
Error Reporting Logic

Ciera Jaspan∗ Trisha Quan∗
Jonathan Aldrich∗

June 2008†

CMU-ISR-08-120

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

†Originally written April 2008
∗School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

This work was supported in part by NSF grant CCF-0546550, DARPA contract HR00110710019, the Department
of Defense, Army Research Office grant number DAAD19-02-1-0389 entitled “Perpetually Available and Secure In-
formation Systems”, the Software Industry Center at CMU and its sponsors, especially the Alfred P. Sloan Foundation,
and a fellowship from Los Alamos National Laboratory.



Keywords: first order logic, specification, error messages, error reporting



Abstract

When a system fails to meet its specification, it can be difficult to find the source of the error and
determine how to fix it. In this paper, we introduce error reporting logic (ERL), an algorithm and
tool that produces succinct explanations for why a target system violates a specification expressed
in first order predicate logic. ERL analyzes the specification to determine which parts contributed
to the failure, and it displays an error message specific to those parts. Additionally, ERL uses a
heuristic to determine which object in the target system is responsible for the error. Results from a
small user study suggest that the combination of a more focused error message and a responsible
object for the error helps users to find the failure in the system more effectively. The study also
yielded insights into how the users find and fix errors that may guide future research.





forall conn : ORMConnector |
forall comp : Component |
forall p : Port in comp.ports |
(attached(conn.caller, p) ->
declaresType(comp, Data) and
declaresType(p, DataPort))

Figure 1: Sample Acme Specification

1 Introduction
Many specification languages are based upon first-order predicate logic. This is a very natural route
to take for specifications; it provides a concise, expressive, and well-understood way for describing
system-level details. Examples of such specification languages in recent literature include Acme,
SCL, and Alloy [4, 8, 9]. In each of these languages, FOPL-based specifications constrain a system,
and a tool produces errors when there is an inconsistency between the specifications and the system.
The error messages produced by these systems generally fall into three categories:

• Specification identifier. Under this mechanism, the tool produces an error message that states
which specification failed. The user must read the specification and manually analyze the
system to determine which part of the system broke the specification.

• Human generated message. This mechanism attempts to provide the user with an intuitive
understanding of the specification. The specification writer makes a generic summary about
what the specification is checking, and this is used as the error message. The user can then
use take message as a guide to understand the general problem.

• Hybrid systems. Some tools also hybridize the two mechanisms; they will use a human
generated error message if it exists, but they will fall back on a specification identifier.

These mechanisms work very well for specifications that are short and have an obvious point of
failure. However, they do not work well for complex specifications, such as the Acme specification
shown in Figure 1. By Acme standards, this is a medium sized specification. It has 3 levels of
quantification, a very small inner predicate, and it only calls pre-defined atomic predicates.

If the user must read the specification itself, they can quickly become lost in the details of the
specification. There is no way to tell which sub-predicates in the specification failed, so the user
must check each one. The user also doesn’t know which objects in the system caused this failure.

Even if the specification writer provided an error message, this would not necessarily help a
user. An error message would tell us the purpose of the specification, and this might help us look
for bad patterns of behavior in our system. However, it still does not tell is which predicate failed
or which object in our system caused the failure.

In Figure 1, the user would have to check the entire system for conformance to the specification.
What we would really like is an error message that says:

myPort must declare the type DataPort since
myConn.caller is attached to myPort

Error reporting logic (ERL) provides an automated way for creating error messages such as the
one above. ERL presents each failing point as a unique error. To do this, it singles out only the
failing predicates and assigns responsibility of the error to a specific object in the system.

1



Figure 2: The Web System in AcmeStudio

In this paper, we will provide four contributions related to error messages from FOPL-based
specifications:

• We present a user study that provides several insights into how users examine errors to find
the root cause of the problem and how users attempt to fix the error. Primarily, we found that
users see an error message as a single task which they must resolve, they only use keywords
to find the problem rather than reading anything in depth, and they frequently rely on pattern
recognition to find and fix errors. (Section 2)

• We present ERL, a system for automatically generating error messages from an existing
specification based on first-order predicate logic. Section 3 will show how the ERL handles
each of the specifications from the user study, and Section 6 shows how the implementation
of ERL performs with MDS, the most complex architectural specification built with Acme.

• We have implemented ERL as a reusable component and have integrated it within AcmeStu-
dio. The integration was relatively straightforward and required only a small amount of work
to change the error messages. Section 4 provides implementation and integration details.

• During the user study, the same participants also used ERL. In section 5 we describe how
the users reacted to the new error messages. Three of the four participants benefited from
the ERL error messages. The remaining participant did not benefit, but was not hindered, by
the error messages.

Throughout this paper, we will use the Acme specification language (and AcmeStudio, the
graphical interface and checker for Acme) as our examples. AcmeStudio allows developers to view
a graphical representation of an architecture. While the developers can access and edit the Acme
code behind the graphical view, it is typically not used. AcmeStudio displays the architecture using
component connector diagrams which can be edited entirely through a user interface. A sample
diagram for an architecture is shown in Figure 2.

If an architecture fails to meet a specification, a red error triangle appears at the place where
the specification was defined, as shown in Figure 2. This is not necessarily the component which is
causing the failure. If the specification was defined at the system level, rather than the component
level, then no error triangle appears.

2



Table 1: Participants
ID Configuration

1
Configuration
2

A Web + ERL Build
B Web Build + ERL
C Build + ERL Web
D Build Web + ERL

In Acme, a software architect can choose to associate a handwritten error message to each
specification. If the specification fails, for any reason, AcmeStudio displays the error message and
a link to the specification code, in addition to the graphical indicator of the error. If the architect
did not provide a default error message, then AcmeStudio displays only the link to the specification
code. Since the architect can only write one message for the entire specification, the error message
is typically about the general purpose of the specification.

2 How users find specification errors
We ran a small user study of AcmeStudio to determine how users fix errors, with and without ERL
attached. The four participants had several months of classroom experience with AcmeStudio. The
participants were told that the study was about usability in AcmeStudio and how developers find
and fix errors; they were not told that the error messages were changed until after the main part of
the study.

We provided the participants with two sets of Acme specifications, and we created an architec-
ture for each which broke several of the specifications. The participants were asked to fix all the
errors in the architectures.

Each participant used both sets of specifications, and each participant used AcmeStudio with
and without ERL attached. Participants were each assigned a different configuration in a different
order, as shown in Table 1.

The seeded errors were approximately equivalent in both systems. We created 5 categories
of specifications, as detailed in Table 2. Each system contained a broken specification from each
category, and they were approximately the same level of difficulty to find and fix.

While Acme supports hand written error messages, they are infrequently used in practice, and
we did not include them in the user study. The participants either received a message from ERL, or
they received the name of the specification which broke. In both systems, the specification source
was easily available by double-clicking on the error. The specifications were written in a style
familiar to Acme users, and we only used atomic predicates of Acme which our users were already
familiar with.

• binary relations such as <, >, and ==.
• size(l) to get the size of a list l.
• attached(o1, o2) to test if o1 is directly attached to o2.
• declaresType(o, t) to test if o declares the type t.

3



Table 2: Broken specifications
Type of error How broken in the

given architecture
Example specification from the user study

Simple contains atomic
predicates and at most 1
universal quantifier

The atomic fails
once

rule atLeastOneAttachedRole =
size(self.ATTACHEDROLES) >= 1;

Conjunction contains at
least 1 conjunction of
atomics and at most 2
quantifers

Both parts of the
conjunction fail in
one instance

rule hasInAndOut =
(exists p:Port in self.PORTS |
declaresType(p,ORMPort)) and
(exists p:Port in self.PORTS |
declaresType(p,dataProvider));

Quantification contains
at least 2 quantifiers

The specification
fails for two
instances

rule ResultsOnly =
forall comp:DeployResults in self.COMPONENTS |
forall p:inputPort in comp.PORTS |
declaresType(p, resultsPort);

Disjunction contains at
least 1 disjunction and at
most 1 quantifer

Both parts of the
disjunction fail in
one instance

rule usingXMLRoles =
forall r:Role in self.ROLES |
declaresType(r, XMLReceiverRole) or
declaresType(r, XMLProviderRole);

Other may contain any
other predicate and one
universal quantifiers1

The predicate
under test fails
once.

rule compilingIsOutput =
forall p:Port in self.PORTS |
declaresType(p, compilePort) ->
declaresType(p, outputPort);

2.1 Results from the control
We will start by looking at how the participants fixed errors in the control system. This provided
several insights into problems users have with the existing error reporting mechanisms, including
problems which ERL solves and problems for future work. In this section, we will look at trends
we saw when participants from our user study used the original version of AcmeStudio. Later, in
Section 5, we will see how ERL helped several users find the root cause of the error.

With each of the errors, all of the participants used the graphical cues as a starting point. Of
the five specifications, only four had graphical cues; one rule was defined at the system level and
therefore had no graphical cue. Participants B investigated these errors early on and decided to
come back to them later because he could not easily find the location of the error.

The next step participants took was to read the specification source. When participants did
this, they typically did not fully read the specification, but rather scanned it for keywords such
as type names. When they flipped back to the architecture, they looked for a place where there
were objects with those types all near each other. They would then investigate this area of the

1BuildFamily had a failing implication, and WebFamily had a failing existential

4



architecture thoroughly to determine whether something was “obviously wrong”. The participants
read the specification for the content it was checking for only when they could not find the problem
through other means.

Participant D did attempt to read the specification to find an error, but soon ran into difficulties.
The participant was working on the conjunction erro from Table 2 and quickly read through the
specification. The participant noted that there were two parts to this specification and said

“Does it tell me which side is failing?... Nope, no help.”
The participant then spent several minutes trying to understand the specification and reviewing the
architecture around the error location. This participant became more frustrated at this point, asking

“But which part of the error is failing? It would be nice to see which part is failing so
I don’t have to parse it.”

The final major technique participants used to find the error was pattern matching. They would
start noticing the patterns of how architectural elements were laid out and then check other ele-
ments to see if they conformed to the same pattern. In some cases, participants would believe they
had found a problem that didn’t actually exist, or they would find a problem that was different
from the one they believed they were after. Upon finding any inconsistent patterns, the participant
would attempt to make them identical.

This worked best if the participant understood the cause of the error before looking at the
good example, or at least figured out the problem while they were looking at the example. If the
participant did not understand the cause of the error, they could accidentally believe the correct
example was actually the incorrect one. This problem occurred with the quantification errors from
Table 2 since the participants could not tell which elements cause the failure.

Participant C used this technique quite frequently during the control part of the study. This par-
ticipant made four comments about this during the study, usually comparing himself to a monkey:

“Doing like a monkey, trying to match patterns...”
In several cases, Participant C found the inconsistency and fixed the error without ever knowing
what the problem was.

2.2 Expectations for ERL
Based on the information from our user study, we believe that error systems must:

• Direct users to the likely cause of the error, rather than the location where the specification
is defined

• Assist users by including relevant keywords and excluding irrelant ones
• Focus users on the part of the error they need to fix
• Provide users with examples that correctly pass the specifications
As we will see in the next section, ERL helps an error reporting system with 3 of the 4 ob-

jectives above. We leave the last task, providing users with examples, for future work, as it is not
clear whether this will help users or possibly misdirect their attention.

5



M.text(Γ, declaresType(a, b), false , true ) = Γ(a) + “ must declare the type” + Γ(b)

M.text(Γ, attached(a, b), false , true ) = Γ(a) + “ must be attached to” + Γ(b)

M.text(Γ, equals(a, b), false , true ) = Γ(a) + “ must be equal to” + Γ(b)

M.text(Γ, equals(a, b), true , true ) = Γ(a) + “ must not be equal to” + Γ(b)

M.text(Γ, equals(a, b), false , false ) = Γ(a) + “ is equal to” + Γ(b)

M.text(Γ, equals(a, b), true , false ) = Γ(a) + “ is not equal to” + Γ(b)

Figure 3: Sampling of atomic messages for Acme

3 Error Reporting Logic
In this section, we will use the error messages ERL produced for the study examples in Table 2
to explain how ERL breaks down specifications to include only the relevant information about an
error. For each example, we will also look at the relevant ERL rule. The judgments for ERL are in
the form

M, Γ ` p ↪→ S

which is read as “Given the oracle M and context Γ, the predicate p produces the set of errors S”.
Γ is a context that maps a unique variable name to a host-specific object. By host, we are

referring to any FOPL-based specification system that uses ERL, such as Acme.
The oracle M is provided by the host specification system. The oracle provides answers to

queries about atomic predicates, that is, a predicate which has some host-specific semantics. Our
concept of an oracle is based on the concept of the oracle used in testing and [12]. In ERL, the
oracle can be queried for the following:

• evaluate(Γ, a) evaluates whether the atomic predicate a is true, given the context provided
in Γ.

• items(Γ, e) retrieves a list of objects for a quantifier, given some host-specific expression e.
• text(Γ, p, isNegative, isDeontic) gets the message for the predicate p, give the context Γ.

When p is an atomic predicate, this message is host-specific. We list a sampling of messages
defined by the Acme oracle in Figure 3. If isNegative is true, we must negate the message.
If isDeontic is true, the oracle produces a message in deontic mode (“a must be equal to
b”), while if it is false, the message is stated as a fact (“a is equal to b”).

The set S is a set of pairs (r, m) where m is the error message and r is the responsible object,
a host-specific object that ERL will blame the error on. Notice that for a single specification, the
algorithm can produce multiple error messages, and each error message has its own responsible
object. It is possible for the responsible object to have no value, represented in our rules as •. In
this situation, the host specification system may use its default assignment.2

The predicate p may be any first order logic predicate. ERL currently works for conjunction,
disjunction, implication, negation, universal quantification, and existential quantification. Other
first-order connectives, such as exclusive disjunction or unique quantification, can be added to

2Acme assigns the error to the object which defined the specification; this is the self object in the example
specifications.

6



ERL, but higher order predicates are not supported. Predicates also include any atomic predicates
that are defined by the host specification system. Atomics may be nested if the host system allows
it, but ERL treats the entire predicate as an atomic and will not descend into it.

3.1 Simple Specifications
For the simple error shown in Table 2, ERL produces the error message:

The size of interData1.AttachedRoles must be greater than or equal to 1.
As the specification has only an atomic predicate, this was produced by directly querying the

oracle for the truth of this statement and the error message. The message is stored in the error set.
At the atomic level, we do not yet know which object will be “responsible” for this failure, so this
is left as • for now. Section 3.4 will show how this is filled in.

M.evaluate(Γ, a) = true

M,Γ ` a ↪→ φ

M.evaluate(Γ, a) = false

M,Γ ` a ↪→ {(•,M.text(Γ, a, false , true ))}

3.2 Splitting errors
We would like to focus the user onto only the problems they need to fix and make each “fix task”
independent. To do this, we will split errors upon evaluating a conjunction. By doing this, the
conjunction error from Table 2 produced two error messages in the user study:

There must exist a p in SectionData.Ports such that p declares the type dataProvider.
There must exist a p in SectionData.Ports such that p declares the type ORMPort.

The ERL rule that produces these errors simply evaluates each side independently and produces
two distinct errors. After the split, the messages may even have two different responsible objects.
Each error represents a correction that the user must make in order to meet the specification.

M,Γ ` p1 ↪→ S1 M,Γ ` p2 ↪→ S2

M,Γ ` p1 ∧ p2 ↪→ S1 ∪ S2

3.3 Joining errors
When the user attempts to fix the disjunction error in Table 2, they are working on a single task.
Therefore, ERL shows a single error message. While the message can be lengthy, it contains all
the keywords which a user might need to fix the error.

DataModelReceiver0 must declare the type XMLReceiverRole or DataModelReceiver0
must declare the type XMLProviderRole

This message was created by the ERL rule for joining messages on a disjunction failure. Notice
that if we have already split the error on both sides, we must rejoin all the splits into a single error
message. This does mean that the error messages are much longer, but they are also specific to

7



the task at hand. As an alternative to joining, if the specification system has hierarchical error
reporting, ERL could create sub-errors and tell the user to fix one sub error.

M,Γ ` p1 ↪→ φ M, Γ ` p2 ↪→ S

M,Γ ` p1 ∨ p2 ↪→ φ

M,Γ ` p1 ↪→ S M, Γ ` p2 ↪→ φ

M,Γ ` p1 ∨ p2 ↪→ φ

M,Γ ` p1 ↪→ {(r11,m11), . . . , (r1k,m1k)}
M,Γ ` p2 ↪→ {(r21,m21), . . . , (r2j ,m2j)} k ≥ 1 j ≥ 1

M,Γ ` p1 ∨ p2 ↪→ {(•, m11 + “ and ” + . . . + “ and ” + m1k+
“ , or ” + m21 + “ and ” + . . . + “ and ” + m2j)}

3.4 Assigning a responsible object
For a given failure, ERL uses a heuristic to determine which object in the system is at fault for the
error. The heuristic states that the error should be assigned to the object bound in the nearest uni-
versal quantifier. Additionally, universal quantifiers split errors, so for the quantifier specification
in Table 2, we get two messages:

InputT3 must declare the type resultPort.
(Responsible object is InputT3.)
InputT4 must declare the type resultPort.
(Responsible object is InputT4.)

M.items(Γ, L) = φ

M,Γ ` ∀x ∈ L . p ↪→ φ

M.items(Γ, L) = {o1, . . . , on}
M,Γ[x 7→ o1] ` p ↪→ S1 . . . M,Γ[x 7→ on] ` p ↪→ Sn n ≥ 1 (x fresh in Γ)

M,Γ ` ∀x ∈ L . p ↪→ {(o1, e) | (•, e) ∈ S1} ∪ {(r, e) | (r, e) ∈ S1 ∧ r 6= •}
∪ . . .∪

{(on, e) | (•, e) ∈ Sn} ∪ {(r, e) | (r, e) ∈ Sn ∧ r 6= •}
Notice that if a failing predicate does not use the variable defined by the innermost quantifier, the

responsible object may not appear in the error message (see Figure 4). A simple normalization of
the specifications can fix this problem by examining both sides of a conjunction and pulling up a
sub-predicate that does not reference the variable declared by the most recent quantifier.3 Figure 4
shows how a problem specification can be normalized to fix this problem.

If there was no universal quantifier surrounding the failing predicate, it is possible for ERL to
return errors which do not have a responsible object. Since there are no universal quantifiers, the
variables must either have been introduced by an existential or be pre-defined. In this case, ERL
uses the default responsible object that would have been used by the host system. Acme defaults
to the object which defined the specification, the self object, since this is the only known object.

3This problem does not occur with disjunction or implication because the sub-predicate that does not reference the
variable will still appear in the same error message. Due to splitting, this is only a problem with conjunction.

8



Before normalization:
forall x in {A} |
forall y in {A,B} |

exists z in {C,D} |
x = y and passingAtomic(x,y,z)

After normalization:
forall x in {A} |
forall y in {A,B} |

x = y and
exists z in {C,D} |
passingAtomic(x,y,z)

Error message: A must be equal to B
Responsible object without normalization: C
Responsible object with normalization: B

Figure 4: Normalization required

Universal quantifiers make a clear case for when splitting is important. Consider a specification
which quantifies over a list of 100 elements, and 10 of these elements cause a failure, possibly
failing in different ways. Instead of a single error, ERL will produce 10 errors. Each error would
be associated to a distinct object, and the error messages themselves would be different forms if
the specification failed in different ways for each variable binding.

3.5 Relying on current state
In most cases, ERL creates error messages in the deontic mode and describes a correction that the
user must make to for the specification to be correct. However, ERL must sometimes describe
the current state of the system to the user, such as in the rules for implication and existential
quantification. In the rules for implication, ERL provides the user with information about how the
error was triggered.

For the other error in Table 2, ERL produces:
outputT0 must declare the type outputPort since outputT0 declares the type compile-
Port.

ERL produced this by asking the oracle for the text on the left side of the implication stated as a
fact rather than as an instruction.

M,Γ ` p1 ↪→ φ M, Γ ` p2 ↪→ φ

M,Γ ` p1 =⇒ p2 ↪→ φ

M,Γ ` p1 ↪→ S1 M,Γ ` p2 ↪→ S2 S1 6= φ

M,Γ ` p1 =⇒ p2 ↪→ φ

M,Γ ` p1 ↪→ φ M, Γ ` p2 ↪→ S S 6= φ

M,Γ ` p1 =⇒ p2 ↪→ {(r, e + “ since ” + M.text(Γ, p1, false , false )) | (r, e) ∈ S}

9



The rules for the existential quantifier also takes advantage of this message form. Like disjunction,
exists must join the current error sets. While this results in a relatively longer message, it contains
only the keywords that the user needs.

M.items(Γ, L) = {o1, . . . , on}
M,Γ[x 7→ o1] ` p ↪→ S1 . . . M,Γ[x 7→ on] ` p ↪→ Sn S1 = φ ∨ . . . ∨ Sn = φ

n ≥ 1 (x fresh in Γ)
M,Γ ` ∃x ∈ L . p ↪→ φ

M.items(Γ, L) = φ (x fresh in Γ)
M,Γ ` ∃x ∈ L . p ↪→ {(•, “There exists no ” + x
+ “ such that ” + M.text(Γ, p, false , false ))}

M.items(Γ, L) = {o1, . . . , on}
M,Γ[x 7→ o1] ` p ↪→ S1 . . . M,Γ[x 7→ on] ` p ↪→ Sn S1 6= φ ∧ . . . ∧ Sn 6= φ

n ≥ 1 (x fresh in Γ)
M,Γ ` ∃x ∈ L . p ↪→ {(•, “There exists no ” + x
+ “ such that ” + M.text(Γ, p, false , false ))}

3.6 Negation
ERL handles negation predicates separately from the other predicates. If simply we print out
“not”, or an equivalent negative, anytime we see the predicate, we can introduce ambiguity and
double (or more!) negatives. During normalization, ERL pushes not predicates inward to atomic
predicates, and it requests that the oracle provide a reasonable negation messages for atomics. As
most atomic messages are a single phrase, we have pushed the negatives down to a level where
they are unambiguous and understandable.

M.evaluate(Γ, a) = false

M,Γ ` ¬a ↪→ φ

M.evaluate(Γ, a) = true

M,Γ ` ¬a ↪→ {(•,M.text(Γ, a, true , true )}

4 Implementation of ERL
We implemented the ERL rules in Prolog, and we provided a Java wrapper and interface for the
oracle. For a system to use ERL, it must be able to transform its specifications into the types
defined by ERL, and it must provide an implementation of the oracle.

We implemented a transformer and oracle for AcmeStudio. The ERL addition to Acme re-
quired 139 LOC for the transforming functionality, and 643 LOC for the oracle. Of the lines of
code for the oracle, 486 LOC were only for generating messages for atomic predicates and retriev-
ing the names of elements in Γ. Acme utilizes all of the rules described in Section 3.

10



5 User study results
As discussed in Section 2, we ran a small user study where each participant attempted to fix errors
in two Acme architectures. The users were provided with ERL for one of the two architectures.
Both architectures contained 5 failing specifications, as described in Table 2, and ERL expanded
these into 7 distinct errors due to splitting from conjunctions and universal quantifiers. The qual-
itative data suggests that ERL is helpful for many users, particularly for complex specifications.
When it was not helpful, it did not misdirect or otherwise hinder users.

5.1 Results by type of error
For the simple errors, users did not receive any additional benefit from ERL. The graphical indica-
tors were already in the correct place in the control configuration, and the specification was short
enough that users could quickly find the problem. The errors were also fairly obvious from the rule
names. Users almost always went directly to the cause and guessed what the problem was without
reading the error message, so ERL did not help or hinder in this case.

One problem we noted was that fully qualified names in error messages confused participants.
Upon seeing a qualified name, participants became “shell-shocked” by the number of words, so
we have removed this from ERL. The graphical indicators already point the user to the location
of the objects, so there should be little information lost. The participants in this study did receive
error messages with fully qualified names, and we expect that this change would have improved
the overall results.

As expected, ERL was much more helpful for conjunction errors. Participant D, who made
several comments about not knowing which side of a conjunction was failing during the control
portion of the study, was clearly helped by the ERL error messages. When using ERL, this same
participant read the error message for the conjunction failures and fixed both errors in approxi-
mately three minutes.

The results of the disjunction error were surprisingly mixed. While we expected the wordiness
to bother participants, participants A and D strongly preferred the ERL error message to using the
system without ERL. When participant D initially opened the second system, he expressed concern
that the errors were going to be as difficult to fix as before:

“Ugh, it’s all typecheck [errors] still...”
After examining a few error messages, the participant chose to start with the disjunction error and
fixed it within a few minutes by doing what the error message suggested. Upon seeing the error go
away, the participant commented:

“So, this seems like not too much thought.”
Participant C found that the error message was “not at all helpful”, though participant B did not
find any of the error messages helpful.

ERL appeared to help participants A, C, and D when fixing errors that came from failing
existentials and failing implications. In particular, ERL helped clear up confusion about variable
bindings. In the control part of the study, Participant A was slightly confused by the “other”
specification in Figure 2. The participant believed that two different ports had to be a compile port
and an output port. Participant A read the specification and examined the seemingly correct system

11



several times before finally realizing the confusion. When participant C encountered this error
with the ERL message instead, the participant did not even have the opportunity to be confused.
The ERL error message replaced the variable p with the specific port name outputT0, and the
participant clearly understood that this port had to be both an output port and a compile port. The
only time participants saw variables in the error messages was when then encountered a failure
from an existential. Participant D did not appear to be bothered by this, while participant A would
jump to the source to understand the error better.

The true test of ERL was the quantification errors. These errros were generally the hardest
to fix as they were the most complex, they were declared at the system level, and they failed in
two places in the architecture. For these errors, ERL was clearly an improvement over the control
system. In the control, participants narrowed down their search by reading the specification, but
they still had problems after that. In the Build example, there were four objects that were being
quantified over, and participants had to carefully inspect each one. They discovered the problem
by carefully exploring each of the four objects and noticing that two were slightly different. Then
they went back to the specification, determined which set of two objects were causing the problems,
and corrected them. However, participant C believed that the correct connectors were the incorrect
ones, and accidentally “fixed” the wrong connectors! The participant realized the mistake after the
tool did not remove an errors when rechecking the system. The ERL errors were clearly helpful in
these cases, and participants appeared less frustrated during their search for the root cause.

5.2 Participant impressions of the ERL messages
After the users fixed the errors in both architectures, they took a post-survey about the error mes-
sages that they saw. Both participants C and D preferred the ERL messages. Participant A believed
the two configurations were very similar and noticed little difference between the error messages.
Interestingly, this participant used and was clearly helped by the error messages during the study.
The error messages were possibly unobtrusive enough that the difference did not register to the
user given all the other features of AcmeStudio.

Participant B preferred to just know which specification failed and view the source directly.
However, the participant chose not to read the specification source when using ERL, even though
the source was equally available in both systems. This participant switched quickly between tasks
in both parts of the study and did not appear to spend much time focusing on the errors. The
participant also completed very few tasks during the study and had to be stopped due to time
constraints.

From this qualitative data, we believe that the error messages provided by ERL certainly help
with some kinds of failures, and some users clearly prefer them. In no situations did ERL mis-
inform the users, lead them away from the cause of the error, or otherwise hinder their progress.
In each situation, it either helped or had no affect on their progress towards finding the error,
other than a few seconds to read the message. For this reason, ERL has been put into use within
AcmeStudio.

12



rule rule112 = R2 3(self)
<<label : string = "Rule 2.3: An Actuator may only notify estimators of commands"; >> ;
analysis R2 3(sys : system) : boolean =
(forall compA : ActuatorT in sys.COMPONENTS |
forall pA : CommandNotifReqrPortT in compA.PORTS |
forall compX : Component in sys.COMPONENTS |
forall pX : Port in compX.PORTS | connected(pA, pX) ->
(declaresType(compX, EstimatorT) and declaresType(pX, CommandNotifProvPortT)));

Figure 5: MDS Specification

6 Complex Examples from MDS
The Acme specifications in the case study were created for the purpose of the study, so in this
section we explore how ERL handles a real Acme specification. For this purpose, we will use
the Mission Data System (MDS), one of the most complex architectures specified in Acme. MDS
specifies a state-based reactive control architecture for space systems. More about MDS and its
Acme specification can be found in [3].

What makes MDS so complex is the number of constraints between two or more architectural
elements. In order to express these constraints in Acme, the user needs a universal quantifier for
each element, plus quantifiers over the sub-elements that attach larger elements together. The end
result is that in order to specify a constraint between n elements, we may need 2n quantifications.
For this reason, it is not uncommon for Acme specifications to have four or more quantifiers.

Given the complexity of these specifications, the writers of MDS also added generic error
messages to each specification. In this section, we will compare these generic error messages to
the specific error messages provided by ERL.

Figure 5 is a sample of a specification, and all necessary sub-specifications, from MDS. As
we can see from the error message, this rule checks that only estimators receive commands from
actuators. The specification rule112 calls out to a sub-specification to do the work. If this
specification fails because an Estimator’s port was properly connected, but not of type Command-
NotifProvPortT, the original version of AcmeStudio would give the error message:

Rule 2.3: An Actuator may only notify estimators of commands
Since the rule is defined at the system level, the user would have to investigate every connection
between actuators and other components. To make matters more confusing, the user would prob-
ably look for an Actuator that is connected to something that it not an Estimator, when the real
problem is the port type of the Estimator’s port.

ERL would have produced the error message:4

estPort must declare the type CommandNotifProvPortT since actPort is connected to
estPort.

and would direct the user to estPort, the port on the Estimator which is causing the failure. If this
failure occurred multiple places in the system, then ERL would produce a distinct error for each
failing port.

4The ability to descend into an Acme sub-specification is currently being implemented.

13



Another MDS rule checks that a component does not connect twice to a port on another com-
ponent. Like the previous specification, this specification has several quantifiers and eventually has
an implication that checks whether some ports are connected incorrect. The generic error message
for this rule is:

Rule 10: No two ports of a component should be connected to the same target port.
This does explain the problem that the specification is trying to find, but it doesn’t tell us which
ports are the problem. If a component had two ports, portA and portB that both eventually
connect to otherPort, then ERL would produce the specific error message:

portA must equal portB since portA is connected to otherPort and portB is connected
to otherPort.

Ideally, the user should see both the generic and specific messages. The generic description pro-
vides the user with the specification intent and would help the user understand the system goals.
However, the ERL error message provides actionable guidance for how to fix the current error.

The last MDS example we consider checks that Sensors are in the correct state based upon how
many Estimators are listening for data. The generic message for this rule is:

Rule 4.4: A sensor that it not connected to any estimators should specify that it is
only raw data; if it is connected to more than one estimator, it should specify that it is
informative to more than one.

Of course, only one of these two things could be true at any point; the sensor can not be hooked up
to no estimators and more than one estimator at once. With ERL, not only does the user find out
which sensor is causing the problem, they also find out which predicate is actually breaking and
receive direct guidance on how to fix the error:

mySensor.rawData must equal true since the number of estimators connected to my-
SensorPort is 0.

While the generic messages do help us understand the purpose of the specification and prevent
us from making future errors, they do not help a user find the cause of their error. This is partic-
ularly important for specifications as complicated as MDS; even if the control system using MDS
is small, it is still difficult to parse through the specifications by hand. If the system itself is also
large, the user must spend a great deal of time re-checking parts of the system that are already
correct. The user study and MDS examples show that ERL error messages are a useful addition to
the existing error mechanisms because they help users to find the root cause of the error, even in
complex specifications and large systems.

7 Related Work
Shapiro[12] explored and formalized algorithms for how programmers debug logic programs.
Shapiro’s algorithm for debugging a system with incorrect output is the most similar to the al-
gorithm we have proposed. Like Shapiro, we investigate the sub-predicates for the source of the
error, and we use an independent oracle to determine the correctness of a sub predicate. However,
Shapiro’s algorithm stops at the first failing sub predicate. Our algorithm continues to gather all of
the failure points in the predicate, as well as produces them into a human readable error message.

14



Additionally, ERL uses a heuristic to identify a responsible object for the error so that the user
receives direction on the failing object, not just the failing specification.

There is a large body of work on messages for typing errors (summarized in [7]). The research
which uses program slicing [14] to find the causes of type errors [2, 6, 13] is the closest to ERL.
Program slicing is a technique for analyzing which parts of a program are involved in computing
the value of a variable at a particular program point. By analogy, ERL can be viewed as an approach
for analyzing which parts of a specification and a model result are responsible for causing the
specification to fail on that model. Rather than following data- and control-dependencies in a
program, our approach analyzes how the truth of a logical specification depends on the truth of its
parts.

Another system for describing typing errors, Seminal [11], uses a similar mechanism as ERL
for separating the error-generation system from the checker itself. Seminal also treats the checker
as an oracle of knowledge and will break down expressions into sub-expressions in order to find
the root cause of a typing error. Upon finding the root cause, Seminal searches for similar sub-
expressions that will typecheck, and it suggests the “best” similar sub-expression to the user as
an alternative. However, the sub-expression produced by Seminal may not be the sub-expression
the user actually wants, and may then mislead the user. While ERL does not currently provide
a correct alternative, it also does not provide the user with misleading information. As the two
systems provide different kinds of information, we expect that using both techniques would be
beneficial for users.

ESC/Java uses an error reporting mechanism that also aims to provide the user with a failure
point and a directed error message [10]. However, the error reporting mechanism is inherently
different from ERL because ESC/Java’s checks that the specifications hold true universally as a
set, while tools such as Acme check that individual specifications hold true. Since ESC/Java’s
specifications must hold true together, the theorem prover can not break apart the specifications
and check them individually the way ERL’s oracle does. It is the oracle’s ability to analyze sub-
predicates of the specification that allow ERL to find the root cause of the error and provide the
directed message. For ESC/Java, [10] can not find the root cause of the error, but it does display
the point where the theorem prover found a counter-example to its proof. To show the user how it
got into this bad state, the ESC/Java error generator creates a trace based upon labels it leaves in
the logical predicates.

ESC/Java also has slightly different goals from ERL due to the way their users fix errors. The
work on ESC/Java attempts to generate fewer errors and condense them; ESC/Java produce one
error for each method rather than one error for each failing path. ERL attempts to do the opposite; it
splits the errors at every opportunity. This difference makes sense when we consider how the users
find and fix these errors. A user of ESC/Java works on the entire method and considers the whole
problem one error. On the other hand, a user of Acme regards multiple failures from a universal
quantifier as different errors. While the errors were all generated by the same specification, they
are about different parts of the system and likely are not related.

The model checking community has also investigated error reporting [5]; the work which is
closest to ours is that of [1]. The goals stated in [1] are very similar to the ones we present; they
look to get at the cause of an error trace from a model checker, rather than the symptom. When

15



they determine the cause of the error, they then produce one error trace for each cause and generate
separate error traces for each cause. The main hindrance is that, like the work with ESC/Java, it is
difficult to treat a model checker as an oracle because it can not analyze sub predicates individually.
Ball et al. proposes a heuristic for the problem by using correct traces to narrow down the problems
in the failing traces. This heuristic does allow for a model checker to be treated in a fashion similar
to our oracle, but it does require that enough correct traces exist to guide it.

8 Conclusion
We have presented error reporting logic (ERL), a system for automatically generating error mes-
sages from first-order predicate logic. ERL presents a user with a precise error message by auto-
matically analyzing the specification to select only the predicates involved in the failure. Addition-
ally, it uses a heuristic to assign fault to a particular object so that the user is directed to the point
of failure.

Our user study shows that users were helped by the ERL error messages in certain cases,
particularly in errors from conjunction, disjunction, and universal quantification predicates. ERL
provided users with an indication of the source of the error and specific instructions about how to
fix the error. When ERL did not help, it also did not mislead the users. This is a large improvement
over the control system which did not provide the users with any specific guidance. While general
guidance is useful for preventing future problems and providing knowledge for the user, it does not
help the user fix the current problem.

The user study also provided some interesting insights into how users find the root cause of the
error. In particular, we found that users frequently scan any text for keywords that will lead them to
the cause of the error, and they only read text for content if they are stuck or want to confirm their
suspicions. During the study, participants also vocalized concern about not knowing which parts
of the specification was failing. Finally, we found that participants fell back to pattern matching
when they could not be helped through other mechanisms. ERL addressed all the issues we saw
except providing a “good” pattern to follow.

While ERL is certainly useful for Acme and similar specification systems, we anticipate that
it will have greater benefit in more complex specification systems. Systems which require more
complex logical connectives can easily extend the ERL concepts of splitting and joining errors to
produce more useful error messages. ERL may also prove beneficial for systems where specifi-
cations are globally distributed by pinpointing only the relevant parts of the global specification.
We look forward to seeing how other specification systems may be able to extend the concepts
presented in ERL.

References
[1] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom to cause: localizing

errors in counterexample traces. In Principles of programming languages, 2003.

16



[2] V. Choppella and C.T. Haynes. Diagnosis of ill-typed programs. Technical Report 426,
Indiana University, 1994.

[3] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks. Software architecture themes in JPL’s
Mission Data System. IEEE Aerospace Conf. Proc., 7:259–268 vol.7, 2000.

[4] David Garlan, Robert Monroe, and David Wile. Acme: an architecture description inter-
change language. In Conf. of the Centre for Advanced Studies on Collaborative research,
1997.

[5] Alex Groce and Willem Visser. What went wrong: Explaining counterexamples. In 10th Intl.
SPIN Workshop, 2003.

[6] Christian Haack and J. B. Wells. Type error slicing in implicitly typed higher-order languages.
Sci. Comput. Program., 50(1-3):189–224, 2004.

[7] B.J. Heeren. Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht, The Nether-
lands, 2005.

[8] D. Hou and H.J. Hoover. Using SCL to specify and check design intent in source code. Trans.
on Software Eng., 2006.

[9] Daniel Jackson. Alloy: a lightweight object modelling notation. Trans. Softw. Eng.
Methodol., 2002.

[10] K. Rustan M. Leino, Todd Millstein, and James B. Saxe. Generating error traces from
verification-condition counterexamples. Sci. Comput. Program., 2005.

[11] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers. Searching for
type-error messages. In Programming language design and implementation, pages 425–434,
2007.

[12] Ehud Y. Shapiro. Algorithmic program diagnosis. In 9th Principles of programming lan-
guages, 1982.

[13] F. Tip and T. B. Dinesh. A slicing-based approach for locating type errors. Trans. Sfw. Eng.
Methd., 10(1):5–55, 2001.

[14] Mark Weiser. Program slicing. Trans. Software Engineering, July 1984.

17


	1 Introduction
	2 How users find specification errors
	2.1 Results from the control
	2.2 Expectations for ERL

	3 Error Reporting Logic
	3.1 Simple Specifications
	3.2 Splitting errors
	3.3 Joining errors
	3.4 Assigning a responsible object
	3.5 Relying on current state
	3.6 Negation

	4 Implementation of ERL
	5 User study results
	5.1 Results by type of error
	5.2 Participant impressions of the ERL messages

	6 Complex Examples from MDS
	7 Related Work
	8 Conclusion

