The Plaid Language:
Typed Core Specification

version 0.4.0

Jonathan Aldrich Nels E. Beckman
Robert Bocchino Karl Naden Darpan Saini
Sven Stork Joshua Sunshine

March 2012
CMU-ISR-12-103

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Plaid is an object oriented programming language built on two paradigms. First, Plaid is typestate-
oriented. Programmers can directly encode the abstract states of objects and use the state change
operator to change the state, interface, and representation of an object at runtime. Second, Plaid’s
type system is permission-based. The type of each reference includes an access permission which
dictates how the reference can be used and characterizes the permissions to other aliases of the
same object. Plaid leverages permissions when tracking the abstract state of references during
typechecking. Permissions are also used to infer code that can be safely run in parallel. This
document defines the core of the Plaid language, including its source syntax, the semantics of
operations involving abstract states, and a type system.

This research was supported by DARPA grant HR00110710019, CMUIPortugal Aeminium grant CMU-
PT/SE/0038/2008, NSF grants CCF-0811592 and CCF-1116907, and grant #1019343 to the Computing Research
Association for the CIFellows Project.

Keywords: programming language, typestate, Plaid, gradual typing, permissions

1 Conventions

This document uses the same grammar definition conventions as the Java Language Specification,
Third Edition (JLS) [Gosling et al., 2005]. Those conventions are described in chapter 2 of the
JLS and are not repeated here.

2 Lexical Structure

The lexical structure of Plaid is largely borrowed from Java, but there are significant differences.
Specifically:

2.1

Plaid uses the same definitions of line terminators as Java (JLS section 3.4), the same input
elements and tokens (JLS section 3.5) except for a different keyword list, and the same
definition of whitespace (JLS section 3.6).

Plaid uses the same definition of comments as Java (JLS section 3.7).
Plaid uses the same definition of identifiers as Java (JLS section 3.8).

Plaid literals are based on Java literals (JLS section 3.10), but there are several substantial
differences. Plaid string literals are the same as Java string literals. Plaid integer literals are of
arbitrary length. Plaid rational literals are like Java double literals but are of arbitrary length.
Furthermore, Boolean objects named true and false exist in the standard library, but
unlike in Java these are not keywords in Plaid. No other Java literals are currently supported,
but future versions of Plaid will support all Java literals except the null literal.

Plaid uses the same definition of Separators as Java (JLS section 3.11).

Keywords

The following character sequences, formed from ASCII letters, are reserved for use as keywords
and cannot be used as identifiers:

Keyword: one of

atomic callonce case default dyn
dynamic exclusive fn freeze full
group immutable import local match
method mutable new none of
override package pure readonly remove
rename requires shared split state
stateval this top type unique
unpack val var void with

2.2 Operators

We first define operator characters as follows:

OperatorChar: one of

~

=< >! ~72 = & |+ - %/

o
o
Now an operator is a sequence of operator characters:

Operator:
OperatorChar
OperatorChar Operator

The exception to the grammar above is that the character sequences =, =>, <<-, >> and <-
have other meanings in the language and may not be used as operators. Furthermore, operators
containing the comment sequences /x or // may not be used as operators.

3 Statements and Expressions

3.1 Exceptions

Several locations in this document refer to an exception being thrown. The semantics of an ex-
ception being thrown is that the application halts with a run-time error. Future versions of this
document will define facilities for propagating and catching exceptions.

3.2 Statements

Stmt:

Expr

VarDecl

StateValDecl
VarDecl:

Specifier [Type] ldentifier = Expr
StateValDecl:

stateval Ildentifier StateBinding
Specifier:

val

var

Statements are either expressions, or variable declarations. A variable declaration must include
an initial value. Object variables are declared with the val or var keyword; the former indicates
a final let binding, whereas the latter indicates a assignable variable that can be updated. State
variables are declared with the stateval keyword.

An optional type may be given for variable declarations. If the type is omitted for a val
declaration, then it has the structure of the initializing expression and the default permission for
that structure. If no type is given for a var declaration, the variable is has type dynamic.

Statements evaluate to values, based on the expression in the statement or the value of the
initializer for the variable. The last statement in a sequence is used for the return value of a method
or the result of a block.

3.3 Expressions
Expr:
£n [MetaArgsSpec]([Args]) [[Args]] => Expr
Exprl

A first-class function includes standard polymorphic and parameter argument declarations. The
optional arguments surrounded by [] specify environment variables that are captured by the lambda
at its declaration. The syntax of polymorphic parameters are described on Section 4. Polymorphic
parameters specify which data group permission a functions requires and allow the function to be
generic on which data groups it operates (similar to generic methods on Java).

Exprl:

[SimpleExpr .] ldentifier = Expr
SimpleExpr <— State
SimpleExpr <<— State
atomic MetaArgs BlockExpr
split MetaArgs BlockExpr
unpack BlockExpr
match (InfixExpr) { {CaseClause/ }
InfixExpr

The assignment form is for fields or for already-declared local variables, which must have been

declared using var.
The state change operator <— modifies the object to the left of the arrow as follows:

o All tags on the right are added to the object. Old tags are kept unless they are inconsistent
with the new tags, i.e. the old tag and new tag are (transitively) different cases of the same
state.

e All members that were declared in tags being removed, are removed from the object.

e All members on the right are added to the object. All old members on the left that are not
explicitly removed according to the bullet above are retained.

e Futher details on the semantics of state change can be found in Sunshine et al. [2011].

The replacement operator <<- removes all tags and members from the object on the left and
adds all tags and members of the state on the right.

The type of either state change operations is void.

This paragraph provides a short overview of the Aminium-specific expressions. For a full
definition of the semantics refer to [Stork et al., 2009, 2010]. The atomic expression provides
a safe access environment to all shared objects which belong to the data groups mentioned by the
atomic block. The MetaArgs describes which data groups the atomic block guarantees mutual
exclusive access. Each MeraArg must refer to a valid data group (i.e., a concrete declared data
group or a group parameter). The split executes all statements of its body concurrently. To allow
parallel access to shared data the split block will split the declared data group permissions into
shared permissions, one for each statement. unpack is used to trade the group/access permission
to the specified object to gain access to the inner/nested groups declared inside the object.

The match expression matches an input expression to one of several cases using the Case-
Clause construct defined below. The overall match expression evaluates to whatever value the
chosen case body evaluates to.

CaseClause:

case Pattern BlockExpr

default BlockExpr
Pattern:

Qualifiedldentifier
Qualifiedldentifier:

Identifier { . Identifier}

The value is matched against each of the cases in order. For the first case that matches, the
corresponding expression list is evaluated. If no pattern matches, an exception is thrown.

A case tests the value’s tags against the Qualifiedldentifier given by the specified pattern. The
match succeeds if one of the tags of the matched value is equal to the tag Qualifiedldentifier, or
if one of the tags of the matched value was declared in a state that is a transitive case of the
Qualifiedldentifier specified.

The Qualifiedldentifier must resolve to a state declared with the state keyword; otherwise,
an exception is thrown.

For the default case, the match always succeeds. If there is a default case, it must be the
last one in the match expression.

InfixExpr:

SimpleExpr

CastExpr

InfixExpr ldentifierOrOperator InfixExpr
IdentifierOrOperator:

Identifier | Operator
CastExpr:

SimpleExpr [as Type]

The operators defined in Java have the same precedence in Plaid as they do in Java, except the
ternary operator and right shift operators, which are unsupported. Identifiers as well as symbolic
operators can be used as infix operators; both are treated as method calls on the object on the left
of the operator. Non-Java operators and identifiers used as infix operators have a precedence above
assignment and state change, and below all other operators.

Cast expressions assert that a variable has a given type, and also assert the relevant permission

for that variable. These casts are trusted by the typechecker, but unchecked. A program that
executes an invalid cast may fail at any point later in the program’s execution.

SimpleExpr:
BlockExpr
new State
SimpleExpr2

The new statement creates an object initialized according to the State specification given (de-
fined below).

BlockExpr:

{ [StmtListSemi] }
StmtListSemi:

Stmt { ; Stmt} [;]

Block expressions have a semicolon-separated list of statements, with an optional semicolon at
the end. The statement list evaluates to the value given by the last statement in the list.

SimpleExpr2:
SimpleExprl
SimpleExpr2 BlockExpr

To enable control structures with a natural, Java-like syntax, we allow a function to be invoked
by passing a block expression as an argument. The block expression in this case is treated as
a zero-argument, anonymous lambda.For example, the 1 £ construct is defined in Plaid Standard
Library so one can write 1f (boolean value) {...}; in Plaid. One difference from Java
syntax is that all expressions must be followed by a semi-colon, so 1f and while in Plaid must
have trailing semi-colons unlike in Java.

SimpleExprl:

Literal

Identifier

this

(Expr)

SimpleExprl . Identifier

SimpleExprl . new

SimpleExprl [MetaArgs] ArgumentExpr
ExprList:

Expr { , Expr}
ArgumentExpr:

([ExprList])

this represents the receiver of a method call as in Java and is bound in method bodies declared
as members of states. Unlike Java, this is not bound in field initializers.

Expressions can appear within parentheses as a comma separated list representing a tuple.

Java constructors can be invoked by calling new on the Java class name.

Function and method invocation are handled uniformly by supplying the arguments as a tuple.

Applications can be chained, supporting currying. Polymorphic arguments are specified at each
call site as well.

4 Polymorphism

MetaArgsSpec:

< MetaArgSpec [, MetaArgSpec] >
MetaArgSpec:

group [GroupPermission] Identifier
GroupPermission:

exclusive

shared

protected
MetaArgs:
< SimpleExprl [, SimpleExprl | >

Plaid supports polymorphism for data groups! and uses angle brackets to enclose polymorphic
parameters and arguments (similar to Java’s generics). A MetaArgSpec describes a single poly-
morphic formal parameter. At the moment Paid only supports only group parameters. A group
parameter consists of the keyword group to identify this parameter as group parameter, and op-
tional GroupPermission (only for state declarations) and the name of the parameter. For more
information about data groups and group parameters refer to [Stork et al., 2009, 2010].

5 Declarations

Decl:

{ModifierOrDefaultPermission} state Ildentifier [MetaArgs]
[case of Qualifiedldentifier [MetaArgs]] [StateBinding] [;]

{ModifierOrDefaultPermission} stateval Identifier [MetaArgs]
[StateBinding] [;]

{Modifier} MSpec ;
{Modifier} MSpec BlockExpr
{Modifier} FieldDecl ;
{Modifier} GroupDecl ;

state and stateval declarations specify the implementation of a state, as specified in the
state definition. The state keyword means that this state is given its own zag that can be used to
test whether objects are in that state. Only states declared with state can be given in a pattern
for a case in a match statement.

The case of keyword sequence assigns a superstate. States have all of the members of a
superstate. Different cases of the same superstate are orthogonal; no object may ever be tagged
with two cases of the same superstate.

The final two declarations are for method and field declarations. The method declaration has
a method header and an optional method body. If the body is missing then the method is abstract
and must be filled in by sub-states or when the state is instantiated.

Fields and state operators are discussed in more detail below.

'Extending polymorphism to types should be straightforward.

StateBinding:
= State
{ {Decl} }

State:

StatePrim {with StatePrim}
StatePrim:

{ {Decl} }

SimpleExprl [{ { DecOrStateOp} }]

freeze SimpleExprl
DeclOrStateOp:

Decl

StateOp
StateOp:

remove Identifier ;

rename Identifier as Identifier ;

A StateBinding can either be an assignment to a State or a list of declarations in curly braces.

A State 1s a composition of primitive states separated by the with keyword. The StatePrim
category includes a list of declarations, or an expression, that should evaluate to a state, modified
by a list of declarations and state operations (DeclOrStateOp). Expressions that evaluation to an
object can be transformed into a primitive state with the £reeze keyword.

Composition is in general symmetric, as in traits. It is an error if two states are composed with
a member in common. The conflict can be resolved manually using state operators remove and
rename, which respectively discard or change the name of a member in a state.

GroupDecl:

group ldentifier = new group ;
FieldDecl:

ConcreteFieldDecl

AbstractFieldDecl
ConcreteFieldDecl:

[Specifier] [Type] ldentifier = Expr
AbstractFieldDecl:

Specifier Identifier

[Specifier] Type Identifier

Args:
[ArgSpec] Identifier { , [ArgSpec] ldentifier}
ArgSpec:
Type [>> Type]
MSpec:
method [Type] IdentifierOrOperator [MetaArgsSpec] ([Args]) [[Args 1]

Declaring a new data group is realized via GroupDecl, where identifier is the name of new data
group. Data groups need to be immediately initialized with a new data group?

The FieldDecl form should be familiar from Java-like languages. If no expression is given then
the field is abstract. When fields are first defined a specifier (var or val) must be given; later,
when the field is overridden and given a concrete value, the specifier may be omitted. var fields
are assignable, val fields are not.

If a type is missing and an expression is given for a val field, then the type of the field is
inferred from the expression as in variable declaration statements. If the type is missing and either
no expression is given or it is a var field, then the type is dynamic.

Method headers include specifications for their arguments. Each argument specification in-
cludes the required type at the time of the method call or function application. If the parameter
ends the call with a different type this is indicated with a >> and the resulting type. If no resulting
type is specified then it defaults to the required type. If no argument specification is given for a
variable, then its starting and ending type defaults to dynamic.

The method header MSpec has a standard format (similar to functions). As in function decla-
rations, programmers may optionally include types for any captured environment variables within
square brackets. For methods declared within states, the distinguished variable this, representing
the receiver of the method, may appear in this list. If it does not, then the default specification for
this is to have a required and resulting type of the structure representing the state the method is
defined in with the default permission for that state as described below.

The name of an method can be an operator, which supports a simple form of operator over-
loading. Operator methods are semantically equivalent to other methods. They dispatch only on
the receiver, so x + y calls the + method defined on x with y as an argument.

Modifier:
override
requires

DefaultPermission:

immutable

ModifierOrDefaultPermission:

Future version might allow the declaration of data groups without initialization to realize data group parameters
within structural types.

Modifier

DefaultPermission

override indicates that a method overrides a function of the same name during composition.

requires is similar to abstract in Java. However, things are more interesting in Plaid,
because one can pass around an object that has abstract/required members. It is not necessary
to use the requires modifier in state definitions; one can simply leave off the definition of a
function. requires is necessary in types, however, to distinguish the presence vs. absence of
a member in that type. Unlike in Java, methods may be called on an object that has a required
member, but only if the type given to the method’s receiver does not expect that member to be
present.

A state with a default permission of immutable means that the permission of any fields,
local variables, or parameters declared to have the structure represented by the state defaults to
immutable when a permission is not specified. If the state is not give the default immutable
then the default permission is unique.

10

6 Types

Type:

void

[callonce] LambdaStructure

[Permission] NominalStructure

(Type)
Permission:

unique

SymmetricPermission

LocalPermission
SymmetricPermission:

shared <SimpleExpri>

immutable
LocalPermission:

local SymmetricPermission
LambdaStructure:

[MetaParams] (ArgSpecs) -> Type
NominalStructure:

top

Qualifiedldentifier [MetaArgs]
ArgSpecs:

ArgSpec { * ArgSpec }

All types in Plaid include a permission and a structure. The most general type is void which
represents the weakest permission, none (not otherwise expressible in the source), with the most
general structure, top. References may be inferred to have the type dynamic. Uses of values
with type dynamic are not statically guaranteed to be type-safe. An unsafe cast must appear in
the source for a dynamic value to be used in statically typed code. Lambda types consist of a
lambda structure with an optional lambda permission callonce. Normal functions can be called
any number of times, while a callonce function can only be called once. All other types are
written as an optional Permission and a structure.

A LambdaStructure represents a function structure. The environment included in the declara-
tion of a lambda is not included in its type. However, if a function is specified to consume part

of the permission to any of its environment variables, then it can only be typed at a callonce
lambda type since the necessary environment permission will no longer be available after a call.

11

Consequently, once a callonce function has been called, its type becomes void. Formally, a
function that accepts multiple arguments actually accepts an argument tuple, which is written with
a *-separated list.

A NominalStructure represents the structure given by a declared state or the distinguished top
structure, which is a superstructure of all structures. If the state represented by the NominalStruc-
ture is polymorphic, then MetaArgs must be provided.

If the permission for a nominal structure is not given, then a default is inferred. The top
structure defaults to the none permission. A NominalStructure defaults to the default permission
associated with the state it represents.

The unique permission indicates that there are no usable aliases to the same object. There
may be other references to the object with the none permission which does not allow the object
to be used in any way.

A SymmetricPermission allows new aliases to be created with the same permission. immutable
references cannot be used to update the object but can assume that no other references make
changes. shared references can make changes, but must assume that other references may have
changed the object.

A local permission gives the same abilities and guarantees as its underlying SymmetricPer-
mission, but is restricted to local variables and parameters. A 1local reference cannot be assigned
into a field. This restriction allows 1local permissions to be returned to their original location
when their reference goes out of scope. This may allow the original reference to regain a stronger
permission. For example, a unique reference used as a function parameter that requires and re-
sults in a local permission will still be unique after the function call. Refer to [Naden et al.,
2012] for more information on local permissions.

12

7 Compilation Units

CompilationUnit:
package Qualifiedldentifier ; {Import} { Decl}

A compilation unit is made up of a (required) package clause followed by a sequence of decla-
rations.

7.1 Imports

Import:
import Qualifiedldentifier [DotStar] ;
DotStar:

An import statement imports a qualified name into the current scope so it can be referred to by
the last identifier in the qualified name. If the import ends in .*, then all the members of the given
Name are imported into the current scope.

As in Java, importing the same simple name twice is an error unless the fully qualified name is
the same. Importing a specific simple name always overrides importing all elements of a package
where that name is defined, regardless of which definition goes first. In general, Plaid follows the
Java Language Specification section 7.5.

7.2 Java Interoperability

Accessing Java from Plaid. Any java package, class, or class member can be referred to via a
qualified name. Imported name(s) can include a package, class, or class member from Java. In-
stances of a Java class C may be created by invoking C.new(...) and passing appropriate arguments
for one of the constructors of class C. A static method m of C may be invoked with the syntax
C.m(...). An instance methods of a Java object o may be invoked with the syntax o.m(...). Ar-
guments passed to calls of Java constructors and methods may be Java objects. Plaid integers,
strings, and booleans are converted to appropriate Java primitive, String, and numeric object types
(e.g. java.lang.Integer) depending on the declared type of the method’s formal parameters. If a
Java method takes an Object or plaid.runtime.PlaidObject as an argument, then a Plaid object can
be passed to it, allowing Java code to access Plaid objects.

Implementing Java Interfaces. A Plaid state can be declared to be a case of a Java interface.
In that case, any new expression that creates an object with that state will generate a Plaid object
that extends the appropriate Java interface. The Plaid object may then be passed to a Java method
that takes the interface type as an argument. Methods of the interface that are invoked by Java are
converted into calls to Plaid methods of the same name and arguments, as described immediately
below.

13

Accessing Plaid from Java. Java code may invoke methods of Plaid objects when those objects
implement Java interfaces, as decribed above, or reflectively through the plaid.runtime.PlaidObject
interface. When calling a Plaid method through this interface, Java objects of type Integer, String,
Booleans, and other numeric objects are converted into the corresponding Plaid types. PlaidObjects
and Java objects are passed through unchanged, and their methods may be invoked from Plaid in
the usual way described above. The detailed interface of plaid.runtime.PlaidObject is specified in
the javadoc for that interface.

7.3 File System Conventions

A compilation unit is stored in a file with extension .plaid. For each top-level declaration in the file,
a Java class in the declared package is created with the name of the top-level declaration. The Java
class implementing a declaration is found at run time using Java’s normal classpath-based lookup
mechanism.

7.4 Applications

An application is any globally-visible function that takes no arguments.
If the user types at the command line:

plaid Name

where Name is a qualified name, the plaid executable will search the classpath for a declaration
of the named function and will try to execute it.

References

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification, Third
Edition. Addison Wesley, 2005.

Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff. A type system for borrowing
permissions. In Proceedings of Principles of Programming Languages (POPL), 2012.

Sven Stork, Paulo Marques, and Jonathan Aldrich. Concurrency by default: using permissions to
express dataflow in stateful programs. In Onward!, 2009.

Sven Stork, Jonathan Aldrich, and Paulo Marques. micro-AEmimium Language Specification.
Technical Report CMU-ISR-10-125R1, Carnegie Mellon University, 2010.

Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Eric Tanter. First-class state
change in plaid. In Proceedings of Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2011.

14

