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ABSTRACT

Software developers understanding and exploring code spend much of their time asking
questions and searching for answers. Yet little has been known about the questions devel-
opers ask, the strategies used to answer them, and the challenges developers face. Through
interviews, surveys, and observations, a series of 7 studies were conducted that begin to
address this gap, contributing a better understanding of developers’ tools, practices, prob-
lems, questions, and strategies, and a model of how developers reconstruct design decisions
from code. A design process is described for using studies of developers’ work to design
more useful tools for developers.

These studies reveal that reachability questions are a central part of understanding and ex-
ploring code. A reachability question is a search along paths through code. Developers ask
reachability questions when reasoning about causality, ordering, type membership, repeti-
tion, and choice. For example, to debug a deadlock, a developer searched downstream for
calls acquiring resources to reconstruct how and why resources were acquired. Existing
tools make these questions challenging to answer by forcing developers to guess which
paths through the call graph lead to what they are looking for and which paths are feasible
and execute. These challenges cause bugs and waste time. In one study, half of the inserted
bugs were caused by challenges answering reachability questions; other developers simply
gave up. In observations of professional developers at work, nine of the ten longest debug-
ging and investigation activities involved answering a single reachability question, each re-
quiring tens of minutes of developers’ time.

To help developers more easily understand and explore code, REACHER lets developers
search along call graphs and find matching statements. An interactive call graph encodes
causality, ordering, type membership, repetition and choice and helps developers to remain
oriented while navigating through code. REACHER is implemented as an Eclipse plugin for
Java. REACHER uses a novel fast feasible path analysis to eliminate some of the most common
types of infeasible paths. In a controlled experiment, developers with REACHER were 5.6
times more successful answering reachability questions in significantly less time and re-
ported that REACHER helped them to think more visually.
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1.

INTRODUCTION

Exploring code is a central part of constructing software. Developers work in large codebas-
es ranging from hundreds of thousands to tens of millions of lines of code. As developers
implement features, fix bugs, and make code more maintainable, they explore the code. Per-
forming these tasks in large codebases requires achieving task-specific understanding of
small pieces of code immersed in a huge codebase. Developers explore code to achieve this
understanding.

But what exactly does exploring code entail? What questions do developers ask? What
strategies do developers use to answer these questions, and what challenges do they face?
While software engineering has long speculated about developers’ questions and strategies
for answering them, there has usually been little evidence behind this speculation. Instead,
anecdotes, toy examples, and accepted wisdom inspire and motivate tools. When this specu-
lation is wrong and does not describe real challenges that developers face, tools produced
from this speculation are unlikely to impact software development practice (see Sections
3.2 and 3.3). Indeed, one of the few studies to evaluate code exploration tools through a us-
er study found no effects of any of three recent tools [AMRO07].

1.1. Designing code exploration tools from data

This dissertation begins by describing a process for using data about how developers work
to design tools that solve important problems developers face. To inform the design of more
useful code exploration tools and gather data about how developers understand and ex-
plore code, this dissertation then describes a series of exploratory studies. A series of two
surveys and interviews of developers in the field examines the context of exploring code -
its relationship to activities, tools, practices and problems that developers themselves per-
ceive when dealing with large and complex codebases. The next study investigates how de-
velopers explore and understand design decisions in code and the effects of design
knowledge in shaping and influencing this process. Finally, the space of questions develop-
ers ask during coding tasks is examined through a survey examining hard-to-answer ques-
tions and the relationship of these questions to current software development tools and
practices.
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1.2. The problem

From these open-ended exploratory studies, a specific, hard-to-answer, frequent, error-
prone, time-consuming, and tool-supportable class of questions emerged - reachability
questions. Many investigation and debugging tasks are, in essence, search tasks - developers
seek statements which answer a question. Traditional searches find sets of statements in a
program which match the search criteria. In contrast, a reachability question is a search
along paths through a program for statements matching the search criteria. Developers of-
ten wish to find statements with specific control flow connections. For example, to debug a
deadlock, a developer wished to find methods downstream from an event that acquired re-
sources (see Table 7.2). To debug a null pointer exception in an object, a developer tried to
understand what paths might exist in which the object is used before first being initialized
(see Section 7.4).

More formally, a reachability question consists of two parts: the paths to search and the
search criteria specifying the statements to find (see Tables 7.1 and 7.2 for examples of
reachability questions). Reachability questions represent feasible paths as a set of concrete
traces TR. A concrete trace tr is a list of <s, env> tuples, where s is a statement and env maps
every variable in s to a value. traces(p, O, D, C) is the set of all concrete traces in a program p
from an origin statement o in the set O to a destination statement d in the set D which satisfy
all the filtering constraints c in C. O, D, and C can be left unspecified by using a 7 (although at
least one of O or a D must be specified). Questions without an origin are called upstream
reachability questions while questions with an origin (and optionally a destination) are
downstream reachability questions. C is a set of filtering constraints c, where c is a tuple <s, x,
const> specifying a value for a variable x in s. x and const can be left unspecified (?) to find
only the traces containing s. A trace tr satisfies a constraint <s, x, const> when 3I<s, env> in tr
s.t. env(x) = const. If a trace contains multiple copies of a statement in different contexts, it
satisfies the constraint if the constraint is true in any of the contexts.

There are two types of reachability questions: find and compare. find SC in TR finds the por-
tion of each tr in the set of traces TR that matches search criteria SC. A search criteria SC is a
set of statements. A search criteria function, given attributes describing a set of statements,
generates a SC. Table 1.1 lists search criteria functions we observed in our studies, each of
which produce a set of statements SC. A reachability question then matches the statements
Ssc in a SC against each <s, env> tuple in a trace tr, selecting those traces in tr where 3<s,
env>in tr s.t. Sgc = S.

Note that the search criteria functions are defined independently of traces through the pro-
gram and any other notion of feasibility. For example, for each method m in M, callers(M)
will find all call sites with the method name m. Similarly, dDepend(s, x) finds all of the reach-
ing definitions of x at s (statements that might be the previous assignment of x at s). Deter-
mining which of these statements are feasible and relevant happens through the



Chapter 1: Introduction 3

Function Finds the set of statements that:

grep(str) include text matching the string str

reads(F), read / write a field fin the set of fields F. FIELDS is the set of all fields

writes(F) in the program.

stmts(T) are in a type t in the set of types T

stmts(M) are in a method m in the set of methods M

callers(M) are callsites of a method m in the set of methods M

callees(M) are method declaration statements of methods invoked by a method m
in the set of methods M

ends are method calls to framework methods without source or are method

declaration statements with no callers
dDepend(x) are data dependent on a variable x. dDepend(x)* finds the transitive
closure including transitive data dependencies.

Table 1.1. Search criteria functions describing statements for which developers
searched (see Tables 7.1. and 7.2.).

reachability questions, which intersects these statements against the statements in traces
through a program.

compare(TRq, TRp) : TRcommon, TR1, TR2 compares sets of traces. Compare first attempts to
match, by some method, each tr, in TR, to a corresponding trace tr, in TR,. When such a
match is found, compare then attempts to match (by an unspecified method) tuples <sg, en-
ve> in tr, to corresponding tuples <sp, env,> in tr,. This generates three new lists: trcommon
which contains an ordered list of tuples that matched, and tr; and tr; which contain an or-
dered list of tuples in tr, and trp that did not match. TR; and TR; are the set of all tr; and tr,
respectively, and also contain traces in TR, and TR, for which no match could be found.
TRcommon is the set of all trcommon. Note that compare is not implemented by REACHER (see Sec-
tion 11.1.2 for a discussion of how REACHER might be extended to support compare ques-
tions).

Reachability questions reflect how developers use control flow to reason about programs.
The ubiquity of reachability questions stems in large part to the expressiveness of control
flow, and its resulting ability to answer many questions (see Table 1.2). Control flow is often
represented as a control flow graph which contains an edge from statement a to b when
there exists an execution in which b executes immediately after a. In imperative programs,
control flow expresses causality between a call site statement and a method. Calling a meth-
od causes statements in it (and statements in methods it transitively calls) to execute. De-
termining when something happens requires finding the control flow by which it may be
reached. And control flow expresses the order in which statements execute.
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Question

What parts of this data structure are ac-
cessed in this code?

What parts of this data structure are modi-
fied by this code?

What data is being modified in this code?

What exceptions or errors can this method
generate?

How do calls flow across process bounda-
ries?
How is control getting from a to b?

What resources is this code using?

What are the possible actual methods
called by dynamic dispatch here?

How does this code interact with libraries?
What is the difference between these simi-
lar parts of the code (e.g., between sets of
methods)?

Related downstream search

Search downstream for accesses to the data
structure

Search downstream for writes to the data
structure

Search downstream for writes to any field

Search downstream for throws or error calls

Search downstream for out of process messag-
es

Search downstream from a for b

Search downstream for calls accessing or ac-
quiring resources

Search downstream across feasible paths

Search downstream for calls to libraries

Compare statements downstream from each
method

Question
Is this tested?

What threads can reach this code or data
structure?

What is the “correct” way to use or access
this data structure?

What is responsible for updating this field?

What in this structure distinguishes these
cases?
In what situations or user scenarios is this

called?

When during the execution is this method
called?

What parameter values does each situa-
tion pass to this method?

Is this method or code path called fre-
quently, or is it dead?

Related upstream search
Search upstream for unit test methods

Search upstream for thread creation calls

Search upstream for paths along which data
structure is used

Compare paths along which field is written

Search for reads from the structure upstream
from each case

Search upstream for framework callbacks de-
noting user actions

Search upstream for framework callbacks or
main methods

Search upstream for values which flow into pa-
rameters

Search upstream from method or code path

Table 1.2. Many of developers’ questions are related to reachability questions.
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Developers work to understand a program’s control flow throughout investigation and de-
bugging activities as they mentally model, reason, and navigate. For example, when investi-
gating an unfamiliar codebase, developers first mentally construct a control flow represen-
tation of connections between its parts [P87]. And their knowledge of a method’s part of
the call graph increases as they interact with its code [FMH07]. Information foraging theory
predicts that developers traverse control flow and search for “prey” - locations in code - by
using “scent” - the similarity of the information which labels the control flow edges to their
knowledge of their prey - to rank the potential of edges to traverse [LBB08].

Ensuring control flow is easily understandable has been an important goal of language de-
sign. Following Dijkstra’s observation that gotos obfuscate control flow, making reasoning
difficult [D68], language designers introduced structured programming languages that sim-
plify control flow within methods [DDH72]. But in order to promote reuse and modularity,
modern languages obfuscate interprocedural control flow between methods with features
such as dynamic dispatch and indirection. For example, an analysis of code in Adobe’s desk-
top applications found that one third of the codebase is devoted to event handling logic
which in turn caused half of the reported bugs [P06]. Successfully coordinating dependen-
cies among effects in loosely connected modules can be very challenging [E09].

Interprocedural control flow is often visualized using a call graph. Modern Integrated De-
velopment Environments (IDEs) such as Eclipse and Visual Studio let developers see and
navigate call graphs with commands ranging from go to definition (from a call site) to
providing a tree view for exploring call paths. Unfortunately, developers report that under-
standing control flow remains difficult [DKC05]. As a result, developers exploring code often
lose track of control flow relationships between where they are and where they have been,
becoming disoriented and lost [AM06].

To better understand the challenges developers face answering reachability questions and
requirements for tools to make answering these questions easier, this dissertation de-
scribes a series of studies into how developers ask and answer reachability questions while
they are understanding and exploring code. The first study revealed that problems answer-
ing reachability questions cause bugs. Due to the difficulties when trying to definitively an-
swer reachability questions, developers often guess and make unchecked assumptions.
These problems answering reachability questions were responsible for half of the bugs in-
serted during the study. A second study investigated the frequency and difficulty of reacha-
bility questions and found that, as developers gain experience or learn a codebase, answer-
ing these questions becomes neither less frequent nor easier. Finally, the third study ob-
served 17 professional software developers at work in their day-to-day coding activities. 9
of the 10 longest investigation and debugging tasks involved answering a single reachability
question, each requiring tens of minutes of investigation.
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1.3. Addressing the problem — an approach

With existing tools, developers answer reachability questions by manually traversing con-
trol flow paths, in search of statements. What if this work was instead performed by a tool?
Instead of traversing, developers would simply enter a search, and the tool would find the
matching statements. To help understand control flow among methods, developers could
see a visualization of control flow among the methods they are investigating. And to stay
oriented, developers could use this visualization as a navigation aid.

An additional challenge developers face when exploring static call graphs is infeasible paths.
An infeasible path is a path that can never execute. It is caused by correlations between
conditional statements in code - certain combinations of branch choices at conditionals will
never be taken. As developers traverse paths, developers must track and determine which
of these paths are feasible. Infeasible paths will seem to connect portions of the call graph
that cannot actually be connected. Manually traversing these paths to check for their feasi-
bility forces developers to think about details of the path to which they could otherwise be
oblivious. But an automated tool that followed infeasible and feasible paths of any length
might further bury the developer in irrelevant information, by showing many long and
complex paths that are infeasible.

To reduce the number of infeasible paths developers face, this dissertation presents a new
fast feasible path analysis. While existing tools such as model checkers can eliminate a large
class of infeasible paths, their great precision also makes them slow, often taking hours or
days, and they are often unscalable to large programs. For an interactive tool being used on
a constantly changing codebase, this is impractical. However, examples of common infeasi-
ble path idioms suggests a simpler approach. In many situations, conditionals are controlled
by constants such as flags, the runtime type of an object, or messages sent on a bus. Intui-
tively, knowing only where the path begins (e.g., a method handling a user input event) and
tracking constant values through assignments to variables along the path may be sufficient
to determine the branch taken at a conditional. To further reduce the latency developers
face when using the tool, fast feasible path analysis builds a summary of possible paths
through each method in the codebase and then uses these summaries to generate paths
when a user invokes a search. As a result, fast feasible path analysis is usually able to gener-
ate call graphs in under 2 seconds of analysis time while eliminating many frequent types of
infeasible paths.

In its final sections, this dissertation describes REACHER - a tool for searching along control
flow. REACHER lets developers search along paths and find statements using a variety of at-
tributes. REACHER helps developers answer some of the most frequent types of reachability
questions we observed - searches along control flow - but does not support filtering or
comparing paths or searching along data flow. REACHER helps developers understand con-
trol flow by depicting causality, ordering, type membership, repetition, recursion, and con-
ditionality. REACHER is fully integrated within Eclipse as a plugin, allowing developers to
open methods in an Eclipse editor and use REACHER to remain oriented as they explore code.
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To evaluate REACHER, we conducted a lab study in which developers used REACHER to an-
swer simple reachability questions. Compared to Eclipse, developers using REACHER were
over 5 times more successful in significantly less time.

This dissertation investigates this thesis:

Reachability questions are a frequent, time-consuming, hard-to-answer, and error-
prone part of understanding and exploring code. A tool that eliminates common in-
feasible paths and helps developers to search, visualize, and navigate call graphs al-
lows developers to understand and explore code significantly faster and more suc-
cessfully.

1.4. Contributions

This dissertation contributes the following:

* 10 studies of understanding and exploring code
o A survey of developers’ use of time and problems (Activities Sur-
vey)(Chapter 4)
o Interviews of developers about time and problems (Activities Inter-
views)(Chapter 4)
A survey of developers’ practices (Follow-up Survey)(Chapter 4)
Lab study of code exploration (Exploration Lab Study)(Chapter 5 and Sec-

tion 7.1)

o A survey of developers’ reachability questions (Reachability Sur-
vey)(Chapter 7.2)

o A survey of developers’ hard-to-answer questions about code (Questions
survey)(Chapter 6)

o Field observations of developers’ reachability questions (Reachability Ob-
servations)(Sections 7.3 and 7.4)
o A paper prototype study of REACHER (Paper Prototype Study)(Section 10.1)
o Two lab studies of REACHER (REACHER Lab Study 1)(Section 10.2) &
(REACHER Lab Study 2)(Section 10.3)
* A model of how developers explore and reverse-engineer design in code and the ef-
fects of expertise on this process.
* Evidence that answering reachability questions is error-prone, frequent, and time-
consuming.
* A new approach to exploring code and answering reachability questions by search-
ing along control flow paths.
* A Fast Feasible Path Analysis that eliminates some of the infeasible paths caused by
constant-controlled conditionals and that constructs static traces from source code.

* Anew, interactive visualization of call graphs.
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* Evidence that searching along control flow and visualizing call graphs helps devel-
opers explore code more quickly and successfully.

1.5. Outline

The rest of this dissertation begins with a discussion of related work, which spans several
areas - studies of developers, tools for exploring code, and path-sensitive static analysis.
Next, a user-centered process is described for designing useful tools for developers by gath-
ering data about how developers work. Chapter 4 presents three studies that examine the
context of code exploration, investigating its frequency, relationship to other activities, and
associated tools. Chapter 5 investigates the role of expertise and uncertainty in reconstruct-
ing software design from code. Chapter 6 investigates developers’ information needs in cod-
ing activities in detail. Chapter 7 presents a lab study, survey, and field observations into a
specific challenge exploring code - answering reachability questions. To help developers
more effectively answer reachability questions using a tool, a fast feasible path analysis is
then described for producing call graphs. Using this analysis, Chapter 9 describes a tool for
helping developers more easily answer reachability questions. This tool is then evaluated
and refined through a small, pilot paper prototyping study and two larger lab study evalua-
tions. Finally, Chapter 11 concludes and surveys potential future work.



2.

RELATED WORK

Related work for this dissertation falls into three broad areas.

Researchers have long studied how professional software developers understand and ex-
plore code. The oldest studies, in the psychology of programming literature, focused pri-
marily on mental representations of programs and the influence of these representations on
comprehension. These studies also show how this knowledge influences how experts work.
More recently, studies have shifted focus to the activities in coding tasks, including work on
questions developers ask, how developers traverse relationships, and the effects of disori-
entation during coding tasks.

Researchers have designed a wide variety of tools and techniques for helping developers
explore code. One popular approach is to ask developers to write a description of important
aspects of a method - such as pre and post conditions - in a contract. Developers might then
be able to read the contract of a method and never need to explore the implementation of a
method’s callers or callees. Specification, verification, and testing systems have investigated
a wide range of approaches for contracts. Other tools help developers explore code by help-
ing them to identify methods by providing recommendations, a query system, or supporting
traversals. Still other tools embody a variety of designs for visualizing call graphs.

REACHER's fast feasible path analysis builds on a long and diverse set of techniques for ana-
lyzing code. Many existing techniques have explored approaches for attempting to eliminate
infeasible paths through the program.

2.1 Studies of developers

2.1.1. Studies of program comprehension and the effects of knowledge

For many decades, researchers have studied the activity of programming through the lens of
psychology [D02]. Applying ideas from the study of cognition, much research focused on how
developers mentally represent computer programs and the effects of these representations.

Studies have shown that control flow is an important part of mental representations of pro-
grams. Using a priming technique to examine the mental representation of programs, one
study found that professional developers learning an unfamiliar program first used a control
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flow representation [P87]. Another study asked developers in the field to answer questions
about their code as they worked and found that developers’ knowledge of a method’s portion
of the call graph increases as they work with it [FMHO07].

Numerous studies have found that developers do not mentally represent source code literally
but instead recognize instances of schemas. Schemas are templates with situation-specific
slots. For example, a developer might have a for-loop schema with slots for the iteration
condition and the operation done to the collection. Using this schema to recall code, the de-
veloper might forget situation specific information and, for example, recall the loop index var-
iable to be 1 instead of j [D90]. Studies of expertise in other domains have found that many
of the advantages of experts arise from their large library of schemas. For example, while
chess experts remember realistic boards better than novices, their advantages vanish for ran-
dom boards [CS73]. This and other results suggest that experts “chunk” what they perceive to
mentally represent it in memory as schema instantiations. While there is much evidence for
the existence and importance of schemas, studies of schemas in programming have been lim-
ited to highly localized code idioms (e.g., for loops) and have not investigated schemas at the
level of design (e.g., design patterns).

Several studies have found differences between experienced and inexperienced developers
working with code. Experts debug faster by generating better hypotheses while studying less
code [GO86]. Experts write down low-level information while novices write down higher-
level information, perhaps due to differences in how experts and novices work [D93]. Experts
better understand code before changing it and better choose when to instantiate schemas.
Experts select from multiple strategies for accomplishing tasks, are capable of generating
multiple alternatives before making a choice, and design top-down more from high level ideas
to low level ideas for familiar and simple problems [D02].

2.1.2. Studies of code exploration

More recently, attention has shifted to studies designed to elicit design recommendations
for better tools or practices by identifying information needs and questions associated with
different software engineering activities. A number of these studies are relevant to how de-
velopers explore code.

At the most general level, several studies have characterized how developers spend their
time. In one study [PSV94], thirteen developers on a large software project logged every
hour for a year which of 13 activities they were engaged in. The categories distinguished
different life cycle activities such as estimation, requirements, high level & low level design,
test planning, coding, inspections, and high level & low level testing. Most developers re-
ported being in a coding stage; developers in this stage spent about half their time in coding
activities. In a second study [SLV97], developers were surveyed, observed, and interviewed
to count the number of times they switched between one of fourteen activities (unrelated to
those in [PSV94]). Observing each of eight developers for an hour revealed that developers
most frequently executed UNIX commands, followed by reading the source, loading or run-
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ning software, and reading or editing notes. Yet is not clear how activity switches translate
to time spent on activities as activities may be frequent and brief or long and infrequent. A
third study examined student developers working on a short, lab task and found that they
spent 22% of their time reading code, 20% editing code, 16% navigating dependencies,
13% searching, and 13% testing [KAMO5]. These studies demonstrate that coding activities
are a significant part of software development and that understanding code - by searching,
reading, and navigating - is a significant part of coding activities.

Several recent studies have characterized the information necessary during coding activi-
ties by listing questions developers ask. At the most general level, developers ask “why” (ra-
tionale), “how” (implementation), “what” (meaning of variables), “whether” (if code exhibits
behavior), and “discrepancy” (observations do not match expectations) questions [L87].

Another study characterized developers’ work through development activities, spanning
interactions with code, artifacts, and teammates [KDV07]. When writing code, developers
seek functionality to reuse and information about how to reuse it. Developers submitting a
change ask if it is correct, whether it follows team conventions, and what changes it should
include. Triaging a bug determines if it is a legitimate problem worth fixing. When receiving
a new bug, developers reproduce it to determine what it looks like and when it occurs be-
fore asking about its cause. Developers also ask design questions about code’s rationale and
the implications of a change.

At a finer granularity, developers ask a variety of questions about code, ranging from very
local questions to global questions [SMV08]. As developers begin, they first need to locate
“focus” points in code, and attempt to map domain concepts to points in code. From focus
points, developers ask about relationships between elements at focus points and other ele-
ments - e.g., types, methods, access statements, creation statements. More globally, devel-
opers reason about properties spanning a whole subgraph, including questions about how
to do something or how something currently works. At the most global level, developers
relate entire subgraphs together, reasoning about how disparate sections of the code are
related. Many of these questions are about how to implement a desired change (e.g., where
should this branch be inserted?) or what the implications of a change will be [SMV08].

An examination of what makes specific code exploration behaviors successful found several
differences between unsuccessful and successful developers [RCM04]. Successful participants
were more methodical, creating detailed plans before implementation and reinvestigating
methods less frequently. Successful participants were also more likely to find information
through keyword and cross-reference searches rather than browsing or scrolling. In contrast,
lacking the information of the successful participants, unsuccessful participants made changes
in one place that should have been scattered. Overall, the successful participants had more
experience. However, the five participants in that study had only 1 to 5 years programming
experience and limited (if any) industry experience.

As developers explore code, they read code and sometimes traverse into method calls. Sev-
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eral studies have examined how developers pick method calls to traverse. Information for-
aging, a general theory of how users explore an information space [PC99] that has been ap-
plied to developers exploring code [LBBO8][LBB10], models this process as a traversal
through a graph. At a node in the graph, users examine the scent of each edge by comparing
its cues to the prey and picking the highest ranked. Using this theory to model code explora-
tion, developers traverse paths through the call graph by reading method calls in a method,
ranking each by it similarity to the prey, and traversing the best edge. For example, one
study applied this model to code navigation during debugging tasks [LBB10]. Observing de-
velopers in the field, they found that their verbalizations were more often about scent-
following than hypotheses; however, this may merely suggest more work is involved in test-
ing hypotheses through foraging than in formulating hypotheses. Overall, the model suc-
cessfully ranked the next method to which developers navigated in the top 13 (bug one) or
47 (bug two) results half the time. While the model is predictive - demonstrating that rela-
tionship traversal is an important part of debugging - the weakness of its predictions sug-
gest that many factors influence where developers traverse and not all navigations may be
traversals.

Several studies have shown that existing editors make navigating challenging. As develop-
ers explore code, they rapidly move through many methods, often digressing from the cur-
rent question to answer related questions. This rapid exploration can leave developers diso-
riented or lost, unable to remember the context of their location and task. During observa-
tions of 10 professional developers at work on their everyday tasks in the field, 4 of the 10
mentioned that they were or were observed to be disoriented; 8 of the 10 reported that
they had previously experienced disorientation [AM06]. Disorientation was largely at-
tributed to a lack of context - as developers navigated through a flurry of files, they found it
hard to remember how they were related. Observations of 7 experienced developers work-
ing on small lab study tasks found similar results [DKCO05]. All developers agreed that find-
ing the entry point and understanding the control flow were the most difficult tasks. And as
developers moved through the code, they often had difficulty returning to and “re-finding”
areas of code where they had already been. Developers often ended up with many open files,
making it difficult to look through the open file tabs and identify the correct one to return to.
Finally, a third study observed 10 developers in the lab and found that they spent 35% of
their time navigating dependencies [KAMO5]. As developers worked, they formed a working
set of task-relevant methods, and then frequently revisited these methods as they worked.

2.2 Tools for exploring code

Many tools have investigated approaches for helping developers explore code. One popular,
indirectly relevant approach, is for developers to write contracts. Developers might later be
able to read the contracts, rather than explore a method’s callers and callees. One variation
on this technique is unit tests, in which developers attempt to understand the behavior of a
method by writing tests. Other tools support code exploration more directly. Many of these
tools help developers identify relevant methods, either by using task-context to recommend
methods, letting the developer write queries, or helping the developer traverse relation-
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ships. Finally, many tools support code exploration through call graph views, including trees,
graphs, sequences, and maps.

2.2.1 Contracts

Contracts let developers express constraints (e.g., pre- and post-conditions, invariants) on a
program’s state that must be satisfied at distinguished points in the CFG (e.g., method entry
and exit) [H69][M92]. A program analysis traverses a statement graph, tracking state, and
determines if the constraints are satisfied. If not, errors are reported to the user (e.g., com-
pile errors). Instead of exploring callers or calles of a method, developers might instead be
able to read the contract describing a callee or the preconditions that a caller must meet
[LCO6]. In this case, developers might never explore code at all and have no need for tools
supporting code exploration.

A large number of verification and bug finding tools use the contract paradigm. Many tools
statically traverse the CFG to check constraint satisfaction. For example, ESC/Java checks
pre- and post-conditions written as JML annotations using a theorem prover [FLLO2]. Other
tools encode constraints as runtime assertions, generate concrete traces by running the
program, and check for assertion violations. Contract verification allows developers to ex-
plicitly describe design intent - a contract - in an unambiguous notation for both other de-
velopers understanding the code and tools checking that the contract is satisfied. Instead of
explicitly traversing control flow, developers implicitly state constraints about what must or
must not happen on paths between constraint checks. Contracts can be particularly helpful
for specifying interfaces between code produced by different teams or companies (e.g.,
frameworks) as it supports understanding foreign code without the code itself. For behavior
specified in the interface, developers can answer downstream questions simply by reading
the contract. Finally, when callers depend only on the characteristics of a method specified
in its post-conditions, rather than all possible characteristics, developers may be able to
change the method’s implementation in ways that still satisfy the post-conditions without
the need to understand the callers and ask upstream reachability questions.

But despite its benefits, contract verification is ill-suited for answering most reachability
questions. Contracts rely on the original developer specifying in the contract behaviors
about which it is permissible to ask a question. However, if a developer wishes to specify
everything, contracts quickly become unscalable - at every method entry, a constraint on
every effect that might possibly occur downstream would be necessary. Instead, contract-
using developers are forced into a position of obliviousness to unspecified behavior. In
practice, developers ask reachability questions about a wide range of behaviors. Moreover,
even when developers ask a question specified in a contract, determining why a contract
verification tool has reported an unsatisfied constraint requires determining the path taken
by the tool [KFHO08].

In property verification, developers specify a property using a specification language (e.g., a
temporal logic) over program state that must be satisfied by all concrete traces (e.g., a al-
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ways occurs before b). Property verification tools traverse feasible abstractions of concrete
traces. Property verification generalizes contract verification by removing the modularity
restriction that constraints may only be checked at distinguished points in the CFG. For ex-
ample, the static driver verifier is able to check that drivers do not incorrectly use resources
by checking that specified temporal orderings between method calls are respected [BNRO3].
While property verification systems are specifically designed to check the reachability of
error conditions, the specification languages are designed for the original developers to
state complex correctness properties, not for investigating simpler reachability relation-
ships in unfamiliar code. While property verification systems can be used to search for
statements along feasible paths, they require the statements to be specified unambiguously,
find only a single path reaching the specified statements (the error trace), and have primi-
tive text displays listing any found paths. Thus, property specification is a poor interaction
for investigating unfamiliar code where developers do not know the full names of what they
seek, wish to see all paths matching search criteria, need to quickly iteratively refine search
criteria, wish to filter or compare paths, or need to make sense of control flow relationships.

In unit testing, developers write a short program to generate a concrete trace and con-
straints expressed as assertions over execution state. Unit tests differ from contract testing
in that constraint checks need not occur only at distinguished program points. In contrast to
property verification, unit tests state constraints over paths downstream from the test ra-
ther than globally over all paths, and they constrain the functionality code provides rather
than ensure the preservation of global invariants. Unit tests are widely used in practice, of-
ten through tools such as JUnit [J11] that automate running tests and viewing results. More
recently, symbolic unit tests have been proposed which allow developers to add parameters
to tests by performing constraint verification over feasible paths rather than a concrete
trace [GO7]. For answering reachability questions in unfamiliar code, however, unit tests
suffer from all the same limitations as property verification.

2.2.2. Tools to identify elements

Applying the idea of automated recommendations (e.g.,, Amazon customers who bought a
also bought b [LSY03]) to code investigation, recommender systems implicitly or explicitly
determine artifacts in which a developer is interested and recommend other similar arti-
facts to investigate. For example, Suade uses call graph structure to recommend methods to
investigate based on code elements a developer indicates are relevant [R08]. Recommender
systems assume that there exist delocalized concern elements in code - methods or types
implementing a feature provided by the application - and that the goal of developers’ inves-
tigative activity is to navigate from discovered elements to the remaining hidden elements.
In general, however, reachability questions need not be about relationships between parts
of a concern but may be about how loosely related portions of code interact. Moreover, only
considering as input the elements a developer has already found yields insufficient infor-
mation to determine what question has been asked. But while recommender systems are ill
suited for answering reachability questions, algorithms for inferring relevance from call
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graph structure could be applied to ranking the relevance of reachability question search
results.

A variety of tools extend traditional IDE search tools’ support for finding methods by adding
expressiveness. CodeQuest lets developers formulate queries in datalog against a database
of relationships in the program [HMO06]. Developers can, for example, find subtypes of a
type or combine searches together to find subtypes of a type defining a method matching
some name. Similarly, Ferret builds a database of elements and relationships spanning stat-
ic, dynamic, and version control information [DM08]. Developers can use Ferret to answer
questions like “What are casts to this type?” or “Who has changed this element, and when?”
Other work extends a Ferret-style database with a structured natural language front-end,
letting developers query the database using English and have their query translated
[WGR10]. All of these tools focus on structural relationships between elements of code and
lack the expressiveness to follow paths through code.

2.2.3 Exploring call graphs

A number of tools and techniques have investigated approaches for helping developers ex-
plore call graphs, which are reviewed in this section. For example, a number of documenta-
tion approaches let developers visualize a specific part of the call graph. Other tools let de-
velopers traverse relationships in code or provide a tree view depicting paths through code.
Traditional call graph visualizations tried to depict the entire call graph in a graph visualiza-
tion. More recent approaches have investigated using a map metaphor, embedding source
editors inside methods in a call graph. Finally, several tools let developers see paths through
code, often using a UML sequence diagram notation.

When the original developer recognizes code as important and complex, a developer may
document relevant traces. Structured design includes diagrams for depicting control and
data flow relationships [YC79], and UML sequence diagrams depict concrete traces [RJB99].
Documenting concrete traces has the advantage of recording the original developers’ intent
by their choice of elements to depict or text accompanying the diagram. But many develop-
ers do not invest the time to write documentation or do not reliably update the documenta-
tion, making it suspect (see Chapter 4). Views of code that are not reverse engineered or
checked for conformance against the code always run the risk of being inaccurate. This may
be especially true of path documentation, as paths are likely to change with even minor
code edits. But most importantly, the huge number of paths through a program makes doc-
umenting all of them impractical.

Several tools help developers more easily traverse paths through code. Modern develop-
ment environments such as Eclipse and Visual Studio provide a call hierarchy that lets de-
velopers hierarchically expand the callers or callees of a method. JQuery (the code explora-
tion Eclipse plugin [JV03], not the more recent Javascript library) extends the call hierarchy
to also include additional elements and relationships between these elements (e.g., method
membership, subtyping, containment, references, or constructors of a type).
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Other tools help developers explore code by visualizing the complete call graph as a graph.
For example, Shrimp provides an extensible framework for visualizing graph structures
during reverse engineering tasks [SM95]. It provides interactive tools, such as fisheye views,
for exploring graphs. Software cartography uses a map metaphor to show classes, repre-
senting each as a hill [KEN10][KEL10]. Height encodes lines of code. Integration with the
development environment highlights the open file on the map and search results and shows
call graph paths from the call hierarchy. Both of these tools provide no support for search-
ing along paths and do not encode attributes of calls (e.g., ordering, conditionals, loops).
Moreover, the focus is on showing class relationships, with calls overlaid on them, rather
than helping developers interactively find and visualize a task-relevant portion of the call
graph.

Several systems have explored approaches for reducing disorientation during code explora-
tion. Relo [SMKO06], Code Canvas [DVR10], and Code Bubbles [BRZ10] help developers to
stay oriented by providing a map of code. Replacing a conventional editor in which develop-
ers edit in a full size window, methods are instead shown in many small bubbles, providing
context during reading and making it easier to rapidly switch among related methods. Like
these tools, REACHER’s visualization helps to minimize disorientation by letting developers
select task-relevant methods and visualize relationships among these methods. One im-
portant difference is that REACHER shows only method names and task relevant statements
rather than the entire method’s implementation. This makes REACHER’S visualization sub-
stantially more compact, allowing developers to simultaneously view many more methods.
REACHER’S design may more effectively support situations in which developers investigate
relationships between small snippets scattered across many methods. Moreover, both visu-
alization styles could be incorporated in the same system by letting developers zoom in to
see a method’s implementation and zoom out to see additional context.

Several tools reverse engineer UML sequence diagrams from dynamic traces. A UML se-
quence diagram contains vertical lifelines for several objects, shows calls as horizontal lines
between lifelines, orders calls vertically, and includes annotation notation for describing
calls (e.g., calls can be guarded by a conditional expression text) [RJB99]. Execution murals
reverse engineer a simplified UML sequence diagram view from dynamic traces [JSB97].
Similarly, Diver is an Eclipse plugin that records execution traces and provides a UML se-
quence diagram view [MS10].

While most code exploration tools do not let developers search along control flow, a few do.
Logging aspects allow developers to construct a search string as a pointcut descriptor, run
the program, and browse matching target statements written to a log file [KHHO1]. But de-
velopers must rerun the program whenever they change their search string and there is no
support for exploring the log. In Dora [HPV07], developers select an origin method and en-
ter a search string, and then may inspect a graph depicting call graph paths to methods tex-
tually similar to the search string. However, using Dora to answer reachability questions
would be challenging. It does not support searching for field reads, field writes, library calls,
or methods in specific types or packages, making it impossible to directly express most of
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the reachability questions we observed in our field research. And Dora provides only a ru-
dimentary call graph view. Dora’s focus is instead on exploring the use of information-
retrieval techniques in searches and is therefore complimentary to REACHER. Diver provides
limited support for searching along dynamic traces [MS10]. Diver lets developers search
along an execution trace for method calls and visualizes traces as UML sequence diagrams.
But, in Diver, searches are used only to locate methods, not to scope the visualization to the
search results. In situations where dynamic analysis is possible and helpful, dynamic traces
could complement REACHER’s static traces by providing certainty of a path’s feasibility and
supporting inspection of concrete values.

Several studies have observed developers using existing tools for exploring code to produce
recommendations for future tools that would more effectively support developers’ needs.
One study observed developers using a UML tool while editing code [DABO08]. In addition to
identifying several usability problems, a key recommendation was to better support select-
ing task-relevant items in the reverse engineered view to prevent wasted time understand-
ing task-irrelevant items. They also saw the need for much more automated support for re-
verse engineering sequence diagrams. Another study failed to find much use of detailed
large-scale maps of code hung on walls near developers’ offices [CVD07]. Designed to be
useful for all possible tasks, these diagrams had both too much and too little information -
developers required many details but only those that were task-relevant. The authors con-
clude that diagrams providing concise and targeted answers to situation-relevant questions
were more likely to be useful than general-purpose diagrams. Another study observed sev-
eral students using a UML sequence diagram tool in the lab [BMS08]. Qualitative analysis
suggested element labels, animation between layouts, and diagram-to-source linkages are
all important for such tools. Participants specifically requested the ability to rapidly config-
ure the diagram to filter or search for items and to easily hide items that were determined
to be uninteresting. Finally, the authors suggest that the frequent navigation between corre-
sponding portions of the diagram and source could be reduced by adding additional infor-
mation to the diagram such as information about conditionals and loops.

Few code exploration tools have been evaluated in user studies to see if they do indeed help
developers to explore code. There are two notable exceptions. An evaluation of Whyline
found that it helped developers debug 3 times more successfully in about half the time
[KMO09]. One study evaluated three recent code exploration tools (JQuery, Ferret, and
Suade) by having developers perform two small changes in an unfamiliar codebase (jEdit)
[AMRO7]. A variety of measures were used to test several hypothesized benefits - reducing
mental resources used, helping developers avoid irrelevant elements, and more successfully
completing the task. However, there were no significant effects on any of these measures,
suggesting these tools may not provide any benefit to developers.

2.2.4. Slicing

Slicers follow control and data dependencies through code [HHO1][SFBO7][T95][W84].
Slicers find statements connected by either data dependencies or control dependencies.
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Reaching definitions reachingDefs(s;, x) finds the set of statements S where each sz in S may
have last defined a variable x used in s; (the set of immediate data dependencies). A control
dependency exists from s; to s; if 52 controls if s; does or does not execute. cDepend(s;) finds
all such control dependencies of s;. A (backward) static slice [W84] is simply the transitive
closure of the union of these two relations: (reachingDefs(s;, x) U cDepend(s:))* In a highly
influential study, Weiser found that developers debugging more accurately remembered a
static slice related to the bug than either an unrelated slice or an arbitrary portion of the
program [W82]. This suggested that developers follow slices when using the strategy of de-
bugging backwards from an error to a bug.

Traditional slicers allowed developers to find the portion of a program that is control or da-
ta dependent on a seed statement. More recent tools let developers traverse dependency
paths. For example, CodeSurfer statically computes slices and lets developers traverse
through them in code [ATO1][ARTO03].

Numerous variants of slicing have been proposed and implemented as research prototypes
[HHO1][JR94][T95]. A forward slice finds control and data dependencies forwards rather
than backwards: (fdDepend(si, x) U fcDepend(s))*. A dynamic slice finds control and data
dependencies in a particular execution. For example, the Whyline computes a dynamic slice
by having the developer demonstrate a situation in a program, recording a trace, and
providing interactive support for traversing the dynamic slice [KM08]. Like reachability
questions with a filtering constraint, conditioned static slices [CCD98] find dependencies
across paths which satisfy a constraint. A thin slice [SFB07] finds data dependencies reach-
ingDefs(s;, x)* while excluding data dependencies at pointer dereferences. A chop [JR94] in-
tersects statements in a forward slice on x at s; with a backward slice on y at sz: (fdDepend(s;,
x) U fcDepend(si))* N (reachingDefs(sz y) U cDepend(sz))*. The central idea of all slicing
techniques applied to code exploration is to use control and data dependencies to find
statements answering a developer’s question.

An important difference between reachability questions and slicing is that most reachability
questions are a search across control flow paths rather than data dependencies (except for
reachability questions that use reachingDefs(s;, x)). By design, slices are intended to be a
subset of the statements across control flow paths: statements that are not dependent are
not included (although an imprecise slicing algorithm may still include them). Slices corre-
spond to questions about influence: “Why did this execute?” (control dependency), or
“Where did this value come from?” (data dependency). In contrast, control flow captures
questions about what happens before (“What are the situations in which?”) or after (“What
does this do?”). When developers ask a question about control flow, the slice may not in-
clude the statements answering their question. And while our reachability question formal-
ism includes searches for data dependencies (reachingDefs), we observed only 1 example of
such a question out of the 17 important reachability questions we found (see Tables 7.1 and
7.2).

The most important difference between slicing and reachability questions is that a reacha-
bility question is a search for a set of statements described by any of a wide variety of



Chapter 2: Related Work 19

search criteria. Consider an example from the Exploration Lab Study (see Section 7.1): a de-
veloper wondered why calling a method m is necessary. The reachability question find ends
in traces(jEdit, m, mena, 7) identifies a few statements (5 at a call depth of 5 or less from
Mgare) While a static slice from m finds all of the statements in hundreds of methods. Because
the first line of m conditionally throws an exception depending on the input to m, every-
thing afterwards is control dependent on the input to m. If this were not the case, the static
slice still would not help locate ends and might not even include these statements if they do
not happen to be control or data dependent. Even the searches supported by chopping are
different: in chopping, both the origin and target statement are supplied by the user. Thus,
the user must already know the statements in ends when they ask a chop question.

2.3 Path-sensitive static analysis

REACHER draws heavily from path-sensitive static analyses for bug detection and verification.
Broadly, such tools traverse feasible paths through a program, update abstract state by in-
specting statements, and output an error whenever an error state is encountered. Different
tools strike different performance / precision tradeoffs for the bugs they seek to discover.

A symbolic execution of a program symbolically propagates input variables across paths
through a program [K76]. Instead of executing a program on concrete values (e.g., 5), the
program is executed with names of input variables (e.g., x) and constraints on these varia-
bles (e.g., x > 5). At conditional statements, a symbolic execution first attempts to determine
which branch is feasible. If this is not possible, multiple paths are forked off, constraints are
added to variables on each path indicating which branch was taken, and each path is ex-
plored in a separate context. No merging of contexts is performed at control flow merges. In
this way, a symbolic execution constructs an execution tree of potential paths a program
might follow. However, the precision of a symbolic execution is limited by the ability to de-
termine which paths through a conditional are feasible. Moreover, the number of paths
through real programs are intractably large, so tools are often unable to exhaustively ex-
plore all paths and are instead forced to sample paths.

The most precise approach to determining feasible paths is CEGAR (counter-example guid-
ed abstraction refinement) model checking (c.f., SLAM [BRO1]). In contrast to symbolic exe-
cution, CEGAR model checkers lazily add precision by only adding constraints to variables
when necessary. These constraints are used to guide which paths are taken at conditionals.
After finding any feasible or infeasible path to an error statement, a theorem prover or SAT
(satisifiability) solver is used to determine if the path is feasible. If the path is infeasible,
constraints are added to variables to prevent this path from being traversed, and the model
checker again begins searching for a path to an error statement. While CEGAR model check-
ers have been used in practice, both the use of the theorem prover and iteratively searching
for paths can result in runtimes of hours or days for even small programs. And CEGAR mod-
el checkers have difficulty dealing with paths that are data and pointer intensive.
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Dataflow analyses are less precise than model checkers but take much less time to execute.
Most dataflow analyses do not attempt to eliminate infeasible paths. Instead, dataflow anal-
yses simply iteratively traverse paths through a program to populate a context mapping
variables in scope at each statement in the program to abstract values - constraints de-
signed by the analysis author. The key feature of a dataflow analysis is that cycles in paths
due to loops or recursion are iteratively traversed until a fixed point is reached and none of
the abstract values have changed on the final iteration. Interprocedural dataflow analyses
are generally considerably more scalable than model checkers and can run on even large
programs in minutes or hours. A path-sensitive dataflow analysis is sometimes able to de-
termine which paths through a conditional are feasible by using information in the context.
When this is not possible, these analyses traverse both paths using separate contexts. Such a
fully path-sensitive analysis is impractical, as the number of contexts grows exponentially in
the number of conditionals that cannot be resolved. Instead, practical tools (c.f., ESP
[DLS02]) join contexts with identical abstract state at control flow merges.

Call graph construction algorithms eliminate infeasible paths created by dynamic dispatch
or first class functions [GCO1]. By propagating information about the possible runtime types
of objects, these algorithms eliminate infeasible paths by determining the possible runtime
types that might reach each receiver object or function pointer. These algorithms are fast
and are often used as an input to other dataflow analyses, but only eliminate infeasible
paths arising from dynamic dispatch. Moreover, these tools are not path-sensitive and do
not propagate constants other than types.

In summary, most existing techniques for eliminating infeasible paths are either slow
(model checking, symbolic execution, fully path-sensitive dataflow analysis), do no elimi-
nate infeasible paths (path-insensitive dataflow analysis), or eliminate a much more re-
stricted set of infeasible paths than REACHER (call graph creation algorithms). The closest
approach is partially path-sensitive dataflow analysis which both eliminates many of the
same infeasible paths and is also fast. However, the benefits of this approach rely on merg-
ing contexts with identical abstract state. When only a simple property is being checked,
there will be few potential distinct contexts possible. If this approach were to be applied to
propagating constants to determine path feasibility, the number of contexts would be expo-
nential in the number of variables that might have a constant value. Thus, this approach is
also too slow.

2.4. Summary

Existing studies have shown some of the outlines of how developers explore code, but many
gaps remain: how is code exploration related to software development activities; what, exact-
ly, are developers doing while exploring code; and what hard to answer questions are related
to code exploration? How can a tool most effectively support code exploration? While studies
suggest that developers could benefit greatly from diagrams that are more task-relevant,
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the studies provide little guidance on the information developers need to find when explor-
ing code.

While many approaches have been tried to help developers explore code, there is scant evi-
dence that any of those tools are useful. Indeed, the largest comparative study of code explo-
ration tools found that none had any discernable effect. And none of the tools let developers
search along control flow and navigate a compact, task-focused view of call graphs.

Finally, there is a large body of work in path-sensitive static analysis, but none is able to elim-
inate infeasible paths quickly enough to be used in code exploration tools.
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3.

DESIGNING USEFUL TOOLS FOR
DEVELOPERS"

Is a development tool useful? This question ultimately asks how the tool affects developers’
work. This is not, as others argue, a question of philosophy, mathematics, or esthetics [B10],
but of science: if a developer adopts a tool, is his or her work faster or better? Claims about
a tool’s usefulness are falsifiable statements about the real world and thus scientific. For the
purposes of this chapter, the word “tools” includes anything used by a developer to develop
software, ranging from development environment plugins to online documentation to type
systems to programming languages.

Unfortunately, usefulness is challenging to measure. After designing and implementing a
tool’s core features, more work may be required before developers can or will adopt the
tool. This may involve adding features, fixing usability problems, or even building a user
interface. This work is traditionally viewed as an engineering effort with little research val-
ue, but generally must be completed before the tool’s usefulness can be measured.

The most direct measurement of usefulness is through a field deployment. But measuring
usefulness in the field requires controlling a myriad of confounding factors. If the develop-
ers who adopted a tool fix bugs 10% faster than they did last week, was this effect caused by
the tool or by easier bugs, new debugging strategies, or more code knowledge? Even when
confounds have been controlled, skeptics may still ask if the result generalizes to developers
with different skills, in different domains, with different processes, or with different existing
tools. While not impossible (c.f., [ABG02][JC07]), field evaluations are no small undertaking.

Thus usefulness is often not directly evaluated. Instead, researchers often evaluate a tool’s
usability - its ease of use - in a lab study. Developers, or (more typically) students with de-
velopment experience, are brought in and asked to complete tasks while using a new tool
and their performance is compared to others using a comparable existing tool. Developers’
performance is measured by recording time and success. Performance with those using the
new tool and the control is then compared. If differences between conditions are statistical-
ly significant, the results provide evidence of the tool’s usability.

! This chapter based on work previously published in [LM11].
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But such a study does not, by itself, demonstrate usefulness. First, does it generalize? Is the
result specific to the situation studied: how might it change with different tasks, codebases,
or expertise? Second, what does it mean for developers in the field? How frequently do de-
velopers do tasks equivalent to those in the study? Do limitations of the tool prevent it from
being used in less controlled settings? Third, how did learning a new tool influence the re-
sult? If the results showed the tool did not help, was this because the tool is not useful or
because developers had not yet learned new strategies or processes [B02].

Due to these challenges, tool designers often evaluate usefulness less empirically but with a
motivating example. Motivating examples demonstrate a tool on an example task and can be
used to claim that while existing tools make the task time-consuming, tedious, or error-
prone, the tool solves these problems (e.g., statically prevents null pointer exceptions, re-
duces boilerplate code). But while motivating examples can be highly effective for explain-
ing a tool’s features and usage, they do not show that developers do these tasks, that devel-
opers do them as described, that developers have the assumed problems, that developers
would use the tool in the way described, or that developers would be more productive if
they do so. Motivating examples might explain the mechanism by which a tool’s designers
hypothesize it would change developers’ work and make them more productive, but do not
provide evidence that this occurs.

This chapter describes a process for using data to design useful tools for developers. Data is
used before, during, and after design to understand developer’s work and how it is affected
by a tool. Exploratory studies generate data to identify and describe a problem. Tools are
designed to address specific problems, with lightweight evaluation studies testing early de-
sign ideas before a large commitment has been made. Evaluation studies help both quantify
performance effects and to understand how these effects occurred, allowing greater gener-
alizability. While this design process is heavily influenced by contextual design [BH97], this
chapter explains how it can be adapted to designing tools for developers.

This chapter begins by examining the structure of software development work and how
tools may support this work. The design process is then traced from beginning to end, de-
scribing techniques for understanding problems, designing a solution, and evaluating its
effects. Chapters 4 - 10 show how I used this approach in the development of REACHER.

3.1. Supporting development work

Useful tools support software development work. But what is “work,” and how do tools
support it? Software development work can be hierarchically decomposed into tasks
through task analysis (see Figure 3.1). In each task at each level in the decomposition, de-
velopers have a goal, either a question to answer or something to accomplish. At the highest
level, tasks reflect activities - e.g., fixing bugs, implementing features, refactoring. These can
be decomposed into sub-activities - e.g., debugging, editing code, reusing code, understand-
ing code. At a lower level, developers formulate a specific plan for accomplishing a goal as a
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strategy - a sequence of steps. And, steps in a strategy may themselves involve using other
strategies.

work

|

oc’rivi’rieE)

strategies

steps

Figure 3.1. Developers’ work is hierarchically composed of tasks that may be activi-
ties, strategies, or steps (arrows indicate a task is composed of one more other tasks).
All tasks have a goal and may also have associated problems.

Tasks are driven by a goal. For many of developers’ activities, the goal is to answer a ques-
tion. Developers experience problems answering a question when strategies to answer it
are time consuming, error-prone, or tedious with the available tools [AAL10][B95][BPZ10]
[AMRO7][FKS08][KKI02][KO8][KMO08][KM09][KAMO5][KDV07][LBB10][PO11][SMV08]
[SCO7]. Debugging, determining how to reuse an API, or predicting the implications of a
change are all examples of problems that require answering questions. Tools support an-
swering questions by helping developers answer them more quickly or accurately, often by
automatically producing information. Debuggers, type systems, reverse engineering and
understanding tools, defect detectors, and protocol miners all provide information intended
to help answer questions. For the designer, the key challenges are to determine exactly
what question developers ask, what information is helpful to answer it, and how developers
can obtain this information more easily.

Other activities involve accomplishing something. Here, developers seek to change an arti-
fact in some fashion. Like answering questions, strategies can again be problematic when
they are time-consuming, error-prone, or tedious.

Tools’ support of a developers work can be viewed as a theory describing its usefulness.
Such a theory postulates a way in which developers work in some situation and the way
that this work is affected by the use of a tool.

Tools support work by making a strategy faster or more successful. For example, the
Whyline [KMO08] helps developers debug (an activity), which involves answering why and
why not questions about the causes of erroneous output (questions). Rather than formulate
and test hypotheses about a bug’s cause (a frequently unsuccessful strategy), the Whyline
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lets developers directly select output and follow dynamic slices explaining why it did or did
not occur (a new strategy made possible by the Whyline). Studies of the Whyline provided
evidence of its usefulness by demonstrating that developers frequently ask why and why
not questions during debugging, that many of the hypotheses developers formulate are
wrong [K08], that developers can use the Whyline to answer their why and why not ques-
tions, and that the Whyline helps developers work quantitatively more effectively [KM09].
Together, these studies provide a theory describing how the Whyline supports work.

3.2. Understanding a problem

Useful tools solve an important problem. Problems may be important for many reasons, but
often not the ones researchers expect. Exploratory studies can help to identify and under-
stand a problem’s true cause and importance.

3.2.1. Important problems

The importance of a problem can be characterized along three dimensions: frequency, dura-
tion, and quality impact. Problems vary along all these dimensions and come in many
shapes and sizes. Problems need not be frequent and long to be important: an hour every
week may have the same direct impact on productivity as 30 seconds 120 times a week. An
autocomplete tool which frequently saves a second of time might have the same impact as a
specification checker preventing a very hard to debug but infrequently occurring defect.
Tools may also indirectly impact productivity; perhaps the autocomplete tool helps keep the
developer more focused on the task, reducing time that would be spent switching among
tasks. Problems that are neither frequent nor long in duration can be important if they sub-
stantially impact quality.

Useful tools must solve an important problem in order to justify their adoption cost. Adopt-
ing a tool imposes costs to install it and to learn how to use it effectively, and there is always
the risk that it will not actually help [B02]. One reason practicing developers are skeptical of
academic tools is that their perceived benefits are too small [H11]. Therefore, determining
which problems are sufficiently important to matter, so the tools addressing those prob-
lems will be perceived to be beneficial, is an important function of exploratory studies.

Solving a problem requires understanding its true cause, which often requires digging into
symptoms. Consider the problem of code duplication. Developers have long been accused of
copy and paste reuse - reusing short snippets of code by copying and editing rather than
refactoring code into new abstractions. Copy and paste reuse creates clones, which are fre-
quent in open source codebases (c.f.,, [B95]). Believing the problem to be one of awareness
and detection of clones, researchers designed tools to automatically detect short copy and
paste clones, hoping developers made more aware of copy and past clones would refactor
them [KKIO2]. But other researchers believe that awareness is not the problem, and that
code duplication is instead caused by expressiveness - existing languages make refactoring
clones to abstractions mentally challenging, introduce unnecessary overhead, make code
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more complex, and may not support all types of clones [TBG04]. Other studies suggest that
much of code duplication may not be caused by copy and paste reuse at all, as it is but one of
many causes including forking codebases for organizational reasons and maintaining old
versions (see Chapter 4). For example, developers sometimes work with code where entire
codebases have been duplicated and modified, in order to maintain different versions, con-
figurations, or releases. As a result, commercial clone detectors have found more success
focusing not on copy and paste reuse but on maintaining multiple versions. Fixing a bug in
these situations requires an extra step: find the equivalent code in all of the versions. Miss-
ing a bug in one of the versions can be a serious problem: nearly half of software releases
contain a security vulnerability already fixed elsewhere in the codebase [P11]. Pattern In-
sight’s clone detector is primarily used to solve this problem [P11]. Common wisdom can
suggest interesting aspects of software development - code duplication - but initial solu-
tions - detecting copy and paste reuse — may not solve the problem without understanding
its true cause - fixing bugs in multiple versions.

One of the most successful approaches to identifying and understanding a problem is to
identify problems with using a strategy or answering a question (c.f, [AAL10][FKS08]
[KAMOS5][KDVO07][SMVO08][SC07]; Chapter 7). Problems at this level can be directly ad-
dressed by tools. For example, one study examined how developers choose a class in an API
to accomplish a goal [SC07]. Developers pick a candidate, try it out by instantiating it, and
often get compiler errors prompting them to supply a required parameter. Developers then
investigate how to correctly construct the class, only to later discover that the class is miss-
ing the methods they need. The compiler errors encourage a premature commitment [G89],
causing investigation into something that may be irrelevant. Understanding this strategy
(how developers pick classes in an unfamiliar API) helps to identify the problems that make
it hard and time consuming (compiler errors encourage premature commitment). Tools can
then be designed to address these problems (preventing premature commitment) and eval-
uated in terms of their success in doing so.

3.2.2. Choosing an exploratory study

Exploratory studies help to identify important problems and understand their cause. Ex-
ploratory studies may gather data both through developers’ perceptions of problems and
through directly examining the problems themselves. Developer perception can be an im-
portant source of ideas, particularly for poorly understood tasks. Developer may identify
challenging tasks or hard-to-answer questions. But other problems are less salient, and may
be important without developers realizing it. For example, developers may not notice how
much time they spend scrolling to revisit code [KAMO05].

One of the easiest exploratory studies to conduct is an interview. Interviewing developers
can reveal a developers’ typical tasks and problems (c.f., [HH11], Chapter 4). But recollec-
tion of the past is imperfect: people give vague descriptions and generalize [BH97]. While
generalizations may suggest ideas, they may not be based on facts and can be biased by
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opinion and perception. But, for tasks or situations for which little is known, interviews give
a sense of the basics and help to focus further study on interesting aspects.

Contextual inquiries augment interviews with direct observations, using a real, in-the-
moment tasks to provide context [BH97]. Contextual inquiries replace generalization with
examples; an experimenter watches the developers as they work and asks questions about
the task at hand. Developers work on a representative task and think aloud as they work.
When the developer’s goals, questions, or strategy is unclear, the experimenter asks for
clarification. When the developer generalizes, the experimenter asks for a concrete example.
When frequently interrupting is inconvenient or obtaining accurate timing of steps and ac-
tivities is important, direct observations can be used alone, without an embedded interview.
The experimenter may still briefly interrupt, but interruptions are focused on brief clarifica-
tions rather than extended discussions. Direct observations can be conducted both as field
studies (c.f., [KDVO07][SMVO08]; Chapter 7), watching developers in the field do their every-
day work, or in lab studies which permit choice of the task and comparisons of developers
doing the same work (c.f., [AAL10][FKS08][KAMO05][SC07]).

Direct observations lead to generalization by analyzing the data afterwards. Depending on
the aspect or situation of interest, many types of analysis are possible. Simply reporting ob-
servations is sometimes sufficient. But often it helps to examine their generality by looking
for patterns, often through content analysis [P02]. Taxonomies investigate what things exist
in the data - e.g., types of activities, questions, and strategies.

3.2.3. Understanding context and frequency

How well a strategy works often depends on the context [LM10-3]. Consider answering the
question “Does this method repaint the screen?” One strategy which developers use is to
determine, through code inspection and by traversing paths through the code, if the code
calls repaint. Information foraging predicts that developers use their knowledge to pick
which edge to traverse based on its similarity to the goal [LBB10]. This is sometimes easy.
But when there are many edges to choose from, longer paths to follow, or identifiers that
are misleading, this strategy is likely to take longer or fail. Other factors that influence its
difficulty include characteristics of the code and the developer. For example, developers less
knowledgeable about the code may have a harder time predicting which identifiers are
most related to what they are trying to find. Learning about factors influencing a strategy’s
success is an important part of understanding a problem, and helps ensure that solutions
can be targeted to the most important situations.

While observations and interviews help to understand questions, strategies, and problems,
data about frequency is limited by the few situations observed. Frequency can be measured
through studies designed to sample many developers such as surveys or indirect observa-
tions. Surveys gather frequency data by asking many developers questions (c.f, [BPZ10]
[KDV07]; Chapters 4, 6, and 7). Surveys can also be used to understand correlations. For
example, one of my studies found that a class of questions becomes neither less frequent
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nor easier to answer as developers become more experienced or spend more time in a
codebase (see Section 7.2). Indirect observations gather data about developer’s work not by
directly seeing it but by capturing summary data, such as with logging, or by studying arti-
facts created by work such as code, code change logs, emails, bug discussions, and forum
posts (c.f,, [BKA11][KMCO6][MPB09]). For example, one study measured the prevalence of
protocols through an automated technique for detecting protocols in code [BKA11], built a
taxonomy of protocol types, and examined their typical complexity.

3.3. Designing a solution

Designing a tool begins with an important problem to solve. A problem is the beginning of a
solution - it identifies a specific aspect of work to improve. Designing a solution envisions a
new way of doing this work and determines the features necessary to make this possible.
Designing a tool is a leap from an old to a new way of working; designing a tool that solves a
problem is an inherently creative process that no amount of data can guarantee. But data
can help to understand what a design must achieve to solve a problem, and can help to un-
derstand if the design is likely to succeed.

When using a tool to answer a question, a developer must translate a high-level question
(e.g., what caused this bug?) into lower level questions the tool supports (e.g., using a
breakpoint to answer: “What is the value of this expression when this code executes?”). For
the designer, the key challenge is ensuring that the information that the tool provides really
helps to answer the high-level question more quickly or accurately than the alternatives.
One way to bridge this gulf is to understand how developers currently work: what strate-
gies do they use to answer high-level questions, and what lower-level questions do these
strategies entail? For example, I found that developers sometimes answer questions about
the implications of a change (e.g., what it might break - see Chapter 5) by searching along
control flow for things that the code does (see Chapter 7). Helping developers search along
control flow is likely to help developers answer higher-level implication questions, as de-
velopers are already using this strategy. But supporting developers’ current strategy is not
the only approach - tools could instead provide an entirely new strategy that is impossible
with existing tools. But it is then necessary to determine if the low-level questions the tool
answers actually help answer higher-level questions, whether these low-level questions are
really an important part of the problem, and whether the developers will think to use the
strategy the tool supports in the relevant situations.

Consider the following example: many automated debugging tools attempt to predict the
faulty statement that caused the bug and provide the developer a ranked list of candidate
statements [BNRO3][CZ00][GKL04][JHSO2]. These tools change how developers answer
“What caused this bug?” by letting developers inspect the list of statements and answer the
question “Which statement contains the fault?” But how big a part is finding the faulty
statement in determining the cause of a bug? Is seeing a statement sufficient for a developer
to determine that it is faulty? A user study investigated these questions by comparing auto-
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mated to conventional debugging tools [PO11]. It suggested the answer is no: most devel-
opers spend an average of 10 minutes inspecting each statement to understand how it
might have caused the bug. As a result, the automated debugging tools only helped a frac-
tion of developers debug one of two tasks more quickly. Understanding exactly what infor-
mation a tool should provide to help answer a high-level question is crucial to a tool’s suc-
cess.

3.4. Evaluating a solution

A tool is the embodiment of a tool designer’s assumptions about how developers currently
work and the way in which that work may be more effectively supported. Unfortunately for
the designer, these assumptions may be wrong. This risk can be minimized by getting feed-
back early in the design process through prototypes and lightweight evaluation studies. In a
paper prototype study [B07], users interact with screenshots, narrating which buttons they
would click, while the experimenter manually simulates the tool by showing the next screen
(see Section 10.1 for a pilot paper prototype study of REACHER). Higher fidelity mockups are
also possible. In a Wizard of Oz study [MGM93], an interface is built, but the implementation
is remote-controlled by the experimenter. For example, a bug detector might provide error
messages that seem to be automatically generated when they are actually triggered by the
experimenter. Such a study allows the effects of different error message designs to be eval-
uated before determining how such errors will be generated. Lightweight evaluation studies
enable an iterative design process which is tailored to what works rather than what the de-
signer assumes will work.

The usefulness of a tool depends on its success in solving a problem by supporting work
(mechanism) and the importance of the problem it solves. Lab studies are most effective for
understanding a tool’s mechanism. Do developers use the tool to answer questions? Does
the tool help them do it more quickly or successfully than before? What strategy(ies) does it
support? On what aspects of the situation does the strategy depend? How might these as-
pects affect how developers use the tool? Did developers enjoy using the tool? Evaluating a
tool’s usefulness is difficult without understanding how it supports work.

Consider an example: one study investigated the productivity effects of dynamic typing
[HO9]. Participants took anywhere from 4% to 42% less time using a dynamically typed
language compared to an otherwise identical statically typed language. But does this result
generalize? Did the tasks involve any situations in which static typing might be expected to
provide useful feedback? If so, how did developers use this information and why did it not
help? Was it simply that the error messages provided were poorly designed and unhelpful?
What were developers doing during the additional time in the statically typed condition?
Would developers working with different codebase or with different tools still have these
problems? Are there ways to provide useful static typing feedback without incurring the
productivity costs? Answering these questions requires a deeper understanding of develop-
ers’ tasks, activities, questions, and strategies.
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Lab studies can also quantitatively measure a tool’s effect on task time and success. A result
which shows an effect is best viewed as an existence proof: it is possible to achieve signifi-
cant productivity benefits. Such results are an important demonstration that a tool can have
a strong effect (or that it did not) (c.f, [AMRO7][H09][KMO09][PO11]). Yet skeptics can al-
ways argue that, for a slightly different task or situation, the tool’s benefits may vanish.
Studying a tool in more situations helps to address these concerns. But the strongest argu-
ment is also based on mechanism - an explanation of how a tool changes the way that de-
velopers work. Mechanisms predict the effects of a tool in unobserved circumstances. These
predictions may be wrong, but even then, they focus research on what prevented the pre-
dicted effects from occurring. Did developers not do the expected tasks, use unexpected
strategies, or did they experience unexpected problems with these strategies?

Another benefit of understanding mechanism is in designing lab study evaluations. Lab
studies sample particular situations by picking tasks, participants, and materials. Which of
the many possible situations are most interesting to study? Situations where developers do
not do the task supported by the tool are not interesting, as the results only show the tool is
not relevant. However, observing tasks for which the benefits are unclear is interesting. Sit-
uations where the tool is expected to have a strong effect provide evidence that the effect
actually exists.

3.5. Conclusions

Designing a useful tool requires more than finding a compelling motivating example, evalu-
ating the tool’s technical merits, and performing a carefully designed user study. Designing
a useful tool requires understanding how a tool supports work and addresses an important
problem that developers face. This understanding is built over time through hypotheses and
studies, investigations of the problem and potential solutions, and through direct and indi-
rect observation. Understanding involves identifying both the mechanism of how a tool sup-
ports tasks, questions, and strategies and the frequency that these occur. And evaluations
must examine not only whether some quantitative productivity effect is possible but how,
when, and why this effect is achieved.

This chapter has considered theories at the level of specific situations and their relationship
to specific types of tools. But as more theories are formulated, they may have much in com-
mon, paving the way for larger theories of developers’ work. These might permit predic-
tions of developer behavior and the effects of tools over whole tasks and activities, leading
to a science of software development.
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CONTEXT OF CODE EXPLORATION

While software engineering researchers have long viewed exploring and understanding
code as important and have designed tools to support it (see sections 2.1 and 2.2), less is
known about the role and context of understanding code in software development. What
activities do developers spend their time on, and how is understanding code related to the-
se activities? What tools and techniques do developers use, and how do these differ for simi-
lar activities such as designing or editing code? What practices influence how developers
understand code? What role do design documents play in understanding code? When do
developers choose to use tools to understand code rather than consult with their team-
mates? What problems do developers face understanding code, and how are these related
to other software development problems?

This chapter describes a field investigation into how developers understand code. The in-
vestigation began with a survey, used interviews to explain findings in this survey, and then
used a second survey to investigate the generality of these findings. The central theme that
emerged from this investigation is developers’ great reliance on implicit knowledge about
code. Developers invest great amounts of time creating and maintaining a mental model of
the code. As developers do this, they share knowledge with their teammates through face-
to-face communication and through the code itself. Developers avoid, when possible, explic-
it, written repositories of code-related knowledge in design documents or email, preferring
to explore the code directly and, when that fails, talk with their teammates. Exploring code
is made difficult by tool limitations and difficulties in traversing relationships. Using the so-
cial network as the second line of inquiry causes interruptions and lost work, but those
costs are offset by other benefits. Knowledge retention is made possible by a strong, yet of-
ten implicit, sense of code ownership, the practice of a developer or team being responsible
for fixing bugs and writing new features in a well-defined section of code. This increases the
payoff from the large investment in understanding code.

In this chapter, we first describe a taxonomy of developer activity we used to begin our in-
vestigation. Next, we describe the methods we used in conducting two surveys and a num-
ber of interviews with professional software developers in the field. We then describe our
results about the frequency of developer activities and the tools developers use. Next, we
discuss our findings about the context of understanding code and the role of software de-
velopment practices in influencing how developers maintain mental models of code. One

? This chapter based on work previously published in [LVDO06].
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particularly challenging aspect of code to understand is its rationale, which we investigated
in more detail. Finally, we report our findings on developers’ openness to changing their
practices, make recommendations for addressing several of the problems we identified, and
conclude.

4.1. Activity taxonomy

This investigation began with a characterization of how developers interact with code -
their activities, tools, and biggest problems. Rather than bring a preconceived area of focus,
we wished to be more opportunistic and let our users - the developers - guide us in select-
ing what they perceived to be the most painful problems. To do so, we asked them to report
their use of time, perceptions of tool effectiveness, and most serious problems.

In contrast to previous studies (see the reviews of [PSV94][SLV97] in Section 2.1.2), we de-
signed our taxonomy (Table 4.1) to specifically focus on code related activities and the mo-
tivation behind these activities. We wished to know the types of activities for which devel-
opers use development environments and the activities that these environments most poor-
ly support. We also wanted to know whether developers use different tools for different ac-
tivities.

From our own personal experience as software developers, hypotheses about what devel-
opers might find difficult, and topics of ongoing research, we also formulated nineteen hy-
pothesized problems developers might have in obtaining or communicating about code-
related knowledge (see Table 4.2).

Designing Analyzing a new problem and mapping out the broad flow of code which will
be used to solve the problem. [...]

Writing Creating a new method, source file, or script and getting it to a compilable state

Understanding Determining information about code including the inputs and outputs to a meth-

od, what the call stack looks like, why the code is doing what it is doing, or the
rationale behind a design decision. [...]

Editing Editing existing code and returning it to a compilable state.

Unit testing Ensuring that code is behaving as expected. [...]

Communicating Any computer mediated or face-to-face communication about information rele-
vant to a coding task [...]

Overhead Any other code related activities including building, synchronizing code, or
checking in changes.

Other Other code related activities.

Non code Any other activities included in your work time

Table 4.1. Descriptions of activities read by respondents. Descriptions ending in [...]
have been shortened. See Appendix 1 for the complete materials.
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4.2. Method

The study consisted of three parts: a survey about activities, tools, and problems (the “activ-
ities survey”), a series of semi-structured interviews, and a survey of work practices (the
“follow-up survey”).

4.2.1. Organization

The population we selected for study was software developers at Microsoft Corporation.
Microsoft is a large software company whose products span a wide range of markets: oper-
ating systems (Windows); web portals (MSN); consumer devices (Windows Mobile, Xbox);
office productivity applications (Office); and developer tools and infrastructure (Visual Stu-
dio, Great Plains, SQL Server). Of the roughly 63,000 employees in 2005, roughly 6,000 are
software developers who work on shipping code in product groups. Other developers in-
clude those who work on test infrastructure and tools and those in Microsoft Consulting and
Microsoft Research. These latter groups were excluded from our study.

It is not clear how a study of software development at Microsoft generalizes to software de-
velopment in other professional environments. Given the diversity of environments - large
software companies, small software companies, software developers in companies whose
product is not the software itself, open-source development of commercial software - it is
difficult to hypothesize how the present results would apply, but as the study crossed many
of these variables, the results are likely to apply to other situations.

Within a product group at Microsoft, there are three core roles - software design engineer
(SDE), program manager, and software test engineer. SDEs are responsible for software de-
sign, fixing bugs, and writing new features. Program managers are responsible for specify-
ing and prioritizing features and for writing high-level feature specification documents
which developers use to write code and testers use to write test cases. Software test engi-
neers translate feature specifications into test cases and manually test the software. A
somewhat less common role is software design engineers in test (SDE/T) who write test
automation infrastructure. Members of each of these roles work in small teams of “individ-
ual contributors.” Individual contributors are managed by a lead (e.g. lead software design
engineer) who reports to a manager (e.g. software design engineer manager). Other less
frequent roles include software architect, product designer, and usability engineer. Nearly
all individual contributors have private offices (not cubes) and most do not share an office.

Product group work for a particular release of a product is divided into milestones. In the
first milestone, program managers make initial decisions about what features will be in the
release, what features developers will work on in subsequent milestones, and write initial
feature specification documents. SDEs may work on bug fixes and patches from the previous
release, try out new technologies, or plan major changes. Several milestones of development
follow. Each milestone is divided more or less into a coding phase, where features are added,
and a stabilization phase, where developers concentrate on fixing bugs. During the last
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milestone, most of the work involves fixing bugs. As the release nears, most changes become
too time consuming and risky to test, and developers spend more time making the next ver-
sion’s code more maintainable (see Figure 4.1).

4.2.2. Procedure

The survey participants in the activities study first completed a number of demographic
items. They next read the activity descriptions found in Table 4.1 (see Appendix 1 for the
complete materials). They were then asked to report the fraction of their past week work
time spent on each activity, choosing among 10% increments plus choices for 1%, 2%, and
5%. For each activity, they were asked the percent of time on that activity they used each of
a set of tools or techniques, using the same scale. For each combination of tool/technique
and activity, developers were asked to rate its effectiveness on a seven-point Likert scale.
Finally, they rated the seriousness of nineteen hypothesized problems using a seven-point
Likert scale. There were 204 questions in all.

While we expect respondents misremembered, misestimated, and misreported the time
fractions, we expect they were able to differentiate across large distinctions like 0% and 5%
or 10% and 40%. We normalized each group of fractional responses to sum to 100%.

Before deploying the activities survey we used two techniques to ensure that its design fit
the activities, tools, techniques, and problems relevant to our target population. First we ran
three experienced developers through the survey using a think-out-loud protocol. We
adapted the survey wording and structure based on their feedback. Second, we developed a
reduced version of the survey that included extensive opportunities for participants to
write in additional activities, tools, and problems. We deployed this pilot survey to 99 ran-
domly selected developers and received 28 responses. Any write-in response from two or
more respondents was included in the final activities survey. No activities or problems met
this criterion, but a few tools did.

We selected the four problems rated as the most serious amongst the nineteen problems
developers rated in the activities survey (see Table 4.2 for ratings of the nineteen ques-
tions). We then designed a series of interview questions to elicit qualitative information
about the character and impact of these problems. Several general, open-ended questions
were added about how participants characterize their work and activities and on team
communication patterns. Two interviewers attended each interview. Ten of the eleven in-
terviewees consented to having the conversation audio-recorded. All three experimenters -
Rob DeLine, Gina Venolia, and myself - used our notes and recordings to generate nearly
1,000 note cards of observations. The cards were then used for a card sort [WA87] where
they were placed on the walls of a ~30 foot hallway to form groups, elicit themes and trends,
and consolidate observations across interviewers and interviewees.

From the card sort we identified several preliminary hypotheses. We developed a follow-up
survey to assess the hypotheses amenable to surveying. In this survey, participants first an-
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swered demographic questions. Next they answered questions about the size of their fea-
ture team, which was defined as, “the core group of developers that you work with.” They
then answered a series of questions about communication patterns, code ownership, design
documents, understanding unfamiliar code, code duplication, unit testing, and adoption of
agile practices. There were 187 questions in all.

4.2.3. Participants

We drew our participants for the three studies from the population that deals directly with
code: SDEs, SDE/Ts, and architects at both the individual contributor and lead level. After
the activities survey we decided to focus on developers working on shipping code, and so
removed the responses from architects and SDE/Ts from our analysis and the subsequent
observations. We excluded contractors because of logistical problems and excluded interns
because we wished to generalize to professional software developers.

Participants were invited to participate in the surveys by email and sent a reminder email
several days before the surveys were closed if they had not yet responded. Respondents
were compensated by entry in a drawing for $50 gift certificates. In the activities survey, we
randomly sampled 1,000 participants from the participant pool, excluding those invited to
take the pilot survey. We received 157 responses, 104 from SDEs, including 18 from lead
SDEs. We were somewhat disappointed with the response rate and attribute it to the survey
being deployed in early July when many were on vacation, some technical problems with
the survey deployment, and sheer size of the survey. In the follow-up survey, we randomly
sampled 1,000 from the same pool excluding SDETs and recipients of the activities and pilot
surveys. We received 187 responses, 176 from SDEs.

The activities survey contained several demographic questions. Since participants from all
surveys were randomly sampled from the same population of SDEs, these demographics
apply to all study participants. The average respondent is in their 30’s with an undergrad
degree, 12.1 (* 6.5) years programming, 5.8 (+ 4.2) years at Microsoft, and 2.9 (* 2.4) years
on their current team; 89% of respondents are male. 37% reported that most of their code
base was written in C#, compared to 56% in C or C++, reflecting both older, established
code bases and newer code bases written in C#.

We interviewed eleven respondents, five SDEs from the pilot survey and 6 lead SDEs from
the activities survey.

4.3. Activities survey results

Far from spending all of their time understanding or editing existing code, developers re-
ported spending most of their time elsewhere. As the study was exploratory rather than be-
ing hypothesis driven, results are presented with descriptive statistics. Times are reported
using the mean (* standard deviation).
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4.3.1. Time breakdown

Developers reported spending a little less than half of their time (49% * 39%) fixing bugs,
36% (+ 37%) writing new features, and the rest (15% * 21%) making code more maintain-
able. This confirmed our expectation that most developers spend much of their time fixing
bugs. But the vast variability in these numbers also demonstrates that typical development
activity varies greatly across software’s lifecycle (Figure 4.1) and between developers (Fig-
ure 4.2). We attribute this variability to reporting error, differences across lifecycle stages,
and interactions between activities (Figure 4.3). Activities are not independent, but are in-
terrelated (Figure 4.3). For example, developers who are designing are also likely to be
writing code. But developers understanding code are substantially less likely to be writing
code. Most developers engage in multiple activities in a given week (Figure 4.4).

There was a positive linear relationship of tool usage to effectiveness (Figure 4.5). There are
many possible explanations for this relationship, which our data are unable to distinguish.
Developers might choose to use the tools they find the most effective. Developers might
view the tools they are using as the most effective. Or an individual developer might not use
the tools they find most effective, and the relationship might occur for another reason.

4.3.2. Communicating

Developers both preferred and spent more time using face-to-face communication than
electronic communication (Figure 4.5a), replicating a 1994 finding [PSV94] of a strong pref-
erence for face-to-face over email. Yet, email has since increased in prominence and sophis-
tication and instant messaging has made possible short response time and interactive
communication. Developers gave a number of reasons for preferring face-to-face communi-
cation. Developers reported that email questions often took hours or days to receive a re-
sponse, that developers frequently misinterpreted emails’ meanings, writing an email with-
out immediate feedback required explanations in more or less detail than required, and that
email was just tedious to write. We believe many of these problems generalize to other elec-
tronic communication such as documentation, bug databases, and IM. Developers still use
email when the issue is of low priority, involves multiple people, or involves non-teammates,
averaging 16.1 (* 14.5) emails sent to teammates in the prior week and 5.9 (*+ 11.5) to non-
teammates. The low use of email might limit benefits from systems helping developers lo-
cate old emails, and the barriers discouraging email use might make it difficult to encourage
more retention of knowledge in emails. Unplanned, face-to-face meetings happen frequently
with teammates, averaging 8.4 (* 11.7) per week, and much less frequently with non-
teammates, averaging 2.6 (+ 4.0). Communication within the team is much more common
than communication across teams, indicating that the culture of informal communication
works well and that the team boundaries are typically in the right places.
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Figure 4.1. The time spent fixing bugs, making code more maintainable, and writing
new features varies with the time until the product is planned to be released. Time
flows from right to left, ranging from 37-48 months before the next planned release
to 1-3 months before the next planned release.
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Figure 4.2. There is a great degree of variability in the time spent on the activities
described in Table 4.1.
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Figure 4.5 a) Developers communicating about code spent the most time in un-
planned meetings, also rating it their favorite technique. b) Developers designing
code reported spending the most time with the source code editor, but rated dia-
grammatic tools including whiteboard and paper as more effective. Interactive dia-
gram tools such as visual designers and Visio were rated less effective and used less
frequently. c) Of the tools for understanding code, developers spent the most time in
the Visual Studio editors and debuggers, but also used a variety of other tools. d) Of
the techniques for understanding code, developers, by far, spent the most time simply
reading, but also used the debugger and checkin messages. Developers reported us-
ing high-level views of code very rarely.
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This is a serious problem for me % agree
Code Understanding

Understanding the rationale behind a piece of code 66%
Understanding code that someone else wrote 56%
Understanding the history of a piece of code 51%
Understanding code that [ wrote a while ago 17%
Task Switching

Having to switch tasks often because of requests from my team- 62%
mates or manager

Having to switch tasks because my current task gets blocked 50%
Modularity

Being aware of changes to code elsewhere that impact my code 61%
Understanding the impact of changes I make on code elsewhere 55%
Links between Artifacts

Finding all the places code has been duplicated 59%
Understanding who “owns” a piece of code 50%
Finding the bugs related to a piece of code 41%
Finding code related to a bug 28%
Finding out who is currently modifying a piece of code 16%
Team

Convincing managers that I should spend time rearchitecting, refac- 43%
toring, or rewriting code

Convincing developers on other teams within Microsoft to make 42%
changes to code I depend on

Getting enough time with senior developers more knowledgeable 34%
about parts of code I'm working on

Expertise Finding

Finding the right person to talk to about a piece of code 39%
Finding the right person to talk to about a bug 38%
Finding the right person to review a change before check-in 19%

Table 4.2. Developer ratings of proposed problems. In the survey, problems

were presented without headings and in a different order.
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Most developers reported using IM only infrequently for code related tasks. It was more
frequently used to contact teammates for social functions (e.g. going to lunch) or to talk to
family. Use of the telephone for code-related communication was similarly rare.

4.3.3. Designing

Despite the availability of high-level views of code and visual editors such as tools for UML,
developers remain focused on the code itself. Developers reported designing the most in a
source code editor while paper and whiteboards were perceived most effective (Figure
4.5b). We hypothesize that the need to find details about the existing design by using a
source code editor discourages increased use of paper or whiteboards, even though both
were viewed as more effective tools.

4.3.4. Perceived problems

Table 4.2 lists the problems we proposed in the survey and the percent of respondents who
agreed that the problem is a “serious problem for me.” The top four are: understanding the
rationale behind existing code, having to switch tasks because of manager or teammate re-
quests, being aware of changes elsewhere, and finding code duplicates. We focused our
semi-structured interviews on these problems to discern what makes them difficult. Several
themes emerged:

» Developers go to great lengths to create and maintain rich mental models of code and do
not rely on external representations.

¢ Understanding the rationale behind code is the biggest problem for developers. When try-
ing to understand a piece of code, developers turn first to the code itself and, when that
fails, to their social network.

* Developers and development managers use a variety of tools and work practices and are
actively looking for better solutions.

We present these themes with support from our follow-up survey.

4.4. Maintaining mental models

Developers create and maintain intricate mental modes of the code. Through our interviews,
we know that developers, without referencing written material, can talk in detail about
their product’s architecture, how the architecture is implemented, who owns what parts,
the history of the code, to-dos, wish-lists, and meta-information about the code. For the
most part this knowledge is never written down, except in transient forms such as sketches
on a whiteboard. One interviewee summed it up well - “Lots of design information is kept in
people’s heads.”
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4.4.1. Personal code ownership

Mental models are expensive to create and maintain. Developers have a strong notion of
personal code ownership, which constrains the amount of code they have to understand in
detail. In our follow-up survey, 77% of respondents agreed’ with the statement, “There is a
clear distinction between code that I own and the code owned by my teammates.” (On the
other hand some teams have a policy to avoid personal code ownership because it makes
individuals too indispensable and promotes, in the words of one of our interviewees, “too
much passion around the code.”) Code ownership is a long-term proposition, reducing the
number of times that a developer has to learn a new code base. In the activities survey, the
average time on the current code base was 2.6 years, with 32% reporting 6 years or more.
Personal code ownership is usually tacit, i.e. part of the mental model. Written records of
ownership, when present, are often out-of-date and distrusted.

We received conflicting information about design documents for issues within a team. De-
sign documents are usually written by a developer immediately prior to implementing a
larger change that affects other developers, in order to solicit other developers’ input on
important decisions. In the interviews, design documents were described almost as read-
once media, serving to structure the developer’s thinking and as an artifact to design-review,
but seldom read later and almost never kept up-to-date. On the other hand, our follow-up
survey respondents reported a different picture of design documents for issues within the
team: feature teams wrote an average of 7.6 (* 10.2) documents in the prior year, and kept
51% of them up-to-date. We were surprised with these numbers and cannot reconcile them
with the results of the interviews.

4.4.2. Team code ownership and the “moat”

Even stronger than personal code ownership is a notion of team code ownership. An over-
whelming 92% agreed with the statement “There is a clear distinction between the code my
feature team owns and the code owned by other teams.” Feature teams are small. 93%
stated that their feature team consisted of 2-4 people (including the respondent). There
seems to be a sweet spot at three-person feature teams, reported by 49%. Feature teams
are almost always colocated, facilitating informal knowledge sharing.

One of the ways developers maintain their mental model of their team’s code is by subscrib-
ing to check-in messages by email, though several interviewees expressed dissatisfaction
with the lack of detail provided by teammates.

Small feature teams’ strong code ownership forms a kind of moat, isolating them from out-
side perturbations. The moat is defined, in part, by design documents, which specify the in-
terface across the moat. Design documents for cross-team issues were less common than
those relevant to issues within the team. Although the average number of design documents

? Throughout this chapter, the word agree means that the participant selected either “Somewhat agree”, “Agree”, or
“Strongly agree” from a seven-point Likert scale.
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written in the last year for cross-team issues was 4.5 (* 7.8), significantly less than the 7.6
(¥ 10.2) for within-team issues (two-tailed t-test, p<0.01, t=4.78), cross-team design docu-
ments are significantly more likely to be kept up-to-date (61% versus 51%, two-tailed t-test,
p<0.01, t=-3.58). The greater care taken with cross-team design documents reflects their
important role in defining the moat.

Unit tests, used by 79% of our respondents, are an important part of the development pro-
cess for many reasons. One surprising function is to defend the moat from outside perturba-
tions - 54% of respondents agreed that an important benefit of unit testing is that “they iso-
late dependencies between teams.”

Almost all teams have a team historian who is the go-to person for questions about the code.
Often this person is the developer lead and has been with the code base the longest.

4.4.3. New team members

Creating a mental model from scratch requires a lot of energy for the new team member
and the team as a whole. Often the newcomer is assigned a mentor, often the team historian,
designated as the first point of contact for questions about the code. The mentor helps to
jumpstart the newcomer’s mental model and social network. Newcomers are much more
likely to read the team’s design documents than seasoned team members. Some teams
maintain online documents specifically for newcomers. Unguided exploration of the code is
rare; more commonly the newcomer is assigned bugs specifically to introduce them to the
code while minimizing risk. While all changes are code reviewed before checkin, newcom-
ers receive extra attention and feedback on early changes they make. Several interviewees
viewed fixing bugs as requiring less design knowledge than implementing new features.
Bug fixing allows newcomers to do useful work while still learning the code base.

4.4.4. Code duplication

Two previous studies [RC96][KBL04] and the focus of clone detection tools (e.g. CCFinder
[KKIO02]) led us to expect that when developers were asked about code duplication, they
would discuss copying and pasting example API usage code, subclasses, or other hard-to-
understand example code or even regale us with stories of hard to refactor clones. When
pressed, a few admitted to copying and pasting code in dubious ways. Yet most responded
with stories that had nothing to do with finding example code or copy and paste.
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Repeated work Example Scattering Fork Branch Language
Creation Separate devel- Copy and Design decision Copy of Branch Reimplementation
opers implement  paste of distributed over other team’s  main- by same developer
same functionali- example multiple meth-  code base tained in different lan-
ty code ods separately  guage
Aware when No Yes Yes Yes Yes Yes
created
Refactoring Awareness at Investment  Changing ar- Convincing  Combin- Changing architec-
challenge creation; different creating chitecture other team ing re- ture or implementa-
design decisions abstraction to make leased tion language
changes branches
Size of clone Members, classes Members, Members, clas- Many clas- Code base Members, classes
classes ses ses, code
base
Repeated 24% 44% 29% 13% 25% 29%
change
Refactoring 19% 39% 14% 5% 6% 15%
Agree problem 42% 41% 37% 29% 28% 29%

Table 4.3. Each form of code duplication identified in the interviews is listed in each
of the columns. The bottom three rows summarize responses from the follow-up sur-
vey in which developers reported if they had made repeated or related changes in the
past week due to each form of code duplication (Repeated change), had refactored
each form of code duplication (Refactoring), and believed that each form of code du-
plication made their code difficult to manage (Agree problem).

From our interviews, we identified six distinct forms of code duplication (Table 4.3). Each
clone type can be characterized by its creation mechanism, whether developers are aware
they are creating clones, the refactoring challenges to remove the clones, and the size of the
clones. In our follow-up survey, we asked developers to report if they had made repeated
or related changes in code during the past week as a result of each form of code duplication.
Developers also reported if they have refactored code duplication in the past week and if
the code duplication caused their code to be difficult to manage (Agree problem in Table
4.3).

In repeated work clones, multiple developers separately and unknowingly reimplement the
same functionality. One developer reported that he had been implementing a small piece of
functionality that another developer was also working on for a different problem until a
program manager suggested that he talk to a second developer. After creation, interviewees
viewed these clones as being difficult to refactor as each developer may have made subtly
different decisions that are difficult to change.

The most studied clone type, example clones, occurs when some usage context code which
illustrates how to create or make use of some code is copied and pasted and modified. We
expect that this usually involves a small amount of code. Kim et al. [KSN05] argue that cop-
ies frequently diverge and that it is difficult to predict whether the clones would be better
off factored into a new abstraction.
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Scattered clones, or logical clones, involve crosscutting changes in the aspect-oriented pro-
gramming sense [KHHO1]. Here, changing a particular decision requires making changes to
many widely dispersed areas of code. One developer reported that correctly changing one
method required changing another method that was hidden several calls deeper into the
component. Another reported that they would sometimes make a change, hope for the best,
and rely on testers to find any other necessary related changes.

Fork clones occur when a team takes a large portion of code from another team. One devel-
oper reported doing this when they wished to use code that the original team was not ready
to ship. They subsequently heavily modified the code to remove functionality they did not
need. Forks occur when a consuming team wishes to use functionality provided by a pro-
ducing team in ways that the producing team is unable to support. Interviewees, when
asked, all agreed that it was best to avoid forked code whenever possible. Yet, when faced
with the alternative of reimplementing the functionality from scratch, forking is frequently
a better alternative. Particularly difficult are bug fixes. The consuming team must monitor
bug fixes made by the producing team and reimplement the fixes themselves, taking on
much of the maintenance burden of the producing team.

Branch clones occur when developers must reimplement their change in several branches of
the same code base. These are not clones in the strict sense of duplicate code but rather cop-
ies of the entire code base in various stages of release. One developer reported fixing a bug
in both code used in production and the current version under development. Branch clones
were rated as being the most frequently occurring and the most frequent in efforts to re-
move them, presumably by combining branches.

Language clones involve the same code implemented in multiple languages. One developer
reported having the same methods in both C++ and C#.

In contrast to the clone detection literature’s narrow view of cloning as syntactically similar
code, developers viewed cloning as making the same change several times. This includes
many cases which involve code not syntactically similar and in a single code base but scat-
tered, cloned across code bases, repeated in multiple languages, or in multiple branches.
From the developer’s perspective, many of these problems still look similar in that individ-
ual bugs have to be fixed in several places, new feature work involves changes in many dif-
ferent places, or changes crosscut the strong team code ownership boundary. Future empir-
ical work might be best served by focusing on this broader definition of repeating the same
work.

4.5. Rationale and communication

Of all the hypothesized problems developers rated, understanding the rationale behind
code was perceived to be the most serious. 66% of the respondents agreed that “under-
standing the rationale behind a piece of code” was a serious problem (see Table 4.2). There
are many facets to the rationale problem: 82% agree that it takes a lot of effort to under-
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stand “why the code is implemented the way it is,” 73% “whether the code was written as a
temporary workaround,” 69% “how it works,” and 62% “what it’s trying to accomplish.”

The many developers who reported problems with rationale led us to investigate how de-
velopers understand and explore code. We found that developers had many complaints
about using their tools to explore code, eschewed design documents for interrupting team-
mates, had code ownership boundaries to minimize how much they must understand, and
rarely documented their understanding for others. This led to the second most serious
problem - developers felt they were too frequently interrupted by their teammates. We also
investigated how developers maintain awareness of changes affecting their code.

4.5.1. Investigating code rationale

When investigating a piece of code, developer first turn to the code itself: on average, re-
spondents spent 42% of their understanding time examining the source code, 20% using
the debugger, 16% examining check-in comments or version diffs, 9% running the program,
8% using debug or trace statements, and 5% using other means (Figure 4.5d). In other
words, the code itself is the best source of information about the code. However using the
code can be challenging. Developers commonly become disoriented in unfamiliar source
code, and discerning the relationship between observed program behavior and the source
code is often difficult.

When the code itself does not give the answers the developer needs, one might expect the
developer to turn next to the vast amount of information that is written about it - the bug
reports, the specs, the design documents, the emails, etc. This however is emphatically not
the case. Several factors combined to dissuade most developers from using design docu-
ments for understanding code. First, finding design documents was frequently difficult. De-
sign documents were generally stored on internal websites without a usable search facility,
forcing developers to manually navigate hierarchic collections looking for the appropriate
design document. Thus, even if developers thought there was a possibility of a design doc-
ument containing the information they cared about, it was not worth looking for. If search
were available, it was not clear that developers would know the correct search terms. Se-
cond, design documents were not reliably updated. Thus, developers consulting a document
would not be sure if the code still conformed to the document and would still be forced to
inspect the code.

The second recourse for investigating the rationale behind code is the social network. If the
developer thinks a teammate might be able to provide the needed information (or the name
of the person who might), he will walk down the hall to talk with the teammate.

Once the developer has the desired information, he returns to his office, applies the new-
found information, and gets on with his work. This information is precious: it is demonstra-
bly useful, demonstrably hard to ascertain from the code, and was obtained at a high cost.
Yet it is exceedingly rare for the developer to write this morsel down anywhere. The next
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person who needs the same information must go through the same laborious discovery
process. There are plenty of reasons that a developer would choose to not record the infor-
mation. The overhead of checking the code out, editing it, and checking it back in (possibly
triggering check-in review processes, merge conflicts, test suite runs, etc.) is enough to dis-
suade the developer from recording the information as a comment in the code. Some inter-
viewees expressed the concern that the newfound information was not authoritative
enough to add permanently to the code or that checking in the comment under their own
names would inappropriately tag them as experts. Hence the information tends to remain in
the developers’ heads, where it is subject to institutional memory loss.

4.5.2. Interruptions

Each of these unplanned, face-to-face meetings represents an interruption of at least one
person. Recovering from these interruptions is a substantial problem, ranking second with
62% of developers agreeing that this is the case (Table 4.2). Recovering from an interrup-
tion can be difficult. Developers must remember goals, decisions, hypotheses, and interpre-
tations from the task they were working on and risk inserting bugs if they misremember.

Developers have adopted various strategies to mitigate the effects of interruptions on them-
selves, such as using a closed office door or other social cues to deflect interruptions, work-
ing on complicated tasks at times of the day when interruptions are infrequent, staving off
an interruption for a moment while finishing a thought, or scheduling “office hours.” Some-
times the interrupter mitigates the impact of interruption by using email instead of face-to-
face for low-priority issues or emailing a warning 10 minutes before the interruption to give
the interrupted person a chance to save his working context by writing down notes.

While many (though not all) interviewees indicated that they received too many interrup-
tions, all acknowledged that interruptions were a valuable part of the work culture. Inter-
estingly, two interviewees indicated that interruptions had become more of a problem since
their teams had adopted agile processes.

4.5.3. Bug investigation example

Developers reported spending nearly half of their time fixing bugs. A bug investigation helps
illustrate how their tools, activities, and problems interact to make fixing bugs possible but
also suboptimal. When asked to describe an instance of a difficulty understanding the ra-
tionale behind a piece of code, one developer responded with a bug investigation narrative.
This narrative is only a single story and not necessarily general. And it is based on a recol-
lection of events that may not be completely accurate. But it illustrates several themes sup-
ported by the interview and survey data.

After being assigned a new bug through a bug tracking tool, the developer first reproduced
the bug by navigating to a webpage and ensuring that error 500 - internal error was re-
ceived as reported in the bug. Next, the developer attached the Visual Studio debugger to
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the web server, set it to break on exceptions, reproduced the error again, and was presented
with a null reference exception in Visual Studio. From an inspection of the call stack window,
the developer considered the functions that might be responsible for producing the errone-
ous value. The developer switched to emacs to read the methods and used ctags.exe to
browse callers of methods. The developer then switched back to the Visual Studio debugger
to change values at run time and see what the effects were. The developer made a change,
recompiled, and found that the same exception was still being produced. Finally, the devel-
oper browsed further up the call-stack, tracing the erroneous value to one object, then to
another object, and finally to a third object protected with mutexes.

By this time, the developer had wandered into code that he did not understand and did not
“own” - or have primary responsibility for making changes. But a second developer was
working on a high profile feature that touched this code, so he immediately knew that this
second developer would understand this code. He went to the second developer’s office,
interrupted the second developer, and engaged him in a discussion about the rationale be-
hind the code. He walked back to his office, made a change based on this information, de-
termined that the change would not work, leaving him with a new problem with this un-
owned code. He walked back to the second developer’s office who then told him that the
functionality causing the problem was actually related to code that a third developer was
working on. They both went to visit the third developer’s office, only to find the third devel-
oper is at lunch. The first developer, now blocked, switched to another task. After lunch,
both developers returned to the third developer’s office, had a design discussion about how
the functionality should behave, and finally passed the first developer’s bug to the third de-
veloper to make the fix.

This story illustrates several themes in our surveys and interviews:

* Developers rapidly switch between multiple tools.

* When looking for detailed information about code, developers first explore the code by
reading it and using a debugger.

* When unable to find answers exploring code, developers consult knowledgeable team-
mates rather than specs, design documents, email, or other artifacts.

* Face-to-face communication is strongly preferred over email or IM.

* Developers switch tasks when blocked or interrupted by teammates seeking code
knowledge.

* Software development is a highly social process.

* While code ownership within a team is well understood, changes crosscut ownership
boundaries.

* Developers spend vast amounts of time gathering precious, demonstrably useful infor-
mation, but rarely record it for future developers.
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4.6. Openness to change

Developers and development teams are constantly trying new tools and work practices to
try to optimize their work. Developers use a variety of tools to do their job. When writing
code, 49% use two or more tools, and 19% use three or more.

In our interviews we found several development teams that were experimenting with “agile
practices,” a collection of behaviors intended to make the software development process
more efficient’. Some teams were gingerly dipping a toe into the agile water, while others
were jumping in with both feet. In our follow-up survey, we found little overall use of agile
practices (see Table 4.4). On the other hand, 48% of respondents agreed that their team was
using two or more of the eight practices, 32% three or more, and 20% four or more. A few
respondents (3%) reported that their teams use seven or all eight of the practices. Most de-
velopers want to continue adopting agile practices (53% agreed that they thought their
team “should adopt agile software development methodologies more aggressively”) while a
few were skeptical (14% agreed that their team should adopt less aggressively).

Does your team use % agree
Collective code ownership within the team 49%
“Sprints,” i.e. a development cycle that last four (or so) weeks 42%
An intentional policy to involve customers (internal or external) deeply into 33%

design and planning

“Scrum meetings,” i.e. a brief daily status meeting including all stakeholders 25%
“Burndown” estimate or chart, i.e. a measure of the time remaining in the 24%
sprint

An intentional policy of preferring face-to-face over electronic communications 16%
Pair programming, i.e. developers working together, shoulder-to-shoulder on a 16%
problem

A “bullpen” or other open-floorplan space for the team 10%

Table 4.4. Agile practices adopted by respondents.

Developers adopted specific agile practices when they felt their benefits were compelling.
Developers shunned design documents in favor of face-to-face communication, designed
minimally rather than up front, and employed unit testing. Developer leads reported prefer-

4 http://agilemanifesto.org/
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ring daily standup team meetings over weekly team meetings, since daily meetings encour-
aged teammates to help each other and assisted the lead in responding to problems block-
ing developers’ progress. Several teams had gone further by adopting an entire agile pro-
cess, Scrum [SB01], and reported using radical collocation, collective ownership, and sprints.

4.7. Conclusions

This chapter demonstrated the central importance of understanding and exploring code to
software development. Developers rated understanding rationale behind code the most se-
rious problem they faced, creating work for them to reconstruct rationale by exploring and
investigating code. Developers often instead ask their teammates, usually after performing a
due diligence amount of code investigation themselves, but this causes additional problems
- developers complained about being less productive because they were constantly inter-
rupted. Developers tried to use design documents to capture important information about
code, but developers we interviewed generally did not greatly rely on these, instead prefer-
ring to use the code rather than risk working with out of date documents. These findings
suggest that a tool that helped developers to more effectively understand and explore code
might better align with developers’ development process than documentation tools, and
that, if it were able to help developers rely on the code more rather than interrupt their
teammates, might even reduce the problems developers that experience with interruptions.
However, the results in these studies revealed little about information needs during activi-
ties understanding and exploring code that tools could more effectively satisfy. What strate-
gies do developers use to understand and explore code, what questions do they ask, and
what further problems do developers experience? The next three chapters explore these
issues.
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5.

UNDERSTANDING DESIGN DECISIONS5

One way to view a program and its design is as a network of interconnected design decisions
(e.g., [P72][SGWO1]). Software engineering teaches that developers work with design deci-
sions describing a choice between possible alternatives and dependency relationships be-
tween these choices. Developers are told to apply information hiding to prevent likely antici-
pated changes from rippling through a system [P72], to refactor code clones to allow a single
decision to be changed in one place [KKI02], to write modular specifications allowing reason-
ing in isolation of the rest of the system, and to respect architectural styles [SG96] in their de-
cisions to prevent architectural drift and erosion [PW92]. But, despite efforts to make design
decisions easier to reason about, little is known about how developers explore and under-
stand design decisions during coding tasks.

One important factor likely influencing how developers understand design is a developers’
knowledge of software design. A long tradition of studies in cognitive science has established
that experts perform better not because they are smarter but because they have knowledge
which novices lack (e.g., [CS73]). Studies of programmers have also found these differences,
but have mostly studied knowledge in the form of highly local code idioms such as for loops
(e.g., [D90]). Software engineering suggests that developers have a wide variety of knowledge
about good design in the form of abstractions such as design patterns [GH]J95] and architec-
tural styles [SG96]. But little is known about this knowledge or how it helps developers work
more effectively. A better understanding might lead to better guidelines for training software
engineers and inform the design of tools that help developers without this knowledge.

This chapter describes a study conducted to understand how developers perform challenging
code modification tasks involving design decisions and to understand the effects of experi-
ence on this process. In two lab tasks, participants were provided with criticisms of the cur-
rent design of a program and instructed to improve the design. Since the prior research had
not yet identified the key variables with any degree of confidence, the study was conducted in
an exploratory, open-ended way. We observed in detail how different developers approached
the tasks, which allowed us to observe patterns and identify key variables that might be stud-
ied by future experiments. This study addressed three research questions:

* How do developers reason about design decisions during coding tasks?

* This chapter based on work previously published in [LGHO7].
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* How does experience affect changes made to code?

* How does experience affect how developers work?

We found that:

* Developers described the design using facts which took several forms and served a num-
ber of roles.

* Experts’ changes addressed the cause of the problems while novices’ changes addressed
the symptomes.

* Experts made better decisions about which methods were relevant, they talked about the
code using abstractions rather than statement-by-statement descriptions, they explained
facts novices were unable to explain, and they implemented a change more quickly than
novices.

5.1. Method

We conducted an exploratory lab study in which participants worked on two tasks for 1.5
hours each. The tasks were challenging and involved changes to a real open source applica-
tion. We recorded participants’ activity using think-aloud, video, and Eclipse instrumentation
to get a full picture of what participants were doing.

5.1.1. Study design

We recruited developers with diverse levels of experience, and brought them into the lab to
observe their work in detail. A lab study had several advantages over a field study. We could
compare participants’ behavior on exactly the same tasks, use tasks designed to require that
they understand the code’s design, and control for prior experience with the application. We
controlled for ordering effects between tasks by assigning half of the participants to receive
each task first and ensured that there were experienced and novice participants in both con-
ditions. Doing an exploratory, observational study, rather than a controlled experiment, let us
build a model of developer activity and differences suggested by it that we did not know be-
forehand. Our quantitative comparisons between experts and novices are not a controlled
experiment because we picked dependent variables post-hoc from qualitative analysis of par-
ticipant activity. We chose 13 participants, rather than a larger number (which might have
resulted in statistically significant differences), to make manually transcribing and analyzing
the voluminous transcripts feasible.

We initially planned to investigate the effect of providing architectural information on how
developers work with code. We provided half of our participants with a component and con-
nector diagram [CBBO02] that we reverse engineered. While these participants read the dia-
gram at the beginning of the task, most used the diagram only to generate and test hypotheses
about how classes were connected or as scratch paper to draw call graphs or write down
method names. We were unable to observe any differences about how the developers were
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working that could be attributed to having the diagram. We thus do not consider these dia-
grams further.

Participant yrs industry KLOC largest yrs Java Design Architectural Refactoring Code navigation Enjoy designing
experience program edited experience patterns styles tools proficiency
a 0 (re- 10 4 3 7 6 2 6
search)
b 0 (re- 7.5 3 3 1 1 2 1
search)
c 0.5 1 few 3 4 3 4 |
g d 15 75 5 2 3 1 3 1
S| e 2 2 1 2 3 1 1 1
g f 2.5 1 2 3 6 7 1 1
2 g 2.5 10 8 2 4 4 1 2
h 2.5 136 4 2 2 2 2 2
i 3 2 4 4 6 1 1 |
j 3 10 6 2 6 2 4 1
2.25 8.75 4 3 4 2 2 1
< K 3 100 7 1 1 1 1 |
== L 10 100 10 1 1 1 2 1
E M 10.5 500 3 1 2 6 2 2
10 100 7 1 1 1 2 1

Table 5.1. Participants’ self-reported experience with medians for novices and ex-
perts. We assume internships lasted 1/4 of a year. For the experience columns on the
right, 1 is the most experience and 7 the least.

5.1.2. Participants

Thirteen participants were recruited from undergraduate students, masters students, doctor-
al students, and staff at Carnegie Mellon University who reported that they (1) had at least
two programming internships or fulltime development experience and (2) were comfortable
programming in Java. Industry experience and self-reported expertise data were collected
with a short demographic survey completed when potential participants responded to our
recruiting materials. Participants also self-rated their experience with design patterns, archi-
tectural styles, and refactoring tools, their perceived proficiency navigating code, and the de-
gree to which they enjoyed designing (Table 5.1). Participants were asked to give the size of
the largest program they had worked on. The low responses of several participants to this
question suggest that they may have had inaccurate knowledge or misunderstood the ques-
tion. Two participants who responded to our recruiting materials had no industry experience.
Both were graduate students who reported significant research programming experience, so
we accepted them for our study. Ten participants reported they had used Eclipse before, one
reported she had not, and two were not asked about their experience using Eclipse. This sug-
gests our results do not reflect challenges learning Eclipse.

Participants included one undergraduate student, four masters students, seven doctoral stu-
dents, and one staff member. Participants had industry experience on a wide spectrum of ap-
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plications including databases, banking software, and operating systems. Twelve males and
one female participated. Participants were paid for their time. Table 5.1 shows the self-
reported experience sorted by years of industry experience. We refer to participants as “ex-
perts” and “novices” for brevity. However, although the “novices” had limited industry experi-
ence, they still had substantial programming experience and should not be confused with nov-
ice programmers. Two participants (L, M) were labeled experts because they had far more
experience than the novices. We labeled a third participant (K) an expert because he had just
as much experience as the novices but considerably higher self-ratings and because his behav-
ior was closer to the other experts. We refer to novices by lowercase letters and experts by
uppercase letters.

One expert (L) had participated in an earlier study using the same application we used. Any
advantages this participant had are potentially attributable to greater knowledge about the
application rather than experience. However, we believe the effect of this possible contamina-
tion is minimal since our task required an understanding of an entirely different part of the
application than the previous study, and we did not observe that the participant’s knowledge
from the previous study helped in any substantial way.

5.1.3. Tasks

Participants worked with jEdit, an open source text editor, which has also been used in previ-
ous lab [RCM04] and version control [ZZWO05] studies. Participants were provided an Eclipse
workspace with the entire jEdit 4.3pre5 source, which is 54,720 non-comment, non-blank
lines of Java.

To ensure that the tasks were the right length and difficulty and that they challenged develop-
ers in their ability to understand design, we piloted them with three pilot participants. After
poor experiences with functional change tasks, we picked nonfunctional tasks focused on im-
proving the design rather than implementing features or fixing bugs. We hoped this would
challenge participants’ ability to understand design more than fully specified changes to the
application’s behavior. Both tasks were designed to be architectural in nature by involving
interactions between classes that we had identified as top level components on our compo-
nent and connector diagrams. Many of the methods that participants studied were architec-
turally significant in that they participated in the connectors joining these components.

In both tasks, we provided design criticisms and corresponding code locations. Participants
were instructed to “investigate why this is the case and implement a better design” and “make
the design as ideal as possible by the criteria of performance, understandability, and reusua-
bility”. To ensure they knew that they were expected to implement changes, they were in-
structed to “carefully budget your time to make your improved design as ideal as possible
while carefully scoping your changes to what you can implement within your allotted time”
while changing “as much or as little code as you'd like”.
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Figure 5.1. a) Clicking arrows in the margin toggles folds between expanded and hid-
den. b) When text is edited, its fold level may change (circled lines), c) causing the ar-
row in the margin to disappear.
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On the FOLDS task, participants investigated how fold level state was updated following edits
to a file. jEdit allows hierarchical regions of text of the viewed file (e.g., a method body) to tog-
gle between being “folded” up and hidden or viewed, by clicking on an arrow (see Figure 5.1.).
The fold level refers to a line’s level in the hierarchy of folds. Following an edit to a line, the
line’s fold level becomes invalid. When it is next requested by a call to getFoldLevel, it is
recomputed and stored in a cache in LineManager, part of the buffer’s implementation. If the
fold level changes, a fireFoldLevelChanged event is sent. Subsequent calls to get-
FoldLevel retrieve the line’s cached fold level from LineManager rather than recomputing
it.

Participants were provided the following code excerpt:

/* force the fold levels to be updated. when painting the last line of a buffer,
Buffer.isFoldStart () doesn’t call getFoldLevel(), hence the foldLevelChanged()
event might not be sent for the previous line. */

buffer.getFoldLevel (delayedUpdateEnd) ;

This is a call in the doDelayedUpdate method from a class owned by JEditTextArea (re-
sponsible for editing) to the buffer (jEdit’s term for a file). Participants were told that this call
was “architecturally questionable” in changing “the buffer’s state from a different component”

» o«

and “clearly bad design” “using a getter method solely to change the state of the buffer and

ignoring the information the getter method is supposed to be used to obtain”.

Underlying the symptom of the problem (updating fold levels by calling a getter), the cause
was the need for a fold update to be triggered from this method (see Figure 5.2. for a call
graph of the relevant methods). Participants were left to discover this and why it was bad.
Folds are a responsibility of the buffer but the implementation has leaked into another com-
ponent (JEditTextArea) because of this call’s presence. Fold levels are lazily computed only
when queried by getFoldLevel. The call to getFoldLevel is required due to this decision
(it could be removed if fold levels were not lazily computed) and thus breaks information hid-
ing. In most cases, isFoldStart calls getFoldLevel and the call from doDelayedUpdate is
unnecessary. But isFoldsStart does not call getFoldLevel when painting the last line of
the buffer because it computes the fold level by comparing the current line’s fold level with
the next (undefined for the last line in a buffer) and instead always returns false. In this situa-
tion, the call to getFoldLevel from doDelayedUpdate is necessary. Thus, that the presence
of the doDelayedUpdate call to getFoldLevel depends on this very private implementation
decision (it would not be necessary if isFoldStart were implemented differently), and this
also breaks information hiding.
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Figure 5.2. Participants, none of whom were given this diagram, spent much of the
task reconstructing these call graph relationships and understanding why they were
necessary.

The CARETS task related to the status bar at the bottom of the jEdit window which displays
the line and column of the caret (insertion point) and the scroll position of the window within
the buffer. This is implemented, in part, using the updateCaretStatus method. Participants
were asked to set a breakpoint on updateCaretStatus, make the buffer visible in jEdit, and
observe that updateCaretStatus is called many times. Participants were instructed that this
was bad from a performance perspective and “likely reflects deeper problems in the seman-
tics of what the events that trigger these updates mean.” The performance critique was con-
trived in that no extremely resource intensive operations were performed even though meth-
ods were needlessly executed. But an expert reported:

But I've seen this situation before with something that was more directly expensive. - M interview

The CARETS task required understanding the design of the buffer switch process. Any action
changing either the caret position or the scroll position must call updateCaretStatus to up-
date the status bar. Buffer switches change both of these. They begin with a setBuffer call.
Control then passes through nineteen methods on paths ultimately resulting in 6 or 7 up-
dateCaretStatus calls (see Figure 5.4.). Many of these methods are also called for reasons
other than buffer switches (including changes in text selection, window scrolling, or caret
moves). Removing any calls to updateCaretStatus risks breaking these other features.
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Figure 5.3. The caret position is displayed in the far left edge of jedit’s status bar.

AmaycallB A—> B _ ClassName

methodName
EditPane JEditTextArea
(setBuffer *setBuffer
#setCaretPosition selectNone*
I v +
run /// moveCaretPosition setSelection
'
loadCaretInfoé::: moveCaretPosition—* finishCaretUpdate
.

MsetFirstPhysicalline _finishCaretUpdate

'
setFirstPhysicallLine fireCaretEvent
—_— T
*fireScrollEvent
View
* handleMessage
StatusBar handleEditPaneUpdate caretUpdate
dateCaretStatu scrolledVertlcally
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Bar.updateCaretStatus().
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We illustrate our results with think-aloud episodes which we label by participant, time within
the task, and task (C for CARETS, F for FOLDS)(e.g., M 1:20(C) is expert participant “M” at
time 1 hour, 20 minutes, doing the C = CARETS task).

5.1.4. Tools and instrumentation

Participants were provided with the Eclipse 3.2.0 IDE and were allowed to use any Eclipse
feature, take notes with Windows Notepad or on a piece of paper, and open files created by
jEdit in Notepad or jEdit. To prevent searching for jEdit documentation, bugs, or other infor-
mation that only some might think was relevant, participants were forbidden from using oth-
er applications, including web browsers. One participant asked and was allowed to see the
JavaDoc for a collection class in a web browser. The experimenter answered questions about
invoking specific Eclipse commands (e.g., how to stop the debugger or that they should use
System.err.println () rather than System.out.println ()) or what the task asked them
to do, but not any other questions such as questions about the code (e.g., “is my understanding
correct?”) or strategies about how to use Eclipse to locate information (e.g., “how do I locate a
method that triggered an event?”).

Participants were recorded using a diverse set of recording devices so none of their actions
would be lost. We used Camtasia to record the screen, a video camera of the participant’s desk
area to track referencing paper handouts and see which area of the screen was being viewed,
and a second video camera to track information written on paper. Participants were asked to
think aloud and prompted approximately every five minutes if they forgot to do so. Unfortu-
nately, we prompted participants with “what are you trying to do?”, leading some to talk more
about their goals than the facts they had discovered. In retrospect, a better prompt might have
been “what are you thinking about?”.

5.1.5. Procedure

Participants first worked through a brief tutorial on Eclipse code navigation features (such as
using the call hierarchy, navigating to method declarations, and reference searches) to ensure
they effectively used Eclipse. To simulate some of the architectural knowledge that an experi-
enced developer might possess, participants read a one-page description of the responsibili-
ties of eight important task relevant classes. Finally, they worked on a jEdit tutorial where
they used the functionality they would be editing so that later testing would be easier. This
portion of the study lasted approximately 30 minutes.

Next, participants received a sheet of paper describing the first task. Participants had as much
time to read the task description as they liked. Participants then navigated to the code de-
scribed in each of the tasks. On the CARETS task, they also tried out the behavior they were to
change by setting a breakpoint and verifying that it was hit many times as the task description
claimed. Participants were instructed that they had 1.5 hours to work on each task but were
actually allowed up to five extra minutes. Afterwards, participants were asked a series of ex-
ploratory interview questions about how they worked, what they found challenging, and rat-
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ings of how well they believed they did. Participants then received a clean Eclipse workspace
and the description of the second task and began working on the second task. See Appendix 4
for the complete materials.

The tasks were successfully made challenging. While it was expected that some participants
would be unable to make meaningful changes, we expected all participants to at least try to
understand the code. However, one novice gave up on the FOLDS task, and two novices gave
up on the CARETS task. They felt the code was too complicated for them to comprehend:

It’s too tough for me. I can’t figure it out. There’s bits and pieces that I understand but
[ don’t understand precisely what the design issue is. - f 1:05(F)

An expert thought the CARETS task was realistic:
That is just tough. Yikes, glad I'm not getting paid for this.- M 1:20(C)

Yeah, this is realistic. | mean this is realistic on a bad day, at least in my assessment. -
M interview(C)

Many participants were still working when time expired. Two CARETS participants (e, c)
elected to describe in notes the list of changes they felt they did not have time to implement.

5.1.6. Analysis

Our analysis started with the low level data we recorded and built successively more abstract
representations. We transcribed think-aloud recordings and screen capture video into 26 ac-
tion logs consisting of a total of 11,821 lines. Every time a participant changed the method or
field (referred to as a “member”) visible in Eclipse, we added an entry naming the member
and Eclipse command used to bring it into view. These included hitting breakpoints, stepping
in the debugger, navigating using the call hierarchy or search results, going to declarations,
navigating gutter references, and scrolling. We also coded edits, refactor commands, and run-
ning the program. We also noted goals participants appeared to be working towards.

Next, we used qualitative protocol analysis. We built a list of activities we saw developers en-
gage in and coded what developers did using this model. Our analysis remained qualitative as
we did not produce definitions sufficiently reliable to count and quantitatively compare activi-
ties. We discovered that many activities revolved around facts about the code. Participants
chose methods to read, seeking facts they deemed relevant to the task. While reading methods,
they sometimes learned facts which they believed with varying degrees of confidence. Partici-
pants felt some facts violated their design norms and wished to change them. Participants ex-
plained facts to understand how facts were related and the consequences of changing a fact.
This sometimes generated hypotheses which led participants to seek evidence to confirm or
reject facts. As participants learned more facts, they began to propose design changes that ad-
dressed their criticisms and task goals. Finally, participants implemented their proposals by
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editing code. When participants discovered facts leading them to believe their changes would
not succeed, they removed the changes and proposed different changes.

Experts nearly constantly talked while most novices said nothing for minutes on end. This
suggests that novices were more overwhelmed or spent more time immersed in details. When
comparing experts and novices, we chose situations where some experts and some novices
said something or situations where we could rely only on observations of what they did.

5.2. Results

We first discuss the changes participants implemented. We then present the model we built to
describe how our participants worked. We model developers as seeking facts, learning facts,
critiquing facts, explaining facts, proposing changes, and implementing proposals. We consid-
er the structure of each of these activities in turn and differences between experts and novices.
Figure 5.5. depicts each of the activities and transitions between the activities.

SEEK
* Read relevant methods looking for facts

|

CRITIQUE
FactA is bad design

LEARN
FactAis true FactA is true to make fact B true

PROPOSE
Change facts A1, B1 to facts A2, B2

IMPLEMENT
Change code to reflect facts A2, B2

Figure 5.5. Development activities we observed and transitions between these activi-
ties.

5.2.1. Code changes

Changes made by the experts addressed the cause of the underlying design problems. Chang-
es made by the novices (if any) were inferior in that they only addressed the symptoms. We
described the underlying design changes ignoring defects they may have introduced or
whether they finished. We then clustered similar changes. Table 5.2 lists the final changes (if
there were more than one) that the participants implemented or began implementing.
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Participant(years indus- | FOLDS task final code changes

try exp)(time)

All getFoldLevel callers check if fold update necessary and
a(0)(1:30) conditionally update
b(0)(1:11) Update folds indirectly by firing the foldLevelChanged event
c(0.5)(1:18) Renamed getFoldLevel to updateGetFoldLevel
e(2)(0:46) Do not force fold update
f(2.5)(1:06) Added debug statement, gave up

d(1.5)(0:44) g(2.5)(1:35) | Force fold update by calling method extracted from get-
h(2.5)(1:34) i(3)(1:31) | FoldLevel

j(3)(0:53) K(3)(1:34)
Folds updated immediately after buffer changes by call
L(10)(1:35) from within JEditBuffer

M(10.5)(1:14) Moved fold update to isFoldStart within JEditBuffer

Participant(years indus- | CARETS task final code changes

try exp)(time)

b(0)(1:34) c(0.5)(1:13) | No changes

e(2)(1:18)

a(0)(1:30) d(1.5)(1:15) Removed calls believed to be unnecessary.

g(2.5)(1:33) h(2.5)(1:23)
Added class to log events that happened and detect if caret
f(2.5)(1:34) update should fire

i(3)(0:59) j(3)(1:03) No changes, gave up

K(3)(1:35) L(10)(1:32) | Added field to stop caret updates during buffer switches
M(10.5)(1:35)

Table 5.2. Code changes implemented by participants, grouped by change and then
sorted by years of industry experience, with total time on task. Changes in bold ad-
dress the underlying design problem.

On the FOLDS task, only the experts worked on changes that would work. One novice made
no changes and gave up (f). Another (e) could not determine why the getFoldLevel call was
necessary and removed it. The remaining novices changed the way in which do-
DelayedUpdate updated folds to address the symptom that a getter was being used purely to
set. One (c) renamed the method to updateGetFoldLevel to indicate that it was not merely a
getter. Another (b) literally interpreted the provided comment to mean that do-
DelayedUpdate needs to send the fireFoldLevelChanged event and created a method to
do this. Six novices and one expert extracted an update method from getFoldLevel and had
doDelayedUpdate update folds by calling this method. Changes made by two of the experts
addressed the cause of the design problem by removing the need for doDelayedUpdate to
force fold update. One (L) moved the fold update to two methods in JEditBuffer which are
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called after the buffer changes. Another (M) moved the fold update to isFoldStart within
JEditBuffer. Both experts addressed the hidden design problems by removing the get-
FoldLevel callin BufferHandler that added questionable dependencies.

On the CARETS task, only the experts worked on changes that would work. Two novices (i, j)
made no changes and gave up, and three made no changes but worked for the entire time (b, c,
e). One (f) added a class to log udateCaretstatus calls with the (mistaken) intention to have
it decide if updateCaretstatus should proceed from other recent calls. Four novices re-
moved calls they believed were redundant. Expert changes differed from novice changes in
starting and stopping caret updates using a field. This approach alone addressed the cause of
the design problem in that it could reduce the number of calls to one.

5.2.2. Seeking facts

Participants began their tasks navigating from the methods we provided to methods and
fields they believed likely to reveal relevant facts about the code. Participants visited between
5 and 59 members on the FOLDS task and 25 and 41 members on the CARETS task (Figure
5.6). There was no effect of experience on how many members participants visited, and par-
ticipants visited similar numbers on both tasks. Thus, experts’ superior changes were not due
to reading more members but from selecting better members to read and learning more from
reading them.
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Figure 5.6. Total distinct fields and methods viewed by each participant sorted by
years of industry experience.

Participants made path choice decisions when choosing between locations in which to seek,
deciding if seeking was likely to discover a useful fact, or choosing between seeking and im-
plementing the current change. A novice abandoned seeking in a location:

So after it runs runnable thread, I get three extra calls to the update caret method. I
don’t know what thread it is --. I can go in and find out more, but I don’t think it is the
unnecessary type that I'm looking for. - d 1:09(C)
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An expert considered whether a change should be implemented or whether better alterna-
tives should first be sought:

[ can reduce the event firing from here, huh, is that even the right path to go down?
Let’s see, we've got setCaretPosition, no, oh wait what about, ohh setCaretpPosi-
tion is the one that is called by many people. Ok, I'm going to give it a long hard look
atthe finishCaretEvent,no finishCaretUpdate. - K 0:41(C)

We investigated members visited only by novices to understand why novices wasted time
visiting members that experts did not need to visit. On the CARETS task, there were 12 mem-
bers visited by no experts which were visited by at least three of the ten novices. One was a
class definition, which novices visited more because they used the open class Eclipse com-
mand more. 9 were transitive callers of updateCaretStatus which novices navigated to
more because of inferior navigation strategies. The remaining two members were the most
interesting. One was a field - showCaretsStatus - which guarded the body of up-
dateCaretStatus. The other was propertiesChanged where showCaretStatus was ini-
tialized at startup. One novice (f) stumbled into propertiesChanged and quickly left it. Four
other participants read one or both of these methods because they were interested in the
meaning of showCaretStatus. One (g) spent a minute looking for showCaretStatus refer-
ences. Another (c) spent two minutes looking at how propertiesChanged worked. Two (a,
h) spent 7 minutes understanding in detail how propertiesChanged worked:

So I guess the whole debug that is remaining is that when I switch buffers this show-
CaretStatus variable needs to be reset as soon as I update the caret position. - h
0:58(C)

Novices seemed to perceive showCaretStatus as indicating the presence of a changeable
fact that might help them reduce updateCaretStatus calls. Reading propertiesChanged,
they eventually discovered showCaretStatus merely controls whether caret and scroll posi-
tion is displayed on the status bar and would not be helpful for their task. That experts never
wasted time reading these members suggests that knowledge helped them guess from the
field’s identifier and use that showCaretStatus did not turn on and off updates during an
event but rather in general. This suggests that knowledge helps experts predict what code
does before reading it, thereby preventing wasted time reading irrelevant methods.

5.2.3. Learning facts

When reading methods, participants found interesting facts that confirmed or refuted expec-
tations:

These all look like mutators on the buffer. So that makes sense. So at the end of the
mutating operation on buffer, it's going to end in doDelayedUpdate. - L 0:06(F)
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Facts played a variety of roles. Facts were changeable when developers believed alternatives
to them might help accomplish their task goals. Others acted as constraints which suggested
that some changes would break them and should not be chosen. Others made changes expen-
sive by suggesting lots of investigation would be required:

Wow, many, many, many methods call getFoldLevel and that is not good because
it’s going to be hard to figure out what all of those are. - K 0:02(F)

Facts also differed in the degree of certainty with which participants believed them. Some
were hypotheses thought likely to be true. Some hypotheses were generated from knowledge
about how the application would probably have been built to satisfy its requirements:

So mouse released represents the bottom of the tree for certain. setSelectedIndex
is part of JComboBox . fireAction event. It's possible that we're getting multiple ac-
tion handlers involved here, but let’s assume that that is not the case. - M 0:16(C)

Other facts were directly observed in code. But many relied on both observation and
knowledge-driven speculation. Figure 5.7 lists some facts found by an expert.

1. HACK: getFoldLevel has effects

2. Buffer mutating operations result in a doDelayedUpdate call

3. HYP: doDelayedUpdate does changes that happen later

4. Many methods call getFoldLevel

5. Folds invalidated by buffer changes are updated on screen. EXPLAINS 2,1, 8
7.getFoldLevel updates a fold data structure EXPLAINS 1

8. getFoldLevel fires events

10. CRIT: getFoldLevel determines if folds must be set

11. CRIT: doDelayedUpdate triggers fold update

12. isFoldstart calls getFoldLevel on startup

13. getFoldLevel mutually recursive with FoldHandler.getFoldLevel
14. Folds are initialized at startup EXPLAINS 12

15. BufferHandler is only buffer listener

16. Either fireContentInserted or fireContentRemoved is called after every buffer mutat-
ing operation

Figure 5.7. Some facts found by expert participant L in the first 41 minutes of the
FOLDS task in the order they were discovered. Facts are labeled with hack, hypothe-
sis, and critique roles and the explanation of the relationships.

Experts more frequently and rapidly used facts at higher levels of abstraction which focused
on the important and relevant parts of code rather than irrelevant implementation details. For
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example, experts and novices described getFoldLevel very differently. One minute into the
task, an expert described getFoldLevel:

Well this is just updating a cache. So, what we’re upset about is that you want to issue
an event and you are doing it by forcing an update of the cache for the fold level of a
particular line. - M 0:01(F)

After 38 minutes in the task and 10 minutes reading getFoldLevel, a novice still had not fig-
ured out how it changed state:

What it did was it compute | mean computes the new line number and fires an event.
But I didn’t see it change any state. - b 0:38 (F)

51 minutes into the task, after over 12 minutes staring at getFoldLevel, and having read
numerous callers and callees, a different novice was still stuck at the statement level, never
describing it as caching:

So what it does, it starts off from this line, it has this firstInvalidFoldLevel, it
goes through all these lines, it checks whether this fold information is correct or not,
which is this newFoldLevel, this is supposed to be the correct fold level. If that is not
the case in the data structure, it needs to change the state of the buffer. It creates this,
it does this change, it sets the fold level of that line to the new fold level.

-h 0:51(F)

These differences suggest that schemas, such as caching, allow experts to see design abstrac-
tions and chunk individual statements using these schemas. Applying the caching schema
helped the expert infer the intent of the code. Lacking the expert’s schema, novices were not
able to uncover this intent and painfully worked through the code statement by statement.

5.2.4. Critiquing facts

Consistent with instructions to improve the design, participants used their good design norms
to criticize facts. Growing skeptical of design choices they perceived the original authors had
made, they designated those as hacks:

And this guy who is probably hacking away... This started out with this thing as just a
getter and said, oh look when you’re getting the fold level there can be a case where
your data is now invalid so [ might as well go fix it up right here. And he might have
wandered himself into the bad design situation that we’ve got right now. - L 0:16(F)

In their criticisms, participants exhibited design knowledge by perceiving a design choice, al-
ternatives, and justifying the inferiority of the current choice. A single expert perceived this
design choice:
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And the second thing that I don’t like is that it is firing these updates. It seems like
when you're making the edit, that in order to keep the responsibilities of these guys
very simple, when you're making the edit, the people that care about that would be
notified. - L. 0:26(F)

Several novice criticisms resulted from missing design knowledge:

It just seems really confusing for me to have this exact same method with the exact
same parameters, they both have the handleMessage. I should investigate that. Hold
on. - ¢ 0:40(C)

Only after investigation did the novice realize these methods implemented the same interface.

5.2.5. Explaining facts

Participants explained the rationale of facts they learned:

So because this is lazily evaluated, which you probably want to do for performance
reasons anyway, you're always going to have the risk that a get is going to fire an
eventin any case. - M 0:09(F)

Explanations established traceability from low-level facts about the implementation bottom-
up towards motivating requirements, leading developers to hypothesize requirements that
motivated the low-level facts they discovered. Dependencies on requirements became im-
portant when a participant wished to change a lower-level fact. Because of the dependencies,
changing a fact risked changing other facts, potentially breaking requirements. Figure 5.8 de-
picts the explanations one participant discovered.

Folds updated by buffer ghanges are updated on screen
getFoldLevel updates fold data structure

getFoldLevel has effects getFoldLevel fires events Buffer mutating operations result in doDelayedUpdate call
o CRITIQUED ELBITIQUED
Folds are initialized at startup getFoldLevel determines if folds must be set doDelayedUpdate triggers update
isFoldStart calls getFoldLevel at startup doDelayedUpdate does changes that happen later

Many methods call getFoldLevel

BufferHandler is only buffer listener getFoldLevel is mutually recursive with FoldHandler.getFoldLevel

Figure 5.8. Explanations and critiques the expert participant L generated for the facts
in Figure 5.7.

Participants also applied explanations top down to hypothesize how the code was likely built
to satisfy higher level constraints:
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He must be either firing events to tell people to update. Or somehow there must be
some other code to then update the display. But it looks like the event firing is hap-
pening inside there. - L 0:17(F)

When participants believed false facts, explanations produced more false facts which were
then critiqued or used as constraints. These formed breakdown chains [KM05] where the par-
ticipant’s model of the code had gone badly awry. A developer explained a false call graph fact
as due to something triggering a buffer edit:

‘Cause I'm thinking that when I perform the action of switching from one buffer to an-
other buffer, somewhere it calls a method that indicates that the buffer has been edit-
ed. But I didn’t edit the buffer. I'm just switching between buffers. So that has to be
removed. - d 0:30(C)

This hypothesized call from a buffer edit did not exist because the call he used it to explain did
not exist.

Participants reasoned using code facts which described the implementation and requirements
facts which described application behavior in terms of the domain. False requirements led to
missed constraints. A novice forgot that the instructions stated that the status bar displays
caret and scroll position:

This is, I think this is completely unnecessary because why would a scrolling event
cause a caret update. Like if I'm just scrolling, by ---, it doesn’t change the caret offset.
So I think I should just get rid of this one actually. - d 0:33(C)

Participants with a changeable fact that they could not explain faced a choice - optimistically
assume it was overlooked by the original developer or pessimistically assume it was intended
to satisfy a hidden constraint. Overlooked facts are true because they happen to be true -
changing them does not affect other facts. Intended facts can be safely changed only when the
developer is able to generate an alternative fact that still satisfies all the constraints. Optimis-
tic assumptions caused bugs. Pessimistic assumptions led developers to abandon considered
changes, freezing the fact and preventing consideration of changes:

So here they’re basically deselecting everything and then they're going to reselect eve-
rything. So initially 'm going to ignore that because maybe that’s intentional by the
designer because maybe they would want to if there’s an error switching or --- read-
ing from file. - a 1:25(C)

Participants investigated hypothesized constraints before concluding none existed and the
fact was overlooked.

Some participants used beliefs about the abilities of the original developers to help distin-
guish intended and overlooked facts. An expert attempted to understand why an original de-
veloper had chosen a less desirable decision over an obvious decision:
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Why wouldn’t they call it? Now, can I test this? So why if you know the answer to the
problem, do you put the code in the wrong place and then leave a comment? That’s
not like these people. - M 0:35(F)

The expert believed the decision could not possibly be overlooked but must be intended, sug-
gesting the search for a hidden constraint must continue. Subsequent discovery of a second
example where the original developer overlooked an obviously better decision revised his
beliefs:

What a horrible little thing to do. Ok, that changes my view on the coding style.- M
0:37(F)

Participants gambled when deciding if a proposed change would work based on information
they did not yet have. Explanations helped predict the probability a change would succeed.
One expert implementing a change found it unexpectedly difficult. He became concerned that
a fact that he believed to be overlooked was intended and that his work implementing the
change would be wasted when they discovered a frozen constraint which had prevented the
original developer from making the same change. He presciently predicted, for the wrong rea-
sons, that his 23 minutes implementing the change would be wasted:

[laughing] This is never going to work, the thing is there’s just all this mess going on
with this caret listening... If it was just as easy as getting Edi tBus messages and up-
dating the caret it would be straightforward. And the other question I've got, is that
there’s already CaretListener. And why doesn’t it just... do caret listening itself? - L
0:41(C)

When developers had a hypothesized explanation of the underlying cause, they rejected
changes that did not address this cause, even lacking evidence supporting their hypothesis:

Somehow if I can track it down from the origin of when the event occurs and from
there I can pass in a Boolean false to every function call except for one. So it’s trickle
down... But that seems like a hack because this is called 4 times and it shouldn’t be. - j
0:54(C)

After proposing several similar changes, he gave up lacking a strategy to check his hypothesis.

In understanding why two experts made different changes than the other participants on the
FOLDS task, we observed that both better understood why the call was necessary and sought
a better way for this constraint to be satisfied subject to their critiques. One expert explained
the call using a model of how the application behaved:

What's going on is that when you're inserting text you could actually be doing some-
thing that makes the folds status wrong. So, if in our example here, in the quick brown
fox. If fox is under brown and I'm right at fox and I hit backspace. Then I would need to
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update my fold display to reflect the new reality, which is that it’s in a different place.
-L0:15(F)

No other participant produced this explanation. The expert subsequently mapped specific
code locations to serving specific goals and constantly talked about how each of the locations
served a purpose in satisfying this requirement. This unique explanation of why the call was
necessary allowed him to propose a unique solution - moving fold update from its current,
poorly chosen location to a point earlier in the process.

In response to the task description’s vague instructions that the getFoldLevel call was “ar-
chitecturally questionable”, another expert asked a unique question about BufferHandler:

So what I need to do is figure out how it’s using its buffer. Is this the only mutation
that they're doing? - M 0:18(F)

This generated a unique critique - the getFoldLevel call caused BufferHandler to retain
an “architecturally weird” buffer reference. He then moved fold updating to isFoldStart to
address this critique.

Three novices who were tantalizingly close to these changes abandoned them following pes-
simistic assumptions. One novice (g) implemented moving fold update but gave up when he
believed a bug indicated he was breaking a frozen hidden constraint. Another (j) tried to ex-
plain why the call was in Buf ferHandler by understanding how its parameter was computed
until he abandoned this path. Another (h) failed to explain the purpose of BufferHandler
and felt this hidden constraint made a change too risky. An expert (K) abandoned considering
this change when he stated the false hypothesis, without checking it, that BufferHandler
was intended to change the fold level, rejecting the task’s architectural criticism.

5.2.6. Proposing changes

Participants proposed design changes, composed of individual fact changes, to accomplish
their task goals and address problems they had perceived. Participants usually first talked
about a summary of what they had learned and then proposed a change. Changes often began
as vague goals, generating hypotheses, and were then refined by learned facts. One expert (L)
proposed six changes in 20 minutes before discovering a change that he believed he had time
to implement. Many changes reflected the application of design patterns [GH]J95] they had
seen before:

When I do this, I have two different styles; I have two different methods. So there
might be something that directly manipulates a variable and then there’s like a public-
ly visible, sorry if somebody calls like setX, [ update, send notifications that x has
changed or whatever, but if 'm doing something internally | munge, munge, munge
and then manually tell people at the end. - L. 1:19(C)
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Novice proposals often did not solve the problem and worked out implementation details ra-
ther than considering general patterns:

How about maintaining for every View, for every buffer, maintaining the caret posi-
tion in a hashtable. ... The key would be the buffer object and the value would be, say |
have the x,y positions of the caret. That’s all. I'll have one hashtable, a static hashtable
for the application. - e 1:14(C).

Of the 29 proposed changes on the carets task, experts (K, L, M) were the only participants to
propose using a field to start and stop caret updates. Other proposals included removing re-
dundant calls, passing a Boolean of whether to call updateCaretStatus to all of its callers,
and recording caret information.

5.2.7. Implementing proposals

We observed one situation where many participants made the same change - 8 participants
extracted a fold update method from getFoldLevel. Table 5.3 shows that more experienced
participants did this more quickly. An expert extracted it merely to better understand it. Other
participants intended it as their final change. Participants taking longer appeared aimless or
confused, spent tens of seconds staring at code, revisited perceived decisions, visited callees,
and moved statements between methods. Participants taking less time recognized the block
of code they wanted to extract and used the Eclipse command “Extract Method”. This is con-
sistent with a chunking interpretation - experts encoded what the code did using more ab-
stract facts. Novices saw the code statement by statement and the interrelationships between
statements and got bogged down considering changes at this level.

a(0) | d(1.5)] g(2.5)|h2.5)| i(3) | i3) | K@) | L(10)
10 13 4 11 9 4 3 4
Table 5.3. Minutes to extract update method from getFoldLevel for participants

(vears industry experience) who tried to do this, sorted by experience with experts in
bold.

5.3. External validity

By studying developers in a lab, rather than in the field, participants worked differently in
ways which likely made the tasks more challenging. Participants were new to the application
and code and could not rely on anything more than the rudimentary information we provided
about the design, architecture, and features of jEdit to reason about the application. Partici-
pants were asked to make changes designed to require substantial understanding of the de-
sign. Developers might typically have much more experience before taking on such changes.
Otherwise, such tasks are often used to learn the code with much more relaxed time require-
ments than our hour and a half tasks. Developers also answer tough questions by seeking out
other developers who may know the code better and provide important insights (see Chapter
4). Developers working on code with unit tests might learn why functionality is necessary by
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commenting it out and finding failing unit tests. By asking participants to make the design as
ideal as possible, we may have caused the participants to spend more time or be more careful
with the design implications of their changes than they would have otherwise been. But, as
our aim was to model the program comprehension process and expertise effects, rather than
measure the magnitude of these effects, we do not believe these concerns call into question
our findings.

5.4. Discussion

We discovered that program comprehension is driven by beliefs about facts. Dependencies
between decisions took the form of explanations that developers used to form chains of facts
and elicit constraints they would need to respect in their proposals and changes.

A key driver of the program comprehension process was uncertainty. Developers chose how
much confidence to express in their hypotheses and made path choice decisions about wheth-
er to seek evidence to support them. Developers were uncertain whether a hidden constraint
would force them to abandon their changes or unknowingly break a requirement. Developers
used sophisticated strategies such as judging the skill level of the original developer to judge
the likelihood of a hidden constraint’s presence.

An interesting finding is that many of the facts developers thought about took the form of
simple predicates about the code. The simplicity of these facts suggests simple analyses could
help discover and visualize them. When understanding a method, an expert thought about
facts about it (e.g.,, getFoldLevel has effects), explanation relationships with other facts (e.g.
doDelayedUpdate calls getFoldLevel to update folds), critiques (e.g, getFoldLevel
should not have effects), and design changes resolving these critiques subject to constraints
(see Section 7.1.2. for a detailed analysis of these questions). A tool externalizing these facts
might help make it easier for developers to remember them and return to the code associated
with them. A previous study viewed developers’ “working set” of task-relevant facts as re-
gions of code and proposed an editor to externalize these [KMCAO06]. We found developers
abstractly discussing sets of statements with facts, perhaps because our design tasks focused
on constraints while the previous study [KMCA06] focused on changeable facts. When devel-
opers focus on facts, not statements, externalized views could be more compact by showing
only relevant facts. Design rationale systems have long sought to capture explanations of facts.
But these systems were designed to support up-front design in design meetings, and as a re-
sult work only with requirements and high-level design [MC96]. A tool that captured explana-
tion linkages might make it easier to find these later (see Section 11.2).

When developers considered alternatives, facts played the role of design decisions. This sug-
gests a measurable definition of information hiding - a fact is hidden during a task when a de-
veloper does not think about it. This differs from defining information hiding in terms of
methods read by a developer. A developer may hypothesize constraints without ever reading
or even locating the code embodying these constraints, but these facts may still profoundly
influence design choices. Conversely, a developer may read a method at a high level of ab-
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straction and not notice or consider detailed facts that are explained by the facts of interest
(see Section 11.3 for a further discussion of this issue’s connection to specifications).

5.5. Conclusions

This study further demonstrates the importance of understanding and exploring code to
software development. Developers understanding and exploring code require substantial de-
sign knowledge to succeed. Developers lacking this knowledge are unlikely to succeed, and
instead became lost trying to make sense of task irrelevant code. In some situations when de-
velopers were uncertain of their understanding or erroneously believed false facts, they im-
plemented changes that they later abandoned. Overall, this study demonstrates that challeng-
es understanding and exploring code lead to inadequate fixes, abandoned changes, and time
consuming work.

But all of these problems are ultimately caused by developers’ inability to effectively answer
their questions about code. Code exploration tools that more effectively satisfy developers’
information needs might mitigate a wide variety of problems developers face. But building
such tools requires a detailed understanding of the information needs to be satisfied. The next
chapter addresses this topic by investigating coding activity information needs.



Chapter 5: Effects of Knowledge

76



77

6.

HARD-TO-ANSWER QUESTIONS ABOUT
CoDE’

When developers realize they need information, they ask a question. At the highest level,
questions may correspond to entire tasks such as debugging (How did this runtime state
occur?) or testing (Is this code correct?). When these questions cannot be directly answered,
developers decompose high-level questions into lower-level questions, forming a question
decomposition graph. Often, lower-level questions may help developers answer many dif-
ferent higher-level questions. Developers might ask “Who calls this method?” when debug-
ging, determining the implications of a change, or determining how code should be tested.
Thus while there are debugging questions, implementation questions, and testing questions,
many of the questions developers ask can be relevant for all of these tasks.

A better understanding about developers’ questions and the challenges developers face
when answering these questions would have many benefits. When questions match infor-
mation provided by tools or language features, this provides evidence that the tools or lan-
guage features address an important problem. For questions that do not match existing
tools or language features, hard-to-answer questions reveal opportunities for new tools and
programming languages to solve an important problem that developers face. And when
evaluating tools or language features, questions provide a benchmark against which they
can be evaluated: does the new tool or language feature help developers more effectively
answer these questions?

To identify hard-to-answer questions about code, we conducted a survey of professional
software developers. Developers were prompted to report questions about code that they
perceived to be hard to answer. We then combined similar questions into a single distinct
question and arranged all of the resulting distinct questions into categories. Finally, we
looked for existing tools that might help answer these questions.

% This chapter based on work previously published in [LM10-2].
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6.1. Method

A survey of software developers at Microsoft was conducted as part of the Reachability Sur-
vey (see Section 7.2). Approximately 2000 developers were invited to participate by ran-
domly sampling all developers at Microsoft. 460 developers responded. The complete sur-
vey included several demographic items, ratings of the importance and frequency of 12
reachability-related questions, and a free response item about other hard-to-answer ques-
tions. This chapter focuses on the data from the free response item; results from the rest of
the study are presented in Section 7.2. 179 developers completed the free response item;
149 were individual contributors, 22 were lead developers, and 8 were architects. Re-
spondents ranged in development experience from 3 months to 39 years (median 10 years)
and had spent from 0 to over 8 years working on their current codebase (median 1 year).
68% agreed that they were “very familiar with my current codebase”. Respondents report-
ed their team was currently in a variety of life cycles phases: 19% planning, 33% implemen-
tation, 42% bug fixing, and 6% other. Respondents reported spending anywhere from 0 to
100% of their time editing, understanding, or debugging code (median 50%).

Following completing the first section that focused on reachability questions, developers
answered a free response question: “What other hard to answer questions about code have
you recently asked?” Responses included both questions and stories illustrating factors that
developers perceived to have made these questions challenging. We analyzed responses by
breaking them into individual questions, yielding 374 questions. We then clustered the re-
ported questions into categories using the underlying intent of the question - what did de-
velopers want to know by answering the question? For example, “Why did this happen?”
was usually a question about runtime behavior, not rationale. Finally, within each category,
similar reported questions were grouped into distinct unique questions.

We also evaluated the match between the questions that the developers reported were hard
to answer and the information that tools can help developers to obtain. For each question,
we considered both commercial tools and research tools that might be relevant to the ques-
tion, listing commercial tools, if present, and research tools if commercial tools were not
available. A match only indicates that the information provided appears to align with a
question and does not indicate that the tool successfully helps the developer to obtain the
information more effectively. Thus, our goal in listing the tool is to identify to what extent a
tool exists that can address this information need - not to what extent that tool is usable by
or available to any programmers.
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6.2. Results

Developers reported 92 distinct hard-to-answer questions. We grouped these into 18 dif-
ferent categories spanning three topics: changes to code, properties of code elements, and
relationships between elements. We discuss each of these topics and categories below.
When reporting question developers ask, we indicate the number of developers that re-
ported each question (or version of a question) with the number listed in parenthesis. Ques-
tions reported by previous studies of developer questions are indicated with a citation.
Questions for which we identified a corresponding tool are indicated with the name of the
tool or category of tools or “unsupported” if we were unable to identify any such tools.

6.2.1. Questions about changes

As developers work to implement features and fix bugs, they work with changes, past, pre-
sent, and future. Developers reported a variety of hard-to-answer questions about changes.

Debugging (26)

How did this runtime state occur? (12)[KDV07]: omniscient debuggers, dynamic slicing
What runtime state changed when this executed? (2): REACHER

Where was this variable last changed? (1): dynamic slicing

How is this object different from that object? (1): unsupported

Why didn’t this happen? (3): Whyline

How do I debug this bug in this environment? (3): statistical debugging

In what circumstances does this bug occur? (3)[KDVO07]: statistical debugging

Which team’s component caused this bug? (1): unsupported

Developers faced with unexpected runtime behavior ask hard-to-answer questions about
why or how some runtime state did or did not occur. Runtime state included changes to da-
ta, memory corruption, race conditions, hangs, crashes, failed API calls, test failures, and
null pointers. Debugging questions are caused by past changes that do not work as expected.
Developers wondered about differences between executions - e.g., why functionality did not
work on some browsers - or the circumstances necessary for the bug to occur. Crash dumps
and environments that could not be recreated locally were particularly challenging to debug.
Debugging did not always involve preparations to devise a fix - sometimes developers
wanted simply to trace the flaw far enough to understand which team should be assigned
the bug and understand its ultimate cause.

Many of the debugging questions developers reported are addressed by existing research
tools. Omniscient debuggers record and play back traces, letting developers reverse execu-
tion and go back in time. This may make answering “How did this runtime state occur?” eas-
ier, as developers can then follow dependencies back in time without having to repeatedly
rerun the program. Dynamic slicers, such as the Whyline [KM08], let developers traverse
dependency chains backwards, letting developers directly answer questions about where a
variable was changed and how runtime state occurred. The Whyline directly supports de-
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termining why something did not happen by identifying branches that would have caused
something to happen but were not taken, and identifying reasons why these branches were
not taken. REACHER helps developers answer questions about what state has been mutated
when something executes by statically searching for writes to fields.

Research tools also address problems developers reported about understanding and recre-
ating the circumstances in which a bug occurs. Statistical debuggers [LAZ03] first collect
data from users’ computers by sampling executions. Using this data, they then find correla-
tions between bugs and execution trace properties. Using a statistical debugger, developers
could understand the circumstances in which a bug occurs by its correlation to properties of
the execution trace and, if this provided sufficient information to debug, would not be re-
quired to determine how to recreate the environment.

Another debugging challenge developers experience is triaging bugs. After a bug is reported,
triagers must determine who will be assigned to fix the bug. Triage involves determining
which team’s components are responsible. Bugs involving a crash with a stack trace or in-
correct behavior in a particular part of the interface may have a symptom located in an easi-
ly determined component, but the ultimate cause may or may not be in that component.
And determining which component is ultimately responsible may involve as much work as
the debugging itself. Thus, the developer triaging cannot assign it to the correct team until
they have themselves done much of the debugging work. While automated tools have ex-
plored machine learning techniques that use the bug report text and ownership of compo-
nents to assign bugs to team members [AHMO06], these tools face the same challenges as in
manual triaging. These tools are unlikely to be any better determining which component
ultimately caused the bug.

Implementing (20)

How do I implement this (8), given this constraint (2)? (10): Blueprint
Which function or object should I pick? (2): Jadeite

How overloaded are the parameters to this function? (1): autocomplete
What'’s the best design for implementing this? (7): unsupported

Developers with partially formed ideas for a change ask hard-to-answer questions about
how to implement it. Changes include connecting together components, integrating code,
reusing a library, determining how to correctly set a field of a shared data structure, imple-
menting tests, editing protocols, and changing exception policies. In some cases, developers
seek implementations subject to constraints such as API backwards compatibility. When
reusing functionality, developers ask about differences between similar methods or objects
to decide which to pick. Finally, developers weigh design quality tradeoffs - where should
functionality be located between callers or callees or in classes or layers.

Developers trying to determine how to implement functionality have a variety of resources
to consult ranging from tutorials, to pattern catalogs, to APl documentation. Most modern
development environments provide an autocomplete mechanism which lists alternative
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implementations of a method with different combinations of parameters. Research tools
have also been designed to help support implementation. Given keywords describing rele-
vant functionality, Blueprint searches the web for relevant example code snippets [BDW10].
However, Blueprint requires the snippets to be on the web, which prevents its applicability
to situations involving reusing functionality within a large codebase, which were the prima-
ry situations developers reported in our study. Jadeite helps developers determine which
class to pick by using web counts to rank classes by popularity [SFY09]. However, Jadeite
does not help select methods.

Implications (24)

What are the implications of this change (5) for API clients (5), security (3), concurrency (3),
performance (2), platforms (1), tests (1), or obfuscation (1)? (21) [KDV07][SMV08]:
unsupported

When proposing a change, developers ask questions about its effects to determine con-
straints that should be respected, other changes that might be necessary, or if the change is
worth making (see Chapter 5). Implication questions are a step further into implementation.
Developers ask implementation questions (e.g., “How do [ implement this (given this con-
straint)?”) when they have a goal but no potential implementations. Developers ask implica-
tion questions when they have a potential implementation but are unsure if it will work.
When changing functionality exposed to other components or other teams, developers con-
sider if a change could cause bugs elsewhere and if the old behavior must be maintained
alongside the new. Developers consider what issues a change might cause such as security
concerns, timing issues like deadlocks, or performance effects to execution time or network
or disk usage. Developers also report questions about dependencies on code or design deci-
sions, which ask about implications and code affected for any possible change.

Tools provide little, if any, direct support for answering implication questions. Perhaps the
closest tools are in the area of impact analysis [L11]. Given an element to be changed, im-
pact analysis tools attempt to predict other elements that must also be changed using a va-
riety of techniques such as slicing, information retrieval, or code history. But impact analy-
sis, even if its predictions are successful, only predicts elements. In contrast, implication
questions dealt with properties and facts about code. Seeing a potentially related element
seems unlikely to answer these questions.

Policies (12)
What is the policy for doing this? (10) [SMV08]: unsupported
Is this the correct policy for doing this? (2) [KDV07]: unsupported

When designing a change, developers ask questions about relevant precedents or policies
such as when resources could be freed, design pattern use, security, configuration settings,
error logging, exceptions, versioning, installation infrastructure, and expected public APIs.
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Developers use a number of practices that may help answer questions about policies. De-
sign documents and coding standards often capture high-level ideas about how something
might work. Or developers might simply ask a teammate (see Chapter 4). But documents
may or may not capture the policy of interest, can be hard to locate, and are often not up-
dated (see Chapter 4), and asking teammates causes interruptions, a problem by itself. So
developers are often left to reverse-engineer policies from the code or guess. Research and
commercial tools have not investigated approaches for improving this situation.

Rationale (42)

Why was it done this way? (14) [FM10][KDVO07]: unsupported

Why wasn’t it done this other way? (15): unsupported

Was this intentional, accidental, or a hack? (9) [KDV07]: unsupported
How did this ever work? (4): unsupported

Rationale questions ask about the rationale for surprising design decisions found in the
code or in previous changes, often to discover hidden criteria motivating a decision (see
Chapter 5). Developers gave many examples of design decisions with unclear rationale in-
cluding naming, code structure, inheritance relationships, where resources are freed, code
duplication, lack of instrumentation, lack of refactoring, reimplementing instead of reusing,
algorithm choice, optimizations, where behavior is implemented, parameter validation, vis-
ibility, and exception policies. In some cases, developers had an alternative design choice in
mind and wondered what hidden design criteria caused it to not have been chosen. Some-
times, developers also considered if the decision might have been a hack made in haste or
was simply overlooked, rather than being a carefully considered judgment reflecting a
deeper understanding of the problem ([KDVO07]; Chapter 5). In other cases, developers
seemed surprised and nearly convinced that the original decision was erroneous (How did
this ever work?).

Developers have a number of strategies they might use to answer rationale questions. In
some situations, developers ignore the original rationale, implement a change, and test if it
works. But, for many of the non-functional properties developers reported (naming, code
duplication, lack of instrumentation), testing is not an option. As with policies, developers
can ask teammates; but this causes interruptions (see Chapter 4), blocks the question asker
when the teammate is unavailable, and does not work when the responsible party has left
the company. And, of course, comments and design documents can help, but require future
questions to be anticipated, the comments to be correctly updated, and the author to invest
the time to write them.

Efforts to build research tools that help developers more effectively answer rationale ques-
tions have been limited. Several systems explicitly capture and store rationale, but focus on
high-level decisions earlier in the life cycle rather than code-level design decisions [MC96].
In some cases, developers answer rationale questions by browsing history to look for rele-
vant check-in comments or changes that might have motivated unexpected behavior. Re-
search tools do exist for browsing code history (see next paragraph).
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History (22)

When, how, by whom, and why was this code changed or inserted? (13)[FM10]: Deep Intelli-
cense

What else changed when this code was changed or inserted? (2): Deep Intellisense

How has it changed over time? (4) [FM10]: Deep Intellisense

Has this code always been this way? (2): Deep Intellisense

What recent changes have been made? (1) [FM10][KDVO07]: Deep Intellisense

As developers browse past changes to a code snippet, they ask questions about a change’s
author, date, identity, and motivation. Developers most frequently reported difficulties an-
swering code history questions about code snippets, confirming a previous finding that de-
velopers are most interested in the history at the level of code snippets [HB08] rather than
larger units such as files or modules. Sometimes they are interested in seeing how a change
to a snippet of interest is part of a larger change, perhaps to understand its motivation and
scope. In some situations, developers simply wish to know if code’s current implementation
is the only one that had ever existed, perhaps to see if alternatives had been previously con-
sidered or if past differences necessitated a different implementation.

Most modern version control systems provide facilities for browsing code history. But many
only support browsing files, forcing developers to manually browse all changes to a file to
find those changes affecting the snippet of interest. Research tools have addressed this limi-
tation. For example, Deep Intellisense lets developers select a specific element and see his-
tory of that element [HBO8]. It is unclear what other challenges or barriers developers ex-
perience when browsing the history.

Refactoring (25)

Is there functionality or code that could be refactored? (4): unsupported

Is the existing design a good design? (2): unsupported

Is it possible to refactor this? (9): unsupported

How can I refactor this (2) without breaking existing uses (7)? (9): refactoring tools
Should I refactor this? (1): unsupported

Are the benefits of this refactoring worth the time investment? (3): unsupported

Developers refactor to improve the design of existing code. As developers refactor, they
have a variety of information needs. First, developers must identify functionality or code
with design problems that might benefit from refactoring. Next, developers consider the
quality of the existing design, ask if it is possible to refactor, and if so, how? As they generate
and consider alternative designs, developers consider how existing uses of methods con-
strain changes to these methods. Finally, developers weigh the costs and effort of imple-
menting the refactoring against its benefits. Developers reported a number of refactorings
they found to be challenging: changing a method’s scope, moving functionality between lay-
ers, changing the implementation of configuration values, making operations more data
driven, or generalizing code that would be more reusable.
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A variety of tools help support parts of the refactoring process. Developers refactor in order
to address design problems, and research tools have been designed to identify design prob-
lems that researchers hypothesized would be important to developers. Clone detectors such
as CCFinder [KKIO2] detect syntactically similar code snippets, which according to software
engineering principles, are code clones that should be refactored into an abstraction. Smell
detectors (e.g., [MB08]) detect design idioms believed to signify bad design (e.g., feature en-
vy, typecasts, magic numbers, large classes). However, none of these tools address the types
of design problems that developers reported: obsolete code, duplicated functionality, and
redundant data between equally accessible data structures.

Modern development environments automate some refactorings by letting developers in-
voke and describe the expected change, checking for necessary preconditions, and changing
the code. However, support is limited to low-level refactorings (e.g., moving code between
methods or renaming methods). In contrast, developers reported challenges making larger
refactorings (e.g., making operations more data driven, or changing semantics of config val-
ues). While lower-level refactorings might be involved in larger refactorings, existing tools
do not directly support the larger refactorings.

No existing tools help developers to predict the time to refactor. Tools to reduce the cost of
refactoring might indirectly address this issue by making it less of an issue. But the most
costly refactorings are likely to be the largest, which are currently not addressed by existing
tools.

Testing (20)

Is this code correct? (6) [KDVO07]: testing and verification tools

How can I test this code or functionality? (9): testing and verification tools

Is this tested? (3): coverage tools

Is the test itself responsible for this test failure? (1): unsupported

Is the documentation wrong, or is the code wrong? (1): specification checkers

Developers work to assure that their code is correct and ask testing questions. Developers
evaluate if their code is correct - if it did what the comments imply or the callers expect, if it
works in situations with multiple users or servers, or if it has security vulnerabilities. De-
velopers ask how to test code which depends on an external API or with error paths and
how to check for memory leaks, race conditions, or hangs. Developers consider if existing
unit tests already exercise functionality or codepaths. After discovering a problem, develop-
ers want to know if the test, documentation, or code is at fault.

Developers’ reported testing questions are well addressed by existing research. To help un-
derstand if code is correct and make testing it easier, a variety of research and industrial
tools exist to test and verify code using a variety of program analysis techniques. Tools even
exist to automatically test or verify the specific hard-to-test situations reported - memory
leaks (e.g., [E03]), race conditions (e.g., [AFF06]), and hangs (e.g., [CGP07]). A variety of
commercial tools exist for determining the code coverage of tests. And, when documenta-
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tion on a class or method has been specified using a specification language, verification and
testing tools can check if the code conforms to the specification. But one question that has
not been addressed by existing research is attributing blame: when a test or specification
fails, is the test wrong or the code? This ultimately requires a developer to make a judgment
about what the correct behavior should be. But in doing so, the developers’ work in under-
standing the code, requirements, or conventions might be supportable by tools.

Building and branching (12)

Should I branch or code against the main branch? (1): git

How can I move this code to this branch? (1): merging

Have changes in another branch been integrated into this branch? (1): notifications
What do I need to include to build this? (3): include generation

What includes are unnecessary? (2): include generation

How do I build this without doing a full build? (1): incremental compilers

Why did the build break? (2): [FM10] logging

Which preprocessor definitions were active when this was built? (1): preprocessor flags

Developers use version control systems to track and coordinate checkins and use branches
to let them work on changes separately. Developers question when creating a branch is
necessary. And after finishing work, developers ask how their branch can be merged into
the main branch. Developers also wish to stay aware of other developers’ work and ask if
developers’ changes in other branches have been merged back. Developers use build sys-
tems to manage inclusions, preprocessing, and other dependencies. As developers copy and
migrate code, they ask questions about what includes or dependencies to add; when in-
specting code, they ask which includes are no longer required. Developers want to deter-
mine the minimal number of packages necessary to rebuild, rather than trigger a time-
consuming full build. When faced with an intermittently breaking build, developers debug
and understand its cause. After building, developers wonder what the preprocessor has
done - which definitions are active.

A variety of tools help developers to answer questions about building and branching. One
solution to the problem of deciding when to use a separate branch is to always use a sepa-
rate branch. The increasingly popular version control system git makes this choice, and
gives each developer their own branch. There is no main branch.

Version control systems support moving code between branches through merges. However,
as the developers reporting this question almost certainly had access to such features, we
can conclude that it can require substantial work for the developers to determine which
parts of code must be moved to integrate a change or, when merge conflicts are present,
how to resolve them. Many version control systems also provide notifications through email
of changes.

Modern IDEs such as Eclipse automatically generate include statements, requiring the de-
veloper only to correctly configure library dependencies and resolve ambiguous references.
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As code changes, IDEs can update the include statements to remove statements that have
become unnecessary. Similarly, modern languages often make possible efficient incremental
compilers that rarely require full builds.

Developers working with builds also debug. When faced with a broken build, most build
systems provide log messages explaining the failure. However, beyond these logs, develop-
ers are left to debug and resolve the issue on their own. Similarly, preprocessors often pro-
vide flags for logging their generated content. But, as the developers who reported prob-
lems likely had such features, there may remain significant challenges using these tools to
debug build problems.

Teammates (16)

Who is the owner or expert for this code? (3) [BPZ10][FM10]: expertise recommenders
How do I convince my teammates to do this the “right way”? (12): unsupported

Did my teammates do this? (1): check-in logs

When trying to understand unfamiliar or complicated code, developers often try to find an
owner or expert responsible for past changes to the code. But, in other situations, interac-
tions with teammates are more contentious. Developers reported frustration at teammates
for not doing things the “right way” by following conventions or coding styles, such as using
a C style in C#, using an outdated style, or writing hacks.

Expertise recommenders help developers to identify code owners and experts, often by
mining version control information (e.g., [BPZ10][MHO02]). Helping developers to find con-
sensus and agreement with conventions and standards is an open, unexplored area of re-
search.

Check-in logs record the activities of software developers as they change code and can be
indexed and searched. Logs might be able to answer questions about what teammates have
done. However, for the developer who viewed this as poorly supported, it might not contain
the information about what teammates were doing that was of interest. Better understand-
ing how developers coordinate and share information within teams is an important area of
research.

6.2.2. Questions about elements

As they do work and ask higher-level questions, developers decompose many of these ques-
tions into lower-level questions about elements and sections of code. Developers reported a
variety of hard-to-answer questions about elements and sections.

Location (13)

Where is this functionality implemented? (5) [SMV08]: feature location
Is this functionality already implemented? (5) [KDVO07]: unsupported
Where is this type defined? (3): IDE navigation support



Chapter 6: Hard-to-Answer Questions about Code 87

When developers fix or change functionality, they must first locate it. Developers reported
this as being a hard-to-answer question. When planning to implement functionality, devel-
opers ask if the functionality is already implemented. And, when seeing references to types,
developers sometimes asked where it is defined. This can be challenging when it requires
picking the correct definition referenced by include files, understanding type renames done
at compilation, and navigating between multiple files defining the same class.

Research tools have long considered how to help developers find where behavior they see
at runtime is implemented in code (e.g., [WS95][KM09]). But developers also wish to locate
functionality in a codebase to reuse based on what it does. This is unsupported by existing
tools.

Modern IDEs provide support for navigating to class definitions and even support selecting
implementations of an interface. Developers who reported challenges navigating to defini-
tions may have not had access to such tools or might be using a language where the prepro-
cessor or other issues prevent the use of such tools.

Performance (21)

What is the performance of this code (5) on a large, real dataset (3)? (8): profilers
Which part of this code takes the most time? (4): profilers

Can this method have high stack consumption from recursion? (1): profilers

How big is this in memory? (2): profilers

How big is this code? (1): metrics

How many of these objects get created? (1): profilers

Is this method or code path called frequently, or is it dead? (4): profilers

Developers reported hard-to-answer questions about the performance characteristics of
code. Developers sought to localize poor performance to specific code to understand where
improvements should be made. This was particularly challenging when the hotspots in the
optimized version shipped to users differed from the hotspots in the debug build used for
profiling. Developers also sought to understand the memory usage of stack allocations done
in recursive methods and the number and size of objects created.

Profilers provide performance data about code including execution time, hotspots, memory
usage, and object creation counts. It is unclear whether the developers who reported chal-
lenges with these questions did not have access to these tools, experienced issues that pre-
vented their use, or that they simply were not as effective as developers would like. A wide
variety of commercial and open source tools provide metrics about code, including its size.

6.2.3. Questions about element relationships

Many of the developers’ reported questions dealt with relationships between code ele-
ments: contracts describing interactions between methods, how threads, methods, and
locks interacted in concurrent situations, and how control and data flow connects pieces of
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code. These questions require developers to determine relationships between code and
how these interactions are necessitated by design decisions and code’s intended behavior.

Contracts (54)

What is the intent of this code? (12) [KDV07]: contracts

What does this do (6) in this case (10)? (16) [SMV08]: REACHER

How does it implement this behavior? (4) [SMV08]: unsupported

What assumptions about preconditions does this code make? (5): contracts
What assumptions about pre(3)/post(2)conditions can be made? (5): contracts
What exceptions or errors can this method generate? (2): checked exceptions
What throws this exception? (1): checked exceptions

What is catching this exception? (1): unsupported

What are the constraints on or normal values of this variable? (2): invariants
What is the correct order for calling these methods or initializing these objects? (2): typestate
How is the allocation lifetime of this object maintained? (3): typestate

What is responsible for updating this field? (1): unsupported

Developers reported a variety of questions about code’s intended behavior and realization
of this behavior. Developers ask questions about the intent of code, SQL queries, structures,
objects, files, and components. Developers ask what code actually does, often about its be-
havior in a specific situation such as an exception or error, a slow or timed-out operation, in
the presence of multiple threads, how it behaves at boot up, or how it executes on a server
farm. From expectations of code’s behavior, developers try to understand how code realizes
this behavior in its implementation: how optimized code implements an algorithm, how an
exception could be thrown, how binding works, or how a class implements application func-
tionality.

Developers also reported questions about assumptions and expectations about a method’s
input and output. Developers consider both assumptions currently made about parameters
and possible additional assumptions that could (safely) be made. Assumptions included
constraints on parameters such as ordering or size and the possible states a program might
be in. Developers also reported questions about the errors or exceptions that might be gen-
erated and the conditions under which they are generated. Finally, developers wanted to
understand the meaning and semantics of parameter values: e.g., if parameters were 0 or 1-
based indices and what constitute typical values.

Developers also reported questions about the correct protocol or order in which methods
should be called. One situation where this was an issue was for object lifecycles: how ob-
jects were initially created and how they would be destroyed after they were no longer
needed. Finally, a developer reported difficulty understanding what code was responsible
for ensuring a field was correctly updated.

Software engineering researchers have long designed systems for specifying and checking
contracts, dating back to early efforts such as Hoare logic [H69] and culminating in modern
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tool efforts such as JML [LC06] and Code Contracts [FBL10]. For expressing and dynamically
checking contracts, assertions are widely used in practice and even built into modern lan-
guages such as Java. Specifications document the assumptions about preconditions current-
ly made. Adding an additional specification, and using a tool to check if it holds, can answer
questions about what additional preconditions are possible. Invariants specify relationships
between variables and could be used to specify, for example, that an index value is always
greater than 0 or 1. Typestate [SY96] captures specifications about the order in which
methods should be called. Checked exceptions specify the exceptions generated by a meth-
od [G75]. REACHER helps developers understand what code does, letting developers search
for specific effects (mutating a field) or calls into libraries. But REACHER does not support
filtering searches to specific situations (see Section 11.1.1 for a discussion of how REACHER
could be extended to support these questions).

What have not been addressed by existing tools are questions regarding how a specification
is realized in code. Research tools have not explored supporting questions about how code
implements behavior or what code is responsible for updating and maintaining the correct
values of a field.

Concurrency (9)

What threads reach this code (4) or data structure (2)? (6): thread coloring
Is this class or method thread-safe? (2): specifications

Which methods in this class does this lock protect? (1): references search

When reasoning about the concurrency of code, developers report asking about what
threads are able to reach an area of code or to access a data structure. Developers also ask if
classes or methods have already been designed to ensure thread-safety and which of the
methods in a class are protected by a lock.

Many tools have been designed to help developers reason more effectively about concur-
rency and address all of the questions developers reported. Thread coloring documents the
threads expected to reach a method with a specification and checks that the specification is
accurate [S08]. Modern languages such as Java have keywords and annotations that docu-
ment the thread-safety of classes and methods. And a references search will show the
methods in which a lock is referenced, which indicates the methods it is likely protecting.

Control flow (13)

In what situations or user scenarios is this called? (3) [KDV07][SMV08]: REACHER

What parameter values does each situation pass to this method? (1): unsupported

What parameter values could lead to this case? (1): dynamic symbolic execution

What are the possible actual methods called by dynamic dispatch here? (6): code browsing
tools

How do calls flow across process boundaries? (1): instrumentation tools

How many recursive calls happen during this operation? (1): profilers
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Developers report asking questions about control flow such as the situations or user scenar-
ios in which methods are called, the parameter values used in different situations, and what
parameter values were necessary to reach specific code within a method. Determining calls
from a method is made more difficult by dynamic dispatch - calls to interfaces, signaling
events, or changing bound properties. Other challenging issues developers reported were
understanding control flow between multiple processes and understanding recursive calls.

Modern development environments provide support for browsing control flow interproce-
durally. IDEs such as Eclipse let users navigate to the definition of a method; for calls to in-
terface methods or overridden methods, a list of implementing methods is shown, directly
showing the developer the possible dispatch targets. Profilers can show what recursive calls
are made. And logging and instrumentation tools can be used to track control flow across
processes (e.g., Dtrace [CSL04]).

Recent research tools are designed to support some of the other control flow questions de-
velopers reported. REACHER lets developers search upstream from a method, making it pos-
sible to search for methods that are framework callbacks which respond to user input. To
find parameter values which lead to paths through the code, dynamic symbolic execution
tools can be used, which attempt to force execution through all paths and collect repre-
sentative parameter values for each path (e.g., Pex [TH08]). But tools have not been de-
signed to collect and group values passed into methods.

Data flow (14)

What is the original source of this data? (2) [KDV07]: thin slicing

Where can this global variable be changed? (1): references search

What code directly or indirectly uses (6) or modifies (2) this data or resource? (8): unsupport-
ed

Where is this data structure used (1) for this purpose (1)? (2) [SMVO08]: references search

What parts of this data structure are modified by this code? (1) [SMV08]: REACHER

Developers reported questions about data flow through code - where data originates,
where it goes, and how it is aggregated, translated, or transformed. Developers ask about
both where a variable is modified and where data referenced by a variable is modified. Fi-
nally, developers reported questions about relationships between specific data and code -
modifications to a data structure and use of resources by a specific part of code.

Several tools help support developers’ reported data flow questions. Modern development
environments let developers search for references to find places where a global variable or
data structure is referenced. However, these tools do not track the data as it is copied from
variables and cannot be directly used to find code that uses data referenced by a variable.
Thin slicing follows data flow relationships backwards and can identify the original source
of data; but the tool does not support following data forwards to see the uses of data.
REACHER can search for writes by code to a data structure by searching for a class (data
structure) and scoping the search to field writes, indicating the parts (fields) of the class
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which are modified. However, REACHER cannot scope its searches to specific instances of a
data structure.

Type relationships (15)

What are the composition, ownership, or usage relationships of this type? (5) [SMV08]: UML
tools, ownership systems

What is this type’s type hierarchy? (4) [SMVO08]: code browsing tools

What implements this interface? (4) [SMV08]: code browsing tools

Where is this method overridden? (2): code browsing tools

Developers reported a variety of questions about type relationships: the composition, own-
ership, and usage relationships of types, super and subclasses of a type (its hierarchy), clas-
ses implementing an interface, and places where a method is overridden. Answering ques-
tions was made more challenging by classes spanning modules or projects that were not
open in the development environment.

Modern development environments provide code browsing tools that show type hierar-
chies and overrides. UML reverse engineering tools can generate class diagrams from code
that depict composition and usage relationships between types [KSS02]. Research systems
can specify and check ownership relationships between types (e.g., [DM05]). However, such
tools do not work in all situations. Some developers reported that these questions were
most challenging for projects or modules not open in the development environment, which
might not be indexed.

Architecture (13)

How does this code interact with libraries? (4): REACHER

What is the architecture of the code base? (3): reverse engineering tools, architecture de-
scription languages

How is this functionality organized into layers? (1): reverse engineering tools, architecture
description languages

What depends on this code or design decision? (4)[FM10]: impact analysis, design structure
matrices

What does this code depend on? (1): design structure matrices

Is our API understandable and flexible? (3): unsupported

Developers reported a variety of questions about the architecture and relationships be-
tween modules. Developers ask questions about how code interacts with libraries, how it is
organized into layers, and incoming and outgoing dependencies. Developers also found it
challenging to design code for reuse and ensure that an API design was both understanda-
ble by its users and flexible in supporting its potential uses.

A variety of commercial and research tools help support answering questions about archi-
tecture, for example by reverse engineering class diagrams or sequence diagrams [KSS02].
Other tools, such as architecture description languages, let developers specify and docu-
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ment an architecture for the code. To understand how code is interacting with libraries,
REACHER lets developers search for calls to library methods and visualize these interactions
in a call graph. Impact analysis tools seek to find code’s dependencies [L11]. Design struc-
ture matrices express dependencies between decisions [SGWO01], but tools to reverse engi-
neer them from code (e.g., [S]JS05]) are limited to dependencies between packages and call
relationships between methods, which may not include the dependencies of interest. While
user studies can help to evaluate the understandability and flexibility of APIs, there is no
tool support for conducting such studies, although it is unclear what support might be pro-
vided by tools.

6.2.4. Summary of tool support

To assess the current state of industrial and research tool support for helping developers
answer questions about code that they find to be hard to answer, we counted the questions
for which there exists a research or commercial intended to help. For the 92 distinct ques-
tions developers reported, 47% are addressed by commercial tools and an additional 27%
are addressed by research tools. This leaves 26% that have not been addressed by any tools.
Looking instead at percentages of the 374 reported questions (where some of the 92 dis-
tinct questions were reported multiple times), 34% are addressed by commercial tools and
25% by research tools. 41% of developers’ reported questions are unaddressed by any ex-
isting tools.

6.3. Discussion

Our survey revealed the huge scope of challenges that developers face when working with
code. Developers, asked to report questions they found to be hard to answer when working
with code, responded with questions spanning most areas of work with code that software
engineering has studied. These results demonstrate that hard-to-answer questions about
code are not localized to a small number of tasks or activities, but span a wide variety of de-
velopers’ work.

But what does it mean for a developer to have reported a question as being hard to answer?
Such questions are likely to reflect some of the most salient, challenging, time-consuming,
and frustrating programming episodes that developers can recall. From the developers’
point of view, their current tools did not make answering these questions sufficiently easy.

There are a number of potential reasons why developers might feel that the tools they use
today do not support these questions. Developers might not be aware of features in their
tools that better support answering these questions. Developers might choose to use tools
or development environments that do not have features other tools have that support these
questions. Many developers still choose to use code editors such as vi and emacs (see Chap-
ter 4), and as a result, may have issues answering questions such as “What are the possible
dynamic dispatch targets?” that modern development environments directly support. Other
developers may be forced by legacy code or corporate standards into using outdated tools.
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While developers using Java and Eclipse benefit from automatically generated include
statements, C++ developers enjoy no such benefits, and seem more likely to have been re-
porting questions such as “What includes are unnecessary?” For developers lacking modern
tools, our results suggest specific productivity benefits they might potentially receive by
adopting better tools that address these problems. We found that 34% of developers’ re-
ported questions were addressed by at least one existing commercial tool.

For other questions, commercial tools do not yet exist. But many tools have been proposed
by software engineering researchers. We found that such tools collectively address an addi-
tional 25% of developers’ reported questions. For example, developers trying to determine
how to implement something might benefit from the support Blueprint [BDW10] provides.
Or developers trying to determine the owner of code might benefit from expertise recom-
menders (e.g., [MHO02]) designed to answer this question. Our results suggest that these
tools address important challenges developers face and, if successful, could make develop-
ers more productive.

Of course, tools that have been designed to try to support a question developers ask still
might not help in practice. Results from previous studies on this are mixed. A number of re-
cent studies have demonstrated that some developer tools can successfully help developers
answer questions more quickly and successfully. An evaluation of Blueprint found that it
helped developers write significantly better code and find example code significantly faster
[BDW10]. An evaluation of REACHER found that it was able to help developers understand
what code did five times more successfully in less time (see Section 10.3). But an evaluation
of three state of the art code exploration tools found no measurable effects of any of the
tools [DMRO07], and an evaluation of automating debugging techniques found that, even
when their performance was artificially boosted, they were only sometimes helpful [PO11].
It is unclear how many research tools would successfully help developers answer questions
in the field. One important use for the results reported here is to provide benchmarks for
such tools: do they help developers answer the questions that are reported to be hardest to
answer? For example, do contracts provide the right information for helping developers de-
termine the intent of code? Such benchmarks are an important part of designing studies for
evaluating the effectiveness of research tools and evolving their design to more effectively
solve developers’ real problems.

Even tools that successfully help developers answer their hard-to-answer questions still
may not solve the problems developers reported. In many cases, the questions developers
reported reflected situations in which a tool that was generally applicable did not help in
the particular situation they experienced. Refactoring tools have long helped support re-
naming methods, encapsulating fields, and moving methods. But developers reported other
refactorings - changing a method’s scope, changing the semantics of config values, and mak-
ing operations more data driven. For these operations, our results identify future directions
for research to increase the scope and applicability of existing tools. In many cases, these
future directions deal with understanding the semantics and meaning of code. For example,
our results suggest it would be useful if future clone detectors could help to detect redun-



Chapter 6: Hard-to-Answer Questions about Code 94

dant data rather than simply syntactically similar code. And developers reported problems
implementing changes to exception policies that are unaddressed by existing tools.

Many questions were highly focused around specific hypotheses, situations, or proposals
relevant to the developer’s current task and mental model of the code. For example, ra-
tionale questions asked why a specific decision was made or even why a specific alternative
was not chosen. Questions about what code does were often scoped to a situation - e.g,,
what happens when an exception occurs or an operation times out. Thus, our results sug-
gest that a key design goal for tools or languages is to better use the situations described in
developers’ questions to focus and filter the information that is provided by the tools.

Finally, some of developers’ reported questions reflect wide-open, unexplored areas of
software engineering research. 41% of developers’ reported questions were questions un-
addressed by either commercial or research tools. For example, developers asked “Why was
it done this way?”, “Why wasn’t it done this other way?”, “What’s the policy for doing this?”,
and “Is this functionality already implemented?” These questions point to important oppor-
tunities for future tools to solve problems developers perceive to be hard. Addressing such
questions is likely to have significant productivity benefits.

6.4. Limitations

The results from this study were gathered from a single organization. Some of the problems
developers experienced may have been influenced by Microsoft’s processes, practices, and
conventions. While there is a huge variability among the teams and products found in this
organization, other organizations might use radically different process or tools that lead to
different questions being perceived to be hard-to-answer. More work is necessary to repli-
cate this study in other organizations and contexts.

By using a survey, rather than direct observations, the results rely on developers’ own re-
porting of questions, which is biased by perception and memory. Developers are likely to
perceive the hardest, longest, most frustrating problems, not necessarily the problems that
often cause a small inconvenience or for which developers never even realize a problem
exists. And the prompt itself introduced bias. Developers were first primed with rating the
difficulty and frequency of reachability questions, perhaps leading them to be more likely to
recall similar questions. However, developers also did not report the reachability questions
they rated in their free responses, thereby reducing the frequency of reachability questions
in their reported hard-to-answer questions. Thus, the frequency of reachability questions in
this study is likely to be biased. More generally, asking developers to report questions they
ask might have limited the scope of the challenging information needs which the developers
considered.
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6.5. Conclusions

This study revealed the great breadth of challenges developers face in coding activities. De-
velopers reported 92 hard-to-answer questions, spanning many areas of software engineer-
ing research. Some of these questions are addressed by existing commercial or research
tools; more work is required to determine if these tools help to answer these questions.
Other questions point to new opportunities for tools. Several of the questions developers
asked were related to reachability questions, suggesting that a tool that helps developer an-
swer these questions would address some of developers’ perceived problems. In the next
chapter, reachability questions are investigated in detail.
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7.

DEVELOPERS ASK REACHABILITY QUESTIONS7

In the previous chapters, studies of code exploration focused on its context, relationship to
design knowledge, and connection to hard-to-answer questions. As developers build their
mental model of the code, developers ask questions and read the code, talk to teammates,
and use design knowledge to answer these questions. But how can a tool best support code
exploration?

Many of developers’ questions involve control flow. In the Exploration Lab Study (see Chap-
ter 5), developers spent much of their time traversing call sites to callees or looking at call-
ers of methods. Beginning at a method they thought was most relevant, they read its code.
To understand what exactly it was doing, they read code in methods it called. To understand
when it was called and for what purpose it was used, they read its callers. But, rather than
simply trying to read all the code, developers seemed to often have a specific question in
mind.

While this suggests the potential applicability of a tool, many questions remain to under-
stand how such a tool might support developers’ work. What exactly are developers asking
when dealing with control flow? Are these questions really an important part of coding
tasks? How long do developers spend answering them? What challenges do developers
face? And what problems do these challenges cause for software development work?

To answer these questions, I reanalyzed data from the Exploration Lab Study (Section 7.1.2)
and conducted two additional studies: a Reachability Survey (Section 7.2) and Reachability
Observations (Sections 7.3 and 7.4). These studies are reported in this chapter. These stud-
ies discovered that reachability questions are an important part of exploring code. Consider
an example from the Exploration Lab Study: after proposing a change, a developer sought to
determine if it would work before implementing it. To do so, he wanted to determine “all of
the events that cause this guy to get updated”. While he was aware that a call graph explora-
tion tool could traverse chains of method calls, this did not directly help. Upstream from the
update method was a bus onto which dozens of methods posted events, but only a few of
these events triggered the update. Existing call graph tools are unable to identify only those
upstream methods sending the events that would trigger the update of interest. Unable to
answer the question in any practical way, he instead optimistically hoped his guess would
work, spent time determining how to reuse functionality to implement the change, edited
the code, and tested his changes before learning the change would never work and all his

7 This chapter based on work previously published in [LM10-1].



Chapter 7: Developers Ask Reachability Questions 98

effort had been wasted.

This chapter presents data about reachability questions gathered from over 470 developers
and over 70 hours of direct observations of coding tasks. In the Exploration Lab Study, de-
velopers often inserted defects because they either could not successfully answer reachabil-
ity questions or made false assumptions about reachability relationships. The Reachability
Survey found that, on average, 4.1 of these were thought to be at least somewhat hard to
answer. And these questions were not limited to inexperienced developers or those new to
a codebase: neither professional development experience nor experience with their code-
base made these questions less frequent or easier to answer. Reachability questions can be
time consuming to answer. And, in the Reachability Observations, developers often spent
tens of minutes answering a single reachability question.

7.1. Reanalysis of exploration lab study data

In the Exploration Lab Study (Chapter 5), we observed 13 developers at work on two 1.5
hour long changes to an unfamiliar codebase. It was found that experienced developers
used their more extensive knowledge to diagnose the problem and formulate a fix address-
ing the underlying cause of the design problem rather than simply its symptoms. When we
designed, ran, and first analyzed this study, we did not have the concept of reachability
questions in mind. But, as we conducted the study, they emerged as an observed behavior.
Hence, we decided to analyze more carefully how often and in what forms reachability
questions occurred.

To do this, we first looked at the bugs developers inserted and their incorrect understand-
ings of code. Despite spending almost the entire task asking questions and investigating
code, developers frequently incorrectly understood facts about the code. Acting on these
false facts, developers implemented buggy changes. In some cases, developers realized the-
se changes were mistaken and abandoned them, reverting the code. When developers in-
serted defects (whether or not they were still present in the final code produced), we ana-
lyzed questions developers asked and actions they took to look for specific information they
incorrectly understood. We then examined which of these defects were related to reachabil-
ity questions developers asked or might have asked.

When developers did ask reachability questions, they used a number of strategies to answer
these questions. We also examined developers’ strategies to identify those that were partic-
ularly time consuming and error prone, and to understand the challenges developers faced
that caused these difficulties.

7.1.1. Method

The method used to conduct this study is described in Chapter 5. We conducted two addi-
tional analyses of the data. First, we identified edits to the code and clustered these into
changes. We labeled each change as to whether it was later abandoned and if it contained a
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bug. For changes containing a bug, we then looked to see if the developer had either asked a
question or had otherwise made an assumption. We then attempted to determine if the
question or assumption could be addressed by a reachability question. In a second analysis,
we looked for examples of time-consuming questions that developers spent ten or more
minutes answering.
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Figure 7.1. Developers using Eclipse’s call graph exploration tool to traverse callers
found it difficult to identify both feasible paths and those paths that lead to their tar-
get. In the view above, the methods on paths to the target have been manually high-
lighted - Eclipse cannot do this automatically. The target is several methods further
away, through paths with additional methods with high branching factors.

7.1.2. Results

Developers implemented an average of 1.2 changes per task. Developers abandoned chang-
es when they learned their changes could never work, found a bug they could not fix, or de-
cided they did not have sufficient time to finish the change. Developers abandoned an aver-
age of 0.3 changes per task, two thirds of which contained bugs. Developers abandoned
changes that did not contain a bug either because they no longer thought the change was a
good design or did not think they had time to finish it. Overall, developers spent over two-
thirds of their time (68%) investigating code - either testing or doing dynamic investigation
using the debugger (22%) or reading, statically following call relationships, or using other
source browsing tools (46%). They spent the remainder of their time editing (14%), con-
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sulting or creating other artifacts (task description, notes in Notepad, diagrams)(6%), or

reasoning without interacting with any artifacts (11%)
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Table 7.1. Questions developers failed to answer or false assumptions developers
made in the Exploration Lab Study that are (1) associated with an implemented
change containing a defect and are (2) associated with a reachability question (see
Section 1.2 and Table 1.1 for reachability question definitions). For each reachability
question, dist is the shortest call graph distance between the origin statement devel-
opers investigated and any statement found by the reachability question.
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7.1.2.1. Causes of defective changes

Half of all changes developers implemented contained a bug. In half of these defective
changes (8 changes), we were able to relate the bug to a reachability question either in a
false assumption that developers made (75%) or a question they explicitly asked (25%).

Table 7.1 lists the false assumptions or questions that were related to reachability questions
and the corresponding reachability question. Developers often made incorrect assumptions
about upstream or downstream behaviors as they reasoned about the implications of re-
moving calls currently present in the code. These assumptions took different forms depend-
ing on the change they considered. Upstream reachability assumptions often occurred when
developers asked or assumed that behavior was redundant and unnecessary because it
would always be called somewhere else. In these cases, the call graph distance from the
origin statement they were investigating to target behavior was often small (mean = 1.75).
These questions were challenging to reason about because it was difficult to determine
which calls were feasible. Downstream reachability assumptions often occurred when de-
velopers made false assumptions about how a method mutated data or invoked library calls.
Here, the relevant effect was further away (mean = 3.5 calls), and developers had no reason
to believe that traversing the path to the target would challenge their assumption.

7.1.2.2. Tedious and time consuming strategies

In addition to the bugs that arose from assumptions developers made when they should
have asked reachability questions, there were many cases where the developers did ask
reachability questions and formulated a strategy to answer them. Developers spent much of
the task investigating code by traversing calls in an attempt to understand what methods
did and the situations in which they were invoked. Most participants rapidly switched be-
tween a call graph view (static) and the debugger call stack (dynamic). Static investigation
allowed developers to navigate to any caller or callee at will. But as developers traversed
longer paths of calls, developers were likely to hit infeasible paths. Several guessed incor-
rectly about which paths were feasible. Dynamic investigation was more time-consuming to
begin - developers set breakpoints, invoked application behavior, and stepped through
breakpoint hits until the correct one was reached. At task start, most investigation was rela-
tively unfocused - developers attempted to make sense of what the methods did and the
situations in which they were called. As the tasks progressed and developers began to pro-
pose changes, the questions grew increasingly focused and developers sought to navigate to
specific points in code.

Developers differed greatly in the effectiveness and sophistication of the strategies they
employed. Particularly challenging for many participants was upstream navigation. Two
participants did not realize they could visually scan the call stack to find an upstream meth-
od and instead spent much time (16 mins, 10 mins) locating the method by using string
searches and browsing files. Three participants spent ten or more minutes (17, 13, and 10
mins) using a particularly tedious strategy to navigate upstream from a method m across
only feasible paths: adding a breakpoint to each of m’s callers, running the application, exe-
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cuting functionality, noting which callers executed, and recursing on these callers. Many
participants used Eclipse’s call graph exploration tool to traverse calls, but then they trav-
ersed infeasible paths and they experienced problems determining which calls led to their
search targets (Figure 7.1). The three most experienced participants instead invoked the
functionality and copied the entire call stack into a text editor. But even these experienced
participants experienced problems reasoning about reachability relationships. These partic-
ipants created three of the reachability question related defects.

7.1.3. Discussion

Despite spending much of the task investigating code, developers were often unsuccessful
in correctly understanding what it did. Developers made many false assumptions about re-
lationships between behaviors that in some cases led to defects. Developers’ tools were ill-
suited for answering reachability questions, often forcing them to use tedious and time-
consuming strategies to answer specific well-defined questions. And had developers been
able to more easily check their erroneous assumptions that led to defects, their changes
might have been more accurate.

While these results suggest that reasoning about reachability relationships is important for
developers who are trying to understand unfamiliar, poorly designed code, these results
might not be generalizable. While we expect developers do work with such code in the field,
it is unclear how typical such a task is. While the carefully controlled setting of a lab study
allowed us to evaluate the success and accuracy to a degree impossible in the field, lab stud-
ies are never able to perfectly replicate conditions in the field. Understanding real code in
more typical tasks might involve fewer and less challenging reachability questions. Devel-
opers working in the same codebase over a period of time might be able to use their
knowledge to directly answer reachability questions as studies suggest developers learn
facts including callers and callees of methods with increasing experience [FMH07]. Devel-
opers had limited time in which to work, which likely led them to rush changes with less
investigation than they might otherwise have done. And several developers did not seem to
have had much experience understanding large, complex codebases. Are reachability ques-
tions frequent and challenging for developers at work in the field?

7.2. Reachability survey

In order to understand the frequency and difficulty of reachability questions in the field, we
conducted a survey of developers in which they rated 12 questions for difficulty and fre-
quency.

7.2.1. Method

We randomly sampled 2000 participants from among all employees at Microsoft’s Red-
mond campus listed as a developer in the address book. Each was sent an email inviting
them to participate in our survey. We received 460 responses from developers and exclud-
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ed 8 additional responses from non-developer positions (we consider the 460 respondents
here, in contrast to the 179 respondents who completed the free response item and are de-
scribed in Section 6.1). Respondents included 14 architects, 43 lead developers, and 403
developers. Most worked in a single or shared office while a small number (33) worked in
an open, shared space. Respondents ranged in professional software development experi-
ence from the very inexperienced (0 years) to the very experienced (39 years), with a medi-
an of 9 years experience. Respondents frequently changed codebases, ranging in time spent
in their current codebase from 0 to 8.33 years, but with a median of only 1 year. Neverthe-
less, 69% agreed that they were “very familiar” with their current codebase. Developers’
teams were involved in a wide range of activities - 43% bug fixing, 34% implementation,
16% planning, and 7% other. Developers reported that they typically spent 50% of their
work time editing, understanding, or debugging code, with a range from 0 to 100%.

In the main portion of the survey, developers were asked to rate the frequency and difficul-
ty of 12 questions. These questions were selected from the questions reported in a previous
study of developers’ questions about code [SMV08] and questions identified in the Explora-
tory Lab Study. Some of these were closely related to reachability questions (“In what situa-
tions is this method called?”) while others were more indirectly related (“What are the im-
plications of this change?”). However, we observed many of the indirectly related questions
being refined into reachability question in the Exploratory Lab Study. So, we hypothesized
that developers often answer these questions by asking reachability questions.

We piloted the survey with 4 graduate students and 1 developer to ensure that the meaning
of the questions was clear, and we used their feedback to rephrase questions that were un-
clear. For each question, respondents were asked to rate how often in the past 3 days of
programming they had asked the question and to rate its difficulty on a 7 point scale from
very hard to very easy. 56 participants did not answer all questions. When a participant did
not answer the questions necessary for a particular comparison, that participant was
dropped from that comparison. To analyze the data, we looked both at simple descriptive
statistics and correlations between ratings and demographic variables. We report these re-
sults using r (the Pearson product-moment correlation coefficient) and p (a statistical sig-
nificance measure - smaller is more significant).

7.2.2. Results

On average, developers reported asking more than 9 of these questions every day. These
questions were often hard to answer. Of the 12 questions that the developers rated, devel-
opers rated an average of 4.1 questions at least somewhat hard to answer and 1.9 as hard or
very hard to answer. Few developers thought all these questions were easy to answer: 82%
of respondents rated at least 1 question at least somewhat hard to answer, and 29% rated
at least 1 question as very hard to answer. Surprisingly, developers do not ask these ques-
tions significantly less frequently and they are not significantly easier to answer as they be-
come more experienced (r = -.07, p =.14; r = -.01, p = .81) or after spending more time in a
codebase (r =-.04,p =.41;r=-.07, p=.15). Nor does the quality of the codebase significant-
ly affect the frequency of these questions (r = -.08, p =.10). While it is harder to answer the-
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se questions on lower quality code (r = .36, p < .0001), it is not possible to say if this is
unique to these questions or simply that all questions become harder to answer in poorly
maintained code.
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¢ at least once per 3 days * at least twice a day
Figure 7.2. Frequency vs. difficulty for 12 reachability-related questions sorted by de-

creasing difficulty.

Figure 7.2 plots the questions’ frequency against difficulty. Interestingly, difficulty was posi-
tively related to frequency (r = .35, p <.0001). Both the most frequent and hardest to an-
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swer question was: “What are the implications of this change?” Generally, the most frequent
and difficult questions were the most high level. For example, half of respondents reported
asking “What are the implications of this change?” at least twice a day, and 63% of respond-
ents rated it at least somewhat difficult to answer. Of course, some questions are much
more frequent and difficult than others. Over 60% of developers thought answering “What
are the implications of this change?” was usually at least somewhat hard to answer, while
this was true of only 16% of respondents for “How are instances of these classes or data
structures created and assembled?”

7.2.3. Discussion

Our results revealed that developers frequently ask questions that they might refine into
reachability questions, that these questions are often difficult to answer, and that experi-
ence does not remove the need to ask these questions. These results suggest that answering
these questions is an important part of how all developers understand code, whether they
are new to a codebase or know it well and whether the codebase is poorly designed or well
designed. These findings are still limited in that all survey respondents were taken from a
single company. But respondents differed greatly by the products on which they worked, by
experience with the codebase, by overall professional experience, and by software project
phase. These results demonstrate that techniques that help developers more effectively an-
swer these questions are important. However, the results do not establish that developers
answer these questions by asking reachability questions. Do developers frequently ask
reachability questions, and are they time consuming to answer? What do examples of
reachability questions in the field look like?

7.3. Reachability observations

In order to better understand the situations in which developers ask reachability questions
and the strategies they use to answer them, we observed 17 developers at work on their
everyday coding tasks.

7.3.1. Method

We recruited 20 developers at Microsoft from the respondents to the Reachability Survey to
participate in observation sessions. I conducted the observations; in each, I visited a single
developer in their office. Developers used a variety of programming languages (C++, C#, Ja-
vaScript), editors, and debuggers. After briefly introducing myself and reviewing the pur-
pose of my study, participants were asked to work on a coding task in their codebase for the
remainder of the approximately 90 minute sessions. Three participants finished their first
task and chose a second task. When selecting tasks, participants were encouraged to choose
a task involving unfamiliar code, minimally defined as code they had not written themselves.
While only 35% of the tasks that developers chose were tasks they planned to do at the time
of our session, 95% (all but one) of the tasks they chose were on their lists of tasks to do.
The remaining task was a bug previously assigned to another team-member. The work we
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observed was not biased towards the beginning or the end of tasks: 45% of the tasks were
tasks the developer had previously begun, and developers completed 45% of their tasks. All
but one developer stopped working after they had completed testing their fix and before
having their teammates code-review the change.

I asked participants to think aloud as they worked. When deeply engrossed in the tasks,
participants occasionally forgot to talk, and I prompted them to resume by asking what they
were trying to do or having them confirm or reject a statement about what they appeared to
be doing. To record the sessions, I recorded audio and took notes. Two of the recordings
were lost due to equipment failure, leaving 18 participants. From the recordings and ob-
server notes, | produced time stamped, annotated transcripts of the sessions spanning 386
pages.

To analyze the data, I first reviewed the transcripts and qualitatively summarized what de-
velopers were doing. Next, | iteratively designed a coding scheme for describing developers’
activities. I coded 17 of the 18 sessions - one session did not include any implementation
task. Each session was coded for activity at one-minute time granularity. Participants occa-
sionally retrospectively described particularly memorable past tasks or talked about how
they approached tasks in general which we did not include in the activity list, but mention
in the discussion section. Developers were interrupted by replying to task-unrelated emails,
by teammates dropping by, or discussions with the interviewer. All task-irrelevant activity
was coded as an interruption and excluded from the analysis of time use. Due to equipment
failure, 15 minutes of the recordings were lost out of a total of 962 minutes of task-related
activity. In most cases, developers stopped working on their tasks once they had completed
its implementation. But one developer reached the end of his task and conducted a code re-
view. To be consistent, code reviews are not included in activity times.

7.3.2. Results

Developers spent a majority of their time understanding code by debugging (33%) or pro-
posing changes and investigating the implications of the changes (28%). 9 of the 10 longest
debugging and implication investigations were associated with a reachability question.

7.3.2.1. Activities

Figure 7.3 depicts the sequence of activities we observed and the time developers spent on
each. When working on a bug they did not already understand, developers first sought to
reproduce the problem by following steps in the bug report to confirm that the bug had not
already been fixed, ensure that a fix could be tested, and provide a way to begin using the
debugger. Developers faced with incorrect application behavior, either from the original
bug or introduced by their fix, debugged to assign blame to specific program points exhibit-
ing incorrect behavior. After determining the cause of a bug or when beginning a feature
implementation task, developers began to propose fixes to solve the problem and investi-
gated the implications of the proposals on program behavior. Developers then edited the
code to implement the change. When editing, developers sometimes reused existing func-
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tionality and sought to learn its name and how to correctly reuse it. Developers compiled
and built the application, sometimes producing compile errors they debugged. Finally, de-
velopers tested their changes, often revealing defects they then debugged.

Figure 7.3. Developers’ activities (circles with % of activity time) and transitions be-
tween activities (lines with % of transitions from activity). Transitions from an activi-
ty are in the activity’s color, and left to right transitions are above right to left.

7.3.2.2. Time-consuming activities

While debugging and investigating code, we again saw that developers frequently asked
reachability questions. In order to examine the relationship of these activities to reachabil-
ity questions, we looked for reachability questions in the 5 longest debugging and 5 longest
investigation activities. Each of these activities had a central, primary question developers
tried to answer throughout the activity. Surprisingly, the primary question in 9 out of 10 of
these activities was a reachability question (see Table 7.2). At the beginning of these activi-
ties, developers rapidly formulated a specific question expressing search criteria describing
statements they wished to locate. For example, to debug a deadlock, a developer began at a
statement and began traversing callees to try to find statements acquiring resources. 51
minutes later, this finally revealed the sequence of behaviors causing the deadlock.
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Developer’s primary question | Time | Reachability question Notes
(Debugging activities) (min)
Where is method m generating 66 find grep(errorText) in Finds the statement downstream
an error? traces (p, Mgare, Mend, 2) | from m outputting error text
What resources are being ac- 51 find Finds calls to methods acquir-
quired to cause this deadlock? ACQUIRE METHODS in | ing resources, including those
traces (p, o, d, ?) leading to the deadlock.
“When they have this attribute, | 35 find reads(attribute) in Finds downstream uses of at-
they must use it somewhere to traces(p, o, d, ?) tribute, including those generat-
generate the content, so where ing the content.
is it?”
“What [is] the test doing which | 30 compare( Finds differences in behavior
is different from what my app is traces(Piest, 0, d, ?), between the test program and
doing?” traces(Papp, 0, d, ?)) app program
How are these thread pools in- 19 find methods(T) in Finds any calls into methods in
teracting? traces(p, o, d, ?) thread pool types 7.
Developer’s primary question |Time| Reachability question Notes
(Investigation activities) (min)
How is data structure struct being | 83 |find writes(struct) in traces(p, [Finds all downstream statements
mutated in this code (between o o, d, ?) mutating struct
and d)?
“Where [is] the code assuming 53 compare( Finds different behaviors the code
that the tables are already there?” (traces(p, o, d, tablesLoaded), exhibits when tables are not loaded
(traces(p, o, d, tablesNot-
ILoaded))
“How [does] application state 50 |find writes(FIELDS) in Finds state changes caused by m
change when m is called denoting traces(p, Mgare, Mend , )
startup completion?”
“Is [there] another reason why 11 |find reachingDefs(status) in  [Finds upstream statements through
status could be non-zero?” traces(p, ?, d, ?) which values flow into status, in-
cluding those creating its values

Table 7.2a (top) and 7.2b (bottom). The 5 of the 5 longest debugging activities and the
4 of the 5 longest investigation activities associated with a reachability question. For
each activity, the developer’s primary question during the activity, the length of the
activity, and the related reachability question.

The one investigation activity that was not related to reachability questions dealt with un-
derstanding a section of code. The developer was reusing the code and exhaustively read it
in order to identify design decisions that might not be compatible with the way in which he
intended to reuse it.

When answering reachability questions, developers explored the code either dynamically
using the debugger and logging tools or statically using source browsing tools. Interestingly,
developers did not primarily use the debugger to debug and code browsing tools to investi-
gate implications. Instead, like the lab study participants, developers often made use of both
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tools as they sought to answer multiple lower-level questions or tried alternative strategies
for answering their primary question. Developers constantly dealt with uncertainty during
their tasks both from generating and testing hypotheses and wondering about the correct-
ness of results produced by their tools.

An example from the longest debugging activity helps illustrate several of these points. Ob-
serving an error message in a running application, one developer spent 66 minutes locating
the cause of the error message in the code. Using knowledge of the codebase, he rapidly lo-
cated the code implementing the command he had invoked in the application. But it was not
obvious where it triggered the error. Hoping to “get lucky”, he did a string search for the
error message but found no matches. Unsure why he did not find any matches, he next be-
gan statically traversing calls from the command method in search of the error. But he rap-
idly determined he was unsure which path would be followed when the command was in-
voked. Switching to the debugger, he stepped through the code until learning his project
was misconfigured and creating spurious results both in his debugger and code searches.
After resetting his project configuration, he again did a string search for the error string and
found a match. However, many callers called the method, any one of which might be causing
his error. So he returned to stepping in the debugger. Finally locating code that seemed rel-
evant, he quickly browsed through the code statically. Finally, he returned to the debugger
to inspect the values of some variables.

7.3.3. Discussion

Participants worked on their everyday tasks that dealt with unfamiliar code. In these tasks,
developers spent over half of their time debugging or reasoning about the implications of
their changes. In 9 of the 10 most time-consuming activities, the developer’s primary ques-
tion was a reachability question. Developers were at a point in code and had specific search
criteria describing the statements they wished to find. But finding these statements was
hard and time-consuming as developers searched through large amounts of task-irrelevant
code. In contrast to results from the Exploration Lab Study, the questions in the Reachability
Observations were all questions developers explicitly asked.

Like all studies, these findings may have been influenced by the practices and tools that de-
velopers used that might differ in other organizations. In organizations with more extensive
documentation or commenting processes, developers might rely on these more than the
code itself. Developers did not have access to sophisticated UML reverse-engineering tools.
None of our developers had unit tests extensive enough to rely on to test the correctness of
their changes. Extensive unit tests might lead to more implementation of speculative chang-
es, followed by testing, rather than extensive investigation prior to changes.

7.4. Additional examples

To gather additional examples of challenging reachability questions, several graduate stu-
dents at Carnegie Mellon University were asked to report examples of reachability ques-
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tions they had asked. These reports were not typical or easy to answer reachability ques-
tions, but some of the hardest, most tedious questions students experienced.

7.4.1. Debugging a null pointer exception

A PhD student at Carnegie Mellon reported a challenging debugging situation she was cur-
rently experiencing, and [ observed some of her work. She was working in a codebase she
had written herself that implemented a static analysis system called Fusion and had just
raised a NullPointerException. Her code has a simple protocol: an xMLRetriever object
was created, initialized, and later used. But, at the use site, there was a null pointer excep-
tion on one of its fields, indicating it had not been initialized. She wondered, how could an
XMLRetriever object ever be created without being initialized?

To answer this question, she spent 40 minutes debugging, using the debugger to inspect
values and inspecting code with code browsing tools. Her knowledge of the control flow
structure of the application helped her to generate and test hypotheses about why the ini-
tialization method might not have been called. As she worked, she tried to understand how
each of the places where the xMLRetriever is used were connected to the initialization call.
Might there be some path to one of the places where it is used along which it is not first ini-
tialized? But these paths were numerous and long; there were 96 paths, some as long as 13
calls. Traversing these paths was hard.

She eventually determined the answer: there was a conditional along the path to the initial-
ization call. The conditional was designed to select the cases in which another call should be
made, which normally corresponded to when the initialization should be called. But there
was a situation when these cases did not correctly correspond, and this caused the bug. To
fix the bug, she moved the initialization call out from inside the conditional.

7.4.2. Considering a change

A PhD student at Carnegie Mellon was considering several possible alternative changes and
wondered which one was the best design. To determine if one of the designs might work, a
question emerged: would an object with a null constituent part break existing code? If the
existing code supported this, a simple design could be used. To answer this question, she
explored the code. From experience, she knew the method usually used to create such ob-
jects, which it did by calling into a factory used to create one of many possible sub-types.
Much of the work of these methods was to set up the constituent parts. She hypothesized
that maybe objects could already be created with a null constituent part. But since such ob-
jects would not need the initialization provided by the factory, they might be created along a
different path that did not go through the factory. To test this hypothesis, she selected sub-
types and searched for references to their constructors. Unfortunately, there were many
subtypes. Selecting each one, searching for constructor references, and following the path to
see if it went into the factory was tedious and time consuming.



Chapter 7: Developers Ask Reachability Questions 111

7.4.3. Debugging incorrect results

Another Carnegie Mellon PhD attempted to debug code he wrote which used a framework
(for which he had source in his workspace). Using the framework, the results of his code
were mysteriously incorrect. Through extensive investigation, he narrowed the problem to
a Java Collection object which contained incorrect values. He next tried to understand
where the collection was being accessed and how it was being used. But control flowed back
and forth between his code and the framework, and finding the correct corresponding
method in each case was both tedious and made keeping track of the path challenging. He
wished to search downstream across this path for places where the collection was being
mutated.

7.5. General discussion

We found that reachability questions are frequent, often hard to answer, associated with
false assumptions that lead to bugs, and asked by developers in many of the most time con-
suming debugging and investigation tasks. Several developers in the lab study became so
overwhelmed investigating code that they gave up. Developers at work on actual tasks in
the field often spent tens of minutes answering single reachability questions when debug-
ging or investigating the implications of their changes. In all of these cases, developers
asked questions and explored the code to search for statements answering their questions.
Linking these diverse problems to reachability questions helps better explain their underly-
ing causes and suggests common solutions.

7.5.1. Strategies for answering reachability questions

Developers may choose from among several classes of strategies for answering reachability
questions: reasoning using facts they already know, communicating with teammates, or dy-
namically or statically exploring code. For code that developers know well, developers may
already know the answer [FMHO07]. But this level of understanding is difficult to achieve due
both to the number of reachability relationships present in a codebase and because rela-
tionships often change as developers edit the code. One field study participant spent several
minutes investigating code he had written himself a little over a year earlier because he was
not certain of several important details unique to his task and he was concerned others
might have edited the code. Conversely, even developers new to a codebase are able to gen-
erate hypotheses about reachability relationships by interpreting identifiers and using their
knowledge about how they expect an application to work. Exploration Lab Study partici-
pants assumed that an EditBus was connected to edit events. But when developers wished
to test these hypotheses, they used other strategies.

Developers communicate with their teammates both directly through face-to-face commu-
nication, instant message, or email and indirectly through documentation and comments.
Where they exist, documentation diagrams such as UML sequence diagrams could help an-
swer some reachability questions provided they anticipate the correct question. But nearly
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all of the questions we observed were highly specific to the developers’ task, making it un-
likely that such a diagram would exist. Developers occasionally made use of direct commu-
nication, often instant messaging teammates they thought might know all or part of an an-
swer. But teammates often were not available to immediately respond. Moreover, for longer
face-to-face interruptions, developers are sometimes expected to have already done due
diligence to get a general understanding before asking a lengthy question of a busy and
more knowledgeable teammate (see Chapter 4). Of course, teammates also eventually leave
the team, may be otherwise unavailable, might have forgotten the answer, or might never
have known the answer at all.

Thus, developers often answered reachability questions by exploring the code. In dynamic
exploration, developers run the program and observe its output either directly or through
tools such as a breakpoint debugger, logging statements, or logging tools. In some cases,
generating the trace to be dynamically investigated was difficult or impossible because spe-
cial hardware was required, it took a long time for the application to run and generate the
trace, or it was unclear what application input was necessary to generate the trace. A devel-
oper in the Reachability Observations study working with a web application added logging
statements before waiting a day for it to execute a lengthy batch job. Moreover, some reach-
ability questions forced consideration of all possible traces. Developers sometimes random-
ly invoked application behavior in an attempt to generate desired traces. When possible,
there were several advantages of dynamic exploration. Developers could inspect state and
even mutate state to select the trace being followed. Breakpoints allowed developers to
search for paths to a statement. But setting breakpoints was impractical when searching for
many statements (e.g., any method in a type) or when developers did not know the state-
ments for which they were searching (e.g., all statements related to scrolling).

Some of the problems we observed in the Exploration Lab Study could be attributed to a
lack of knowledge of effective dynamic investigation strategies. Developers exploring up-
stream by iteratively setting breakpoints could have instead much more effectively inspect-
ed call stacks. However, developers devising and choosing strategies must simultaneously
hypothesize answers to their questions, keep track of the question they are answering and
information they have found, and deal with frequent interruptions from teammates
[KDVO07]. In these situations, developers may not have time to reflect at length on their
strategies. Better educating developers about the types of questions they ask and the strat-
egies they could use to answer them might help them devise more effective code explora-
tion strategies. Of course, developers would also benefit from a tool that more directly sup-
ports these questions, as described in Chapters 9 and 10.

7.5.2. Challenges when statically exploring code

In static exploration, developers navigate the code by using source browsing tools such as a
call graph exploration tool or textual searches for names. In contrast to dynamic exploration,
static exploration does not require running the program. Call graph tools, such as the
Eclipse call hierarchy, allow developers to follow chains of calls through the source. Howev-



Chapter 7: Developers Ask Reachability Questions 113

er, we observed many cases where these chains contained infeasible paths that could never
execute. Through our direct observations and retrospective accounts from our participants,
we discovered several idioms that created correlated conditionals with widely separated
producers and consumers that were particularly difficult to statically explore. In an event
bus architecture, messages are created by a producer, sent over a bus, and subscribed to by
consumers. In COM, a pointer is initialized to a particular implementation of an interface
(producer) and passed to call sites invoking methods on the interface (consumer). In
frameworks, clients often register their implementations of framework interfaces with the
framework (producer) which then uses dynamic dispatch (consumer) to transfer control
back. In a property system, values referring to properties are created (producer) and used
to access property getters or setters which look up the property (consumer).

Several, but not all, of these idioms often produce high branching factors in the control flow
graph. A common interface (e.g., IRunnable in Java) may have many implementations, cre-
ating a large branching factor at dynamic dispatch. In an event bus, many methods call the
bus send method and many bus receive methods are called by the bus, creating two high
branching factor locations. For the developer, the effect of correlated conditionals is to cre-
ate many possible edges to traverse, forcing the developer to guess which are feasible or
attempt to manually simulate control flow by propagating data over control flow paths. We
observed that performing path simulation manually was nearly impossible for statements
with high branching factors as there were simply too many paths to consider.

7.6. Conclusions

Modern development environments provide developers with a debugger and source brows-
ing tools for exploring code. The studies reported in this chapter found that these tools only
indirectly answer reachability questions, which are a central part of many challenging cod-
ing tasks. The results suggest that developers could more quickly and accurately under-
stand and explore code with tools that more directly support answering reachability ques-
tions. But one of the significant challenges developers face when exploring code is dealing
with infeasible paths. A tool for helping developers explore code should also help filter their
exploration to those paths that are actually feasible and relevant to the questions develop-
ers ask.
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8.

FAST FEASIBLE PATH ANALYSIS

Consider the following code:

1 if (g)

2 h = false;
3 if (h)

4 foo();

Note that the path 1, 2, 3, 4 is infeasible. Recall that infeasible paths are caused by correla-
tions between conditionals - the branch taken at one conditional determines the branch
taken at a second conditional. For an execution path in which g is true and line 2 executes, h
will be false and line 4 will not execute.

More complex infeasible paths often occur in codebases. Consider the example in Figure 8.1
taken from the Exploratory Lab Study (see Chapter 5 and Section 7.1). This example is more
complex in two important respects. First, conditionals include not only Boolean flags but
also dynamic dispatch and instanceof tests. An instance of an anonymous subclass of Run-
nable is created and run is called on this instance. Statically, at the call site to run, any
method implementing run might execute. But, in an execution in which the object is of the
type of the anonymous class in setBuffer, that implementation of run will execute. This
also highlights the second important difference: parameters. The code that executes at the
call to run in addWorkRequest depends on the value of the parameter Runnable run. When
reached along a path from setBuffer, the value of run will be an instance of the anony-
mous class created in setBuffer. But, for other paths on which it is called, it could have
other values. Which paths are feasible depends on the context in which it is called - the val-
ues that have been assigned to parameters and fields.
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public void setBuffer(final Buffer buffer) {
Runnable runnable =|new Runnable() { public void run() { ... loadCaretInfo(); } }|

\}F‘S‘Manager' .runInAWTThread(runnable); dynamic d isptach

EditBus.send[new EditPaneUpdatd(this,EditPaneUpdate.BUFFER_CHANGED));

indirectly calls
public void add Request(Runnable run, boolean inAWT) {
if(threa = null) {

indirectly calls run.runQ;

private void finishCaretUﬁda (int oldCaretLine, int scrollMode, boolean fireCaretEvent) {

ifqqueuedCaretUpdate) réturn;

|gueuedCaretUpdate, = true
1f(!buffer.isTransactionInRrogress())
ate®);

_finishCaret!
flags in field
directly calls void _findshCarétUpdate()

if¢TqueuedCaretlp return;

1\ N
|queuedCaretUpdate, = queuedrireCaretivent = falsef

fireCaretEvent()y

instanceof tests

public void handleMe e(EBMessage msg) {
if{msg instanceof PropertiesChanged)
propertiesChanged(

else imesg instanceof EditPaneUpdatq)
handletditPanelUpdate 1tPanelpdate)msg);

public void updateCaretStatus() {

indirectly calls

ctly calls

Figure 8.1 Examples of infeasible paths created by constant-controlled conditionals.

creation statement ( ﬂcy,‘-&rue':)

o.method(flagﬂ»
public void method(boolean(ﬁauséActioﬂ)

propagation path

conditional if QauseActiod

t‘ry wse
branch

v X

Figure 8.2. Constant controlled conditionals involve a creation statement, propaga-
tion path, conditional, and branch.
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All of these are examples of infeasible paths caused by constant-controlled conditionals. A
constant-controlled conditional is a conditional containing an expression that will always be
one of several constants and whose possible values can be traced to one of several creation
statements containing constants. These values may be propagated through variable assign-
ments before reaching a conditional controlling the branch taken. Conditionals include both
if statements and dynamic dispatch. Examples of constant-controlled conditionals include
flags, anonymous classes and dynamic dispatch, and buses. Constant-controlled condition-
als often capture how code behaves differently in different contexts. Through dynamic dis-
patch and flags, calling contexts control the behavior of code they invoke. Depending on the
context, code may exhibit very different behavior.

For example, a bus lets a sender send a message to many recipients, who then decide, based
on the type of the message, if any action will be taken. While many senders may send mes-
sages and many receivers may receive messages, individual senders may send a small num-
ber of messages that are acted on by a small number of receivers. Accurately distinguishing
these connections greatly reduces the connectivity of the call graph - rather than all senders
being connected to all receivers, only those senders and receivers that are actually related
by sending and receiving a message are connected.

Infeasible paths make exploring code harder. In applications with extensive use of message
passing or dynamic dispatch, this can be particularly problematic, implying that there are
connections between portions of the codebase that are actually unconnected. When travers-
ing through calls, developers must track the values of variables by hand to understand what
is, in fact, connected, adding extra difficulty to the task. Moreover, developers often simply
guess and make assumptions, resulting in incorrect beliefs about code (see Section 7.2.2.2).

This chapter describes a novel approach to eliminating some of the infeasible paths caused
by constant-controlled conditionals quickly enough to be used in an interactive system: Fast
Feasible Path Analysis (FFPA). FFPA constructs summaries describing possible paths
through a method. When a search is executed, these summaries are used by an interproce-
dural analysis to partially path-sensitively propagate constants to determine which branch-
es through conditionals are feasible. In my case studies, FFPA is able to generate call graphs
using pre-computed summaries in 1 - 2 seconds of analysis time.

8.1. The static trace

FFPA represents feasible control flow paths through code as a static trace. A static trace is a
graph in which each node is a statement or expression (subsequently referred to simply as
statements) and directed edges denote possible successor statements. Like a control flow
graph, statements may have multiple successor statements at conditionals or at loops. But
when an analysis can determine that a path through a control flow branch is not feasible,
this successor is not present. A static trace contains expression nodes only for the specific
statements types of interest. Figure 8.3 shows a static trace for a toy example.
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a)
public void ri(Q) {
aQ;
}
public void r2Q) {
aQ;
}
public void a(Q) {
cQ;
b(false);
cQ;
b(true);
}
public void b(boolean flag) {
if (flag)
Library. libraryCall();
}

public void c(O {

b)

| public void r1() |—> public void a()

c() |—>| public void c() |

| public void r2() |

| public void b(false) |

| public void b(true) |

libraryCall()

Figure 8.3. a) A short program and b) its static trace.

Like a dynamic trace, a static trace maps variables to values. Static traces can be constructed
with variables mapped to values taken from a variety of possible sets. As FFPA constructs a
static trace by propagating constants using a static analysis, static traces in FFPA map vari-



Chapter 8: Fast Feasible Path Analysis 119

ables to either one of a small number of constants (true, false, or a runtime type) or the spe-
cial value T (“top”) signifying an unknown value. FFPA could easily be extended to include
additional constants (e.g., string constants, numeric constants, enums). During construction
(see Section 8.3.3), FFPA maintains a local store mapping variables to values, but this is not
included in the final static trace. However, each statement in the static trace contains a ref-
erence to the corresponding Java statement or expression in the source.

Like a dynamic trace, a method may occur multiple times when reached along multiple
paths. For example, in Figure 8.3, b() is present twice — once where flag is true and once
where flag is false. However, when a method is called a second time with the same parame-
ters, the previous trace is reused and an edge to the previous trace is created. For example,
c() is called from two different call sites that share a single trace. Similarly, a recursive call
to a method with the same parameters as a previous call reuses the trace. When the method
has not previously been encountered with these parameters, the recursive call is unrolled,
creating new method traces, until a previous method trace is encountered. Variables in a
static trace may only take on a constant value. Thus, the recursion unrolling must terminate
as there a finite number of parameters each of which may only take only one of a finite
number of constant values (e.g., true, false, runtime types). In practice, this usually quickly
terminates.

When FFPA cannot determine the path taken at a branch, the branch is flattened: state-
ments in the first branch are appended, then the second. However, information is not arbi-
trarily shared between branches:

boolean flag = false;

if (x > 5)

{
flag = m1Q);
n(flag);

}

else

{
m(flag);

}

is modeled as

n(miQ));
m(false);

Even though the branch structure has been flattened, the value of flag when passed into m is
(correctly) false, not the return value of m1() as it would be without the conditional.

Similarly, statements inside a loop are included once. The values of variables (and the paths
these values make feasible) correspond to the values found after analysis of the loop has
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reached a fixed-point. Each value assigned to a variable in a loop represents an approxima-
tion of all values it might ever hold on any iteration of the loop.

A static trace describes feasible paths through a developer’s code. At calls into library code
for which a developer does not have source, a static trace contains a node for the call site
but not the method itself. If the method returns a value, this value is .

Loops and recursion cause several complications. In a loop, a conditional cond determines
whether the path into the loop or exiting the loop is taken. Loops create cycles in the CFG -
statements inside a loop may execute many times. Like in data flow analysis [NNHO04], a sin-
gle, final context is computed for each statement, describing the statement’s behavior across
all iterations of the loop. Similarly, static traces include one method invocation per context
for each method invocation in the source, with a computed context that approximates all
possible contexts.

In a recursive call, a path of one or more method calls results in a method already on the
stack being reentered and executed a second time. Concrete traces might traverse this cycle
zero or more times. Static traces use two different devices to describe recursion. In some
cases, the context in which the method is reentered may differ from the contexts already
observed in the recursion. In this case, the static trace contains an additional copy of the
method with executed statements in contexts from this new iteration. But the number of
contexts in which a method can be observed is finite - there are a finite number of variables
and a finite number of constant values which each may take (non-constant values are mod-
eled as T). Eventually, the method will be reentered in the same context in which it was en-

tered on an earlier iteration. In this case, a back edge is created from the call site to an earli-
er portion of the static trace.

8.2. Analysis overview

FFPA generates a static approximation of paths that may execute. An alternative approach
would be to use a dynamic analysis in which the user starts the program, enters input to
demonstrate the situation of interest, and records an execution trace (c.f., [KM09]). A key
advantage of a dynamic trace is that it is fully precise and there are no false positives - only
statements that actually executed are included. But a static approach also enjoys several
advantages. It permits reasoning about behavior that may not be evident in a single trace or
even from many traces. Moreover, generating a dynamic trace is time-consuming for long
running operations, difficult when special hardware or setup is required, or even impossible
when it is unknown what input might cause the desired path to execute. For example, when
debugging a failure reported from the field with only a stack dump as the indication of the
problem, a developer may not know how to generate such a stack. Eliminating infeasible
paths might enable developers to use static investigation in situations in which they are
currently forced to use dynamic investigation.
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FFPA consists of 3 phases: data flow analysis, summary construction, and static trace con-
struction. In the dataflow analysis phase, it analyzes each method, finding possible in-
traprocedural values each variable might take. When a value cannot be determined, it is as-
signed the special value 7 (“top”), signifying no information. These values are then used in
the next phase, summary construction, to build a graph of possible paths through each
method, parameterized by the method’s parameters and return values from callees [SP81].
After a developer invokes a search, an interprocedural analysis uses the summaries to con-
struct a static trace, describing a call graph relative to the origin of the search.

In the first two phases, summaries are constructed and stored to disk for later use. Summar-
ies only need be recomputed when a method’s source changes. Thus, summary construction
can be relatively slow. In contrast, the interprocedural analysis is executed after the devel-
oper invokes a search and before any results are shown. During this time, the user is wait-
ing for a result. In order for the tool to feel interactive to the developer, a result must be ob-
tained in a few seconds of analysis time. The results should also be precise and correspond
mostly to feasible concrete traces. Thus, the two main goals of FFPA are performance and
precision.

FFPA generates static traces for both downstream and upstream searches (see Section 9.2.1
for a description of the user interface for searching). Downstream searches begin at an
origin method o and include all of the methods directly or indirectly called from o. FFPA
terminates at methods invoked by the framework that work as cutpoints, isolating a portion
of the call graph which executes in response to the call back. For upstream searches, roots
(methods with no callers) which might cause d to execute are first identified by traversing a
naive call graph (without any infeasible paths eliminated). FFPA is then invoked for each of
these roots, resulting in a set of static traces. Static traces that do not reach d are discarded.

8.3 Analysis approach

The goal of FFPA is to generate a static trace from a program p starting at a root statement o.
FFPA approximates the results of a symbolic execution of p beginning at o. FFPA tracks con-
stants through assignments and uses these values to determine which branch to take at a
conditional. But FFPA does this modularly (per method), computing paths through a meth-
od symbolically, parameterized by the values of formal parameters and returns from meth-
od invocations. FFPA analyzes executed statements in different contexts (context sensitive),
follows CFG paths (flow sensitive), and propagates distinct contexts to each branch at condi-
tionals (branch sensitive). FFPA is partially path-sensitive as it sometimes eliminates infea-
sible paths.

FFPA tracks Boolean and type constants. Type constants are created at object allocation (i.e.,
new Type ()) and at runtime type tests (i.e., x instanceof Type). FFPA could be extended
to track other constants such as string constants, null, enumerated types, or numeric con-
stants.
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FFPA generates static traces in response to developer searches. One way to ensure perfor-
mance would be to precompute static traces starting from every method in the program.
However, after the developer edits the source, it would then be necessary to recompute all
of the static traces. Thus, FFPA instead seeks to precompute as much as possible in method
summaries, using only information local to the method. After an edit, only the affected
summaries needs to be recomputed.

After FFPA has computed a static trace, this information may be reused. When a method is
reached a second time in the same context, the previous results can be reused. Or when a
second search is performed which includes parts of the same static trace, this information
can be reused. FFPA maintains a cache of static traces indexed by method and context.

8.3.1 Dataflow analysis

Dataflow analysis and summary construction modularly build a summary for a method m
which describes paths through m. Both phases are modular, using only information from m
(i.e., intraprocedural information). Summaries are parameterized by the interprocedural
sources through which values flow into m - formal parameters of m and return values of call
sites in m. Sources and constants are propagated path-sensitively through assignment
statements to sinks - actual parameters at call sites and return statements in m. Data is not
tracked through fields - all reads from fields yield .

v ==t | f| T | instanceof T |!instanceof T | T value
s u= m(On | p source
yu:=a|yval t path constraint
a u=<s,v> |aA<s, v> and term
lex=v | <s,v>|L lattice element
o= {xmle} tuple lattice element
w = {<y, 0>} set lattice element
types T

methods m

formal parameters p
program points n
program variables x

Figure 8.4. A syntax for data structures used in the data flow analysis.

Figure 8.4. lists the data structures used in the data flow analysis. FFPA tracks constant val-
ues, which include the Boolean constants t (true) and f (false). FFPA models the value of an
object simply by its type. When an object allocation is seen (e.g., new T()), FFPA knows the
exact type of the object, which it represents with the value T. In other cases, FFPA may only
have a constraint on the type of the object, such as when a path goes through an instance of
test. For these cases, FFPA uses the values instanceof T and !instanceof T. Finally, FFPA may
see other values (e.g., 5) or may join two unequal values together. FFPA represents these
other cases with the special value T, which indicates that nothing is known about the value.
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FFPA symbolically represents interprocedural information as sources. m(), indicates the
return value of the call to the method m on line n. p is a formal parameter. In the analysis,
FFPA builds path constraints y describing the path along which information has originated.
As a dataflow analysis, FFPA computes a map from edges in the control flow graph (points
before and after statements) to a set lattice element w. Each element in w is a pair <y, o>
indicating constraints y on the path taken by information in the element and a tuple lattice
element o, which maps program variables to lattice elements. Each lattice element is either
a value v, a source on which FFPA has computed a constraint of v, or 1, the initial value of
variables before they have been assigned.

Figure 8.5 illustrates a simple example. At line 1, the source variable o is initialized to the
source o and y is initialized to T as it is neither a Boolean variable nor an object. At line 2,
the method call n(f1, T)2 is encountered, and the source for its return value is stored in f2.
At line 3, the method call to | is encountered, but since it has no return value, there is no
source to store.

1 public void a(Object o, int y) {
2 boolean f2 = n(o, y);
3 1(f2);
3
w = {<t,0>} where o is as follows after each line:
Line | o y f2
1 o T
2 o T n(f1, T)2
3 o T n(f1, T)2

Figure 8.5. A simple example of the dataflow analysis results for a method invocation.

The dataflow analysis is partially-path sensitive, tracking information for different paths in
distinct os. When the data flow analysis encounters a conditional cond, each o is inspected
to determine the branches to which it should be propagated. When cond contains an ex-
pression that o0 maps to a Boolean source s, a fork occurs. This creates two new os, replacing
the existing o, representing the case in which s is true and the case in which s is false. In the
new os, a constraint is added to s, mapping s to either <s, t> or <s, f>. To record this con-
straint on o, the path constraint y in <y, 0> is conjoined with <s, t> (or as <s, f>), as appro-
priate.
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1 public void a(Object o) {
2 boolean r = false;
3 if (o instanceof ()
4 r = bQ;
5 Object p = cQ;
6 if ()
7 p = foo(Q);
}
1 w={<t, {o~ 0>}
2 w={<t, {om o0, r—=f>}
3 w = {< <o, instanceof C>, {o = <o, instanceof C>,r = f >,
< <o, linstanceof C>, {o ~ <o, linstanceof C>,r = f> >}
4 w = {< <o, instanceof C>, {o = <o, instanceof C>,r = b()4+ }>}
5 w = {< <o, instanceof C>, {o = <o, instanceof C>,r = b()s,p = c()s5>,
< <o, linstanceof C>, {o ~ <o, linstanceof C>,r = f,p = c()s} >}
6 w = {< <o, instanceof C> A <b()s4, t>, {0 = <o, instanceof C>,r = <b()4, t>, p = c()s5>,
{< <o, instanceof C> A <b()4, f>, {0 = <o, instanceof C>,r = <b()4, >, p = c()s>,
< <o, linstanceof C>, {o = <o, linstanceof C>,r = f,p = c()s} >}
7 w = {< <o, instanceof C> A <b()4, t>, {0 = <o, instanceof C>,r = <b()4, t>, p + foo()7>,

Figure 8.6. FFPA forks os when sources are evaluated in conditional expressions.

Figure 8.6 illustrates the creation of forks. At line 3, FFPA encounters a conditional with the
expression o instanceof C. FFPA forks the incoming o, creating two new os, one where the
expression is true and the other in which it is false. This is stored both in path constraints
on the new os and in o. The o where the expression is true is propagated into the true
branch of the conditional. At 4, r is updated with the return value from b(). Before 5, the ws
from the true and false branch are combined. As the contents and path constraints differ for
each o, the resulting w includes the os from each. At 6, one of the os maps r to false. This o is
not propagated into the conditional. The other o0 maps r to a source, so this ¢ is forked on r,
resulting in two new os.

Other statements also evaluate expressions with Boolean values and may also fork contexts.
At statements of the form /x or x instanceof Type, FFPA consults the context for the value of x.
If x is a source, x is forked, creating a context in which x has a false constraint and a context
in which x has a true constraint. If x has a value, this value is used.

As in standard dataflow analysis [NNHO04], loops are analyzed iteratively until a fixed-point
is reached and the results do not change. But forking loop guards poses a problem:

x = false;
while (foo())
x = bar();

Forking foo () only in the loop’s first iteration would create two os - one with <foo(), t> and
a second with <foo(), f>. However, the o with <foo(), t> would never escape the loop. Al-
ternatively, reforking foo() at every loop iteration solves this problem, but results in os that
traveled through the loop with path constraints including <foo(), t>. This causes it to not
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match the correct paths in the next phase. To solve this problem, loop guards are never
forked. As a result, all loops are modeled as executing both at least once and zero times,
with no fork distinguishing these cases.

public void e() {

1 x = false;
2 while (foo())
3 x = bar();
4 baz();

ks
1 w={<t {x=f}>}
2 w={<t {x=f}>}
3 w={<t{x~bar();}>}
2 w={<t {x-=T}>}
3 w={<t{x~bar();}>}
4 w={<t {xHT}>}

Figure 8.7. As in standard dataflow analysis, loops are iterated until a fixed-point is
reached.

Figure 8.7 illustrates FFPA’s handling of loops. At line 2, foo() is not forked, as it is in the
guard for a loop. Instead, one copy of ¢ is propagated into the loop (the true branch) and
another out of the loop (the false branch). After analyzing 3, FFPA continues to iterate the
loop until a fixed-point is reached. The w after 3 is joined with the w incoming into the loop,
resulting in x being mapped to T. Finally, after a fixed point is reached, FFPA analyzes line 4
and the outgoing w from inside the loop is joined with the w sent on the false branch, result-
ing in x again being T.

Consider a series of uncorrelated conditionals (e.g., the values of x; ... x, are unrelated):

if (x1)
if o)

When x; ... x, are each source variables, each conditional will result in all of the contexts be-
ing forked. As a result, the final number of contexts will be exponential in the number of
statements. To prevent this, FFPA joins contexts when the path-sensitivity provided by
keeping them distinct no longer provides any benefit in precision. This occurs for variables
that are dead and will never be read again in m. Contexts that differ only in dead variables
always follow the same paths through m. FFPA employs a path-insensitive, flow-sensitive
intraprocedural live variable analysis to compute a set of dead variables before every
statement. Entries for dead variables are removed from all contexts, and identical contexts
are joined. In the best case - a list of uncorrelated conditionals where the variables written
by a conditional are dead before the next conditional - FFPA maintains at most two contexts
at any statement.
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1 public void d(boolean a, boolean b, boolean c¢) {
2 if (a)
3 fool(b);
4 if (b)
5 foo2Q);
6 if (o
7 foo3();
3
1 w={<t{arab —»bcmc}>}
2 w={<<at>{arm<at>,b »bcmc}> <<af>{a<af>b-»bcc}>}}
3 w={<<at>{b »bcrHc}>}}
4 w={<<b,t>,{b »<b,t>,c>c}> <<b,f>,{b »<b,f>c—c}>}}
5 w={<<b,t>,{c~c}>}
6 w={<<ct>,{cm<ct>}> << > {cm<cf>}>}}
7 w={<<cts{}>)

Figure 8.8. FFPA eliminates dead variables from o, allowing identical tuple lattice el-
ements to be combined.

Eliminating dead variables allows FFPA to only require a constant number of os for a series
of uncorrelated conditionals, as illustrated in Figure 8.8. At line 1, the parameters are initial-
ized. At line 2, FFPA encounters a conditional with a Boolean variable. A fork occurs, and the
current o is split into two os, one constraining a to be true and one constraining it to be false.
The o with a true is propagated along the true branch of the conditional and into line 3. At
line 3, the call to foo1() occurs, but there is no return value, so nothing is updated. But the
variable a is now dead, so it is dropped from o. Before line 4, the ws from the true and false
branch are joined. As each has os with different constraints, the new w includes both. But,
the os are identical, so they are joined into a single context. Taking the disjunction of the
path constraints <a, t> and <a, t> yields a true path constraint. But, the whole forking pro-
cess begins again with b - two new aos are created with b true and b false. The o with b true
is propagated to 5, and the paths are recombined at 6. Finally, the process repeats on lines 6
and 7 with c. By removing the variables with constraints as soon as they become dead, the
differences between os are eliminated, allowing them to be joined together, and preventing
an exponential blowup in the number of os.

In practice, this approach usually results in a small number of os. However, loops defeat the
live variable analysis, as variables may be read on subsequent iterations of the loop. Thus,
uncorrelated conditionals in a loop still result in an exponential number of tuple lattice ele-
ments. To ensure that code with deeply nested loops with many conditionals does not ex-
haust memory or time bounds, new contexts are not created after 1200 have already been
created in a method. This number was chosen to limit memory usage. In this case, new con-
ditionals with sources in the guards are treated as if they did not have sources (e.g., if (x) is
modeled the same as if (x > 5)).
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public void f(boolean f1, boolean f2) {
Boolean x = false;
int 1 = 0;
while (i < 10) {
if (f1)
X
if (f2)
X

foo(x);

bar();
i++;

Ooo~NOOUTL P WN P

1
}

w={<t{fl-f1,2-f2,x-f}>}
w={<t{fl=f,2-2,x->fi> T}>}
w={<t{fl=f1,2-2,x=>fi> T}>}
w={<<fl,t>,{fl = <fl,t>, 22, x> fi> T}>}>,

<<fl,f5 {fl><fl,>,2=2,x-fi> T}>}>
w={<<fl,t>,{fl > <fl,t>,f2 = {2, x = foo()s,i = T}>}>}>
6 w={<<fl,t> A <f2,t>, {fl » <f1, t>, {2 » <f2, t>, x = foo()s,i = T}>}>,
<<fl,t> A <f2, f>, {f1l & <f1, t>, {2 - <f2, £>, x> foo()s,i ~ T}>}>,
<<fl,f>A <f2,t>, {fl » <f1, >, 2 » <f2, t>, x> f,i > T}>}>,
<<fl,f5>A <f2,5,{fl > <f1, 5,2 > <f2, >, x = f,i > T}>}>}

Bw N R

vl

7 w={<<fl,t>A <f2,t>, {fl = <f1, t>,f2 > <f2, t>, x = bar()7,i » T}>}>,
<<fl,f> A <f2,t>,{fl & <f1, >, 2 > <f2, t>, x > bar()7,i = T}>}>}
8 w={<<fl,t> A <f2,t>, {fl » <f1, t>, {2 = <f2, t>,x > bar()7,1 = T}>}>,

<<fl,t> A <f2, f>, {f1l » <f1, t>, {2 = <f2, f>, x> foo()s, i » T}>}>,
<<fl, > A <f2, t>, {fl & <f1, £>, f2 > <f2, t>, x > bar()7,i - T}>}>,
<<fl,f>A <f2,5,{fl > <fl, 5,2 > <f2, >, x = f,i > T}>}>}
3 w={<t{fl=fl, 212, x-=>1fi->T}>,
< <fl,t> A <f2, t>, {f1 & <fl, t>, f2 & <f2, t>, x > bar()7,i - T}>}>,
<<fl, t> A <f2, f>, {f1 » <f1, t>, {2 = <f2, £>, x> foo()s,i > T}>}>,
<<fl, > A <f2, t>, {f1 & <f1, £>, f2 > <f2, t>, x > bar()7,i - T}>}>,
<<fl,f5>A <f2,5,{fl > <f1, 5,2 > <f2, >, x = f,i > T}>}>}

4 w={<<fl,t>,{fle<fl,t>, 2 2,x=>fi> T}>}>,
<<fl, 5, {fl><fl,f>, 22, x=>fi>T}>}>
<<fl,t> A <f2, t>, {f1 » <f1, t>, f2 & <f2, t>, x = bar()7, 1~ T}>}>,
<<fl,t> A <f2, f>, {f1 & <f1, t>, 2 > <f2, £>, x = foo()s, i = T}>}>,
<<fl, > A <f2, t>, {f1 & <f1, £>, {2 » <f2, t>,x = bar()7,1~» T}>}>,
<<fl,f>A <f2, 5, {fl » <f1,£>, 2 5 <f2, f>, x> f,i > T}>}>}

5 w= {<<fl,t>{fl » <fl,t> 2 > f2,x > foo()s, i~ T}>}>,
<<fl,t> A <f2, t>, {fl = <f1, t>, f2 > <f2, t>, x> foo()s,i = T}>}>,
<<fl,t>A <f2,f>,{fl > <f1,t>, {2 & <f2, >, x = foo()s ,i = T}>}>}

6 w={<<fl,t>A <f2,t>, {fl > <fl, t>, {2 > <f2, t>, x > foo()5,i » T}>}>,
< <fl,t> A <f2, f>, {f1l & <f1, t>, {2 = <f2, £>, x & foo()s,i = T}>}>,
<<fl, > A <f2, t>, {fl & <f1, £>, f2 & <f2, t>, x > bar()7,i = T}>}>,
<<fl,f>A <f2,£5,{fl & <f1, 5,2 > <f2,f>,x = f,i & T}>}>}

7 w={<<fl,t>A <f2,t>, {fl » <f1, t>,f2 > <f2, t>,x > bar()7, i » T}>}>,
<<fl, > A <f2, t>, {f1 & <f1, £>, {2 = <f2, t>, x = bar();,i - T}>}>}
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8 w={<<fl,t> A <f2,t>, {f1 » <f1, t>, f2 & <f2, t>, x > bar()7,i - T}>}>,
<<fl, t> A <f2, f>, {f1 » <f1, t>, {2 = <f2, £>, x> foo()s,i > T}>}>,
<<fl, > A <f2, t>, {fl & <f1, £>, f2 & <f2, t>, x > bar()7,i - T}>}>,
<<fl,f>A <f2,£5,{fl & <f1, 5,2 > <f2,f>,x = f,i & T}>}>}

9 w={<t{fl=fl,2-=2,x->fim T}>,
<<fl,t> A <f2, t>, {f1 & <fl, t>, f2 & <f2, t>, x > bar()7,i - T}>}>,
<<fl, t> A <f2, f>, {f1 & <f1, t>, {2 = <f2, £>, x> foo()s,i » T}>}>,
<<fl, > A <f2, t>, {fl & <f1, £>, f2 > <f2, t>, x > bar()7,i = T}>}>,
<<fl,f>A <f2,5, {fl > <f1, 5,2 > <f2, >, x = f,i > T}>}>}

Figure 8.9. Uncorrelated conditionals in a loop result in an exponential number of tu-
ple lattice elements being created.

Figure 8.9 illustrates what happens when uncorrelated conditionals occur in a loop, causing
the number of os to grow exponentially. At line 4, FFPA performs the first fork, resulting in
two os. But, at line 6, x is not dead, so it is not removed from the tuple lattice. As a result, the
os created by the fork on f1 still differ and are not combined when the paths join before 6.
Similarly, FFPA forks again on line 6, resulting in 4 os. After line 8, the w that went through
the loop is joined with the initial incoming w into the loop, and FFPA continues until the re-
sults for statements in the loop reach a fixed-point.

While dead variables do not influence the path a context follows, dead variables still indi-
cate the path already followed. This information is needed in summary construction (see
8.3.2) to determine the path to which the context should be matched. To maintain this in-
formation while preventing an exponential blowup in the number of contexts, each context
includes a path constraint y containing constrained sources in disjunctive normal form.
Whenever a fork occurs, the constrained source is conjoined with each term in the path
constraint. When identical contexts are joined at control flow merges, the new context's
path constraint is the disjunction of tuple lattices, simplified where possible.

8.3.2 Summary construction

sn ::=[c] stmt; ... stmt; summary node
cu= <sl,vl> constraint

stmt is a method call or return statement where all expressions have been substituted with lattice
elements.

Figure 8.10. The data structures used in summaries.

Summaries model paths through a method, parameterized by formal parameters and the
return values of method calls. Any information irrelevant to constructing a static trace is
removed, reducing the number of statements along each path. Each path consists of a list of
method call and return statements, where all expressions they contain have been substitut-
ed with lattice elements.
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Paths are represented through summary nodes (see Figure 8.10). Each summary node con-
sists of (optionally) a constraint on a source variable and a list of statements. When a fork is
encountered, child summary nodes will be created with both true and false constraints.

Representing summaries as a tree of summary nodes would be highly inefficient, resulting
in an exponential number of branches in the tree. Fortunately, many paths contain identical
portions. Therefore, FFPA represents summaries as a directed acyclic graph of summary
nodes. When two paths contain identical suffixes, the paths can share common summary
nodes. The two paths are linked together by connecting to a common summary node.

As summary construction occurs, several pieces of data are tracked. The current leaf nodes
of the summary graph are tracked. And, for each of these nodes, the complete path con-
straint from the root of the summary graph is tracked (but only the last constraint - the
constraint on the summary node - is stored in the summary node). Summary nodes with
constraints inherit their parents’ constraints and add their own constraint. Common sum-
mary nodes inherit the intersection of their parents’ constraints.

Summary construction begins with a single empty leaf node. For each method call or return
statement, in textual order, FFPA finds the corresponding w computed in the data flow anal-
ysis and continues as follows:

1. Each tuple lattice element pair <y, o> in w is matched to compatible summary leaf
nodes (leaf nodes with no children). A <y, o> is compatible with a summary node if y
does not conflict with the summary node’s complete path constraint. Conflicts occur
when they are mutually exclusive (e.g, <x, f> and <x, t>). Note that either context
may contain additional constraints and still be compatible. Each leaf node may
match zero or more <y, o> pairs. Leaf nodes that match at least one <y, o> pair are ac-
tive leaf nodes.

2. Active leaf nodes are scanned for opportunities to create shared summary nodes. A
shared summary node is created when a node and its sibling are active, match the
same <y, o> pair, and the source variable in the constraint in which it differs from its
sibling is dead (note: there can only be one source variable that differs as summary
nodes are created and combined in pairs with a constraint on a single variable dis-
tinguishing them). This ensures that these summary nodes will not be recreated
when processing a future statement, as the source variable will not be referenced
further. When a shared node is created, FFPA returns to step 1.

3. Children for summary nodes may be created. If the y in the <y, 6> pair that matches a
node contains a constraint that is not in the summary node’s complete path con-
straint, this constraint is observed. Observing a constraint creates new true and
false summary child nodes. When this occurs, FFPA returns to step 1.

4. When a <y, 0> has matched a summary node, the statement is added to the summary
node. For each summary node, all matching os are joined, creating a new o. Every
expression in the statement is then substituted for its value in the new o.
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1 public void d(boolean a, boolean b, boolean c¢) {
2 if (a)
3 fool(b);
4 if (b)
5 foo2Q);
6 if ()
7 foo3Q);
3
1 w={<t{arab —»bcmc}>}
2 w={<<at>{ar<at>,b »bcmc}> <<af>{a<af>b-»bcc}>}}
3 w={<<at>{b »bcHc}>}}
4 w={<<b,t>,{b »<b,t>,c~c}> <<b,f>,{b »<b,f>c—c}>}}
5 w={<<b,t>,{c~c}>}
6 w={<<ct>,{cm<ct>}> << > {cm<cf>}>}}
7 w={<<cts{}>)

Starting values: empty summary node sn;
ANALYZING LINE 3

1. sn; compatible with <<a,t>,{b »b,c—c}>
2. No shared nodes created
3. Constraint on a observed. snz= [<aq, t>] snz= [<a, f>]

1.snz = [<a, t>] compatible with <<a,t>,{b = b,c— c}> sn3= [<aq, f>] compatible with nothing
2. No shared nodes created.

3. No children created.

4.snz = [<a, t>] fool(b); snz= [<a, f>]

ANALYZING LINE 5:

1. sn; compatible with <<b,t>, {c~ c}> snz compatible with <<b,t>, {c~ c}>
2. Empty shared node sns created as child of sn; and sn;

1. sns compatible with < <b, t>, {c = c }>,
2. No shared nodes created

3. Constraint on b observed. sns =[<b, t>] shs = [<b, f>]

1. sns compatible with < <b, t>,{c~ c}> shg compatible with nothing
2. No shared node created.

3. No child nodes created.

4. sns = [<b, t>] foo2(); sns = [<b, f>]
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ANALYZING LINE 7:

1.sns compatible with <<c,t>,{} > sns compatible with <<c,t>, {}>
2. Empty shared node sn; created as child of sns and sng

1. sny compatible with < <c, t>, {} > >
2. No shared nodes created
3. Constraint on c observed. sng =[<c, t>] sng =[<c, f>]

1. sng compatible with < <c, t>, {} > sng compatible with nothing
2. No shared node created.

3. No child nodes created.

4.sng = [<c, t>] foo3(); sng =[<c, f>]

Figure 8.11. The construction of a summary is illustrated, continuing the example from Figure
8.8.

Figure 8.12. The final summary computed in the example from Figure 8.11.

Figure 8.11 illustrates summary construction. Summary construction begins with a single,
empty, summary sni. FFPA first finds all method calls and return statements (at lines 3, 5,
and 7) and analyzes each in turn. At line 3, FFPA uses the w computed in the dataflow analy-
sis to process the call to fool(). sn; is found to be compatible with the only ¢ in w and
matches. No shared nodes are created, but the constraint on a in o is observed, causing two
new summary nodes to be created. As a result, FFPA returns to step 1 and matches the o to
sny. Finally, as only sn; matched a o, foo() is added to this summary node and the parameter
is substituted for its value in o which is also b.
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Atline 5, FFPA processes the call to foo2() with the results computed by the dataflow analy-
sis for line 5. The same ¢ matches both summary nodes. In the next step, FFPA examines if a
shared node should be created. FFPA find that sn; and its sibling snz are both active (they
matched a ¢), matched the same o, and the variable whose constraints caused their creation
(a) is now dead, indicating that the precision gained by having separate summary nodes for
a will not be needed in the future. Thus, FFPA creates a new shared summary node sns. Re-
turning to step 1, sns is compatible with the only 0. No shared node is created. But, in step 3,
a constraint on b is observed, resulting in two new child nodes being created. Thus, FFPA
again returns to step 1. The o is found to be compatible with sns. No shared nodes are creat-
ed, and no children are created. FFPA reaches step 4. As only sns matched a o, foo2() is add-
ed to sns.

At line 7, FFPA processes the call to foo3(). As in line 5, FFPA again first creates a shared
node, then two child nodes of the shared node (observing the constraint on c), and finally
adds foo3() to sns. Figure 8.12 depicts the final summary.

8.3.3 Static trace construction

Static trace construction uses summaries to construct a static trace. FFPA works similarly to
an interpreter: statements in summaries are executed, updating variables in local stores.
When a method is invoked, actual parameters are first bound to formal parameters using
the local store. The current stack frame is then pushed onto the call stack and a new stack
frame created with a new local store. Interpretation continues in the callee with the new
stack frame. After it returns to the caller, the caller’s local store is updated with its return
value.

As a method is interpreted, paths through the summary graph are traversed. At each step,
the next statement to be executed is found. When a summary node with a constraint is en-
countered, the local store is examined. If the constraint is shown true, execution continues
with the summary node. If it is false, execution continues with its sibling summary node
(whose constraint must be true). Otherwise, execution continues with both summary nodes.
When simultaneously executing multiple summary nodes, the same statement (labeled by
source location) may occur in more than one summary node, but with different values.

When this occurs, the values are joined: whenever they are not equal, they are .

FFPA may find recursive calls to methods currently on the stack. Whenever a method is in-
voked in the same context in which it is currently in the method stack, the call is not execut-
ed. Instead, a reference to the frame is appended and the return value is mapped to 1 (“bot-

tom”) in the local store. 1 is a special value denoting no information. While joining T with
any value is T, joining 1 with a value is the value. FFPA does not iterate recursive calls to an

interprocedural fixed-point, making it potentially unsound (it may not include some calls
that are actually feasible). It is unknown how frequently this occurs in practice.
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public void e() {
1 d(true, false, true);

e’s summary is sn. =d(t, f, t);

1 public void d(boolean a, boolean b, boolean c) {
2 if (a)

3 fool(b);

4 if (b)

5 foo2();

6 if ()

7 foo3();

3

d’s summary is shown in Figures 8.11 and 8.12

1. Analyze method e. Local store initialized as {}
2. Read statement d(t, f, t); from summary

3. Add to static trace fore. st.=d(t, f t);

4. Push onto stack frame. Go to d.

5. Local store initialized as{a=t, b = f, c = t}

6. sn; traversed, no statements found.

7. children sn; and snz found. sn; executes.

8. Read statement fool(b) from sn,.

9. Add to static trace for d. stq = fool(f);

10. foo1(f) is library call - no further action taken.
11. Encounter empty summary sny

12. children summaries sns and sne found. sne executes.
13. Encounter empty summary sne

14. Encounter empty summary sny

15. children sng and sno found. sng executes.

16. Read statement foo3() from sns.

17. Add to static trace for d. stg=fool(f); foo3();

18. foo3() is library call - no further action taken.

19. Done with constructing static trace d. Return to e.

20. Done with constructing static trace e.
Figure 8.13. An example of static trace construction.

Figure 8.13 illustrates constructing a static trace, continuing the summary construction ex-
ample. The summary for method e, which calls d is shown. Starting at method e, FFPA first
initializes the local store to the empty set and begins at the first summary node for e, sne.
FFPA executes the first statement, d(t, f, t) and adds it to the static trace for e. As this is a
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method invocation, FFPA next pushes the analysis of e onto the stack frame and begins ana-
lyzing method d.

Using the actual parameters at the call site in d, the local store is initialized with values for
the formal parameters a, b, and c. FFPA begins at the first summary node for d, sni, and
looks for the next statement to execute. As the summary node is empty, FFPA next looks at
its children, each of which have constraints on a. Examining the local store for a value of a,
FFPA finds that it is true. Thus, FFPA continues execution at sn;. FFPA now reads the state-
ment fool(b) from the summary. The local store maps b to f, so this is used for b’s value.
This is added to the static trace. As foo1() is a library call, FFPA does not execute foo1().

There are no additional statements in sns. Its child summary node sns4 is empty. Next, FFPA
encounters the children sns and sne, which each contain constraints on b. Finding that b is
false in the local store, FFPA continues execution with sng, which is empty. Its child, sny, is
also empty. Its children sng and sng have constraints on c. FFPA examines the local store and
finds that it is true, so it continues execution with sng. FFPA reads the statements foo3()
from sng, executes it, and adds it to the static trace for d. As there are no more summary
nodes, FFPA has finished constructing the static trace for d.

FFPA pops a stack frame from the stack, returning to the execution of the summaries for e.
As it has reached the end of the summary node and there are no more summary nodes,
FFPA completes the construction of the static trace for e. Figure 8.14 shows the final static
traces produced.

st Std

dt, f, t) — ffoo; ((f))
(o]0}

e

Figure 8.14. The final static trace produced by the example in Figure 8.13.

8.4. Implementation

FFPA is implemented as a static analysis for Java. It uses the Crystal static analysis frame-
work?, a data flow analysis framework for Java. Crystal relies on Eclipse’s AST (abstract syn-
tax tree) infrastructure. Summaries are stored to disk using the Java serialization frame-
work’.

¥ http://code.google.com/p/crystalsaf/
’ http://docs.oracle.com/javase/6/docs/api/java/io/Serializable.html
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8.5. Evaluation

FFPA is able to eliminate infeasible paths caused by constant-controlled conditionals when
it is able to determine a variable’s value at a conditional statement. More formally, FFPA is
able to resolve a conditional cond evaluating a source s by determining which branch is fol-
lowed when o maps s to a constant c. Let rd; ... rd, be the reaching definitions of s (infeasible
or feasible). FFPA determines s is a constant c at cond iff all reaching definitions rdy of s are
of one of three cases:

* FFPA found no feasible path from rdx to cond
* rdyassignsctos
* rdyassigns sc to s and, at rdx, sc is mapped to c.

These conditions inductively describe propagation paths by which s acquires a value c. In
the simplest case, a single assignment statement assigns s to ¢ which is read by cond. But,
more generally, ¢ may be propagated from multiple creation statements through assign-
ment statements to reach cond. One important requirement is that the creation statements
must all occur after the origin o. This is not the case for propagation paths originating from
a library call or callback.

The examples throughout Section 8.3 illustrate the potential precision benefits of FFPA. In
these examples, FFPA is able to use both instanceof constraints and Boolean flags to elimi-
nate paths through methods that are infeasible. More work remains to be done to evaluate
the frequency of FFPA’s benefits in practice.

An ideal way to evaluate the precision of FFPA would be to demonstrate its ability to reduce
the number of infeasible paths found in a call graph. One way to measure this would be to
take pairs of methods in a codebase and count the number of paths between them. Aver-
aged over many methods and, perhaps, biased towards pairs of nodes that might be more
typical of real searches (e.g., paths from user events to library calls), this would provide a
quantitative measure of precision. Unfortunately, counting the number of paths between
two nodes in an arbitrary graph is in the complexity class #P [V79], and thus there are no
known polynomial algorithms for doing so. Thus, approximation algorithms, algorithms de-
signed specifically for the types of graphs in call graphs, or heuristics (e.g., bounding the
lengths of paths) would be required.

FFPA’s performance has been established through use of REACHER in user studies. In the two
lab studies of REACHER (see Chapter 10), participants ran FFPA throughout their tasks. Par-
ticipants did not experience any interruptions waiting for FFPA: all queries completed in
under two seconds; most finished significantly faster. Summaries were constructed for the
entire codebase in tens of minutes before participants began and saved to disk.

FFPA employs several optimizations which may result in false negatives (not showing a call
that could execute) and thereby make it unsound. FFPA does not iterate interprocedural call
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graph cycles to a fixed-point. And loops are always modeled as executing at least once. The-
se optimizations may compromise FFPA’s soundness (causing false negatives as calls that
should be present are missed). While false negatives seem theoretically possible, no exam-
ples have been observed in practice.

Two of the most similar algorithms to FFPA are the Cartesian Product Algorithm (CPA)
[A95] and the Simple Class Set algorithm (SCS) [GDD97]. CPA is a call graph construction
algorithm which uses an interprocedural dataflow analysis. At call sites, CPA takes the Car-
tesian product of all subtypes of the receiver and actual parameters’ static types. With each
combination, CPA analyzes the callee, caching the result so that it can be reused at other call
sites. The SCS algorithm works similarly, but instead uses the static types of the receiver
and parameters. If CPA or SCS were to be extended to include Boolean flags, as well as types,
the resulting algorithm would be similar to FFPA. Like FFPA, both would cache results when
seen with identical parameters.

However, FFPA differs in several aspects. Most directly, CPA and SCS only track types, not
Boolean flags. CPA and SCS are not partially-path sensitive. Thus, CPA and SCS never deter-
mine which branch to follow at a conditional other than dynamic dispatch sites, causing
them to be less precise (include more false positives) than FFPA. CPA and SCS are interpro-
cedural dataflow analyses, and do not employ FFPA’s (possibly unsound) optimizations
such as not iterating interprocedural call graph cycles to a fixed-point and modeling calls
within a loop with a single calling context. In these cases, FFPA may have false negatives
that CPA and SCS do not. Finally, CPA analyzes each method invocation using the Cartesian
product of the receiver and parameter types, while FFPA and SCS do not. This may allow
CPA to be more precise in these situations, although such examples have not been observed
in practice. Moreover, this optimization reduces the performance of CPA, compared to FFPA,
as each method invocation may generate many method contexts to analyze.

8.6. Conclusions

FFPA produces call graphs free of some of the common types of infeasible paths caused by
constant-controlled conditionals. In contrast to slow but highly precise analyses such as
model checkers, FFPA only tracks constants. But, as a result, FFPA can generate call graphs
in only a few seconds of analysis time while eliminating some of the infeasible paths caused
by constant-controlled conditionals. The next chapter describes REACHER, an interactive tool
for exploring call graphs implemented using FFPA.
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9.

REACHER: SEARCHING ALONG CONTROL
FLow '

Studies of developers exploring and understanding code (Chapters 4-7) demonstrate that
today’s tools make answering reachability questions challenging. While today’s tools let de-
velopers traverse across calls, developers are forced to guess which paths are feasible and
lead to their targets. But what if developers instead used a tool that helped answer reacha-
bility questions?

This chapter describes the interaction design of REACHER, a tool for helping developers un-
derstand and explore code and answer reachability questions. Implemented as an Eclipse
plugin for Java, REACHER lets developers search along call graphs, make sense of call graphs,
and stay oriented as they navigate through code. See Figure 9.1 for an example of REACHER’S
call graph visualization. Table 9.1 describes how REACHER’S design was shaped by my stud-
ies of code exploration. Section 9.4 analyzes the applicability of REACHER’S design to the ob-
served reachability questions, highlighting several opportunities for additional features.

9.1. An example

To see REACHER in action, consider the challenging debugging task from Section 7.4.1. A de-
veloper debugging a null pointer exception tried to understand how XMLRetriever.
getStartContext () could ever be called without XMLRetriever.retrieve-
Relationships () being called first. Working in a codebase she had written herself, she
spent 40 minutes answering this question, using the debugger to inspect values and statical-
ly browsing. The task was hard because 96 paths connected these methods, some as long as
13 calls. Manually navigating and making sense of these paths was challenging.

REACHER makes this task easier by automating the search and visualizing the relevant por-
tion of the call graph. We illustrate this with a scenario of how the developer might have
instead worked using REACHER (see Figure 9.2). After opening XMLRe-
triever.getStartContext () in a Eclipse editor, she selects the method declaration and
opens a context menu. She searches along paths to the selected method by selecting search
upstream. Moving her cursor to the textbox in the REACHER Search view (upper right), she

1% This chapter based on work previously published in [LM11].
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method -
trieveRelationships () - by typing “retri”. As she types each character, REACHER lists

searches for connections to the other XMLRetriever.re-

matching statements below. Seeing retrieveRelationship () in the list, she clicks it, add-
ing it to the call graph visualization below.

Study result

Design recommendation

Developers search for statements by attribute
(e.g., field writes) and partial name.

Provide developers a configurable search dialog. As
developers begin to enter search terms, immediately
show matching statements.

Developers rapidly investigate, never returning
to most methods.

Provide expandable details on demand, and let devel-
opers go back and forward with a browser style history
navigation.

Developers explore huge call graphs, but the
task relevant portion is small.

Only depict the (task relevant) methods developers
select in a call graph visualization.

Developers reason about causality, class mem-
bership, ordering, choice, and repetition.

Provide developers an overview of this information in
the call graph visualization.

Developers get lost and disoriented reading
code in disparate places.

Let developers use the call graph visualization to navi-
gate their editor view.

Table 9.1. A summary of findings from studies of code exploration and the resulting
design requirements for tool support. REACHER incorporates all of these design rec-

ommendations in its design.

JEditTextArea

r—delete(..)

+setSelectedText(..,..)

JEditBuffer

~tallCaretDelete(..,..) G—)—O@— +remove(..,..) D=

Rangex
setText(..,..)
Rect
setText(..,..)

Figure 9.1. REACHER’s call graph visualization supports reasoning about interproce-
dural control flow. For example, this visualization illustrates that JEditText-
Area.delete(..) - on the far left - may call JEditTextArea.tallCaret-
Delete(.., ..) several times in a loop before it may call JEditTextArea.set-
SelectedText(..,..) attwo different call sites within a loop.
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Figure 9.2. Can XMLRetriever.getStartContext() ever be called without XMLRe-
triever.retrieveRelationships () being called first? To answer this question in
REACHER, a developer first opens XMLRetriever.getStartContext() in Eclipse. She
right clicks the method declaration and invokes an upstream search. In REACHER’S
search view (upper right), she types “retri”. As she types, REACHER lists matching
statements below. Clicking the third result adds it to REACHER’S call graph visualiza-
tion (a). Looking at the visualization, she sees that all calls to getStartContext () are
preceded by a call to retrieveRelationships (). But maybe there is a conditional
somewhere on the path to retrieveRelationships()? Double clicking the path ex-
pands it (b), showing the method beforeAllMethods () which was previously hidden.
Hovering over the call from beforeAllMethods() to retrieveRelationships()
shows a popup describing the call (this edge is missing a ? due to a bug in REACHER).
Clicking it opens the file in an Eclipse editor. Reading the code, she sees that the call is
guarded by a conditional.

The call graph now contains 3 methods - xMLRetriever.getStartContext () (the origin
method), XMLRetriever.retrieveRelationships () (the method she searched for), and
AbstractCrystalAnalysis.runAnalysis() (Figure 9.2a). As this was an upstream
search, REACHER looked for a common method calling both retrieveRelationships () and
getStartContext () and found runAnalysis (), adding it to the call graph. Two edges
emerge from runAnalysis() — one to retrieveRelationships () and a second to get-
StartContext (). The edge to retrieveRelationships () leaves runAnalysis () above
the edge to getStartContext (), indicating it executes first. Inspecting the call graph, the
developer learns that, in fact, all paths to retrieveRelationships () are preceded by a
path to getStartContext (). But perhaps there is a conditional guarding the path to get-
StartContext () that might cause it not to be called? The dashed edge from runAnaly-
sis () to retrieveRelationships () indicates that some of the path is hidden, so she dou-
ble clicks to expand the path, revealing the previously hidden method before-
AllMethods () which connects runAnalysis() to retrieveRelationships() (Figure
9.2b). Hovering over the edge between beforeAllMethods () and retrieveRelation-
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ships (), she sees a popup describing the call (see Section 9.4 for a discussion of why the
call is missing a may execute icon). Clicking the edge navigates the Eclipse editor to the call-
site. She then sees the cause of the bug - eight lines above the callsite is a conditional guard-
ing the call. While correct for the rest of the body, it should not guard this call. Moving the
call to getStartContext () outside the conditional block fixes the bug.

9.2. User interface design

9.2.1. Searching along control flow

Developers begin interacting with REACHER by starting a new search (see Figure 9.3).
Searches can be invoked from anywhere in a method’s declaration (i.e., from either its sig-
nature or statements in its body). All searches are performed relative to the beginning of the
method (before the first statement in the method’s body).

public AbstractOpti Undo 327
0 . =
this.name = nan Revert File
setLayout(gridE Save 38S
} /711
. . Open Declaration F3
/,f{{ getName() met  6hen Type Hierarchy Fa
* Returns the inte Open Call H'erarChy e SH on pane's label
* is set to the v¢ Show in Breadcrumb 3B
:/':COd':""Opt1°”5":‘ Quick Outline #0
public String getNe Quick Type Hierarchy 8T
{ Open With >
return name; Show In L #W =
} /711
Cut #X
//{{{ getComponent( ap
/%% Copy ) 36 C
* Returns the comg COpy Quahﬁed Name option pane.
* Because this cl¢ Paste $8V | "this"
*/
public Component ge Quick Fix #¥1
{ R Source X #8S >
} //;i}“r" 185 Refactor ET =
Local History =
//{{{ init() metho¢
/%* References =
* Do not override Declarations p instead.
*/
// final in 4.2 5 Add to Snippets...

public void init()

o Reacher > Search upstream from this method
if(linitialize o
L Run As > Search downstream from this method

Figure 9.3. Developers begin interacting with REACHER by right clicking in the editor
window and invoking a new search.
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REACHER supports both upstream and downstream searches along control flow paths. An
upstream search begins at a destination method and traces along paths by which it may be
reached. Downstream searches begin at an origin method and trace paths through its
callees (and methods they call). Downstream and upstream searches are not symmetric
(Figure 9.4). A downstream search captures what a target method does - all of the causality
relationships resulting from a control flow path from the target method. Upstream searches
correspond to what happens before the target method and include not only methods which
directly or indirectly call the target method, but also other methods that a common ancestor
calls. Including methods that executed before allows developers to ask about what should
already have happened, such as the question about a missing call to an initialization method
causing a null pointer exception (see Figure 9.2).

- root target

PR

>

a)

Figure 9.4. (a) A downstream search from an origin method finds methods (shaded
ovals) on paths from origin, but does not find methods on paths returning from origin
(unshaded ovals). (b) An upstream search from a destination method finds methods
on paths terminating at destination and beginning at any root, including methods on
paths from roots that occur before destination (shaded ovals).
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org.gjt.sp.jedit.EditBus.removeFromBus(..) : void

org.gjt.sp.jedit. send(..) : void

Figure 9.5. As users search, REACHER displays a list of matching statements. Double
clicking pins a search result, assigning the corresponding search a unique color and
persistently adding it to the visualization.

After the user invokes a search and the FFPA generates paths, REACHER provides a window
for searching along paths (Figure 9.5). REACHER indicates if the search is downstream or up-
stream and the method started from. The Reachability Observations study found several
examples of searches scoped to a specific type of method or statement (Table 7.3). REACHER
directly supports these searches by allowing users to select the type of method or statement
to search for (method, library, or constructor calls; field read, writes, or accesses; or any of
these). Additionally, REACHER lets developers select the portion of the name to match (pack-
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age name, type name, or type and method name), supporting searches for any functionality
in a type or package. As developers enter searches, search text is matched against any por-
tion of the identifier (e.g.,, str matches the str in ClassName.newString()). The matching
portion of the result is highlighted in red. These features make it easy to find a target by
knowing just a fragment of a name or relevant concept while also minimizing typing. Select-
ing a result adds it to the call graph. Selections are ephemeral, supporting quick scrubbing
to visualize each result in turn. Double clicking a result pins the item, persisting it in the vis-
ualization.

REACHER lists search results - methods and fields - with their fully qualified name and type.
We experimented with instead showing a portion of all matching statements. For example,
searching for foo () might display multiple callsites such as a. foo () and b. foo (). Search-
ing for fields included every access and assignment statement. This provided more context
and made it possible to select individual callsites and access statements. But this context
made the text for each result much longer, making the result list wider and occupying more
space. Additionally, result lists were far longer - methods called frequently could be includ-
ed tens or hundreds of times rather than once. And forcing users to choose a specific callsite
or field access statement was more distracting than helpful. So REACHER lists each method or
field only once, no matter how many different places it was called or accessed. After select-
ing a result, users see the context in the call graph visualization.

9.2.2. Methods and expressions

SearchTests

+m2(.) @
flagField=false

Figure 9.6. REACHER’S depiction of the method SearchTests.m2 (boolean) and the
field write flagField = false.

REACHER visualizes call graphs as graphs of method nodes and call edges. Following the
UML’s conventions [R]B99] public, protected, and private methods are prefixed by +, #, and
-, respectively. The identifiers of static methods are italicized. To help distinguish overload-
ed methods, each parameter is indicated with a “..”, and parameters are separated by com-
mas. Including the parameter names and types would be unambiguous, but, even for com-
mon cases, names become several times longer, with a corresponding reduction in the
numbers of methods shown in a fixed space. When a selected search result is a field access
or a library call, REACHER displays the field access expression or call site statement below
the method in which it is located (see Figure 9.6). The method the user started from is high-
lighted with a yellow box, corresponding to the yellow box in the search window (see Figure

9.5).
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Previous research and studies in this dissertation show that developers often get disorient-
ed when trying to explore the control flow to and from a method [AM06][KAMO5](see Sec-
tions 5.1.5. and 10.3.2.). These navigations can be challenging in conventional tools. Devel-
opers are either limited to back and forward navigations or must remember the file and lo-
cation of methods to navigate there. REACHER lets developers build up a working set of rele-
vant methods shown in the visualization by pinning relevant methods. Clicking a method in
the call graph opens the code in an Eclipse editor.

9.2.3. Causality

jEdit Buffer

() *reloadModes) @ @@ -©- EEITEBIO

jEdit Buffer

+reloadModes() ®—&)—— +setMode() O-QC®—€)- BRI EBID

Figure 9.7. (a) Indirect calls (dashed lines) expand into (b) one or more paths of di-
rect calls (solid lines).

Causality is a central part of reachability questions - what does this do and when does it
happen? REACHER'’S call graph is designed to help developers reason about causality. When a
method node is created in the call graph, REACHER finds all of the control flow paths connect-
ing it to existing nodes in the call graph, showing all of the ways it might be triggered.
Knowing there is a causal relationship is often sufficient, so REACHER displays these control
flow paths as a single indirect call edge (Figure 9.7.a). These paths are often long, complex,
and uninteresting; hiding them significantly reduces irrelevant clutter. When the path is in-
teresting, developers can double click it, expanding it to show the previously hidden meth-
ods in the path (Figure 9.7.b). Clicking a call edge navigates the editor to the corresponding
call site.

While searching helps to locate distant methods, developers sometimes explore a method'’s
immediate callers and callees. For downstream searches, REACHER depicts a circled plus icon
® when a method has hidden callees. Clicking the icon expands all of the callees, changing
the icon into a circled minus icon. Clicking the minus icon hides the callees. Similarly, for
upstream searches, REACHER provides a plus icon to the left of the method indicating that
there are hidden callers.

9.2.4. Ordering

In most of the exploration tasks we observed, developers used information about the order
of calls. Therefore, unlike existing call graph visualizations, REACHER visually encodes the
call order, sorting outgoing edges in execution order from top to bottom (see Figure 9.8).
This unambiguously orders paths through the call graph. To distinguish incoming from out-
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going edges, edges exit a method from the right and enter from the left. When there are mul-
tiple incoming edges, all but the first enter from the bottom to help disambiguate multiple
incoming edges.

EditBus

+send(..) D-Q@*-Q——

+setBuffer(..) & E

EditPane
+setBuffer(..)

Figure 9.8. Outgoing calls execute from top to bottom.

Upstream searches cause additional complexity when a user adds a method m that executes
before any visible methods. As REACHER’s edges denote indirect or direct calls and no cur-
rently visible method calls m, no edges connect it, and its order is not visible. To solve this
problem, REACHER computes the least upper bound method between m and currently visible
methods. A least upper bound must exist for m to be upstream. The least upper bound is
then added to the call graph. For example, after adding getStartContext() and re-
trieveRelationships (), REACHER adds the least upper bound runanalysis () (see Fig-
ure 9.2), showing that getStartContext () executes before retrieveRelationships ().

REACHER uses a single node for methods along all paths by which they are reached, connect-
ing each path after the first with backward edges. For example, in Figure 9.9, tallCaretDe-
lete () and Range.setText () both call remove (), with a backward edge to remove () de-
noting setText ()’s call. Backward edges increase visual complexity, introducing non-tree
edges that overlap and cross. We considered instead creating a tree structure by replicating
repeatedly called methods, except for recursive calls. However, replicating not only repli-
cates the method itself but also its entire subtree of direct and indirect callees. Replicating
subtrees greatly increases the call graph’s dimensions. For example, expanding with replica-
tion the path in Figure 9.2 between runAnalysis () and getStartContext () increases the
number of rows from 8 to 97 (see Figure 10.4 for a portion of a call graph built in this fash-
ion). Furthermore, replication makes understanding subtrees more challenging by forcing
developers to manually compare nodes between similar subtrees to identify differences.

However, using a single node for each method increases visual complexity, creating over-
lapping and crossing edges that can be challenging to untangle. To help solve this problem,
REACHER lets developers mouse over an element to see its connections (see Figure 9.9). En-
tering a node highlights incoming and outgoing edges; entering an edge highlights incoming
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and outgoing nodes. One study participant commented, “It kinda reminds me of a magician,
that if they want to see if there are any wires around they move their hand.”

JEditBuffer
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Figure 9.9. Mousing over a method highlights incoming and outgoing calls.

9.2.5. Type membership

Types (e.g., classes) express a developer’s intention that the methods and fields they contain
are related. REACHER visually encodes type membership with shadows grouping adjacent
methods with a common type (see Figures 9.1, 9.7, and 9.10).

9.2.6. Layout

REACHER uses an automatic layout to assign each method a position. REACHER’S layout tech-
nique begins at root methods - methods with no visible callers. Call graphs produced by up-
stream searches may have multiple roots. From each root, REACHER computes a spanning
tree. For methods with multiple incoming edges, the spanning tree includes the edge which
executes first. REACHER then walks the spanning trees in-order to compute positions for
each method, assigning positions from top to bottom and left to right. For methods with a
single callee, both are assigned to the same row, with the caller to the left of its callee. For
methods with multiple callees, each callee is given its own row from top to bottom. This
process hierarchically computes a row and column assignment for each method. Row height
and column width are then assigned using the maximum vertical and horizontal dimensions,
respectively, of their cells. Finally, REACHER stacks each spanning tree vertically, with back-
ward edges linking trees.

9.2.7. Repetition and choice

Realizing that a call is guarded by a conditional or may execute repeatedly can be important
for answering reachability questions. REACHER alerts developers to the presence of these
constructs by visualizing repetition and conditionals with call edge icons. Question marks
indicate a conditional guarding a call’s execution; loop icons indicate call sites in a loop.
When a call could be to one of several overriding methods because of dynamic dispatch,
edges to these callees begin with a single shared line and branch into separate lines at a di-
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amond icon. REACHER condenses repeated edges to the same method into a single edge, indi-
cating the edge count with a number icon. But when an edge to a different method is inter-
leaved between the repetitions, the repeated edges are shown separately before and after
the interleaved edge, showing ordering. For example, in Figure 9.8, the repeated calls to
send () are shown before and after the interleaved call to setBuffer (). Hovering over an
icon displays a descriptive popup (see Figure 9.10).

/

it EditBus

-addBufferTolList(..) @—————— +send(..) @4
e

+commitTemporary(..)

o commitTemporary() (= -finishLoading()

JEdit.commitTemporary(..) calls send(..) along 3 paths.

Open

Figure 9.10. Hovering over an icon or edge displays a descriptive popup.

9.2.8. Supporting rapid exploration

As developers work, they construct a working set of task relevant code [KAMO05]. This code
is often widely scattered across many classes in a codebase and tangled amongst other un-
related code. Developers often switch back and forth between elements in the working set,
incurring a significant cost in the mechanics of identifying which tab to click and determin-
ing the position of each snippet within each file [KAMO05]. Moreover, this navigational over-
head encourages developers to remember and guess about the contents of their working set,
as checking the code adds more time and cost. Finally, in extreme cases, developers may
even become lost and disoriented. Several participants in the Exploration Lab Study gave up,
becoming too overwhelmed trying to keep track and make sense of all of the relevant code
(see Section 5.1.5).

REACHER helps developers stay oriented by providing a task-relevant overview of the code.
REACHER provides a variety of additional interactive features for rapidly expanding details
and then hiding them again if the user decides they are not relevant. REACHER depicts rele-
vant methods and let developers navigate among them simply by clicking. “Back” and “for-
ward” commands traverse a web-browser style navigation stack of visualization states. Pan
and zoom commands lets users focus on specific areas or get an overview. Clicking and
dragging the background pans the display, and using the mouse scroll wheel controls the
zoom level. To help users track the location of methods as new methods are added and lay-
out positions change, REACHER smoothly animates transitions. Showing the callers or callees
of a method anchors the method’s position, moving other nodes relative to it, so that the
part of the visualization at which the user was looking stays stable.
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9.3. Applicability

To understand the scope and generality of REACHER’S design, the applicability of REACHER to
the 19 observed reachability questions developers asked (Tables 7.1 and 7.2 in Sections 7.1
and 7.3; Section 7.4) was examined. Table 9.2 lists the 11 of the 19 (58%) observed reacha-
bility questions REACHER directly supports and the corresponding steps to apply REACHER
to each of these questions. Table 9.3 lists the 8 observed reachability questions for which
additional features are required and describes the additional features required. Section 11.1
describes possible designs for many of these features.

Question Steps to use REACHER
What resources are being acquired to cause this | Search downstream for each method which might ac-
deadlock? quire a resource, pinning results to keep them visible

When they have this attribute, they must use it | Search downstream for the attribute, scoping search to
somewhere to generate the content, so where is | field reads.

it?

How are these thread pools interacting? Search downstream for thread pool class, scoping
search to matching type names.

How is data structure struct being mutated in Search downstream for struct class, scoping search to

this code (between o and d)? matching type names and searching for field writes.

How [does] application state change when m is | Search downstream, leaving search text blank, and

called denoting startup completion? scoping search to field writes

Method m is fast enough that it does not matter | Search downstream for library calls. Inspect calls to

that it is called more frequently. determine which are potentially slow.

Why is calling m necessary? Search downstream for library calls. Inspect calls, re-
vealing one that refreshes the screen.

Method m need not invoke method # as it is Search upstream from m for n.

only called in a situation in which # is already

called.

The scroll handler a does not need to notify b, Search downstream from b for “scroll”.

because b is unrelated to scrolling.

Is the initialization method always called before | Search upstream for the initialization method. Inspect
the use site? path for ordering and conditionals.

How is the collection instance that is getting Search downstream for writes to the collection class.

passed around being mutated?

Table 9.2. Steps to use REACHER for the observed reachability questions supported by
REACHER.
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Question

Additional features required

Where is method m generating an error?

Support searching for values of variables (e.g., error
message string constant).

What [is] the test doing which is different from
what my app is doing?

Support comparing traces of similar code snippets.

Where [is] the code assuming that the tables are
already there?

Support comparing traces before and after a change
(e.g., after table initialization code commented out).

Is [there] another reason why status could be
non-zero?

Support searching along data flow to see what values
may reach status and where these originate.

From what callers can the guards protecting
statement d in method m be true?

Support searching relative to a statement inside a
method.

Removing this call in m does not influence be-
havior downstream.

Support comparing traces before and after a change.

What situations currently trigger this screen
update in m?

Support searching upstream for cut points (methods
that are never called) and scoping upstream to only
paths by which a method is reached rather than every-
thing that execute before.

Do all paths to constructor calls to subtypes of a
class go through a factory class?

Support searching from a set of methods to allow de-
velopers to search upstream from all constructors in

subtypes of a class.

Table 9.3. Additional features required for REACHER to support the remaining ob-
served reachability questions.

9.4. Implementation

REACHER is implemented as an Eclipse plugin for Java. REACHER’S visualization is implement-
ed using the Prefuse visualization toolkit [HCLO5]. REACHER uses FFPA to generate static
traces (see Chapter 8), executing an FFPA query whenever the user invokes a search. When
REACHER is started, it attempts to load saved method summaries from disk. If no summaries
are found, FFPA runs its first two phases to generate method summaries.

After FFPA generates static traces, REACHER next constructs a visual graph. A visual graph
differs from static traces in several important respects. A visual graph contains only the
methods in which the developer has expressed an interest, including origin and destinations
of searches, selected search results, expanded callers and callees, and the least upper
bounds of visible methods (see Section 9.2.4). These methods are displayed methods. All
other methods in the static traces are hidden, replaced with indirect (dashed) calls denoting
hidden methods when they occur on paths between displayed methods. Second, each meth-
od occurs at most once in the visual graph, across all contexts. When there are multiple con-
texts, they are merged.
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Upstream searches generate more than one static trace. Each root that can reach the desti-
nation is a separate static trace. But static traces overlap when a portion is reached in the
same context. Thus, while each static trace can be viewed as a separate trace - an execution
trace beginning at a root - the union of all static traces generated by a search can also be
viewed as a graph. This graph is the active trace graph. For a downstream search, the active
trace graph is simply the single static trace produced from executing FFPA from the origin.

To construct a visual graph for an upstream or downstream search, REACHER first uses a
breadth-first traversal of the active trace graph to mark displayed methods and all paths by
which they may be reached. Marks describe the portion of the trace graph that will be ren-
dered into the visual graph. Any nodes that have not been marked will not be rendered and
can be skipped during the rendering pass. This speeds the rendering pass by reducing the
number of traces to be visited. Note that marks themselves have no representation in the
visualization but are only to determine which traces need to be visited when rendering.

The marking traversal begins at the root of each static trace. Each node in the active trace
graph is visited exactly once (even if it occurs in many static traces). When a displayed
method is encountered, the node itself and all methods on the path by which it was reached
are marked. When a marked method is encountered, the path by which it was reached is
marked. Paths from the marked node are not traversed. Figure 9.11 (1) shows an example
of a marked trace graph.

REACHER next uses the marked trace graph to render a visual graph. REACHER traverses the
marked nodes of the active trace graph, beginning at each root. In contrast to the marking
traversal, this traversal visits each trace node once along every path by which it may be
reached. For example, in Figure 9.11, a () and b (true) are each visited twice (once from
r1() and once from r2 ()) while c () is visited 4 times. However, as b (false) was not
marked, it is not visited. When a displayed node is encountered, a corresponding visual
graph node is created. As additional displayed nodes are encountered, both a node and an
edge (either direct or indirect as appropriate) are created. But when the same method ap-
pears twice in a row from the same caller, the methods are combined into a single node. Fi-
nally, REACHER performs a consolidation pass to combine identical visual trees (Figure 9.11
(2) and (3)). Each pair of visual trees is compared and identical pairs combined.

Finally, REACHER computes information for the edge icons. To determine the number of
times a call happens, REACHER counts the number of call traces that correspond to the call in
the visual graph. To determine if a call edge occurs in a loop, REACHER checks if any of the
corresponding traces have call sites that are located inside a loop. To determine if a call
edge might not execute, REACHER checks to see if the call does not execute on some of the
paths FFPA followed through the method summary. However, in some situations, this im-
plementation will not identify a call as might not executing.

When a call is guarded by a conditional and this conditional is not modeled by FFPA, REACH-
ER does not show a “may execute” icon, when in fact it should. For example, in Figure 9.2,
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there is no “may execute” icon on the call to retrieveRelationships (). This is because
the guard contains the expression project == null, which FFPA does not model. FFPA
does not model expressions that could never be controlled by constant controlled condi-
tionals such as those involving Boolean operators such as arithmetic. FFPA could be extend-
ed to record the presence of these conditionals in the summaries, to allow REACHER to accu-
rately report when a call could or could not execute. But this extension has not been imple-
mented in the current design.

*| public void r1() |—* public void a()

[ pubiic void 120 | 0

\ 4
b(false)

public void b(false) |

*| public void bitrue) |

A
l b9 libraryCall()
(1)

Type
+C()
+a()
+b() Type
/+c()
+a()
T—
Type +b()
+c()
+a()
+b()

(2) (3)

Figure 9.11. REACHER renders visual graphs by (1) marking (*s) trace nodes on paths
to displayed nodes (black fill), (2) rendering visual graph trees, and (3) combining
identical trees.
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9.5. Conclusions

REACHER is designed to help developers understand and explore code more effectively by
helping them answer reachability questions. Rather than manually traverse across long and
complex paths, developers can simply search. To more effectively reason about causality,
ordering, and type membership, developers can simply inspect a task-specific diagram. And
to stay oriented, developers can use the diagram as a navigation aid, using it to rapidly navi-
gate the code editor through their working set. The next chapter describes several evalua-
tions of REACHER.
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10.

STUDIES OF REACHER

To improve REACHER’s initial design and evaluate the final design, several studies of REACHER
were conducted. Early in its design and implementation, a small pilot paper prototype study
was conducted. This study was designed to test the main premise of REACHER’s design - that
a combination of search and call graph visualization would help to answer reachability
questions - and identify potential usability problems early. Following this study, a number
of aspects of REACHER’s design were improved and implemented in an initial prototype. A
lab study evaluation was then conducted, which both confirmed REACHER’s potential and
identified a number of areas for improvement. After further iterating the design, I conduct-
ed a final evaluation, which found that REACHER can help developers answer reachability
questions significantly faster and more successfully.

10.1. Paper prototype pilot study

[ conducted a small pilot paper prototype study of REACHER in which a single participant
performed a task with a mockup of REACHER. Several of the problems identified in this study
influenced REACHER’s subsequent design iterations.

10.1.1 Method

A task was selected from a previous study of code exploration (see Section 5.1.3). The
FOLDS task involved investigating complex code in a large codebase in order to propose a
design fix. A central part of the task was understanding how the existing design worked,
which involved understanding control flow relationships in the code. Based on the ques-
tions participants in the original lab study had asked, mockup screenshots of REACHER were
constructed in a drawing program (see Figure 10.1) depicting how REACHER might depict
answers to these questions. The mockups included both REACHER’s call graph visualization
and the interface elements for interacting with REACHER. Using the other task from the same
previous study (CARETS), a tutorial was also designed, walking through the use of REACHER
to answer questions relevant to this task, illustrated with mockups. See Appendix 5 for the
complete materials.

A participant was recruited from graduate students at Carnegie Mellon who had experience
with both Java and Eclipse. After working through the tutorial, the participant was given 1
hour to work on the FOLDS task. The participant was encouraged to think aloud as she
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worked, and her work was recorded with the Camtasia screen capture software!l and an
audio recorder.

The mockups were presented as pages in an Omnigrafflel2document. When the user wished
to invoke a command, a (physical) paper overlay was used to indicate the available com-
mands (commands were recorded by the audio recorder). After executing a command, the
appropriate REACHER mockup was opened in Omnigraffle by the experimenter. In all, 10
mockups were created for the tutorial and 12 for the FOLDS task (see Appendix 5).

: EXTERNAL
Back Forward Exclusions... show depth W&o 012 AL XTENAL | RITES READS TYPES COMMENTS
~D JEditTextArea View.ScrollHandler StatusBar updateCare
sisTransactionlnProgress rsetFi icalLine$2- . -fi { ically |- - -[ +updateCaretStatus
_ Ak 9155 sscrolToCaret - - = - +scrollTo = 2
- - -finishCaretUpdafe - - # finishCaretUpdaté = T +sefFirstLine - - - - fi O\ i - - - | +updateCaretStatus org.gijt.sp.jedit.gui.StatusBar.updateCaretStatus ~ (9)
R View.CaretHandler StatusBar
fireCaretEvent- - - [+caretUpdate}- - { +updateCaretStatus
StatusBar
-[+updateCaretStatus
StatusBar
- [+updateCaretStatus
JEditTextArea View.CaretHandler StatusBar
- - +setSelection - - - - - finishCaretUpdate - - #_finishCaretUpdate - -IireCare(Evem.O ~[+caretUpdate}- - -[ +updateCaretStatus |
- +moveCaretPositions2 - - -finishCaretUpdate - - #_finishCaretUpdate --freCaretEvent- () ~[+caretUpdate}- - -[+updateCareStaius
View.CaretHandler StatusBar
- #_finishCaretUpdate - - - --fireCaretEvent- O. caretUpdatel -| +updateCaretStatus.
View.ScrollHandler StatusBar

't - O.{+scro||edVemcauy). +updateCaretStatus

downstream from BufferSwitcher.ActionHandler.actionPerformed [cJO) piblishoolsaullsTiansaGion NRIogiGss (EGoIEMEG0
{

return transaction || undoInProgress || insideCompoundEdit();

Figure 10.1. A mockup of REACHER used in the paper prototype study.

10.1.2 Results

The participant was able to successfully use the REACHER mockup to help explore code, but
was unable to finish the task. The challenges that the participant faced highlighted several
limitations of this first design of REACHER.

One of the biggest barriers to making progress with REACHER was asking ordering questions.
In particular, the participant wanted to know about the ordering relationship between two
methods. But this version of REACHER could not answer this question directly, as this version

" http://www.techsmith.com/camtasia.html

"> http://www.omnigroup.com/products/omnigraffle/
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could only find methods on a path to the origin or downstream, not all methods before or
after. This did not match what the participant wished to ask.

Dealing with origins and directions was also confusing. Switching between downstream and
upstream questions required the participant to explicitly set an origin and a direction. Un-
derstanding when the direction had to be switched, what it meant, and what the current
state was proved too confusing. Moreover, there was a separate search cursor that con-
trolled which portion of the visualized call graph would be searched.

The participant also disliked the horizontal orientation of the call graph. She felt that devel-
opers were far more familiar with call stacks in the debugger and would thus more natural-
ly understand that methods with call relationships were arranged from top to bottom. But
while she found the orientation unexpected, she still was able to understand it.

Finally, the participant felt that REACHER should make it easier to understand when some-
thing definitely happens. While this version of REACHER distinguished control flow paths
that may execute from those that must execute, the participant wished to have more direct
support for investigating the circumstances under which a path would execute.

10.1.3 Subsequent improvements to REACHER

Following the paper prototype study, several aspects of REACHER’s design were changed to
address the observed problems. Figure 10.2 illustrates the new design (this design still dif-
fered substantially from REACHER’S final design described in Chapter 9 - see Section 10.2.4).
Most fundamentally, the semantics of the paths REACHER searches and depicts were changed.
Upstream searches were changed to include all methods executing before (for any origin).
This lets developers search for ordering relationships without having to switch to a down-
stream search. However, the user still had to search for a common root between the search
origin and search target in order to see ordering relationships between them.

Reacher

| ——
4= || = [ Reset zoom
Search upstream from XMLRetriever.getStartContext() for | method calls

FusionAnalysis XMLRetriever
bef TR | named v | retrieve

hodAnalvsi®
Crystal Abstmchryst:\M‘et odAnalysi*

-runCrystaljob( +runjobs( +rund ——0Q

el '96@'@?:2:5;‘3"‘1&;0 Expression 4 Location Containing type
new XMLRetriever(rels) FusionAnalysis.beforeAllCompilationUnedu.cmu.cs.fusion.xml.XMLRetriever
r.retrieveRelationships(ResourcfFusionAnalysis.beforeAlIMethods(TOP dedu.cmu.cs.fusion.xml XMLRetriever

Search upstream from XMLRetriever.getStartContext() for method calls named 'runAn' (€3}

Figure 10.2. Redesigned REACHER interface. The user has searched upstream from
getStartContext for “retrieve,” which finds the method retrieveRelationships
which executes before getStartContext, even though it is not on the path from the
root runAnalysis.

To simplify and reduce confusion with downstream and upstream searches, several other
changes were made. The command “Set as origin” was removed and replaced with “Search
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downstream” and “Search upstream,” replacing the need to flip between upstream and
downstream modes. Support for restricting searches to a portion of the visible call graph
was eliminated. The origin of the visible call graph was made more prominent with a high-
light in the call graph visualization. And the search pane added a description of the current-
ly active search (e.g., Search upstream from XMLRetriever.getStartContext () in Figure
10.2).

10.2. Lab study 1

After implementing REACHER based on this design, a lab study was performed to evaluate
REACHER'’s ability to help developers understand and explore code more effectively. Partici-
pants worked on two challenging tasks: one based on the FOLDs task (see Section 5.1.3)
and one based on a debugging task I had observed (described in Section 7.5).

10.2.1. Method

12 participants were recruited from students and staff at Carnegie Mellon University. All
reported being comfortable programming in Java and using Eclipse (mean = 6.1 years expe-
rience), had professional software development experience (mean = 2 years), and knew an
average of 6 programming languages. None had previously seen REACHER. Participants were
randomly assigned to either a control condition in which they used standard Eclipse or an
experimental condition in which they used Eclipse and REACHER.

We designed two tasks (MUTATION and PROTOCOL) that both involved answering a
reachability question and were very challenging. Participants worked in two unfamiliar and
complex codebases. The MUTATION task was in jEdit, an open source text editor (see also
Section 5.1.3). The PROTOCOL task was in Fusion, 50 KLOC static analysis tool for Eclipse
and involved Eclipse plugin debugging, with which most participants were not familiar. De-
velopers were not given any domain knowledge about either application, but only a short
description of an issue and were directed to several relevant locations in the code.

We adapted the MUTATION task from an earlier lab study (see Section 5.1.3) in which de-
velopers had to investigate and fix a design problem in which a getter (getFoldLevel ())
was being called despite its return value being ignored. One hypothesis several of the par-
ticipants had in the previous study was that the method was being called in order to mutate
state by assigning fields. In the current study, developers were asked in the MUTATION
task to find all of the statements downstream from the method that assigned a field. This
task was challenging as there were 67 such field writes connected by 599 method calls. Fig-
ure 10.3 lists a small portion of these field writes.
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Figure 10.3 Some of the many field writes in the MUTATION task.

We adapted the PROTOCOL task from an actual debugging task we observed in the field
(see Section 7.4.1.). Participants were given the actual code at the time of the bug, given
steps to reproduce the bug, and instructed in how to use the debugger to debug an Eclipse
instance. To simulate a small portion of the knowledge the original developer had, partici-
pants were instructed that the exception was caused because retrieveRelationships ()
was not being called before getstartContext () (see Figure 10.2), leading to missing state
and a null pointer exception. Participants were asked to determine the conditions under
which this might occur.

To ensure all participants were familiar with Eclipse’s many code navigation features, all
participants were first given a tutorial on these features (also used in Chapters 5 and 7.2;
see Appendix 6 for the complete materials). Participants in the REACHER condition then
completed a short tutorial describing the visualization notation and interactive features of
REACHER. Participants were next given each of the task descriptions in turn and then had 30
minutes to work on each task. Several participants gave up (see Table 10.1); other partici-
pants ran out of time and were stopped. Participants were not told if their answer was cor-
rect until after they had finished working on both tasks. Participants used Eclipse 3.5 and
were allowed to use any feature they wished. Participants worked on a 2.8 Ghz computer
with 8 GB of memory, a large 30” monitor, and an additional laptop screen. To understand
why developers used the approaches they did, participants were asked to think aloud as
they worked. We then recorded audio and the screen using Camtasia.

10.2.2. Results

In the MUTATION task, participants using REACHER finished the task in less than half the
time (a significant difference, p <.05) and were significantly more successful (p <.05). None
of the participants using only Eclipse succeeded while half of the participants using REACHER
were successful. In the PROTOCOL task, one (17%) of the participants using only Eclipse
succeeded while two (33%) of the participants using REACHER succeeded. This difference
was not significant (p = .27). Participants using Eclipse only were slightly faster than those
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using REACHER (23.2 vs. 25.3 minutes), but this difference was not significant (p =.32). Table
10.1 summarizes the task performance results.

ECLIPSE REACHER
MUTATION succeeded 0% 50%
gave up 17% 0%
avg time #*std dev (mins) N/A 7.0+5.0
PROTOCOL succeeded 17% 33%
gave up 33% 0%
avg time #*std dev (mins) 9.6 20.5+£6.5

Table 10.1. REACHER Lab Study 1 task performance.

Participants in the Eclipse-only condition experienced a number of problems that often pre-
vented them from succeeding. In the MUTATION task, participants used the call hierarchy
to traverse downstream calls. Most participants browsed the immediate callees or one level
deeper, while a few browsed “way down somewhere” and reported “being half lost.” Navi-
gating calls to listeners was challenging for many participants, as it required leaving the call
hierarchy, finding types that implement the listener interface, deciding which might actually
be called at the callsite, finding the relevant method, and then doing a new search on its
callees. Thus, only one of the participants spent the time to navigate through these calls.
However, most of the field writes were happening past these calls. In contrast, REACHER
treats such situations like other conditionals, either determining that a call to a particular
runtime type is infeasible or including all possible alternatives.

In the PROTOCOL task, all but one of the Eclipse-only participants failed. The successful
participant enjoyed a unique advantage amongst participants in either condition: he cor-
rectly guessed the diagnosis for the problem while reading the task description. Using the
debugger, he was then able to set a breakpoint on the call to retrieveRelationships (),
browse up through its callers, and rapidly identify the offending conditional. The remaining,
unsuccessful participants instead tried to understand the paths connecting getStartCon-
text () to retrieveRelationships (). Developers used the call hierarchy to traverse
paths upwards from both, but were unsuccessful in locating their intersection. None of the
participants ever learned that retrieveRelationships () is called along a single path be-
fore the many paths to getStartContext () (see Figure 10.4 for a small selection of the
paths). Moreover, even though several found the conditional in beforeAl1lMethods () that
caused the bug (see Figure 9.1), most participants had no idea of its significance since they
lacked a hypothesis about why it was relevant. This replicates a previous finding that devel-
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opers viewing highly task-relevant portions of code without the proper background
knowledge may not benefit from it [RMC04]. Several participants became disoriented in the
many paths by which getStartContext () is reached, and a few attempted to deal with this
problem by writing down calls on paper. One-third of the participants thought the task
would be too difficult to complete and gave up.

The biggest barrier participants using REACHER experienced was realizing that searching
with REACHER would help. The successful participants generally came to this realization
quickly, after spending a minimal amount of reading the code connected to the starting
point. In the MUTATION task, these developers realized that searching downstream from
getFoldLevel () for field writes would finish the task. The unsuccessful participants in the
REACHER condition either ignored REACHER entirely, used REACHER to traverse calls, which
they manually inspected, or searched downstream only for setter methods they already ex-
pected wrote a field. Another participant reported that she used the call hierarchy initially,
rather than REACHER, because she had been using the call hierarchy for some time and that
was what she was familiar with doing.

In the second task (PROTOCOL), more of the participants used REACHER, both because of the
task’s difficulty and perhaps because they were slightly more comfortable with REACHER.
Many of the participants were quickly able to search and determine that retrieveRe-
lationships () is called along a single path that is always before getStartContext () (see
Figure 10.3), something that none of the participants without REACHER learned. But hypoth-
esizing that the bug was caused by a conditional guarding the call to retrieveRelation-
ships () was challenging, and none of the unsuccessful REACHER participants did this.

Despite these difficulties, our study demonstrated that searching along control flow paths
can make developers dramatically more effective. In the MUTATION task, a third of the
REACHER participants successfully completed the task in 4.5 minutes or less; none of the par-
ticipants without REACHER were successful. Two of the three participants who successfully
completed the PROTOCOL task used REACHER, and unlike any of the other participants,
found the connection between retrieveRelationships () and getStartContext () be-
fore hypothesizing that a conditional was relevant. Finally, the successful developers using
REACHER expressed excitement about REACHER or were interested in when REACHER might be
available for them to use in their everyday work.

10.2.3. Discussion

The user study revealed that getting developers to express their questions as reachability
questions is more challenging than we expected. Some of the developers immediately “got”
REACHER and quickly adapted their strategies. But others, despite a tutorial explaining how
to use REACHER, chose to use Eclipse’s call hierarchy because it was more familiar. Others,
despite having done searches in a tutorial, persisted in manually traversing across calls for
tens of minutes for well-defined search targets specified in a task. Due to not using REACHER
in these situations, these developers were far less successful than those that used it.
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There are several possible reasons for this. In some cases, developers may just be unaware
of the problems and limitations of their existing strategies. For example, in the MUTATION
task, developers may simply think that inspecting a few callees is sufficient to find all of the
mutations happening, not realizing that several events trigger far more mutations to occur.
In other cases, developers fit REACHER into their existing workflow without really adapting
their workflow to take advantage of the novel aspects of REACHER. For example, one partici-
pant simply used REACHER to search through a method they already thought mutated the
fields, not ever thinking to use REACHER on methods they did not suspect would write fields.
One of the primary benefits of REACHER, compared to existing exploration approaches, is
that it can replace guesswork with certainty. Rather than having to rely on guesses about
what control flow relationships probably look like, REACHER can quickly find the actual
paths. But, when developers are overconfident about their existing knowledge of control
flow, they may not realize that using REACHER to test their beliefs has benefits.

Finally, developers may simply be attached to their existing tools. Despite the many addi-
tional features modern integrated development environments provide, many developers
still use simple text editors (see Chapter 4). It may remain challenging to convince such de-
velopers to use tools such as REACHER. More research is necessary to better understand how
developers decide to adopt tools.

10.2.4 Subsequent improvements to REACHER

The study also revealed several problems with REACHER that were subsequently addressed.
Having REACHER display ordering relationships between methods still required first manual-
ly searching for a common route before next searching for the target method. To address
this issue, REACHER was augmented to automatically find root methods. Whenever there are
disconnected methods in the visualization, REACHER looks for a least upper bound on paths
connecting these methods. If one exists, it is shown in the visualization.

Another problem participants faced was navigating and making sense of call graphs. In
some cases, call graphs contain subgraphs that are reached by many different paths. This
version of REACHER visualized these call graphs by replicating each subgraph for each path
by which it was reached. This greatly increased the size of the call graph, making it un-
wieldy to navigate and make sense of (Figure 10.4). To address this problem, REACHER was
redesigned to only show one copy of each method and introduced a variety of new af-
fordances for expressing ordering (see Section 9.2.4). This also converted the visualization
from a tree to a directed graph. Interactive features were added to make making sense of
these edges easier (see Section 9.2.4).
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Figure 10.4. This version of REACHER displayed copies of methods for each path by
which they were reached. When searching for portions of the call graph which are
repeated many times, this created a call graph visualization containing much redun-
dancy. The current version avoids this problem by displaying only a single copy of
each method (see Section 9.2.4).

10.3 Lab study 2 *?

Lab study 1 revealed the potential of REACHER: participants were substantially faster and
more successful in the MUTATION task. But it also revealed several problems with REACHER,
both in its design and in communicating its potential use. Therefore, REACHER was improved
and then a second lab study was conducted to further evaluate REACHER’s potential for help-
ing developers more effectively understand and explore code.

10.3.1. Method

12 new participants were recruited from students and staff at Carnegie Mellon University.
All participants reported being comfortable programming in Java (median = 4.5 years expe-
rience), had professional software development experience (median = 1.1 years), and knew
an average of 4 programming languages. None had previously used REACHER.

Participants performed 6 tasks and were given 15 minutes to complete each task. Each task
posed a reachability question and involved finding and understanding control flow between
events. Table 10.2 lists each of the tasks’ actual questions (only an excerpt of tasks 5 and 6
are listed—see Appendix 7 for the complete materials). To test if participants were able to
understand the visualization notation, each task was designed to require understanding a
particular aspect of the notation. Tasks 1 and 2 dealt with ordering, tasks 3 and 4 dealt with
conditions, and tasks 5 and 6 dealt with repetition. All participants performed all 6 tasks
and did half of the tasks with Eclipse alone and half with Eclipse and REACHER. Participants

13 This section describes work previously published in [LM11].
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were randomly assigned to conditions. The order of the tasks, whether they received the 3
Eclipse only tasks or the 3 REACHER tasks first, and which tasks were used in each condition
were all counterbalanced.

All tasks were performed in the jEdit codebase, a 55 KLOC open source text editor used in
several previous studies of code exploration (including the Code Exploration Study de-
scribed in Chapters 5 and 7). Several of the tasks dealt with jEdit’s EditBus which provides a
publish / subscribe mechanism for sending and receiving messages. Understanding connec-
tions through the EditBus was a key challenge participants had faced in the Code Explora-
tion Study tasks. In this study, participants were asked questions such as what events were
sent on the bus or to trace messages through the bus.

To ensure all participants were familiar with Eclipse’s many code navigation features, all
participants were first given a tutorial on Eclipse (the same as used in previous studies).
Before performing tasks with REACHER, participants completed a second tutorial that ex-
plained REACHER’S notation and interactions that could be used to answer reachability ques-
tions. Participants were given task instructions on paper and allowed to take notes. Partici-
pants used Eclipse 3.6.1 and were allowed to use any feature they wished. Participants
worked on a 2.8 Ghz computer with 8 GB of memory, a large 30” monitor, and an additional
laptop screen. To understand why developers used the approaches they did, participants
were asked to think aloud, and we recorded audio and the screen with Camtasia.

Task 1. When a new view is created in jEdit.newView (View), what messages, in what
order, may be sent on the EditBus (EditBus.send())?

Task 2. When text is deleted (JEditTextArea.delete ()), what is the first message that
may be sent on the EditBus (EditBus.send())?

Task 3. Does setting the buffer in EditPane.setBuffer () cause the caret status on the
status bar to be updated at least once (StatusBar.updateCaretStatus())?

Task 4. Other than the check that the firstLine has changed from the o1dFirstLine in
setFirstLine (), are there other conditionals that might cause JEditTextArea.set-
FirstLine () notto update the scroll bar (JEditTextArea.updateScrollBar ())?

Task 5. How many messages may jEdit.commitTemporary () send to the EditBus? (i.e.,
how many times might it invoke EditBus.send ()7?) ...

Task 6. How many messages may jEdit.reloadModes () send to the EditBus? (i.e., how
many times might it invoke EditBus.send ()7?) ...

Table 10.2. Participants were asked to answer a series of six reachability questions.

10.3.2. Results

Participants completed tasks 5.6 times more successfully with REACHER (78%) than with
Eclipse alone (14%). Averaged across all tasks, participants’ mean task time was 11.1
minutes with Eclipse alone and 7.2 minutes with REACHER. This is a conservative estimate of
the time difference, because we used a time of 15 minutes (the maximum) for tasks on
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which participants ran out of time, whereas they would likely have taken much longer. Fig-
ure 10.5 shows success and task time per task. Participants were significantly faster with
REACHER in tasks 1, 2, 4, and 6 (p < .05), but not tasks 3 (p =.6) or 5 (p = .25). Participants
succeeded too infrequently with only Eclipse to compare times between just those who suc-
ceeded.

100%
83%
66%
50%
33%
17%

0%

Eclipse only

% participants
successful

1 2 3 4 5 6 Eclipse and

REACHER
15

12

avg. time (minutes)

o w o o

1 2 3 4 5 6
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Figure 10.5. Success and average task time. Task time includes participants that
failed. Participants who ran out of time received 15 minutes.

Participants with only Eclipse used a number of static exploration strategies. When reading
a method, participants relied heavily on the “scent” [LBB10] of method names at call sites to
decide which methods to open and read. For example, to find paths to EditBus messages,
participants reasoned about which methods might be likely to do something requiring an
EditBus message to be sent. Some participants tried to methodically traverse many paths,
while others guessed which would be most likely to lead to the target. Many participants
explicitly debated whether it was better to guess or methodically explore. Most participants
also navigated to the target statement to get a sense for what it did and when it might be
likely to happen.

Most participants with only Eclipse used the call hierarchy to traverse paths of calls. But,
due to the huge fanout of methods, most realized the hopelessness of finding their target
method in this view (see Figure 10.6). Several participants did bidirectional search, navi-
gating call hierarchy paths both forwards and backwards and trying to pick methods to
traverse based on similarity to calls from the other direction. A significant barrier to static
traversal were event listeners, implemented using the Observer Pattern. To determine
which methods were actually called, participants would have to determine which classes
implemented the interface and then begin new traversals from these methods. This forced
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them to perform new call hierarchy searches, losing their place. Participants sometimes said
that trying to discover a listener was disheartening, as it signified there was much more to
understand.

{2 Problems | @ Javadoc | & Declaration | & Console | 5® Call =3

Members calling 'send(EBMessage)' - in workspace

@ send(EBMessage)

@ _closeBuffer(View, Buffer) 2 matches
@ _delete(Object, String, Component)
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@ actionPerformed(ActionEvent)
@ activatePlugin()
& addBufferToList(Buffer)
® addMarker(char, int)
@ addPlugin)AR(String) ‘ (2 matche
& addToFavorites(String, int)
@ checkFileStatus(View)
A close()
@ closeAllBuffers(View, boolean)
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@ createEditPane(Buffer) : Editf
@ restoreSplitConfig(Buffer, String) : Component - org.gjt.sp.jedit.Viev
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@ removeAllMarkers()
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Figure 10.6. Participants disliked Eclipse’s call hierarchy because it did not provide
search and did not help them to think as visually as in REACHER.

One participant tried to use dynamic, rather than static, investigation, and faced different
challenges. To use the debugger to investigate a method, he first had to find a user com-
mand which invoked it, and he statically traversed upstream using the call hierarchy. After
finding a command, he ran the program and invoked it, but found that conditionals prevent-
ed the path he wanted to see from executing. Returning to static investigation, he tried to
find when they were true. But even after figuring out how to invoke the functionality, he
faced a further challenge. To find paths from an origin to the target, he breakpointed the
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target, repeatedly hit the breakpoint, and investigated the paths. But as the target was wide-
ly called by methods other than the desired origin, many of the times that the breakpoint
was hit were not paths from the origin. While he tried to only investigate those paths from
the origin, he occasionally forgot to check and investigated the wrong paths.

All participants began using REACHER by opening the origin method described in the task,
invoking a downstream search, and expanding the resulting paths (all of the tasks were
about downstream searches, as it was possible to hang or crash REACHER with a few up-
stream searches). While participants often had a correct answer early in the task, they then
spent most of their time better understanding the code to be sure of their answer, using
REACHER to navigate to callsites along the path and discover what the calls were doing. Thus,
the time differences in Figure 10.5 under-represent the real differences. Several attempted
to more precisely determine in which situations different paths may execute by inspecting
conditionals and trying to understand when they might be true by tracing the data that
flowed into them.

As participants read methods in the editor, REACHER’S call graph provided context and
helped them to stay oriented:

I like it a lot. It seems like an easy way to navigate the code. And the view maps to
more of how I think of the call hierarchy.
It seems pretty cool if you can navigate your way around a complex graph.

Without REACHER, participants were often disoriented:

Now I'm getting a little confused

Where am I? I'm so lost.

I think I lost where [ am in this silly tree.

These callstacks are horrible.

Where was I?

There was a call to it here somewhere, but | don’t remember the path.
I'm just too lost.

All participants reported that tasks with REACHER were easier; most had strongly positive
impressions:

REACHER was my hero. ... It’s a lot more fun to use and look at.

It’s very cool actually. You don’t have to ... go through many, many files.
Oh, this is really great, how do you find this stuff [methods along paths]?
It seems really useful.

It’s pretty cool.

You don’t have to think as much.

Many felt that tasks without REACHER were very difficult:
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Ah, this is going to get miserable isn’t it.

This is crazy.

This is pretty ugly.

My intuition about what might send a message to EditBus are probably wrong. So if |
start drilling down into calls, | may miss something.

Participants were able to successfully use the notation on the call graphs to understand
paths. We did not observe any difficulties developers experienced understanding the nota-
tion.

Failing tasks while using REACHER was infrequent (22%) but not absent. 6 of the 8 failures
were in tasks 1 and 3. Some of these failures were caused by failing to find all of the paths
due to overlapping edges or paths that zigzagged through the graph. Others were caused by
participants focusing on part of a path and missing an icon on the rest of the path. For ex-
ample, one participant failed task 3 because they missed a ? icon at the end of a long path.
Even for participants that succeeded, following paths was hard. One participant suggested
highlighting the path from the current node to a root.

Our study revealed a number of other usability problems that still remained with REACHER.
Edges that passed through methods or overlapped were initially confusing until users dis-
covered the highlighting feature. Some participants found it difficult to visually locate tar-
gets in the call graph. While these methods are already rendered using a distinctive black fill
and white text, participants suggested making them even more easily recognizable. Partici-
pants failed to notice that incoming and outgoing edges intersect nodes at different posi-
tions but instead relied on popups to disambiguate the direction of backward edges. One
participant suggested indicating edge direction with arrows. A few participants wished to
disentangle cluttered visualizations by dragging methods and manually overriding their
layout positions.

10.3.3. Limitations

This study has several limitations. By phrasing the task instructions as reachability ques-
tions for the participants, we did not include the surrounding debugging or investigation
task context which normally motivates users to ask these questions. While participants felt
that searching along control flow was representative of their actual work, several felt that
questions about path attributes (e.g., how many times...) were contrived. We included these
questions to make sure that our visualization was clear and usable. Our tasks only included
downstream reachability questions and did not assess the usability of REACHER for upstream
reachability questions. Unlike most developers in the field, our participants had no experi-
ence in the codebase. Developers with more knowledge might more successfully predict
where they should navigate.
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10.4 Conclusions

Studies of REACHER demonstrated that it helps developers to explore code more easily and
effectively, transforming a tedious, frustrating, disorienting, guess-work-filled task into one
which most participants finished successfully. Our tasks replicated the challenges in explor-
ing code that our and other studies have repeatedly found that developers face - finding
methods, staying oriented, and understanding paths - and demonstrated that a combination
of search, task-specific visualization, and IDE integration makes code exploration signifi-
cantly easier. When faced with highly branching, long, and confusing paths, REACHER’S most
significant benefit appears to be the ability to search, which helped developers to more
quickly locate far-away methods and statements. But REACHER also helped support the sub-
sequent work of understanding and reasoning about the path. Participants traced call graph
paths to identify properties of paths. Participants ultimately wanted to see the code behind
these paths, and used REACHER to quickly jump among the methods on the paths.



Chapter 10: Studies of REACHER 168



169

11.

CONCLUSIONS AND FUTURE WORK

Understanding and exploring code is a central part of what makes developing software
time-consuming and challenging. Seeing software developers as users of their tools and lan-
guages leads to questions about how effectively these tools and languages help developers
with their work. Studying how developers work and the problems they face suggests ways
that tools can be improved to help them work more effectively. While software engineering
researchers have worked for decades on approaches to help developers understand and
explore code, studying how developers work brings a new perspective, revealing questions
developers ask and strategies developers use that can be more directly supported. This dis-
sertation found that one of the key challenges developers face is searching along control
flow and that a tool that better supports this strategy can help developers answer their
questions more quickly, stay oriented, and more effectively reason about software. But
there are also many opportunities for future work.

11.1. Extensions to REACHER

There are a variety of ways in which REACHER could be extended. On an engineering level,
REACHER could be implemented for additional development environments and languages
and made more robust. But it could also be extended to directly support a larger variety of
questions and situations.

11.1.1. Filtering paths

Developers wondering how code behaves in a specific situation or context ask filter ques-
tions (e.g., what happens when this is true?)(see Section 7.3). Several of developers’ report-
ed hard-to-answer questions dealt with behavior in specific situations (see Chapter 6), such
as when an exception occurs or an operation times out.

REACHER could directly support filter questions by filtering the paths REACHER considers and
visualizes. For example, a developer investigating the behavior after an operation fails
might filter to see only those execution paths that occur in this case. Selecting the method’s
call site in the code editor, the developer could select an option to “Show paths when this is”
and select the constant indicating a failure. REACHER would then generate a new search be-
ginning at the current point in code and filter the displayed call graph paths to those that
execute when the operation fails. The code editor could also be scoped to those paths
through conditionals that execute in this case. Of course, methods might execute in different
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contexts, with different resulting feasible paths. REACHER’s call graph visualization could al-
low these alternative contexts to be selected by selecting call edges corresponding to differ-
ent contexts. Developers could further refine the situation of interest by filtering additional
expressions.

Implementing filtering poses several challenges. For expressions that sometimes contain
constants and are modeled with a symbolic value in the summary, filtering could be imple-
mented by simply assigning the constant value to the expression. The summary could then
be used, as normal, to build a static trace and a call graph. However, developers might also
wish to filter expressions that do not contain constants. In the summary, these expressions
are modeled as 7. Unlike expressions containing constants, no paths through the summary
are forked when these expressions occur in guards. This helps FFPA reduce the paths
through the summary. As a result, filtering these expressions requires a new summary to be
created. But only the summary for the method containing the filtered expression needs to
be recomputed.

11.1.2. Comparing paths

As developers propose and implement changes, they consider their implications. For exam-
ple, in the Exploration Lab Study, developers introduced a bug by setting a flag in a particu-
lar situation, causing a control flow path to no longer execute, and preventing a required
update. In the Reachability Observations Study, a developer asked which paths would
change if a table were not initialized at startup. And developers might wish to understand
how methods behave differently when called in different contexts or situations. All of these
are examples of compare questions.

REACHER could more directly support compare questions by using color to associate paths
with the situations in which they execute. For example, a method called by three different
callers might, depending on the caller, behave differently. This could be visually encoded by
assigning the incoming edge from each caller a unique color; outgoing edges could then be
assigned the colors corresponding to the contexts in which they execute (see Figure 11.1).
These colors could be used further downstream to associate behavior with calling context.

Colors could also encode behavior changes resulting from code edits. After an edit and file
save, REACHER might update the call graph visualization to reflect the new behavior. But, ra-
ther than simply update, REACHER could also show changes to the call graph, using colors to
encode calls that have been added or removed. Such a design might have helped the devel-
oper in the Exploration Lab Study realize that his change had unintentionally changed how
the code was working.
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Figure 11.1. A mockup showing how color might be used to distinguish the behavior
of methods in different situations.

Compare could also be used with filter to compare situations. For example, REACHER could
show how code behaves differently when a table is not initialized. A developer might first
invoke a filter command on the call to initialize the table - “What happens if this doesn’t ex-
ecute?” REACHER’s call graph visualization could then show which calls downstream would
no longer execute.

Implementing compare requires determining a method of computing differences between
static traces. Equivalent methods in each static trace must be matched and additions and
removals found. Traditional algorithms for comparing versions of source code might be able
to be adapted to this task. However, static traces differ in including methods in multiple
contexts.

11.1.3. Depicting paths in a source view

REACHER'’s call graph visualization provides a high-level overview of code, relying on a code
editor to let developers see the details of code. Some of the questions developers ask in-
volve reasoning about these details. For example, a developer trying to understand how a
method might behave differently in contexts with differing flags might try to follow and un-
derstand the paths within the method in each case. Or a developer reasoning about how
code behaves when an operation fails might wish to see the paths through a method execut-
ing in this situation.

REACHER could more directly answer these questions by providing a view of source annotat-
ed and filtered to reflect REACHER’s current view of the source. For example, in a context in
which a method is called with a specific parameter, REACHER could show how this parame-
ter’s value is passed through the method and how it influences which branch is taken (see
Figure 11.2.). In conjunction with filter, this view could be used to understand what a sec-
tion of code does in a specific situation, such as an operation timing out, an error code being
returned, or for a particular type of input. For example, the developer reasoning about how
code behaves differently when a table is not initialized might first identify some of the dif-
ferences in calls being made using the REACHER’s call visualization and then navigate to the
call site in the code editor. Rather than reconstruct why the calls are different, the source
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view could directly show how, in different situations, the values of parameters differ, caus-
ing different paths to be followed, and resulting in different calls executing.

public void [glelglelRANIIYelld(EBMessage EditPaneUpdate msg)
{

if(msg instanceof PropertiesChanged false)
else if(msg instanceof SearchSettingsChanged false)
else if(msg instanceof BufferUpdate false)

else if(msg instanceof EditPanelUpdate true)

(gTolale IR=Y Lo R R Lo [TIoYeleRk ) (EditPaneUpdate)msg) ;

Figure 11.2. A mockup of how REACHER might depict paths through code. In this exam-
ple, REACHER sees handleMessage () execute in a context in which the parameter EeMes-
sage is an instance of the type EditPaneUpdate. This allows REACHER to resolve the
branch taken at a series of conditionals. The code view depicts this by showing the
value of expressions and collapsing portions of the source that do not execute in this
context.

Implementing this feature poses several design challenges. Most importantly, the code edi-
tor must clearly differentiate expression values from the expressions themselves. The ex-
pression’s code could be replaced with its value, but this would make understanding how
the value was obtained more difficult. Displaying both (as in Figure 11.2.) might be chal-
lenging for long lines of code with little extra space and needs to clearly visually differenti-
ate expressions from their values.

Depicting paths in code could also be used with dynamic (rather symbolic) values inde-
pendently of REACHER. For example, a logging tool could record values of expressions as
code executes and then let developers inspect the source with these values embedded.
Methods could be viewed in each of their contexts. Compared to inspecting a log file or us-
ing the debugger to step and hover to see values, such a view might provide a more effective
overview, making it easy to see, at a glance, how code is behaving and ensure it is behaving
as expected. Such a view might even be useful in computer science education to help stu-
dents understand complex algorithms more easily.
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11.1.4. Tracking values through fields

FFPA conservatively models values read from a field as 7. This reduces the precision of
FFPA: FFPA can never determine the branch taken at conditionals dependent on field reads.
But fields often store constants, such as flags reflecting the abstract state of an object. For
example, one of the bugs created in the Exploration Lab Study was caused by a flag being
read from a field which encoded the current state of the object.

An earlier prototype of FFPA tracked values through fields by assuming that there was only
a single instance of each type. Making this assumption greatly simplifies the problem, essen-
tially converting every field into a global variable. But this assumption also creates both
false positive and false negatives when eliminating infeasible paths. When there are multi-
ple instances of a type, values written into one overwrite another, resulting in arbitrary and
spurious data flow.

A more accurate approach could use a points-to analysis (e.g., [S96]) to compute a set of
(abstract) objects to which each field reference might refer. Unfortunately, points to anal-
yses are relatively slow interprocedural analyses. After a method has been edited, the slow
interprocedural analysis might need to be run again, unless a more complex incremental
analysis could be used. And, even given such a slow and elaborate analysis, it is unclear how
precise such an analysis might be.

Alternatively, REACHER might instead allow the developer to interactively adding annota-
tions to describe which abstract objects might be pointed-to at each reference. In combina-
tion with following data flow paths (see 11.1.6), this might allow the developer to interac-
tively describe what objects might exist.

11.1.5. Following paths through frameworks

FFPA treats paths through code for which the developer does not have source in their
workspace (e.g., frameworks, libraries) as cut-points (see Section 8.3). As a result, the call
graph visualization does not show call graph paths through framework methods, and devel-
opers cannot search for paths through frameworks. In some situations, this might be benefi-
cial for the developer: this limits the scope of the code being examined to their own source
code. But in other situations, developers wish to understand paths through a framework.
For example, developers attempting to understand how and when call-backs occur might
wish to search for paths from their code, into the framework, and back into their code
through call backs.

FFPA could be extended to include framework paths. In many cases (e.g., the Java Standard
Libraries), the source code is readily available on the developer’s computer, and often even
indexed by Eclipse. FFPA could simply use this source code. However, this might make most
static traces far longer and could lead to many more connections between code. Moreover,
paths that enter into event dispatch code could be potentially problematic if FFPA is not
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precise enough to determine which path is followed in a specific context, resulting in many
more infeasible paths.

11.1.6. Searching along data flow

REACHER only currently supports searches along control flow. However, reachability ques-
tions also include searches across data flow (see Section 1.2 and Tables 7.1 and 7.2). Devel-
opers search along data flow to understand how variables get their value or understand
where a value might be used. Current development environments partially support such
questions by providing reference searches. However, to traverse data flow from variable to
variable, developers must manually perform new reference searches, adding extra overhead
and making it easy to get lost. And, just as in control flow searches, developers must guess
which data flow leads to statements of interest.

Developers might also ask data flow questions to deal with REACHER’s imprecision. Like all
static analyses, REACHER produces a conservative approximation of paths that might execute,
using a ? icon on calls that might or might not execute. Developers may wish to determine
the conditions in which these paths are feasible. REACHER indirectly supports answering
these questions through code inspection — developers can use REACHER to navigate to meth-
ods along the paths and look for conditionals. However, REACHER could more directly sup-
port these questions by letting developers see which paths lead to specific values.

REACHER'’s design could be extended to more directly support searching along data flow and
viewing data flow paths in the call graph visualization. After selecting an expression in the
code editor, developers might invoke an upstream or downstream search on this expression.
After first generating upstream or downstream control flow, REACHER would next identify
all the statements data dependent on the expression. These statements could then be shown
in the call graph visualization and highlighted in the code editor. Figure 11.3 shows three
designs, with varying levels of detail, for incorporating data flow into the call graph visuali-
zation.

However, while showing all data dependent statements might be appropriate when their
numbers are small, in other cases this might involve a substantial fraction of a codebase. To
deal with this issue, REACHER might limit the number of data dependencies shown, perhaps
bounding them to a specific number of intermediate assignments statements or length in
the call graph. Developers could then search along data flow paths for statements of interest
using an additional mode in the search pane. Alternatively, developers might wish to search
for paths with specific values or to group paths by value.
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data dependent. In the third, data dependent methods are indicated with an outlined
box.
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11.1.7 Directly supporting higher-level questions

Developers sometimes ask questions that require them to aggregate, select, and make sense
of search results. For examples, developers ask questions such as “In what situations or user
scenarios is this called?” or “What parts of this data structure are modified by this code?”
These questions are only indirectly supported by REACHER, as they ask about “parts of a data
structure” or “situations or user scenarios” that are higher-level than the individual meth-
ods or fields REACHER depicts.

One way to more directly support these questions is by aggregating items in the list of
search results. For example, rather than seeing a list of methods related to many user sce-
narios, a developer might instead see these grouped into a small number of user scenarios.
This would allow the developer to see the user scenarios or situations in which something is
called. Similarly, a user might wish to see method calls or field writes they are searching for
aggregated or grouped by the parts of the data structure they deal with or perhaps by the
classes containing the search results. For example, to understand what data is being mutat-
ed, developers might want to see that some of the data is mutated in functionality related to
a text editor window (through calls through the text edit class to other classes) and other
data is being mutated in code for file handling (through calls through a file class to other
classes). After clicking on an aggregate search result and adding it to the visualization,
REACHER could display the aggregate as a single box, reducing the amount of clutter, and on-
ly expand it if the user asks for it to be expanded. This would allow developers to use
REACHER at a higher level of abstraction to reason about relationships between groups of
methods or fields.

In other cases, developers may be interested in reasoning about methods or fields based on
their properties. For example, some methods in a collection class do not modify the collec-
tion while others do. A developer might wish to see only those methods that modify a collec-
tion that is defined in a framework (for which field writes are not directly visible). For the
FOLDS task, developers were interested in calls to framework methods that are slow and
expensive rather than all calls into a framework. Annotations could be added to methods to
reflect these properties, either directly in the source or through REACHER’S own representa-
tion of the method. REACHER could then let developers search for methods that have been
marked as slow or that have some other property of interest.

11.2. Answering rationale questions

The studies reported in Chapter 4 - 7 revealed a number of important problems beyond
those addressed by REACHER. One of the most frequently reported hard-to-answer questions
about code is why it is implemented the way that it is. For example, a developer wished to
uncomment a code block to re-enable some functionality, but was concerned that there
might be unpredictable consequences [LM10-3]. She analyzed the surrounding code, but
could not see any obvious consequence to re-enabling the block. She found the commit
comment, surprised to find she had herself commented it out two years ago, but she had not
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indicated the reason for the change and could not remember it. Uncommenting it, she ran
the unit tests, which passed. Hours later, she heard from her teammates that the re-enabled
code was actually broken for some rare input values used by others. Finally confident she
understood what was happening, she implemented a fix and committed the change.

Developers ask rationale questions such as “Why was it done this way?” or “Why wasn’t it
done this other way?” (see Section 6.2.1). Two-thirds of developers rated answering ra-
tionale questions as a serious problem (see Table 4.2). Difficulties answering rationale
questions waste developer time, lead to code decay, and cause bugs.

Developers struggle to answer rationale questions because the reasons for decisions are not
captured the moment they are made. And with good reason: there is no short-term incen-
tive to writing down the rationale. Many systems have investigated complex notations for
capturing design rationale at the level of high-level design or design documents [MC96] or
even at the level of code through IDE integration [BB08]. While systems have demonstrated
promise in helping developers to answer rationale questions [BB08], no system has demon-
strated that developers will use it to write rationale down. While some have proposed ideas
for incentives (e.g. capturing design rationale exchanged in code reviews [SV09]), these
ideas have not made their way into actual design rationale systems. As a result, developers
who might use a design rationale system currently have little short-term incentive to write
it down.

There are a number of ways that developers might be incentivized to express rationale. One
solution might be to provide a lightweight notation for expressing rationale in comments,
providing both (1) short-term benefits to expressing rationale by leveraging the rationale to
support programming and program navigation and (2) long-term benefits in helping devel-
opers more easily answer design rationale questions. To realize this goal, approaches must
be found to express design decisions and then incentivize developers to express this ra-
tionale. There are many open questions confronting such an approach. Do developers mak-
ing decisions think about the decisions that future developers later ask rationale questions
about? How can these decisions be captured without imposing an undue burden on the
original developers? How much information needs to be captured?

11.3. Using questions to evaluate contract specifications

Another opportunity for future research is in the area of contracts and specifications. This
has long been a major topic of research in software engineering (see Section 2.2.1). In prac-
tice, many developers use assertions to express contracts. Yet, developers still report hard-
to-answer questions such as “What is the intent of this code?”, “What does this do in this
case?’, and “What assumptions about preconditions does this code make?” How effectively do
contracts help developers answer these questions? Do these problems reflect situations
where developers have not expressed any contract? How well does the information devel-
opers can express in contracts and specifications match the questions developers later ask?
In what ways can such systems be designed to more effectively express and capture the in-
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formation developers later want to know? Studies could investigate these questions by
evaluating the effectiveness of contracts to answer developers’ hard-to-answer questions,
potentially revealing design implications for future contract systems that better match the
questions developer ask.

11.4. Conclusions

Designing a useful tool requires understanding how a tool affects work and ensuring that it
addresses an important problem that developers face. This dissertation demonstrates that a
successful tool can be designed using data about how developers work. A series of studies
investigated how developers understand and explore code and found that reachability
questions are an important problem that developers face. Observations of developers
demonstrated that problems caused by reachability questions were often of long duration,
routinely take tens of minutes to answer, and impacted software quality by causing bugs.
Surveys and observations of developers in the field demonstrated that reachability ques-
tions are a frequent part of developers’ work. REACHER was designed to solve these prob-
lems by directly supporting developers’” work and successfully helps developers answer
many reachability questions faster and more successfully. Studying developers’ information
needs is a key future direction for software engineering research. Designing tools that help
developers to more effectively satisfy their information needs can help to improve software
development.
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APPENDIX 1: MATERIALS FROM ACTIVITIES
SURVEY (CHAPTER 4)

This survey is being conducted by the Human Interactions in Programming team in Mi-
crosoft Research. It will take about [estimate] minutes to complete. All information will be
reported anonymously and typically in aggregate form. Your response is important to us -
you are one of a small number of randomly selected MS employees and thus represent
many of your peers.

Our goal is to learn more about the tools, techniques, and problems faced by people devel-
oping software at Microsoft. The results of this survey will be used to inform the design of
tools to improve the software development process.

Each employee who submits a completed survey will be entered into a drawing for one of
ten $50 Amazon gift certificates. The drawing is open only to first-party recipients of the
email invitation. Surveys must be completed by 7/8/2005 to be eligible. See [URL elided]
for additional details on the drawing.

For more information about our project or for any questions about the survey contact Gina
Venolia or Thomas LaToza. Thank you for your help!

Demographics

1. What best describes your primary job function? [Radio: SDE, SDET, STE, PM, Dev lead,
Test lead, Architect, Other] JobFunction

=

Primary job function (if you answered “Other” above) [Free text] JobFunction
What best describes your role? [Radio: Individual contributor, Lead, Manager, Exec-
utive, Other] Role
Role (if you answered “Other” above) [Free text] Role
Gender [Radio: Female, Male, Decline to state] Gender
Age [Radio: Teens, 20’s, 30’s, 40’s, 50’s, 60’s, 70’s, Decline to state] Age
Education in computer science, software engineering, or related field [Radio: None,
Some college, Undergrad degree, Some grad school, Masters degree, PhD] Educa-
tion
7. Years [Grid vs. Less than 1, 1, 2, 3-5, 6-10, 11-15, 16-20, 21-25, 26+]
a. Programming YearsProgramming

b. At Microsoft YearsMicrosoft
c. Incurrent team YearsTeam
d. In current codebase (source tree or depot) - forks are not considered new

codebases YearsCodebase
8. Number of codebases enlisted in over my entire time at Microsoft [Radio: 0, 1, 2, 3, 4,
5,6,7,8,9,10+] CodebasesEnlisted

N

oW
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Team Demographics

9.

10.

11.
12.

13.

14.

15.

16.

17.

18.

Business unit [Radio: Windows Client, Information Worker, Business Solutions,
Servers and Tools, Mobile and Embedded Devices, MSN, Home and Entertainment,
Other] BusinessUnit

Business unit or organization (if you answered “Other” above) [Free text] Busi-
nessUnit

Product [Free text] Product

Most of the code in my current codebase is written in [Radio: C, C++, C#, T-SQL, Oth-
er] ProgrammingLanguage

Programming language (if you answered “Other” above) [Free text] Program-
mingLanguage

My current codebase has a clear architecture [Radio: Strongly disagree, Disagree,
Somewhat disagree, Neutral, Somewhat agree, Agree, Strongly agree] ClearArchi-
tecture

Improving the architecture of our codebase is a priority for our team [Radio: Strong-
ly disagree, Disagree, Somewhat disagree, Neutral, Somewhat agree, Agree, Strongly
agree] Architecturelmprovement

My team has useful information (schedules, architecture diagrams, bug lists, ...) dis-
played in common areas (hallway, lounge, kitchen, ...) [Yes/No] WallDisplays
When I use Visual Studio, I use [Radio: Visual Studio 6.0, Visual Studio 2002, Visual
Studio 2003 (Everett), Visual Studio 2005 (Whidbey), Other version of visual studio,
[ never use Visual Studio] VSVersion

[ am proud of the way my team builds software [Radio: Strongly disagree, Disagree,
Somewhat disagree, Neutral, Somewhat agree, Agree, Strongly agree, Decline to
state] TeamMorale

Activities

For the remainder of this survey the following definitions will be relevant. Code related ac-

tivities may involve shipping product code, test infrastructure, internal tools, or any other

work related code. Activities may use more than one type of tool (e.g. editor, debugger,

whiteboard, web search), and tools may be used for more than one activity.

Designing code - Analyzing a new problem and mapping out the broad flow of code
which will be used to solve the problem. This includes drawing pictures on a white-
board or using Visio. This does not include communication of any sort such as writ-
ing up a design in a design doc or email, having a design review meeting, or doing
design with a teammate.

Writing new code - Creating a new method, source file, or script and getting it to a
compilable state.

Understanding existing code - Determining information about code including the
inputs and outputs to a method, what the call stack looks like, why the code is doing
what it is doing, or the rationale behind a design decision. This includes using a pro-
filer to find frequently executed functions, a debugger to localize a bug, an editor to
find all references to a variable, or a search tool to find a method definition. This
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19.

20.

21.

22.

23.

does not include communication of any sort such as reading a design document or
asking a teammate a question.

Editing existing code - Editing existing code and returning it to a compilable state.
Unit testing code - Ensuring that code is behaving as expected. This includes writ-
ing and running automated, ad hoc, or other tests, using a debugger to verify a
change, or tracing.

Communicating about code - Any computer mediated or face to face communication
about information relevant to a coding task. This includes reading or writing design
docs, specs, bug descriptions, checkin comments, or email. It includes finding exam-
ple code written by others on the web. It also includes talking in your teammate’s
office, conducting a code review, instant messaging a teammate, or planned team
meetings.

Code related overhead - Any other code related activities including building, syn-
chronizing code, or checking in changes.

Activities not related to code - Any other activities included in your work time.

Time since last MO or initial planning period of your team’s primary deliverables
[Radio: 0, 1-3 months, 4-6 months, 7-12 months, < 2 years, < 3 years, < 4 years, < 5
years; 5 years or more] MODistance
Time until next RTM or release of your team’s primary deliverables [Radio: 0, 1-3
months, 4-6 months, 7-12 months, < 2 years, < 3 years, < 4 years, < 5 years; 5 years
or more] RTMDistance
Percent of work time last week that [ spent (for all percentage questions, percent-
ages need not sum to exactly 100%) [Grid vs. 0%, 1%, 2%, 5%, 10%, ..., 90%, 100%]
a. Fixing bugs entered in a bug tracking tool (e.g Product Studio, ...) Correc-
tive
b. Writing new features Adaptive
c. Making code more maintainable Perfective
Percent of work time last week that I spent [Grid vs. 0%, 1%, 2%, 5%, 10%, ..., 90%,
100%]
a. Designing code Designing
Writing new code Writing
Understanding existing code Understanding
Editing existing code Editing
Unit testing code UnitTesting
Communicating about code Communicating
Code-related overhead Overhead
Other code-related activities OtherCodeActivities
i. Activities not related to code NonCodeActivities
Other code-related activities last week [Free text] OtherCodeActivities

S@mme oo o

Communicating About Code

If you did not communicate about code last week, please skip this section.
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24. Of the time [ spent communicating about code last week, the percent of time [ used:
[Grid vs. 0%, 1%, 2%, 5%, 10%, ..., 90%, 100%]
a. Face-to-face in planned meetings
Face-to-face in unplanned meetings
Email
Instant messaging
Phone
Bug database
Internal documentation (design documents, specs, team sharepoints)
External documentation (MSDN, help files)
The web
j.  Other
25. Other tools used last week (if you answered “other” above) [Free text]
26. This tool was effective for communicating about code: [Radio: Strongly disagree,
Disagree, Somewhat disagree, Neutral, Somewhat agree, Agree, Strongly agree]
a. Face-to-face in planned meetings
Face-to-face in unplanned meetings
Email
Instant messaging
Phone
Bug reports
Internal documentation (design documents, specs, team sharepoints)
External documentation (MSDN, help files)
The web
Other (same as above)
All tools I used, taken together
47. Of the time I spent communicating about code last week, the percent of time it was

with [Grid vs. 0%, 1%, 2%, 5%, 10%, ..., 90%, 100%]

FE@ e a0 T

FT T pm oo a0 o

a.. SDEs on my team
b. SDETs on my team
c. STEs on my team
d. PMs on my team
e. Other team members
f. Other SDEs, SDETSs, or STEs at Microsoft
g. Other PMs at Microsoft
h. Other people at Microsoft

i. Other people not at Microsoft
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Designing Code
If you did not design code last week, please skip this section.

27. Of the time [ spent designing code last week, the percent of time I used: [Grid vs. 0%,
1%, 2%, 5%, 10%, ..., 90%, 100%)]

a. Whiteboard
Paper
Word processor
Visio
Visual designers or development tools
Source code editor

g. Other
28. Other tools used last week (if you answered “other” above) [Free text]
29. This tool was effective for designing code: [Radio: Strongly disagree, Disagree,

Somewhat disagree, Neutral, Somewhat agree, Agree, Strongly agree]

Whiteboard
Paper
Word processor
Visio
Visual designers or development tools
Source code editor
Other (same as above)
All tools I used, taken together\

~e a0 T

5@ e a0 oW

Writing New Code
If you did not write new code last week, please skip this section.

30. Of the time [ spent writing new code last week, the percent of time I used: [Grid vs.
0%, 1%, 2%, 5%, 10%, ..., 90%, 100%]
a. Visual Studio editor
Vi (vim, gvim, ...)
Emacs
SlickEdit
Source Insight
Notepad
A SQL editor
Other
31. Other tools used last week (if you answered “other” above) [Free text]
32. This tool was effective for writing new code: [Radio: Strongly disagree, Disagree,
Somewhat disagree, Neutral, Somewhat agree, Agree, Strongly agree]
a. Visual Studio editor

S®R e Ao o

b. Vi (vim, gvim, ...)
c. Emacs

d. SlickEdit

e. Source Insight

f. Notepad

g. A SQL editor
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h. Other (same as above)
i.

All tools I used, taken together

Understanding Existing Code

If you did not understand existing code last week, please skip this section.

33. Of the time I spent understanding existing code last week, the percent of time I used:
[Grid vs. 0%, 1%, 2%, 5%, 10%, ..., 90%, 100%]

a.

—ERTC @m0 A0 T

Visual Studio editor

Visual Studio debugger

Vi (vim, gvim, ...)

Emacs

SlickEdit

Source Insight

Notepad

A SQL editor

Other debuggers (WinDbg, CorDbg, ntsd, kd, ...)
A profiler

Diff tool (windiff, bediff, ...)
Other

34. Other tools used last week (if you answered “other” above) [Free text]
35. This tool was effective for understanding existing code: [Radio: Strongly disagree,
Disagree, Somewhat disagree, Neutral, Somewhat agree, Agree, Strongly agree]

a.

m.

—ERTC @m0 A0 T

Visual Studio editor

Visual Studio debugger

Vi (vim, gvim, ...)

Emacs

SlickEdit

Source Insight

Notepad

A SQL editor

Other debuggers (WinDbg, CorDbg, ntsd, kd, ...)
A profiler

Diff tool (windiff, bediff, ...)
Other (same as above)

All tools I used, taken together

36. Of the time I spent understanding existing code last week, the percent of time |
spent: [Grid vs. 0%, 1%, 2%, 5%, 10%, ..., 90%, 100%]
a.

b.

C.

d.
e.
f.

g

Examining source code

Examining source code check-in comments and diffs

Examining high-level views of source code (UML diagrams, class hierarchies,
call graphs, ...)

Running the code and looking at the results

Running the code and examining it with a debugger

Using debug or trace statements

Other

37. Other techniques used last week (if you answered “other” above) [Free text]
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38. This technique was effective for understanding existing code: [Radio: Strongly disa-
gree, Disagree, Somewhat disagree, Neutral, Somewhat agree, Agree, Strongly agree]

a.
b.

Examining source code
Examining source code check-in comments and diffs

c. Examining high-level views of source code (UML diagrams, class hierarchies,
call graphs, ...)
d. Running the code and looking at the results
e. Running the code and examining it with a debugger
f. Using debug or trace statements
g. Other (same as above)
h. All techniques I used, taken together
Editing Existing Code

If you did not edit existing code last week, please skip this section.

39. Of the time [ spent editing existing code last week, the percent of time [ used: [Grid
vs. 0%, 1%, 2%, 5%, 10%, ..., 90%, 100%]

a.

SR me Ao o

Visual Studio editor
Vi (vim, gvim, ...)
Emacs

SlickEdit

Source Insight
Notepad

A SQL editor

Other

40. Other tools used last week (if you answered “other” above) [Free text]
41. This tool was effective for editing existing code: [Radio: Strongly disagree, Disagree,
Somewhat disagree, Neutral, Somewhat agree, Agree, Strongly agree]

a. Visual Studio editor

a. Vi (vim, gvim, ...)

b. Emacs

c. SlickEdit

d. Source Insight

e. Notepad

f. A SQL editor

g. Other (same as above)

h. All tools I used, taken together
Unit Testing Code

If you did not unit test code last week, please skip this section.

42. Of the time I spent unit testing code last week, the percent of time I spent: [Grid vs.
0%, 1%, 2%, 5%, 10%, ..., 90%, 100%]

a

b.
C.
d.

Running test cases

Ad-hoc testing

Using the Visual Studio debugger

Using other debuggers (WinDbg, CorDbg, ntsd, kd, ...)
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e.
f.

Using trace statements
Other

43. Other tools or techniques used last week (if you answered “other” above) [Free text]
44. This tool or technique was effective for unit testing: [Radio: Strongly disagree, Disa-
gree, Somewhat disagree, Neutral, Somewhat agree, Agree, Strongly agree]

@me a0 oW

Problems

Running test cases

Ad-hoc testing

Visual Studio debugger

Other debuggers (WinDbg, CorDbg, ntsd, kd, ...)
Trace statements

Other (same as above)

All tools or techniques I used taken together

45. This is a serious problem for me: [Radio: Strongly disagree, Disagree, Somewhat
disagree, Neutral, Somewhat agree, Agree, Strongly agree]

oo o

TopEgTFTOEE O

S.

Understanding code that someone else wrote

Understanding code that [ wrote a while ago

Having to switch tasks often because my current task gets blocked
Having to switch tasks often because of requests from my teammates or
manager

Finding the right person to talk to about a bug

Finding the right person to talk to about a piece of code

Finding the right person to review a change before check-in
Finding code related to a bug

Finding the bugs related to a piece of code

Understanding the history of a piece of code

Understanding the rationale behind a piece of code
Understanding who “owns” a piece of code

. Finding out who is currently modifying a piece of code

Understanding the impact of changes I make on code elsewhere

Being aware of changes to code elsewhere that impact my code

Getting enough time with senior developers more knowledgeable about
parts of code I'm working on

Convincing developers on other teams within Microsoft to make changes to
code I depend on

Convincing managers that I should spend time rearchitecting, refactoring, or
rewriting code

Finding all the places code has been duplicated

46. When I couldn’t make progress on my current development task last week, the per-
centage of time it was because: [Grid vs. 0%, 1%, 2%, 5%, 10%, ..., 90%, 100%]

a.

Someone “broke the build” (I couldn’t try out my changes because the sys-
tem wouldn’t compile or run)

[ was waiting on a reply to an email, instant message or phone call from a
teammate

[ was waiting on a reply to an email, instant message or phone call from
someone on another team
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c. [was waiting for a teammate to check in changes I needed

d. [was waiting for someone else to make a technical decision (team to decide
on design change, ...)

e. [was waiting for someone else to make a nontechnical decision (PM to make
spec decision, triage to decide to take the fix, ...)

f. Iwaslooking for information that I couldn’t find

Final Questions

47. Please notify me when the survey results are available [Checkbox]

48. [ would be willing to participate in future user studies to improve the Microsoft
software development process [Checkbox]

49. Other comments or suggestions [Free text]
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APPENDIX 2: MATERIALS FROM ACTIVITIES
INTERVIEWS (CHAPTER 4)

1. Overview
a. Canyou tell us at a very high level what type of work you do?
b. How long have you been on this team?

2. Team
a. Regular team meetings, informal team meetings
b. How many people on your team?
i. -How many people do you talk to regularly?
c. How does ownership / load balancing work?
d. What is the boundary between your team and other teams?
e. Wall displays
f. Ever use IM?
3. Followup

a. Do you ever make changes to code that you weren’t already modifying to add a feature or
fix a bug?

b. Does your team ever budget time to cleanup code?

c. Does your team do any high level M0 planning of how all of the changes will fit together
in changing the system?

3. Tools
a. VS, source insight, etc.
i. If multiple, when do you use each?
4. Design documents
a. How many / content / how updated?
i. -If not, why not, comments instead?
5. Rationale
a. Tell us about a time when you had a hard time understanding a piece of code
i. -Bug fix / new feature, how start investigating, look at comments /
docs, talk to people, etc.
b. Email / face to face decisions
c. What are you doing when you have problems understanding rationale
i. Big picture or small picture
ii. Would comments have helped? Or design docs?
6. Code duplication
a. Isthere code duplication on your codebase?
i. -How find?
ii. -Bugs because of?
iii. -Code clones or co changes?
b. Do you ever intentionally create duplicates?
7. Interruptions
a. How often are you interrupted?
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i. -Work to manage, ....
8. Understanding impact of change elsewhere on your code
a. Tell us about a time when some change elsewhere caused a bug in your code
i. -Checkin emails
9. Final thoughts
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APPENDIX 3: MATERIALS FROM FOLLOW-UP
SURVEY (CHAPTER 4)

Developer Patterns Survey

This survey is being conducted by the Human Interactions in Programming team in Mi-
crosoft Research. It will take about 20 minutes to complete. The results of this survey will
help us design tools to improve Microsoft's software development process. Any published
data will be anonymized. Your response is important to us as you are one of a small number
of randomly selected MS employees and thus represent many of your peers. Each employee
who submits a completed survey will be entered into a drawing for one of five $50 Amazon
gift certificates. The drawing is open only to first-party recipients of the email invitation.
Surveys must be completed by 8/31/05 to be eligible. See _____ for additional details on the
drawing. For more information about our project or for any questions about the survey con-
tact Gina Venolia (ginav) and Rob DeLine (rdeline). Thank you for your help!

After taking the survey click "Submit" to save your changes.

This survey is not anonymous

Demographics

1. What best describes your primary job function? - SDE
a SDET
a STE
a PM
a Dev lead
a Test lead
~

Architect
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Other...

2.  Primary job function (if you answered “Other” above)
(Max Characters: 256)

3. Whatbestd ib le?
at best describes your roie Individual contribu-

tor
a Lead
a Manager
a Executive
Other...
4. Role (if you answered “Other” above) ﬁ
(Max Characters: 256)
5. Gender - Female
a Male
Decline to state
6. Age a Teens
a 20's
a 30's
a 40's
a 50's
a 60's+

Decline to state
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10

11

12

Feature Team

Terms used in the survey:

e Feature team - The core group of developers that
you work with.

e Teammates — The people in your feature team.

e (Collocated - A person is collocated with you if their
primary work location is within a minute (or
so) walk of yours.

Please take a moment to think about exactly who makes
up your feature team.

How many people are there in your feature team? (Include

yourself.)
(Min Number: 1 - Max Number: 99)

How many of your teammates report to your immediate
manager? (Include yourself.)
(Min Number: 1 - Max Number: 99)

How many of your teammates report to a different man-

ager?
(Min Number: 1 - Max Number: 99)

How many of your teammates have SDE as their primary
job function? (Include yourself as appropriate.)
(Min Number: 0 - Max Number: 99)

How many of your teammates have SDET as their primary
job function? (Include yourself as appropriate.)
(Min Number: 0 - Max Number: 99)

How many of your teammates are collocated with you?
(Include yourself.)
(Min Number: 1 - Max Number: 99)

193
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13

14

15

16

17

18

19

Communication Patterns

In your last work week, approximately how many ...

... regularly-scheduled meetings about code did you have?
(Min Number: 0 - Max Number: 999)

.. scheduled-but-not-recurring meetings about code did
you have?
(Min Number: 0 - Max Number: 999)

... unplanned face-to-face discussions about code did you
have with teammates?
(Min Number: 0 - Max Number: 999)

... unplanned face-to-face discussions about code did you
have with non-teammates?
(Min Number: 0 - Max Number: 999)

.. emails about code did you send to collocated team-
mates?
(Min Number: 0 - Max Number: 999)

. emails about code did you send to non-collocated
teammates?
(Min Number: 0 - Max Number: 999)

.. emails about code did you send to non-teammates?
(Min Number: 0 - Max Number: 999)

L O e

194
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Code Ownership

20 Please answer...

StronglyA ree Somewhat Somewhat _.

Neutral Disagree

agree agree disagree

There is a clear distinction between
the code my feature team “owns”| " " " - {
and the code owned by other tea

There is a clear distinction between
the code that I “own” and the code| " " i - {
owned by my teammates

There is code that my functional
team owns that none of my team- F '-ﬁ F - {
mates (including me) owns

I find it more difficult to fix bugs in
code that I don’t own than code that i { i -~ ~
I do own

I find it more difficult to do new
feature work in code that I don’tf " " i . {
own than code that I do own

21 Do you think your team’s code ownership practices are...

StronglyA ree Somewhat Somewhat _.

Neutral . Disagree

agree agree disagree

... too strict?, " " i - {

..tooloose? " " i - {

195

Strongly N/A

disagree

{ "

{ "

- -

i "

i "
SFrongly N/A
disagree

{ "

{ -
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22

23

24

25

26

27

28

Design Documents

Approximate number of design documents that were writ-
ten by you or your teammates in the last year...

... that were relevant to issues isolated within your team?
(Min Number: 0 - Max Number: 999)

... that were relevant to issues that affected other teams?
(Min Number: 0 - Max Number: 999)

... that were relevant to issues isolated within your team
and were design reviewed?

(Min Number: 0 - Max Number: 999)

... that were relevant to issues that affected other teams
and were design reviewed?

(Min Number: 0 - Max Number: 999)

... that were relevant to issues isolated within your team
and are kept
(Min Number: 0 - Max Number: 999)

up-to-date?

... that were relevant to issues that affected other teams
and are kept
(Min Number: 0 - Max Number: 999)

up-to-date?

Do you often refer back to design documents that...

I

Disagree

-

St 1 S hat S hat
rongly , o Somewhat (  Somewhat _
agree agree disagree

..you've written? . . lﬁ -
... your teammates have written?, e . " -

~

Strongly
disagree

~

196

N/A

~
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... non-teammates have written?| e £ (" . {"

29 What do you think are the important benefits of design documents?

Strongly Somewhat Somewhat _.
Agree Neutral Disagree
agree agree disagree

They force the developer to think ~ ~ ~ ~ ~ ~
through the design

They build consensus around the ~ ~ ~ ~ ~ ~
design within the team

They build consensus around the ~ ~ ~ ~ ~ ~

design between teams

They document the rationale be-
hind the design for devs encounter-| e e " - {
ing the code later

Other.., - - . - {

30 What are other important benefits of design documents (if
you answered “Other” above)?
(Max Characters: 1000)

31 Do you think your team is good at using design documents...

Strongly Agree Somewhat Somewhat

Neutral Disagree

agree agree disagree

... for within-team issues?| " " i - {

... for cross-team issues? e £ (" . {"

Strongly
disagree

~

Strongly
disagree

~

197

N/A
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Understanding Unfamiliar Code

32 Do you often find it difficult to understand...

Strongly Agree Somewhat Neutral So.mewhat Disagree SFrongly
agree agree disagree disagree
.. what unfamiliar code is trying to ~ ~ ~ ~ ~ ~ ~ ~
accomplish?
... why unfamiliar code is taking a ~ ~ ~ ~ ~ ~ ~ ~

particular approach?

Code Duplication

33 In your last work week have you made repeated or related changes in code that

was...
St 1 S hat S hat St 1
rongyA ree omewna Neutral o.mew a Disagree -rongy N/A
agree agree disagree disagree
... duplicated (by copy-paste or oth- ~ ~ ~ ~ ~ ~ ~ ~

er means) in the source code?

... duplicated because of architec-
tural constraints such as language, " " " - { " -
calling convention, etc?

.. redundantly implemented inde-
pendently by developers not aware| " " " - { " -
of each others work?
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.. where an individual design deci-
sion got spread into multiple places| " " " - {
in the source?

.. in multiple product branches?| " . . -~ ~ ~

.. in alarge body of code imported ~ ~ ~ ~ ~ ~
from another team into my team?

34 Is your team's code difficult to manage because of code that was...

StronglyA ree Somewhat Somewhat _.

Neutral Disagree

agree agree disagree

... duplicated (by copy-paste or oth- ~ ~ ~
er means) in the source code?

... duplicated because of architec-
tural constraints such as language, . . lﬁ - -
calling convention, etc?

.. redundantly implemented inde-
pendently by developers not aware| 1 . . lﬁ - -
of each others work?

.. where an individual design deci-
sion got spread into multiple places| . . lﬁ - -
in the source?

.. in multiple product branches?| i " . ~ ~

.. in a large body of code imported ~ ~ ~ ~ ~ ~
from another team into my team?

Unit Testing

Strongly
disagree

~

199

N/A

~
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35 What best applies to your team?

200

My team currently
uses unit testing

My team tried unit
testing but abandoned it

My team has not
tried unit testing

36 How many months has/had your team tried unit testing?
(Min Number: 1 - Max Number: 99)

37

Does your team...

.. currently use unit testing EXTEN-
SIVELY?

... write unit tests BEFORE imple-
menting the tested functionality?

... write the unit tests AT THE SAME
TIME AS implementing the tested
functionality?

... write the unit tests AFTER im-
plementing the tested functionali-
ty?

.. make SDEs responsible for writ-
ing unit tests?

.. make SDETs responsible for writ-
ing unit tests?

.. make SDEs responsible for main-
taining unit tests?

.. make SDETSs responsible for
maintaining unit tests?

~

St
ronglyA ree Somewhat
agree

~

SO_mEWhatDisa ree SFrongly N/A

disagree disagree
- { { -
i { i "
- { { -
- { { -
" { { "
- { { -
- { . -
" { { "
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38 What do you think are the important benefits of unit testing?

St 1 S hat S hat St 1
rongly Agree omewha Neutral o.mew a Disagree -rong y
agree agree disagree disagree
They force the SDE to think through ~ ~ ~ ~ ~ ~ ~ ~
a design
They reduce build breaks " " " - { " -
They reduce regressions| £ £ £ - { £ .
They isolate dependencies between ~ ~ ~ ~ ~ ~ ~ ~
teams
More bugs get caught before check- ~ ~ ~ ~ ~ ~ ~ ~
in
They help localize mistakes faster, £ £ £ - { £ .
They help fix mistakes faster| F " " - { F .
They encourage refactoring 1~ " " " - { " -
Other..| " ™ i . { " -

39 What are other important benefits of unit tests (if you an-
swered “Other” above)?
(Max Characters: 1000)

Agile Practices
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40 Does your team use...

St 1 S hat S hat St 1
rong Y Agree omewha Neutral o.mew a Disagree -rong Y N/A
agree agree disagree disagree
.. 'sprints," ie. a development cycle ~ ~ ~ ~ ~ ~ ~ ~
that lasts four (or so) weeks?
.. 'scrum meetings," ie. a brief daily
status meeting including all stake-| 1~ £ £ £ - { £ .
holders?
..a "bullpen" or other open- ~ ~ ~ ~ ~ ~ ~ ~

floorplan space for the team?

.. "burndown'' estimate or chart, ie.
a measure of the time remaining in| " F " " - { F .
the sprint?

... pair programming, ie. developers
working together, shoulder-to- e . " - { e .
shoulder on a problem?

.. an intentional policy for prefer-
ring face-to-face over electronic e e " - { e .
communication?

... an intentional policy to involve
customers (internal or external) £ £ £ - { £ .
deeply into design & planning?

... collective code ownership within ~ ~ ~ ~ ~ ~ ~ ~
the team
..other.., ©° £ £ r . { £ £

41 What other agile software development practices does
your team use (if you answered “Other” above)?
(Max Characters: 1000)
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42 Do you think that your team should adopt agile software development methodolo-
gies...

St 1 S hat S hat St 1
rongyA ree omewha Neutral o.mew a Disagree -rongy N/A
agree agree disagree disagree
.. more aggressively, F " " - { F .
.. less aggressively| " " " " - { " -

Final Questions

43 Do you want to be notified when survey results are availa- ¢~

Yes
ble? ~
No
44 Would you be willing to participate in future user studies ¢~ v
es
to improve Microsoft's software development process? ~
No

45 Other comments or suggestions
(Max Characters: 2000)
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APPENDIX 4: MATERIALS FROM EXPLORA-
TION LAB STUDY (CHAPTERS 5 AND 7)

Introduction

Information about software architecture concerns the important elements of a design, the
relationships between them, and important designs made about them. While much work
has been done to help architects document, analyze, or reverse engineer architecture, less is
known about the use of architectural information during coding tasks. While it seems such
information should be helpful, which information is most helpful, how it should be present-
ed, and exactly how it would help remain less clear. To understand the requirements for
future diagram or visualization systems, specifications, or coding conventions to better pre-
sent architectural information during coding tasks, we are studying how developers cur-
rently interact with architectural information. We hope that a careful analysis of the ques-
tions developers ask, the information they seek, and the difficulties they experience will
lead to the design of more useful future systems for presenting architectural information.

You will be asked to perform two change tasks. You will have 1.5 hours (beginning after
you finish reading the actual task description) to work on each task. The tasks have been
designed to be challenging, so you will likely not have time to investigate or design as much
as you could with unlimited time constraints. Your goal is to complete each task with a well
designed implementation that respects the existing architecture of the system as much as
possible. You will be investigating and trying to change two complicated pieces of code in a
codebase that you will have little time to explore. So do not feel discouraged if you are not
able to accomplish as much as you might hope you could accomplish.

You will be provided with a copy of Eclipse 3.2. You may use any feature of Eclipse - includ-
ing running the program - and may use Explorer to open any files created by jEdit - such as
log files or files edited by jEdit - in Notepad or jEdit. But you may not use any other applica-
tion (including a web browser). At the end of the first task, you will be given a fresh copy of
the source to work on the second task. After each task, the experimenter will ask some
questions about your understanding of the system, how you were working, and decisions
you made in creating your implementation.

To understand how you are working, you will be asked to “think aloud” - talk about what
you are thinking while you work. You should describe what you're trying to accomplish and
what you're considering doing to accomplish your goals. If you find information that you've
been seeking for a while, you should make sure that you say something about what you
found. If you are distracted of forget to think aloud, the experimenter will prompt you to
continue to think aloud by asking you about what you're doing. To allow us to analyze how
you work, you will be recorded using a laptop audio recorder, a screen capture program, an
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Eclipse event logger, and two video cameras. Your identity will not be revealed to anyone
other than researchers in the research group. To ensure anonymity, only the researchers in
the research group will have access to the audio and video recordings. However, transcripts
of the audio recording with any personally identifying information removed and the screen
recording may be used in public presentation of this work.
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Eclipse Code Navigation Tutorial

Eclipse features a number of sophisticated features for navigating through source code. In

this brief tutorial, you will try out several of the most useful features.

1.
2.

Press CONTROL-SHIFT-T and type “jedit” to open up the jedit class.

Press CONTROL-O to open the method outline and type getProperties to navigate to
the method getProperties().

Hold down control and click on getProperties() (the method call on propMgr, not
the method declaration). This moves you to the method declaration.

Go back to the previous method you were looking at by clicking on the left arrow se-
condmost from the right edge of the toolbar.

Place the cursor over the getProperties() method declaration, right click, and select
“Open Call Hierarchy”. At the bottom of the screen, a tree view shows either the
Callee Hierarchy or the Caller Hierarchy. Switch between them by clicking a button
to the right of the Call Hiearchy tab.

Place the cursor on propMgr. All references to this field in the current Java file are
now highlighted with a grey highlight both in the text editor and next to the scroll-
bar, allowing you to quickly find all of the references in the file.

Find all of the methods that assign the field propMgr by placing the cursor on top of
it and selecting from the “Search” menu at the top of the screen “Write Access” and
then “Project”.

Find all references to the jEdit type by selecting Java from the Search menus, typing
in jEdit, and selecting “Type” in Search For.
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jEdit Background

For your two tasks, you will be working with jEdit. jEdit is an open source text editor main-
ly intended for editing code written in a little over 50,000 LOC of Java. It was originally
written by mostly one developer (Slava Pestov) but has more recently been edited by sev-
eral other developers. Start jEdit by clicking the debug button the on the Eclipse toolbar
(the fourth icon from the left).

Several important classes in jEdit can be considered components:

jEdit

jEdit is the main class in the application and contains the application entry point. It is most-
ly responsible for orchestrating interactions between other components such as opening
and closing buffers, creating and switching views, managing plugins, and setting and re-
trieving global application properties.

View
The top level window for a jEdit application toolbars, user input, creating and deleting Edit-

Panes, and visual look and feel. There can be more than one open view for a particular ap-
plication - to create a new View simply select View.New View on the menu bar.

EditPane

The containing visual element for a JEditTextArea text editing control. There may be more
than one when a view is split into multiple panes. EditPanes are responsible for switching
buffers and managing markers (bookmarks).

JEditTextArea

jEdit’s text control for editing text. Responsibilities include scrolling, selection, painting,
buffer access, caret position, text input, and text transformations.

JEditBuffer

jEdit’s representation of a file containing functionality for manipulating the text in a buffer.

Buffer (inherits from JEditBuffer)

jEdit’s representation of a file containing rules about how the text file in memory is loaded
and stored to disk.

EditBus
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Registered components receive messages reflecting changes in the application's state, in-
cluding changes in buffers, views and edit panes, changes in the set of properties main-
tained by the application, and the closing of the application.

StatusBar

StatusBars are a small message bar at the bottom of a View that convey information about
the state of the application such as the scroll position and caret position.

The next two pages give a component and connector diagram of these components split into
two diagrams based on the type of communication occurring.
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Call / Return Communication

jEdit : jEdit

210

View : View

Status : StatusBar

Pane : EditPane

Buf : Buffer

textArea : JEditTextArea

KEY

Acalls B
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Implicit Invocation Communication

211

CaretHandler
FocusHandler
ScrollHandler
jEdit : jEdit l—_— View : View Status : StatusBar
EditBusSend EditBusSend EditBusReceive
] Send
[ EditBusReceive
E
d StatusHandler
i Pane : EditPane ___|
t
B [/ EditBusSend
u
s
5eceive
FocusListener
[l BufferChangeListener ScrollListener i
StatusListener
Buf : Buffer textArea : JEditTextArea
EditBusSend
aretListener
BufferListener [ | |BufferHandler
KEY

Ais an event
which B
subscribes to

A sends a message

to the bus B

Areceives a message
from the bus B

B A
B A
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Try out jEdit by performing the following actions:
-Create a new file
-Type some text in the file and note that the file’s icon changes.

-Press return enough times so that there is more text than can fit on the screen. Scroll the
active window. Note that the left portion of the StatusBar displays two pieces of infor-
mation. The leftmost piece is the line and column of the caret (cursor’s) position. Next to
this is a percentage describing how far down the text are is scrolled. Other messages (such
as a buffer being autosaved) are displayed in the center portion of the status bar. On the
right edge is information on the current character set and mode and current memory use.

-Create a second new file. Use the list box with the file’s name above the text area to switch
back to the first file.

-JEdit has a feature called “folds” which hierarchically hides lines of text. Type in the follow-
ing text using tabs for spacing:

The
Quick
Brown
Fox
Jumped
Over
The
Lazy
Dog.

Note that JEdit displays triangles next to each of these lines. Clicking on the triangles causes
JEdit to hide or show the lines of lower fold level than the line selected.
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Task 1 - StatusBar caret updates

Start jEdit from the debug command, type a couple of characters of text, and create a second
buffer. Place a breakpoint at the beginning of StatusBar.updateCaretStatus() at Status-
Bar.java:368 and switch buffers. updateCaretStatus() should be being called a number of
times, resulting in the breakpoint also being hit a number of times. This is bad, at the very
least from a performance perspective, because the status bar’s caret message should only be
changing once - from the value for the old buffer to the value for the new buffer. But it like-
ly reflects deeper problems in the semantics of what the events that trigger these updates
mean.

Your task is to investigate why this is the case and implement a better design. You should
carefully budget your time to make your improved design as ideal as possible while careful-
ly scoping your changes to what you can implement within your allotted time. As you work,
you should produce a design diagram or diagrams illustrating your new design. You may
use any notation you wish (e.g. UML class diagrams), including your own, but are encour-
aged to use a notation that captures as much of your design as possible. You may change as
much or as little code as you’d like. Your goal is only to make the design as ideal as possible
by the criteria of performance, understandability, and reusability. Once you’ve completed
your task, the experimenter will ask you several questions about your design and design
process including what alternatives you considered and what criteria you used to select a
design alternative. You may use the file “Task 1 Notes.txt” for any notes you wish to record,
and the piece of paper on the desk for any diagrams or notes you do not wish to type. You
have 1.5 hours beginning now to work.
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Task 2 - Fold Level Updates
Consider the following code fragment:

BufferHandler.doDelayedUpdate() : BufferHandler.java:363
// force the fold levels to be
// updated.

// when painting the last line of

// a buffer, Buffer.isFoldStart ()

// doesn't call getFoldLevel (),

// hence the foldLevelChanged/()

// event might not be sent for the
// previous line.

buffer.getFoldLevel (delayedUpdateEnd) ;

BufferHandler is a subcomponent of JEditTextArea responsible for responding to events on
the BufferListener event bus provided by Buffers. It does this by implementing the Buft-
erListener interface and being subscribed to the bus. Unfortunately, getFoldLevel() is both
architecturally questionable and clearly bad design. Architecturally, it is intended to change
the buffer’s state from within a different component (JEditTextArea), which may not be ar-
chitecturally ideal. At a design level, it is changing the state by calling a getter method,
which most developers might reasonably assume to have no effects (does not change any of
the object’s fields). Indeed, it is using a getter method solely to change the state of the buft-
er and ignoring the information the getter method is supposed to be used to obtain. This is
clearly poor design.

Your task is to investigate why this is the case and implement a better design. You should
carefully budget your time to make your improved design as ideal as possible while careful-
ly scoping your changes to what you can implement within your allotted time. As you work,
you should produce a design diagram or diagrams illustrating your new design. You may
use any notation you wish (e.g. UML class diagrams), including your own, but are encour-
aged to use a notation that captures as much of your design as possible. You may change as
much or as little code as you’d like. Your goal is only to make the design as ideal as possible
by the criteria of performance, understandability, and reusability. Once you’ve completed
your task, the experimenter will ask you several questions about your design and design
process including what alternatives you considered and what criteria you used to select a
design alternative. You may use the file “Task 2 Notes.txt” for any notes you wish to record,
and the piece of paper on the desk for any diagrams or notes you do not wish to type. You
have 1.5 hours beginning now to work.
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APPENDIX 5: MATERIALS FROM PAPER
PROTOTYPE STUDY (CHAPTER 10)

Introduction

We are currently designing a new tool for helping developers more effectively explore and
understand large, complex codebases. In this study, you will help us better determine the
ways in which our proposed design might or might not make these tasks easier.

You will be asked to perform one change task and will have 1 hour (beginning after your
finish reading all of the instructions) to work. Your goal is to complete the task with a well-
designed implementation that respects the existing architecture of the system as much as
possible. The task has been designed to be challenging, so you will likely not have time to
investigate or design as much as you might have with unlimited time. So do not feel dis-
couraged if you are not able to accomplish as much as you might hope you could accomplish.

In this study, you will work with two applications - a complete, working application
(ECLIPSE) and a paper prototype of a second application (REACHER). In ECLIPSE, you will be
able to navigate to and edit files. But when you have questions about code (e.g., what does
this do, or when does this happen?), you should first try to ask them using REACHER. But as
this application does not yet exist, you will be using a paper version. To use REACHER, simply
tell the experimenter what you wish to do (e.g., right click on this element), and the experi-
menter will attempt to simulate REACHER using paper mockups. Sometimes mockups may
not exist for the question you asked - in these cases, the experimenter will tell you how to
proceed.

We hope that REACHER will make coding tasks less time consuming and error prone by help-
ing developers answer reachability questions more effectively. A reachability question is a
search for target statements along possible paths through code. Current development envi-
ronments make answering reachability questions difficult because developers must trav-
erse across method calls to search for relevant statements. For example, to debug a dead-
lock, a developer might use a debugger or call graph tool to search from an origin statement
for calls acquiring or releasing resources. Developers use their intuition or limited
knowledge to decide which methods are most likely to contain relevant statements. But
when targets are widely distributed, hidden behind misleading method names, or simply
unexpected, this process can be time consuming or error prone. In contrast, REACHER sup-
ports directly asking and answering reachability questions. To debug a deadlock, develop-
ers can simply select an origin, search for calls that acquire or release resources, and inspect
the resulting paths.
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To understand how you are working, you will be asked to “think aloud” - talk about what
you are thinking while you work. You should describe what you're trying to accomplish and
what you’re considering doing to accomplish your goals. If you find information that you've
been seeking for a while, you should make sure that you say something about what you
found. If you are distracted of forget to think aloud, the experimenter will prompt you to
continue to think aloud by asking you about what you're doing. To allow us to analyze how
you work, you will be recorded using a laptop audio recorder, a screen capture program,
and a video camera. Your identity will not be revealed to anyone other than researchers in
the research group. To ensure anonymity, only the researchers in the research group will
have access to the audio and video recordings. However, transcripts of the audio recording
with any personally identifying information removed and the screen recording may be used
in public presentation of this work.

At the conclusion of the study, the experimenter will ask you some questions about your
understanding of the system, how you were working, and decisions you made while work-
ing.
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jEdit Background

In this study, you will be working with jEdit. jEdit is an open source text editor mainly in-
tended for editing code written in a little over 50,000 LOC of Java. It was originally written
by mostly one developer (Slava Pestov) but has more recently been edited by several other
developers. Start jEdit by clicking the debug button on the ECLIPSE toolbar (the fourth icon
from the left).

Several important classes in jEdit can be considered components:

JEdit

jEdit is the main class in the application and contains the application entry point. It is most-
ly responsible for orchestrating interactions between other components such as opening
and closing buffers, creating and switching views, managing plugins, and setting and re-
trieving global application properties.

View

The top level window for a jEdit application toolbars, user input, creating and deleting Edit-
Panes, and visual look and feel. There can be more than one open view for a particular ap-
plication - to create a new View simply select View.New View on the menu bar.

EditPane

The containing visual element for a JEditTextArea text editing control. There may be more
than one when a view is split into multiple panes. EditPanes are responsible for switching
buffers and managing markers (bookmarks).

JEditTextArea

jEdit’s text control for editing text. Responsibilities include scrolling, selection, painting,
buffer access, caret position, text input, and text transformations.

JEditBuffer
jEdit’s representation of a file containing functionality for manipulating the text in a buffer.
Buffer (inherits from JEditBuffer)

jEdit’s representation of a file containing rules about how the text file in memory is loaded
and stored to disk.
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EditBus

Registered components receive messages reflecting changes in the application's state, in-
cluding changes in buffers, views and edit panes, changes in the set of properties main-
tained by the application, and the closing of the application.

StatusBar

StatusBars are a small message bar at the bottom of a View that convey information about
the state of the application such as the scroll position and caret position.

The next two pages give a component and connector diagram of these components split into
two diagrams based on the type of communication occurring.
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Try out jEdit by performing the following actions:
-Create a new file
-Type some text in the file and note that the file’s icon changes.

-Press return enough times so that there is more text than can fit on the screen. Scroll the
active window. Note that the left portion of the StatusBar displays two pieces of infor-
mation. The leftmost piece is the line and column of the caret (cursor’s) position. Next to
this is a percentage describing how far down the text are is scrolled. Other messages (such
as a buffer being autosaved) are displayed in the center portion of the status bar. On the
right edge is information on the current character set and mode and current memory use.

-Create a second new file. Use the list box with the file’s name above the text area to switch
back to the first file.

-JEdit has a feature called “folds” which hierarchically hides lines of text. Type in the follow-
ing text using tabs for spacing:

The
Quick
Brown
Fox
Jumped
Over
The
Lazy
Dog.

Note that JEdit displays triangles next to each of these lines. Clicking on the triangles causes
JEdit to hide or show the lines of lower fold level than the line selected.
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EcLIPSE Code Navigation Tutorial

ECLIPSE features a number of sophisticated features for navigating through source code. In

this brief tutorial, you will try out several of the most useful features.

1.
2.

Press CONTROL-SHIFT-T and type “jedit” to open up the jedit class.

Press CONTROL-O to open the method outline and type getProperties to navigate to
the method getProperties().

Hold down control and click on getProperties() (the method call on propMgr, not
the method declaration). This moves you to the method declaration.

Go back to the previous method you were looking at by clicking on the left arrow se-
condmost from the right edge of the toolbar.

Place the cursor over the getProperties() method declaration, right click, and select
“Open Call Hierarchy”. At the bottom of the screen, a tree view shows either the
Callee Hierarchy or the Caller Hierarchy. Switch between them by clicking a button
to the right of the Call Hiearchy tab.

Place the cursor on propMgr. All references to this field in the current Java file are
now highlighted with a grey highlight both in the text editor and next to the scroll-
bar, allowing you to quickly find all of the references in the file.

Find all of the methods that assign the field propMgr by placing the cursor on top of
it and selecting from the “Search” menu at the top of the screen “Write Access” and
then “Project”.

Find all references to the jEdit type by selecting Java from the Search menus, typing
in jEdit, and selecting “Type” in Search For.
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REACHER Tutorial

In this tutorial, you’ll learn how to use REACHER by following along with another developer
(Brad) as he attempts to complete a similar task in jEdit to the one you will shortly work on.

Brad has received a bug report that there is a potential performance problem with redraw-
ing a portion of the jEdit status bar. Whenever the file currently open in jEdit is changed, the
display of the caret’s position in the status bar is redrawn 7 times when it only needs to be
redrawn once. While somewhat trivial by itself, the bug asks if this is a symptom of a larger
problem. Thus, Brad decides to investigate how this code works to see if a better design is
possible.

He first navigates to the method StatusBar.updateCaretStatus(), which he knows from past
experience is the method that does the redraw in question. Next, he right clicks the method,
and selects “When does this happen?” from the context menu, launching REACHER with a
new upstream reachability question. REACHER supports two types of reachability questions
- upstream and downstream. Upstream reachability questions are a search across paths
that reach a destination statement. A downstream reachability question is a search across
paths beginning at an origin statement.

[To]

A brief tour of the main interface elements of REACHER:

TraceMaps - visual depictions of paths through code

Navigation controls - works like a browser back and forwards button to quickly return to
previous view states

Search box - search for statements, comments, and methods by name along upstream or
downstream paths

Search results list - a list of statements matching the active search

Search cursor - all searches are relative to a start method. Dragging the start cursor changes
where the search starts from.

Question list - REACHER supports investigating multiple reachability questions simultaneous-
ly. Each numbered reachability question corresponds to the number in the TraceMap.
Reachability questions may be closed (x button) or hidden (dot button).

TraceSource - clicking on a method in the TraceMap highlights the method with a yellow
outline and navigates the TraceSource window. Eclipse must currently be navigated manu-
ally by pressing CONTROL-SHIFT-T to open the type and then CONTROL-SHIFT-O to open
the method.
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Brad wonders - what are these callers of updateCaretStatus. To answer this question, he
slides the show depth slider to 1. For the upstream question he is currently exploring, this
shows methods one call up from updateCaretStatus.

[T1]

A TraceMap depicts paths through code as a tree of methods. Time flows from left to right
and top to bottom - the in-order traversal of the tree corresponds to execution order. Visual
attributes of the diagram depict information about these paths:

+methodName

#methodName public / protected / private method

-methodName
S0 type with type name
_ method call that is always executed

....... method call that might execute

mutually exclusive method calls

--O-- method call in a loop

recursive method call

® oo paths of calls with hidden methods

data flow

Brad next wonders - are all these callers really on paths from a buffer switch? How many of
these paths occur on each buffer switch? To answer this question, Brad enters “buffer
switch” in the search box, sees one result - BufferSwitch.ActionHandler.actionPerformed() -
and clicks on it. This denotes the method as a target. Now, only those paths containing it are
shown. And a separate copy of updateCaretS