is important to 

first discuss in more detail the general properties of task contexts where the usage of the 

congruence framework would be beneficial. The following paragraphs describe such 

properties. 

Non-routineness: if all the steps required to performing a set of tasks can be 

identified a priori, then the nature of the potential interdependencies among those tasks is 

deterministic. Hence, the coordination mechanisms proposed in the organizational theory 

literature (e.g. Galbraith, 1973; March & Simon, 1958; Thompson, 1968) can be used. On 

the other hand, non-routine tasks are characterized by the impossibility to fully articulate 

and internalize all the necessary actions require to complete the task. Such a condition 

creates a dynamic set of task interdependencies. Hence, they constitute the ideal setting 

for the congruence framework. 

Volatility of Coordination Needs: an issue related to the previous paragraph is the 

rate of change in the work dependencies associated with the non-routine tasks. The higher 

the volatility of coordination needs, the lower the applicability of the traditional 

coordination mechanisms. Then, the congruence framework would be better suited for a 

task context where dependencies constitute a dynamically evolving web of relationships.  

Lack of global visibility: if a small group of individuals can harness a global 

understanding about the dependencies among of the tasks or the relationships among all 

the parts of a product under development, then that small set of individuals could be in a 

position were they can manage or facilitate the coordination among the relevant parties. 

The congruence framework would be useful in a setting (e.g. product development 



 
 

 172

organizations that work with large and complex systems) were no individual, or small 

number of individuals, can have global understanding of the work or product 

dependencies. Then, the congruence framework could become the mechanism to manage 

the coordination complexity and provide assistance in the identification of coordination 

gaps. 

The three properties described in the previous paragraphs represent the 

characteristics of an appropriate task context where applying the congruence framework 

would be valuable. However, once such a task context has been identified, an additional 

obstacle that could challenge the usage of the congruence framework is the availability of 

detailed task-related data which might not be as pervasive as in software development. 

Tools such as version control and defect tracking systems capture a wealth of information 

not typically available in other types of knowledge-intensive activities. There are 

promising technological developments in the area of delivering software applications that 

might help to overcome those problems. The concept of software as a service is growing 

in acceptance. In that model, applications are accessed as services (e.g. Google Docs or 

salesforce.com’s customer relationship management tool). Such applications have the 

ability to capture a lot more information about the work performed by an interdependent 

group of individuals relative to the case where the applications are run separately on 

individual machines. Then, one could envision capturing information similar in nature as 

the one captured in software development projects by tools like version control systems. 

In this way, the necessary data sources can be constructed in order to apply the 

congruence framework in non-software development contexts. 
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APPENDIX A: SURVEY FOR PROJECT D 

 

The following survey was used in project D to collect information about 

coordination behavior as well as self-assessed performance data. The survey was 

administered twice in two consecutive development iterations. The administration of the 

survey was performed over the internet. The survey resided on a server located at 

Carnegie Mellon’s campus and each respondent logged-in to the survey after being 

authentificated against project records stored in a database. 

 

Question 1: 
 In the period between DATE X AND Y, if you have spent time at the 
following sites, please indicate the number of working days you have 
spent at the following sites: 
  
 COMPANY Office at LOCATION 1 
 COMPANY Office at LOCATION 2 
 COMPANY Office at LOCATION 3 
 COMPANY Office at LOCATION 4 
      Other COMPANY Office, please indicate name:  
 

Question 2: 
In the period between DATE X AND Y, if you have interacted with a 

person, please select "yes" next to the team that they belong to, and 
then indicate how often you have communicated with this person 
regarding integration and development</u></b>-related activities: 
 

Please select "yes" for any team that contains team members that 
you have interacted with during the specified period: 
 
 TEAM 1  :  YES / NO 
 ….        
 TEAM 14 :  YES / NO 
 
 
Note: a pop-up window with the team’s roster would appear if “yes” was selected. 

 

Question 3: 

Please select the option that best describes your agreement with 
the statement of the questions. If you have not performed any 



 
 

 188

integration or development work, please select the 'Does not apply' 
option. 

 
 
 
A. I am satisfied with the progress I have made on integration-

related tasks in the period between DATE X AND Y: 
    Strongly disagree  (value = 1) 
    Disagree           (value = 2) 
    Agree              (value = 3) 
    Strongly agree     (value = 4) 
    Does not apply     (value = 0) 

B. I am satisfied with the progress I have made on development-
related tasks in the period between DATE X AND Y: 
    Strongly disagree  (value = 1) 
    Disagree           (value = 2) 
    Agree              (value = 3) 
    Strongly agree     (value = 4) 
    Does not apply     (value = 0) 
 

Question 4: Open-ended question 
A. In your opinion, what was the biggest challenge in working 

with people who were in the same location as you in the period between 
DATE X AND Y: 

B. In your opinion, what was the biggest challenge in working 
with people who were NOT in the same location as you in the period 
between DATE X AND Y: 

C. In your opinion, what action, if any, could be taken to 
improve the team's effectiveness in developing and delivering software 
in the period between DATE X AND Y: 
 


