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Abstract

Use of long sentence-like or phrase-like passwords such as “abiggerbetterpassword” and “thecom-

munistfairy” is increasing. In this paper, we study the role of grammatical structures underlying

such passwords in diminishing the security of passwords. We show that the results of the study

have direct bearing on the design of secure password policies, and on password crackers used for

enforcing password security. Using an analytical model based on Parts-of-Speech tagging we show

that the decrease in search space due to the presence of grammatical structures can be as high as

50%. A significant result of our work is that the strength of long passwords does not increase

uniformly with length. We show that using a better dictionary e.g. Google Web Corpus, we can

crack more long passwords than previously shown (20.5% vs. 6%). We develop a proof-of-concept

grammar-aware cracking algorithm to improve the cracking efficiency of long passwords. In a per-

formance evaluation on a long password dataset, 10% of the total dataset was exclusively cracked

by our algorithm and not by state-of-the-art password crackers.





1 Introduction

Text-based password authentication is a widely deployed user authentication mechanism. Use of

text-based passwords involves a trade-off between usability and security. System assigned pass-

words and user-selected passwords subject to complex constraints (e.g., including mixed-case,

symbols and digits) are harder to guess, but less usable [25]. Conversely, simple, memorable

user-selected passwords offer poor resilience to guessing.

To obtain a good compromise between security and usability, researchers and organizations

are recommending the use of longer user-selected passwords with simpler composition require-

ments. Examples include minimum 16 character passwords [24] and sentence-like or phrase-like

passphrases [7, 14, 3, 15, 30]. In the minimum 16 character password policy, the only restriction

is that passwords cannot contain spaces. An example of a passphrase policy is “choose a password

that contains at least 15 characters and at least four words with spaces between the words” [7]. The

increase in the length of the password supposedly makes the password difficult to guess.

To memorize longer passwords users may rely on memory aids such as rules of English lan-

guage grammar. Users may use memory aids voluntarily or due to policy recommendations. Our

analysis of a set of 1434 passwords of 16 characters or more from a published study [24] shows

that more than 18% of users voluntarily chose passwords that contain grammatical structures. Each

of these passwords contains a sequence of two or more dictionary words. An example is “abigger-

betterpassword” that contains the grammatical structure “Determiner Adjective Adjective Noun”.

Table 1 provides more examples. In addition to grammatical structures we also found other types

of structures such as postal addresses, email addresses and URLs. Given the evidence of use of

structural patterns in long passwords, we are motivated to investigate the effect of structural pat-

terns on password security. Studies on password security so far have focused only on structural

dependencies at the character level [38, 36, 24].

Main Contributions: (1) We propose an analytical framework to estimate the decrease in

search space due to the presence of grammatical structures in long passwords. We use a simple

natural language processing technique, Parts-of-Speech (POS) tagging, to model the grammatical

structures. (2) We show that the strength of a long password does not necessarily increase with

the number of characters or words in the password. Due to the presence of structures, two pass-

words of similar length may differ in strength by orders of magnitude. (3) We develop a novel

cracking algorithm to increase the cracking efficiency of long passwords. Our cracking algorithm

Table 1: Examples of phrases in long password dataset

Category Password Example Phrase Total

Simple abiggerbetterpassword a bigger better password 178

Substitution thereisnomored0ts there is no more dots 20

Extra Symbol longestpasswordever8 longest password ever 70

Total out of 1434 268
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Table 2: Brown Corpus statistics
Words 1161192

Unique Words 49815

Sentences 57340

Characters per Word 4.26

Words per Sentence 20.25

Unique Characters 58

Content Genres 15

automatically combines multiple words using our POS tagging framework to generate password

guesses. (4) We show that it is necessary to analyze the distribution of grammatical structures un-

derlying password values in addition to the distribution of password values themselves to quantify

the decrease in guessing effort.

Organization: We discuss the effect of grammatical structures on password search space in

Section 3 and on password guessing effort in Section 4. In Section 5, we examine the shortcomings

of state-of-the-art password crackers in cracking long passwords and describe the advantages of

our new grammar-aware cracking algorithm. We experimentally evaluate the efficiency of existing

crackers and our grammar-aware cracker using long password datasets. In Section 6, we discuss

the impact of our results on current password policies. We conclude in Section 7.

2 Background and Related Work

Parts-of-Speech Tagging: Part-of-Speech (POS) tagging is the process of assigning a part of

speech to each word in a sentence [28]. In English language, parts of speech are noun, verb,

adjective etc. For example, the parts of speech for a sentence “She runs fast” are “Pronoun Verb

Adverb”. Given a sequence of words (word1word2 . . .wordn), a POS tagger such as CLAWS [22]

can output a sequence of tags, one tag per word ((word1, tag1) (word2, tag2) . . . (wordn, tagn)).

Natural Language Corpora: The field of natural language processing commonly uses col-

lection of real data samples or corpus to train and test tools [28]. Two examples are the Google

Web Corpus [20] and the Brown Corpus [26]. The Google Web Corpus is a corpus of 1 trillion

word tokens of English text collected from web pages and it contains 1 to 5 word n-grams and

their frequency counts. The Brown Corpus is a corpus of printed English language of more than

1 million words. It contains articles from 15 genres such as fiction, government, news, and user

reviews. Because of the presence of multiple genres, the Brown Corpus is considered a balanced

corpus that well represents the entire printed English language. Table 2 contains the statistics of

the Brown Corpus. Sentences in the Brown Corpus are POS tagged. The Brown simple POS tag

set consists of 30 tag types. Fig. 1 shows the unique word counts for popular tag types.

Password Security: Current password security primarily focuses on the relationships at char-

acter level. In [36] the authors estimate the password search space using Shannon entropy [35] at

the character level. Password crackers that enumerate password search space use zeroth or higher

order Markov models trained on character probability distribution [9, 29]. In [29] authors assume
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Figure 1: Count of unique words (Unique Word Count) for top 21 Parts-of-Speech tags (POS

Tag) in the Brown Corpus. There are 30 tags in the simple Brown POS tag set. N, NP, ADJ,

. . . correspond to the Noun, Noun Proper, Adjective, . . . . Note that the word counts are unevenly

distributed among different tag types. This has important implications on password search space

and guessing effort.

that for memorability, user models a password as a sequence of characters whose distribution is

similar to the distribution of characters in her native language. In [19] authors studied the linguis-

tic properties of Amazon Payphrase [1] dataset where majority of the Payphrases are a sequence

of two words. Authors investigate whether users choose their Payphrases as a sequence of words

which occurs as-is in an existing natural language corpus. Further, they conjecture about guessing

effort of passphrases if the distribution of passphrases are identical to the distribution of phrases in

a natural language corpus such as Google Web Corpus. In this work, we assume that users model

their password as a sequence of words following the rules of grammar such as “Determiner Adjec-

tive Noun”. The sequence need not occur as-is in a natural language corpus. An example of such

password is “the communist fairy” that occurs in the long-password dataset presented in Table 1

but not in the Google Web Corpus. By making a relaxed assumption we model a more powerful

adversary who can attack defenses such as use of nonsensical phrases [30].

3 Search Space Analysis

The password search space is the set of all possible unique password values. In this section we

investigate how the presence of grammatical structures modifies the password search space. One

can consider a password value as a sequence of characters, a sequence of words, or a sequence of

words generated using the rules of grammar. We propose an analytical framework to estimate the

size of the password search space under each of the three assumptions. By comparing the three

3



estimated sizes we can understand the level of reduction in the size of the password search space

when grammar structures are present. Via numerical evaluation we highlight that the reduction in

search space could be as high as 50% or more.

3.1 Computing Search Space Size

Consider a password that contains up to n words. If the words are from a dictionary D = {the,

of, run, king, queen, handsome , . . .} that contains numw unique words, the size of the password

search space of all possible word sequences is

G(word) =
n
∑

i=1

numwi , (1)

If we consider a word to be any sequence of characters, not just an element from dictionary D,

then the password search space is bigger. For example, “llmmnn” that is not present in a standard

English dictionary. Let numc be the number of unique characters possible and avgc be the average

number of characters per word. We can approximate the size of the password search space of all

possible character sequences as

G(char) =
n
∑

i=1

numcavgc×i , (2)

Let us now consider a password as a sequence of words created using grammatical rules. For

example, a user may pick “thehandsomeking” based on the grammatical rule “Determiner Ad-

jective Noun”. To estimate the search space under this assumption we need to define the set of

valid grammatical rules. Modeling rules of natural language grammar is a difficult problem [28].

Tools such as English language parsers and generators approximately model the rules of grammar

using Context Free Grammar (CFG) or, more powerful, Context Sensitive Grammar (CSG). A

CFG is required to recursively generate infinitely long sentences. However, for long passwords,

it is unlikely that we will need to generate infinitely long sentences. For finite length sentences,

recursion is not required and a Regular Language will suffice. Regular Language reduces com-

putational complexity from O(n3) to O(n). Parts-Of-Speech (POS) tagging technique, described

in Section 2, is equivalent to using a Regular Language and we use it here to model the rules of

grammar.

We consider each grammatical rule as a sequence of POS tags. We can extract POS tag se-

quences from any POS-tagged corpus that is representative of a long password dataset. Our ap-

proach of generating grammatical rules is similar to expanding the CFG rewrite rules up to a finite

length. However, its advantage is that we do not have to maintain complex CFG rewrite rules.

Modifying the grammar is as simple as adding or deleting a POS tag sequence from the set.

Let T be the set of all POS tags

T = {Noun, Verb, Adjective, . . . } .
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Each word w in dictionary D can have one or more POS tags. For example, run can be both a verb

and a noun. If the tagger does not recognize a word, it can assign a default tag such as Noun. Each

POS tag t in T has an associated dictionary of words

D(t) = {w ∈ D, tag(w) = t} .

For example, D(Noun) = {king, queen, . . .}. A tag sequence ts of length n is a sequence of POS

tags defined as

ts = t1‖ . . . ‖tn, ti ∈ T, n ≥ 1 ,

For example, ts of length 3 can be “Determiner Adjective Noun”, “Determiner Determiner Noun”

etc. Not all tag sequences occur in a given corpus. The corpus could be a natural language corpus

such as the Brown Corpus, the long password corpus introduced in Table 1, or any passphrase

corpus. For a given corpus, we consider all tag sequences that occur in the corpus as grammatical

and call them tag-rules. We use the notation tsgrammar for tag-rules. For example, “Determiner

Determiner Noun” is not present in the Brown Corpus so it is not a tag-rule if we consider the

Brown Corpus.

A tag sequence ts = t1‖ . . . ‖tn of length n generates a set S(ts) of unique word sequences

each of length n,

S(ts) = {w1‖ . . . ‖wn, wi ∈ D(ti)} .

For example, the tag sequence “Determiner Adjective Noun” generates the set {“the handsome

king”, “the beautiful queen” , . . . , }.

Let ts(n) denote the set of all tag sequences of length n. For a set T of size 30, ts(3) has

30 × 30 × 30 tag sequences. Let ws(n) denote the set of all unique word sequences of length n
generated by ts(n).

ts(n) = {t1‖ . . . ‖tn},

ws(n) = {ws ∈ S(ts) , ∀ts ∈ ts(n)} .

Note that the count of all unique word sequences up to length n is equal to G(word) in (1), i.e.,

G(word) = count

(

n
⋃

i=1

ws(i)

)

.

We consider wsgrammar(n) as the set of all word sequences of length n generated using rules of

grammar, i.e., from tag-rules of length n, tsgrammar(n). Henceforth, we refer to a word sequence

generated using a tag-rule as a phrase. The size of the password search space of phrases is

G(grammar) = count

(

n
⋃

i=1

wsgrammar(i)

)

(3)

Since each word can be associated with more than one tag, multiple tag-rules can generate the

same phrase. The set union operator discounts repeated phrases.
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Figure 2: Comparison of the size of password search space treating password as a sequence of

characters (char), a sequence of words (word), and a sequence of words generated using gram-

matical structures (grammar). Numbers are based on the Brown Corpus statistics. Note that char

is much greater than both word and grammar. Although not obvious, word is significantly larger

than grammar as the values are in log scale. Table 3 further emphasizes the difference. The gap

between word and grammar widens as the number of words n in the password increases. We also

plot search space estimation using 1.75 bits per character of Shannon entropy (fixed entropy) and

the actual number of unique n-word sequences in the Brown Corpus (sample). We explain their

significance in Section 6.3.
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3.2 Numerical Evaluation

We need a corpus to numerically evaluate the password search space model proposed in Sec-

tion 3. Here, we consider the Brown Corpus, a balanced corpus that contains a representative set

of grammatical structures (tag-rules) for English language. We believe users will model their long

passwords using tag-rules similar to the tag-rules in the Brown Corpus. For example, we find that

84% of the long passwords from “Simple” category in Table 1 were generated using tag-rules from

the Brown Corpus. Hence, using the Brown Corpus should provide useful insights into the effect

of structure on the password search space.

To evaluate the size of password search space of character sequences, G(char) in (2), and word

sequences, G(word) in (1), we use the character and word statistics from Table 2. The number of

unique characters numc = 58, number of unique words in the dictionary numw = 49815, and the

average number of characters in a word avgc = 4.26. In Fig. 2 we plot the size of the password

search space 584.26×i (denoted as char) and 49815i (denoted as word) as a function of number of

words i in the password.

To evaluate the password search space of word sequences generated using tag-rules, G(grammar)
in (3), we need a set of POS tags, dictionary for each POS tag, and the set of tag-rules. We use the

simple Brown POS tag set with 30 tags. We get the dictionary for each tag from the Brown Corpus

(Fig. 1). We extract the tag-rules from the Brown Corpus as follows. Recall from Section 2 that

sentences in Brown Corpus are POS tagged. First, we remove punctuation symbols and associated

tags from the tagged sentences. Then we create n-gram of word and tag pairs. Finally, we get the

set of unique tag-rules by extracting the tags from the word tag pair in each n-gram. In Fig. 3 (Top)

we plot the number of tag-rules against all possible tag sequences. We observe that the number of

tag-rules is much less than the number of all possible tag sequences and the difference increases

with length of the tag-rules. Fig. 3 (Bottom) plots number of word sequences generated by tag-

rules and the number of word sequences generated by all tag sequences. We plot the same two

curves as grammar and word in Fig. 2. From Fig. 3 we see that few tag-rules generate a majority

of the password search space.

From Fig. 2 we can compare the password search space sizes of char, word, and grammar.

We observe that char grows exponentially compared to word and grammar. We see that grammar

is significantly smaller than word (notice the log scale). To emphasize the decrease in password

search space due to the presence of grammar, we tabulate the ratio of grammar to word in Table 3.

The decrease can be as large as 50% for a password of length 5 words. The gap between word and

grammar widens as the number of words n in the password increases.

4 Distribution Analysis

When the password values have underlying grammatical structures, it is important to understand

the role of these structures in decreasing the guessing effort. Guessing effort can be defined as the

number of values an attacker has to enumerate to guess a password. Guessing effort is a function of

(a) size of the password search space, which is the set of all possible unique password values; and

(b) distribution of password values, which depends on how users choose password values from the
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Table 3: Percent decrease in password search space when passwords are generated using gram-

matical structures. word is password search space of all word sequences and grammar is password

search space of word sequences generated using grammatical structures, from Fig. 2. n is the num-

ber of words in the password. Note the significant decrease in password search space due to the

presence of grammatical structures e.g. for n = 5 the decrease is more than 50%.
n 1 2 3 4 5

grammar

word
% 100 99.92 96.90 80.66 46.95

n 6 7 8 9 10
grammar

word
% 17.17 4.28 0.99 0.25 0.07

ws             (n)

ts             (n)grammar
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Figure 3: Top: comparison of the number of tag sequences present in the Brown Corpus

count(tsgrammar(n)) with the number of possible tag sequences count(ts(n)). Each sequence

contains n tags. We call tag sequences present in a given corpus as tag-rules. Bottom: comparison

of the number of unique word sequences generated by tag-rules count(wsgrammar(n)) with the

number of unique word sequences generated by all possible tag sequences count(ws(n)). Each

sequence contains n words. The former is the password search space of word sequences generated

using grammatical structures and the latter is the password search space of all word sequences.

Interestingly, few tag-rules generate a large portion of the password search space.
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password search space. So far, research involving analysis of password distributions [19, 18, 34]

has not considered the effect of underlying grammatical structures.

In Section 3 we showed that the grammatical structures reduce the password search space,

which implies reduced guessing effort. This is because the maximum number of values an attacker

has to enumerate is equal to the size of the search space. In this section we show that the distribution

of grammatical structures can also reduce the guessing effort. This reduction is in addition to

the reduction due to the distribution of the password values themselves. When guessing effort

decreases, an attacker can potentially crack more passwords for a given number of guesses. We

estimate this increase in number of passwords cracked using a novel optimization framework.

4.1 Reduction in Guessing Effort due to Structure

An uniform distribution maximizes the guessing effort [31]. Conversely, a non-uniform distribu-

tion reduces the guessing effort. Usually, user-chosen password distributions are not uniform [18].

Given a set of user chosen passwords, for example {mypassword, mypassword, iloveu} non-

uniformity is evident as password values are not unique. In the past, research has associated

uniformity solely with uniqueness of password values. For example, [34] ensures that password

values do not repeat often and [18] computes the distribution by counting the repetition of password

values. However, for passwords generated using grammatical structures, underlying structure may

cause non-uniformity even if the password values are unique. For example, the values in the set

{“tangy food”, “pretty cat”, “naughty kid”} are unique, but all values are generated using “Adjec-

tive Noun”. An attacker aware of such a distribution can reduce her guessing effort by enumerating

values for the structure “Adjective Noun” and ignoring all other structures. Hence, uniqueness of

password values is a necessary, but not sufficient condition for ensuring uniformity. We also have

to consider the distribution of structures.

Recall from Section 3 that we can compute the size of the search space of each grammatical

structure (also referred to as a tag-rule). The size of the search space of individual tag-rules vary

unevenly e.g. the size of “Noun Noun” is greater than the size of “Adjective Noun”. In Fig. 4 we

group the tag-rules by their search space size. We observe that some of the tag-rules have very

small search spaces e.g. for tag-rules of length 3 (3-gram), 8.9% of the rules have 10 − 19 bits

of strength. The effort required to guess a password generated by a tag-rule is a function of the

size of the tag-rule search space. It is paramount to ensure that users do not use a disproportionate

number of weak tag rules to generate their passwords.

4.2 Enforcing Uniformity

The conditions required to ensure a uniform distribution over a set of password values, V , gener-

ated using tag-rules are (a) password values have to be unique; and (b) each tag-rule should have

proportional representation. As we will see in Section 4.3, unless these conditions are satisfied the

distribution is not uniform thereby reducing the guessing effort. Intuitively, proportional represen-

tation implies that a tag-rule with a larger search space should generate more password values in V .

We define the true probability, pT , of a tag-rule as the size of the search space of a tag-rule divided

by the size of the password search space. Each password value in V maps to a tag-rule. Let TR
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Figure 4: Tag-rules of length 2 to 5 grouped by the size of their search space (in bits). The

search space of a tag-rule, ts, is the number of word sequences it generates, which in bits is

log2 count(S(ts)). Numbers outside the pie chart indicate the range of bits. Numbers inside the

pie indicate the percentage of tag-rules with those many bits. Note that the tag-rules divide the

password search space unevenly. A significant number of tag-rules have very low strength in bits.

For example, for tag-rules of length 3 (3-gram), 8.9% of the rules have 10− 19 bits of strength.
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Figure 5: Visualizing disproportional representation of tag-rules using unique 2-word and 3-word

phrases from the Brown Corpus. The tag-rules are plotted in descending order of search space size.

For each tag-rule, we plot numts

count(V )×pT
, which should be equal to 1 (dotted red line) if the tag-rule

has proportional representation. We can see that in the Brown Corpus samples, weaker tag-rules

occur disproportionately more often than stronger tag-rules.

be the set of tag-rules corresponding to the password values in V . A tag-rule, ts, has proportional

representation if the number of times it occurs in TR, numts, is equal to count(V )× pT .

To visualize disproportional representation of tag-rules, we consider the set of unique 2-word

and 3-word sequences in the Brown Corpus. We compute the tag-rule set TR for both. For each

tag-rule, ts, in the Brown Corpus we compute its true probability pT . In Fig. 5, for each tag-rule

ts, we plot numts

count(V )×pT
for each tag-rule ts, which should be equal to one (dotted red line) if the

tag-rule has proportional representation. The tag-rules are indexed in descending order of their

search space size.

4.3 Estimating Decrease in Guessing Effort

Let V be a set of unique values. We define gain as the number of values an attacker can guess

from V by making G guesses. We can pose the problem of computing gain as an optimization
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problem,

maximize gain =

count
(

TSgrammar)

∑

i=1

rivi (4)

subject to

count
(

TSgrammar)

∑

i=1

rigi ≤ G (5)

0 ≤ ri ≤ 1

TSgrammar =
n
⋃

j=1

tsgrammar(j)

WSgrammar =
n
⋃

j=1

wsgrammar(j) .

Here, TSgrammar is the set of tag-rules of lengths up to n. WSgrammar is the set of word se-

quences generated by TSgrammar. For ith tag-rule tsi ∈ TSgrammar, gi = count (S(tsi)) is the

number of word sequences generated by tsi, i.e, the search space of tsi. vi is the number of values

guessed from V using tsi. ri is the unknown weight assigned to tsi and rigi controls the number of

values enumerated from the search space of tsi. For a given V , if the tag-rules have proportional

representation, the maximum gain gainuniform is (count(V ) × G)/count
(

WSgrammar) for a

given number of guesses G. For same G, when the tag-rules have a skewed representation, the

gain of the attacker increases (gainskew ≥ gainuniform). We prove this in Appendix.

5 Password crackers

We investigate whether state-of-the-art cracking tools such as John the Ripper (JTR) [9], Hash-

cat [6], and Weir Algorithm [38] can crack long passwords efficiently. This is important because

crackers are used in auditing user passwords and estimating the strength of password policies [24].

We discuss the shortcomings of these crackers in cracking long passwords. We show ways to

improve cracking efficiency for both long passwords in general and long passwords generated us-

ing grammatical structures. We propose a novel algorithm to improve cracking efficiency. Our

cracking algorithm uses the POS tag framework introduced in Section 3.

5.1 Shortcomings of Current Crackers

A password cracker tries to recover a plain text value of a password hash value. The cracker gener-

ates candidate password guesses, hashes them, and compares them with the available hashes until

a match is found. A dictionary-based cracker [9, 6, 38] uses a dictionary of values to generate

candidate passwords. A dictionary may contain leaked passwords [24], words from many lan-

guages [13], common quotes, music lyrics, movie titles [27] etc. Cracker may use the dictionary
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Table 4: Data set ExSet
Password Phrase

Ihave3cats I have 3 cats

Ihave4dogs I have 4 dogs

Ihave5fish I have 5 fish

Ihad1cat. I had 1 cat.

Ihad1goat I had 1 goat

Table 5: Weir Algorithm base structures for ExSet
Trained on Passwords Trained on Phrases

Structure Prob Structure Prob

LLLLLDLLLL 0.6 LSLLLLSDSLLLL 0.6

LLLLDLLLS 0.2 LSLLLSDSLLLS 0.2

LLLLDLLLL 0.2 LSLLLSDSLLLL 0.2

values as-is or transform them by applying mangling rules. An example of a mangling rule is “cap-

italize first alphabet”, which transforms a dictionary value “password” to “Password”. Below we

explain the main shortcomings of current crackers in cracking long passwords using the example

data set, ExSet in Table 4 and a dictionary, ExD = {I, have, had, cats, dogs, fish, cat, goat}.

JTR in Wordlist mode and Hashcat are dictionary-based crackers. Their mangling rules can

combine a single dictionary value in different ways, for example “catscats” or “catsstac” from

“cats”. They can append, prefix or insert specific strings to a dictionary value, and delete parts

of the dictionary value. However, JTR can not combine multiple values from the dictionary to

form longer passwords. To crack passwords such as “Ihave3cats” from ExSet using dictionary

ExD, user has to (1) write multiple mangling rules for example “prefix I”, “append had” or “prefix

Ihave” or (2) explicitly add the value “Ihave3cats” to the dictionary ExD. To add longer values to

the dictionary, user has to generate the values himself or collect them from existing sources such

as books, Web etc. Hashcat provides a combination mode that can automatically combine any two

values from the input dictionary. For more than two values, Hashcat faces same issues as JTR.

Weir Algorithm is another dictionary based technique that improves the cracking efficiency

by improving the order in which mangling rules are applied to the values in the dictionary. Weir

Algorithm requires a training corpus of passwords from which it creates a set of base structures.

A base structure in Weir Algorithm is a sequence of “L”, “D”, and “S” which stand for “Letter”,

“Digit”, and “Special Symbol”. Each base structure is associated with a probability. Weir Algo-

rithm generates the base structures listed in Table 5 when trained on passwords from dataset ExSet.

Weir Algorithm learns the digits and special symbols to insert into “D” and “S” from the training

corpus. For letter sequences in a base structure Weir Algorithm tries to fit values from the dic-

tionary whose length exactly matches the length of the letter sequence. For example, for “LLLL”

in the base structure “LLLLDLLLS”, it tries to fit values {have, cats, dogs, fish, goat} from dic-

tionary ExD. It cannot, however, combine shorter values such as “I” and “had” to form a longer

value “Ihad”. With the base structures in Table 5 Weir Algorithm fails to crack any password from
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dataset ExSet because “Ihave” and “Ihad” are not in dictionary ExD. Weir Algorithm cannot com-

bine values from the dictionary to form longer values. The user has to manually generate longer

values and add them to the dictionary as in the case of JTR and Hashcat.

To force Weir Algorithm to generate longer values, we can train it with passwords contain-

ing words separated by a single space. We have to then strip out the spaces from the generated

password guesses. Weir Algorithm treats space as a special symbol. In our example, if we train

Weir Algorithm on the phrases listed in dataset ExSet, it generates base structures e.g. “LSLLLS-

DSLLLL” and is able to crack passwords such as “Ihad3cats” using dictionary ExD. However,

note that this is an approximation of generating all possible word combinations from the input

dictionary, and is not an optimal approach for targeting long passwords generated using grammat-

ical structures. For example, Weir Algorithm generates password guesses {Ihad1had, Ifish5have,

Icats3fish . . .} that may not be useful. From Section 3 we know that the search space of all word

sequences can be more than 50% larger than the search space of word sequences generated using

grammatical structures, and that the gap increases with length (Table 3).

An alternative to heuristic dictionary technique is intelligent brute-force technique. An in-

telligent brute-force technique such as JTR Incremental mode eventually enumerates the entire

password search space. JTR Incremental mode uses a Markov model trained on 3-gram letter fre-

quency distribution to generate password guesses. We observe from our experiments that using

letter frequencies is effective for conventional short length passwords that are mostly a sequence

of characters, but not for longer passwords consisting of multiple words.

5.2 Evaluation on Long Password Dataset

We evaluate the cracking efficiency of JTR, Hashcat and Weir Algorithm via a set of experiments

involving a published long password dataset [24]. We briefly described this long password data set

in Section 1. The dataset contains 1434 passwords of minimum length 16 characters, and was col-

lected as part of a field study. Subjects could create their passwords using any character except the

space character. To test the cracking efficiency on long passwords, we use the complete long pass-

word dataset, henceforth referred to as P16. To test the cracking efficiency on long passwords with

underlying grammatical structures, we use a subset from P16. We are not aware of any datasets

(public or otherwise) that only contain user-selected, long passwords with underlying grammatical

structures. We manually examine each password in P16 using tools such as the Microsoft Word

Breaker [11, 37], and identify passwords with multiple words. We initially include all passwords

with two or more words (e.g. “compromisedemail”, “thereisnomored0ts”) except those that con-

tain repetitions of a single word (e.g. “elephantelephant”). We further categorize the passwords

into three groups: simple phrase, phrase with symbol substitution and phrase with extra symbols.

Table 1 shows example for each category. For our experiments, we use all passwords from the

“Simple” category. Our dataset contains 178 passwords of which 144 are 2 to 5 words in length.

We henceforth refer to this dataset as P16S. The crackers use the dictionaries described in Table 6.

The dictionary “L” contains publicly available datasets, the dictionary “GW” contains data from

the Google Web Corpus and the dictionary “B” contains data from the Brown Corpus.

We tabulate the experimental results in Table 7. We allow all experiments to make up to 2.5E12
guesses. We indicate if an experiment terminated before making 2.5E12 in the “Session Com-
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Table 6: Dictionaries used for evaluating crackers. Dictionary “L” is a large dictionary combining

the datasets Myspace, Rockyou, Brown, 1gram, Dic-0294, Basic Full, Basic Alphabetic, Free Full,

Free Alphabetic, Paid, Alphabetic, Paid Lowercase. In column Name “-x” indicates minimum

length of the words in the dictionary.
Name #Words Description

L-8 35267653 Minimum length 8 values from L

LASCII 39251222 All length ASCII values from L

GW1-8 6603610 Google Web Corpus 1-gram

GW25-8 3625636435 Google Web Corpus 2-5 grams

B210 5942441 Brown 2-10 gram word sequences

Table 7: Performance of crackers on long passwords. Experiment lists the name of the experiment.

For JTR experiments, NM indicates that mangling rules were not used. %P16 Cracked is the

percentage of passwords cracked out of 1434 long passwords in P16. %P16S 2-5 Cracked is

percentage of passwords cracked out of 144 long passwords of length 2 to 5 words in P16S. P16S

is a subset of P16 that contains long passwords with underlying grammatical structures. We tested

on passwords of length 2 to 5 as Google Web Corpus has n-grams of length up to 5. Guesses is

the total number of password guesses generated. Session Completed indicates if the experiment

completed after Guesses.
Experiment %P16 %P16S 2-5 Total Session

Cracked Cracked Guesses Completed

JTR L-8 13.6 6.9 2.31E10 Yes

JTR L-8 NM 8.5 4.8 3.42E7 Yes

JTR GW25-8 20.5 34.7 2.48E12 Yes

JTR GW25-8 NM 11.08 27.7 3.4E9 Yes

Weir LASCII 12 4.8 1.07E12 No

Weir Space LASCII 7.6 3.4 1.26E12 No

JTR Incremental 0 0 2.48E12 No
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pleted” column. We manually terminated two experiments before 2.5E12 guesses due to their

excessive memory consumption. For brevity, we omit the less significant experimental results

from Table 7. In our experiments, we try to overcome the main shortcoming of current crackers,

i.e., they do not generate longer values automatically, and expect the user to add longer values to

the dictionary. Specifically, we do the following:

1. Use a better dictionary of long values: we use the Google Web Corpus as a dictionary.

Experiments on long password datasets until now have not used the Google Web Corpus, but

depend on other publicly available datasets similar to dictionary “L”. In experiment “JTR

GW25-8”, using Google Web Corpus we cracked 20.5% of long passwords from dataset

P16. For the same number of guesses, published experiments crack 6% [24]. For long

passwords with grammatical structures, we crack 27.7% of passwords with Google Web

Corpus compared to 6.9% with dictionary “L”.

2. Use workarounds to generate longer values automatically: we use the workaround for Weir

Algorithm explained in Section 5.1. From experiment “Weir Space LASCII”, we find that

this approach generates exceedingly large number of guesses and fails to improve cracking

efficiency of long passwords.

JTR L-8, JTR L-8 NM, JTR GW25-8, JTR GW25-8 NM: we run JTR in word mode using

4 dictionaries: L-8, B210, GW1-8 and GW25-8. We first run JTR without mangling rules, and

then run it again with the standard JTR mangling rules. Dictionary values have minimum of

8 characters. Mangling rules can concatenate two values to form 16 character length guesses.

JTR experiment using GW25-8 performs better than other experiments by cracking 20.5% of long

passwords and 34.7% of long passwords with grammatical structures using 2.48E12 guesses. Even

with lower number of guesses it outperforms other experiments.

Weir LASCII: we first train the Weir Algorithm using minimum 16 character passwords from

the Myspace and Rockyou datasets, and then we run it using the dictionary LASCII. We had to

terminate this experiment before 2.5E12 guesses as the memory consumption became unwieldy.

Weir LASCII experiment does not match the performance of JTR GW25-8 experiment.

Weir Space LASCII: we train Weir Algorithm on word sequences of 1 to 10 words from the

Brown Corpus. The words were separated with a single space. After training, we run the cracker

using the dictionary LASCII. We strip the the spaces from the generated guesses, and check if the

guesses crack any long passwords. Weir LASCII experiment does not match the performance of

JTR GW25-8 experiment.

JTR Incremental: we train JTR Incremental mode on minimum 16 character passwords from

Myspace and Rockyou datasets. We configure it to generate passwords between 16 and 23 char-

acters in length inclusive. JTR Incremental mode uses Markov model at a character level. JTR

Incremental mode experiment fails to crack any passwords.

From our experiments we see that using a good dictionary of long password values can improve

cracking efficiency of long passwords e.g. 20.5% versus 6%. However, relying only on existing

sources such as Google Web Corpus to build dictionaries may not be ideal. Existing sources

contain values that people use often and by relying on them we may fail to crack passwords that

contain uncommon and nonsensical phrases e.g. “the communist fairy”. Building a Markov model
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based on word gram frequencies as opposed to letter gram frequencies may be useful. However,

training these word gram models on existing sources can run into similar issues. We explore a

novel technique to automatically generate longer password values in the following section.

5.3 Grammar Aware Cracking

A cracker should ideally emulate user behavior to generate password candidates. We develop a

proof-of-concept cracker that generates long passwords using grammatical structures. We use the

POS tag framework introduced in Section 3 to automatically combine words into longer password

values. The main challenges in our approach are: (1) identify a set of grammatical structures (tag-

rules) that users prefer. It is possible to identify such tag-rules from existing corpus e.g. the Brown

Corpus or long password datasets; and (2) build a dictionary for each individual POS tag in the

tag-rules. The level of difficulty involved in building tag dictionaries depends on the type of POS

tag. Closed tags such as “Determiner” and “Conjunction” (e.g. the, and) contain small number

of values that do not change much with time. On the other hand, open tags such as “Noun” and

“Noun Proper” have large dictionaries and also grow with time.

Our main goal is to evaluate the value in pursuing a grammar aware cracking approach. Will

a grammar-aware cracker allow an attacker to crack passwords that can not otherwise be cracked?

We assume that an attacker has access to a good set of tag-rules. We believe that assuming other-

wise leads to a security-through-obscurity model. As use of long passwords increases, it is likely

that long password data sets will become public, and attackers will be able to study specific tag-

rules from these datasets. To simulate a scenario that provides maximum advantage to an attacker,

we extract tag-rules from P16S long password dataset used in Section 5.2. We tag the passwords

in P16S using the the CLAWS [22] POS tagger.

Having a set of tag-rules, we proceed to build dictionaries for individual tags. First, we built a

dictionary for each tag using words present in the Brown Corpus and a small web text corpus [12].

We included web text corpus as the Brown Corpus was compiled in year 1961 does not contain In-

ternet related words. We used all words from the Brown Corpus and all words that occurred at least

Table 8: Performance of grammar-aware cracker against passwords of length 2-5 words in

P16S. %Cracked with BWeb is the percentage of passwords cracked using dictionary BWeb and

%Cracked with BWeb90 is the percentage of passwords cracked with dictionary BWeb90. %Ex-

clusive is the percentage of 2-5 word phrases cracked by grammar-aware cracker, but not by JTR

GW25-8 or other experiments in Table 7.
Guesses %Cracked %Cracked %Exclusive

with BWeb with BWeb90

5E10 9.7 18.7 4.8

1E12 14.5 25 9

2.5E12 15.2 27 10.4

10E12 20.1 29.1 11.8

40E12 25.6 35.4 13.8
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Table 9: Comparison of passphrase strength. It can be seen that strength is not a direct function

of length. Column Tag-Rule lists the tag-rule that can generate the passphrase. Column Guesses

is the based on the size of the search space of the corresponding tag-rule and the effort required

to mangle the phrase. Column Time is an estimate of the time required for guessing the given

password.
Passphrase Tag-Rule Guesses Time

Th3r3 can only b3 #1! EX MOD V DET PRO 1.3E12 22 min

Hammered asinine requirements. VD ADJ N 12.6E12 3.5 h

Superman is $uper str0ng! NP V ADJ ADV 12.3E15 142 d

My passw0rd is $uper str0ng! PRO NP V ADJ ADV 1.7E18 56 yr

10 times in the web text corpus (373 words). The words in the Brown Corpus are already tagged,

and we identified the tags for the words in the web text corpus using CLAWS. If a word has a noun

tag, then we assign it to the noun dictionary and so on. We refer to this first set of tag dictionaries as

BWeb. Next, we built an alternate set of tag dictionaries that we refer to as BWeb90. We reduced

the size of the dictionary for all POS tags except “Noun”, “Proper Noun”, “Adjective”, and “Car-

dinal Number”. We computed the cumulative probability distribution of word frequencies within

each tag dictionary and discarded words that did not meet the 0.9 cumulative probability cutoff.

Our intuition for BWeb90 is that users often use few words for closed tags such as “Determiner”

and “Conjunction”.

The inputs to the grammar aware cracker are a set of tag-rules, a set of individual tag dictio-

naries, and the maximum number of guesses it can make. The cracker computes the size of each

tag-rule (refer to Section 3 for details), sorts the tag-rules by their size, and selects subset of small-

est tag-rules whose sizes add up to the number of guesses. The cracker then generates password

candidates using the subset of tag-rules and the tag dictionaries.

In Table 8, we tabulate the performance of our grammar-aware cracker. The columns “%Cracked

with BWeb” and “%Cracked with BWeb90” list the percentage of 2-5 word passwords from P16S

cracked using the dictionaries BWeb and BWeb90 respectively. The “Exclusive” column lists the

percentage of the total dataset that was exclusively cracked by grammar-aware cracker, but not by

other crackers. We compare the perfromance of grammar-aware cracker with the perfromance of

other crackers on P16S2-5 in Table 7. For 5E10 guesses, grammar-aware cracker cracked 18.7%

of passwords, which is better than “Weir Algorithm” (4.8%) and “JTR Incremental” (0%) exper-

iments. Although not listed in Table 8, it performs better than “JTR L-8” for 2.3E10 guesses.

At 2.5E12 guesses it cracks 27% passwords, but that is not better than the performance of “JTR

GW25-8” (34.7%). However, grammar-aware cracker cracks 10% new passwords from P16S2-5

dataset. This 10% was not cracked by “JTR GW25-8” or other experiments. Further, grammar-

aware cracker consumes < 10MB of storage compared to > 50GB for JTR experiment using

Google Web Corpus. It is highly scalable as number of guesses increases, and easier for operations

such as network transfer and dictionary sorting. It also provides flexibility in targeting different

user groups e.g. we can use different “Proper Noun” dictionaries for users from North America

versus Asia. We feel that the initial results look promising and that using a grammar-aware cracker
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can indeed improve the cracking efficiency of long passwords.

6 Policy Implications

In this section, we highlight the need for policy makers to understand the impact of grammatical

structures on security of long passwords so they can implement secure password policies. We

consider the example of passphrase policies. We reexamine some of the implicit assumptions

within passphrase policies in light of the results on search space and guessing from Sections 3, 4

and 5. Many policies consider a passphrase as a long sequence of characters or words [10, 2, 3, 7]

and estimate security metrics such as size of search space and guessing effort accordingly [8,

17]. However, when users choose sentence-like or phrase-like passphrases, due to grammatical

structures the search space and guessing effort will decrease. Further, because of structure, the

strength of the passphrase does not increase uniformly with the length i.e. a longer passphrase is

not necessarily stronger than a shorter passphrase.

6.1 Relationship between Passphrase Strength and Length

Consider the passphrase examples in Table 9. The examples, “Th3r3 can only b3 #1!”, “Super-

man is $uper str0ng!” and “My passw0rd is $uper str0ng!” are from technology and academic

websites [5, 15, 3]. The example, “Hammered asinine requirements.” is a synthetic example based

on a recommendation to use nonsensical phrase [30]. The tag-rule column lists one of the gram-

matical structures that can generate the corresponding passphrase. The number of guesses lists the

total number of passphrases the corresponding tag-rule can generate, that is the size of the tag-rule

search space. The guessing estimates are based on the grammar aware cracking approach from

Section 5. The time column lists the total time required to guess all the passphrases generated by

the tag-rule, and are based on a guessing rate of 1 billion guesses per second. This rate is realistic

if we consider that current state of the art GPU accelerated machines can achieve up to 33 billion

comparisons per second and can be built with less than USD 3000 [16]. Looking at the guessing

effort and time estimates, it is clear that passphrase strength is not a direct function of the number

of words or characters in the passphrase. The passphrase “Th3r3 can only b3 #1!” has more words

than “Hammered asinine requirements.”, but is one order of magnitude weaker. Similarly, “Ham-

mered asinine requirements.” has more characters than “Superman is $uper str0ng!”, but is one

order of magnitude weaker. The examples, “Th3r3 can only be #1!” and “My passw0rd is $uper

str0ng!” vary in strength by three orders of magnitude, but satisfy the composition requirements

of the same passphrase policy [3, 4]. Underlying structures, and not just the number of characters

or words determine the overall strength of a passphrase.

6.2 User Behavior and Passphrase Policy

While studying the long password data set [24], we observed that users tend to choose fewer long

words or more short words to generate a password that meets the policy requirement of minimum

16 characters. Consider the word and character statistics from the P16S long password dataset in
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Figure 6: Word and character statistics for long passwords in dataset P16S. We also plot the his-

tograms for number of characters (Top) and number of words (Side). Note how total number of

characters in the passwords tends to remain the same as the number of words increases (shaded

oval). Users seem to meet the policy requirement of minimum 16 characters with fewer long words

or more short words. The passwords “compromisedemail” and “thosedamnhackers” both have 16

characters, but 2 and 3 words respectively.
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Fig. 6. The shaded oval in the figure highlights the passwords with 19 characters (x-axis), and

between two to eight words (y-axis). We can observe similar behavior for passwords with 16,

17, etc. characters. For example, the passwords “compromisedemail” and “thosedamnhackers”

contain 16 characters, but two and three words respectively. From our results, we know that two

passwords of equal length (same number of characters), but different number of words may vary in

strength by orders of magnitude. Interestingly, we found some explanation for this user behavior

in the field of cognitive psychology. As Jahnke and Nowaczyk explain regarding experiments on

word-length and short-term memory [23, chap. 4], “Strings of short words (e.g., cup, war) given

in tests of immediate memory are much more likely to be recalled correctly than are equally long

strings of equally familiar long words (e.g., opportunity, university). Stated alternatively, subjects

can remember for immediate recall about as many words as they can say in 2 s, and obviously they

can say more short than long words in that time.” Passphrase policies such as “choose a password

that contains at least 15 characters and at least four words with spaces between the words” [7] may

unwittingly allow weaker passphrases unless they consider user behavior and effect of structure.

6.3 Passphrase Entropy

Some passphrase security evaluations [32] use the concept of entropy of English language [35].

Informally, entropy measures how much the values emitted by a source can be compressed. Higher

compression is achieved when values repeat more often. Entropy can be a useful measure to

estimate search space. However, entropy estimations have to be based on representative probability

distributions of the source emitting the values. It is incorrect to use estimation derived for one

source for another without verifying if the two sources have similar probability distributions. To

illustrate this point, in Fig. 2, we plot the search space estimation using fixed entropy estimation

equation 21.75×4.26×i where i is the number of words in the password. We use the estimate of

1.75 bits per character for printed English [21], and 4.26 average word length statistics from the

Brown Corpus 2. In [21], a 3-word gram language model was trained on large amounts of printed

English sources, and was tested on the Brown Corpus. We observe from Fig. 2 that the estimation

for 3-word phrases closely matches the true number of unique 3-word phrases in Brown Corpus.

However, for other lengths there is varying degrees of inaccuracy. This is because of the difference

in probability distribution used by the estimation model and the true probability distribution of

n-word phrases. To our knowledge there is no study of probability distribution of user chosen

passphrases. Passphrases may also have different probability distributions for different user groups

and policies. Hence using single entropy estimation derived from printed English may be incorrect.

7 Conclusions

Long passwords is a promising user authentication mechanism. However, to achieve the level

of security and usability envisioned with long passwords, we have to understand the effect of

structures present in them. Further, we have to make policies and enforcement tools cognizant

of the effect of structures. As a first step, we developed some techniques to achieve these goals.

We studied grammatical structures, but other types of structures such as postal addresses, email
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addresses and URLs present within long passwords may have similar impact on security. More

research is necessary to fully understand the effect of structures on long passwords.
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A Increase in gain of an attacker

For a representative uniform sample set, the maximum gain of an attacker depends only on the

number of guesses to be made, G, and the ratio of the search space size to the sample size. From (4),

count
(

TSgrammar)

∑

i=1

rivi

=
count(V )

count (WSgrammar)

count
(

TSgrammar)

∑

i=1

rigi (6)

=
count(V )

count (WSgrammar)
G, (7)

where the set of weights, RU = {ri}, is not unique i.e. more than one choice of {ri} can yield

the same maximum gain. Hence, without loss of generality, we can choose a rule set RU of length

k ≤ count
(

TSgrammar) such that for ri ∈ RU ,

k
∑

i=1

rigi = G (8)

ri = 1, 1 ≤ i ≤ k − 1, (9)

0 < ri ≤ 1, i = k (10)

Let vUi and vSi denote the values in the representative uniform distribution and the skewed

sample distribution. The following steps prove that gainskew≥gainuniform.

1. If vSi ≥ vUi , ∀i then riv
S
i ≥ riv

U
i , ∀i. Hence, gainskew ≥ gainuniform. Proved. Else go to

next step.

2. Find a new rule set Rp = {ri}, 1 ≤ i ≤ k′ such that
∑k′

i=1 rigi = G and vSi ≥ vUi , ∀i. If

found, gainskew ≥ gainuniform. Proved. Else Rp only contains rules with vSi ≥ vUi and

the guessing constraint is not satisfied. Go to next step.

3. At this point, we could not find a rule set where for each rule we see an increase in gain

compared to the uniform distribution. So, in our rule set we must include some rules for

which vSi < vUi . We will show that the apparent loss in gain due to this will be more than

balanced by the increase in gain due to other rules for which vSi > vUi .

There exists a set R′ ⊆ TSgrammar where R′ ⊃ Rp. For a uniform distribution, R′ is an

instance of RU satisfying the guessing constraint. With a new skewed distribution, we know

that for each rule of Rp in R′, vSi ≥ vUi . For remaining rules in R′, vSi < vUi . For these

remaining rules, ri = 1 for all but one element and 0 < ri ≤ 1 for the last element. The

decrease in gain due to the decrease in vSj values in R′−Rp are compensated by the increase
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in vSi of rules contained in Rp. ri = 1 for all rules in Rp and all except one rule in R′ − Rp.

For each rule j with rj = 1 in R′ − Rp, the decrease in vSj is compensated by an increase

in vSi for some rule i ∈ Rp. The last rule in R′ − Rp for which rj < 1, the decrease in vSj
is compensated by vSi of some rule i in Rp with corresponding ri = 1. Hence, the overall

gain gainskew of R′ is greater than or equal to gainuniform. Recall that the rules in set R′

already satisfies the guessing constraint. Proved.
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