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Abstract

There is a constant and insidious loss of design intent throughout the software
lifecycle. Developers make design decisions but fail to record these decisions or
their rationale. As a consequence, quality and maintainability of software suffer,
since additional effort must be expended to recover—and verify—lost design in-
tent prior to implementing even minor changes in the code. This is particularly
challenging for concurrent code. Our vision is to capture and verify critical de-
sign intent through the use of fragmentary specifications supported by targeted
verification tools that can function alongside debugging and testing tools in the
practitioner’s toolkit for software quality and maintainability.

This thesis advances the idea of focused analysis-based verification as a scalable
and adoptable approach to the verification of mechanical program properties. The
main contribution of the research is the development of the concept of sound
combined analyses, through which results of diverse low-level program analyses
can be combined in a sound way to yield results of interest to software developers.
The contribution includes the underlying logic of combined analysis, the design of
the user experience and tool engineering approach, and field validation on diverse
commercial and open source code bases. Building on prior work in semantic
program analysis, this approach enables sound tool-supported verification of non-
trivial narrowly-focused mechanical properties about programs with respect to
explicit models of design intent. These models are typically expressed as code
annotations, and can be used even when adopted late in the software lifecycle for
real-world systems.

In addition to providing a sound approach to combining fragmentary analy-
sis results, the logic can support abductive inference of additional fragments of
design intent. The proposed fragments that are deemed valid by the software
developer can then be verified for consistency with code using an automated tool.
The soundness of the logic for combined analysis is proved using an intuitionis-
tic natural deduction calculus and other techniques. We validate our approach
through the 9 field trials of a prototype tool that verifies properties related to mul-
tithreading and race conditions on a diverse sample of commercial, open source,
and government code. In the majority of the field trials, this validation process
included direct use of the prototype tool by disinterested professional developers
and demonstrated that the tool performs useful verification and bug finding on
full-scale production code.
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Chapter 1

Introduction

“Formal methods for achieving correctness must support the intuitive
judgment of programmers, not replace it.” — C. A. R. Hoare [61]

1.1 Vision

Formal program specification and verification has yet to find widespread adoption in main-
stream practice. Despite a lack of practical verification tools, programmers have nonetheless
felt the need to express and verify additional specification information regarding their in-
tent for the programs they develop through models, documentation, and other specifications.
Often these extra-linguistic models and specifications are of sufficient utility and value that
they influence the design of later generations of programming languages to provide more
expressiveness with respect to both higher level abstractions and design intent. One his-
torical example is the introduction of explicit strong typing into programming languages,
such as Ada 95, Java, and C#, replacing informal notations such as Microsoft’s “Hungarian
notation” [100].

Our vision is to accelerate progress towards the use of specification and verification tools
alongside debugging and testing tools in the practitioner’s toolkit for software quality. We
place particular focus on narrowly-targeted “extra-functional” or “mechanical” requirements
(defined below) related to quality attributes. We do this because of the greater possibility,
within these constraints, of achieving scalable and adoptable verification capabilities. The
overall vision encompasses sound static, heuristic static, and dynamic analysis of the con-
sistency of code with programmer-expressed models of design intent, done at scale and in a
way that could eventually result in tools usable by working software developers. The mod-
els should be expressible in a variety of ways, for example, annotations in source code and
stand-off annotations, such as for library code. The vision also includes aggregating the re-
sults of multiple targeted low-level analyses in order to obtain higher-level conclusions more
directly usable by software developers. For example, analysis of correct locking in concurrent
Java programs relies on a combination of effects analysis, alias analysis, and several special
purpose analyses, each of which may be supported by particular annotations.



2 CHAPTER 1. INTRODUCTION

1.2 What is a mechanical program property?

What do we mean by narrowly-targeted “extra-functional” or “mechanical” requirements re-
lated to quality attributes? We use these terms to direct the focus of specification away from
what functionality the program implements toward the “mechanism” by which the program
achieves that functionality.

Instead of asking the programmer to explicitly express a full functional specification, we
ask the programmer to record specific attribute-focused design intent related to how the
program does its work. These properties can often be expressed using succinct specification
fragments, sometimes just one line of additional annotation text associated with the program.
These properties may be essential to correct or safe execution, but difficult to manually
check. We refer to these difficult to check, extra-functional properties as mechanical program
properties. These properties can be considered part of a broader set of overall program
invariant properties.

1.3 The problem

1.3.1 Scalability and adoptability of verification and analysis tools

There is a constant and insidious loss of design intent throughout the software lifecycle. De-
velopers make design decisions but fail to record these decisions or their rationale. As a
consequence, maintainability and quality of software suffer, since additional effort must be
expended to recover lost design intent prior to implementing even minor changes in the code.
Traditional formal specification and program verification techniques, such as PVS [32, 90, 91],
Larch [57, 107], VDM [16, 17], and Z [94], provide a partial solution focusing generally on
functional properties. These tools tend to require an up-front commitment by developers to
produce a formal specification and maintain that specification throughout system evolution
and maintenance. The up-front nature of this commitment and the cost and difficulty of
delivering on it limits the practicability of these techniques even when introduced at the be-
ginning of the software lifecycle. A commitment to any one of these techniques for a large
code-base can be expensive, in terms of up-front cost and schedule, but it provides the strate-
gic benefit of increased code quality. In practice, a manager of a project with an uncertain
outcome/business value may be unwilling to pay these immediate costs for a long-term quality
improvement that is difficult to measure. The reality is that large software systems, with little
documentation, could benefit from formal specification and program verification techniques,
but these systems are in the worst possible position to adopt the techniques.

Throughout the lifetime of a software system people join and leave its development and
maintenance team. As time passes informal design information, often due to neglect, be-
comes out of date and inconsistent—leaving source code as the only authoritative system
artifact. Maintainability suffers because code does not reveal all the design intent behind it.
Maintainability and new development, both are further complicated by the increasing use of
large and complex libraries and frameworks—each with its own set of usage constraints not
enforced through checks made by compilers and loaders and each evolving independently of
the systems that depend upon them. Quality suffers when design intent is tacit or informally
expressed, since programmers may give incorrect interpretations when intent is expressed
informally, or they may make wrong guesses when intent is tacit.
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There are, in fact, good reasons why we are experiencing this problem. It is difficult in our
software languages, models, and tools to focus in a rigorous way on specific aspects of design
intent relating to particular quality attributes. An early and specialized example of focused
automated analysis is provided by the SLAM tool at Microsoft, which targets consistency
of device driver code with protocol requirements associated with the Windows device driver
API. This is a very narrow “focus” of intent, but it turns out to be particularly significant in
reducing the frequency of blue screen failures of the Windows OS [8]. This tool uses model
checking in a specialized way.

An advantage of this overall approach of focusing on narrow aspects of design intent is that
the associated verification task can often be more scalable, more computationally efficient, and
more parsimonious in its requirements of explicit specification or design intent. Additionally,
these targeted analyses can often be usefully composed to deliver more aggregated results,
such as in the example of locking analysis alluded to above. Indeed, there is a large variety of
particular quality attributes that could potentially be addressed in this focused way. Mitre’s
Common Weakness Enumeration (CWE) extensive taxonomy is an example of an inventory
of such quality attributes1.

This is part of the motivation for our vision, which is to build on the idea of targeted
analysis, as evidenced in early specialized tools, to create a general framework that addresses
issues of scale, adoptability, composability of software components, and aggregation of multi-
ple constituent analyses. In our approach, we express and capture the focused intent formally
and use analysis tooling and our novel proof management capability to assure that our im-
plementations are faithful to that intent. One of the key challenges related to adoptability
is the means by which developers can keep this documentation of intent consistent with the
as-built reality of a system as both evolve.

What criteria must be considered to facilitate the acceptance of verification tools into
software engineering practice? This is not an easy question to answer definitively given the
wide diversity of today’s software engineering practices; however, we identify the following to
be key:

• Scale and composition: Tools should support “separate verification” in a manner
similar to separate compilation. Composition is key to the ability to scale up, in terms
of code size, to real-world software systems.

• Process compatibility: Tools should operate within familiar tools and processes used
by working developers in practice. In particular, it is important to avoid mandating
that an organization has to fundamentally change their tools or processes (or people)
simply to use an approach.

• Support programming teams: Modern software is typically decomposed into many
components and may depend upon many libraries. Each component or library being
developed and maintained by its own team of programmers. Teams (or teams of teams)
should have a principled approach to collaborate on models of properties.

• Gentle-slope ROI: Tools should allow small increments of specification to yield imme-
diate results—avoiding an “all-at-once” specification approach. To offer a “gentle slope”
(this term due to Michael Dertouzos) with regard to return on investment (ROI)—
increments of effort in adopting an approach yield increments of impact [66]. The

1http://cwe.mitre.org/

http://cwe.mitre.org/
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Actuality

Fault No fault

Tool says
Fault true positive false positive

No fault false negative true negative

Figure 1.1: The two types of errors that can occur in static analysis tools. In the case of a false
positive the tool reports a bug that the program doesn’t contain. In the case of a false negative the
code contains a bug that the tool doesn’t report. A tool is considered sound if it produces no false
negatives (for a given set of assumptions) [27].

benefit should be as immediate and tangible as possible and to the developer and team,
rather than (or, in addition to) deferred and more diffused across the organization.

• Late and early lifecycle adoption: Tools should be feasibility adoptable at any
point in the software engineering lifecycle. When adopted early in the lifecycle the up-
front commitment must be kept low. The approach should also facilitate late-lifecycle
adoption for real-world software systems.

• Attribute focus: Tools should focus on particular quality attributes, which we have
referred to as mechanical, to keep specification requirements frugal and to allow the
associated verification task to be more scalable in terms of computational efficiency
and concurrent development effort by team members.

• Familiar expression: Models of properties should be expressed tersely and using
terminology already familiar to programmers.

1.3.2 False positives and false negatives

Recent work in heuristics-based static analysis tools has been successful in uncovering a large
number of defects in real-world code. Tools such as FindBugs [62], PMD2, and MC [42,
28, 6]3 are finding widespread use in practice. These tools are able to scan large bodies
of existing code quickly. They support adoption late in the software lifecycle because they
require no up-front commitment. They scan a codebase and report to the tool user any
instances of known “bug patterns” [4] or violations of best practice [18, 82] that the analysis
can find. For example, the FindBugs tool discovered an infinite recursive loop within the
AnnotationTypeMismatchException class of the Java standard library which was fixed in
the next release4.

private final String foundType;

public String foundType() {
return this.foundType();

}

2http://pmd.sourceforge.net
3MC is the research basis for the Coverity Static Analysis tool (http://www.coverity.com/).
4http://bugs.sun.com/view_bug.do?bug_id=6179014

http://pmd.sourceforge.net
http://www.coverity.com/
http://bugs.sun.com/view_bug.do?bug_id=6179014
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Figure 1.2: A scan of four Apache Hadoop subprojects (Hadoop Common, HDFS, MapReduce, and
ZooKeeper) by FindBugs and PMD. Hadoop is a widely used “cloud” computing platform. The scan
reported 11,121 findings (3,380 from FindBugs, 7,628 from PMD, and 113 from both tools). This
overwhelming number of findings, a large percentage of which are false positives (the tool reports
bugs that the program doesn’t contain), is difficult for tool users to address.

The problem of false positives

A limitation of heuristics-based static analysis tools is that they can produce a large number
of findings, many of which are incorrect reports about bugs that the program doesn’t contain.
This type of error, in the parlance of diagnostic tests, is referred to as a false positive as shown
in Figure 1.1. For example, Figure 1.2 shows a scan of four Apache Hadoop subprojects,
roughly 200 KSLOC of Java code, by FindBugs and PMD which produced 11,121 findings.
The time commitment required to separate out false positive findings from findings that
indicate a real defect in the code is significant. At this scale, just prioritizing findings and
planning response actions is daunting (even if there were no false positives). Having to assign
a programmer to perform this task each time the tool is run on the code would render the
tool impractical for all but very small codebases.

Several techniques have been introduced to help mitigate the problem of false positives in
heuristics-based static analysis tools. These include the matching of findings across scans of
the code [101] so that once a finding is “marked” as a false positive by a programmer it will
no longer be reported to the tool user, the use of statistical techniques to infer which findings
are the most likely to indicate real bugs in the code [43], the categorization of tool findings
for (web or graphical) user interfaces that allow filtering and querying by the tool user, and
the annotation of design intent by the programmer into the code. Our interest is in the last.

Many of these tools provide an annotation to suppress a particular type of finding at a
location in the code. The programmer is, in effect, avoiding a false positive report by telling
the tool that this code is intended to be an exception to the heuristic rule. For example,
the @SuppressWarnings annotation below suppresses a finding from the PMD tool about
the method DoSomething violating the Java convention that method names begin with a
lowercase letter.

@SuppressWarnings("PMD.MethodNamingConventions")
public void DoSomething() { ... }

While pragmatic, we view this approach as undesirable because it has the potential to litter
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the code base with annotations of tool-specific semantics. Indeed, the semantics of a particular
annotation may vary depending upon which version of an analysis tool is being used to scan
the code. Further, if you also run FindBugs on your code you have to add another tool-specific
annotation to suppress the same warning from that tool5.

@edu.umd.cs.findbugs.annotations.SuppressWarnings("NM_METHOD_NAMING_CONVENTION")
@SuppressWarnings("PMD.MethodNamingConventions")
public void DoSomething() { ... }

A better approach, implemented by FindBugs to help reduce false positive findings about
null pointer defects [63], is illustrated below.

public @NonNull String convert(@NonNull Object o) { return o.toString(); }

The first @NonNull annotation indicates that this method is intended not to return a null
value. The second indicates that callers are assumed to ensure that the reference they pass as
the parameter o is non-null. Unlike the @SuppressWarnings annotation, the semantics of the
@NonNull annotation are not (or at least have the potential to not be) tool- or version-specific
and they precisely constrain the program’s implementation.

The problem of false negatives

FindBugs uses annotations with precise semantics, such as @NonNull, to help its ability to
report potential code defects with a low level of false positives. However, today’s heuristics-
based static analysis tools only give the programmer “bad news,” in the sense that the best
result the tool can give is, “I didn’t find anything wrong.” This is because heuristic static
analysis tools are typically unsound. This means, in the terminology defined in Figure 1.1,
that the tools attempt to reduce false positives at the cost of letting some false negatives “slip
by.” Prior to the introduction of annotations with precise semantics, this was a necessary
compromise to make these tools practicable. This is analogous to the precision/recall trade-
offs in information retrieval. The impact of too much emphasis on false positives (i.e., on
precision) is described humorously by Chess and McGraw in [27]:

“The static analysis crowd jokes that too high a percentage of false positives leads
to 100 percent false negatives because that’s what you get when people stop using
the tool.”

In fact, while the“holy grail”for many years has been to reduce false positives, it can be argued
that there has been too little discussion regarding false negatives. One of the challenges of
false negatives is understanding the “actual condition” as described in Figure 1.1—it can be
difficult to ascertain what defects are actually not found in a meaningfully-sized code base.
Generally speaking, false negatives can mislead an unwary tool user into a sense of security
if they misinterpret the meaning of the results. When the tool outputs no results it is telling
the user, as we noted above, “I didn’t find anything wrong.” The programmer, however, wants

5FindBugs is not able to use the java.lang.SupressWarnings annotation because that annotation has
only source retention (i.e., annotations are discarded by the compiler) and FindBugs performs its analysis
on Java bytecode (the output of the compiler). The java.lang.SupressWarnings annotation was intended
for use by the Java compiler. The source retention of the java.lang.SupressWarnings annotation may be
changed in a subsequent Java release to better support bytecode-based static analysis tools.
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to know the answer to the more general question, “Is this design intent fully consistent with
my code?” This is a question that can be answered only by verification or sound analysis.

1.4 Our approach: Sound combined analyses for
analysis-based verification

Another way to state our vision regarding focused or narrowly-targeted specification and
verification is that we can achieve practicable verification capability for a useful range of
focused quality attributes. We demonstrate feasibility of this vision using an Eclipse-based
prototype tool, which we call JSure, in the case of a number of (primarily) concurrency-related
attributes, many of which are prior work. Figure 1.3 lists the focused quality attributes that
can be verified by the JSure prototype analysis-based verification tool and the set of low-level
constituent analyses used by the tool. Our key idea is that there is a collection of theory and
engineering that makes the verification of highly-focused programmer expressed design intent
(e.g., annotations with precise semantics) feasibly adoptable by practicing programmers.

We present the contributions of this thesis more rigorously in Section 1.6. In Section 1.6
we also clearly differentiate our work from the work of other members of the Fluid project
at Carnegie Mellon University over the past decade. In this section, however, we briefly
introduce our approach and then present a “tour” of its features. We describe BoundedFIFO

as a non-trivial running example that we employ to showcase our work. We present how
our approach supports verification of “promises” about code by examining the limitations
of reporting sound analysis results in a manner similar to a compiler and sketch how we
overcome these limitations. We use the term promises, as introduced by Chan, Boyland, and
Scherlis in [26], to refer to annotations with precise semantics—highlighting that each one
“promises” something about the behavior of the program. We continue by introducing two
techniques, proposed promises and the scoped promise, @Promise, that assist the tool user
with model expression. We end the section with a description of how our approach allows
several unverified contingencies to exist in a chain of evidence about a promise.

Sound combined analyses

Sound combined analyses for analysis-based verification is a tool-supported approach to man-
aging mechanical properties within a software system by providing composable model-based
verification of these properties. Our approach creates verification results by combining frag-
mentary analysis results from multiple underlying analyses—linking together “chains” forged
from small “links” of evidence reported by constituent analyses about a software system. A
multitude of these chains of evidence, sometimes interconnecting and sometimes not, is formed
for each program examined. Fundamentally, a “chain of evidence” is a proof of a theorem
relating a programmer-expressed model of design intent with source code. The soundness of
these proofs, and thus any verification results provided by our Java-oriented prototype tool,
are contingent upon several assumptions:

• The Java compiler and virtual machine are faithful to the Java language semantics [52].

• The Java virtual machine ensures that consistency is maintained between the code that
is verified and the code that is loaded at runtime. For Java, in particular, this means
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Mechanical program property Verifying analyses Developer

Lock use (concurrency) binding context Greenhouse [53]
effects upper bounds
lock policy
may equal
must-hold lock
must-release lock
non-null reference
uniqueness

Thread use (concurrency) binding context Sutherland [103]
also called “thread coloring” color constraint

color constraint inference
color constraint inheritance
effects upper bounds
may equal
static call graph
uniqueness

Prohibiting new threads (concurrency) thread effects Halloran [55]

Modules (static program structure) binding context Sutherland [103]
effects upper bounds
may equal
module boundary effects
module visibility
referenced types
uniqueness

Layers (static program structure) layers are ordered Halloran (Ch. 6)
referenced types

Figure 1.3: A list of the program properties supported by the JSure prototype tool and the member
of the Fluid project research group who developed its specification language and verifying analyses.
Descriptions of the verifying analyses are found in the references to prior work (or chapters of this doc-
ument) provided in the table. The specification language for the listed mechanical program properties
is summarized below in Figure 1.7 and Figure 1.8.
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Program Threads Dispatcher Thread

BoundedFIFO
put(LoggingEvent)
AsyncAppender

get : LoggingEvent
Dispatcher

enqueues dequeues

Figure 1.4: A sketch of the use of the BoundedFIFO class in a programmer performing logging using
Apache Log4j. Multiple program threads share the buffer with a dispatcher thread.

that all classes loaded at runtime have been analyzed by the tool6.

• Any contingencies or gaps vouched for by the programmer, called “red dots” in the tool,
do not, in fact, violate any models at runtime.

In general, models of programmer design intent (about the program properties listed in
Figure 1.3) and their corresponding proofs of consistency are partial—this enables a pro-
grammer to move stepwise toward establishing some kind of verification result. When our
approach fails to verify model–code consistency there can be several reasons: (1) the model
is wrong, (2) the model is incomplete (perhaps more is needed to enable analysis to succeed),
(3) the source code is wrong, (4) the inconsistency is intended, or (5) the analysis algorithms,
due to limitations, have insufficient information to provide a result. The trade-off being
made by a programmer using our approach is a loss of implementation flexibility for a gain
in assurance.

Our approach to analysis-based verification is not meant to replace heuristic analysis, but
rather to complement it—sound analyses are generally narrowly targeted and we suggest that
they can be realized only for particular quality attributes, while heuristic analyses may cover
a much broader range of quality attributes, most of which cannot yet be addressed through
sound analysis techniques. Both approaches are intended to scale to large real-world code
bases.

Example: BoundedFIFO

The BoundedFIFO class, taken from Apache Log4j7, was used by Greenhouse as an example
of the specification and analysis techniques to verify lock use developed in [53]. This class
buffers logging events shared between program threads and a dispatcher thread. Figure 1.4
illustrates this interaction. The use of BoundedFIFO helps to shield the program from logger
latencies—the program thread enqueues a logging event into the buffer and returns, allowing
the program to proceed with minimal interruption. The dispatcher thread removes events
from the buffer and handles them (e.g., writes them out to a disk file). The implementation

6Pragmatically, for many systems, all of a program’s classes can be checked by the tool or non-checked
classes can simply be trusted. Such systems, by accepting the risk of a runtime error or failure, gain benefit
from the tool without change to the runtime environment of the system, which may be considered a greater
risk by the system’s programmers. Systems requiring a higher degree of assurance, such that they are unwilling
to risk runtime violations, can develop a custom classloader to mandate that all classes loaded at runtime for
a program are those that have been statically assured.

7http://logging.apache.org/log4j/

http://logging.apache.org/log4j/
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of BoundedFIFO uses locking to ensure to ensure thread safety. The annotations to the
BoundedFIFO code, shown boxed in Figure 1.5, precisely document its locking policy for its
intended use within the Log4j code. The semantics of the annotations, which we also refer to
as promises, are explained in Appendix A, however, to make the presentation self-contained,
we sketch their meaning below.

The @RegionLock("FIFOLock is this protects Instance") promise at line 1 specifies
that reads and writes to any of the object’s state (the five fields declared in the class that
are referred to as Instance in the promise syntax) must occur within a block synchronized
(i.e., holding the lock) on the object (i.e., this). FIFOLock is an arbitrary name chosen by
the programmer for this assertion.

The @Unique promise at line 4 asserts that the reference to the array held by the field
buf is unique—no aliases to this array are allowed. The @Aggregate annotation includes
the state of the array referenced by buf into Instance. Because Instance is protected
by a lock, the array referenced by buf is as well. The @Aggregate annotation defines a
portion of the Instance region for BoundedFIFO. It is either well-formed or not—but it does
not constrain the program’s implementation and, therefore, no analysis results are reported
about it. (Checking that annotations are well-formed is done via a process we call “scrubbing”
which is described in Section 3.3.2.)

A @RequiresLock("FIFOLock") promise is annotated on each of the seven methods de-
clared in BoundedFIFO. These promises specify that clients of a BoundedFIFO instance acquire
the lock on that instance before invoking any methods on the object. For example, client
code used to enqueue a logging event into a BoundedFIFO instance is shown in Figure 1.6.

The @Unique("return") promise at line 10 on the BoundedFIFO constructor asserts that
the receiver under construction is not aliased during object construction, i.e., that the refer-
ence to the object “returned” by this constructor is unique. In concurrent Java code, objects
are typically confined to a single thread while they are constructed (i.e., to the thread that
invokes the new expression) then safely published to other threads in the program. If we can
verify that the object is thread-confined during construction we can allow read and writes of
its protected state during construction without holding the lock. The @Unique("return")

promise verifies that the protected state of BoundedFIFO is thread-confined during construc-
tion because, in the Java programming language, threads can only communicate through
fields and this assertion prohibits an alias to the object under construction from being writ-
ten into a field (and, therefore, possibly making the object under construction visible to other
threads).

We note that, by any measure, BoundedFIFO, is far from exemplary Java code. The
field and method names are non-standard with respect to the conventions espoused by the
standard Java collections library, and not even internally consistent. What they call numElts
should be called size; what they call size and maxSize should be called capacity. Some
accessor methods, e.g., getMaxSize(), use the “get” convention, while others, e.g., length(),
don’t. The put method wastes its return value: if instead of void, it returned true if it
succeeded the class would be much easier to use and less error prone.

A limitation of the annotations to BoundedFIFO shown in Figure 1.5 is that they imply
that the class cannot be used without locking, which isn’t quite true. BoundedFIFO can safely
be used by a single thread without locking. Our annotations reflect the specific use of this
class within the Log4j code base. In this case, we deem this sufficient, because, for the reasons
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1 @RegionLock("FIFOLock is this protects Instance")

2 public class BoundedFIFO {
3

4 @Unique

5 @Aggregate

6 LoggingEvent[] buf;
7

8 int numElts = 0, first = 0, next = 0, size;
9

10 @Unique("return")

11 public BoundedFIFO(int size) {
12 if (size < 1) throw new IllegalArgumentException();
13 this.size = size;
14 buf = new LoggingEvent[size];
15 }
16

17 @RequiresLock("FIFOLock")

18 public LoggingEvent get() {
19 if (numElts == 0) return null;
20 LoggingEvent r = buf[first];
21 if (++first == size) first = 0;
22 numElts--;
23 return r;
24 }
25

26 @RequiresLock("FIFOLock")

27 public void put(LoggingEvent o) {
28 if (numElts != size) {
29 buf[next] = o;
30 if (++next == size) next = 0;
31 numElts++;
32 }
33 }
34

35 @RequiresLock("FIFOLock")

36 public int getMaxSize() { return size; }
37

38 @RequiresLock("FIFOLock")

39 public int length() { return numElts; }
40

41 @RequiresLock("FIFOLock")

42 public boolean wasEmpty() { return numElts == 1; }
43

44 @RequiresLock("FIFOLock")

45 public boolean wasFull() { return numElts + 1 == size; }
46

47 @RequiresLock("FIFOLock")

48 public boolean isFull() { return numElts == size; }
49 }

Figure 1.5: Java code for the BoundedFIFO class from Apache Log4j after adding the locking and
uniqueness annotations (shown in boxes) required to assure its locking policy.
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public class AsyncAppender {

private final BoundedFIFO fifo;

AsyncAppender(BoundedFIFO value) {
fifo = value;

}

void put(LoggingEvent e) {
synchronized (fifo) {
while (fifo.isFull()) {
try {
fifo.wait();

} catch (InterruptedException ignore) { }
}
fifo.put(e);
if (fifo.wasEmpty()) {
fifo.notifyAll();

}
}

}
...

}

Figure 1.6: Elided Java code for the AsyncAppender class used to enqueue a logging events from
program threads into a BoundedFIFO instance that is shared with the dispatcher thread.

enumerated above, BoundedFIFO is a poor candidate for more widespread use.

BoundedFIFO, with all its problems, is typical of code we have sometimes encountered in
the field (Chapter 4). If our approach is to be feasibly adoptable late in the software lifecycle
it has to be able to deal with imperfect code like BoundedFIFO. Many times we observed that
programmers were loath to change any aspect of (what they deemed to be) working code.
In other cases, however, the use of the JSure prototype analysis-based verification tool on
imperfect code exposed design problems within a class or, worse, an entire software system.
This caused the focus of a field trial to move from running the tool to worried programmers
sketching diagrams on a whiteboard.

The promises described above and the program analyses used to verify them are prior
work. Analyses designed to support this composable annotation-based approach have been
developed by members of the Fluid project at Carnegie Mellon University over the past
decade. The lock policy promises, e.g., @RegionLock and @RequiresLock, were developed by
Greenhouse in support of lock analysis [53]. The region concept, e.g., the Instance region
and the @Aggregate promise, were developed by Greenhouse and Boyland [54]. The alias
promise, @Unique, and associated uniqueness analysis were developed by Boyland [20, 21]. A
list of the promises supported by the JSure prototype tool is given in Figure 1.7 and Figure 1.8.
This list briefly describes the meaning of each annotation and indicates who developed it.
Annotations that are contributions of this thesis are indicated in (blue) italics.
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Annotation Description (Developer)
@Aggregate Declares that regions of the object referenced by this field are to be

mapped into regions of the object that contains the field to which
this annotation is applied. (Greenhouse, Boyland)

@AggregateInRegion Declares that the Instance region of the object referenced by this
field is to be mapped into a named region of the object that con-
tains the field to which this annotation is applied. (Greenhouse,
Boyland)

@AllowsReferencesFrom Constrains the set of types that are allowed to reference the anno-
tated program element. (Halloran)

@Assume Declares a promise that is assumed about a portion of the system.
(Halloran)

@AssumeFinal Declares that the field or parameter to which this annotation is
applied should be treated as if it is declared final, despite the fact
that it is not. (Halloran)

@Borrowed Declares that the parameter or receiver to which this annotation
is applied does not receive any new aliases during execution of the
method or constructor. (Boyland)

@Color Constrains the annotated method to be callable only from a thread
that satisfies a boolean expression over thread role names declared
using @ColorDeclare. (Sutherland)

@ColorDeclare Declares a named thread role, referred to as a thread color. (Suther-
land)

@Grant Declares that a particular thread role (i.e., a named thread color)
is granted to a thread. (Sutherland)

@GuardedBy The field or method to which this annotation is applied can
only be accessed when holding a particular lock, which may
be a built-in (synchronization) lock, or may be an explicit
java.util.concurrent.Lock. (Goetz, et al. [51])

@Immutable The class to which this annotation is applied is immutable. (Goetz,
et al. [51])

@IncompatibleColors A global constraint on the program that at most one of the thread
roles may be taken by a particular program thread at the same
point in time. (Sutherland)

@InLayer Declares that the annotated type is part of the named layers. (Hal-
loran)

@InRegion Declares that the field to which this annotation is applied is mapped
into the named region. (Greenhouse, Boyland)

@Layer Declares a named layer as well as the type set that types in the
layer may refer to. (Halloran)

@MaxColorCount Declares that a particular thread role may be associated to 0, 1, or
n program threads. (Sutherland)

@MayReferTo Constrains the set of types that the annotated type is allowed to
reference. (Halloran)

Figure 1.7: (A through Ma) An alphabetical list of the annotations supported by the JSure prototype
tool. Each annotation includes a brief description and the (parenthesized) name of its developer(s).
Italicized annotations (also in blue) are contributions of this thesis. The majority of these annotations
were developed by members of the Fluid project (with references to this prior work listed in Figure 1.3),
however, the tool also supports the Goetz, et al. annotations from the book Java Concurrency in
Practice [51]. The annotations are further described, with examples of their use, in Appendix A.
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Annotation Description (Developer)
@Module Declares that the compilation unit to which this annotation is ap-

plied is part of the named module. (Sutherland)
@NotThreadSafe The class to which this annotation is applied is not thread-safe.

(Goetz, et al. [51])
@NoVis Declares that the annotated type, field, method, or constructor is

not of the exported interface of the module it is contained within.
Overrides any default visibility, for example, it could be used on a
method to override a @Vis annotation on a type. (Sutherland)

@PolicyLock Declares a new policy lock for the class to which this annotation is
applied. (Greenhouse)

@Promise Declares a promise that applies to multiple declarations within the
scope of code that the annotation appears on. (Halloran)

@Region Declares a new abstract region of state for the class to which this
annotation is applied. (Greenhouse, Boyland)

@RegionEffects Declares the regions that may be read or written during execution
of the method or constructor to which this annotation is applied.
(Greenhouse, Boyland)

@RegionLock Declares that holding a particular lock, which may be
a built-in (synchronization) lock, or may be an explicit
java.util.concurrent.Lock, is required when a particular region of
state is accessed. (Greenhouse)

@RequiresLock Declares that the method or constructor to which this annotation
applies assumes that the caller holds the named locks. (Green-
house)

@ReturnsLock Declares that the object returned by the method to which this
annotation is applied is the named lock. (Greenhouse)

@Revoke Declares that a particular thread role (i.e., a named thread color)
is revoked from a thread. (Sutherland)

@Starts Declares what threads, if any, are started, i.e., by Thread.start(),
during the execution of the method or constructor to which this
annotation is applied. (Halloran)

@ThreadSafe The class to which this annotation is applied is thread-safe. (Goetz,
et al. [51])

@Transparent Declares that the annotated code may be legitimately be invoked
from any thread. (Sutherland)

@TypeSet Declares a named set of types to be used in @MayReferTo and
@Layer annotations. (Halloran)

@Unique Declares that the parameter, receiver, return value, or field to which
this annotation is applied is a unique reference to an object. (Boy-
land)

@Vis Declares that the annotated type, field, method, or constructor is
part of the exported interface of the module it is contained within.
(Sutherland)

@Vouch Vouches for any “×” analysis result within the scope of code that
the annotation appears on. (Halloran)

Figure 1.8: (Mb through Z) An alphabetical list of the annotations supported by the JSure prototype
tool. Each annotation includes a brief description and the (parenthesized) name of its developer(s).
Italicized annotations (also in blue) are contributions of this thesis. The majority of these annotations
were developed by members of the Fluid project (with references to this prior work listed in Figure 1.3),
however, the tool also supports the Goetz, et al. annotations from the book Java Concurrency in
Practice [51]. The annotations are further described, with examples of their use, in Appendix A.
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1.4.1 Supporting verification

A limitation of prior work by members of the Fluid project is that analysis result reporting
is similar to traditional compiler error messages. If we consider our example, the “compiler-
like” analysis results for the BoundedFIFO compilation unit would be reported as shown in
Figure 1.9. We call this type of reporting “compiler-like” in the sense that the descriptive
message output by the tool has to communicate the semantics of the finding. It differs from
compiler output because the output of a consistent result is good news to the programmer,
while compiler output is traditionally limited to error reporting (i.e., no news is good news).

The analysis results report “points of consistency” and “points of inconsistency” found
in the code. The analyses discussed above, and considered in our work, are sound, this
means that for the analysis findings that are reports of potential inconsistency between stated
promises and a program, there are no false negatives. That is, if there is an actual “point
of inconsistency,” then there will necessarily be a corresponding finding. On the other hand,
there may be false positives, in the sense that the analysis may fail to find evidence of actual
consistency. Sound analyses are also referred to as conservative in the traditional compiler
literature [2].

In this section we discuss the following three limitations of analysis result reporting done
in a manner similar to traditional compiler error messages:

(1) Relationships between promises are lost or only hinted at in the textual description of
the reported result.

(2) Due to (1), the impact of even a single “point of inconsistency” on the consistency of
other promises is difficult to understand.

(3) The reported results do not directly answer the programmer’s verification question, “Is
my annotation consistent with the code?”

Following this discussion we introduce the drop-sea proof management system and describe
the features that it provides to help overcome these limitations.

Lost relationships between promises

Some relationships between the promises in BoundedFIFO are not evident from the results
reported in Figure 1.9. In this style of reporting the analysis can only “hint” at these relation-
ships through the textual description reported to explain the result to the analysis tool user.
We consider this limitation in the context of the following three examples from the findings
listed in Figure 1.9:

• Analysis result f4 is a consistent finding about the write to the field size that occurs at
line 13. Notice, however, that at this point in the program FIFOLock (i.e., this) is not
held. As we discussed above, object construction is a special case, and indeed the lock
analysis “trusts” that the @Unique("return") promise at line 10 on the BoundedFIFO

constructor is consistent with the code.

• Analysis result f24 is a consistent finding about the read of the field numElts that
occurs at line 39 in the implementation of the length() method. Notice, however, that
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Lock Policy Analysis Results for BoundedFIFO

Finding About Description

f1 + r1 thread-confined access to numElts at line 8
f2 + r1 thread-confined access to first at line 8
f3 + r1 thread-confined access to next at line 8
f4 + r1 thread-confined access to size at line 13
f5 + r1 thread-confined access to buf at line 14
f6 + r1 FIFOLock held for access to numElts at line 19
f7 + r1 FIFOLock held for access to buf at line 20
f8 + r1 FIFOLock held for access to first at line 20
f9 + r1 FIFOLock held for access to buf[first] at line 20
f10 + r1 FIFOLock held for access to first at line 21
f11 + r1 FIFOLock held for access to size at line 21
f12 + r1 FIFOLock held for access to first at line 21
f13 + r1 FIFOLock held for access to numElts at line 22
f14 + r1 FIFOLock held for access to numElts at line 28
f15 + r1 FIFOLock held for access to size at line 28
f16 + r1 FIFOLock held for access to buf at line 29
f17 + r1 FIFOLock held for access to next at line 29
f18 + r1 FIFOLock held for access to buf[next] at line 29
f19 + r1 FIFOLock held for access to next at line 30
f20 + r1 FIFOLock held for access to size at line 30
f21 + r1 FIFOLock held for access to next at line 30
f22 + r1 FIFOLock held for access to numElts at line 31
f23 + r1 FIFOLock held for access to size at line 36
f24 + r1 FIFOLock held for access to numElts at line 39
f25 + r1 FIFOLock held for access to numElts at line 42
f26 + r1 FIFOLock held for access to numElts at line 45
f27 + r1 FIFOLock held for access to size at line 45
f28 + r1 FIFOLock held for access to numElts at line 48
f29 + r1 FIFOLock held for access to size at line 48

Uniqueness Analysis Results for BoundedFIFO

Finding About Description

f30 + r4 reference held by buf is unique (i.e., unaliased)
f31 + r10 constructor does not alias this

f32 + r10 super() promises not to alias this

Figure 1.9: “Compiler-like” analysis results for BoundedFIFO compilation unit. (Top) The analysis
results reported from the Greenhouse lock policy analysis [53]. (Bottom) The analysis results reported
from the Boyland uniqueness analysis [20, 21]. Each analysis result is labeled (e.g., f1) for identifica-
tion. A finding of “+” indicates a “point of consistency” between the code and the promise the result
is about (no “points of inconsistency” were found in this code). The promise the result is about is
referred to by an r with a subscript that indicates the line of code where the promise appears in
Figure 1.5 (e.g., r1 refers to the @RegionLock promise at line 1 in Figure 1.5). A short description is
reported to explain the result to the analysis tool user.
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within this method FIFOLock (i.e., this) is not acquired. This result “trusts” that the
@RequiresLock("FIFOLock") promise about the length() method is consistent with
any code that invokes the method.

• Analysis result f32 is a consistent finding that the implicit call to the superclass construc-
tor (i.e., the no-argument constructor for Object) respects the @Unique("return")

promise at line 10 that the receiver will not be aliased. The no-argument construc-
tor for Object promises @Unique("return") as a “standoff annotation” using XML
structures because Object is part of the Java standard library and is typically used in
binary form. This promise on the no-argument constructor for Object is “trusted” by
this analysis result.

None of the relationships between promises described in the above examples is clearly com-
municated by the textual description for that particular result.

Unknown impact of an “×” result

Because the analyses we employ are sound, if all reported analysis results are consistent
then the promises that those results are about are verified—they express an invariant on all
possible executions of the code examined. However, if any “×” results are reported does that
mean that all the promises annotated in the code base are unverifiable? Maybe, maybe not.
Using this style of analysis result reporting it can be difficult for the tool user to understand
the impact of an“×”result on the consistency of promises with the code. Clearly, this problem
is related to the previous one, if we do not understand the relationships among promises we
cannot reason about the impact of any particular “×” result on the consistency of related
promises.

As an example of this problem, consider the code and analysis results for the Dispatcher

class shown in Figure 1.10. The three reported analysis results are “×” results because the
code does not respect the concurrency policy expressed by the promises in BoundedFIFO—
it synchronizes on the wrong lock: this which is the Dispatcher instance, rather than
fifo which is the BoundedFIFO instance. These three “points of inconsistency” make the
@RequiresLock("FIFOLock") promises on the length(), get(), and wasFull() methods
unverifiable, and correspondingly the @RegionLock promise at line 1. This impact is not
evident to the programmer from the analysis output.

Not answering the right question

A fundamental limitation of the compiler-like style of analysis results reporting is that it
doesn’t directly answer the question that the programmer is most concerned with, “Are
my annotations consistent with my code?” An examination of the analysis results about a
particular promise may not give the programmer the correct answer to this question. For
example, by examination of the analysis results about the @RegionLock promise at line 1 of
BoundedFIFO (referred to as r1) reported in Figure 1.9 and Figure 1.10, the programmer could
conclude that this promise is verified. However, the three “×” results reported in Figure 1.10
about @RequiresLock promises in the BoundedFIFO code indirectly make this conclusion
invalid.
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50 public class Dispatcher {
51

52 private final BoundedFIFO fifo;
53

54 Dispatcher(BoundedFIFO value) {
55 fifo = value;
56 }
57

58 LoggingEvent get() {

59 synchronized ( this ) { // Broken - acquires the wrong lock
60 LoggingEvent e;
61 while (fifo.length() == 0) {
62 try {
63 fifo.wait();
64 } catch (InterruptedException ignore) { }
65 }
66 e = fifo.get();
67 if (fifo.wasFull()) {
68 fifo.notify();
69 }
70 return e;
71 }
72 }
73 ...
74 }

Lock Policy Analysis Results for Dispatcher

Finding About Description

f33 × r38 FIFOLock not held when invoking length() at line 61
f34 × r17 FIFOLock not held when invoking get() at line 66
f35 × r44 FIFOLock not held when invoking wasFull() at line 67

Figure 1.10: Code and“compiler-like”analysis results for the Dispatcher class used by the dispatcher
thread to read events from the BoundedFIFO instance and handle them (e.g., writes them out to a disk
file). (Top) Elided Java code for the Dispatcher class. This class holds the wrong lock, this rather
than fifo, when invoking methods on the shared BoundedFIFO instance. (Bottom) The analysis
results reported from the Greenhouse lock policy analysis [53]. A finding of “×” indicates a “point of
inconsistency” between the code and the promise the result is about (no consistencies were found in
this code). Line and result numbering is continued starting after the last line of the BoundedFIFO

code to keep references unambiguous.
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To be safe, the programmer has to attempt to fix any reported “×” analysis result so that
he or she can be sure that their promises are consistent with the code.

Overcoming these limitations: The drop-sea proof management system

In Chapter 2 we develop a formal model that describes the construction of proofs within
our approach to analysis-based verification. This includes specifying precisely how “plug-in”
program analyses report their findings and the development of an automatable proof calculus
to create program- or component-level results based upon these findings. This proof calculus
allows separate analysis of components and composition of the results such that the outcome
corresponds to that of a whole-program analysis. To support automated reasoning in the
JSure prototype tool we introduce the drop-sea proof management system (Chapter 3). By
proof management we refer to the manipulation of formal proofs and proof fragments, i.e.,
lemmas, as data structures. Drop-sea manages the results reported by “plug-in” program
analyses and automates the proof calculus developed in Chapter 2 to produce verification
results based upon these findings.

We now discuss how drop-sea helps to overcome the three limitations of the“compiler-like”
analysis result reporting described above.

• Overcoming – Lost relationships between promises. Our approach makes these
lost relationships between promises explicit by taking advantage of the observation that
an understanding about how particular promises relate to one another is embodied in
the constituent analyses. Our approach provides a mechanism for its elicitation and use.
If an analysis result “trusts” a promise then we refer to that promise as a prerequisite
assertion. Each analysis result is allowed to report a prerequisite assertion. The analysis
results for f4, f24, and f32 used in the three “lost relationship” examples above, now
including their prerequisite assertions, are shown in Figure 1.11.

Prerequisite assertions, as presented in Chapter 2, are allowed to be formulas in promise
logic: an intuitionistic (or constructivist) sequent calculus is used for proving sequents
in promise logic. In addition, analyses propose promises that may or may not exist in
the code as their prerequisite assertions. A special analysis called promise matching is
used to match each proposed promise with a real promise in the code. The prerequisite
assertions shown in Figure 1.11, to simplify this example, may be considered to be post
promise matching8.

In our approach, constituent analyses report their results to drop-sea. These results are
modeled as a graph. The example drop-sea structures presented in this chapter are all
trees, however, in the presence of recursive calls in the program the resulting structure
is a graph.

A portion of the drop-sea graph for the BoundedFIFO and Dispatcher classes, focused
on the analysis results for f4, f24, and f32, after the lock policy and uniqueness analyses
have reported their results is shown in Figure 1.12. Drop-sea is named to invoke the
metaphor of drops of water in a sea. Drop-sea is implemented as an interconnected

8The prerequisite assertion for f4 shown in Figure 1.11 is further simplified to remove the possibility
that thread-confined access to the field is assured with effects rather than uniqueness as this would intro-
duce a disjunction into its prerequisite assertion—disjunction is supported by the proof system introduced in
Chapter 2.
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Analysis Results for BoundedFIFO

Finding About Prerequisite Description

f4 + r1 r10 thread-confined access to size at line 13
...
f24 + r1 r38 FIFOLock held for access to numElts at line 39
...
f32 + r10 r78 super() promises not to alias this

75 <package name="java.lang">
76 <class name="Object">
77 <constructor>
78 <Unique>return</Unique>
79 ...
80 </constructor>
81 </class>
82 </package>

Analysis Results for java.lang.Object

Finding About Prerequisite Description

f36 + r78 ⊺ constructor does not alias this

...

Figure 1.11: (Top) Elided analysis results for BoundedFIFO reporting an explicit prerequisite assertion
for each “point of consistency” found in the code by the constituent analysis. (Middle) Elided promises
about the no-argument constructor of the java.lang.Object class (the superclass of BoundedFIFO).
The @Unique("return") promise is made as a “standoff annotation” using XML structures because
Object is part of the Java standard library and is typically used in binary form. Annotation via
XML is equivalent to direct annotation of code. This promise, referred to as r78, is the prerequisite
assertion for the analysis result f32. (Bottom) Elided analysis results for java.lang.Object. The
result about the @Unique("return") promise on the no-argument constructor does not require a
prerequisite assertion, the symbol ⊺ is used to express this lack of a prerequisite. (As is presented
in the next chapter, the prerequisite assertion is logical formula that constrains the verification of
the promise the result is about, ⊺, which represents the tautology, indicates no constraint.) Line and
result numbering is continued starting after the last line of the Dispatcher code to keep references
unambiguous.



1.4. OUR APPROACH: ANALYSIS-BASED VERIFICATION 21

r1  —  @RegionLock("FIFOLock is this protects Instance")

r10  —  @Unique("return") r38  —  @RequiresLock("FIFOLock")

r78  —  @Unique("return")

f4  —         thread-confined access to size at line 13 f24  —         FIFOLock held for access to numElts at line 39

f33  —         FIFOLock not held when invoking length() at line 61

f32  —         super() promises not to alias this

f31  —         constructor does not alias this

f36  —         constructor does not alias this

Figure 1.12: A portion of the drop-sea graph for the BoundedFIFO and Dispatcher classes after the
lock policy and uniqueness analyses have reported their results for the promises and code in Figure 1.5
and Figure 1.10. Promise drops, which are independent of any specific analysis, are represented by
ovals. Result drops, which are reported from constituent analyses, are represented as rectangles. Each
result drop shows a “+” for a conservative judgment by the analysis of model–code consistency, or an
“×” otherwise. A directed edge from a promise drop to a result drop indicates that the promise is a
prerequisite assertion for that result. A directed edge from a result drop to a promise drop indicates
that the result is about that promise.

graph of dependencies between “drops” (the nodes) that represent promises, analysis
results, and supporting information in a container we call the “sea”. The graph repre-
sents a chain of evidence about each promise, with regard to its consistency as well as
the what that consistency depends upon. By explicitly tracking dependencies, drop-sea
performs the role of truth maintenance for the system.

• Overcoming – Unknown impact of an “×” result. The drop-sea graph shown
in Figure 1.12 can be analyzed to determine the verification result for each promise.
This analysis of the graph automates the proof calculus that we developed to create
program- or component-level verification results. The “decorated” graph after comput-
ing verification results on the graph in Figure 1.12 is shown in Figure 1.13. This graph
makes it clear that the “×” analysis result, f33, makes it impossible for the tool to verify
the @RequiresLock promise at line 38 and the @RegionLock promise at line 1.

The verification results computed on the drop-sea graph are only meaningful on promises.
However, by keeping“results”on the other types of nodes we can help the user to under-
stand why a promise can’t be verified. The user can follow the trail of “×”s to determine
which “×” result or set of “×” results caused the verification to fail. This trail of “×”
results is visible in the JSure tool user interface as shown in Figure 1.14.

The JSure tool uses a tree to display the drop-sea graph with computed verification
results to the tool user. The tool view in Figure 1.14 is expanded to allow a comparison
of how the tool displays the drop-sea graph nodes shown in Figure 1.13. As in the
drop-sea graph, verification results, indicated by small icons (referred to in Eclipse
as decorators) to the lower-left, are really only meaningful on promises, however, we
decorate the tree to help the tool user track down “×” results causing a promise to be
unverifiable.

• Overcoming – Not answering the right question The addition of drop-sea and
the computation of verification results allows the JSure tool to answer the question
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r1  —  @RegionLock("FIFOLock is this protects Instance")

r10  —  @Unique("return") r38  —  @RequiresLock("FIFOLock")

r78  —  @Unique("return")

f4  —         thread-confined access to size at line 13

f33  —         FIFOLock not held when invoking length() at line 61

f32  —         super() promises not to alias this

f31  —         constructor does not alias this

f36  —         constructor does not alias this

f24  —         FIFOLock held for access to numElts at line 39

Figure 1.13: A portion of the drop-sea graph for the BoundedFIFO and Dispatcher classes showing
computed verification results. A small “+” (to the lower-left) indicates model–code consistency. A
small “×” (to the lower-left) indicates a failure to prove model–code consistency (the grey nodes).

that the programmer is most concerned with, “Are my annotations consistent with my
code?” The answer reported about the @RegionLock promise at line 1 of BoundedFIFO
is no.

Tool interaction toward consistency

The programmer would likely not be satisfied with leaving the promises in BoundedFIFO in the
state of partial consistency reported by the JSure tool in Figure 1.14. We now discuss the tool
interaction with the programmer to work toward model–code consistency. This interaction
is illustrated in Figure 1.15.

• The programmer would, from the unverifiable promise of interest, follow the trail of
“×”s to find a result that caused the verification to fail. In Figure 1.15 the programmer
is interested in verifying the @RegionLock promise and follows the trail of “×”s to the
call to the length() method at line 61 of the Dispatcher class (shown in Figure 1.10).

• A double-click on the“×”analysis result highlights the identified code in the Java editor.
In this case, the code identified by the “×” analysis result is the unprotected call to the
length() method. Upon examination of the code the programmer can determine that
the code is errant, it uses the wrong lock, and change line 59 to synchronize on fifo

rather than this. In this example the code is incorrect, however, it can be the case
that the expressed model is incorrect and the code is correct. In this situation the
programmer would fix, or add to, the model rather than changing the code.

• After saving the change to line 59, the JSure tool re-runs its analysis and determines that
the @RegionLock promise is consistent with the code. The programmer may continue
to express more models and verify them with the tool or choose to move on to other
work.

1.4.2 Supporting model expression

A possible criticism of our approach to analysis-based verification is the number of annotations
required to allow the constituent analyses to verify a particular model. For our BoundedFIFO
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Figure 1.14: A JSure tool view showing a portion of the verification results for the BoundedFIFO and
Dispatcher classes. The results show the 29 accesses to protected state reported in Figure 1.9. The
tool view is expanded to show how it displays the drop-sea graph nodes shown in Figure 1.13. A small
“×” (to the lower-left) indicates a failure to prove model–code consistency.
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↓
Double-clicking on the analysis result (at the bottom)

selects the unprotected call in the source code of Dispatcher.java↓

↓
The programmer determines that

the code is wrong and fixes line 59↓

↓
The JSure tool re-runs its analysis
and determines that the promise

is consistent with the code↓

Figure 1.15: Programmer–tool interaction to fix the errant Dispatcher code (in Figure 1.10) and
verify the @RegionLock promise at line 1 in BoundedFIFO (as shown in Figure 1.5).
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example we had to enter 11 promises to express a model complete enough for the JSure tool
to verify. In this section we introduce two approaches to assist the programmer with model
expression: proposed promises and the scoped promise, @Promise. These two techniques help
the programmer avoid tedious annotation of their code. In this section we continue to use
the BoundedFIFO example to describe both of these techniques.

Proposed promises: Helping the tool user complete partial models

Our approach allows constituent analyses to report any necessary prerequisite assertions as
part of each analysis result. Analyses, when they report a prerequisite assertion, propose
promises that may or may not exist in the code. A special analysis called promise matching
is used to “match” each proposed promise with a programmer-expressed promise in the code.
A match indicates that the assertion represented by the programmer-expressed promise in
the code implies the assertion represented by the proposed promise. In this section we are
concerned about what the tool does if no “match” can be found, i.e., a promise proposed by
a constituent analysis is not implied by any promises in the code base.

The computation that produces verification results is able to use the remaining proposed
promises (after promise matching) to determine the “weakest” prerequisite assertion for each
promise in the code base. The calculation is similar to the computation of the weakest pre-
condition for a block of code in the classic verification literature [40], however, a prerequisite
assertion is not the same as a precondition. Traditionally, a precondition, ψ, would be at a
program point before a block of code, B, and a postcondition, ψ, would be after it; we would
say that if B starts execution in a state that satisfies ψ, then the state after running running
B will satisfy φ [79]. In our approach to analysis-based verification, the corresponding terms,
prerequisite assertion and consequential assertion (i.e., the promise we are verifying), are used
with respect to the consistency of promises with the program. Specifically, consistency of a
prerequisite assertion ψ with the program is a sufficient condition to establish the consistency
of the consequential assertion with the program.

Our ability to compute the weakest prerequisite assertion for a particular promise allows
the tool to propose annotations to the code base that can be reviewed and accepted by the
tool user. Using the BoundedFIFO example we now discuss the tool interaction with the
programmer to help to annotate the BoundedFIFO code from a single promise.

It can be argued that the annotations to BoundedFIFO shown in Figure 1.5, except for the
@RegionLock annotation at line 1 that expresses the programmer’s intended locking policy
for the shared state of the class, are rather bureaucratic and tedious for the user to manually
enter—or to even know that they need to be entered. The textual description of an analysis
result is a poor way to communicate a “need” for further annotation to the tool user because
a precise expression of both the location and content of the needed annotation can become
lengthy and potentially confusing. Therefore, the JSure tool proposes “missing” promises to
the user that it can, after approval by the user, place within the code.

The tool interaction to help annotate the BoundedFIFO code from a single programmer-
entered promise is illustrated in Figure 1.16. This example assumes that the Dispatcher

code has been fixed (we discuss the behavior if it has not been fixed below).

• The programmer expresses the locking policy for shared state defined in the Bounded-

FIFO class with the promise @RegionLock("FIFOLock is this protects Instance").



26 CHAPTER 1. INTRODUCTION

The programmer enters the @RegionLock promise into BoundedFIFO↓

↓
JSure cannot verify the promise, but it proposes “missing” promises to the programmer↓

↓

↓
Using the (circled) context menu, the programmer directs the tool to add the promises↓

↓
With the 10 additional promises in the code, JSure can verify the locking model↓

Figure 1.16: Programmer–tool interaction to use proposed promises to help annotate BoundedFIFO

(as shown in Figure 1.5) from one programmer-entered @RegionLock annotation.
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• The JSure tool reports that the @RegionLock promise cannot be verified. The tool
reports that the 27 accesses to the protected fields in the class are performed in code
that the analysis cannot verify is holding the correct lock. (Verifying analysis are
modular and do not check the whole program.)

• The programmer could begin to follow the trail of“×”s to examine the results that caused
the verification to fail, but the tool has proposed 10 promises that it has determined,
through the computation of the weakest prerequisite assertion, may be missing from
the programmer’s code.

• The programmer selects all these promises and asks the tool, via a context menu, to
add them to the code base.

• The JSure tool previews the edit to the code for the programmer to confirm.

• The programmer confirms the edit and, with the 10 additional promises now in the code,
JSure re-runs its analysis and determines that the @RegionLock promise is consistent
with the code.

The use of proposed promises to help the user with model expression is effective, in part,
because the perplexity, the number of potential models that can make a particular promise
verifiable, is low. This property holds for the analyses supported by the JSure tool today
(shown in Figure 1.3), but it may not hold for all useful analyses9.

In the presence of errant code, such as the implementation of the Dispatcher class shown
in Figure 1.10, the tool can propose a promise for annotation into the code that may seem
“odd” to the programmer with respect to its location or, after it is added, its inability to
be verified. For example, because the get() method in the Dispatcher class acquires the
wrong lock (at line 59) the weakest prerequisite assertion would include a proposal to add a
@RequiresLock("FIFOLock") to the get() method in the Dispatcher class. The location
of this promise, i.e., outside of the BoundedFIFO class, should prompt the programmer to
consider that something may be wrong with the code. If, however, the promise is added to the
code by the programmer, the JSure tool will fail to verify it—prompting further investigation
by the programmer into the errant implementation of the Dispatcher class.

@Promise: Helping the tool user avoid repetitive annotation

Scoped promises are promises that act on other promises or analysis results within a static
scope of code. The @Promise scoped promise can be used to help the tool user avoid repet-
itive annotation. The use of @Promise allows the user to declare—using an aspect-like syn-
tax [69]—the declarations (e.g., types, methods, and fields) within its static scope of where a
“payload” promise is to be placed.

Figure 1.17 shows the use of @Promise to place payload promises onto declarations within
the BoundedFIFO class. The pattern new(**), used in the promise at line 3, matches all
constructors declared within the class with any number of parameters (including zero)—
this pattern will match the one constructor in the class and place the payload promise

9One analysis where this property may not hold is the permissions analysis developed by Boyland, Retert,
and Zhao [23, 22]. This analysis, in some cases, can result in a weakest prerequisite assertion that consists of
the disjunction of hundreds of assertions.
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1 @RegionLock("FIFOLock is this protects Instance")
2 @Promises({
3 @Promise("@Unique(return) for new(**)"),
4 @Promise("@RequiresLock(FIFOLock) for *(**)")
5 })
6 public class BoundedFIFO {
7

8 @Unique
9 @Aggregate

10 LoggingEvent[] buf;
11 ...
12 }

Figure 1.17: Elided Java code for the BoundedFIFO class using two @Promise annotations to
place annotations onto declarations within the class. The first annotation (at line 3) places a
@Unique("return") annotation all the class’s constructors. The second annotation (at line 4) places
a @RequiresLock("FIFOLock") annotation on all the class’s methods. The use of @Promise reduces
the number of annotations from the 11 shown in Figure 1.5 down to 6. The @Promises annotation
allows us to place more than one @Promise annotation on the class.

@Unique("return") on it. The pattern *(**), used in the promise at line 4, matches
all methods (including static methods10) declared within the class with any number of
parameters—this pattern will match the 7 methods declared in the class and place the pay-
load promise @RequiresLock("FIFOLock") on all of them. The use of @Promise annotations
allows the programmer to convey that all declarations should promise something—those that
exist in the code today and those added to the code in the future. In general, @Promise allows
our approach to support an “enter-once” principle. If the programmer is expressing a unitary
concept, then its expression should not have to be scattered throughout the code base.

We refer to promises that are “created” by @Promise as virtual promises. Programs on
operating systems with virtual memory are unaware that they do not directly address physical
memory. Similarly, verifying analyses within an analysis-based verification system do not
realize that virtual promises are not directly annotated in the code. In our BoundedFIFO

example, no verifying analysis would note a difference between the @Unique("return") and
@RequiresLock("FIFOLock") promises in Figure 1.5 and the virtual promises created by the
@Promise annotations at lines 3 and 4 in Figure 1.17. This abstraction, performed by the
infrastructure of the analysis-based verification tool, simplifies construction of new program
analyses.

The aspect-like syntax can be avoided if the intent is to place the payload promise on
all declarations where it is meaningful within a static scope of code. Figure 1.18 shows an
example where @Promise is used to place a payload promise of @InLayer("MODEL") on all
types declared within the edu.afit.smallworld.model package. The for clause, used in
the examples in Figure 1.17, is omitted from the @Promise syntax in this case.

Sutherland used @Promise to reduce the number of programmer-expressed annotations
in a field trial on the 140 KSLOC Electric open-source VLSI-design tool. He reports in [103]:

“With [@Promise], we were able to avoid writing nearly two thousand annotations,
and instead write only fifty-four—six scoped promises in each of nine packages.”

10To match all only non-static methods the pattern !static *(**) would be used.
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@Promise("@InLayer(MODEL)")
package edu.afit.smallworld.model;

Figure 1.18: The use of an @Promise annotation in a package-info.java file to place an @InLayer

promise on every type declared within the edu.afit.smallworld.model package. The @InLayer

promise, introduced in Chapter 6, is used to map types into static layer—part of a structural model
of the code that can be verified by JSure.

@Promises({
@Promise("@Color(DBExaminer | DBChanger) for get*(**) | is*(**) | same*(**)"),
@Promise("@Color(DBExaminer | DBChanger) for compare(**) | connectsTo(**)"),
@Promise("@Color(DBExaminer | DBChanger) for contains*(**) | describe()"),
@Promise("@Color(DBExaminer | DBChanger) for find*(**) | num*(**)"),
@Promise("@Color(DBChanger) for set*(**) | make*(**) | modify*(**)"),
@Promise("@Color(DBChanger) for clear*() | new(**) | add*(**)")

})
package com.sun.electric.database.network;

Figure 1.19: A package-info.java file within the Electric open-source VLSI-design tool annotated
with six @Promise annotations by Sutherland to place @Color promises as part of a field trial of the
JSure tool and his thread coloring analysis [105].

An example of the annotations made to one of the nine Electric packages is shown in Fig-
ure 1.19. The details of the pattern matching syntax used in this example are presented in
Chapter 3.

1.4.3 Supporting contingencies

Our approach allows three types of unverified contingencies to exist in the chain of evidence
about a promise:

1. Using the @Vouch promise, a programmer can vouch for an overly conservative analysis
result—in effect, changing it from an “×” to a “+”.

2. Using the @Assume promise, a programmer can assume an assertion holds about a
component that is outside of the programmer’s scope of interest, e.g., on the other side
of an organizational or contractual boundary.

3. The programmer can turn off, using the JSure tool preferences, a particular program
analysis. This action causes all the promises checked by that analysis to have no results.
The tool “trusts” that these promises are consistent.

@Vouch and @Assume perform differing roles in our system—@Vouch acts on (“×”) analysis
results, whereas @Assume acts on (absent) promises.

Taking one or more of the above actions introduces a contingency into any proof that
relies upon them. Drop-sea explicitly tracks these contingencies and flags them with a red
dot. The red dot, so named because of its dark red“•” icon in the tool user interface, indicates
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that a programmer is willing to prick a finger and vouch for the unverified contingency with
a small drop of blood—at least virtually.

@Vouch – Dealing with overly conservative analysis results

An example of a programmer vouching for unverifiable code is shown in Figure 1.20. The
example is from the Apache Hadoop MapReduce project11. Hadoop MapReduce is a pro-
gramming model and software framework for writing applications that rapidly process vast
amounts of data in parallel on large clusters of compute nodes. In this example several pro-
grammer vouches (Figure 1.20 shows one of these in the CapacityTestUtils code snippet)
have been used to indicate that test code violates a locking policy that protects the status
of a job in progress. In the tool output the red dot icon is shown to the upper-left of any
result that depends upon a the use of @Vouch. Similar to computed verification results this
indication of a contingency is only meaningful on promises, however, we decorate the tree to
help the tool user track down which contingencies caused the red dot to appear on a promise.

While pragmatic, we admit that @Vouch exhibits the same potential for abuse that we ex-
pressed concern about regarding the @SupressWarnings annotation in Section 1.3.2, namely
that the code base can become littered with annotations having tool-specific semantics—their
meaning tied to the implementation of a particular analysis for the purpose of stopping its
complaints about what is, from the programmer’s point of view, correct code. However, given
the fundamental limitations of static analysis, annotations like @Vouch for analysis-based ver-
ification and @SupressWarnings for heuristics-based static analysis (and the Java compiler
itself) are necessary, though we advocate trying to limit their use as much as possible.

@Assume – Expressing expectations about other components

We allow the programmer to assume, within a limited scope of code, that a promise exists
about a particular declaration outside of that scope of code. This type of assumption is
expressed using the @Assume scoped promise. The @Assume scoped promise allows the user
to declare—using an aspect-like syntax [69]—declarations (e.g., types, methods, and fields)
outside of its static scope that the user would like the “payload” promise to be consistent for.
Virtual promises created by @Assume are not checked by verifying analyses. In addition, they
are only visible to a verifying analysis when it is examining the compilation unit where the
@Assume annotation appears.

Figure 1.21 shows an example where a local assumption is introduced into the program.
This example, again drawn from the Apache Hadoop MapReduce project, provides another
example of the tool-generated promises using the proposed promise feature.

• The programmer expresses that the getDescendantContainerQueues() method of the
JobQueue class should start no threads by placing a @Starts("nothing") promise on
the method.

• The JSure tool reports that the @Starts("nothing") promise cannot be verified be-
cause the no-argument constructor for java.util.ArrayList does not promise to start
no threads. The tool, however, has proposed that this promise be added.

11http://hadoop.apache.org/mapreduce/

http://hadoop.apache.org/mapreduce/
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@Region("StatusState")
@RegionLock("StatusLock is this protects StatusState")
public class JobInProgress {
@InRegion("StatusState")
JobStatus status;
...

}

public class CapacityTestUtils {
@Vouch("This code is used only for testing")
static class FakeJobInProgress extends JobInProgress { ... }
...

}

Figure 1.20: An example of using the @Vouch promise to indicate that test code is intentionally
unverifiable. (Top) Elided Java code for the JobInProgress class from Hadoop’s MapReduce project
including a locking model, StatusLock, that declares that a lock on the receiver (i.e., this) is used
to protect reads and writes to the field status. The MapReduce project contains 13 subclasses of
JobInProgress that access this field. (Middle) Elided Java code for the CapacityTestUtils class
that declares, as a nested class, a subclass of JobInProgress called FakeJobInProgress. The @Vouch
annotation states this class is unverifiable because it is test code. (Bottom) JSure screenshot of the
results for the verification of the @RegionLock promise on JobInProgress. The icon for any “×”
analysis results that are within the scope of the @Vouch are changed to a (hollow grey) “+” with the
@Vouch as a prerequisite assertion. The @Vouch promise in the results is identified by a T decorator
to the upper-right of the @ icon, indicating that it is trusted. Because the programmer’s vouch is not
verified by analysis, a red dot is introduced above any verification result that depends upon it. The
red dot highlights a contingency to the tool user.
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The programmer specifies that a method in the JobQueue class should start no threads↓

↓
JSure cannot verify the promise, but it proposes a “missing” promise to the programmer↓

↓
Using the context menu, the programmer directs the tool to add the promise—because the
promise is on a library class, i.e., java.util.ArrayList, it is added as a local assumption↓

↓

↓
With the assumed promise in the code, JSure can verify the model↓

Figure 1.21: Programmer–tool interaction of using proposed promises to add a local assumption,
@Assume, to the JobQueue class in Hadoop’s MapReduce project. Assumed promises are identified in
the tool user interface by an A decorator to the upper-right of the @ icon. Because the assumption is
not verified by analysis, a red dot is introduced above any verification result that depends upon it.
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• The programmer selects this promise and asks the tool, via the context menu, to add
it to the code.

• The java.util.ArrayList class is included in the Hadoop MapReduce project as a
library (i.e., a JAR file), therefore, the JSure tool proposes that the method that needs
this design intent annotate it as a local assumption with the promise:

@Assume("@Starts(nothing) for new() in ArrayList in java.util")

This promise assumes that there is a consistent @Starts("nothing") promise on the no-
argument constructor, specified by the pattern “new()”, for the java.util.ArrayList

class, specified by the pattern “in ArrayList in java.util”12.

• The programmer confirms the edit and the tool re-runs its analysis and determines that
the @Starts("nothing") promise on the getDescendantContainerQueues() method
is consistent with its implementation, contingent upon the consistency of the assump-
tion.

The use of @Assume allows the tool user to make reasonable assumptions about libraries used
by their code that have not been annotated by other means, such via standoff annotations
in XML13. The use of @Assume, similar to @Vouch, has the potential for abuse, however,
the tools ability to track each assumption and which verification results depend it make it
straightforward for teams to audit the assumptions and check each for reasonableness.

Toggling analyses on and off

The ability, through the tool preferences, turn any verifying analysis on or off has been critical
to the successful completion of many of the field trials of the JSure tool. For example, the
uniqueness analysis is often turned off in the tool during time-constrained field trials (because,
as is discussed in Chapter 4, it can be somewhat unpredictable and time consuming). This
speeds analysis turnaround time for large bodies of code and improves the pace of programmer
modeling—and the overall pace of the time-limited engagement. The tool user is comfortable
with this trade-off because red dots decorate any verification result that is contingent upon
promises that, instead of being checked by the uniqueness analysis, are trusted to be consistent
with the code base.

1.5 Issues of adoption

The capture and expression of design intent is not a simple problem from the standpoint of
programmers actually adopting analysis-based verification and associated tools. Immediate
benefit must be visible from simple efforts by a developer or the tool is likely to become unused

12Our syntax, as presented in Section 3.5.4 avoids the ambiguity between package names, type names, and
nested type names in patterns that is introduced if they are separated by a “.” through a reversal of the
constituent portions of the declaration’s name and the use of the keyword “in”. Leaving out an “in” clause
indicates to match everything, e.g., if we left off the in java.util clause in the example above then the
assumption would be made on any class named ArrayList in any package.

13Many of the classes in the Java standard library, including java.util.ArrayList, have been annotated
by us to aid tool users. We removed the annotations on java.util.ArrayList, made via XML, for this
example.
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“shelf-ware”. Design intent must be captured incrementally and be immediately useful even
when incomplete and inconsistent—guiding the source code base to (1) be consistent with
design intent, (2) capture further design intent, (3) and to support, and not impede, ongoing
functional evolution of the software system. Thus a key hypothesis of our approach is that the
incremental model, representing an incremental return on investment (ROI), will facilitate
adoption. In this section we suggest several key adoption issues and then discuss how our
approach addresses them.

A key issue is to allow late-lifecycle adoption. It is often difficult to know a priori which
software systems will end up becoming mission or business-critical. This imposes a funda-
mental design constraint on our model semantics:

In the absence of an explicit model, language-correct code is never considered “wrong”

This“rule”establishes our basis to do verification in a manner consistent with the incremental
reward principle even when starting with large systems. We view an unannotated program,
i.e., lacking any expression of design intent, as a program that has no models against which
it can be verified. Unlike similar tools for lock use policy assurance, such as RaceFreeJava
[45, 46] and Guava [7], we do not require that the entire program to be assured thread-safe at
once. These two tools use modular type systems that allow the program to be analyzed on a
per-class basis, but require the whole program to be annotated before meaningful analysis can
be performed. Tools focused more on checking, or “bug hunting”, such as ESC/Java [38, 77],
by assuming unlikely invariants (e.g., all fields must be non-null) force large amounts of
annotation to convince the tool that correct code is not wrong in the hope of discovering
defects during this process.

Our self-imposed constraint to use “language-safe-defaults” is not a prohibition against
the use of inference. It simply places inferred results in a distinct category from verification
results. Inference can help direct user focus to areas of the code where modeling may provide
benefit or help the user complete a partially constructed model of intent. Verification results
are always with respect to explicit models—models a programmer wants to remain consistent
with code during system evolution. Finally, the programmer, using the @Promise scoped
promise, can “change the default.”

A second key issue is maintenance of consistency—when inconsistent; we must provide a
stepwise path to consistency. Of course, the programmer must decide where the adaptation
is needed (i.e., is the design intent wrong or is the code wrong?) or when inconsistency
should be tolerated for a period of time. Software modeling techniques such as the various
constituents of UML [49] and its precursors [19, 97], while embracing certain aspects of this
approach, are not always rigorous in meaning or precisely linked to code. This is no surprise—
much of the early work in modeling was motivated by “synthetic” activity (development and
design), with less regard for “analytic” activity (assurance and maintenance). The distinction
drawn here is between an ongoing design record (a maintained assembly of interlinked models
and descriptions) and a process stepping stone on the way to a delivered implementation
(intermediate steps whose relevance fades once we’ve moved to the next stage). The focus
of analysis-based verification is on implementation-level design decisions, incrementality, and
tool-supported consistency management.

A third key issue is to enable verification of design intent without change to the program-
ming language. A trend throughout the evolution of software engineering is what we term the
“rising tide of abstraction.” By this we refer to the steady increase in the level of abstraction
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of programming languages over the last 40 years. Some examples include the shift from goto

programming (ad hoc control structures) to structured programming [39], the migration from
programming-in-the-small to programming-in-the-large [37], and the migration from weak to
strong type systems within programming languages [93]. When the “rising” of this “tide”
actually happens in mainstream practice, however, is an unpredictable market phenomenon
and often sporadic. Hence, tool-supported verification without language change can have
a more immediate impact and present less of an adoption barrier than achieving the same
result by modifying a programming language. The focus of analysis-based verification is on
the verification of program properties that are currently ignored by widely used programming
languages (or handled only by runtime exceptions). Although it is possible that some of the
mechanical design intent we express as annotations, (e.g., Greenhouse [53], Sutherland [103])
could be expressed in a future programming language—this does not change the need for or
utility of our approach to “rise” above the current level of the “tide”.

Adoption of verification (for positive assurance) can be difficult because, ironically, it is
less immediately useful to developers than bug finding. Its greater value, as often perceived
by developers, is in facilitating update and evolution of code in a way that can be more
assuredly safe. This is because it documents key design decisions and provides immediate
feedback (during the update/evolution process, later) regarding the consistency of potential
changes with established design intent (“established” because it was actually verified during
initial development).
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1.6 Claims and contributions

In this section we present the contributions of this thesis. We also differentiate our work from
the work of other members of the Fluid project at Carnegie Mellon University. We first discuss
the overall vision of the Fluid project followed by a presentation of our contributions toward
reaching this vision. We conclude with a summary of the evidence we present, throughout
this dissertation, in support of the claims of this research.

1.6.1 The vision of the Fluid project

The key idea and overall vision of the Fluid research group is focused analysis-based veri-
fication for software quality attributes(1) as a scalable(2) and adoptable(3) approach to the
verification(4) of consistency of code with its design intent(5). Each of the superscripts in the
previous sentence is elaborated below.

(1) Quality attributes: Focus on narrowly-targeted “mechanical” requirements related
to quality attributes—what we term mechanical program properties—rather than func-
tionality. These include safe concurrency with locks, data confinement to thread roles,
static layer structure, and others.

Verification of each quality attribute listed above has its own combination of contribut-
ing constituent static analyses. For example, safe concurrency with locks is verified
through a combination of underlying low-level constituent analyses: lock policy, must-
hold lock, must-release lock, may-equals, uniqueness, effects upper bounds, and binding
context.

(2) Scalable: Adapt constituent static analyses to enable composition—allowing tools to
support “separate verification” in a manner similar to separate compilation. Compo-
sition is key to the ability to scale up, in terms of code size, to real-world software
systems.

(3) Adoptable: Offer a “gentle slope” with regard to return on investment (ROI) for
developers and teams for their effort. Any increment of effort we ask programmers to
undertake should yield a generally immediate reward in the form of added assurance,
expression of a model, guidance in evolution, or bug finding. We refer to this as the
incremental reward principle.

We achieve adoptability through attention to the management of proof structures, and
through careful engineering of tools and teams. We set for ourselves a goal that, when
we visit a team of developers and their code for a few days, we can work with them to
obtain useful and actionable results before lunch on the first day.

(4) Verification: Sound static analyses produce no false negatives about an attribute and
a model of programmer design intent. We build on sound analyses, which is how we
get to verification results.

(5) Design intent: Express programmer design intent as fragmentary models/specifications
focused on quality attributes. Instead of asking the programmer to explicitly express
functional specifications, we ask the programmer to record design intent related to par-
ticular mechanical program properties that may be difficult for them to manually check.
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Figure 1.22: A sketch of how the principal contributions of this thesis (in bold at the center) relate
to the overall vision and prior work of the Fluid project at Carnegie Mellon University.

We rely on these fragments of specifications to specify intent regarding the program.
This way, tools will know the difference between what is accidentally true about a
program and what is the intent of the developer.

This is the vision for the entire Fluid project. It encompasses my work as well as work
by other project members. This work builds upon extensive work by Greenhouse, Boyland,
Sutherland, Chan, and Scherlis. And, as we describe more fully below, their work builds on
the theory and engineering introduced in this thesis.

1.6.2 This thesis

Our principal contribution to the overall vision presented above is the development of the
concept of sound combined analyses for the verification of mechanical program properties.
These include

• Meta-theory to establish soundness of the approach of combining multiple constituent
sound static analyses (e.g., binding context, effects upper bounds, uniqueness) into an
aggregate developer-focused analysis (e.g., safe lock use) (Chapter 2).

• User experience design and tool engineering approach designed to address adoption
and usability criteria of professional development teams (Chapter 3).

• Field validation in collaboration with professional engineers on diverse commercial
and open-source code bases (Chapter 4).

Figure 1.22 illustrates the relationship among the vision of the Fluid project, the three
principal contributions of this thesis (above), and the enabling sound analysis work of Green-
house, Boyland, and Sutherland. The promises described above and the program analyses
used to verify them are predominantly prior work (except where noted). Sound static anal-
yses designed to support this composable annotation-based approach have been developed
by Greenhouse, Boyland, and Sutherland (as well as the author) over the past decade (as
discussed in Section 1.9).
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Our work, incorporating the prior sound analysis work of the Fluid project, led to the
development of the JSure prototype analysis-based verification tool. The tool supports the
verification of the promises listed in Figure 1.7 and Figure 1.8 and was used in our field
validation. The field validation presented in Chapter 4 validates the overall vision of the
Fluid project as well as our contribution. It has also informed the development of our work.

Other new technical and engineering results contributed by this thesis include:

• The drop-sea proof management system: As introduced in some detail above,
drop-sea is the proof management system used by the JSure tool. Drop-sea manages
the results reported by constituent program analyses and automates the proof calculus
presented in Chapter 2 to create verification results based upon these findings.

• Management of contingencies—the red dot: Drop-sea allows several unverified
contingencies to exist in a chain of evidence about a promise. A programmer can
vouch for an overly conservative analysis result—changing it from an “×” to a “+”. A
programmer can turn off a particular program analysis causing all the promises checked
by that analysis to have no results—causing the tool to trust these promises without any
analysis evidence. Finally, the programmer can assume something about a component
that is outside of the programmer’s scope of interest (e.g., on the other side of an
organizational or contractual boundary). These actions introduce a contingency into
any proof that relies upon them. Drop-sea explicitly tracks these contingencies and
flags them with a red dot.

• Proposed promises: Our approach has constituent analyses report any necessary
prerequisite assertions as part of each analysis result. Analyses, when they report a
prerequisite assertion, propose promises that may or may not exist in the code. A spe-
cial analysis called promise matching is used to “match” each proposed promise with a
programmer-expressed promise in the code. If no “match” can be found, i.e., a promise
proposed by a constituent analysis is not in the code base, then the computation that
produces verification results is able to use the unmatched proposed promises to deter-
mine the “weakest” prerequisite assertion for each promise in the code base. This allows
the tool to propose “missing” annotations, from the point of view of the constituent
analyses, to the code that can be reviewed and accepted by the tool user.

• Scoped promises: Scoped promises are promises that act on other promises or anal-
ysis results within a static scope of code. We introduce three types of scoped promises:
@Promise to avoid repetitive user annotation of the same promise over and over again
in a class or package, @Assume to support team modeling in large systems where pro-
grammers are not permitted access to the entire system’s code, and @Vouch to quiet
overly conservative analysis results. Scoped promises help to “scale up” the ability of a
programmer or a team of programmers to express design intent about a large software
system.

• An approach to the specification and verification of static program structure:
Previous work by Murphy and Notkin [85] has demonstrated the utility to practicing
programmers of tool support to understand and maintain structural models of their
code. Our approach combines the creation of the high-level model and a mapping
from the high-level model to the source code via source code annotations—primarily
a syntactical difference—but our purpose is the same: to help programmers express,



1.6. CLAIMS AND CONTRIBUTIONS 39

understand, and maintain the static structure of their code. Our primary contribu-
tion to prior work is the addition of a lightweight approach to specify and verify static
layers with well defined semantics that we suggest are consistent with traditional lay-
ered semantics. In addition, our approach, as presented in Chapter 6, more naturally
facilitates composition of multiple overlapping static models.

The JSure tool supports the Java programming language. Hence, our results support the
above claims for the Java programming language. Proof of further external validity, e.g., to
other similar programming languages, while a reasonable inference, is outside the scope of
this work. We do conjecture that our results can be extended to other languages with strong
typing such as C# or Ada95. It is more speculative to contemplate C++ and C, though
there may be idioms that can be addressed.

Our approach is not without drawbacks. The largest is the size and complexity of the tool
required to support its effective use. The JSure prototype tool is 260 KSLOC of Java code
adding to the over 1,300 KSLOC of Java code comprising the Eclipse Java IDE (which JSure
augments). Gaining programmer trust in such a large and opaque tool is a challenge. The
“opacity”of the tool can be contrasted to the transparency of simple testing with a framework
such as JUnit [14]. We are encouraged by the success in practice of large and complex quality
improvement tools such as debuggers, profilers, and (more recently) automated refactoring.
Large and opaque tools have had success in practice when they provide transparent benefit
to the programmer with acceptable cost and usability.

1.6.3 Validation

In this section we summarize the evidence presented throughout this dissertation in support of
the claims of this research. In the three sections below we summarize the evidence presented
for each principal contribution of our work (Section 1.6.2). Chapter 7 recapitulates the
evidence we provide in support of our thesis claims.

Meta-theory

The meta-theory developed in this thesis is presented in Chapter 2. This chapter demon-
strates that our verification proof calculus supports the construction of verification proofs
from fragmentary analysis results reported by multiple underlying constituent analyses. We
establish soundness of our verification proof calculus by a proof (of Theorem 2.7.4) that re-
lates a semantics of fragmentary analysis results to broad conclusions regarding the program
being analyzed. Several key lemmas (Section 2.6 and Section 2.7) are proved in support
of the soundness theorem about the verification proof calculus and the precise semantics of
fragmentary analysis results.

User experience design and tool engineering approach

The JSure prototype tool, incorporating the prior work of the Fluid project on sound analysis,
was developed as part of our work. The tool provides evidence that our approach, with its
constituent analyses, is feasible for the tool-supported verification of non-trivial narrowly-
focused mechanical properties about programs with respect to explicit models of design intent.
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The engineering of this tool (and its user experience) is introduced in Chapter 1 and presented
in further depth in Chapter 3.

Our engineering work provides a technical and software framework, realized in the JSure
tool, for the verification of mechanical program properties. Two case studies of adding new
aggregate analyses to the JSure tool are used to qualitatively evaluate the benefits, as well as
identify limitations, of this verification framework (e.g., drop-sea, scoped promises, proposed
promises, the red dot), with respect to scalability when new attributes are added. These
case studies are presented in Chapter 5 and summarized below in Section 1.8. One case
study, static layers, was conducted by the author and the technical details of this analysis are
presented in Chapter 6. The second case study, thread coloring, was conducted by Sutherland
and the technical details of this analysis are presented in [103].

Field validation

Nine trials using the prototype JSure tool in the field on open source, commercial, and
government Java systems are presented in Chapter 4. As illustrated in Figure 1.22, our field
trials provide empirical evidence in support of the contribution of our work as well as the
overall vision of the Fluid project. These field trials are used to

• Quantitatively measure our prototype tool’s scalability with respect to code size.

• Demonstrate that analysis-based verification adheres to the incremental reward princi-
ple and can provide immediate benefit to disinterested practitioners.

• Measure the effectiveness of analysis-based verification with respect to defects found
and perceived value of the approach by disinterested practitioners.

• Demonstrate the feasibility of adoption late in the software engineering lifecycle.

An overview of our trials of the JSure tool in the field is presented in the next section.

1.7 Field trials in a nutshell

Chapter 4 presents results from nine field trials of the JSure tool on open source, commercial,
and government Java systems conducted by the Fluid project between July 2004 to October
2009. In this section we present a brief overview of these field trials and the results obtained
from them.

Figure 1.23 provides the date and duration of each field trial as well as the client organiza-
tion visited and which client software was examined. Many of these field trials were performed
under strong restrictions relating to disclosure, e.g., Company-A and Company-B, while oth-
ers were deemed by the participating company to be more public, e.g., Sun Microsystems and
Yahoo! field trials on open source software (Electric and Hadoop, respectively) that they are
a patron of. Although field trials do not allow as controlled an environment as case studies
(typically performed by the author at the university) the feedback they have provided has
been essential to the evolution of the work we present. In addition, they provide evidence
that our approach is considered of value to impartial practitioners and, therefore, feasibly
adoptable in practice.
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Duration Code Size
Date (days) Organization Software Examined (KSLOC)

Jul 2004 3 Company-A Commercial J2EE Server-A 350

Dec 2004 3 NASA/JPL Distributed Object Manager 42
MER Rover Sequence Editor 20
File Exchange Interface 12
Space InfeRed Telemetry Facility 18

Feb 2005 3 Sun Electric – VLSI Design Tool 140

Oct 2005 3 Company-B Commercial J2EE Server-B 150

Jul 2006 3 Lockheed Martin Sensor/Tracking (CSATS) 50
Weapons Control Engagement 30

Dec 2006 1 Lockheed Martin Equipment Web Portal 75

Mar 2007 3 NASA/JPL Testbed 65
Service Provisioning (SPS) 40
Mission Data Processing (MPCS) 100
Next-Generation DSN Array 50

Oct 2007 3 NASA/JPL Maestro 17
Command GUI 139
Accountability Services Core 48

Oct 2009 3 Yahoo! Hadoop HDFS 107
Hadoop MapReduce 281
Hadoop ZooKeeper 62

Figure 1.23: Date, duration, organization, software examined, and code size of the Java software
systems examined during the 9 field trials of the JSure tool.

Each field trial took place at the participant’s facilities (e.g., at Sun Microsystems or at
Yahoo!)—typically in the work areas of the developers with whom we were collaborating—
and was 3 days in duration. The largest code base examined in a field trial was 250 KSLOC
with a code size of 100 KSLOC to 150 KSLOC being more typical. In addition, it was unusual
for us to be allowed access to the source code that the participant wanted to examine before
we arrived on the first day.

The feedback received from our field trials is encouraging. For example, Lockheed Martin
Advanced Technology Laboratories published a short article about our field trials in [25]. In
terms of effectiveness they report

“[JSure] identified logic and programming errors in sensor and tracking software
in which earlier extensive testing had revealed no errors.”

In terms of usability they report

“[JSure] is also easy to use. After a brief training period of less than four hours,
developers were able to run [JSure] on their programs with only minimum assis-
tance.”

In terms of perceived value and effectiveness they report
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“One engineer observed during the [JSure] tests, ‘I can’t think of any of our Java
code I wouldn’t want to run this tool on.’ Another engineer observed, [JSure]
‘pointed out things that we would not have looked at—would not have even no-
ticed or caught in a code review.’ ”

Critical feedback from these field trials has helped to shape the evolution of our work
and the engineering of the JSure tool. For example, significant changes to the annotation
syntax have been made based upon feedback from our work in the field14. One analysis—the
analysis used to verify uniqueness promises—has been found to not scale well, in terms of
performance, when used on real-world Java code and is being replaced in the tool.

The core technical contributions of this thesis were in place for each of the nine field trials.
All nine field trials used the Eclipse-based JSure prototype tool, including the drop-sea proof
management system, the @Promise scoped promise, and contingency management via the red
dot (e.g., turning analyses on and off, and trusted promises). @Assume and @Vouch were later
added to JSure in response to feedback from the field. The last capability added to JSure
as part of this work was proposed promises, which was developed in response to feedback
from the field to help support model expression (as discussed in Section 1.4.2), but was not
available for use during any field trial.

As noted above, our field trials provide empirical evidence in support of our work as well
as the overall work of the Fluid project. The constituent analyses developed by Greenhouse,
Boyland, and Sutherland could not be employed effectively to obtain results meaningful to
professional software developers without the contribution of our work. This is because they
had no significant support for user interaction, and, more importantly, could not create proof
structures that rendered results directly meaningful to developers. For example, the proof
structures developed over the course of three days during our first field trial include several
thousand nodes in proof trees and several thousand individual underlying constituent analysis
results. There is no means for individual developers (or the research team, for that matter)
to manage this quantity of separate proof elements without tool assistance.

A brief aside about using dynamic analysis to help understand concurrency

Our experience in the field drove the development of the Flashlight dynamic analysis tool [58].
This tool observes the concurrency attributes of a running program (e.g., shared state, lock
use, lock ordering, and lock contention) and provides a query-oriented user interface. In
addition, Flashlight is able to propose annotations to the code that can be verified by JSure,
i.e., propose promises based upon what it observed in terms of the program’s locking behavior.

The Flashlight dynamic analysis tool was developed because many programmers did not
understand the concurrency that was occurring within code that they were tasked to maintain.
Their company might have purchased the code, the original developers might have been
reassigned to other projects, or they didn’t understand of the concurrency policies that the
libraries and frameworks that they used imposed upon their code.

14It is interesting to compare the annotations used by Greenhouse in [53] to those in this dissertation—the
evolution of the annotation syntax since 2003 is apparent.
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1.8 Case studies of constructing new aggregate analyses
in a nutshell

Chapter 5 presents two case studies of adding new aggregate analyses to the JSure prototype
tool: thread coloring and static layers. These case studies are used to evaluate the verification
framework (e.g., drop-sea, scoped promises, proposed promises, the red dot) developed as part
of this work and implemented in the JSure tool with respect to the benefit the framework
provides for the incorporation of new analyses.

Sutherland thread coloring

Sutherland, using our approach to analysis-based verification, has developed an approach,
called thread coloring, that allows developers to concisely document their thread usage poli-
cies in a manner that enables the use of sound scalable analysis to assess consistency of policy
and as-written code [104, 103, 105]. Thread coloring is a useful technique to statically ver-
ify concurrency policies that do not involve locking, such as the thread-confinement policy
adopted by most object-oriented GUI frameworks (e.g., SWING/AWT and SWT).

Sutherland’s work was done simultaneously with the work presented in this thesis and
provides a case study of the use of our approach for the verification a new mechanical program
property. In particular, drop-sea and the @Promise scoped promise were found to be beneficial
to communicate verification results to the tool user and to reduce repetitive annotation,
respectively.

Static program structure—static layers

Chapter 6 presents an approach to the specification and verification of static program struc-
ture developed by the author. Our approach builds upon prior work by Murphy and Notkin [85],
called reflexion models, that demonstrated the utility to practicing programmers of tool sup-
port to understand and maintain structural models of their code.

This work is presented, in the context of this thesis (and as a case study in Chapter 5),
as evidence that our approach is scalable with respect to analysis breadth. In addition, this
work is presented as evidence that our approach supports the verification of a non-concurrency
related mechanical program property.

1.9 Related work

The motivation and setting of our work draw from the sound analyses developed by the Fluid
research group led by William L. Scherlis at Carnegie Mellon University. This includes sound
analysis techniques for the verification of lock policies by Greenhouse [53], object-oriented
effects by Greenhouse and Boyland [54], and unique references by Boyland [20]. We build
upon this body of prior work, by addressing the limitations discussed above, to take a first
step towards increasing its practicability and adoptability. Further, our work has helped to
facilitate trials of analysis-based verification in the field.

As discussed above, heuristics-based static analysis tools, such as FindBugs [62], have
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recently started to support the use of annotations to control false positive results and enable
improved bug finding. Despite the demonstrated usefulness of these tools, our approach
is focused on enabling tool-assisted verification rather than finding code defects (although
finding code defects does occur as a programmer works to attain model–code consistency).
We suggest that these tools, in the future, could benefit from our work. In particular, they
could use our approach to enable the sound verification of annotations with precise semantics.

A contemporary project focused on practical specification and verification is the Spec#
project at Microsoft Research15. This project builds upon the results of the ESC/Modula 3
and ESC/Java projects [38, 47]. This research has produced a C#-like language that allows
the first-class expression of preconditions, postconditions, and invariants [10]. The primary
technical contribution of this project is the Boogie verifier for object-oriented programs [11].
Similar to the JSure analysis-based verification system, the Spec# compiler and Boogie ver-
ifier are built into a widely-used IDE, in the case of Spec# Microsoft Visual Studio (rather
than Eclipse). While we suggest that the vision of this work is the same as ours, namely to
find widespread adoption in mainstream practice, their approach differs from ours in several
ways. First, their approach requires programmers to express preconditions, postconditions,
and invariants about their code. We have purposely avoided this requirement because of the
large number of programmer annotations required in even modest-sized code bases. We agree,
however, that if they are successful, the widespread specification of preconditions, postcondi-
tions, and invariants would have a positive impact on mainstream software quality practice16.
Second, their approach centers around the Boogie verifier. The Spec# compiler translates
the annotated program into BoogiePL, an intermediate language for program analysis and
program verification [35], that is then processed by the Boogie verifier. This differs from our
approach where we provide a core proof management system, drop-sea as described in Chap-
ter 3, that allows “plug-in” constituent verifying analysis. In our approach the constituent
analyses must encode a deep understanding of the programming language semantics, in theirs,
this must be expressed in BoogiePL for processing by the Boogie verifier. Finally, their fo-
cus on assertions about the program’s state makes it difficult to express more “mechanical”
attributes of a program’s design, e.g., non-state related assertions, such as the specification
and verification of static program structure (introduced in Chapter 6) or the Fluid module
system [103].

The Java Modeling Language (JML)17 [74, 75] provides a specification language for the
Java programming language, but unlike our approach, its focus is on behavioral or functional
specification. JML combines the design by contract approach of Eiffel [81] and the model-
based specification approach of the Larch family of interface specification languages [57],
with some elements of the refinement calculus [41]. The JML is supported by a large research
community as well as by several tools [76]. One example verification tool, the LOOP tool [67]
uses JML for a specification language and supports verification through PVS [91]. LOOP,
like many of these tools (e.g., KeY [15] and Jive [84]), requires manual interaction with the
theorem prover to attain verification. Our approach supports significantly more automation
but is limited to the verification of narrowly-targeted quality attributes. By adopting this
narrow focus we are able to avoid requiring that the programmer use only a subset of the
Java programming language.

15http://research.microsoft.com/en-us/projects/specsharp/
16Stranger things have happened, Kent Beck made unit testing popular by referring to it as “Extreme” [13,

14].
17http://www.eecs.ucf.edu/~leavens/JML/

http://research.microsoft.com/en-us/projects/specsharp/
http://www.eecs.ucf.edu/~leavens/JML/
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Several programming languages, similar to Spec#, support specification as part of the
language. One example that has been successfully commercialized by Altran Praxis 18 is
SPARC Ada [9]. The use of SPARC Ada, or similar languages designed with verification
in mind, require an up-front commitment in terms of cost and schedule with the strategic
benefit of increased code quality. Our approach differs in that we support adoption late in
the software lifecycle but is limited to the verification of narrowly-targeted quality attributes.

Other related work is discussed in context throughout the presentation of analysis-based
verification in this thesis.

1.10 Outline

The remainder of this dissertation is organized as follows:

Chapter 2 develops a formal model of our approach to analysis-based verification. This
model is the basis of the tool engineering we present in Chapter 3; however, several versions
of the JSure prototype tool were developed prior to this model and influenced its develop-
ment. We choose to present this model first to precisely describe the essential elements of
our approach and to assure the reader that the tool engineering is based upon principled
foundations.

Chapter 3 presents significant details about the design and engineering of the JSure pro-
totype tool. The realization of this tool has evolved based upon feedback from its use in
several field trials (discussed in Chapter 4). The chapter presents an architecture for an
analysis-based verification tool, the drop-sea proof management system, the management of
contingencies—the red dot, the scoped promises @Promise, @Assume, and @Vouch, and the
JSure tool user interface.

Chapter 4 presents details about the nine field trials conducted by the Fluid project over
a number of years with the evolving JSure prototype tool. These field trials are presented as
evidence of the practicability and adoptability of analysis-based verification.

Chapter 5 presents two case studies (thread coloring and static layers) of adding new
analyses to the JSure tool. These case studies evaluate the verification framework (e.g., drop-
sea, scoped promises, proposed promises, the red dot) developed as part of this work and
implemented in the JSure tool to scale up with respect to analysis breadth.

Chapter 6 presents an approach for the specification and verification of static program
structure. Our approach builds upon previous work by Murphy and Notkin [85] that demon-
strated the utility to practicing programmers of tool support to understand and maintain
structural models of their code. This work is presented, in the context of this thesis, as
evidence that analysis-based verification is scalable with respect to new assurance attributes,
in particular non-concurrency related program attributes.

Chapter 7 recapitulates the evidence we provide in support of our thesis claims. In addi-
tion to the field trials and case studies of incorporating new analyses presented in Chapter 4
and Chapter 5, respectively, a cost-benefit analysis is presented in support of the thesis claims.

Chapter 8 concludes with a summary of the contributions of this research and a discussion
of future work.

18http://www.sparkada.com/

http://www.sparkada.com/
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Chapter 2

Foundations

“On two occasions I have been asked [by members of Parliament!], ‘Pray, Mr. Babbage,
if you put into the machine wrong figures, will the right answers come out?’ I am not able

rightly to apprehend the kind of confusion of ideas that could provoke such a question.”
— Charles Babbage

2.1 Introduction

In this chapter we develop a formal model of our approach to analysis-based verification. This
model is the basis of the tool engineering we present in the next chapter; however, several
versions of the JSure prototype tool were developed prior to this model and influenced its
development. We choose to present this model first to precisely describe the essential elements
of our approach and to assure the reader that the tool engineering is based upon principled
foundations.

The contribution of this chapter is a formal model that describes the construction of
proofs within our approach. This includes specifying precisely how sound “plug-in” program
analyses report their findings and the development of an automatable proof calculus to cre-
ate program- or component-level results based upon these findings. Our approach supports
separate analysis of components and allows composition of the results such that the outcome
corresponds to that of a whole-program analysis. The requirements to support modularity
and composability permeate the formal systems presented in this chapter. Our main techni-
cal result is a soundness theorem that relates the proof calculus to a semantics for analysis
results.

In a sense, sound combined analyses for analysis-based verification is intended to do for
program analysis what Nelson and Oppen did for theorem proving through the introduction
of cooperating decision procedures [86]. Our approach allows subsidiary program analyses
to cooperate in a similar manner. Rather than combining decision procedures, we combine
program analyses into a single system with well-defined semantics. Indeed, in our approach,
knowledge of the semantics of programming languages is embodied entirely in these subsidiary
program analyses, and the logic serves to soundly combine fragmentary analysis results at
a level of abstraction and aggregation appropriate for programmers and other human users.
Both approaches levy requirements on constituent capabilities (i.e., decision procedures for
Nelson and Oppen and verifying analyses for our approach) and so are “semantically scalable”
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1 @Stateless
2 public class TravelAgentBean implements TravelAgentRemote {
3

4 @PersistenceContext(unitName="titan") private EntityManager manager;
5

6 @Starts("nothing")

7 public void createCabin(Cabin cabin) {
8 if (findCabin(cabin.getId()) == null)
9 manager.persist(cabin);

10 }
11

12 @Starts("nothing")

13 public Cabin findCabin(int pKey) {
14 return manager.find(Cabin.class, pKey);
15 }
16 }

Figure 2.1: A EJB 3.0 stateless session bean that promises, via the @Starts("nothing") annotations
at line 6 and 12, not to start any threads. This promise is consistent with the programming restrictions
placed on stateless session beans by the EJB 3.0 Specification.

in this respect.

To introduce our approach and sketch its major components we start with a motivating
example drawn from a Java EE system. This example is followed by several sections that
develop our formal model using a running example from the util.concurrent library. Once
we have fully presented our approach to proofs within an analysis-based verification system
we continue by introducing a semantics of analysis results and prove a soundness theorem. We
end the chapter with a short discussion about the differences between our proof calculus and
a Hoare logic. In particular, we discuss the reasons why our calculus would not, traditionally,
be considered a Hoare logic despite notational similarities.

2.1.1 A motivating example

We start with a program that has been annotated with extra-linguistic programmer design
intent, that we refer to as promises. An example of a program containing promises is shown
in Figure 2.1. TravelAgentBean is an EJB 3.0 stateless session bean from the Titan Cruises
Java EE application [24].

The EJB 3.0 Specification [36] states that stateless session beans are not allowed to
start any threads, however, this constraint is not statically enforced by Java. Using our an-
notations, each method promises that it never starts a thread. The @Starts("nothing")

annotation at line 6 promises that the createCabin method will not start a thread. The
@Starts("nothing") annotation at line 12 promises that the findCabin method will not
start a thread. The @Stateless and @PersistenceContext annotations are provided for
use by the EJB 3.0 container and are used to identify the enterprise bean type and to in-
ject a connection to a database, respectively. The @Stateless and @PersistenceContext

annotations are not promises checked by analysis-based verification.

The programmer, after entering a few promises, wants to know, “Is my code consistent
with these promises?”and“If not, what should I do next?” Analysis-based verification answers
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Annotated Program

Analyze
(e.g., Uniqueness)

Analyze
(e.g., Lock Policy)

Analysis Results Analysis ResultsProposed Promises Proposed Promises

Merge Analysis Results Match Promises

Verify Promises

Proofs

Generate Verification Conditions

Promise Verification Conditions

FormulasMerged Analysis Results

Figure 2.2: An activity diagram describing the flow of events during analysis-based verification.
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Analysis Results for TravelAgentBean

Finding About Prerequisite Description

f1 + r6 ⊺ createCabin starts no threads
f2 + r6 q1 findCabin promises it starts no threads
f3 + r6 q2 getId promises it starts no threads
f4 + r6 q3 persist promises it starts no threads
f5 + r12 ⊺ findCabin starts no threads
f6 + r12 q4 find promises it starts no threads

Proposed Promises
Promise On

q1 @Starts("nothing") findCabin(int) at line 13
q2 @Starts("nothing") getId() in class Cabin

q3 @Starts("nothing") persist(Object) in class EntityManager

q4 @Starts("nothing") find(Class, int) in class EntityManager

Figure 2.3: Analysis results (top) and proposed promises (bottom) for the TravelAgentBean compi-
lation unit in Figure 2.1.

these questions by performing the activities in Figure 2.2 that result in a report to the
programmer about which promises are consistent with the program’s code and which are not.
This report summarizes (i.e., is a query of) the verification proofs produced by the activities
in Figure 2.2. If a promise is inconsistent because the programmer needs to provide further
design intent (i.e., enter more promises), then a set of proposed promises is provided to the
programmer for consideration.

Each of the activities in Figure 2.2 is sketched below and detailed in the subsequent
sections of this chapter.

1. Analyze: A set of analyses is run over the program. Figure 2.2 shows two, uniqueness
and lock policy, but typically more are included (as listed in Figure 1.3 on page 8).
Analyses, in our approach are “plug-in,” in the sense that more can be added or exist-
ing ones can be replaced. Each analysis produces two outputs: a set of results and a
set of proposed promises. It is the job of an analysis to check promise–code consistency
for each promise it is responsible for. If we refer to the @Starts("nothing") promise
at line 6 as r6 and the @Starts("nothing") promise at line 12 as r12 then the anal-
ysis responsible for checking these promises, called thread effects, would produce the
tables in Figure 2.3. Each analysis result, f1 through f6, reports a consistency finding
with respect to the code, “+” for consistent or “×” for inconsistent; a promise that the
consistency finding is about; a prerequisite assertion that the result is contingent upon;
and an explanation of the result for the programmer. Multiple results about the same
promise, e.g., f1 through f4 about r6, are later conjoined. The conjoined prerequisite
assertion for r6 is ⊺∧ q1 ∧ q2 ∧ q3. The symbol ⊺, which represents the tautology, is used
to express the lack of a prerequisite for an analysis result, e.g., f1.

Each result indicates a“point of consistency”(+) or“point of inconsistency”(×) between
the promise and the code. The reported prerequisites may make that result contingent
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upon the consistency of other promises—using the other promises as a cut or cut-point
to avoid whole-program analysis. However, an analysis typically does not check if a
promise that it reports as a prerequisite exists in the code, rather it proposes that such
a promise should exist1. For presentation purposes we use r to refer to promises that
appear in the code, q to refer to proposed promises, and f to refer to analysis results.

Each proposed promise, q1 through q4 in Figure 2.3, specifies an assertion and a location
in the code for that assertion. A particular proposed promise may or may not be able
to be matched with a promise in the code, e.g., the proposed promise q1 can be matched
with the promise r12 in the code. Each proposed promise is created to be used as the
prerequisite for an analysis result, e.g., q1 through q4 are, and must be, referenced by
the prerequisite of an analysis result.

Proposed promises allow a principled way to represent what is required, in terms of
design intent, for a promise to be made consistent. The programmer, aided by proposed
promises, can interact with the tool toward a complete model of design intent after
providing just a few annotations.

Our approach to collecting analysis results and associated proposed promises allows
analyses to be run in parallel. This is illustrated in Figure 2.2: the uniqueness and
lock policy analyses are accomplished concurrently. In addition, it allows examination
of the compilation units that make up a program by a particular analysis to be run in
parallel. Parallelism is allowed because no analysis modifies the annotated program it
is examining and each reports into their own tables that are later merged.

2. Merge Analysis Results: All the reported analysis results are collected into a single
table that represents the complete set of analysis results about the set of compilation
units examined. In our example, we have only analyzed one compilation unit, Trav-
elAgentBean, with one analysis, thread effects, and the table of analysis results in
Figure 2.3 is also our merged results table. We call the set of merged analysis results R.

3. Match Promises: A special analysis attempts to match each promise that was pro-
posed by an analysis to a real promise in the program. Real promises are promises that
appear in the program, i.e., they are programmer-written. The output of the promise
matching process is a set of formulas, which we call Φ, that reflect that a real promise
implies a proposed promise. This means that if the real promise is satisfied then the
proposed promise is also satisfied. For TravelAgentRemote, we find that r12 implies q1,
and produces the formula r12 → q1. We don’t know if real promises exist for q2, q3, or q4
because, in this example, we haven’t examined the code of the Cabin or EntityManager
classes. Therefore, the output of promise matching is

Φ = {r12 → q1}.
A straightforward intuitionistic propositional logic, which we call promise logic (⊢pl),
is used to “substitute” real promises for proposed promises during promise verification.
The details about promise matching are presented in Section 2.4.

4. Generate Verification Conditions: Based upon the set of merged results and the
set of formulas produced by promise matching, we can generate a set of promise veri-
fication conditions. We call this set V . Each promise verification condition is a triple

1Our approach does allow an analysis to report a real promise as a prerequisite. Therefore, the use of
proposed promises is not essential to the soundness of our approach. This is discussed further in Section 2.3.1.
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that states the consistency of a real promise (right) is contingent upon the consistency
of a formula of promises (left). The middle of the triple is a tuple containing the set
of analysis results that were reported about the real promise (right) and the (whole)
set of promise matching formulas, Φ. For TravelAgentRemote, two verification con-
ditions are generated. The first is the verification condition for the consistency of the
@Starts("nothing") at line 6

{⊺ ∧ q1 ∧ q2 ∧ q3} ({f1, f2, f3, f4},Φ) {r6}
and the second is the verification condition for the of the @Starts("nothing") at line 12

{⊺ ∧ q4} ({f5, f6},Φ) {r12} .
The details about verification condition generation are presented in Section 2.5.1.

5. Verify Promises: Using the set of promise verification conditions a proof calculus (⊢coe
where coe stands for a “chain of evidence”) is used to reason toward a goal prerequisite
assertion of ⊺ meaning that the real promise is consistent with the code. For example,
the sequent

V ⊢coe {q2 ∧ q3 ∧ q4} (R,Φ) {r6}
means that, based upon the set of verification conditions, V , generated from the anal-
ysis results about the TravelAgentBean compilation unit, the @Starts("nothing")

promise, r6, at line 6 in Figure 2.1 is consistent if the proposed promises q2, q3, and
q4 are consistent2. This contingent result allows the programmer to proceed by either
turning the proposed promises into real promises or by trusting the consistency of the
proposed promises. The details about this calculus are presented in Section 2.5.

2.1.2 Interpreting verification results

A particular promise about a program is either consistent or inconsistent with respect to that
program’s implementation. Analysis-based verification is used to construct (and explain) a
proof of promise consistency. If our approach is unable to build such a proof for a particular
promise, p, we cannot claim that p is inconsistent with respect to the program’s implemen-
tation. The reason for this, in essence, comes back to Rice’s theorem [95] which states that
any non-trivial question you ask about code can be reduced to the halting problem. To
avoid the lurking specter of non-computability, the program analyses that our approach uses
are conservative—they will never report that a promise is consistent when, in reality, it is
inconsistent. But they can fail to report that a promise is consistent when, in reality, it is.

Through the use of conservative program analyses and the construction of consistency
proofs (as described below) analysis-based verification produces sound verification results.
This means that if our approach reports that a promise is consistent then the assertion made
by that promise is an invariant of the program, i.e., it holds for all possible executions of the
program.

In the parlance of program analysis tools, this means that for the analysis findings that
are reports of potential inconsistency between stated promises and a program, there are no
false negatives. That is, if there is an actual inconsistency, then there will necessarily be a
corresponding finding. On the other hand, there may be false positives, in the sense that
there may be failures to find proofs of actual consistencies.

2A proof of the sequent V ⊢coe {q2 ∧ q3 ∧ q4} (R,Φ) {r6} is shown in Figure 2.21.
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2.1.3 A running example

The remainder of this chapter details the formal foundations of our approach to analysis-based
verification using the code in Figure 2.4 from the util.concurrent library as a running
example. This library, authored by Doug Lea and described in [73], provides components
that are useful when building concurrent applications in Java, and has been included as part
of the Java standard library since Java 5. To illustrate specific points of our approach, the
code in Figure 2.4 contains a large number of promises—more than are required to verify its
locking policy. The semantics of the promises used in the code in Figure 2.4 are explained
in Appendix A, however, to make the presentation self-contained, we sketch their meaning
below.

The region Variable, declared at line 3 with the @Region annotation, declares a region of
the program’s state that includes, via the @InRegion annotation at line 16, the field value_.
Accesses of this state are asserted to be protected by holding a lock on the field lock_ by
the @RegionLock promise at line 4. The @RegionLock promise names this locking model
VarLock.

We have elided the code in our util.concurrent example to focus on the issue of object
construction in the presence of the VarLock model. In concurrent Java code, objects are typi-
cally thread-confined when they are constructed then safely published to other threads. This
means that, if we can verify that the constructor is thread-confined, we can read and write the
protected state (i.e., the field value_) without holding the lock. There are two ways that this
can be established. The first is to verify that the receiver under construction is not aliased
during object construction (see Section A.1.4). This is asserted by the @Unique("return")

promise. In particular, when we can verify that the constructor does not create such an
alias, it also knows that it is impossible for another thread to obtain a reference to the object
under construction during the constructor’s execution. Because our analysis is modular, each
constructor in the construction chain, Object to SynchronizedVariable to Synchronized-

Boolean, must make this assertion. Notice that @Unique("return") does not hold for the
SynchronizedVariable constructor because its code aliases the receiver at line 12.

The second way that we can verify that the constructor is thread-confined is by checking
that it doesn’t start any threads and that it doesn’t write to any state outside of its own fields
(see Section A.2.1). The @Starts and @RegionEffects promises on the constructors in the
code make this claim. Any such constructor cannot pass a reference to the new object to a
preexisting thread because it does not write to any objects that existed prior to the invocation
of the constructor. It can write a reference to the new object to other objects created during
execution of the constructor, but because it cannot start any threads, such a reference cannot
be read by another thread. Using this approach, the claim that the constructors keep the
state under construction thread-confined does hold.

The promises described above and the program analyses used to verify them are predomi-
nantly prior work. Analyses designed to support this composable annotation-based approach
have been developed by members of the Fluid project at Carnegie Mellon University over the
past decade. The region concept and effects promise, @RegionEffects, were developed by
Greenhouse and Boyland [54]. The region promises and lock policy promises, e.g., @Region
and @RegionLock, were developed by Greenhouse in support of lock analysis [53]. The alias
promise, @Unique, and associated uniqueness analysis were developed by Boyland [20, 21].
The thread effects promise, @Starts, and its associated analysis were developed by the au-
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1 package EDU.oswego.cs.dl.util.concurrent;
2

3 @Region("protected Variable")
4 @RegionLock("VarLock is lock_ protects Variable")
5 public class SynchronizedVariable extends Object ... {
6 protected final Object lock_;
7

8 @RegionEffects("none")
9 @Starts("nothing")

10 @Unique("return")
11 public SynchronizedVariable() {
12 lock_ = this;
13 }
14 }

15 public class SynchronizedBoolean extends SynchronizedVariable ... {
16 @InRegion("Variable") protected boolean value_;
17

18 @RegionEffects("none")
19 @Starts("nothing")
20 @Unique("return")
21 public SynchronizedBoolean(boolean initialValue) {
22 super();
23 value_ = initialValue;
24 }
25 }

26 <package name="java.lang">
27 <class name="Object">
28 <constructor>
29 <RegionEffects>none</RegionEffects>
30 <Starts>nothing</Starts>
31 <Unique>return</Unique>
32 </constructor>
33 </class>
34 </package>

Figure 2.4: Elided Java code from the SynchronizedVariable and SynchronizedBoolean classes
after adding the lock policy, object-oriented effects, thread effects, and uniqueness promises required to
assure the locking policy of these classes. Also shown are promises about the no-argument constructor
of the java.lang.Object class (the superclass of SynchronizedVariable). These promises are made
as “standoff annotations” using XML structures because Object is part of the Java standard library
and is typically used in binary form. Annotation via XML is equivalent to direct annotation of code.
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thor.

Building upon this prior work, the approach presented in this chapter focuses on allowing
diverse assertions to work together to produce a useful aggregate verification result. It fo-
cuses on making these constituent analyses “pluggable” and allowing the assertions to express
semantics independent of the overall verifying analysis that aggregates them, as described in
this chapter. As we stated at the start of the chapter, this includes specifying precisely how
the “plug-in” program analyses report their findings and how the automatable proof calculus
creates program- or component-level results based upon these findings.

A sketch of the steps performed to verify the example util.concurrent code is shown in
Figure 2.5. The tables, formulas, and proofs shown are described in the next three sections
of this chapter.

2.2 Promise logic

Promises are supra-linguistic formal annotations to programs introduced by Chan, Boyland,
and Scherlis in [26]. Each promise has a precise meaning and constrains the implementation
and evolution of the code it targets. Promises are also (typically) modular, meaning that the
implementation constraint on the code of a promise is limited in scope.

A particular promise about a program is either consistent or inconsistent with respect to
that program’s implementation. We use an intuitionistic propositional logic, which we call
promise logic, to allow us to symbolically reason about the consistency of promises. A promise
symbol, e.g., p, in promise logic represents the proposition that a promise is consistent. It is
not possible for us to meaningfully assert ¬p, because in our approach an inconsistent finding
is conservative as discussed above in Section 2.1.2 (in fact, ¬p is not even a well-formed
formula in promise logic).

2.2.1 Syntax

Well-formed formulas in promise logic are defined using this grammar:

φÐ→ p ∣ ⊺ ∣ (φ ∧ φ) ∣ (φ ∨ φ) ∣ (φ→ φ)
where p stands for a promise symbol. To reduce the need for parentheses, we adopt the
convention that ∧ and ∨ bind more tightly than →. In addition, ∧ and ∨ are left-associative,
while → is right-associative. We use lowercase Greek letters to represent promise logic for-
mulas and uppercase Greek letters to represent sets of promise logic formulas. We refer to
the set of all well-formed promise logic formulas as PLFormula.

For the purpose of allowing program analyses to report prerequisite assertions (described
below) we define a subset of all well-formed promise logic formulas, AOFormula ⊂ PLFormula,
which prohibits implications. Well-formed formulas in AOFormula are defined using the
grammar:

φÐ→ p ∣ ⊺ ∣ (φ ∧ φ) ∣ (φ ∨ φ)
To avoid parentheses, we adopt the conventions described above.
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{q4 ∨ (q5 ∧ q6)} ({f8},Φ) {r4} (2.5){q1 ∧ � ∧ �} ({f1, f2, f3},Φ) {r8}{q2 ∧ �} ({f4, f5},Φ) {r9}{q3 ∧ �} ({f6, f7},Φ) {r10}{q7 ∧ � ∧ �} ({f9, f10, f11},Φ) {r18} (2.6){q8 ∧ �} ({f12, f13},Φ) {r19}{q9 ∧ �} ({f14, f15},Φ) {r20}{�} ({f16},Φ) {r29}{�} ({f17},Φ) {r30}{�} ({f18},Φ) {r31}
Figure 2.13: The elements contained in the set of promise verification conditions, V , ob-
tained from applying Definition 2.5.3 to the analysis output shown in Figure 2.12 about the
util.concurrent code in Figure 2.4.

which we call V , is a set of promise verification triples such that V = vc(R,Φ) where

vc(R,Φ) = {pvc(r,R,Φ) � r ∈ only consistent results(R)},
only consistent results(R) = {r � (+, r,ψ) ∈ R} � {r � (−, r,ψ) ∈ R},

R is a set of analysis results, and Φ is a set of promise matching formulas.

These definitions create a promise verification triple for each real promise that has only

consistent analysis results reported about it.

For example, consider the set of verification conditions, V , shown in Figure 2.13, determined

by applying Definition 2.5.3 to the analysis output from our util.concurrent example. The

promise verification condition for the real promise r20 is {q9 ∧ �} ({f14, f15},Φ) {r20}. This

triple is an element of V because r20 is a real promise and neither of its two results reported an

inconsistency (−). The two analysis results for r20, f13 and f14, are listed in Figure 2.12 and

the conjunction of their prerequisites is the promise logic formula q9 ∧ �.
There is no promise verification condition in V for r10, the @Unique("return") promise on

line 10 of Figure 2.4. Definition 2.5.3 excluded this element because one of the two analysis

results reported about this promise in Figure 2.12, f7, is inconsistent.

Definition 2.5.4. If Φ is a set of promise logic formulas, we define seq(Φ) to be the sequence

of formulas derived from the set Φ.

Verify Promises

Generate Verification Conditions

Match Promises

Searches the annotated 
program for promises that 

"match" promises that were 
proposed by an analysis

Set of Proposed Promise 
Formulas (Φ)

Promise Verification Conditions (V)

Constructs triples from the 
merged analysis results and the 

set of proposed promise 
formulas 
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1 package EDU.oswego.cs.dl.util.concurrent;
2

3 @Region("protected Variable")
4 @RegionLock("VarLock is lock_ protects Variable")
5 public class SynchronizedVariable extends Object ... {
6 protected final Object lock_;
7

8 @RegionEffects("none")
9 @Starts("nothing")

10 @Borrowed("this")
11 public SynchronizedVariable() {
12 lock_ = this;
13 }
14 }

15 public class SynchronizedBoolean extends SynchronizedVariable ... {
16 @InRegion("Variable") protected boolean value_;
17

18 @SingleThreaded
19 @RegionEffects("none")
20 @Starts("nothing")
21 @Borrowed("this")
22 public SynchronizedBoolean(boolean initialValue) {
23 super();
24 value_ = initialValue;
25 }
26 }

27 <package name="java.lang">
28 <class name="Object">
29 <constructor>
30 <RegionEffects>none</RegionEffects>
31 <Starts>nothing</Starts>
32 <Borrowed>this</Borrowed>
33 </constructor>
34 </class>
35 </package>

Figure 2.5: Elided Java code from the SynchronizedVariable and SynchronizedBoolean

classes after adding the locking, effects, thread effects, and uniqueness promises required to
assure the locking policy of these classes. Also shown are promises about the no-argument
constructor of the java.lang.Object class (the superclass of SynchronizedVariable). These
promises are made as“standoff annotations”using XML structures because Object is part of the
Java standard library and is typically used in binary form. Annotation via XML is equivalent
to direct annotation of code.

Annotated Java 
Program
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Analysis Results
Finding About Prerequisite Description

f1 + r8 q1 super() promises consistent effects
f2 + r8 � lock_ write masked at line 12
f3 + r8 � this read masked at line 12
f4 + r9 q2 super() promises it starts no threads
f5 + r9 � constructor starts no threads
f6 + r10 q3 super() promises not to alias this
f7 − r10 � this aliased into lock_ at line 12
f8 + r4 q4 ∨ (q5 ∧ q6) thread-confined access to value_ at line 23
f9 + r18 q7 super() promises consistent effects
f10 + r18 � value_ write masked at line 23
f11 + r18 � initialValue read masked at line 23
f12 + r19 q8 super() promises it starts no threads
f13 + r19 � constructor starts no threads
f14 + r20 q9 super() promises not to alias this
f15 + r20 � constructor does not alias this
f16 + r29 � constructor has consistent effects
f17 + r30 � constructor starts no threads
f18 + r31 � constructor does not alias this

Proposed Promises
Promise On

q1 @RegionEffects("none") java.lang.Object no-argument constructor
q2 @Starts("nothing") java.lang.Object no-argument constructor
q3 @Unique("return") java.lang.Object no-argument constructor
q4 @Unique("return") SynchronizedBoolean(boolean) at line 21
q5 @RegionEffects("reads All") SynchronizedBoolean(boolean) at line 21
q6 @Starts("nothing") SynchronizedBoolean(boolean) at line 21
q7 @RegionEffects("none") SynchronizedVariable() at line 11
q8 @Starts("nothing") SynchronizedVariable() at line 11
q9 @Unique("return") SynchronizedVariable() at line 11

Matched Promises (the set Φ)

r29 → q1

r30 → q2

r31 → q3

r20 → q4

r18 → q5

r19 → q6

r8 → q7

r9 → q8

r10 → q9

Figure 2.12: Analysis output for the util.concurrent code in Figure 2.4.
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R1 = {f1, f2, f3, f9, f10, f11, f16}
R2 = {f4, f5, f12, f13, f17}
R3 = R1 ∪R2

R4 = R3 ∪ {f8}

Figure 2.16

V �coe {�} (R1,Φ) {r18} Figure 2.15

V �coe {�} (R2,Φ) {r19}
V �coe {� ∧ �} (R3,Φ) {r18 ∧ r19} Merge

V �coe {�} (R3,Φ) {r18 ∧ r19} Implied

V �coe {q4 ∨ (q5 ∧ q6)} ({f8},Φ) {r4} Axiom

V �coe {r20 ∨ (r18 ∧ r19)} ({f8},Φ) {r4} Implied

V �coe {r18 ∧ r19} ({f8},Φ) {r4} Implied

V �coe {�} (R4,Φ) {r4} Compose

Figure 2.17: Proof of the sequent V �coe {�} (R4,Φ) {r4} which demonstrates the consistency
of the @RegionLock("VarLock is lock_ protects Variable") promise, r4, on line 4 in Fig-
ure 2.4 with the code. V is defined in Figure 2.13.

The Compose rule

V �coe {φ} (R1,Φ) {η} V �coe {η} (R2,Φ) {ψ}
V �coe {φ} (R1 ∪R2,Φ) {ψ} Compose

allows us to compose triples and work toward a prerequisite assertion of �. This rule used with

the Axiom and Implied rules is enough to prove the consistency of the @Starts("nothing")

promise, r19, on line 19 in Figure 2.4 with the code. This proof, shown in Figure 2.15, demon-

strates that r19 is consistent by first replacing all proposed promises in the prerequisite assertions

then using the Compose rule to derive a prerequisite assertion of �. The structure of this proof

illustrates that @Starts("nothing") promise, r30, is satisfied on the java.lang.Object no-

argument constructor, which is required for @Starts("nothing") promise, r9, to be satisfied on

the SynchronizedVariable no-argument constructor, which is required for @Starts("nothing")

promise, r19, to be satisfied on the SynchronizedBoolean(boolean) constructor.

The proof in Figure 2.16 demonstrates the consistency of the @RegionEffects("none")

promise, r18, on line 18 in Figure 2.4 with the code and is similar in approach to the proof

described above.

To prove the VarLock model is consistent with the code we need to demonstrate the consis-

tency of the @RegionLock promise, r4. This proof is shown in Figure 2.17 and it requires use

of the Merge rule

V �coe {φ} (R1,Φ) {ψ} V �coe {η} (R2,Φ) {θ}
V �coe {φ ∧ η} (R1 ∪R2,Φ) {ψ ∧ θ} Merge

Analyze

Lock Policy Uniqueness Effects Thread Effects

Analyzes the 
annotated program 
using constituent 
"plug-in" analyses

Merged Analysis Results

Proposed Promises

...

Using the generated set of 
promise verification conditions, 
construct contingent promise 

verification proofs

Proofs
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Analysis Results
Finding About Prerequisite Description

f1 + r8 q1 super() promises consistent effects
f2 + r8 � lock_ write masked at line 12
f3 + r8 � this read masked at line 12
f4 + r9 q2 super() promises it starts no threads
f5 + r9 � constructor starts no threads
f6 + r10 q3 super() promises not to alias this
f7 − r10 � this aliased into lock_ at line 12
f8 + r4 q4 ∨ (q5 ∧ q6) thread-confined access to value_ at line 23
f9 + r18 q7 super() promises consistent effects
f10 + r18 � value_ write masked at line 23
f11 + r18 � initialValue read masked at line 23
f12 + r19 q8 super() promises it starts no threads
f13 + r19 � constructor starts no threads
f14 + r20 q9 super() promises not to alias this
f15 + r20 � constructor does not alias this
f16 + r29 � constructor has consistent effects
f17 + r30 � constructor starts no threads
f18 + r31 � constructor does not alias this

Proposed Promises
Promise On

q1 @RegionEffects("none") java.lang.Object no-argument constructor
q2 @Starts("nothing") java.lang.Object no-argument constructor
q3 @Unique("return") java.lang.Object no-argument constructor
q4 @Unique("return") SynchronizedBoolean(boolean) at line 21
q5 @RegionEffects("reads All") SynchronizedBoolean(boolean) at line 21
q6 @Starts("nothing") SynchronizedBoolean(boolean) at line 21
q7 @RegionEffects("none") SynchronizedVariable() at line 11
q8 @Starts("nothing") SynchronizedVariable() at line 11
q9 @Unique("return") SynchronizedVariable() at line 11

Matched Promises (the set Φ)

r29 → q1

r30 → q2

r31 → q3

r20 → q4

r18 → q5

r19 → q6

r8 → q7

r9 → q8

r10 → q9

Figure 2.12: Analysis output for the util.concurrent code in Figure 2.4.
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Analysis Results
Finding About Prerequisite Description

f1 + r8 q1 super() promises consistent effects
f2 + r8 � lock_ write masked at line 12
f3 + r8 � this read masked at line 12
f4 + r9 q2 super() promises it starts no threads
f5 + r9 � constructor starts no threads
f6 + r10 q3 super() promises not to alias this
f7 × r10 � this aliased into lock_ at line 12
f8 + r4 q4 ∨ (q5 ∧ q6) thread-confined access to value_ at line 23
f9 + r18 q7 super() promises consistent effects
f10 + r18 � value_ write masked at line 23
f11 + r18 � initialValue read masked at line 23
f12 + r19 q8 super() promises it starts no threads
f13 + r19 � constructor starts no threads
f14 + r20 q9 super() promises not to alias this
f15 + r20 � constructor does not alias this
f16 + r29 � constructor has consistent effects
f17 + r30 � constructor starts no threads
f18 + r31 � constructor does not alias this

Proposed Promises
Promise On

q1 @RegionEffects("none") java.lang.Object no-argument constructor
q2 @Starts("nothing") java.lang.Object no-argument constructor
q3 @Unique("return") java.lang.Object no-argument constructor
q4 @Unique("return") SynchronizedBoolean(boolean) at line 21
q5 @RegionEffects("reads All") SynchronizedBoolean(boolean) at line 21
q6 @Starts("nothing") SynchronizedBoolean(boolean) at line 21
q7 @RegionEffects("none") SynchronizedVariable() at line 11
q8 @Starts("nothing") SynchronizedVariable() at line 11
q9 @Unique("return") SynchronizedVariable() at line 11

Matched Promises (the set Φ)

r29 → q1

r30 → q2

r31 → q3

r20 → q4

r18 → q5

r19 → q6

r8 → q7

r9 → q8

r10 → q9

Figure 4.12: Analysis output for the util.concurrent code in Figure 4.4.

Merge Analysis Results

Figure 2.5: An diagram sketching the steps performed by analysis-based verification to verify the code
in Figure 2.4 from the util.concurrent library. The arrows indicate data flow, the rounded boxes
are processes. The code, tables, formulas, and proofs are the data generated and used (as described
in the next three sections of this chapter). The images of the tables, formulas, and proofs give an
impression of the notation and are not intended to be legible.
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2.2.2 Promise symbols

We refer to each promise by a symbol. A promise may be real or proposed. A real promise
appears in the code, typically as an annotation. A proposed promise is a specification for a
promise (i.e., an assertion and a code location) that may or may not appear in the code. We
refer to the set of all promise symbols as Promise.

Real promises

Real promises are promises explicitly expressed by the programmer. To represent real
promises in promise logic formulas, we subscript the symbol r with the line number where the
promise appears within the code. Therefore, for the util.concurrent code in Figure 2.4,
we use r18 to refer to the @RegionEffects("none") promise at line 18, r31 to refer to the
@Unique("return") promise expressed in XML associated with the no-argument constructor
for java.lang.Object at line 31, and so on.

This convention is for presentation only, promises are actually internally represented in the
tool as assertions attached to nodes within a compilation unit’s abstract syntax tree (AST).
For example, r18 would be attached to the SynchronizedBoolean(boolean) constructor
declaration within the AST for the SynchronizedBoolean.java compilation unit.

We refer to the set of all real promise symbols as RealPromise.

Proposed promises

A proposed promise is a specification, including an assertion and code location, for a promise.
A proposed promise may or may not exist as a real promise. To represent proposed promises
in promise logic formulas, we use the symbol q with a unique (and arbitrary) subscript.
Proposed promises denote a requirement for a particular promise at a location within the
program. For example, if the promises @RegionEffects("none") and @Starts("nothing")

are required for the no-argument constructor for SynchronizedVariable then we can define
the proposed promises q1 and q2 using the following table:

Symbol Promise On

q1 @RegionEffects("none" SynchronizedVariable() at line 11
q2 @Starts("nothing") SynchronizedVariable() at line 11

Again, this convention is for presentation only, proposed promises are represented as
assertions that reference the AST location that they are about. For example, q1 would be
represented as an assertion with a reference to the SynchronizedVariable() constructor
declaration within the AST for the SynchronizedVariable.java compilation unit.

We refer to the set of all proposed promise symbols as ProposedPromise.

2.2.3 Proof theory

An intuitionistic (or constructivist) sequent calculus is used for proving sequents in promise
logic. We make this choice because, in addition to simplifying the logic and reducing com-
binatorics, it enables us to exploit a much broader range of underlying constituent analyses,
in that we do not require sound approximations to both assertions and their negations. It
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Introduction Elimination

⊺ A ⊢pl ⊺ ⊺i
(no elimination rule for ⊺ – the tautology)

φ A, φ ⊢pl φ i
(no elimination rule for φ)

∧ A ⊢pl φ B ⊢pl ψ
A, B ⊢pl φ ∧ ψ ∧i

A ⊢pl φ ∧ ψ
A ⊢pl φ ∧e1

A ⊢pl φ ∧ ψ
A ⊢pl ψ ∧e2

∨ A ⊢pl φ
A ⊢pl φ ∨ ψ ∨i1

A ⊢pl ψ
A ⊢pl φ ∨ ψ ∨i2

A ⊢pl φ ∨ ψ A, φ ⊢pl χ A, ψ ⊢pl χ
A ⊢pl χ ∨e

→ A, φ ⊢pl ψ
A ⊢pl φ→ ψ

→ i
A ⊢pl φ A ⊢pl φ→ ψ

A ⊢pl ψ →e

Figure 2.6: The proof rules for promise logic where φ, ψ, and χ are promise logic formulas and A and
B are sequences of promise logic formulas.

is important to note, however, that when both such sound approximations exist, the two
corresponding analyses can both be exploited by the system—though their underlying logical
relationship is not directly exploitable in the automated reasoning. For ease of reference, these
well-known proof rules are presented in Figure 2.6. A sequent in promise logic is denoted by

φ1, φ2, . . . , φn ⊢pl ψ
and indicates that a proof exists from the sequence of premises (φ1, φ2, . . . , φn) to the conclu-
sion (ψ) using the rules in Figure 2.6. The sequence of premises may be empty (i.e., ⊢pl ψ).
We use the pl subscript on ⊢ to highlight that the sequent is about promise consistency and to
differentiate sequents in promise logic from sequents in our verification calculus (⊢coe) which
is introduced later in this chapter. Exchange, where two members of the sequence of premises
may be swapped, is implicit in promise logic.

2.2.4 Models

Not all of the annotations made to the code in Figure 2.4 are promises. Some of the annota-
tions, rather than forming an assertion about the program’s implementation, simply give a
name to some portion of the program’s code or data. For example, the annotation at line 3

@Region("protected Variable")

and the annotation at line 16

@InRegion("Variable") protected boolean value_;
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define a region of the program’s state that can be referred to by the name Variable containing
the field value_. Models such as this must be well-formed. Therefore, if the annotation at
line 16 read

// BAD - misspelled region name
@InRegion("Variabble") protected boolean value_;

then it would not be considered well-formed because there is no named region called Vari-

abble for it to add the field value_ into.

Both models and promises have to be well-formed and this property is readily checkable.
It is checked in the JSure prototype tool by a process called “scrubbing” that is discussed
in the next chapter. In this chapter we only consider well-formed models and promises.
Well-formed promises, unlike well-formed models, have analysis results reported about their
consistency with the code.

2.3 Analysis results

The verification of promises is performed by semantic program analyses. These analyses are
modular in the following sense: Given a set of compilation units, C, containing a set of real
promises, Preal, each analysis produces a set of results for each element of C. Each result
reports a “point of consistency” or “point of inconsistency” between a promise and the code.

Definition 2.3.1 (Analysis result). An analysis result is a tuple

(Finding ×RealPromise ×AOFormula)
where Finding = {+, ×}. We define Result to be the set of all analysis result tuples.

The elements of the analysis result tuple correspond to the consistency finding, “+” for
consistent or “×” for inconsistent; the real promise associated with the result; and the prereq-
uisite for the result as a promise logic formula containing no implications (i.e., →). If analyses
were allowed to report prerequisites that contain implications then our approach would be
unsound—because implication leads to negation appearing in prerequisite formulas. This is
because in classical propositional logic, q1 → q2 ≡ ¬q1 ∨ q2. (This issue is further discussed
in the last paragraph of Section 2.6.) Prerequisite formulas typically contain only proposed
promise symbols, to allow better user reporting, but are allowed to contain real promise sym-
bols. The prerequisite for any inconsistent result is ⊺ because no prerequisite can lead to
satisfaction.

The finding is a “sound approximation,” where “×” approximates “+”, in the sense that a
report of “×” could represent either an actual inconsistency or a failure to prove consistency,
regardless of prerequisites.

The results and associated proposed promises reported by analysis of the Synchronized-

Variable compilation unit are shown in Figure 2.7. The figure reports analysis results tuples,
for presentation purposes, in a far more readable tabular form that includes an informal de-
scription of the result, e.g., f1 represents the result tuple (+, r8, q1). We highlight the following
points about the analysis results in Figure 2.7:
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Analysis Results for SynchronizedVariable

Finding About Prerequisite Description

f1 + r8 q1 super() promises consistent effects
f2 + r8 ⊺ lock_ write masked at line 12
f3 + r8 ⊺ this read masked at line 12
f4 + r9 q2 super() promises it starts no threads
f5 + r9 ⊺ constructor starts no threads
f6 + r10 q3 super() promises not to alias this

f7 × r10 ⊺ this aliased into lock_ at line 12

Proposed Promises
Promise On

q1 @RegionEffects("none") java.lang.Object no-argument constructor
q2 @Starts("nothing") java.lang.Object no-argument constructor
q3 @Unique("return") java.lang.Object no-argument constructor

Figure 2.7: Analysis output for the SynchronizedVariable compilation unit in Figure 2.4.

• Each individual analysis result reports a “point of consistency” or “point of inconsis-
tency” about exactly one promise.

• An analysis results is only reported about a real promise—never a proposed promise.

• Many individual analysis results may be reported about a single real promise. For
example, three results are reported about r8. This approach works naturally with
many types of program analysis, i.e., they can report a result about each AST node
they find consistent or inconsistent with a promise, without prohibiting a single “grand”
consistency result. (Our approach, as described in Section 2.5.1, conjoins all the results
about a promise into a verification condition.)

• Analysis results about the same real promise may report different consistency findings.
For example, f6 finds r10 to be consistent, but f7 finds r10 to be inconsistent. This
single inconsistent result causes r10 to be found inconsistent.

• Proposed promises are created “on-demand” to specify the prerequisite of an analysis
result. For example, q1, q2, and q3 were created to specify the prerequisite of a result.
In addition, many “copies” of the same proposed promise may be created, however, this
does not occur in this example.

The analysis output for SynchronizedBoolean is shown in Figure 2.8. The analysis
output after examining Object (within the Java standard library) is shown in Figure 2.9.

Definition 2.3.1 is adequate for the formal models we develop in this chapter, however, it
is an abstraction of the information collected about each analysis result in the JSure proto-
type tool. In particular, the tool also collects descriptive text similar to the last column in
Figures 2.7, 2.8, and 2.9. The engineering of the JSure prototype tool is described in the next
chapter.
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Analysis Results for SynchronizedBoolean

Finding About Prerequisite Description

f8 + r4 q4 ∨ (q5 ∧ q6) thread-confined access to value_ at line 23
f9 + r18 q7 super() promises consistent effects
f10 + r18 ⊺ value_ write masked at line 23
f11 + r18 ⊺ initialValue read masked at line 23
f12 + r19 q8 super() promises it starts no threads
f13 + r19 ⊺ constructor starts no threads
f14 + r20 q9 super() promises not to alias this

f15 + r20 ⊺ constructor does not alias this

Proposed Promises
Promise On

q4 @Unique("return") SynchronizedBoolean(boolean) at line 21
q5 @RegionEffects("reads All") SynchronizedBoolean(boolean) at line 21
q6 @Starts("nothing") SynchronizedBoolean(boolean) at line 21
q7 @RegionEffects("none") SynchronizedVariable() at line 11
q8 @Starts("nothing") SynchronizedVariable() at line 11
q9 @Unique("return") SynchronizedVariable() at line 11

Figure 2.8: Analysis output for the SynchronizedBoolean compilation unit in Figure 2.4.

Analysis Results for java.lang.Object

Finding About Prerequisite Description

f16 + r29 ⊺ constructor has consistent effects
f17 + r30 ⊺ constructor starts no threads
f18 + r31 ⊺ constructor does not alias this

Figure 2.9: Analysis output for java.lang.Object from the Java standard library with respect to
the promises in Figure 2.4.
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2.3.1 Requirements for program analyses

Our reporting scheme is designed to support a wide variety of modular program analyses. It
provides a consistent interface for these analyses to report their verification findings. We do,
however, place the following two requirements on all constituent program analyses that exist
within our framework:

1. Sound: An analysis must report sound results with respect to the semantics of the
promise it is verifying. Because any non-trivial program property is statically undecid-
able, analyses report conservative results (as discussed in Section 2.1.2). It is advantage
of our approach that analyses can be “swapped out” over time as more precise analyses
are discovered or become computationally tractable on the computers available to tool
users.

2. Prerequisites decoupled from real promises: An analysis should report a pre-
requisite assertion in terms of proposed promises. It does not examine the location of
a proposed promise to see if the promise exists and then report an inconsistent result
if it does not. This remains true even if the proposed promise is within the compila-
tion unit being examined. An example of this is f8 in Figure 2.8. The prerequisite
q4 proposes a @Unique("return") promise on the SynchronizedBoolean(boolean)

constructor which is within the compilation unit under examination. This proposed
promise, in fact, exists as the real promise r20, but the analysis should not use this fact
when reporting a prerequisite.

The second requirement is not essential to the soundness of our approach. If an analysis
reports a real promise as a prerequisite then any derived verification results are still valid.
Proposed promises provide a way for an analysis to precisely specify assertions that, if true,
would result in the satisfaction of assertions that the analysis is trying to verify (rather than
just produce a textual description for the programmer). Proposed promises also allow tool
support for annotating that promise in the programmer’s code at the correct location. The
use of proposed promises by analyses, therefore, helps to improve the user experience of tools
that use our approach.

We note that this abductive reasoning, where the tool has a “hunch” that a promise is
needed in the programmer’s code, is necessarily heuristic. In particular, we do not require
constituent analyses to report the “weakest” prerequisites. Thus, a better version of an exist-
ing analysis may report identical findings but offer prerequisites that are weaker, in that they
admit more models. This has the effect of lessening the requirement to establish that an ap-
propriately placed real promise implies a given proposed promise, since the proposed promise
is a weaker assertion. This matching task is called “promise matching” and is described in
the next section.

One example where it is expedient to not decouple prerequisites from real promises is
the permissions analysis developed by Boyland, Retert, and Zhao [23, 22]. This analysis
examines real promises for the purpose of avoiding, in some cases, prerequisites that consist
of the disjunction of hundreds of assertions.

Our goal of separation of prerequisites from real promises is similar to the approach taken
by Ancona, et al. in [5]. They propose a system of compositional compilation for Java that
allows the checking of source code fragments in isolation. They produce, for each source code
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r29 → q1

r30 → q2

r31 → q3

r20 → q4 (2.1)

r18 → q5 (2.2)

r19 → q6 (2.3)

r8 → q7 (2.4)

r9 → q8

r10 → q9

Figure 2.10: The elements contained in the set of promise logic formulas, Φ, obtained from
promise matching the proposed promises in Figures 2.7, 2.8, and 2.9 to the real promises within
the util.concurrent code in Figure 2.4.

fragment, a set of type constraints that are resolved during linking. Their type constraints
are similar in spirit to our use of proposed promises. Their approach, however, is motivated
by a desire to resolve a clash that they see between compilation and the use of dynamic
linking in Java (and also C#) while ours is focused on improving the user experience of tools
that use our approach.

2.4 Promise matching

After the analysis results and associated proposed promises have been inferred for a set of com-
pilation units, C, containing a set of real promises, Preal, we have a set of proposed promises,
Pprop. Using this information we need to “match” proposed promises to real promises. Each
match found is reported as a promise matching formula.

Definition 2.4.1 (Promise matching formula). A promise matching formula is a well-formed
promise logic formula of the form r → q where r ∈ RealPromise and q ∈ ProposedPromise.
We define PMFormula to be the set of all promise matching formulas.

Promise matching is a specialized program analysis that takes a collection of proposed
promises and identifies, for each, a real promise that implies it. Promise matching is a
specialized constituent analysis in the sense that it relies on programming language and
assertion semantics to complete the matching. It works by examining the location of each
proposed promise in the code and checking if an equivalent or stronger real promise exists
at that location. That is, a given real promise is only a match if its consistency guarantees
the consistency of the proposed promise. The output of promise matching is a set of promise
matching formulas, which we refer to as Φ. Promise matching ensures that if r1 → q ∈ Φ and
r2 → q ∈ Φ then r1 = r2, i.e., a unique result is reported for each consequent.
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public class SynchronizedBoolean extends ... {
  @InRegion("Variable") protected boolean value_;

  @RegionEffects("none")
  @Starts("nothing")
  @Unique("return")
  public SynchronizedBoolean(boolean initialValue) {
    super();
    value_ = initialValue;
  }
}

 ...
 q4 @Unique("return")
 q5 @RegionEffects("reads All")
 ...

Annotated Program Proposed Promises

r20 → q4

r18 r18 → q5
r20

Matches

Figure 2.11: An illustration of promise matching for two proposed promises. The proposed promise
q4 exactly matches the real promise r20 in the code (in location and semantics). The real promise r18
constrains the effects of the same block of code more than the proposed promise q5, therefore, r18 is
a match for q5.

For the example util.concurrent code in Figure 2.4 the input to promise matching is

C = {SynchronizedVariable, SynchronizedBoolean, Object}
Preal = {r4, r8, r9, r10, r18, r19, r20, r29, r30, r31}
Pprop = {q1, q2, q3, . . . , q9}

R = {f1, f2, f3, . . . , f18}
and the resulting set of promise matching formulas, Φ, is shown in Figure 2.10. To understand
this process better we now examine how two of the promise matching formulas in Figure 2.10
were included in Φ. These two matches are illustrated in Figure 2.11.

Consider q4 which proposes a @Unique("return") promise for the constructor, Synchro-
nizedBoolean(boolean), at line 21. Examination of this constructor finds that an equivalent
real promise, r20, exists. Hence, promise matching adds r20 → q4 to Φ.

As a second example, consider q5 which proposes a @RegionEffects("reads All") for
the constructor, SynchronizedBoolean(boolean), at line 21. Examination of this construc-
tor does not find an exactly equivalent promise, however, the effects promised by r18, @Re-
gionEffects("none"), are stronger than those proposed by q5, therefore, promise matching
adds r18 → q5 to Φ.

2.5 Proof calculus for promise verification

To produce verification proofs that promises are consistent with examined code we introduce
a logic to reason about triples of the form

{ψ}analysis output{φ}
which roughly means
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If the program (that is the object of the analysis output) is run in such a manner
that the assertion made by promise logic formula ψ is an invariant, then the
assertion made by the promise logic formula φ is an invariant.

By analysis output we refer to the merged analysis results and promise matching formulas
produced by the activities shown in Figure 2.2 and summarized in Figure 2.12 for our running
util.concurrent example.

Definition 2.5.1 (Promise verification triple). A promise verification triple is a triple of the
form {ψ}S {φ} where ψ is a formula in promise logic called the prerequisite assertion and
φ is a formula in promise logic called the consequential assertion. S is a tuple of the form(℘(Result)×℘(PMFormula)) that contains, as we will see in the examples below, a set of
analysis results and a set of promise matching formulas.

There is a crude analogy with the definitions used in the classic verification literature
in the tradition of Hoare logic [60]. (See Section 2.8 for an elaboration of the nature of
the analogy.) However, it must be emphasized that ψ is not a precondition and φ is not a
postcondition—there is no notion of control flow from ψ to φ. Traditionally, a precondition,
ψ, would be before a block of code, B, and a postcondition, ψ, would be after it; we would
say that if B is started in a state that satisfies ψ, then the state after running running B will
satisfy φ [79]. In analysis-based verification, the corresponding terms, prerequisite assertion
and consequential assertion, are used with respect to the consistency of promises with the
program. The consistency of ψ with the program is a sufficient condition to establish the
consistency of φ with the program.

For example, a @Borrowed parameter in a method may force a @Borrowed requirement,
which is a “consequent invariant,” on parameters of subsidiary methods in a potential call
chain. There are dependency relationships among these invariants that are needed to achieve
inferential outcomes (i.e., successful proofs) that are only indirectly related to program flow
of control. Thus, the precondition precedes along a control-flow path, but the consequent
invariant precedes along a proof-structure path. Operationally in the proof process (as noted
in the discussion at the end of Section 2.3.1) consequent invariants are inferred in an abductive
sense.

Promise verification triples are used to represent and symbolically reason about the con-
sistency of real promises as they relate to each other. For example, using the analysis output
from our util.concurrent example, the promise verification triple

{q4 ∨ (q5 ∧ q6)} ({f8},Φ) {r4}
states that the locking model VarLock, specified by the @RegionLock promise r4, is consistent
if the @Unique("return") promise, q4, proposed on the SynchronizedBoolean(boolean)

constructor at line 21 in Figure 2.4 is consistent or if both the @RegionEffects("reads

All") promise, q5, and the @Starts("nothing") promise, q6, proposed on the Synchro-

nizedBoolean(boolean) constructor are consistent. This triple is supported by one analysis
result, f8 in Figure 2.12, which is the only result for r4 reported during the analysis of
SynchronizedVariable, SynchronizedBoolean, and Object, the set of compilation units
examined. The set of formulas produced by promise matching, Φ, is listed in Figure 2.12.
In general, the middle portion of the triple tracks the set of analysis results required to sup-
port the promise verification triple and the complete set of formulas produced by promise
matching.
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Analysis Results
Finding About Prerequisite Description

f1 + r8 q1 super() promises consistent effects
f2 + r8 ⊺ lock_ write masked at line 12
f3 + r8 ⊺ this read masked at line 12
f4 + r9 q2 super() promises it starts no threads
f5 + r9 ⊺ constructor starts no threads
f6 + r10 q3 super() promises not to alias this

f7 × r10 ⊺ this aliased into lock_ at line 12
f8 + r4 q4 ∨ (q5 ∧ q6) thread-confined access to value_ at line 23
f9 + r18 q7 super() promises consistent effects
f10 + r18 ⊺ value_ write masked at line 23
f11 + r18 ⊺ initialValue read masked at line 23
f12 + r19 q8 super() promises it starts no threads
f13 + r19 ⊺ constructor starts no threads
f14 + r20 q9 super() promises not to alias this

f15 + r20 ⊺ constructor does not alias this

f16 + r29 ⊺ constructor has consistent effects
f17 + r30 ⊺ constructor starts no threads
f18 + r31 ⊺ constructor does not alias this

Proposed Promises
Promise On

q1 @RegionEffects("none") java.lang.Object no-argument constructor
q2 @Starts("nothing") java.lang.Object no-argument constructor
q3 @Unique("return") java.lang.Object no-argument constructor
q4 @Unique("return") SynchronizedBoolean(boolean) at line 21
q5 @RegionEffects("reads All") SynchronizedBoolean(boolean) at line 21
q6 @Starts("nothing") SynchronizedBoolean(boolean) at line 21
q7 @RegionEffects("none") SynchronizedVariable() at line 11
q8 @Starts("nothing") SynchronizedVariable() at line 11
q9 @Unique("return") SynchronizedVariable() at line 11

Matched Promises (the set Φ)

r29 → q1

r30 → q2

r31 → q3

r20 → q4

r18 → q5

r19 → q6

r8 → q7

r9 → q8

r10 → q9

Figure 2.12: Analysis output for the util.concurrent code in Figure 2.4.
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{q4 ∨ (q5 ∧ q6)} ({f8},Φ) {r4} (2.5){q1 ∧ ⊺ ∧ ⊺} ({f1, f2, f3},Φ) {r8}{q2 ∧ ⊺} ({f4, f5},Φ) {r9}{q3 ∧ ⊺} ({f6, f7},Φ) {r10}{q7 ∧ ⊺ ∧ ⊺} ({f9, f10, f11},Φ) {r18} (2.6){q8 ∧ ⊺} ({f12, f13},Φ) {r19}{q9 ∧ ⊺} ({f14, f15},Φ) {r20}{⊺} ({f16},Φ) {r29}{⊺} ({f17},Φ) {r30}{⊺} ({f18},Φ) {r31}
Figure 2.13: The elements contained in the set of promise verification conditions, V , obtained from
applying Definition 2.5.3 to the analysis output shown in Figure 2.12 about the util.concurrent

code in Figure 2.4.

2.5.1 Verification condition generation

We now describe how to “bridge the gap” between our analysis and promise matching output
to promise verification triples. Intuitively, for each real promise, r, that has only consistent
(+) analysis results about it we are able to construct promise verification triples and, from
these, develop a set of verification conditions.

Definition 2.5.2 (Promise verification condition). A promise verification condition for a
promise, r, is the promise verification triple pvc(r,R,Φ) where

pvc(r,R,Φ) = ⎧⎪⎪⎨⎪⎪⎩ ⋀
(+,r,φ)∈R

φ

⎫⎪⎪⎬⎪⎪⎭({x ∈ R ∣ x = (+, r, φ)},Φ) {r} ,
R is a set of analysis results, and Φ is a set of promise matching formulas.

The definition below uses“∖”as the set difference operator, i.e., A∖B = {x ∶ x ∈ A∧x ∉ B}.

Definition 2.5.3 (Promise verification conditions). The set of promise verification condi-
tions, which we call V , is a set of promise verification triples such that V = vc(R,Φ) where

vc(R,Φ) = {pvc(r,R,Φ) ∣ r ∈ only consistent results(R)},
only consistent results(R) = {r ∣ (+, r, ψ) ∈ R} ∖ {r ∣ (×, r, ψ) ∈ R},

R is a set of analysis results, and Φ is a set of promise matching formulas.

These definitions create a promise verification triple for each real promise that has only
consistent analysis results reported about it. For example, consider the set of verification
conditions, V , shown in Figure 2.13, determined by applying Definition 2.5.3 to the analysis
output from our util.concurrent example. The promise verification condition for the real
promise r20 is {q9 ∧ ⊺} ({f14, f15},Φ) {r20}. This triple is an element of V because r20 is a real
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{φ} (R,Φ) {ψ} ∈ V
V ⊢coe {φ} (R,Φ) {ψ} Axiom

V ⊢coe {φ} (R1,Φ) {ψ} V ⊢coe {η} (R2,Φ) {θ}
V ⊢coe {φ ∧ η} (R1 ∪R2,Φ) {ψ ∧ θ} Merge

V ⊢coe {φ ∧ η} (R,Φ) {η ∧ ψ}
V ⊢coe {φ} (R,Φ) {η ∧ ψ} Reduce

seq(Φ) ⊢pl φ′ → φ V ⊢coe {φ} (R,Φ) {ψ} ⊢pl ψ → ψ′

V ⊢coe {φ′} (R,Φ) {ψ′} Implied

A useful derived rule:

V ⊢coe {φ} (R1,Φ) {η} V ⊢coe {η} (R2,Φ) {ψ}
V ⊢coe {φ} (R1 ∪R2,Φ) {ψ} Compose

Figure 2.14: Proof rules for promise verification.

promise and neither of its two results reported an inconsistency (i.e., “×”). The two analysis
results for r20, f13 and f14, are listed in Figure 2.12 and the conjunction of their prerequisites
is the promise logic formula q9 ∧ ⊺.

There is no promise verification condition in V for r10, the @Unique("return") promise
on line 10 of Figure 2.4. Definition 2.5.3 excluded this element because one of the two analysis
results reported about this promise in Figure 2.12, f7, is inconsistent.

2.5.2 Proof rules

The proof rules for the verification of promises are shown in Figure 2.14.

Definition 2.5.4. If Φ is a set of promise logic formulas, we define seq(Φ) to be the sequence
of formulas derived from the set Φ.

Definition 2.5.5. If the sequent V ⊢coe {φ} (R,Φ) {ψ}, where V is a set of promise verifica-
tion triples, can be derived in the calculus shown in Figure 2.14, then it is valid.

We use a coe subscript on ⊢ to highlight the intuition that a “chain of evidence” exists
from the prerequisite assertion, via the analysis results, to the consequential assertion.

The derived Compose rule

The Compose rule, as demonstrated in Theorem 2.5.1, is a derived rule. The limitation of
this classic verification rule [48, 60] in our approach is that it is unable to deal with results
obtained from recursive code. Therefore, our calculus defines the Merge and Reduce rules
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which do not have this limitation. The Reduce rule, in particular, is key to our ability to
reason about promises in recursive code.

Theorem 2.5.1 (Compose rule). Given V ⊢coe {φ} (R1,Φ) {η} and V ⊢coe {η} (R2,Φ) {ψ},
we can derive, using the proof rules shown in Figure 2.14, V ⊢coe {φ} (R1 ∪R2,Φ) {ψ}.

Proof.
V ⊢coe {φ} (R1,Φ) {η} V ⊢coe {η} (R2,Φ) {ψ}

V ⊢coe {φ ∧ η} (R1 ∪R2,Φ) {η ∧ ψ} Merge

V ⊢coe {φ} (R1 ∪R2,Φ) {η ∧ ψ} Reduce

V ⊢coe {φ} (R1 ∪R2,Φ) {ψ} Implied

Before we describe the use of the rules in Figure 2.14 we discuss, informally, the goal of
the verification proofs we construct.

2.5.3 The goal

Our goal is to demonstrate that a promise is consistent with the examined code. If that is
not possible then we want to be able to understand why it is not possible to demonstrate
consistency. Therefore, for each verification condition we want to establish, in order from
most desirable to least desirable, a prerequisite assertion of:

1. The formula ⊺: This result indicates model–code consistency. Any other result indi-
cates that the model is incomplete (i.e., for the given set of analyses promises need to
be added to the code) or that the code is inconsistent with the model.

2. A formula containing only proposed promise symbols: This result indicates
that the model is incomplete. The user, to work toward a complete model, must add
additional promises to the code. In this case, and the two below, we assume that any
proposed promise symbols in the prerequisite assertion that could be removed have
been removed (i.e., the remaining proposed promises were not “matched”).

3. A formula containing both proposed and real promise symbols: The proposed
promise symbols in the prerequisite assertion indicate that the model is incomplete (i.e.,
promises need to be added to the code) as described above. Further, the real promise
symbols in the prerequisite assertion indicate that either an inconsistent analysis result
was reported for those promises or they were not checked by an analysis as described
below.

4. A formula containing only real promise symbols: This result indicate that for
each real promise in the prerequisite assertion either (a) the analysis results contained an
inconsistent report about that promise or (b) no analysis checked its consistency. Our
formal model does not distinguish between these two cases. However, an examination
of the analysis results makes it possible to distinguish between them and this is the
approach used by the JSure prototype tool (as described in the next chapter).
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This heuristic approach, other than a preference for a prerequisite assertion of ⊺, may seem
odd. Why not just fail to produce a result if model–code consistency cannot be demonstrated?
The heuristic above is designed to make the results as helpful to the user as possible, with a
goal of helping the user to understand how to take a “next step” toward consistency.

In the following sections, using our example from util.concurrent, we describe the use
of the rules in Figure 2.14.

2.5.4 Including verification conditions

The Axiom rule {φ} (R,Φ) {ψ} ∈ V
V ⊢coe {φ} (R,Φ) {ψ} Axiom

allows us to derive members of V as part of our proof. For example, consider the promise
verification condition in Equation 2.6 about the @RegionEffects("none") promise, r18, at
line 18 in Figure 2.4, {q7 ∧ ⊺ ∧ ⊺} ({f9, f10, f11},Φ) {r18}
using the Axiom rule we can derive

V ⊢coe {q7 ∧ ⊺ ∧ ⊺} ({f9, f10, f11},Φ) {r18} Axiom

because {q7 ∧ ⊺ ∧ ⊺} ({f9, f10, f11},Φ) {r18} ∈ V .

2.5.5 Linking to promise logic

The Implied rule

seq(Φ) ⊢pl φ′ → φ V ⊢coe {φ} (R,Φ) {ψ} ⊢pl ψ → ψ′

V ⊢coe {φ′} (R,Φ) {ψ′} Implied

forms a “link” between our verification logic and our promise logic. This rule allows the
prerequisite assertion to be strengthened and the consequential assertion to be weakened.
This rule is adopted from Hoare [60] where it linked program logic to first-order predicate
logic augmented with basic facts about arithmetic. The primary purpose of the Implied rule in
our calculus is to incorporate the results of promise matching into the prerequisite assertion
of a promise verification triple. It allows us to “replace” proposed promises with real promises
using the set of formulas produced by promise matching, Φ.

The Implied rule allows any formula in seq(Φ), the sequence of formulas derived from
the set Φ, to be used as a premise during the strengthening of a prerequisite assertion. For
example, consider the promise verification condition in Equation 2.6 about the @RegionEf-

fects("none") promise, r18, at line 18 in Figure 2.4,

{q7 ∧ ⊺ ∧ ⊺} ({f9, f10, f11},Φ) {r18}
and the formula, r8 → q7, in Equation 2.4 which is an element of Φ (identified during promise
matching). Because

r8 → q7 ⊢pl r8 → q7 ∧ ⊺ ∧ ⊺



2.5. PROOF CALCULUS FOR PROMISE VERIFICATION 71

is a valid sequent in promise logic, we can derive

V ⊢coe {q7 ∧ ⊺ ∧ ⊺} ({f9, f10, f11},Φ) {r18} Axiom

V ⊢coe {r8} ({f9, f10, f11},Φ) {r18} Implied

which simplifies the prerequisite assertion of our triple and replaces the proposed promise q7
with the real promise r8. This replacement of a proposed promise with a real promise sets
up our triple about r18 to be composed (using the Compose rule) with a triple about r8.

Our general approach to replace proposed promises with real promises is to examine a
prerequisite formula, φ, and within that formula “replace” each matched proposed promise
with its real promise to produce a new formula, ψ. We then must derive seq(Φ) ⊢pl ψ → φ to
allow use of Implied.

As a more complex example, consider the promise verification condition in Equation 2.5
about the @RegionLock promise, r4, at line 4 in Figure 2.4,

{q4 ∨ (q5 ∧ q6)} ({f8},Φ) {r4}
and the formulas r20 → q4, r18 → q5, and r19 → q6 from Equations 2.1, 2.2, and 2.3 which are
elements of Φ. Because

r20 → q4, r18 → q5, r19 → q6 ⊢pl r20 ∨ (r18 ∧ r19)→ q4 ∨ (q5 ∧ q6)
is a valid sequent in promise logic, we can derive

V ⊢coe {q4 ∨ (q5 ∧ q6)} ({f8},Φ) {r4} Axiom

V ⊢coe {r20 ∨ (r18 ∧ r19)} ({f8},Φ) {r4} Implied

which is now free of proposed promises.

2.5.6 Composing results

The rules presented above allow us to introduce verification conditions into proofs and to
replace proposed promises with real promises within the prerequisite assertions of our triples.
We now discuss the rules that allow us to compose our triples into a larger verification proof.

Notice that the util.concurrent code we have been using as a running example in this
chapter does not contain recursion. Recursion within the program can result in triples where
a promise directly or indirectly requires itself as a prerequisite. We address recursion below
in Section 2.5.7.

The Compose rule

V ⊢coe {φ} (R1,Φ) {η} V ⊢coe {η} (R2,Φ) {ψ}
V ⊢coe {φ} (R1 ∪R2,Φ) {ψ} Compose

allows us to compose triples and work toward a prerequisite assertion of ⊺. This rule used with
the Axiom and Implied rules is enough to prove the consistency of the @Starts("nothing")

promise, r19, on line 19 in Figure 2.4 with the code. This proof, shown in Figure 2.15,
demonstrates that r19 is consistent by first replacing all proposed promises in the prereq-
uisite assertions then using the Compose rule to derive a prerequisite assertion of ⊺. The
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V ⊢coe {⊺} ({f17},Φ) {r30} Axiom
V ⊢coe {q2 ∧ ⊺} ({f4, f5},Φ) {r9} Axiom

V ⊢coe {r30} ({f4, f5},Φ) {r9} Implied (1)
V ⊢coe {⊺} ({f4, f5, f17},Φ) {r9} Compose

above↗
V ⊢coe {⊺} ({f4, f5, f17},Φ) {r9}

V ⊢coe {q8 ∧ ⊺} ({f12, f13},Φ) {r19} Axiom

V ⊢coe {r9} ({f12, f13},Φ) {r19} Implied (2)
V ⊢coe {⊺} ({f4, f5, f12, f13, f17},Φ) {r19} Compose

Figure 2.15: Proof of the sequent V ⊢coe {⊺} ({f4, f5, f12, f13, f17},Φ) {r19} which demonstrates the
consistency of the @Starts("nothing") promise, r20, on line 20 in Figure 2.4 with the code. The
valid sequent used by Implied (1) is r30 → q2 ⊢pl r30 → q2∧⊺ and by Implied (2) is r9 → q8 ⊢pl r9 → q8∧⊺.
V is defined in Figure 2.13.

V ⊢coe {⊺} ({f16},Φ) {r29} Axiom
V ⊢coe {q1 ∧ ⊺ ∧ ⊺} ({f1, f2, f3},Φ) {r8} Axiom

V ⊢coe {r29} ({f1, f2, f3},Φ) {r8} Implied (1)
V ⊢coe {⊺} ({f1, f2, f3, f16},Φ) {r8} Compose

above↗
V ⊢coe {⊺} ({f1, f2, f3, f16},Φ) {r8}

V ⊢coe {q7 ∧ ⊺ ∧ ⊺} ({f9, f10, f11},Φ) {r18} Axiom

V ⊢coe {r8} ({f9, f10, f11},Φ) {r19} Implied (2)
V ⊢coe {⊺} ({f1, f2, f3, f9, f10, f11, f16},Φ) {r19} Compose

Figure 2.16: Proof of the sequent V ⊢coe {⊺} ({f1, f2, f3, f9, f10, f11, f16},Φ) {r18} which demon-
strates the consistency of the @RegionEffects("none") promise, r18, on line 18 in Figure 2.4 with
the code. The valid sequent used by Implied (1) is r29 → q1 ⊢pl r29 → q1 ∧ ⊺ ∧ ⊺ and by Implied (2) is
r8 → q7 ⊢pl r8 → q7 ∧ ⊺ ∧ ⊺. V is defined in Figure 2.13.

structure of this proof illustrates that @Starts("nothing") promise, r30, is satisfied on
the java.lang.Object no-argument constructor, which is required for @Starts("nothing")
promise, r9, to be satisfied on the SynchronizedVariable no-argument constructor, which
is required for @Starts("nothing") promise, r19, to be satisfied on the Synchronized-

Boolean(boolean) constructor.

The proof in Figure 2.16 demonstrates the consistency of the @RegionEffects("none")

promise, r18, on line 18 in Figure 2.4 with the code and is similar in approach to the proof
described above.

To prove the VarLock model is consistent with the code we need to demonstrate the
consistency of the @RegionLock promise, r4. This proof is shown in Figure 2.17 and it
requires use of the Merge rule

V ⊢coe {φ} (R1,Φ) {ψ} V ⊢coe {η} (R2,Φ) {θ}
V ⊢coe {φ ∧ η} (R1 ∪R2,Φ) {ψ ∧ θ} Merge

to create the promise logic formula r18 ∧ r19 and allow use of the Compose rule. Note the use
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R1 = {f1, f2, f3, f9, f10, f11, f16}
R2 = {f4, f5, f12, f13, f17}
R3 = R1 ∪R2

R4 = R3 ∪ {f8}

Figure 2.16

V ⊢coe {⊺} (R1,Φ) {r18} Figure 2.15

V ⊢coe {⊺} (R2,Φ) {r19}
V ⊢coe {⊺ ∧ ⊺} (R3,Φ) {r18 ∧ r19} Merge

V ⊢coe {⊺} (R3,Φ) {r18 ∧ r19} Implied

V ⊢coe {q4 ∨ (q5 ∧ q6)} ({f8},Φ) {r4} Axiom

V ⊢coe {r20 ∨ (r18 ∧ r19)} ({f8},Φ) {r4} Implied

V ⊢coe {r18 ∧ r19} ({f8},Φ) {r4} Implied

V ⊢coe {⊺} (R4,Φ) {r4} Compose

Figure 2.17: Proof of the sequent V ⊢coe {⊺} (R4,Φ) {r4} which demonstrates the consistency of the
@RegionLock("VarLock is lock_ protects Variable") promise, r4, on line 4 in Figure 2.4 with
the code. V is defined in Figure 2.13.

of the Implies rule to choose the right-hand side of r20 ∨ (r18 ∧ r29) because we can derive a
prerequisite assertion of ⊺ for r18 ∧ r29 while the best we can do for r20 is derive the sequent

V ⊢coe {r10} ({f14, f15},Φ) {r20}
which means that the @Unique("return") promise, r20 on on the SynchronizedBoolean(boolean)
constructor is consistent if the @Unique("return") promise, r10 on on the Synchronized-

Variable constructor is consistent. However, as discussed in Section 2.5.3, a prerequisite
assertion of ⊺ is considered a better result than a prerequisite assertion of r10 so we choose
that path in our proof of of the @RegionLock promise, r4. In addition, the uniqueness analysis
reported inconsistent results about r10.

2.5.7 Handling recursion

Recursion within the program can result in triples where a promise directly or indirectly
requires itself as a prerequisite. This comes about because a method, directly or indirectly,
calls itself. The Reduce rule

V ⊢coe {φ ∧ η} (R,Φ) {η ∧ ψ}
V ⊢coe {φ} (R,Φ) {η ∧ ψ} Reduce

allows us to “remove the loop” from a proof. It captures the necessary coinductive argument
needed to handle promises about recursive methods. Using coinduction, in a sense, we assume
the desired result in order to prove it. This sounds dangerous, however, with the restrictions
we have placed on our formalisms, it results in valid proofs. Coinduction, as a proof technique
for program analysis, is discussed in Appendix B of [87]. The need for the Reduce rule to
handle verification of recursive code is the driver behind much of the complexity (e.g., needing
both promise logic, ⊢pl, and our verification calculus, ⊢coe) of the formalisms presented in this
chapter. It also motivates the soundness proof presented in Section 2.7 because it makes this
property non-obvious.
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1 public class Fibonacci {
2 long callsToFibMethod = 0;
3

4 @Borrowed("this")
5 public long fib(int n) {
6 callsToFibMethod++;
7 if (n <= 1)
8 return n;
9 else

10 return fib(n-1) + fib(n-2);
11 }
12 }

Analysis Results for Fibonacci

Finding About Prerequisite Description

f1 + r4 q1 fib(n-1) at line 10 promises not to alias this

f2 + r4 q2 fib(n-2) at line 10 promises not to alias this

f3 + r4 ⊺ fib(int) does not alias this

Proposed Promises
Promise On

q1 @Borrowed("this") fib(int) at line 5
q2 @Borrowed("this") fib(int) at line 5

C = {Fibonacci}
R = {f1, f2, f3}
Φ = {r4 → q1, r4 → q2}
V = {{q1 ∧ q2 ∧ ⊺} (R,Φ) {r4}}

Proof of the sequent V ⊢coe {⊺} (R,Φ) {r4}
V ⊢coe {q1 ∧ q2 ∧ ⊺} (R,Φ) {r4} Axiom

V ⊢coe {⊺ ∧ r4} (R,Φ) {r4 ∧ ⊺} Implied

V ⊢coe {⊺} (R,Φ) {r4 ∧ ⊺} Reduce

V ⊢coe {⊺} (R,Φ) {r4} Implied

Figure 2.18: An example of using the Reduce rule to handle recursion in a promise verification proof.
(Top) The Java code for (inefficiently) computing a Fibonacci number using recursive calls. The Fi-

bonacci instance tracks the number of calls to fib. The fib method promises that it does not alias
the receiver. (Middle) Analysis results, proposed promises, matched promises, and verification condi-
tions. (Bottom) The proof of the sequent V ⊢coe {⊺} (R,Φ) {r4} which demonstrates the consistency
of the @Borrowed("this") promise, r4, on line 4 with the code.
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1 public class Recursive {
2 @Borrowed("this")
3 public Recursive() {
4 go(null);
5 }
6

7 @Borrowed("this")
8 void go(@Borrowed Object work) {
9 if (work == null)

10 stop(this);
11 }
12

13 @Borrowed("this")
14 void stop(@Borrowed Object done) {
15 go(done);
16 }
17 }

Analysis Results for Recursive

Finding About Prerequisite Description

f1 + r2 ⊺ constructor does not alias this

f2 + r2 q1 go(null) at line 4 promises not to alias this

f3 + r7 ⊺ go(Object) does not alias this

f4 + r7 q2 stop(this) at line 10 promises not to alias this

f5 + r7 q3 stop(this) at line 10 promises not to alias argument 1
f6 + r8 ⊺ go(Object) does not alias argument 1, i.e., work
f7 + r13 ⊺ stop(Object) does not alias this

f8 + r13 q4 go(done) at line 15 promises not to alias this

f9 + r14 ⊺ stop(Object) does not alias argument 1, i.e., done
f10 + r14 q5 go(done) at line 15 promises not to alias argument 1

Proposed Promises
Promise On

q1 @Borrowed("this") go(Object) at line 8
q2 @Borrowed("this") stop(Object) at line 14
q3 @Borrowed argument 1 of stop(Object) at line 14
q4 @Borrowed("this") go(Object) at line 8
q5 @Borrowed argument 1 of go(Object) at line 8

Figure 2.19: Code and analysis results for a contrived class with mutually recursive methods.
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C = {Recursive}
R = {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10}
Φ = {r7 → q1, r13 → q2, r14 → q3, r7 → q4, r8 → q5}
V = { {⊺ ∧ q1} ({f1, f2},Φ) {r2} ,{⊺ ∧ q2 ∧ q3} ({f3, f4, f5},Φ) {r7} ,{⊺} ({f6},Φ) {r8} ,{⊺ ∧ q4} ({f7, f8},Φ) {r13} ,{⊺ ∧ q5} ({f9, f10},Φ) {r14} ,}

V ⊢coe {⊺} ({f6},Φ) {r8} Axiom
V ⊢coe {⊺ ∧ q5} ({f9, f10},Φ) {r14} Axiom

V ⊢coe {r8} ({f9, f10},Φ) {r14} Implied

V ⊢coe {⊺} ({f6, f9, f10},Φ) {r14} Compose

above↗
V ⊢coe {⊺} ({f6, f9, f10},Φ) {r14}

V ⊢coe {⊺ ∧ q4} ({f7, f8},Φ) {r13} Axiom

V ⊢coe {r7} ({f7, f8},Φ) {r13} Implied

V ⊢coe {⊺ ∧ r7} ({f6, f7, f8, f9, f10},Φ) {r14 ∧ r13} Merge

above↗
V ⊢coe {⊺ ∧ r7} ({f6, f7, f8, f9, f10},Φ) {r14 ∧ r13}

V ⊢coe {⊺ ∧ q2 ∧ q3} ({f3, f4, f5},Φ) {r7} Axiom

V ⊢coe {r14 ∧ r13} ({f3, f4, f5},Φ) {r7} Implied

V ⊢coe {⊺ ∧ r7} ({f3, f4, f5, f6, f7, f8, f9, f10},Φ) {r7} Compose

V ⊢coe {⊺ ∧ r7} ({f3, f4, f5, f6, f7, f8, f9, f10},Φ) {r7 ∧ ⊺} Implied

V ⊢coe {⊺} ({f3, f4, f5, f6, f7, f8, f9, f10},Φ) {r7 ∧ ⊺} Reduce

V ⊢coe {⊺} ({f3, f4, f5, f6, f7, f8, f9, f10},Φ) {r7} Implied

Figure 2.20: An example of using the Reduce rule to handle mutual recursion in a promise verifica-
tion proof. (Top) Compilation units, analysis results, matched promises, and verification conditions.
(Bottom) Proof of the sequent V ⊢coe {⊺} ({f3, f4, f5, f6, f7, f8, f9, f10},Φ) {r7} which demonstrates
the consistency of the @Borrowed("this") promise, r7, on line 7 in Figure 2.19 with the code.
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C = {TravelAgentBean}
R = {f1, f2, f3, f4, f5, f6}
Φ = {r12 → q1}
V = { {⊺ ∧ q1 ∧ q2 ∧ q3} ({f1, f2, f3, f4},Φ) {r6} ,{⊺ ∧ q4} ({f5, f6},Φ) {r12}}

V ⊢coe {⊺ ∧ q4} ({f5, f6},Φ) {r12} Axiom

V ⊢coe {q4} ({f5, f6},Φ) {r12} Implied (1) V ⊢coe {⊺ ∧ q1 ∧ q2 ∧ q3} ({f1, f2, f3, f4},Φ) {r6} Axiom

V ⊢coe {q2 ∧ q3 ∧ r12} ({f1, f2, f3, f4},Φ) {r6} Implied (2)
V ⊢coe {q4 ∧ q2 ∧ q3 ∧ r12} (R,Φ) {r12 ∧ r6} Merge

V ⊢coe {q4 ∧ q2 ∧ q3} (R,Φ) {r12 ∧ r6} Reduce

V ⊢coe {q2 ∧ q3 ∧ q4} (R,Φ) {r6} Implied (3)
Figure 2.21: Proof of the sequent V ⊢coe {q2 ∧ q3 ∧ q4} (R,Φ) {r6} which demonstrates the consistency
of the @Starts("nothing") promise, r6, on line 6 in Figure 2.1 with the code. For this example, the
analysis results and proposed promises are shown in Figure 2.3. The valid sequent used by Implied
(1) is ⊢pl q4 → ⊺ ∧ q4, by Implied (2) is r12 → q1 ⊢pl q2 ∧ q3 ∧ r12 → ⊺ ∧ q1 ∧ q2 ∧ q3, and by Implied (3) is⊢pl r12 ∧ r6 → r6.

For non-recursive code we typically use the simpler Compose rule, however, as was demon-
strated in the proof of Theorem 2.5.1, this rule is derived from the Reduce rule.

Figure 2.18 provides an straightforward example of the Reduce rule to verify a @Bor-

rowed("this") promise about a recursive method that computes a Fibonacci number. The
@Borrowed("this") promise asserts that the method will not create any aliases to the re-
ceiver, i.e., this (as described in A.3.1).

A more complex recursive example is shown in Figure 2.19. This highly-contrived example
highlights the flow-sensitive nature of alias promises. The @Borrowed("this") promise, r7,
on the go method requires that the method stop to promise not to alias its receiver or its
first argument because this is passed as the first argument of the call to stop at line 10. The
proof in Figure 2.20 demonstrates that r7 is consistent with the code in Figure 2.19. This
proof demonstrates the use of Merge and Reduce rules to verify a set of mutually recursive
methods.

2.5.8 Handling “mixed” prerequisite assertions

The Merge and Reduce rules are also needed to produce proofs that have a prerequisite
assertion that is composed of a mixture of real and proposed promises. An example of this
type of proof is shown in Figure 2.21 about the TravelAgentBean example that was used
as a motivating example at the beginning of this chapter. In this example the prerequisite
assertion for r6 is derived to be q2 ∧ q3 ∧ r12 (below Implied (2)). This mixture of real and
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proposed promises is not in a form that the Compose rule can handle. The Compose rule can
only be used when the prerequisite assertion contains only real promise symbols. Therefore,
the TravelAgentBean proof uses the more flexible Merge and Reduce rules to continue the
proof and derive the more desirable, as described in Section 2.5.3, prerequisite assertion of
q2 ∧ q3 ∧ q4.
2.6 Semantics

In this section we develop a precise semantics for promise logic and for analysis results. We
first define a truth table semantics for promise logic.

Definition 2.6.1 (Promise logic semantics). The set of values contains two elements T and
U, where T represents ‘true’ or ‘consistent’ and U represents ‘unknown’. The truth tables for
promise logic match the truth tables for propositional logic (except that U replaces F).

A model of a promise logic formula φ is an assignment of each atom in φ to a truth value.M(T ) is used to denote a model where the set of atoms contained in the set T are assigned
T and all other atoms are assigned U.

We sayM(T ) ⊧pl ψ if the promise logic formula ψ evaluates to T by the modelM(T ). We
say M(T ) ⊭pl ψ if the promise logic formula ψ evaluates to U by the model M(T ).

For example, using this definition we can determine that M({r1,r2}) ⊧pl (r1 ∧ r2) ∨ r3 andM({r1}) ⊭pl r1 → r2. Based upon Definition 2.6.1, we can now develop a semantics of analysis
results in terms of promise consistency.

Definition 2.6.2 (Analysis result implication). An analysis result implication for a promise,
r, is the promise logic formula result impl(r,R) where

result impl(r,R) = ⎛⎝ ⋀
(+,r,φ)∈R

φ
⎞⎠→ r

and R is a set of analysis results.

Definition 2.6.3 (Analysis implications). The set of analysis implications, which we call Ψ,
for a set of analysis results, R, and a set of promise matching formulas, Φ, is a set of promise
logic formulas such that Ψ = analysis impls(R,Φ) where

analysis impls(R,Φ) = {result impl(r,R) ∣ r ∈ only consistent results(R)} ∪Φ,

only consistent results(R) = {r ∣ (+, r, ψ) ∈ R} ∖ {r ∣ (×, r, ψ) ∈ R},
R is a set of analysis results, and Φ is a set of promise matching formulas.

Applying these two definitions to the TravelAgentBean analysis results shown in Fig-
ure 2.3 and Φ at the top of Figure 2.21 results in the following set of analysis implications:

Ψ = {⊺ ∧ q1 ∧ q2 ∧ q3 → r6, ⊺ ∧ q4 → r12, r12 → q1}
As another example, applying these two definitions to the Recursive analysis results

shown in Figure 2.19 and Φ at the top of Figure 2.20 results in the following set of analysis
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implications:

Ψ = {⊺ ∧ q1 → r2, ⊺ ∧ q2 ∧ q3 → r7, ⊺→ r8, ⊺ ∧ q4 → r13, ⊺ ∧ q5 → r14,

r7 → q1, r13 → q2, r14 → q3, r7 → q4, r8 → q5}
Note that in both examples, the consequent of each analysis implication is unique. We

prove that this useful property holds in general below. In addition, we prove that the an-
tecedent of each analysis implication is implication-free. In the statement of the propositions
below we use the term “produced by analysis-based verification of a program” to indicate that
the set of analysis results and promise matching formulas were produced by a system that
respects the requirements described in Section 2.3.1 and Section 2.4, respectively.

Lemma 2.6.1 (Uniqueness of analysis implication consequents). For a set of analysis impli-
cations, Ψ, produced by analysis-based verification of a program, if φ → p ∈ Ψ and ψ → p ∈ Ψ
then φ = ψ.

Proof. If p is a proposed promise then φ → p and ψ → p must be elements of Φ (the output
of promise matching) by examination of how Definition 2.6.3 constructs Ψ. In this case, the
proposition holds because promise matching in an analysis-based verification system ensures
a unique result is reported for each consequent (i.e., φ = ψ) as described in Section 2.4. If
p is a real promise then by examination of how Definition 2.6.3 constructs Ψ, only a single
formula has p as its consequent and the proposition holds in this case as well. Therefore,
because each promise must be either a proposed promise or a real promise the proposition is
true.

Lemma 2.6.2 (Analysis implication antecedents are implication-free). For a set of analysis
implications, Ψ, produced by analysis-based verification of a program, if φ → p ∈ Ψ then
φ ∈ AOFormula.

Proof. If p is a proposed promise then φ→ p must be an element of Φ (the output of promise
matching) by examination of how Definition 2.6.3 constructs Ψ. In this case, the proposition
holds because promise matching in an analysis-based verification system guarantees that φ
takes the form r where r is a real promise as described in Section 2.4 and r is clearly an
element of AOFormula. If p is a real promise then by examination of how Definition 2.6.3
constructs Ψ it is a conjunction of implication-free formulas reported as the prerequisite of an
analysis result and the proposition holds in this case as well (because conjoining elements of
AOFormula creates a formula that is still an element of AOFormula). Therefore, because
each promise must be either a proposed promise or a real promise the proposition is true.

Our approach is to formally define the semantics of analysis results in terms of promise
consistency with the program (or set of compilation units examined). If a promise, p, is
consistent with the program then p ∈ T . If a promise is inconsistent or is contingently
consistent with the program then p ∉ T .

Definition 2.6.4 (Analysis semantics). An analysis semantics is the largest set T of assumed
T atoms that is consistent with a set of analysis result implications, Ψ. We say that T is
consistent with Ψ if ∀p ∈ T,∃(ψ → p) ∈ Ψ ∶M(T ) ⊧pl ψ.
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Applying this definition to the TravelAgentBean example,

T = ∅
because all the results are contingent, i.e., their prerequisite assertion is not ⊺, and, therefore,
they are all ‘unknown’.

Applying this definition to the Recursive example,

T = {q1, q2, q3, q4, q5, r2, r7, r8, r13, r14}
because all the results are consistent with the program, i.e., their prerequisite assertion is ⊺,
and, therefore, they are all ‘true’ or ‘consistent’. Notice that T includes proposed promises
that have been matched with a consistent real promise.

We conclude this section by proving a theorem (and a supporting lemma) that a “largest
set T” exists. We do this because it could be considered plausible that there exist two
incomparable sets T1 and T2 that are consistent with Ψ but that T1 ∪ T2 is not consistent
with Ψ.

Lemma 2.6.3 (Monotonicity of implication-free formulas). Let T1 and T2 be sets of assumed
T atoms such that T1 ≠ T2. if M(T1)

⊧pl φ where φ ∈ AOFormula then M(T1∪T2)
⊧pl φ.

Proof. By induction on the form (structure) of the implication-free promise logic formula φ.

(Case p) Where where p ∈ Promise, i.e., it is a promise symbol. We assumeM(T1)
⊧pl p or this case is vacuously true. Using this fact, by Definition 2.6.1, we

know that p ∈ T1. Therefore, p ∈ T1 ∪ T2, and M(T1∪T2)
⊧pl φ and this case holds.

(Case ⊺) Because M(T ) ⊧pl ⊺ for any set T of assumed T atoms (including the
empty set), this case is immediate.

(Case ρ ∧ χ) We assume M(T1)
⊧pl ρ ∧ χ or this case is vacuously true. By the

semantics of ∧ we knowM(T1)
⊧pl ρ andM(T1)

⊧pl χ, and, thus, by the induction
hypothesis M(T1∪T2)

⊧pl ρ and M(T1∪T2)
⊧pl χ. Therefore, we can conclude, by

the semantics of ∧, M(T1∪T2)
⊧pl ρ ∧ χ and this case holds.

(Case ρ ∨ χ) We assume M(T1)
⊧pl ρ ∨ χ or this case is vacuously true. By the

semantics of ∨ we know that M(T1)
⊧pl ρ or M(T1)

⊧pl χ or both. We assume,
without loss of generality, thatM(T1)

⊧pl ρ, and, thus, by the induction hypothesisM(T1∪T2)
⊧pl ρ. Therefore, we can conclude, by the semantics of ∨, M(T1∪T2)

⊧pl
ρ ∨ χ and this case holds.

All cases hold so the proposition is true.

Theorem 2.6.4 (Existence of analysis semantics). For a set of analysis implications, Ψ,
produced by analysis-based verification of a program, a largest set, T , of analysis semantics
exists.
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Proof. (By contradiction) We use Definition 2.6.4 to define consistency with Ψ. Assume, to
the contrary, that there exists a set T1 of assumed T atoms that is consistent with Ψ and that
there exists a set T2 of assumed T atoms that is consistent with Ψ such that T1 ≠ T2 but that
T1 ∪ T2 is not consistent with Ψ.

If T1∪T2 is not consistent with Ψ then there exists a p ∈ T1∪T2 such that either ψ → p ∈ Ψ
andM(T1∪T2)

⊭pl ψ or ψ → p ∉ Ψ. We know that p is an element of T1 or T2 or both. Because
both T1 and T2 are consistent with Ψ we assume, without loss of generality, that p ∈ T1 and
consider the two cases defined at the start of this paragraph.

(Case ψ → p ∈ Ψ and M(T1∪T2)
⊭pl ψ) In this case because p ∈ T1 and T1 is

consistent with Ψ we know by Definition 2.6.4 that there exists ψ′ → p ∈ Ψ
such that M(T1)

⊧pl ψ′. By Lemma 2.6.1 (Uniqueness of analysis implication
consequents) we know that ψ = ψ′ and, therefore, M(T1)

⊧pl ψ. Because ψ →
p ∈ Ψ, by Lemma 2.6.2 (Analysis implication antecedents are implication-free),
we know that ψ ∈ AOFormula. Further, because M(T1)

⊧pl ψ, T1 ≠ T2, and
ψ ∈ AOFormula, by Lemma 2.6.3 (Monotonicity of implication-free formulas),
we know M(T1∪T2)

⊧pl ψ. However, by the definition of this case M(T1∪T2)
⊧pl ψ

is a contradiction.

(Case ψ → p ∉ Ψ) In this case because p ∈ T1 and T1 is consistent with Ψ we know
by Definition 2.6.4 that there exists an implication in Ψ with p as its consequent.
However, by the definition of this case this existence is a contradiction.

In both cases we reach a contradiction, therefore, the proposition is true.

Note that Theorem 2.6.4 (Existence of analysis semantics), depends upon the prerequisite
assertions reported by program analyses as part of each analysis result to be implication-free.
If implications are allowed then this theorem is not true. For example, consider the (illegal)
set of analysis results R = {(+, r3, q1 → r2), (+, r2,⊺)} where Φ is empty. By Definition 2.6.3
Ψ = {(q1 → r2) → r3), ⊺ → r2}. Let T1 = {r3} and T2 = {r2}. Notice that, by Definition 2.6.4,
T1 and T2 are consistent with Ψ but T1 ∪T2 is not. Avoiding this situation is the reason why
the prerequisite for each analysis result must be an element of AOFormula.

2.7 Soundness

In this section we prove a soundness theorem that relates the logic for analysis-based verifica-
tion presented in Section 2.5 to the analysis semantics developed in Section 2.6. Theorem 2.7.4
(Soundness) proves the proposition

If V ⊢coe {φ} (R′,Φ) {ψ} is valid then M(T ) ⊧pl φ→ ψ holds

which states that if we can derive a triple where φ is the prerequisite assertion for ψ in
our logic then it must be the case that the formula φ → ψ is ‘true’ or ‘consistent’ in our
analysis semantics (i.e., φ → ψ evaluates to T in the model M(T )). We present proofs for
three supporting lemmas followed by a proof of soundness.
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First, however, we sketch our overall proof strategy. Lemma 2.7.1 (Consistency of promise
matching formulas) asserts that all promise logic formulas in Φ are ‘true’ or ‘consistent’ in our
analysis semantics (i.e., each formula in Φ evaluates to T in the modelM(T )). This lemma is
required to prove the soundness of the Implied rule in our calculus. The proof for this lemma
is straightforward.

The second and third lemma provide an invariant required to prove the soundness of the
Reduce rule in our calculus.

V ⊢coe {φ ∧ η} (R1,Φ) {η ∧ ψ}
V ⊢coe {φ} (R1,Φ) {η ∧ ψ} Reduce

If we examine this rule it is clear that if φ is ‘true’ then η must be ‘true’ as well otherwise
the Reduce rule (in terms of our semantics) turns (T ∧ U) → U (which is sound) into T → U

(which is unsound). Lemma 2.7.2 (Coinductive assertions invariant) is the general form of
this invariant and its formal proposition is somewhat baroque. Lemma 2.7.3 (Reduce rule
invariant) is a more obvious statement of this invariant for the Reduce rule and its proof is a
straightforward application of Lemma 2.7.2.

The proofs in this section rely upon the fact that promise logic is sound (for a proof
see [64]). As in the previous section, several of the propositions below use the term “pro-
duced by analysis-based verification of a program” to indicate that the set of analysis results
and promise matching formulas were produced by a system that respects the requirements
described in Section 2.3.1 and Section 2.4, respectively.

Lemma 2.7.1 (Consistency of promise matching formulas). Let Φ be a set of promise match-
ing formulas and T be the analysis semantics produced by analysis-based verification of a
program. For all promise matching formulas r → q ∈ Φ, M(T ) ⊧pl r → q.

Proof. Let Ψ be the set of analysis implications used to produce T . We consider two cases
based upon the semantics of r.

(Case M(T ) ⊧pl r) In this case r ∈ T . By Lemma 2.6.1 (Uniqueness of analysis
implication consequents) we know that r → q is the only implication in Ψ with q
as its consequent. Because r ∈ T and r → q ∈ Ψ and by Theorem 2.6.4 (Existence
of analysis semantics) T is maximal, we know by Definition 2.6.4 that q ∈ T .
Therefore, M(T ) ⊧pl r → q and this case holds.

(CaseM(T ) ⊭pl r) In this case we know, by the semantics of→, thatM(T ) ⊧pl r → q
and this case holds.

In both cases M(T ) ⊧pl r → q so the proposition is true.

Lemma 2.7.2 (Coinductive assertions invariant). Let φ′, ψ′, φ′′, ψ′′, α, and η be promise
logic formulas. Let R be a set of analysis results, Φ a set of promise matching formulas, V
a set of promise verification conditions, and T the analysis semantics produced by analysis-
based verification of a program. Let R′ ⊆ R and R′′ ⊆ R. If V ⊢coe {φ′} (R′,Φ) {ψ′} and
V ⊢coe {φ′′} (R′′,Φ) {ψ′′} such that seq(Φ) ⊢pl α ∧ η → φ′ ∧ φ′′ and ⊢pl ψ′ ∧ ψ′′ → η andM(T ) ⊧pl α then M(T ) ⊧pl η.
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Proof. By structural induction on the proof of V ⊢coe {φ} (R1,Φ) {ψ} where R1 ⊆ R. We
proceed by cases on the final rule used in the derivation of V ⊢coe {φ} (R1,Φ) {ψ} (the Axiom
case is the basis).

(Case Axiom) In this case let φ = φ′ = φ′′, ψ = ψ′ = ψ′′, and R1 = R′ = R′′. We
know, by the Axiom rule, that {φ} (R1,Φ) {ψ} ∈ V and, by Definition 2.5.3, that
ψ must have the form r where r is a real promise. There exist two promise logic
formulas α and η such that seq(Φ) ⊢pl α ∧ η → φ and ⊢pl r → η. We assumeM(T ) ⊧pl α or this case is vacuously true. By examination of the proof rules for
promise logic (in particular “→ i” and “⊺i”) it is clear that if ⊢pl r → η is valid then
η must be either r or ⊺. We now demonstrate M(T ) ⊧pl η in these two cases.

(Case η is ⊺) This case holds because for any T , M(T ) ⊧pl ⊺.

(Case η is r) In this case seq(Φ) ⊢pl α ∧ r → φ and ⊢pl r → r. Be-
cause {φ} (R1,Φ) {r} ∈ V we know that φ → r ∈ Ψ (due to the similar
techniques used to construct V and Ψ by Definition 2.5.3 and Defini-
tion 2.6.3, respectively). Lemma 2.7.1 (Consistency of promise match-
ing formulas) tell us that all the all the formulas in Φ are consistent
(i.e., ∀χ ∈ Φ ∶M(T ) ⊧pl χ), therefore, by the soundness of promise logic,
we know that M(T ) ⊧pl α ∧ r → φ (because seq(Φ) ⊢pl α ∧ r → φ). Fur-
ther, by our assumption, we know that α is consistent (M(T ) ⊧pl α),
therefore, only r could be keeping r out of T (because if r is consistent
then φ must be consistent and, by Definition 2.6.4, φ → r ∈ Ψ would
ensure r is an element of the largest set T ) which by Definition 2.6.4
and Theorem 2.6.4 (Existence of analysis semantics) is not possible—r
cannot keep itself out of T . Therefore, M(T ) ⊧pl r and this case holds.

(Case Merge) In this case let φ = φ′ = φ′′, ψ = ψ′ = ψ′′, and R1 = R′ = R′′. We
know, by the Merge rule, that φ is of the form τ ∧υ and that ψ is of the form σ∧ρ.
There exist two promise logic formulas α and η such that seq(Φ) ⊢pl α∧ η → τ ∧υ
and ⊢pl σ ∧ ρ→ η. We assume M(T ) ⊧pl α or this case is vacuously true. We need
to demonstrate M(T ) ⊧pl η.

In this rule above the bar we have two sequents V ⊢coe {τ} (R2,Φ) {σ} and
V ⊢coe {υ} (R3,Φ) {ρ} where R1 = R2∪R3. By the induction hypothesis, we know
seq(Φ) ⊢pl α′ ∧ η′ → τ ∧ υ and ⊢pl σ ∧ ρ→ η′, M(T ) ⊧pl α′, and M(T ) ⊧pl η′.

Lemma 2.7.1 (Consistency of promise matching formulas) tell us that all the
all the formulas in Φ are consistent (i.e., ∀χ ∈ Φ ∶ M(T ) ⊧pl χ), therefore, by
the soundness of promise logic, we know that M(T ) ⊧pl α′ ∧ η′ → τ ∧ υ (because
seq(Φ) ⊢pl α′ ∧ η′ → τ ∧ υ). Similarly, we know that M(T ) ⊧pl α ∧ η → τ ∧ υ
(because seq(Φ) ⊢pl α ∧ η → τ ∧ υ). Further, because M(T ) ⊧pl α′, M(T ) ⊧pl η′,
andM(T ) ⊧pl α′∧η′ → τ ∧υ, by the semantics of ∧ and →, we knowM(T ) ⊧pl τ ∧υ.

Therefore, becauseM(T ) ⊧pl α,M(T ) ⊧pl τ ∧υ, andM(T ) ⊧pl α∧η → τ ∧υ, by
the semantics of ∧ and →, we know M(T ) ⊧pl η and this case holds.

(Case Reduce) In this case let φ = φ′ = φ′′, ψ = ψ′ = ψ′′, and R1 = R′ = R′′. We
know, by the Reduce rule, that ψ is of the form σ ∧ ρ. There exist two promise
logic formulas α and η such that seq(Φ) ⊢pl α∧η → φ and ⊢pl σ∧ρ→ η. We assumeM(T ) ⊧pl α or this case is vacuously true. We need to demonstrate M(T ) ⊧pl η.
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In this rule above the bar we have the sequent V ⊢coe {φ ∧ σ} (R1,Φ) {σ ∧ ρ}.
Using this sequent twice, by the induction hypothesis, we know seq(Φ) ⊢pl α′∧η′ →
φ ∧ σ and ⊢pl σ ∧ ρ→ η′, M(T ) ⊧pl α′, and M(T ) ⊧pl η′.

Lemma 2.7.1 (Consistency of promise matching formulas) tell us that all the
all the formulas in Φ are consistent (i.e., ∀χ ∈ Φ ∶ M(T ) ⊧pl χ), therefore, by
the soundness of promise logic, we know that M(T ) ⊧pl α′ ∧ η′ → φ ∧ σ (because
seq(Φ) ⊢pl α′ ∧ η′ → φ ∧ σ). Similarly, we know that M(T ) ⊧pl α ∧ η → φ (because
seq(Φ) ⊢pl α ∧ η → φ). Further, because M(T ) ⊧pl α′, M(T ) ⊧pl η′, and M(T ) ⊧pl
α′ ∧ η′ → φ∧σ, by the semantics of ∧ and →, we knowM(T ) ⊧pl φ∧σ and, by the
semantics of ∧, M(T ) ⊧pl φ.

Therefore, because M(T ) ⊧pl α, M(T ) ⊧pl φ, and M(T ) ⊧pl α ∧ η → φ, by the
semantics of ∧ and →, we know M(T ) ⊧pl η and this case holds.

(Case Implied) In this case let φ = φ′ = φ′′, ψ = ψ′ = ψ′′, and R1 = R′ = R′′. There
exist two promise logic formulas α and η such that seq(Φ) ⊢pl α ∧ η → φ and⊢pl ψ → η. We assume M(T ) ⊧pl α or this case is vacuously true. We need to
demonstrate M(T ) ⊧pl η.

In this rule above the bar we have the sequent V ⊢coe {ξ} (R1,Φ) {γ} where
seq(Φ) ⊢pl φ → ξ and ⊢pl ψ → γ. Using this sequent twice, by the induction
hypothesis, we know seq(Φ) ⊢pl α′ ∧ η′ → ξ and ⊢pl γ → η′, M(T ) ⊧pl α′, andM(T ) ⊧pl η′.

Lemma 2.7.1 (Consistency of promise matching formulas) tell us that all the
all the formulas in Φ are consistent (i.e., ∀χ ∈ Φ ∶ M(T ) ⊧pl χ), therefore, by
the soundness of promise logic, we know that M(T ) ⊧pl α′ ∧ η′ → ξ (because
seq(Φ) ⊢pl α′ ∧ η′ → ξ). Similarly, we know that M(T ) ⊧pl α ∧ η → φ (because
seq(Φ) ⊢pl α ∧ η → φ) and M(T ) ⊧pl φ → ξ (because seq(Φ) ⊢pl φ → ξ). Further,
becauseM(T ) ⊧pl α′,M(T ) ⊧pl η′, andM(T ) ⊧pl α′ ∧η′ → ξ, by the semantics of ∧
and →, we know M(T ) ⊧pl ξ. Similarly, because M(T ) ⊧pl ξ and M(T ) ⊧pl φ → ξ,
by the semantics of →, we know M(T ) ⊧pl φ.

Therefore, because M(T ) ⊧pl α, M(T ) ⊧pl φ, and M(T ) ⊧pl α ∧ η → φ, by the
semantics of ∧ and →, we know M(T ) ⊧pl η and this case holds.

The basis and all cases hold so the proposition is true.

Lemma 2.7.3 (Reduce rule invariant). Let φ, η, and ψ be promise logic formulas. Let
R be a set of analysis results, Φ a set of promise matching formulas, V a set of promise
verification conditions, and T be the analysis semantics produced by analysis-based verification
of a program. Let R′ ⊆ R. If V ⊢coe {φ ∧ η} (R′,Φ) {η ∧ ψ} and M(T ) ⊧pl φ then M(T ) ⊧pl η.

Proof. We proceed by application of Lemma 2.7.2 (Coinductive assertions invariant). Using
V ⊢coe {φ ∧ η} (R′,Φ) {η ∧ ψ} for both sequents in the hypothesis of Lemma 2.7.2, it is clear
that seq(Φ) ⊢pl φ ∧ η → (φ ∧ η) ∧ (φ ∧ η) and ⊢pl (η ∧ ψ) ∧ (η ∧ ψ) → η are both valid. By the
proposition (of this lemma) we know M(T ) ⊧pl φ, therefore, by Lemma 2.7.2, we concludeM(T ) ⊧pl η and the proposition is true.
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Theorem 2.7.4 (Soundness). Let φ and ψ be promise logic formulas. Let R be a set of anal-
ysis results, Φ a set of promise matching formulas, V a set of promise verification conditions,
and T be the analysis semantics produced by analysis-based verification of a program. Let
R′ ⊆ R. If V ⊢coe {φ} (R′,Φ) {ψ} is valid then M(T ) ⊧pl φ→ ψ holds.

Proof. By structural induction on the proof of V ⊢coe {φ} (R′,Φ) {ψ}. We proceed by cases
on the final rule used in the derivation of V ⊢coe {φ} (R′,Φ) {ψ} demonstrating that in each
case M(T ) ⊧pl φ→ ψ holds (the Axiom case is the basis).

(Case Axiom) We know, by the Axiom rule, that {φ} (R′,Φ) {ψ} ∈ V and, by
Definition 2.5.3, that ψ must have the form r where r is a real promise. Therefore,
we must demonstrate that M(T ) ⊧pl φ → r holds. Let Ψ be the set of analysis
implications used to produce T . Because {φ} (R′,Φ) {r} ∈ V we know that φ→ r ∈
Ψ (due to the similar techniques used to construct V and Ψ by Definition 2.5.3 and
Definition 2.6.3, respectively). Further, we know, by Lemma 2.6.1 (Uniqueness of
analysis implication consequents) that φ → r is the only formula in Ψ with r as
the conclusion of the implication. We consider two cases based upon the semantic
value of r.

(CaseM(T ) ⊧pl r) In this case, by Definition 2.6.1, we know that r ∈ T .
Because φ → r is the only formula in Ψ with r as the conclusion of the
implication, by Definition 2.6.4, M(T ) ⊧pl φ must hold or r could not
be an element of T . Therefore, we can conclude M(T ) ⊧pl φ → r and
this case holds.

(CaseM(T ) ⊭pl r) In this case, by Definition 2.6.1, we know that r ∉ T .
Because φ → r is the only formula in Ψ with r as the conclusion of the
implication, by Definition 2.6.4,M(T ) ⊭pl φ must be true or r would be
an element of T . Therefore, we can conclude M(T ) ⊧pl φ → r and this
case holds.

(Case Merge) In this case we know that φ is of the form φ′ ∧ η and that ψ is of
the form ψ′ ∧ θ. By the induction hypothesis we know M(T ) ⊧pl φ′ → ψ′ andM(T ) ⊧pl η → θ. Therefore, by the semantics of promise logic, we can concludeM(T ) ⊧pl φ′ ∧ η → ψ′ ∧ θ and this case holds.

(Case Reduce) In this case we know that ψ is of the form η∧ψ′. By the induction
hypothesis we know M(T ) ⊧pl φ ∧ η → η ∧ ψ′. We consider two cases based upon
the semantic value of φ ∧ η.

(Case M(T ) ⊧pl φ ∧ η) In this case we know M(T ) ⊧pl η ∧ ψ′ by the
induction hypothesis and the semantics of →. We also knowM(T ) ⊧pl φ
by the semantics of ∧. Therefore, we can conclude M(T ) ⊧pl φ→ η ∧ψ′
and this case holds.

(Case M(T ) ⊭pl φ ∧ η) In this case we know, by Lemma 2.7.3 (Reduce
rule invariant), that M(T ) ⊭pl φ because if M(T ) ⊧pl φ then M(T ) ⊧pl η
(which would implyM(T ) ⊧pl φ∧η and contradict this case). Therefore,
by the semantics of →, M(T ) ⊧pl φ→ η ∧ ψ′ and this case holds.
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(Case Implied) In this case, there exist two promise logic formulas φ′ and ψ′ such
that seq(Φ) ⊢pl φ → φ′ and ⊢pl ψ → ψ′. Further, by the induction hypothesis, we
know M(T ) ⊧pl φ′ → ψ′. We consider two cases based upon the semantic value of
φ.

(Case M(T ) ⊧pl φ) Lemma 2.7.1 (Consistency of promise matching for-
mulas) tell us that all the all the formulas in Φ are consistent (i.e.,∀χ ∈ Φ ∶M(T ) ⊧pl χ), therefore, by the soundness of promise logic, we
know that M(T ) ⊧pl φ → φ′ (because seq(Φ) ⊢pl φ → φ′). Further, be-
causeM(T ) ⊧pl φ andM(T ) ⊧pl φ→ φ′, by the semantics of →, we knowM(T ) ⊧pl φ′. Similarly, because M(T ) ⊧pl φ′ and M(T ) ⊧pl φ′ → ψ′,
we know M(T ) ⊧pl ψ′. Because ⊢pl ψ′ → ψ is valid, by the soundness
of promise logic, we know that M(T ) ⊧pl ψ′ → ψ. Using this fact andM(T ) ⊧pl ψ′, by the semantics of →, we know M(T ) ⊧pl ψ. Therefore,
we can conclude M(T ) ⊧pl φ→ ψ and this case holds.

(Case M(T ) ⊭pl φ) In this case we can conclude that M(T ) ⊧pl φ → ψ
holds by the semantics of →.

The basis and all cases hold so the proposition is true.

2.8 Not a Hoare logic

Although we use a notation reminiscent of Hoare [60], our calculus for promise verification
would not, traditionally, be considered a Hoare logic for the following reasons:

• The proof rules defined by a Hoare logic define semantics for a programming language,
referred to as an axiomatic semantics. Our framework does not directly or indirectly de-
fine semantics of a programming language. This is embodied, in part, in the constituent
analyses.

• As discussed in Section 2.5, the prerequisite assertion and consequential assertion of
our triples represent assertions about the consistency of promises and not, as within a
Hoare logic, assertions about the state of a program. Promises may, in fact, represent
an assertion about the state of the program, however, that fact is not visible to our
framework.

• A Hoare logic is used to prove partial or total correctness of a program. Our approach
cannot prove partial or total correctness of a program. The assertions made by promises
typically focus on mechanical properties rather than the functionality of the program.

• For any interesting programming language, proving assertions (typically made in first-
order propositional logic enlarged with basic facts about arithmetic) using a Hoare logic,
is not fully automatable. Our approach is, by design, automatable.

Modern work developing Hoare logics, such as [1] for object-oriented programs, use a
much different formal approach than the one presented in this chapter for the reasons listed
above.
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2.9 Conclusion

This chapter presents a formal model that describes the construction of proofs within an
analysis-based verification system. This includes specifying formally how constituent pro-
gram analyses report their findings and an automatable proof calculus to create program-
or component-level results based upon these findings. We present a soundness theorem that
relates the proof calculus to a semantics of analysis results.

Our approach to analysis-based verification supports separate analysis of components
and allows composition of the results such that the outcome corresponds to that of a whole-
program analysis. The requirement to support modularity and composability permeate the
formal systems presented in this chapter. The well-defined separation between analysis and
proof management (i.e., result merging, promise matching, and and the construction of verifi-
cation proofs) provide the foundation for the tool engineering we present in the next chapter.



88 CHAPTER 2. FOUNDATIONS



Chapter 3

Realization

“In the computer field, the moment of truth is running a program; all else is prophecy.”
— Herbert Simon

3.1 Introduction

In this chapter we build upon the formal model developed in the previous chapter and present
significant details about the design and engineering of the JSure prototype analysis-based
verification tool. The realization of the JSure tool has evolved based upon feedback from its
use in several field trials. These field trials are presented in Chapter 4. Chapter 1 sketched,
in its tour of analysis-based verification, most of the topics presented in this chapter. This
chapter, however, provides a more complete presentation with significantly more technical
detail.

We provide partial solutions to two problems that arise when realizing a practical extra-
linguistic verification system within a modern IDE: (1) representing and managing verification
results in such a way that a programmer can understand them as changes are made to both
code and models, and (2) expressing design intent about large software systems containing
multiple components developed by separate teams. The requirement to overcome barriers to
adoption and issues of scale permeates the technical solutions presented in this chapter.

The approach we take to implementing sound combined analyses for analysis-based verifi-
cation yields the following technical and engineering results (repeated from Chapter 1) which
are summarized below and elaborated in the remainder of this chapter.

• The drop-sea proof management system: Drop-sea is the proof management
system used by the JSure tool. Drop-sea manages the results reported by constituent
program analyses and automates the proof calculus presented in the previous chapter
to create verification results based upon these findings.

• Management of contingencies—the red dot: Drop-sea allows several unverified
contingencies to exist in a chain of evidence about a promise. A programmer can
vouch for an overly conservative analysis result—changing it from an “×” to a “+”. A
programmer can turn off a particular program analysis causing all the promises checked
by that analysis to have no results—causing the tool to trust these promises without any
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analysis evidence. Finally, the programmer can assume something about a component
that is outside of the programmer’s scope of interest (e.g., on the other side of an
organizational or contractual boundary). These actions introduce a contingency into
any proof that relies upon them. Drop-sea explicitly tracks these contingencies and
flags them with a red dot.

• Proposed promises: Our approach has constituent analyses report any necessary
prerequisite assertions as part of each analysis result. Analyses, when they report a
prerequisite assertion, propose promises that may or may not exist in the code. A spe-
cial analysis called promise matching is used to “match” each proposed promise with a
programmer-expressed promise in the code. If no “match” can be found, i.e., a promise
proposed by a constituent analysis is not in the code base, then the computation that
produces verification results is able to use the unmatched proposed promises to deter-
mine the “weakest” prerequisite assertion for each promise in the code base. This allows
the tool to propose “missing” annotations, from the point of view of the constituent
analyses, to the code that can be reviewed and accepted by the tool user.

• Scoped promises: Scoped promises are promises that act on other promises or anal-
ysis results within a static scope of code. We introduce three types of scoped promises:
@Promise to avoid repetitive user annotation of the same promise over and over again
in a class or package, @Assume to support team modeling in large systems where pro-
grammers are not permitted access to the entire system’s code, and @Vouch to quiet
overly conservative analysis results. Scoped promises help to “scale up” the ability of a
programmer or a team of programmers to express design intent about a large software
system.

A principal contribution of this thesis is combining all of the items listed above in a new way
to facilitate extra-linguistic verification of real-world software systems. (This contribution
was referred to as “user experience design and tool engineering approach” in Section 1.6.2.)

The integration of the JSure tool into the Eclipse Java IDE and the development of a
graphical user interface allowed us to package the prototype tool in a widely-adopted envi-
ronment that many programmers are very comfortable with. According to a 2007 Forrester
research study [59] Eclipse is used by 57% of Java programmers—more than all other Java
IDEs put together. The familiarity of Eclipse and the user interface of the prototype tool
have helped to enable the field trials that we present in the next chapter. However, we view
the current user interface of the tool to be utilitarian—it enables the tool user to interact
with JSure and accomplish necessary tasks, but it is still far from providing an optimal or
elegant user experience. We delay our (and outside tool users) critique of the JSure tool user
interface until the next chapter when we discuss the feedback from our field trials.

To understand how a programmer uses the JSure prototype tool, the next section presents
an introduction to the programmer–tool interaction. We then present an overview of the tool
architecture. We discuss each of the tool’s major components and how they interact. The
next section provides further detail on drop-sea, a key contribution of our work, and how it
accomplishes its role of proof management and truth maintenance for the system. We then
describe the three types of scoped promises supported by the JSure tool: @Promise to avoid
repetitive user annotation of the same promise over and over again in a class or package,
@Assume to support team modeling in large systems where programmers are not permitted
access to the entire system’s code, and @Vouch to quiet overly conservative analysis results.
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Figure 3.1: Focusing the JSure tool on a particular Java project of interest.

We then describe how we handle trusted promises, assertions that are not verified by analysis,
and the tool’s support for them. We end the chapter with a discussion of related work.

3.2 Programmer–tool interaction

From the JSure menu the programmer “turns on” the tool for a particular Java project using
the Focus Verification... menu choice as shown in Figure 3.1. To “turn off” the JSure tool the
programmer selects the Disable Verification Of All Projects menu choice.

This action enables the JSure tool and adds a library (named promises.jar) containing the
promise annotations to the build path of the selected project.

3.2.1 Tool suggestions to get started

To help the programmer get started, even with no annotations yet in the code, the tool dis-
plays a list of suggestions intended to highlight locations in the code where annotations could
be placed. The rational for this feature is to help support the incremental reward principle
(Section 1.6.1). An example of these tool suggestions is shown in Figure 3.2. The user is given
a large number of locations where threads and locks are defined or used within the code. The
items indicated with a blue “i” are informational messages that may help the programmer
understand some aspect of the code. For example, the “4 java.lang.Thread subtype instance
creation(s)” may be worth examining as the programmer works to understand where treads
are created and started in the code.

The items indicated with the yellow warning symbol “ ” highlight code that may need to
be annotated or changed. For example, the “505 unidentifiable lock(s); what is the name of
the lock? what state is being protected?” warning points to locations in the code where a lock
is being acquired/released. This warning identifies locks that could have the state that they
are intended to protect expressed with a @RegionLock or @GuardedBy annotation. The “8
non-final lock expression(s); analysis cannot determine which lock is being acquired” warning
indicates places in the code where a field referencing an object used as a lock appears to be
mutable. It is good practice to use the final keyword to ensure that the same lock object
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Figure 3.2: Suggestions on where to start annotating are shown in the Verification Status view.

is always referenced. Using these warnings the programmer can fix the declarations of the
indicated fields.

3.2.2 Adding annotations

The programmer enters promise annotations into the code using the Eclipse Java editor. The
tool provides help on the syntax and semantics of the annotations used to express design
intent in the tool. For example, the declaration of each annotation contains significant use
documentation (in Javadoc) that “pops up” in the Java editor as shown in Figure 3.3. The
tool provides an on-line version of Appendix A as well as several tutorials that introduce the
annotation language and present typical examples of its use.

The tool also, through a facility provided by the Eclipse IDE, supports several templates to
assist the tool user with the annotation syntax. Each template adds one or more annotations
to the code and allows the user to enter any missing information using a fill-in-the-blank style.
An example of using a template to enter the @RegionLock promise to the BoundedFIFO

class (used as a running example in Chapter 1) is shown in Figure 3.4. This seemingly
straightforward feature, as will be discussed in Chapter 4, helped to enable client programmers
that participated in our field trials to enter annotations without assistance from us. Prior
to the inclusion of this feature, we typed most of the annotations into the code. After its
inclusion, the programmers “typed” most of the annotations themselves using templates.

The rationale for providing “pop up” Javadoc and syntax templates is to help support
model expression in JSure.

3.2.3 Tool output

As soon as the programmer saves a Java file containing even a single annotation, the JSure tool
performs a build, executes analyses, and displays its output. An example of the tool displaying
its output to the user is shown in Figure 3.5. JSure defines a new Eclipse perspective—a
task-oriented arrangement of windows within the IDE—that is called ‘Code Verification’ to
organize the presentation of the tool results for the user. Verification results for annotations
that are well-formed are shown in the Verification Status view. The iconography used in
this view and how to interpret the verification results are discussed, in detail, throughout
the remainder of this chapter. A guide to this iconography is provided, for reference, in
Figure 3.6.

A list of proposed promises, representing missing portions of models that were proposed
by the program analyses, is shown in the Proposed Promises view. The user can add these
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Figure 3.3: “Pop up”Javadoc about the @RegionLock promise in the Eclipse Java editor. The Javadoc
helps the tool user understand how to use the promise correctly.

The programmer enters a portion of the promise name and examines the templates that“pop up”↓

↓
The programmer selects a template to automatically add one or more promises to the code↓

↓
The programmer the fills out the template, naming the lock policy “FIFOLock”↓

Figure 3.4: Using a template to help with the syntax of the @RegionLock promise.
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annotations to the code by selecting one or more of them in this view and selecting Add
promises to code... from the context menu. (This interaction was illustrated in Figure 1.16
on page 26.)

Any annotation that is not well-formed, i.e., it contains a syntax or semantic error, is
listed in the Modeling Problems view. The tool user uses the information in this view to fix
the problem and make the annotation well-formed.

The tool output, as a key component of the user interface of JSure, helps to support all
of our principles related to practicability, especially the incremental reward principle (Sec-
tion 1.6.1).

The verifying analyses, similar to the Eclipse Java compiler, are incremental and run
in the background while the programmer continues to work. Thus, JSure unobtrusively
monitors model–code consistency as a programmer works, and it provides quick feedback as
a programmer works to express models.
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Figure 3.5: The Code Verification perspective of the JSure analysis-based verification tool within
the Eclipse Java IDE. (Top) The tool user enters annotations, e.g., @Region or @Unique, into their
Java code to express a model of design intent about the program’s implementation. (Middle) After
saving the annotated code, the tool reports model–code consistency in the Verification Status view.
A “+” indicates a conservative finding of model–code consistency and an “×” indicates model–code
inconsistency (or a false positive). (Bottom) Promises being proposed to the tool user are displayed
in the Proposed Promises view. Any annotations that are not well-formed are reported to the user in
the Modeling Problems view.
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Icons used in the Verification Status view

Image Description

Category of verification results

Promise about the code

Consistent analysis result

Inconsistent (or false positive) analysis result

analysis result vouched for with @Vouch

An analysis result with a choice of possible prerequisite assertions

One particular choice for a prerequisite assertion

Informational message – a possible next modeling step

Warning message – a possible next modeling step

Icon decorators used in the Verification Status view

Image Position Description

lower-left Proved consistent verification decorator
lower-left Not proved consistent verification decorator

upper-left Red dot decorator – a @Vouch, @Assume, or trusted promise
is used in the verification proof

upper-right Trusted promise decorator – not checked by analysis
upper-right Virtual promise decorator – created by @Promise

upper-right Assume promise decorator – created by @Assume

lower-right Information decorator – highlights an informational message
lower-right Warning decorator – highlights a warning message

Icons used in the Proposed Promises view

Image Description

A promise that has been proposed by the tool to be annotated into the code

Icons used in the Modeling Problems view

Image Description

Modeling problem – check the syntax of your annotations

Figure 3.6: A guide to the iconography used by the JSure tool. (Top) The icons used in the tree
presented in the Verification Status view. (Middle-top) The smaller images that decorate the above
icons in the tree presented in the Verification Status view. (Middle-bottom) The icon used to indicate
a proposed promise in the Proposed Promises view. (Bottom) The icon used to indicate modeling
problems discovered by promise “scrubbing” in the Modeling Problems view.
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3.3 Tool architecture

A component and connector shared-data view of the JSure analysis-based verification system
is shown in Figure 3.7. We use this view to highlight several aspects of our design.

3.3.1 Java code representation

The IDE component in Figure 3.7 represents the Eclipse Java IDE. An IDE-specific adapter
is used to interact with Eclipse through its IDE project interface. A project in Eclipse groups
together a set of Java compilation units and libraries under a programmer-given name. The
IDE project interface allows us to monitor the state of the code being worked on within each
open project by the programmer. It also gives JSure access to the Eclipse representation used
for Java code. We refer to this representation as the eAST, the Eclipse-based Java Abstract
Syntax Tree. The eAST is an AST produced by Eclipse and used by the Java editor for
code formatting, context assist, and refactoring—it is not used for compilation. This tree
representation of Java code “leans” toward a concrete syntax and can parse all, or portions of,
many illegal Java compilation units, e.g., programs that will not type check or that contain
unparsable declarations. This design choice allows the Eclipse Java editor to operate on very
“rough” Java code as the programmer types. The trade-off made for this robustness is that
the eAST is not well suited to semantic program analysis. All uses in the eAST are simply
represented as SimpleName or (worse) Expression and binding is required to differentiate, for
example, types and packages from fields and local variables1.

The trade-offs made in its design make the eAST a poor structure for JSure program
analyses to use. Therefore, JSure represents each Java compilation unit as a fAST, the Fluid
IR-based Java Abstract Syntax Tree. The fAST is an AST represented in the Fluid IR that
is purposely designed for semantic program analysis—including those that are flow-sensitive.
This tree is very abstract to simplify analysis and will not accept illegal Java compilation
units. The promise-aware incremental parser/binder shown in Figure 3.7 exposes an interface
to the Eclipse adapter that allows parsing and binding of a Java compilation unit, either from
the source text or an eAST, to create a forest of ASTs annotated with promises. The “forest”
is composed of a fAST for each Java compilation unit in the Eclipse project being examined.

3.3.2 Promise “scrubbing”

The shared-data style of JSure is referred to as a blackboard [89, 88, 99] because the shared-
data store shown in Figure 3.7 informs data consumers of the arrival of interesting data.
Changing the forest of ASTs annotated with promises triggers several actions. The first
involves the promise management component checking that each promise in the forest of
ASTs is well-formed—a process we refer to as promise scrubbing.

If a promise has a syntactic or semantic problems then it is not considered well-formed.
For example, consider the simple “variable” class, Var, annotated with object-oriented ef-
fects [54] promises in Figure 3.8. Several of the promises in this class are not well-formed.
The @RegionEffects("read Value") promise at line 11 has a syntax problem. The syntax of
the @RegionEffects requires the token reads rather than read. The @InRegion("Valuee")

1Eclipse uses the name Java DOM/AST rather than eAST for the set of classes that it uses to model the
source code of a Java program as a structured document (Google: org.eclipse.jdt.core.dom).
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repository component

direct access

KEY

exposed promise/annotation interface
exposed code AST interface

exposed query interface
IDE project interface
IDE view interface

IDE

IDE-specific 
Adapter

QueriesQueriesQueries

Proof 
Management

QueriesQueriesAnalyses
Promise-aware 

Incremental 
Parser/Binder

Forest of ASTs 
annotated with 

Promises

Proofs and 
Proof 

Fragments
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Management

Modeling 
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Figure 3.7: Component and connector shared-data view of the JSure analysis-based verification sys-
tem.
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1 @Region("public Value")
2 public class Var {
3 @InRegion("Valuee") // Broken - unknown region "Valuee"
4 private int value;
5

6 @RegionEffects("none")
7 public Var(int v) {
8 value = v;
9 }

10

11 @RegionEffects("read Value") // Broken- syntax error, expected "reads"
12 public int getValue() {
13 return value;
14 }
15

16 @RegionEffects("writes Valu") // Broken - unknown region "Valu"
17 public void setValue(int v) {
18 value = v;
19 }
20 }

Figure 3.8: A class containing modeling problems that are caught during promise scrubbing.

promise at line 3 and the @RegionEffects("writes Valu") promise at line 16 are not well-
formed because the regions they refer to are unknown—the region declared at line 1 was
named Value. These two promises are syntactically correct but cannot be given meaning in
the context that they appear.

Promise scrubbing is a specialized program analysis that is performed by the promise
management component shown in Figure 3.7. The analysis examines the forest of ASTs and
records any modeling problems found into the modeling problems repository. If a promise is
well-formed then the promise management component constructs a promise drop to represent
it. The promise drop is then linked to the declaration within the fAST where the promise was
annotated. A promise drop is an identity in drop-sea for a well-formed promise, analogous
to the promise symbols used in the previous chapter.

The various drops and their role in drop-sea are further elaborated in Section 3.4. In this
section we sketch their use as we overview the tool architecture.

3.3.3 Analysis of the “forest”

When the forest of ASTs annotated with promises in Figure 3.7 contains one or more“scrubbed”
well-formed promises, each identified by a promise drop, this triggers analysis of the forest
by constituent verifying analyses (e.g., lock policy, uniqueness, effects upper bounds, thread
effects). We do not require every promise in the forest to be well-formed—bad promises are
ignored by the constituent analyses. As described in the previous chapter, verifying analyses
produce two outputs: analysis results and proposed promises.

Analysis results are reported from a verifying analysis via result drops. When a con-
stituent analysis makes a judgment about the consistency of a particular promise it constructs
a result drop about that promise. The analysis sets, on the drop, whether the result rep-
resents a conservative finding of consistency or not. It provides a reference to what portion
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or place in the code (by providing a reference to a fAST node) the result is about. Finally,
the analysis provides the prerequisite assertion for the result in terms of promise drops or,
as is encouraged in Chapter 2, proposed promise drops. Proposed promises are represented
via a proposed promise drop which represents the syntax of the desired promise as well as a
reference to a declaration within the fAST where the promise should be located.

Analysis of the forest of ASTs is performed by the Analyses component shown in Fig-
ure 3.7.

3.3.4 Promise matching

The tool engineering of JSure supports promise matching, however, as of this writing most
analysis still perform promise matching themselves because the analyses predate the existence
of this generic functionality. The analysis determines the promise that it requires as part of
its prerequisite assertion and checks if it exists. If so, then the promise drop is passed to
the result drop. If not, then the analysis constructs a proposed promise drop and passes
it to the result drop. This is one area where the tool engineering is “catching up” to the
theory presented in Chapter 2. However, from the tool user’s point of view the result is the
same—wherever possible proposed promises are “matched” with real promises and the set of
remaining proposed promises is used to allow the JSure user interface to prompt the user to
consider adding “missing” promises to the code.

Promise matching is performed by the promise management component shown in Fig-
ure 3.7.

3.3.5 Promise verification

Promise drops and analysis-reported result drops yield a graph stored in the proofs and proof
fragments repository shown in Figure 3.7. This graph is analyzed by the proof management
component to determine, based upon the reported analysis results, the consistency of each
promise. The algorithm used to do this is an automation of the verification proof calculus
presented in the previous chapter.

The objective, however, is not just to determine the consistency of each promise, but also
to be able to “explain” to the tool user why a promise is verifiable or why it is unverifiable.
Therefore, the graph represents the structure of all the possible verification proofs as well as
connections to all the supporting analysis results.

3.3.6 Querying the tool results

The queries component shown in Figure 3.7 populates the Eclipse views with the information
contained in the shared repositories. A mapping from the repositories (shown in Figure 3.7)
to their corresponding Eclipse views (shown in Figure 3.5) is illustrated in Figure 3.9.
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Figure 3.9: Mapping from the repositories shown in Figure 3.7 to the Eclipse views for the JSure tool.

3.4 The drop-sea proof management system

This section introduces drop-sea, the proof management system used by the JSure tool. Drop-
sea is our name for the proof management component shown in Figure 3.7, however, we often
refer to the shared repositories that this component interacts with by the name drop-sea as
well. For example, we may state that a result drop is reported into drop-sea when we mean,
more precisely by the view of the system shown in Figure 3.7, that it is placed in the analysis
results shared repository thereby triggering action by the proof management component on
this result. This imprecise use of the term drop-sea occurs for the analysis results, proposed
promises, and proofs and proof fragments repositories.

We start this section by describing how analysis results are represented as a graph in
drop-sea. In particular, how the tabular analysis results shown in Chapter 2 relate to their
representation in drop-sea, this includes showing how drop-sea represents results about re-
cursive code and results that reference “unmatched” proposed promises as part of their pre-
requisite assertion. We continue by discussing how the three types of unverified contingencies
are represented in drop-sea: (1) programmer vouches, (2) disabled analyses, and (3) local
assumptions. With this background, we are able to present our algorithm for the automation
of the verification proof calculus presented in the previous chapter. We end the section by
presenting how drop-sea performs the role of truth maintenance for the system by tracking
dependencies between code, promises, analysis results, and other types of “drops” introduced
by the various components that make up the tool.

3.4.1 Representing analysis results

Our representation of analysis results and the promises that they verify is motivated by
the observation that an understanding about how particular promises relate to one another
is embodied in the constituent analyses. This fact allows a clear separation of concerns
between drop-sea and the constituent analyses. The constituent analyses are concerned with
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the semantics of the promises that they verify as well as producing sound analysis results
based upon the semantics of the Java programming language. Drop-sea is concerned with
automated reasoning to produce a sound verification result for each promise and with tracking
dependencies to keep these results up to date as the code and promises about the code change.
This separation is key to our ability to“scale up”in terms of adding new promises and verifying
analyses.

In our approach, constituent analyses report their results to drop-sea. These results are
modeled as a graph. We return to the running example used in the previous chapter from
the util.concurrent library. The util.concurrent code is shown in Figure 2.4 on page 54.
Figure 3.10 shows the drop-sea graph for the SynchronizedVariable and Synchronized-

Boolean classes after the lock policy, effects, thread effects, and uniqueness analyses have
reported their analysis results. The structure shown in Figure 3.10 is a tree, however, in the
presence of recursive calls in the code the resulting structure is a graph (a recursive example
is shown below).

Figure 3.11 shows the tabular analysis results used to construct the drop-sea graph in
Figure 3.10. Each row in Figure 3.11 becomes an analysis result drop in the graph (represented
as a rectangle). The Finding column in the tabular representation is shown in the drop-sea
graph as either a “+” for a conservative judgment by the analysis of consistency, or an “×”
otherwise. A directed edge from a result drop to a promise drop indicates the promise that
the result is about and matches the About column in the tabular representation.

The representation in the drop-sea graph of the promise logic formula in the Prerequisite
column in the table is more complex. A directed edge from a promise drop to a result
drop indicates that promise is part of the prerequisite assertion formula for that result.
For example, the prerequisite assertion for f1 is shown in the table as the formula r29. A
directed edge from r29 to f1 is used to represent this formula in the drop-sea graph (at the
bottom-center of Figure 3.10). Multiple edges directed to a result indicate a conjunction,
i.e., ∧. Two special nodes are used to represent disjunction, i.e., ∨. These are the choice
and choice option nodes that are represented in Figure 3.10 as a diamond and a rounded
rectangle, respectively. For example, the prerequisite assertion for f8 is shown in the table
as the promise logic formula r20 ∨ (r18 ∧ r19). This formula is represented in Figure 3.10 as
one choice node, c1, and two choice option nodes, o1 and o2. Drop-sea, therefore, represents
prerequisite assertions in disjunctive normal form.

If no directed edge exists in the drop-sea graph from a promise drop to a particular result
drop (or from a choice drop to a particular result drop) this indicates that the prerequisite
assertion formula in the tabular analysis results for that result is ⊺—indicating no constraint
on that result.

3.4.2 Representing recursion

Drop-sea supports the verification of promises about recursive code. Figure 3.12 uses the
Fibonacci class from Chapter 2 to illustrate what a drop-sea graph looks like in the presence
of recursive code. The graph is constructed from the table of analysis results in the manner
described above, however, in the case of the Fibonacci class it contains cycles. This is
because the recursive calls made within the fib method cause two of the analysis results to
use the same promise as both their prerequisite assertion and their consequential assertion.
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r4  —  @RegionLock("VarLock is lock_ protects Variable")

r19  —  @Starts("nothing") r18  —  @RegionEffects("none") r20  —  @Unique("return")

r30  —  @Starts("nothing")

r9  —  @Starts("nothing")

r29  —  @RegionEffects("none")

r8  —  @RegionEffects("none")

r10  —  @Unique("return")

r31  —  @Unique("return")

c1  —  choice

o1  —   by effects: o2  —   by unique return:

f8  —         thread-confined access to value_ at line 23

f1  —         super() promises consistent effects

f2  —         lock_ write masked at line 12

f3  —         this read masked at line 12

f4  —         super() promises it starts no threads

f5  —         constructor starts no threads

f6  —         super() promises not to alias this

f7  —         this aliased into lock_ at line 12

f9  —         super() promises consistent effects

f10  —         value_ write masked at line 23

f11  —         initialValue read masked at line 23

f12  —         super() promises it starts no threads

f13  —         constructor starts no threads

f14  —         super() promises not to alias this

f15  —         constructor does not alias this

f16  —         constructor has consistent effects

f17  —         constructor starts no threads
f18  —         constructor does not alias this

Figure 3.10: Drop-sea graph for the SynchronizedVariable and SynchronizedBoolean classes after
the lock policy, effects, thread effects, and uniqueness analyses have reported analysis results for the
promises and code in Figure 2.4. Promise drops, which are independent of any specific analysis, are
represented by ovals. Result drops are represented as rectangles. A “+” indicates a consistent analysis
result. An “×” indicates an inconsistent or false positive analysis result (boxed in grey). The choice
and choice options are represented by a diamond and a rounded rectangle, respectively. A directed
edge from a promise drop to a result drop indicates that the promise is a prerequisite assertion for
that result. A directed edge from a result drop to a promise drop indicates that the result is about
that promise.
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Analysis Results
Finding About Prerequisite Description

f1 + r8 r29 super() promises consistent effects
f2 + r8 ⊺ lock_ write masked at line 12
f3 + r8 ⊺ this read masked at line 12
f4 + r9 r30 super() promises it starts no threads
f5 + r9 ⊺ constructor starts no threads
f6 + r10 r31 super() promises not to alias this

f7 × r10 ⊺ this aliased into lock_ at line 12
f8 + r4 r20 ∨ (r18 ∧ r19) thread-confined access to value_ at line 23
f9 + r18 r8 super() promises consistent effects
f10 + r18 ⊺ value_ write masked at line 23
f11 + r18 ⊺ initialValue read masked at line 23
f12 + r19 r8 super() promises it starts no threads
f13 + r19 ⊺ constructor starts no threads
f14 + r20 r10 super() promises not to alias this

f15 + r20 ⊺ constructor does not alias this

f16 + r29 ⊺ constructor has consistent effects
f17 + r30 ⊺ constructor starts no threads
f18 + r31 ⊺ constructor does not alias this

Figure 3.11: Analysis results for the util.concurrent code in Figure 2.4 after the results of promise
matching have been used to replace proposed promises that appear in each prerequisite assertion with
“matched” real promises.

3.4.3 Representing unmatched proposed promises

To this point we have avoided a discussion of what is done when an analysis proposes a
promise that does not exist as a real promise. In this situation there are two reasonable
design choices:

1. Mark the result as an“×”. Present the tool user with the“missing”promises for addition
into the code base to eliminate the “×”.

2. Show the analysis result as a “+” but mark it as contingent, i.e., with a red dot. Present
the tool user with the “missing” promises for addition into the code base to eliminate
the red dot.

The current JSure implementation implements the first design option. An example of this
design choice, from the tool user’s point of view, is presented in Figure 1.16 on page 26 as
part of our description of the tool interaction when using proposed promises to automatically
annotate the BoundedFIFO class from a single @RegionLock promise. When the @RegionLock
promise is the only promise in the BoundedFIFO code the analysis results (and therefore the
consistency of the promise) were all “×”s—not “+”s with a red dot.

We suggest that this design choice is more effective in encouraging tool users to complete
partially annotated models. Programmers appear to be more motivated to change an “×” to
a “+” than they are to eliminate the red dot on a “+”. That said, there is no reason that
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1 public class Fibonacci {
2 long callsToFibMethod = 0;
3

4 @Borrowed("this")
5 public long fib(int n) {
6 callsToFibMethod++;
7 if (n <= 1)
8 return n;
9 else

10 return fib(n-1) + fib(n-2);
11 }
12 }

Analysis Results for Fibonacci

Finding About Prerequisite Description

f1 + r4 r4 fib(n-1) at line 10 promises not to alias this

f2 + r4 r4 fib(n-2) at line 10 promises not to alias this

f3 + r4 ⊺ fib(int) does not alias this

r4  —  @Borrowed("this")

f1  —         fib(n-1) at line 10 promises not to alias this f2  —         fib(n-2) at line 10 promises not to alias this

f3  —         fib(int) does not alias this

Figure 3.12: An example of cycles in a drop-sea graph due to recursive calls in the program being
verified. (Top) The Java code for (inefficiently) computing a Fibonacci number using recursive calls.
The Fibonacci instance tracks the number of calls to fib. The fib method promises that it does
not alias the receiver. (Middle) Analysis results after the results of promise matching have been used
to replace proposed promises that appear in each prerequisite assertion with “matched” real promises.
(Bottom) The drop-sea graph for the Fibonacci class.
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the tool, in the future, can’t implement both approaches and allow the user to elect the one
that they prefer. The second option, however, drifts into verifying based on annotations that
aren’t there. This moves away from verification based on explicitly expressed design intent.

Figure 3.13 uses the TravelAgentBean class from Chapter 2 to illustrate a drop-sea graph
with unmatched proposed promises. These drops allow the tool to represent the “weakest”
prerequisite assertion for a particular promise and to propose annotations to the code base
that can be reviewed and accepted by the tool user. A tool view showing the presentation of
the three proposed promises about TravelAgentBean to the user is shown in Figure 3.14.

3.4.4 Representing contingencies

Figure 3.15 shows a short snippet of code written by Goetz to illustrate a use of volatile

fields referred to as the cheap read-write lock trick2. This “trick” is so named because you
are using different synchronization mechanisms for reads and writes. Declaring a field to be
volatile ensures the visibility of the current value when reading, however, a lock is used
to ensure that the increments to the counter are atomic. If reads are more common than
increments you may be able to get a higher degree of sharing than if you used locking for
both operations.

As of this writing, the JSure tool is not able to specify and verify a locking policy im-
plemented in this manner. (JSure could verify the locking policy of this class if it used a
ReadWriteLock rather than the cheap read-write lock trick—a less fragile approach that we
would recommend.) We can, however, specify how locking is intended to be done and vouch
for reads of the volatile field.

We specify the locking policy for Counter using the @GuardedBy promise at line 8. This
promise was proposed by Goetz, et al. in [51] and can be verified by the JSure tool3. This
specification is, however, imperfect because the read of value at line 11 is reported by the
verifying analysis to be inconsistent with the locking model because—the lock is not held.
We use the @Vouch annotation at line 9 to tell the tool that this inconsistency is intentional.
In the drop-sea graph the vouched-for “×” analysis result is represented as a (hollow grey)
“+” (rather than an “×”) with the @Vouch as its prerequisite assertion.

The @ThreadSafe promise at line 1, another promise proposed by Goetz, et al. in [51],
is not able to be verified by the JSure tool. This promise is primarily for documentation
purposes and it is “trusted” by the tool. A trusted promise is represented in drop-sea as a
promise that is not supported by any analysis results. Note that, by this definition, @Vouch
is also a trusted promise. It is used as the prerequisite assertion for an analysis result, but
is not, itself, supported by any analysis results. (Trusted promises are discussed further in
Section 3.6.)

3.4.5 Computing verification results

In this section we present our algorithm for the automation of the verification proof calculus
presented in the previous chapter. The algorithm operates on the drop-sea graphs that we

2http://www.ibm.com/developerworks/java/library/j-jtp06197.html
3The equivalent Greenhouse promise is @RegionLock("CounterLock is this protects value"), how-

ever, because this is Goetz’s code we elect to use his annotations.

http://www.ibm.com/developerworks/java/library/j-jtp06197.html
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1 @Stateless
2 public class TravelAgentBean implements TravelAgentRemote {
3

4 @PersistenceContext(unitName="titan") private EntityManager manager;
5

6 @Starts("nothing")
7 public void createCabin(Cabin cabin) {
8 if (findCabin(cabin.getId()) == null)
9 manager.persist(cabin);

10 }
11

12 public Cabin findCabin(int pKey) {
13 return manager.find(Cabin.class, pKey);
14 }
15 }

Analysis Results for TravelAgentBean

Finding About Prerequisite Description

f1 + r6 ⊺ createCabin starts no threads
f2 + r6 q1 findCabin promises it starts no threads
f3 + r6 q2 getId promises it starts no threads
f4 + r6 q3 persist promises it starts no threads

Proposed Promises
Promise On

q1 @Starts("nothing") findCabin(int) at line 13
q2 @Starts("nothing") getId() in class Cabin

q3 @Starts("nothing") persist(Object) in class EntityManager

r6  —  @Starts("nothing")

f1  —         createCabin starts no threads

f4  —         persist(Object) does not promise to start no threads at line 9

f2  —         findCabin(int) does not promise to start no threads at line 8

f3  —         getId() does not promise to start no threads at line 8

q1  —        Starts("nothing") on findCabin(int) at line 12

q3  —        Starts("nothing") on persist(Object) in class EntityManagerq2  —        Starts("nothing") on getId() in class Cabin

Figure 3.13: An example of unmatched proposed promises in a drop-sea graph due to missing design
intent in the code base being verified. (Top) The Java code for an EJB 3.0 stateless session bean,
TravelAgentBean, that promises that the createCabin method will not start any threads. (Middle-
top) Analysis results for the TravelAgentBean class. (Middle-bottom) Proposed promises for the
TravelAgentBean class. (Bottom) The drop-sea graph for the TravelAgentBean class showing (1)
proposed promise drops, e.g., q1, q2, and q3, are created in drop-sea for each proposed promise if no
“matching” real promise can be found and (2) result drops that have a proposed promise drop as part
of their prerequisite assertion are (always) “×” results.
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Figure 3.14: Tool view proposing three “missing” promises to help make the @Starts("nothing")

promise at line 6 on the createCabin method consistent. In the Verification Status view each proposed
promise is shown below the analysis result that reported it. The Proposed Promises view collects
together all of the proposed promises for the tool user to examine. A context menu (shown at the
bottom-right) is available in both views to allow the user to request that one or more of the proposed
promises be automatically added to the code.
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1 @ThreadSafe
2 public class Counter {
3

4 // Employs the cheap read-write lock trick
5 // All mutative operations MUST be done with the "this" lock held
6 @GuardedBy("this")
7 private volatile int value;
8

9 @Vouch("cheap read-write lock trick")
10 public int getValue() {
11 return value;
12 }
13

14 public synchronized int increment() {
15 return value++;
16 }
17 }

Analysis Results for Counter

Finding About Prerequisite Description

f1 × r6 ⊺ lock not held when accessing value at line 11
f2 + r6 ⊺ lock held when accessing value at line 15

r6  —  @GuardedBy("this")

r9  —  @Vouch("cheap read-write lock trick")

f2  —         lock held when accessing value at line 15f1  —         lock not held when accessing value at line 11

r1  —  @ThreadSafe

Figure 3.15: An example of (1) vouching for an “×” analysis result and (2) a trusted promise in a
drop-sea graph. (Top) The Java code for a counter that employs the “cheap read-write lock trick.”
(Middle) Analysis results for the Counter class. (Bottom) The drop-sea graph for the Counter class
showing (1) the “×” analysis result, r1 has been vouched for as indicated by a (hollow grey) “+” and
r9 as its prerequisite assertion and (2) the trusted @ThreadSafe promise which is not supported by
any analysis results.
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Meaning Computed Result UI Decoration
Verified w/Contingency V(n) lower-left upper-left

Yes (true, true)
Yes Yes (true, false)

(false, true)
Yes (false, false)

Figure 3.16: Meaning of computed verification results and the icon and position for the decorators
used in the tool Verification Status view.

presented in the previous section.

A drop-sea graph is a finite directed graph containing four types of nodes: model nodes,
result nodes, choice nodes, and choice option nodes. Our algorithm computes a result for each
node in the graph, V(n) (the verification result at node n), of the form ℘({true, false}×{true,
false}), i.e., a tuple of two Boolean values, where the first value indicates if the model is
consistent and the second value indicates if the result is checked. The negation of the second
value indicates the need for a red dot. The meaning of the four possible results are shown
in Figure 3.16 alongside the user interface icons used to decorate results in the Verification
Status view.

We specify our algorithm in the style presented by Nielson, Nielson, and Hankin in [87].
Our formalization of the drop-sea graph along with the definitions we require are given in
Figure 3.17. The definitions at the top formalize the drop-sea graph, our algorithm will
be most concerned with flowR(S), the reverse flows in the graph, because it calculates its
results in this direction. Four functions are defined to identify the node type in the graph,
e.g., isResult(n) to identify a result node, and so on. The consistent(n) function indicates
if a node is a consistent result node, i.e., the analysis result reported was consistent. The
value reported by this function does not consider if an “×” result has been vouched for via an
@Vouch promise. This is indicated by the vouch(n) function. The first and second functions
are used to return the first or second constituent true or false value from the result for a
node, i.e., V(n), respectively.

Figure 3.18 shows the flow equations for our computation. These equations are applied
for each node in the drop-sea graph until a fixed point is reached. Our implementation uses
a worklist algorithm [83], traditionally used for iterative data-flow analysis, to iterate the
flow equations. We first discuss the equations presented in Figure 3.18 and then the worklist
implementation used by JSure.

The flow equations given in Figure 3.18 are precise, but slightly inscrutable. Their behav-
ior, however, is straightforward. We discuss the flow equation for each type of node below.

• isResult(n) ∶ The flow equations for result drop nodes.

– Verified: True if the analysis result is consistent, or vouched for, and all nodes
with a directed edge toward this node are verified, false otherwise.

– Red dot: Yes (i.e., false) if the analysis result is vouched for or any node with a
directed edge toward this node has a red dot, no (i.e., true) otherwise.

• isPromise(n) or isOption(n) ∶ The flow equations for promise or choice option nodes.
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definitions and functions

S def the drop-sea graph
nodes(S) def the set of nodes in the drop-sea graph

n ∈ nodes(S)
flow(S) def The set of all edges, or flows, in the graph;

of the form ℘(nodes(S) × nodes(S))
flowR(S) = {(n,n′) ∣ (n′, n) ∈ flow(S)}

isResult(n) = true if n identifies a result node, false otherwise
isPromise(n) = true if n identifies a promise node, false otherwise

isChoice(n) = true if n identifies a choice node, false otherwise
isOption(n) = true if n identifies a choice option node, false otherwise

consistent(n) = { true isResult(n) ∧ n represents a consistent analysis result
false otherwise

vouch(n) = { true isResult(n) ∧ n is vouched for by the programmer
false otherwise

first(x, y) = x
second(x, y) = y

Figure 3.17: Definitions and functions for our verification analysis.

– Verified: True if all nodes with a directed edge toward this node are verified,
false otherwise.

– Red dot: Yes (i.e., false) if any node with a directed edge toward this node has
a red dot or if there are no nodes with a directed edge toward this node, no (i.e.,
true) otherwise.

The above predicates handles trusted promises. If there are no directed edges
toward a promise node this indicates that it has no analysis results supporting its
consistency. In our algorithm it is vacuously verified, i.e., trusted, but this trust
(a contingency) is indicated via a red dot. (For an example see Section 3.6.)

• isChoice(n) ∶ The flow equations for choice nodes.

In this case we take the most desirable option presented by the choice option
nodes with a directed edge toward this node. A verified choice is chosen over
a choice that cannot be verified and a choice without a red dot is chosen over
a choice with a red dot.

The worklist algorithm used to iterate the flow equations above continues to process nodes
until it becomes empty—indicating that a fixed point has been reached. The algorithm is
started with all the nodes in the drop-sea graph on the worklist. Each node on the worklist
is processed. If the node being processed changes then it places all the nodes with a directed
edge from the node being processed to them back on the worklist.
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flow equations: V=

if isResult(n)
V(n) = ((consistent(n) ∨ vouch(n)) ∧ ∀x ∈ {V(n′) ∣ (n′, n) ∈ flowR(S)} ∶ first(x),(consistent(n) ∨ ¬vouch(n)) ∧ ∀x ∈ {V(n′) ∣ (n′, n) ∈ flowR(S)} ∶ second(x))

if isPromise(n) or isOption(n)
V(n) = (∀x ∈ {V(n′) ∣ (n′, n) ∈ flowR(S)} ∶ first(x),∣{V(n′) ∣ (n′, n) ∈ flowR(S)}∣ > 0 ∧ ∀x ∈ {V(n′) ∣ (n′, n) ∈ flowR(S)} ∶ second(x))

if isChoice(n)

V(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(true, true) if ∃x ∈ {V(n′) ∣ (n′, n) ∈ flowR(S)} ∶
first(x) ∧ second(x)(true, false) if (∃x ∈ {V(n′) ∣ (n′, n) ∈ flowR(S)} ∶ first(x))∧ ¬(∃x ∈ {V(n′) ∣ (n′, n) ∈ flowR(S)} ∶

first(x) ∧ second(x))(false, true) if (∃x ∈ {V(n′) ∣ (n′, n) ∈ flowR(S)} ∶¬first(x) ∧ second(x))∧ ¬(∃x ∈ {V(n′) ∣ (n′, n) ∈ flowR(S)} ∶
first(x))∧ ¬(∃x ∈ {V(n′) ∣ (n′, n) ∈ flowR(S)} ∶
first(x) ∧ second(x))(false, false) otherwise

Figure 3.18: Flow equations for our verification analysis.

The computational efficiency of this algorithm depends upon the flow problem we are
solving and the management of the worklist itself. We admit that the current implementation
in JSure could be improved, however, we have not identified any significant performance
problems with it (using several commercial Java profilers). The thread coloring analysis,
developed by Sutherland [103], creates the largest drop-sea graphs that we have encountered
to date. These graphs can contain tens of thousands of nodes. Sutherland does note, however,
that our algorithm is slower than the underlying constituent analyses used in his approach.

We now consider the verification results computed on two of the examples discussed above:
util.concurrent and Counter

Example: util.concurrent

The Verification Status view in the JSure user interface shows computed verification results
in a tree form. A portion of the tool view of the computed verification results for the VarLock
locking model is shown in Figure 3.19. This portion of the tool view shows the choice node
in the drop-sea graph. The computed verification results for the SynchronizedVariable and
SynchronizedBoolean classes is shown in Figure 3.20.
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Figure 3.19: A JSure tool view showing a portion of the global verification results for the VarLock

locking model. The view shows the portion of the drop-sea graph decorated with computed verification
results to just below the choice option nodes in Figure 3.20.

The tool view of the (not verified)“by unique return”choice option is shown in Figure 3.21.
The tool view of the (verified) “by effects” choice option is shown in Figure 3.22.

Example: Counter

The util.concurrent example above does not contain any contingencies. We now consider
an example that does, the Counter class shown in Figure 3.15. Figure 3.23 shows the com-
puted verification results for this class in the drop-sea graph and the tool user interface. The
results for this class are based upon two trusted promises: @ThreadSafe and @Vouch. In
addition, the @GuardedBy promise is marked with a red dot because one of the two analysis
results reported by the lock analysis about the Counter class is an “×” result that is vouched
for by the programmer.
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r4  —  @RegionLock("VarLock is lock_ protects Variable")

r19  —  @Starts("nothing") r18  —  @RegionEffects("none") r20  —  @Unique("return")

r30  —  @Starts("nothing")

r9  —  @Starts("nothing")

r29  —  @RegionEffects("none")

r8  —  @RegionEffects("none")

r10  —  @Unique("return")

r31  —  @Unique("return")

c1  —  choice

o1  —   by effects: o2  —   by unique return:

f8  —         thread-confined access to value_ at line 23

f1  —         super() promises consistent effects

f2  —         lock_ write masked at line 12

f3  —         this read masked at line 12

f4  —         super() promises it starts no threads

f5  —         constructor starts no threads

f6  —         super() promises not to alias this

f7  —         this aliased into lock_ at line 12

f9  —         super() promises consistent effects

f10  —         value_ write masked at line 23

f11  —         initialValue read masked at line 23

f12  —         super() promises it starts no threads

f13  —         constructor starts no threads

f14  —         super() promises not to alias this

f15  —         constructor does not alias this

f16  —         constructor has consistent effects

f17  —         constructor starts no threads
f18  —         constructor does not alias this

Figure 3.20: Drop-sea graph for the SynchronizedVariable and SynchronizedBoolean classes show-
ing computed verification results. A small “+” (to the lower-left) indicates model–code consistency.
A small “×” (to the lower-left) indicates a failure to prove model–code consistency (the grey nodes).
The verification results are only meaningful on promise drops (which represent assertions), however,
we decorate the other nodes to help the tool user track down what particular “×” result are causing a
promise to be unverifiable.
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Figure 3.21: A tool view of the (not verified) “by unique return” choice option for the VarLock locking
model. The view shows a portion of the drop-sea graph decorated with the computed verification
results shown in Figure 3.20.

Figure 3.22: A tool view of the (verified) “by effects” choice option for the VarLock locking model.
The view shows a portion of the drop-sea graph decorated with the computed verification results
shown in Figure 3.20.
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r6  —  @GuardedBy("this")

r9  —  @Vouch("cheap read-write lock trick")

f2  —         lock held when accessing value at line 15f1  —         lock not held when accessing value at line 11

r1  —  @ThreadSafe

Figure 3.23: (Top) Drop-sea graph for the Counter class shown in Figure 3.15 showing computed
verification results. A small “+” (to the lower-left) indicates model–code consistency. Because the
programmer’s vouch is not verified by analysis, a red dot is introduced above any verification result
that depends upon it. The @ThreadSafe promise, which is not supported by any analysis results, is
“trusted”—a situation that our algorithm highlights with a red dot. (Bottom) A tool view showing
the computed verification results. In the tool view a T decorator to the upper-right of the @ icon is
used to indicate that a promise is trusted.
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+invalidate() : void
#deponentInvalidAction() : void
#dependentInvalidAction() : void

Drop

PromiseDrop ResultDrop

dependent

deponent

*

*

▼depends upon

...

A subclass is 
defined for each 
type of promise 

Figure 3.24: UML class diagram for the Drop class.

3.4.6 Truth maintenance

Drop-sea also serves a truth maintenance [102] role. Drops track changes to the software
project within Eclipse and thus enable course-grain incrementality for analyses. Drops are
implemented as a type hierarchy with the truth maintenance behavior defined within the
root Drop class. A UML class diagram for the Drop class is shown in Figure 3.24. The key
relationship defined is how drops depend upon other drops for the truth of what they repre-
sent. A deponent drop gives evidence to support the truth of dependent drops. When any
deponent of a drop is invalidated, the default behavior invalidates that drop. Subclasses can
override the deponentInvalidAction method to change this behavior. By default, when a
dependent of a drop is invalidated nothing occurs. Like deponentInvalidAction, subclasses
can override the dependentInvalidAction to change this behavior. The default behavior
is rarely changed, but it has been used to avoid invalidating dependent drops that define
something that can be referenced by more than one compilation unit, e.g., such as a region
or lock name, until all references are gone from the code base.

An example of use of these capabilities within our JSure prototype tool is to clear out drops
about a compilation unit when that compilation unit is recompiled. Each compilation unit
has a drop constructed for it. All promise drops, result drops, etc., about that compilation
unit are setup as dependents of its associated compilation unit drop. When Eclipse recompiles
a compilation unit, this drop is invalidated causing all the drops dependent upon it to be
invalidated.

Analyses also use the truth maintenance capabilities of drop-sea to perform incremental
recomputation, typically at the compilation unit level by linking their result drops to the
compilation unit drop that they were examining. Analyses also define drop subclasses with
analysis-specific information contained within them. For example, Sutherland attaches bi-
nary decision diagrams (BDDs) to each thread coloring promise drop that contains Boolean
expressions [103].
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3.5 Scoped promises

Scoped promises are promises that act on other promises or analysis results within a static
scope of code. In this section we introduce the three types of scoped promises that are are
supported by JSure: @Promise to avoid repetitive user annotation of the same promise over
and over again in a class or package and to express the semantics of universality (e.g., all
constructors that are ever written for this class—now and in the future—should have this
promise), @Assume to support team modeling in large systems where programmers are not
permitted access to the entire system’s code, and @Vouch to quiet overly conservative analysis
results. Scoped promises help to “scale up” the ability of a team of programmers to express
design intent about a large software system.

3.5.1 Avoiding repetitive annotation

To introduce the @Promise scoped promise—our approach to help reduce repetitive annota-
tion by the tool user—we consider the DateFormatManager class from version 1.2.8 of Log4j.
Log4j is a popular logging package for the Java language maintained as part of the open
source Apache project. This class is part of the Log Factor 5 graphical log viewer distributed
with this release of Log4j. The DateFormatManager class is a simple date formatting class
which protects its instance fields by declaring all of its methods to be synchronized (i.e.,
hold a lock on this). Its lock policy is declared by the promise: @RegionLock("Lock is

this protects Instance"). The code, annotated with the minimum number of promises
necessary to verify its simple lock policy, is shown in Figure 3.25.

DateFormatManager has 8 constructors. We annotate @Unique("return") on each of
these to verify that the new object remains thread-confined during object construction. All
8 constructors invoke the private method configure() to factor out some common code
used by the constructors and all the “setter” methods of the class. Figure 3.25 does not
elide the source code for the no-argument constructor at line 8 so that this pattern can be
observed. The call to configure() and the declaration of the method have been underlined
to aid the eye. The uniqueness assurance demands that the call to configure() also be
checked to verify that it does not leak the receiver. Because the uniqueness verification
is based upon a modular flow-based program analysis it requires the @Borrowed("this")

promise on configure() at line 37 to verify this property. More precisely, the transitive
closure of all methods invoked by the constructors within DateFormatManager class must
be checked to verify that the uniqueness promise made by the constructors are maintained.
Hence, getTimeZone() and getLocale(), that are invoked directly by configure(), must
be annotated with @Borrowed("this") at lines 23 and 26, respectively.

This can quickly become a tedious exercise for the programmer. The annotation burden
on the programmer can be reduced using @Promise as shown in Figure 3.26. The @Promise

scoped promise allows the user to declare—using an aspect-like syntax [69]—the declarations
(e.g., types, methods, and fields) within its static scope to duplicate the “payload” promise
on. The @Promises annotation at line 2 is a vehicle to allow multiple @Promise annota-
tions on the same declaration (which is prohibited by the Java language). The annotation
@Promise("@Unique(return) for new(**)") at line 3 places a @Unique("return") anno-
tation on every constructor declared within the class because the target new(**) is defined to
match any constructor with zero or more parameters. The use of @Promise in this case more
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1 @RegionLock("Lock is this protects Instance")

2 public class DateFormatManager {
3 private TimeZone _timeZone = null;
4 private Locale _locale = null;
5 private String _pattern = null;
6 private DateFormat _dateFormat = null;

7 @Unique("return")

8 public DateFormatManager() { super(); configure(); }

9 @Unique("return")

10 public DateFormatManager(TimeZone timeZone) {...}

11 @Unique("return")

12 public DateFormatManager(Locale locale) {...}

13 @Unique("return")

14 public DateFormatManager(String pattern) {...}

15 @Unique("return")

16 public DateFormatManager(TimeZone timeZone, Locale locale) {...}

17 @Unique("return")

18 public DateFormatManager(TimeZone timeZone, String pattern) {...}

19 @Unique("return")

20 public DateFormatManager(Locale locale, String pattern) {...}

21 @Unique("return")

22 public DateFormatManager(TimeZone timeZone, Locale locale, ...) {...}

23 @Borrowed("this")

24 public synchronized TimeZone getTimeZone() {...}

25 public synchronized void setTimeZone(TimeZone timeZone) {...}

26 @Borrowed("this")

27 public synchronized Locale getLocale() {...}

28 public synchronized void setLocale(Locale locale) {...}
29 public synchronized String getPattern() {...}
30 public synchronized void setPattern(String pattern) {...}
31 public synchronized DateFormat getDateFormatInstance() {...}
32 public synchronized void setDateFormatInstance(DateFormat ...) {...}
33 public String format(Date date) {...}
34 public String format(Date date, String pattern) {...}
35 public Date parse(String date) throws ParseException {...}
36 public Date parse(String date, String pattern) throws ... {...}

37 @Borrowed("this")

38 private synchronized void configure() {

39 _dateFormat = SimpleDateFormat.getDateTimeInstance(
40 DateFormat.FULL, DateFormat.FULL, getLocale());

41 _dateFormat.setTimeZone(getTimeZone());

42 if (_pattern != null)
43 ((SimpleDateFormat) _dateFormat).applyPattern(_pattern);
44 }
45 }

Figure 3.25: Elided code for the DateFormatManager class from Log4j after adding the minimum
annotations (shown in boxes) required to assure its lock policy.
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1 @RegionLock("Lock is this protects Instance")

2 @Promises({

3 @Promise("@Unique(return) for new(**)"),

4 @Promise("@Borrowed(this) for getTimeZone() | getLocale() | configure()")

5 })

6 public class DateFormatManager {
7 private TimeZone _timeZone = null;
8 private Locale _locale = null;
9 private String _pattern = null;

10 private DateFormat _dateFormat = null;
11 public DateFormatManager() { super(); configure(); }
12 public DateFormatManager(TimeZone timeZone) {...}
13 public DateFormatManager(Locale locale) {...}
14 public DateFormatManager(String pattern) {...}
15 public DateFormatManager(TimeZone timeZone, Locale locale) {...}
16 public DateFormatManager(TimeZone timeZone, String pattern) {...}
17 public DateFormatManager(Locale locale, String pattern) {...}
18 public DateFormatManager(TimeZone timeZone, Locale locale, ...) {...}
19 public synchronized TimeZone getTimeZone() {...}
20 public synchronized void setTimeZone(TimeZone timeZone) {...}
21 public synchronized Locale getLocale() {...}
22 public synchronized void setLocale(Locale locale) {...}
23 public synchronized String getPattern() {...}
24 public synchronized void setPattern(String pattern) {...}
25 public synchronized DateFormat getDateFormatInstance() {...}
26 public synchronized void setDateFormatInstance(DateFormat ...) {...}
27 public String format(Date date) {...}
28 public String format(Date date, String pattern) {...}
29 public Date parse(String date) throws ParseException {...}
30 public Date parse(String date, String pattern) throws ... {...}
31 private synchronized void configure() {
32 _dateFormat = SimpleDateFormat.getDateTimeInstance(
33 DateFormat.FULL, DateFormat.FULL, getLocale());
34 _dateFormat.setTimeZone(getTimeZone());
35 if (_pattern != null)
36 ((SimpleDateFormat) _dateFormat).applyPattern(_pattern);
37 }
38 }

Figure 3.26: Elided code for the DateFormatManager class from Log4j using the @Promise scoped
promise to reduce the tedious annotation of its 8 constructors. This reduces the minimum number of
annotations required to assure its lock policy from the 12 shown in Figure 3.25 to 4 (shown in boxes).
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precisely expresses the programmer’s intent. The programmer wants all the constructors to
respect the lock policy—both the constructors that exist today and any added in the future.

The annotation @Promise("@Borrowed(this) for getTimeZone() | getLocale() | con-

figure()") at line 4 places a @Borrowed("this") annotation on the three methods anno-
tated directly in Figure 3.25: getTimeZone(), getLocale(), and configure().

In practice, the aspect-like syntax is often not needed for @Promise because the absence
of a for clause is defined to mean that the promise is placed on every declaration where
it is sensible within the current scope. We could therefore replace the entire @Promises

annotation shown in Figure 3.26 on lines 2–4 with

@Promise("@Borrowed(this)")

This promises that no method or constructor in the DateFormatManager class will alias the
receiver. (As described further in Section A.1.4, the @Unique("return") annotation and the
@Borrowed("this") annotation are defined to be equivalent when placed on constructors.)
In essence, with the annotation above, we have changed the “default” with respect to aliasing
the receiver within this class.

Using @Promise at the scope of a package

The use of @Promise within a package-info.java file broadens the scope to the entire
package that the file is contained within. The below example shows a package-info.java

file in the org.apache.log4j.lf5 package that uses @Promise to specify that no threads are
started by code code within any class declared in this package.

@Promise("@Starts(nothing)")
package org.apache.log4j.lf5;

Virtual promises

We refer to promises that are “created” by @Promise as virtual promises. Similar to how
programs on operating systems that support virtual memory do not realize that they are not
addressing physical memory, verifying analyses within an analysis-based verification system
do not realize that virtual promises are not actually annotated in the code. These promises,
from the point of view of the verifying analyses are no different from annotations in the
code. In our example from Log4j, no verifying analysis would note a difference between the
promises in Figure 3.25 and the virtual promises created by the promises in Figure 3.26.
This abstraction, performed by the infrastructure of the analysis-based verification system,
simplifies construction of new program analyses.

The JSure tool allows the user to see the virtual promises constructed by each @Promise

annotation. Two examples are shown in Figure 3.27 for the DateFormatManager class. This
user interface helps the programmer confirm that the virtual promises he or she intended
were indeed created.
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2 @Promises({
3 @Promise("@Unique(return) for new(**)"),
4 @Promise("@Borrowed(this) for *(**)")
5 })

2 @Promises({
3 @Promise("@Unique(return) for new(**)"),
4 @Promise("@Borrowed(this) for getTimeZone() | getLocale() | configure()")
5 })

Figure 3.27: Two tool views showing the virtual promises created within the DateFormatManager class
from Log4j using @Promise. Virtual promises are identified by a V decorator to the upper-right of the
@ icon. (Top) All constructors are annotated with @Unique("return") and all methods are annotated
with @Borrowed("this"). (Bottom) All constructors are annotated with @Unique("return") (elided)
but only three methods are annotated with @Borrowed("this").
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1 package EDU.oswego.cs.dl.util.concurrent;
2

3 public class Rendezvous implements Barrier {
4

5 @Starts("nothing")
6 @Assume("@Starts(nothing) for new() in IllegalArgumentException")
7 public Rendezvous(int parties, RendezvousFunction function) {
8 if (parties <= 0)
9 throw new IllegalArgumentException();

10 ...
11 }
12 ...
13 }

Figure 3.28: An example of using the @Assume scoped promise. (Top) Elided code for the Rendezvous
class from util.concurrent which states that the constructor that is shown does not start any
threads. (Bottom) JSure screenshot of the results for the verification of the @Starts("nothing")

promise at line 5. Assumed promises are identified by a A decorator to the upper-right of the @ icon.
Because the assumption is not verified by analysis, a red-dot is introduced above any verification result
that depends upon it. The red-dot highlights a contingency to the tool user.

3.5.2 Team modeling with assumptions

Real-world software systems are typically decomposed into components and may depend
upon many libraries. Thus any modular verification system has to deal with the problem of
an assertion within one component requiring, as a prerequisite, an assertion within a second
component to be true. A confounding factor, which we now consider, is that these components
may be maintained by different programmers due to organizational or contractual boundaries.
To help with this problem we introduce the scoped assumption: @Assume. The @Assume

scoped promise allows the user to declare—using an aspect-like syntax [69]—declarations
(e.g., types, methods, and fields) outside of its static scope that the user would like the
“payload” promise to be consistent for. Virtual promises created by @Assume are not checked
by verifying analyses. In addition, they are only visible to a verifying analysis when it is
examining the compilation unit where the @Assume annotation appears (as discussed further
below).

Consider the elided code for a constructor of the Rendezvous class within util.concurrent

shown in Figure 3.28. Here, with the @Starts("nothing") promise at line 5, the user is stat-
ing his or her intent that the constructor implementation start no threads. To verify this
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promise, however, the tool requires (as a prerequisite assertion) that the no-argument con-
structor for IllegalArgumentException also promise @Starts("nothing"). Because the
code for the IllegalArgumentException class is outside of the programmer’s scope of inter-
est (e.g., on the other side of an organizational or contractual boundary), the user states, at
line 6, this desire and moves on.

Contingent verification results

The use of @Assume creates virtual promises, which unlike those created by @Promise, are
not verified—they are trusted. When an assumed virtual promise is required as a prerequisite
assertion for the verification of another promise, then that result is contingent. The result is
contingent upon the consistency of the assumed virtual promise.

Virtual promises created by scoped assumptions are indicated in JSure by an A decorator
to the upper-right of the @ icon. Because the assumption is not verified by analysis, a red-dot
is introduced above any verification result that depends upon it. The red-dot is placed above
the verification result decorator (the“+” or“×” at the lower-right). The red-dot alerts the tool
user that a contingency exists in the proof for a particular verification result. For example,
a red-dot is seen above each verification result shown in Figure 3.28 because they are all
contingent upon the assumption made about the IllegalArgumentException constructor.

Using @Assume to list desired assertions about other components

Assumptions about a component can become a “to do” for the team working on that compo-
nent to verify, i.e., to remove the red-dot from the result. Because @Assume creates a precise
list of desired assertions on other components, we advocate it as a tool to enable design intent
modeling among component development teams.

Analysis modularity at the compilation unit level

As noted above, to simplify the construction of new program analyses, analyses are unaware
of the existence of scoped promises—a program analysis sees no difference between a nor-
mal promise and a virtual promise created by a scoped assumption. However, this raises a
limitation of scoped assumptions: @Assume requires that verifying analyses be modular at the
compilation unit level To understand the rationale behind this statement we need to discuss
the implementation of @Assume in the JSure tool.

Each verifying analysis is given one compilation unit to examine at a time by the JSure
infrastructure. This compilation unit “focus” is how scoped assumptions are implemented in
the tool. Before a compilation unit is passed to an analysis, it is examined by the promise
management component (shown in Figure 3.7) for @Assume annotations. If any exist then
the virtual promises that they specify are brought into existence in the forest of ASTs. At
this point the forest of ASTs is passed to the analysis. After the analysis completes its
examination of the compilation unit and reports its output to the JSure infrastructure, the
virtual promises brought into existence by @Assume annotations in that compilation unit are
erased. The entire process repeats for the next compilation unit to be examined, and so on.
An example of this process is shown in Figure 3.29 for two Java compilation units.
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Foo.java

@Assume("@Borrowed(this) for doBar() in Bar")
public class Foo {
  
  public void doFoo() { ... }
}

public class Foo {

  public void doFoo() { ... }
}

public class Foo {
  @Starts("nothing")
  public void doFoo() { ... }
}

Bar.java

@Assume("@Starts(nothing) for doFoo() in Foo")
public class Bar {
  
  public void doBar() { ... }
}

public class Bar {
  @Borrowed("this")
  public void doBar() { ... }
}

public class Bar {

  public void doBar() { ... }
}

Analyzing
Foo.java

Analyzing
Bar.java

Figure 3.29: An illustration of how virtual promises are created for @Assume annotations by the
JSure infrastructure. (Top) Elided Java code for two compilation units: Foo.java and Bar.java.
(Middle) The compilation units as seen by program analyses when Foo.java is being analyzed. The
@Borrowed("this") on the method doBar() is the result of the @Assume("@Borrowed(this) for

doBar() in Bar") annotation in Foo.java. (Bottom) The compilation units as seen by program
analyses when Bar.java is being analyzed. The @Starts("nothing") on the method doFoo() is the
result of the @Assume("@Starts(nothing) for doFoo() in Foo") annotation in Bar.java.

3.5.3 Defining a payload

The general form for @Promise is

@Promise("payload for target ")

Similarly, the general form for @Assume is

@Assume("payload for target ")

In this section we present the syntax of payload portion of both scoped promises. The
aspect-like syntax for the target portion of both scoped promises is presented in the next
section.

The syntax for the payload portion is the same as if the payload promise was written in
the code except that quotation marks (i.e., ") are removed. For example, @Borrowed("this")
becomes @Borrowed(this) when used as the payload of a scoped promise. This minor
change in syntax eliminates the need to escape nested quotation marks when expressing
scoped promises. Thus, avoiding program text like @Promise("@Borrowed(\"this\") for

*(**)").

3.5.4 Defining a target

The syntax used to express the target pattern for a scoped promise is shown in Figure 3.30.
If the target matches a particular Java declaration then a virtual promise, which is a copy
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of the payload promise, is placed on that declaration. The syntax allows matching of type
declarations, field declarations, method declarations, or constructor declarations.

The target pattern is realized in a manner somewhat similar to the definition of a pointcut
in an aspect-oriented programming language [69]. The difference is that a pointcut specifies a
set of points in the program’s logic, i.e., a point of execution, while a scoped promise specified
a set of type, field, method, or constructor declarations (a purely syntactic entity). In the
sense that they localize the expression of a crosscutting specification concern, scoped promises
provide an aspect-oriented specification capability for analysis-based verification.

Our syntax avoids the ambiguity introduced if constituent parts of patterns (e.g., the
package name, the type name, etc.) are separated by a “.” through the use of the keyword
“in”. For example, to specify the method m() in the type C in the package edu.cmu we use
the pattern “m() in C in edu.cmu” rather than “edu.cmu.C.m()” because the latter can
become ambiguous when wildcards are added into the pattern. The pattern “m() in C in

edu.*” specifies all methods named m taking no parameters declared in a type named C in
any package under edu. The pattern (which we do not allow) “edu.*.C.m()” could match
the same methods, however, it could also match all methods named m taking no parameters
declared in a nested type named C declared in any type under in the package edu.

Several examples of various @Promise annotations are shown in Figure 3.31. Several
examples of various @Assume annotations are shown in Figure 3.32.

3.5.5 Programmer vouches

It is possible for a programmer to vouch for any “×” analysis results reported within a scope
of code. This is done with the @Vouch scoped promise. The scope of this annotation matches
the scope of the declaration where the annotation appears. This means that any “×” result
within that scope will be changed to a (hollow grey) “+” result. It is used for documentation
and quieting overly conservative analysis results. The @Vouch scoped promise differs from
@Promise and @Assume: Those promises act on other promises, while @Vouch acts on analysis
results.

Use of the @Vouch annotation is trusted, i.e., it is not verified by analysis. The annotation
requires a brief programmer explanation for the vouch being made.

In the example code shown in Figure 3.33 an init method is used to set state, perhaps
due to an API restriction about using constructors, and then CentralControl instances are
safely published. A @Vouch annotation is used to explain that the init method needs to be
an exception to the lock policy.

In the example code below a @Vouch annotation is used to explain that the SmokeTest

class is test code that is intended to violate assertions that hold in the rest of the code base.

@Vouch("Test code that violates promises about the overall code base")
public class SmokeTest extends ... {
...

}
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Identifier Ð→ Java Language Specification [52, page 93]

V isibility Ð→ public ∣ protected ∣ private
Static Ð→ [ ! ] static

IdentifierPat Ð→ [ * ] { Identifier & * } [ * ]
QualifiedNamePat Ð→ { IdentifierPat ∣ * ∣ ** } & .

QualifiedName Ð→ Identifier & .

InNameExp Ð→ QualifiedNamePat∣ InNameExp | InNameExp∣ InNameExp & InNameExp∣ [ ! ] ( InNameExp )

InNamePat Ð→ QualifiedNamePat∣ ( InNameExp )

InPackagePat Ð→ in InNamePat
InTypePat Ð→ in InNamePat [ InPackagePat ]

TypeSigPat Ð→ *∣ { boolean ∣ char ∣ byte ∣ short ∣ int ∣
long ∣ float ∣ double ∣ void ∣
IdentifierPat ∣ QualifiedName } { [] }*

ParameterSigPat Ð→ { TypeSigPat ∣ ** } & ,

TypeDecPat Ð→ [ V isibility ] { QualifiedName ∣ IdentifierPat [ InPackagePat ] }
FieldDecPat Ð→ [ V isibility ] [ Static ] TypeSigPat IdentifierPat [ InTypePat ]

MethodDecPat Ð→ [ V isibility ] [ Static ]
IdentifierPat ( [ ParameterSigPat ] ) [ InTypePat ]

ConstructorDecPat Ð→ [ V isibility ] new ( [ ParameterSigPat ] ) [ InTypePat ]

Target Ð→ TypeDecPat ∣ FieldDecPat ∣ MethodDecPat ∣ ConstructorDecPat∣ Target | Target∣ Target & Target∣ [ ! ] ( Target )

Figure 3.30: Extended Backus-Naur Form (XBNF) syntax description of scoped promise targets. A
concise overview of the XBNF syntax notation is presented in Appendix B.
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@Promise("@Borrowed(this)") class C {...}

Applies to all constructors and methods declared in C because the @Borrowed

promise is only meaningful on constructors and methods.

@Promise("@Borrowed(this) for new(**)") class C {...}

Applies to all constructors declared in C. The (**) pattern indicates any num-
ber of parameters including zero.

@Promise("@Borrowed(this) for !static **(**)") class C {...}

Applies to all instance methods and all constructors declared in C. The **(**)

pattern matches both methods and constructors. (The *(**) pattern only matches
methods, therefore the **(**) pattern is shorthand for *(**) | new(**).)

@Promise("@Borrowed(this) for !static *(**) | new(**)") class C {...}

Equivalent to the promise above but avoids the use of the **(**) shorthand.

@Promise("@Borrowed(this) for some*(**) & !(someone())") class C {...}

Applies to any method declared in C with a name starting with some, except
for a no-argument method named someone (if such a method exists).

@Region("S") @Promise("@InRegion(S) for * mutable* | int *") class C {...}

Applies to fields in C declared to be of any type with names starting with mutable, or
of type int with any name. The fields which match become part of the region S.

Figure 3.31: Examples of various @Promise annotations on a class C.

@Assume("@Borrowed(this) for new(**) in Foo")

Applies the assumption to any constructor in the type Foo. The ** pattern in-
dicates any number of parameters including zero. If there is more than one Foo type
exists (e.g., in different packages) then the assumption is made for all of them.

@Assume("@Borrowed(this) for !static **(**) in * in com.surelogic")

Applies the assumption to all instance methods and all constructors declared in
any type in the package com.surelogic. The **(**) pattern matches both methods
and constructors.

@Assume("@Borrowed(this) for !static *(**) | new(**) in * in com.surelogic")

Equivalent to the promise above but avoids the use of the **(**) shorthand.

Figure 3.32: Examples of various @Assume annotations.
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1 @Region("private ControlRegion")
2 @RegionLock("ControlLock is lock protects ControlRegion")
3 public class CentralControl {
4

5 private final Object lock = new Object();
6

7 @InRegion("ControlRegion")
8 private String f_id;
9

10 @Vouch("Instances are thread confined until after init(String) is called.")
11 public void init(String id) {
12 f_id = id;
13 }
14

15 public String getId() {
16 synchronized (lock) {
17 return f_id;
18 }
19 }
20

21 public void setId(String value) {
22 synchronized (lock) {
23 f_id = value;
24 }
25 }
26 }

Figure 3.33: An example of using the @Vouch scoped promise. (Top) Java code for the CentralCon-

trol class which vouches that the init method will be called while the instance is thread confined
and before it is safely published to other threads in the program. (Bottom) JSure screenshot of the
results for the verification of the @RegionLock promise at line 2. The icon for the “×” analysis result
that is within the scope of the @Vouch, the access of f_id at line 12, is changed from an “×” to a
(hollow grey) “+” with the @Vouch as a prerequisite assertion. The @Vouch promise in the results is
identified by a T decorator to the upper-right of the @ icon, indicating that it is trusted. Because the
programmer’s vouch is not verified by analysis, a red-dot is introduced above any verification result
that depends upon it. The red-dot highlights a contingency to the tool user.



130 CHAPTER 3. REALIZATION

Figure 3.34: Eclipse preferences to turn verifying analyses on and off in the JSure tool.

3.6 Trusted promises

The @Vouch is one example of what we call a trusted promise. A trusted promise is an
assertion that is not verified by analysis.

There are several promises that are never checked by an analysis. An example is the
@ThreadSafe and @NotThreadSafe annotations proposed by Goetz, Peierls, et al. in [51].
These annotations are primarily intended for documentation purposes and are not able to be
verified by an analysis implemented within the JSure tool. They are nevertheless highly useful
to convey design intent, especially to users of the annotated class. For example, consider the
ArrayList class from the Java standard library to which the @NotThreadSafe annotation
would apply. It would hypothetically be annotated as shown below to document this aspect
of its design intent.

package java.util;

@NotThreadSafe
public class ArrayList<E> extends AbstractList<E> implements List<E>, ... {
...

}

The annotation clarifies the non-tread-safety of this class that might otherwise be (unwisely)
assumed to be thread-safe.

The tool also supports turning off a particular analysis. The JSure preference screen to
turn verifying analyses on and off is shown in Figure 3.34.

The use of @Assume creates, for a particular scope of code on which it appears, a trusted
promise. We show assumptions differently in the tool user interface, with an A decorator
rather than a T decorator, as shown above.

3.7 Related work

Our notion of truth maintenance within drop-sea is inspired by AI truth maintenance sys-
tems [102]. Further drawing from AI systems, the architecture we present for analysis-based
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verification uses a blackboard shared-data style [89, 99] to effectively manage multiple con-
stituent verifying analyses and allow users to understand how the tool reached its conclusions.

Bandera [30] is a system that extracts models from Java source for verification by a model
checker and maps verifier outputs back to the original source code. Bandera represents, simi-
lar to drop-sea, an effort to establish an effective architecture for assurance but is focused on
model checking rather than program analysis. Similar to our work, Bandera, and other model
checking tools such as SLAM [8], have recognized the need for an effective user experience
(e.g., to enable programmer understanding of counter examples found by the model checker).

As in our approach, JML [75], annotates Java programs with special comments that can
be used for program verification (or static bug hunting, e.g., ESC/Java [77]). JML does not
currently include a mechanism like scoped promises.

The syntax of scoped promises is inspired by AspectJ [69]. However, to the best of our
knowledge, use of an aspect-like syntax as part of a specification language is a novel part of
our work. The only similar work we are aware of is statically executable advice by Lieberherr,
et al. in [78] that, lacking any notion of promises, can direct static points for analyses to be
executed. Whereas we are specifying locations to place promises, statically executable advice
is specifying locations to place bits of analysis code directly into the program.

The FindBugs [62] tool has annotations that, similar to @Promise, can annotate declara-
tions within a scope of code4. These annotations are: @DefaultAnnotation, @DefaultAnno-
tationForFields, @DefaultAnnotationForMethods, @DefaultAnnotationForParameters.
Lacking our aspect-like syntax to express a pattern to match declarations, FindBugs requires
several annotations to capture common programmer use cases. The advantage of this ap-
proach over ours is that it simplifies the engineering of the tool infrastructure. Further, it
may be easier for programmers to understand. But for certain uses, e.g., the scoped promises
shown in Figure 1.19 on page 29 used by Sutherland in the Electric case study, it is not
expressive enough.

The current code for JSR-3055, an ongoing effort to standardize a set of annotations for
software defect detection in Java, contains two special-purpose annotations: @Parameter-

sAreNonnullByDefault and @ParametersAreNullableByDefault. These two annotations
are similar to @Promise or FindBug’s @DefaultAnnotationForParameters but can only ex-
press intent about the nullability of method parameters. We argue that a general purpose
capability to place annotations within a scope of code, such as our approach or the one used
by FindBugs, is superior—especially as a standard. The advantage of this approach over a
general purpose capability is expediency with regard to its implementation.

3.8 Conclusion

This chapter presents partial solutions to two problems that arise when realizing a practical
verification system within a modern IDE: (1) drop-sea helps to represent and manage verifi-
cation results in such a way that a programmer can understand them as changes are made to
code and models, and (2) scoped promises help to express design intent about large software
systems containing multiple components developed by separate teams. We present significant

4http://findbugs.sourceforge.net/manual/annotations.html
5http://code.google.com/p/jsr-305/

http://findbugs.sourceforge.net/manual/annotations.html
http://code.google.com/p/jsr-305/
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detail about the design and engineering of the JSure prototype analysis-based verification tool
including how the user interacts with the tool.

The JSure prototype tool has evolved based upon feedback from several field trials. These
field trials are presented in the next chapter.



Chapter 4

Field trials

“Software developers talk a lot about tools.
They evaluate quite a few, buy a fair number, and use practically none.”

— Robert Glass [50]

4.1 Introduction

In this chapter we present the results of nine field trials conducted by the author and other
members of the Fluid research group, the research team, with the JSure prototype analysis-
based verification tool. The field trials described in this chapter are not formal user studies.
There are not control subjects, nor are different aspects of the overall interaction disam-
biguated. During the time the research team spent in the field its focus was on analysis-based
verification and its implementation, not on the users of our prototype tool or their character-
istics. We do note, however, that each engagement was conducted with expert professional
developers working on complex mission critical code.

The client code examined during each field trial was usually not available in advance, nor
was it selected by the Fluid research group. In all cases, the host organization selected the
code to be examined as well as the group of engineers who participated. The research team
was provided access to the client code upon arrival the first morning. Thus, the field trials
did not allow us as controlled an environment as, for example, case studies on real-world code
performed at the university. However, the feedback they have provided has been essential to
the evolution of our work, in particular, and the work of the entire Fluid project, in general.
Proposed promises, scoped promises, and the“red dot”were all, in whole or in part, developed
based upon feedback obtained during the time spent in the field using the JSure tool. This
explosion of features motivated the formalisms presented in Chapter 2 to ensure that our tool
engineering is based upon principled foundations. In this respect, our evaluative use of the
field trials, which spanned several years, was both formative and summative.

4.1.1 Organizations visited and code examined

From July 2004 to October 2009 the research team participated in nine field trials of the JSure
tool on open source, commercial, and government Java systems. Many of these field trials
were performed under strong restrictions relating to disclosure while others were deemed by
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Duration Code Size
Date (days) Organization Software Examined (KSLOC)

Jul 2004 3 Company-A Commercial J2EE Server-A 350

Dec 2004 3 NASA/JPL Distributed Object Manager 42
MER Rover Sequence Editor 20
File Exchange Interface 12
Space InfeRed Telemetry Facility 18

Feb 2005 3 Sun Electric – VLSI Design Tool 140

Oct 2005 3 Company-B Commercial J2EE Server-B 150

Jul 2006 3 Lockheed Martin Sensor/Tracking (CSATS) 50
Weapons Control Engagement 30

Dec 2006 1 Lockheed Martin Equipment Web Portal 75

Mar 2007 3 NASA/JPL Testbed 65
Service Provisioning (SPS) 40
Mission Data Processing (MPCS) 100
Next-Generation DSN Array 50

Oct 2007 3 NASA/JPL Maestro 17
Command GUI 139
Accountability Services Core 48

Oct 2009 3 Yahoo! Hadoop HDFS 107
Hadoop MapReduce 281
Hadoop ZooKeeper 62

Figure 4.1: Date, duration, organization, software examined, and code size of the Java software
systems examined during the 9 field trials of the JSure tool.

the participating company to be more public. We are not permitted to identify the company
in two cases: we instead refer to them as Company-A and Company-B. Figure 4.1 provides
an overview of the field trials including the name and size of the client software examined,
when the engagement took place, and its duration. A brief description of each client software
system examined during a field trial is provided in Figure 4.2.

The corpus of code examined during the field trials represents two major categories of
real-world Java software. The first is server/infrastructure software—software that customers
of the client organizations use to construct or host enterprise Java applications. The software
that falls into this category are the two J2EE servers (from Company-A and Company-B)
and the Hadoop “cloud computing” components. The second major category is naval and
aerospace mission support software. These systems support mission data processing and
information flow to meet a particular mission objective of the organization that develops and
maintains them. Both types of software represent code that is considered important enough
that the developing organization was willing to spend time with us to potentially improve its
code quality.

In addition to being perceived as important to the client organization, the majority of
the client code examined was concurrent. This made the JSure tool, and the predominantly
concurrency-oriented mechanical program properties verified by it (listed in Figure 1.3 on
page 8), applicable to these systems. The examined software systems were, in all cases,



4.1. INTRODUCTION 135

Software Examined Description
Commercial J2EE Server-A The Java Platform, Enterprise Edition is an industry

standard for enterprise Java computing. This is one
commercial implementation of this standard.

Distributed Object Manager The Distributed Object Manager (DOM) is a file cata-
log system which provides a file repository, and a search
and retrieval mechanism for mission data.

MER Rover Sequence Editor The Rover Sequence Editor (RoSE) is used to create
command sequences sent to the Mars rovers for every
day of the Mars Exploration Rovers (MER) mission.

File Exchange Interface The File Exchange Interface (FEI) provides a set of
command line utilities to manipulate remote data.

Space InfeRed Telemetry Facility A data high throughput data processing program for
the Spitzer Space Telescope.

Electric – VLSI Design Tool The Electric VLSI Design System is an open-source
electronic design automation system.

Commercial J2EE Server-B The Java Platform, Enterprise Edition is an industry
standard for enterprise Java computing. This is another
commercial implementation of this standard.

Sensor/Tracking (CSATS) Common Sensor and Tracking (CSATS) services code
written for the U.S. Navy.

Weapons Control Engagement Weapons Control Engagement code written for the U.S.
Navy.

Equipment Web Portal The Equipment Requirements System code base for
Global Combat Support System–Air Force web portal.

Testbed A distributed hardware system test harness that uses
many threads to coordinate software simulations with
actual hardware command and control capabilities.

Service Provisioning (SPS) The Service Provisioning System (SPS) is used for
scheduling deep space network services.

Mission Data Processing (MPCS) A multi-mission Java-based ground system for process-
ing spacecraft data.

Next-Generation DSN Array An example adaptation of the mission data system to
manage an array of tracking antennas.

Maestro A graphical missing planning tool used by MER to plan
science activities.

Command GUI The user interface to the command uplink system that
supports uplink communications with missions.

Accountability Services Core The Accountability Services Core (ASC) supports
telemetry data processing.

Hadoop HDFS Hadoop Distributed File System (HDFS) is a dis-
tributed file system that provides high throughput ac-
cess to application data.

Hadoop MapReduce Hadoop MapReduce is a framework for distributed pro-
cessing of large data sets on compute clusters.

Hadoop ZooKeeper Hadoop ZooKeeper is a high-performance coordination
service for distributed applications.

Figure 4.2: A brief description of the code examined during the nine field trials of the JSure tool.
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selected by the client organization, however, the research group did advise that the system
should contain significant use of concurrency. In all but one case the advice of the research
group was followed. The exception was the J2EE-based Equipment Web Portal for the Global
Combat Support System–Air Force (GCSS-AF) system examined in Dec 2006. In two hours
4 models of lock use were annotated into the code by the author working with two client
programmers and verified by the JSure tool, covering all lock use in the 75 KSLOC program.
In this case the client programmers valued the JSure tool1—but not as much as developers
of the other 19 systems which consisted of more complex concurrent Java software.

4.1.2 Summative evaluation

The results from the field trials are used to provide evidence in support of several claims of
this research. These claims, with a summary of the supporting evidence we present in this
chapter, are:

• The JSure prototype tool scales up to use on large real-world software systems. The
empirical evidence is the successful use of the tool on 20 client software systems exam-
ined over 25 days during nine field trials. The largest client system examined was 350
KSLOC and the mean size was 90 KSLOC.

• At the conclusion of a 3-day field trial using the JSure prototype tool, the behavior
and responses of the client developers indicate that the tool was effective with respect to
defects found. The quantitative evidence with respect to defects found is that across the
nine field trials the JSure tool helped to identify 79 race conditions in 1.6 million lines
of real-world Java code—most of which had already passed organizational acceptance
evaluation for deployment. The client developers described the difficulty of finding
these defects, “It would have been difficult if not impossible to find these issues without
[JSure].” and “[JSure] identified logic and programming errors . . . that extensive review
and testing did not discover.”

• At the conclusion of a 3-day field trial using the JSure prototype tool, the behavior and
responses of the client developers indicate that they perceive value from the verification
results obtained. The quantitative evidence with respect to verification results is that
across the nine field trials we developed 376 models of programmer intent about lock
use and were able to verify most of them with the tool by working alongside client
programmers. The client developers described the value of the verification results, in
particular the value of the tool’s specification language, “[JSure] was reported by all
participants as helping them to understand and document the thread interactions that
they had already designed and implemented.”

• Within two or three hours of using the JSure prototype tool to annotate and analyze
the client’s code, the behavior and responses of the client developers indicate that they

1The JSure results showed the developers that several lock acquisitions could be removed from the code
base, thereby improving overall system performance. The GCSS-AF developers liked the verification results
obtained from the tool and proposed that analysis-based verification could be used to track down unused “bits”
of SQL, stored in Java property files, that are no longer needed by the application, i.e., the property is never
referenced in the code base. Keeping property files consistent with the code base during the rapid evolution
of their system was difficult for them to manually check. We leave the development of this analysis to future
work.
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perceive sufficient reward to continue use. The behavioral evidence is continuing to
participate in the engagement and inviting other developers to participate. This was
observed in 8 of the 9 field trials. The client developers described the value of the
immediacy of results,“We found a number of significant issues with just a few hours of
work. We really like the iterative approach.”

• It is feasible to adopt the JSure prototype tool late in the software engineering lifecy-
cle. The empirical evidence is that 18 of the 20 client software systems examined in
the field were in the operations and maintenance phase of the software lifecycle—they
had already passed organizational acceptance evaluation for deployment. One of the
commercial J2EE servers examined had been in release for 3 years. The verbal ev-
idence consisted of expression by client developers advocating widespread use of the
tool throughout the software lifecycle (when code exists), such as, “I can’t think of any
of our Java code I wouldn’t want to run this tool on.”

Generally speaking, the field trials show that analysis-based verification is valued by disinter-
ested practitioners—working programmers whose only interest in our work is the immediate
value that JSure can potentially provide to them on code they develop and maintain.

As discussed in Section 1.6.2, the field trials provide empirical evidence in support of the
contribution of our work as well as the overall vision of the Fluid project. The constituent
analyses developed by Greenhouse, Boyland, and Sutherland could not be employed effectively
to obtain results meaningful to professional software developers without the contribution
of our work. This is because they had no significant support for user interaction, and,
more importantly, could not create proof structures that rendered results directly meaningful
to developers. For example, the proof structures developed over the course of three days
during our first field trial include several thousand nodes in proof trees and several thousand
individual underlying constituent analysis results. There is no means for individual developers
(or the research team, for that matter) to manage this quantity of separate proof elements
without tool assistance.

4.1.3 Formative evaluation

Figure 4.3 shows which of the technical contributions of this thesis were in place for each field
trial. (These capabilities are described in Chapter 3.) All nine field trials used the Eclipse-
based JSure prototype tool, including the drop-sea proof management system, the @Promise

scoped promise, and contingency management via the red dot (e.g., turning analyses on and
off, and trusted promises). @Assume and @Vouch were later added to JSure in response to
feedback from the field. The last capability added to JSure as part of this work was proposed
promises, which was developed in response to feedback from the field to help support model
expression (as discussed in Section 1.4.2), but was not available for use during any field trial.

The feedback from the field trials helped to guide our work in two areas: model expres-
sion and contingency support. Many client programmers expressed a desire for more help
entering annotations into the code. The use of IDE templates for “fill-in-the-blank” annota-
tions (as described in Section 3.2.2) and proposed promises (as described in Section 1.4.2)
were developed in the tool address the client programmer’s request for more assistance with
model expression. The addition of @Assume and @Vouch (as described in Section 3.5.2 and
Section 3.6, respectively) address the request for more approaches to express contingencies.
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Scoped promises Analyses Trusted
Date Drop-sea Red dot @Promise @Assume @Vouch on/off Promises

Jul 2004 ✓ ✓ ✓ ✓ ✓
Dec 2004 ✓ ✓ ✓ ✓ ✓
Feb 2005 ✓ ✓ ✓ ✓ ✓
Oct 2005 ✓ ✓ ✓ ✓ ✓ ✓
Jul 2006 ✓ ✓ ✓ ✓ ✓ ✓
Dec 2006 ✓ ✓ ✓ ✓ ✓ ✓
Mar 2007 ✓ ✓ ✓ ✓ ✓ ✓
Oct 2007 ✓ ✓ ✓ ✓ ✓ ✓
Oct 2009 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 4.3: Capabilities (developed for this thesis) present during the 9 field trials of the JSure tool.

A note about transition and commercialization

In October of 2006 a commercial company, SureLogic, was formed to transition and commer-
cialize the tools and techniques developed by the Fluid research project at Carnegie Mellon
University. Several members of the Fluid research project, including the author, are employed
by this“spin-off”company and, therefore, SureLogic participated in later field trials—the first
being the March 2007 visit to NASA/JPL.

The remainder of this chapter is organized as follows. We begin by describing the meth-
ods used to conduct and gather data from each field trial. We then present an analysis
and discussion of the field trials focused on the summative evaluation summarized above in
Section 4.1.2.

4.2 Methods

In this section we describe the methods used to conduct the field trials of the JSure prototype
tool. We start by describing the size and composition of both the research and client teams
who participated. Next we present a template agenda for a three-day engagement followed
by a description of the client facilities used. We end the section with a discussion of the
preparation undertaken by both the research team and the client team for each field trial and
the techniques used for data collection.

4.2.1 Participants

The research team for each field trial typically consisted of three members of the Fluid project
at Carnegie Mellon University. Members of the research team were researchers and engineers
that had helped to develop portions of the technology being used. In addition to the author,
who participated in all of the field trials excepted the one at Sun in February of 2005, other
members of the research team and, in parentheses, the number of field trials in which they
participated are: Kevin Bierhoff (1), Nathan Boy (1), Edwin Chan (8), Aaron Greenhouse
(2), Larry Maccherone (1), Elissa Newman (3), Dean Sutherland (5).
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# of Engineers: # of Engineers:
Date Organization Client Team Research Team

Jul 2004 Company-A 8 5
Dec 2004 NASA/JPL 15 4
Feb 2005 Sun 5 3
Oct 2005 Company-B 7 3
Jul 2006 Lockheed Martin 7 3
Dec 2006 Lockheed Martin 2 1
Mar 2007 NASA/JPL 10 3
Oct 2007 NASA/JPL 5 3
Oct 2009 Yahoo! 13 4

Figure 4.4: Engineering team sizes during the 9 field trials of the JSure tool.

The client team consisted of engineers from the organization that hosted the field trial.
Figure 4.4 reports the size of the client team and the size of the research team for each of the
nine field trials. We only count programmers/engineers when reporting the size of the client
team. Any members of the hosting organization’s management or administrative staff (e.g.,
who may have attended the outbrief or issued security badges) are excluded from our count.

The client team participants were, in all cases, the developers and maintainers of the sys-
tems that we examined. We were not working with researchers within the client organization
that had collected code from one or more engineering groups for examination during the visit.
We advocated, with success, to work directly with engineers “in the trenches” when setting
up each field trial to have the best chance of getting honest feedback about our approach.

The programmers and software engineers who participated in the field trials were all ac-
tively engaged in the development and maintenance of, if commercial, a shipping software
product for their company or, if government, mission system software that was in active
development and use by the government agency. We did not formally survey the partic-
ipants, however, we can (via informal discussions) characterize them as experienced—the
vast majority with over 5-years working for their respective organizations. We do not view
the experience level of client participants as surprising because the task was to examine the
source code of software systems important to their organizations (mostly deployed software).
Rather, it would be strange for a company or government agency to trust “new hires” with
an outside group looking at their code.

We note that working with experienced client developers, to a degree, strengthens the
evidence supporting several of the claims listed in Section 4.1.2. In particular, the claims
that take into account the “behavior and responses of the client developers.” For example,
the time of experienced developers tends to be extremely valuable, and they tend to be very
busy and under pressure (when compared to less experienced developers). The fact that
members of this group were willing to spend several days working with the research team
is impressive—if it was a group of “new hires,” it would be much less impressive, since they
may not have had anything very pressing to do anyway. Further, the fact that experienced
developers were impressed with issues found through use of the JSure tool is more convincing
than if inexperienced developers (who might be impressed easily) had been involved.
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4.2.2 Agenda

The template agenda for each field trial is shown in Figure 4.5. The major focus of the
engagement, typically a total of 15 hours over the 3 days, is hands-on use of the JSure tool
on client code. Later field trials, beginning with the visit to Company-B in October 2005,
also include hands-on use of the Flashlight dynamic analysis tool.

Each day began with a “meet and greet” and ended with a “wrap-up” primarily focused on
ensuring that scheduling of the client team participants and facilities was as planned for the
engagement. We purposely limited the introductory talks by both teams—the research team
describing the analysis tools to the client team and the client team describing the architecture
and design of their code to the research team—to one hour to ensure that the client team
was actively using JSure before lunch on the first day. The rationale for this is to avoid busy
programmers disappearing over lunch (as is discussed later in this chapter).

The teams separated on the evenings of day one and day two. The client team was
encouraged to run the changes made to their code during the day through their automated
regression testing suite to see if the changes passed. Some client teams checked-in changes
to the code immediately, literally right in front of us, while other client teams tracked code
changes for consideration after we departed. The latter group often had no choice but to do
this as they were not allowed access to their development network during our visit due to
organizational security restrictions.

The research team worked during the evenings of day one and day two to track down and
fix any bugs discovered in the analysis tools. This need to patch the analysis tools was due
to a constraint imposed on us during most of the field trials: We were only allowed access
to client code in their facilities. Thus, in most cases, the first time the research team could
run the tools on the code that the client had selected was on the morning of the first day.
Therefore, if the client’s code exposed a problem in the prototype tool we had to work around
it or fix it during the engagement. This constraint was not imposed if the code we examined
was open source software, as was the case for the field trials at Sun and Yahoo! (both Electric
and Hadoop are open source software).

A management outbrief was drafted by the research team on the evening of day two and
finalized the morning of day three by all the participants. A larger group from the client orga-
nization was invited to attend this outbrief and typically included members of management.
The outbrief consisted of a deck of slides that presented the following information about the
engagement:

• An overview of the analysis tools, JSure and (sometimes) Flashlight, that were used.

• The names and contact information, i.e., email and phone, for each member of the
research and client teams that participated.

• A description of each software system whose code was examined. This description was
primarily qualitative, but included a line of code count.

• Quantitative results for each system, e.g., the number of promises annotated in the code
(by the client team with the assistance of the research team) and the number of defects
that the tools helped to uncover.
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Day 1
Morning:

Duration Participants Activity

10 min Everyone Meet and greet
30 min Everyone Tool introduction and demonstration presented

by the research team
30 min Everyone Software system(s) overview, including overall

architecture and specific issues in the identified
code portion presented by the client team

2 hours Everyone Initial tool use on client code

Afternoon:

3 hours Everyone Continue tool use
15 min Everyone Wrap-up – confirm day 2 schedule

Evening:

– Client team Regression testing, check-in code modifications∞ Research team Writeup findings, fix tool bugs

Day 2
Morning:

Duration Participants Activity

10 min Everyone Meet and greet – check day 2 schedule
3 hours Everyone Continue tool use

Afternoon:

3 hours Everyone Continue tool use
15 min Everyone Wrap-up – confirm day 3 schedule

Evening:

– Client team Regression testing, check-in code modifications∞ Research team Writeup findings, fix tool bugs, start to draft the
management outbrief

Day 3
Morning:

Duration Participants Activity

10 min Everyone Meet and greet – confirm time/location of man-
agement outbrief (email reminders)

3 hours Everyone Finish up tool use
(all morning) Team leads Draft the management outbrief with input from

all the participants

Afternoon:

1 hour Management/ Management outbrief and discussion
Everyone

Figure 4.5: Template agenda used for field trials.
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Figure 4.6: Chris Douglas (of Yahoo!) and Nathan Boy (of SureLogic) working inside Yahoo! Building
E with the Flashlight and JSure tools on Hadoop MapReduce during the field trial conducted in
Sunnyvale, CA on October 28, 29, and 30, 2009. The image quality of this picture is rather poor
(it was taken with the author’s cell phone), however it illustrates the conference room configuration
used during most of the field trials. Engineers from both teams, working side-by-side on their laptops,
running the prototype analysis tools on client-selected code. One laptop is being projected to allow
other programmers, including those who just wander by, to observe the ongoing work.

• Qualitative results about the client team participant’s perception of the analysis tools
and their value. This included both perceived benefits and perceived limitations.

The management outbrief was the concluding event of each field trial. The formal presen-
tation of the slides was followed by a discussion that included questions from management
to the participants, debate about how to improve the content of the slides, and planning for
follow-on interaction between the organization and the research team.

4.2.3 Facilities

Each field trial was conducted in the client organization’s facilities. The research group
traveled rather than requiring that the client group come to the university. Conducting the
engagement at the client’s location helped to allow more of their programmers and engineers
to participate.

The work during the engagement was conducted in a common room. The preference was
a conference room with a large table that contained, or could accommodate, a projector. The
photograph in Figure 4.6 illustrates a typical conference room setup. We worked with the
client team to make it as easy as possible for programmers not directly involved with the
field trial to come in and observe the proceedings. We were also flexible with regard to the
systems we examined during each engagement. If a programmer wandered in, who we met at
the cafeteria or who heard about us from a colleague, we often expanded the study to include
their code.



4.3. ANALYSIS 143

4.2.4 Preparation

Prior to the arrival of the research team we asked organizations to ensure that they could
build their code in the Eclipse Java IDE. This is because the prototype analysis tools are
implemented within Eclipse. This choice was made because Eclipse is the most widely used
IDE by Java programmers—more than all other Java IDEs put together [59]. Ensuring ahead
of time that client code could be compiled in Eclipse helped us minimize the duration between
the start of the field trial and when the tools produced results about the client’s code.

We also asked the client organization to provide a rough line of code count to allow
us to estimate the computing requirements for the engagement. The JSure tool requires a
large amount of memory that increases linearly with code size. All of the field trials were
successfully conducted on computers with two gigabytes of memory (or less). Laptops with
two gigabytes of memory are common as of this writing but had to be specially procured by
the research group for use on the early field trials.

4.2.5 Gathering data

We gathered data about each field trial through notes and the contents of the slides used
for the management outbrief. As described above, the management outbrief slides contain
quantitative and qualitative data from each field trial.

4.3 Analysis

In this section we present an analysis of the empirical results from the field trials in support
of the following claims of this research:

• The JSure prototype tool scales up to use on large real-world software systems.

• At the conclusion of a 3-day field trial using the JSure prototype tool, the behavior and
responses of the client developers indicate that the tool was effective with respect to
defects found.

• At the conclusion of a 3-day field trial using the JSure prototype tool, the behavior and
responses of the client developers indicate that they perceive value from the verification
results obtained.

• Within two or three hours of using the JSure prototype tool to annotate and analyze
the client’s code, the behavior and responses of the client developers indicate that they
perceive sufficient reward to continue use.

• It is feasible to adopt the JSure prototype tool late in the software engineering lifecycle.

The tool and the annotations it uses were constantly changing and improving throughout
the nine field trials that spanned several years as described above in Section 4.1.3. Where
there are important differences between the capabilities of the tool as it exists today and as
it existed during a particular field trial we will highlight them in the discussion below.
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The JSure prototype tool scales up to use on large real-world software systems

The code sizes reported in Figure 4.1 show that the largest system we examined in the field
was 350 KSLOC. This code size is at the limit of what JSure is able to support today without
the use of a 64-bit JVM (as discussed below). In July of 2004 analysis of a code base this
large on computers with 1GB of memory required extraordinary procedures as the research
team reported in its field trial notes:

“What are the barriers to tool use? One is the oddball techniques needed to
work at scale. The technique used at [Company-A] was to create a JAR of the
entire [Company-A] software. Place that JAR on the Eclipse classpath and only
include the source code packages needed by the developer we were working with.
Typically, the [Company-A] developer would be next to us on a second laptop
with the full code opened so that whole-program queries could be answered (e.g.,
Do the set of source files that I have loaded contain all the references to this public
field?).”

JSure memory use scales linearly with program size. The problem the research team encoun-
tered in the field is that the computers did not support enough memory to scale with the
constant factor imposed by early prototypes of the tool. In this section we discuss several
approaches used to reduce this factor and allow the tool to be effective in the field. In sum-
mary, we got the memory requirements of the JSure tool below what is already required for
development (in any modern IDE), so scalability, with respect to memory use, is limited by
the same factor that development limits the size of the code base.

The technique described in the quotation above reduced the memory required by JSure
because the tool deals with Java bytecode (i.e., binaries) differently than Java source code.
For each type with source code the tool constructs a complete Fluid IR-based Java Abstract
Syntax Tree (fAST)2. For each type that is only represented in bytecode (e.g., in a JAR)
the tool constructs a “stub” fAST that represents the type’s non-private declarations. As a
consequence, JSure can represent, in the same amount of memory, far more Java bytecode
than Java source code.

The research team did not encounter a code base as large as the one analyzed at Company-
A again in the remaining eight field trials. However, the JSure tool no longer requires such
unusual techniques to support larger code bases. Several engineering changes to the tool and
(external) changes to the environment that it runs in have occurred to help mitigate this
problem. These are

• Smarter eAST-to-fAST conversion: JSure has to convert the Eclipse representation
of each Java type, which we refer to as an Eclipse-based Java Abstract Syntax Tree
(eAST), to the Fluid representation, which we refer to as a fAST. We discovered that
our approach to conversion (in 2004) held all the eAST structures in the program’s

2The Fluid Internal Representation (Fluid IR) models general purpose data using an enhanced version of
the standard ternary representation: unique identifiers, attributes, and values. The enhancements made to
the standard ternary representation include (1) ultra–fine-grained tree-structured versioning, (2) abstraction
to structured entities such as trees and directed graphs, and (3) persistence. The Fluid IR is used within
the JSure tool to represent programs as a “forest” of fASTs, it is also used to model flow graphs of program
control flow, bindings from a use to a definition/declaration, annotations of programmer design intent, analysis
results, etc.
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heap until the entire conversion process was completed. This approach caused the
memory required for the conversion process to be much larger than what was required to
perform analysis. Therefore, on large code bases the tool would run out of memory and
fail during eAST-to-fAST conversion. Changing how this conversion was accomplished
allowed each eAST structure to be garbage collected as soon as its corresponding fAST
was created. This change cut the memory requirement for the tool in half.

• fAST node specialization: The representation of each node in the fAST was opti-
mized to reduce memory use. This change cut the memory requirement for the tool by
another half. An example of one specialization that reduced memory use is the elimi-
nation of collections that we know will be empty or contain only a single element. For
example, leaf nodes in a fAST have no children and, therefore, we can eliminate the
empty collection used to reference their children.

• IR swapping: JSure was changed to allow portions of its forest of fAST structures to
be swapped back and forth from memory to disk. This allows much larger programs to
be supported by the tool but can adversely impact analysis performance. This approach
is still experimental and may become obsolete because of the migration of most tool
users to 64-bit JVMs (discussed below).

• Arrival of 64-bit Java: Most Java virtual machines (JVMs) used during the field
trials were 32-bit. All 32-bit JVMs that we are aware of strictly limit heap memory
to 2GB3. Recently 64-bit JVMs have become more common and these open up much
larger heap sizes to the tool. In addition, the typical memory size for a computer used
for Java development has increased from 2GB to 8GB.

The use of 64-bit VMs as well as the engineering changes to the prototype tool described
above allow JSure to support large code bases. While the prototype tool requires a large
amount of memory, we are encouraged that the tool memory use scales linearly with code
size. Today, the prototype tool comfortably supports code bases up to 150 KSLOC on 32-bit
VMs and larger code bases on 64-bit VMs.

The research team encountered few code bases above 200 KSLOC. We hypothesize that
this may have to do with scalability limitations in today’s widely-used IDEs, such as Eclipse.
The experience of the research team during the nine field trials provides support for this hy-
pothesis. For example, above a code size of roughly 150 KSLOC a project in the Eclipse IDE
becomes slower and less responsive to the programmer. To avoid this behavior programmers
break up their systems into multiple projects that are under this ceiling. Why then, it is rea-
sonable to question, did we encounter projects larger than this ceiling? The largest code base
we encountered, the 350 KSLOC J2EE Server at Company-A, was not normally developed in
Eclipse. Although the programmers used several projects in their normal IDE, for the field
trial they put all the code together in one Eclipse project. A second example is the Hadoop
project code. The developers of this tool can use Eclipse—but most of them do not. The
Hadoop developers use a command-line build tool called Ant4. Ant is similar to make [44] but

3Windows JVM implementations were widely used during the field trials. These further restrict the heap
size to the largest continuous area of free memory that the Windows operating system is able to provide to
the JVM. This is typically between 1 and 1.5GB, but can be much lower if a driver is loaded in an unusual
memory location—a problem we encountered on “tablet” laptops.

4http://ant.apache.org/

http://ant.apache.org/
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it provides better support for the deep directory structures used by programming languages
like Java.

In addition to memory use, the runtime performance of our approach impacts scalability
with respect to code size. Performance of the constituent analyses and the infrastructural
components (presented in Section 3.3 on page 97) such as drop-sea have been adequate during
the field trials with one exception: the uniqueness analysis. This analysis was designed
and implemented by Boyland in the prototype tool based upon work by Sagiv, Reps, and
Wilhelm [98]. The uniqueness analysis verifies the @Unique and @Borrowed promises in the
prototype tool. The algorithm has exponential asymptotic complexity (with respect to the
number of edges in the control flow graph for a segment of code). It was believed that
performance on real-world code would be reasonable, in a manner similar to Hindley–Milner
type inference for the ML programming language [93]. However, we encountered problems in
the field with this algorithm as the research team reported in its notes:

“The ability to manage contingencies, i.e., the ‘red dot’, was a critical capability
as we had to turn off the uniqueness analysis and [drop-sea] informed us which
results were impacted (prior to [drop-sea] this would have been difficult to do).”

The ability of drop-sea to toggle analyses on and off (as described in Section 3.6) allowed the
research team to avoid running the uniqueness analysis when it exhibited poor performance
in the field. What caused the algorithm to have such poor performance? The Java code we
encountered in the field differed from what the analysis authors expected. For example, the
research team encountered several methods, contrary to the usual style guidance, that were
well over 1,000 lines long. More challenging to the uniqueness analysis, we encountered highly
complex control flow, e.g., 10 to 15 levels of nested loops and try-finally blocks. Invariably,
these blocks of code would be within a part of the system that the client team deemed critical
and wanted to model and assure with JSure. When asked about the code, the client program-
mers would shrug, tell us they knew the code was a “mess” and indicate that refactoring it
was on the list to accomplish (someday).

Our approach enables the replacement of a constituent analysis, and it is planned that
the uniqueness analysis will be replaced with a novel permissions analysis based on the work
of Boyland, Retert, and Zhao [23, 22]. This analysis has been under development for several
years and has the potential to replace and improve the performance of both the uniqueness
analysis and the effects analysis in the prototype tool. Another approach (that is less forward
looking) is to use the object-oriented effects analysis as a complement to the existing unique-
ness (e.g., use it to avoid running the uniqueness analysis if the references that are promised
to be unique are not accessed) or add further annotations to the code to reduce the control
flow considered by the uniqueness analysis.

At the conclusion of a 3-day field trial using the JSure prototype tool, the behavior
and responses of the client developers indicate that the tool was effective with
respect to defects found

Across these nine field trials the JSure tool helped to identify 79 race conditions in 1.6 million
lines of production Java code. In each system the tool found at least 1 race condition and
at most 26 race conditions. Figure 4.7 provides a sense of the programmer effort, in terms
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Lock Use Annotation Annotation Density
Software Examined Policies Count (Count/KSLOC)

Commercial J2EE Server-A 44 ∼200 ∼1.0

Distributed Object Manager 13 54 1.3
MER Rover Sequence Editor 12 50 2.5
File Exchange Interface 4 27 2.3
Space InfeRed Telemetry Facility 3 17 0.9

Electric – VLSI Design Tool 12 61 0.4

Commercial J2EE Server-B 47 ∼250 ∼1.7

Sensor/Tracking (CSATS) 55 ∼200 ∼4.0
Weapons Control Engagement 8 24 0.8

Equipment Web Portal 4 17 0.2

Testbed 34 98 1.5
Service Provisioning (SPS) 8 21 0.5
Mission Data Processing (MPCS) 50 ∼200 ∼2.0
Next-Generation DSN Array 4 17 0.3

Maestro 19 71 4.2
Command GUI 30 154 1.1
Accountability Services Core 13 57 1.2

Hadoop HDFS 5 37 0.3
Hadoop MapReduce 7 30 0.1
Hadoop ZooKeeper 4 18 0.3

Total: 376 1,603 1.0

Figure 4.7: A count of the lock use policies expressed for each system with the corresponding anno-
tation count and annotation density.

of annotation to the code, required to reach that result5. Due to disclosure restrictions, we
do not break down the identified race conditions by system. On average, the research team
identified 1 race condition per day during its engagements in the field. In addition, work
with the tool identified several other low-level code issues such as non-final locks (allowing
mutation of the lock object as the program executes) as well as higher-level design flaws that
were of interest to the client team. The perception of clients, as illustrated by the quotations
below, was that they deemed this result to be of value.

“It would have been difficult if not impossible to find these issues without [JSure].”

“The instances uncovered in this analysis were in very mature operational code”[106]

“Held successful Fluid workshop on software for the U.S. Navy under develop-
ment at ESBA MS2 Moorestown 19–21 July. Team developed 63 lock models and
[JSure] identified logic and programming errors in the Common Sensor and Track-
ing (CSAT) services and Weapons Control Engagement segments that extensive
review and testing did not discover.” [72]

5Figure 4.7 does not reflect the annotation performed to document thread use policies in Sutherland’s
thread coloring approach that was performed on a few of these systems. This information is presented in [103].
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The quotations highlight the effectiveness of analysis-based verification to find bugs in con-
current code. All of the systems examined were in production use and had been through
organizational quality-assurance except for two: Accountability Services Core and Next-
Generation DSN Array were new software actively under development. An empirical result
from the field trials is that traditional testing and inspection fail to identify many concurrency
defects. They remain in the code, even after commercial-level quality assurance is complete,
creating reliability and security issues in production systems. We noted a degree of fatalism
among programmers about this limitation of their quality assurance practices: Programmers
were pleased to identify the concurrency defects in their code, but they were not surprised
that they were there.

At the conclusion of a 3-day field trial using the JSure prototype tool, the behavior
and responses of the client developers indicate that they perceive value from the
verification results obtained

Identification of code defects is not the primary purpose of our approach—it is verification.
Across all 9 field trials we developed 376 models of programmer intent about lock use and were
able to verify most of them by working alongside client programmers. The client programmers
valued the verification results; however, many placed greater value on the documentation of
design intent provided by our annotations.

“To me the most valuable thing is the basic fact that you’ve given us a methodol-
ogy to document the concurrency related design intent. I’m actually considering
implementing a policy that you can’t add a synchronize to the code without
documenting [in JSure annotations] what region it applies to.”

“[JSure] was reported by all participants as helping them to understand and doc-
ument the thread interactions they had already designed and implemented. This
was an unanticipated, and indirect, benefit from the study” [106]

We hypothesize that this is because the value of the verification to developers is largely
manifest the next time they update the code, since the tool helps them to stay consistent with
the documented intent. The field trials were too short in duration to support this hypothesis
and we leave it to future work.

Somewhat ironically, the same programmers that valued the annotations once they were
in their code did not like to write them. As the research team observed in its notes about
the first field trial:

“Annotation syntax was perceived as difficult. Without [Greenhouse] and I at
the keyboard our tool would have been pretty much impossible for [Company-A]
developers to use.”

This changed dramatically with the introduction of templates to assist the tool user with
the annotation syntax (as described in Section 3.2.2). An example of using a template is
shown in Figure 4.8. This capability made its debut at Lockheed Martin in July 2006 and
allowed the Lockheed Martin developers to use the tool directly, rather than watching the
research team operate the tool as had been previously done. This was the first field trial
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Figure 4.8: Using a template to help with the syntax of the @RegionLock annotation assisted many
client programmers to use the JSure tool directly with only some oversight by the research team.

where client developers performed most of the tool interaction. Subsequent improvements
to the annotation syntax, better documentation of the annotation syntax (meanings and
pragmatics), and the use of heuristic techniques to suggest models improved the ability of
client developers to perform modeling tasks with the tool.

During the first field trial the desire to get the annotations as a“Java standard”was raised
by the client team. Later field trials echoed this feedback primarily, as the quotation below
explains, to mitigate the risk to the organization that the effort that they expend annotating
their code will not have to be re-accomplished at some later date.

“The annotations need to be standardized.” “Putting these into the [Hadoop]
codebase will take a lot of effort (what if we move to or run side-by-side with
another tool)” [108]

To use the Java 5 annotations (shown throughout this document) the tool user has to place
a library, promises.jar, into their classpath to allow annotated code to compile. Prior to
2008 promises were expressed in Javadoc comments and did not require a library6.

A topic about which the research team received a great deal of feedback from client
developers was the syntax of the annotations. This feedback has resulted in many changes to
the annotation syntax originally proposed by Greenhouse in [53] over the years. Figure 4.9
shows an example of the annotation syntax circa 2004 and the same design intent expressed
using today’s syntax. The most noticeable syntactic change is the migration from structured
Javadoc comments to Java 5 annotations. Changes, such as changing @lock to @RegionLock

or @mapInto to @InRegion, were made based upon what programmers told the research
team “made more sense” to them. In some cases, such as @synchronized, annotations have
been removed because the intent that they conveyed was redundant. The @synchronized

annotation was meant to convey that the state of the object under construction remained
thread-confined (to the thread that invoked the new expression to construct the new instance).
The @synchronized annotation must always be supported by another annotation, such as
@borrowed this, to verify what it asserts. Programmers found this syntax to be confusing

6Support for Java 5 annotations drove a business decision to release the JSure annotations as open source
software under the Apache license at http://surelogic.com/promises/. This mitigated the risk to any
adopting organization that Carnegie Mellon or SureLogic would“take away”the right to use the JAR containing
the annotations. This was a risk that no client organization wanted to take.

http://surelogic.com/promises/
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and it was changed in 2006 to @singleThreaded, and later removed entirely. Another example
(not shown in Figure 4.9), deemed horrendous by client programmers, was the annotation
@Aggregate("Instance into Instance"). This annotation was placed on a field to indicate
that the entire state of the object referenced by the field should be aggregated into the state
of the object the field is declared within. The much more concise @Aggregate has avoided
client programmer confusion.

The client programmers that participated in the field trials had never used a tool tool like
JSure before. Is it like testing? Is it like a profiler? The research team found the introductory
briefings (presented on the morning of the first day of each field trial) to be an ineffective
method of explaining the capabilities of the tool—hands-on tool use was required. The client
team engineers quickly grasped the concept of the tool after the research team worked though
the specification and verification of one or two lock use policy models with them. After
that point the client programmers were able to (1) communicate a focus for modeling by
identifying critical code within the system, e.g., “The classes in the com.kernel package are
more important than the classes in the com.extras package, let’s work on com.kernel first.”
and (2) express concurrency design intent, e.g., “I think we need to put a @RequiresLock on
that method.”

The ability of drop-sea to present the verification proof in the tool user interface proved
valuable in the field, especially to explain verification failures and what possible steps might
be taken to eliminate them. The first prototype of drop-sea was implemented just prior to
the first field trial. Its capabilities were new to the research team as was observed by the
author in the research team’s notes from July 2004:

“The improvement in tool usability gained by being able to interact with the
‘deep’ (i.e., cutpoint spanning) verification result was evident to [Greenhouse]
and myself. The [Company-A] folks had never seen or used older tool versions
(with their compiler-like output). The results just made sense to them. Especially
when trying to figure out how to eliminate a ‘×’.”

Client programmers did not like to have even a single “×” result showing in the tool results.
They were willing to use @Assume or @Vouch annotations to make the result consistent. For
example, in one field trial seven @Assume annotations were used in 44 locking models (seven
out of a total of roughly 200 annotations). The assumptions were used, in all cases, to assume
that some assertion about library code held. Overall, the research team observed that client
programmers had a strong preference for verified models with a “red dot” over unverifiable
models. The research team did not observe rampant abuse of @Assume or @Vouch, i.e., a
client programmer placing them in the code without consideration if the contingency they
introduced was reasonable.

The verification results were also used by client programmers to convey to managers the
value of the tool. A programmer brought his manager to the computer and showed him a
consistent lock model. Drilling into the results the programmer opened the hundreds of field
accesses that had been verified—all with a “+”. Scrolling slowly through this list he explained
to the manager, “without this tool each one of these has to be tracked down and checked
by hand that the right lock is held. If we miss even one mistake then the phone starts to
ring.” Subsequently, the research team used this approach in several management outbriefs.
It helped to connect the technology with something client developers felt their management
could relate to—avoiding trouble calls from customers.
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Promise syntax circa 2004

/**
* @region private AircraftState
* @lock StateLock is stateLock protects AircraftState
*/
public class Aircraft {

private final Object stateLock = new Object();

/**
* @mapInto AircraftState
*/
private long x, y;

/**
* @synchronized
* @borrowed this
*/
public Aircraft(long x, long y) {
this.x = x;
this.y = y;

}
...

}

Promise syntax circa 2010

@Region("private AircraftState")
@RegionLock("StateLock is stateLock protects AircraftState")
public class Aircraft {

private final Object stateLock = new Object();

@InRegion("AircraftState")
private long x, y;

@Unique("return")
public Aircraft(long x, long y) {
this.x = x;
this.y = y;

}
...

}

Figure 4.9: The evolution of annotation syntax based upon feedback from the field trials. (Top) A
simple class with lock use policy annotations as they would have appeared in code annotated during
an early field trial. (Bottom) A simple class with the same lock use policy annotations expressed in
the syntax supported by the JSure tool today.
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The focus of each field trial, to use the JSure to document and verify concurrency de-
sign intent, was popular with most managers. Some managers expressed concern that the
management outbrief would present information critical of the code they were responsible
for, e.g., report how many defects were discovered. The ability to claim that JSure helped
the engineers find a problem, fix it, then verify the fix, alleviated the fears of a few nervous
managers. The focus of analysis-based verification on “good news” (i.e., verification) was
popular with management.

During the management outbrief of one field trial, a manager expressed his concern that
JSure, and in particular the annotations used by JSure were too complex for most of the pro-
grammers who worked in the organization to understand. This resulted in several of the client
programmers heatedly explaining that anyone who works on concurrent Java software “had
better be able to understand the tool and its annotations, or they are clearly incompetent.”

We suggest that most management skepticism encountered by the research team was
rooted in a view that the tool is a potentially disruptive technology. Programmers were
enthusiastic because the tool helped them to uncover, in a principled manner, defects that
they couldn’t find using other techniques. The fact that the programmers liked the tool and
found it valuable was surprising to some managers. Managers sometimes talked about who
would pay for the tools, training, and delays caused by the introduction of our approach in
their software engineering process.

Within two or three hours of using the JSure prototype tool to annotate and analyze
the client’s code, the behavior and responses of the client developers indicate that
they perceive sufficient reward to continue use

The idea of the incremental reward principle, a key part of the overall vision of the Fluid
project (Section 1.6.1), is that any increment of effort asked of programmers should yield
a generally immediate reward—back to the programmers—in the form of added assurance,
expression of a model, guidance in evolution, or bug finding. The incremental nature of our
approach and its implementation in the prototype tools, as illustrated in the quotation below,
was valued by the busy client programmers we worked with in the field.

“We found a number of significant issues with just a few hours of work. We really
like the iterative approach. We really like the start-with-nothing approach (We
hate tools that spew thousands of problems that are not actionable).” [108]

A threshold of success for the incremental reward principle was passing the before-lunch test
through the joint effort of the research team and the client developers. For the teams to pass
this test, client programmers had to see useful tool results on their own code before lunch on
the first day of the field trial. If they did not, inevitably, we reasoned, some would disappear
over the lunch break as they were drawn into more urgent tasks that just happened to come
up. In the nine field trials, there was never evidence of this feared attrition of programmers
over lunch on the first day. In fact, in 8 of the 9 field trials the research team experienced
the opposite problem: more programmers would return after lunch to work with the research
team than the research team started out with in the morning. This led to the use of a
projector in the room to allow client programmers who appeared after lunch or wandered in
to observe the ongoing work on one of the (several) evaluation computers. In some cases the
research team made time to examine client code not originally intended as part of the study.
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It is feasible to adopt the JSure prototype tool late
in the software engineering lifecycle

All but two of the software systems examined during the field trials were in the operations
and maintenance phase of the software engineering lifecycle. (The two exceptions were the
Accountability Services Core and the Next-Generation DSN Array—both were new software
under active development.) These systems had already passed organizational acceptance
evaluation for deployment. Some of the systems were very mature, for example Commercial
J2EE Server-B had been in release for 3 years. Despite the fact that their code had passed
acceptance evaluation for deployment, JSure was deemed valuable by the developers and
maintainers of these systems as described above.

There were several impediments to adoption that client developers pointed out to the
research team during its time in the field. These are

• Nightly build support: The IDE-focus of JSure makes it easy to adopt at the pro-
grammer’s desktop. However, the ability to run JSure in an automated quality assurance
suite, i.e., a “nightly build” [33] is not as well supported. A nightly build typically in-
volves checking out the code from source code control, compiling it into a runnable
program, and the execution of a test suite. The ability to run JSure during the nightly
build and verify that annotations in the code base remain consistent with the code
changes made that day was considered a high priority for several client organizations.
This capability is being added to JSure and is planned to be deployed on the Apache
Hadoop project. The Yahoo! engineers, in particular, valued this ability and also use a
patch process that restricts changes to the code base that cannot pass the automated
quality assurance suite.

“We like the idea that JSure can be integrated into our build and run as part
of the patch process.” [108]

To a degree, this interest in non-interactive build support, is also motivated by the
pain of slow IDE-based analysis (in particular the uniqueness analysis as discussed
above). One approach to address this slow interactive performance is tool support for
selective verification in the IDE. Selective verification would allow the programmer to
only ask for the verifying analyses to be run on one or more models of interest, therefore
improving interactive analysis performance. These results could be joined with prior
non-interactive results in the IDE or fully checked later during the next nightly build.
We leave the development of this capability to future work.

• Help understanding concurrency: Several client programmers were maintaining
software that they did not develop. Either the original programmers had moved on to
other jobs/projects or the code had been purchased by the company and subsequently
assigned to the client programmer. This situation applied to slightly under half of the
client programmers that we worked with. These programmers were very interested
in the JSure tools suggestions to get started (as described in Section 3.2.1). These
suggestions provide information to the programmer such as where threads and locks
are defined or used within the code. The ability of the tool to help them focus in on
and understand the concurrency aspects of their software was deemed of great value
and, in their opinion, as useful as the ability of the tool to perform verification.
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There is a limit to the amount of help JSure is able to provide in this area because it is
a static analysis tool. Many of the questions programmers ask about the concurrency
aspects of their code cannot be answered (with any precision) by JSure: Is this state
actually shared between two threads? I’m worried about the potential of deadlock.
Where are two or more locks held in my code?

The identification of this need drove the development of the Flashlight dynamic analysis
tool [58] that is briefly discussed below. Starting with the field trial at Company-B in
October 2005, Flashlight was used as well as JSure.

• Auto-annotation support: The research team observed that most programmers were
willing to manually type annotations in code (often assisted by templates as discussed
above). Many programmers, however, expressed a desire to get further assistance from
the tool with annotations that are “obvious” or that are directly asked for by the tool
in an analysis result message. These requests led to the development of two auto-
annotation capabilities. The first is the “proposed promise” feature that has been pre-
sented in previous chapters. The second is the capability of the Flashlight tool to propose
lock use policy annotations that can be verified by JSure based upon what Flashlight
observed in terms of the program’s locking behavior that is briefly described below.

4.4 Discussion

In this section we discuss our experience in two important areas that are outside of the
analysis presented in the previous section. We start with a critique of the prototype tool’s
user interface and the user experience that it provides. This is followed by a brief introduction
to the Flashlight dynamic analysis tool that was motivated by and subsequently used during
our work in the field.

Tool user experience

We have characterized the tool user experience of JSure as utilitarian—it enables the tool
user to interact with JSure and accomplish necessary tasks, but it is still far from providing
an optimal or elegant user experience. In this section we discuss some of the limitations of
our current tool user experience. We leave the design and implementation of approaches to
overcome these limitations to future work.

• Controlling tool analysis execution: The JSure tool performs its analysis when
the user saves changes to any Java source file. This approach is patterned after the
Java compiler within the Eclipse IDE. This mode of tool interaction is effective for tool
demonstrations and was successful during field trials because it facilitated incremental
model expression. For day-to-day use of the tool, especially on larger software systems,
it has been criticized by programmers. The reason for this criticism is that JSure adds
the analysis to the programmer’s “edit-compile-debug” loop, enlarging it to a “edit-
compile-verify-debug” loop. Some programmers are sensitive to any time being added
to this loop as it reflects a major component of their everyday work. The unpredictable
performance of the tool’s current uniqueness analysis (as discussed above) aggravates
the problem.
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A separate, but related issue, is the lack of a “Cancel” button for the program analyses.
The constituent program analyses were not designed with interactive use in mind. This
makes them difficult to control from the user interface. This problem is most noticeable
for long running flow-sensitive analyses like the uniqueness analysis.

• Understanding changes to tool results: An obvious question posed by the pro-
grammer after the analysis executes is, “What changed?” This is an issue when there
are more than a small number of models. Some field trials developed several dozen
models (as shown in Figure 4.7). For example, 55 models were developed for CSATS
at Lockheed Martin. At this scale it sometimes became difficult to manually determine
what results had changed as improvements were made to both the models and the code.
The Verification Status view does not highlight which results changed to the tool user.
Therefore, our current tool user interface is not able to directly answer this question.

The selective verification feature proposed above may, in addition to improving inter-
active performance, help to improve programmer understandability of changing tool
results by focusing the user experience on the models that the programmer has deemed
interesting.

• Expression of a focus of interest: When a programmer is working on the annotation
of a particular model the results about other annotations in the code base are considered
a distraction. Several programmers have criticized the inability of our current tool user
interface to focus on a single promise or the set of promises contained in a class or
package.

• Persistence of results and a baseline: The tool recomputes its verification re-
sults when the Eclipse IDE is restarted. In addition to requesting results persistence,
programmers have asked for a degree of control over which results are persisted and
compare different sets of results. In particular, the ability to set a “baseline” that can be
compared to results on the current code is desired. The “baseline” would represent the
last major release of the code or some other past version of interest to the development
team.

It is encouraging that despite all the problems with our tool user experience many program-
mers find JSure valuable enough to continue to use it. This sentiment is captured in the
quotation below. It was at the end of a four page “rant” about several of the items described
above.

“It sounds like a lot of complaints, but you should know that a lot of helpful data
has been gleaned from JSure as well. It’s not all doom and gloom.”

Concurrency-focused dynamic analysis

In this section we discuss the role of dynamic analysis in the context of the work we present in
this dissertation. Dynamic analysis is able to improve our ability to perform heuristic promise
inference because it is able to observe the running program. While our static approach to
“proposed promises” is able to abductively infer what promises are required to complete a
partial model, it is unable to propose that the model be created (from nothing). Through
observation of the program we have demonstrated the use of dynamic analysis to propose the
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Figure 4.10: Results reported by the AFIT Flashlight tool about potential race conditions that it
observed during a run of the Testbed code performed during our field trial in March of 2007. (This
screenshot is taken from [106].)

creation lock policy models. Inference of other types of models, e.g., thread coloring [105],
are planned as future work.

We first present some background on the development of the Flashlight dynamic analysis
tool to familiarize the reader with the capabilities and purpose of this prototype tool. We then
discuss and evaluate its ability to infer models of lock use policy and evaluate the effectiveness
this inference through a comparison of programmer-developed models done during our field
trial at Yahoo! on Hadoop HDFS and ZooKeeper.

Background: The Flashlight dynamic analysis tool is designed to (1) help programmers
better understand the concurrency within their code, (2) uncover concurrency defects (e.g.,
race conditions and the potential for deadlock), and (3) infer models of design intent that can
be verified by JSure. The construction of this tool, as described above, was a direct result of
feedback from our work in the field.

Two versions of the Flashlight dynamic analysis tool have been created. The first was
implemented by the author and Hale at the Air Force Institute of Technology. This version
was used in the field between 2005 and 2007 [58]. We refer to this version as AFIT Flashlight.
The second version, implemented from the ground up at SureLogic, was used at Yahoo! in
2009. We refer to this second version as SureLogic Flashlight.

AFIT Flashlight was a rough prototype that reported its output as a series of web pages.
Figure 4.10 shows an example of the output from AFIT Flashlight. The capabilities of the
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dynamic analysis tool proved popular with programmers despite the difficulty of its use. AFIT
Flashlight used Aspect J [69] to perform its instrumentation. This approach, while allowing a
prototype to be developed very quickly, required tuning for each Java program instrumented.
Working on Aspect J source code in front of client programmers in the field did not inspire
confidence in the abilities of AFIT Flashlight. Despite its perception problems, the tool was
effective in helping programmers to uncover concurrency defects as reported by Wagner:

“[Flashlight was] particularly helpful to the Testbed developer by finding a likely
cause for a troublesome bug that had eluded detection using other tools and
methods” [106]

The Testbed developer praised the effectiveness of the Flashlight tool but was critical of its
user experience stating that, “it looked like they wrote it on the plane ride out here.”

Based upon the success in the field of AFIT Flashlight a new version of the tool was written
at SureLogic. SureLogic Flashlight eliminated the use of Aspect J and provided a flexible query
interface within the Eclipse IDE. Figure 4.11 shows the tool displaying the set of fields that
were shared between two or more threads. This tool supports a wide variety of queries that
allow the tool user to better understand the concurrency that occurs within their programs
as well as discover potential defects such as race conditions and the potential for deadlock.

Model inference: AFIT Flashlight was never able to infer lock use policies in a manner that
could be understood by JSure. There exists a mismatch between what a dynamic tool, such
as Flashlight, can observe and what is required by a static tool, such as JSure. For example,
while Flashlight can observe each lock the program acquires it identifies it by a “pointer” to
an object in the heap. This information is not usable by JSure. JSure needs to be told which
field refers to the lock object, not the address of the lock object itself. This lock identity
problem is discussed further by Hale in [58].

SureLogic Flashlight solves the lock identity problem by using a combination of static and
dynamic analyses. First, a static analysis is used to create a catalog of every field declared
in the program. This analysis is performed when the program is instrumented. A dynamic
analysis observes what object is initially assigned to each field and keeps track of this in
the statically created catalog. The catalog maps a field declaration to the address of the
referenced object. This catalog allows the tool to determine, in many useful cases, which
field references an object that is later used as a lock.

This is contemporary work by Greenhouse, Boy, and the author but it is mature enough
that we can report some preliminary results. The tool is able to examine the collected data
from one or more runs of the program and infer lock policy annotations that can be auto-
matically placed in the code. The user interface is similar to that of proposed promises. The
tool interaction to automatically annotate BoundedFIFO (used as an example in Chapter 1)
from a run of a concurrent logging exercise program is shown in Figure 4.12.

• (Not shown) The programmer runs the logging exercise program using the Flashlight
tool to collect data. The data for this run is prepared by the tool for querying and
shown in the Flashlight Runs view.

• The programmer selects the run in the Flashlight Runs view and asks the tool, via a
context menu, to infer annotations about the code from the dynamic data.

• The tool previews the automatic edit to the code for the programmer to confirm.



158 CHAPTER 4. FIELD TRIALS

Figure 4.11: The SureLogic Flashlight tool displaying which fields within the ChatTestClient program
were observed by the tool to be shared between two or more threads. (Top-left) The Flashlight Runs
view lists the instrumented program runs available for the tool user to query. (Top-right) The Query
Results Explorer tracks the queries the user has executed and allows them to be called back up in the
Query Results view. (Middle-left) The Query Menu view provides the set of queries that the user can
currently run. This view is displaying several “drill-in” queries about the f_hostLabel field that is
selected in the Query Results view. (Middle-right) The Query Results view displays the results of the
tool user’s queries as a table, a tree, or a tree-table. (Bottom-left) The declaration of the f_hostLabel
field as it exists in the code now in the Eclipse Java editor. (Bottom-right) The declaration of the
f_hostLabel field as it existed when the instrumented program run was made.
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The programmer selects a program run in Flashlight and asks for the tool to infer
JSure annotations using the (circled) context menu↓

↓

↓
JSure cannot immediately verify the inferred locking model, but (statically, using proposed

promises) proposes the “missing” annotations↓

↓
With the 4 additional annotations in the code, JSure can verify the locking model↓

Figure 4.12: Programmer–tool interaction of using Flashlight to infer promises about Log4j’s Bound-
edFIFO code used as an example in Chapter 1 from a run of a logging exercise program.
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Code Size Lock use policies (e.g., @RegionLock promises)
Software Examined (KSLOC) At Yahoo! Inferred % Overlap Missed % Coverage

jEdit 114 3 16 16%
Hadoop HDFS 107 5 17 60% 30 36%
Hadoop ZooKeeper 62 4 16 100% 27 37%
Vuze 359 63 153 29%

Figure 4.13: Evaluation of the lock use policy inference by SureLogic Flashlight for four software
systems. The number of models inferred by the tool is compared to the number missed to compute
a percent coverage metric. The number of polices missed was determined by a count of locks in the
source code not covered by an inferred lock use policy. For the two Hadoop systems we compare the
number of models developed during our field trial at Yahoo! in October of 2009 (from Figure 4.7) with
the inferred models to compute a percent overlap metric. This metric indicates what percentage of the
models developed at Yahoo! were inferred by the tool—some models were missed because they were
not observed during the program execution used for inference. jEdit is a widely used editor for Java
source code (http://www.jedit.org) and Vuze is a Java bittorent client (http://www.vuze.com).

• The programmer confirms the automatic edit and the JSure tool is invoked to attempt to
verify the new annotations. In our example, the lock use model for BoundedFIFO is not
verifiable. Why? Because two of the methods, getMaxSize and isEmpty, were never
called during the execution of the logging exercise program. Therefore, the inference
did not proposed @RequiresLock annotations that are needed on these methods. This
example highlights a limitation of dynamic inference: Annotations cannot be inferred
about code that is not exercised during the observed execution of the program.

• However, the proposed promise feature of our tool picks up where the dynamic inference
left off and proposes the missing annotations (in a manner similar to Figure 1.16 on
page 26) for the programmer to consider.

• The programmer adds the proposed promises into the code, and with the 4 additional
promises now in the code, the JSure tool re-runs its analysis and determines that the
@RegionLock promise is consistent with the code.

The programmers role in the interaction above is that of an auditor—confirming that the
intent proposed by the tools faithfully expresses actual design intent.

Figure 4.13 evaluates the inference on four software systems and compares it to the lock
use policies developed during our field trial at Yahoo! The level of overlap is encouraging
for ZooKeeper with regard to the time this technique could save programmers. The models
developed at Yahoo! for HDFS that were missed (the tool found 3 of the 5 models) by
Flashlight were because that particular code was not exercised during the execution observed
by the tool. This is one reason why inference misses models. Another reason is that the lock
is not consistently protecting a portion of the program’s state. This could indicate a race
condition in the program or it could indicate the use of a hybrid concurrency policy that
includes thread-confinement and locking. For example, some code constructs state within a
single thread and operates upon that state for a period of time without locks (e.g., during
program initialization) then safely publishes that state and subsequently protects it with
locking. Finally, if we are not able to determine the field that references a lock object then
the inference can not author a lock use policy that is understandable by the current JSure

http://www.jedit.org
http://www.vuze.com
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tool. We have not yet categorized which inference failure caused each missed model reported
in Figure 4.13. (However, the two models that were expressed in the field about the Hadoop
HDFS code but missed by model inference were missed because the code those models express
design intent about was not exercised in the program runs used for model inference.)

How could fewer models be missed by inference? Flashlight does allow multiple runs to
be used as input to model inference, therefore by using more program runs that cover a large
amount of the program’s behavior fewer models would be missed. The other problems that
cause model inference to fail may indicate baroque concurrency policies that are difficult
to understand and likely to lead to concurrency defects during system maintenance. These
can be investigated through normal use of the Flashlight tool (using the interface shown in
Figure 4.11).

On average, we developed 6.5 models of lock use policy per day in the field. Based
upon our preliminary results, the use of Flashlight to infer lock use policies appears to be a
promising approach to increase this rate. We caution that determining an actual improvement
rate must take programmer auditing of the inferred models into account. Even if the tool
can infer 63 models for the Vuze system, the Vuze’s programmers have to confirm that the
intent proposed in each inferred model faithfully expresses their actual design intent. We
leave empirical determination of this improvement rate to be determined in future work.

4.5 Threats to validity

In this section we discuss threats to the validity of the evidence we have presented. That
is, are there explanations for the success of the field trials that do not involve meeting our
claims or that are unrelated to our work.

We begin by considering that we have only demonstrated the effectiveness and scalability
of prior sound analysis work by Greenhouse, Boyland, and Sutherland. We argue to against
this view based upon the fact that without the contribution of our work it is doubtful that any
of the field trials would have taken place. Given that we were almost always presented with
existing code (in fact, already deployed code except in two cases) at large-scale, success in the
field required the tools to satisfy scalability with respect to code size and support for adoption
late in the software lifecycle on large bodies of existing code. In addition, we organized the
engagements in the field for the dual purpose of (1) providing useful results to our host teams
and (2) providing useful results for the summative evaluation described herein. This led to
unavoidable compromise with respect to uniformity of process and engagement structure.
Nonetheless there were important commonalities in the engagements, such as the agenda
structure and style of interaction between experimenters and the developer partners. The
agenda structure and the fixed limited intense interaction of the in situ engagements resulted
in the need to address effectiveness with respect to facilitation and repair of defects found and
other aspects of perceived value of the approach by practicing programmers and compatibility
with the incremental reward principle. In addition, as described in Section 4.1.3, all of the
field trials involved use of versions of the evolving drop-sea infrastructure and interaction
support for developer users.

The constituent analyses developed by Greenhouse, Boyland, and Sutherland could not be
employed effectively to obtain results meaningful to professional software developers without
these interventions. This is because they had no significant support for user interaction, and,
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more importantly, could not create proof structures that rendered results directly meaningful
to developers. For example, the proof structures developed with Company-A over the course
of three days include 2,695 nodes in proof trees and 2,146 individual underlying constituent
analysis results. The proof structures developed in the thread coloring case study performed
by Sutherland on Electric include 24K nodes in proof trees and 12K individual underlying
constituent analysis results [103]. There is no means for individual developers (or the research
team, for that matter) to manage this quantity of separate proof elements without tool
assistance.

We now consider that the deep knowledge of Java technology and practices that the
research team brought to each field trial was largely responsible for the success the research
team observed in the field, i.e., our approach and the prototype tools based upon it were
largely irrelevant. We argue against this view based upon the continued tool use the research
team observed during the field trials. When the tools uncovered a design flaw in a system
being examined, the participants typically moved to a whiteboard to discuss the problem
and work to develop potential solutions, however, they soon returned to hands-on use of the
tools. The prototype tools were in use by the participants for the majority of each field trial.
However, the expertise of the research team cannot be wholly discounted. The research team
did, in many cases, help client programmers improve their knowledge about how to engineer
safe concurrent Java code. Two areas that were often discussed were (1) the Java memory
model [52] and (2) effective use of the util.concurrent library [51]. Therefore, while there
was value to the client team from the ability to consult with the research team, we suggest
that this did not overshadow the value of our approach and the prototype tools based upon
it. Further, in several instances the client engineers were more knowledgeable about Java
technology and practices than any member of the research team.

We now consider the external validity of our evidence beyond the corpus of code examined
and the organizations visited during our field trials. We caution against generalizing our
results too far beyond the circumstances under which we have demonstrated a degree of
success in the field. We worked with six different development organizations. All six of
these organizations have a culture that promotes the importance of software quality. Failures
in these systems result in mission impact or angry phone calls from customers—both of
which contribute to higher operating costs or, worse, mission failure. Developers in these
organizations are highly motivated to eliminate bugs. It is not clear if developers in other
organizations with different priorities would be willing to invest the same level of effort. The
software we examined tended to have very stringent quality requirements and a high cost
of failure. It is not clear if organizations developing other types of software, e.g., web apps,
would be as willing to invest the effort or be as interested in the results.

4.6 Conclusion

This chapter presents the results of nine field trials we conducted with the JSure prototype
analysis-based verification tool. Generally speaking, the field trials show that analysis-based
verification is valued by disinterested practitioners—working programmers whose only interest
in our work is the immediate value that our tool can potentially provide to them on code
they develop and maintain.

The next chapter presents two case studies of adding new aggregate analyses to JSure.



Chapter 5

Case studies: Constructing
aggregate analyses

“If a listener nods his head when you’re explaining your program, wake him up.”
— Alan Perlis

5.1 Introduction

In this chapter we present two case studies of adding new aggregate analyses to the JSure
prototype tool: thread coloring and static layers. These case studies are used to evaluate
the verification framework (e.g., drop-sea, scoped promises, proposed promises, the red dot)
developed as part of this work and implemented in the JSure tool with respect to the benefit
the framework provides for the incorporation of new analyses. The questions we consider in
this chapter include the following: Is the framework we provide considered to be useful by
analysis authors? What capabilities provided by the framework are the most useful? What
capabilities could be improved? What is missing?

Thread coloring was developed by Sutherland and the technical details of his approach
are presented in [103]. Static layers was done by the author and the technical details are
presented in the following chapter. Experiences from these two case studies with the verifi-
cation framework developed as part of our work are summarized in this chapter. Generally
speaking, the case studies show that our work helps to facilitate the addition of new sound
analyses into the JSure prototype tool by providing a verification framework that simplifies
implementation and by providing capabilities, such as @Promise, that are widely needed.
Figure 5.1 summarizes the perceived benefits and limitations of capabilities provided by our
verification framework from the point of view of an analysis author.

5.2 Case study: Thread coloring

Sutherland, using our approach to analysis-based verification, has developed an approach,
called thread coloring, that allows developers to document their thread usage policies in a
manner that enables the use of sound scalable analysis to assess consistency of policy and
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Described
Framework capability in Section Benefits (+) and limitations (−)

Reporting interface 2.3 & 3.4 (+) Simple—one or two lines of code per result

Promise management 3.3 (+) “Scrubs” out promises that are not well-formed
(−) Provides little help parsing annotations that
have a non-trivial syntax

Truth maintenance 3.4.6 (+) Enables incremental recomputation of results
(+) Provides a blackboard to hold partial (or local)
analysis results

Results reporting UI 3.2.3 (+) Presents the structure of the verification proof
(−) Inability to view the proof “in reverse”
(−) Inactive during reanalysis

Proposed promises 1.4.2 & 2.2 (+) Avoids describing a“missing”annotation in the
result description (as text)
(+) Simple–one or two lines of code to propose a
promise

@Promise 3.5.1 (+) Reduces annotation density
(+) Takes advantage of stylized naming schemes at
many APIs
(−) Largest scope of code it can be applied to is a
Java package
(−) Aspect-like syntax

@Assume 3.5.2 (+) Requires analyses to be modular at the com-
pilation unit level (encourages composition)
(−) Aspect-like syntax

@Vouch 3.5.5 (+) Analyses do not have to verify unusual—but
correct—coding idioms (e.g., the cheap read-write
trick shown in Section 3.4.4)

Figure 5.1: A summary of the perceived benefits and limitations of several capabilities provided by the
verification framework implemented in the JSure prototype tool from the point of view of an analysis
author. Many of the framework capabilities listed are provided by the drop-sea proof management
system (as described in Chapter 3).
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as-written code [103]. Thread coloring is a useful technique to statically verify concurrency
policies that do not involve locking, such as the thread-confinement policy adopted by most
object-oriented GUI frameworks (e.g., SWING/AWT and SWT).

In this section we report on the strengths and weaknesses of our verification framework
with regard to its support of Sutherland’s thread coloring. We start by discussing the effec-
tiveness of our @Promise scoped promise to reduce the number of annotations required to
document thread usage policies. We then discuss how drop-sea simplified the implementation
of verifying analysis for thread coloring.

@Promise is effective for documenting thread usage policies

In Sutherland’s approach, colors are notionally associated with one or more program threads,
or more precisely give names to the particular roles that threads take on in an executing
program. Each color is given a user-meaningful name, e.g., AWT or Worker. A color constraint
annotated on a method or constructor constrains which threads are allowed to invoke that
code to threads of a compatible role. For example, a constructor annotated with the color
constraint @Color("AWT") should only be called within the AWT thread or a method annotated
with the color constraint @Color("Worker") should only be called from a thread that has
taken on the Worker role.

Thread coloring verifies an aspect of the program’s control flow, therefore, its analysis
requires that all of a program’s methods and constructors have a color constraint to be
statically verifiable. Sutherland reduced this annotation burden on the programmer using
two techniques: color constraint inference and use of @Promise. In the context of this work
we consider the effectiveness of the latter.

Sutherland reports that the stylized naming schemes at many APIs, e.g., where accessor
methods are prefixed with get or is, allowed effective use of the @Promise scoped promise to
significantly reduce a programmer’s annotation burden for their own code. The technique
also enabled Sutherland to express the thread usage policies of Java libraries.

“We use scoped promises primarily to reduce annotation density for API methods.
The API of Electric’s Database contains 1,731 methods that are referenced from
other modules. By using scoped promises, we replace over 1,700 color constraint
annotations with six scoped promises in each of the nine packages in the Database
module. Similar use of scoped promises in the remainder of Electric saves an
additional 331 annotations. Thus, 888 annotations remain to be written after the
use of scoped promises, for an annotation density of ∼6.3 per KLOC.” [105]

Therefore, our @Promise annotation, leveraging stylized naming schemes at many APIs is
highly effective for reducing the expression cost, in terms of annotations, for thread usage
policies.

A limitation of our current implementation of @Promise is that the largest scope of code
that it can be applied to is a Java package. Sutherland’s quotation above alludes to the impact
of this limitation—he had to duplicate the same six @Promise annotations in nine packages.
Sutherland proposes that @Promise annotations be allowed on static modules defined in
a module system, the Fluid module system, he proposes in [103]. We view this proposal
to be consistent with the “enter-once” principle that motivated our design of @Promise: If
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the programmer is expressing a unitary concept, then its expression should not have to be
scattered throughout the code.

Drop-sea simplifies analysis implementation

Prototype implementations of drop-sea were used by Sutherland to implement the sound
static analysis used to verify the programmer design intent expressed in his approach. In ad-
dition to the result reporting and proof management capabilities, Sutherland took significant
advantage of the truth maintenance system (TMS) [102] features provided by drop-sea. He
states

“We use the TMS to support reporting, as a blackboard for holding partial (or
local) results from our analyses, and as an engine for proving global consistency
of results. In addition, the TMS provides simple support for incremental analy-
sis.” [103]

By“simple”Sutherland is referring to the ability for him to use the TMS capabilities provided
by the Drop class to systematically avoid re-analysis of the entire Java program when only a
small set of Java compilation units has been modified. Sutherland’s analysis also uses drop-
sea to store intermediate analysis results and help to manage the worklist he uses to drive
color constraint inference and his analysis. He concludes that drop-sea was a strong enabling
technology for portions of his analysis implementation:

“The drop-sea truth maintenance system by Halloran, along with its canonical
use in the Fluid system, enabled my experiments with incremental recomputation
of results.” [103]

Sutherland notes a limitation of the JSure tool user interface when presenting verification
results for thread coloring. The Verification Status view (shown in Figure 3.5 on page 95)
allows programmers to examine the structure of the verification proof—but only in one di-
rection. The view allows the tool user to follow dependent results and promises, it does not
provide a view that allows the tool user to follow deponent results and promises1. This in-
ability to view the proof “in reverse” is a limitation in thread coloring when the user is trying
to determine why a color constraint on a method or constructor has been found inconsistent.
In principle, we agree with these criticisms and plan to address them in future work.

Sutherland’s implementation benefited significantly from the use of our approach, in par-
ticular the use of drop-sea and scoped promises. We now consider a second case study,
performed by the author, of adding support for the specification and verification of a new
mechanical program property to our prototype tool which is not concurrency-focused: static
layers.

5.3 Case study: Static layers

The technical details of our approach to the specification and verification of static layers
are presented in the next chapter. Prior to presenting these technical details we evaluate

1These relationships are shown in Figure 3.24 on page 117.
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the effectiveness of our verification framework toward the addition of this new specialized
analysis.

We undertook this case study to (1) evaluate the benefit of our framework with respect to
the addition of new analysis attributes and (2) show that our approach was not only useful
for the verification of concurrency-focused attributes.

Drop-sea facilitated the implementation of this specialized analysis in one week

The entire implementation for this case study took roughly one week of programmer effort.
This implementation time does not include the design of the specification language, which
took significantly more time to conceptualize and document. The implementation was sim-
plified through use of the result reporting and proof management capabilities of drop-sea.
This allowed implementation efforts to focus on the new specification language provided to
document static program structure design intent and its verifying analysis rather than how
to report results to the user or the details of how to construct a program-level verification
result (e.g., check each model and then combine the results).

One observed weakness of our framework is that it provides little help for parsing program
annotations that have a non-trivial syntax. Several of these are used in our approach to
the specification and verification of static program structure. For example the following
annotation defines a set of types that includes all of the types contained within the java.util
package except for the Enumeration, Hashtable, and Vector types.

@TypeSet("UTIL=java.util & !(java.util.{Enumeration, Hashtable, Vector})")

This type set definition, the programmer named UTIL, is used by other annotations.

Because the specification language we designed for static structure is very complex,
roughly half of the implementation time was spent implementing the parser to support the
new promises using the ANTLR parser generator2.

@Promise avoids the implementation of “one off” imitators

Our approach to the specification and verification of static program structure includes the
notion of a static layer (in an implementation). Our approach allows the programmer to
document what is allowed to (statically) reference a layer and what the layer itself is allowed
to reference. The technical details are presented in the following chapter, however, here
we discuss how @Promise simplified the specification of what classes compose a layer. The
original specification language design contained the following annotation on a package:

@InLayer("MODEL")
package edu.afit.smallworld.model;

Normally, the @InLayer annotation appears with a type declaration and is used to include
that type in a layer. The use of an @InLayer annotation on a package was originally a
shortcut to indicate that all the classes declared in that package were to be included in the
layer. This shortcut was later deemed to be unnecessary due to the ability of @Promise to

2http://www.antlr.org/

http://www.antlr.org/
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accomplish the same effect, placing a particular @InLayer promise on all the types declared in
a package, without the cost, in terms of programmer effort, to implement a “one off” imitator
of @Promise. Therefore, the shortcut annotation shown above is expressed in our prototype
tool as follows:

@Promise("@InLayer(MODEL)")
package edu.afit.smallworld.model;

Avoiding annotations that duplicate, for a single promise, the capabilities of @Promise

is desirable to reduce implementation effort when adding a new specialized analysis to our
prototype tool. Is this always the correct decision with regard to facilitating programmer
understanding of our specification language? Is @Promise("@InLayer(MODEL)") on a package
clearer to tool users than @InLayer("MODEL")? We leave these questions to be answered in
future work.

5.4 Conclusion

This chapter presents two case studies of adding specialized analyses to support the verifica-
tion of new program attributes, thread coloring and static layers. These case studies are used
evaluate the benefits and limitations of the verification framework implemented in the JSure
prototype tool as part of our work. The case studies show that our work helps to facilitate
the addition of new sound analyses into the JSure prototype tool by providing a verification
framework that simplifies implementation and by providing capabilities, such as @Promise,
that are widely needed. The limitations identified are left to be addressed in future work.

The next chapter presents provides a detailed technical description of our novel approach
to the specification and verification of static program structure.



Chapter 6

Specification and verification of
static program structure

“The higher your structure is to be, the deeper must be its foundation.”
— Saint Augustine

6.1 Introduction

Software does not need structure—one set of bits that can execute on a machine is just about
as good as any other. We impose structure on software to allow us to better understand it and
control its complexity. Software has several different structures that co-exist, e.g., module
structure (static), component-and-connector structures (dynamic), and allocation structure
(to one or more external environments) [12]. Our focus is on the module structure, or static
structure, of a software system. We propose a lightweight specification technique to express
the structure of an object-oriented system motivated by the uses relationship but using the
references relationship as a useful approximation. Previous work by Murphy and Notkin [85]
has demonstrated the utility to practicing programmers of tool support to understand and
maintain structural models of their code. We build upon this work by supporting composition
of multiple, possibly overlapping, structural models and supporting the specification of layered
systems. We have designed sound static analyses to verify model–code consistency for the
Java programming language and implemented them within the JSure prototype tool.

When a programmer examines a module within a software system several questions come
to mind: What does this unit do? What other software units does this unit use? What other
software units is this unit allowed to use? Our approach helps the programmer to answer the
latter two questions, but is primarily concerned with the last. The relationship of interest
to the programmer is uses originally defined by Parnas in the mid-1970’s [92]. We adopt
the following (more modern, but essentially equivalent) definition by Bass, Clements and
Kazman:

“One unit uses another if the correctness of the first requires the presence of a
correct version (as opposed to a stub) of the second. The uses structure is used to
engineer systems that can be easily extended to add functionality or from which
useful functional subsets can be extracted.” [12]
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In popular object-oriented programming languages, e.g., Java, it is not possible to stat-
ically determine what a unit, e.g., a class or package, is using. Therefore, we adopt the
references relationship as an unsound and incomplete—but useful—approximation. For our
purposes a “unit” will be a Java type. Thus, to answer the Java programmer’s question,
“What other software types is this type allowed to reference?” we need a precise specification
of the set of types that any particular type is allowed to reference. The consistency of this
specification with the code can be verified using a straightforward static analysis.

Our approach is inspired by the demonstrated utility of reflexion models proposed by
Murphy and Notkin [85] to specify a structural model of the source code for Microsoft Ex-
cel. Our approach combines the creation of the high-level model and a mapping from the
high-level model to the source code together via source code annotations—primarily a syn-
tactical difference—but our purpose is the same: to help programmers express, understand,
and maintain the static structure of their code. Our primary contribution to prior work is
the addition of a lightweight approach to specify and verify static layers with well defined
semantics that we believe are consistent with traditional layered semantics. In addition, our
approach more naturally facilitates composition of multiple overlapping static models.

The driving hypothesis of our work is that non-trivial software systems have multiple
models of structural design intent that overlay the source code in manner that is almost
never a simple partition of the module structure defined by the programming language. One
structural model might express intent about a layered architecture. A second might restrict
use of a costly commercial library to specific portions of the code. A third might ensure
that the constructor of a class is only invoked from a factory method within a second class
(that has, perhaps, been assigned the responsibility to manage instances of the first class).
Our intent is to allow the programmer to precisely specify these models of structural design
intent.

This work is presented, in the context of this thesis, as evidence that sound combined
analyses for analysis-based verification is scalable with respect to new assurance attributes,
in particular non-concurrency related program attributes.

Section 6.2 uses a small Java program, SmallWorld, to motivate and present our specifi-
cation approach. We introduce our approach to specifying layers within a system, precisely
define its semantics, and prove that our approach is consistent with the traditional soft-
ware engineering definition of a layered system. Section 6.3 presents the analyses used to
automatically verify model–code consistency using the JSure analysis-based verification tool.

6.2 Specification

To introduce our specification approach we use an interactive adventure game, called Small-
World. This software is used in Software Engineering classes at the Air Force Institute of
Technology to introduce iterative methods of software engineering and design patterns. Small-
World uses the model/view/controller pattern [71] to concretely demonstrate, via a series of
lab exercises, the benefits of a layered architecture to the students. The Java packages which
make up SmallWorld are briefly described below.

• edu.afit.smallworld.model contains classes that represent game places (e.g., rooms),
items, characters, and the player. All these entities are aggregated into instances of a
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World class that represents the world the player is within. The classes in this package
make up the domain layer of the game.

• edu.afit.smallworld.controller contains game logic that operates on the game
world. It also controls the loading and saving of games using the persistence package.

• edu.afit.smallworld.persistence contains logic to save and load a game world to
and from an XML file. This logic is separated from the model to isolate the complexity
of encoding and decoding XML.

• edu.afit.smallworld.ui contains two text-oriented user interfaces. This is in fact
a package tree that contains several sub-packages. The first user interface interface
allows the user to interact with the game by typing text commands within a console
window. The second user interface allows the user to interact with the game by typing
text commands within an AWT/SWING window. Both user interfaces share a single
text parser.

In addition to these packages a large suite of JUnit [14] tests have been created to unit
test the software.

6.2.1 A simple model

We begin with a simple model of the static structure of the SmallWorld controller, model,
and persistence packages which is shown in Figure 6.1. We will improve upon this model in
the next section. The model is made up of several @MayReferTo promises about the program.
The argument to this promise specifies the complete set of Java types that the target of the
promise is allowed to reference—or statically depend upon. This corresponds to a promise
that the target will compile and run if the specified set of types is a subset of the set of types
on the program’s classpath. We refer to the specified set of types with the term type set.

The target of a @MayReferTo promise must be a type. If the @Promise scoped promise
is used to make this promise target a package then it specifies the complete type set that
all classes and interfaces declared in that package—not including sub-packages—are allowed
to reference. The type set implicitly includes the targeted type itself as well as the types
declared in the package java.lang. The promise at the top of Figure 6.1 targets (using
@Promise) all the types declared in the edu.afit.smallworld.model package and speci-
fies that they are only allowed to reference each other and all the types declared within
the java.util package. The package-info.java file was added to the Java language to
allow annotations and Javadoc on a package. Our promises take the form of Java anno-
tations. The second promise in Figure 6.1 targets (using @Promise) all the types declared
edu.afit.smallworld.persistence package. In this case the type set specification is more
complex:

edu.afit.smallworld.{model, persistence} | org.jdom+ | java.{io, net, util}

This type set includes all the types declared in the SmallWorld model package, all the types
declared in the SmallWorld persistence package, all the types declared within the org.jdom

package and its sub-packages (indicated by the + suffix), and all the types declared within the
java.io, java.net, java.util, and (implicitly) java.lang packages. In general, type sets of
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package-info.java within the edu.afit.smallworld.model package:

@Promise("@MayReferTo(edu.afit.smallworld.model | java.util)")
package edu.afit.smallworld.model;

package-info.java within the edu.afit.smallworld.persistence package:

@Promise("@MayReferTo(edu.afit.smallworld.{model, persistence} | org.jdom+ |"
+" java.{io, net, util})")

package edu.afit.smallworld.persistence;

WorldController.java within the edu.afit.smallworld.controller package:

package edu.afit.smallworld.controller;

@MayReferTo("edu.afit.smallworld.{model, persistence} | java.io.File")
public final class WorldController { ... }

java

utilnet

edu.afit.smallworld

model

«references»

io

File

controller

«references»

«references»

persistence
«references»

«references»

«references»

org.jdom

«references»

«references»

WorldController

«references»

Figure 6.1: A low-level model of the static structure of the SmallWorld controller, persistence, and
model packages. The promises added to the SmallWorld code are shown above a UML diagram
illustrating their semantics.
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arbitrary complexity can be formed using the following syntax: | for union, & for intersection,
and ! for set complement. Another example type set specification (from Figure 6.2) is

java.util & !(java.util.{Enumeration, Hashtable, Vector})

This specifies all the types declared within the java.util package except Enumeration,
Hashtable, and Vector—perhaps used to prohibit the use of the older Java 1.0 collections.
This typeset also implicitly includes all the types declared in java.lang.

If the @MayReferTo promise targets a type, e.g., the WorldController class in Figure 6.1,
then it specifies the complete type set that type is allowed to use. As noted above, the type
set implicitly includes the targeted type itself as well as the types declared in the package
java.lang.

What are the semantics if a @MayReferTo promise appears both on a type and, through
the use of @Promise, that type’s package? If a type set, Cp, is specified on a package and a
type set, Ct, is specified on a type within the package then that type is allowed to reference the
type set Cp ∩Ct (i.e., the intersection of the two sets). In addition, Ct ⊆ Cp must hold or the
promises are nonsensical (i.e., a type can’t expand the type set promised by its package). The
verifying analysis views this situation as two assertions on the type that are each individually
verified. The first placed by the @Promise and the second by direct annotation.

6.2.2 A layered model

The model in Figure 6.1 is a utilitarian expression of design intent about SmallWorld’s
static structure but, as its associated tangle of a UML diagram illustrates, it is not a clear
expression of what the designer had in mind. He or she might sketch something similar to

User Interface
Controller
Persistence

Model

which better conveys that SmallWorld is intended to be a layered system—where lower layers
do not have unrestricted access to higher layers. While sketches like this are common in
practice and, indeed, evocative of designer intent, they have some problems when used as a
specification for implementation and evolution. This particular sketch

• is not precise about how the program’s modules (i.e., packages and classes) are mapped
into the specified layers (e.g., do both SmallWorld user interfaces map into the “User
Interface” layer or do they each get their own “User Interface” layer?),

• is silent about what libraries (with potentially large associated license fees) are allowed
to be used by each layer, and

• is easy for a busy programmer (over time) to forget.

We propose the model in Figure 6.2 as an improvement over our utilitarian model in
Figure 6.1 in the sense that it is closer to our designer’s sketch while at the same time it does
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package-info.java within the edu.afit.smallworld package:

@TypeSets({
@TypeSet("UTIL=java.util & !(java.util.{Enumeration, Hashtable, Vector})"),
@TypeSet("XML =org.jdom+ | UTIL | java.{io, net}")

})
@Layers({
@Layer("MODEL may refer to UTIL"),
@Layer("PERSISTENCE may refer to MODEL | XML"),
@Layer("CONTROLLER may refer to MODEL | PERSISTENCE | java.io.File")

})
package edu.afit.smallworld;

package-info.java within the edu.afit.smallworld.model package:

@Promise("@InLayer(edu.afit.smallworld.MODEL)")
package edu.afit.smallworld.model;

package-info.java within the edu.afit.smallworld.persistence package:

@Promise("@InLayer(edu.afit.smallworld.PERSISTENCE)")
package edu.afit.smallworld.persistence;

WorldController.java within the edu.afit.smallworld.controller package:

package edu.afit.smallworld.controller;

@InLayer("edu.afit.smallworld.CONTROLLER")
public final class WorldController { ... }

«layer» MODEL

«type set» UTIL «type set» XML

«references»

«layer» PERSISTENCE

«references»

«references»

«layer» CONTROLLER

«references»

«references»

java.io.File

«references»

Figure 6.2: A more abstract model than Figure 6.1 of the static structure of the SmallWorld controller,
persistence, and model packages. The promises added to the SmallWorld code are shown above a UML
diagram illustrating their semantics.



6.2. SPECIFICATION 175

not suffer from the sketch’s implementation and evolution problems (we delay consideration
of the user interface layer until the next section). Of course, the disadvantage of our model
over the sketch is its higher expression cost. We now describe the elements that make up the
model in Figure 6.2.

TypeSet definitions

Figure 6.2 introduces the @TypeSet annotation to define and name a set of types within the
code. A named type set adds no additional semantics—it is simply a definitional mechanism.
A named type set may replace a type set specification or be used within it. For example, the
promise on the persistence package in Figure 6.1 could have used the equivalent form

@TypeSet("JDOM = org.jdom+")
@Promise("@MayReferTo(edu.afit.smallworld.{model, persistence} | JDOM |"

+" java.{io, net, util})")
package edu.afit.smallworld.persistence;

A type set definition is allowed to define itself in terms of other type sets. One example,
shown in Figure 6.2, is the use of the type set UTIL to define the type set XML. A type set
definition may also define itself in terms of one or more layers (described below).

Type set definitions may only be placed on a package. They have global visibility and
may be fully qualified by prefixing their name with the name of the package where they
are annotated. For example, the fully-qualified name of the JDOM type set defined in the
example above is edu.afit.smallworld.persistence.JDOM. References to the type set from
annotations on types declared in the same package do not need to be fully qualified. If multiple
type set definitions are specified on a package then the @TypeSets annotation is used like the
example in Figure 6.2.

Layer definitions

Figure 6.2 uses the @Layer annotation to declare three layers within the SmallWorld game:
MODEL, PERSISTENCE, and CONTROLLER. A layer declaration names the layer and specifies the
type set that types mapped into the layer are allowed to reference. The declaration does
not specify the set of types that comprise that layer—layers are empty at declaration. The
@InLayer annotation is used to populate the contents of a layer and may only be placed on
a type declaration. The annotation indicates that the specified layer now includes that type.
Types are allowed to be mapped into more than one layer, however, we postpone describing
the semantics of this until the next section.

@InLayer annotations may only map types into a layer if those types are located within the
package tree where that layer is declared. This restriction ensures it is possible to determine
the complete set of types comprising a layer by examining the @InLayer annotations within
the package where the layer is declared and all its sub-packages.

Layer declarations may only be placed on a package. Similar to type set definitions they
have global visibility and may be fully qualified by prefixing their name with the name of
the package where they are annotated. References to the layer from annotations on types
declared in the same package do not need to be fully qualified.
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What if a type is mapped into a layer and a @MayReferTo promise appears on that type
and/or, through the use of @Promise, that type’s package? Is this allowed? What does it
mean? Yes, this situation is allowed and can be given reasonable semantics. If a type set,
Cp, is specified in a @MayReferTo on a package and a second type set, Ct, is specified in a
@MayReferTo on a type within that package that is mapped into a layer that may refer to
the type set, Cl, then the type is allowed to reference the type set Cp ∩Ct ∩Cl. In addition,
Ct ⊆ Cp and Ct ⊆ Cl must hold or the promises are nonsensical (i.e., a type can’t expand
the type set promised by its package or the layer it is within). In the case that the entire
package, through the use of @Promise, is mapped into the layer then Cp ⊆ Cl must hold as
well. The verifying analysis views this situation as three assertions on the type that are each
individually verified.

Specification of layers implies that there exists an ordering such that lower layers may
not depend on higher layers. This ordering clearly exists in the model shown in Figure 6.2.
We delay formally describing the details of this constraint until after the next section about
composition of layered models. We simply note, informally, that our approach to layers is
consistent with their traditional semantics.

6.2.3 Composing layered models

In this section we describe the ability of our technique to compose multiple layer models
over a single software system. Figure 6.3 extends the model in Figure 6.2 to include the game’s
two user interfaces. In this model, SmallWorld’s textui and textui.parser packages are
mapped into both the CONSOLE_UI and SWING_UI layers. This is illustrated in the UML
diagram at the bottom of Figure 6.3.1

Figure 6.3 is not the only approach to model the static structure of the SmallWorld
user interface. We acknowledge that many readers may find the previous model shown in
Figure 6.2 adequate for SmallWorld (i.e., the top layer can use anything it wishes). This
highlights the incremental nature of our approach—it provides incremental benefits (in the
form of model-code consistency) for incremental modeling efforts (in the form of promises).
We present the more complex model in Figure 6.3 primarily as an example to illustrate the
capability of our approach to compose multiple layer models.

The semantics of a type being mapped into multiple layers is straightforward. If a type,
t, is mapped into layers L1, L2, . . . , Ln where n ≥ 0 with associated allowed to reference type
sets C1,C2, . . . ,Cn then the allowed to reference type set, C, for t is

C = n⋂
1

Cn.

Further, if t has a @MayReferTo promise and/or its enclosing package, through the use of
@Promise, has a @MayReferTo promise, with allowed to reference sets Ct and Cp, respectively,
then the allowed to reference set for t is C∩Ct∩Cp. As noted in the previous section, Ct ⊆ Cp
and Ct ⊆ C must hold or the promises are nonsensical. Finally, Cp ⊆ Ci where 1 ≤ i ≤ n must
hold for each i where the entire package enclosing t is mapped into Li.

1We have taken some liberties with UML semantics in Figure 6.3. Specifically, UML prohibits including
an element within more than a single package—even a package with our «layer» stereotype. This limitation
of UML to describe layers has also noted by the authors of [29].
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package-info.java within the edu.afit.smallworld.textui package:

@TypeSets({
@TypeSet("SWING = java.awt+ | javax.swing+"),
@TypeSet("IO = java.io")

})
@Layers({
@Layer("CONSOLE_UI may refer to edu.afit.smallworld.{MODEL,CONTROLLER}|IO"),
@Layer("SWING_UI may refer to edu.afit.smallworld.{MODEL,CONTROLLER}|SWING")

})
@Promise("@InLayer(CONSOLE_UI, SWING_UI)")
package edu.afit.smallworld.textui;

package-info.java within the edu.afit.smallworld.textui.parser package:

@Promise("@InLayer(edu.afit.smallworld.textui.{CONSOLE_UI, SWING_UI})")
package edu.afit.smallworld.textui.parser;

package-info.java within the edu.afit.smallworld.textui.console package:

@Promise("@InLayer(edu.afit.smallworld.textui.CONSOLE_UI)")
package edu.afit.smallworld.textui.console;

package-info.java within the edu.afit.smallworld.textui.graphical package:

@Promise("@InLayer(edu.afit.smallworld.textui.SWING_UI)")
package edu.afit.smallworld.textui.graphical;

«references»

«layer» CONSOLE_UI «layer» SWING_UI

edu.afit.smallworld.textui

parser console

edu.afit.smallworld.textui

parser graphical

«layer»
MODEL

«layer» 
CONTROLLER

«type set» 
SWING

«type set» 
IO

«references»
«references» «references»

«references»

«references»

Figure 6.3: A model of the static structure of the two SmallWorld user interfaces extending the
model in Figure 6.2. The promises added to the SmallWorld code are shown above a UML diagram
illustrating their semantics. The first user interface interface, which allows the user to interact with
the game by typing text commands within a console window, is mapped into the CONSOLE_UI layer.
The second user interface, which allows the user to interact with the game by typing text commands
within an AWT/SWING window, is mapped into the SWING_UI layer. Two of the Java packages,
edu.afit.smallworld.textui and edu.afit.smallworld.textui.parser, are mapped into both
layers. These two packages are only allowed to reference the MODEL and the CONTROLLER—the inter-
section of the allowed to reference sets defined for the CONSOLE_UI and SWING_UI layers.
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6.2.4 Checking that layered models are well-formed

A well-formed specification of layers implies that there exists an ordering such that lower
layers may not depend on higher layers. Checking this property is complicated because we
allow a particular type to be mapped into more than one layer, i.e., we do not require layers
to define a partition of the system. Note that here we are checking if a particular layered
model is well-formed, not verifying that it is consistent with code.

Definitions: We define T as the set of all types defined in the program and L as the set
of all layers defined in the program.

The set of types mapped into a layer is given by

def ∶ L→ ℘(T ).
For a given layer, l, the elements of def(l) can always be enumerated because types are
explicitly mapped into l using the @InLayer annotation and @InLayer may only map a type
into a layer if it is located within the package tree where that layer is declared.

The set of types allowed to be referenced by a layer is given by

ref ∶ L→ ℘(T ).
For a given layer, l, This set includes all the types defined by the may refer to clause of
the layer definition of l as well as def(l). Thus it is always true that def(l) ⊆ ref(l) which
is consistent with our intuition that types within a layer should be allowed to reference each
other. Our approach avoids having to enumerate the elements of def(l) because it could
potentially contain every class on the program’s classpath (e.g., @TypeSet("CP = Object |

!(Object)")). However, it is tractable to test if a particular type is an element of this set.

Properties: We say that a layered model is well-formed if

1. Layers are ordered: The transitive closure of the references relationship between layers
must define a partial order on the set of layers defined for the system2. Here we only
consider the relationship between layers that can be determined by examining layer
definition promises—ignoring the types mapped into them and any type sets they are
allowed to reference. We use the symbol ≽ to refer to the transitive closure of the
references relationship between two layers. If l1 ∈ L and l2 ∈ L then l1 ≽ l2 means that l1
is a higher layer than l2. (We say that l1 is a higher layer than l2 if l1 may refer to types
in l2.) We refer to this partial order as ⟨L,≽⟩. In general, ⟨L,≽⟩ will not be a chain (i.e.,
a totally ordered set), therefore, we use the symbol ∥ to indicate non-comparability.
We write l1 ∥ l2 if l1 /≽ l2 and l2 /≽ l1.

2. Types referenced by layers are ordered: If the set of types referenced by a layer, l1,
intersects with the set of types mapped into a second layer, l2, then l1 must be above
l2 or be non-comparable with l2. More formally, for all l1 ∈ L and l2 ∈ L,

ref(l1) ∩ def(l2) ≠ ∅→ (l1 ≽ l2 ∨ l1 ∥ l2)
must hold. This constraint is necessary because we allow types to be mapped into more
than one layer and we allow layers to reference any set of layers and type sets.

2A layer is always allowed to reference itself, hence reflexivity does hold.
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We now return to the intuition of a layers introduced at the beginning of this section.
A well-formed specification of layers implies that there exists an ordering such that lower
layers may not depend on higher layers. If a layered model is well-formed, in the sense that
the two properties defined above hold, is our intuitive notion of a layered system met? The
existence of an order is immediate by our first property, layers are ordered, however, the
requirement that “lower layers may not depend upon higher layers” is less obvious and is
proved in Theorem 6.2.1.

Theorem 6.2.1 (Layers are ordered). Given a well-formed layered model (i.e., where the two
properties defined above hold), no type in a lower layer is allowed to reference a type in a higher
layer. More formally, for all distinct l1 ∈ L and l2 ∈ L such that l1 ≽ l2, ref(l2)∩def(l1) = ∅.

Proof. (By contradiction) Assume to the contrary that there exists a type t such that t ∈
ref(l2) ∩ def(l1). By the types referenced by layers are ordered property of a well-formed
layered model we know that l2 ≽ l1 or l2 ∥ l1 because ref(l2) ∩ def(l1) ≠ ∅ (i.e., it contains
t). We now proceed by considering these two cases:

(Case l2 ≽ l1) If l2 ≽ l1, we know by the hypothesis that l1 ≽ l2 and that l1 ≠ l2.
However, this is a contradiction because it violates the antisymmetry property
of the partial order ⟨L,≽⟩ specified by the layers are ordered property of a well-
formed layered model.

(Case l2 ∥ l1) If l2 ∥ l1, we know by the hypothesis that l1 ≽ l2. However, by the
definition of non-comparability this is a contradiction.

In both cases we reach a contradiction so the proposition is true.

Example: Is the SmallWorld layered model defined in Figure 6.2 and Figure 6.3 well-formed?
We check if the two properties defined above hold for this model. The set of layers is

{CONSOLE UI, CONTROLLER, MODEL, PERSISTENCE, SWING UI}
and the references relation between layers is

{ (CONSOLE UI, CONTROLLER)(CONSOLE UI, MODEL)(SWING UI, CONTROLLER)(SWING UI, MODEL)(CONTROLLER, PERSISTENCE)(CONTROLLER, MODEL)(PERSISTENCE, MODEL) }.
The transitive closure of this set is the partial order shown by the Hasse diagram in Figure 6.4.
Hence, the layers are ordered property of a well-formed layered model holds for SmallWorld.

To determine if the types referenced by layers are ordered property holds for SmallWorld
we need to find any cases where the set of referenced types in a layer overlaps with the set of
types which define the contents of another layer. This occurs in only two cases: CONSOLE_UI
and SWING_UI. In Figure 6.3 it can be seen that both these layers contain (and thus are
allowed to reference) the contents of the textui and parser packages. The CONSOLE_UI

layer references the textui and parser packages which are mapped into the SWING_UI layer.
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PERSISTENCE
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Figure 6.4: A Hasse diagram [34] of the “is a higher layer than” partial order on the set of SmallWorld
layers.

The SWING_UI layer references the textui and parser packages which are mapped into the
CONSOLE_UI layer. In both of these cases the types referenced by layers are ordered property
holds because, by Figure 6.4, these two layers are non-comparable with the “is a higher layer
than” partial order relation on the set of SmallWorld layers.

6.2.5 Restricting allowed references

In some cases it is clearer to specify the set of types that are allowed to reference a particular
declaration rather than, as we have been doing so far, specifying that each type is allowed to
reference it. One example of this is when one type manages creation of a second type, e.g.,
within a composite structure. In SmallWorld a world is composed of its places. Thus, the
constructor for the Place class is only intended to be called from the factory method within
the World class. This example is modeled in Figure 6.5.

The @AllowsReferencesFrom promise specifies that the declaration where it is placed may
only be used within the given type set. This promise may target types, fields, methods, or
constructors. Thus it can be used to express lower-level design intent than @MayReferTo which
cannot target fields, methods, or constructors. The argument to the @AllowsReferencesFrom
promise specifies a type set. To be precise about its semantics, the @AllowsReferencesFrom

promise specifies the set of types where the element is allowed to be referenced. Actual
references to the targeted unit by types within the specified type set are not required to
exist. @AllowsReferencesFrom promises must be consistent with @MayReferTo promises if
both exist or the model is nonsensical, e.g., in SmallWorld the world should be permitted to
reference its places.

Example: The Eclipse project uses a programming convention which can be assured by
the @AllowsReferencesFrom promise. The source code for Eclipse contains several packages
called internal. The types contained within these packages are, by convention, only intended
to be referenced within org.eclipse source code—not by outside code. This prohibition can
be modeled with a @AllowsReferencesFrom promise as shown in Figure 6.6.



6.3. VERIFICATION 181

Place.java within the edu.afit.smallworld.model package:

public class Place {

/**
* Constructs a new place. Only to be invoked by the {@link World} class.
*/
@AllowsReferencesFrom("World")
Place(World world, String name, String article, String description) { ... }
...

}

Figure 6.5: The constructor for Place objects is only allowed to be invoked from within the World

class.

package-info.java within the org.eclipse.jdt.internal package:

@Promise("@AllowsReferencesFrom(org.eclipse+)")
package org.eclipse.jdt.internal;

Figure 6.6: Specifying that it is prohibited for code outside the org.eclipse package tree from using
types defined within the org.eclipse.jdt.internal package.

6.3 Verification

Verification of our specification of static program structure consists of two parts: (1) checking
that the models are well-formed, and (2) checking that the code is consistent with the well-
formed models.

6.3.1 Checking for well-formed models

After checking the syntax of each promise is valid, two properties must hold for a layered
model to be well-formed: layers are ordered and types referenced by layers must be ordered.

Layers are ordered

Checking that layers are ordered is performed by building a directed graph of the “is a higher
layer than” relationships defined between defined layers. If the graph is determined to have
a cycle then the property does not hold and the problem is reported to the tool user.

Example: An example of this check on a model that defines a cycle is shown in Figure 6.7.

Types referenced by layers are ordered

Checking that types referenced by layers are ordered also uses the directed graph of the “is
a higher layer than” relationship between layers. The graph is used to determine the set
of layers that is above a particular layer being checked. The algorithm used to check this
property is given in Figure 6.8. This algorithm depends upon the fact that the set of types
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package-info.java within the edu.example package:

@Layers( {
@Layer("TOP may refer to BOTTOM"),
@Layer("BOTTOM may refer to TOP")

})
package edu.example;

Figure 6.7: An example of a structural model that is not well-formed because the defined layers are
not ordered. (Top) The definitions in the edu.example package. (Bottom) The tool view showing the
report to the user in the Modeling Problems view about the cycle detected between the layers TOP and
BOTTOM.

For each layer, l:

Determine the set of layers “above” l, which we refer to as
A.
For each layer, la, in A:

For each type ta in la via an @InLayer promise:

If ta is in the set of types that l is allowed
to reference then the model is not well-
formed

If no violations are found then the types referenced by layers are ordered

Figure 6.8: The algorithm used to check if types referenced by layers are ordered.

that a layer is allowed to reference includes the types defined to be in the layer. This fact
allows the algorithm to simply ensure that each type in a higher layer is not allowed to be
referenced by a lower layer.

To illustrate a violation, consider a system containing the types T1, T2, and T3 in the
package com.example with the structural annotations shown in Figure 6.9. In this example
the layers are ordered property of a well-formed layered model holds because TOP is a higher
layer than BOTTOM and that is the only relationship that exists.

This model is not well-formed by the algorithm above because layer BOTTOM is allowed to
reference type T3 which is part of the higher layer TOP. From the tool user’s point of view,
there is one of two possible modeling problems: (1) The type T3 should not be in the layer
TOP, or (2) The layer BOTTOM should not be allowed to reference the type T3. The tool reports
this problem in the manner of the second. In addition, as shown in Figure 6.9 we report this
particular modeling problem in the Verification Status view as an inconsistency. Why take
this odd approach? The reason is that we found it very difficult to communicate a problem
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of this complexity to the tool user in the Modeling Problems view. A single line explanation
was not descriptive enough for the user to understand and take corrective action. In addition,
because we take the point of view that the lower layer is “broken” we can report verification
results to the programmer about higher layers (e.g., TOP in Figure 6.9).

6.3.2 Checking model–code consistency

The verification that a well-formed model of static structure is consistent with the code
proceeds as follows. For each compilation unit, c, with a structural assertion we simply check
that every reference to other types within c is allowed by the structural assertion.

This analysis is not flow-sensitive and is performed by binding each use in a compilation
unit to its definition. The type that contains the definition (i.e., if the definition is not itself
a type) is then checked to ensure that it is allowed to be used.

Figure 6.10 shows the verification results for the structural model about the SmallWorld
program shown in Figure 6.2. The model is not fully consistent with the code. The MODEL

and PERSISTENCE layers are consistent with the code, however the CONTROLLER layer is not. If
a compilation is consistent then only a single green “+” is reported for the entire compilation
unit. This is shown for the Direction compilation unit which is in the MODEL layer. If
a compilation unit is inconsistent then a red “×” is reported for each use of a type the
compilation unit is not supposed to depend upon. This is shown by the 5 red “×” results for
the WorldController compilation unit. This compilation unit is referring to several types
within java.util. Each result links the tool user to the exact line of code where prohibited
reference is made. In this case, however, it seems reasonable to allow the CONTROLLER layer
to reference types within java.util. In fact, we had defined a type set for this purpose:

@TypeSet("UTIL=java.util & !(java.util.{Enumeration, Hashtable, Vector})")

By changing the definition of the CONTROLLER layer to

@Layer("CONTROLLER may refer to MODEL | PERSISTENCE | UTIL | java.io.File")

the JSure tool can now verify the defined model of static structure as shown in Figure 6.11.
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package-info.java within the edu.example package:

@Layers({
@Layer("TOP may refer to BOTTOM"),
@Layer("BOTTOM may refer to edu.example.T3")

})
package edu.example;

T1.java within the edu.example package:

@InLayer("TOP")
public class T1 { ... }

T2.java within the edu.example package:

@InLayer("BOTTOM")
public class T2 { ... }

T3.java within the edu.example package:

@InLayer("TOP")
public class T3 { ... }

Figure 6.9: An example of a structural model that is not well-formed because the types referenced by
layers are not ordered. (Top) A specification of static structure of the layers TOP and BOTTOM in the
package edu.example and three types within that package. (Bottom) The tool view reporting that
the T3 type should not be referenceable by the BOTTOM layer.
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Figure 6.10: Tool reported verification results for the structural model about the SmallWorld program
shown in Figure 6.2.

Figure 6.11: Tool reported verification results for the structural model about the SmallWorld program
shown in Figure 6.2 when the CONTROLLER layer is changed to allow references to the typeset UTIL.
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6.4 Not a module system

Our approach to the specification and verification of static program structure is not what is
commonly referred to as a module system. Both deal with constraining the static structure of
a program. Our approach is primarily focused on, for a particular type, defining what other
types that type is allowed to reference. A module system is primarily focused on defining and
enforcing an interface, in terms of types and methods, that a collection of types presents to the
rest of the system. Roughly speaking, our approach answers the question for a component,
“what am I allowed to use?” While a module system answers the question, “What parts of
me are others allowed to use?”

Several improved module systems have been proposed for the Java programming language.
These include Jiazzi [80], aimed at supporting mix-ins, MJ [31], which adds static modules
to Java, and the Fluid Module System [103], which is similar to MJ but is hierarchical. A
standardization effort, through Java Specification Request (JSR) 294: Improved Modularity
Support in the Java Programming Language3, is ongoing.

It would be desirable for our approach to be able to reference the modules defined by
these systems in layers. For example, consider the following partial specification of a module
in the Fluid Module System.

@Module("Swing")
public class ...

This annotation on the desired classes coupled with visibility annotations defines a module
named Swing. It seems reasonable to allow layer definitions to refer to this named module.

@Layer("UI may refer to Swing | java.util")

We leave the detailed design and implementation of this feature as future work. We note,
however, that our current approach is only compatible with systems focused on static module
definition, approaches that elicit the composition of and connections between components at
runtime, such as ArchJava [3], are not as straightforward to support.

6.5 Conclusion

In this chapter we have presented a new approach to the specification and verification of
the static structure of Java programs. Our approach builds upon the demonstrated utility
to practicing programmers of reflexion models by Murphy and Notkin [85]. Our approach
combines the creation of the high-level model and a mapping from the high-level model to
the source code via source code annotations to allow programmers to express and maintain
the static structure of their code. Our primary contribution to prior work is the addition
of a lightweight approach to specify and verify static layers with well defined semantics that
we believe are consistent with traditional layered semantics. In addition, our approach more
naturally facilitates composition of multiple overlapping static models.

This work is presented, in the context of this thesis, as evidence that analysis-based
verification is scalable with respect to new assurance attributes, in particular non-concurrency
related program attributes.

3http://jcp.org/en/jsr/detail?id=294

http://jcp.org/en/jsr/detail?id=294


Chapter 7

Validation

“The logic of validation allows us to move between the two
limits of dogmatism and skepticism.” — Paul Ricoeur

In this chapter we recapitulate the evidence we provide in support of this research and
present a cost-effectiveness analysis of analysis-based verification informed by our trials of a
prototype tool in the field. Section 7.1 summarizes the evidence presented throughout this
dissertation in support of the claims of this research. Section 7.2 provides rough estimates
for the cost and benefit a potential tool user may incur.

7.1 Sound combined analyses

The key idea and overall vision of the Fluid research group is focused analysis-based verifica-
tion for software quality attributes as a scalable and adoptable approach to the verification
of consistency of code with its design intent. Our principal contribution to this vision is
the development of the concept of sound combined analyses for the verification of mechani-
cal program properties. This includes (1) meta-theory, (2) user experience design and tool
engineering approach, and (3) field validation. Figure 1.22 (repeated from Chapter 1) illus-
trates the relationship among the vision of the project, the three principal contributions of
this thesis, and the enabling sound analysis work of Greenhouse, Boyland, and Sutherland.
The field validation is used to validate the overall vision of the Fluid project as well as our
contribution. It has also informed the development of our work.

We now summarize the evidence presented for each principal contribution of our work.

(1) Meta-theory to establish soundness of the approach of combining multiple constituent
sound static analyses (e.g., binding context, effects upper bounds, uniqueness) into an ag-
gregate developer-focused analysis (e.g., safe lock use).

The meta-theory developed in this thesis is presented in Chapter 2. This chapter demon-
strates that our verification proof calculus supports the construction of verification proofs
from fragmentary analysis results reported by multiple underlying constituent analyses. We
establish soundness of our verification proof calculus by a proof (of Theorem 2.7.4) that re-
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Figure 7.1: A sketch of how the principal contributions of this thesis (in bold at the center) relate to
the overall vision and prior work of the Fluid project at Carnegie Mellon University.

lates a semantics of fragmentary analysis results to broad conclusions regarding the program
being analyzed. Several key lemmas (Section 2.6 and Section 2.7) are proved in support
of the soundness theorem about the verification proof calculus and the precise semantics of
fragmentary analysis results. Our proofs assume the soundness of the underlying constituent
analyses.

We suggest that our assumption that constituent analyses used in the prototype tool (as
listed in Figure 1.3) are sound is reasonable based upon prior work [21, 20, 53, 103]. Prior
work has not demonstrated each analysis is sound via rigorous proof. The approach taken
is to provide a precise definition of static semantics for each analysis. The static semantics
are presented through an extension of Featherweight Java [65]. Featherweight Java bears a
similar relation to Java as the lambda-calculus does to languages such as ML and Haskell.
Analysis implementation was informed by this precise model and tested on a large corpus of
Java code to demonstrate that it produces conservative results.

(2) User experience design and tool engineering approach designed to address adoption
and usability criteria of professional development teams.

The JSure prototype tool, incorporating the prior work of the Fluid project on sound
analysis, was developed as part of our work. The tool provides evidence that our approach,
with its constituent analyses, is feasible for the tool-supported verification of non-trivial
narrowly-focused mechanical properties about programs with respect to explicit models of
design intent. The engineering of this tool (and its user experience) is introduced in Chapter 1
and presented in further depth in Chapter 3.

The design intent language (i.e., promises) and verifying analyses are predominantly prior
work by the Fluid research group (as summarized in Figure 1.3 and presented in Section 1.9).
However, all of this analysis work fundamentally depends upon our approach to be under-
standable by practicing programmers. All of these analyses use the drop-sea proof manage-
ment system (Section 3.4) to report and manage their results. These constituent analyses
use our approach to produce programmer-meaningful verification results—without the con-
tributions of our work they produce only large numbers of unorganized fragmentary results
about the code they examine.
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Our engineering work provides a technical and software framework, realized in the JSure
tool, for the verification of mechanical program properties. Two case studies of adding new
aggregate analyses to the JSure tool are used to qualitatively evaluate the benefits, as well as
identify limitations, of this verification framework (e.g., drop-sea, scoped promises, proposed
promises, the red dot), with respect to scalability when new attributes are added. These case
studies (thread coloring and static layers) are presented in Chapter 5. The case studies show
that our work helps to facilitate the addition of new sound analyses into the JSure prototype
tool by providing a verification framework that simplifies implementation and by providing
capabilities, such as @Promise, that are widely needed. Figure 5.1 summarizes the perceived
benefits and limitations of capabilities provided by our verification framework from the point
of view of an analysis author. The limitations identified are left to be addressed in future
work.

(3) Field validation in collaboration with professional engineers on diverse commercial
and open-source code bases.

Nine trials using the prototype JSure tool in the field on open source, commercial, and
government Java systems are presented in Chapter 4. As illustrated in Figure 7.1, our field
trials provide empirical evidence in support of the contribution of our work as well as the
overall vision of the Fluid project. The evidence from the field trials supports claims about
use of the JSure prototype tool by disinterested practitioners on code that they develop and
maintain. These claims, with a summary of the supporting evidence (Section 4.3), are:

• The JSure prototype tool scales up to use on large real-world software systems. The
empirical evidence is the successful use of the tool on 20 client software systems exam-
ined over 25 days during nine field trials. The largest client system examined was 350
KSLOC and the mean size was 90 KSLOC.

• At the conclusion of a 3-day field trial using the JSure prototype tool, the behavior
and responses of the client developers indicate that the tool was effective with respect to
defects found. The quantitative evidence with respect to defects found is that across the
nine field trials the JSure tool helped to identify 79 race conditions in 1.6 million lines
of real-world Java code—most of which had already passed organizational acceptance
evaluation for deployment. The client developers described the difficulty of finding
these defects, “It would have been difficult if not impossible to find these issues without
[JSure].” and “[JSure] identified logic and programming errors . . . that extensive review
and testing did not discover.”

• At the conclusion of a 3-day field trial using the JSure prototype tool, the behavior and
responses of the client developers indicate that they perceive value from the verification
results obtained. The quantitative evidence with respect to verification results is that
across the nine field trials we developed 376 models of programmer intent about lock
use and were able to verify most of them with the tool by working alongside client
programmers. The client developers described the value of the verification results, in
particular the value of the tool’s specification language, “[JSure] was reported by all
participants as helping them to understand and document the thread interactions that
they had already designed and implemented.”

• Within two or three hours of using the JSure prototype tool to annotate and analyze
the client’s code, the behavior and responses of the client developers indicate that they



190 CHAPTER 7. VALIDATION

perceive sufficient reward to continue use. The behavioral evidence is continuing to
participate in the engagement and inviting other developers to participate. This was
observed in 8 of the 9 field trials. The client developers described the value of the
immediacy of results,“We found a number of significant issues with just a few hours of
work. We really like the iterative approach.”

• It is feasible to adopt the JSure prototype tool late in the software engineering lifecy-
cle. The empirical evidence is that 18 of the 20 client software systems examined in
the field were in the operations and maintenance phase of the software lifecycle—they
had already passed organizational acceptance evaluation for deployment. One of the
commercial J2EE servers examined had been in release for 3 years. The verbal ev-
idence consisted of expression by client developers advocating widespread use of the
tool throughout the software lifecycle (when code exists), such as, “I can’t think of any
of our Java code I wouldn’t want to run this tool on.”

Generally speaking, the field trials show that analysis-based verification is valued by disinter-
ested practitioners—working programmers whose only interest in our work is the immediate
value that JSure can potentially provide to them on code they develop and maintain.

7.2 Cost-effectiveness analysis

Our experience with analysis-based verification on production open source, commercial, and
government Java systems enables us to provide rough estimates for the cost and benefit a
potential user may incur. In this section we consider our approach, sound combined analy-
ses, coupled with the prior sound analysis work of Greenhouse, Boyland, and Sutherland as
realized in the JSure analysis-based verification tool.

For the purposes of this analysis, we define cost to be developer effort, both initially in an
engagement and incrementally in adding model information and undertaking analysis effort.

7.2.1 Cost

Use of JSure involves programmer time and effort to express models of design intent, typically
as annotations in the code. Features introduced by this thesis, e.g., proposed promises and
scoped promises, provide tool assistance with model expression—helping to lower this cost.
Preliminary work using the Flashlight dynamic analysis tool to perform model inference (as
summarized in Figure 4.13) may also help to lower this cost.

A user of JSure must also invest time and effort to learn how to use the tool, its annotation
language, and how to interpret tool results. The field trials demonstrate that professional
development teams are able to learn to use the tool and obtain results useful to them within
two or three hours of initial contact with the technology and the tool (Section 4.3).

7.2.2 Benefit

A user of JSure gets the benefit of automated verification of expressed models of design intent.
In the absence of any user-introduced red dots, each verified annotation is an invariant of the
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program, i.e., the assertion made by the annotation holds for all possible executions of the
program.

In addition to automated verification, the process of expressing models of design intent
and using the tool provides two secondary benefits: (1) precise documentation and (2) defect
finding.

(1) Precise documentation: The use of the JSure annotation language precisely and
tersely documents programmer design intent (e.g., intended lock use, intended thread
use). Client programmers who participated in the field trials of the JSure tool placed
great value on the documentation of design intent provided by the tool’s annotation
language (Section 4.3).

(2) Defect finding: Through interaction with the tool a user of JSure gets the benefit
of finding defects in the code. In the area of lock use, the field trials uncovered 79
race conditions in 1.6 million lines of production Java code—most of which had already
passed state-of-the-practice organizational acceptance evaluation for deployment (Sec-
tion 4.3). All of these code defects were uncovered by the tool identifying code that
was inconsistent with the models of lock use intent expressed by the programmers.

7.2.3 Alternative approaches

In this section we consider the cost-effectiveness of analysis-based verification, as realized
in the JSure prototype tool, relative to other alternative approaches. We focus on the
concurrency-related program properties verifiable by the tool.

Alternative approaches include primarily inspection and testing. For the kinds of errors
addressed by JSure, and particularly concurrency errors, these approaches can be expensive,
inaccurate, or limiting on functionality or performance. This was validated in two ways: First,
through interactions with the professional developers, who had employed the best practice
approaches for the critical systems we were shown, and had nonetheless not been able to
“catch” the defects identified through the use of the JSure tool:

“Held successful Fluid workshop on software for the U.S. Navy under develop-
ment at ESBA MS2 Moorestown 19–21 July. Team developed 63 lock models and
[JSure] identified logic and programming errors in the Common Sensor and Track-
ing (CSAT) services and Weapons Control Engagement segments that extensive
review and testing did not discover.” [72]

Second, through analysis of the literature related to our work.

The alternative approaches faced by developers are (1) testing, (2) inspection, (3) mod-
eling checking, (4) heuristic-based static analysis, (5) avoid concurrency.

(1) Testing: The professional developers the we worked with told us that testing for
concurrency involves long running integration “stress” test on a variety of concurrent
hardware. The longer the system is able to run without crashing the more confident
the developers are that the implementation is correct with respect to concurrency. Use
of the JSure tool in the field still uncovered concurrency defects in these systems. Our
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results in the field indicate that testing is ineffective in eliminating concurrency defects
from code (Section 4.3).

(2) Inspection: Several of the organizations we worked with in the field use inspection
to uncover defects and improve code quality. Similar to testing, our results in the
field indicate that inspection is ineffective in eliminating concurrency defects from code
(Section 4.3). Inspection is time consuming for programmers. Programmers noted
during the field trials that a tool like JSure would help to focus code inspections and
save them considerable time:

“. . . Another engineer observed, [JSure] ‘pointed out things that we would
not have looked at—would not have even noticed in a code review.’ ” [25]

(3) Model checking: Software model checking is an area of active research and holds
promise to find widespread use in practice. One successful example is the SLAM tool
at Microsoft, which targets consistency of device driver code with protocol requirements
associated with the Windows device driver API [8]. SLAM is limited with respect to
the scale of the code bases that it can examine (∼10 KSLOC). Several model checking
approaches, for example JavaPathFinder1, require the disciplined use of a subset of the
programmer language. This limitation makes them costly to adopt at scale and late in
the software lifecycle.

(4) Heuristic-based static analysis: Heuristics-based static analysis tools, such as Find-
Bugs, have been successful in uncovering a large number of defects in real-world code
(Section 1.3.2). There are several costs. (1) The cost of not being sound: missed de-
fects. (2) The cost in programmer time and effort of dealing with large numbers of false
positives and findings of marginal significance to current developer concerns.

(5) Avoid concurrency: This approach may be feasible for some systems, however, due
to the current trend of hardware becoming more aggressively parallel at constant (or
diminishing) clock speeds [51] such systems are likely to sacrifice performance and
responsiveness. For other systems this approach is not feasible. It is not possible
to build a modern application server, such as the two J2EE servers that the research
team examined in the field, that isn’t concurrent. It is also not possible to build a
MapReduce infrastructure, such as Hadoop, that isn’t concurrent.

The cost of the alternative approaches can be reduction in functionality (due to the need
to simplify structure and concurrency) or increased hazard in operations (due to the fact that
races and other issues went unresolved). At this point in development, we are not aware of
alternatives that are both sound and scalable and that can provide analysis-based verification
for concurrency.

1http://javapathfinder.sourceforge.net/

http://javapathfinder.sourceforge.net/


Chapter 8

Conclusion

“Let’s not fall prey to the syndrome of accepting a wish, stated with a
fancy name, as an established capability.” — Michael L. Dertouzos

Dertouzos was referring to intelligent agents, which he argued (in 2001) were not all that
intelligent. We suggest that his comment also applies to practical verification systems. Indeed,
we echo his further thought that the problem is central and is perhaps receiving insufficient
attention today as a consequence of a record “of past disappointments.” [38] Our work
contributes to the quality assurance of software by providing a program verification approach
that, because it is focused on narrow software quality attributes, is scalable and composable.
The approach is based on a novel technique (elaborated in Chapter 2) for combining multiple
constituent sound analyses into an overall verification technique. We therefore refer to the
overall approach as sound combined analyses for analysis-based verification.

8.1 Summary of contributions

The key idea and overall vision of the Fluid research group is focused analysis-based verifica-
tion for software quality attributes as a scalable and adoptable approach to the verification
of consistency of code with its design intent. Our principal contribution to this vision is the
development of the concept of sound combined analyses for the verification of mechanical
program properties. These include

• Meta-theory to establish soundness of the approach of combining multiple constituent
sound static analyses (e.g., binding context, effects upper bounds, uniqueness) into an
aggregate developer-focused analysis (e.g., safe lock use) (Chapter 2).

• User experience design and tool engineering approach designed to address adoption
and usability criteria of professional development teams (Chapter 3).

• Field validation in collaboration with professional engineers on diverse commercial
and open-source code bases (Chapter 4).

Our work, incorporating the prior sound analysis work of the Fluid project, led to the
development of the JSure prototype analysis-based verification tool. This tool was used in
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our field validation. The field validation presented in Chapter 4 validates the overall vision
of the Fluid project as well as our contribution. It has also informed the development of our
work.

Other new technical and engineering results contributed by this thesis include:

• The drop-sea proof management system: Drop-sea is the proof management
system used by the JSure tool. Drop-sea manages the results reported by constituent
program analyses and automates the proof calculus presented in Chapter 2 to create
verification results based upon these findings. (Chapter 3)

• Management of contingencies—the red dot: Drop-sea allows several unverified
contingencies to exist in a chain of evidence about a promise. A programmer can
vouch for an overly conservative analysis result—changing it from an “×” to a “+”. A
programmer can turn off a particular program analysis causing all the promises checked
by that analysis to have no results—causing the tool to trust these promises without any
analysis evidence. Finally, the programmer can assume something about a component
that is outside of the programmer’s scope of interest (e.g., on the other side of an
organizational or contractual boundary). These actions introduce a contingency into
any proof that relies upon them. Drop-sea explicitly tracks these contingencies and
flags them with a red dot. (Chapter 3)

• Proposed promises: Our approach has constituent analyses report any necessary
prerequisite assertions as part of each analysis result. Analyses, when they report a
prerequisite assertion, propose promises that may or may not exist in the code. A spe-
cial analysis called promise matching is used to “match” each proposed promise with a
programmer-expressed promise in the code. If no “match” can be found, i.e., a promise
proposed by a constituent analysis is not in the code base, then the computation that
produces verification results is able to use the unmatched proposed promises to deter-
mine the “weakest” prerequisite assertion for each promise in the code base. This allows
the tool to propose “missing” annotations, from the point of view of the constituent
analyses, to the code that can be reviewed and accepted by the tool user. (Chapter 3)

• Scoped promises: Scoped promises are promises that act on other promises or anal-
ysis results within a static scope of code. We introduce three types of scoped promises:
@Promise to avoid repetitive user annotation of the same promise over and over again
in a class or package, @Assume to support team modeling in large systems where pro-
grammers are not permitted access to the entire system’s code, and @Vouch to quiet
overly conservative analysis results. Scoped promises help to “scale up” the ability of a
programmer or a team of programmers to express design intent about a large software
system. (Chapter 3)

• An approach to the specification and verification of static program structure:
Previous work by Murphy and Notkin [85] has demonstrated the utility to practicing
programmers of tool support to understand and maintain structural models of their
code. Our approach combines the creation of the high-level model and a mapping
from the high-level model to the source code via source code annotations—primarily
a syntactical difference—but our purpose is the same: to help programmers express,
understand, and maintain the static structure of their code. Our primary contribution
to prior work is the addition of a lightweight approach to specify and verify static
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layers with well defined semantics that we suggest are consistent with traditional layered
semantics. In addition, our approach more naturally facilitates composition of multiple
overlapping static models. (Chapter 6)

8.2 Looking forward

In previous chapters we have proposed several areas for future work. These include merging
our approach to the specification and verification of static program structure with Suther-
land’s Fluid module system [103], improving the overall user experience of our prototype
tool, adding a selective verification capability to our IDE-based tool to improve interactive
performance, and the model inference capability provided by the Flashlight dynamic analysis
tool. In this section we speculate on several other possible future directions for this work.

8.2.1 Accommodating negative analysis results

While it is undecidable in general, due to Rice’s theorem [95], there can be cases where you can
definitively conclude that a promise does not hold. So in many respects, a monotonic three-
valued logic, i.e., U, T, and F (representing unknown, consistent, and inconsistent, respectively)
with U < T and U < F, would be a better representation for the foundations of analysis-based
verification than the two-valued logic, i.e., U and T, we used in Chapter 2. Kleene’s extensions
of the conventional Boolean connectives (i.e., ∧, ∨, and ¬), which gives the strongest result
consistent with monotonicity, appears to be a reasonable starting point [70].

This extension of our work, while interesting theoretically, does not yet have a compelling
use case in practice to justify its development. Hybrid analysis-based assurance tools (see
below) may provide one.

8.2.2 Supporting query-based modeling

Our approach uses promises, typically realized as annotations in the code, to represent pro-
grammer design intent. An alternative approach to model expression is for the programmer
to perform a series of code queries and then ask to our tool to, “keep this result.” The query
forms a model of programmer design intent that is persisted and verified by our tool. For
example, a programmer queries what types a particular compilation unit, c, requires to com-
pile. The tool reports that types t1, t2, and t3 are currently necessary. The programmer saves
this result as a model. Later, a second programmer adds a dependency to t4 to c and the
verification is reported to be inconsistent and the change made by the second programmer
can be (1) backed out or (2) the query-based model can be updated to allow t4.

The applications of query-based modeling are not limited to static verification within a
tool like JSure. The Flashlight tool collects large volumes of data that are queried with a user-
expandable set of 50 queries. Any series of dynamic queries could also be saved as a model to
be checked in subsequent dynamic analysis of the same program, e.g., an instrumented run of
the program could be added to an automated quality assurance build that is checked daily.
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8.2.3 Hybrid analysis-based assurance tools

Our experience with JSure and Flashlight indicate that attribute focused tools based upon hy-
brid analysis techniques is worth pursuing in future work. Our results using dynamic analysis
to propose lock use models that can be verified sound static analysis shows that this hybrid
approach has the potential to save a significant amount of programmer modeling time. We
leave to future work improving the ability to further combine static analysis (both heuristic
and sound), dynamic analysis, automated theorem proving [96], and model checking [68].



Appendix A

JSure modeling guide

This appendix introduces the language used to specify design intent for the JSure analysis-
based verification tool. The contents of this appendix were originally written by Greenhouse
with later additions by various members of the JSure development team including the author.
The specifications of programmer design intent are referred to as promises. Promises are
supra-linguistic formal annotations to programs introduced by Chan, Boyland, and Scherlis
in [26]. Each promise has a precise meaning and constrains the implementation and evolution
of the code it targets. Promises are also (typically) modular, meaning that the implementation
constraint on the code of a promise is limited in scope.

This appendix provides an overview, with several concrete examples, of the syntax and
semantics of promises. However, it is not a complete reference.

• Lock policy (Section A.1): Promises for lock-based concurrency are introduced by
Greenhouse and Scherlis in [56] and further detailed in Greenhouse’s dissertation [53].
Experience using these promises on real code is summarized in [55].

• Method effects (Section A.2): Promises for method effects are introduced by Greenhouse
and Boyland in [54].

• Unique fields (Section A.3): Promises for unaliased fields are introduced by Chan,
Boyland, and Scherlis in [26].

• Thread effects (Section A.4): The promises and analyses to support thread effects were
developed as part of this work by the author and Greenhouse (in particular, to better
express and verify design intent about util.concurrent as is described below).

• Scoped Promises (Section A.5): Scoped promises are promises that act on other promises
within a static scope of code. Scoped promises were developed as part of this work by
the author.

• Programmer vouches (Section A.6): Vouches are used to change any inconsistent anal-
ysis results within a scope of code to consistent results. This capability is used for
documentation and to quiet overly conservative analysis results.
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A.1 Lock policy

This section describes promises for lock-based concurrency.

A.1.1 A straightforward model

The common Java idiom whereby an object protects itself is declared by annotating a class
with @RegionLock.

@RegionLock("Lock is this protects Instance")
public class C {
protected int f;
...

}

This single class annotation does three things

1. Declares a new lock named Lock. The lock name enables consistent reference to the
lock object in other annotations.

2. Identifies that lock with instances of the class (this)

3. Protects all the fields in instances of the class (the region Instance). Regions are
described in more detail in Section A.1.6; for now it is enough to know

• All classes have an Instance region.

• The region contains all the non-static fields of the class.

In other words, all accesses to instance variables, for example f, of objects of class C must
be within blocks synchronized on the instance.

The following two methods of class C would verify

public synchronized set(final int value) {
this.f = value;

}

public int get() {
synchronized (this) {
return this.f;

}
}

The following method of C, however, would not because although the method correctly pro-
tects the read of the field f of the object referenced by other, it does not protect the write to
the field f of the object referenced by this:

public void copy(final C other) {
synchronized (other) {
this.f = other.f;

}
}
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To make this code verify (i.e., make it consistent with the locking model) it needs to be
holding two locks1:

public synchronized void copy(final C other) {
synchronized (other) {
this.f = other.f;

}
}

An aside about annotating Java 1.4 code

The ability to annotate Java declarations, as we did to the C class declaration with @Region-

Lock above, was introduced in version 5 of the Java programming language. While Java 5
(or higher) use is nearly ubiquitous in practice, there are still some teams that develop using
Java 1.4. Java 1.4 does not support the annotation of Java declarations as shown above.
JSure support annotation of Java 1.4 code by placing the annotations in Javadoc about the
declaration. The annotation of the above locking model in Java 1.4 is:

/**
* @annotate RegionLock("Lock is this protects Instance")
*/
public class C {
protected int f;
...

}

The @ in the Java 5 annotation is replaced with the @annotate Javadoc tag. The annotation
must occur within a Javadoc block. Multiple annotations may be made in the same Javadoc
block, however, each must begin with its own @annotate tag. This approach makes it simple
to inform the Javadoc processor to ignore the @annotate tag for documentation processing
(this would be far more complex if all JSure annotations were allowed as Javadoc tags).

A.1.2 Extending the model: Caller locking

A frequent exception to the basic lock model is the expectation by a method implementation
that it is the responsibility of the caller of the method to acquire the lock. Analysis can verify
this expectation if it is declared using the @RequiresLock method annotation:

@RegionLock("Lock is this protects Instance")
public class C {
private int f;

@RequiresLock("Lock")
public void m() { ... }
...

}

1This code is deadlock prone unless it’s used in conjunction with a strict lock hierarchy.



200 APPENDIX A. JSURE MODELING GUIDE

When analyzing the implementation of method C.m(), analysis assumes that lock Lock is
held. When analyzing the callsite of the method, however, analysis requires that the calling
context hold the lock object identified with Lock. The method implementations C.m() and
C.calls_m(), below, are thus both correct:

@RequiresLock("Lock")
public void m() {
this.f = 0;

}

protected synchronized void calls_m() {
this.m();

}

The method implementation of Other.bad() is, however, inconsistent with the model because
it does not acquire the lock on the object referenced by cObject:

public class Other {
...
public bad(final C cObject) {
cObject.m(); // bad callsite!

}
}

A.1.3 Extending the model: Aggregating arrays and other objects

An array in Java is a separate object from the object whose field refers to the array. Protecting
an array-typed field thus protects the reference to the array only. It is not sufficient to extend
the protection to the elements of the array: we also need to know that the array object is
accessible through that field only. If the array could be referenced through other fields, then it
would still be possible to access it concurrently because the locking model could be bypassed
by accessing the array through a different field.

Much of the time, however, it is not intended that an array is aliased; in these cases,
the array can be incorporated into the state of the object that references it. We call this
aggregating state. An array is aggregated into the object that references it by adding a pair
of annotations to the field that references the array:

@Unique
@Aggregate
private Object[] myArray;

This does two things:

1. Declares the programmer’s intent that the field is the only field that references the array
object it references. An analysis is used to verify that a @Unique field is never aliased.
A new expression always creates an unaliased object, so it is always safe to assign the
results of a new expression to a @Unique field.

2. Extends the state of the referencing object to include the elements of the array. State
aggregation is not automatically transitive; thus if the array elements are objects, those
objects are not aggregated, only the references to them.
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In the example below, the constructor Buffer(Object[]) does not verify because it assigns
an array to field buf that might be aliased, conflicting with the @Unique annotation on the
field. The assignment to buf in the constructor Buffer(int) is verifiable because it assigns
a fresh array to the field. The lock Lock does not need to be held to access the field buf

because it is final. The implementation of copyContents() does not verify because even
though Lock does not need to be held to access the field buf or the field length, Lock must be
held to access the contents of the array referenced by buf. Analysis knows that the method
System.arraycopy() reads from the Instance region of its first parameter, and thus via
aggregation, reads from the Instance region of the Buffer object. (This analysis is informed
by effects analysis and annotations, described in Section A.2.)

@RegionLock("Lock is this protects Instance")
public class Buffer {
@Unique
@Aggregate
private final Object[] buf;
...
public Buffer(int size) {
this.buf = new Object[size]; // good!

}
...
public Buffer(Object[] newBuffer) {
this.buf = newBuffer; // bad!

}

public Object[] copyContents() {
final Object[] copy = new Object[this.buf.length];
System.arraycopy(this.buf, 0, copy, 0, this.buf.length);
return copy;

}
}

Aggregation applies not only to arrays, but to objects in general. So any object-typed field
can be declared @Unique and can then have its state aggregated into the state of its referring
object. In practice, aggregation of collections is common. The code below aggregates the set
log into the Instance region.

public class LogExample {
@Unique
@Aggregate
private final Set<String> log = new HashSet<String>();
...

}

The annotation syntax for aggregation when a named region is used is slightly different.
Declaring a named region is described further in Section A.1.6. The code below declares a
named region called LogData and aggregates the set log into it.

@Region("private LogData")
public class LogExample {
@Unique
@AggregateInRegion("LogData")
private final Set<String> log = new HashSet<String>();
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...
}

A.1.4 Constructors

Constructors cannot be declared synchronized in Java, but our analysis requires that fields
protected by a lock be accessed only when that lock is held. So how do we keep verification
from returning an inconsistent result when analyzing a constructor? We rely on the fact that
during object construction, an object is almost always accessed by a single thread only: the
thread that invoked the constructor. When this is the case, we can proceed as if the locks for
the object’s state are already held. To support that assumption we need to annotate each
constructor.

One way that analysis can verify the thread confinement of a constructor is to leverage
the tool’s ability to verify that the constructor does not alias the constructed object—that
is, that it does not create an alias to this during construction.

public class C {
@Unique("return")
public C(...) { ... }
...

}

The @Unique("return") annotation, which for a constructor is defined to be equivalent to
a @Borrowed("this") annotation, is further described in Section A.3. In particular, when
analysis knows that the constructor does not create such an alias, it also knows that it is
impossible for another thread to obtain a reference to the object under construction during
the constructor’s execution.

Annotating a constructor as being @Unique("return") requires that the super-constructor
it invokes is also @Unique("return").

Field initialization and implicit constructors

Field initializers are part of the object construction process, and fields that have initializers are
considered to be written to. Instance initializer blocks are also part of the object construction
process and need to be verified accordingly. This can be become problematic when a class
does not have an explicit constructor:

@RegionLock("Lock is this protects Instance")
public class C {
private int f = 1;
private int g;
{
g = 2;

}
public synchronized int getF() {
return f;

}
public synchronized void incG() {
g += 1;
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}
}

The lock analysis will not verify the correct use of Lock because the accesses to fields f and g

during construction are not protected. One way to fix this is to make the constructor explicit
and annotate it:

@RegionLock("Lock is this protects Instance")
public class C {
...
@Unique("return")
public C() {}
...

}

Alternatively, if it is undesirable to insert the constructor explicitly, the constructor can still
be annotated using a scoped promise. Scoped promises are described in more detail below,
but for the case of annotating an implicit constructor, we would annotate the class as follows:

@RegionLock("Lock is this protects Instance")
@Promise("@Unique(return) for new()")
public class C {
...

}

A.1.5 Thread-safe objects

Region aggregation, described above, is one technique that can be used to deal with the
fact that fields reference objects. But it is not always possible to use region aggregation to
simplify reasoning about protected state because a field may be aliased. In such cases, the
tool may produce warnings that a reference of the form e.f.g, where f is field protected by
a lock, is a “possibly unsafe reference to protected shared state.” The message is meant to
remind the programmer that although the field f is protected by a lock, this lock does not
also protect the field g of the referenced object. (If field f is of class C and class C declares
that g is protected by a lock then this warning is not produced: the tool instead attempts to
verify that the appropriate lock for g is held.) There are situations where invoking a method
via e.f.m() will also produce the above warning.

Region aggregation and lock declaration (as described above) can be used to suppress
these warnings. In general, we can suppress this warning for a field f that references objects
of class C by annotating class C with @ThreadSafe. This unchecked annotation declares that
instances of the class/interface are meant to be “thread safe.” Exactly what is meant by this
is presently unspecified; the annotation is intended to encompass non-lock-based protections
schemes such as single-threadedness, immutability, and thread confinement. No analysis is
performed on classes declared to be thread safe to verify that the implementation is, in fact,
thread safe. (For immutable objects you can alternatively use @Immutable instead of, or
with, @ThreadSafe.)

As an example, let us consider the simple rational numbers class below:
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public class Rational {
private final int numerator;
private final int denominator;

public Rational(int n, int d) {
numerator = n;
denominator = d;

}

public int getNumerator() { return n; }
public int getDenominator() { return d; }

}

Suppose we have a client class that has a lock-protected reference to a Rational object:

@RegionLock("Lock is this protects Instance")
public class C {
...
private Rational r;

public synchronized doStuff() {
int n = r.getNumerator();
...

}
}

The tool is going to generate a warning attached to call r.getNumerator() that “Receiver r
may be a shared unprotected object.” That is, we may be doing something unsafe: accessing
the state of the rational object in multiple threads without protection. But in this case, we
know that Rational objects are immutable, and therefore thread safe, so we can suppress
this warning by annotating the Rational class:

@ThreadSafe
@Immutable
public class Rational {
...

}

A.1.6 Regions and locks

The lock annotation @RegionLock actually associates a lock with a region. A region is a
named, hierarchical abstraction of state. All fields are regions, and thus a region is a named,
extensible set of fields. Using annotations, the programmer can declare new abstract regions
as members of a class, and then associate different locks with different regions. The state of
an object may thus be partitioned into multiple abstract regions, each protected by a different
lock, enabling concurrent access to different segments of the object’s state.

Declaring new regions

New regions are declared by annotating a class with
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@Region("visibility Region extends Parent")

which declares a new region Region which is a subregion of Parent. A region may be de-
clared to be static, and may have any of the standard Java visibility modifiers (or none of
them). A static region must extend another static region; non-static regions may extend
static regions. If no parent region is specified, Instance is used for non-static regions; the
root region—the static region All—is used for static regions. Java only allows a single
annotation of each type to be used at time, so to declare more than one region on a class,
the @Regions annotation is used:

@Regions({
// region with default visibility, extends Instance
@Region("region1"),
// static private region, extends All
@Region("private static region2"),
// public instance region
@Region("public region3 extends region2")

})

Unless otherwise specified, a static field is in the region All, and a non-static field is in
the region Instance. To place a field in a user-declared region, the @InRegion annotation is
used:

@Region("protected NewRegion")
public class C {
@InRegion("NewRegion")
private int f;
...

}

As with abstract regions, a static field may only be placed into a static region. Non-static
fields may be placed into either static or non-static regions.

Associating locks with regions

The general form of the @RegionLock annotation is

@RegionLock("LockName is Lock protects Region")

where LockName is a programmer-declared name for the lock, Lock is a reference to the
lock object, and Region is the name of a region. More specifically, Lock must be one of the
following:

• this

• A field declared in the class being annotated or an ancestor of the class being annotated
that is visible within the class, for example, a protected field from an ancestor.

• class

• A field of an outer class.
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When Lock is this, the object itself is acquired to protect the state. When Lock is a field, the
field must refer to an object. The field must be final: otherwise the lock object referenced
by the field could change. The field may be static or instance. When Lock is class, the
unique Class object referenced by the static pseudo-field class must be acquired. (This is
the object that is locked by static synchronized methods.)

If a class is declared inside class Outer, and wants to declare that the field f of the Outer

instance that is the container for the inner class’s instance protects a region of the inner class,
then the lock reference is given by Outer.this.f. Although the tool supports declaring locks
that are the fields of outer classes, it is not presently possible to verify their correct use. This
is because of deficiencies in both our internal representation and with Java syntax. Given
a variable v that refers to an instance of a non-static inner class, there is no syntactic
expression that evaluates to the “outer” object of that instance, that is, the object referenced
by o in the expression o.new Inner(). We allow the declaration of such locks, even though
they cannot be checked by the tool, because we have encountered them in real-world code
and it is helpful to be able to document the design intent.

A region may only be associated with a lock declared in a class C if the region does not
contain any fields from superclasses of C. This is trivially true if the region is declared in C. The
region may have abstract sub-regions, but they also cannot contain any fields. Specifically,
the region (and any of its subregions) cannot contain any fields, when considered from the
point of view of the class in which the lock declaration appears. (Indeed, otherwise you could
never associate a lock with a region.) This restriction exists to prevent unsoundness. Suppose
class C declares a region R and populates it with field f. Suppose class D extends C, adds field
g to region R, and also associates R with a lock. The problem is, in contexts where a D object
is viewed as a C, such as when a D object is passed a method with a C parameter, analysis
cannot enforce D’s locking policy. Thus, fields in R that should be protected might not be,
and the analysis would not complain.

We allow the protection of an empty region to be delayed because no state can be accessed
through that region by “unprotected” superclasses. Any actual code that accesses state in
that region must access the region through a subclass that does know about the protection,
and therefore analysis can enforce the protection.

A static region must be protected by a static field or by class.

A region may be associated with a lock only if none of its ancestors are associated with
a lock. This prevents a region from being protected by multiple locks.

A.1.7 Intrinsic or java.util.concurrent locks

The tool understands the semantics of both intrinsic Java locks acquired using the syn-

chronized block and java.util.concurrent locks, including ReadWriteLock. The tool
determines which semantics to enforce based on the object referenced by the Lock portion of
each @RegionLock annotation. There are three cases:

1. The class of the referenced lock descends from java.util.concurrent.locks.Lock.

2. The class of the referenced lock descends from java.util.concurrent.locks.ReadWriteLock.

3. The class of the referenced lock is any other class.
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If the class of the lock is not Lock or ReadWriteLock, then the tool considers the lock to be
an intrinsic lock. It considers the lock to be acquired when it is referenced in a synchronized

block, and to be released at the end of the block.

If the class of the lock object descends from Lock, then the tool understands that the
lock is acquired by calling one of lock, lockInterruptibly, or tryLock, and released by
calling unlock. It checks that each lock acquisition must have a subsequent lock release, and
that each lock release has a prior lock acquisition. The tool does not specifically enforce the
pattern

myLock.lock();
try {
// do stuff

} finally {
myLock.unlock();

}

but, in practice, this pattern must be used to satisfy the analysis due to the bidirectional
matching of lock acquisitions and releases.

If the class of the lock object descends from ReadWriteLock then the tool understands
that writes to the protected region require the write lock to be held, and that reads from the
protected region require either the read or the write lock to be held. The write lock is retrieved
using the method writeLock and the read lock is retrieved using the method readLock. For
example, the tool finds that the following class is consistent with its annotations:

@RegionLock("L is lock protects f")
public class C {
private final ReadWriteLock lock = new ReentrantReadWriteLock();
private int f;

public void set(final int v) {
lock.writeLock().lock();
try {
f = v;

} finally {
lock.writeLock().unlock();

}
}

public int get() {
lock.readLock().lock();
try {
return f;

} finally {
lock.readLock().unlock();

}
}

}

The tool recognizes a common shorthand used with ReadWriteLocks: the caching of the
individual read and write locks in additional final fields of the class that declares the Read-

WriteLock. For example
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@RegionLock("L is lock protects f")
public class CC {
private final ReadWriteLock lock = new ReentrantReadWriteLock();
private final Lock read = lock.readLock();
private final Lock write = lock.writeLock();
private int f;

public void set(final int v) {
write.lock();
try {
f = v;

} finally {
write.unlock();

}
}

public int get() {
read.lock();
try {
return f;

} finally {
read.unlock();

}
}

}

This works with both static and instance locks. If the original lock field is static, the
cache fields must also be static.

A.1.8 Declaring multiple locks

Multiple locks are declared as members of a class my using the @RegionLocks annotation:

@Regions({
@Region("public Location"),
@Region("public Appearance")

})
@RegionLocks({
@RegionLock("LocationLock is this protects Location"),
@RegionLock("AppearanceLock is appLock protects Appearance")

})
public class Sprite {
protected static Object appLock = new Object();
...

}

A.1.9 Returning locks

A method may be declared to return a particular lock using the @ReturnsLock annotation.
This allows an implementation to provide access to a lock object without revealing how
that lock is “implemented.” That is, the identity of the field that refers to the lock is kept
hidden by the implementation, although the lock object is made accessible to clients. The
@ReturnsLock annotation is fully checked: it is checked that the method actually returns the
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object representing the lock it says it returns. The following code fragment shows an example
use of the @ReturnsLock annotation.

@Region("protected DataRegion")
@RegionLock("DataLock is lock protects DataRegion")
public class C {
// NOTE: field is private
private final Object lock = new Object();

@ReturnsLock("DataLock")
protected Object getDataLock() {
return lock;

}
...
public void doSomething() {
synchronized (getDataLock()) {
// Access DataRegion

}
}

}

An example of this sort of thing in production code is the method getTreeLock() in the
library class java.awt.Container.

A.1.10 Policy locks

Sometimes there is no obvious state to associate with a lock. That is, a lock is being used
to enforce a higher-level invariant that requires a section of code to execute atomically with
respect to some other section of code. We call locks used for such a purpose policy locks.
They can be declared using the class annotation

@PolicyLock("LockName is Lock")

This annotation is similar to the @RegionLock annotation except that it does not associate
the lock with any particular region of state. The tool does not provide any verification about
the uses of policy locks. The annotation is primarily used to document the intent behind the
lock, and to suppress tool warnings about a particular lock object being an unknown lock.

One common use for policy locks is to enforce an “initialize once” invariant. Consider this
example from java.util.logging.Logger:

@PolicyLock("InitLock is class")
public class Logger {
...
public static synchronized Logger getLogger(String name) {
LogManager manager = LogManager.getLogManager();
Logger result = manager.getLogger(name);
if (result == null) {
result = new Logger(name, null);
manager.addLogger(result);
result = manager.getLogger(name);

}
return result;
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}
}

In this example the static method does not change any state directly; it is difficult so say
what state the lock Logger.class is protecting. This is because the lock is ensuring that the
method getLogger executes atomically with respect to itself. If two threads were allowed to
simultaneously execute the method it would be possible to create two new Logger objects
with the same name, but only one of them would be registered in the global log registry. This
would cause problems later on during the use of the loggers. The synchronization ensures
that only one Logger object is ever created for any given name.
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A.2 Method effects

Regions provide an abstract way to name the state of an object. The effects of a method—the
state read and written during the execution of that method—may be expressed in terms of
regions. Effects are useful when determining whether code can be reordered by a refactoring,
and are also necessary to support the analyses that verify the @Unique and @RegionLock

annotations.

Declaring effects

The effects of a constructor or method are declared using the @RegionEffects annotation:

@RegionEffects("reads readTarget1, ... ; writes writeTarget1, ... ")

Specifically, the annotation contains reads and writes clauses that each have a list of one or
more targets. The reads clause describes the state that may be read by the method/constructor;
the writes clause describes the state that may be read or written by the method/constructor.
Because writing includes reading, there is no need to list a target in the reads clause if its
state is already described in the writes clause.

Both the reads and the writes clauses are optional: to indicate that there are no effects
use @RegionEffects("none"). An unannotated method is assumed to have the annotation
@RegionEffects("writes All") which declares that the method could read from or write
to anything in the heap. A target is an extrinsic syntactic mechanism to name references to
regions, and can be one of

• Region or this:Region. Region is a region of the class containing the method. The
method affects the named region of the receiver object.

• param:Region. param is a parameter of the method that references an object. Region
is a region of the class of param’s type. The method affects the named region of the
object referenced by param at the start of the method’s execution.

• pkg.C.this:Region. pkg.C is an “outer class” of the class that contains the annotated
method. That is, the method being annotated is in class D, and D is an inner class of
C. Region is a region of class pkg.C. The method affects the named region of the given
outer class receiver.

• any(pkg.C):Region. pkg.C is a class name and Region is a region of pkg.C. This
target indicates that the method affects the given region of any object of class pkg.C.

• pkg.C:Region. Region is a static region of class pkg.C. The method affects the given
static region.

The analysis checks that the actual effects of the method implementation are no greater than
its declared effects. There are several fine points to this:

• Uses of final fields produce no effects.

• Effects on local variables are not visible outside of a method/constructor.
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• Effects on objects created within a method are not visible outside of a method.

• Constructors do not have to report effects on the Instance region of the newly con-
structed object.

• Region aggregation (described below) is taken into account.

Here is a simple “variable” class with effects annotations:

@Region("public Value")
public class Var {
@InRegion("Value")
private int value;

@RegionEffects("none")
public Var(int v) {
value = v;

}

@RegionEffects("reads Value")
public int getValue() {
return value;

}

@RegionEffects("writes Value")
public void setValue(int v) {
value = v;

}
}

A.2.1 Effects and constructors

A constructor that accesses state protected by a locking model may also be verified by checking
whether the declared write effects of the constructor are included in the effect @RegionEf-

fect("writes Instance"). The constructor must also be annotated with a declaration that
it does not start any threads: @Starts("nothing") (see Section A.4 for further information
about this annotation). Such a constructor cannot pass a reference to the new object to a
preexisting thread because it does not write to any objects that existed prior to the invocation
of the constructor. It can write a reference to the new object to other objects created during
execution of the constructor, but because it cannot start any threads, such a reference cannot
be read by another thread.

Here is an example, which, was used to specify and verify much of Doug Lea’s util.concurrent
library [73] (for which @Unique("return") or @Borrowed("this") could not be used because
of aliasing of this into a private field):

@Region("public Variable")
@RegionLock("VarLock is lock_ protects Variable")
public class SynchronizedVariable implements Executor {
protected final Object lock_;

@RegionEffects("writes nothing")
@Starts("nothing")
public SynchronizedVariable() { lock_ = this; }
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...
}

public class SynchronizedLong extends SynchronizedVariable
implements Comparable, Cloneable {

@InRegion("Variable")
protected long value_;

@RegionEffects("writes nothing")
@Starts("nothing")
public SynchronizedLong(long initialValue) {
super();
value_ = initialValue;

}
...

}
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A.3 Unshared fields

Any reference-typed field, not just arrays, can be declared to be @Unique. Furthermore,
state aggregation allows any region of the uniquely referenced object to be aggregated into a
region of the referring object (subject to certain well-formedness rules that ensure the region
hierarchy is preserved).

A.3.1 Borrowed references

When an object is passed as a parameter to a method, an alias to that object is created.
Thus, if strictly enforced, a unique field can never be passed as a parameter to a method,
even as the receiver! But if a method is known to not create any additional aliases to the
object, then a unique field may safely be passed as a parameter because it is guaranteed
that the method will restore the uniqueness of the field. However, the method is not allowed
to directly or indirectly make use of the unique field used as the parameter because the
field is not unique within the dynamic scope of the method [21]. A parameter (including
the receiver) is declared to be borrowed by annotating the parameter as @Borrowed. To
declare that the receiver is borrowed, we annotate the method with @Borrowed("this"). To
declare that a constructor does not alias the object under construction, we annotation it with
either @Unique("return") or @Borrowed("this") (which are defined to be equivalent for
constructors).

Consider method C.copyInternalArray():

public class C {
private Object[] myArray;
...
@Borrowed("this")
public void copyInternalArray(@Borrowed Object[] array) {
for (int i = 0; i < array.length; i++) {
array[i] = this.myArray[i];

}
}

}

Because the method declares that its receiver is borrowed, it may be invoked on C objects
referenced through @Unique fields. It may also be passed references to arrays referenced by
@Unique fields. Here it is easy to see that no aliases to this or to array are created, but, in
general, this is a property that is easily violated, and a separate set of analyses from those
used to verify locking are used to check that @Unique fields and @Borrowed variables are used
correctly.

A.3.2 Supporting borrowed with method effects

As explained above, when a method is passed, the value of a unique field as the actual to a
borrowed parameter, the method is not allowed to access the unique field. Analysis looks to
the effects of the methods to determine if the method could possibly read the forbidden field.
Thus, if a method has borrowed parameters, it is usually necessary to declare the methods
effects as well.
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Consider the class Var:

class Var {
private int value = 0;

@Borrowed("this")
public void set(int v) { value = v; }

@Borrowed("this")
public int get() { return v; }

}

It’s obvious that we can declare the receiver to be borrowed for the two methods. If we never
actually use a unique field as the receiver, then we do not need to declare the effects of the
methods:

class VarClient {
private Var v1 = new Var();
private Var v2 = new Var();

public void doStuff() {
v1.set(1);
v2.set(2);
...
v1.set(v2.get()+3);

}
}

If instead field v1 were annotated with @Unique, then analysis would need to know that it is
not possible for set() to read the field v1 when v1 is used as the receiver. Here it is obvious
that it cannot, but in cases where the invoked method retrieves objects from collections or
other global object pools, it is not so clear. We must explicitly declare the effects of set()

to allow the uniqueness analysis to verify the call (we also declare the effects of get() for
completeness):

class Var {
private int value = 0;

@Borrowed("this")
@RegionEffects("writes this:Instance")
public void set(int v) { value = v; }

@Borrowed("this")
@RegionEffects("reads this:Instance")
public int get() { return v; }

}
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A.4 Thread effects

Thread effects can be used to verify that method or constructor does not start any threads.
The @Starts("nothing") promise states that the method never causes a new thread of
execution to start. Consider the example:

class C {
@Starts("nothing")
public C() {
m();
...

}

@Starts("nothing")
private void m() { ... }

}

The code above illustrates the modular nature of the @Starts("nothing") promise. Because
the constructor promises @Starts("nothing") so must the m method and the constructor for
Object (the superclass of C). We assume that java.lang.Object has been annotated (via
XML) so that class C will verify.
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A.5 Scoped promises

Scoped promises are promises that act on other promises within a static scope of code. Two
types of scoped promises are supported by the tool: @Promise to avoid tedious user annotation
and @Assume to support team modeling. Note that scoped promises are still experimental in
JSure, however, it is possible to use @Promise in models. We will not describe @Assume any
further.

The simplest example of the use of @Promise is to change the default for a class. So
instead of writing

class Example {
private int value = 0;

@Borrowed("this")
public void set(int v) { value = v; }

@Borrowed("this")
public int get() { return v; }

}

you would write

@Promise("@Borrowed(this)")
class Example {
private int value = 0;

public void set(int v) { value = v; }

public int get() { return v; }
}

Notice that the payload promise within the scoped promise has the same syntax as the
original annotation except that the quotation marks are removed. So @Borrowed("this") is
changed to @Borrowed(this) when used as the payload for a scoped promise.

In the form shown in the example above @Promise places the payload promise on every
declaration in the class where the payload promise makes sense. In the example above, this
is all methods and constructors within the Example class. It is possible to be more specific
by providing an explicit target.

@Promises({
@Promise("@Starts(nothing) for new(**)"),
@Promise("@Unique(return) for new(**)"),
@Promise("@Borrowed(this) for get*(**)"),

})
class Example2 {
...

}

In the example above a @Starts("nothing") and @Unique("return") annotation are
placed on all the constructors in the Example2 class using the explicit target new(**). A
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@Borrowed("this") annotation is placed on all methods within the Example2 class that have
names that start with “get” (e.g., getValue()) and have any number of parameters of any
type.
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A.6 Programmer vouches

It is possible for a programmer to vouch for any inconsistent analysis result within a scope
of code. This is done with the @Vouch annotation. The scope of this annotation matches
the scope of the declaration where the annotation appears. This means that any inconsistent
result within that scope will be changed to a consistent result. Its use is for documentation
and to quiet overly conservative analysis results.

Use of the @Vouch annotation is trusted, i.e., it is not verified by analysis. The annotation
requires a brief programmer explanation for the vouch being made.

In the example code below an init method is used to set state, perhaps due to an API
restriction about using constructors, and then CentralControl instances are safely published.
An @Vouch annotation is used to explain that the init method needs to be an exception to
the lock policy.

@Region("private ControlRegion")
@RegionLock("ControlLock is lock protects ControlRegion")
public class CentralControl {

private final Object lock = new Object();

@InRegion("ControlRegion")
private String f_id;

@Vouch("Instances are thread confined until after init(String) is called.")
public void init(String id) {
f_id = id;

}

public String getId() {
synchronized (lock) {
return f_id;

}
}

public void setId(String value) {
synchronized (lock) {
f_id = value;

}
}

}

In the example code below a @Vouch annotation is used to explain that the SmokeTest

class is test code that is intended to have inconsistent verification results.

@Vouch("Test code that is intentionally inconsistent with models")
public class SmokeTest extends ... {
...

}
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Appendix B

Extended Backus-Naur form

This appendix presents a concise overview of the extended Backus-Naur Form (XBNF) syntax
notation presented by Muchnick in [83]. In XBNF terminals are written in typewriter font
and nonterminals are written in italic font. Nonterminals are written using the same case
conventions as Java classes (i.e., MethodDecPat). A production consists of a nonterminal
followed by “Ð→”. The symbol “ε” represents the empty string of characters. The XBNF
operators are listed in the table below.

Symbol Meaning∣ Separates alternatives
{ } Grouping[ ] Optional∗ Zero or more repetitions
+ One or more repetitions& One or more repetitions of the left operand

separated by occurrences of the right operand

The operators “*”, “+” and “&” all have higher precedence than concatenation which has
higher precedence than “∣”. The curly braces and square brackets act as grouping operators.
All operators are written in the ordinary text font. If the same symbols appear in typewriter

font then they are terminal symbols.

As an example consider a simplified Java method declaration (no modifiers, throws clause,
or body) assuming Identifier, TypeName, and MethodName are properly defined for Java.

FormalParams Ð→ { TypeName Identifier } & ,

MethodDec Ð→ { void ∣ TypeName } MethodName
( [ FormalParams ] ) ;
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Appendix C

Glossary

This appendix consolidates and defines noteworthy terms and acronyms used within this
dissertation. Definitions are followed by Internet links to further information.

abductive reasoning Abduction is a method of logical inference introduced by Charles
Sanders Peirce which comes prior to induction and deduction for which the colloquial
name is to have a hunch. Abductive reasoning starts when an inquirer considers of
a set of seemingly unrelated facts, armed with an intuition that they are somehow
connected. The term abduction is commonly presumed to mean the same thing as
hypothesis; however, an abduction is actually the process of inference that produces a
hypothesis as its end result. http://en.wikipedia.org/wiki/Abductive_reasoning

AST Abstract Syntax Tree is a tree representation of the abstract, i.e., simplified, syntax
of a program used for semantic program analysis. http://en.wikipedia.org/wiki/

Abstract_syntax_tree

analysis-based verification An automatic property-oriented proof-based program verifi-
cation approach. Analysis-based verification enables assurance of useful mechanical
properties about programs with respect to programmer provided models of design in-
tent, i.e., specifications, expressed by promises about the program. The dominant
design consideration for any analysis-based verification system is adaptability by prac-
ticing programmers. JSure is prototype tool implemented within the Eclipse Java IDE
that performs analysis-based verification.

dependent Dependent drops in drop-sea depend upon evidence, for their truth, of deponent
drops allowing drop-sea to serve a truth maintenance role.

deponent A deponent is defined to be one who gives evidence. Deponent drops in drop-sea
provide evidence for the truth of dependent drops allowing drop-sea to serve a truth
maintenance role.

disjunctive normal form In boolean logic, a disjunctive normal form (DNF) is a stan-
dardization (or normalization) of a logical formula which is a disjunction of conjunctive
clauses. As a normal form, it is useful in automated theorem proving. A logical formula
is considered to be in DNF if and only if it is a disjunction of one or more conjunctions
of one or more literals. http://en.wikipedia.org/wiki/Disjunctive_normal_form

http://en.wikipedia.org/wiki/Abductive_reasoning
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://en.wikipedia.org/wiki/Disjunctive_normal_form
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drop-sea The proof management system use by our JSure prototype tool. Drop-sea manages
the results reported by “plug-in” program analyses and automates the proof calculus
developed in Chapter 2 to produce verification results based upon these findings.

Eclipse Java IDE The Eclipse Java Integrated Development Environment is an open source
Java software development environment. JSure is a “plug-in” to this tool. Eclipse is an
open source community, whose projects are focused on building an open development
platform comprised of extensible frameworks, tools and runtimes for building, deploying
and managing software across the lifecycle. http://www.eclipse.org/

EJB Enterprise JavaBeans is the server-side component architecture for Java Platform, En-
terprise Edition (Java EE). EJB technology enables rapid and simplified development of
distributed, transactional, secure and portable applications based on Java technology.
http://java.sun.com/products/ejb/

eAST Eclipse-based Java Abstract Syntax Tree. The AST produced by the Eclipse Java
IDE for program analysis and refactoring. This tree “leans” toward a concrete syntax
and can parse many illegal Java compilation units (e.g., programs that will not type
check).

fAST Fluid IR-based Java Abstract Syntax Tree. A Java AST represented in the Fluid IR
designed for program analysis. This tree is very abstract to simplify analysis and will
not accept illegal Java compilation units.

Fluid project Fluid is a research project led by Dr. William L. Scherlis at Carnegie Mellon
University (with collaboration from a team led by Dr. John Boyland at the Univer-
sity of Wisconsin–Milwaukee). The project is focused on creating practicable tools
for programmers to assure and evolve real programs. The work focuses on “mechan-
ical” program properties that tend to defy traditional testing and inspection regimes.
http://www.fluid.cs.cmu.edu/

Fluid IR The Fluid Internal Representation models general purpose data using an enhanced
version of the standard ternary representation: unique identifiers, attributes, and values.
The enhancements made to the standard ternary representation include (1) ultra–fine-
grained tree-structured versioning, (2) abstraction to structured entities such as trees
and directed graphs, and (3) persistence. The Fluid IR is used within the JSure tool
to represent programs as a “forest” of fASTs, it is also used to model flow graphs of
program control flow, bindings from a use to a definition/declaration, annotations of
programmer design intent, analysis results, etc..

Hasse diagram A Hasse diagram is a simple picture of a finite partially ordered set, form-
ing a drawing of the transitive reduction of the partial order. A point is drawn for
each element of the poset, and line segments are drawn between these points with an
implied upward orientation. http://en.wikipedia.org/wiki/Hasse_diagram http:

//mathworld.wolfram.com/HasseDiagram.html

IDE An Integrated Development Environment is a software program that provides compre-
hensive facilities to programmers for software development tasks. An IDE normally
consists of: a source code editor, a compiler and/or and interpreter, build automation
tools, a debugger, and an integrated version control system. http://en.wikipedia.

org/wiki/Integrated_development_environment

http://www.eclipse.org/
http://java.sun.com/products/ejb/
http://www.fluid.cs.cmu.edu/
http://en.wikipedia.org/wiki/Hasse_diagram
http://mathworld.wolfram.com/HasseDiagram.html
http://mathworld.wolfram.com/HasseDiagram.html
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment


225

JAR a Java ARchive file aggregates many files into one. Software developers generally
use .jar files to distribute Java applications or libraries, in the form of classes and
associated metadata and resources (text, images, etc.) JAR files build on the ZIP file
format. Computer users can create or extract JAR files using the jar command that
comes with a JDK. They can also use zip tools to do so. http://en.wikipedia.org/

wiki/JAR_(file_format)

JDK The Java Development Kit is a Sun Microsystems product aimed at Java developers.
Since the introduction of Java, it has been by far the most widely used Java SDK. On
17 November 2006, Sun announced that it would be released under the GNU General
Public License (GPL), thus making it free software. This happened in large part on
8 May 2007 and the source code was contributed to the OpenJDK. http://openjdk.
java.net/

Java EE Java Platform, Enterprise Edition is an industry standard (with multiple commer-
cial and open source implementations) for enterprise Java computing. http://java.

sun.com/javaee/

JSure A prototype tool implemented within the Eclipse Java IDE that performs analysis-
based verification.

KSLOC 1,000 source lines of code, or kilo-source lines of code. KSLOC is a software metric
used to measure the size of a software program by counting the number of lines in the
text of the program’s source code. http://en.wikipedia.org/wiki/Source_lines_

of_code

proof management The manipulation of formal proofs and proof fragments, i.e., lemmas,
as data structures.

proposed promise A specification, including an assertion and code location, for a promise.
These promises typically are used to express preconditions for analysis results. A pro-
posed promise may or may not exist as a real promise.

promise A program annotation mechanism to express extra-linguistic design intent within
code for use by automatic analysis tools introduced by Chan, Boyland, and Scherlis
in [26]. Each promise within a program expresses an assertion about that program’s
behavior. Promises provide a concrete specification language for analysis-based verifi-
cation. Promises have precise meaning and are modular in the sense that the implemen-
tation constraint on a program by any promise is limited in scope—avoiding a complete
program (i.e., closed-world) assumption which would limit the utility of analysis-based
verification.

promise logic An intuitionistic propositional logic where a proposition represents the con-
sistency of a promise about a program with respect to that program’s implementation.
Promise logic allows us to symbolically reason about the consistency of promises.

real promise A promise explicitly expressed by the programmer. A real promise exists as
an annotation to code or as an XML specification of an annotation to code.

red dot A visual metaphor used in the JSure user interface to indicate a contingency in the
verification of a promise. The red dot is a metaphor that the programmer has signed
in blood that the contingency is met with respect to the program being analyzed.

http://en.wikipedia.org/wiki/JAR_(file_format)
http://en.wikipedia.org/wiki/JAR_(file_format)
http://openjdk.java.net/
http://openjdk.java.net/
http://java.sun.com/javaee/
http://java.sun.com/javaee/
http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Source_lines_of_code
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sound combined analyses An approach to analysis-based verification through which re-
sults of diverse low-level program analyses can be combined in a sound way to yield
results of interest to software developers.

top (⊺) A formula in promise logic that stands for tautology. In logic, a tautology is a
formula which is true in every possible interpretation. http://en.wikipedia.org/

wiki/Tautology_(logic)

truth maintenance Maintaining traceability from antecedents to consequents. When an
antecedent is removed, the affected consequents can be identified without the necessity
to regenerate the proofs.

util.concurrent Refers to the java.util.concurrent package added via JSR-166 to Java
5. The package contains a library of useful, well-tested, concurrency components
that are useful when building concurrent applications in Java. The library was orig-
inally released by Doug Lea as EDU.oswego.cs.dl.util.concurrent and was de-
scribed in [73]. While JSR166 has completed and is a now final approved JCP spec,
the expert group remains involved in incremental improvements and changes to the
java.util.concurrent package and related classes and packages. http://gee.cs.

oswego.edu/dl/concurrency-interest/index.html

XBNF The Extended Backus-Naur Form syntax notation presented by Muchnick in [83]. A
concise overview of the XBNF syntax notation is presented in Appendix B.

XML The Extensible Markup Language is a set of rules for encoding documents electroni-
cally. XML’s design goals emphasize simplicity, generality, and usability over the Inter-
net. It is a textual data format, with strong support via Unicode for languages of the
world. http://en.wikipedia.org/wiki/XML

http://en.wikipedia.org/wiki/Tautology_(logic)
http://en.wikipedia.org/wiki/Tautology_(logic)
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://en.wikipedia.org/wiki/XML
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