
Total Correctness Type Refinements for
Communicating Processes

SIVA KAMESH SOMAYYAJULA

CMU-CS-24-108

May 2024

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee
Frank Pfenning, Chair

Robert Harper
Karl Crary

Brigitte Pientka, McGill University

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Copyright © 2024 Siva Kamesh Somayyajula

This research was sponsored by: HRL Laboratories, LLC under award number
17090181689USPOLINE15; the Defense Advanced Research Projects Agency under award
number HR00112020006; the National Science Foundation under award number CNS1446725;
and the Algorand Foundation under award number 1031489. The views and conclusions
contained in this document are those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.



Keywords: process calculus, type refinements, type-based termination, dependent types,

correctness, futures, proof theory

1



Abstract

Process calculi are language-based formalisms for investigating software systems with

concurrent and/or parallel behaviors. In particular, reasoning about the correctness of

such systems can be carried out by proving theorems in a program logic tailored to said

behaviors. In sequential functional programming, the celebrated Curry-Howard corre-

spondence interprets logical propositions as types—sets of correct program states—so

that a proof of a proposition can be identified as a well-typed and, therefore, correct pro-

gram. With enough expressive power, type systems in this tradition can collapse the

distinction between programming language and program logic.

Due to this singular advantage, much effort has been devoted to realizing this corre-

spondence for process calculi. What remains elusive is a system with dependent types,

analogous to logical quantification over process components, that accommodates rich

schemes of terminating recursion. In fact, the tension between recursion and logical con-

sistency has traditionally led to design shortcomings and complications in the sequen-

tial functional setting. Yet, typability in such a system would imply total correctness: a

high-water mark of formal verification where interacting processes are guaranteed to ter-

minate in a desirable state. Thus, many have advocated for establishing total correctness

2



3

by a decomposition into partial correctness—correctness oblivious to termination—and

termination on its own. Type refinement systems, which can encode such properties on

top of an existing type system, satisfy the desideratum for orthogonality implied by this

decomposition.

The primary contributions of this thesis are two type refinement systems such that

typability of the same process in both establishes its total correctness: sized type refine-

ments determine the termination of mixed inductive-coinductive processes, whereas de-

pendent type refinements verify partial correctness—even in the presence of general re-

cursion. The secondary contribution of this thesis is a design regime based on proof the-

ory. Starting with a simply-typed asynchronous process calculus based on the intuitionis-

tic semi-axiomatic sequent calculus, the design and metatheory of these type refinement

systems begin with a novel variation of bidirectional typing to manage the structural

presence of refinements, reaching for infinitary proof theory to integrate recursion. We

demonstrate the utility of both type refinement systems by building up to an idealized

model of verified asynchronous reactive programming.



Acknowledgements

It takes a village to raise a grad student. I thank my advisor and other committee members

for not only developing me as a scientist but also instilling in me a research worldview

based on proof-theoretic maximalism that finally scratched that itch. I also owe an un-

payable debt of gratitude to my friends and family, whose encouragement and support

over the years inspired me to start my doctorate, stick with it, and get me across the finish

line when the time finally came. I am resisting the temptation to reference names and

places — those who know, know.

4



Contents

1 Introduction 10

2 The Semi-Axiomatic Sequent Calculus Redux 17

2.1 Judgmental Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Syntax and Bidirectional Typing . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Logical Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Phase Change: Subsumption and Definition Calls . . . . . . . . . . . 28

2.2.3 Cut, Snips, and Identity . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.4 Typing Summary and Metatheory . . . . . . . . . . . . . . . . . . . . 31

2.3 Operational Metatheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Configuration Reduction and Typing . . . . . . . . . . . . . . . . . . 35

2.3.2 Syntactic Type Soundness . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Index Refinements 46

3.1 Judgmental Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5



CONTENTS 6

3.2 Property Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Property Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Typing Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Sized Type Refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Equirecursive Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Recursive Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Typing Summary and Metatheory . . . . . . . . . . . . . . . . . . . . 63

3.4 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.1 Semantics of Recursive Types . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.1 Index Refinements for Session Types . . . . . . . . . . . . . . . . . . . 73

3.5.2 Sized Types and Inference . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.3 Sized Types and Termination Checking for π-calculi . . . . . . . . . . 75

3.5.4 Infinitary Proof Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Dependent Refinements 77

4.1 Judgmental Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Syntax and Bidirectional Typing . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 The Assertion Logic of Axioms . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Axioms as Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.3 Snips as Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.4 Subsumption as Consequence . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.5 Positive Left Rules as Conditionals . . . . . . . . . . . . . . . . . . . . 83



CONTENTS 7

4.2.6 Negative Right Rules as Hoare-style Data Abstraction . . . . . . . . . 85

4.2.7 Recursive Processes and Invariants . . . . . . . . . . . . . . . . . . . . 87

4.2.8 Typing Summary and Metatheory . . . . . . . . . . . . . . . . . . . . 91

4.3 Type Soundness and Observable Partial Correctness . . . . . . . . . . . . . . 94

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Language-Based Verification, Concurrency, and Parallelism . . . . . 98

4.4.2 Dependent and Embedded Session Types . . . . . . . . . . . . . . . . 99

4.4.3 Dependent Call-by-Push-Value . . . . . . . . . . . . . . . . . . . . . . 100

5 Modelling Asynchronous Reactive Programming 101

5.1 Signal Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Sized Type Refinements for Causality . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Verifying Recursive Refinements . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusion and Future Work 113

Bibliography 115



List of Figures

2.1 SAX Judgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 SAX Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Correspondence between Bidirectional Typing and Proof Normal Forms . . 33

2.4 SAX Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 SAX Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 SAX Configuration Reduction and Principal Cut Reduction . . . . . . . . . . 36

2.7 SAX Configuration Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 IRSAX Judgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 IRSAX Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 IRSAX Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 IRSAX Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 IRSAX ∞ and ω Syntax: Recursive Types and Processes . . . . . . . . . . . . 55

3.6 IRSAX ∞ Type Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 IRSAX ∞ Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 IRSAX ∞ Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.9 IRSAX ω Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8



LIST OF FIGURES 9

3.10 IRSAX ω Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.11 IRSAX Configuration Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.12 IRSAX Configuration Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 DRSAX Judgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 DRSAX Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 DRSAX Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 DRSAX Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Correspondence between Hoare Logic and DRSAX . . . . . . . . . . . . . . 94

4.6 DRSAX Configuration Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 DRSAX Configuration Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 95



Chapter 1

Introduction

The expressive power of a programming language arises from its strictures and not

from its affordances. — Robert Harper

Language-based models of concurrency and parallelism inform the development of safe

and compositional programming language constructs internalizing aspects of both. They

involve, at minimum, a process calculus paired with a semantics for process execution. Rea-

soning about system correctness, then, is a matter of proving certain theorems in a program

logic that can discuss process dynamics.

Representing processes and their execution themselves as logical phenomena is an

area of active research. It is not only an interesting theoretical exercise—logical properties

also tend to translate to desirable language-theoretic results. For example, intuitionistic

linear logic can be read as a session type discipline that guarantees deadlock freedom for

message-passing processes [CP10, PP21]. To that end, [WCPW04] identify two paradigms

for developing core languages with respect to a logical theory T, a formula ϕ in T, and a

10



CHAPTER 1. INTRODUCTION 11

proof P of ϕ:

formulas-as-processes proofs-as-processes

process ϕ P

operational semantics construction of P reduction of P

program logic metalogic for T T

While formulas-as-processes typically demands a separate metalogic to reason about

correctness, proofs-as-processes implies formulas are types according to the Curry-Howard

correspondence. One can view ϕ as compositionally specifying the set of process states

that are correct for the system in question. As a result, a proof of ϕ is a process that can

only inhabit these states, obviating the need for ad hoc metalogical reasoning.

In the analogous paradigm for functional programming, dependent types are the gold

standard, allowing types to directly index on program states encountered at runtime by

analogy to logical quantification. For example, the dependent function type (x : A) →

B(x), corresponding to universal quantification over the domain A, classifies functions

whose codomain B(x) varies based on the exact value of the input x. As a result, de-

pendent session types [TCP11] were introduced to allow session types for message-passing

processes to index on objects communicated. In a retrospective article [TCP21], the au-

thors note that no contemporary dependent session type system supports both of the

following critical features at once:

• Type dependency: with the exception of [TY18], systems are restricted to index depen-

dency [XP99], where domains of quantification (A from above) are not types, but



CHAPTER 1. INTRODUCTION 12

index domains from a separate logical theory. This precludes type dependency on

processes or, equivalently, on references to the primitives with which they commu-

nicate. That being said, [TY18] does not formally consider recursion.

• Expressive terminating recursion: only [SP22] considers nested finite and infinite be-

haviors classified by mixed inductive-coinductive types, but does not go beyond index

dependency.

The primary contribution of this dissertation is a process calculus with both features. In

their presence, typing implies total correctness—a high-water mark for formal verification.

In other words, a system is guaranteed to terminate in a state satisfying its specification by

virtue of typechecking. That being said, traditional dependent type systems for functional

programming tend to entangle termination checking with correctness reasoning to ensure

type soundness [CSW14], which is prohibitive in the presence of expressive recursion for

which termination is non-trivial to demonstrate.

On the other hand, Hoare logic for sequential programs is not only oblivious to the

scheme of recursion (induction, coinduction, etc.), but also to termination itself, establish-

ing partial correctness while maintaining logical consistency [Hoa69]. Interestingly, treat-

ing termination orthogonally in the static analysis of processes has already been advo-

cated by Kobayashi and Sangiorgi [KS08]. As a result, we aim for a solution that fits the

following decomposition:

total correctness = termination + partial correctness



CHAPTER 1. INTRODUCTION 13

In other words, we must give two separate type systems for the same process calculus such

that typability in both establishes termination and partial correctness. Thus, we must

take an extrinistic view of typing [Rey00] where neither system leaves a syntactic foot-

print at the level of processes, allowing them to operate orthogonally. We begin with

type refinements [FP91, XP99], which differ from “traditional” dependent type systems by

being extrinsic and intentionally not committing to the theory of βη-equivalence of pro-

grams to effect typechecking. Rather, membership in a type can be made contigent on the

satisfaction of an assertion from an external logical theory. This affords some flexibility:

the theory in question can be restricted to hide intensional properties of programs (per-

haps something weaker than βη-equivalence) or extended as needed for domain-specific

verification. We exploit both aspects to solve the equation above as follows:

total correctness type refinements =

sized type refinements + dependent type refinements

Sized type refinements [SP22] utilize index refinements over the theory of arithmetic to

subsume the capabilities of sized type systems for termination checking in the functional

setting [HPS96]. On the other hand, dependent type refinements appeal to a certain first-

order theory that is expressive enough to encode defunctionalized [Rey72] higher-order

process dynamics.

The secondary contribution of this dissertation is our design methodology: a strict

adherence to proof theory. First, we base our development on SAX, a process calculus



CHAPTER 1. INTRODUCTION 14

derived from the Curry-Howard interpretation of the intuitionistic semi-axiomatic sequent

calculus [DPP20]. Aside: choosing intuitionistic SAX postpones dealing with the inter-

action between session type linearity and dependency to the future work. Rather than

to effect algorithmic typechecking, we then exploit the existing convention of presenting

type refinement systems bidirectionally [PT00, JV21] to determine the shape of types and

their typing rules in the presence of assertions augmenting the judgmental structure. In

particular, we view SAX as an intermediate point between (bidirectional) natural deduc-

tion and the (unidirectional) sequent calculus. Then, recursion both at the level of types

and processes is treated uniformly using infinitary proof theory [Sch77]. The contents of

this dissertation are outlined below.

• Chapter 2 introduces SAX and its bidirectional type system following [SP23]. In

anticipation of the following two chapters, we prove syntactic type soundness as

well as termination of an operational semantics of process configurations commu-

nicating via futures [Hal85]. The latter is a consequence of the fundamental theo-

rem of a certain Kripke logical relation inspired by models of name-passing calculi

[Plo73, BHN14].

• Chapter 3 introduces Index Refined SAX (IRSAX), which extends SAX with property

types (index refinements) [Dun07] in the style of [DK19].

– As desired, sized type refinements are conceived as a special case of property

types over an arithmetic index domain and uniformly reduce induction, coin-

duction, and mixed induction and coinduction to lexicographic recursion on

sizes/indices.



CHAPTER 1. INTRODUCTION 15

– Mixed induction and coinduction To handle recursive types and processes, we

initially take a mixed inductive-coinductive view of (sub)typing [DA09, DA10],

calling the resulting system IRSAX ∞. Thus, (sub)typing derivations are in-

finitely deep proofs that represent the unfolding of recursion.

– We are then able to give an elegant account of termination: we translate well-

formed (sub)typing derivations to IRSAX ω, which has infinitely wide but

finitely deep (purely inductive) derivations via ω-rules inspired by the infini-

tary proof theory of arithmetic. Our results then follow from a straightfor-

ward extension of the arguments made in Chapter 2. As a sanity check, we

show that (co)inductive types are generated by fixed points of semi-continuous

[CC79, Abe06, LM14] type constructors.

• Chapter 4 introduces Dependent Refined SAX (DRSAX), which extends SAX with

dependent refinements following [SP23] in service of partial correctness reasoning.

– By augmenting the judgmental structure of SAX with Hoare logic-style pre-

and post-conditions, the interaction between bidirectional and infinitary typing

pays in dividends. First, we reproduce standard path-sensitive and assume-

guarantee reasoning for data types and recursion, respectively. In particular,

the interaction between typing derivation circularity and subsumption uni-

formly treats invariants ((co)inductive hypotheses) for partial recursion. Cu-

riously, bidirectionality also enables us to derive a lightweight mechanism for

the encapsulation of codata, where refinements may hide information about

internal processes.



CHAPTER 1. INTRODUCTION 16

– Syntactic type soundness implies observable partial correctness, based on a proof-

theoretic characterization of observability in SAX, where non-encapsulated data

satisfy their postconditions directly. Moreover, because our operational model

is based on futures and not speculations [Har16, Chapter 38], we are able to

elide a metatheoretic discussion of termination entirely, unlike prior work on

type refinements for lazily-evaulating programs [VSJ+14].

• Chapter 5 is where the rubber meets the road: we use IRSAX and DRSAX to ver-

ify causality, a restricted form of termination, and recursive refinements [VRJ13] for

programs modeled in the paradigm of asynchronous reactive programming, demon-

strating both the practical utility of total correctness type refinements for SAX and

also limitations to be addressed in the future work.

• Chapter 6 closes this dissertation and discusses avenues for said future work.

In short, we evidence the following thesis:

A proof-theoretic investigation of type refinements within the semi-axiomatic sequent

calculus enables the verification of total correctness, decomposed into partial correctness

and termination, for communicating processes.



Chapter 2

The Semi-Axiomatic Sequent Calculus

Redux

So, what is logic actually? Well, if you Google it, you find out it’s a rapper. — Frank

Pfenning

Recall that the primary contribution of this thesis is to produce two type refinement sys-

tems for the SAX process calculus in service of total correctness checking via typability.

In preparation for this goal, this chapter presents the common framework for both sys-

tems: simply-typed SAX and its bidirectional type system due to the author and Pfen-

ning [SP23]. As alluded to in the introduction, like Jhala and Vazou [JV21] in the context

of functional programming, we consider this bidirectional type system to be the canonical

presentation of simple typing for SAX. This convention finally pays off in Chapter 4 when

it significantly simplifies the design space for dependent type refinements. The structure

of this chapter and subsequent ones is as follows.

17



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 18

• In Section §2.1, we introduce the bidirectional semi-axiomatic sequent, adding re-

finements in subsequent chapters. Notably, our approach incorporates backwards

bidirectional typing [Zei15] in addition to the “conventional” forward flow of type

information.

• In Section §2.2, we give formal syntaxes for types and processes and then analyze

their typing rules, also adding refinements in subsequent chapters. At a high level,

axioms are inspired by their counterparts in (bidirectional) natural deduction and

invertible rules are taken directly from the (unidirectional) sequent calculus.

• In Section §2.3, we review the operational semantics of configurations of processes

and the futures with which they communicate. Then, we prove syntactic type

soundness, which we extend to imply observable partial correctness in Chapter 4.

Lastly, we define a certain Kripke logical relation for which its fundamental theorem

establishes termination of configuration reduction, which is a significant simplifica-

tion of the corresponding proofs found in [DPP20, SP22]. In the next chapter, it is

extended to accommodate terminating recursion.

2.1 Judgmental Structure

In this section, we develop the bidirectional semi-axiomatic sequent by recalling the proof

theory of intuitionistic natural deduction and the corresponding sequent calculus. First,

recall that in the sequent calculus, inference rules are either invertible—and can be applied

at any point in the proof search process, like the right rule for implication—or noninvert-



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 19

ible, which can only be applied when the sequent “contains enough information,” like the

right rules for disjunction. Connectives that have noninvertible right rules are positive and

those that have noninvertible left rules are negative [AND92]. The key innovation of the

semi-axiomatic sequent calculus is to make the noninvertible rules axiomatic. Consider

the following right rule for implication as well as the original left rule in the middle that

is replaced with its axiomatic counterpart on the right.

Γ, A ⊢ B
Γ ⊢ A→ B →R

((((((((((((((((Γ, A→ B ⊢ A Γ, B ⊢ C
Γ, A→ B ⊢ C →L Γ, A→ B, A ⊢ B →X

Via the Curry-Howard correspondence, we understand the right rule for implication to

perform function abstraction, whereas the left rule and axiom mean some sort of func-

tion call. To understand the difference in computational behavior between both forms of

application, we need to consider two different readings of the left rule above, leaving the

axiom alone for the moment. To do so, we label the antecedents and succedents in the

rules above with communication endpoints x, y, z, . . . and consider derivations to be pro-

cesses communicating across these endpoints. Caires and Pfenning [CP10] provide one

such labelling, which forces a linear-logical reading of the left rule:

Γ, y : A ⊢ x : B
Γ ⊢ x : A→ B →R

Γ ⊢ y : A ∆, x : B ⊢ w : C
Γ, x : A→ B, ∆ ⊢ w : C →L

Thus, a function is implemented by receiving an argument y along x and later communi-

cating some result along x. As a result, function calls must be synchronous, i.e., must wait

for x to successfully receive y before any further communication (at the risk of out-of-



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 20

order communication along x [DCPT12]). On the other hand, DeYoung et al. (the authors

of op. cit.) provide an alternate labelling:

Γ, y : A ⊢ z : B
Γ ⊢ x : A→ B →R

Γ, x : A→ B ⊢ y : A Γ, z : B ⊢ w : C
Γ, x : A→ B ⊢ w : C →L

In this reading, a new endpoint z is used to communicate the result of the function call,

conferring two benefits:

• Asynchrony: receipt of the argument y along x need not complete before other com-

munication

• Non-linearity: we can now read→L as a rule in ordinary intuitionistic logic because

x and z are distinguished

The final piece in the puzzle is to take asynchrony seriously and, in the function call,

decouple the communication of the argument from the use of the result entirely. From

the point of view of proof theory, this leaves us with the left axiom below.

Γ, x : A→ B, y : A ⊢ z : B →X

Thus, SAX is positioned to be a core calculus for asynchronous communication. In the

futures-based interpretation of SAX, endpoints are addresses of write-once read-many

references called futures. The sequent qua typing judgment takes on the following form:

s : A, . . . , t : B ⊢ P(s, . . . , t, u)÷ (u : C)



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 21

This reads “the process P performs blocking reads from source addresses s, . . . , t and one

non-blocking write to the destination address u,” the latter corresponding to the asyn-

chronous initialization of a future at said address [Hal85], according to types A, B, . . . , C.

To make the jump to bidirectional typing, we first refine the judgmental structure from

above by distinguishing the antecedents from the succedent using arrows⇒ and⇐, re-

spectively, as is typical for sequent calculi:

s⇒ A, . . . , t⇒ B ⊢ P(s, . . . , t, u)÷ (u⇐ C)

Reading this sequent as the specification of an algorithm for typechecking, A, . . . , B, C

would ordinarily all be inputs, corresponding to the checking mode of bidirectional natural

deduction, with the only output being success or failure. This is sufficient for positive

left and negative right rules, which are inherited from the sequent calculus as-is. On the

other hand, we claim that the natural bidirectional reading of axioms comes from natural

deduction, which also has a(n) output/synthesis mode. For example, consider our con-

version of positive conjunction introduction and implication elimination to axioms below,

where⇐ and⇒may also appear on the left- and right-hand sides of the sequent, respec-

tively, as outputs.

Γ ⊢ . . .⇐ A Γ ⊢ . . .⇐ B
Γ ⊢ . . .⇐ A⊗ B ⊗I ⇝

Γ, s⇐ A, t⇐ B ⊢ . . .÷ (u⇐ A⊗ B)
⊗X

Γ ⊢ . . .⇒ A→ B Γ ⊢ . . .⇐ A
Γ ⊢ . . .⇒ B →E ⇝

Γ, s⇒ A→ B, t⇐ A ⊢ . . .÷ (u⇒ B) →X



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 22

In ⊗I, A⊗ B in the conclusion flows to A and B in the premises by having all judg-

ments in input/checking mode. Likewise, in ⊗X, A⊗ B as the succedent in input mode

flows to A and B into the context in output mode. As a result, the directionality of the

arrows is preserved at the expense of some modulation in input/output behavior. Dually,

the top-down flow of A → B to A and B in→E translates to a left-to-right flow in→X.

While seemingly an unexpected novelty, synthesis of types into the context recalls Zeil-

berger’s backwards bidirectional typing [Zei15] for linear natural deduction. To summarize

the current judgmental situation:

⇒ ⇐

antecedent input/checking output/synthesis

succedent output/synthesis input/checking

Finally, to aim for a minimal set of typing rules, the generic succedent is an input,

which is the most general [DK21]. The resulting judgmental structure is in Figure 2.1.

judgments J := s⇒ A | t⇐ A
contexts Γ := · | Γ, J

generic succedent γ := t⇐ C
process typing Γ ⊢ P÷ J

subtyping A ≤ B

Figure 2.1: SAX Judgments

2.2 Syntax and Bidirectional Typing

The syntax for addresses, types, and processes are given in Figure 2.2. Before we de-



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 23

scribe a representative sample of process constructors and their associated typing rules,

we briefly comment on syntax and variable binding conventions below.

• In addition to eager pair (positive conjunction) and function (implication) types,

SAX includes labelled sums (disjunction) and lazy records (negative conjunction).

• As is typical for name-passing calculi [BHN14], addresses are separated into ad-

dress variables and runtime addresses, where the latter may be substituted for the for-

mer. Thus, P(x) indicates that x is free in P whereas P(t) means [t/x]P when x is

unambiguous in context. Process typing contexts freely mixing address variables

and runtime variables departs from other presentations of process calculi where the

latter are sequestered to a separate zone [Har16]. Below, we give the substitution

principle for address variables to clarify this novel syntactic convention.

• Each process constructor corresponds to a judgmental or logical rule in the semi-

axiomatic sequent calculus except for definition calls f (s), which draw from a typed

signature of definitions of the form f
(
x : A

)
= P (x), where · indicates an object

list. Their computational interpretation is justified by principal cut reduction (Fig-

ure 2.6). In this chapter, we impose the restriction that definitions be non-recursive

by inductively generating the typing judgment from its rules. This is relaxed in the

following two chapters when we move to a mixed inductive-coinductive view of

(sub)typing.

Lemma 2.1 (Address Substitution Principle).

• If Γ, x : A ⊢ P (x)÷ γ, then Γ, s : A ⊢ P (s)÷ γ



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 24

• If Γ ⊢ P (x)÷ (x : A), then Γ ⊢ P (s)÷ (s : A)

Proof. By a routine induction.

type A := A+ | A−

pos. type A+ := 1 positive unit
| A⊗ B eager pair
| ⊕ {ℓ : Aℓ}ℓ∈S labelled sum

neg. type A− := A→ B function
| & {ℓ : Aℓ}ℓ∈S lazy record

addresses s, t := x, y, z, . . . address variables
| a, b, c, . . . runtime addresses

value V := ⟨⟩ (1)
| ⟨s, t⟩ (⊗R,→L)
| ℓ · t (⊕R, &L)

continuation K := ⟨⟩ ⇒ P (1L)
| ⟨x, y⟩ ⇒ P(x, y) (→R,⊗L)
| {ℓ · x ⇒ Pℓ (x)}ℓ∈S (&R,⊕L)

storable S := V | K

process P := copy t s copy contents of s to t (identity)
| x ← P (x) ; Q (x) spawn P writing to x, (cut/snip, x bound)

proceed concurrently as Q
| read t S pass V in t to S = K or (left rule)

pass S = V to K in t
| write t S write S to t (right rule)
| f (s) definition call f

(
x : A

)
= P (x)

Figure 2.2: SAX Syntax

2.2.1 Logical Rules

Let us pick up where we left off with eager pairs and functions. The right axiom for posi-

tive conjunction given below types write u ⟨s, t⟩, which writes the pair of addresses ⟨s, t⟩

to u. As we noted before, the bottom-up flow of type information in natural deduction

translates to a right-to-left flow.



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 25

Γ ⊢ . . .⇐ A Γ ⊢ . . .⇐ B
Γ ⊢ . . .⇐ A⊗ B ⊗I ⇝

Γ, s⇐ A, t⇐ B ⊢ write u ⟨s, t⟩ ÷ (u⇐ A⊗ B)
⊗X

The corresponding left rule, read u (⟨x, y⟩ ⇒ P (x, y)), is inherited directly from the

sequent calculus (where all type components are uniformly in input mode) and pattern

matches on the value at u.

Γ, u⇒ A⊗ B, x ⇒ A, y⇒ B ⊢ P (x, y)÷ γ

Γ, u⇒ A⊗ B ⊢ read u (⟨x, y⟩ ⇒ P (x, y))÷ γ
⊗L

The unit for eager pairs, 1, involves the unit value ⟨⟩ and trivial continuation ⟨⟩ ⇒ P

in the same roles as above.

Γ ⊢ write t ⟨⟩ ÷ (t⇐ 1) 1X
Γ, t⇒ 1 ⊢ P÷ γ

Γ, t⇒ 1 ⊢ read t (⟨⟩ ⇒ P)÷ γ
1L

Dually, the left axiom for functions, read u ⟨s, t⟩, stores the result of applying the func-

tion at u to the argument at s in destination t. Once again, the top-to-bottom flow of type

information for implication elimination translates to a left-to-right flow.
Γ ⊢ . . .⇒ A→ B Γ ⊢ . . .⇐ A

Γ ⊢ . . .⇒ B →E ⇝

Γ, u⇒ A→ B, s⇐ A ⊢ read u ⟨s, t⟩ ÷ (t⇒ B) →X

As a result, the right rule for implication, write t (⟨x, y⟩ ⇒ P (x, y)), writes a process

abstracting over an argument x and destination y to t (once again, inherited from the

sequent calculus, requiring all scrutinees to be in input mode).



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 26

Γ, x ⇒ A ⊢ P (x, y)÷ (y⇐ B)
Γ ⊢ write t (⟨x, y⟩ ⇒ P (x, y))÷ (t⇐ A→ B) →R

The following examples develop intuition about their use.

Example 2.1 (Eager Swap). The following definition reads a pair in z and stores the

swapped version in w.

swap(z : A⊗ B, w : B⊗ A) =

read z (⟨x, y⟩ ⇒ writew ⟨y, x⟩)

Example 2.2 (Function Composition). The following definition writes the composition of

functions f then g into h.

comp( f : A→ B, g : B→ C, h : A→ C) =

write h (⟨x, z⟩ ⇒ y← read f ⟨x, y⟩; read g ⟨y, z⟩)

Labelled sums and lazy records follow the same script: both involve tagged values

ℓ · t and case-analyzing continuations {ℓ · x ⇒ Pℓ (x)}ℓ∈S in dual roles, with right and left

axioms respectively flowing type information from right to left and left to right. Then, the

invertible rules are taken directly from the sequent calculus. In particular, lazy records are

also destination-passing by writing the result of projection to t and x.



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 27

Γ, s⇐ Ak ⊢ write t (k · s)÷
(
t⇐ ⊕{ℓ : Aℓ}ℓ∈S

) ⊕X, k ∈ S

{
Γ, t⇒ ⊕{ℓ : Aℓ}ℓ∈S , x : Ak ⊢ Pk (x)÷ γ

}
k∈S

Γ, t⇒ ⊕{ℓ : Aℓ}ℓ∈S ⊢ read t {ℓ · x ⇒ Pℓ (x)}ℓ∈S ÷ γ
⊕L

{Γ ⊢ Pk (x)÷ (x ⇐ Aℓ)}ℓ∈S

Γ ⊢ write t {ℓ · x ⇒ Pℓ (x)}ℓ∈S ÷
(
t⇐ & {ℓ : Aℓ}ℓ∈S

) &R

Γ, t⇒ & {ℓ : Aℓ}ℓ∈S ⊢ read t (k · s)÷ (s⇒ Ak)
&X, k ∈ S

Once again, the following examples develop intuition about their use.

Example 2.3 (Negation I). Let bool ≜ ⊕{true : 1, false : 1}. Then, the following defini-

tion writes the negation of x into y.

negate(x : bool, y : bool) =

read x
{
true · x′ ⇒ write y

(
false · x′

)
, false · x′ ⇒ write y

(
true · x′

)}

Example 2.4 (Lazy Swap). Let A & B ≜ & {fst : A, snd : B}. Then, the following defini-

tion writes a lazy record with the components of z swapped into w.

swap(z : A & B, w : B & A) =

writew {fst · x ⇒ read z (snd · x) , snd · y⇒ read z (fst · y)}



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 28

2.2.2 Phase Change: Subsumption and Definition Calls

Analogous to bidirectional natural deduction, the change of phase from input to output

mode, reading rules from the bottom up, is mediated by subsumption rules≤{R, L}. Note

that the judgmental distinction between the left- and right-hand sides of the sequent re-

quires two rules [LDM06]. The subtyping judgment, A ≤ B, is defined in Figure 2.5. All

rules are standard: positive subtyping is covariant in both components (label sets and

type constituents) whereas negative subtyping is contravariant in the first component

[LDD+22]. Thus, labelled sums and lazy records also enjoy width and depth subtyping

[LDD+22].

A ≤ B Γ ⊢ P÷ (t⇒ A)

Γ ⊢ P÷ (t⇐ B)
≤R

A ≤ B Γ, s⇐ B ⊢ P÷ γ

Γ, s⇒ A ⊢ P÷ γ
≤L

On the other hand, typed process definitions take the place of type annotations, which

would admit changes of phase from output to input mode (once again, reading rules from

the bottom up). Following [LDD+22], a definition call synthesizes the type signature of

its associated definition as long as the definition body checks against it. Because our type

system is inductively generated, typing precludes recursive definitions. This restriction

is relaxed in the following two chapters by way of infinite proofs.

f
(
x : A, y : B

)
= P (x, y) s⇒ A ⊢ P (s, t)÷ (t⇐ B)

s⇐ A ⊢ f (s, t)÷ (t⇒ B)
call



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 29

2.2.3 Cut, Snips, and Identity

Recalling that cut reduction provides a computational interpretation for proof systems,

the process behind the cut rule forms the core of computation with futures in SAX: x ←

P (x) ; Q (x) spawns P to perform a non-blocking write to a newly allocated future ad-

dressed by x while concurrently proceeding as Q, which may perform a blocking read

from x. We give two forms of the cut rule depending on which premise outputs the cut

formula A.
Γ ⊢ P(x)÷ (x ⇐ A) Γ, x ⇐ A ⊢ Q(x)÷ γ

Γ ⊢ x ← P(x); Q(x)÷ γ
snipR

Γ ⊢ P(x)÷ (x ⇒ A) Γ, x ⇒ A ⊢ Q(x)÷ γ

Γ ⊢ x ← P(x); Q(x)÷ γ
snipL

In the absence of definition calls, these rules actually correspond to snips: analytic cuts

[Smu69] where A is a subformula of an axiom’s principal formula found in either the

right- or left-hand side of the cut. While SAX does not admit cut directly, it still does

by reduction to snips, thus establishing the subformula property that implies logical con-

sistency. Insofar as both forms of snip above are not derivable from each other via sub-

sumption, they are also not inter-derivable in the original type system for SAX. Thus, the

bidrectional type system presented in this chapter is, in a technical sense, minimal. The

reader may have noticed an additional departure from the sequent calculus: having type

annotations by way of definition calls separately from an annotated cut rule (where A is

an input in both premises) has an extralogical character. To confirm that we have not lost

any expressive power, we can derive such a rule below.

Example 2.5 (Cut in the Sequent Calculus). The cut rule from the sequent calculus can be



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 30

derived in the following two ways assuming f
(
x : A, y : B, z : C

)
= Q (x, y, z).

s⇒ A ⊢ P (x)÷ (x ⇐ B)

s⇒ A, x ⇒ B ⊢ Q (s, x, t)÷ (t⇐ C)
s⇐ A, x ⇐ B ⊢ f (s, x, t)÷ (t⇒ C)

call

s⇒ A, x ⇐ B ⊢ f (s, x, t)÷ (t⇐ C)
≤ {R, L}

s⇒ A ⊢ x ← P (x) ; f (s, x, t)÷ (t⇐ C)
snip+

or, assuming f
(
x : A, y : B

)
= Q (x, y):

s⇒ A ⊢ Q (s, x)÷ (x ⇐ B)
s⇐ A ⊢ f (s, x)÷ (x ⇒ B)

call

s⇒ A ⊢ f (s, x)÷ (x ⇒ B)
≤ {L}

s⇒ A, x ⇒ B ⊢ P (x)÷ (t⇐ C)
s⇒ A ⊢ x ← f (s, x) ; P (x)÷ (t⇐ C)

snip−

Now, the process corresponding to the identity rule, copy t s, copies the contents of s to t.

Likewise, it comes in two forms depending on the side of the sequent where the principal

formula A is output.

Γ, s⇐ A ⊢ copy t s÷ (t⇐ A)
idR Γ, s⇒ A ⊢ copy t s÷ (t⇒ A)

idL

As before, neither rule is derivable from the other. Moreover, the reader may have

once again noticed our departure from the sequent calculus: usually, subsumption is

“baked into” the identity rule, allowing distinct formulas to be inputs on both sides of

the sequent [DHP18, Theorem 6.1]. While the symmetry with snips is pleasing, we must

comment on whether this design choice removes the path to algorithmic typing. Luckily,

the bidirectional system can be transformed into a (finite) syntax-directed system where

all judgments are in input mode (⇒ on the left and⇐ on the right, like the sequent cal-

culus) such that all apparent occurrences of output mode are met with a subtyping check



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 31

instead, like in the examples above and below. However, we do not dwell on algorithmic

typing as it is complicated by the incorporation of infinite proofs and implicit quantifica-

tion in subsequent chapters, which we discuss en passant. In fact, as above, we can derive

the general identity rule from their combination.

Example 2.6 (Identity in the Sequent Calculus). The general identity rule from the sequent

calculus is given below.
A ≤ B

Γ, s⇒ A ⊢ copy t s÷ (t⇐ B) id

It can be derived in the following two ways:

A ≤ B Γ, s⇐ B ⊢ copy t s÷ (t⇐ B) idR

Γ, s⇒ A ⊢ copy t s÷ (t⇐ B)
≤L

or

A ≤ B Γ, s⇒ A ⊢ copy t s÷ (t⇒ A)
idL

Γ, s⇒ A ⊢ copy t s÷ (t⇐ B)
≤R

2.2.4 Typing Summary and Metatheory

Before we complete this chapter by discussing the futures-based operational metatheory

for SAX, we need to check whether the bidirectional typing presented so far is “the right

one.” Technically, it needs to be sound and complete with respect to the corresponding

non-bidirectional type system, which we establish below.

Definition 2.1 (Non-Bidirectional Typing). Let Γ be a context of judgments J := t : A.

Then, let Γ ⊢ P÷ J be generated by rules identical to those in Figure 2.4, but with (⇒)



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 32

and (⇐) replaced by (:). Note that subtyping is still included and that the snip rules

maintain their distinction as opposed to the identity rules, which collapse into one.

To determine completeness of bidirectional typing, we need the following definition

to bridge the gap between definition calls and type annotation as found in bidirectional

natural deduction.

Definition 2.2 (Unfolding). P′ unfolds to P iff, after a finite number of definition call un-

foldings in P′, P′ is syntactically identical to P.

Theorem 2.1 (SAX Soundness and Completeness of Bidirectional Typing). Let |J| turn

(⇒) and (⇐) to (:). Extending |·| to Γ in the obvious way:

• Soundness: if Γ ⊢ P÷ J, then |Γ| ⊢ P÷ |J| (note that the converse does not hold, e.g., |s⇐

A, t ⇐ B| ⊢ write u ⟨s, t⟩ ÷ |u ⇒ A⊗ B| is derivable but the underlying bidirectional

sequent is not).

• Completeness: if Γ ⊢ P÷ J , then Γ ⊢ P′ ÷ J where |Γ| = Γ, |J| = J , and there exists an

extension of the process definition signature and P′ such that P′ unfolds to P.

Proof. Both are routine inductions on the process typing derivation: soundness “forgets”

bidirectionality whereas completeness requires some more explanation: in natural deduc-

tion, to orient the arrows of the judgments in preparation for the corresponding bidirec-

tional rule, either subsumption or type annotation is used. In our case, we simulate type

annotation of a process subterm by extending the process definition signature with an

auxiliary definition pointing to the subterm. Then, the subterm is replaced by a call to

said definition. Because completeness proceeds by induction, this only happens finitely

many times, as desired by the definition of “unfolding.”



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 33

Aesthetically, we have already shown that our system has a minimal number of (non-

inter-derivable) typing rules. However, we can make an even stronger claim: we have the

“right” system according to Pfenning’s recipe for bidirectional typing [DK21], where we

can draw a correspondence between certain bidirectional typing derivations and proofs

in normal form. This is presented in Figure 2.3.

bidirectional typing natural deduction SAX / sequent calculus
annotation/call-free β-normal cut-free
identity- and subsumption-free η-long identity-free

Figure 2.3: Correspondence between Bidirectional Typing and Proof Normal Forms

To close this section, we tabulate the bidirectional typing presented into Figure 2.4 and

Figure 2.5.



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 34

A ≤ B Γ ⊢ P÷ (t⇒ A)

Γ ⊢ P÷ (t⇐ B)
≤R

A ≤ B Γ, s⇐ B ⊢ P÷ γ

Γ, s⇒ A ⊢ P÷ γ
≤L

f
(
x : A, y : B

)
= P (x, y) s⇒ A ⊢ P (s, t)÷ (t⇐ B)

s⇐ A ⊢ f (s, t)÷ (t⇒ B)
call

Γ ⊢ P(x)÷ (x ⇐ A) Γ, x ⇐ A ⊢ Q(x)÷ γ

Γ ⊢ x ← P(x); Q(x)÷ γ
snipR

Γ ⊢ P(x)÷ (x ⇒ A) Γ, x ⇒ A ⊢ Q(x)÷ γ

Γ ⊢ x ← P(x); Q(x)÷ γ
snipL

Γ, s⇐ A ⊢ copy t s÷ (t⇐ A)
idR Γ, s⇒ A ⊢ copy t s÷ (t⇒ A)

idL

Γ ⊢ write t ⟨⟩ ÷ (t⇐ 1) 1X
Γ, t⇒ 1 ⊢ P÷ γ

Γ, t⇒ 1 ⊢ read t (⟨⟩ ⇒ P)÷ γ
1L

Γ, s⇐ A, t⇐ B ⊢ write u ⟨s, t⟩ ÷ (u⇐ A⊗ B)
⊗X

Γ, u⇒ A⊗ B, x ⇒ A, y⇒ B ⊢ P (x, y)÷ γ

Γ, u⇒ A⊗ B ⊢ read u (⟨x, y⟩ ⇒ P (x, y))÷ γ
⊗L

Γ, x ⇒ A ⊢ P (x, y)÷ (y⇐ B)
Γ ⊢ write t (⟨x, y⟩ ⇒ P (x, y))÷ (t⇐ A→ B) →R

Γ, u⇒ A→ B, s⇐ A ⊢ read u ⟨s, t⟩ ÷ (t⇒ B) →X

Γ, s⇐ Ak ⊢ write t (k · s)÷
(
t⇐ ⊕{ℓ : Aℓ}ℓ∈S

) ⊕X, k ∈ S

{
Γ, t⇒ ⊕{ℓ : Aℓ}ℓ∈S , x : Ak ⊢ Pk (x)÷ γ

}
k∈S

Γ, t⇒ ⊕{ℓ : Aℓ}ℓ∈S ⊢ read t {ℓ · x ⇒ Pℓ (x)}ℓ∈S ÷ γ
⊕L

{Γ ⊢ Pk (x)÷ (x ⇐ Aℓ)}ℓ∈S

Γ ⊢ write t {ℓ · x ⇒ Pℓ (x)}ℓ∈S ÷
(
t⇐ & {ℓ : Aℓ}ℓ∈S

) &R

Γ, t⇒ & {ℓ : Aℓ}ℓ∈S ⊢ read t (k · s)÷ (s⇒ Ak)
&X, k ∈ S

Figure 2.4: SAX Typing



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 35

A ≤ A′ B ≤ B′

A⊗ B ≤ A′ ⊗ B′
≤⊗ A ≤ A′ B ≤ B′

A′ → B ≤ A→ B′
≤→

S ⊆ T {Aℓ ≤ Bℓ}ℓ∈S
⊕{ℓ : Aℓ}ℓ∈S ≤ ⊕{ℓ : Bk}k∈T

≤⊕
T ⊆ S {Ak ≤ Bk}k∈T

& {ℓ : Aℓ}ℓ∈S ≤ & {ℓ : Bk}k∈T
≤&

A ≤ A refl
A ≤ B B ≤ C

A ≤ C trans

Figure 2.5: SAX Subtyping

2.3 Operational Metatheory

In this section, we introduce the operational semantics of SAX in terms of configurations

of processes and the futures with which they communicate. In preparation for the op-

erational metatheory of the subsequent chapters, we establish syntactic type soundness

of configuration typing with respect to configuration reduction as well as termination of the

latter.

2.3.1 Configuration Reduction and Typing

Definition 2.3. Configurations C, . . . are multisets generated by the following grammar.

C := proc P process P

| !future a S future at address a with contents S

| · empty configuration

| C, C ′ union of two configurations

A configuration F is final iff it only contains futures.



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 36

!future a S, proc (copy b a) 7→ !future b S
proc (x ← P (x) ; Q (x)) 7→ proc (P (a)) , proc (Q (a)) (a fresh)
!future a V, proc (read a K) 7→ proc (V ▷ K)
!future a K, proc (read a V) 7→ proc (V ▷ K)
proc (write a S) 7→ !future a S
proc ( f (a)) 7→ proc (P (a)) ( f (x) = P (x))

⟨⟩ ▷ (⟨⟩ ⇒ P) = P (1)
⟨a, b⟩ ▷ (⟨x, y⟩ ⇒ P (x, y)) = P (a, b) (⊗/→)
k · a ▷ {ℓ · x ⇒ Pℓ (x)}ℓ∈S = Pk (a) (⊕/&, k ∈ S)

Figure 2.6: SAX Configuration Reduction and Principal Cut Reduction

Configuration reduction ( 7→) is defined by the multiset rewriting rules [CS06] in Fig-

ure 2.6, which replace any subset of a configuration matching the left-hand side with the

right-hand side; ! indicates objects that persist across reduction. All rules are standard,

with reads being mediated by principal cut reduction V ▷ K, justifying the computational

interpretation of the logical rules from the previous section. Before we elaborate on the

metatheory, we extend non-bidirectional process typing to configurations. The configura-

tion typing judgment Σ ⊢ C ÷ ∆ is inductively generated by the rules in Figure 2.7, which

types the objects in C with sources in Σ and destinations in ∆. The peculiar design of the

proc rule enables Lemma 2.2 in the next subsection.

2.3.2 Syntactic Type Soundness

In preparation for our proof of partial correctness in Chapter 4, which is typically es-

tablished as a corollary of type soundness [JV21], we prove syntactic type soundness



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 37

runtime contexts Σ, ∆ := · | Σ, a : A
A ≤ B extends pointwise to Σ ≤ ∆

Σ ≤ Σ′ Σ′ ⊢ P÷ (a : A′) A′ ≤ A
Σ ⊢ proc P÷ (Σ, a : A)

proc Σ ⊢ proc (write a S)÷ ∆
Σ ⊢ !future a S÷ ∆ fut

Σ ⊢ (·)÷ Σ
empty Σ ⊢ C ÷ Σ′ Σ′ ⊢ C ′ ÷ ∆

Σ ⊢ C, C ′ ÷ ∆
join

Figure 2.7: SAX Configuration Typing

of configuration typing with respect to reduction by a standard appeal to progress and

preservation [WF94]. To simplify our argument, we first restrict the configuration typing

derivations analyzed below.

Lemma 2.2 (SAX Configuration Typing Induction). Without loss of generality, it suffices to

consider configuration typing derivations where:

• Right-to-left induction: every instance of the join rule has exactly one object in the right-

hand configuration, because non-compliant such instances can be reassociated. Thus, in-

duction can begin with the right-most object with the induction hypothesis applying to the

remaining subconfiguration on the left.

• Process typing inversion I: the process typing derivation underneath any instance of the

proc rule ends in a non-subsumption rule, because terminal instances of subsumption can be

absorbed into the proc rule’s subtyping premises using transitivity of subtyping. Thus, in-

version on the typing derivations for processes writing to and reading from the same address



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 38

end in right and left rule instances for the same type constructor, respectively. Because, from

left to right, the writer and readers ascribe said address types A ≤ . . . ≤ B by transitivity

of subtyping. Yet, if A ≤ B, then A and B have the same head constructor (by a routine

induction on the subtyping derivation).

Lemma 2.3 (SAX Progress). If · ⊢ C ÷ ∆ then either C is final or C steps.

Proof. By right-to-left induction.

• If C = ·, then it is trivially final.

• If C = C1, !future a S, then by the induction hypothesis, either C1 is final, in which

case C is final, or C1 7→ C ′1, in which case C 7→ C ′1, !future a S.

• If C = C1, proc P, then by the induction hypothesis, either C1 7→ C ′1, in which case

C 7→ C ′1, proc P, or C1 is final. Then, we proceed by cases of P.

– If P is a cut, write (right rule) or definition call, then C steps by virtue of P.

– If P = copy b a, because !future a S ∈ C1, we have C 7→ C, !future b S.

– If P is typed by a positive left rule, for example P = read c (⟨x, y⟩ ⇒ P1 (x, y)),

then by inversion on the process typing derivation for !future c S ∈ C1, we

have S = ⟨a, b⟩, so C 7→ C1, proc (P1 (a, b)).

– If P is typed by a negative left axiom, for example P = read c ⟨a, b⟩, then by

inversion on the process typing derivation for !future c S ∈ C1, we have S =

⟨x, y⟩ ⇒ P1 (x, y), so C 7→ C1, proc (P1 (a, b)).

Lemma 2.4 (SAX Preservation). If Σ ⊢ C ÷ ∆ and C 7→ C ′, then Σ ⊢ C ′ ÷ ∆′ for ∆′ ⊇ ∆.



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 39

Proof. By cases of the reduction step and then inversion on the configuration typing

derivation.

• Identity: the process typing derivation for the source address is copied for the des-

tination.

• Cut: the instance of the cut rule converts to one of the join rule.

• Read: the process typing derivation for the reading process is replaced by that of

the continuation in question.

• Write: trivial, because typing of futures is defined via that of writes.

• Definition call: trivial, because typing of a call is defined via that of the body of the

associated definition.

Theorem 2.2 (SAX Type Soundness). A configuration C is safe iff it is final or, coinductively,

C 7→ C ′ and C ′ is safe. Then, if · ⊢ C ÷ ∆, then C is safe.

Proof. See [LG09] for coinductive characterizations of type soundness. We proceed by

coinduction generalizing ∆; by Lemma 2.3, either C is final or C 7→ C ′. By Lemma 2.4,

· ⊢ C ′ ÷ ∆′ for some ∆′ ⊇ ∆, so we are done by the coinduction hypothesis.

2.3.3 Termination

In preparation for our proof of termination for IRSAX in Chapter 3, we establish termina-

tion of SAX using the standard modification of Tait’s method for Kripke logical relations

[Plo73]. This simplifies the arguments given in [DPP20, SP22].



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 40

• Unlike [DPP20], we isolate the definition of semantic types, i.e., the interpretation of

types generated by the logical relation (Definition 2.5). In short, they are world-

indexed sets of terminating storables where the worlds are terminating configu-

rations. In the next chapter, we show that recursive types of certain shapes are

interpreted as fixed points of semantic type constructors. Therefore, they can be

accurately described as (co)inductive types.

• Kripke monotonicity is used to extend the type ascriptions of subconfigurations to

the entire configuration. Then, by establishing soundness of subtyping and process

typing (Lemma 2.6 and Lemma 2.7) with respect to semantic (sub)typing (Definition

2.6), termination is entailed by the fundamental theorem of the logical relation induced

by the interpretation of types (Theorem 2.3).

Definition 2.4. A semantic type A , B, C , . . . is a pair of storables and final configurations,

writing F ⊨ S ∈ A for (S, F) ∈ A , such that:

• Kripke monotonicity: if F ⊨ S ∈ A , then F ,F ′ ⊨ S ∈ A for all F ′.

Then, F ⊨ a ∈ A iff there exists !future a S ∈ F such that F ⊨ S ∈ A . Lastly, C ⊨ a ∈ A

iff, inductively, for all reducts C ′ of C, C ′ ⊨ a ∈ A .

Definition 2.5 (Semantic Interpretation). JAK is a semantic type defined by induction on

A as follows, with the cases of positive and negative types respectively classifying values

and continuations. Kripke monotonocity in each case is immediate. As is standard for

Kripke semantics, we omit “F ⊨” when its presence is obvious.

• ⟨⟩ ∈ J1K only.



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 41

• ⟨a, b⟩ ∈ JA⊗ BK iff a ∈ JAK and b ∈ JBK.

• k · a ∈ J⊕{ℓ : Aℓ}ℓ∈SK iff k ∈ S and a ∈ JAkK.

• F ⊨ ⟨x, y⟩ ⇒ P (x, y) ∈ JA → BK iff for all F ′ ⊇ F such that F ′ ⊨ a ∈ JAK, then

F ′, proc (P (a, b)) ⊨ b ∈ JBK for fresh a and b.

• F ⊨ {ℓ · x ⇒ Pℓ (x)}ℓ∈S ∈ J& {ℓ : Aℓ}ℓ∈SK iff for all ℓ ∈ S, then F , proc (Pℓ (a)) ⊨

a ∈ JAℓK for fresh a.

Definition 2.6 (Semantic (Sub)typing).

• C ⊨ Σ ≜ C ⊨ a ∈ JAK for all a : A ∈ Σ.

• Σ ⊨ C ÷ ∆ iff for all F such that F ⊨ Σ, then F , C ⊨ ∆.

• A ⊆ B ≜ JAK ⊆ JBK, extending to Σ ⊆ ∆ in the obvious way.

In addition to backward closure, semantic typing respects the monoidal structure of con-

figurations as well as semantic subtyping.

Lemma 2.5 (Semantic Typing Properties).

• Semantic empty: Σ ⊨ · ÷ Σ.

• Semantic join: if Σ ⊨ C ÷ Σ′ and Σ′ ⊨ C ′ ÷ ∆, then Σ ⊨ C, C ′ ÷ ∆.

• Semantic subsumption: if Σ ⊆ Σ′, Σ′ ⊨ C ÷ ∆′, and ∆′ ⊆ ∆, then Σ ⊨ C ÷ ∆.

• Backward closure: if Σ ⊨ C ′ ÷ ∆ for all reducts C ′ of C, then Σ ⊨ C ÷ ∆.



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 42

Proof. Only the join rule is not straightforward—assumeF ⊨ Σ, we want to showF , C, C ′ ⊨

∆. We have F , C ⊨ Σ′ by the first assumption, i.e., F , C ⊨ a : A for each a : A ∈ Σ′. By

induction, either F , C is final and we are done by the second assumption, or for all C1

where F , C 7→ F , C1.

Lemma 2.6 (SAX Subtyping Soundness). If A ≤ B then A ⊆ B.

Proof. By a routine induction on the subtyping derivation D, we show some representa-

tive cases.

• Eager pairs: D =

D1....
A ≤ A′

D2....
B ≤ B′

A⊗ B ≤ A′ ⊗ B′
≤⊗

Assuming ⟨a, b⟩ ∈ JA⊗ BK, i.e., a ∈ JAK and b ∈ JBK, we want to show a ∈ JA′K and

b ∈ JB′K. It suffices to show A ⊆ A′ and B ⊆ B′, which we have by the induction

hypotheses for D1 and D2.

• Functions: D =

D1....
A ≤ A′

D2....
B ≤ B′

A′ → B ≤ A→ B′
≤→

Assuming F ⊨ ⟨x, y⟩ ⇒ P (x, y) ∈ JA → BK, we want to show for all F ′ ⊇ F ,

if F ′ ⊨ a ∈ JAK, then F ′, proc (P(a, b)) ⊨ b ∈ JB′K for fresh a and b. By the

induction hypothesis for D1, which gives A ⊆ A′, we have F ′ ⊨ a ∈ JA′K, so

F ′, proc (P(a, b)) ⊨ b ∈ JBK. It suffices to show B ⊆ B′, which we have by the

induction hypothesis for D2.



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 43

Lemma 2.7 (SAX Process Typing Soundness). If Σ ⊢ P÷ (a : A), then Σ ⊨ proc P÷ Σ, a :

A.

Proof. Assuming F ⊨ Σ and letting C ≜ F , proc P, it suffices to show C ⊨ Σ, a : A by

induction on the process typing derivation.

• Subsumption: by the induction hypothesis and then semantic subsumption.

• Definition call: by the induction hypothesis on the body of the associated definition

and then backward closure.

• Identity: D = Σ′, a : A ⊢ copy b a÷ (b : A)
id

Because F ⊨ a : A, we have !future a S ∈ F such that F ⊨ S ∈ JAK. Moreover,

F ′ is the only reduct of C where F ′ ≜ F , !future b S. By backward closure, it suf-

fices to show F ′ ⊨ Σ, b : A, which we have by definition of F ′ ⊨ b : A and then

Kripke monotonicity.

• Cut: D =

D1....
Σ ⊢ P (x)÷ (x : A)

D2....
Σ, x : A ⊢ Q (x)÷ γ

Σ ⊢ x ← P (x) ; Q (x)÷ γ
cut

Generalizing over F , by induction on [a/x]D1 and [a/x]D2 for fresh a then se-

mantic join, we have Σ ⊢ proc (P(a)) , proc (Q(a)) ⊨ Σ, γ. Because proc P 7→

proc (P (a)) , proc (Q (a)) is the only possible reduction, we are done by backward

closure.

• Right axiom: for example, D = Σ′, a : A, b : B ⊢ write c ⟨a, b⟩ ÷ (c : A⊗ B)
⊗X

.



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 44

Letting F ′ ≜ F , !future c ⟨a, b⟩, we have F ′ ⊨ c : A ⊗ B because F ′ ⊨ a : A and

F ′ ⊨ b : B by Kripke monotonicity. Thus, F ′ ⊨ Σ, c ∈ A⊗ B by Kripke monotonic-

ity again. Because F ′ is the only reduct of C, we are done by backward closure.

• Positive left rule: for example, D =

D′....
Σ′, c : A⊗ B, x : A, y : B ⊢ P (x, y)÷ γ

Σ′, c : A⊗ B ⊢ read c (⟨x, y⟩ ⇒ P (x, y))÷ γ
⊗L

.

Because F ⊨ c : A⊗ B, we have !future c ⟨a, b⟩ ∈ F such that F ⊨ a : A and F ⊨ b :

B. By induction on [a/x][b/y]D′, we have C ′ ⊨ Σ, γ where C ′ ≜ F , proc (P (a, b)).

Because C ′ is the only reduct of C, we are done by backward closure.

• Negative right rule: for example, let D =

D′....
Σ, x : A ⊢ P (x, y)÷ (y : B)

Σ ⊢ write c (⟨x, y⟩ ⇒ P(x, y))÷ (c : A→ B) →R.

By backward closure then Kripke monotonicity, it suffices to show F ′ ⊨ c : A →

B where F ′ ⊇ F , !future c (⟨x, y⟩ ⇒ P(x, y)). Assuming F ′ ⊨ a : A, we have

F ′ ⊨ Σ, a : A by Kripke monotonicity, so F ′, proc (P(a, b)) ⊨ Σ, a : A, b : B by the

induction hypothesis on [a/x][b/y]D′ for fresh a and b, as desired.

• Left axiom: for example, let D = Σ′, c : A→ B, a : A ⊢ read c ⟨a, b⟩ ÷ (b : B)
→L

.

Because both F ⊨ c : A → B and F ⊨ a : A, we have F , read c ⟨a, b⟩ ⊨ Σ, b : B

by backward closure.

Theorem 2.3 (SAX Fundamental Theorem). If Σ ⊢ C ÷ ∆, then JΣK ⊨ C ÷ J∆K.



CHAPTER 2. THE SEMI-AXIOMATIC SEQUENT CALCULUS REDUX 45

Proof. By induction, the empty and join cases are discharged by their semantic counter-

parts. The proc case and, by backward closure, the fut case are handled by Lemma 2.7, us-

ing Lemma 2.6 then semantic subsumption to factor through the subtyping premises.

2.4 Related Work

SAX is an asynchronous process calculus with name passing (via eager pairs and func-

tions) and branching/selection (via labelled sums and lazy records) with both futures-

based and message-passing operational interpretations [PP21], complimenting previous

work on assigning session types to an asynchronous π-calculus [DCPT12]. Moreover, the

distinction between positive and negative types is related to call-by-push-value [Lev99].

Lastly, our syntax and semantics respectively draws from backwards bidirectional typing

[Zei15, DK21] and Kripke logical relations [Plo73, BHN14].



Chapter 3

Index Refinements

...logic is not valid. — Jon Sterling

In this chapter, we develop Index Refined SAX (IRSAX) by adding index refinements to

SAX. Aside from their application to termination checking as discussed in the introduc-

tion, index refinements introduce a limited form of type dependency to exclude illegal

program states; consider the following example.

Example 3.1 (Index Refinements for Dimensional Analysis). If our index domain is taken

to be the mathematical structure generated by some system of base units, then physical

quantities can be taken as values inhabiting dimension-indexed types: x0 : R[meters]

indicates a real-valued positional quantity x0. As a result, there cannot be any errors

due to implicit coercion between incompatible units. However, the user may hard-code,

as part of a library, explicit coercions between units for the same physical phenomenon.

For example, a value of R[meters] may be used as R[inches] through explicit conversion

[Dun07].

46



CHAPTER 3. INDEX REFINEMENTS 47

With the principled addition of type and process recursion, IRSAX implements the

first half of total correctness type refinements: termination checking via the sized type

refinements of [SP22].

• In Section §3.1, we discuss the modifications made to the judgmental structure of

SAX induced by an arithmetic index domain consisting of propositions (arithmetic

formulas) and expressions (arithmetic terms).

• In Section §3.2, we adapt certain property types (guarded, asserting, index universal, and

index existential types), originally introduced by Dunfield and Pfenning in natural

deduction style [DP03], to SAX in preparation for the next section.

• In Section §3.3, we reformulate the sized type refinements of [SP22] in this frame-

work and uniformly provide compositional termination checking for induction, coin-

duction, and mixed induction and coinduction. Like op. cit., we make comprehen-

sive use of infinite proofs to simplify our account of type and process recursion, as

opposed to explicit formulations involving, e.g., fixed point rules. In particular, we

initially take a mixed inductive-coinductive view of (sub)typing called IRSAX ∞,

which is syntax-directed, moving then to a non-bidirectional system with construc-

tive ω-rules [Yoc89] called IRSAX ω to establish the metatheory. As a sanity check,

we show that our metatheory interprets recursive types as (co)inductive semantic

types.



CHAPTER 3. INDEX REFINEMENTS 48

(all grammars and judgments from Figure 2.2 included)

contexts Γ := . . . | Γ, i | Γ, ϕ

subtyping Γ ⊢ A ≤ B

Figure 3.1: IRSAX Judgments

3.1 Judgmental Structure

Because the index domain is separate from SAX, the process typing judgment admits

minimal modifications. In particular, contexts may now include propositions ϕ from the

index domain as well as index variables i standing for elements of said domain. For the

purposes of this chapter, we limit our attention to arithmetic refinements [DP20a, DP20b].

Lastly, index dependency of the new type constructors added in the next section requires

subtyping to have access to the typing context. All modifications are given in Figure 3.1.

3.2 Property Types

The extended syntax for types, which include index expressions and propositions, is

given in Figure 3.2 with full (sub)typing rules in Figure 3.3 and Figure 3.4. In short, the

asserting type ϕ ∧ A classifies futures of type A while asserting ϕ, whereas the guarded

type ϕ ⊃ A is the adjoint notion of implication: classifying futures of type A while assum-

ing ϕ. On the other hand, the index universal and existential types correspond to standard

first-order quantifiers over the index domain. Under a Curry-Howard interpretation, they

are index-dependent types.



CHAPTER 3. INDEX REFINEMENTS 49

(all grammars from Figure 2.2 included)

index expression e, f := i | n ∈N | e− f | . . .
proposition ϕ := e > f | . . .

type A := . . .
| ϕ ∧ A asserting type
| ϕ ⊃ A guarded type
| ∃i. A (i) index existential
| ∀i. A (i) index universal

Figure 3.2: IRSAX Syntax

3.2.1 Property Types

To set the tone of our discussion, let us begin by developing typing rules for ϕ ∧ A—

because it classifies futures of type A where ϕ is true, its right rule ought to be the right

rule for A along with a check that ϕ is true. Dually, the left rule should be that for A

with ϕ as an assumption added to the context. Taken together, we have the following

(sub)typing rules.

Γ ⊢ ϕ Γ ⊢ write t S÷ (t⇐ A)

Γ ⊢ write t S÷ (t⇐ ϕ ∧ A)
∧R

Γ, ϕ, t⇒ A ⊢ read t S÷ γ

Γ, t⇒ ϕ ∧ A ⊢ read t S÷ γ
∧L

Γ ⊢ ϕ Γ ⊢ A ≤ B
Γ ⊢ A ≤ ϕ ∧ B ≤∧R

Γ, ϕ ⊢ A ≤ B
Γ ⊢ ϕ ∧ A ≤ B ≤∧L

Because the right rule types the process write t S, which scrutinizes the succedent t,

the next rule in the derivation must be the right rule/axiom for A on t while asserting

ϕ. This is analogous to the restriction of property type introduction rules to “checking

intro. forms” in the sequent calculus-style system of Dunfield and Krishnaswami, which



CHAPTER 3. INDEX REFINEMENTS 50

itself corresponds to the value restriction in natural deduction [DP00]. Likewise, the left

rule types read t S, deferring to the left rule/axiom for A on t with the assumption of ϕ.

Curiously, this is analogous to restricting eliminations of property types in natural de-

duction to terms where the scrutinee is next in line to be evaluated. This is perhaps better

demonstrated by example; consider the elimination rule for type union due to Dunfield

and Pfenning below—the scrutinee e is guaranteed to be evaluated immediately because

it is surrounded by an evaluation context E.

Γ ⊢ e : A ∨ B Γ, x : A ⊢ E[x] : C Γ, x : B ⊢ E[x] : C
Γ ⊢ E[e] : C ∨E

Lastly, the subtyping rules read Γ ⊢ A ≤ B as a sequent with exactly one antecedent

and succedent, thus becoming singleton versions of these logical rules [Dun07]. Now, the

rules for the guarded type ϕ ⊃ A follow symmetrically with the assumption and assertion

of ϕ in opposite roles.

Γ, ϕ ⊢ write t S÷ (t⇐ A)

Γ ⊢ write t S÷ (t⇐ ϕ ⊃ A)
⊃R

Γ ⊢ ϕ Γ, t⇒ A ⊢ read t S÷ γ

Γ, t⇒ ϕ ⊃ A ⊢ read t S÷ γ
⊃L

Γ, ϕ ⊢ A ≤ B
Γ ⊢ A ≤ ϕ ⊃ B ≤⊃R

Γ ⊢ ϕ Γ ⊢ A ≤ B
Γ ⊢ ϕ ⊃ A ≤ B ≤⊃L

We seem to now have a recipe for developing the rules for property types:

• The right/left rule for a property type defers to the right/left rule for the underlying

type refined

• Their subtyping rules are “singleton” versions of their logical rules



CHAPTER 3. INDEX REFINEMENTS 51

Let us apply this script to index existential and universal type constructors; there’s a slight

catch: the non-invertible rules seem to conjure an index term e out of nowhere!

Γ ⊢ e Γ ⊢ write t S÷ (t⇐ A (e))
Γ ⊢ write t S÷ (t⇐ ∃i. A (i)) ∃R

Γ, i, t⇒ A (i) ⊢ read t S÷ γ

Γ, t⇒ ∃i. A (i) ⊢ read t S÷ γ
∃L

Γ, i ⊢ write t S÷ (t⇐ A (i))
Γ ⊢ write t S÷ (t⇐ ∀i. A (i)) ∀R

Γ ⊢ e Γ, t⇒ A (e) ⊢ read t S÷ γ

Γ, t⇒ ∀i. A (i) ⊢ read t S÷ γ
∀L

Γ ⊢ e Γ ⊢ A ≤ B (e)
Γ ⊢ A ≤ ∃i. B (i)

≤∃R
Γ, i ⊢ A (i) ≤ B

Γ ⊢ ∃i. A (i) ≤ B
≤∃L

Γ, i ⊢ A ≤ B (i)
Γ ⊢ A ≤ ∀i. B (i)

≤∀R
Γ ⊢ e Γ ⊢ A (e) ≤ B

Γ ⊢ ∀i. A (i) ≤ B
≤∀L

Dunfield notes that, in practice, e would be replaced by a unification variable to be

instantiated by an external solver or algorithmic typing, which is fleshed out in [DK19].

In the next section, we will permit process definitions to additionally abstract over index

variables. Thus, the extended call rule can output types of the form A (e) that contain in-

dex expressions, corresponding to the contextual typing annotations of Dunfield and Pfen-

ning [DP04], which has the effect of instantiation. We now have the components required

to discuss sized type refinements.

3.2.2 Typing Summary

To close this section, we tabulate the bidirectional typing presented into Figure 3.3 and

Figure 3.4.



CHAPTER 3. INDEX REFINEMENTS 52

(all rules from Figure 2.4 included)

Γ ⊢ ϕ Γ ⊢ write t S÷ (t⇐ A)

Γ ⊢ write t S÷ (t⇐ ϕ ∧ A)
∧R

Γ, ϕ, t⇒ A ⊢ read t S÷ γ

Γ, t⇒ ϕ ∧ A ⊢ read t S÷ γ
∧L

Γ, ϕ ⊢ write t S÷ (t⇐ A)

Γ ⊢ write t S÷ (t⇐ ϕ ⊃ A)
⊃R

Γ ⊢ ϕ Γ, t⇒ A ⊢ read t S÷ γ

Γ, t⇒ ϕ ⊃ A ⊢ read t S÷ γ
⊃L

Γ ⊢ e Γ ⊢ write t S÷ (t⇐ A (e))
Γ ⊢ write t S÷ (t⇐ ∃i. A (i)) ∃R

Γ, i, t⇒ A (i) ⊢ read t S÷ γ

Γ, t⇒ ∃i. A (i) ⊢ read t S÷ γ
∃L

Γ, i ⊢ write t S÷ (t⇐ A (i))
Γ ⊢ write t S÷ (t⇐ ∀i. A (i)) ∀R

Γ ⊢ e Γ, t⇒ A (e) ⊢ read t S÷ γ

Γ, t⇒ ∀i. A (i) ⊢ read t S÷ γ
∀L

Figure 3.3: IRSAX Typing

(all rules from Figure 2.5 modified to include Γ)

Γ ⊢ ϕ Γ ⊢ A ≤ B
Γ ⊢ A ≤ ϕ ∧ B ≤∧R

Γ, ϕ ⊢ A ≤ B
Γ ⊢ ϕ ∧ A ≤ B ≤∧L

Γ, ϕ ⊢ A ≤ B
Γ ⊢ A ≤ ϕ ⊃ B ≤⊃R

Γ ⊢ ϕ Γ ⊢ A ≤ B
Γ ⊢ ϕ ⊃ A ≤ B ≤⊃L

Γ ⊢ e Γ ⊢ A ≤ B (e)
Γ ⊢ A ≤ ∃i. B (i)

≤∃R
Γ, i ⊢ A (i) ≤ B

Γ ⊢ ∃i. A (i) ≤ B
≤∃L

Γ, i ⊢ A ≤ B (i)
Γ ⊢ A ≤ ∀i. B (i)

≤∀R
Γ ⊢ e Γ ⊢ A (e) ≤ B

Γ ⊢ ∀i. A (i) ≤ B
≤∀L

Figure 3.4: IRSAX Subtyping

3.3 Sized Type Refinements

Adding (co)inductive types and terminating recursion, including productive corecursive

definitions, to any programming language is a non-trivial task, because only certain recur-

sive programs constitute valid applications of (co)induction principles. Briefly, inductive



CHAPTER 3. INDEX REFINEMENTS 53

calls must occur on data smaller than the input and, dually, coinductive calls must be

guarded by further codata output. In either case, we are concerned with the decrease of

(co)data size—height of data and observable depth of codata—in a sequence of recursive

calls. Because inferring this exactly is intractable, languages like Agda (before version

2.4) and Coq resort to conservative syntactic criteria like the guardedness check.

One solution that avoids syntactic checks is to track the flow of (co)data size at the

type level with sized types, as pioneered by Hughes et al. [HPS96] and further developed

by others [BFG+04, Bla04, Abe06, AP13]. Inductive and coinductive types are indexed

by the height and observable depth of their data and codata, respectively. Considering

a signature of mutually recursive indexed type definitions X
[
i
]
= A

[
i
]
, the example

below adorns them with sized type refinements: nat[i] describes unary natural numbers

less than i and str[i] describes infinite bitstreams that allow the first i elements to be

observed before reaching undefined (e.g., potentially divergent) behavior. Note that we

use the term “recursive type” as a catch all for (mixed) (co)inductive types.

Example 3.2 (Recursive Types).

nat[i] = i > 0∧⊕ {zero : 1, succ : nat[i− 1]}

str[i] = i > 0 ⊃ & {head : bool, tail : str[i− 1]}

The succ branch of nat [i] produces a natural number at height i − 1 asserting i > 0

whereas the tail branch of str[i] can produce the remainder of the stream at depth i− 1

assuming i > 0. Starting from nat[i], recurring on, for example, nat[i− 1] (i > 0 is assumed



CHAPTER 3. INDEX REFINEMENTS 54

during elimination so that i − 1 is well-defined) produces the size sequence i > i − 1 >

i− 2 > . . . that eventually terminates at 0, agreeing with the (strong) induction principle

for natural numbers. Dually, starting from str[i], recurring into str[i− 1] (again, i > 0 is

assumed during introduction so that i− 1 is well-defined) produces the same well-founded

sequence of sizes, agreeing with the coinduction principle for streams. In either case, a

recursive program terminates if its call graph generates a well-founded sequence of sizes

in each code path. Moreover, index quantification can be used to abstract over size:

Example 3.3 (Full (Co)inductive Types). ∃i. nat[i] is the type of all natural numbers,

whereas ∀i. str[i] is the type of bitstreams of arbitrary depth, i.e., infinite streams.

In summary, sized type refinements combine the “good parts” of contemporary sized

type systems:

• Like [Xi01], we view termination checking as a usage mode of the property types

defined in the previous section, which affords both richer size arithmetic and more

flexible size abstraction than most contemporary sized type systems (Examples 3.5

and 3.6).

• Like the bounded quantifiers of [Abe12], the dual behavior of asserting and guarded

types during elimination and introduction encodes induction and coinduction, re-

spectively, which not only avoids type continuity restrictions during recursion [Abe06],

but also generalizes well to mixed induction and coinduction (Example 3.7). Like

Vezzosi [Vez15], however, we use index quantification in lieu of infinite indices (or-

dinals) to abstract over index variables. We discuss some tradeoffs between finite

and infinite interpretations of indices in the semantics in Section §3.3.3.



CHAPTER 3. INDEX REFINEMENTS 55

The remainder of this section discusses the addition of type and process recursion to IR-

SAX, starting with IRSAX ∞ and then moving to the ω system, with syntax in Figure 3.5.

A, B := . . . | X [e] where X
[
i
]
= A

[
i
]

P, Q := . . . | f (i, s, t) where f
(
i, x : A, y : B

)
= P

(
i, x, y

)
Figure 3.5: IRSAX ∞ and ω Syntax: Recursive Types and Processes

3.3.1 Equirecursive Types

Viewing recursive types as similar to property types, they too are endowed with logical

rules that explicitly unfold the left-hand side of a type equation to the right-hand side. As

a result, they are equirecursive in that they appear to not impose any syntactic footprint at

the level of processes. As before, there are two subtyping rules for recursive types that

also unfold their definitions.

X
[
i
]
= A

[
i
]

Γ ⊢ write t S÷ (t⇐ A [e])
Γ ⊢ write t S÷ (t⇐ X [e]) recR

X
[
i
]
= A

[
i
]

Γ, t⇒ A [e] ⊢ read t S÷ γ

Γ, t⇒ X [e] ⊢ read t S÷ γ
recL

X
[
ī
]
= B

[
ī
]

∞ (Γ ⊢ A ≤ B [ē])
Γ ⊢ A ≤ X [ē]

≤recR
X
[
ī
]
= A

[
ī
]

∞ (Γ ⊢ A [ē] ≤ B)
Γ ⊢ X [ē] ≤ B

≤recL

To accommodate the infinitude of recursive types, following [DA10], subtyping in

IRSAX ∞ is mixed inductive-coinductive at the meta level. The ∞ sign surrounding the

premises of the subtyping rules above indicates a coinductive occurrence of the subtyping



CHAPTER 3. INDEX REFINEMENTS 56

judgment (with all other ones being inductive) [DA09, DA10]. That is, a subtyping deriva-

tion is a (potentially) infinitely deep tree where every infinite branch passes through an

instance of this rule infinitely many times, representing the unfolding of a recursive type.

Meta-level mixed induction and coinduction avoids the technical boilerplate of fixpoint

rules, which explicitly manages meta-level coinduction hypotheses using a separate con-

text, that are ordinarily required by recursive subtyping [BH97]. Below, we give a primer

on this technique to those who are unfamiliar.

Remark 3.1 (Mixed Induction and Coinduction). Formally, if F(X, Y) is a set operator rep-

resenting the inference rules for the judgment J with its coinductive and inductive occur-

rences as X and Y, respectively, then J is generated by νX. µY. F(X, Y)—a greatest fixed

point surrounding a least fixed point. The proof principle of mixed induction and coin-

duction then refers to a lexicographic guarded coinduction (to prove/construct coinduc-

tive premises) prioritized over a structural induction (to deconstruct inductive premises,

because guardedness does not change) [DA09].

In the next subsection, we give an example of an infinite typing derivation to give

some intuition about this technique.

3.3.2 Recursive Processes

Following our treatment of subtyping, we also take a mixed inductive-coinductive view

of typing recursive definition calls in IRSAX ∞ to avoid fixpoint rules (see [AP13] for an

alternate solution using measured types). Crucially, the sequent is now tagged with the

running value e of the termination measure M, a function of the definition called and the



CHAPTER 3. INDEX REFINEMENTS 57

index arguments, which is stepped down as checking continues. This crystallizes our in-

tuition about termination in the presence of sized types: a recursive definition terminates

when sizes decrease across each recursive call.

f
(
i, x : A, y : B

)
= P

(
i, x, y

)
i, ϕ ⊢ e < M( f , e′) ∞

(
i, ϕ, s⇒ A ⊢M( f ,e′) P (e′, s, t)÷ (t⇐ B)

)
i, ϕ, s⇐ A ⊢e f (e′, s, t)÷ (t⇒ B)

call

Perhaps it is surprising that this rule (and the call rule from the previous chapter)

need not explicitly mention substitution, weakening, contraction, etc. to make the inte-

rior judgment match the exterior judgment of a loop in an infinite proof because they are

admissible. Because this discussion is quite abstract, let us first state the relevant substitu-

tion and weakening principles, then actually write down an infinite typing derivation for

a toy process.

Lemma 3.1 (Assumptions about Index Domain / Substitution Principles). Along with sub-

stitution and weakening for both addresses and index data (variables and propositions), we have:

• Index substitution: if Γ ⊢ e, then:

– if Γ, i ⊢ P÷ γ, then [e/i](Γ ⊢ P÷ γ).

– if Γ, i ⊢ A ≤ B, then [e/i](Γ ⊢ A ≤ B).

• Index cut: if Γ ⊢ ϕ, then:



CHAPTER 3. INDEX REFINEMENTS 58

– if Γ, ϕ ⊢ P÷ γ, then Γ ⊢ P÷ γ.

– if Γ, ϕ ⊢ A ≤ B, then Γ ⊢ A ≤ B.

Moreover, both cases preserve (sub)typing derivation height.

Proof. By mixed induction and coinduction, assuming that the index domain admits cut

and arithmetic substitution.

Example 3.4 (Infinite Derivations). Recall nat[i] = i > 0 ∧⊕{zero : 1, succ : nat[i− 1]}.

The process definition below traverses a unary natural number by induction to produce

a unit.

eat(i, x : nat[i], y : 1) = read x
{
zero · x′ ⇒ copy y x′, succ · x′ ⇒ eat(i− 1, x′, y)

}
Now, we will write an abbreviated typing derivation for the body of this definition to

show how mixed induction and coinduction operates at the meta level. If we take i to

be the termination measure, then it suffices to check at the recursive call that i − 1 < i.

Because that succeeds under the given assumption that i > 0, it suffices to reuse the

derivation computed so far to complete it by appealing to the meta-level coinduction

hypothesis. Arithmetic substitution, address substitution, and weakening of propositions

is used to have the judgments at both ends of the loop match.



CHAPTER 3. INDEX REFINEMENTS 59

D =

x′ : 1 ⊢i y : 1
idR

i, i > 0 ⊢ i− 1 < i

[(i− 1) /i][x′/x]D, weakening i > 0....
∞

(
i, i > 0, x′ : nat[i− 1] ⊢i−1 y : 1

)
i, i > 0, x′ : nat[i− 1] ⊢i y : 1

call

i, x : nat[i] ⊢i y : 1
⊕L

The following examples verify that our formulation uniformly covers mutual (co)induction

as well as mixed induction and coinduction. We also investigate some interesting prop-

erties of quantifier instantiation.

Example 3.5 (List Filter). Let list[i] = i > 0 ∧ ⊕{nil : 1, cons : bool⊗ list[i− 1]} be

the type of bitlists of length less than i. The following definition filters false values out

of a bitlist by induction where i decreases; because the size-change relationship between

the input and output is not exact, we must use an index existential type to abstract over

the output size. For convenience, we take the liberty to nest pattern matching and values

[PP22] as well as use “_” to indicate a discarded variable. Lastly, we give inline comments

detailing some parts of typechecking.



CHAPTER 3. INDEX REFINEMENTS 60

filter(i,

x⇒list[i]︷ ︸︸ ︷
x : list[i],

y⇐∃j. j≤i∧list[j]︷ ︸︸ ︷
y : ∃j. j ≤ i ∧ list[j]) =

read x︸ ︷︷ ︸
unfolds list[i], assumes i>0

{nil · _⇒
y⇒list[i]︷ ︸︸ ︷
copy y x

, cons · ⟨b, t⟩ ⇒

t′⇒∃j. j≤i−1∧list[j]︷ ︸︸ ︷
t′ ← filter

(
i− 1, t, t′

)︸ ︷︷ ︸
i,i>0⊢i−1<i

;

read b {true · _⇒

sets j=i, asserts j≤i, unfolds list[j], asserts i>0,t′⇐list[i−1]︷ ︸︸ ︷
write y

(
cons · ⟨b, t′⟩

)
, false · _⇒ copy y t′︸ ︷︷ ︸

t′⇐∃j. j≤i∧list[j]

}}

Example 3.6 (Even and Odd Substreams). The definitions below project the even- and

odd-indexed substreams y of some input stream x at half of the original depth [Sac14]. By

imposing evens < odds, this signature terminates by lexicographic induction on i then the

definition name; we outline the typechecking and termination checking process in-line.

At the meta level, typing derivations for both are mutually mixed inductive-coinductive.



CHAPTER 3. INDEX REFINEMENTS 61

evens(i,

x⇒str[2i]︷ ︸︸ ︷
x : str[2i],y :

y⇐str[i]︷ ︸︸ ︷
str[i]) =

write y︸ ︷︷ ︸
unfolds str[i], assumes i>0

{
h⇐bool︷ ︸︸ ︷
head · h⇒ read x (head · h)︸ ︷︷ ︸

unfolds str[2i], asserts 2i>0

, tail · t︸ ︷︷ ︸
t⇐str[i−1]

⇒ t′ ← read x
(
tail · t′

)︸ ︷︷ ︸
...t′⇒str[2i−1]

;

t′⇐str[2(i−1)+1]︷ ︸︸ ︷
odds

(
i− 1, t′, t

)︸ ︷︷ ︸
i>0⊢i<i−1

}

odds(i,

x⇒str[2i+1]︷ ︸︸ ︷
x : str[2i + 1],

y⇐str[i]︷ ︸︸ ︷
y : str[i]) = t← read x (tail · t)︸ ︷︷ ︸

unfolds str[2i+1], asserts 2i+1>0,t⇒str[2i+1−1]

;

evens<odds,t⇐str[2i],y⇒str[i]︷ ︸︸ ︷
evens (i, t, y)

Thanks to the flexibility of index refinements, we can also lift these definitions to the

full coinductive type of streams ∀k. str[k] via subsumption, which has the additional

effect of hiding the exact size-change relationship between the input and output, which

can be considered an implementation detail [Abe14]. The crucial subtyping checks are

i ⊢ ∀k. str[k] ≤ str[2i] and i ⊢ ∀k. str[k] ≤ str[2i + 1] which instantiate the quantifiers.

evens′(i,

x⇒∀k. str[k]︷ ︸︸ ︷
x : ∀k. str[k], y :

y⇐str[i]︷ ︸︸ ︷
str[i]) =

x⇒str[2i]︷ ︸︸ ︷
evens(i, x, y)

odds′(i,

x⇒∀k. str[k]︷ ︸︸ ︷
x : ∀k. str[k],

y⇐str[i]︷ ︸︸ ︷
y : str[i]) =

x⇒str[2i+1]︷ ︸︸ ︷
odds(i, x, y)

Example 3.7 (Projecting Left-Fair Streams). Let us define the mixed inductive-coinductive

type lfair[i, j] of left-fair bitstreams [BH19]: infinite bitstreams where each element is

separated by finitely many timeout labels named “later.”



CHAPTER 3. INDEX REFINEMENTS 62

lfair[i, j] = ⊕{now : i > 0 ⊃ & {head : bool, tail : ∃k. lfair[i− 1, k]}

, later : j > 0∧ lfair[i, j− 1]}

In particular, i bounds the observation depth of bitstream whereas j bounds the number

of timeouts in between consecutive bits. Thus, this type is defined by lexicographic in-

duction on (i, j). First, the provider may offer a bit, in which case the observation depth of

the bitstream decreases from i to i− 1 (in the coinductive branch, indicated by a guarded

type). As a result, j may be “reset” as an arbitrary k using an existential. On the other

hand, if a timeout is offered, then the depth i does not change. Rather, the number of

timeouts j decreases to j − 1 (in the inductive part, indicated by an asserting type). By

using left-fair bitstreams, we can model processes that permit some timeout behavior but

are eventually productive, because consecutive bits are interspersed with only finitely

many timeouts. Armed with this type, we can define a projection operation that removes

all of a left-fair bitstream timeouts, returning a plain bitstream.



CHAPTER 3. INDEX REFINEMENTS 63

proj(i, j,

x⇒lfair[i,j]︷ ︸︸ ︷
x : lfair[i, j],

y⇒str[i]︷ ︸︸ ︷
y : str[i]) =

unfolds lfair[i,j]︷ ︸︸ ︷
read x {now · x′ ⇒

write y︸ ︷︷ ︸
unfolds str[i], assumes i>0

{
h⇐bool︷ ︸︸ ︷
head · h⇒ read x′︸ ︷︷ ︸

asserts i>0

(head · h)}}

, tail · t⇒ t′ ← read x′
(
tail · t′

)︸ ︷︷ ︸
t′⇒∃k. lfair[i−1,k]

;

checks i>0⊢(i−1,k)<(i,j)︷ ︸︸ ︷
proj

(
i− 1, j, t′, t

)
}

, later · x′︸ ︷︷ ︸
assumes j>0

⇒ proj
(
i, j− 1, x′, y

)︸ ︷︷ ︸
checks j>0⊢(i,j)<(i,j−1)

}

3.3.3 Typing Summary and Metatheory

In the previous chapter, this section was used to define the non-bidirectional typing of

SAX with which we established our operational metatheory. Before we can extend those

results to sized type refinements, we note two complications of the current presentation:

• The logical relation defined previously would have to be modified to factor in the

presence of arithmetic variables and propositions despite the fact that index refine-

ments have no computational content (i.e., are proof-irrelevant).

• Because (sub)typing derivations can be infinitely deep, subtyping and process typ-

ing soundness would have to be proven using a lexicographic induction that in-

cludes some termination measure that steps down when a recursive type / call is

unfolded. Thus, one wonders instead if the complexity of that induction can be



CHAPTER 3. INDEX REFINEMENTS 64

diffused by proving termination against the finite derivation prefixes that actually

occur at runtime (otherwise, we would not have termination in the first place!).

These two complications are interconnected by a putative solution: if a process typing

derivation had no free index variables anywhere, then the propositions that do appear

would be evaluated in an empty index context. In particular, successive instances of the

call rule would induce a chain of valuations of the termination measure. Such a chain

must be finite, because the natural numbers are well-ordered. As far as the termination

proof goes, inspecting the truncation of the typing derivation at the end of this chain is

sufficient. Thus, our solution is to extend the non-bidirectional process typing for SAX

to IRSAX ∞ as we normally would, but now keeping these observations in mind. The

resulting system, IRSAX ω, is presented fully in figure 3.9 and Figure 3.10, which is then

used to define IRSAX configuration typing in Figure 3.11. We show representative rules

below.

· ⊢ ϕ Γ ⊢ω write t S÷ (t : A)

Γ ⊢ω write t S÷ (t : ϕ ∧ A)
ω∧R

Γ, t : A ⊢ω read t S÷ γ if · ⊢ ϕ

Γ, t : ϕ ∧ A ⊢ω read t S÷ γ
ω∧L

Γ ⊢ω write t S÷ (t⇐ A (n))
Γ ⊢ω write t S÷ (t : ∃i. A (i)) ω∃R

{Γ, t : A (n) ⊢ω read t S÷ γ}n∈N

Γ, t : ∃i. A (i) ⊢ω read t S÷ γ
ω∃L

· ⊢ ϕ A ≤ω B
A ≤ω ϕ ∧ B ω≤∧R

A ≤ω B if · ⊢ ϕ

ϕ ∧ A ≤ω B ω≤∧L

A ≤ω B (n)
A ≤ω ∃i. B (i)

ω≤∃R
{A (n) ≤ω B}n∈N

∃i. A (i) ≤ω B
ω≤∃L

f
(
i, x, y

)
= P

(
i, x, y

)
s : A ⊢ P (n, s, t)÷ (t : B)

s : A ⊢ f (n, s, t)÷ (t : B)
ωcall

In particular, the logical rules for quantifiers do not introduce any index variables, opt-



CHAPTER 3. INDEX REFINEMENTS 65

ing instead for having infinitely many premises—one for each possible index value. One

should think of these index parameters as distinct from index variables, as a derivation

may constructively case on n finitely many times, whereas a variable i must be used uni-

formly. Note that in a classical setting, a derivation would be free to case on n infinitely

many times [Yoc89]. As a result, the rules for guarded and asserting types using a “meta-

level if” should be seen as having higher-order premises that map closed derivations of a

proposition ϕ to one of IRSAX ω (recalling Zeilberger’s higher-order focusing [Zei08]).

Finally, following our intuition about picking out the finite derivation prefix that actually

occurs at runtime, we make the rule for recursive calls inductive. In sum, we have traded

infinitely deep derivations for infinitely wide but finitely deep ones. As in Theorem 2.1,

we establish soundness of ∞ typing with respect to ω typing but by a lexicographic induc-

tion involving termination measures. This proof depends on the following assumptions

about the index domain’s interaction with ∞ (sub)typing. However, completeness does

not hold, because some ω-(sub)typing derivations can be non-uniform in the previous

sense (by casing on n even finitely many times, etc.). For the result below, we presuppose

that any recursive types discussed are valid according to the rules in Figure 3.6, which in-

tuitively state that they are defined by induction on some measure M as a function of their

index arguments (separately from measures on recursive calls). This is also necessary for

Definition 3.1 to be well-defined.

Theorem 3.1 (Soundness of IRSAX ∞ (Sub)typing). Let Γ be free of index variables and propo-

sitions.

• if · ⊢ A ≤ B, then A ≤ω B



CHAPTER 3. INDEX REFINEMENTS 66

• if Γ ⊢n P÷ J, then |Γ| ⊢ω |P| ÷ |J|

Proof. For the first part, let D be the subtyping derivation; assuming · ⊢ m valid A and

· ⊢ n valid B, the first part proceeds by a lexicographic induction on ((m, n), D) where

(m, n) and are ordered simultaneously. Thus, either one of m or n must decrease, or they

remain the same and D decreases. Here is an example of a base subtyping rule with the

bolded quantities decreasing:

• D =

D1....
· ⊢ A1 ≤ B1

D2....
· ⊢ A2 ≤ B2

· ⊢ A1 ⊗ A2 ≤ B1 ⊗ B2
≤⊗ ⇝

IH((m, n), D1)....
A1 ≤ω B1

IH((m, n), D2)....
A2 ≤ω B2

A1 ⊗ A2 ≤ω B1 ⊗ B2
ω≤⊗

Then, the cases for property types substitute and cut out index variables and proposi-

tional assumptions, respectively:

• D =

D′....
ϕ ⊢ A ≤ B
· ⊢ ϕ ∧ A ≤ B ≤∧L

⇝

IH((m, n), cut(E, D′))....
A ≤ B if

E....
· ⊢ ϕ

ϕ ∧ A ≤ B ω≤∧L

• D =

D′....
i ⊢ A ≤ B

· ⊢ ∃i. A(i) ≤ B
≤∃L

⇝

IH((m, n), [k/i]D′)....
{A(k) ≤ B}k∈N

∃i. A(i) ≤ B
ω≤∃L

Lastly, the case for recursive types witnesses m or n decreasing, allowing D to grow:

• D =

X
[
ī
]
= A

[
ī
] D′....
· ⊢ A [n̄] ≤ B

· ⊢ X [n̄] ≤ B
≤recL

⇝

X
[
ī
]
= A

[
ī
] IH((m′, n), D′)....

Γ ⊢ A [n̄] ≤ω B
Γ ⊢ X [n̄] ≤ω B

ω≤recL

where · ⊢ m′ valid A[n] and m′ < m



CHAPTER 3. INDEX REFINEMENTS 67

• D =

X
[
ī
]
= B

[
ī
] D′....
· ⊢ A ≤ B [n̄]

· ⊢ A ≤ X [n̄]
≤recR

⇝

X
[
ī
]
= B

[
ī
] IH((m, n′), D′)....

Γ ⊢ A ≤ω B [n̄]
Γ ⊢ A ≤ω X [n̄]

ω≤recR

where · ⊢ n′ valid A[n] and n′ < n

The second part follows a similar script by lexicographic induction on (n, D)—in partic-

ular, n steps down at recursive calls, allowing D to grow once again.

As before for IRSAX, we summarize (sub)typing rules for IRSAX ∞ in Figure 3.6, Fig-

ure 3.7, and Figure 3.8 as well as IRSAX ω in Figure 3.9 and Figure 3.10.



CHAPTER 3. INDEX REFINEMENTS 68

Γ ⊢ m valid 1
{Γ ⊢ m valid Aℓ}ℓ∈S

Γ ⊢ m valid ◦ {ℓ : Aℓ}ℓ∈S
◦ ∈ {⊕, &}

Γ ⊢ m valid A Γ ⊢ m valid B
Γ ⊢ m valid A ◦ B

◦ ∈ {⊗,→}

Γ, ϕ ⊢ m valid A
Γ ⊢ m valid ϕ ◦ A

◦ ∈ {∧,⊃}
Γ, i ⊢ m valid A (i)

Γ ⊢ m valid Qi. A (i)
Q ∈ {∀, ∃}

Γ ⊢ m > M (X, e) ∞ (M (X, e) valid A [e])
Γ ⊢ m valid X [e]

Figure 3.6: IRSAX ∞ Type Validity

X
[
i
]
= A

[
i
]

Γ ⊢ write t S÷ (t⇐ A [e])
Γ ⊢ write t S÷ (t⇐ X [e]) recR

X
[
i
]
= A

[
i
]

Γ, t⇒ A [e] ⊢ read t S÷ γ

Γ, t⇒ X [e] ⊢ read t S÷ γ
recL

(all rules from Figure 3.3 and above with e added to turnstile)

f
(
i, x : A, y : B

)
= P

(
i, x, y

)
i, ϕ ⊢ e < M( f , e′) ∞

(
i, ϕ, s⇒ A ⊢M( f ,e′) P (e′, s, t)÷ (t⇐ B)

)
i, ϕ, s⇐ A ⊢e f (e′, s, t)÷ (t⇒ B)

call

Figure 3.7: IRSAX ∞ Typing

(all rules from Figure 3.4)

X
[
ī
]
= B

[
ī
]

∞ (Γ ⊢ A ≤ B [ē])
Γ ⊢ A ≤ X [ē]

≤recR
X
[
ī
]
= A

[
ī
]

∞ (Γ ⊢ A [ē] ≤ B)
Γ ⊢ X [ē] ≤ B

≤recL

Figure 3.8: IRSAX ∞ Subtyping



CHAPTER 3. INDEX REFINEMENTS 69

(all rules from Definition 2.1 with subsumption utilizing Figure 3.10)

X
[
i
]
= A

[
i
]

Γ ⊢ write t S÷ (t : A [n])
Γ ⊢ write t S÷ (t : X [n]) ωrecR

X
[
i
]
= A

[
i
]

Γ, t : A [n] ⊢ read t S÷ γ

Γ, t : X [n] ⊢ read t S÷ γ
ωrecL

· ⊢ ϕ Γ ⊢ω write t S÷ (t : A)

Γ ⊢ω write t S÷ (t : ϕ ∧ A)
ω∧R

Γ, t : A ⊢ω read t S÷ γ if · ⊢ ϕ

Γ, t : ϕ ∧ A ⊢ω read t S÷ γ
ω∧L

Γ, ϕ ⊢ω write t S÷ (t : A) if · ⊢ ϕ

Γ ⊢ω write t S÷ (t : ϕ ⊃ A)
ω⊃R

· ⊢ ϕ Γ, t : A ⊢ω read t S÷ γ

Γ, t : ϕ ⊃ A ⊢ω read t S÷ γ
ω⊃L

Γ ⊢ω write t S÷ (t⇐ A (n))
Γ ⊢ω write t S÷ (t : ∃i. A (i)) ω∃R

{Γ, t : A (n) ⊢ω read t S÷ γ}n∈N

Γ, t : ∃i. A (i) ⊢ω read t S÷ γ
ω∃L

{Γ ⊢ω write t S÷ (t : A (n))}n∈N

Γ ⊢ω write t S÷ (t : ∀i. A (i)) ω∀R
Γ, t⇒ A (n) ⊢ω read t S÷ γ

Γ, t⇒ ∀i. A (i) ⊢ω read t S÷ γ
ω∀L

f
(
i, x, y

)
= P

(
i, x, y

)
s : A ⊢ P (n, s, t)÷ (t : B)

s : A ⊢ f (n, s, t)÷ (t : B)
ωcall

Figure 3.9: IRSAX ω Typing



CHAPTER 3. INDEX REFINEMENTS 70

(all rules from Figure 2.5)

X
[
ī
]
= B

[
ī
]

Γ ⊢ A ≤ω B [n̄]
Γ ⊢ A ≤ω X [n̄]

ω≤recR

X
[
ī
]
= A

[
ī
]

Γ ⊢ A [n̄] ≤ω B
Γ ⊢ X [n̄] ≤ω B

ω≤recL

· ⊢ ϕ A ≤ω B
A ≤ω ϕ ∧ B ω≤∧R

A ≤ω B if · ⊢ ϕ

ϕ ∧ A ≤ω B ω≤∧L

A ≤ B if · ⊢ ϕ

A ≤ω ϕ ⊃ B ω≤⊃R
· ⊢ ϕ A ≤ω B

ϕ ⊃ A ≤ω B ω≤⊃L

{A ≤ω B (n)}n∈N

A ≤ω ∀i. B (i)
ω≤∀R

A (n) ≤ω B
∀i. A (i) ≤ω B

ω≤∀L

A ≤ω B (n)
A ≤ω ∃i. B (i)

ω≤∃R
{A (n) ≤ω B}n∈N

∃i. A (i) ≤ω B
ω≤∃L

Figure 3.10: IRSAX ω Subtyping

3.4 Termination

Thus, IRSAX configuration typing and reduction in Figure 3.11 and Figure 3.12 now in-

herit almost directly the termination result from the previous chapter (Lemma 2.6, Lemma

2.7, and Theorem 2.3), because property and recursive types are syntactically silent at the

level of processes.

(all rules from Figure 2.7 excluding the proc rule)

Σ ≤ω Σ′ Σ′ ⊢ω P÷ (a : A′) A′ ≤ω A
Σ ⊢ proc P÷ (Σ, a : A)

proc

Figure 3.11: IRSAX Configuration Typing



CHAPTER 3. INDEX REFINEMENTS 71

(all rules from Figure 2.6)

proc ( f (n, a, b)) 7→ P (n, a, b) where f
(
i, x, y

)
= P

(
i, x, y

)
Figure 3.12: IRSAX Configuration Reduction

Definition 3.1 (IRSAX ω Semantic Interpretation). Note that semantic types form a sub-

lattice of the (complete) lattice of relations between runtime addresses and terminating

configurations. Assuming · ⊢ n valid A, we extend Definition 2.5 with the clauses below

by lexicographic induction on (n, A). Thus, even though the type argument grows in the

first clause, n decreases.

• JX [n]K ≜ JA [n]K where X
[
i
]
= A

[
i
]
, · ⊢ n′ valid A[n], and M(X, n) < n′

• Jϕ ⊃ AK ≜


JAK · ⊢ ϕ

⊤ else

• Jϕ ∧ AK ≜


JAK · ⊢ ϕ

⊥ else

• J∀i. A (i)K ≜
⋂

n∈NJA (n)K and J∃i. A (i)K ≜
⋃

n∈NJA (n)K

Lemma 3.2 (IRSAX ω Subtyping Soundness). If A ≤ω B then A ⊆ B.

Proof. By induction on the ω subtyping derivation, inheriting the cases for SAX types

from Lemma 2.6. Then, the cases for recursive types are trivial. Finally, the cases for

property types are straightforward after establishing the following facts:

• a ∈ Jϕ ∧ AK iff a ∈ JAK where · ⊢ ϕ



CHAPTER 3. INDEX REFINEMENTS 72

• a ∈ Jϕ ⊃ AK iff · ⊢ ϕ implies a ∈ JAK

• a ∈ J∃i. A(i)K iff a ∈ JA(n)K for some n ∈N

• a ∈ J∀i. A(i)K iff a ∈ JA(n)K for all n ∈N

Lemma 3.3 (IRSAX ω Typing Soundness). If Σ ⊢ω P÷ (a : A), then Σ ⊨ proc P÷ Σ, a : A.

Proof. The additional cases for property and recursive types are trivial, because P is the

same in the premise and conclusion of each rule.

Theorem 3.2 (IRSAX ω Fundamental Theorem). If Σ ⊢ C ÷ ∆, then JΣK ⊨ C ÷ J∆K.

Proof. Identical to that of Theorem 2.3.

3.4.1 Semantics of Recursive Types

Recall at the beginning of the previous section, we promised that we would clarify the

semantic status of recursive types, i.e., that they are actually modeled by (co)inductively-

defined sets in the semantics. Thus, it suffices to determine whether they are denoted

by least/greatest fixed points of the corresponding semantic type constructors. Our use

of unbounded index quantification suggests that we reach for Kleene’s fixed point theo-

rem to make this characterization [LM14], requiring type constructors to be upper/lower

semi-continuous. We want to note, however, that like Abel [Abe12], semi-continuity,

monotonicity, etc. are not relevant to our proof of termination. Now, let X[i] = i >



CHAPTER 3. INDEX REFINEMENTS 73

0∧ F(X[i− 1]) and Y[i] = i > 0 ⊃ G(Y[i− 1]) where F and G are syntactic type construc-

tors. By induction on n, it is immediate that JX[n]K = JFKn (⊥) and JY[n]K = JGKn (⊤).

This leads us to the following results.

Theorem 3.3 (Kleene’s Fixed Point Theorem [CC79]). On a complete lattice, if F is upper

resp. lower semi-continuous, then
⋃

n∈N F n (⊥) resp.
⋂

n∈N F n (⊤) is the least resp. greatest

fixed point of F .

Thus, if JFK and JGK satisfy the conditions above, then ∃i. X[i] and ∀i. Y[i] are denoted

by their least and greatest fixed points, respectively. However, semi-continuity is de-

cidely more restrictive than the usual monotonicity restriction in functional programming

[Abe12], so this result explicitly rules out certain type constructors that intuitively inspect

“an infinite amount of information” about their type inputs, like those defined by typecase.

3.5 Related Work

3.5.1 Index Refinements for Session Types

Session types are related to SAX, as it also has an asynchronous message passing inter-

pretation [PP21]. Thus, our formulation of index refinements is related to [TCP11, GG13,

TV19].

3.5.2 Sized Types and Inference

Sized types is related to size-change termination [LJB01] of rewrite systems [TG03, BR09].

Sized (co)inductive types [BFG+04, Bla04, Abe06, AP13] gave way to sized mixed inductive-



CHAPTER 3. INDEX REFINEMENTS 74

coinductive types [Abe12, AP13]. In parallel, linear size arithmetic for sized inductive

types [CK01, Xi01, II06] was generalized to support coinductive types as well [Sac14].

We present, to our knowledge, the first sized type system to combine both features from

above. As we mentioned earlier, we use unbounded quantification [Vez15] in lieu of

transfinite sizes to represent (co)data of arbitrary height and depth. However, the state of

the art [AP13] supports polymorphic and higher-kinded types, which is part of the future

work.

IRSAX is closely related to the sequential functional language of [LR19], which uti-

lizes circular typing derivations for a sized type system with mixed inductive-coinductive

types and implicit quantification. In particular, their well-foundedness criterion on circu-

lar proofs corresponds to our validity condition on infinite proofs. However, they en-

code recursion using a fixed point combinator and utilize transfinite size arithmetic, both

of which we intentionally avoid. Moreover, our adherence to a strict bidirectional typ-

ing discipline seems to obviate the need for choice operators in yielding mode-correct

(sub)typing for quantifiers. Lastly, our metatheory, seems to be both simpler—by trans-

lation to ω typing—and more general because it does not have to explicitly rule out non-

circular derivations.

Lastly, [Sac14] and [CLBed] consider size inference, which translates recursive pro-

grams with non-sized (co)inductive types to their sized counterparts when they are well-

defined. Since our view is that sized types are a mode of use of more general index

refinements, we do not consider size inference.



CHAPTER 3. INDEX REFINEMENTS 75

3.5.3 Sized Types and Termination Checking for π-calculi

The study of termination in the π-calculus was initiated by [YBH01, San06] by syntac-

tically constraining type and/or term structure, which we intentionally avoid. Others

assign numeric levels to each channel name and restrict communication such that a mea-

sure induced by said levels decreases consistently [DS06, DHS10, CH11]. While message

passing is a different setting than ours, we are interested in the relationship between sizes

and levels, because sized types have already been used to analyze parallel complexity in

the π-calculus [BG22].

Severi et al. [SPTD16] give a mixed functional and concurrent programming language

where corecursive definitions are typed with the later modality [Nak00]. Since Vezzosi

[Vez15] gives an embedding of the later modality and its dual into sized types, we be-

lieve that a similar arrangement can be achieved in IRSAX. In any case, IRSAX supports

recursion schemes more complex than structural (co)recursion [LM16].

3.5.4 Infinitary Proof Theory

Validity conditions of infinite proofs have been developed to keep cut elimination produc-

tive, which correspond to criteria like the guardedness check [BDS16, DP22]. Although

we use infinite typing derivations, we explicitly avoid syntactic termination checking for

its non-compositionality. Nevertheless, we are interested in implementing such validity

conditions as uses of sized types as future work. Relatedly, cyclic termination proofs for

separation logic programs can be automated [BBC08, TB20], although it is unclear how

they could generalize to concurrent programs (in the setting of concurrent separation



CHAPTER 3. INDEX REFINEMENTS 76

logic) as well as codata.



Chapter 4

Dependent Refinements

We take papers on logic from the previous century and republish them in POPL. —

Karl Crary

In this chapter, we tackle the second half of our vision for total correctness type refine-

ments by extending the type system for SAX to accommodate dependent refinements for

partial correctness reasoning.

• In Section §4.1, we modify the SAX typing judgment by attaching pre- and post-

condition assertions to types, which enable us to implement dependent refinements

from a Hoare logic point of view. Notably, the bidirectional discipline collapses the

design space for typing rules.

• In Section §4.2, we analyze a representative set of typing rules in DRSAX. In par-

ticular, we establish a correspondence with bidirectional typing for DRSAX and the

rules of Hoare logic. This is precisely where bidirectional typing pays off. First, we

reproduce standard path-sensitive reasoning for data types. By once again taking a

77



CHAPTER 4. DEPENDENT REFINEMENTS 78

mixed inductive-coinductive view of (sub)typing in the presence of type and pro-

cess recursion, the interaction between typing derivation circularity and subsump-

tion uniformly treats inductive, coinductive, and mixed inductive-coinductive in-

variants. Lastly, bidirectionality enables a lightweight mechanism for the encapsu-

lation of negatively typed continuations, where refinements may hide information

about internal processes.

• In Section §4.3, we show how syntactic type soundness implies observable partial

correctness, where data of purely positive type satisfy their postconditions directly.

As indicated in the introduction, because our operational model is based on futures

and not speculations [Har16, Chapter 38], our result is termination-oblivious.

4.1 Judgmental Structure

Following [Che22], we modify the SAX process typing judgment to include preconditions

and postconditions ϕ on addresses as follows. First, let subset types A, B := (A | λx. ϕ (x))

where ϕ is an assertion from the assertion logic we define in the next section. Intuitively,

an address s of subset type is of the underlying type such that ϕ(s) also holds [ROS98].

Then, judgments take on the form s ⇒ A and t ⇐ A with full details in Figure 4.1. In

particular, the subtyping and process typing judgments allow types and assertions in the

antecedents and the succedent to refer to address variables occurring to their left-hand

side [de 91].



CHAPTER 4. DEPENDENT REFINEMENTS 79

judgments J := (s⇒ A) | (t⇐ A)

contexts Γ := · | Γ, J
generic succedent γ := t⇐ A

process typing Γ ⊢ P÷ J
subtyping Γ ⊢ A ≤ B

Figure 4.1: DRSAX Judgments

4.2 Syntax and Bidirectional Typing

The full syntax for DRSAX types and processes are given in Figure 4.2: in addition to

labelled sums and lazy records, eager pair and function types are made dependent on

addresses. In all cases, certain type components are subset types that internalize pre-/post-

conditions. Before we analyze a representative set of (sub)typing rules, listed in Figure 4.3

and Figure 4.4, we first describe the assertion logic underlying the refinement system.

A := A+ | A− | X where X = A
A := (A | λx. ϕ (x)) subset type

A+ := 1
| ⊕ {ℓ : Aℓ}ℓ∈S labelled sum
| (x : A)⊗ B (x) dependent eager pair

A− := & {ℓ : Aℓ}ℓ∈S lazy record
(x : A)→ B (x) dependent function

Figure 4.2: DRSAX Syntax



CHAPTER 4. DEPENDENT REFINEMENTS 80

4.2.1 The Assertion Logic of Axioms

Assertions, given by the grammar below, are drawn from the (classical) first-order theory

of equality with uninterpreted functions.

ϕ, ψ := ⊥ | ⊤ | M ≡ N | isk (M) | ϕ ∧ ψ | ϕ ⊃ ψ | ϕ ⊂ ψ | ∀x. ϕ (x) | . . .

M, N := s | ⟨⟩︸︷︷︸
1R

| ⟨M, N⟩︸ ︷︷ ︸
⊗R

| M ′ N︸ ︷︷ ︸
→L

| k ·M︸ ︷︷ ︸
⊕R

| M.k︸︷︷︸
&L

We approximate process dynamics by a careful definition of first-order terms M, N.

First, the indirection introduced by addresses is collapsed by treating address variables

as term variables and runtime addresses as nullary function symbols (not constants, be-

cause unequal addresses do not necessarily have unequal referents). Thus, an address s

pointing to SAX (co)data denoted by M is represented by the assertion s ≡ M. Finally,

each axiom is assigned an uninterpreted function:

• Right axioms: ⟨⟩ is a unit value, ⟨M, N⟩ is a pair of values M and N, and k · M is a

k-tagged value M. These function symbols are additionally subject to the first-order

theory of non-cyclic data structures [Opp78]. Note that even with recursive types,

values cannot be cyclic, because a non-allocating process cannot write to and read

from the same address. For convenience, we assume the availability of the assertion

isk(M) ⇐⇒ ∃x. M ≡ k · x.

• Left axioms: M ′ N represents an application of the SAX function denoted by M to

argument N and M.k is the kth projection of the record denoted by M. Note our



CHAPTER 4. DEPENDENT REFINEMENTS 81

use of the phrase “the [continuation] denoted by M”—we do not directly encode

function bodies into the assertion logic, as that could reveal information hidden by

negative type refinements discussed in the next subsection. Instead, a continuation

addressed by s is abstractly described by assertions about s ′ N or s.k—which seems

to achieve the effect of copattern matching [APTS13] via defunctionalized negative

eliminations [Rey72].

4.2.2 Axioms as Assignments

Right axioms flow assertion information from right to left, corresponding to the assign-

ment rule in Hoare logic, where the postcondition becomes the precondition by substitu-

tion. Left axioms seem to be dual, instead flowing information from left to right. Below,

we show how SAX axioms transition to DRSAX ones via these processes.

Γ, s⇐ A, t⇐ B ⊢ write u ⟨s, t⟩ ÷ (u⇐ A⊗ B)
⊗X
⇝

Γ, s⇐ A, t⇐ B (s) | λy. ϕ (⟨s, y⟩) ⊢ write u ⟨s, t⟩ ÷ (u⇐ (x : A)⊗ B (x) | λz. ϕ (z))
⊗X

Γ, u⇒ A→ B, s⇐ A ⊢ read u ⟨s, t⟩ ÷ (t⇒ B) →X
⇝

Γ, u⇒ (x : A)→ B (x) | λz. ϕ (z) , s⇐ A ⊢ read u ⟨s, t⟩ ÷ (t⇒ B (s)) →X

These axioms explain the particular way in which subset types are nested: a dependent

eager pair type must output an assertion for its left component and a function type must

output assertions for both input and output types. Axioms for labelled sum and record

types follow symmetrically, with only the latter nesting subset types. Lastly, we

comment on why we consider this particular choice of rules rather than others, especially



CHAPTER 4. DEPENDENT REFINEMENTS 82

because the presence of assertions enlarges the design space. First, bidirectionality forces

a certain flow of information, discounting, for example, the following rule, which is

seemingly type-sound! Note that A is implicitly a subset type A | ⊤.

Γ, s⇐ A, t⇐ B (s) ⊢ write u ⟨s, t⟩ ÷ (u : (x : A)⊗ B (x) | λz. z ≡ ⟨s, t⟩) ⊗X

Dually, one wonders whether left axioms can reveal the identity of the destination in

a similar way:

Γ, u⇒ (x : A)→ (B (x) | λy. ψ (x, y)) | λz. ϕ (z) , s⇐ A ⊢ read u ⟨s, t⟩ ÷ (t⇒ B (s) | λy. ψ (s, y) ∧ y ≡ u ′ s)
→X

However, this identity cannot be propagated in the corresponding right rule due to

asynchrony: u would no longer be in scope in the premise. Thus, this rule would not be

type-sound.

4.2.3 Snips as Composition

Viewing the assertion attached to the cut formula as a midcondition, snips correspond to

the composition rule in Hoare logic.

Γ ⊢ P(x)÷ (x ⇐ A) Γ, x ⇐ A ⊢ Q(x)÷ γ

Γ ⊢ x ← P(x); Q(x)÷ γ
snipR

Γ ⊢ P(x)÷ (x ⇒ A) Γ, x ⇒ A ⊢ Q(x)÷ γ

Γ ⊢ x ← P(x); Q(x)÷ γ
snipL



CHAPTER 4. DEPENDENT REFINEMENTS 83

4.2.4 Subsumption as Consequence

Introducing the auxiliary judgment Γ ⊢ A ≤ B, ≤pred is the standard predicate subtyping

rule in systems with subset types [ROS98]. Otherwise, Γ ⊢ A ≤ B in Figure 4.4 follows

the usual script for subtyping dependent types [AC96]: subtyping premises for the sec-

ond component of dependent eager pair and function types are fibered over the stronger

subtype. Then, subtyping rules for labelled sums and lazy records are preserved from

SAX. Because subsumption now utilizes predicate subtyping, the left and right subsump-

tion rules respectively perform the precondition weakening and postcondition strengthening

that is characteristic of the consequence rule in Hoare logic.

Γ ⊢ A ≤ B Γ ⊢ P÷ (t⇒ A)

Γ ⊢ P÷ (t⇐ B)
≤R

Γ ⊢ A ≤ B Γ, s⇐ B ⊢ P÷ γ

Γ, s⇒ A ⊢ P÷ γ
≤L

4.2.5 Positive Left Rules as Conditionals

Positive left rules are path-sensitive: they explicitly add an equation revealing the identity

of the scrutinized address. Below, the left rule for eager pairs scrutinizing u includes,

in its premise, the equation λy. u ≡ ⟨x, y⟩. This is reminiscent of the conditional rule in

Hoare logic, where the value of the guard is made visible when verifying each branch.



CHAPTER 4. DEPENDENT REFINEMENTS 84

Γ, u⇒ A⊗ B, x ⇒ A, y⇒ B ⊢ P (x, y)÷ γ

Γ, u⇒ A⊗ B ⊢ read u (⟨x, y⟩ ⇒ P (x, y))÷ γ
⊗L
⇝

Γ, u⇒ (x : A)⊗ B (x) | λz. ϕ (z) , x ⇒ A, y⇒ B (x) | λy. u ≡ ⟨x, y⟩ ⊢ P (x, y)÷ γ

Γ, u⇒ (x : A)⊗ B (x) | λz. ϕ (z) ⊢ read u (⟨x, y⟩ ⇒ P (x, y))÷ γ
⊗L

{
Γ, t⇒ ⊕{ℓ : Aℓ}ℓ∈S , x : Ak ⊢ Pk (x)÷ γ

}
k∈S

Γ, t⇒ ⊕{ℓ : Aℓ}ℓ∈S ⊢ read t {ℓ · x ⇒ Pℓ (x)}ℓ∈S ÷ γ
⊕L
⇝{

Γ, x ⇒ Ak | λx. ϕ (k · x) , t⇒ ⊕{ℓ : Aℓ}ℓ∈S | λy. ϕ (y) ∧ y ≡ k · x ⊢ Pk (x)÷ γ
}

k∈S

Γ, t⇒ ⊕{ℓ : Aℓ}ℓ∈S | λy. ϕ (y) ⊢ read t {ℓ · x ⇒ Pℓ (x)}ℓ∈S ÷ γ
⊕L

Path sensitivity is necessary to derive the following examples.

Example 4.1 (Eager Swap II). Recall the following process that swaps a (non-dependent)

pair addressed by z and writes it to w. Then, the following judgment is derivable, which

expresses the action of swapping. In this and all subsequent examples, the judgment

x ⇒ A | λy. ϕ (y) will be abbreviated as x ⇒ A | ϕ (x) (and vice versa for ⇐), i.e.,

the antecedent/succedent variable and bound variable of a pre-/post-condition may be

conflated.

z⇒ A⊗ B ⊢ read z

 y⇒B|z≡⟨x,y⟩︷ ︸︸ ︷
⟨x, y⟩ ⇒ writew ⟨y, x⟩︸ ︷︷ ︸

x⇐A|ϕ(z,⟨y,x⟩)

÷ (w⇐ B⊗ A | ϕ (z, w))

Here, ϕ (z, w) ≜ ∀x, y. z ≡ ⟨x, y⟩ ⊃ w ≡ ⟨y, x⟩. The critical point of typechecking is when

x ⇒ A meets x ⇐ A | ϕ (z, ⟨y, x⟩) by subsumption, which depends on y⇒ B | z ≡ ⟨x, y⟩

introduced by path sensitivity.

Example 4.2 (Negation II). Recall that we can define Boolean negation of x, storing the

result in y, as:



CHAPTER 4. DEPENDENT REFINEMENTS 85

P ≜ read x


x⇒bool|x≡true·x′︷ ︸︸ ︷
true · x′ ⇒ write y

(
false · x′

)︸ ︷︷ ︸
x′⇐bool|ϕ(x,false·x′)

,

x⇒bool|x≡false·x′︷ ︸︸ ︷
false · x′ ⇒ write y

(
true · x′

)︸ ︷︷ ︸
x′⇐bool|ϕ(x,true·x′)


Then, the judgment x ⇒ bool ⊢ P÷ (y ⇐ bool | ϕ(x, y)) is derivable where ϕ(x, y) ≜

(istrue(x) ⊃ isfalse(y)) ∧ (isfalse(x) ⊃ istrue(y)). In the first branch, for example, the

critical point of typechecking is when x′ ⇒ bool meets x′ ⇐ bool | ϕ(x, false · x′) via

subsumption—the assumption that x ⇒ bool | x ≡ true · x′ due to path sensitivity is

essential. The second branch follows symmetrically.

4.2.6 Negative Right Rules as Hoare-style Data Abstraction

Negative right rules are perhaps the most exotic part of DRSAX, because they must man-

ually verify the postcondition χ attached to the type due to the lack of right-contraction.

To protect the abstraction boundary of the continuation, it is discharged only with the

information given by the assertions nested under the type, as opposed to verification

against the continuation reified into higher-order logic [RP08]. Note that the ellipses are

shorthand for the type of the address t scrutinized. This facility seems to be related to

Hoare-style data abstraction [Hoa72], in which information hiding is admitted by ad hoc

scoping restrictions.



CHAPTER 4. DEPENDENT REFINEMENTS 86

Γ, x ⇒ A ⊢ P (x, y)÷ (y⇐ B)
Γ ⊢ write t (⟨x, y⟩ ⇒ P (x, y))÷ (t⇐ A→ B) →R

⇝

Γ, x ⇒ A | λx. ϕ (x) ⊢ P (x, y)÷ (y⇐ B | λy ψ (y)) Γ, t⇒ . . . | ∀x. ϕ (x) ⊃ ψ (x, z ′ x) ⊢ χ (t)
Γ ⊢ write t (⟨x, y⟩ ⇒ P (x, y))÷ (t⇐ ((x : A | λx. ϕ (x))→ B | λy. ψ (x, y)) | λz. χ (z))

→R

{Γ ⊢ Pk (x)÷ (x ⇐ Aℓ)}ℓ∈S

Γ ⊢ write t {ℓ · x ⇒ Pℓ (x)}ℓ∈S ÷
(
t⇐ & {ℓ : Aℓ}ℓ∈S

) &R
⇝

{Γ ⊢ Pk (x)÷ (x ⇐ Aℓ | λx. ϕℓ (x))}ℓ∈S Γ, t⇒ . . . | λy.
∧
ℓ∈S ϕℓ (y.ℓ) ⊢ ψ (t)

Γ ⊢ write t {ℓ · x ⇒ Pℓ (x)}ℓ∈S ÷
(
t⇐ & {ℓ : Aℓ | λx. ϕℓ (x)}ℓ∈S | λy. ψ (y)

) &R

This enables an interesting example below where the nested refinements may engage

in some information hiding.

Example 4.3 (Lazy Swap II). Recall the following process that swaps the components of a

lazy record.

P (x, y) ≜ writew {fst · x ⇒ read z (snd · x) , snd · y⇒ read z (fst · y)}

Curiously, the following judgment is not derivable because the initial type ascription to z

does not reveal the values for its components.

(((((((((((((((((((((((((((((((((((((((((((((

z⇒ {fst : A, snd : B} ⊢ P÷ (w⇐ {fst : B | λy. y ≡ z.snd, snd : A | λx. x ≡ z.fst})

On the other hand, the following judgment is, because the values of the projection are

exposed via shared knowledge of new addresses x and y.



CHAPTER 4. DEPENDENT REFINEMENTS 87

x ⇒ A, y⇒ B, z⇒
{
fst : A | λx′. x′ ≡ x, snd : A | λy′. y′ ≡ y

}
⊢ P÷

(
w⇐

{
fst : B | λy′. y′ ≡ y, snd : A | λx′. x′ ≡ x

})
However, utilizing this process would be cumbersome without designating x and y

as ghost variables, because they are not operationally distinct from the first and second

projections of x. We believe that such a facility could be implemented with proof irrelevance

[LP09] in the future work.

4.2.7 Recursive Processes and Invariants

Lastly, the rule for typing recursive calls is taken directly from the previous chapter sans

index refinements, which thus admits partial recursion. This generalizes Hoare’s (induc-

tive) rule for recursive procedure invocation [Hoa71], which was made coinductive by

Bell and Chlipala in the context of Hoare doubles [BC16].

f
(
x : A, y : B

)
= P (x, y) ∞

(
s⇒ A ⊢ P (s, t)÷ (t⇐ B)

)
s⇐ A ⊢ f (s, t)÷ (t⇒ B)

call

Now, recall that the mandatory change of phase between checking the body of a recur-

sive definition and a recursive call triggers an instance of subsumption on both sides of

the sequent. The assertions attached to a type signature then thus be viewed as recursion

invariants as a generalization of both loop invariants and adaptation in Hoare logic [Hoa71].

The following examples show that we can uniformly consider inductive, coinductive, and

mixed inductive-coinductive invariants with this single rule.



CHAPTER 4. DEPENDENT REFINEMENTS 88

Example 4.4 (Addition). In this example, we define addition on nat = ⊕{zero : 1, succ : nat}

and verify its correctness against addition axiomatized in our assertion logic as follows:

∀x, y. zero · x + y ≡ y and ∀x, y. succ · x + y ≡ succ · (x + y).

add (x : nat, y : nat, z : nat | x + y ≡ z) =

read x {zero · x′︸ ︷︷ ︸
x⇒nat|x≡zero·x′

⇒
y⇐nat|x+y≡y︷ ︸︸ ︷
copy z y, succ · x′︸ ︷︷ ︸

x⇒nat|x≡succ·x′
⇒

z′⇒nat|z′=x′+y︷ ︸︸ ︷
z′ ← add

(
x′, y, z′

)
; write z

(
succ · z′

)︸ ︷︷ ︸
z′⇐nat|succ·z′≡x+y

}

The base case is trivial due to path sensitivity: copying y to z flows y ⇐ nat | x + y ≡ y,

yet the start of the definition flows y ⇒ nat. But because x ≡ zero · x′, we have (nat |

⊤) ≤ (nat | x + y ≡ z) by the first axiom, resolving the tension by subsumption. Thus,

of significance is checking the snip in the succ branch: add(x′, y, z′) flows z′ ⇒ nat | z′ =

x′ + y (the induction hypothesis from typing circularity) to the right but the write to z

flows z′ ⇐ nat | succ · z′ ≡ x + y to the left (the induction step). Path sensitivity gives us

x ⇒ nat | x ≡ succ · x′, resolving the tension by subsumption.

Example 4.5 (List Filter II). In this example, we establish total correctness of the list

filter definition from the previous chapter by verifying that the list returned only con-

tains true elements. Note that in IRSAX this can be done implicitly with datasort re-

finement, i.e., by modifying the type signature as filter (x : list, y : truelist) where

truelist = ⊕{nil : 1, cons : (⊕{true : 1})⊗ truelist}. To utilize subset types in DR-

SAX, we instead let truelist = ⊕{nil : 1, cons : (bool | istrue)⊗ truelist}, and the

definition checks against this signature as-is. The next example details typechecking with



CHAPTER 4. DEPENDENT REFINEMENTS 89

this style of refinement.

Example 4.6 (Stream Filter). Let str = & {head : bool, tail : str} and

truestr = & {head : bool | istrue, tail : truestr} be bitstreams, the latter restricted to

having only true elements. The following partial function retains only the true elements

of a bitstream—it is only productive when there are true elements in the input infinitely

often. Yet, this definition is considered valid in DRSAX.

filter (x : str, y : truestr) =

h← read x (head · h) ;

t← read x (tail · t) ;

t′ ← filter
(
t, t′

)
;

read h {
h⇒bool|istrue︷ ︸︸ ︷
true · _⇒ write y

{
head · h′ ⇒ copy h′ h, tail · t′′ ⇒ copy t′′ t′

}
, false · _⇒ copy y t′}

Moreover, checking that it satisfies its type signature is straightforward due to path sen-

sitivity: casing on h flows h ⇒ bool | istrue, which is then flowed to h′ via copy h′ h,

as desired. Taking a step back, we folded the coinductive invariant into the definition of

truestr [MPV22] as opposed to extending the assertion logic with support for (co)predicates

as in [LM14]; in the next example, we use the same trick to encode a mixed inductive-

coinductive invariant.

Example 4.7 (Left-Fair Stream Filter). Recall the definition of left-fair bitstreams below;



CHAPTER 4. DEPENDENT REFINEMENTS 90

we additionally define those which only have true elements.

lfair = ⊕{now : & {head : bool, tail : lfair}

, later : lfair}

tlfair = ⊕{now : & {head : bool | istrue, tail : tlfair}

, later : tlfair}

We will now define a process that filters false elements out of a left-fair stream by replac-

ing them with later labels—note that it is also partial, because filtering a left-fair stream

with infinitely many false elements will produce infinitely many later labels. The process

of typechecking is similar to the previous example, because it is oblivious to the particular

scheme of recursion (mixed induction and coinduction).



CHAPTER 4. DEPENDENT REFINEMENTS 91

filter (x : lfair, y : tlfair) =

read x {now · x′ ⇒h← read x′ (head · h) ; t← read x′ (tail · t) ;

t′ ← filter
(
t, t′

)
;

read h {
h⇒bool|istrue︷ ︸︸ ︷
true · _⇒

s← write s
{
head · h′ ⇒ copy h′ h, tail · t′′ ⇒ copy t′′ t′

}
;

write y (now · s)

, false · _⇒ write y
(
later · t′

)
}

, later · t⇒t′ ← filter
(
t, t′

)
; write y

(
later · t′

)
}

4.2.8 Typing Summary and Metatheory

As in previous chapters, we re-establish soundness and completeness of bidirectional

typing to the corresponding non-bidirectional typing for processes.

Definition 4.1 (Non-Bidirectional Typing). As before, let Γ be a context of judgments J :=

t : A. Then, let Γ ⊢ P÷ J be generated by rules identical to those in Figure 2.4, but with

(⇒) and (⇐) replaced by (:).

Theorem 4.1 (Soundness and Completeness of Bidirectional Typing). Let |J| turn (⇒) and

(⇐) to (:). Extending |·| to Γ in the obvious way:

• if Γ ⊢ P÷ J, then |Γ| ⊢ P÷ |J|



CHAPTER 4. DEPENDENT REFINEMENTS 92

• if Γ ⊢ P ÷ J , then Γ ⊢ P′ ÷ J where there exists an extension of the process definition

signature such that P′ unfolds to P, |Γ| = Γ, and |J| = J .

Proof. Both are routine mixed induction and coinductions on the process typing deriva-

tion.

Finally, we tabulate DRSAX (sub)typing rules and correspondences to Hoare logic in

Figure 4.3, Figure 4.4, and Figure 4.5.



CHAPTER 4. DEPENDENT REFINEMENTS 93

Γ ⊢ A ≤ B Γ ⊢ P÷ (t⇒ A)

Γ ⊢ P÷ (t⇐ B)
≤R

Γ ⊢ A ≤ B Γ, s⇐ B ⊢ P÷ γ

Γ, s⇒ A ⊢ P÷ γ
≤L

Γ ⊢ P(x)÷ (x ⇐ A) Γ, x ⇐ A ⊢ Q(x)÷ γ

Γ ⊢ x ← P(x); Q(x)÷ γ
snipR

Γ ⊢ P(x)÷ (x ⇒ A) Γ, x ⇒ A ⊢ Q(x)÷ γ

Γ ⊢ x ← P(x); Q(x)÷ γ
snipL

Γ, s⇐ A ⊢ copy t s÷ (t⇐ A)
idR Γ, s⇒ A ⊢ copy t s÷ (t⇒ A)

idL

Γ ⊢ ϕ (⟨⟩)
Γ ⊢ write t ⟨⟩ ÷ (t⇐ 1 | λx. ϕ (x)) 1X

Γ, t⇒ 1 | λx. ϕ (x) ∧ x ≡ ⟨⟩ ⊢ P÷ γ

Γ, t⇒ 1 | λx. ϕ (x) ⊢ read t (⟨⟩ ⇒ P)÷ γ
1L

Γ, s⇐ A, t⇐ B (s) | λy. ϕ (⟨s, y⟩) ⊢ write u ⟨s, t⟩ ÷ (u⇐ (x : A)⊗ B (x) | λz. ϕ (z))
⊗X

Γ, u⇒ (x : A)⊗ B (x) | λz. ϕ (z) , x ⇒ A, y⇒ B (x) | λy. u ≡ ⟨x, y⟩ ⊢ P (x, y)÷ γ

Γ, u⇒ (x : A)⊗ B (x) | λz. ϕ (z) ⊢ read u (⟨x, y⟩ ⇒ P (x, y))÷ γ
⊗L

Γ, x ⇒ A | λx. ϕ (x) ⊢ P (x, y)÷ (y⇐ B | λy ψ (y)) Γ, t⇒ . . . | ∀x. ϕ (x) ⊃ ψ (x, z ′ x) ⊢ χ (t)
Γ ⊢ write t (⟨x, y⟩ ⇒ P (x, y))÷ (t⇐ ((x : A | λx. ϕ (x))→ B | λy. ψ (x, y)) | λz. χ (z))

→R

Γ, u⇒ (x : A)→ B (x) | λz. ϕ (z) , s⇐ A ⊢ read u ⟨s, t⟩ ÷ (t⇒ B (s)) →X

Γ, s⇐ Ak | λx. ϕ (k · x) ⊢ write t (k · s)÷
(
t⇐ ⊕{ℓ : Aℓ}ℓ∈S | λy. ϕ (y)

) ⊕X, k ∈ S

{
Γ, x ⇒ Ak | λx. ϕ (k · x) , t⇒ ⊕{ℓ : Aℓ}ℓ∈S | λy. ϕ (y) ∧ y ≡ k · x ⊢ Pk (x)÷ γ

}
k∈S

Γ, t⇒ ⊕{ℓ : Aℓ}ℓ∈S | λy. ϕ (y) ⊢ read t {ℓ · x ⇒ Pℓ (x)}ℓ∈S ÷ γ
⊕L

{Γ ⊢ Pk (x)÷ (x ⇐ Aℓ | λx. ϕℓ (x))}ℓ∈S Γ, t⇒ . . . | λy.
∧
ℓ∈S ϕℓ (y.ℓ) ⊢ ψ (t)

Γ ⊢ write t {ℓ · x ⇒ Pℓ (x)}ℓ∈S ÷
(
t⇐ & {ℓ : Aℓ | λx. ϕℓ (x)}ℓ∈S | λy. ψ (y)

) &R

Γ, t⇒ & {ℓ : Aℓ}ℓ∈S ⊢ read t (k · s)÷ (s⇒ Ak)
&X, k ∈ S

f
(
x : A, y : B

)
= P (x, y) ∞

(
s⇒ A ⊢ P (s, t)÷ (t⇐ B)

)
s⇐ A ⊢ f (s, t)÷ (t⇒ B)

call

Figure 4.3: DRSAX Typing



CHAPTER 4. DEPENDENT REFINEMENTS 94

Γ ⊢ A ≤ B Γ, x ⇒ A | ϕ (x) ⊢ ψ (x)
Γ ⊢ A | λx. ϕ (x) ≤ B | λx. ψ (x)

≤pred

Γ ⊢ A ≤ A′ Γ, x ⇒ A ⊢ B (x) ≤ B′ (x)
Γ ⊢ (x : A′)→ B (x) ≤ (x : A)→ B′ (x)

≤→

Γ ⊢ A ≤ A′ Γ, x ⇒ A ⊢ B (x) ≤ B′ (x)
Γ ⊢ (x : A)⊗ B (x) ≤ (x : A′)⊗ B′ (x)

≤⊗

S ⊆ T {Γ ⊢ Aℓ ≤ Bℓ}ℓ∈S
Γ ⊢ ⊕ {ℓ : Aℓ}ℓ∈S ≤ ⊕{ℓ : Bk}k∈T

≤⊕

T ⊆ S {Γ ⊢ Ak ≤ Bk}k∈T
Γ ⊢ & {ℓ : Aℓ}ℓ∈S ≤ & {ℓ : Bk}k∈T

≤&

X = B ∞ (Γ ⊢ A ≤ B)
Γ ⊢ A ≤ X ≤recR

X = A ∞ (Γ ⊢ A ≤ B)
Γ ⊢ X ≤ B ≤recL

Γ ⊢ A ≤ A refl
Γ ⊢ A ≤ B Γ ⊢ B ≤ C

Γ ⊢ A ≤ C trans

Figure 4.4: DRSAX Subtyping

DRSAX Hoare Logic
Axiom Assignment Rule

Cut Composition
Subsumption Consequence Rule

Positive Left Rule Conditional Rule
Negative Right Rule Data Abstraction

Call Rule Recursive Procedure Invocation

Figure 4.5: Correspondence between Hoare Logic and DRSAX

4.3 Type Soundness and Observable Partial Correctness

DRSAX configuration typing in Figure 4.6, which modifies the proc rule to utilize (sub)typing

like in the previous chapter, almost directly inherits Theorem 2.2 with respect to DRSAX



CHAPTER 4. DEPENDENT REFINEMENTS 95

configuration reduction in Figure 4.7. In particular, a slight modification to Lemma 2.2

is sufficient along with a discussion of path sensitivity in the proof of type preservation.

Then, the remaining development integrates our notion of observable partial correctness.

(all rules from Figure 2.7 excluding the proc rule)

Σ ≤ Σ′ Σ′ ⊢ P÷ (a : A′) Σ ⊢ A′ ≤ A
Σ ⊢ proc P÷ (Σ, a : A)

proc

Figure 4.6: DRSAX Configuration Typing

(all rules from Figure 2.6)

Figure 4.7: DRSAX Configuration Reduction

Lemma 4.1 (DRSAX Configuration Typing Induction). Lemma 2.2 must be amended with the

following additional clause for typing inversion.

• Typing inversion II: process typing derivations underneath any instance of the proc rule

do not end in a rule instance belonging to a recursive type, because they can be absorbed into

the proc rule’s subtyping premises using transitivity of subtyping. Thus, if A ≤ B for A

and B occurring in said process typing derivations, then A and B will still have the same

head (non-recursive) type constructor.

Lemma 4.2 (DRSAX Progress). If · ⊢ C ÷ ∆ then either C is final or C steps.

Lemma 4.3 (DRSAX Preservation). If Σ ⊢ C ÷ ∆ and C 7→ C ′, then Σ ⊢ C ′ ÷ ∆′ for ∆′ ⊇ ∆.

Proof. The proof is otherwise identical to Lemma 2.4 except for processes that read values

due to the path sensitivity of positive left rules. For example, when ⊕R meets ⊕L at



CHAPTER 4. DEPENDENT REFINEMENTS 96

address b subject to ϕ(b), the kth premise of ⊕L requires the type of b to be strengthened

with the equality b ≡ k · a where a is somewhere to the left in D. In updating the typing

derivation for the process providing b, a would be flowed ϕ(k · a) ∧ k · a ≡ k · a, which is

subsumed by ϕ(k · a) via≤L. Thus, the readers of a see the same type ascription as before.

To ensure that all readers of b except for the scrutinized instance of ⊕L see the same

type ascription as before, we inductively update their left subtyping premises noting that

ϕ(b) ∧ b ≡ k · a implies ϕ(b) also using ≤L.

For an alternate proof strategy of type preservation that grapples with this strong

form of path sensitivity in a functional setting, see [RP08, Lemma 5]. Now, to prove

observable partial correctness, we follow DeYoung et al. [DPP20] and refer to addresses

occurring in values as observable with all else being hidden. As a result, final configurations

of purely positive type, whose only constituents are value futures, only contain observable

addresses.

Lemma 4.4 (Final Configurations of Purely Positive Type). Purely positive refined types A++

those that only contain positive type constructors. Extending this definition to ∆ in the obvious

way, if · ⊢ F ÷ ∆++, then F only contains objects of the form !future a V (whose addresses are

observable).

Proof. By right-to-left induction on the configuration typing derivation, inversion on the

process typing derivation for each future reveals a value.

By taking care of the indirection that observable addresses introduce, we can deter-

mine when such a final configuration satisfies all of its postconditions.



CHAPTER 4. DEPENDENT REFINEMENTS 97

Lemma 4.5 (DRSAX Observable Satisfaction). Satisfaction of a final configuration with respect

to the postconditions in a context, F ⊨ ∆, is inductively generated as follows.

· ⊨ · ⊨ empty
F ⊨ ∆ ∆ ⊢ ϕ (V)

F , !future a V ⊨ ∆, a : A | ϕ (·) ⊨ value

If · ⊢ F ÷ ∆++, then F ⊨ ∆++.

Proof. By right-to-left induction on the configuration typing derivation; if F is empty,

then we are done by ⊨ empty. Otherwise, by Lemma 4.4, we have F = F1, !future a V

and ∆++ = ∆++
1 , a : A++ | ϕ(·) where F1 ⊨ ∆++

1 . Thus, it suffices to prove ∆++
1 ⊢ ϕ(V).

By inversion on the process typing derivation for !future a V, it suffices to only consider

right axioms, in which case ϕ(V) is already assumed in Γ++
1 or is proved directly. For

example, ⊗R assumes ϕ(⟨b, c⟩) to type write a ⟨b, c⟩, whereas 1R has Γ++
1 ⊢ ϕ(⟨⟩) for

write a ⟨⟩ in its premise.

Thus, a well-typed configuration is observably partially correct—it either does not

terminate or terminates at a final configuration where all of its purely positive subcon-

figurations observably satisfy their associated postconditions. We formalize this by the

following corollary, which modifies our coinductive notion of configuration safety to in-

clude observable satisfaction [Cla77, GM99, MPR18].

Theorem 4.2 (DRSAX Type Soundness and Observable Partial Correctness). Let F be Σ-

safe iff for all Σ++ ⊆ Σ, there exists F ′ ⊆ F such that F ′ ⊨ Σ++. Then, let C be Σ-safe iff,

coinductively, C 7→ C ′ and C ′ is Σ-safe. Thus, if · ⊢ C ÷ Σ, then C is Σ-safe.

We finish by commenting on the generality of our partial correctness result—because



CHAPTER 4. DEPENDENT REFINEMENTS 98

hidden addresses can be made observable by projecting or applying the continuations

that hide them, we do not lose power by restricting our attention to observability.

4.4 Related Work

We view DRSAX on a spectrum between languages that model concurrency and/or par-

allelism without native support for them at one end and process calculi with dependent

(session) types of varying expressivity at the other. Before we elaborate on this dichotomy,

we note that our treatment of codata seems to be related to logical approaches to object

encapsulation in the presence of mutable state [Hoa72, Hoa02, OYR09]. Moreover, refer

to [BG16, BH19] for reasoning about terminating mixed inductive-coinductive programs.

4.4.1 Language-Based Verification, Concurrency, and Parallelism

Projects like SteelCore [SRF+20] and FCSL [NLSD14] implement a variation of concurrent

separation logic [O’H04, JKJ+ed] in a metalanguage—in these cases, F* or Coq—in which

various shared memory and message-passing constructs can be modeled. Similar efforts

that do not use separation logic include that in Dafny [Lei17] and Why3 [SMV15]. Our in-

terest is “one level up”—determining a core language that could, in theory, be embedded

in the metalanguages mentioned, intersecting with our discussion of embedded session

types below. One exception to this thread (pun intended) is Liquid Effects [KRBJ12], in

which dependent refinements are retrofitted directly onto a parallel dialect of C.



CHAPTER 4. DEPENDENT REFINEMENTS 99

4.4.2 Dependent and Embedded Session Types

Toninho et al. [TCP11] initiated the line of work on dependent session types by present-

ing a session-typed process calculus in Curry-Howard correspondence with first-order

intuitionistic linear logic over a domain of non-linear proof terms. In particular, proof

terms are not allowed to refer to the channels with which processes communicate in the

linear layer. In their retrospective article ten years later [TCP21], they note that most sub-

sequent developments [TY17, TV19, DP20a] have similar restrictions precisely because

non-linear dependence on linear objects is problematic. As one exception to the rule,

Toninho and Yoshida [TY18] allow proof terms to depend on quoted processes by way

of a contextual monad [TCP13] related to the adjoint dependent modalities of dependent

linear/non-linear logic [KPB15]. The relaxation of the restriction on type dependency

comes at the cost of process/term-level duplication, because functional terms can be em-

bedded faithfully into processes—DRSAX need not make this distinction.

Another line of work seeks to embed session type systems into existing dependent

type theories, allowing meta-level reasoning about processes and the exploitation of ex-

isting language infrastructure [BH10, WX17, dBV19, SYB19, HBK20, MO22]. Embedded

implementation is certainly not opposed by DRSAX nor the line of work above, but mov-

ing the burden of proof to the meta level requires explicit reasoning about the typing and

operational semantics of programs to an extent determined by the embedding depth.



CHAPTER 4. DEPENDENT REFINEMENTS 100

4.4.3 Dependent Call-by-Push-Value

The distinction between positive and negative types in (DR)SAX suggests a comparison

to systems based on dependent call-by-push-value [PT19], recalling that we are restricted

to first-order type dependency (that is, types are not communicable (co)data). In partic-

ular, Niu et al.’s cost-aware logical framework [NSGH22] enforces a generalized phase

distinction [SH21] between the intensional/cost and extensional/behavioral aspects of a

program, the former of which is the core value proposition and technical complication of

parallelism. Lastly, sized type refinements seem to be related to their use of recurrences

as termination metrics for non-structurally inductive functions, although we are also able

to handle coinduction and mixed induction and coinduction.



Chapter 5

Modelling Asynchronous Reactive

Programming

Are you working on Artificial Intelligence? — My Second Aunt

In this chapter, we “put it all together” by using IRSAX and DRSAX to model asynchronous

reactive programming and, consequently, stretch both type refinement systems to their ex-

pressive limits. Reactive programming is a paradigm where a certain class of values admits

time dependence on other such values. For example, if a = b + c and the value of b is

updated after the initialization of a, then a changes accordingly. In the synchronous for-

mulation of functional reactive programming, such values are modeled as infinite streams

called signals. Thus, a = b + c defines a signal where subsequent samples (elements) of a

evolve in lockstep with those of b and c. However, this forces all signals to recompute ac-

cording to the fastest changing one, which is inefficient in some natural applications. For

example, a bit-valued signal corresponding to whether a GUI element is clicked ought

101



CHAPTER 5. MODELLING ASYNCHRONOUS REACTIVE PROGRAMMING 102

to only provide samples when the element’s state physically changes. As a result, vari-

ous authors [GSK21, BM23] have introduced asynchronous formalisms based on modal type

theory as follows:

• Signals of type A are simply streams defined via modal possibility ⋄A indicating a

value with the potential of asynchronous delay

• There is a synchronization primitive “select” that, given two values of modal type,

returns the one that is populated first

Because all types in SAX classify futures—objects that arrive with the potential of asyn-

chronous delay—the type of signals seems to coincide with our usual type of streams

provided that, at runtime, processes are scheduled in a way that signal samples are com-

puted in temporal (sequential) order [CFPP14]. Because our operational metatheory ap-

plies to all configuration schedules, this detail is inessential to typability. However, there

is a catch: we cannot implement “select,” because all reads in SAX are blocking. We can

instead opt to model signal combinators—many-to-one signal functions—that utilize this

form of synchronization without directly adding such a construct to SAX. Our view is

that selection as a primitive deserves a deeper treatment via temporal refinements. Thus,

this chapter is structured as follows:

• In Section §5.1, we define a mixed inductive-coinductive representation of signal

combinators with selection-based synchronization. We compare its expressive power,

as a model, to the calculi of [GSK21, BM23].

• In Section §5.2, we use IRSAX to verify causality (a refinement of termination rele-

vant to this domain) for a zipping signal combinator.



CHAPTER 5. MODELLING ASYNCHRONOUS REACTIVE PROGRAMMING 103

• In Section §5.3, we use DRSAX to verify that zipping preserves pointwise specifica-

tions along the input signals in the output signal, like monotonicity.

In sum, we verify total correctness by the decomposition advocated in the introduction

of this dissertation both at the conceptual and linguistic levels. At the end of the chapter,

we identify strengths and weaknesses of our approach, leaving more domain-specific

properties (e.g., space-leak freedom [GSK21, BM23]) to future work.

5.1 Signal Processors

In this section, we define and work with the type of signal processors, our model and

representation of signal combinators.

Definition 5.1 (Signal Processors). Let A & B ≜ & {force : A⊗ B}; we will use this rather

odd encoding of conjunction to define dependent records in the last section. The mixed

inductive-coinductive type of signal processors representing S-ary signal-to-signal func-

tions is defined as follows.

sp = ⊕
{
get : ⊕{ℓ : Aℓ}ℓ∈S → sp, put : C & sp

}
Given an S-indexed set of signals, a signal processor consists of an infinite series of put

actions (the coinductive part) corresponding to the output signal with finitely many get

actions (the inductive part) between consecutive puts corresponding to selection-based

synchronization among the input signals. In particular, an event of type Aℓ is the one

received first temporally out of all of the input signals. This type is identical to that of



CHAPTER 5. MODELLING ASYNCHRONOUS REACTIVE PROGRAMMING 104

stream processors due to Ghani et al. [GHP09], except that get has an asynchronous reading

due to the sum type’s occurrence.

We will gauge the expressive power of this representation by modeling some common

signal combinators that utilize the power of selection-based synchronization. First, let us

define some syntactic sugar.

Definition 5.2 (Notation). Below, we define some convenient object-oriented/monadic

notation for writing signal processors.

(⟨x, y⟩ ← z.get; P (x, y)) ≜ z′ ← write z′ (⟨x, y⟩ ⇒ P (x, y)) ; write z
(
get · z′

)
(x ← z.put (s) ; P (x)) ≜ z′ ← write z′ {force · y⇒ x ← P (x) ; write y ⟨s, x⟩} ;

write z
(
put · z′

)

From now on, the sum type of input events we will consider is A⊕ B ≜ ⊕{l : A, r : B}

for some fixed A and B. For the sake of argument, let Sig(A) be the type of signals with

events of type A in an asynchronous functional setting; it is common to implement the

interleaving of two signals as a function of type Sig(A) → Sig(B) → Sig(A⊕ B). In our

type of signal processors, input events already arrive interleaved in this fashion, obviating

the need for such a combinator. However, the following combinator is not supported

under the mixed inductive-coinductive interpretation of said type.

Definition 5.3 (Failure of Dynamic Switching). The following mutually recursive set of

definitions forms a signal processor on input events of type A⊕ B and output events of



CHAPTER 5. MODELLING ASYNCHRONOUS REACTIVE PROGRAMMING 105

type C ≜ A ⊕ B such that events of type A are outputted until an event of type B is

encountered; then, only events of type B are outputted.

sw(z : sp) = ⟨x, y⟩ ← z.get; y′ ← y.put (x) ; read x
{
l · _⇒ sw

(
y′
)

, r · _⇒ right
(
y′
)}

right(z : sp) = ⟨x, y⟩ ← z.get; read x
{
l · _⇒ right(y), r · x′ ⇒ y′ ← y.put (x) ; right(y′)

}
It is not valid under the mixed inductive-coinductive interpretation of sp because the

second definition could wait forever to receive an event tagged r (and therefore issue an

infinite number of gets) despite belonging to the inductive part of sp. Adding a variant of

get for every nonempty subset of input signals would avoid this busy-waiting behavior,

but given the difficulty of refining such a type as the number of input signals grows, one

would be better off just implementing selection into SAX directly.

On the other hand, our representation is able to encode zipping: combining events

along the input signals into pairs of events along the output.

Definition 5.4 (Signal Zipping). Starting with events x0 : A and y0 : B and taking output

events to be of type C ≜ A⊗ B, the following process definition models the zipping signal

combinator.



CHAPTER 5. MODELLING ASYNCHRONOUS REACTIVE PROGRAMMING 106

zip(x0 : A, y0 : B, z : sp) = ⟨p, z′⟩ ← z.get;

read p {l · x ⇒ q← write q ⟨x, y0⟩; w← z′.put (q) ; zip (x, y0, w)

r · y⇒ q← write q ⟨x0, y⟩; w← z′.put (q) ; zip (x0, y, w)}

Thus, our representation is strictly more expressive than that of [GSK21], which cannot

implement zipping, but less expressive than that of [BM23], which can implement both

zipping and dynamic switching. We are now ready to initiate the process of verification,

starting with causality.

5.2 Sized Type Refinements for Causality

A productive/terminating function f on streams is causal iff the ith output element of f

only depends on at most the first i input elements. For example, mapping an element-

wise function to an entire stream is causal (the ith output element depends only on the

ith input element), whereas the tail projection of a stream is not (the ith output element

depends on the i+ 1th input element). Because we view events along a signal as occurring

in temporal order, verifying causality on top of termination is necessary to ensure that

signals are physically realistic and not “looking into the future.” Below, we given an

index refinement of signal processors that classifies only representations of causal signal

combinators.

Definition 5.5 (Causal Signal Processors). The above notion of causality is equivalent to



CHAPTER 5. MODELLING ASYNCHRONOUS REACTIVE PROGRAMMING 107

requiring the ith put issued by signal processor to succeed no more than i gets. Thus, we

can refine the type of signal processors into sp[i, j, k] where i is the (coinductive) depth

of the output signal (number of puts), j bounds the number of gets between consecutive

puts (inductive part, reset on each put), and k is the difference between the number of

puts from gets seen so far (letting k take on integer values). Thus, on top of the usual

sized type refinements—a lexicographic induction on (i, j)—we only need to additionally

assert that k ≥ −1 when a put is issued to verify causality.

sp[i, j, k] = ⊕{put : i > 0 ⊃
(
C & ∃j′. k ≥ −1∧ sp[i− 1, j′, k + 1]

)
,

get : j > 0∧
(
⊕{ℓ : Aℓ}ℓ∈S → sp[i, j− 1, k− 1]

)
}

Example 5.1 (Causality of Signal Zipping). Because signal zipping alternates get and put

in lockstep, we ascribe it the refined type zip (i, x0 : A, y0 : B, z : sp[i, 1, 0]). That is, we

have arbitrarily many puts indicated by i with exactly one get between consecutive puts.

Let us review the original source code under this type ascription.

zip(i, x0 : A, y0 : B, z : sp[i, 1, 0]) =

unfolds sp[i,1,0], asserts (j=1)>0,z′⇒sp[i,0,−1]︷ ︸︸ ︷
⟨p, z′⟩ ← z.get;

read p {l · x ⇒ q← write q ⟨x, y0⟩; w← z′.put (q)︸ ︷︷ ︸
unfolds sp[i,0,−1], assumes i>0, sets j′=1, asserts (k=−1)≥−1

;

w⇐sp[i−1,1,0], checks i>0⊢i−1<i︷ ︸︸ ︷
zip (i− 1, x, y0, w)

r · y⇒ q← write q ⟨x0, y⟩; w← z′.put (q)︸ ︷︷ ︸
identical to above

;

identical to above︷ ︸︸ ︷
zip (i− 1, x0, y, w)}



CHAPTER 5. MODELLING ASYNCHRONOUS REACTIVE PROGRAMMING 108

We proceed by induction on i. The get issued to z produces z′ ⇒ sp[i, 0,−1]: both the

get height j and the causality indicator k are decremented to account for the get. Then,

the put issued to z′ produces w ⇒ sp[i− 1, 1, 0]: the put depth i is decremented, the get

height j is reset (due to the lexicographic induction on (i, j) at the level of types), and

the indicator k is incremented to account for the put. Thus, the recursive call is able to

proceed at i − 1 < i and at the same type sp[i, 1, 0]. In short, signal zipping typechecks

and is therefore causal.

5.3 Verifying Recursive Refinements

Switching gears, an interesting class of partial correctness properties on signal processors

operate pointwise: given some invariant on consecutive events along the input signal,

we expect the represented combinator to preserve this invariant over consecutive events

along the output signal. The idea of encoding these invariants via recursive refinements is

due to [VRJ13]. Below, we define a refinement of the signal processor type along these

lines and then verify that signal zipping preserves monotonicity given some ordering on

events.

Definition 5.6 (Recursively-Refined Signal Processors). Let (x : A)& B ≜ & {force : (x : A)⊗ B}.

Imagining a straightforward extension of DRSAX with indexed types, the type of stream

processors is refined according to some ϕ(p, p′) applying to consecutive events along

the input and ψ(q, q′) along the output by a bit of technical complication: starting with

“plain” sp, we define further types sp1 and sp2 depending on what combination of two

consecutive commands (each either a “get” or “put”) were issued until a running input



CHAPTER 5. MODELLING ASYNCHRONOUS REACTIVE PROGRAMMING 109

and output event can be maintained (sp3).

sp = ⊕
{
get :

(
p : ⊕{ℓ : Aℓ}ℓ∈S

)
→ sp1[p], put : (q : C) & sp2[q]

}
sp1[p : ⊕{ℓ : Aℓ}ℓ∈S] = ⊕{get :

(
p′ : ⊕{ℓ : Aℓ}ℓ∈S | ϕ

(
p, p′

))
→ sp1[p

′]

, put : (q : C) & sp3[p, q]}

sp2[q : C] = ⊕{get :
(

p : ⊕{ℓ : Aℓ}ℓ∈S
)
→ sp3[p, q]

, put :
(
q′ : C | ψ

(
q, q′

))
& sp2[q

′]}

sp3[p : ⊕{ℓ : Aℓ}ℓ∈S , q : C] = ⊕{get :
(

p′ : ⊕{ℓ : Aℓ}ℓ∈S | ϕ
(

p, p′
))
→ sp3[p

′, q]

, put :
(
q′ : C | ψ

(
q, q′

))
& sp3[p, q′]}

All types above are simply-typed equivalent to the original type (sp) so as to not affect

typability of our previously defined combinator(s).

Finally, we establish our desired property of zipping below.

Example 5.2 (Monotonicity of Signal Zipping). Let ϕ(p, p′) ≜ p ≤ p′ where ≤ is the

coproduct preorder defined on elements of A ⊕ B generated by two separate orders on

elements of A and B. That is, we have ∀x, x′. x ≤ x′ ⊂⊃ l · x ≤ l · x, ∀y, y′. y ≤ y′ ⊂⊃

r · y ≤ r · y′, and ∀x, y.¬ (l · x ≤ r · y) ∧ ¬ (r · y ≤ l · x). Then, let ψ (q, q′) ≜ q ≤ q′ be

the usual product/pairwise order on pairs of events of type A⊗ B. We aim to verify that

zip(x0 : A, y0 : B, z : sp) is well-typed. After unfolding the definition once, each recursive

call must check w ⇐ sp3[p, q] where p is the event received from the input signals and

q is the pair of events written along the output. Let us examine the original source code



CHAPTER 5. MODELLING ASYNCHRONOUS REACTIVE PROGRAMMING 110

under this type ascription.

zip(x0 : A, y0 : B, z : sp) =

unfolds sp,z′⇒sp1[p]︷ ︸︸ ︷
⟨p, z′⟩ ← z.get;

read p {l · x︸︷︷︸
p⇒A⊕B|p≡l·x

⇒ q← write q ⟨x, y0⟩; w← z′.put (q)︸ ︷︷ ︸
w⇒sp3[p,q]

; zip (x, y0, w)

r · y︸︷︷︸
p⇒A⊕B|p≡r·y

⇒ q← write q ⟨x0, y⟩; w← z′.put (q)︸ ︷︷ ︸
identical to above

; zip (x0, y, w)}

Checking each recursive call requires another unfolding of the definition of zip, be-

cause the type of w in either case must be sp3[p, q]. Moreover, the type of y0 and y must

be specialized to propagate the equalities q ≡ ⟨x, y0⟩ and q ≡ ⟨x0, y⟩. This presents a

slight but not insurmountable technical issue: because zip takes on a different type sig-

nature at these calls, we would have to factor out them out into a separate definition zip′

analogous to evens′ and odds′ in Example 3.6. Because we are already quite deep into

analyzing this definition, we will elide this formality. Instead, let us look at the unfolding

of zip (x, y0, w) under the new type ascription with address variables p and q in scope;

the second call follows symmetrically. Note that the listing below is not a definition (say,

of zip′), but a definitional equality.



CHAPTER 5. MODELLING ASYNCHRONOUS REACTIVE PROGRAMMING 111

zip(x : A,

y0⇒B|q≡⟨x,y0⟩︷ ︸︸ ︷
y0 : B | q ≡ ⟨x, y0⟩, w : sp3[p, q]) =

unfolds sp3[p,q],p′⇒A⊕B|p≤p′,w′⇒sp3[p
′,q]︷ ︸︸ ︷

⟨p′, w′⟩ ← w.get;

read p′ { l · x′︸︷︷︸
x′⇒A|p≤l·x′

⇒ q′ ← write q′ ⟨x′, y0⟩︸ ︷︷ ︸
y0⇐B|q≤⟨x′,y0⟩

; w′′ ← w′.put
(
q′
)︸ ︷︷ ︸

q′⇐C|q≤q′,w′′⇒sp3[p
′,q′]

; zip
(
x′, y0, w′′

)

r · y′︸︷︷︸
y′⇒B|p≤r·y′

⇒ q′ ← write q′ ⟨x0, y′⟩︸ ︷︷ ︸
y′⇐B|q≤⟨x0,y′⟩

; w′′ ← w′.put
(
q′
)︸ ︷︷ ︸

identical to above

; zip
(
x0, y′, w′′

)
}

To complete the typechecking process, we must close the derivational loops between

zip (x : A, y0 : B | q ≡ ⟨x, y0⟩, w : sp[p, q]) and its children

zip(x′ : A, y0 : B | q′ ≡ ⟨x′, y0⟩, w′′ : sp3[p′, q′]) and zip (x0 : A, y′ : B | q′ ≡ ⟨x0, y′⟩, w′′ : sp[p′, q′]).

This hinges on resolving the tension between type ascriptions for y0 and y′. In particular,

we discharge the following subtyping obligations, which have the force of establishing

monotonicity.

• For y0: p ⇒ A ⊕ B | p ≡ l · x, x′ ⇒ A | p ≤ l · x′ ⊢ (B | q ≡ ⟨x, y0⟩) ≤

(B | q ≤ ⟨x′, y0⟩) due to p ≡ l · x, p ≤ l · x′, q ≡ ⟨x, y0⟩ ⊢ q ≤ ⟨x′, y0⟩ in the as-

sertion logic, which is straightforward

• For y′: p⇒ A⊕ B | p ≡ l · x, y0 ⇒ B | q ≡ ⟨x, y0⟩ ⊢ (B | p ≤ r · y′) ≤ (B | q ≤ ⟨x0, y′⟩)

due to p ≡ l · x, q ≡ ⟨x, y0⟩, p ≤ r · y′ ⊢ q ≤ ⟨x0, y′⟩ in the assertion logic, which is

vacuously true from the implied antecedent l · x ≤ r · y′

This completes our typechecking obligations, establishing monotonicity of zipping.

This chapter has been highly illustrative: on the one hand, it shows us that IRSAX and

DRSAX are respectively capable of verifying complex termination and partial correctness



CHAPTER 5. MODELLING ASYNCHRONOUS REACTIVE PROGRAMMING 112

properties in a completely orthogonal manner as claimed by the thesis statement. On the

other hand, it reveals some practical concerns regarding the expressive power of the un-

derlying process calculus SAX (e.g., the ability to express reactive/select-based synchro-

nization), the annotation burden of using refinements in the form of factoring definitions

out, the need for indexed types, etc. Thus, we use the next chapter to reflect on what we

have achieved and also what remains to be done.



Chapter 6

Conclusion and Future Work

How would you implement the type refinement systems proposed in your thesis? —

Brigitte Pientka

In this dissertation, we have evidenced the following thesis statement:

A proof-theoretic investigation of type refinements within the semi-axiomatic sequent

calculus enables the verification of total correctness, decomposed into partial correctness

and termination, for communicating processes.

To elaborate, we developed index and dependent type refinement systems that are

capable of encoding and verifying termination and partial correctness specifications for

SAX processes as sophisticated as those modelling asynchronous reactive programming.

We have also successfully produced a theoretical framework for their design centered on

proof theory, incorporating bidirectional typing, infinite proofs, and Hoare logic. Keeping

in mind the limitations highlighted in the previous chapter, in the long term, we envision

SAX as a core language for language-based process verification, thus requiring the follow-

113



CHAPTER 6. CONCLUSION AND FUTURE WORK 114

ing features from contemporary sequential languages: further modes of type refinement,

rich type structure, resource control, and effects. We consider the following avenues of

future work to be the most critical.

• Unifying index and dependent refinements: Like Dunfield [Dun07], this dissertation

treats index and (dependent) datasort refinement separately. However, Jaber and

Riba [JR21] show how dependent refinements with assertions drawn from Jacobs’

many-sorted coalgebraic modal logic [Jac01] can encode both safety (partial correct-

ness) and liveness (termination/productivity) specifications orthogonally, raising

the question: is a separate facility for termination checking actually necessary? The

answer is maybe not: in a variation on SAX, DeYoung and Pfenning [DP23] replace

certain addresses (essentially, those that are associated to types in output mode un-

der bidirectional typing) with projections from which one can calculate the layout

of data in memory. Curiously, projections along with the defunctionalized left ax-

ioms discussed in the previous section seem to correspond to the indices of Jacobs’

modalities. Thus, we wonder whether said logic can be adapted to SAX, thus allow-

ing index refinements as a subsystem for liveness specifications to be subsumed by

dependent refinements.

• Surface language and implementation: in personal communication, DeYoung noticed

that projections seem to be dual to Krishnaswami’s patterns for interpreting pattern

matching in the focused sequent calculus [Kri09]. Thus, a variation of said calculus

may be a suitable surface language for SAX, provided that copattern matching for

negative types is integrated [APTS13]. Moreover, a restriction of the bidirectional



CHAPTER 6. CONCLUSION AND FUTURE WORK 115

presentation of SAX to cyclic proofs as a subsystem of infinite proofs generated by

regular coinduction [Dag21] may enable decidable typechecking.

• Modality and substructural typing: adjoint SAX introduces a family of modalities

that control occurrences of address weakening and contraction (address reuse and

disposal) [PP21]. The notions of resource control induced by substructural typing

could also be used to model contention, which is core to concurrency. Notably, Zeil-

berger’s backwards bidirectional typing [Zei15] gives a deterministic algorithmic

typing for the multiplicative fragment of the linear λ-calculus, obviating the need

for I/O contexts [CHP96]. Because our bidirectional formulation of SAX has both

conventional and backwards aspects, we wonder whether its linear reading is also

suitably algorithmic even in the presence of additive connectives.

• Asynchronous effects: we conjecture that Ahman and Bauer’s calculus for asynchronous

effects [AP21] can be embedded into SAX, allowing the expression of effectful pro-

grams without, ideally, reaching for extralogical machinery.

• Higher type structure: while dependent type refinement enables type dependency on

processes, process and type dependency on types (polymorphism and type nesting,

respectively) are desirable for type abstraction. The combination of both features in

the setting of session types was explored by Das et al. [DDMP21], which we suspect

is adaptable to SAX.



Bibliography

[Abe06] Andreas Abel. Semi-Continuous Sized Types and Termination. In Proceedings

of the 20th International Conference on Computer Science Logic, CSL’06, pages 72–

88, Berlin, Heidelberg, September 2006. Springer-Verlag.

[Abe12] Andreas Abel. Type-Based Termination, Inflationary Fixed-Points, and

Mixed Inductive-Coinductive Types. In Dale Miller and Zoltán Ésik, edi-

tors, 8th Workshop on Fixed Points in Computer Science (FICS 2012), volume 77

of EPTCS, pages 1–11, Tallinn, Estonia, March 2012.

[Abe14] Andreas Abel. Productive Infinite Objects via Copatterns and Sized Types in

Agda. January 2014.

[AC96] David Aspinall and Adriana Compagnoni. Subtyping Dependent Types. In

Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science,

LICS ’96, page 86, USA, July 1996. IEEE Computer Society.

[AND92] JEAN-MARC ANDREOLI. Logic Programming with Focusing Proofs in Lin-

ear Logic. Journal of Logic and Computation, 2(3):297–347, June 1992.

116



BIBLIOGRAPHY 117

[AP13] Andreas M. Abel and Brigitte Pientka. Wellfounded Recursion with Copat-

terns: A Unified Approach to Termination and Productivity. In Proceedings

of the 18th ACM SIGPLAN International Conference on Functional Programming,

ICFP ’13, pages 185–196, New York, NY, USA, September 2013. Association

for Computing Machinery.

[AP21] Danel Ahman and Matija Pretnar. Asynchronous Effects. Proceedings of the

ACM on Programming Languages, 5(POPL):24:1–24:28, January 2021.

[APTS13] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copat-

terns: Programming Infinite Structures by Observations. In Proceedings of the

40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’13, pages 27–38, New York, NY, USA, 2013. Association for

Computing Machinery.

[BBC08] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic Proofs of

Program Termination in Separation Logic. In Proceedings of the 35th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’08, pages 101–112, New York, NY, USA, January 2008. Association for

Computing Machinery.

[BC16] Christian J. Bell and Adam Chlipala. A Coinduction Proof Rule for Hoare

Doubles. In The 2nd International Workshop on Coq for PL (CoqPL 2016), 2016.

[BDS16] David Baelde, Amina Doumane, and Alexis Saurin. Infinitary Proof Theory:

The Multiplicative Additive Case. In Jean-Marc Talbot and Laurent Regnier,



BIBLIOGRAPHY 118

editors, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016),

volume 62 of Leibniz International Proceedings in Informatics (LIPIcs), pages

42:1–42:17, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik.

[BFG+04] G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based ter-

mination of recursive definitions. Mathematical Structures in Computer Science,

14(1):97–141, February 2004.

[BG16] Henning Basold and Herman Geuvers. Type Theory based on Dependent

Inductive and Coinductive Types. In Proceedings of the 31st Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS ’16, pages 327–336, New York,

NY, USA, July 2016. Association for Computing Machinery.

[BG22] Patrick Baillot and Alexis Ghyselen. Types for Complexity of Parallel Com-

putation in Pi-calculus. ACM Transactions on Programming Languages and Sys-

tems, 44(3):15:1–15:50, July 2022.

[BH97] Michael Brandt and Fritz Henglein. Coinductive Axiomatization of Recur-

sive Type Equality and Subtyping. In Philippe de Groote and J. Roger Hind-

ley, editors, Third International Conference on Typed Lambda Calculi and Appli-

cations, Lecture Notes in Computer Science, pages 63–81, Berlin, Heidelberg,

1997. Springer.

[BH10] Edwin Brady and Kevin Hammond. Correct-by-Construction Concurrency:

Using Dependent Types to Verify Implementations of Effectful Resource Us-



BIBLIOGRAPHY 119

age Protocols. Fundamenta Informaticae, 102(2):145–176, January 2010.

[BH19] Henning Basold and Helle Hvid Hansen. Well-definedness and observa-

tional equivalence for inductive–coinductive programs. Journal of Logic and

Computation, 29(4):419–468, June 2019.

[BHN14] Nick Benton, Martin Hofmann, and Vivek Nigam. Abstract Effects and

Proof-Relevant Logical Relations. ACM SIGPLAN Notices, 49(1):619–631, Jan-

uary 2014.

[Bla04] Frédéric Blanqui. A Type-Based Termination Criterion for Dependently-

Typed Higher-Order Rewrite Systems. In Vincent van Oostrom, editor, 15th

International Conference on Rewriting Techniques and Applications, Lecture Notes

in Computer Science, pages 24–39, Berlin, Heidelberg, 2004. Springer.

[BM23] Patrick Bahr and Rasmus Ejlers Møgelberg. Asynchronous Modal FRP. Pro-

ceedings of the ACM on Programming Languages, 7(ICFP):205:476–205:510, Au-

gust 2023.

[BR09] Frédéric Blanqui and Cody Roux. On the Relation between Sized-Types

Based Termination and Semantic Labelling. In Erich Grädel and Reinhard

Kahle, editors, 20th International Workshop on Computer Science Logic, Held as

Part of the 15th Annual Conference of the EACSL, Lecture Notes in Computer

Science, pages 147–162, Berlin, Heidelberg, 2009. Springer.

[CC79] Patrick Cousot and Radhia Cousot. Constructive Versions of Tarski’s Fixed

Point Theorems. Pacific Journal of Mathematics, 82(1):43–57, January 1979.



BIBLIOGRAPHY 120

[CFPP14] Andrew Cave, Francisco Ferreira, Prakash Panangaden, and Brigitte Pientka.

Fair Reactive Programming. In Proceedings of the 41st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’14, pages 361–372,

New York, NY, USA, January 2014. Association for Computing Machinery.

[CH11] Ioana Cristescu and Daniel Hirschkoff. Termination in a Pi-calculus with

Subtyping. In Proceedings of the 18th International Workshop on Expressiveness

in Concurrency, volume 64, pages 44–58, August 2011.

[Che22] Zilin Chen. A Hoare Logic Style Refinement Types Formalisation. In Proceed-

ings of the 7th ACM SIGPLAN International Workshop on Type-Driven Develop-

ment, TyDe 2022, pages 1–14, New York, NY, USA, September 2022. Associa-

tion for Computing Machinery.

[CHP96] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient Resource

Management for Linear Logic Proof Search. In Roy Dyckhoff, Heinrich

Herre, and Peter Schroeder-Heister, editors, Extensions of Logic Programming,

Lecture Notes in Computer Science, pages 67–81, Berlin, Heidelberg, 1996.

Springer.

[CK01] Wei-Ngan Chin and Siau-Cheng Khoo. Calculating Sized Types. Higher-

Order and Symbolic Computation, 14(2):261–300, September 2001.

[Cla77] Edmund M. Clarke. Program Invariants as Fixed Points (Preliminary Re-

ports). In 18th Annual Symposium on Foundations of Computer Science, pages

18–29, Providence, Rhode Island, USA, 1977. IEEE Computer Society.



BIBLIOGRAPHY 121

[CLBed] Jonathan Chan, Yufeng Li, and William J. Bowman. Is sized typing for Coq

practical? Journal of Functional Programming, 33:e1, 2023/ed.

[CP10] Luís Caires and Frank Pfenning. Session Types as Intuitionistic Linear Propo-

sitions. In Paul Gastin and François Laroussinie, editors, CONCUR 2010

- Concurrency Theory, Lecture Notes in Computer Science, pages 222–236,

Berlin, Heidelberg, 2010. Springer.

[CS06] Iliano Cervesato and Andre Scedrov. Relating State-Based and Process-Based

Concurrency through Linear Logic. Electronic Notes in Theoretical Computer

Science, 165:145–176, November 2006.

[CSW14] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Combining

Proofs and Programs in a Dependently Typed Language. In Proceedings of

the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’14, pages 33–45, New York, NY, USA, January 2014. Associa-

tion for Computing Machinery.

[DA09] Nils Anders Danielsson and Thorsten Altenkirch. Mixing Induction and

Coinduction, October 2009.

[DA10] Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, Declaratively.

In Claude Bolduc, Jules Desharnais, and Béchir Ktari, editors, Mathematics

of Program Construction, Lecture Notes in Computer Science, pages 100–118,

Berlin, Heidelberg, 2010. Springer.



BIBLIOGRAPHY 122

[Dag21] Francesco Dagnino. Foundations of Regular Coinduction. Logical Methods in

Computer Science, Volume 17, Issue 4, October 2021.

[dBV19] Jan de Muijnck-Hughes, Edwin C. Brady, and Wim Vanderbauwhede. Value-

Dependent Session Design in a Dependently Typed Language. In Fran-

cisco Martins and Dominic Orchard, editors, Proceedings of The 11th Inter-

national Workshop on Programming Language Approaches to Concurrency- and

Communication-cEntric Software, volume 291 of EPTCS, pages 47–59, Prague,

Czechia, 2019.

[DCPT12] Henry DeYoung, Luís Caires, Frank Pfenning, and Bernardo Toninho. Cut

Reduction in Linear Logic as Asynchronous Session-Typed Communication.

In Patrick Cégielski and Arnaud Durand, editors, Computer Science Logic

(CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL,

volume 16 of Leibniz International Proceedings in Informatics (LIPIcs), pages

228–242, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik.

[DDMP21] Ankush Das, Henry DeYoung, Andreia Mordido, and Frank Pfenning. Sub-

typing on Nested Polymorphic Session Types, March 2021.

[de 91] N. G. de Bruijn. Telescopic Mappings in Typed Lambda Calculus. Information

and Computation, 91(2):189–204, April 1991.

[DHP18] Ankush Das, Jan Hoffmann, and Frank Pfenning. Parallel Complexity Anal-

ysis with Temporal Session Types. Proceedings of the ACM on Programming



BIBLIOGRAPHY 123

Languages, 2(ICFP):91:1–91:30, July 2018.

[DHS10] Romain Demangeon, Daniel Hirschkoff, and Davide Sangiorgi. Termination

in Impure Concurrent Languages. In Paul Gastin and François Laroussinie,

editors, Proceedings of the 21st International Conference on Concurrency Theory,

Lecture Notes in Computer Science, pages 328–342, Berlin, Heidelberg, 2010.

Springer.

[DK19] Jana Dunfield and Neelakantan R. Krishnaswami. Sound and Complete

Bidirectional Typechecking for Higher-Rank Polymorphism with Existen-

tials and Indexed Types. Proceedings of the ACM on Programming Languages,

3(POPL):9:1–9:28, January 2019.

[DK21] Jana Dunfield and Neel Krishnaswami. Bidirectional Typing. ACM Comput-

ing Surveys, 54(5):98:1–98:38, May 2021.

[DP00] Rowan Davies and Frank Pfenning. Intersection Types and Computational

Effects. In Proceedings of the Fifth ACM SIGPLAN International Conference

on Functional Programming, ICFP ’00, pages 198–208, New York, NY, USA,

September 2000. Association for Computing Machinery.

[DP03] Jana Dunfield and Frank Pfenning. Type Assignment for Intersections and

Unions in Call-by-Value Languages. In Andrew D. Gordon, editor, Founda-

tions of Software Science and Computation Structures, Lecture Notes in Com-

puter Science, pages 250–266, Berlin, Heidelberg, 2003. Springer.



BIBLIOGRAPHY 124

[DP04] Jana Dunfield and Frank Pfenning. Tridirectional Typechecking. In Proceed-

ings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’04, pages 281–292, New York, NY, USA, 2004. Associ-

ation for Computing Machinery.

[DP20a] Ankush Das and Frank Pfenning. Session Types with Arithmetic Refine-

ments. In Igor Konnov and Laura Kovács, editors, 31st International Con-

ference on Concurrency Theory (CONCUR 2020), volume 171 of Leibniz Interna-

tional Proceedings in Informatics (LIPIcs), pages 13:1–13:18, Dagstuhl, Germany,

2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[DP20b] Ankush Das and Frank Pfenning. Verified Linear Session-Typed Concurrent

Programming. In Proceedings of the 22nd International Symposium on Principles

and Practice of Declarative Programming, PPDP ’20, pages 1–15, New York, NY,

USA, September 2020. Association for Computing Machinery.

[DP22] Farzaneh Derakhshan and Frank Pfenning. Circular Proofs as Session-Typed

Processes: A Local Validity Condition. Logical Methods in Computer Science,

Volume 18, Issue 2, May 2022.

[DP23] Henry DeYoung and Frank Pfenning. Data Layout from a Type-Theoretic

Perspective. Electronic Notes in Theoretical Informatics and Computer Science,

Volume 1 - Proceedings of MFPS XXXVIII, February 2023.

[DPP20] Henry DeYoung, Frank Pfenning, and Klaas Pruiksma. Semi-Axiomatic Se-

quent Calculus. In Zena M. Ariola, editor, 5th International Conference on For-



BIBLIOGRAPHY 125

mal Structures for Computation and Deduction (FSCD 2020), volume 167 of Leib-

niz International Proceedings in Informatics (LIPIcs), pages 29:1–29:22, Dagstuhl,

Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[DS06] Yuxin Deng and Davide Sangiorgi. Ensuring termination by typability. Infor-

mation and Computation, 204(7):1045–1082, July 2006.

[Dun07] Jana Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie

Mellon University, August 2007.

[FP91] Tim Freeman and Frank Pfenning. Refinement Types for ML. In Proceedings

of the ACM SIGPLAN 1991 Conference on Programming Language Design and Im-

plementation, PLDI ’91, pages 268–277, New York, NY, USA, 1991. Association

for Computing Machinery.

[GG13] Dennis Griffith and Elsa L. Gunter. LiquidPi: Inferrable Dependent Session

Types. In Guillaume Brat, Neha Rungta, and Arnaud Venet, editors, NASA

Formal Methods, Lecture Notes in Computer Science, pages 185–197, Berlin,

Heidelberg, 2013. Springer.

[GHP09] Neil Ghani, Peter Hancock, and Dirk Pattinson. Representations of Stream

Processors Using Nested Fixed Points. Logical Methods in Computer Science,

Volume 5, Issue 3, September 2009.

[GM99] Joseph A. Goguen and Grant Malcolm. Hidden coinduction: Behavioural

correctness proofs for objects. Mathematical Structures in Computer Science,

9(3):287–319, June 1999.



BIBLIOGRAPHY 126

[GSK21] Christian Uldal Graulund, Dmitrij Szamozvancev, and Neel Krishnaswami.

Adjoint Reactive GUI Programming. In Stefan Kiefer and Christine Tasson,

editors, Foundations of Software Science and Computation Structures, Lecture

Notes in Computer Science, pages 289–309, Cham, 2021. Springer Interna-

tional Publishing.

[Hal85] Robert H. Halstead. MULTILISP: A Language for Concurrent Symbolic Com-

putation. ACM Transactions on Programming Languages and Systems, 7(4):501–

538, October 1985.

[Har16] Robert Harper. Practical Foundations for Programming Languages. Cambridge

University Press, New York, NY, USA, 2 edition, April 2016.

[HBK20] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris:

Session-Type Based Reasoning in Separation Logic. In Proceedings of the ACM

on Programming Languages, volume 4, pages 6:1–6:30, 2020.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communi-

cations of the ACM, 12(10):576–580, October 1969.

[Hoa71] C. A. R. Hoare. Procedures and Parameters: An Axiomatic Approach. In

E. Engeler, editor, Symposium on Semantics of Algorithmic Languages, Lecture

Notes in Mathematics, pages 102–116, Berlin, Heidelberg, 1971. Springer.

[Hoa72] C. A. R. Hoare. Proof of Correctness of Data Representations. Acta Informat-

ica, 1(4):271–281, December 1972.



BIBLIOGRAPHY 127

[Hoa02] C. A. R. Hoare. Towards a Theory of Parallel Programming. In Per Brinch

Hansen, editor, The Origin of Concurrent Programming: From Semaphores to Re-

mote Procedure Calls, pages 231–244. Springer, New York, NY, 2002.

[HPS96] John Hughes, Lars Pareto, and Amr Sabry. Proving the Correctness of Re-

active Systems Using Sized Types. In Proceedings of the 23rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’96, pages

410–423, New York, NY, USA, January 1996. Association for Computing Ma-

chinery.

[II06] Frédéric Blanqui (INRIA) and Colin Riba (INPL). Combining Typing and

Size Constraints for Checking the Termination of Higher-Order Conditional

Rewrite Systems. In Miki Hermann and Andrei Voronkov, editors, 13th Inter-

national Conference on Logic for Programming, Artificial Intelligence, and Reason-

ing, Lecture Notes in Computer Science, pages 105–119, Berlin, Heidelberg,

2006. Springer.

[Jac01] Bart Jacobs. Many-Sorted Coalgebraic Modal Logic: A Model-Theoretic

Study. RAIRO - Theoretical Informatics and Applications, 35(1):31–59, January

2001.

[JKJ+ed] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars

Birkedal, and Derek Dreyer. Iris from the ground up: A modular foundation

for higher-order concurrent separation logic. Journal of Functional Program-

ming, 28:e20, 2018/ed.



BIBLIOGRAPHY 128

[JR21] Guilhem Jaber and Colin Riba. Temporal Refinements for Guarded Recur-

sive Types. In Nobuko Yoshida, editor, Programming Languages and Systems,

Lecture Notes in Computer Science, pages 548–578, Cham, 2021. Springer

International Publishing.

[JV21] Ranjit Jhala and Niki Vazou. Refinement Types: A Tutorial. Foundations and

Trends® in Programming Languages, 6(3–4):159–317, October 2021.

[KPB15] Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. Integrat-

ing Linear and Dependent Types. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’15, pages 17–30, New York, NY, USA, January 2015. Association for Com-

puting Machinery.

[KRBJ12] Ming Kawaguchi, Patrick Rondon, Alexander Bakst, and Ranjit Jhala. Deter-

ministic Parallelism via Liquid Effects. In Proceedings of the 33rd ACM SIG-

PLAN Conference on Programming Language Design and Implementation, PLDI

’12, pages 45–54, New York, NY, USA, 2012. Association for Computing Ma-

chinery.

[Kri09] Neelakantan R. Krishnaswami. Focusing on Pattern Matching. In Proceed-

ings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’09, pages 366–378, New York, NY, USA, Jan-

uary 2009. Association for Computing Machinery.



BIBLIOGRAPHY 129

[KS08] Naoki Kobayashi and Davide Sangiorgi. A Hybrid Type System for Lock-

Freedom of Mobile Processes. ACM Transactions on Programming Languages

and Systems, 32(5):16:1–16:49, May 2008.

[LDD+22] Zeeshan Lakhani, Ankush Das, Henry DeYoung, Andreia Mordido, and

Frank Pfenning. Polarized Subtyping. In Ilya Sergey, editor, 31st European

Symposium on Programming, Lecture Notes in Computer Science, pages 431–

461, Cham, 2022. Springer International Publishing.

[LDM06] Stéphane Lengrand, Roy Dyckhoff, and James McKinna. A Sequent Calculus

for Type Theory. In Zoltán Ésik, editor, Computer Science Logic, Lecture Notes

in Computer Science, pages 441–455, Berlin, Heidelberg, 2006. Springer.

[Lei17] K. Rustan M. Leino. Modeling Concurrency in Dafny. In Jonathan P. Bowen,

Zhiming Liu, and Zili Zhang, editors, School on Engineering Trustworthy Soft-

ware Systems (SETTS 2017), Lecture Notes in Computer Science, pages 115–

142, Cham, 2017. Springer International Publishing.

[Lev99] Paul Blain Levy. Call-by-Push-Value: A Subsuming Paradigm. In Proceed-

ings of the 4th International Conference on Typed Lambda Calculi and Applications,

TLCA ’99, pages 228–242, Berlin, Heidelberg, April 1999. Springer-Verlag.

[LG09] Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics.

Information and Computation, 207(2):284–304, February 2009.

[LJB01] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The Size-Change

Principle for Program Termination. In Proceedings of the 28th ACM SIGPLAN-



BIBLIOGRAPHY 130

SIGACT Symposium on Principles of Programming Languages, POPL ’01, pages

81–92, New York, NY, USA, January 2001. Association for Computing Ma-

chinery.

[LM14] K. Rustan M. Leino and Michał Moskal. Co-induction Simply. In Cliff Jones,

Pekka Pihlajasaari, and Jun Sun, editors, Formal Methods, Lecture Notes in

Computer Science, pages 382–398, Cham, 2014. Springer International Pub-

lishing.

[LM16] Sam Lindley and J. Garrett Morris. Talking Bananas: Structural Recursion

for Session Types. In Proceedings of the 21st ACM SIGPLAN International Con-

ference on Functional Programming, ICFP 2016, pages 434–447, New York, NY,

USA, September 2016. Association for Computing Machinery.

[LP09] William Lovas and Frank Pfenning. Refinement Types as Proof Irrelevance.

In Pierre-Louis Curien, editor, Proceedings of the 9th International Conference

on Typed Lambda Calculi and Applications, Lecture Notes in Computer Science,

pages 157–171, Berlin, Heidelberg, 2009. Springer.

[LR19] Rodolphe Lepigre and Christophe Raffalli. Practical Subtyping for Curry-

Style Languages. ACM Transactions on Programming Languages and Systems,

41(1):5:1–5:58, February 2019.

[MO22] Daniel Marshall and Dominic Orchard. Replicate, Reuse, Repeat: Capturing

Non-Linear Communication via Session Types and Graded Modal Types. In

Marco Carbone and Rumyana Neykova, editors, Proceedings of the 13th In-



BIBLIOGRAPHY 131

ternational Workshop on Programming Language Approaches to Concurrency- and

Communication-cEntric Software, volume 356 of EPTCS, pages 1–11, Munich,

Germany, 2022.

[MPR18] Brandon Moore, Lucas Peña, and Grigore Rosu. Program Verification by

Coinduction. In Amal Ahmed, editor, Proceedings of the 27th European Sym-

posium on Programming, Lecture Notes in Computer Science, pages 589–618,

Cham, 2018. Springer International Publishing.

[MPV22] Lykourgos Mastorou, Nikolaos Papaspyrou, and Niki Vazou. Coinduction

Inductively: Mechanizing Coinductive Proofs in Liquid Haskell. In Proceed-

ings of the 15th ACM SIGPLAN International Haskell Symposium, Haskell 2022,

pages 1–12, New York, NY, USA, September 2022. Association for Comput-

ing Machinery.

[Nak00] H. Nakano. A Modality for Recursion. In Proceedings of the Fifteenth Annual

IEEE Symposium on Logic in Computer Science, pages 255–266, June 2000.

[NLSD14] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Del-

bianco. Communicating State Transition Systems for Fine-Grained Concur-

rent Resources. In Zhong Shao, editor, Proceedings of the 23rd European Sym-

posium on Programming, Lecture Notes in Computer Science, pages 290–310,

Berlin, Heidelberg, 2014. Springer.

[NSGH22] Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. A Cost-

Aware Logical Framework. Proceedings of the ACM on Programming Languages,



BIBLIOGRAPHY 132

6(POPL):9:1–9:31, January 2022.

[O’H04] Peter W. O’Hearn. Resources, Concurrency and Local Reasoning. In Philippa

Gardner and Nobuko Yoshida, editors, Proceedings of the 15th International

Conference on Concurrency Theory, Lecture Notes in Computer Science, pages

49–67, Berlin, Heidelberg, 2004. Springer.

[Opp78] Derek C. Oppen. Reasoning about Recursively Defined Data Structures. In

Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-

gramming Languages, POPL ’78, pages 151–157, New York, NY, USA, January

1978. Association for Computing Machinery.

[OYR09] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and In-

formation Hiding. ACM Transactions on Programming Languages and Systems,

31(3):11:1–11:50, April 2009.

[Plo73] Gordon Plotkin. Lambda-Definability and Logical Relations. Edinburgh Uni-

versity, 1973.

[PP21] Klaas Pruiksma and Frank Pfenning. A message-passing interpretation of ad-

joint logic. Journal of Logical and Algebraic Methods in Programming, 120:100637,

April 2021.

[PP22] Klaas Pruiksma and Frank Pfenning. Back to futures. Journal of Functional

Programming, 32:e6, January 2022.

[PT00] Benjamin C. Pierce and David N. Turner. Local Type Inference. ACM Trans-

actions on Programming Languages and Systems, 22(1):1–44, January 2000.



BIBLIOGRAPHY 133

[PT19] Pierre-Marie Pédrot and Nicolas Tabareau. The Fire Triangle: How to Mix

Substitution, Dependent Elimination, and Effects. Proceedings of the ACM on

Programming Languages, 4(POPL):58:1–58:28, December 2019.

[Rey72] John C. Reynolds. Definitional Interpreters for Higher-Order Programming

Languages. In Proceedings of the ACM Annual Conference - Volume 2, ACM ’72,

pages 717–740, New York, NY, USA, August 1972. Association for Comput-

ing Machinery.

[Rey00] John C. Reynolds. The Meaning of Types - From Intrinsic to Extrinsic Seman-

tics. BRICS Report Series, 7(32), June 2000.

[ROS98] J. Rushby, S. Owre, and N. Shankar. Subtypes for Specifications: Predicate

Subtyping in PVS. IEEE Transactions on Software Engineering, 24(9):709–720,

September 1998.

[RP08] Yann Régis-Gianas and François Pottier. A Hoare Logic for Call-by-Value

Functional Programs. In Philippe Audebaud and Christine Paulin-Mohring,

editors, Proceedings of the 9th International Conference on Mathematics of Program

Construction, Lecture Notes in Computer Science, pages 305–335, Berlin, Hei-

delberg, 2008. Springer.

[Sac14] Jorge Luis Sacchini. Linear Sized Types in the Calculus of Constructions.

In Michael Codish and Eijiro Sumii, editors, 12th International Symposium on

Functional and Logic Programming, Lecture Notes in Computer Science, pages

169–185, Cham, 2014. Springer International Publishing.



BIBLIOGRAPHY 134

[San06] Davide Sangiorgi. Termination of processes. Mathematical Structures in Com-

puter Science, 16(1):1–39, February 2006.

[Sch77] Kurt Schütte. Proof Theory. Grundlehren Der Mathematischen Wis-

senschaften. Springer Berlin, Heidelberg, 1 edition, 1977.

[SH21] Jonathan Sterling and Robert Harper. Logical Relations as Types: Proof-

Relevant Parametricity for Program Modules. Journal of the ACM, 68(6):41:1–

41:47, October 2021.

[Smu69] Raymond M. Smullyan. Analytic cut. The Journal of Symbolic Logic, 33(4):560–

564, January 1969.

[SMV15] César Santos, Francisco Martins, and Vasco Thudichum Vasconcelos. Deduc-

tive Verification of Parallel Programs using Why3. In Sophia Knight, Ivan

Lanese, Alberto Lluch-Lafuente, and Hugo Torres Vieira, editors, Proceedings

8th Interaction and Concurrency Experience, volume 189 of EPTCS, pages 128–

142, Grenoble, France, 2015.

[SP22] Siva Somayyajula and Frank Pfenning. Type-Based Termination for Futures.

In Amy P. Felty, editor, 7th International Conference on Formal Structures for

Computation and Deduction (FSCD 2022), volume 228 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 12:1–12:21, Dagstuhl, Germany, 2022.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik.



BIBLIOGRAPHY 135

[SP23] Siva Somayyajula and Frank Pfenning. Dependent Type Refinements for Fu-

tures. In 39th Conference on the Mathematical Foundations of Programming Se-

mantics (MFPS XXXIX), Bloomington, Indiana, USA, June 2023.

[SPTD16] Paula Severi, Luca Padovani, Emilio Tuosto, and Mariangiola Dezani-

Ciancaglini. On Sessions and Infinite Data. In Alberto Lluch Lafuente and

José Proença, editors, 18th IFIP WG 6.1 International Conference on Coordination

Models and Languages, Held as Part of the 11th International Federated Conference

on Distributed Computing Techniques (DisCoTec 2016), Lecture Notes in Com-

puter Science, pages 245–261, Cham, 2016. Springer International Publishing.

[SRF+20] Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel

Ahman, and Guido Martínez. SteelCore: An Extensible Concurrent Separa-

tion Logic for Effectful Dependently Typed Programs. Proceedings of the ACM

on Programming Languages, 4(ICFP):121:1–121:30, August 2020.

[SYB19] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Effpi: Verified Message-

Passing Programs in Dotty. In Proceedings of the Tenth ACM SIGPLAN Sympo-

sium on Scala, Scala ’19, pages 27–31, New York, NY, USA, July 2019. Associ-

ation for Computing Machinery.

[TB20] Gadi Tellez and James Brotherston. Automatically Verifying Temporal Prop-

erties of Pointer Programs with Cyclic Proof. Journal of Automated Reasoning,

64(3):555–578, March 2020.



BIBLIOGRAPHY 136

[TCP11] Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent Session

Types via Intuitionistic Linear Type Theory. In Proceedings of the 13th Inter-

national ACM SIGPLAN Symposium on Principles and Practices of Declarative

Programming, PPDP ’11, pages 161–172, New York, NY, USA, July 2011. As-

sociation for Computing Machinery.

[TCP13] Bernardo Toninho, Luis Caires, and Frank Pfenning. Higher-Order Processes,

Functions, and Sessions: A Monadic Integration. In Proceedings of the 22nd

European Symposium on Programming, ESOP’13, pages 350–369, Berlin, Hei-

delberg, March 2013. Springer-Verlag.

[TCP21] Bernardo Toninho, Luís Caires, and Frank Pfenning. A Decade of Dependent

Session Types. In 23rd International Symposium on Principles and Practice of

Declarative Programming, PPDP 2021, pages 1–3, New York, NY, USA, October

2021. Association for Computing Machinery.

[TG03] René Thiemann and Jürgen Giesl. Size-Change Termination for Term Rewrit-

ing. In Robert Nieuwenhuis, editor, 14th International Conference on Rewriting

Techniques and Applications, Lecture Notes in Computer Science, pages 264–

278, Berlin, Heidelberg, 2003. Springer.

[TV19] Peter Thiemann and Vasco T. Vasconcelos. Label-Dependent Session Types.

Proceedings of the ACM on Programming Languages, 4(POPL):67:1–67:29, De-

cember 2019.



BIBLIOGRAPHY 137

[TY17] Bernardo Toninho and Nobuko Yoshida. Certifying data in multiparty ses-

sion types. Journal of Logical and Algebraic Methods in Programming, 90:61–83,

August 2017.

[TY18] Bernardo Toninho and Nobuko Yoshida. Depending on Session-Typed Pro-

cesses. In Christel Baier and Ugo Dal Lago, editors, 21st International Con-

ference on Foundations of Software Science and Computation Structures, Lecture

Notes in Computer Science, pages 128–145, Cham, 2018. Springer Interna-

tional Publishing.

[Vez15] Andrea Vezzosi. Total (Co)Programming with Guarded Recursion. In Tarmo

Uustalu, editor, 21st International Conference on Types for Proofs and Programs

(TYPES 2015), pages 77–78, Tallinn, Estonia, 2015.

[VRJ13] Niki Vazou, Patrick M. Rondon, and Ranjit Jhala. Abstract Refinement Types.

In Matthias Felleisen and Philippa Gardner, editors, Programming Languages

and Systems, Lecture Notes in Computer Science, pages 209–228, Berlin, Hei-

delberg, 2013. Springer.

[VSJ+14] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon

Peyton-Jones. Refinement Types for Haskell. In Proceedings of the 19th ACM

SIGPLAN International Conference on Functional Programming, ICFP ’14, pages

269–282, New York, NY, USA, August 2014. Association for Computing Ma-

chinery.



BIBLIOGRAPHY 138

[WCPW04] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A Con-

current Logical Framework: The Propositional Fragment. In Stefano Berardi,

Mario Coppo, and Ferruccio Damiani, editors, 3rd Annual Workshop of the

Types Working Group, Lecture Notes in Computer Science, pages 355–377,

Berlin, Heidelberg, 2004. Springer.

[WF94] A.K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness.

Information and Computation, 115(1):38–94, November 1994.

[WX17] Hanwen Wu and Hongwei Xi. Dependent Session Types, April 2017.

[Xi01] Hongwei Xi. Dependent Types for Program Termination Verification. In

Proceedings 16th Annual IEEE Symposium on Logic in Computer Science, pages

231–242, June 2001.

[XP99] Hongwei Xi and Frank Pfenning. Dependent Types in Practical Program-

ming. In Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, POPL ’99, pages 214–227, New York, NY, USA,

January 1999. Association for Computing Machinery.

[YBH01] N. Yoshida, M. Berger, and K. Honda. Strong Normalisation in the $\pi$-

Calculus. In Proceedings 16th Annual IEEE Symposium on Logic in Computer

Science, pages 311–322, June 2001.

[Yoc89] Serge Yoccoz. Recursive ω-Rule for Proof Systems. Information Processing

Letters, 31(6):291–294, June 1989.



BIBLIOGRAPHY 139

[Zei08] Noam Zeilberger. Focusing and Higher-Order Abstract Syntax. In Proceed-

ings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’08, pages 359–369, New York, NY, USA, Jan-

uary 2008. Association for Computing Machinery.

[Zei15] Noam Zeilberger. Balanced polymorphism and linear lambda calculus. In

21st International Conference on Types for Proofs and Programs (TYPES 2015),

Tallinn, Estonia, May 2015.


	Introduction
	The Semi-Axiomatic Sequent Calculus Redux
	Judgmental Structure
	Syntax and Bidirectional Typing
	Logical Rules
	Phase Change: Subsumption and Definition Calls
	Cut, Snips, and Identity
	Typing Summary and Metatheory

	Operational Metatheory
	Configuration Reduction and Typing
	Syntactic Type Soundness
	Termination

	Related Work

	Index Refinements
	Judgmental Structure
	Property Types
	Property Types
	Typing Summary

	Sized Type Refinements
	Equirecursive Types
	Recursive Processes
	Typing Summary and Metatheory

	Termination
	Semantics of Recursive Types

	Related Work
	Index Refinements for Session Types
	Sized Types and Inference
	Sized Types and Termination Checking for -calculi
	Infinitary Proof Theory


	Dependent Refinements
	Judgmental Structure
	Syntax and Bidirectional Typing
	The Assertion Logic of Axioms
	Axioms as Assignments
	Snips as Composition
	Subsumption as Consequence
	Positive Left Rules as Conditionals
	Negative Right Rules as Hoare-style Data Abstraction
	Recursive Processes and Invariants
	Typing Summary and Metatheory

	Type Soundness and Observable Partial Correctness
	Related Work
	Language-Based Verification, Concurrency, and Parallelism
	Dependent and Embedded Session Types
	Dependent Call-by-Push-Value


	Modelling Asynchronous Reactive Programming
	Signal Processors
	Sized Type Refinements for Causality
	Verifying Recursive Refinements

	Conclusion and Future Work
	Bibliography

