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Abstract
Application Programming Interfaces (APIs) often define protocols—

restrictions on the order of client calls to API methods. API protocols are
common and difficult to follow, which has generated tremendous research
into the specification and verification of protocols. However, verification
techniques do little to alleviate several major challenges programmers face
when using API protocols: fixing protocol violations, learning protocol
rules, and finding state transitions.

To understand these challenges better, I mined developer forums to
identify problems that developers have with protocols. Then, I performed a
think-aloud observational study, in which I systematically observed profes-
sional programmers struggle with these same problems to get more detail
on the nature of their struggles and how they used available resources. In
my observations, programmer time was spent primarily on four types of
searches of the protocol state space.

To alleviate the protocol programmability challenges, I embed state
modeling techniques directly into code and developer documentation. I
design and formalize a programming language, Plaid, in which objects
are modeled not just in terms of classes, but in terms of changing abstract
states. Each state may have its own fields and methods, as well as methods
that transition the object into a new state. I also developed a documentation
tool called Plaiddoc, which is like Javadoc except it organizes methods by
state instead of by class and it includes explicit state transitions, state-based
type specifications, and rich state relationships.

I evaluate Plaid through a series of examples taken from the Plaid
compiler and standard libraries of Smalltalk and Java. These examples
show how Plaid can more closely model state-based designs, enhancing
understandability, automating error checking, and providing reuse benefits.
I evaluate Plaiddoc with a user experiment and show that participants using
Plaiddoc can perform state search significantly more quickly and accurately
than participants using Javadoc.



iv



Acknowledgements

Almost all of the work in this thesis was done collaboratively with
CMU students and faculty. Jonathan Aldrich has advised me expertly
through all of my work, including many dead ends that don’t appear in
this thesis. He is a tremendously supportive, creative, and giving advisor.
Sven Stork, Éric Tanter, and especially Karl Naden were instrumental in
the design and implementation of the Plaid language. Karl, Brad Myers,
and especially Thomas LaToza, guided me through the early versions of
my empirical work. Jim Herbsleb has helped design and implement the
final studies that appears here. I am incredibly grateful to all of them for
their help.

I have worked on many research projects that do not appear in this
thesis. I gained valuable research and writing skills through those efforts
that had direct impact on the work presented here. Thank you to Lorrie
Cranor (I credit my interest in human subjects experiments to Lorrie), Serge
Egelman, Darpan Saini, Sarah Chasins, Tim Hickey, Sriram Subramaniam,
and Jacqueline Milne for their help on those efforts.

My community at CMU changed as the years passed and senior stu-
dents graduated and new students replaced them. However, I was closest
throughout with the students and faculty associated with the Software En-
gineering PhD program and the Plaid group. I benefited immensely from
the countless conversation I had with these students and faculty. Thank
you to current students and postdocs: Jeff Barnes (my first officemate, and
only full 6.5 year colleague!), Stephanie Balzer, Paulo Casanova, Ben-
jamin Chung, Vishal Dwivedi, Darya Kurilova, Du Li, Michael Maass,
Ligia Nistor, Larry Maccherone, Cyrus Omar, Ivan Ruchkin, Jason Tsay,
and YoungSeok Yoon. Thank you to former students and post-docs: Mar-
wan Abi-Antoun, Nels Beckman, Kevin Bierhoff, Rob Bocchino, Sarah
Chasins, Owen Cheng, George Fairbanks, Greg Hartman, Ciera Jaspan,
Neel Krishnaswami, Donna Malayeri, Karl Naden, Sven Stork, Darpan
Saini, Dean Sutherland, and Roger Wolff. Thank you to the software en-
gineering faculty: Jonathan Aldrich (see above), Travis Breaux, David
Garlan, Charlie Garrod, Jim Herbsleb (see above), Christian Kästner, Brad
Myers, Bradley Schmerl, Bill Scherlis (Bill gave me the best presentation
advice I’ve ever received), and Mary Shaw (Mary taught me invaluable



lessons about research structure, evaluating research, and writing research
papers).

My parents and extended family instilled in me a love of math and
science from my first breadth. My Mom, a computer programmer, gave me
logic puzzles every chance she had, demonstrated excitement for math and
science every time she helped with homework, and defended me vigorously
to my 7th grade math teacher who thought I “played with my calculator too
much.” My dad, a lawyer who worked at NSF and NASA when I was a kid,
taught me not to be too narrowly focused and to think hard about the social,
policy, marketing, and financial aspects of science. My father’s lesson has
already paid tremendous dividends and will likely be more impactful as I
continue my journey through academia. My extended family is filled with
scientists (see the results of a search for “J Sunshine” on google scholar) —
venting about stressful grant deadlines, arguments about research methods,
and discussions about science news were ever-present at our family events.

I owe an incredible debt to my wife Kira. Her love and support have
been essential. She was instrumental to get me back on track after a long
low-productivity period. I missed many dinners, bedtimes, and weekend
outings as I prepared this thesis and she always (seemingly effortlessly)
picked up the slack.

Finally, thank you to my kids Akiva, Elisheva, and Tamir for making
me smile, laugh and cry. I love you so much.

vi



Contents

1 Introduction 1
1.1 State of Practice: Implicit Protocols . . . . . . . . . . . . . . . . . . 1

1.2 Protocols in Research: Modeling and Verification . . . . . . . . . . . 6

1.3 Thesis approach: Explicit protocols . . . . . . . . . . . . . . . . . . 7

1.4 API protocol barriers . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Plaid project overview . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 First-class state change in Plaid 13
2.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . 14

2.2 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Basics of State Change . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 State Transitions . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Dimensions of State Change . . . . . . . . . . . . . . . . . . 20

2.2.4 State members . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.6 Plaid runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Plaid project retrospective . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Project diversity . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Models are better out of the box . . . . . . . . . . . . . . . . 32

2.4.3 States should fly coach . . . . . . . . . . . . . . . . . . . . . 33

2.4.4 Dogfood is bad for you . . . . . . . . . . . . . . . . . . . . . 33

2.4.5 Sugar is too sweet . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.6 Plaid: The danger of complexity . . . . . . . . . . . . . . . . 35

vii



3 Searching the State Space: A Qualitative Study of API Protocol Usability 37
3.1 Programming obstacles . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Information needs studies . . . . . . . . . . . . . . . . . . . 38
3.1.2 API usability studies . . . . . . . . . . . . . . . . . . . . . . 39
3.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Forum Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Strengths and weaknesses of Stack Overflow data . . . . . . . 41
3.2.2 Winnowing the Question List . . . . . . . . . . . . . . . . . 43
3.2.3 Analyzing a Question . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Laboratory Observations . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Structuring Documentation to Support State Search: A Laboratory Ex-
periment about Protocol Programming 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . 63
4.3 Plaiddoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Recruitment . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.4 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.5 Post-experiment interview . . . . . . . . . . . . . . . . . . . 74

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.1 Task Completion Time . . . . . . . . . . . . . . . . . . . . . 74
4.5.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.3 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.4 State concept mapping . . . . . . . . . . . . . . . . . . . . . 83
4.5.5 Participant preference . . . . . . . . . . . . . . . . . . . . . 83
4.5.6 Discussion of pilot studies . . . . . . . . . . . . . . . . . . . 84

4.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6.1 Construct validity . . . . . . . . . . . . . . . . . . . . . . . . 85

viii



4.6.2 Internal validity . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.6.3 External Validity . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Type annotations as documentation . . . . . . . . . . . . . . . . . . . 87
4.7.1 Related studies on the benefits of types . . . . . . . . . . . . 87
4.7.2 Research template . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Implications of Empirical Results on the Design of Plaid 91
5.1 Plaiddoc vs. Plaid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Plaid extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Access permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Missing transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Protocol barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Future work 99
6.1 Addressing limitations . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.1 How common are protocol problems? . . . . . . . . . . . . . 99
6.1.2 What other classes of protocols exist? Are the challenges they

present similar? . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.1.3 Do the benefits of Plaiddoc extend to Plaid? . . . . . . . . . . 100

6.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.1 How can we better support state history in Plaid? . . . . . . . 101
6.2.2 Which features of Plaiddoc provide the most benefits? . . . . 101

6.3 Adaptations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.1 How can we study the usability of other high level type systems?102
6.3.2 How can we support simultaneously active high level type

systems? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusion 103

A Plaid language semantics 105
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.2 Core Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2.1 Expression Syntax . . . . . . . . . . . . . . . . . . . . . . . 107
A.2.2 Object Value Syntax . . . . . . . . . . . . . . . . . . . . . . 108

A.3 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ix



A.3.1 Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.3.2 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.3.3 State Update . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.3.4 Object Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 122
A.3.5 Trait Operations . . . . . . . . . . . . . . . . . . . . . . . . 123

A.4 Elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.5 Source Translation Rules . . . . . . . . . . . . . . . . . . . . . . . . 126

B Unique members proof 129

C Plaiddoc experiment study materials 133

Bibliography 155

x



Chapter 1

Introduction

Many programming libraries define object protocols, which define a partial order over
method calls. Objects with protocols have a finite number of states and in each state a
different subset of method calls are valid. Protocols also specify transitions between
states that occur as part of some method calls. Clients of such libraries must be aware
of the protocol in order to use it correctly. For example, a file may be in the open or
closed state. In the open state, one may read or write to a file, or one may close it,
which causes a state transition to the closed state. In the closed state, the only permitted
operation is to (re-)open the file. Files provide a simple example of states, but there are
many more examples. Streams may be open or closed, iterators may have elements
available or not, collections may be empty or not, and even lowly exceptions can have
their cause set, or not.

1.1 State of Practice: Implicit Protocols

Protocols are encoded in mainstream languages like Java with lower level constructs
like integers, Boolean flags, enums, and null pointers. The protocols are only visible to
clients in documentation and/or the error messages that are delivered when a protocol is
misused.

Consider the widely used URLConnection class in the Java networking libraries.
According to the JavaDoc, the class represents “a communication link between the
application and a URL.” Accessing a remote resource using a URLConnection instance
is a multi-step process: 1) Create the connection object. 2) Manipulate request properties
and setup parameters. 3) Connect to the remote object. 4) Access the header fields and
contents of the remote object.
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Figure 1.1: UML state machine for URLConnection.

This four-step process can be modeled by the UML state diagram for URLConnec-
tion shown Figure 1.1. The process maps to the state diagram thusly: 1) A programmer
creates a URLConnection by calling the openConnection method on a URL object,
which transitions1 the object from the start state2 to the Disconnected state.3 2) In the
Disconnected state, a programmer can “manipulate the request properties” by calling
methods on the URLConnection instance like addRequestProperty. 3) A programmer
transitions the URLConnection from the Disconnected to the Connected state by calling
the connect method. 4) A programmer “accesses the header fields and remote object
contents” by calling methods like getHeaderField or getContent. Somewhat surprisingly,
these methods also transition a Disconnected object to the Connected state, in which
case steps 3 and 4 happen at once.

Protocols can be subdivided into many concrete rules that clients must follow. One
example rule from the URLConnection protocol is that the addRequestProperty method
cannot be called after the connect method. The connectedness of a URLConnection is
encoded in a boolean flag:

/∗∗
∗ If <code>false</code>, this connection object has
∗ not created a communications link to the specified
∗ URL. If <code>true</code>, the communications
∗ link has been established.
∗/
protected boolean connected = false;

1State transitions are denoted by arrows. The names of methods that perform the transition appear
above the arrow.

2Start states are denoted by black circles.
3States are denoted by rounded rectangles.
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If the URLConnection is connected the flag is true, and it is false otherwise.

The addRequestProperty method documents the protocol, checks for violations, and
throws an appropriate exception when the protocol is violated:

/∗∗
∗ . . .
∗@throws IllegalStateException if already connected
∗ . . .
∗/
public void addRequestProperty(String key, String value) {

if (connected)
throw new IllegalStateException("Already connected");

. . .
requests.add(key, value);

}

The documentation indicates the protocol in the @throws annotation shown above. The
code checks the protocol by inspecting the connected flag and throwing an exception
when the protocol is violated.

This code is problematic for several reasons. There are 11 lines of documentation
for addRequestProperty, but only one, the somewhat secondary @throws annotation
shown above, indicates the protocol, so it is easy to miss. The code also relies on the fact
that the connected flag is never reset to false after being set to true. A subclass author
that does not understand this invariant might set the flag to false when the connection
is closed. In this case, the addRequestMethod would silently assign to the unusable
requests field (last line).

On the other hand, relative to most protocol implementations, the URLConnection
is easy to use. The method throws the standard protocol violation exception, an
IllegalStateException, which according the JavaDoc signals “that a method has been
invoked at an illegal or inappropriate time.” The error message, “already connected,” is
also appropriate and easy to understand. Instances of other classes fail silently, corrupt
data, throw non-specific exceptions like NullPointerException, or deliver obscure error
messages. For example, the HSQLDB JDBC driver delivers the message “invalid cursor
state: cannot FETCH NEXT, PRIOR, CURRENT, or RELATIVE, cursor position is
unknown” when part of the ResultSet protocol is violated.

The URLConnection protocol is also intuitive to anyone familiar with the underlying
networking activity — the state of the API changes when a request is sent. Many other
protocols lack similar intuition; the Java utility class Timer does not allow the same
task to be scheduled twice, but it is not obvious why. The URLConnection is also

3



relatively simple—it only has three states (including the start state) and two transition
arrows. ResultSet from the Java database connectivity (JDBC) library contains 33
unique states dealing with different combinations of openness, direction, random access,
and insertions [Bierhoff and Aldrich, 2005]. Even given all of the usability advantages
of the URLConnection protocol over others, many questioners on the the widely used
developer forum Stack Overflow have struggled with the URLConnection protocol.

Some dynamic languages provide the ability to add and remove methods. Changing
a delegation slot in Self [Ungar and Smith, 1987], calling the become method in
Smalltalk [Kay, 1996], and adding and deleting members in JavaScript can all be used
to simulate state change. For example, in Javascript one can implement the transition
from the URLConnection Disconnected to the Connected state by deleting the connect
and addRequestProperty methods. However, even in these dynamic languages, the
connection between state models and code is still fairly obscure.

Commonality of Protocols

Even in the face of poor language support for protocols, API protocols are common.
More than 8% of Java Standard Library classes and interfaces define protocols. For
context, this is more than three times as many as define type parameters [Beckman et al.,
2011]. As of November 1, 2013, IllegalStateException was the fourth most common of
the 27 java.lang exception types appearing in StackOverflow questions. The number
of questions per exception type are shown in Table 1.1. Only NullPointerException
(which can sometimes signal protocol violations), RuntimeException (the generic
uncaught exception type), and ClassNotFoundException are more common. Overall,
questions involving IllegalStateException involve 9.2% of the total involving any
java.lang exception type.

Protocol Programmability Problem’s Impact

Given all of the problems with the way protocols are encoded in the state of practice, it
is perhaps unsurprising that using them is difficult. In a study of problems developers
experienced when using a portion of the ASP.NET framework, three quarters of the is-
sues identified involved temporal constraints. These constraints were often components
of quite complex multi-object protocols [Jaspan, 2011].

Most protocol violations results in runtime errors that occur every time the program
is run. For example, every time addRequestProperty is called on a connected URL-
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Exception type No. questions
NullPointerException 16,879

RuntimeException 13,756
ClassNotFoundException 7,654

IllegalStateException 5,890
IllegalArgumentException 5,716

ClassCastException 4,288
Exception 1,704

ArrayIndexOutOfBoundsException 1,653
NumberFormatException 1,290

SecurityException 1,004
IndexOutOfBoundsException 856

UnsupportedOperationException 818
NoSuchMethodException 638

InstantiationException 431
StringIndexOutOfBoundsException 409

InterruptedException 187
ArithmeticException 169

IllegalAccessException 163
IllegalMonitorStateException 129

ArrayStoreException 84
NoSuchFieldException 79

IllegalThreadStateException 70
NegativeArraySizeException 30

CloneNotSupportedException 17
TypeNotPresentException 17

ReflectiveOperationException 2
EnumConstantNotPresentException 0

Total 63,933

Table 1.1: Number of StackOverflow questions containing any reference to each of the java.lang
exception types as of November 1, 2013.
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Connection an IllegalStateException is thrown. Therefore, most protocol violations are
caught and fixed by developers early in the software development lifecycle and never
released into production software. However, misuse of security protocols often results
in silent vulnerabilities which can reach production systems. Several notable examples
have been found in recent years. Georgiev et al. [2012] uncovered vulnerabilities
in dozens of security critical applications caused by SSL library protocol violations.
These applications misconfigured high-level libraries such that the high-level libraries
misused low-level SSL libraries which in turn failed silently.4 Bortolozzo et al. [2010]
found that many smart cards incorrectly implement the PKCS#11 protocol, such that
particular API call orderings revealed the private key. Finally, Somorovsky et al. [2012]
demonstrate vulnerabilities in 11 security frameworks such that Security Assertion
Markup Language (SAML) assertions are not checked properly when certain API
mis-orderings are triggered.

1.2 Protocols in Research: Modeling and Verification

Many engineering disciplines model the state of important components. In many
cases a component is in exactly one state at a time like the butterfly. However, many
components require a richer model; for example, a car’s gears change independently of
its headlights. The most widely used modeling technique, statecharts, was introduced
by Harel in his seminal paper [Harel, 1987].

Harel’s statecharts form the basis of UML state diagrams. However, they have not
had much impact on programming languages or tools to support programming. Bierhoff
and Aldrich [2005] were the first to observe that the complexity of API protocols such as
the one defined by the JDBC ResultSet interface requires rich state modeling constructs
like those proposed by Harel.

The research tools and languages aimed directly at protocols focus on specification
and verification. Strom and Yemini proposed typestate as a compiler checkable ab-
straction of the states of a data structure [Strom and Yemini, 1986]. The Fugue system
later integrated typestates into an object-oriented programming language [DeLine and
Fähndrich, 2004].

Many tools verify protocols (e.g. [Bierhoff et al., 2009; Dwyer et al., 2007; Foster
et al., 2002]). These tools require programmers to specify protocols using access-
permission and typestate annotations that are separate from code. To automate the

4The low-level libraries (e.g. OpenSSL) proceeded without validating SSL certificates.
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annotation process, several tools mine protocol specifications from program execu-
tions [de Caso et al., 2011] or static analysis [Beckman and Nori, 2011; Whaley et al.,
2002]. A recent survey of automated API property inference techniques uncovered 35
inference techniques for ordering specifications [Robillard et al., 2013].

The state-of the art research tools do have several usability advantages over the
status quo:

1. Protocol violations are caught at compile time instead of runtime.
2. All possible protocol violations are caught, not just those that happen to occur in

a particular program execution.
3. Error messages are generated and therefore the messages are consistent with the

specification and across protocol violations.
4. Error messages are higher-level. For example, some tools’ error messages refer

to abstract states instead of the details of primitive encodings.

However, all of these benefits come at substantial cost. These tools often place sub-
stantial annotation burdens on developers. Many of these tools also have significant
false positive rates. Finally, the API specifications themselves, which could theoreti-
cally improve programmers understanding of the protocols they specify, are instead
heavy on notation and technical details not directly related to state (e.g. Plural access
permissions).5

1.3 Thesis approach: Explicit protocols

The scope of the protocol programmability problem reveals many limitations with the
existing research literature. Although some protocol violations make it into production
code (e.g. the security vulnerabilities discussed in Section 1.1), most are discovered the
first time the program executes. In these cases, the challenge is that programmers have
trouble resolving the violations. Many questioners on programmer forums are incapable
of resolving even detailed and clear error messages related to protocol violations (like
the IllegalStateException thrown by URLConnection.addRequestProperty). Verification
alone cannot help programmers fix programs they know are invalid!

In this thesis, I instead investigate embedding state modeling techniques directly
into the artifacts programmers are already using. In particular the artifacts model state
with the following four techniques: members (fields and methods) are organized by

5In the pilot studies I discuss in Section 4.5.6, it was very challenging for even the mathematically
sophisticated participants I recruited to understand the Plural access permissions.
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state instead of by class, type-specifications are state-based, state change is explicit,
and there is support for rich state models (including state hierarchy, and-states, and
or-states). I include these techniques in arguably the two most important programming
artifacts – code and documentation.

To embed these techniques in code, I design and formalize a programming language,
Plaid, with features corresponding to these techniques. In Plaid, objects are modeled
not just in terms of classes, but in terms of changing abstract states based on Harel
statecharts. Each state may have its own fields and methods, as well as methods that
transition the object into a new state. Plaid also supports modern language features
including a trait-based reuse mechanism, an extensible syntax, and lambda expressions.

To embed these techniques in documentation, I develop a documentation tool called
Plaiddoc, which generates web documentation from Java code extended with very
simple state specifications. The resulting documentation is like Javadoc documentation,
except:

1. Member summaries are grouped by state instead of by class.
2. The documentation for each method includes state-type preconditions and post-

conditions.
3. State change is represented when the postcondition state of the receiver is different

than the precondition state of the receiver.
4. An ASCII state diagram which clearly shows state relationships is included with

each state.

The Plaiddoc documentation maintains the look and feel of Javadoc and much of its
structure. The simple state specifications used by Plaiddoc are easily extractable from
Plaid code.

1.4 API protocol barriers

Another limitation of the existing research is that little is known about protocol usability
generally. As we have already seen, there is data that suggests that protocols are
problematic, but little is known about the exact nature of their struggles, or which
interventions might help. I study protocol programmability directly by observing
programmers using protocols in a series of studies.

First, I mine developer forums to uncover the characteristics of protocol tasks
that are difficult for programmers. In this step I also identify specific problems that
developers actually have with protocols. Second, I perform a think-aloud observational

8



study, where I systematically observe professional programmers struggle with these
exact problems to get more detail about the approaches they take while performing
protocol tasks. I focus particularly on the type of information that developers seek and
have difficulty locating and how they use available resources. I find that developer time
is dominated by four categories of state search. Finally, I perform a user experiment
comparing participants who use Plaiddoc to Javadoc participants on tasks involving
these state search categories.

1.5 Evaluation

I evaluate the Plaid language design through a series of examples taken from the self-
hosted Plaid compiler and the standard libraries of Smalltalk and Java. These examples
show that Plaid more closely models state-based designs than mainstream languages—
enhancing understandability, enhancing dynamic error checking, and providing reuse
benefits.

I evaluate Plaiddoc against a Javadoc control in a between-subjects user experiment.
I show that Plaiddoc participants are significantly faster and make fewer errors on state
search tasks than Javadoc participants. At the same time, Plaiddoc participants perform
equivalently on tasks that are not state related (i.e. “control” tasks).

Finally, I conclude this thesis with a discussion of the implications of the empirical
work on the Plaid language design. I argue that the performance advantage of Plaiddoc
over Javadoc is likely to extend to Plaid code over Java code since Plaiddoc and Plaid
embed the same features. On the other hand, there are significant usability costs of
the extensibility Plaid provides and I therefore suggest a more controlled mechanism.
Finally, I propose IDE and documentation support for missing state transitions based
on their importance in our empirical results.

1.6 Plaid project overview

The Plaid project is much larger than this thesis and it is therefore important to pinpoint
my role. The major sub-projects are listed in Table 1.2. I contributed heavily to all of
them, but other students or faculty members led some of them.

The Plaid language was a natural step for my research group to pursue. Two PhD
students worth of effort was spent developing Plural: a type system [Bierhoff and
Aldrich, 2005, 2007], an alias and typestate annotation system, a protocol checker [Bier-
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Description Responsibility
Typestate-oriented programming concept Contributor
Concrete language design and specification Contributor
Language structure and operational semantics Leader
Implementation and benchmarking Leader
Type system Contributor

Table 1.2: Plaid programming language sub-projects and my responsibility for them.

hoff et al., 2009], and a concurrent-usage checker for Java programs [Beckman et al.,
2008]. Since Plural was built on top of Java, the resulting programs were clunky in a
number of ways — the annotation burden is fairly heavy, state change is implemented
in terms of lower-level constructs as discussed above, and state-based reuse was limited.

Because of the limitations of Plural, our research group proposed typestate-oriented
programming [Aldrich et al., 2009], in which objects are modeled in a programming
language not by fixed classes, but by their changing states. We then developed a
concrete language design, Plaid, as a testbed for the typestate-oriented ideas [Aldrich
et al., 2012]. This thesis only contains the language structure and operational semantics
work I led since that work best fits the thesis theme [Sunshine et al., 2011]. Finally,
a lot of the group’s research effort has focused on developing a type system for Plaid.
I co-authored the first paper on Plaid’s type system [Saini et al., 2010], but the most
recent work was done primarily by others [Naden et al., 2012; Wolff et al., 2011].

A natural alternative focus of my thesis is the expressiveness of Plaid. However, the
expressiveness of Plaid-like languages and tools is a relatively crowded research area. In
particular, Kevin Bierhoff and Nels Beckman produced extensive case studies evaluating
the expressiveness of Plaid’s predecessor, Plural. I decided instead to investigate the
relatively uncharted waters of programming language usability.

1.7 Contributions

The contributions of this thesis can be naturally separated into two categories: 1) our
approach to resolving the protocol programmability problem and 2) the empirical
understanding of protocol barriers. In the first category, the contributions of our
approach are:

• The concrete design of Plaid, an object-oriented programming language that
incorporates first-class state change as well as trait-like state composition.
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• A formal model that precisely defines the semantics of core Plaid constructs.

• An evaluation of Plaid through a series of examples taken from the Plaid compiler
and the standard libraries of Smalltalk and Java. These examples show how
Plaid can more closely model state-based designs, enhancing understandability,
enhancing dynamic error checking, and providing reuse benefits.

In the second category, the research questions6 investigated by this thesis are listed
below. A summary of the relevant results is listed under each question:

RQ1 What are the characteristics of protocol tasks that are difficult for program-
mers?
Result: API protocol related forum questions contained the following recurring
problems: missing state transitions, state tests, state independence, multi-object
protocols, and terminology confusion.

RQ2 How do programmers approach protocol tasks?
Result: Information seeking dominates programmer effort.

RQ3 What information do programmers seek and have difficulty locating while
performing protocol tasks?
Result: In our observations, 71% of total time is spent performing four categories
of state search.

RQ4 What resources do programmers use while performing protocol tasks?
Results: 76% of total programmer time was spent looking at the documentation
webpages. More specifically, in 56 out 74 cases the programmer looked first to
the documentation related to the method call occurring at the exception location.

RQ5 Can programmers answer state search questions more efficiently using Plaid-
doc than Javadoc?
Result: Participants using Plaiddoc were 2.1 times faster at performing state tasks
than Javadoc participants (p=3.07e-4).

RQ6 Are programmers as effective answering non-state questions using Plaiddoc
as they are with Javadoc?
Result: Participants using Plaiddoc and Javadoc were approximately equally fast
at answering non-state questions.

RQ7 Will programmers who use Plaiddoc provide higher quality answers to state
search questions than programmers who use Javadoc?

6Two more research questions are investigated in Chapter 4, but they focus on relatively low-level
details so they are not included here.
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Result: Plaiddoc participants were also 7.6x less likely to answer questions
incorrectly than Javadoc participants (p=0.00184).

1.8 Thesis

In this thesis, I make protocols explicit in code and documentation via first-class state
change, state-based type specifications, state-based member organization, and support
for rich state models. I identify four categories of state search as the primary barriers to
protocol programmability in two qualitative studies. I then evaluate my explicit-state
documentation with a controlled experiment. I find that explicit-state documentation
improves programmer productivity and reduces errors.
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Chapter 2

First-class state change in Plaid

Object-oriented programming provides a rich environment for modeling real-world and
conceptual objects within the computer. Fields capture attributes of objects, methods
capture their behavior, and subtyping captures specialization relationships among
objects. A key element missing from object-oriented programming languages, however,
is abstract states and conceptual state change. State change is pervasive in the natural
world; as a dramatic example, consider the state transition from egg, to caterpillar, to
pupae, to butterfly. Modeling systems with abstract states and transitions between them
is also common in many engineering disciplines.

We previously proposed Typestate-Oriented Programming as a new programming
paradigm in which programs are made up of dynamically created objects, each object
has a typestate that is changeable, and each typestate has an interface, representation,
and behavior [Aldrich et al., 2009]. The term typestate refers to a static abstract state
checking methodology proposed by Strom and Yemini [1986]; this chapter focuses on
a dynamically-typed setting, and so we will use the terms (abstract) state and protocol

in place of typestate to avoid confusion.

A programming language with abstract states can have many benefits. First, in the
case of stateful abstractions, the code will more clearly reflect the intended design. This
in turn will make state constraints more salient to developers who need to be aware
of them. If state constraints are implicitly enforced by the object model, there is no
need to code up explicit checks; thus code implementing states can be more concise.
Explicit state models raise the level of error messages; instead of (perhaps) silently
corrupting a data structure when an inappropriate method is called, the runtime can
throw an exception indicating that the called method is unavailable in the current state.
Finally, explicit modeling of states also exposes new concepts for widespread reuse;
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candidates may include open/closed resources or the positioning (beginning, middle,
end) of streams.

Contribution. The contribution of this chapter is the concrete design and evaluation
of Plaid, an object-oriented programming language that incorporates first-class state
change as well as trait-like state composition. Plaid has been implemented, and has
proven effective for writing a diverse set of small and medium-sized (up to 10kLOC)
programs, including a self-hosted compiler. For the purposes of this chapter, Plaid is
dynamically typed, though a typed version of Plaid has been used for parallelism [Stork
et al., 2014].

The most interesting aspects of Plaid’s design come from the intersection of state
change with support for a trait-like model of composition [Ducasse et al., 2006]. Central
goals of the language design include supporting the primary state modeling constructs
from statecharts [Harel, 1987], as well as flexible code reuse. Our design includes a
hierarchical state space, so that the open state of a stream can be refined into “within”
and “eof” substates indicating whether there is data left to be processed. Handling
real designs in a modular way requires support for multi-dimensional state spaces, as
in and-states from [Harel, 1987]; an example is a separate dimension of a stream’s
state indicating whether the stream has been marked with a location or not. Modularity
further requires reasoning about dimensions separately; for example, the mark() method
should affect the marked state dimension but it should not affect whether the stream is
at eof. Dimensions also delineate natural points of reuse; we would like to specify them
separately and combine them using a trait-like composition operator.

I position Plaid relative to earlier work in the next section. Plaid’s design is described
by example in Section 2.2. That section also validates our design, using a number
of carefully chosen examples to concretely illustrate how Plaid provides the potential
benefits described above. We also discuss our prototype implementation of Plaid,
targeting the JVM. In Section 2.3 I discuss the impact of the concrete features of Plaid
on software engineering more generally. Finally, I discuss the current state of the Plaid
language and the strengths and weaknesses of the research project in Section 2.4.

2.1 Background and Related Work

Plaid’s state constructs are inspired and guided by state modeling approaches such as
Harel’s statecharts [Harel, 1987]. Other modeling approaches include Pernici’s Objects
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with Roles Model [Pernici, 1990], which models objects using a set of roles, each of
which can be in one of several abstract states.

Strom and Yemini proposed typestate as a compiler-checkable abstraction of the
states of a data structure [Strom and Yemini, 1986]. The Fugue system was the first
to integrate typestates with an object-oriented programming language [DeLine and
Fähndrich, 2004]. Bierhoff et al. later observed that the complexity of protocols such as
the one defined by the JDBC ResultSet interface requires rich state modeling constructs
like those proposed by Harel [Bierhoff and Aldrich, 2005].

Butkevich et al. [2000] developed a regular-expression based formalism for specify-
ing protocols which are checked automatically at runtime. The Plaid runtime system
performs extremely similar runtime checks when executing dynamically-typed Plaid
code. Dwyer et al. [2007] use tracematches to reduce the overhead of protocol checks.
Bodden et al. [2008] develop a data flow analysis for program monitors (which is a su-
perset of runtime protocol checkers) which eliminates the need for many runtime checks
and therefore reduces performance penalties. These performance techniques have not
been implemented in Plaid, but they suggest significant performance improvements are
possible by applying more engineering effort.

Distributed systems, like the resource programming we focus on in this thesis, often
impose ordering constraints on communication. Honda et al. [1998] proposed session
types, as a type-based foundation for two-party, synchronous communication. Session
types constrain messages between distributed parties, while typestate constrains the
order in which data structure operations can be used. Honda et al. [2008] extended
session types to the multi-party, asynchronous setting. Deniélou and Yoshida [2011]
further extended session types with roles to allow communication between an unknown
number of parties as is commonly required in enterprise middleware or service-oriented
computing. This chapter considers a dynamically-typed setting, so we do not discuss
static checkers further.

State-dependent behavior can be encoded using the State design pattern [Gamma
et al., 1995]. However, this pattern is less direct than the language support we propose,
and it does not help with ensuring that a client only uses operations that are available in
the current state.

Dynamic languages such as Self [Ungar and Smith, 1987] provide the ability to
add and remove methods, as supported by Plaid’s state change operator. Changing a
delegation slot in Self can also be used to simulate state change, as can the “become”
method in Smalltalk [Kay, 1996]. We believe that Plaid’s more structured and more
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declarative constructs for state modeling have advantages in terms of error checking,
succinctness, and clear expression of design compared to these encodings. Plaid’s
prototype-based object model is also inspired by Self’s.

Prior State-Based Languages. The Actor model [Hewitt et al., 1973] treats states in a
first-class way, using the current state of an actor to define the response to messages in
a concurrent setting. However, states in the actor model are not hierarchical like they
are in Plaid.

Taivalsaari extended class-based languages with explicit definitions of logical states
(modes), each with its own set of operations and corresponding implementations [Taival-
saari, 1993]. Plaid’s object model differs in providing explicit state transitions (rather
than implicit ones determined by fields) and in allowing different fields in different
states.

The Ferret language [Bloom et al., 2009b] provides multiple classification, in which
objects can be classified in one of several states in each of multiple dimensions. Ferret
attaches dimensions to classes, not other states, so dimensions cannot come and go with
state changes (unlike in Plaid and Statecharts).

A number of CAD tools such as iLogic Rhapsody or IBM/Rational Rose Real-Time
support a programming model based even more directly on Statecharts [Harel, 1987];
such models benefit from many rich state modeling features but lack the dynamism
of object-oriented systems. Recently Sterkin proposed embedding the principal fea-
tures of Statecharts as a library within Groovy, providing a smoother integration with
objects [Sterkin, 2008]. Our approach focuses on adding states to object-oriented
languages, rather than libraries.

Other researchers have explored adding a class change primitive to statically-typed
languages [Drossopoulou et al., 2001; Bejleri et al., 2006; Bettini et al., 2009]. These
systems, however, do not support the richness of state models (e.g. and-states) provided
in Statecharts and in Plaid.

Schaerli et al. proposed traits [Ducasse et al., 2006] as a composition mechanism
that avoids some of the semantic ambiguities of multiple inheritance. Schaerli’s traits
did not have fields, but Plaid follows prior designs [Bergel et al., 2008] to add them.
Like some other recent work [Reppy and Turon, 2007; Cutsem et al., 2009], Plaid
does not have the flattening property, in which the composition structure of traits is
compiled away and does not affect the semantics of the resulting program. We lose
the simplicity of flattening but gain the ability to model structured state spaces more
directly, as described below.
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Figure 2.1: State space of File.

An initial sketch of the Plaid language design was presented earlier [Aldrich et al.,
2009] as an instance of the Typestate-Oriented Programming paradigm. While we
recap the motivation and concept of the language from this earlier work, that paper
described an unimplemented language, and neither defined the language semantics nor
investigated the modeling of complex state spaces, which are the key contributions of
this chapter. In an earlier 4-page workshop paper, we explored the need for a modular
state change operator that affects only one dimension of state change at a time [Aldrich
et al., 2010]; this chapter gives the semantics for a concrete solution to that problem.
Other recent work has begun to explore a gradual, permission-based type system for
Plaid [Wolff et al., 2011].

2.2 Language

In this section we will introduce Plaid by example. These examples serve the dual
purpose of explaining the language and validating the concrete benefits of Plaid.

2.2.1 Basics of State Change

Object protocols are rules dictating the ordering of method calls on objects. The concrete
state of an object with a protocol can be abstracted into a finite number of abstract states
and the object transitions dynamically between these abstract states. Therefore, clients
must be aware of the abstract states in order to use the object correctly.

Most programming languages provide no direct support for protocols. Instead,
protocols are encoded in the language using some combination of the state design
pattern [Gamma et al., 1995], conditional tests on fields, and other indirect mechanisms.
In Plaid, protocols are supported directly with states, which are like classes in Java,
with the crucial distinction that an object’s state changes as the object evolves.

Consider the state space of files, the canonical protocol example [Aldrich et al.,
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1 state File {
2 val filename;
3 }
4 state OpenFile case of File = {
5 val filePtr;
6 method read() { ... }
7 method close() { this <- ClosedFile; }
8 }
9 state ClosedFile case of File {

10 method open() { this <- OpenFile; }
11 }

Listing 2.1: File states in Plaid

2009], shown in Figure 2.1. Some files are open and some are closed. We close an
open file by calling the close method and open a closed file by calling the open method.
One cannot open an open file so the open file state does not include the open method.
Similarly, one cannot read a closed file so the closed file state does not include the read
method.

The state space of files can be encoded cleanly in Plaid as shown in Listing 2.1. The
state keyword is used to define a state. The File state contains the fields and methods
that are common between open and closed files. In this case, only the filename is shared.
Fields are declared with the val keyword.

OpenFile and ClosedFile define the methods and fields that are specific to open and
closed states. Both are substates of File. Specialization is declared with the case of
keyword. In addition, case of implies orthogonality: files can either be open or closed,
not both. Methods are defined with the method keyword. Open files have a read method,
a file pointer field which is presumably used by the read method to read the file, and a
close method. Closed files have the open method.

The open and close method bodies contain the most novel bit of syntax. An object
referred to by a variable x can be changed to state S by writing x <- S. In the open
method we transition the receiver, referred to as in Java by the keyword this, to the open
state by writing this <- OpenFile.

An example file client is shown in Listing 2.2. The readClosedFile method takes a
file as an argument, opens it, reads from it, closes it, and returns the value read from the
file. All of the method calls are valid if a closed file is passed to the method. If an open
file is passed instead, the open method call will fail. The library writers do not need to
write any special error handling code to handle this condition like they would in Java.
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1 method readClosedFile(f) {
2 f.open();
3 val x = f.read();
4 f.close();
5 x; //return
6 }

Listing 2.2: File client in Plaid

This has the concrete benefit that Plaid code for the equivalent design is smaller.

In most programming languages, fields of an object are often null in certain abstract
states. For example, Java files might contain a null filePtr when the file is closed.
Null pointers are a frequent cause of runtime errors and their cause can be difficult to
diagnose. For these reasons, Tony Hoare recently called null pointers a “billion dollar
mistake,” and we have not repeated this mistake in Plaid.

Plaid objects are always consistent: in other languages a programmer might forget
to check the state before performing an operation and perform the operation on an
object in the wrong state. Similarly, the operation might fail, but with a less specific
error message. For example, if a client calls the read method, implemented in Java
without error handling, on a closed file, Java might throw a NullPointerException for a
null dereference of filePtr.

2.2.2 State Transitions

The file state space is a complete directed graph, every pair of states is connected in both
directions by an edge. Other kinds of objects have incomplete state spaces. Consider
the life-cycle of a butterfly, which is illustrated by the state-space in Figure 2.2. A
butterfly egg hatches to a caterpillar, but it cannot ‘un-hatch’. Similarly, a butterfly never
transitions directly from a caterpillar to an imago, it always transforms to a chrysalis
first.

To preserve the integrity of incomplete protocols, only the method receiver (this),
can be the target of a state change operation. If Plaid did not have this restriction
it would be trivial for programmers to inadvertently violate a protocol. Consider:
val x = new Egg; x<-Caterpillar; x<-Egg. This illegal Plaid code violates the proto-
col by restoring a caterpillar to an egg. Instead, in legal Plaid code, methods defined in
the butterfly states perform all of the state transitions.
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Figure 2.2: Buttefly life-cycle.

2.2.3 Dimensions of State Change

Many objects in the real world are not as simple as files or butterflies. Some objects
are composed of multiple states, particularly when objects are built up from reusable
components. These components may change their state independently, or orthogonally.
For example, cars have both gears and brakes and when the car shifts gears it has no
effect on the brakes. States that change independently are in different dimensions. State
dimensions in programming languages were introduced in [Bierhoff and Aldrich, 2005].

More concretely, let us say a stream is in state unmarked in dimension markable,
and state within in dimension position. If the object changes to state marked, also in
dimension markable, it will lose all of the fields and methods defined in unmarked
(such as mark), gain those in marked (such as reset), and keep those in within (such as
read).

The full power of Plaid comes when component states are themselves composed of
multiple states. In such a setting the component states are gained and lost along with
their parents. Many of this kind of deep hierarchies exist in the wild [Beckman et al.,
2011]. For example, in the Java Database Connectivity library, the ResultSet interface is
composed from a combination of 33 states, four levels of nesting, and eight dimensions.
A slightly simplified schematic of the state space is shown in Figure 2.3.

The features of the language just described correspond directly to the ‘hierarchical-
states’, ‘and-states’ and ‘or-states’ proposed by Harel in his seminal state-chart pa-
per [Harel, 1987]. Hierarchical-states are states that are composed of other states.
And-states are states that both must be present in an object—separate dimensions that
are modeled using “with” composition in Plaid. Finally, or-states are states in the same
dimension, and therefore only one can be present in an object—a state that is a case
of another state. These features are the fundamental building blocks of the Harel state
chart formalism (which forms the basis for UML state diagrams), and are naturally
encoded in Plaid exactly in the manner we just described.

In the ResultSet diagram (Figure 2.3), or-states are separated by white space. For
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Figure 2.3: ResultSet state-chart.

example, Open and Closed are states in one dimension, ForwardOnly and Scrollable
are in another. Hierarchical-states are indicated by nesting of the state rectangles. For
example, Scrolling is a child of Open and Begin of Scrolling. Finally, and-states are
separated into orthogonal regions by dotted lines, so Direction and Status are and-states.

There is a natural one-to-one correspondence between the state rectangles in the
diagram and the state declarations in Plaid code. A subset of the declarations for
ResultSet states are shown in Listing 2.3. The or-states are all declared to be cases of
their dimensions. For example, ForwardOnly and Scrollable are cases of the Direction
dimension. The dimensions are themselves states in which case their or-states will
inherit all of the dimension’s fields and methods. Sometimes, however the state is a
pure dimension and does not contain members. In this case the state only serves to
ensure that or-states do not appear together.

The and-states nested in Open are declared using “with” together into the myRe-
sultSet state. Any object in the Open state is also in the Direction, Status, and Action
states. Often ResultSet objects will be instantiated with children of the three dimensions
Direction, Status, and Action. For example, at the end of Listing 2.3, myResultSet
is assigned to an open object in the ForwardOnly, Updatable and Insert states. This
object will contain the methods and fields from Insert, Inserting, Action, Updatable,
Status, Forwardonly, Direction, Open and ResultSet. If we were to change the state of
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1 state Open case of ResultSet =
2 Direction with Status with Action;
3 state Direction;
4 state ForwardOnly case of Direction;
5 state Scrollable case of Direction;
6 state Status;
7 state ReadOnly case of Status;
8 state Updatable case of Status;
9 state Action;

10 state Scrolling case of Action;
11 state Inserting case of Action;
12 state Insert case of Inserting;
13 state Inserted case of Inserting;
14 ...
15

16 val myResultSet = new Open @ ForwardOnly
17 with Updatable with Insert;

Listing 2.3: ResultSet state declarations and instantiation

myResultSet to Inserted by calling a method that does so, then myResult object would
have all of the same states except Insert will be replaced with Inserted. This is because
Insert and Inserted are or-states from the same dimension. When we close the object,
we lose not only the Open state but all of the states nested inside it. We are left only
with Closed and ResultSet.

The @ operator is syntactic sugar that allows an initializer to conveniently choose
nested sub-states. The myResultSet initializer in Listing 2.3 is desugared to the follow-
ing code:

var myResultSet = new Open;
myResultSet <- ForwardOnly with Updatable

with Insert;

First, an Open object is created. Then the object is changed to specializations of the
three dimensions using the state change operator. Notice that the left side of the state-
change operator is not this in the desugared code which violates the restriction discussed
in Section 2.2.2. This is okay, because the restriction only applies to Plaid source which
in this case uses the @ operator.

In this example the reader can see that the Plaid code closely reflects the design
embodied in the state chart. The stateful design is salient in the state declarations. Since
the mapping between the code and the state chart is so clear, a programmer reading
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the state declarations can easily understand the relationship between the states. In fact,
our group has built a tool to automatically extract a state chart from Plural1, a typestate
checker for annotated Java code, and although we have not built such a tool for Plaid,
the language design clearly enables it. A second potential benefit is that code for each
state can be given separately in the appropriate state declaration, potentially permitting
more fine-grained reuse across multiple implementations of the ResultSet interface.

2.2.4 State members

As we mentioned in the introduction, Plaid combines state change with support for a
trait-like model of composition [Ducasse et al., 2006]. We now illustrate a particularly
novel feature of Plaid, namely, state members. States can have other states as mem-
bers, and these state members can be customized upon composition. This allows for
consistent state update, in the presence of composite states.

We illustrate state members and their benefits through a Plaid version of a Read-
WriteStream adapted from [Ducasse et al., 2006], which is in turn adapted from the
Smalltalk standard library. The Plaid components mirror the trait components, except
in our version the methods of a single trait are sometimes divided across multiple states.

The Position state represents the position of the pointer into a stream or collection. It
has a very limited interface which therefore makes it easy to reuse throughout an input-
output and collection library. The code for Position is shown in Listing 2.4. Position
declares two abstract methods for setting the position, a reference to the underlying
collection (vector), constant fields for minimum and maximum position, and a variable
field for the current position2.

Interestingly, Position contains two state members, one for the end-state and one for
the not-end-state. The state members are initialized to NotEnd and End, also defined
in Listing 2.4. These states are sub-states of Position, as specified by the case of
declarations. They implement the abstract methods of Position. In addition, NotEnd has
an additional method nextPosition, reflecting the fact that in that state, the position can
be advanced. This method increments the current position, tests if the current position
is at or past the maximum position, and transitions the receiver to the end state if the
position is at the end. Similarly, setToStart in End transitions the receiver back to the
not-end state.

1http://code.google.com/p/pluralism/
2Abstract methods are indicated by eliding the method body; constant fields are declared with val,

and variable fields with var.

23



1 state Position {
2 state notEndState = NotEnd;
3 state endState = End;
4 method setToEnd();
5 method setToStart();
6 val vector, minPos, maxPos;
7 var currPos;
8 }
9

10 state NotEnd case of Position {
11 method setToEnd() {
12 this.currPos = this.maxPos;
13 this <- this.endState;
14 }
15 method setToStart() {
16 this.currPos = this.minPos;
17 }
18 method nextPosition() {
19 this.currPos++;
20 if (this.currPos >= this.maxPos) {
21 this <- this.endState;
22 }
23 }
24 }
25

26 state End case of Position {
27 method setToEnd() { /∗ no op ∗/}
28 method setToStart() {
29 this.currPos = this.minPos;
30 this <- this.notEndState;
31 }
32 }

Listing 2.4: Position code.
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1 state Reader { }
2

3 state Reading case of Reader {
4 method read() {
5 val ret = this.vector.get(this.currPos);
6 this.nextPosition();
7 }
8 }
9

10 state ReadEnd case of Reader { }
11

12 state ReadStream = Position {
13 val notEndState = Reading with NotEnd;
14 val endState = ReadEnd with End;
15 } with Reader;

Listing 2.5: ReadStream code.

The crucial part in this example is that the state transitions do not explicitly ref-
erence a specific target state, but rather reference the state members of Position. For
instance, nextPosition in NotEnd transitions this to this.endState, not End. This allows
for consistent and flexible reuse, composition, and extension of states, as illustrated
hereafter.

Consider the code for a ReadStream, as shown in Listing 2.5. The ReadStream
definition includes a pure dimension, Reader. This dimension has two children Reading
and ReadEnd, which correspond to the ReadStream in the not-end-state and the end-
state, respectively. In the not-end-state, the ReadStream can read, and therefore Reading
defines the read method. This method reads from the underlying collection at the current
position and advances the position.

The ReadStream is composed from the two dimensions Position and Reader. Read-
Stream specializes NotEnd by overriding the two state members in Position. The state
members in ReadStream are composed from two states, one from each dimension of
ReadStream. Therefore, when the methods in Position and its children change state,
they will change both dimensions of ReadStream. For example, when nextPosition
advances the stream to the end, the ReadStream object composed of Reading with
NotEnd will change to a ReadEnd with End.

Initializing a ReadStream requires two-phase initialization like for ResultSet. In
particular, the code to create a ReadStream x that is not at the end is val x = new
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1 state ReadWriteStream = Position {
2 val notEndState =
3 Writing with Reading with NotEnd;
4 val endState =
5 WriteEnd with ReadEnd with End;
6 } with Reader with Writer;

Listing 2.6: ReadWriteStream code.

ReadStream; x<-this.notEndState;. Here again, transitioning x to the state member
notEndState ensures that the consistent composition of actual states is used.

Since the Reader dimension has the same structure as the Position dimension it is
natural for transitions in Position to change Reader as well. In this example, there is no
code in the Reader states that enacts the state change. Instead, the Reader dimension
relies on the Position dimension to perform state changes. The state members in this
example allow for this kind of dimensional reuse without extensive glue code3. The
only code required to reuse the dimension is the specialization of state members in
ReadStream.

We now illustrate a further step of consistent composition of states with the definition
of ReadWriteStream in Listing 2.6. The definition uses a new dimension, Writer, with
two substates Writing and WriteEnd, defined in the same manner as the Reader states.

This ReadWriteStream reuses code from all three dimensions with very little effort.
The ReadWriteStream is the natural extension of ReadStream. The state members are
composed from all three dimensions. The state transitions in a ReadWriteStream object
will change all three dimension at once.

The ReadWriteStream example demonstrates both the power of a trait-like compo-
sition model and its novel extension to states. We reuse ReadStream and WriteStream
with little effort, as we could achieve in a language with traits. In addition, we have a
new unit of reuse, the Position dimension, which is shared with two other dimensions.
This reuse eliminates duplicate code, and helps avoid bugs. Both the Reader and Writer
of a ReadWriteStream are in the end-state or not-end state. Because the dimension is
reused we can guarantee that no programmer will err and end up with an object in an
inconsistent state like WriteEnd with Reading.

3State members also have a more traditional purposes. State members, like all states, can be used to
create objects. They allow us to encode ML-style structures and functors. These abstraction mechanisms
can be very powerful, especially in a typed version of Plaid. However, these purposes are not novel to
Plaid so we do not focus on these here.
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One important note is that the Writer and Reader contain no members in common,
and therefore no conflict arises. Plaid requires explicit conflict resolution at the point of
composition. This conflict resolution is described in Appendix A.

2.2.5 Validation

The introduction claims four concrete benefits of Plaid: code closely reflects design,
programs are concise, error checking is implicit, and new opportunities for reuse. These
benefits were illustrated in the examples in this section and they were discussed while
describing the examples. We summarize the case here for emphasis. We then reflect on
our experience writing mid-sized programs in Plaid, in diverse domains.

Concrete benefits

Code reflects design. Designs with stateful abstractions are clearly reflected in Plaid
code. This is clear in of all three examples in this section. The implementation of
the file, result set, and read-write streams all match their designs. Arbitrarily complex
state-charts can be encoded in Plaid with the simple rules described alongside the result
set example. Each abstract state maps to its own state in code, so the design of the
abstraction and its protocol as a whole is highly salient in the code.

Concise programs. Since state constraints are implicitly enforced by the object model,
none of our examples included any error checking code. The code is therefore shorter.

Error Prevention. Plaid’s explicit state models make error checking more consistent,
because the programmer cannot forget to check state constraints when a method is
called. The level of abstraction of error messages is also thereby raised: when an
inappropriate method is called, instead of triggering an internal run-time exception such
as a null pointer, or (what is worse) silently corrupting data, the runtime can signal an
error that a particular method is unavailable in the current state. Also, we have shown
how state members can be used to enforce consistency of multiple dimensions of state
at once.

Reuse. Plaid provides new reuse opportunities. Some state machines are used in many
objects. For instance, the Position dimension was reused in both read and write streams,
and it could also be reused in many IO and Collection libraries. Open and closed
resources like the File and ResultSet are also very common.
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Project Lines of Code # Files
CodeGenerator 1205 24
AeminiumCodeGen 2610 8
Typechecker 4196 55
ASTtranslator 9506 107
PlaidApps 528 21
Standard Library 372 18
TestCompiler 2811 96
TestTypechecker 363 9
Total 21591 338

Table 2.1: Plaid code written for eight projects.

Applicability to diverse domains

In order to gain practical experience with the language and experiment with typestate-
oriented programming beyond small examples, we have written several mid-sized
programs in Plaid. These programs further demonstrate the expressiveness of Plaid in a
diverse set of domains including compilation, input-output, GUIs, and web. They are all
available for download from the Plaid repository4. In total, we have written 22KLOC
across 338 files. A breakdown of our implementations is in Table 2.1. We call out items
of particular interest here.

Compiler. Plaid is self-hosting; the CodeGenerator project compiles Plaid code into
Java source. Plaid code can easily use Java libraries and many of our examples are
implemented that way. In a sister project [Stork et al., 2009], we have implemented a
separate compiler for parallel-by-default code, which is the AeminiumCodeGen project.
We are currently working on a Plaid typechecker; the implementation is the Typechecker
project. All these projects are supported by AST transformations performed by the
ASTtranslator project.

GUI Library. GUI libraries often impose state constraints on their clients. We imple-
mented Plaid wrappers for a few key Java Swing classes, including Window, Pane, and
Canvas abstractions. We use states to enforce proper initialization of these abstractions.
In particular, windows should have some contents added, otherwise they are created
with size zero. Furthermore, windows are Hidden until show() is called, then they
become Visible. Panes should also have contents added. Both panes and canvases must
be assigned a parent window, and canvases should be given a preferred size. Our library

4http://code.google.com/p/plaid-lang/
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stereo:	  PlaidObject

+	  storage	  :	  PlaidObject[]

+	  changeState(newState :	  PlaidState)	  :	  PlaidObject[]

+	  dispatch:	  PlaidState =	  ?

On:	  PlaidState Off:	  PlaidState

+	  turnOff(this	  :	  PlaidObject)	  :	  PlaidObject +	  turnOn(this	  :	  PlaidObject)	  :	  PlaidObject

stereo	  =	  new	  On; stereo.turnOff();

points	  to

state	  transition

Figure 2.4: Stereo implementation.

is not comprehensive, but it is sufficient to build demonstration applications—in our
case, a Turing machine that uses Plaid’s states to represent the finite state control, the
marks on the tape, and the illusion of an infinite tape. Both the windowing library and
Turing demonstration application are in the PlaidApps project.

Miscellaneous The Plaidapps project includes the examples discussed earlier and a
small web server and workflow engine. The Plaid standard library includes integers,
rationals, strings, options, and standard control (e.g. if) and looping (e.g. for, while)
structures. Finally, two testing projects include a number of smaller tests and examples.

2.2.6 Plaid runtime

The members of a Plaid object (i.e. the fields, methods, and state members) change at
runtime when the object’s state changes. Efficient implementation of object-oriented
languages typically relies on stable object members. This makes intuitive sense, since
an object with stable members can have a stable layout in memory. An efficient imple-
mentation of Plaid requires more creative thinking. In our first, naive implementation of
Plaid, each member was represented with an object in the runtime and all members were
stored in a map. When an object changed state, the members in the map changed. The
performance of this naive implementation was extremely poor. In particular, looking up
members such as fields and methods is very frequent in most Plaid programs, but very
slow in our first implementation.

The current implementation of Plaid compiles to the Java Virtual Machine so that we
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can write examples that make use of Java libraries. Every Plaid object is represented in
the runtime as a Java object of type “PlaidObject” with two fields: a dispatch object that
points to state metadata and has all of the method implementations, and a “PlaidObject”
array containing all of the object’s fields. Each dispatch object implements one interface
for each method of the Plaid object and these interfaces each contain one method. A
method call in Plaid source code requires three steps in translation: first, a dispatch
field is dereferenced; then the field is cast to an interface corresponding to the method;
and finally a method is called on the interface. An example illustrating this approach
is shown in Figure 2.4. This technique is borrowed from Thorn [Bloom et al., 2009a].
We used a series of small programs to compare the Thorn technique against several
alternative techniques for representing objects with members that are changeable at
runtime and the Thorn-technique performed the best.

To enable this technique for method calls, dispatch objects must be created for each
unique combination of methods and fields. As we saw in Section 2.2.3, objects in
Plaid can be assembled at runtime from many different component states.5 Therefore,
dispatch objects are generated at runtime. The dispatch object also points to a set of
meta-data about the object which allows the runtime to determine what should happen
when the object changes state. Since state change sometimes involves runtime code
generation, it can be a very expensive operation. In general, our approach prioritizes
frequent method calls over comparatively infrequent state change. However, the runtime
caches dispatch objects, which minimizes the expense of state change.

2.3 Conclusion

The primary contribution of the Plaid language is providing a way for programmers to
express state machine abstractions directly in the source code of their programs. Plaid
supports the major state modeling features of Statecharts, including state hierarchy, or-
states, and and-states. The explicit representation of states makes the design more salient
in the code, enhancing programmer understanding. For example, the separation of
members into different abstract states helps programmers quickly learn what operations
are available in each state. In the future, visualization tools that leverage explicit state
constructs to automatically generate statecharts from Plaid code could provide even
greater benefits.

Plaid has the potential to make code more reliable. The runtime verifies that libraries

5See e.g. the last two lines of Listing 2.3.
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are used correctly according to their state abstractions. Even a “method not available in
this state” error is better than a silent corruption, but in future work, we believe we can
leverage explicit states to do much better. For example, a state-related error message
could be paired with a suggestion about what methods could be called to move the
object into a correct state.

Plaid’s trait-like state composition model provides a way of reusing not just fields
and methods, but state abstractions. This additional layer of reuse has the potential to
reduce redundancy in code and specifications, while enhancing developer productivity.
The confidence that comes with the error checking in Plaid’s state model may also help
developers to evolve and refactor software with greater confidence.

2.4 Plaid project retrospective

As of the writing of this thesis, in December 2013, the Plaid language project is not
active. No work has been done on the language design, implementation, or associated
tooling since the summer of 2012. However, the usability studies discussed in Chapters 3
and 4 are outgrowths of the Plaid project. The project has ended at least partially
because the student drivers of the research effort either graduated (Sven Stork), will
soon graduate (me), or left the PhD program (Karl Naden). However, another important
factor is that the language is very complex in several ways and is thus cumbersome to
work with. Notable sources of complexity are:

• The object model was built from scratch (not as an extension of a specific existing
formalism).

• The reuse mechanism involving state members makes it difficult to implement
the programming language, and it is unfamiliar to most programmers.

• We implemented the compiler in Plaid which required us to work around imple-
mentation bugs and deny ourselves the benefits of modern tooling.

• The compiler frontend implements extensive syntactic “desugaring” to improve
the familiarity of the source syntax to mainstream programmers.

This complexity enabled a rich diversity of research to be conducted on top of Plaid
which is the topic of the next subsection. In the following subsections I discuss the
sources of complexity in Plaid and their consequences. In particular, I discuss how the
complexity reduced the flexibility of the language and made it harder to clearly identify
the contributions of each research project. I conclude with general lessons for language
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design projects.

2.4.1 Project diversity

The project was an effective research vehicle: it enabled seven conference or journal
papers [Aldrich et al., 2011, 2009; Naden et al., 2012; Stork et al., 2009, 2014; Sunshine
et al., 2011; Wolff et al., 2011],6 two PhD theses ([Stork, 2013] and this one), and
many masters and undergraduate student projects. These projects cover a diverse
set of research territory: type systems, language semantics, API usability, language
implementation, and parallel programming. This is not an accident—many students and
faculty-members spent years designing Plaid in multi-hour meetings. This design by
committee is likely the source of the complexity discussed in the next few subsections.
However, it is also likely the only reason Plaid was useful for such a large range of
topics.

These diverse projects benefited from being a part of the larger Plaid ecosystem
in two ways. First, any subproject that involved an implementation shared some
implementation infrastructure with other subprojects. For example, the Plaid backend
discussed in this chapter, the Æminium concurrent-by-default programming language,
and the Plaid typechecker all share the same compiler frontend. Second, ideas and
inspiration were broadly shared. The students involved in the project met regularly and
therefore contributed both directly and indirectly to each other’s work.

2.4.2 Models are better out of the box

The research literature contains thousands of programming language models. In this
chapter, we borrowed heavily from canonical models, like the Lambda Calculus, Feath-
erweight Java [Igarashi et al., 2001], and trait models. However, I think we would have
been better served to start with one especially-good model (an “out of the box model”)
and modify it as minimally as possible while still demonstrating the novel features of
Plaid. If we had taken this approach, it would have been much easier to explain the
Plaid semantics to readers.7 Furthermore, it would have allowed us to better isolate the
specific contributions of this chapter. Finally, since the best “out of the box” models

6The contents of Chapters 3 and 4 are under submission and if accepted will add two more to the
Plaid total.

7I assume here that we would have chosen an object model with wide familiarity in the programming
language research community.
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have simple semantics, borrowing from them would have likely enabled a simpler Plaid
semantics.

2.4.3 States should fly coach

As we illustrate in the ReadWriteStream example described in Section 2.2.4, in Plaid
states are first class: they can be stored in fields, passed as arguments, and even modified
at runtime. This feature enables the reuse of state transitions as we demonstrate with the
substates of Position, Reading, and Writing. However, the cost is substantial. First, the
ReadWriteStream code is complex and in my experience hard for even programming
language researchers to understand. Second, first-class states are very hard to implement
on top of a language without such dynamism (like Java).8 Therefore, the first class state
features added substantially to the implementation costs. Instead, it would have been
preferable to either have no mechanism for state transition reuse, or a direct mechanism
that does not rely on first class state.

2.4.4 Dogfood is bad for you

One piece of commonly-repeated advice in software is that you should use the software
that you produce, or “eat your own dogfood.”9 The idea is that you will only understand
the weaknesses of your software if you use it yourself. This advice is often repeated in
the programming language community, and in that context it means that programming
language designers should implement their programming language in that very same
language. We followed this advice in Plaid, and we therefore implemented the compiler
backend in Plaid (code generation, type checker, Æminim code generation).

There are two problems with the “dogfooding” approach in our context. First, code
generation does not contain much (if any) abstract state, and it is therefore not a good
way to evaluate Plaid’s novel features.10 This is easy to observe in the text of this
chapter, a careful reader will note that the compiler is used to validate the “applicability
of Plaid to diverse domains” and not any particular Plaid feature.

The second problem with dogfooding Plaid, is that it was substantially slower to
implement Plaid in Plaid than it would have been in Java (or any other mainstream

8Implementing first class states on top of Java is akin to extending Java with first-class classes.
9According to Harrison [2006] the source of “dogfooding” is likely a 1980s commercial for Alpo dog

food in which the pitchman bragged that he fed Alpo dog food to his own dogs.
10In my opinion, compilation is a great use for a functional programming style with pattern-matching,

which is perhaps why that style is so popular among programming language researchers.
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language). This is partially because we discovered bugs in Plaid by using it (which is
arguably a good reason to dogfood), but more importantly it was because we did not
have access to modern tooling. Plaid is partially interoperable with Java so we were
able to use many Java libraries in our code, but it is impossible to implement a Java
interface or extend a Java class in Plaid which prevented us from using some libraries
and most frameworks in our compilation code. For example, we could not use Java’s
“Thread” class since it requires a programer to implement the “Runnable” interface or
extend the “Thread” class and override the “run” method. A masters student built a
rudimentary Plaid eclipse plugin (syntax highlighting was its main feature), but most
modern IDE features were unavailable to us. For example, when writing Plaid code
we did not have access to code completion, a debugger, refactoring tools, or interactive
compilation. I do not think these costs were worth the benefits of finding bugs in the
Plaid implementation or better understanding Plaid’s wrinkles.

2.4.5 Sugar is too sweet

One goal for the Plaid source syntax was that it should be familiar to those used to
Algol-style languages (this includes most mainstream languages like C, C++, Java,
Javascript, Python, and Ruby). At the same time, we didn’t want to clutter the language
definition with common features like standard control and looping structures. We
therefore added special syntax for anonymous functions which looked like blocks in
Java. An anonymous function that takes no argument and whose body is “foo” can be
written in Plaid as “{foo}.” This allowed us to implement “if”, “if-else”, and “while” in
the Plaid standard library, and when using these constructs they mostly11 look and feel
like they are built into the language.

In his classic essay, entitled “Worse is better,” Gabriel [1991] argues for language
simplicity. He writes, “The [language] design must be simple, both in implementation
and interface. It is more important for the implementation to be simple than the
interface. Simplicity is the most important consideration in a design.” In our choice
to avoid building control structures into Plaid and instead building in special syntax
for functions, we followed the opposite of Gabriel’s advice. We made the interface
more simple by eschewing control structures, but complicated the implementation of
the compiler frontend. The extra implementation cost was substantial and was therefore
likely outweighed the benefits derived from a simpler interface.

11The boolean condition of the “if” statement is wrapped in curly braces instead of parentheses as in
Java.
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2.4.6 Plaid: The danger of complexity

The motivation for most of the complexity “mistakes” I describe above was an attempt
to polish Plaid for use beyond our research group. At first, many of us had dreams that
Plaid could successfully transition from research to industry, like Scala. This naturally
led us to: work in many research directions simultaneously (project diversity), worry
overmuch about a fully modern feature-set (thus combining many language models
and including first class states), squash bugs and iron out wrinkles (by dogfooding),
and obsess over the source syntax (including too much syntactic sugar). I call this
phenomenon, the “siren call of adoption” and I think many research groups suffer from
it. This “siren call” is especially problematic in the vast majority of cases, including ours,
where the quality never reaches the level where the language (or tool) could be adopted.
In my opinion, it is the role of academics to focus on answering research questions well
and the role of professional engineers to build industrial-strength languages and tools.
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Chapter 3

Searching the State Space: A
Qualitative Study of API Protocol
Usability

Very little is known about precisely what problems programmers have when using APIs
with protocols. In this work I attempt to answer four research questions which I hope
will provide more solid guidance for future researchers:

RQ1 What are the characteristics of protocol tasks that are difficult for programmers?

RQ2 How do programmers approach protocol tasks?

RQ3 What information do programmers seek and have difficulty locating while
performing protocol tasks?

RQ4 What resources do programmers use while performing protocol tasks?

To answer these questions, I performed two studies of professional developers.

First, to answer RQ1 I searched the popular developer forum, Stack Overflow,
for questions related to known APIs with protocols. I then winnowed, analyzed,
distilled, and merged the resulting questions into a list of distinct protocol-specific tasks.
These tasks represent real protocol programming challenges and I noted five common
characteristics.

Second, I brought seasoned professional programmers into the lab and observed
them performing the tasks uncovered by the forum mining. To answer RQ2, I analyzed
the transcripts to categorize the activities that programmers performed. Information
seeking dominated programmer effort and I therefore noted the information the devel-
opers sought while performing the tasks and how they sought it. I found that developer

37



time was spent primarily on state search. I also found that developers debugging proto-
col violations looked first to the documentation related to the method call occurring at
the exception location to solve their problems. These findings address RQ3 and RQ4.

3.1 Programming obstacles

The studies I discuss in this chapter focus on the usability of API protocols. This works
builds on many recent studies of more general programming obstacles. Two classes of
studies have particular relevance to this chapter. The first class, which I will refer to as
information needs studies, includes mostly-qualitative studies that are often conducted
in the field. They investigate what information developers look for in their work, how
they look for it, and the purpose of the information. The second class of studies, which
I will refer to as API usability studies, are mostly quantitive and are usually conducted
in the laboratory. They investigate the usability of particular APIs, or more recently
the usability of API design choices. There is not space to discuss all of the examples
in either class. Instead I will delve deeply into a few examples in each class (and one
gap-bridger) to highlight important lessons for this chapter and motivate the study’s
design.

3.1.1 Information needs studies

In an oft-cited example of an information needs study, Ko et al. [2007] observed
17 Microsoft developers as they performed their regular work. During the study,
participants searched for information 334 times, which the experimenters abstracted
into 21 categories. The abstracted categories are all very high-level, reflecting the
breadth of the activities performed. For example, the most common question was “did I
make any mistakes in my new code?” This question motivates enormous amounts of
software-engineering research (e.g. defect-detection tools, advanced type systems, test
generation) but provides little guidance on the specifics of that area of research (e.g.
types of mistakes to target, communication mechanism with developers, impact of false
positives/negatives). Most of the other questions were also too broad to impact research
directly. On the other hand, Ko targeted “what code causes this program state?” directly
with his Whyline tool [Ko and Myers, 2009].

Other studies, also information needs studies, have narrowed the developer tasks
slightly to delve more deeply into specific topics. For example, Sillito et al. [2008], like
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Ko, studied professional programmers in their work environments. However, instead of
studying whatever the programmers happened to be working on, the programmers were
asked to select an “involved” software change task, and never “a simple fix.” Silito, like
Ko, categorized the questions asked by developers during the observations. Silito built
44 categories that are distinctly lower-level than Ko’s. However, the categories are still
too high-level to guide most tool-building, certainly including the target of this chapter.

LaToza et al. [2007] brought programmers to the lab and asked them to contribute
architecture-level design improvements to a 54KLOC open source tool. They noted
several high-level differences between experts and novice participants: novices focused
more on symptoms of problems, experts on sources; novices spoke in terms of specifics,
and experts in terms of abstractions; novices wasted more time understanding imple-
mentation details, while experts’ focus was wider. Again, these results are interesting
and contribute to our general knowledge, but are of little direct utility to most language
and tool designers.

3.1.2 API usability studies

One relevant paper that bridges the gap between the two classes is a study of API learn-
ing conducted by Robillard and DeLine [2011]. Robillard surveyed and interviewed
Microsoft developers about the obstacles they faced when they last learned to use a
public API. The most common obstacles mentioned involved documentation. More
particularly, the answers suggested five problematic issues commonly found in API
documentation: design intent, code examples, matching APIs with use cases, penetra-
bility, and formatting/presentation. Many of these issues were simply missing from
documentation, (e.g. no discussion of performance characteristics), mistargeted (e.g.
examples of inapplicable usage), or buried (e.g. most method documentation contains
boilerplate repetition of information contained in the method signature).

The more traditional API usability studies observe programmers in the laboratory
while they use APIs. In most of these studies, the participants performed tasks that were
selected by the experimenters as “representative of typical use” of the API. McLellan
et al. [1998] were among the first to publish a study of a particular API, and they are
also credited with spreading the recognition that “the techniques and theory developed
for usability should be applied directly to the API” [Daughtry et al., 2009]. McLellan’s
study uncovered many low-level difficulties with the API under investigation, but more
importantly for the purpose here, agreed with Robillard about the importance of code
examples and documentation.
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McLellan’s study and those like it are primarily useful for the designers of the
API under investigation. To provide guidance to designers of future APIs, Jeff Stylos
and colleagues performed a series of studies to evaluate API “design choices” [Ellis
et al., 2007; Stylos and Clarke, 2007; Stylos and Myers, 2008]. In Ellis et al. [2007],
the experimenters compared the usability of constructor-based instance creation with
instance creation using a factory method or abstract factory [Gamma et al., 1995],
which Ellis refers to collectively as the “factory pattern.” The study used both within
and between subjects comparisons and found that users required much more time to
instantiate objects when the API used the factory pattern rather than constructors.

The design choice studies provide data-driven design guidance, but it is difficult to
abstract principles from them. For example, the Ellis study does not provide insight
into why it is harder to use the factory method pattern than a constructor.

3.1.3 Discussion

The two studies I report in this chapter lie between the two classes discussed above.
The studies in this chapter, like those in the first class, are qualitative and focus on the
information needs of developers. Unlike the other information needs studies, I focus on
a particular programming domain — API protocols—to add detail and richness to our
existing general knowledge so that it can be used for tool building.

Our think-aloud laboratory study shares many elements with the studies in the
second class. However, my tasks were mined from developer forums and I therefore
expect the study to be more connected to practice. Finally, the laboratory study was not
looking for quantitative results like the design-choices studies, nor specific issues with
the APIs like the McLellan-type studies. Instead, the results of the second study are
principles and understanding which I hope can be applied to any API with protocols.

3.2 Forum Mining

I mined Stack Overflow, a widely-used developer forum, primarily to identify the
characteristics of protocol tasks that are difficult for programmers (RQ1). I discuss the
strengths and weaknesses of StackOverflow data in Section 3.2.1. I downloaded the
entire Stack Overflow database which is freely available to anyone under a Creative
Commons license. When this study was conducted there were 2.6 million questions on
Stack Overflow. This is far too many to read and digest, so I winnowed the question list
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with the techniques I discuss in Section 3.2.2. The goal of the filtering was to focus my
efforts on questions that were likely to be protocol-related and significant. Once I had
a reasonable-sized list of questions, I manually read each questions to: 1) determine
if the question was protocol-related, 2) distill a task, and 3) merge with existing tasks.
The strategies I used in all of these efforts are discussed in Section 3.2.3. The most
frequent and interesting characteristics of protocol-related questions are discussed in
Section 3.2.4.

3.2.1 Strengths and weaknesses of Stack Overflow data

Forums provide a window into developer practice that is particularly well suited to
mining examples. Asking a question on a forum requires significant effort — it requires
composing a question, extracting relevant code or documentation, and describing
important context. After asking a question, the answers do not come immediately, so
developers often wait to post questions until they have struggled for a while. Therefore,
the questions usually contain distilled problems of practical significance.

I chose to use Stack Overflow for its wide use, feature set, and openness. Stack
Overflow is the most popular developer forum on the web and it therefore contains
questions in a uniquely broad set of categories. Parnin and Treude [2011] found that
StackOverflow covered 84% of the methods in the JQuery API. This was important
for us because it allowed us to distill a wide-range of protocol-related tasks. A sample
question page with important highlighted features is shown in Figure 3.1.

According to Mamykina et al. [2011] Stack Overflow is also the fastest forum on
the web, with median answer time of only 11 minutes. This speed encourages posting
on low-level topics, which includes most protocol issues, since questioners can expect a
fast answer. Mamykina credits the popularity primarily to the engagement of the Stack
Overflow designers with the user community. In addition, the feature set, which includes
a “reputation score” earned for asking well-liked questions or providing well-liked
answers, incentivizes use [Treude et al., 2011]. All viewers of a question can categorize
the question with a “tag,” which helps programmers determine question relevance. Of
particular importance to this effort is that questioners are rewarded for “accepting” an
answer, which often gives the most important clue about the real problem the questioner
faces. For example, the code search and recommendation tool Example Overflow uses
these social features to the determine quality and relevance of programming examples
contained in StackOverflow questions. [Zagalsky et al., 2012].

Despite the numerous benefits of forum questions as a data source, and Stack Over-
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Figure 3.1: Screen snap of the StackOverflow question page. This question involves the Timer
and is included in the results of our study. Motivational reputation scores are highlighted in
pink, question and answer scores in yellow, accepted answer check mark in blue, and useful
metadata in orange.
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flow in particular, the questions there are by no means representative of all programming
problems. Vasilescu et al. [2012] found that women are substantially less likely to
participate in Stack Overflow than men. Furthermore, women that did participate were
less likely to participate heavily or earn reputation points. More generally, Kuk [2006]
found that forum participants act strategically in a number of ways including by helping
those who are likely to reciprocate and by seeking out career advancement opportunities.
This strategic behavior results in a question and answer pool that is largely authored
by a heavily active elite. Finally, the quality and difficulty of StackOverflow questions
vary dramatically [Hanrahan et al., 2012]. Therefore, one cannot count questions of a
certain type to gauge commonality of that type. In summary, Stack Overflow is a useful
resource for finding real-world programming problems but the participant and question
population is not representative, nor are the questions sets directly comparable.

3.2.2 Winnowing the Question List

I wanted tasks that both are protocol-related and caused problems for real developers.
Therefore, I started by assembling a list of 109 Java Standard Library classes that
contain a protocol. The bulk of the classes are listed in two studies, Beckman et al.
[2011] and Whaley et al. [2002], that identified protocols via semi-automated static
analysis. Neither Beckman nor Whaley identified any protocols in interfaces, so 9
interfaces were added from other sources (e.g. Bierhoff et al. [2009]). These interfaces
are not implemented in the Java Standard Library, but they are implemented by many
third parties, and so the interface protocols can be very widely used.

I downloaded a data dump from Stack Overflow that contained questions and
answers that were created before December 20111. I chose to use the slightly out of date
data dump rather than the more frequently updated online data because it simplified
the implementation of the automated analyses. In addition, since the data in the dump
could not change it ensured consistent results.

I discarded 40 of the classes because their protocols were very familiar and simple.
In particular three protocol patterns were removed: 1) Boundary protocols in which
a method named next or starting with next (e.g. nextInt) cannot be called after the
end of an underlying list (e.g. java.util.Iterator). 2) Deactivation protocols in which
many methods cannot be called after the close method is called (e.g. java.util.Scanner).
3) Redundancy prevention protocols in which the cause of a Throwable or Exception

1This was the latest data dump available at the time this part of the study was conducted.
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cannot be set more than once.
In unpublished experiments conducted by Ciera Japan, tasks involving these protocol

patterns were very simple for expert developers, but still challenging for novices. It
seems that experts have memorized or otherwise internalized the steps needed to use
these libraries correctly. In these experiments, experts completed tasks involving these
patterns very quickly and the observations therefore yielded little insight.

I then searched for questions about each of 69 remaining classes systematically,
to ensure that later analysis was done fairly. For each class I searched for any of the
following keywords in the full text of the questions or answers: the fully qualified name
of the class (e.g. java.net.URLConnection); the simple name of the class AND “java”
(e.g. URLConnection and java); the simple name of the class AND the exception type
of protocol related errors (e.g. URLConnection and IllegalStateException); and the
simple name of the class AND full text of the error message given (e.g. URLConnection
and “Already connected”. If the error message was sufficiently lengthy or distinct I also
searched for the error message without the class name (e.g. “invalid cursor state: cannot
FETCH NEXT, PRIOR, CURRENT, or RELATIVE, cursor position is unknown”). In
all cases, I performed substring search using SQL %-wildcards, rather than the more
efficient keyword search available on the Stack Overflow website, to be maximally
inclusive.

For most classes the search returned fewer than five related questions, and only nine
had more than 100. In order to include only well-used APIs in the results, I focused
my efforts on these nine classes. I manually examined all of the questions and answers
related to these nine classes, looking for protocol-related questions. I discuss how I
determine if a question is protocol related in detail in Section 3.2.3. Of the nine, five
had protocol-related questions: URLConnection, its close cousin HttpURLConnection,
Timer, ResultSet, and Socket had protocol-related questions. The results in this section
are drawn from questions related to these classes.

3.2.3 Analyzing a Question

I manually examined a total of 5,039 questions related to nine classes. The first order of
business was to eliminate questions that were unrelated to protocols. The single fastest
heuristic I used was to examine how the search keyword was used in the post. The
keyword was often found in an import statement, method return type, type of an unused
variable or argument, comment, throwaway reference, etc. but never used again. This
phenomenon was especially common in cases where long code blocks were attached to
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a question for context. The vast majority of questions were discarded by this heuristic
alone.

If the keyword heuristic did not eliminate a question, I examined the question more
thoroughly with a series of more complex strategies. These more complex strategies
were useful not only for eliminating irrelevant questions but also for the next step of
the process — task distillation. Therefore, I will illustrate the heuristics with examples
taken from the protocol-related questions that make up the primary results of the forum
mining.

Correct Answer. The most effective strategy for closer evaluation was to look
at the answers to the question. Answers are almost always significantly shorter than
questions, and it is therefore easier to start with them. In most cases, questioners “accept”
an answer when it solves their problem. Stack Overflow encourages this practice by
rewarding questioners who accept answers with reputation points. In some cases,
commonly when questioners are infrequent users of the forum, no answer is accepted.
In those cases, I looked at questions which were rewarded with several “upvotes” by
the community and are therefore likely to be the correct answer to the question. In rare
cases no answer is obviously correct and therefore this heuristic is ineffective.

Answers that are protocol related often mention method ordering, correct usage,
quote from protocol-related documentation, or suggest code modifications that change
method ordering. For example, questioner #9007051 wants to move to the last row of
ResultSet with the last() method, but this method is unavailable on the ForwardOnly
ResultSet the questioner is using. The accepted answer copies and pastes the example
code from the JavaDoc for creating a Scrollable ResultSet. Unfortunately, many answers
are not similarly helpful. The most common unhelpful (for our purposes) answer is one
that suggests an alternative library.

Exception types and messages. Protocol violations in Java almost always result
in an exception being thrown. The Java standard library is careful to specify the types
of exceptions that are commonly thrown. In addition, in all nine classes I looked at,
except for the ResultSet interface, a particular protocol violation always results in the
same error message. I extracted these messages from the source code of the class.
For example, a TimerTask that has already been schedule and is passed to any of the
6 schedule methods, will always result in an IllegalStateException with the message
“Task already scheduled or cancelled.” In question #1041675, this exact exception
is quoted as the source of the problem, which quickly identifies that the question is
protocol-related, and identifies a specific protocol violation.
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In the case of the interface ResultSet, the JavaDoc specifies which exception type
to throw when a particular protocol violation occurs. Unfortunately, the exception
type SQLException is frequently used for both protocol and non-protocol violations.
Therefore this strategy is substantially less effective for ResultSet.

Protocol violating methods. Protocols are violated by calling specific methods
on instances of the API. Therefore, I searched for calls, or prose references, to any of
the methods that can cause protocol violations. I successfully applied this strategy to
ResultSet. I searched for all of the scrolling methods (e.g. beforeFirst(), last(), isLast())
that are unavailable in the ForwardOnly state. This uncovered three questioners that
struggled with this element of the protocol, in addition to the one example already
discussed in the Correct Answers section above.

Excluding questions. If none of the protocol violating methods appeared and none
of the earlier strategies were useful, then I excluded the question from the study. It is
therefore possible I incorrectly excluded questions this way, especially if the protocol
issue was not in code but buried in difficult to parse prose. However, the large number
of questions required us to be expedient. The goal of the study was not to estimate
the commonality of protocol problems, but to characterize recurring patterns—which
justifies the expediency.

Brute force. In rare instances, none of the above strategies worked. These instances
usually included large blocks of code with many method calls and exceptions. When
none of the earlier strategies worked, I carefully read the full text of the post, including
all the answers, to understand the problem or problems faced by the questioner.

Distillation. If a question was found to be protocol related, I then distilled a concrete
protocol-based task from the question being asked. I focused my efforts on discovering
the particular difficulty the programmer had with the protocol. Protocols are composed
of rules, and in most cases, the programmer violated one of these rules. In these cases,
the distillation involved identifying the specific rule that was violated. I excluded all
domain specific information from the task. For example a Timer running on Android is
the same as a Timer running on a PC.

3.2.4 Results

After completing the winnowing, analysis, and distillation I selected 28 Stack Overflow
questions. I merged these 28 question into 13 distinct topics. The results are summarized
in Table 3.1. The most common distilled question was about the violation of a protocol
rule. There were 23 such questions and these were merged into nine topics, one for
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API Topic #Qs Question IDs

URLConnection
Cannot: Set request property after connected 2 331538, 5368535
Cannot: Reuse connection 1 4278917
Wanted: IsConnected state test 1 7614408

Timer

Cannot: Reschedule TimerTask 6 1041675, 1801324, 4388353, 6813654,
7631542, 8404736

Cannot: Change Scheduled time of TimerTask 4 5014132, 6555583, 6762099, 8173147
Confusion: Timer.cancel() vs. TimerTask.cancel() 2 1801324, 6477608
Cannot: Cancel running TimerTask 1 9497100
Wanted: State Test for TimerTask 1 13880202a

Socket Confusion: Closed vs. Connected 1 3701073b

ResultSet

Cannot: Read after end 1 3502005
Cannot: Call next on InsertRow 3 4874574, 6684753, 9836972
Cannot: Call scrolling methods on forwardonly 4 6367737, 6871641, 8032214, 9007051
Cannot: Read before calling next() 1 8039233

a This question was discovered after the forum mining, but matches all of the criteria used to select the other questions.
b This is the only Socket protocol question, but as of Sep. 2013 it had the highest reputation score in this table, suggesting its

importance.

Table 3.1: Lists the APIs, questions and merged topics discovered in the forum mining.

each distinct protocol violation (marked “Cannot” in the table).
Three questioners confused two different rules that compose the protocol. These

three questions represent two distinct confusions and they were therefore merged into
topics (marked “Confusion” in the table). Finally, two questioners requested the APIs
add a new protocol-related feature. These were distinct and therefore represent two
topics (marked “Wanted” in the table). In both cases, the questioners requested state-
tests, which I will discuss further in the next section. All of the questions, except in two
topics, asked for help debugging a protocol violation.

Characteristics

The questions and corresponding topics had five common and interesting characteristics
that I highlight here. In each case I discuss the evidence for each characteristic in the
data and then discuss its significance. After all the characteristics are introduced, I
discuss the significance of the full collection.

Missing state transition. Many questioners hoped for or assumed a state transition
that the protocol did not allow. For example, questioner #4278917 explicitly asks if there
is a method that allows a client to “disconnect” and thereby reuse a URLConnection
(there is none). Similarly, one way of looking at all six questions about rescheduling
a TimerTask, is as a question about the ability to transition the TimerTask from the
scheduled to the virgin state. Finally, two of the questioners trying to call scrolling
methods on a forward-only specifically looked for a method to transition that ResultSet
to the scrolling state. Documentation is particularly ill-suited to addressing this type of
question. It often requires a global search of all of the method and class documentation
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Figure 3.2: UML State Machine for ResultSet.

to discover that a transition is not available.
State tests. For three of the four libraries, questioners asked for a method to test

the abstract state of the object. The state test questions for Timer (#13880202) and
URLConnection (#7614408) are listed in Table 3.1. In addition, questioner #2741276
requests a method to test if a ResultSet has been closed. However, this question was not
included in the results because an isClosed method was added in Java 6. Presumably,
the questioner was using an earlier version of Java. There were no similar questions
about Socket, but for good reason — Socket includes state tests for every state it defines.

State independence. In some cases, objects with protocols can occupy multiple
states simultaneously. For example, a ResultSet object, whose UML state machine is
shown in Figure 3.2, occupies the and-states Direction and Position simultaneously.
State transitions on and-states act independently, and this independence confused several
questioners. For example, the connectedness and openness of a socket are independent.
Questioner #3701073, perhaps unsurprisingly, thought that a closed socket could not
be connected, but this is incorrect. Similarly, the four forward-only questioners did
not seem to understand that the act of calling a scrolling method did not change the
Direction state.

Multi-object protocols. All four of the APIs I looked at closely inspired questions
about the relationship to other APIs. For example, a ResultSet object is closed if the
Statement object that created it is closed or reused. Four questioners in the sample
struggled with this one issue (4646561, 4864920, 5840866, 10118129). Questioners
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also asked about the following other relationships: Timers with threads, Sockets with
data streams, and URLConnections with Sockets. I did not include these multi-object
protocol issues in the primary results to focus on the vast majority of protocol-specific
tooling that does not support multi-object protocols.

Terminology Confusion. Many of the questioners seem to be confused by terminol-
ogy. This type of confusion is extremely common and not protocol-specific. However,
the frequency of its appearance in the data warrants a brief discussion. Questioners often
assumed a particular definition for a term, and when the definition was wrong they strug-
gled. For example, questioner #9497100 assumed that canceling a TimerTask would
always abort the Task. The questioner therefore tried to cancel the task in the task’s
own run method, in a failed attempt to halt execution immediately. Other questions
misinterpreted Socket.isConnected, Timer.schedule, and URLConnection.inputStream.

Discussion. All of the characteristics just highlighted, except terminology confu-
sion, are protocol-specific. This suggests that protocol-targeted tooling or languages
may be necessary to improve the usability of API protocols.

The challenge of missing state transitions suggests that documentation should
include a list of state transitions in an easily digestible form. This would enable
programmers to quickly learn which transitions are, and are not, available. The very
existence of state test questions suggests the usefulness of state tests. Josh Bloch,
the designer of much of the Java Standard Library including several of these classes,
suggests that all APIs with protocols “should generally have a state-testing method
indicating whether it is appropriate to invoke state-dependent method[s].” [Bloch, 2008,
p. 242].

That repeating occurrence of multi-object protocols in the forum mining data
buttresses the evidence collected by Jaspan and Aldrich [2011] that multi-object pro-
tocols are important. Therefore, this study motivates the those working on relation-
ship types [Jaspan and Aldrich, 2009; Balzer and Gross, 2011]. Unfortunately, many
protocol-targeted tools do not support and-states. The data suggests and-states are par-
ticularly problematic, which in turn suggests that these tools are missing an opportunity
to address an important usability challenge. Finally, the prevalence of terminology
confusion, suggests that API protocol designers should carefully name state-related
methods to ensure that the standard English definition matches its use in the protocol.

These characteristics share one significant weakness with the source from which
they were derived. Each forum post represents a snapshot of a single programmer’s
thinking. It is difficult to know whether these characteristic problems are challenging
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for most programmers or just a tiny minority. Similarly, it is difficult to know what
common programmer challenges were missed because they were resolved before a
question was ever asked. Finally, and most significantly, the forum mining has given
us a better idea of what is hard, but I still need to understand why they are hard.
What do programmers do when trying to address these tasks? Why are their tools and
documentations inadequate? I address these weakness in the laboratory observations I
discuss next.

3.3 Laboratory Observations

In this section, I describe the methodology and results of the laboratory study. The
aim of this study is to learn how programmers approach protocol tasks (RQ2), with
particular focus on the information they seek (RQ3) and the resources they use (RQ4).
In this study, the tasks are taken from the forum mining and therefore connected to
practice. I discuss how I transform the topics mined from Stack Overflow into tasks in
the next section. I then discuss the study design. Next, I highlight observations from
one particular task—inserting a new row into a ResultSet—which I will use to illustrate
the important results from this study. Finally, I summarize the results from all of the
tasks including quantitative and qualitative analysis.

3.3.1 Methodology

Topics to tasks

I converted each of the topics uncovered by the forum mining study, as summarized in
Table 3.1, into a corresponding programming task. The tasks were derived from the
code contained in the topical question(s). The tasks did not include project context such
as package names, or code that was not protocol related. Each task included instructions
and a method annotated with pre and post-conditions. The source files are available on
the web.2 In some cases, a test case is included with the task to trigger the bug. This
was necessary whenever the method was passed a Socket, TimerTask, ResultSet, or
URLConnnection instance.

The code in the method body was most commonly taken directly from one of the
questions related to a topic. However, some topics required more creativity because
the questions did not include code. For example, the state-test related questions did

2http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/qualitative-study-tasks.zip
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1 /∗∗
2 ∗ Precondition: rs is a CONCUR_UPDATABLE ResultSet
3 ∗ to an attached table with at least one row and String
4 ∗ columns labeled, ‘‘first’’ and ‘‘last’’
5 ∗
6 ∗ Postcondition: Insert a new row with ‘‘Harry’’ in the
7 ∗ ‘‘first’’ column and ‘‘Bovik’’ in the last column. Update
8 ∗ next row’s last name to ‘‘Carnegie’’.
9 ∗/

10 public void insertHarryBovik(ResultSet rs) {
11 rs.moveToInsertRow();
12 rs.updateString("first", "Harry");
13 rs.updateString("last", "Bovik");
14 rs.insertRow();
15 rs.next();
16 rs.updateString("last", "Carnegie");
17 rs.updateRow();
18 }

Listing 3.1: Inserting into a ResultSet task.

not contain code which motivated the questioner’s need for the state test. Therefore, I
created tasks that required knowledge of the state. These tasks each involved writing a
method which takes a Timer or URLConnection instance as an argument and uses the
instance in a state-specific manner.

Example task

To understand better how tasks were constructed, let us look at an example task in more
depth. I focus on a task corresponding to the topic “Cannot: Call next on InsertRow.”
The task involves inserting a new row in a database table via a ResultSet instance and
then trying to call the next method.

The ResultSet protocol prohibits scrolling (e.g. calling the next method), while the
“cursor is on the insert row.” To understand this better, let’s look at the state machine
diagram show in Figure 3.2. The cursor position is modeled by the abstract state
Position. The Position state has two or-children, CurrentRow and InsertRow, which
represent the state of the ResultSet when the cursor is on existing row or on the insert
row respectively. Note that the method moveToInsertRow transitions the ResultSet from
the CurrentRow state to the InsertRow state. In reverse, the method moveToCurrentRow
transitions the object back to the CurrentRow.

A slightly abbreviate version of the code participants were given is shown in
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Listing 3.1. Programmers were asked to fix a bug, revealed by a test case, in the in-
sertHarryBovik method. In particular, running the test case results in an SQLException
when the next method is called on line 15.

To fix the bug participants needed to add just one line in the code. Before calling
next, the ResultSet needs to be transitioned to the CurrentRow state by calling the
method moveToCurrentRow. As we will see in Section 3.3.2, this task was surprisingly
difficult even for the expert programmers performing the study.

The rest of the tasks have a similar flavor. They require programmers to write
new small programs or fix existing small programs involving protocols. All require
programmers to navigate the state machine of an underlying object.

Study design

I have found that protocols are very challenging for novice programmers or program-
mers without significant experience using object-oriented libraries and frameworks
written in statically typed languages. Therefore I recruited 6 programmers with at least
3 years of professional experience with Java or C#. However, these programmers had
never used any of the particular libraries under evaluation. The programmers were
recruited via personal contacts. Most participants were my former co-workers.

Participants performed the tasks in a campus laboratory. They worked with a
computer that had been prepared with Eclipse and a browser opened to the relevant
JavaDoc. Participants were asked to “think aloud.” The analysis of this study relies on
correctly interpreting what participants were looking for while performing the tasks.
Therefore, I followed Ko et al. [Ko et al., 2007] and asked “what are you looking for?”
when participants forgot to think aloud, or their statements were unclear. Participants
screens and speech were recorded. The study itself took between 1 and 3 hours, almost
all of which was spent performing programming tasks. Task instructions were read to
each participant and also provided in written form for reference.

3.3.2 Results

Example task observations

I introduced the ResultSet insertion task the participants performed in Section 3.3.1.
This task was the most time consuming for the participants — time to completion
ranged from 16 minutes to 49 minutes. In addition, the participant observations of this
task illustrate well the major results I will discuss in the next section.
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Recall from Section 3.3.1 that participants are debugging a protocol violation. In
particular, the next method is called while the ResultSet’s cursor is on the insert row.
However, none of the participants immediately knew this was the source of the problem.

All participants immediately read and interpreted the error message “invalid cursor
state: cannot FETCH NEXT, PRIOR, CURRENT, or RELATIVE, cursor position is
unknown.” Most participants articulated a rapid-fire set of questions about the details
of the error message: e.g. “What is FETCH NEXT?,” “Why is the cursor position
unknown?” The participants seemed to leave these questions unanswered and focus on
the beginning of the error message, “invalid cursor state.” The participants recognized
that this was protocol related and they asked one of two questions: “What is the cursor
state of [ResultSet] rs?” (4 participants) or “Which cursor state does rs need to be in to
call next?” (2 participants). As I will discuss later in detail later in this section, these
two questions are instances of common question categories.

Regardless of the question asked, all six participants looked first at the method
documentation for the next method to see if it could help them answer their question.
Unfortunately, the next method documentation does not answer either question. Three
participants noted that the documentation states that a SQLException is thrown “if a
database access error occurs or this method is called on a closed result set.” All three
immediately decided neither cited source was the cause of the bug in this case.

The participants’ searches diverged from this point forward. Three general cate-
gories of searches were used: linear scan of task lines, linear scan of method documen-
tation search, undirected/random search through class documentation.

The fastest strategy, employed by two participants, was to look at the method docu-
mentation of each method in the source code one by one. They started at next (line 15)
and moved upward to insertRow, then updateString,3 and finally to moveToInsertRow.
These participants looked at the documentation by hovering over the method name
inside the Eclipse code editor. This strategy is reasonably natural in an IDE that sup-
ports hover documentation, but would require constant switching between editor and
webpage documentation if a more traditional editor is used.

The fourth sentence of the ResultSet documentation for moveToInsertRow helps
participants identify the state that the result set is in: “Only the updater, getter, and in-
sertRow methods may be called when the cursor is on the insert row.” All 3 participants
that read this documentation articulated a new understanding of the exception message

3One participant actually moved down to the updateRow documentation before proceeding upward
again to updateString. However, the strategies were otherwise identical.
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and articulated a follow up question. One participants said, “Aha! The cursor is on the
insert row. How do I get the cursor off the insert row to call next?”

Fortunately for the participants that reached the moveToInsertRow documentation
the answer to the follow-up question was immediately evident. To call next, one must
call moveToCurrentRow, which both has a parallel name and appears after moveToIn-
sertRow in the documentation.

One participant read the method documentation in the order they appeared on the
JavaDoc webpage (the previously discussed participants scanned in the order they
appear in the task code), which was the slowest search strategy. This participant looked
at the next documentation in the Javadoc generated web page. On the web page, the next
method appears first in the Method Detail list. The order of the method documentation
matches the order that methods appear in the ResultSet source code. The participant
scanned all of the documentation between next and moveToInsertRow which represents
2240 lines of the ResultSet source code and more than 100 methods. Thankfully, much
of it is repetitive and could therefore be skimmed. After reaching the moveToInsertRow
documentation, this participant acted similarly to the task line searchers.

The remaining three participants, like the method documentation scanner, read the
next documentation on the web page. From there these participants skipped around
somewhat randomly on the webpage. All three of these participant read at least a few
irrelevant sections of method documentation. However, these three eventually found
themselves at the top of the webpage at the class level documentation. The penultimate
section of this documentation provides a code example that “moves the cursor to the
insert row, builds a three-column row, and inserts it into rs and into the data source table
using the method insertRow.”

After reading the example, the participants compared the example code to the buggy
code and noticed the missing call to moveToCurrentRow in the buggy code. The
participants read the method documentation for moveToCurrentRow before adding it
to insertHarryBovik. One explained he was “trying to figure out if you could call next
on the current row?” The observations from this task are illustrative of the aggregate
results I discuss next.

Aggregate results

I transcribed the audio recordings, noting the time of every statement made or question
asked by the participants. I will refer to anything the statement says as a quote. I then
watched the video recording and mapped these quotes to blocks of time. Whenever I
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believed the activity on screen was motivated by a quote, I assigned the block in which
it was performed to the quote. This mapping allows me to estimate how much time was
spent on each quote.

In the vast majority of cases, the mapping was based on simple temporal ordering —
if the activity was performed during or after quote A and before any other quote it was
assigned to quote A. In a small number of cases, an activity did not seem to match the
preceding quote, and therefore the activity left unassigned. This phenomenon was rare
because the experimenter usually noticed when this happened and asked the participant
to explain his or her actions. In total, I assigned 87% of participant time to a quote.

I then performed open-coding [Strauss, 1987] on the quotes, looking for similar
quotes that tended to repeat. Four categories of quotes were particularly common. Each
of these categories represents a state search task. In total, 82% of the assigned time (or
71% of the total time) was spent working on the following four categories of search.
I list here each general category followed by two specific instances of that category
drawn from the transcripts:

A What abstract state is an object in?
• “Is the TimerTask scheduled?”
• “Is [the ResultSet] x scannable?”

B What are the capabilities of an object in state X?
• “Can I schedule a scheduled TimerTask?”
• “What can I do on the insert row?”

C In what state(s) can I do operation Z?
• “When can I call doInput?”
• “Which ResultSets can I update?”

D How do I transition from state X to state Y?
• “How do I get off the insert row to the current row?”
• “Which method schedules the TimerTask?’

These search problems are all specific to protocols, and therefore the protocol tasks are
dominated by state search.

Many concrete questions are compositions of several categories. Answering, “What
do I need to do to the conn to set doInput?” requires answering general questions
C and D. The method doInput can only be set in the disconnected state (C), and the
only way to get a disconnected connection is to create a new connection (D). Similarly,
answering “What methods can I call on [the object referenced] by [variable] conn?”
requires answering a combination of A and B.
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Figure 3.3: Question type frequencies.

I break down the questions and time spent in Figure 3.3. These charts break down
only the 71% subset of time spent on state search activities. As you can see, the only
combination categories that appeared in the quotes were A+B and C+D. It’s possible to
come up with other combinations (e.g. B+D: “I wonder what would happen if I find a
transition to state Y?) but harder to envision how they would be useful.

The question types appeared with almost equal frequency, except for category B
which was relatively infrequent. I expect category B, which is relatively exploratory, to
be more useful in greenfield tasks than the tasks in this study.

A reader who compares the two pie charts will observe that the category C+D
questions were relatively time consuming (31% of time was spent on 16% of questions).
This relationship held for all 6 participants—C+D questions had the highest average
time spent for everyone. When category D questions occur alone, it is possible to guess
the method name that will transition the object to the wanted state. To give one trivial
but common example, if the state is called “connected” it is likely that you want to
call a method called connect. However, when you do not know what state you want to
transition to, the implication of the category C component of the question, answering
question D requires a global search of the class methods.

Resources. Participants were allowed to use any resource they liked. However,
participants spent 76% of their total time on documentation webpages or hovering over
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a method documentation. This result conforms with expectations set by the studies
discussed in Section 3.1.

I also noted patterns in the particular documentation looked at by programmers.
In 56 out 74 cases (including all 6 programmers in the Result Set insertion example)
the programmer looked first to the documentation related to the method call occurring
at the exception location to solve their problem (next in the Result example). In 13
of the remaining 18 cases the programmer looked first at the method documentation
one line above or below the exception location.The participants never looked at the
documentation related to the parameter types, including the receiver type, of the method
being called when the exception occurs.

Unfortunately, the exception-location method documentation was not the right place
to look for the information developers were seeking. I already discussed the problem
with the Result.next documentation, but the ResultSet.get* methods were similarly
unhelpful for the “Cannot: read after end” task. Equally commonly, the information
needed is buried in the very last element of the documentation, the @throws annotation.
This information is not displayed in Eclipse hover documentation by default. It was also
often skipped by developers reading the documentation in the web page, even when
they were looking for the source of an exception! These findings support tools that push
rules necessary for invoking methods to developers, like eMoose directives [Dekel and
Herbsleb, 2009].

Question characteristics. We now return to two of the characteristics discussed in
Section 3.2.4. Participants performed two tasks that specifically required the participants
to determine the state of an unknown instance. In both cases, all participants expressed
hope for or requested a state test method. More surprisingly, participants requested
state test method in 5 other instances. This further reinforces the advice that state test
methods should always be provided.

I mentioned that missing state transitions caused frequent questions. However, type
qualifier protocols—in which objects never support certain methods after construction—
were very easy for participants. Participants seemed to intuitively understand that a
ResultSet is created as scrolling or forward only and cannot be changed thereafter. On
the other hand, lifecycle protocols, in which the state transitions only moved in one
direction (e.g. cannot disconnect a URLConnection) frustrated the participants.
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3.4 Threats to Validity

I started the forum mining with a large list of classes from the Java Standard Library
taken. These were taken primarily from the results of a single study ( Beckman et al.
[2011]). Beckman’s study used a static analysis to find candidate protocols for manual
investigation. This analysis missed protocols whose violations do not result in a thrown
exception, nor protocols that check for protocol violations in non-standard ways. The
interested reader is referred to Section 2.4 of that paper for further details. Since we
seeded our mining with those very same APIs, our study is missing the same classes of
protocols. More generally, all of the APIs in our study are both libraries and from the
“resource programming” domain. The protocol barriers may be different for other types
of APIs.

I also do not know exactly how representative the Stack Overflow questions are
of actual problems encountered in practice, nor if they really are the most difficult
problems. For example, programmers may look to other sources to solve their hardest
problems. Similarly, the particular demographic that uses Stack Overflow the most may
have different problems than a more representative sample.

I conducted the studies in this chapter after already designing and building Plaid. It
is possible that the barriers uncovered here are biased towards barriers that are addressed
by the Plaid design. In particular, state search is something that Plaid supports well.
Therefore, I may have inadvertently biased the results toward state search.

The developers who performed the laboratory study were professional engineers,
but they were all personal contacts. It is therefore possible that they are very unrepre-
sentative of the population of all skilled developers. Furthermore, the developer sample
size was very small. A larger, more representative sample of developers may have
needed very different information or very different resources.

Finally, I was the only person analyzing forum questions, assigning quotes to
programmer activity, and categorizing quotes. Another rater may have caught errors
and enabled me to asses the reliability of the categorization. The question categories
may be poorly defined and the quantitative results may be be skewed by my biases.

3.5 Discussion

In this study, I identified five common characteristics of the questions about API
protocols that developers find particularly problematic. Using the tasks that brought
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about the problematic questions, I found that experienced developers spent the majority
of their time (71%) addressing four types of state searches, some of which are poorly
supported by current approaches to documentation.

Our observations suggest that protocol-targeted tools, languages, and verification
techniques will be most effective if they enable programmers to efficiently answer the
four state search questions. Unfortunately, many of the tools in this area do not directly
address any of these questions.

That said, when a protocol is violated some of these tools provide an error message
that tells the developer what part of the protocol has been violated. In particular, the
messages usually say what abstract state the object is in, thereby answering question A.
Unfortunately, I am unaware of any tool that gives the developer this information when
there is not an error. This is probably achievable fairly simply for tools that rely on type
systems or static analysis, but is much more difficult for dynamic checkers.

The research community has provided substantially less support in answering
the other three state search questions (B, C, and D). However, some programming
languages support separating members by abstract state which will likely make it easier
for developers to answer B and C. Similarly, a first class state change operation in a
programming language makes it easier to answer D.

Throughout this chapter I discussed many examples in which the information
needs of developers do not match the documentation at the location it is needed. In
most of the instances the relevant instructions are simply misplaced. I urge writers of
documentation to carefully consider how documentation is used when considering its
structure. In addition, I believe there is a research opportunity to generate protocol-
specific documentation in all of the locations it is needed from simple specifications.

Finally, I mentioned briefly in Section 3.2.3 that answerers sometimes suggested
alternative libraries to questioners. These answers were often accepted and/or received
many “up-votes” from the Stack Overflow community. This suggests that developers
who struggle with protocol violations abandon the APIs. Researchers and practitioners
are very interested in what causes tools to be adopted by developers. This study provides
evidence that potential adopters can be driven away by difficulty using an API correctly.
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Chapter 4

Structuring Documentation to
Support State Search: A Laboratory
Experiment about Protocol
Programming

4.1 Introduction

Many researchers have developed protocol checkers which are designed to make it
easier for programmers to correctly use APIs with protocols (e.g. [Bierhoff et al.,
2009; Dwyer et al., 2007; Foster et al., 2002]). These tools require programmers to
specify protocols using alias and typestate annotations that are separate from code.
To automate the annotation process, several tools mine protocol specifications using
dynamic analysis [de Caso et al., 2011] or static analysis [Beckman and Nori, 2011;
Whaley et al., 2002]. A recent survey of automated API property inference techniques
described 35 inference techniques for ordering specifications [Robillard et al., 2013].

However, the qualitative studies described in the previous chapter found that pro-
grammers using API protocols spend their time primarily on four types of searches
of the protocol state space. Protocol checker output is unlikely to help programmers
perform many of these searches.

Instead, in this chapter I introduce a novel documentation generator called Plaiddoc,
which is like Javadoc except it organizes methods by state instead of by class and it
includes explicit state transitions, state-based type specifications, and rich state relation-
ships. Plaiddoc is extracted automatically from the standard Javadoc annotations plus
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new Plaiddoc specifications. Plaiddoc is named for the Plaid programming language,
introduced in Chapter 2, which embeds similar state-oriented features, and from which
Plaiddoc could, in principle, be automatically generated. I evaluate Plaiddoc against a
Javadoc control in a 20-participant between-subjects laboratory experiment.

The experiment attempts to answer the following five research questions:

RQ5 Can programmers answer state search questions more efficiently using Plaiddoc
than Javadoc?

RQ6 Are programmers as effective answering non-state questions using Plaiddoc as
they are with Javadoc?

RQ7 Will programmers who use Plaiddoc answer state search questions more cor-
rectly than programmers who use Javadoc?

RQ8 Will programmers get better at answering state search questions as they get
more practice?

RQ9 Are programmers who use Plaiddoc better than programmers who use Javadoc
at mapping general state concepts to API details?

All of the tasks performed by participants asked participants to answer a question. I
therefore use the words task and question interchangeably in the rest of this chapter.
Most of these questions were instances of the four state search categories introduced in
Section 3.3.2. Some of the questions were not state related and were chosen to benefit
Javadoc. These were included to measure the extent to which the potential advantages
Plaiddoc has on state tasks are counterbalanced by disadvantages on non state tasks.
Task ordering was alternated to measure learning effects, and a post-study quiz was
administered to gauge concept understanding.

Participants using Plaiddoc completed state tasks in 46% of the time it took Javadoc
participants (p<0.001). but were approximately equally fast on non-state tasks (p=0.8).
Plaiddoc participants were also 7.6x less likely to answer questions incorrectly than
Javadoc participants (p=0.002). Finally, Plaiddoc and Javadoc participants were approx-
imately equally able to map state concepts to API details. Nevertheless, our overall
results suggest that Plaiddoc can provide a lightweight mechanism for improving pro-
grammer performance on state-related tasks without negatively impacting traditional
tasks.

More broadly, the results of this study also provide indirect support for several
programming language design choices. This study provides quantitative evidence
for the productivity benefits of type annotations as documentation and state-oriented
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language features, topics I discuss in detail in Section 4.8.

4.2 Background and Related Work

In their seminal paper entitled “Why a diagram is (sometimes) worth ten thousand
words,” Larkin and Simon [1987] introduce a computational model of human cognition
to compare informationally equivalent diagrams and text. They demonstrate in this
model that solving math and physics problems with text-based information can require
many more steps than solving the same problems with diagrams. The most important
difference between the diagram steps and text steps is that much more effort in text is
spent searching for needed details. One particularly noteworthy reason for the search
difference is that diagrams often collocate details that are needed together.

Larkin and Simon’s theory has been effectively applied to many other (non-
diagramatic) information contexts. For example, Chandler and Sweller [1991] show
in a series of experiments that integrated instructional material and the removal of
non-essential material can facilitate learning in a variety of educational settings. There
are many more closely related examples: Green and Petre [1996] develop cognitive
dimensions to evaluate visual programming languages, the GOMS [John and Kieras,
1996] model has proven effective at predicting user response to graphical user interfaces
(GUIs), and MCRpd [Ullmer and Ishii, 2000] models physical representations of digital
objects.

The results of two studies of API design choices are best understood through Larkin
and Simon’s search lens. It is easier for programmers to use constructors to create
instances than factory methods, because constructors are the default and are therefore
the start of any search [Ellis et al., 2007]. Methods that are located in the class a
programmer starts with are easier to find than methods in related classes [Stylos and
Myers, 2008]. The impact of small design changes shown in these papers emphasizes
the importance of information seeking on API usability, and suggests that a similar
impact may be possible with other small interventions.

All of this research suggests that there is an opportunity to modify an API artifact
to create an informationally equivalent alternative that will improve programmer perfor-
mance with protocol search. Which artifact? Which changes will be most effective? To
answer these questions it is useful to look at the interventions that have proven effective
with other complex APIs.

One effective way to learn to use an API is to find a related example. Rosson and
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Carroll [1996] studied programmers using reusable Smalltalk GUI components and
found that participants “relied heavily on code in example applications that provided
an implicit specification for reuse of the target class.” The significance of examples
encouraged researchers to develop example repositories to enable programmers to find
examples easily [Neal, 1989; Ye et al., 2000]. Unfortunately, the effectiveness of these
repositories was limited by the retrieval mechanism which required too much (and too
complex) input from programmers.

More recently, MAPO [Zhong et al., 2009] and Strathcona [Holmes et al., 2005]
automatically retrieve examples from the structure of the program the programmer is
writing. Zhong et al. [2009] performed a controlled experiment in which participants
using MAPO produced code with fewer bugs than participants in other conditions. This
result is notable because it shows that API interventions can produce higher quality
responses, not just more rapid responses.

The eMoose IDE plugin has proven similarly useful to developers using complex
API specifications [Dekel and Herbsleb, 2009].The eMoose tool pushes directives—
rules required to use a method correctly—to the method invocation site. The concrete
rules that make up a protocol (e.g. one cannot call setDoInput on a connected URL-
Connection) are examples of directives. Dekel’s evaluation of eMoose demonstrated
significant programmer performance improvements during library usage tasks (includ-
ing one library with a protocol).

Unfortunately, examples and directives are labor intensive for API designers to
produce. In large complex APIs it is often impossible to generate examples for every
possible use case. Even after they are produced, it is hard to keep them in sync with the
API as it changes, because there is no mechanism to enforce conformance. Examples
can also serve as a crutch toward learning, and the most effective students learn to
generate their own examples [Chi et al., 1989].

The design of Plaiddoc is inspired by all of the research discussed in this section. I
modify Javadoc to produce an informationally equivalent documentation format aimed
at facilitating speedier state search. Plaiddoc is generated from specifications whose
conformance with code can be checked automatically. Plaiddoc specifications, like
eMoose directives, are co-located with each method. The specifications themselves
contain just the right state details so programmers can generate their own examples of
correct API usage. The details of the Plaiddoc design are discussed in the next section.
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4.3 Plaiddoc

To follow the rest of this chapter, it is important to understand the design of Plaiddoc.
To do so, it is necessary to first explain Javadoc. Javadoc is a tool for generating
HTML documentation for Java programs. The documentation is generated from Java
source code annotated with “doc comments” which contain both prose description and
descriptive tags which tie the prose to specific program features. For example, a doc
comment on a method will describe the method in general and then provide tags and
associated comments for the parameters, the return value, and/or any exception the
method throws.

The webpage generated by Javadoc for a class has six parts. The top and bottom
contain navigation elements which allow the reader to quickly browse to related docu-
mentation. After the navigation elements, the class description appears at the top of the
page. It states the name of the class and links to superclasses and known subclasses. It
then follows with an often long description which can include: the purpose of the class,
how it is used, examples of use, class-level invariants, relationships to other classes, etc.

After the class description, the page includes four related elements: the field sum-
mary, method summary, field details, and method details. The field summary is a
table containing the modifier, type, name, and short description of each public field
sorted in alphabetical order. The method summary is extremely similar: it shows the
modifier, return type, method name, type and name of all parameters, and short method
description in alphabetical order. The field and method details show each field (or
method) in the order they appear in the source file with the full description including
historical information and any tags.

The Plaiddoc generated webpage maintains all of the look and feel of the Javadoc
page. The fonts, colors, and visual layout are identical. However, the method summary
section is restructured and extra information is added to the method details section.
A partial screenshot of the ResultSet page is shown in Figure 4.1. The full page is
available on the web.1 The screenshot shows the method summary for the top-level
Result state and the Open state.

As in Plaid, methods in the summary are organized by abstract state. In Javadoc,
there is one table containing all of the methods of a class, while in Plaiddoc there is one
table per abstract state. For example, the Disconnected state of URLConnection has a
table containing all of the methods available in it, including setDoInput and connect.

1http://www.cs.cmu.edu/~jssunshi/pubs/thesis-extras/PlaiddocResultSet.html
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Figure 4.1: Screen shot of part of the Plaiddoc ResultSet page.

One important rule I followed when designing Plaiddoc is that there is exactly one
Plaiddoc page per Javadoc page. This rule ensures that the any observed differences
between participants using Plaiddoc and Javadoc is a consequence of Plaiddoc’s extra
features and not the result of differences in page switching. There are two consequences
of this rule: 1) All of the possible states of single Java class appear in the same Plaiddoc
page.2 2) Multi-object protocols appear in multiple Plaiddoc pages. Six of the tasks
in this study involve the Timer and TimerTask classes which impose a multi-object
protocol. In these tasks, Javadoc participants were given two pages and Plaiddoc
participants were given two pages.

2e.g. The “Open” and “Closed” states of ResultSet appear on a single page.
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An automatically generated diagram which shows all of the states of the class and
where the particular state fits in, appears above each state table. The current state is
bolded and italicized, while other states are displayed in the standard font. This diagram
is primitive; it does not contain extensive capabilities like hyperlinks from state names
to state tables, collapsing/expanding children, transition arrows, or even a nice graphical
look. The diagram is primitive for three reasons: 1) Plaiddoc was designed for this
experiment, and was therefore not polished for use outside the laboratory. 2) More
capabilities gives participants more potential paths to solve tasks and thus introduces
variation into the study. 3) If one adds features it is harder to understand which particular
features are important or unimportant. Plaiddoc was designed with the minimum set of
features I believed would be an effective group.

The Plaiddoc page also contains two new columns in the method details table.
These columns are state preconditions and postconditions. The only valid predicates
are state names, state names with a parameter, or combination of the two separated by
the AND or OR logical operators. For example, “Disconnected,” “Scheduled task,” and
“Updatable AND Scrollable” are valid preconditions or postconditions but “value > 0”
is not. The same information is added to the method summary. The state to which a
method belongs is an implicit precondition for that method. For example, the close
method shown in Figure 4.1 lists no preconditions, but since it belongs to the Open
state, the ResultSet must be in the Open state to call the close method.

To generate a Plaiddoc class page, the Plaiddoc tool requires three inputs: the
Javadoc page of the class, a JSON file specifying the state relationships of the class, and
a JSON file containing preconditions and postconditions for each method and mapping
methods to states.

The JSON files are very simple. The state file must contain a single object whose
fields are states, each of which must contain either an “or-children” or “and-children”
field. These “children” fields are arrays containing state names, which in turn must
be defined in the same file. The methods file must contain an array of method objects
which contain four fields: “name” (including parameter types to distinguish statically
overloaded methods), “state” (which must map to a state defined in the state file), “pre”
for preconditions, and “post” for postconditions.

It is important to map the features of Plaiddoc just described to concepts, in order
to understand the implications of the experiment described here on other research (e.g.
the Plaid language itself). Plaiddoc organizes methods by state instead of by class,
by separating the method summary table by state. Plaiddoc makes state transitions
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explicit when state postconditions differ from preconditions. The Plaiddoc preconditions
and postconditions make use of state-based type specifications. Finally, rich state
relationships are displayed to programmers at the top of each method table. See e.g. the
“State relationships" box in Figure 4.1.

4.4 Methodology

The experimental evaluation of Plaiddoc uses a standard two by two between-subjects
design, with five participants in each of the four conditions. The experiment compares
Plaiddoc to a Javadoc control and presents two task orderings to measure learning
effects. The recruitment, training, experimental design, tasks, and post-experiment
interview are presented in the following sections. All of the study materials can be
found in Appendix C.

4.4.1 Recruitment

All 20 participants were recruited on the Carnegie Mellon campus. Half of the partici-
pants responded to posters displayed in the engineering and computer science buildings.
The other half were solicited in-person in a hallway outside classrooms which typically
contain technical classes. Participants were screened for Java or C# knowledge and
experience with standard API documentation. Participants were paid $10 for 30-60
minutes of their time. The 20 participants that made it past the screening all completed
the study.

Twelve of the participants were undergraduate students, all of whom were majoring
in computer science, electrical and computer engineering, or information systems. The
other eight were masters students in information systems or computer engineering pro-
grams. Eleven students had no professional programming experience outside summer
internships, five students had one year of full-time professional experience, and four
had more than one year of experience.

4.4.2 Training

After signing consent forms, participants were given approximately 10 minutes of
training. Every participant, regardless of experimental condition, received exactly the
same training. The training was read from a script to help ensure uniformity.
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Figure 4.2: Car state machine used for participant training.

All participants were familiar with Javadoc, but the training included an explanation
of both Javadoc and Plaiddoc to ensure baseline knowledge in both formats. The goal
of this study is to compare the impact of the documentation formats on state search
tasks, not the impact of training. Therefore, we kept training consistent to avoid a
confounding factor. All of the state concepts are first taught via UML state machines,
then Javadoc, then Plaiddoc.

The training materials introduce participants to the basic concepts of object protocols
and to the documentation formats used in the study. The training makes concepts
concrete using a Car API I constructed for the purpose. Regarding protocols, participants
learn:

• that methods are available in some states and not others
• that some methods transition objects between states
• that states can be hierarchical
• that child states can be either or-children or and-children

These concepts were reinforced by asking participants simple, scripted questions about
the Car API. The questions were designed to be answerable very quickly by partici-
pants. I created a UML state machine (shown in Figure 4.2), Javadoc documentation,
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and Plaiddoc documentation for the Car API and these were printed and handed to
participants.

The top-level state for Car objects (named “Car”) has three and-children, each of
which has two or more or-children: gear to represent the car’s manual transmission,
brakes to represent whether the car is braking or not, and option to represent whether
the car has the “turbo” option or not. I used these states to introduce state hierarchy,
or-states, and and-states. I introduced transitions via brakes. One can transition to the
“Braking” state from the “NotBraking” state by calling the “putFootDown” method. The
openTrunk method, which does not change the gear state, introduces state-dependent
methods. In the example, like in many real-world cars, one can only open the trunk
when the car is in the neutral gear.

Like all and-children, the car’s three substates are independent, in the sense that
changing the gear state has no effect on the braking or option states. However, one
unique wrinkle in the example is that the turbo state enables a fifth gear substate of
gear that is not available otherwise. The toFifth method has two preconditions — the
car must be in the neutral gear and it must have the turbo option. In the study tasks
discussed later, some of the ResultSet methods also have multiple preconditions.

4.4.3 Experimental Setup

Participants were asked 21 questions about three Java APIs: 1) Six questions about
java.util.Timer and java.util.TimerTask. I refer to these questions as the Timer questions
throughout the rest of this paper. 2) Ten questions about java.sql.ResultSet. 3) Five
questions about java.net.URLConnection. The experimenter read each question aloud
and handed the participant a piece of paper with the same question written on it.

Participants were seated in front of a computer, and asked to answer the question
by looking at documentation on the computer screen. The experimenter opened the
documentation for the participant in a browser window. Both the Javadoc and Plaiddoc
documentation were opened from the local file system to present a consistent URL and
to prevent network related problems. The computer screen and audio (speech) were
recorded with Camtasia.

Half of the participants were shown standard Javadoc documentation for all ques-
tions and half Plaiddoc documentation. Participants were allowed to make use of the
browser’s text search (i.e. Control-F). However, they were not allowed to use internet
resources (e.g. Google, StackOverflow).

I chose a between-subjects design to control for cross-task contamination. Many
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software engineering studies use within-subjects designs to reduce the noise from
individual variability. I guessed based on pilot data that individual variability in our
study would be relatively low and I therefore opted for the cleaner between-subjects
design. As we will see in Section 4.5, the study was sufficiently sensitive to distinguish
between conditions so my guess turned out to be accurate.

Questions were asked in batches — all of the questions related to a particular API
were asked without interruption from questions about another API. Within each batch,
each question was asked in the same order to every participant. However, half of the
participants were asked the Timer batch first and half were asked the UrlConnection
batch first. The ResultSet batch always appeared second and the remaining batch
appeared third. I wanted the Timer and URLConnection batches to each appear last so I
could measure the learning effects on those batches. All other ordering was uniform
across conditions to avoid unnecessary confounding factors.

The study had a total of four between-subjects conditions: Plaiddoc with Timer first
(condition #1), Plaiddoc with URLConnection first (condition #2), Javadoc with Timer
first (condition #3), and Javadoc with URLConnection first (condition #4). Participants
were assigned to conditions based on the order they appeared in the study. The nth
participant was assigned to condition #n modulo 4. No effort was made to balance
participants by experience or any other demographic factor. Therefore, there were
exactly five participants in each condition.

4.4.4 Tasks

The 21 questions asked of the participants are shown in Table 4.1. Sixteen of the ques-
tions were instances of the four categories of state search enumerated in Section 3.3.2.
Since these questions are state specific, I refer to them as the state questions. The
remaining five questions were non-state questions, which were designed to be just as
easy or easier with Javadoc than Plaiddoc. These questions were not about states or
protocols, and I therefore refer to them as the non-state questions.

I selected the state questions with a three-phase process. First, I generated all of the
instances of the general categories I could think of for each API. Second, since I did not
want the answer or the process of answering one question to affect others, I removed
questions which were not independent. Some additional non-independent questions
were removed during piloting. Third, I pruned the ResultSet questions to include two
instances of each question category by random selection. The study was too long with
the full set of ResultSet questions.
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Table 4.1: Category, identifier and question text for all of the questions asked of participants in
the main part of the study. Questions with identifiers beginning with T involved java.util.Timer
and java.util.TimerTask, R involved java.sql.ResultSet, and U involved java.net.URLConnection.

Cat. ID Question text
T T-1 How do I transition a Timer Task from the Virgin state to the Scheduled state?
N T-2 What is the effect of calling the purge method on the behavior of the Timer?
C T-3 What methods can I call on a Scheduled TimerTask?
N T-4 What is the difference between schedule(TimerTask task, long delay, long period) and

scheduleAtFixedRate(TimerTask task, long delay, long period)?
O T-5 What state does a TimerTask need to be in to call scheduledExecutionTime?
C T-6 Can I schedule a TimerTask that has already been scheduled?
N R-1 How is a ResultSet instance created?
C R-2 Can I call the getArray method when the cursor is on the insert row?
O R-3 What state does the ResultSet need to be in to call the wasNull method?
T R-4 How do I transition a ResultSet object from the ForwardOnly to the Scrollable State?
O R-5 Which states does the ResultSet need to be in to call the updateInt method?
A R-6 What state is the ResultSet object if a call to the next method returns false?
T R-7 How do I transition a ResultSet object from the CurrentRow to the InsertRow state?
N R-8 Why does getMetadata take no arguments and getArray take a int columnIndex or

String columnLabel as an argument?
C R-9 Can I call the isLast method on a forward only ResultSet?
A R-10 What states could the ResultSet object in when a call to the next method throws a

java.sql.SQLException because it is in the ResultSet is in the wrong state?
A U-1 What state is the URLConnection in after successfully calling the getContent method?
C U-2 If the URLConnection is in the connected state can I call the setDoInput method?
N U-3 How do I create a URLConnection instance?
O U-4 What state does the URLConnection need to be in to call the getInputStream method?
T U-5 What method transitions the URLConnection from the Connected to the Disconnected

state?

Category definitions
A Instance of the “What abstract state is an object in?” question category.
C Instance of the “What are the capabilities of an object in state X?” question category.
N Instance of the non-state question category.
T Instance of the “How do I transition from state X to state Y?” question category.
O Instance of the “In what state(s) can I do operation Z?” question category.
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The final question set includes three instances of A) “What abstract state is an object
in?”, five instances of B) “What are the capabilities of an object in state X?”, four
instances of C)“In what state(s) can I do operation Z?’,’ and four instances of D) “How
do I transition from state X to state Y?” Participants in all conditions were given a
glossary listing all of the states of the API in question with a short description of each.
Participants were instructed to answer questions in categories A and C with the name
of a state from the glossary. In other words, these questions were multiple choice.

The names of states in the glossary matched those in Plaiddoc. The names them-
selves were taken from the Javadoc as much as possible. I did not want to disadvantage
Javadoc unnecessarily, so I tried to make it as easy as possible for participants to per-
form the mapping from the prose description in the Javadoc to the state names in the
glossary. In two cases there was no obvious name to give the state from the Javadoc.
First, I called a URLConnection that has not yet connected “Disconnected,” which is
a word that appears neither in the Javadoc nor the Java source code. Second, I called
a TimerTask that is unscheduled, “Virgin” even though this word never appears in
the Javadoc. In this case we borrowed the word from the implementation code—the
state of a TimerTask is encoded with an integer, and the integer constant used for an
unscheduled TimerTask is called VIRGIN. Finally, I wrote all of the descriptions to
succinctly explain the meaning of the state name.

All of the non-state questions require understanding a non-state detail of the API
or comparing two details. Since the Plaiddoc API documentation is larger than the
Javadoc documentation one might expect that it would be slightly easier to answer these
questions with Javadoc. Two of the non-state question are instances of “how do I create
an instance of class X?”, two ask participants to compare two methods (in one case
the methods were in different states), and one asks participants to understand non-state
details of the behavior of an individual method.

Participants were instructed to “find the answer to each question in the documen-
tation and tell the experimenter the answer as soon as you have found it.” Whenever
a participant answered a question for the first time, the experimenter asked,“is that
your final answer?” Participants were limited to ten minutes per task. The experiment
proceeded to the next task whenever a participant answered a question and confirmed
it or the time limit was reached. Participants were not told whether their answer was
correct and the experiment proceeded regardless of answer correctness.
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4.4.5 Post-experiment interview

After completing the experiment participants were asked four questions to see how well
they could map the state concepts I trained them about before the study (e.g. and-states,
or-states, state hierarchy, impact of transitions on and-states) to the particular APIs
they saw in the study. For example, I asked "What is an example of two ResultSet
and-states?" Participants were also asked to rate their affinity to the documentation they
used, and if they used Plaiddoc to compare Plaiddoc to Javadoc on a five point Likert
scale. Then they were asked “Which documentation format that you learned about
before the study—Javadoc, Plaiddoc, or UML state diagram—do you think would have
been most helpful to complete this study?” Finally, some individuals were also asked
additional questions about their task performance at the experimenter’s discretion.

4.5 Results

In this section, I discuss the study results and try to give the best evidence to answer the
research questions presented in the introduction. I first compare the task completion
performance of Plaiddoc and Javadoc participants. Then I compare the correctness
of these responses provided by those same groups. I follow with an evaluation of the
learning effects of performing study tasks. Finally I discuss the post-study interview
and pilot results.

4.5.1 Task Completion Time

In this subsection I discuss the results related to the task completion time output variable.
This output variable addresses RQ5 and RQ6 (Can programmers answer state search
questions more efficiently using Plaiddoc than Javadoc? and Are programmers as
effective answering non-state questions using Plaiddoc as they are with Javadoc?) by
comparing task completion times across conditions.

To determine completion time I analyzed the video and marked when I finished
reading the task question and when the participant confirmed his or her “final answer.”
The difference between these two marks was noted in the task completion time.

The ten-minute task time limit was reach by many participants on question R-4, but
never on any other question. In fact, only two participants exceeded five minutes while
answering any other question, and they did so for only one question each. Timeouts are
not directly comparable to other timing data, and therefore we evaluate question R-4
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Figure 4.3: Box plot comparing total completion time for each of the Plaiddoc participants to
that of Javadoc participants. The median is displayed with a horizontal line, the 25th percentile
measure with the bottom of the box, the 75th percentile measures with the top of the box, the
minima value with bottom whisker, and the maximum value with the top whisker.

separately, and in detail, in Section 4.5.2. This subsection does not include data from
question R-4.

The total completion time for each of the Plaiddoc and Javadoc participants on state
questions is visualized by the box plot in Figure 4.3(a), and for non-state question in
Figure 4.3(b). A two-factor fixed-effects ANOVA revealed no significant interaction
between documentation type and task ordering (p=0.25) on total task completion time.
Therefore, I compare all 10 Plaiddoc participants against their 10 Javadoc counterparts.

The mean total completion time of all state search tasks was 10.3 minutes in the
Plaiddoc condition, and 22.4 minutes in the Javadoc condition (2.17x difference).
An independent samples two-tailed t-test revealed that the difference is statistically
significant (p < 0.001). The difference between the means was 12.1 minutes, and
95-percent confidence interval was 6.38 to 17.8 minutes.

The mean completion time of non-state tasks was 5.77 minutes in the Plaiddoc
condition, and 5.95 minutes in the Javadoc condition. Unsurprisingly, this difference
is not statistically significant (p=0.802). The 95-percent confidence interval of the
difference is -1.32 to 1.68 minutes.

The state search categories I introduced in Section 3.3.2 can be subdivided into two
categories. In two of the search categories, a participant begins his or her search at a
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state and tries to find a method.3 In the other two search categories the participant starts
at a method or other detail (e.g. exception, instance creation), and tries to find a state.4

Since methods are organized in Plaiddoc by state one would expect that Plaiddoc would
improve performance primarily for searches that proceed from a state to a method.
This hypothesis turns out to be correct — Plaiddoc outperformed Javadoc in these
categories by 2.41x. However, one might expect that Plaiddoc would not be helpful
in the method first categories, but Plaiddoc outperformed Javadoc by 1.87x in these
categories. Therefore, Plaiddoc appears to be more helpful for state-first search than
method-first search. I performed two factor, fixed-effects ANOVA in which the two
factors are documentation type and search type and the output variable is time. The
interaction term between documentation type and search type is only significant at the
ten-percent level (p=0.0891).

Demographics

I did not balance participants in conditions by any demographic factor. By random
chance, six of nine students with experience and three of four with more than one year
of experience were assigned to the Javadoc conditions. However, experience had no
significant impact on the timing results. A two-factor ANOVA where the two factors
were experience and documentation type showed no significant effects from experience
(p = 0.813) or the experience by documentation type interaction term (p = 0.719).

Feature comparison discussion

Every participant used text-search (i.e. CTRL-F in the browser window) to find method
names. They then used the location in a state box, pre-conditions, post-conditions,
and state relationship diagrams to answer the question efficiently. Plaiddoc is like
Javadoc except it organizes methods by state instead of by class and it includes explicit
state transitions, state-based type specifications, and rich state relationships. The
difference in relative performance between the state categories allows us to (very
roughly) compare the benefits of state organization to the other three features. Since
the method based search does not benefit from the state-based organization, all of
the performance differences observed in the method based search tasks are likely to
derive from explicit state transitions, state-based type specifications, and rich state
relationships. The extra performance of the state based search is likely to derive from

3What are the capabilities of an object in state X? How do I transition from state X to state Y?
4What abstract state is an object in? In what state(s) can I do operation Z?
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Table 4.2: Documentation type, number of correct answers, number of incorrect answers, and
number of question time-outs of each participant on the 16 state search questions.

Paricipant # Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Pdoc Jdoc

DocType P P J J P P J J P P J J P P J J P P J J P J
Correct 15 15 14 16 15 16 15 14 15 15 14 14 15 15 16 16 15 15 11 13 151 143
Incorrect 1 0 2 0 0 0 1 1 0 0 2 2 1 0 0 0 0 0 5 2 2 15
Timed-out 0 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 7 2

the state-based organization. I do not think it’s possible to separate the benefits of the
embedded state diagram from the preconditions and postconditions. In one early pilot I
did not include the state diagram and the participant struggled to answer questions that
required knowledge of state relationships. Similarly, a state diagram without detailed
information about the requirements and impact of method calls would likely not be
effective.

4.5.2 Correctness

Almost half of the participants provided at least one wrong “final” answer to a state-
search question. Among the 320 total answers provided to the 16 state search questions
294 were correct, 17 incorrect, and nine were not provided because the question timed
out. In this subsection I compare the correctness of Plaiddoc answers to Javadoc answers
(RQ7). The number of right, wrong, and timed-out answers for each participant are
shown in Table 4.2.

Only two of the 17 wrong answers were provided by Plaiddoc participants. Plaiddoc
participants answered 98.75% of the questions correctly, and Javadoc participants
answered 90.5% correctly. The odds ratio in the sample is 7.92.5 I analyzed the
contingency table of Javadoc vs. Plaiddoc and Correct vs. Incorrect using a two-tailed
Fisher’s exact test. The contingency table is shown in Table 4.2 in the rows labeled
“Correct” and “Incorrect” and the columns labeled “Pdoc” and “Jdoc”. The test revealed
that the difference is very significant (p=0.002). The 95-percent confidence interval of
the odds ratio is 1.78 to 72.1.

5The odds ratio is a standard metric for quantifying association between two properties. In our
example, it is the ratio of the odds of being correct when using Plaiddoc to the odds of being correct
when using Javadoc.
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Incorrect responses

All of the wrong answers and time-outs were provided to just five of the 16 state
questions. No wrong answers were provided to any of the non-state questions. It is
worth discussing the content of the wrong answers to provide insight into the types of
problems programmers face when answering state-related questions.

In response to question T-3, a Plaiddoc participant (#19) incorrectly suggested that
none of the TimerTask methods could be called on a scheduled TimerTask because “the
methods are called by the Timer.” This participant correctly noted the main mode of
usage, but incorrectly assumed this was the exclusive mode of usage.

In response to question T-5, three6 Javadoc participants incorrectly suggested that
TimerTask scheduledExecutionTime can be called in any state when in fact it can only
be called in the executed state. Three of these wrong participants noted correctly that
scheduledExecutionTime does not specify that it throws an exception. Unfortunately,
not every protocol violation results in an exception, a fact that was noted in pre-test
training.7 In this case, the protocol is documented in the description of the return value,
which is described as “undefined if the task has yet to commence its first execution.”
In the post-experiment interview all three incorrect participants said that they did not
notice this return value description.

In response to T-6, two Javadoc participants incorrectly replied that one can schedule
an already-scheduled TimerTask. Participant #19 answered very quickly (15 seconds)
without thoroughly examining the documentation. Participant #8 read aloud from
the documentation, noting that the method throws an IllegalStateException “if task
was already scheduled or cancelled, timer was cancelled, or timer thread terminated.”
However, #8 somehow skipped “scheduled or” while reading.

Three Javadoc participants and one Plaiddoc participant incorrectly answered U-5.
The question asks, “What method transitions the URLConnection from the Connected
to the Disconnected state?” There is no such method, as 16 participants correctly noted.
The three incorrect Javadoc participants suggested one could transition the URLConnec-
tion to the Disconnected state by calling its setConnectionTimeout method with 0 as the
timeout value argument. This method “sets a timeout value, to be used when opening a
communications link to the resource referenced by this URLConnection. If the timeout
expires before the connection can be established, a java.net.SocketTimeOutException

6Participant #19 also answered T-5 incorrectly because, as in question T-3, #19 thought all TimerTask
“methods are called by the Timer” including scheduledAtFixedRate.

7The openTrunk method’s protocol is documented by its description of the return value Javadoc
training materials.
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is raised.” Therefore, setConnectionTimeout has no impact at all on a URLConnection
instance that has already connected. Participant #1, a Plaiddoc participant, incorrectly
answered that the non-existent “disconnect” method could be used to transition the
URLConnection. This was the last question that participant #1 answered, so perhaps #1
was ready to leave and so didn’t investigate this question thoroughly.

Finally, R-4 produced the most varied responses. The question asks the participant
to transition a ResultSet object from the ForwardOnly to the Scrollable state. However,
no transition is possible since ForwardOnly and Scrollable are type qualifiers and
therefore are permanent after instance creation. Seven Plaiddoc and two Javadoc
participants never answered this question because they timed out. One Plaiddoc and
five Javadoc participants answered the question incorrectly. Many of the timed-out
Plaiddoc participants considered but then ultimately rejected the incorrect answers
provided by the Javadoc respondents. This suggests that the specifications provided by
Plaiddoc participants can provide confidence that an answer is incorrect. The Plaiddoc
participants likely traded no-answers for incorrect answers.

Four Javadoc participants incorrectly answered that the setFetchDirection method
will transition a ResultSet object from the ForwardOnly to the Scrollable state. Un-
fortunately, this method does no such thing, instead it "gives a hint as to the direction
in which the rows in this ResultSet object will be processed." These four participants
did skim the description, but it seems that they relied primarily on the method name to
make their determination.

One Javadoc and one Plaiddoc participant noticed the following sentences in the
class description: "A default ResultSet object is not updatable and has a cursor that
moves forward only ... It is possible to produce ResultSet objects that are scrollable."
which is immediately followed by a code example in which the createStatement method
is called on TYPE_SCROLL_INSENSITIVE as an argument on a connection instance.
Upon reading this, both participants immediately answered that the createStatement
method should be called on a ResultSet instance. The Plaiddoc participant even sug-
gested that the createStatement was missing from the method details list because
"Plaiddoc is just a prototype."

Questions U-5 and R-4 both ask participants to find a method that does not ex-
ist. These questions, like all state-search questions in the study, are derived from the
questions participants asked in the observational study discussed in Chapter 3. How-
ever, participants in empirical studies are well-known to be compliant to experimenter
demands. Therefore, some may therefore consider them to be “trick” questions. If
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these questions are excluded, then Plaiddoc participants answered 140 state-search
questions correctly (100%) and 0 incorrectly while Javadoc participants answered 133
correctly (95%) and 7 incorrectly. A two-tailed Fisher’s exact test of this contingency
table is statistically significant (p=0.014). Since Plaiddoc participants in this sample
answered every question correctly, the odds ratio is infinite. The 95-percent confidence
interval of the odds ratio is 1.48 (the corresponding value is 1.78 when including every
state-search question) to infinity (7.92 when including state-search question). Therefore,
Plaiddoc participants were significantly more likely to respond correctly than Javadoc
participants even when excluding “trick” questions.

Discussion

Three themes emerge from the incorrect and timed-out answers provided by participants.
First, all of the time-outs occurred in question R-4 when participants were asked to find a
non-existent method to transition between two states. Therefore, to answer this question
correctly, participants needed to prove the absence of something to themselves.8 Some
participants felt the need to perform a brute force search of the method documentation
to ensure that no methods were available that perfumed the transition. Of particular
note, Plaiddoc participants didn’t seem to trust that the ForwardOnly section of the
Plaiddoc contained all of the potential methods.

It’s also worth noting that question U-5 is in the same category but resulted in no
time-outs. One possible explanation is that the ResultSet interface is much larger than
the the URLConnection class9, so it is easier to be confident that no such method exists.
In addition, participants seemed to intuit that the URLConnection transition is missing,
but not intuit that the ResultSet transition is missing.

Second, the questions required the participants to digest a lot of text. Participants
commonly relied on heuristics and skimming to answer questions quickly. For example,
the five Javadoc participants who answered R-4 with setFetchDirection matched the
method name to the task and quickly confirmed the match in the description, but did
not fully digest the description text. The participant who missed the word “scheduled”
in the exception details was being similarly hasty. This phenomenon may partially
explain why Plaiddoc participants were so much quicker than Javadoc participants, as
we saw in Section 4.5.1. Plaiddoc presents a natural heuristic to participants — when

8Recall from Chapter 3 many forum questioners had similar problems with missing state transitions.
9Using the standard Google Chrome settings, printing the ResultSet Javadoc results 97 pages while

printing the URLConnection Javadoc results in only 23 pages.
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Figure 4.4: Box plots comparing ratio of Timer to UrlConnection task completion times.

examining a method, look first at the state it is defined in, then at its preconditions and
postconditions.

Third, participants were tripped up by non-normal modes of use. We saw that par-
ticipant #19 thought only the Timer could call TimerTask methods because that is the
normal mode of use. Similarly, most protocol violations throw exceptions and are docu-
mented in the method or exception descriptions. However, scheduledExecutionTime
somewhat abnormally documents the protocols in the return value description which
confused three participants. Finally, abstract states normally map well to the primitive
state of object instances. However, a URLConnection that has been disconnected from
the remote resource is not in the Disconnected10 abstract state, as expected by three
participants.

4.5.3 Learning

To answer RQ8, which asks whether state search performance improves with practice, I
alternated the order that question batches were asked of participants. As I describe in
Section 4.4.3, half of the participants first received URLConnection questions and half

10In this particular case a better name (e.g. NotYetConnected) for the Disconnected abstract state may
have avoided this confusion. However, poorly named identifiers are a fact of programming life. As much
as possible the documentation (and other components of the development environment) should be robust
to poor naming.
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Table 4.3: Analysis of observed variance of T/U Ratio. The fixed-effects sources of variation
considered are documentation type and batch order.

Df Sum Sq Mean Sq F value Pr(>F)
DocType 1 0.06695 0.06695 0.4560 0.50914

BatchOrder 1 0.96519 0.96519 6.5737 0.02081
DocType:BatchOrder 1 0.51496 0.51496 3.5073 0.07949

first received Timer questions. The output variable I discuss in this section is the ratio
of total Timer batch completion time to total URLConnection batch completion time
(the "T/U ratio"). If learning occurs, then the T/U ratio should be larger for participants
who performed the Timer batch first than for those who performed the URLConnection
batch first. The T/U ratio is shown for each condition in Figure 4.4.

In the Javadoc condition, the mean T/U ratio of the Timer first sub-condition is 1.07
and .948 in the UrlConnection first sub-condition. This difference is not statistically
significant (p=0.695). On the other hand, in the Plaiddoc condition the mean T/U
ratio of the Timer first sub-condition is 1.50 and 0.743 in the UrlConnection first
sub-condition. An independent samples two-tailed t-test shows that this difference is
statistically significant (p=0.003).

I performed two factor, fixed-effects ANOVA in which the two factors are docu-
mentation type and batch order and the output variable is the T/U ratio. The results are
show in Table 4.3. This ANOVA reveals that there is a marginally significant interaction
between documentation type and batch ordering (p=0.079). This should be interpreted
as weak evidence that task-completion speed improved more for Plaiddoc participants
than for Javadoc participants. However, more data is needed to know for sure.

Discussion

The Plaiddoc participants performance improved significantly during the study, which
is perhaps unsurprising since Plaiddoc was new to all of the participants. I would like
to say with confidence that state-search performance of programmers using Plaiddoc
would improve over time relative to programmers using Javadoc. However, the learning
observed in the Plaiddoc condition was not significantly stronger than the learning
observed in the Javadoc condition.
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4.5.4 State concept mapping

To investigate RQ9, I asked four questions to map the concepts they learned about in
training to the Timer, TimerTask, ResultSet, and URLConnection. Plaiddoc participants
responded correctly 23 of 40 times, while Javadoc participants answered correctly 25
times. This difference is not statistically significant.

Discussion

I hypothesized that Plaiddoc participant would be better at mapping API specifics to
general state concepts. I thought this because Plaiddoc makes many state concepts
more salient. There is no evidence for this hypothesis in the data. Javadoc participants
spent much more total time with the documentation and they read much more of the
detailed prose contained inside the documentation. Perhaps this extra time and detail
compensated for the state salience of Plaiddoc.

I told all of the participants that timed out while trying to find a method to transition
the ResultSet from ForwardOnly to the Scrollable state, that the method did not exist. I
asked if they had any ideas about how to better represent missing state transitions. Most
didn’t give any suggestion, but one suggested that methods that perform state transitions
should be separated from other methods so they’re easier to find. This suggestion is
worthy of further investigation.

4.5.5 Participant preference

In the post-experiment interview I also gauged participant preferences. Nine of ten
Plaiddoc participants said that a different documentation format would have been more
helpful in performing the study. Seven selected UML state diagrams and two selected
Javadoc. The Javadoc participants also primarily selected UML State diagrams (five of
ten), followed by Javadoc (3), and Plaiddoc (2).

Discussion

The results in this study demonstrate persuasively that Plaiddoc participants outper-
formed Javadoc participants. Therefore participant preferences does not match the
measured outcome. Why do so many Plaiddoc participants prefer another documenta-
tion format? The simplest explanation is that Plaiddoc is unfamiliar, while Javadoc is
familiar. In addition, one participant in the Plaiddoc condition who preferred Javadoc
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explained that he “felt lost” while using Plaiddoc. A Plaiddoc page is divided into
many more subsections (one for each state) than a Javadoc page. Improved visual
cues indicating the which state is being viewed might alleviate this problem. Another
possible reason, is that the Plaiddoc state diagram is produced in ASCII and therefore
looks old and amateurish. The state diagram does not match well with the modern look
of the rest of the page. Regardless of the reason for the preference, this study’s results
are a cautionary tale for researchers who rely only on user preferences to evaluate tools.

4.5.6 Discussion of pilot studies

The final study that appears here was preceded by a failed alternative study. I started
out trying to evaluate the effectiveness of the protocol-checking tool Plural [Bierhoff
et al., 2009] in the debugging of protocol violations. Unfortunately, during pilots the
variance of programmer performance was large and the effect size was both small and
appeared negative. In other words, participants in our small sample performed very
slightly better without Plural than with Plural.11

After that failed effort I decided to do the qualitative work that appears in the
previous chapter to learn more and guide the design of a better, more measurable
intervention. Based on the prevalence of search tasks in the results of the observational
study described in Chapter 3, I decided to ask participants to perform these smaller
search tasks, rather than the programming tasks that typically appear in software
engineering studies. In our pilots of Plaiddoc on these search tasks the variance between
participants was much lower than in our Plural studies and the difference between
Plaiddoc and Javadoc was large.

Originally I had wanted to evaluate Plaiddoc against both Javadoc and UML state
diagrams. Javadoc is the status quo documentation format and UML state diagrams
are in many ways a best practice. Since UML state diagrams do not include non-state
methods, I designed a Plaiddoc-diagram hybrid. In our pilots, UML state diagram
participants were much faster at answering questions about state transitions, which
is logical because these are prominent in the diagrams. However, they were much
slower than even Javadoc participants at answering other questions because they were
constantly switching back and forth between the documentation and the diagram. It
is possible that a better designed hybrid could have alleviated this problem, but for
timing’s sake I dropped the UML condition from the study.

11See Section 5.3 for further discussion on the results of this pilot.
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4.6 Threats to Validity

In this section I discuss threats to validity of my causal claims. I divide this section
using the canonical categories of validity: construct validity, internal validity, and
external validity.

4.6.1 Construct validity

I trained all participants equally, including training of Javadoc participants to use Plaid-
doc. There is some risk in this design that Javadoc participants will be disappointed
that they did not get to use Plaiddoc. They were familiar with Javadoc so they may
have preferred to try something new. Therefore, Javadoc participants may have per-
formed worse because they experienced what Shadish et al. [2002, p. 80] call “resentful
demoralization.” Two facts suggest that demoralization had at most a small effect on
the results: First, only two of 10 Javadoc participants said they would have preferred
to use Plaiddoc in the post-experiment interview. Second, both Javadoc and Plaiddoc
are documentation formats and neither is particularly exciting. The classic examples in
which “resentful demoralization” was measurable include much more severe differences
between the control group and the experimental group. Fetterman [1982] describes
an experiment evaluating a job-training program in which the control group includes
participants who were denied access to the training program. Walther and Ross [1982]
compare an experimental group that is paid a substantially higher participation reward
to a control group paid much less. I would not expect to see anywhere near as much
demoralization in our study as in these studies, even for participants who would have
preferred to use Plaiddoc.

Although participants were never told explicitly, it is likely participants realized that
Plaiddoc was my design. Therefore, Plaiddoc participants may have performed better
and Javadoc participants worse because of “experimenter expectancies” [Rosenthal
and Rosnow, 2008, p. 224]. In other words, the very fact that I expected Plaiddoc to
outperform Javadoc and the participants could possibly infer this expectation, may have
impacted in the result in the direction I expected.

4.6.2 Internal validity

The focus of this study’s design is internal validity. Participants were randomly assigned,
participants were isolated from outside events in equivalent settings, I used a between-
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subjects design, and there was no attrition during the study. All that being said, one
threat to internal validity is worth mentioning. Participants were assigned to conditions
randomly, but it could be that the participants in the Plaiddoc group were better equipped
to answer the questions in the study. I discussed the distribution of programming
experience in Section in Section 4.5.1 and showed that it did not seem to have an effect
on outcomes. However, it could be the groups differ along a different dimension—for
example, programming skill, experience with protocols, intelligence—that we did not
measure and this impacted the results.

4.6.3 External Validity

The qualitative studies in Chapter 3 and the experiment discussed here have opposing
strengths and weaknesses. The qualitative studies emphasize external validity with
realistic tasks and professional participants, but cannot be used to draw conclusions
about causal relationships. The experiment in this chapter focuses on internal validity
with a carefully controlled experimental design that allows strong causal conclusions.
However, the external validity of the experiment is enhanced because participants
performed tasks in which they were required to tackle protocol programming barriers
observed in the qualitative studies. Therefore, the experimental results are likely to
translate to real-world problems and the processes that programmers use to solve them.
All that being said, the threats to external validity discussed in Chapter 3 extend into
this study. The interested reader is referred to 3.4 for more information.

The state search tasks are connected to our qualitative results—they use the same
APIs that were problematic for Stack Overflow questioners and they are instances of
the state search categories that were observed repeatedly in the observational study.
However, the non-state search tasks did not come from developer forums or any other
real-world programming resource. Instead they were designed to simply not make use
of Plaiddoc’s novel state features. In our results, Plaiddoc participants did not perform
worse on these tasks than Javadoc participants. However, it could be that there are other
important categories of tasks for which Javadoc is better than Plaiddoc.

Another noteworthy external validity concern in the experiment here has to do with
the student population studied. None of the participants seem to have struggled with the
concept of preconditions and postconditions which are used heavily by Plaiddoc. This
may be because the concept as used in the study is simple, but it may also be that the
Carnegie Mellon student population I studied is especially exposed to formal methods.
The very first course in the Carnegie Mellon undergraduate computer science sequence
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teaches students to verify imperative programs with Hoare-style contracts.

4.7 Type annotations as documentation

Many research groups have developed specialized type-based annotation systems for
particular domains. Prominent examples include information flow [Sabelfeld and
Myers, 2003], thread usage policies [Sutherland and Scherlis, 2010], and application
partitioning [Chong et al., 2007]. In the vast majority of these systems, including all of
the examples just cited, the primary benefit of the annotation systems touted by their
creators is either verification or automated code generation. The preconditions and
postconditions that appear next to methods in Plaiddoc are essentially state-based type
annotations. Therefore, this study provides indirect evidence that type based annotations
can have benefits as documentation. The rest of this section discusses related work
evaluating the benefits of types and suggests a template for evaluating the benefits of
specialized type annotations.

4.7.1 Related studies on the benefits of types

In the last few years, there have been a flurry of studies, mostly from Stefan Hanenberg,
comparing the benefits of static and dynamic types. In his first study, Hanenberg
[2010] compared a synthetic statically-typed programming language to an equivalent
dynamically-typed one using a between-subjects design involving two large groups of
student participants, each of which spent 27 hours developing a Scanner and Parser.
Participants in the dynamically-typed group produced the relatively-simple Scanner
significantly faster then the participants in the statically-typed group. However, there
was no similar difference for the whole project nor was there a significant quality
difference between the code produced by either group.

In the next study, Stuchlik and Hanenberg [2011] narrowed the focus to type
casts, used a within-subject design (a design choice repeated in each subsequent study),
and found that small programming tasks involving significant casts using a statically-
typed language were substantially slower than equivalent tasks using a dynamically-
typed language. No difference was observed in larger tasks. Subsequent studies
have found significant benefits of static types when performing software maintenance
tasks [Hanenberg et al., 2013] and found no difference between generic and raw types
on participant performance [Hoppe and Hanenberg, 2013]. All of this research suggests
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that dynamic types have an advantage for small, greenfield tasks, while static types
have an advantage for larger, maintenance tasks.

The most closely related study, performed by Mayer et al. [2012], evaluated the
benefits of type annotations in undocumented software. The results were mixed—types
were significantly helpful in some tasks, and significantly harmful in others. One
possible interpretation of the results is that types were helpful in tasks that were more
complex (involved more classes) and harmful otherwise. Our results provide a clearer
picture — Plaiddoc provided benefits in every state-search category.

Mayer et al. [2012] differs methodologically in many ways from the study presented
in this chapter. In their study, programmers performed programming tasks using two
“structurally identical,”12 synthetic,13 undocumented APIs. In my study, programmers
answered search questions with well-documented real-world APIs. One important
consequence of these differences, is that our study evaluates types only for their docu-
mentation purpose, while theirs evaluates the collective value of both static-checking
and types as documentation.

As in all but the first of the studies discussed in the first paragraph of this section,
they use a within-subject design to control for the increased variance of programming
tasks and use a repeated-measures ANOVA to correct for learning effects. We use a
between-subjects design which does not require statistical correction. They investigate
traditional Java-like types, while we investigate typestates which are an example of
higher-level types specifications that commonly appear in the research literature but
are almost non-existent in practice. It is my guess that these higher-level types provide
more software engineering benefits as documentation than traditional types.

4.7.2 Research template

The studies discussed in Chapter 3 and this chapter suggest a template for studying the
benefits of high-level type annotations. One important challenge with all programing
experiments is the skill-variance between individual participants. As I observed in
Section 4.5.6, this can be exacerbated when performing complex tasks like protocols.
The targets of the other high-level type annotations I mentioned at the beginning of
this section are at least as complex: security-critical communication (information

12The second API was “derived from the first by renaming classes, methods, variables, etc. This was
done in a manner that ensured the two APIs, despite having the same complexity, seemed to address two
different problems.”

13The APIs were created for the study.
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flow), parallel programming (thread coloring), and enterprise architecture (application
partitioning). I do not think sophisticated statistical corrections will be enough to correct
for the variance in these domains.

This research suggests an alternative path. First, use appropriate qualitative research
techniques to find the most important barriers to programming in the domain (in our
research, these are the question categories). Then, define small tasks derived from
developer forums or other field work (the merged forum questions). These should be
components of the real programming tasks in the domain (solving state search questions
is required to debug protocols). Then, distill the intervention, for example the tool or
type system to be evaluated, to its essential parts (Plaiddoc). Finally, compare participant
performance on these small tasks when using the distilled system to participants using
status quo system.

4.8 Conclusion

In this study I demonstrate the effectiveness of Plaiddoc documentation relative to
Javadoc documentation in answering state-related questions. The barrier to entry for
using the Plaiddoc tool are minimal—only 1-3 annotations are required per method. I
annotated all three APIs in less than one day of work. The main barrier to using Plaid-
doc in production is training programmers to consume the documentation effectively.
Untrained participants in pilot studies were not able to use Plaiddoc effectively. Even
basic protocol concepts were foreign to my participants before training. That said, the
training I provided was very quick and required no specialized knowledge. Regardless,
it seems clear that any mainstream language that adopts first-class state constructs
should also adopt a Plaiddoc like documentation structure. More generally, our study
shows that state-based type annotations provide documentation-related benefits even for
well-documented code. Thus, our results open the door to future work investigating the
documentation-related productivity benefits of type-like annotations in a broad range of
domains.

89



90



Chapter 5

Implications of Empirical Results on
the Design of Plaid

In this chapter I will assess the design of the Plaid programming language, introduced
in Chapter 2, based on the empirical results discussed in chapters 3 and 4. In addition
to the Plaid syntax and dynamics semantics discussed in this thesis I will also comment
on Plaid’s type system.

5.1 Plaiddoc vs. Plaid

We saw in Chapter 4 that Plaiddoc documentation provided substantial productivity
and correctness benefits above Javadoc documentation for state-related tasks. It is
natural to ask whether the Plaid language, which embeds similar concepts, would have
a corresponding advantage over the Java language. Unfortunately, this question is too
large to be answerable as stated. Each language (particularly Java) includes a huge
ecosystem with runtime systems, libraries, and tooling which affect their usability.

Instead, let us a consider a much smaller question. How would programmers given a
well-commented Java interface (no implementation code) answer state search questions
relative to programmers given a well-commented, state-type annotated Plaid interface?
To know for sure one would have to run an experiment aimed at answering exactly that
question. However, consider that there are four main differences between this smaller
question and the actual experiment conducted in Chapter 4. First, the look and feel
of the documentations differ substantially. Second, the web documentation includes
clickable hyperlinks that allows for quick navigation. Third, the web documentation
includes a section that summarizes each member and a separate section that provides
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details for each member. Fourth, The Plaiddoc ASCII state diagram does not appear in
Plaid code.

The first three differences between web documentation and interface code seem
unlikely to change the relative performance of the state-oriented language and Java.
However, the ASCII state diagram is very different from the scattered keywords that
define state relationships in Plaid. Our pilot results suggest that the state diagrams
were very important for tasks that require understanding complex state relationships.
Fortunately, most tasks do not require this understanding. Furthermore, at least in the
case where all related states are known at compile time (an important detail we discuss
further in the next section), state diagrams are reconstructible from the type annotations.
Therefore, the differences found between Plaiddoc versus Javadoc are likely to translate
to Plaid versus Java.

5.2 Plaid extensibility

The experiment in Chapter 4 presented all of the states composing each Java class
in a single webpage. The more natural way to present Plaid, in which states are
declared separately, would be to present one page per state. However, I am fairly certain
that presenting Plaiddoc in this way would have significantly hampered participant
performance. For example, participants with multi-page Plaiddoc would not have
been able to use simple text search to find particular methods. They would also have
wasted time switching between pages. Therefore, I think it is preferable to present
documentation for related states together. I think this advice also applies to Java: I think
it would be preferable for the method and field documentation from superclasses and
super-interfaces to be included directly in the class documentation instead of merely
linked.

One other feature of Plaiddoc does not relate well to Plaid — Plaiddoc included
an ASCII state machine diagram with all of the states of each class. Unfortunately,
since state composition is extensible, the state machines which client programmers
see may be different than the state machines desired by API designers. One could
generate Plaiddoc like pages from Plaid code via a whole program analysis run by
client programmers. However, I think API documentation writers will want to see
the exact documentation that clients see. For example, a writer may want to explain
relationship between states with prose. Instead, I think it is preferable to add a new
mechanism to Plaid which enables API designers to prevent extension of particularly
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important components of the state machine. This mechanism would be like sealed in
Scala [Odersky et al., 2006], or comprises in Fortress [Ryu et al., 2010]. It might even
be preferable for this composition to be the default composition mechanism, although I
worry that such a default would cut off unanticipated reuse.

Finally, I think the composition mechanism itself could use some improvement. The
ASCII state diagram was critical for the success of Plaiddoc programmers. Similarly,
readers of Plaid code will need to understand the state relationships to understand
Plaid code. However, in existing Plaid code the state relationships are scattered. For
example, in the ResultSet code described in Section 2.2.3, the composition is scattered
across every substate in dozens of “case of” or “with” statements. These statements
are necessary, but I think readers of Plaid code will find it very difficult to recover the
full set of state relationships from these scattered statements. Instead, I suggest we add
a new composition mechanism for Plaid, which, like the JSON file used to generate
Plaiddoc, specifies the full state relationships in a single place. We can then change
the meaning of the existing keywords so that they imply requirements on the eventual
composition and do not enact the composition. For example, “ForwardOnly case of
Direction“ would mean that any time ForwardOnly appears in an object it must also
include Direction as an or-parent.

5.3 Access permissions

Plaid’s type system is not the focus of this thesis, but the studies discussed in Chapters 3
and 4 have implications for the type system. I therefore introduce a few Plaid type
system concepts here to help the reader understand those implications.

I co-developed Plaid’s first type system [Saini et al., 2010] based on the Plural type
system [Bierhoff and Aldrich, 2007]. Others have since extended that initial work with
a gradual type system [Wolff et al., 2011] and a modified permission system [Naden
et al., 2012]. It is therefore not possible to write about the Plaid type system because
there are many systems that could potentially claim that title. Instead, I am going to
write about the features they have in common.

The software engineering benefit sought in all of these research projects is to check
at compile time that API protocols are followed. In particular, if an API has a protocol
then the type system guarantees that: 1) API client programmers do not violate the
protocol and 2) API implementors correctly implement the protocol. All of these type
systems are sound, so any protocol violation that could happen at runtime causes an
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Table 5.1: Access permission definitions.

Other aliases to this object can...
This variable can be used to... no aliases only read read and change state

only read - immutable pure
read or change state unique full share

error at compile time.

These systems require programmers to include two types of annotations in their
API implementation (or interface) code:

1. Typestate annotations, which specify the abstract state of the object referred to
by a program variable (including the receiver, method parameters, and fields).
For a method, they are used to specify the abstract states that arguments must
have when the method is called and which abstract states they will have when the
method returns. The names of these annotations correspond to the names defined
in Plaid state declarations.

2. Access permissions, which specify whether program variables can refer to objects
that are aliased1 and whether the object’s abstract state can be changed by any
aliases that do exist.

Typestate annotations directly support the software engineering goal of checking for
protocol violations. For example, methods are sometimes only available when the
receiver is in a certain abstract state, which is indicated by a typestate annotation on
“this” where the method is declared. However, typestate annotations only appear at
module boundaries (e.g. method preconditions and postconditions) and therefore the
type system tracks the state of program variables inside method bodies. This tracking is
necessary, because unlike traditional types, which do not change at runtime, typestates
are flow-sensitive and do change at runtime. To make the tracking work, the type system
needs to know if any of these variables are aliased and changeable by one of these
aliases. Without this knowledge, it is impossible to determine whether, for example, a
method call might use an alias to change the state of an object that is pointed to by a
local variable and not passed to that method as an argument.

Plural provides the five types of access permissions shown in Table 5.1. A variable
with a “unique” permission cannot be aliased at all, and it can be used to both read
and change the state of the object to which it refers. A variable with an immutable
permission can be infinitely aliased but cannot be changed. A variable with a pure

1An aliased object is an object that is pointed to by two different variables.
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permission can only be used to read from the object but may be changed by a different
alias. A variable with a full permission can both read and change the object and there
may be other read-only aliases. Finally, a shared permission is readable and changeable
and allows unlimited read/change aliases. The shared permission is exactly what is
provided by standard type systems since they do not provide any alias control. Each
of the iterations of the Plaid type systems provides a different subset of those five
permission types.

Recall from Section 4.5.6, that participants in our Pilot studies of Plural performed
slightly better without Plural than with Plural. Many programmers, including the math-
ematically sophisticated participants I recruited for those pilots, seemed to have trouble
with the combination of access permissions and typestate annotations in Plural. In par-
ticular, participants confused Plural access permissions with the typestate annotations.
For example, in one task all three participants thought "pure" was an abstract state.

This confusion was likely due in part to the fact that the study required participants
to learn two new concepts (access permissions and typestate annotations) at once. More
generally, these early results are a worrying sign for those hoping to layer specialized
verification systems on top of one another.

In follow-up questions, participants seemed to also have more trouble with the
access permission concept than the typestate concept. Participants were able to make
the logical jump from the primitive state they are used to thinking about to the abstract
states specified with typestate annotations. Participants were not used to thinking about
aliases at all. This could be because of poor training or inexperience, but the participants
we used were all PhD students with several years of professional experience. Two
possibilities seems more likely: either it is fundamentally harder to reason about aliases
than state, or programmers already reason about state frequently but only rarely reason
about aliases.

In the face of all this, I think it would be best to redesign the Plaid type system such
that the access permissions are not exposed to client programmers at all. This would
obviously be limiting in certain use cases and a thorough expressiveness evaluation is
necessary to know if this idea is even viable. That being said, I think Plaid with access
permissions would be much more costly to learn and more burdensome to use than
Plaid without access permissions. If it is impossible to isolate access permissions from
clients, then I suggest instead limiting the access permissions to only the very simplest
(e.g. only immutable and unique).
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5.4 Missing transitions

Missing state transitions were a significant burden to programmers in all three of the
studies I conducted. One particularly common source of missing state transitions are
type qualifier states which objects enter into at construction time and then never leave.
It is impossible to transition from one type qualifier state to another without creating a
new instance. A turbo car option, forward-only result set, and unmodifiable list are all
type qualifiers. These type qualifiers are likely symptoms of Java’s language design.
A language with a trait-like reuse mechanism or structural types like Plaid will likely
produce fewer type qualifiers.

However, sometimes missing state transitions are unavoidable. For example, life-

cycle protocols in which objects proceed monotonically through a series of steps do
not allow “backward” transitions. This type of protocol is very common in software
frameworks (e.g. an android “screen” object is initialized in steps by the framework).
An example in our studies of this kind of protocol is URLConnection, which cannot
transition back to the disconnected state. This kind of missing transition will exist in
Plaid programs as much as Java programs.

To alleviate the problems associated with missing transitions, I suggest that Plaiddoc
separate state transitioning methods from regular methods.2 It will be easier to scan
transition methods if they are separated and I see no competing advantage to keep them
together. In Plaid code I suggest we extend the composition mechanism I suggested
in 5.2 to include state transitions. State transitions will thereby be grouped in Plaid
code as they are in the improved Plaiddoc.

5.5 Protocol barriers

In Section 3.2.4 I introduced five recurring barriers to using API protocols: missing
state transitions, state tests, state independence, multi-object protocols, and terminology
confusion. We’ve already discussed missing state transitions at length, but I will now
discuss how Plaid interacts with each of the others.

Plaid includes a pattern matching construct which allows programmers to test the
state of any object at runtime. It is therefore impossible for an API designer to forget
(or intentionally exclude) a state test.

Independent states, which Harel refers to as and-states, elicit frequent questions in

2This idea was actually first suggested by an anonymous participant.
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the forums. This issue also caused several incorrect answers among Javadoc participants
in our user experiment. However, in Plaid the relationship between states is much more
explicit. I noticed no particular challenge with this concept among Plaiddoc participants
and it is therefore likely this barrier is “lower” in Plaid.

Plaid has no explicit support for multi-object protocols, so this barrier is likely to be
high even in Plaid. However, some multi-object protocol designs could be converted
into single-object protocols relatively easily. The trait reuse mechanism in Plaid makes
this especially easy. Many multi-object protocols are the result of delegation- based
reuse, which is very naturally converted to trait-based reuse.

Finally, I think Plaid can have a big impact on the terminology confusion barrier. A
lot of terminology confusion results from references to unnamed abstract states. For
example, the HSQLDB error message “invalid cursor state: cannot FETCH NEXT,
PRIOR, CURRENT, or RELATIVE, cursor position is unknown” makes references to
primitive details of their API implementation. A Plaid error message, which would
be automatically generated, would instead read something like “Cannot call the next
method; the ResultSet must be in the ValidRow state.” This message is clearer than the
HSQLDB version on its own, but it also eliminates terminology confusion, because
“ValidRow” is a named state in Plaid code (and by extension in in Plaid documentation).
This type of terminology confusion caused several incorrect answers in the laboratory
study, when Javadoc participants confused the Disconnected abstract state with a
URLConnnection whose connection has timed out. None of the Plaiddoc participants
suffered from this confusion because the Disconnected state is clearly identified with
its particular meaning in Plaiddoc.

5.6 Conclusion

In this chapter, I argued that the benefits of Plaiddoc over Javadoc are likely to translate
to Plaid vs. Java. I then used the empirical data to suggest three changes to Plaid: a
“sealed” like mechanism for controlling extensibility, separation of state transitions
from regular methods, and isolating access permissions from client code. Each of
these changes requires substantial further investigation. Finally, I argue that the Plaid
design lowers three categories of barriers uncovered in the forum mining: state tests,
independent states, multi-object protocols, and terminology confusion.
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Chapter 6

Future work

In this chapter I discuss future work. The research ideas I discuss in this chapter focus
on addressing the limitations of the work in this thesis, extending the work in new
directions, and adapting the work for new domains. The items in this chapter are not
concrete proposals, so they focus more on questions than approaches.

6.1 Addressing limitations

As with all research, there are many limitations of the work in this thesis, but I think
some specific questions are especially worthy of further investigation: 1) How common
are protocol problems? 2a) What other classes of protocols exist? 2b) Are the challenges
they present similar? and 3) Do the benefits of Plaiddoc extend to Plaid? I discuss each
of these questions in turn.

6.1.1 How common are protocol problems?

The study discussed in Chapter 3 does not attempt to evaluate the significance of
protocol problems. Protocols are the target of massive research effort, and it is therefore
worthwhile to understand protocols more accurately. That said, our forum mining
study only found 28 state questions among the 5000 that were looked at carefully.
This does suggest the possibility that protocols problems are not as problematic as the
research community believes. Therefore, it is worthwhile to conduct a different study
aimed directly at determining the commonality of protocol problems. I believe the
biggest problem of conducting such research will be finding a reasonable sample of
all programming problems to serve as a denominator. However, defining a research
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methodology that enables estimation of the importance of a programming problem has
extremely broad applications and is therefore a worthy goal.

6.1.2 What other classes of protocols exist? Are the challenges
they present similar?

All of the APIs we looked at in Chapters 3 and 4 are libraries and involve resource

programming. This was a natural result of narrowing our focus to the Java Standard
Library. However, it is likely using frameworks or programming in non-resource
domains will present very different challenges to developers. For example, using a
framework often involves implementing an interface whose methods will be called
by the framework. In many cases, values in fields are initialized in several steps
during the lifecycle of the object. None of the APIs I looked at in this thesis presented
this kind of initialization challenge. Therefore, conducting observations of uses of
framework APIs may result in very different information seeking. Another potentially
interesting class of protocols not investigated in this thesis are those in distributed
systems. Distributed systems often impose ordering constraints on the messages that
pass through communication channels. Since these are very different than the object
protocols I studied in this thesis they are likely to present very different barriers to
programmers.

6.1.3 Do the benefits of Plaiddoc extend to Plaid?

As I argued at length in Section 5.1, many of the benefits of Plaiddoc evaluated by my
laboratory experiment are likely to extend to Plaid. However, the only way to know
for sure is to conduct another experiment comparing Plaid to Java. There are many
challenges that need to be overcome to make such an experiment work. Assuming the
goal of this experiment is compare the languages themselves and not their associated
tooling, the experiment would likely require an “artificial” development environment
and programming tasks that do not give Java an advantage based on library support. In
addition, the tasks themselves would need to be balanced for difficulty to ensure that a
difference can be observed while still being relevant to the world outside the laboratory.
Finally, training participants to use Plaid is likely to be much more challenging than
training them to use Plaiddoc. It will be especially difficult to train programmers so
that their proficiency in Plaid roughly matches their proficiency in Java.
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Figure 6.1: Stereo state machine.

6.2 Extensions

6.2.1 How can we better support state history in Plaid?

The Plaid language embodies all of the features of Harel state charts, with one notable
exception — history states. History states allow state charts to model “memory” con-
veniences of real-world systems. For example, consider a stereo modeled by the state
machine shown in Figure 6.1. Imagine Pat is using the stereo and is listening to AM
radio, then switches to FM radio, and then switches to the CD. If Pat then hits the radio
button, Pat expects to return to FM radio—a state that should be “remembered” by the
stereo. This kind of behavior is modeled by history states.

In Plaid, fields are reset to their default value after reentry into a state. Programmers
are therefore forced to keep track of field values they want to maintain after state change.
This is very inconvenient and therefore it makes sense to add explicit support for history
states in Plaid to enable more convenient tracking of states.

6.2.2 Which features of Plaiddoc provide the most benefits?

Plaiddoc contains four major features: state type preconditions, state type postcondi-
tions, the ASCII state diagram, and method organization by state. The experiment in
Chapter 4 was not designed to figure out which of these is most important. I suspect
that much of the benefit of Plaiddoc comes in the particular combinations of features,
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but I might be wrong. The right way to tease apart the different features is to perform
another study in comparing groups of participants that are given modified Plaiddoc with
just one feature or just some combinations of features.

6.3 Adaptations

6.3.1 How can we study the usability of other high level type sys-
tems?

I suggested in Section 4.7.2 that the studies in Chapters 3 and 4 can serve as a template
for studying other high level type systems. I am eager to test this suggestion by applying
it to access control specifications. Our research group is actively designing and building
Wyvern, a programming language aimed at enforcing security properties in web and
mobile applications [Nistor et al., 2013]. Wyvern therefore provides an excellent testbed
for testing type-based access control specifications and their usability implications.

6.3.2 How can we support simultaneously active high level type
systems?

In the pilot studies I discuss in Section 5.3 participants using Plural had trouble dis-
tinguishing the access permission and typestate annotations. This suggests that a set
of high-level type systems which are usable independently, may become much less
usable in combination. Combining high-level type systems effectively is likely a great
challenge on its own. Thankfully, there is a lot of research in related areas which can
be used as building blocks. The software architecture community has long supported
multiple architectural views of the same system [Clements et al., 2002]. Similarly,
there is a huge body of research in software visualization which takes advantage of
sophisticated program analysis to present programmers with the right information in
the context in which they need it [Price et al., 1993]. These techniques and others like
them are likely to be helpful when combining high-level type systems.
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Chapter 7

Conclusion

Researchers have been building tools, analyses, and languages to check API protocols
for decades. However, like the human aspects of programming generally, API protocol
usability has been very understudied. In other words, researchers have been building
tools to address a problem they did not fully understand. This thesis addresses this
limitation by directly studying programmers using APIs with protocols in the two-
part qualitative study discussed in Chapter 3. These studies make the following three
contributions to our understanding of API protocol usability:

• The questions asked by forum participants related to API protocols contained
the following recurring problems: missing state transitions, state tests, state
independence, multi-object protocols, and terminology confusion.

• In our observations of programmers using APIs with protocols, most of the
programmers’ time were spent performing four categories of state search. The
categories were: A) What abstract state is the object in? B) What are the capabili-
ties of an object in state X? C) In what state(s) can I do operation Z? D) How do
I transition from state X to state Y?

• In our observations, when programmers fix protocol violations, the first place they
look is at the documentation related to the method call occurring at the violation
location.

I hope these qualitative results refocus the research communities efforts toward address-
ing these common barriers, solving state search problems, and providing instruction at
method call sites.

In this thesis, I design, develop, and evaluate two programming interventions—the
programming language Plaid and the documentation generator Plaiddoc—designed to
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improve the usability of APIs with protocols. The design of Plaid and Plaiddoc are
based on Java and Javadoc, modified so that abstract states are first-class. The first-class
state features enable programmers to efficiently answer state search questions.

This thesis contributes the concrete language design and evaluation of the Plaid
language. The Plaid language, as we demonstrate by the examples in Chapter 2, has the
following benefits:
• Stateful designs (e.g. those illustrated by state machines in design documentation)

are clearly reflected in Plaid code.

• State constructs are enforced by the Plaid semantics, and thus there is no need for
programmers to explicitly check for protocol violations.

• Protocol violation error messages refer to explicit state constructs.

• The fact that state is a high-level concept exposes new candidates for reuse like
open/closed and position within a stream.

In combination, these benefits combine to enable API designers to better understand
the protocols they impose on clients, and enable client programmers to find state
information more easily.

The main contribution of Plaiddoc is that it enables an empirical evaluation of
the impact of state organization and state type annotations on API client state search
performance. The experiment in Chapter 4 compares Plaiddoc to Javadoc in a series of
state search tasks. The study found:
• Plaiddoc participants were significantly faster than Javadoc participants at an-

swering state search questions.

• Plaiddoc participants and Javadoc participants were equally fast at answer non-
state search questions.

• Plaiddoc participants answered state search significantly more correctly than
Javadoc participants.

These results clearly show that Plaiddoc improves on the status quo when performing
state search tasks. Since Plaiddoc embodies many of the same state search features
as Plaid, it also suggests that Plaid is an improvement on the status-quo for using
API protocols. Finally, since Plaiddoc’s state features are essentially high-level type
annotations—these empirical results suggest that high level type annotations can have
substantial benefits as documentation above and beyond types’ benefits as enablers of
verification.
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Appendix A

Plaid language semantics

A.1 Introduction

In this appendix we present the formal definition of the Plaid language and give it a
precise semantics. At its core, Plaid is an object system with first-class generators1 and
functions. Individual generators can be combined and specialized using composition
and operators inspired by traits [Ducasse et al., 2006]2, instantiated to create objects, or
used to specify the abstract state the object should change to. We start by describing the
syntax and object model of a core language, which is intended to be simpler than Plaid
source code yet be capable of representing all of the major semantic elements of Plaid.
Then we discuss the execution semantics of the core language.

A.2 Core Syntax

The syntax of the internal representation of Plaid is given in Figure A.1. In these
definitions, x ranges over bound variables, while members of objects are represented
by f,m, and s, which respectively range over fields, methods, and state members. We
use n to represent any kind of object members when we do not distinguish between
them. Abstract states are represented using tags which are generated as needed. We
will introduce each syntactic category in turn, describing its purpose and motivations.

1Generators are functions that return a sequence of values.
2A trait is a collection of methods which can serve as a building block for classes or objects.
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Obj Val ov ::= mv
∣∣ dv ∣∣ mv 7 ov

∣∣ dv 7 ov
Dim Val dv ::= tag{ov}

∣∣ tag{ov} <: dv
Mbr Val mv ::= method m(x){e}

∣∣
val n = v

ObjExp oe ::= me 7 oe
∣∣ de 7 oe

∣∣ e 7 oe
∣∣

me
∣∣ de ∣∣ e

Dim Exp de ::= dv
∣∣ tag{oe} ∣∣ tag{oe} <: de

∣∣
e
∣∣ e{to}

Mbr Exp me ::= mv
∣∣ val f � x = e

∣∣
recstate{val s� x = proto sd}

State Decl sd ::= freshtag{oe} <: de
∣∣

freshtag{oe}
∣∣ oe

Trait Op to ::= \n
∣∣ n→ n′

∣∣ me
∣∣ (tagOf e).me

Val v ::= `
∣∣ ov ∣∣ proto oe

∣∣ fn(x)⇒ e
Exp e ::= x

∣∣ v ∣∣ let x = e in e
∣∣

e(e)
∣∣ e.m(e)

∣∣ e.n ∣∣
e← e

∣∣ e � e
∣∣ new e

∣∣
match(e){c}

∣∣
freeze e

∣∣ recstate{mv}#l
Case c ::= case(tagOf e) {e}

∣∣ default {e}

Figure A.1: Internal Syntax
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A.2.1 Expression Syntax

Plaid contains the standard expressions found in object systems, including object
creation through new, field selection, and method calls. Because Plaid also has first-
class functions, we include standard function definition and application as well. For
sequential expressions, we include let bindings and bound variable references.

The rest of the expression forms are related to Plaid’s encoding of abstract states
and the transitions between them:

Changing state. The Plaid core has two state change operators. ← represents a state
update and only removes portions of the receiving object that are mutually exclusive
with the incoming states. For completeness and flexibility, Plaid also includes a state
replacement operator, �, which wipes the receiving object clean before adding the
incoming states, much like an in-place new operation. One could imagine using this
operator in a situation where an object needed to be in a particular state and no other
states. This cannot be guaranteed by the state update operator because state update
leaves dimensions unrelated to the updating state alone.

Unlike the source language, Plaid’s core does not require the target of a state change
operator to be this. This makes the core simpler and more flexible since the restriction
can be enforced at the source level.

proto values. First class instance generators are provided by proto expressions.
These are values which can be stored in fields and passed as parameters. During a
well-formed execution, the target of new expressions and the right-hand side of state
change expressions will evaluate to a proto value. This is because they encapsulate
object expressions, oe, which are uninitialized objects. The state change and new
expressions cause the initialization steps specified by the object expression wrapped in
the proto to be evaluated for use in creating a new object or changing the state of an
existing one.

State expressions. To allow states to be chosen dynamically at runtime, we include
several expression forms that can evaluate to a proto. As they are values, standard
deference or bound variables could result in proto expressions. Because most states
included in protocols must be defined with (mutual) recursion, proto values represented
source-declared states are wrapped into a recstate. A particular proto can be selected
from the recstate as from a standard record.
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The freeze expression is a more novel way to get a proto. It takes the object and
wraps it up in a proto allowing new instances to be generated from it. As an example
of the use of freeze, consider the myResultSet value defined in Listing 2.3. Say we
wanted to do some extra initialization of the ResultSet before using it and that over
the course of a program we would create the same ResultSet over and over. To avoid
needing to do the same initialization repeatedly, one could freeze the object the fully
initialized object and then instantiated it each time a new ResultSet of this form was
needed. freeze has already been used in the Plaid compiler to more cleanly support
certain initialization paradigms, such as the transformation to let-normal form, where
strings of let bindings must be concatenated together.

Matching tags. Finally, the match construct allows pattern matching based on tags.
Each case tests the target object against the tagOf another expression. This expression
is expected to evaluate to a proto value with a single outer tag which is grabbed by
tagOf and compared with the tags of the target object. If the object contains the tag,
the corresponding case is executed. Cases are evaluated in order.

An example of the use of match comes from the Plaid standard library. Plaid’s
syntax does not include control structures. Instead, if and while are encoded as functions
that make use of match. The states True and False are each defined as a case of Boolean.
Thus, the if function determines whether or not to evaluate the body based on whether
the object returned by the condition matches the True tag.

A.2.2 Object Value Syntax

Plaid objects are collections of tags representing the states that the object is in along
with fields and methods that provide the representation and operations of those states.
In order to implement the desired semantics, these object must be organized to formally
encode the relationships between tags and members that the semantics depend on. In
particular, we need to represent the following relationships between the abstract states
that the tags represent:

1. Superstates: An object in state, S, which is defined to be a case of a superstate,
T , must also be in state T . For instance, an object in the NotEnd state defined in
figure 2.4 is also in the Position state.

2. Or-states: Distinct cases of a given state, such as the OpenFile and ClosedFile
case of File, cannot exists together in an object.
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3. And-states: Both objects and states can be defined as a composite of other
states. For example, the Open state from Listing 2.3 is defined in terms of states
Direction, Status, and Action. Objects in the composite state are considered to be
in each of the component states as well.

4. Defining states: Members must be associated with the state that declares them so
that they can be removed from an object when their defining state is removed.

To formalize these relationships, objects values are organized as hierarchical collections
of dimensions, which contain tags for the state and all of its transitive super states, and
members.

Object values. The basic component of an object is an object value, ov, which is
a list of dimension values, dv, and member values, mv. They are used to represent
both top-level objects and the dimensions and members that define a given state (see
dimension values below). The 7 operator that separates each element of the list
represents composition. Object values encode and-states by allowing two dimensions
to coexist together inside the definition of a state. For instance, the object value that
defines a ReadStream would have two composed dimensions, one for the Position
dimension, and the other for the Reader dimension.

Dimension values. Dimension values, tag{ov}[<: dv], encode the structure of a state
and its super states. They are represented by a tag, tag, which is a unique name for the
most specialized state from the dimension. Associated with the tag is an object value
which represents the collection of members that the state defines along with any other
dimensions that make up the and-states of the state. A dimension value may optionally
contain another dimension value encoding the superstate relationship.

By containing the representation of a given states’ superstates, dimension values
give us a way to encode the or-state relationship as well. Two states that are the case
of the same superstate would be encoded as separate dimensions with the same state
at the root of the dimension. Because the tags in the dimensions partially overlap,
by restricting tags to appear only once in a given object value, we can ensure that no
or-states can coexist in a single object.

Concretely, we would represent an instantiated Open state from Listing 2.3 as

Open{Direction 7 Status 7 Action} <: ResultSet.
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Here, the most specific state is Open, which specializes the ResultSet state and is
defined with the three states Direction, Status, and Action.

A dimension is also Plaid’s version of a trait. Multiple inheritance is achieved
by allowing multiple dimensions to be composed in an object value as well as in the
object values associated with the tags of a dimension. The hierarchical nature of Plaid’s
dimension prevent us from using all of the trait mechanisms for solving the problems of
multiple inheritance. In particular, a multiple inheritance system must deal with the case
when one class inherits from two classes that share a (transitive) parent. This situation
is challenging because it is non-obvious how to inherit members from the common
grandparent. This problem is commonly referred to as the diamond problem [Malayeri
and Aldrich, 2009], because of the shape of the inheritance hierarchy diagram. The
original traits proposal [Ducasse et al., 2006] flattens 3 composed traits and forces
any conflicts between method names to be explicitly resolved (field were not allowed
in traits). However, as Plaid’s semantics depend on members being related to the tag
they are defined in, we cannot use flattening. Instead, Plaid prevents the diamond
problem by preventing or-states from coexisting, thereby preventing the same tag and
member definition from appearing more than once (following Malayeri’s no-diamonds
rule [Malayeri and Aldrich, 2009]). Plaid’s solution follows recent extensions of traits
including [Bergel et al., 2008; Reppy and Turon, 2007; Cutsem et al., 2009]. Like Plaid,
these system support traits with fields and work in a variety of object models including
those that, like Plaid, add hierarchy and do not enforce the flattening property. As
with the original trait proposal, all name conflicts across dimensions must be explicitly
resolved in Plaid via the trait operators described below.

Member values. A member value is either a method, with a set of arguments and
a body, or a field, val f , bound to a value, v. The member is said to be defined in the
state represented by its immediately enclosing tag. As a concrete example, an object in
the ClosedFile state described in Listing 2.1 would be represented formally as

ClosedFile{method close(){e}}
<: File{val filename = v}

This indicates that the object is in both the ClosedFile and the File states, one of which

3The flattening property in Ducasse et al. [2006] states that each object member is treated equally
regardless of the trait in which it was defined.
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is a substate of the other, and each of which defines a single member.

Uninitialized Object Syntax

Plaid has corresponding syntax for uninitialized objects organized into object expres-

sions, dimension expressions, and member expressions. When compared to their value
counterparts, they share the same structure but contain expressions which are not yet
values. In this section, we discuss the places where execution can occur in these forms
and the motivation behind them.

Object expressions. Object expressions, oe, are made up of the composition of
dimension expressions, member expressions, as well as raw expressions. The purpose of
unevaluated expressions in dimension and member expressions will be explained below.
Raw expressions as components of object expressions allow part of an uninitialized
object to be determined at the time of initialization. These expressions evaluate to proto
values which are then incorporated into the initializing object. This provides for Plaid’s
implementation of dynamic trait composition by allowing portions of the object to be
selected at runtime.

Dimension Expressions Dimension expression can contain unexecuted expressions
in the object expression associated with the most specific tag as well as in tags up the
hierarchy if they exist. Dimension expressions may also have associated trait operations,
to, which need to be evaluated. Trait operations allow standard manipulations such as
renaming, n→ n′, and removal, \n. Note that these operate on the whole dimension,
renaming or removing all members of the specified name defined directly in tags in the
hierarchy (not including nested dimensions). This allows the changes to be preserved
by state change in the dimension as we will see below.

Members can also be added or replaced.4 By default, they are (re)placed in the
most specific tag of the dimension expression. However, in cases where members need
to be added or replaced in a particular tag, they can be qualified by a particular tag,
specified as with tags in case statements by tagOf another expression. The redefinition
of Position.EndState for the ReadStream in Listing 2.5 is an example of using qualified
trait operations. This mechanism is important in Plaid because of the hierarchical nature

4The semantics defined here do not allow fields and states in trait operations to refer to other trait
operation members. The formalism could be extended to support this, mirroring the case for declarations
in states.
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of Plaid’s object model and when and how member definitions are removed during state
change.

Member expressions. Only fields can be member expressions, me, as methods do not
have any initialization code. On the other hand, fields can be defined with initialization
expressions that require evaluation as a part of object creation or update. In order to
allow fields to refer to the initialized value of previous fields in the same state, field
expressions define an internal bound variable in addition to their external name (this is
a standard approach from [Pierce, 2005], chapter 8). Fields are also generated by state
declarations. Since the definitions of related states, such as the OpenFile and ClosedFile
from Listing 2.1, are typically recursive, the initialization of state members occurs in a
recstate binding.

State members are also special in that when an uninitialized object containing state
members is initialized, new tags may need to be generated. The proto expression
encapsulates uninitialized objects as discussed above. Normally they contain object
expressions, but when appearing in a recstate, they contain state declarations, sd which
may contain the freshtag operations that generates a new tag when executed, resulting
in an object expression. This feature means that new tags are generated for states
defined inside states each time the outer state is instantiated. Because these tags can
then be used to pattern match on objects, this allows Plaid to implement ML-style
generative functors5. Functors have well recognized modularity benefits that we do not
discuss here.

A.3 Dynamic Semantics

We now introduce the dynamic semantics of Plaid. We formalize the execution using a
small step operational semantics. The basic evaluation judgment has the form e@H 7→
e′@H ′ and is read “expression e with heap H evaluates to expression e′ in heap H ′".
We define a similar judgment oe@H 7→ oe′@H ′ for the evaluation of object expressions.
In this section, we will define the form of the heap and the invariants that we maintain
on it. We will also discuss the Plaid-specific evaluation rules, in particular those that
use ancillary judgments for implementing state change. As state change is at the core
of Plaid’s design and is the most complicated we go into depth about the motivation

5Generative functors, in contrast to applicative functors, generate new abstract types for each applica-
tion of the functor. This impacts pattern matching when using these generated types in a similar way as
pattern matching on freshly generated tags in Plaid.
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Heap H ::= [` ; ov], H
∣∣ ·

Eval E ::= [ ]
∣∣ let x = E in e

∣∣ E(e)
∣∣ v(v,E, e)

∣∣
E.m(e)

∣∣ v.m(v,E, e)
∣∣ E.f

∣∣ E ← e
∣∣

v ← E
∣∣ v ← proto E

∣∣ E � e
∣∣

v � E
∣∣ v � proto E

∣∣ new E
∣∣

new proto E
∣∣ match(E){c}

∣∣
match(v){case(tagOf E) {e}, c}

∣∣
freeze E

∣∣ ov 7 E
∣∣ O 7 oe

∣∣ O
Obj O ::= val n� x = E

∣∣ tag{oe} <: E
∣∣

tag{E}
∣∣ tag{E} <: dv

∣∣ E{to} ∣∣
dv{to, val n = E, to}

∣∣
dv{to, (tagOf e).(val n = E), to}

∣∣
dv{to, (tagOf E).mv, to}

Figure A.2: Contexts

e@H 7→ e@H

let x = v in e@H 7→ e[v/x]@H
E-LET

|{x}| = |{v}|
(fn (x)⇒ e)(v)@H 7→ e[v/x]@H

E-APP

H[`] = ov
lookup(m, ov) = (method m(x){e})

|{x}| = |{v}|
`.m(v)@H 7→ e[`/this][v/x]@H

E-CALL

H[`] = ov
lookup(f, ov) = (val f = v)

`.f@H 7→ v@H
E-FIELD

H[`] = ov1 uniqueTags(ov2)
ov1 ← ov2 ⇒ ov3 uniqueMembers(ov3)

`← proto(ov2)@H 7→ void@H[` ; ov3]
E-SU

uniqueTags(ov) uniqueMembers(ov)

` � proto(ov)@H 7→ void@H[` ; ov]
E-REPLACE

` /∈ H uniqueTags(ov)
uniqueMembers(ov)

new (proto ov)@H 7→ `@H[` ; ov]
E-NEW

de = tag{oe}[<: de′] tag /∈ tags(H[`])

match(`){case (tagOf proto de){e}, C}@H 7→ match(`){C}@H
E-CASENOMATCH

de = tag{oe}[<: de′] tag ∈ tags(H[`])

match(`){case (tagOf proto de){e}, C}@H 7→ e@H
E-CASEMATCH

match(`){default{e}, C}@H 7→ e@H
E-CASEDEFAULT

H[`] = ov

freeze `@H 7→ proto ov@H
E-FREEZE

l = ls oe = oels [recstate{val si = proto oei}#li/si]

recstate{val si = proto oei}#l@H 7→ proto oe@H
E-RECSTATESELECT

Figure A.3: Expression Evaluation
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and design of the rules that implement it. Finally, we describe object initialization and
trait operations that may be involved.

A.3.1 Heap

A heap, H , is a mapping from locations, `, to object values. We place additional
well-formedness requirements on all object values stored in the heap. These restrictions
prevent ambiguities from multiple inheritance.

Tag uniqueness. We require that all well-formed object values have no duplicate
tags. As alluded to above, this property ensures that an object is not in two cases of
a single or-state at the same time. This is because the tags representing two mutually
exclusive or-states must come from the same dimension and thus must have at least the
dimension tag in common. It also prevents the diamond problem of multiple inheritance
by ensuring that a particular member definition does not appear multiple times in a
single object. This invariant is encoded in the helper judgment uniqueTags also defined
in Figure A.7.

Member uniqueness. Even though a given definition for a member cannot appear
more than once, it is still possible that multiple tags define members with the same
name. To prevent ambiguities in this case we require that all members of an object
are provided by exactly one dimension. Because the hierarchy of dimensions gives us
a natural way to choose the visible definition (the one from the most specific tag in
the dimension) we allow a single name to be defined directly in multiple tags from a
single dimension. Formally, two tags are in the same dimension if one is a transitive
case of the other. This relaxation of classical traits allows, for instance, a common
super state to define a default behavior for a method which can be overridden by (some
of) its substates. The judgment uniqueMembers defined in Figure A.7 captures this
requirement. It uses the judgments mv :: tag.x@ov, which states that member value
mv from tag tag defines name x in object value ov, and tag << tag′@ov which asserts
the property that tag tag is a transitive subtag of tag′ in object value ov. Based on these
helper judgments, an object value has unique members if whenever we find the same
member defined in two tags, then one of these tags is a transitive subtag of the other.
We prove that evaluation preserves member and tag uniqueness in Appendix B.
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Member lookup. As an object can contain multiple members with the same name,
we need an unambiguous way to choose which one is visible. The lookup function
also in Figure A.7 defines this logic. When multiple definitions are found, we know
by uniqueMembers that they all come from the same dimension. Since the tags of a
dimension form a total order, we know that one of tags defining the member will be a
transitive subtag of all other tags defining the member. The definition from this most
specific tag is the one returned by lookup.

A.3.2 Expressions

The evaluation rules for expressions in Plaid are given in Figure A.3. We list only
computation rules here, defining congruence rules using evaluation contexts shown in
Figure A.2. In these, each expression with a subexpression that requires evaluation
defines a hole, [ ], into which any expression can be placed. Evaluation proceeds by
using the computation rule that evaluates the expression in the hole.

Standard rules. The computation rules for the evaluation of Plaid expressions are
borrowed from standard object models and the lambda calculus. They should therefore
be very familiar for readers familiar with programming language semantics. These
include the rules E-LET, E-APP, E-CALL, and E-FIELD for let expressions, appli-
cation, method calls and field dereferences respectively. One note is that member
selection during calls and dereferences use the lookup judgment described above.
We also use standard record evaluation rules when selecting a label from a recstate

(E-RECSTATESELECT).

Match. Plaid uses a first-match semantics, so that we find the first case clause
whose tag matches the target object. We find the tag to match against by grabbing
the most specific tag (tagOf) from a dimension expression wrapped in a proto value.
Note that in this case the dimension expression is not evaluated since we are only
interested in the tag. If the tag is found in the target object, the code for this case
is evaluated (E-CASEMATCH); otherwise, execution proceeds to the next case (E-
CASENOTMATCH). Default cases are always executed and terminate the match if
reached (E-CASEDEFAULT). Evaluation gets stuck if no matching case is found.

Freezing. To freeze a location in the heap (E-FREEZE), we simply pull the object
value from the heap and wrap it in a proto expression.
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ov ← ov ⇒ ov

ovt ← ov ⇒ ov′ ov′ ← ovu ⇒ ovo

ovt ← ov 7 ovu ⇒ ovo
SU-LIST

ovt ← mvu ⇒ ovt 7 mvu
SU-MV

tags(ovt) ∩ tags(dvu) = ∅ uniqueTags(dvu)

ovt ← dvu ⇒ ovt 7 dvu
SU-ADDH

tags(dv) ∩ outerTags(dvu) 6= ∅
dv ← dvu ⇒ dvr

tags(ov) ∩ tags(dvr) = ∅
ov 7 dv ← dvu ⇒ ov 7 dvr

SU-MATCHDIM

outerTags(dvu) ∩ tags(ov) 6= ∅ ov ← dvu ⇒ ovr
[tags(dvu) ∩ tags(dv) = ∅] tag 6∈ tags(dvu)

tag{ov}[<: dv]← dvu ⇒ tag{ovr}[<: dv]
SU-MATCHINNER

outerTags(dvu) ∩ innerTags(dv) 6= ∅ dv ← dvu ⇒ dvr
tags(tag{ov}) ∩ tags(dvu) = ∅

tag{ov} <: dv ← dvu ⇒ tag{ov} <: dvr
SU-MATCHSUPERINNER

tag /∈ outerTags(dvu) outerTags(dvu) ∩ outerTags(dv) 6= ∅ dv ← dvu ⇒ dvr

tag{ov} <: dv ← dvu ⇒ dvr
SU-MATCHSUPER

dvu = [dvsub] <: tag{ov′} <: [dvsup] [tags(dvsub) ∩ tags(tag{ov}[<: dv]) = ∅] uniqueTags(dvsub)

tag{ov}[<: dv]← dvu ⇒ [dvsub] <: tag{ov}[<: dv]
SU-MATCH

Figure A.4: State Update

Manipulating objects in the heap. The state change operators and new cause objects
in the heap to be changed or allocated. Because we only allow object values to appear
in the heap, we must first initialize the object that will be used to alter the heap by
reducing it to an object value. Evaluation is mostly handled by the evaluation contexts:
first the expression representing the object is reduced to a proto value and then the
object expression wrapped in the proto is evaluated down to an object value. An
important design decision in Plaid was to run the initializers for all members of an
object expression. This happens despite the fact that not all members may end up in the
object (see the explanation of state update below). In particular, any effectful initializers
will always be run and update the wider context. We experimented with other possible
semantics but decided that a clear and unambiguous rule for when initializers were run
(always) was better than a flexible but complicated one. Furthermore, we consider it
good Plaid style to avoid the use of effectful initializers and instead use other design
techniques, such as factory methods, when effectful operations are required as a part of
object initialization.

Once the initialization code in the proto has been run, the resulting object value can
be used to update the heap. In the case of new and state replacement (�) expressions
it is clear what the object value that is inserted into the heap will be. new allocates a
new location on the heap and maps it to the resulting object value. State replacement
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1 val rs = Open {
2 Inserted <: Inserting <: Action,
3 Scrollable <: Direction,
4 Updatable <: Status }
5 <: ResultSet

Listing A.1: Open, Inserted, Scrollable, Updatable ResultSet

replaces the mapping of the target location on the heap with the updating object value.
Since we know the precise form of the object value that is being inserted into the
heap, in order to maintain the heap invariants on object values, we can simply check
that uniqueTags and uniqueMembers both hold on the new object value as done in
the rules E-REPLACE and E-NEW. On the other hand, the semantics of updating an
object on the heap using state update are much more complicated, and so we devote
the next section to a discussion of its design and proof that they maintain the necessary
invariants.

A.3.3 State Update

At the core of the rule E-SU which updates the heap with the result of a state update
is the state update judgment, ov ← ov ⇒ ov, which is described in Figure A.4. The
judgment takes two object values and determines the resulting object value when
the target object on the left side of the arrow is changed to the state given by the
update object from the right side. The semantics of this judgement are the most
complicated and important part of Plaid’s dynamic semantics. Thus, before describing
the semantics given by the rules, we step back and give a high-level overview of the
desired behavior. We then define some general properties and assumptions of the
judgment before describing the rules themselves.

Design considerations. Our goal is that the design of the state change judgment
should match the semantics of stateful abstractions as modeled by state charts and
similar tools. Thus, a state update should transition a target object from its current set of
abstract states to a possibly new set of abstract states as specified by the update object.
To do this, we need to formalize this intuition in terms of object values.

Update dimensions. Our first task is to determine which abstract state the update
object is changing. That is, which dimensions of the target object need to be updated?
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Consider the object value (without members) of an Open ResultSet in the Inserted,
Scrollable, Updatable state, stored in val rs as depicted in Listing A.1. What should
happen if we update rs to the ReadOnly state?

rs← ReadOnly <: Status

While there are clearly matches between tags in the target and update objects, since the
tags are nested inside the Open tag of the target object, it is not clear that they should
be updated. However, if we think of the state update as an transition to a new abstract
state, then we can see that the nesting in the target object should not matter. This state
update specifies that the Status dimension should transition to the ReadOnly substate,
and thus out of the Updatable state.

The converse question is does nesting matter in the other direction? In other words,
can a nested state trigger a change in an abstract state? Concretely, would this state
update

rs← Foo{ReadOnly <: Status}

result in an object in the ReadOnly state? Based on the semantics of state charts, the
answer would be “no". Our definitions of object dimension indicates that the Status
dimension of the Foo state is part of the definition of Foo. Thus, it is brought along with
the transition to the Foo state. The Status state is also a defining and-state of the Open
state. Thus the resulting object cannot be consistent because two separate dimensions
are claiming the Status state meaning there would need to be duplicate tags.

Therefore, we define the dimensions along which a state update occurs to be only
those found at the top level of the object value that describes the update object. All
other dimensions that are a part of the update object are considered definitions of these
dimensions and do not induce transitions but are only added to the object with their
enclosing state.

Dimension updates. Once we know which dimensions will be updated, we need
to know what in those dimensions is changed. We first note that we can treat the
transition in each dimension independently as dimensions are orthogonal by definition.
Second, recall the file example from Listing 2.1. In this example, we stated that the
filename member was shared between the OpenFile and ClosedFile states. Thus, when
we transition from an ClosedFile to an OpenFile the members of the File state should
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remain constant. This is the semantics behind the restricted update semantics of state
change described in [Aldrich et al., 2010]. We use and extend these semantics in a
natural way to account for our hierarchical object model.

Properties of object and state update. With the intuition we have for the design, we
can define some terminology that is used in the judgment itself.

Inner and outer tags. In the informal description of state change, we differenti-
ated between dimensions and tags defined at the top level of the update object and those
that appear within a top-level dimension. Figure A.7 defines two judgments, outerTags
and innerTags, which capture this distinction. The outerTags of an object value, ov,
are all the tags which appear as the most specific tag and any of its super tags from
dimensions appearing directly in ov. For example, using rs, the ResultSet object from
Listing A.1, outerTags(rs) = {Open,ResultSet}. Conversely, the innerTags of an
object value are all of the tags defined in dimensions that are recursively included in the
definition of each of the outer tags. For example,

innerTags(rs) = {Inserted, Inserting, Action,
Scrollable, Direction, Updatable, Status}

Unique dimension property. Given a dimension within which to transition the
target object, we need to find the location of the matching dimension within the target
object value. To do this, we look for the part of the object that has tags which overlap
the outer tags of the update dimension. We ignore all super-tags of the matching tag
in the update dimension under the assumption that these supertags will match the tags
in the target. This assumption is based on the the Unique Dimension Property which
states that a single unique tag can only ever appear in a single dimension. That is, a tag
either has no super tags or always appears with the same supertag. While this property
is not guaranteed by the syntax and semantics of the internal language, it is enforced by
the elaboration from Plaid’s source syntax so we assume it in our rules.

Maintaining the uniqueTags property. Rule E-SU in Figure A.3 does not
check whether the object returned from the state update judgement has unique tags.
Therefore the state update judegment must maintain this property. Formally: If
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oe@H;T 7→ oe@H;T

[oe′ = oe[v/f ′]]

val f � f ′ = v[ 7 oe]@H 7→ val f = v[ 7 oe′]@H
E-RECFIELD

sd = freshtag{oe}[<: de] tag is fresh
r = recstate{val sd � xd = v, val s� x = proto (tag{oe}[<: de]), val sr � xr = proto sdr}[ 7 oe]

recstate{val sd � xd = v, val s� x = proto sd, val sr � xr = proto sdr}[ 7 oe]@H 7→ r@H′ E-RECSTATE1

oe′i = oei[recstate{val si = proto oei}#si/xi] [oe′ = oe[recstate{val si = proto oe}#si/xi]]

recstate{val si � xi = proto oei}[ 7 oe]@H 7→ val si = proto oe′i[ 7 oe′]@H
E-RECSTATE2

(tag{oe} <: proto de[{to}])[ 7 oe′]@H 7→ (tag{oe} <: de[{to}])[ 7 oe′]@H
E-DE

proto[ov 7 ](proto oe[{to}])[ 7 oe′]@H 7→ proto[ov 7 ](oe[{to}])[ 7 oe′]@H
E-OE

dv{to} ⇒ dv′

(dv{to})[ 7 oe]@H 7→ dv′[ 7 oe]@H
E-TRAITOPS

Figure A.5: Object Evaluation

uniqueTags(ov1) ∧ ov1 ← ov2 ⇒ ov3, then uniqueTags(ov3). A proof of this
property is in Appendix B.

Inference rules. With this understanding, we can describe the rules that produce the
object value after a state update operation. The rules start by breaking apart the update
object ov into the individual member values and dimension values and processing the
state changes for each dimension or value individually (SU-LIST). This is allowed
since each dimension can be treated independently. We can assume that uniqueTags
holds for each dimension individually since it holds for the object as a whole. For
member values (SU-MV) and dimension values for which there is no overlap between
the tags of the target object and update dimension (SU-ADDH), we just compose the
update object with the target object. The rest of the rules assume that there is a match
between the outer tags of the update object and the tags of the target object. If that is
not the case, then the evaluation gets stuck.

SU-MATCHDIM covers the case where we have found a particular dimension of the
target object that contains the tags that are changing. By the unique dimension property
explained above, we know that the outerTags(dvu) will not appear in ov, so it suffices
to calculate the state update on just the matched dimension. To ensure that we maintain
the unique tags property, we can assume that both the result of the state update and the
unmatched portion of the object have unique tags, and so it suffices to check that the
tags of these two portions of the object do not intersect.
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SU-MATCHINNER handles the case where there is overlap between the innerTags
of the current tag and the outerTags of the update dimension. We recursively find the
state update on just this matching portion and then check that the tags from the resulting
object value do not intersect with the tags of the super tag, if it exists, to maintain the
uniqueTags invariant.

In SU-MATCHSUPERINNER, we find that the matching dimension is defined some-
where inside of a super tag. Thus, we run state update on just the supertags. We then
verify that the tags of the result are distinct from the tags of the subtag and its innerTags
to maintain the uniqueTags invariant.

SU-MATCHSUPER represents the case where we have found the right dimension,
but have not reached the level of the dimension where the tags overlap. The current tag
of this dimension is not in the outer tags of the update dimension, but there is overlap
somewhere in its super tags and so we find the updated state from that portion of the
dimension. In this case, we know that the current tag will be removed with any of its
nested tags, which means that we do not need to check if these tags would conflict with
tags that enter the object with the update dimension to preserve uniqueTags.

The base case SU-MATCH handles the actual alteration of the target dimension.
The current tag matches a specific tag in the outer tags of the update dimension, which
indicates that the state update only affects states below this point in the dimension. In
particular the tags below this one in the dimension in the target object are discarded,
as already occurred through the SU-MATCHSUPER rule. In their place are put all the
subtags of the matched tag from the incoming dimension. To make sure that we do
not have duplicate tags anywhere, we only need to check that the tags added from the
update dimension do not intersect with the tags that are in its new supertags.

Example. To give a specific example, consider evaluating the following state update
on the object defined in Listing A.1:

rs← ReadOnly <: Status

The state updates proceeds first by finding that there is tag overlap between the
incoming and target objects and a match for the Status tag of the incoming state nested
inside the Open state with the SU-MATCHINNER. Next it finds the correct dimension
Updateable <: Status using the SU-MATCHDIM rule. It discards the Updateable
tag and recurses up the dimension in the SU-MATCHSUPER rule and finally adds the
ReadOnly tag in its place with the SU-MATCH rule.

121



Reduction rule The E-SU reduction rule uses the state update judgement to deter-
mine what object value to update the target object to. The state update judgement
incrementally checked that uniqueTags was maintained. It does not guarantee that
uniqueMembers is satisfied and so the rule checks that the resulting object value has
unique member declarations.

A.3.4 Object Evaluation

The final class of reductions that we must model is that of state expressions, including
the initialization of object expressions within a proto. These rules are defined in Figure
A.5. Congruence rules are again taken care of by evaluation contexts from Figure A.2.

• E-RECFIELD: When field members have been evaluated down to values, we
propagate them forward into the rest of the declarations that need to be initialized
by substituting the value for the bound variable on the right of the �. This allows
subsequent fields to use the values of previously declared fields during their
initialization. After this propagation, we do not need to keep track of the bound
variable any longer and so do not record it in the member value. Note that these
semantics force us to be strict about the order in which portions of the object are
initialized. In particular, member declarations are initialized from left to right as
specified by the evaluation contexts.

• E-RECSTATE1: If there are freshtag directives in the state declarations of a
recstate, new tags are generates by picking a fresh tag not previously mentioned.

• E-RECSTATE2: After assigning new tags to all of the state declarations inside
a recstate, we need to remove the recstate construct and convert it into a list
of val declarations. This is done in a manner similar to the fix construct in
the lambda calculus. Since our recstate is modeled as a record, we replace
all references to the inner bound variable of each of the nested state vals with
selections of the external name from the recstate. We do this both inside the
object expressions of each proto as well as in subsequent declarations. Note again
that after propagation we can remove the bound variable from the val declaration.

• E-DE and E-OE: These rules state that it is possible to unwrap a proto that is
nested inside another proto. This can occur when a proto is part of an object
expression inside another proto (E-OE), or when a proto is in a dimension
expression, which only appear in proto expressions (E-DE). In either case, if
trait operations are associated with this proto, then they are retained. Execution
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ov{to} ⇒ ov

dv{to} ⇒ dv′ dv′{to} ⇒ dv′′

dv{to, to} ⇒ dv′′
T-GENERAL

ov = ov′[ 7 mv′] [name(mv′) = x = name(mv)]

(tag{ov}[<: dv]){mv} ⇒ tag{ov′ 7 mv}[<: dv]
T-MEMBER

ov{\n} ⇒ ov′ [dv{\n} ⇒ dv′]

(tag{ov}[<: dv]){\n} ⇒ tag{ov′}[<: dv′]
T-REMOVEDV

dv{\n} ⇒ dv′ ov{\n} ⇒ ov′

(dv 7 ov){\n} ⇒ dv′ 7 ov′
T-REMOVEOV1

name(mv) = n ov{\n} ⇒ ov′

(mv 7 ov){\n} ⇒ ov′
T-REMOVEOV2

name(mv) 6= n ov{\n} ⇒ ov′

(mv 7 ov){\n} ⇒ mv 7 ov′
T-REMOVEOV3

ov{n→ n′} ⇒ ov′ [dv{n→ n′} ⇒ dv′]

(tag{ov}[<: dv]){\n} ⇒ tag{ov′}[<: dv′]
T-RENAMEDV

dv{n→ n′} ⇒ dv′ ov{n→ n′} ⇒ ov′

(dv 7 ov){n→ n′} ⇒ dv′ 7 ov′
T-RENAMEOV1

name(mv) = n rename(n′,mv) = mv′ ov{n→ n′} ⇒ ov′

(mv 7 ov){n→ n′} ⇒ mv′ 7 ov′
T-RENAMEOV2

name(mv) 6= n ov{n→ n′} ⇒ ov′

(mv 7 ov){n→ n′} ⇒ mv 7 ov′
T-RENAMEOV3

de = tag{oe}[<: de′] ov{tag.mv} ⇒ ov′

(ov){(tagOf proto de).mv} ⇒ ov′
T-STATEMEMBER

tag /∈ tags(dv) ov{tag.mv} ⇒ ov′

(dv 7 ov){tag.mv} ⇒ dv 7 ov′
T-STATEMEMBEROV1

tag ∈ tags(dv) dv{tag.mv} ⇒ dv′

(dv[ 7 ov]){tag.mv} ⇒ dv′[ 7 ov]
T-STATEMEMBEROV2

tag 6= tag′ ov{tag′.mv} ⇒ ov′ [dv{tag.mv} ⇒ dv′]

(tag{ov}[<: dv]){tag′.mv} ⇒ tag{ov′}[<: dv′]
T-STATEMEMBERDV1

(tag{ov}[<: dv]){mv} ⇒ dv′

(tag{ov}[<: dv]){tag.mv} ⇒ dv′
T-STATEMEMBERDV2

Figure A.6: Trait Operations

will continue by evaluating the wrapped object expression if needed.

• E-TRAITOPS: This rule applies only once the all of the trait operations have been
fully reduced and proceeds using the trait operations judgment defined below to
produce a new dimension value.

A.3.5 Trait Operations

As with state change, we define a separate judgement for trait operations that applies
once all trait operations have been fully initialized, meaning that they can all be applied
atomically without reduction. The rules for initialization of trait operations are all
congruence rules handled by evaluation contexts (see Figure A.2). Thus, the judgement,
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uniqueTags(ov) uniqueMembers(ov) lookup(x, ov) = mv dv ∈ ov mv :: tag.x@ov
tag <<: tag@ov validTagMembers(ov) rename(n,mv) = mv name(mv) = n
tags(ov) outerTags(ov) innerTags(ov)

tag /∈ tags(ov) [ ∪ tags(dv)] [tags(ov) ∩ tags(dv) = ∅]
uniqueTags(ov) [uniqueTags(dv)]

uniqueTags(tag{ov}[<: dv])
UNIQUETAGSDV

tags(dv) ∩ tags(ov) = ∅ uniqueTags(dv) uniqueTags(ov)

uniqueTags(dv 7 ov)
UNIQUETAGSOV1

[uniqueTags(ov)]

uniqueTags(mv[ 7 ov])
UNIQUETAGSOV2

mv1 :: tag1.x@ov ... mvn :: tagn.x@ov
tagi <<: tag1@ov ... tagi <<: tagn@ov

lookup(x, ov) = mvi
LOOKUP

validTagMembers(ov)
∃n(∃tag mv :: tag.n@ov ∧ ∃tag′ mv′ :: tag′.n@ov) =⇒ (tag <<: tag′@ov ∨ tag′ <<: tag@ov)

uniqueMembers(ov)
UNIQUEMEMBERS

dv ∈ dv
LEAF1

dv ∈ ov′

dv ∈ mv 7 ov′
LEAF2

tag 6= tag′ tag{ov}[<: dv] ∈ dv′

tag{ov}[<: dv] ∈ tag′{ov′} <: dv′[ 7 ov′′]
LEAF3

tag 6= tag′ tag{ov}[<: dv] ∈ ov′

tag{ov}[<: dv] ∈ tag′{ov′} <: dv′[ 7 ov′′]
LEAF4

tag{[ov1 7 ]mv[ 7 ov1]} <: dv ∈ ov

mv :: tag@ov
MBRINTAG

tag{ov′} <: dv ∈ ov
tag′ ∈ outerTags(tag{ov′} <: dv)

tag <<: tag′@ov
CASEOF

name(mv) 6∈ names
[validTagMembers(names ∪ name(mv), ov′)]

validTagMembers(names,mv[ 7 ov′])
VTM1

validTagMembers(∅, ov) [validTagMembers(∅, dv)] [validTagMembers(names, ov′)]

validTagMembers(names, (tag{ov}[<: dv])[ 7 ov′])
VTM2

n = name(val n = v)
NAME1

m = name(method m(x){e})
NAME2

rename(a, val n = v) = val a = v
RENAME1

rename(n,method m(x){e}) = method n(x){e}
RENAME2

tags(ov) = innerTags(ov) ∪ outerTags(ov)
TAGS

outerTags(tag{ov}[<: dv]) = {tag} [∪ outerTags(dv)]
OUTERDV

outerTags(dv[ 7 ov]) = outerTags(dv) [∪ outerTags(ov)]
OUTEROV1

outerTags(mv[ 7 ov]) = ∅ [∪ outerTags(ov)]
OUTEROV2

innerTags(tag{ov}[<: dv]) = tags(ov) [∪ innerTags(dv)]
INNERDV

innerTags(dv[ 7 ov]) = innerTags(dv) [∪ innerTags(ov)]
INNEROV1

innerTags(mv[ 7 ov]) = ∅ [∪ innerTags(ov)]
INNEROV2

Figure A.7: Helper Judgements
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ov{sp} ⇒ ov, does not require a heap. In general, trait operations follows previous
work on traits. However, Plaid’s object model, unlike traditional traits models, is
hierarchical. Hence, trait operations other than the local member addition must take
this hierarchy into account.

Local member updates are agnostic to whether the added member is already a
member of the tag and simply add the new member, replacing the existing member if
one exists (T-MEMBER). Updates of members in specific tags act the same, but first
must recurse through the object value looking for the specified tag before performing
the member update. The computation will get stuck if the tag is not found. Because each
of these trait operations, as well as member renaming described below, may potentially
add new members, there is the danger that the object value might no longer satisfy the
uniqueMembers invariant. However, since the specialization must be occurring as part
of object instantiation, it will be checked at the point that the object is created, so we do
not make the check here.

Member removal and renaming operate on the whole object, removing or renaming
instances of members with the given name throughout. This is in contrast to lookup,
which stops at the first declaration of the member. These semantics are required in
order to allow trait composition, which includes the ability to remove members from a
trait and instead provide them in another trait. This would result in a conflict if some
members were left in the old dimension.

A.4 Elaboration

The core language defined in the previous section shares much in common with the
full Plaid programming language, but there are still differences. The source syntax
is defined in figure A.8. The semantics of the full Plaid language are defined as an
elaboration into the core language defined in Section A.5.

For most expressions, the elaboration proceeds structurally, without changing the
construct itself. For field bindings, we add the internal variable referred to above, and
replace references to the field in later field initializers with the fresh variable. Sequences
of state declarations are transformed into recstate blocks. Each state declaration is
transformed into a val declaration which binds to a proto representing the uninitialized
state, with a freshtag expression for generating the state’s tag when the declaration is
executed.

Our formal semantics defines all of the Plaid language except for module linking and
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Declarations D ::= SD
∣∣ method m(x){SE}

∣∣
val f = SE

State Decl. SD ::= val s = S
∣∣ state s = S

∣∣
state s case of s{TO} = S

States S ::= freeze(SE)
∣∣ {D} ∣∣ s{T} ∣∣

S with S
∣∣ SE.s

∣∣ s
Trait Ops TO ::= \n

∣∣ n→ n′
∣∣

val f = SE
∣∣ val s = S

∣∣
val s.f = SE

∣∣ val s.t = S
∣∣

method m(x){SE}
∣∣

method s.m(x){SE}
Expression SE ::= x

∣∣ let x = SE in SE
∣∣ SE.f

∣∣
SE(SE)

∣∣ SE.m(SE)
∣∣

SE ← S
∣∣ SE � S

∣∣ new S
∣∣

match(SE){C}
∣∣

Case C := case SE.s {SE}
∣∣

case s {SE}
∣∣ default {SE}

Compil. Unit CU ::= D

Figure A.8: Source Syntax

cross language binding. Module linking currently follows the Java standard, including
packages, imports, and a classpath for loading elements. Plaid primitives are defined
using Java classes and methods, which can be directly accessed in Plaid via their fully-
qualified Java names. Details of both of these aspects of Plaid are discussed in more
detail in the Plaid language definition [Aldrich et al., 2012].

A.5 Source Translation Rules

The rules in figures A.9 and A.10 below describe how to translate a program written in
the Plaid source language given in figure A.8 to the internal language defined in figure
A.1.
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CU ; e D ; oe SD ; val s� s′ = se S ; oe TO ; to groupStates(D)

groupStates(D) ; oe

CU ; let top = new (proto oe) in top.main()
TR-CU

D ; oed SEf ; ef f ′ = freshname oe′d = oed[f
′/f ]

val f = SEf , D ; val f � f ′ = ef 7 oe′d
TR-DECLFIELD

D ; oed SE ; e

method m(x){SE}, D ; method m(x){e} 7 oed
TR-DECLMETHOD

D ; oed SD ; val s� s′ = sd

{SD}, D ; (recstate{val s� s′ = proto sd} 7 oed)[s′/s]
TR-DECLSTATES

S ; oe s′ = freshname

state s = S ; val s� s′ = (proto freshtag{oe})
TR-STATETAG

S ; oe s′ = freshname

val s = S ; val s� s′ = oe
TR-STATEVAL

ss{TO}; de S ; oe s′ = freshname

state s case of ss{TO} = S ; val s� s′ = (proto freshtag{oe} <: de)
TR-STATECASE

groupStates(D) ; oe

{D}; oe
TR-STATEDECL

S1 ; oe1 S2 ; oe2

S1 with S2 ; oe1 7 oe2
TR-STATEWITH

SE ; e

freeze(SE) ; freeze(e′)
TR-STATEFREEZE

SE ; e

SE.s ; e.s
TR-STATESELECT

s ; s
TR-STATENAME

TO ; {to}
s{TO}; s{to}

TR-STATEINIT
TO ; to TO ; to

TO, TO ; to, to
TR-SPECGENERAL

val f = SE ; val f � f ′ = e

val [s.]f = SE ; [s.](val f = e)
TR-SPECFIELD

method m(x){E}; method m(x){e}
method [s.]m(x){E}; [s.](method m(x){e})

TR-SPECMETHOD

S ; oe

val [s.]t = S ; [s.](val t = oe)
TR-SPECSTATE

\n ; \n
TR-SPECREMOVE

n→ n′ ; n→ n′ TR-SPECRENAME

groupStates(SD′, D) = {sdi = SDi}, D′ s = name(SD)

groupStates(SD, SD′, D) = {s = SD, sdi = SDi}, D′
TR-GSTADD

s = name(SD) D = · ∨ (D = (D,D′) ∧D 6= SD)

groupStates(SD,D) = {s = SD}, groupStates(D)
TR-GSTSTART

D 6= SD

groupStates(D,D) = D, groupStates(D)
TR-GMEMBER

Figure A.9: Translate Declarations
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SE ; e C ; c

S ; oe

new S ; new oe
TR-NEW

x ; x
TR-VAR

SEf ; ef SEa ; ea

SEf (SEa) ; ef (ea)
TR-APP

SEr ; er SEa ; ea

SEr.m(SEa) ; er.m(ea)
TR-CALL

SE ; e

SE.f ; e.f
TR-FIELD

SE ; e S ; oe

SE ← S ; e← oe
TR-SU

SE ; e S ; oe

SE � S ; e � oe
TR-REPLACE

SEx ; ex SEb ; eb

let x = SEx in SEb ; let x = ex in eb
TR-LET

SE ; e C ; c

match(SE){C}; match(e){c}
TR-MATCH

SE ; e

case s {SE}; case s {e}
TR-CASE1

SEc ; ec SE ; e

case SEc.s {SE}; case ec.s {e}
TR-CASE2

SE ; e

default {SE}; default {e}
TR-DEFAULT

Figure A.10: Translate Expressions
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Appendix B

Unique members proof

Theorem 1: If uniqueTags(ov1) ∧ ov1 ← ov2 ⇒ ov3, then uniqueTags(ov3).

Proof: By induction on ov1 ← ov2 ⇒ ov3.

Case SU-List:

uniqueTags(ovo) by the induction hypothesis.

Case SU-MV:

uniqueTags(ovt) by assumption.

uniqueTags(ovt 7 mvu) by rule UniqueTagsOV2.

Case SU-AddH:

uniqueTags(ovt) by assumption.

uniqueTags(ovt 7 mvu) by rule UniqueTagsOV1.

Case SU-MatchDim:

uniqueTags(ovt) by assumption.

uniqueTags(dvr) by the induction hypothesis.

uniqueTags(ovt 7 dvr) by rule UniqueTagsOV1.

Case SU-MatchInner:

uniqueTags(tag{ov} <: dv) by assumption.

uniqueTags(ovr) by the induction hypothesis.

tag 6∈ tags(dv) ∧ tag 6∈ tags(ov) ∧ uniqueTags(dv) ∧
tags(ov) ∩ tags(dv) = ∅ by inversion of
uniqueTags(tag{ov} <: dv).

tag 6∈ tags(ovr) by Lemma 3.

tags(ovr) ∩ tags(dv) = ∅ by Lemma 2.

uniqueTags(tag{ovr} <: dv) by rule UniqueTagsDv.

Case SU-MatchSuperInner:
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tag 6∈ tags(dvr) by Lemma 3.

tags(ov) ∩ tags(dvr) = ∅ by Lemma 2.

uniqueTags(tag{ov} <: dvr) by UniqueTagsDv.

Case SU-MatchSuper:

uniqueTags(dvr) by the induction hypothesis.

Case SU-Match:

uniqueTags(dvsub <: tag{ov} <: dv) by rule UniqueTagsDv.

�

Lemma 1: If ov1 ← ov2 ⇒ ov3 then
tags(ov3) ⊆ tags(ov1) ∪ tags(ov2)
Proof: By easy induction on ov1 ← ov2 ⇒ ov3

�

Lemma 2: If ov1 ← ov2 ⇒ ov3 ∧
tags(ov) ∩ tags(ov1) = ∅ ∧ tags(ov) ∩ tags(ov2) = ∅ then tags(ov) ∩ tags(ov3) = ∅
Proof:

tags(ov) ∩ (tags(ov1) ∪ tags(ov2)) = ∅
tags(ov3) ⊆ tags(ov1) ∪ tags(ov2) by Lemma 1.

tags(ov) ∩ tags(ov3) = ∅
�

Lemma 3: If ov1 ← ov2 ⇒ ov3 ∧ tag 6∈ tags(ov1) ∧
tag 6∈ tags(ov2) then tag 6∈ tags(ov3)
Proof:

tag 6∈ (tags(ov1) ∪ tags(ov2)) = ∅
tags(ov3) ⊆ tags(ov1) ∪ tags(ov2) by Lemma 1.

tag 6∈ tags(ov3)
�

Theorem 2: If we e@H 7→ e′@H ′ and ∀` ∈ H.uniqueTags(H[`]), then ∀` ∈
H ′.uniqueTags(H ′[`])

Proof: By induction on e@H 7→ e′@H ′

Case E-New and E-Replace:

∀`′ ∈ H[` ;ov].uniqueTags(H[`′]) by the induction hypothesis and rule premise.
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Case E-Su:
uniqueTags(ov3) by Theorem 1.
∀`′ ∈ H[` ;ov3].uniqueTags(H[`′]) by the induction hypothesis.

All Other Rules:
Heap does not change.
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Appendix C

Plaiddoc experiment study materials

This appendix contains the study materials for the Plaiddoc experiment discussed in
chapter 4. It contains:
• The experimental protocol.

• The screening survey.

• The training script.

• The Javadoc documentation for the Car API used in training.

• The Plaiddoc documentation for the Car API used in training.

• The state glossary given to all participants during the study.

• The post-experiment interview script.

Chapter 4 contains several other pieces of the study materials:
• The UML state machine for the CAR API used in training is in Figure 4.2.

• The tasks themselves are in Table 4.1.
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1. Screen	  participant	  with	  the	  screening	  survey.	  
2. If	  the	  participant	  is	  eligible	  for	  the	  study,	  assign	  the	  participant	  to	  

one	  of	  the	  four	  conditions.	  	  
3. Seat	  participants	  at	  a	   table	  and	  have	   them	  read	  and	  sign	   the	  con-‐

sent	  form.	  
4. Hand	  participants	  Car	  API	  documentation	  in	  three	  forms	  (state	  di-‐

agram,	  Javadoc,	  Plaiddoc).	  
5. Read	  the	  training	  script	  aloud	  and	  answer	  any	  questions	  asked.	  
6. Ask	   the	  participant,	   “Do	  you	  have	   any	  more	  questions	  or	   are	   you	  

ready	  to	  begin	  the	  move	  on?”	  
7. Reseat	  participant	  in	  front	  of	  the	  computer.	  	  
8. Instruct	   participant,	   “We	   now	  begin	   the	  main	   part	   of	   the	   study.	   I	  

will	  ask	  you	  a	  series	  of	  questions	  about	  three	  APIs	  and	  you	  will	  an-‐
swer	   them	   using	   the	   [Java/Plaid]doc	   documentation	   opened	   for	  
you	  in	  a	  browser	  window.	  I	  will	  also	  hand	  you	  a	  glossary	  of	  states	  
for	  each	  API.	  Find	  the	  answer	  to	  each	  question	   in	  the	  documenta-‐
tion	   and	   tell	   the	   experimenter	   the	   answer	   as	   soon	   as	   you	   have	  
found	  it.	  Some	  questions	  will	  require	  you	  to	  name	  a	  state	  or	  states.	  
Your	  answer	  will	  always	  be	  one	  of	  the	  states	  in	  the	  glossary.	  After	  
you	  answer	  each	  question	  I	  will	  ask	  if	  it	  is	  your	  final	  answer.	  If	  it	  is,	  
we	  will	  move	  on	  to	  the	  next	  question.	  

9. Ask	  the	  participant,	  “Are	  you	  ready	  to	  begin?”	  
10. Start	  recording	  with	  Camtasia.	  
11. Open	  the	  Timer	  and	  TimerTask	  or	  URLConnection	  documentation.	  

Hand	  the	  participant	  the	  related	  glossary	  
12. Ask	  the	  first	  batch	  of	  questions.	  
13. Close	  the	  first	  batch	  of	  documentation	  and	  take	  the	  first	  glossary.	  
14. Open	   the	   ResultSet	   documentation	   and	   hand	   the	   participant	   the	  

ResultSet	  glossary.	  
15. Ask	  the	  second	  batch	  of	  questions.	  
16. Close	  the	  ResultSet	  documentation	  and	  take	  the	  ResultSet	  glossary.	  
17. Open	  the	  Timer	  and	  TimerTask	  or	  URLConnection	  documentation	  

and	  the	  third	  glossary.	  
18. Ask	  the	  third	  batch	  of	  questions.	  
19. Close	  the	  third	  batch	  of	  documentation	  and	  take	  the	  third	  glossary.	  
20. Conduct	  the	  post	  experiment	  interview.	  
21. Thank,	  pay,	  and	  escort	  the	  participant	  from	  the	  lab.	  
22. Stop	  Camtasia	  recording.	  
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Are	  you	  a	  student?	  
	  
	  
What	  kind	  of	  student,	  undergraduate,	  masters	  or	  a	  PhD	  student?	  
	  
	  
Which	  program	  are	  you	  in?	  
	  
	  
Have	  you	  ever	  programmed	  in	  Java	  or	  C#?	  
	  
	  
Have	  you	  used	  Java	  or	  C#	  API	  documentation?	  
	  
	  
Describe	  your	  professional	  programing	  experience.	  Please	  include	  summer	  
internships.	  
	  
	  
Criteria:	  Accepted	  any	  student	  that	  had	  at	  least	  one	  summer	  of	  professional	  
programming	  experience	  and	  had	  used	  Java	  or	  C#	  and	  their	  associated	  API	  
documentation.	  
	  
	  
Participant	  Number:	  ______________________________	  
	  
	  
Condition:	  _______________________________	  	  
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We’ll	  begin	  with	  a	  brief	  training	  session	  today.	  Feel	  free	  to	  interrupt	  with	  

any	  questions	  you	  have	  during	  this	  training.	  	  

In	  the	  study	  today,	  you’ll	  be	  using	  APIs	  with	  protocols.	  APIs	  with	  proto-‐

cols	   have	   a	   finite	   number	   of	   states	   and	   in	   each	   state	   a	   different	   subset	   of	  

method	  calls	  are	  valid.	  Protocols	  also	  specify	  transitions	  between	  states	  that	  

occur	  as	  part	  of	  some	  method	  calls.	  

To	  make	  this	  concrete,	  let’s	  look	  at	  a	  fictional	  Car	  class,	  which	  is	  a	  simple	  

programmatic	  representation	  of	  a	  real-‐world	  car.	  Look	  at	  the	  Car	  class’	  state	  

machine	  diagram.	   You	   can	   see	   that	   Car	   state	  machine	   is	   divided	   into	   three	  

sections	  by	  a	  dashed	  line.	  	  

First,	   look	  inside	  the	  bottom	  left	  section.	  You	  should	  see	  a	  rounded	  rec-‐

tangle	  with	  the	  label	  “Brakes”	  written	  at	  the	  top.	  This	  is	  the	  “Brakes”	  state.	  In	  

this	  state	  machine,	  all	  states	  are	  written	  as	  rounded	  rectangles.	  	  

The	  “Brakes”	  state	  has	   two	  children	  “Braking”	  and	  “Not	  Braking.”	  A	  car	  

can	   be	   either	   braking	   or	   not	   braking,	   but	   not	   both	   simultaneously.	  We	   call	  

states	  like	  this	  that	  cannot	  be	  simultaneously	  active	  “or-‐states.”	  We	  also	  say	  

that	  the	  “Braking”	  and	  “Not	  Braking”	  states	  are	  “or-‐children”	  of	  the	  “Brakes”	  

state.	  

You	   can	   transition	   a	   car	   object	   from	   the	   “NotBraking”	   to	   the	   “Braking”	  

state	  by	  calling	   its	   “putFootDown”	  method.	  This	   is	   indicated	   in	   the	  diagram	  

by	  the	  arrow	  that	  starts	  at	  “NotBraking”	  and	  ends	  at	  “Braking”	  and	  is	  labeled	  

“putFootDown.”	  	  

Question	  1:	  How	  do	  you	  transition	  a	  car	  object	  from	  the	  “Braking”	  to	  
the	  “NotBraking”	  state?	  (Answer:	  “liftFoot”)	  

Moving	   to	   the	   right	   section,	   you	   should	   see	   the	   “Gear”	   state.	   You	   can	  

transition	  the	  gear	  to	  “First”	  gear	  only	  from	  “Neutral.”	  	  
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Question	  2:	  What	  state	  does	  the	  car	  have	  to	  be	  in	  to	  call	  the	  “toFourth”	  
method?	  (Answer:	  Neutral)	  

A	  car	  is	  in	  both	  a	  “Gear”	  state	  and	  a	  “Braking”	  state	  at	  the	  same	  time.	  We	  

call	   states	   like	   this	   that	  are	   simultaneously	  active	   “and-‐states.”	  We	  also	   say	  

that	   the	   “Brakes”	   and	   “Gears”	   states	   are	   “and-‐children”	  of	   the	   top-‐level	  Car	  

state.	  Changing	  the	  gear	  of	   the	  car	  has	  no	   impact	  on	  the	  state	  of	   the	  brakes	  

and	  vice	  versa.	  For	  example,	   if	   the	  car	   is	   in	   the	  “Braking”	  state	  and	  the	  “to-‐

Second”	  method	  is	  called	  the	  car	  will	  still	  be	  in	  the	  “Braking”	  state	  after	  the	  

method	  returns.	  	  All	  “and-‐states”	  act	  independently	  in	  this	  way.	  

Question	  3:	   If	   the	  car	   is	   in	   the	  “Braking”	  state	  and	  the	  “Second”	  gear	  
and	   the	   “liftFoot”	   method	   is	   called	   and	   returns	   successfully.	   What	  
states	  is	  the	  car	  in	  now?	  (Answer:	  “NotBraking”	  and	  “Second”)	  

Methods	   that	  are	  available	   in	  a	   state	  are	  available	   for	  all	  of	   that	   state’s	  

children.	   For	   example,	   the	   “toNeutral”	   method	   which	   transitions	   from	   the	  

“Gear”	  state	  to	  the	  “Neutral”	  state	  is	  available	  from	  any	  Gear.	  	  

Question	   4:	  What	  methods	   can	   I	   call	   in	   the	   “Fourth”	   gear?	   (Answer:	  
“toNeutral”)	  

Let’s	  now	  take	  a	  look	  at	  the	  Javadoc	  documentation	  for	  the	  Car	  API.	  Like	  

all	  Javadoc,	  this	  page	  has	  a	  “Method	  Summary”	  table	  which	  is	  an	  alphabetized	  

list	  of	  the	  methods	  available	  on	  a	  car	  object.	   It	  shows	  the	  return	  type	  and	  a	  

short	  description	  of	  each	  method.	  Further	  along	   in	  the	  page	  you	  should	  see	  

“Method	  Detail”	  section	  which	  lists	  the	  same	  methods	  but	  provides	  more	  de-‐

tail.	  	  Look	  at	  the	  “toSecond”	  method	  in	  this	  section.	  Notice	  that	  it	  mentions	  in	  

the	  description	  that	  it	  changes	  the	  gear	  “from	  neutral.”	  Also	  note	  the	  fact	  that	  

this	  method	  throws	  a	  “java.lang.IllegalStateException”	  if	  the	  car	  is	  not	  in	  neu-‐

tral.	  In	  this	  case,	  both	  the	  method	  description	  and	  the	  exception	  description	  

document	   the	   protocol.	   	   The	   last	   method	   in	   the	   class,	   “openMethod”	   only	  

works	   if	   the	  “car	   is	   in	  neutral	  gear.”	  This	  method	  does	  not	   throw	  an	  excep-‐

tion,	  instead	  it	  returns	  false	  if	  the	  method	  is	  not	  in	  the	  neutral	  state.	  	  There-‐

fore,	  the	  return	  value	  description	  documents	  the	  protocol.	  
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Question	  5:	  What	   state	  does	   the	   car	  need	   to	  be	   in	   to	   call	   the	   liftFoot	  
method?	  (Answer:	  Braking)	  	  

Question	  6:	  What	  happens	  when	  you	   call	   the	   “liftFoot”	  method	   if	   the	  
NotBraking	  state?	  (Answer:	  IllegalStateException)	  	  

Finally,	   let’s	   look	   at	   the	   Plaiddoc	   documentation	   for	   the	   Car	   API.	   This	  

document	  looks	  mostly	  like	  Javadoc,	  but	  the	  method	  summary	  tables	  are	  di-‐

vided	   by	   the	   state	   in	   which	   the	   methods	   are	   available.	   For	   example,	   the	  

“liftFoot”	  method	  appears	  inside	  the	  a	  section	  marked	  “Braking.”	  At	  the	  top	  of	  

each	  state	  table	  is	  a	  state	  diagram	  which	  describes	  the	  relationships	  between	  

states.	   It	  shows	  that	  “Brakes”	  and	  “Gear”	  are	  “and-‐children”	  of	   the	  top-‐level	  

“Car”	  state	  and	  that	  “Braking”	  and	  “NotBraking”	  are	  “or-‐children”	  of	  “Brakes.”	  

All	  of	  the	  method	  summaries	  in	  Plaiddoc	  include	  two	  columns,	  precondi-‐

tion	   and	   postcondition,	   that	   are	   not	   in	   Javadoc.	   The	   postcondition	   of	   the	  

“liftFoot”	  method	  is	  “NotBraking,”	  which	  indicates	  that	   it	   transitions	  the	  car	  

to	  the	  “NotBraking”	  state.	  	  

Question	  7:	  What	  is	  the	  postcondition	  of	  the	  “toSecond”	  method?	  (An-‐
swer:	  Second)	  

Most	  of	  the	  preconditions	  listed	  in	  the	  Car	  API	  are	  “null,”	  but	  that	  doesn’t	  

mean	  you	  can	  call	  those	  methods	  in	  any	  state.	  Instead,	  the	  state	  in	  which	  the	  

method	  appears	  is	  an	  implicit	  precondition.	  For	  example,	  the	  “liftFoot”	  meth-‐

od	  can	  only	  be	  called	  in	  the	  “Braking”	  state	  since	  it	  is	  in	  the	  braking	  section	  of	  

the	   Plaiddoc.	   However,	   some	  methods	   have	   additional	   prectonditions.	   The	  

“toFifth”	  method,	  which	  is	  appears	  in	  the	  Turbo	  section	  also	  lists	  Neutral	  as	  

its	  precondition.	  Therefore,	  the	  car	  must	  be	  in	  bot	  the	  “Turbo”	  and	  “Neutral”	  

states	  to	  call	  the	  “toFifth”	  method.	  

Question	   8:	   What	   state	   must	   an	   object	   with	   be	   in	   to	   call	   the	   “foo”	  
method	  be	  in,	  if	  the	  “foo”	  method	  is	  listed	  in	  the	  “Bar”	  section	  and	  has	  
the	  precondition	  “Baz”?	  (Answer:	  Bar	  and	  Baz)	  
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Package Class Use Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

sunshine.josh.thesis.training

Class Car

java.lang.Object
sunshine.josh.thesis.training.Car

public class Car
extends java.lang.Object

A programmatic representation of a realworld car.

Nested Class Summary

Modifier and Type Class and Description

static class Car.Option 

Constructor Summary

Constructor and Description

Car(Car.Option opt) 

Method Summary

Modifier and Type Method and Description

void liftFoot()
Deactivates the brakes.

boolean openTrunk()
Opens the car's trunk, if the car is in the neutral gear.

void putFootDown()
Activates the brakes.

void toFifth()
Changes the gear to fifth gear from neutral, if the car has the turbo option.

void toFirst()
Changes the gear to first gear from neutral.

Nested Classes  

Constructors  

Methods  
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void toFourth()
Changes the gear to fourth gear from neutral.

void toNeutral()
Changes the gear to neutral from any gear.

void toSecond()
Changes the gear to second gear from neutral.

void toThird()
Changes the gear to third gear from neutral.

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Car

public Car(Car.Option opt)

Method Detail

liftFoot

public void liftFoot()

Deactivates the brakes.

Throws:

java.lang.IllegalStateException  if the brakes are already deactivated.

putFootDown

public void putFootDown()

Activates the brakes.

Throws:

java.lang.IllegalStateException  if the brakes are already active.

toNeutral

public void toNeutral()

Javadoc car

140



Changes the gear to neutral from any gear.

toFirst

public void toFirst()

Changes the gear to first gear from neutral.

Throws:

java.lang.IllegalStateException  if the car is not in neutral.

toSecond

public void toSecond()

Changes the gear to second gear from neutral.

Throws:

java.lang.IllegalStateException  if the car is not in neutral.

toThird

public void toThird()

Changes the gear to third gear from neutral.

Throws:

java.lang.IllegalStateException  if the car is not in neutral.

toFourth

public void toFourth()

Changes the gear to fourth gear from neutral.

Throws:

java.lang.IllegalStateException  if the car is not in neutral.

toFifth

public void toFifth()

Changes the gear to fifth gear from neutral, if the car has the turbo option.

Throws:

java.lang.IllegalStateException  if the car is not in neutral.

java.lang.UnsupportedOperationException  if the car does not have the turbo option.
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Package Class Use Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

openTrunk

public boolean openTrunk()

Opens the car's trunk, if the car is in the neutral gear. Does nothing otherwise.

Returns:

true if the trunk is in the neutral gear and successfully opens; false otherwise.
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Package Class Use Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method

sunshine.josh.thesis.training

Class Car

java.lang.Object
sunshine.josh.thesis.training.Car

public class Car
extends java.lang.Object

A programmatic representation of a realworld car.

Nested Class Summary

Modifier and Type Class and Description

static class Car.Option 

Constructor Summary

Constructor and Description

Car(Car.Option opt) 

Car

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Nested Classes  

Constructors  
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Option

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Standard

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Turbo

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Modifier and Type Precondition Postcondition Method and Description

void Neutral Fifth
toFifth()
Changes the gear to fifth gear from neutral.

Methods  
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Brakes

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Braking

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Modifier and Type Precondition Postcondition Method and Description

void null NotBraking
liftFoot()
Deactivates the brakes.

NotBraking

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Methods  

Plaiddoc car

145



Modifier and Type Precondition Postcondition Method and Description

void null Braking
putFootDown()
Activates the brakes.

Gear

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Modifier and Type Precondition Postcondition Method and Description

void null Neutral
toNeutral()
Changes the gear to neutral from any gear.

Neutral

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Modifier and Type Precondition Postcondition Method and Description

boolean null null
openTrunk()
Opens the car's trunk, if the car is in the neutral gear. Does
nothing otherwise.

void null First
toFirst()
Changes the gear to first gear from neutral.

toFourth()

Methods  

Methods  

Methods  
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void null Fourth Changes the gear to second gear from neutral.

void null Second
toSecond()
Changes the gear to second gear from neutral.

void null Third
toThird()
Changes the gear to second gear from neutral.

First

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Second

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Third

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
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                       | Fourth    
                       |_Fifth     

Fourth

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Fifth

State relationships
         |‾Option---OR-|‾Standard  
         |             |_Turbo     
         | Brakes---OR-|‾Braking   
         |             |_NotBraking
Car--AND-|             |‾Neutral   
         |             | First     
         |_Gear-----OR-| Second    
                       | Third     
                       | Fourth    
                       |_Fifth     

Constructor Detail

Car

public Car(Car.Option opt)

Method Detail

liftFoot
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public void liftFoot()

State: Braking
Postconditions: NotBraking

Deactivates the brakes.

Throws:

java.lang.IllegalStateException  if the brakes are already deactivated.

putFootDown

public void putFootDown()

State: NotBraking
Postconditions: Braking

Activates the brakes.

Throws:

java.lang.IllegalStateException  if the brakes are already active.

toNeutral

public void toNeutral()

State: Gear
Postconditions: Neutral

Changes the gear to neutral from any gear.

toFirst

public void toFirst()

State: Neutral
Postconditions: First

Changes the gear to first gear from neutral.

Throws:

java.lang.IllegalStateException  if the car is not in neutral.

toSecond

public void toSecond()

State: Neutral
Postconditions: Second

Changes the gear to second gear from neutral.

Throws:
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java.lang.IllegalStateException  if the car is not in neutral.

toThird

public void toThird()

State: Neutral
Postconditions: Third

Changes the gear to third gear from neutral.

Throws:

java.lang.IllegalStateException  if the car is not in neutral.

toFourth

public void toFourth()

State: Neutral
Postconditions: Fourth

Changes the gear to fourth gear from neutral.

Throws:

java.lang.IllegalStateException  if the car is not in neutral.

toFifth

public void toFifth()

State: Turbo
Preconditions: Neutral
Postconditions: Fifth

Changes the gear to fifth gear from neutral, if the car has the turbo option.

Throws:

java.lang.IllegalStateException  if the car is not in neutral.

java.lang.UnsupportedOperationException  if the car does not have the turbo option.

openTrunk

public boolean openTrunk()

State: Neutral

Opens the car's trunk, if the car is in the neutral gear. Does nothing otherwise.

Returns:

true if the trunk is in the neutral gear and successfully opens; false otherwise.
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Package Class Use Tree Deprecated Index Help

Prev Class Next Class Frames No Frames All Classes

Summary: Nested | Field | Constr | Method Detail: Field | Constr | Method
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Timer	  states:	  
	  	  	  -‐	  Virgin:	  A	  new	  timer.	  
	  	  	  -‐	  Canceled:	  A	  timer	  that	  has	  been	  cancelled.	  	  
	  
TimerTasks	  states:	  
	  	  	  -‐	  Virgin:	  A	  new	  TimerTask.	  
	  	  	  -‐	  Scheduled:	  A	  TimerTask	  that	  has	  been	  scheduled	  by	  a	  Timer.	  
	  	  	  -‐	  Executed:	  A	  TimerTask	  whose	  action	  has	  been	  performed.	  
	  	  	  -‐	  Canceled:	  A	  TimerTask	  that	  has	  been	  canceled.	  
	  
ResultSet	  states:	  
	  	  	  -‐	  Closed:	  A	  result	  set	  whose	  table	  of	  data	  is	  no	  longer	  available.	  	  
	  	  	  -‐	  ReadOnly:	  A	  result	  set	  that	  is	  not	  updatable.	  
	  	  	  -‐	  Updatable:	  A	  result	  set	  that	  is	  updatable.	  
	  	  	  -‐	  Scrollable:	  A	  result	  set	  whose	  cursor	  can	  move	  either	  forward	  or	  backward.	  
	  	  	  -‐	  ForwardOnly:	  A	  result	  set	  whose	  cursor	  can	  only	  move	  forward.	  
	  	  	  -‐	  InvalidRow:	  A	  result	  set	  whose	  cursor	  is	  on	  an	  invalid	  row.	  
	  	  	  -‐	  Inserting:	  A	  result	  set	  for	  which	  a	  new	  row	  is	  being	  created.	  
	  	  	  -‐	  Inserted:	  A	  result	  set	  in	  which	  a	  full	  new	  row	  has	  been	  inserted.	  
	  	  	  -‐	  NotYetRead:	  A	  result	  set	  whose	  cursor	  is	  on	  a	  row	  of	  data	  that	  is	  unread.	  
	  	  	  -‐	  Read:	  A	  result	  set	  whose	  cursor	  is	  on	  a	  row	  of	  data	  that	  has	  been	  read.	  
	  
UrlConnection	  states:	  
	  	  	  -‐	  Disconnected:	  A	  URLConnection	  that	  has	  not	  connected.	  
	  	  	  -‐	  Connected:	  A	  URLConnection	  whose	  connection	  has	  been	  established.	  
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Condition	  __________	  
	  
	  
1)	  Can	  a	  TimerTask	  be	  both	  Scheduled	  and	  Executed	  simultaneously?	  
	  
	  
2)	  What	  is	  an	  example	  of	  two	  or-‐states	  in	  ResultSet?	  
	  
	  
3)	  What	  is	  an	  example	  of	  two	  and-‐states	  in	  ResultSet?	  
	  
	  
4)	  What	  is	  the	  top-‐level	  state	  for	  a	  UrlConnection?	  
	  
	  
5)	  Did	  you	  like	  [Java/Plaid]doc?	  
	  
	  
__	  Strongly	  disliked	  
__	  Disliked	  
__	  Neutral	  
__	  Liked	  
__	  Strongly	  Liked	  
	  
	  
6)	  Which	  documentation	  format	  that	  you	  learned	  about	  before	  the	  study—Javadoc,	  
Plaiddoc,	  or	  UML	  state	  diagram—do	  you	  think	  would	  have	  been	  most	  helpful	  to	  
complete	  this	  study?	  
	  
__	  State	  diagram	  
__	  Plaiddoc	  
__	  Javadoc	  
	  
Further	  questions	  can	  be	  added	  at	  this	  point	  at	  experimenter’s	  discretion.	  	  
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